Sample records for bayesian sequential change

  1. A Bayesian sequential design with adaptive randomization for 2-sided hypothesis test.

    PubMed

    Yu, Qingzhao; Zhu, Lin; Zhu, Han

    2017-11-01

    Bayesian sequential and adaptive randomization designs are gaining popularity in clinical trials thanks to their potentials to reduce the number of required participants and save resources. We propose a Bayesian sequential design with adaptive randomization rates so as to more efficiently attribute newly recruited patients to different treatment arms. In this paper, we consider 2-arm clinical trials. Patients are allocated to the 2 arms with a randomization rate to achieve minimum variance for the test statistic. Algorithms are presented to calculate the optimal randomization rate, critical values, and power for the proposed design. Sensitivity analysis is implemented to check the influence on design by changing the prior distributions. Simulation studies are applied to compare the proposed method and traditional methods in terms of power and actual sample sizes. Simulations show that, when total sample size is fixed, the proposed design can obtain greater power and/or cost smaller actual sample size than the traditional Bayesian sequential design. Finally, we apply the proposed method to a real data set and compare the results with the Bayesian sequential design without adaptive randomization in terms of sample sizes. The proposed method can further reduce required sample size. Copyright © 2017 John Wiley & Sons, Ltd.

  2. A Bayesian approach to tracking patients having changing pharmacokinetic parameters

    NASA Technical Reports Server (NTRS)

    Bayard, David S.; Jelliffe, Roger W.

    2004-01-01

    This paper considers the updating of Bayesian posterior densities for pharmacokinetic models associated with patients having changing parameter values. For estimation purposes it is proposed to use the Interacting Multiple Model (IMM) estimation algorithm, which is currently a popular algorithm in the aerospace community for tracking maneuvering targets. The IMM algorithm is described, and compared to the multiple model (MM) and Maximum A-Posteriori (MAP) Bayesian estimation methods, which are presently used for posterior updating when pharmacokinetic parameters do not change. Both the MM and MAP Bayesian estimation methods are used in their sequential forms, to facilitate tracking of changing parameters. Results indicate that the IMM algorithm is well suited for tracking time-varying pharmacokinetic parameters in acutely ill and unstable patients, incurring only about half of the integrated error compared to the sequential MM and MAP methods on the same example.

  3. Environmentally adaptive processing for shallow ocean applications: A sequential Bayesian approach.

    PubMed

    Candy, J V

    2015-09-01

    The shallow ocean is a changing environment primarily due to temperature variations in its upper layers directly affecting sound propagation throughout. The need to develop processors capable of tracking these changes implies a stochastic as well as an environmentally adaptive design. Bayesian techniques have evolved to enable a class of processors capable of performing in such an uncertain, nonstationary (varying statistics), non-Gaussian, variable shallow ocean environment. A solution to this problem is addressed by developing a sequential Bayesian processor capable of providing a joint solution to the modal function tracking and environmental adaptivity problem. Here, the focus is on the development of both a particle filter and an unscented Kalman filter capable of providing reasonable performance for this problem. These processors are applied to hydrophone measurements obtained from a vertical array. The adaptivity problem is attacked by allowing the modal coefficients and/or wavenumbers to be jointly estimated from the noisy measurement data along with tracking of the modal functions while simultaneously enhancing the noisy pressure-field measurements.

  4. A Bayesian sequential design using alpha spending function to control type I error.

    PubMed

    Zhu, Han; Yu, Qingzhao

    2017-10-01

    We propose in this article a Bayesian sequential design using alpha spending functions to control the overall type I error in phase III clinical trials. We provide algorithms to calculate critical values, power, and sample sizes for the proposed design. Sensitivity analysis is implemented to check the effects from different prior distributions, and conservative priors are recommended. We compare the power and actual sample sizes of the proposed Bayesian sequential design with different alpha spending functions through simulations. We also compare the power of the proposed method with frequentist sequential design using the same alpha spending function. Simulations show that, at the same sample size, the proposed method provides larger power than the corresponding frequentist sequential design. It also has larger power than traditional Bayesian sequential design which sets equal critical values for all interim analyses. When compared with other alpha spending functions, O'Brien-Fleming alpha spending function has the largest power and is the most conservative in terms that at the same sample size, the null hypothesis is the least likely to be rejected at early stage of clinical trials. And finally, we show that adding a step of stop for futility in the Bayesian sequential design can reduce the overall type I error and reduce the actual sample sizes.

  5. Numerical study on the sequential Bayesian approach for radioactive materials detection

    NASA Astrophysics Data System (ADS)

    Qingpei, Xiang; Dongfeng, Tian; Jianyu, Zhu; Fanhua, Hao; Ge, Ding; Jun, Zeng

    2013-01-01

    A new detection method, based on the sequential Bayesian approach proposed by Candy et al., offers new horizons for the research of radioactive detection. Compared with the commonly adopted detection methods incorporated with statistical theory, the sequential Bayesian approach offers the advantages of shorter verification time during the analysis of spectra that contain low total counts, especially in complex radionuclide components. In this paper, a simulation experiment platform implanted with the methodology of sequential Bayesian approach was developed. Events sequences of γ-rays associating with the true parameters of a LaBr3(Ce) detector were obtained based on an events sequence generator using Monte Carlo sampling theory to study the performance of the sequential Bayesian approach. The numerical experimental results are in accordance with those of Candy. Moreover, the relationship between the detection model and the event generator, respectively represented by the expected detection rate (Am) and the tested detection rate (Gm) parameters, is investigated. To achieve an optimal performance for this processor, the interval of the tested detection rate as a function of the expected detection rate is also presented.

  6. Adaptive sequential Bayesian classification using Page's test

    NASA Astrophysics Data System (ADS)

    Lynch, Robert S., Jr.; Willett, Peter K.

    2002-03-01

    In this paper, the previously introduced Mean-Field Bayesian Data Reduction Algorithm is extended for adaptive sequential hypothesis testing utilizing Page's test. In general, Page's test is well understood as a method of detecting a permanent change in distribution associated with a sequence of observations. However, the relationship between detecting a change in distribution utilizing Page's test with that of classification and feature fusion is not well understood. Thus, the contribution of this work is based on developing a method of classifying an unlabeled vector of fused features (i.e., detect a change to an active statistical state) as quickly as possible given an acceptable mean time between false alerts. In this case, the developed classification test can be thought of as equivalent to performing a sequential probability ratio test repeatedly until a class is decided, with the lower log-threshold of each test being set to zero and the upper log-threshold being determined by the expected distance between false alerts. It is of interest to estimate the delay (or, related stopping time) to a classification decision (the number of time samples it takes to classify the target), and the mean time between false alerts, as a function of feature selection and fusion by the Mean-Field Bayesian Data Reduction Algorithm. Results are demonstrated by plotting the delay to declaring the target class versus the mean time between false alerts, and are shown using both different numbers of simulated training data and different numbers of relevant features for each class.

  7. Win-Stay, Lose-Sample: a simple sequential algorithm for approximating Bayesian inference.

    PubMed

    Bonawitz, Elizabeth; Denison, Stephanie; Gopnik, Alison; Griffiths, Thomas L

    2014-11-01

    People can behave in a way that is consistent with Bayesian models of cognition, despite the fact that performing exact Bayesian inference is computationally challenging. What algorithms could people be using to make this possible? We show that a simple sequential algorithm "Win-Stay, Lose-Sample", inspired by the Win-Stay, Lose-Shift (WSLS) principle, can be used to approximate Bayesian inference. We investigate the behavior of adults and preschoolers on two causal learning tasks to test whether people might use a similar algorithm. These studies use a "mini-microgenetic method", investigating how people sequentially update their beliefs as they encounter new evidence. Experiment 1 investigates a deterministic causal learning scenario and Experiments 2 and 3 examine how people make inferences in a stochastic scenario. The behavior of adults and preschoolers in these experiments is consistent with our Bayesian version of the WSLS principle. This algorithm provides both a practical method for performing Bayesian inference and a new way to understand people's judgments. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Damage diagnosis algorithm using a sequential change point detection method with an unknown distribution for damage

    NASA Astrophysics Data System (ADS)

    Noh, Hae Young; Rajagopal, Ram; Kiremidjian, Anne S.

    2012-04-01

    This paper introduces a damage diagnosis algorithm for civil structures that uses a sequential change point detection method for the cases where the post-damage feature distribution is unknown a priori. This algorithm extracts features from structural vibration data using time-series analysis and then declares damage using the change point detection method. The change point detection method asymptotically minimizes detection delay for a given false alarm rate. The conventional method uses the known pre- and post-damage feature distributions to perform a sequential hypothesis test. In practice, however, the post-damage distribution is unlikely to be known a priori. Therefore, our algorithm estimates and updates this distribution as data are collected using the maximum likelihood and the Bayesian methods. We also applied an approximate method to reduce the computation load and memory requirement associated with the estimation. The algorithm is validated using multiple sets of simulated data and a set of experimental data collected from a four-story steel special moment-resisting frame. Our algorithm was able to estimate the post-damage distribution consistently and resulted in detection delays only a few seconds longer than the delays from the conventional method that assumes we know the post-damage feature distribution. We confirmed that the Bayesian method is particularly efficient in declaring damage with minimal memory requirement, but the maximum likelihood method provides an insightful heuristic approach.

  9. A Bayesian sequential processor approach to spectroscopic portal system decisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sale, K; Candy, J; Breitfeller, E

    The development of faster more reliable techniques to detect radioactive contraband in a portal type scenario is an extremely important problem especially in this era of constant terrorist threats. Towards this goal the development of a model-based, Bayesian sequential data processor for the detection problem is discussed. In the sequential processor each datum (detector energy deposit and pulse arrival time) is used to update the posterior probability distribution over the space of model parameters. The nature of the sequential processor approach is that a detection is produced as soon as it is statistically justified by the data rather than waitingmore » for a fixed counting interval before any analysis is performed. In this paper the Bayesian model-based approach, physics and signal processing models and decision functions are discussed along with the first results of our research.« less

  10. Sequential structural damage diagnosis algorithm using a change point detection method

    NASA Astrophysics Data System (ADS)

    Noh, H.; Rajagopal, R.; Kiremidjian, A. S.

    2013-11-01

    This paper introduces a damage diagnosis algorithm for civil structures that uses a sequential change point detection method. The general change point detection method uses the known pre- and post-damage feature distributions to perform a sequential hypothesis test. In practice, however, the post-damage distribution is unlikely to be known a priori, unless we are looking for a known specific type of damage. Therefore, we introduce an additional algorithm that estimates and updates this distribution as data are collected using the maximum likelihood and the Bayesian methods. We also applied an approximate method to reduce the computation load and memory requirement associated with the estimation. The algorithm is validated using a set of experimental data collected from a four-story steel special moment-resisting frame and multiple sets of simulated data. Various features of different dimensions have been explored, and the algorithm was able to identify damage, particularly when it uses multidimensional damage sensitive features and lower false alarm rates, with a known post-damage feature distribution. For unknown feature distribution cases, the post-damage distribution was consistently estimated and the detection delays were only a few time steps longer than the delays from the general method that assumes we know the post-damage feature distribution. We confirmed that the Bayesian method is particularly efficient in declaring damage with minimal memory requirement, but the maximum likelihood method provides an insightful heuristic approach.

  11. Optimal Sequential Rules for Computer-Based Instruction.

    ERIC Educational Resources Information Center

    Vos, Hans J.

    1998-01-01

    Formulates sequential rules for adapting the appropriate amount of instruction to learning needs in the context of computer-based instruction. Topics include Bayesian decision theory, threshold and linear-utility structure, psychometric model, optimal sequential number of test questions, and an empirical example of sequential instructional…

  12. Sequential Probability Ratio Test for Collision Avoidance Maneuver Decisions

    NASA Technical Reports Server (NTRS)

    Carpenter, J. Russell; Markley, F. Landis

    2010-01-01

    When facing a conjunction between space objects, decision makers must chose whether to maneuver for collision avoidance or not. We apply a well-known decision procedure, the sequential probability ratio test, to this problem. We propose two approaches to the problem solution, one based on a frequentist method, and the other on a Bayesian method. The frequentist method does not require any prior knowledge concerning the conjunction, while the Bayesian method assumes knowledge of prior probability densities. Our results show that both methods achieve desired missed detection rates, but the frequentist method's false alarm performance is inferior to the Bayesian method's

  13. Sequential Designs Based on Bayesian Uncertainty Quantification in Sparse Representation Surrogate Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Ray -Bing; Wang, Weichung; Jeff Wu, C. F.

    A numerical method, called OBSM, was recently proposed which employs overcomplete basis functions to achieve sparse representations. While the method can handle non-stationary response without the need of inverting large covariance matrices, it lacks the capability to quantify uncertainty in predictions. We address this issue by proposing a Bayesian approach which first imposes a normal prior on the large space of linear coefficients, then applies the MCMC algorithm to generate posterior samples for predictions. From these samples, Bayesian credible intervals can then be obtained to assess prediction uncertainty. A key application for the proposed method is the efficient construction ofmore » sequential designs. Several sequential design procedures with different infill criteria are proposed based on the generated posterior samples. As a result, numerical studies show that the proposed schemes are capable of solving problems of positive point identification, optimization, and surrogate fitting.« less

  14. Sequential Designs Based on Bayesian Uncertainty Quantification in Sparse Representation Surrogate Modeling

    DOE PAGES

    Chen, Ray -Bing; Wang, Weichung; Jeff Wu, C. F.

    2017-04-12

    A numerical method, called OBSM, was recently proposed which employs overcomplete basis functions to achieve sparse representations. While the method can handle non-stationary response without the need of inverting large covariance matrices, it lacks the capability to quantify uncertainty in predictions. We address this issue by proposing a Bayesian approach which first imposes a normal prior on the large space of linear coefficients, then applies the MCMC algorithm to generate posterior samples for predictions. From these samples, Bayesian credible intervals can then be obtained to assess prediction uncertainty. A key application for the proposed method is the efficient construction ofmore » sequential designs. Several sequential design procedures with different infill criteria are proposed based on the generated posterior samples. As a result, numerical studies show that the proposed schemes are capable of solving problems of positive point identification, optimization, and surrogate fitting.« less

  15. Decision Making and Learning while Taking Sequential Risks

    ERIC Educational Resources Information Center

    Pleskac, Timothy J.

    2008-01-01

    A sequential risk-taking paradigm used to identify real-world risk takers invokes both learning and decision processes. This article expands the paradigm to a larger class of tasks with different stochastic environments and different learning requirements. Generalizing a Bayesian sequential risk-taking model to the larger set of tasks clarifies…

  16. A Bayesian Theory of Sequential Causal Learning and Abstract Transfer

    ERIC Educational Resources Information Center

    Lu, Hongjing; Rojas, Randall R.; Beckers, Tom; Yuille, Alan L.

    2016-01-01

    Two key research issues in the field of causal learning are how people acquire causal knowledge when observing data that are presented sequentially, and the level of abstraction at which learning takes place. Does sequential causal learning solely involve the acquisition of specific cause-effect links, or do learners also acquire knowledge about…

  17. Physics-based, Bayesian sequential detection method and system for radioactive contraband

    DOEpatents

    Candy, James V; Axelrod, Michael C; Breitfeller, Eric F; Chambers, David H; Guidry, Brian L; Manatt, Douglas R; Meyer, Alan W; Sale, Kenneth E

    2014-03-18

    A distributed sequential method and system for detecting and identifying radioactive contraband from highly uncertain (noisy) low-count, radionuclide measurements, i.e. an event mode sequence (EMS), using a statistical approach based on Bayesian inference and physics-model-based signal processing based on the representation of a radionuclide as a monoenergetic decomposition of monoenergetic sources. For a given photon event of the EMS, the appropriate monoenergy processing channel is determined using a confidence interval condition-based discriminator for the energy amplitude and interarrival time and parameter estimates are used to update a measured probability density function estimate for a target radionuclide. A sequential likelihood ratio test is then used to determine one of two threshold conditions signifying that the EMS is either identified as the target radionuclide or not, and if not, then repeating the process for the next sequential photon event of the EMS until one of the two threshold conditions is satisfied.

  18. Three-dimensional Stochastic Estimation of Porosity Distribution: Benefits of Using Ground-penetrating Radar Velocity Tomograms in Simulated-annealing-based or Bayesian Sequential Simulation Approaches

    DTIC Science & Technology

    2012-05-30

    annealing-based or Bayesian sequential simulation approaches B. Dafflon1,2 and W. Barrash1 Received 13 May 2011; revised 12 March 2012; accepted 17 April 2012...the withheld porosity log are also withheld for this estimation process. For both cases we do this for two wells having locally variable stratigraphy ...borehole location is given at the bottom of each log comparison panel. For comparison with stratigraphy at the BHRS, contacts between Units 1 to 4

  19. Effective Online Bayesian Phylogenetics via Sequential Monte Carlo with Guided Proposals

    PubMed Central

    Fourment, Mathieu; Claywell, Brian C; Dinh, Vu; McCoy, Connor; Matsen IV, Frederick A; Darling, Aaron E

    2018-01-01

    Abstract Modern infectious disease outbreak surveillance produces continuous streams of sequence data which require phylogenetic analysis as data arrives. Current software packages for Bayesian phylogenetic inference are unable to quickly incorporate new sequences as they become available, making them less useful for dynamically unfolding evolutionary stories. This limitation can be addressed by applying a class of Bayesian statistical inference algorithms called sequential Monte Carlo (SMC) to conduct online inference, wherein new data can be continuously incorporated to update the estimate of the posterior probability distribution. In this article, we describe and evaluate several different online phylogenetic sequential Monte Carlo (OPSMC) algorithms. We show that proposing new phylogenies with a density similar to the Bayesian prior suffers from poor performance, and we develop “guided” proposals that better match the proposal density to the posterior. Furthermore, we show that the simplest guided proposals can exhibit pathological behavior in some situations, leading to poor results, and that the situation can be resolved by heating the proposal density. The results demonstrate that relative to the widely used MCMC-based algorithm implemented in MrBayes, the total time required to compute a series of phylogenetic posteriors as sequences arrive can be significantly reduced by the use of OPSMC, without incurring a significant loss in accuracy. PMID:29186587

  20. Bayesian randomized clinical trials: From fixed to adaptive design.

    PubMed

    Yin, Guosheng; Lam, Chi Kin; Shi, Haolun

    2017-08-01

    Randomized controlled studies are the gold standard for phase III clinical trials. Using α-spending functions to control the overall type I error rate, group sequential methods are well established and have been dominating phase III studies. Bayesian randomized design, on the other hand, can be viewed as a complement instead of competitive approach to the frequentist methods. For the fixed Bayesian design, the hypothesis testing can be cast in the posterior probability or Bayes factor framework, which has a direct link to the frequentist type I error rate. Bayesian group sequential design relies upon Bayesian decision-theoretic approaches based on backward induction, which is often computationally intensive. Compared with the frequentist approaches, Bayesian methods have several advantages. The posterior predictive probability serves as a useful and convenient tool for trial monitoring, and can be updated at any time as the data accrue during the trial. The Bayesian decision-theoretic framework possesses a direct link to the decision making in the practical setting, and can be modeled more realistically to reflect the actual cost-benefit analysis during the drug development process. Other merits include the possibility of hierarchical modeling and the use of informative priors, which would lead to a more comprehensive utilization of information from both historical and longitudinal data. From fixed to adaptive design, we focus on Bayesian randomized controlled clinical trials and make extensive comparisons with frequentist counterparts through numerical studies. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Sequential inference as a mode of cognition and its correlates in fronto-parietal and hippocampal brain regions

    PubMed Central

    Friston, Karl J.; Dolan, Raymond J.

    2017-01-01

    Normative models of human cognition often appeal to Bayesian filtering, which provides optimal online estimates of unknown or hidden states of the world, based on previous observations. However, in many cases it is necessary to optimise beliefs about sequences of states rather than just the current state. Importantly, Bayesian filtering and sequential inference strategies make different predictions about beliefs and subsequent choices, rendering them behaviourally dissociable. Taking data from a probabilistic reversal task we show that subjects’ choices provide strong evidence that they are representing short sequences of states. Between-subject measures of this implicit sequential inference strategy had a neurobiological underpinning and correlated with grey matter density in prefrontal and parietal cortex, as well as the hippocampus. Our findings provide, to our knowledge, the first evidence for sequential inference in human cognition, and by exploiting between-subject variation in this measure we provide pointers to its neuronal substrates. PMID:28486504

  2. Improving Computational Efficiency of Prediction in Model-based Prognostics Using the Unscented Transform

    DTIC Science & Technology

    2010-10-01

    bodies becomes greater as surface as- perities wear down (Hutchings, 1992). We characterize friction damage by a change in the friction coefficient...points are such a set, and satisfy an additional constraint in which the skew ( third moment) is minimized, which reduces the average error for a...On sequential Monte Carlo sampling methods for Bayesian filtering. Statistics and Computing, 10, 197–208. Hutchings, I. M. (1992). Tribology : friction

  3. [Bayesian geostatistical prediction of soil organic carbon contents of solonchak soils in nor-thern Tarim Basin, Xinjiang, China.

    PubMed

    Wu, Wei Mo; Wang, Jia Qiang; Cao, Qi; Wu, Jia Ping

    2017-02-01

    Accurate prediction of soil organic carbon (SOC) distribution is crucial for soil resources utilization and conservation, climate change adaptation, and ecosystem health. In this study, we selected a 1300 m×1700 m solonchak sampling area in northern Tarim Basin, Xinjiang, China, and collected a total of 144 soil samples (5-10 cm). The objectives of this study were to build a Baye-sian geostatistical model to predict SOC content, and to assess the performance of the Bayesian model for the prediction of SOC content by comparing with other three geostatistical approaches [ordinary kriging (OK), sequential Gaussian simulation (SGS), and inverse distance weighting (IDW)]. In the study area, soil organic carbon contents ranged from 1.59 to 9.30 g·kg -1 with a mean of 4.36 g·kg -1 and a standard deviation of 1.62 g·kg -1 . Sample semivariogram was best fitted by an exponential model with the ratio of nugget to sill being 0.57. By using the Bayesian geostatistical approach, we generated the SOC content map, and obtained the prediction variance, upper 95% and lower 95% of SOC contents, which were then used to evaluate the prediction uncertainty. Bayesian geostatistical approach performed better than that of the OK, SGS and IDW, demonstrating the advantages of Bayesian approach in SOC prediction.

  4. Context-dependent decision-making: a simple Bayesian model

    PubMed Central

    Lloyd, Kevin; Leslie, David S.

    2013-01-01

    Many phenomena in animal learning can be explained by a context-learning process whereby an animal learns about different patterns of relationship between environmental variables. Differentiating between such environmental regimes or ‘contexts’ allows an animal to rapidly adapt its behaviour when context changes occur. The current work views animals as making sequential inferences about current context identity in a world assumed to be relatively stable but also capable of rapid switches to previously observed or entirely new contexts. We describe a novel decision-making model in which contexts are assumed to follow a Chinese restaurant process with inertia and full Bayesian inference is approximated by a sequential-sampling scheme in which only a single hypothesis about current context is maintained. Actions are selected via Thompson sampling, allowing uncertainty in parameters to drive exploration in a straightforward manner. The model is tested on simple two-alternative choice problems with switching reinforcement schedules and the results compared with rat behavioural data from a number of T-maze studies. The model successfully replicates a number of important behavioural effects: spontaneous recovery, the effect of partial reinforcement on extinction and reversal, the overtraining reversal effect, and serial reversal-learning effects. PMID:23427101

  5. Context-dependent decision-making: a simple Bayesian model.

    PubMed

    Lloyd, Kevin; Leslie, David S

    2013-05-06

    Many phenomena in animal learning can be explained by a context-learning process whereby an animal learns about different patterns of relationship between environmental variables. Differentiating between such environmental regimes or 'contexts' allows an animal to rapidly adapt its behaviour when context changes occur. The current work views animals as making sequential inferences about current context identity in a world assumed to be relatively stable but also capable of rapid switches to previously observed or entirely new contexts. We describe a novel decision-making model in which contexts are assumed to follow a Chinese restaurant process with inertia and full Bayesian inference is approximated by a sequential-sampling scheme in which only a single hypothesis about current context is maintained. Actions are selected via Thompson sampling, allowing uncertainty in parameters to drive exploration in a straightforward manner. The model is tested on simple two-alternative choice problems with switching reinforcement schedules and the results compared with rat behavioural data from a number of T-maze studies. The model successfully replicates a number of important behavioural effects: spontaneous recovery, the effect of partial reinforcement on extinction and reversal, the overtraining reversal effect, and serial reversal-learning effects.

  6. Nonparametric Bayesian Multiple Imputation for Incomplete Categorical Variables in Large-Scale Assessment Surveys

    ERIC Educational Resources Information Center

    Si, Yajuan; Reiter, Jerome P.

    2013-01-01

    In many surveys, the data comprise a large number of categorical variables that suffer from item nonresponse. Standard methods for multiple imputation, like log-linear models or sequential regression imputation, can fail to capture complex dependencies and can be difficult to implement effectively in high dimensions. We present a fully Bayesian,…

  7. The Approximate Bayesian Computation methods in the localization of the atmospheric contamination source

    NASA Astrophysics Data System (ADS)

    Kopka, P.; Wawrzynczak, A.; Borysiewicz, M.

    2015-09-01

    In many areas of application, a central problem is a solution to the inverse problem, especially estimation of the unknown model parameters to model the underlying dynamics of a physical system precisely. In this situation, the Bayesian inference is a powerful tool to combine observed data with prior knowledge to gain the probability distribution of searched parameters. We have applied the modern methodology named Sequential Approximate Bayesian Computation (S-ABC) to the problem of tracing the atmospheric contaminant source. The ABC is technique commonly used in the Bayesian analysis of complex models and dynamic system. Sequential methods can significantly increase the efficiency of the ABC. In the presented algorithm, the input data are the on-line arriving concentrations of released substance registered by distributed sensor network from OVER-LAND ATMOSPHERIC DISPERSION (OLAD) experiment. The algorithm output are the probability distributions of a contamination source parameters i.e. its particular location, release rate, speed and direction of the movement, start time and duration. The stochastic approach presented in this paper is completely general and can be used in other fields where the parameters of the model bet fitted to the observable data should be found.

  8. Adaptive Parameter Estimation of Person Recognition Model in a Stochastic Human Tracking Process

    NASA Astrophysics Data System (ADS)

    Nakanishi, W.; Fuse, T.; Ishikawa, T.

    2015-05-01

    This paper aims at an estimation of parameters of person recognition models using a sequential Bayesian filtering method. In many human tracking method, any parameters of models used for recognize the same person in successive frames are usually set in advance of human tracking process. In real situation these parameters may change according to situation of observation and difficulty level of human position prediction. Thus in this paper we formulate an adaptive parameter estimation using general state space model. Firstly we explain the way to formulate human tracking in general state space model with their components. Then referring to previous researches, we use Bhattacharyya coefficient to formulate observation model of general state space model, which is corresponding to person recognition model. The observation model in this paper is a function of Bhattacharyya coefficient with one unknown parameter. At last we sequentially estimate this parameter in real dataset with some settings. Results showed that sequential parameter estimation was succeeded and were consistent with observation situations such as occlusions.

  9. Bayesian inversion analysis of nonlinear dynamics in surface heterogeneous reactions.

    PubMed

    Omori, Toshiaki; Kuwatani, Tatsu; Okamoto, Atsushi; Hukushima, Koji

    2016-09-01

    It is essential to extract nonlinear dynamics from time-series data as an inverse problem in natural sciences. We propose a Bayesian statistical framework for extracting nonlinear dynamics of surface heterogeneous reactions from sparse and noisy observable data. Surface heterogeneous reactions are chemical reactions with conjugation of multiple phases, and they have the intrinsic nonlinearity of their dynamics caused by the effect of surface-area between different phases. We adapt a belief propagation method and an expectation-maximization (EM) algorithm to partial observation problem, in order to simultaneously estimate the time course of hidden variables and the kinetic parameters underlying dynamics. The proposed belief propagation method is performed by using sequential Monte Carlo algorithm in order to estimate nonlinear dynamical system. Using our proposed method, we show that the rate constants of dissolution and precipitation reactions, which are typical examples of surface heterogeneous reactions, as well as the temporal changes of solid reactants and products, were successfully estimated only from the observable temporal changes in the concentration of the dissolved intermediate product.

  10. Sequential bearings-only-tracking initiation with particle filtering method.

    PubMed

    Liu, Bin; Hao, Chengpeng

    2013-01-01

    The tracking initiation problem is examined in the context of autonomous bearings-only-tracking (BOT) of a single appearing/disappearing target in the presence of clutter measurements. In general, this problem suffers from a combinatorial explosion in the number of potential tracks resulted from the uncertainty in the linkage between the target and the measurement (a.k.a the data association problem). In addition, the nonlinear measurements lead to a non-Gaussian posterior probability density function (pdf) in the optimal Bayesian sequential estimation framework. The consequence of this nonlinear/non-Gaussian context is the absence of a closed-form solution. This paper models the linkage uncertainty and the nonlinear/non-Gaussian estimation problem jointly with solid Bayesian formalism. A particle filtering (PF) algorithm is derived for estimating the model's parameters in a sequential manner. Numerical results show that the proposed solution provides a significant benefit over the most commonly used methods, IPDA and IMMPDA. The posterior Cramér-Rao bounds are also involved for performance evaluation.

  11. A Bayesian Theory of Sequential Causal Learning and Abstract Transfer.

    PubMed

    Lu, Hongjing; Rojas, Randall R; Beckers, Tom; Yuille, Alan L

    2016-03-01

    Two key research issues in the field of causal learning are how people acquire causal knowledge when observing data that are presented sequentially, and the level of abstraction at which learning takes place. Does sequential causal learning solely involve the acquisition of specific cause-effect links, or do learners also acquire knowledge about abstract causal constraints? Recent empirical studies have revealed that experience with one set of causal cues can dramatically alter subsequent learning and performance with entirely different cues, suggesting that learning involves abstract transfer, and such transfer effects involve sequential presentation of distinct sets of causal cues. It has been demonstrated that pre-training (or even post-training) can modulate classic causal learning phenomena such as forward and backward blocking. To account for these effects, we propose a Bayesian theory of sequential causal learning. The theory assumes that humans are able to consider and use several alternative causal generative models, each instantiating a different causal integration rule. Model selection is used to decide which integration rule to use in a given learning environment in order to infer causal knowledge from sequential data. Detailed computer simulations demonstrate that humans rely on the abstract characteristics of outcome variables (e.g., binary vs. continuous) to select a causal integration rule, which in turn alters causal learning in a variety of blocking and overshadowing paradigms. When the nature of the outcome variable is ambiguous, humans select the model that yields the best fit with the recent environment, and then apply it to subsequent learning tasks. Based on sequential patterns of cue-outcome co-occurrence, the theory can account for a range of phenomena in sequential causal learning, including various blocking effects, primacy effects in some experimental conditions, and apparently abstract transfer of causal knowledge. Copyright © 2015 Cognitive Science Society, Inc.

  12. Hierarchical Bayesian analysis of outcome- and process-based social preferences and beliefs in Dictator Games and sequential Prisoner's Dilemmas.

    PubMed

    Aksoy, Ozan; Weesie, Jeroen

    2014-05-01

    In this paper, using a within-subjects design, we estimate the utility weights that subjects attach to the outcome of their interaction partners in four decision situations: (1) binary Dictator Games (DG), second player's role in the sequential Prisoner's Dilemma (PD) after the first player (2) cooperated and (3) defected, and (4) first player's role in the sequential Prisoner's Dilemma game. We find that the average weights in these four decision situations have the following order: (1)>(2)>(4)>(3). Moreover, the average weight is positive in (1) but negative in (2), (3), and (4). Our findings indicate the existence of strong negative and small positive reciprocity for the average subject, but there is also high interpersonal variation in the weights in these four nodes. We conclude that the PD frame makes subjects more competitive than the DG frame. Using hierarchical Bayesian modeling, we simultaneously analyze beliefs of subjects about others' utility weights in the same four decision situations. We compare several alternative theoretical models on beliefs, e.g., rational beliefs (Bayesian-Nash equilibrium) and a consensus model. Our results on beliefs strongly support the consensus effect and refute rational beliefs: there is a strong relationship between own preferences and beliefs and this relationship is relatively stable across the four decision situations. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Uncertainty Reduction using Bayesian Inference and Sensitivity Analysis: A Sequential Approach to the NASA Langley Uncertainty Quantification Challenge

    NASA Technical Reports Server (NTRS)

    Sankararaman, Shankar

    2016-01-01

    This paper presents a computational framework for uncertainty characterization and propagation, and sensitivity analysis under the presence of aleatory and epistemic un- certainty, and develops a rigorous methodology for efficient refinement of epistemic un- certainty by identifying important epistemic variables that significantly affect the overall performance of an engineering system. The proposed methodology is illustrated using the NASA Langley Uncertainty Quantification Challenge (NASA-LUQC) problem that deals with uncertainty analysis of a generic transport model (GTM). First, Bayesian inference is used to infer subsystem-level epistemic quantities using the subsystem-level model and corresponding data. Second, tools of variance-based global sensitivity analysis are used to identify four important epistemic variables (this limitation specified in the NASA-LUQC is reflective of practical engineering situations where not all epistemic variables can be refined due to time/budget constraints) that significantly affect system-level performance. The most significant contribution of this paper is the development of the sequential refine- ment methodology, where epistemic variables for refinement are not identified all-at-once. Instead, only one variable is first identified, and then, Bayesian inference and global sensi- tivity calculations are repeated to identify the next important variable. This procedure is continued until all 4 variables are identified and the refinement in the system-level perfor- mance is computed. The advantages of the proposed sequential refinement methodology over the all-at-once uncertainty refinement approach are explained, and then applied to the NASA Langley Uncertainty Quantification Challenge problem.

  14. Update on Bayesian Blocks: Segmented Models for Sequential Data

    NASA Technical Reports Server (NTRS)

    Scargle, Jeff

    2017-01-01

    The Bayesian Block algorithm, in wide use in astronomy and other areas, has been improved in several ways. The model for block shape has been generalized to include other than constant signal rate - e.g., linear, exponential, or other parametric models. In addition the computational efficiency has been improved, so that instead of O(N**2) the basic algorithm is O(N) in most cases. Other improvements in the theory and application of segmented representations will be described.

  15. Sequential Inverse Problems Bayesian Principles and the Logistic Map Example

    NASA Astrophysics Data System (ADS)

    Duan, Lian; Farmer, Chris L.; Moroz, Irene M.

    2010-09-01

    Bayesian statistics provides a general framework for solving inverse problems, but is not without interpretation and implementation problems. This paper discusses difficulties arising from the fact that forward models are always in error to some extent. Using a simple example based on the one-dimensional logistic map, we argue that, when implementation problems are minimal, the Bayesian framework is quite adequate. In this paper the Bayesian Filter is shown to be able to recover excellent state estimates in the perfect model scenario (PMS) and to distinguish the PMS from the imperfect model scenario (IMS). Through a quantitative comparison of the way in which the observations are assimilated in both the PMS and the IMS scenarios, we suggest that one can, sometimes, measure the degree of imperfection.

  16. A comparison of two worlds: How does Bayes hold up to the status quo for the analysis of clinical trials?

    PubMed

    Pressman, Alice R; Avins, Andrew L; Hubbard, Alan; Satariano, William A

    2011-07-01

    There is a paucity of literature comparing Bayesian analytic techniques with traditional approaches for analyzing clinical trials using real trial data. We compared Bayesian and frequentist group sequential methods using data from two published clinical trials. We chose two widely accepted frequentist rules, O'Brien-Fleming and Lan-DeMets, and conjugate Bayesian priors. Using the nonparametric bootstrap, we estimated a sampling distribution of stopping times for each method. Because current practice dictates the preservation of an experiment-wise false positive rate (Type I error), we approximated these error rates for our Bayesian and frequentist analyses with the posterior probability of detecting an effect in a simulated null sample. Thus for the data-generated distribution represented by these trials, we were able to compare the relative performance of these techniques. No final outcomes differed from those of the original trials. However, the timing of trial termination differed substantially by method and varied by trial. For one trial, group sequential designs of either type dictated early stopping of the study. In the other, stopping times were dependent upon the choice of spending function and prior distribution. Results indicate that trialists ought to consider Bayesian methods in addition to traditional approaches for analysis of clinical trials. Though findings from this small sample did not demonstrate either method to consistently outperform the other, they did suggest the need to replicate these comparisons using data from varied clinical trials in order to determine the conditions under which the different methods would be most efficient. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. A comparison of two worlds: How does Bayes hold up to the status quo for the analysis of clinical trials?

    PubMed Central

    Pressman, Alice R.; Avins, Andrew L.; Hubbard, Alan; Satariano, William A.

    2014-01-01

    Background There is a paucity of literature comparing Bayesian analytic techniques with traditional approaches for analyzing clinical trials using real trial data. Methods We compared Bayesian and frequentist group sequential methods using data from two published clinical trials. We chose two widely accepted frequentist rules, O'Brien–Fleming and Lan–DeMets, and conjugate Bayesian priors. Using the nonparametric bootstrap, we estimated a sampling distribution of stopping times for each method. Because current practice dictates the preservation of an experiment-wise false positive rate (Type I error), we approximated these error rates for our Bayesian and frequentist analyses with the posterior probability of detecting an effect in a simulated null sample. Thus for the data-generated distribution represented by these trials, we were able to compare the relative performance of these techniques. Results No final outcomes differed from those of the original trials. However, the timing of trial termination differed substantially by method and varied by trial. For one trial, group sequential designs of either type dictated early stopping of the study. In the other, stopping times were dependent upon the choice of spending function and prior distribution. Conclusions Results indicate that trialists ought to consider Bayesian methods in addition to traditional approaches for analysis of clinical trials. Though findings from this small sample did not demonstrate either method to consistently outperform the other, they did suggest the need to replicate these comparisons using data from varied clinical trials in order to determine the conditions under which the different methods would be most efficient. PMID:21453792

  18. Evaluation of the procedure 1A component of the 1980 US/Canada wheat and barley exploratory experiment

    NASA Technical Reports Server (NTRS)

    Chapman, G. M. (Principal Investigator); Carnes, J. G.

    1981-01-01

    Several techniques which use clusters generated by a new clustering algorithm, CLASSY, are proposed as alternatives to random sampling to obtain greater precision in crop proportion estimation: (1) Proportional Allocation/relative count estimator (PA/RCE) uses proportional allocation of dots to clusters on the basis of cluster size and a relative count cluster level estimate; (2) Proportional Allocation/Bayes Estimator (PA/BE) uses proportional allocation of dots to clusters and a Bayesian cluster-level estimate; and (3) Bayes Sequential Allocation/Bayesian Estimator (BSA/BE) uses sequential allocation of dots to clusters and a Bayesian cluster level estimate. Clustering in an effective method in making proportion estimates. It is estimated that, to obtain the same precision with random sampling as obtained by the proportional sampling of 50 dots with an unbiased estimator, samples of 85 or 166 would need to be taken if dot sets with AI labels (integrated procedure) or ground truth labels, respectively were input. Dot reallocation provides dot sets that are unbiased. It is recommended that these proportion estimation techniques are maintained, particularly the PA/BE because it provides the greatest precision.

  19. Sequential Bayesian Filters for Estimating Time Series of Wrapped and Unwrapped Angles with Hyperparameter Estimation

    NASA Astrophysics Data System (ADS)

    Umehara, Hiroaki; Okada, Masato; Naruse, Yasushi

    2018-03-01

    The estimation of angular time series data is a widespread issue relating to various situations involving rotational motion and moving objects. There are two kinds of problem settings: the estimation of wrapped angles, which are principal values in a circular coordinate system (e.g., the direction of an object), and the estimation of unwrapped angles in an unbounded coordinate system such as for the positioning and tracking of moving objects measured by the signal-wave phase. Wrapped angles have been estimated in previous studies by sequential Bayesian filtering; however, the hyperparameters that are to be solved and that control the properties of the estimation model were given a priori. The present study establishes a procedure of hyperparameter estimation from the observation data of angles only, using the framework of Bayesian inference completely as the maximum likelihood estimation. Moreover, the filter model is modified to estimate the unwrapped angles. It is proved that without noise our model reduces to the existing algorithm of Itoh's unwrapping transform. It is numerically confirmed that our model is an extension of unwrapping estimation from Itoh's unwrapping transform to the case with noise.

  20. Bayesian Treed Multivariate Gaussian Process with Adaptive Design: Application to a Carbon Capture Unit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Konomi, Bledar A.; Karagiannis, Georgios; Sarkar, Avik

    2014-05-16

    Computer experiments (numerical simulations) are widely used in scientific research to study and predict the behavior of complex systems, which usually have responses consisting of a set of distinct outputs. The computational cost of the simulations at high resolution are often expensive and become impractical for parametric studies at different input values. To overcome these difficulties we develop a Bayesian treed multivariate Gaussian process (BTMGP) as an extension of the Bayesian treed Gaussian process (BTGP) in order to model and evaluate a multivariate process. A suitable choice of covariance function and the prior distributions facilitates the different Markov chain Montemore » Carlo (MCMC) movements. We utilize this model to sequentially sample the input space for the most informative values, taking into account model uncertainty and expertise gained. A simulation study demonstrates the use of the proposed method and compares it with alternative approaches. We apply the sequential sampling technique and BTMGP to model the multiphase flow in a full scale regenerator of a carbon capture unit. The application presented in this paper is an important tool for research into carbon dioxide emissions from thermal power plants.« less

  1. The multicategory case of the sequential Bayesian pixel selection and estimation procedure

    NASA Technical Reports Server (NTRS)

    Pore, M. D.; Dennis, T. B. (Principal Investigator)

    1980-01-01

    A Bayesian technique for stratified proportion estimation and a sampling based on minimizing the mean squared error of this estimator were developed and tested on LANDSAT multispectral scanner data using the beta density function to model the prior distribution in the two-class case. An extention of this procedure to the k-class case is considered. A generalization of the beta function is shown to be a density function for the general case which allows the procedure to be extended.

  2. Exploiting neurovascular coupling: a Bayesian sequential Monte Carlo approach applied to simulated EEG fNIRS data

    NASA Astrophysics Data System (ADS)

    Croce, Pierpaolo; Zappasodi, Filippo; Merla, Arcangelo; Chiarelli, Antonio Maria

    2017-08-01

    Objective. Electrical and hemodynamic brain activity are linked through the neurovascular coupling process and they can be simultaneously measured through integration of electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS). Thanks to the lack of electro-optical interference, the two procedures can be easily combined and, whereas EEG provides electrophysiological information, fNIRS can provide measurements of two hemodynamic variables, such as oxygenated and deoxygenated hemoglobin. A Bayesian sequential Monte Carlo approach (particle filter, PF) was applied to simulated recordings of electrical and neurovascular mediated hemodynamic activity, and the advantages of a unified framework were shown. Approach. Multiple neural activities and hemodynamic responses were simulated in the primary motor cortex of a subject brain. EEG and fNIRS recordings were obtained by means of forward models of volume conduction and light propagation through the head. A state space model of combined EEG and fNIRS data was built and its dynamic evolution was estimated through a Bayesian sequential Monte Carlo approach (PF). Main results. We showed the feasibility of the procedure and the improvements in both electrical and hemodynamic brain activity reconstruction when using the PF on combined EEG and fNIRS measurements. Significance. The investigated procedure allows one to combine the information provided by the two methodologies, and, by taking advantage of a physical model of the coupling between electrical and hemodynamic response, to obtain a better estimate of brain activity evolution. Despite the high computational demand, application of such an approach to in vivo recordings could fully exploit the advantages of this combined brain imaging technology.

  3. Sequential Bayesian Geostatistical Inversion and Evaluation of Combined Data Worth for Aquifer Characterization at the Hanford 300 Area

    NASA Astrophysics Data System (ADS)

    Murakami, H.; Chen, X.; Hahn, M. S.; Over, M. W.; Rockhold, M. L.; Vermeul, V.; Hammond, G. E.; Zachara, J. M.; Rubin, Y.

    2010-12-01

    Subsurface characterization for predicting groundwater flow and contaminant transport requires us to integrate large and diverse datasets in a consistent manner, and quantify the associated uncertainty. In this study, we sequentially assimilated multiple types of datasets for characterizing a three-dimensional heterogeneous hydraulic conductivity field at the Hanford 300 Area. The datasets included constant-rate injection tests, electromagnetic borehole flowmeter tests, lithology profile and tracer tests. We used the method of anchored distributions (MAD), which is a modular-structured Bayesian geostatistical inversion method. MAD has two major advantages over the other inversion methods. First, it can directly infer a joint distribution of parameters, which can be used as an input in stochastic simulations for prediction. In MAD, in addition to typical geostatistical structural parameters, the parameter vector includes multiple point values of the heterogeneous field, called anchors, which capture local trends and reduce uncertainty in the prediction. Second, MAD allows us to integrate the datasets sequentially in a Bayesian framework such that it updates the posterior distribution, as a new dataset is included. The sequential assimilation can decrease computational burden significantly. We applied MAD to assimilate different combinations of the datasets, and then compared the inversion results. For the injection and tracer test assimilation, we calculated temporal moments of pressure build-up and breakthrough curves, respectively, to reduce the data dimension. A massive parallel flow and transport code PFLOTRAN is used for simulating the tracer test. For comparison, we used different metrics based on the breakthrough curves not used in the inversion, such as mean arrival time, peak concentration and early arrival time. This comparison intends to yield the combined data worth, i.e. which combination of the datasets is the most effective for a certain metric, which will be useful for guiding the further characterization effort at the site and also the future characterization projects at the other sites.

  4. The utility of Bayesian predictive probabilities for interim monitoring of clinical trials

    PubMed Central

    Connor, Jason T.; Ayers, Gregory D; Alvarez, JoAnn

    2014-01-01

    Background Bayesian predictive probabilities can be used for interim monitoring of clinical trials to estimate the probability of observing a statistically significant treatment effect if the trial were to continue to its predefined maximum sample size. Purpose We explore settings in which Bayesian predictive probabilities are advantageous for interim monitoring compared to Bayesian posterior probabilities, p-values, conditional power, or group sequential methods. Results For interim analyses that address prediction hypotheses, such as futility monitoring and efficacy monitoring with lagged outcomes, only predictive probabilities properly account for the amount of data remaining to be observed in a clinical trial and have the flexibility to incorporate additional information via auxiliary variables. Limitations Computational burdens limit the feasibility of predictive probabilities in many clinical trial settings. The specification of prior distributions brings additional challenges for regulatory approval. Conclusions The use of Bayesian predictive probabilities enables the choice of logical interim stopping rules that closely align with the clinical decision making process. PMID:24872363

  5. Uncertainty aggregation and reduction in structure-material performance prediction

    NASA Astrophysics Data System (ADS)

    Hu, Zhen; Mahadevan, Sankaran; Ao, Dan

    2018-02-01

    An uncertainty aggregation and reduction framework is presented for structure-material performance prediction. Different types of uncertainty sources, structural analysis model, and material performance prediction model are connected through a Bayesian network for systematic uncertainty aggregation analysis. To reduce the uncertainty in the computational structure-material performance prediction model, Bayesian updating using experimental observation data is investigated based on the Bayesian network. It is observed that the Bayesian updating results will have large error if the model cannot accurately represent the actual physics, and that this error will be propagated to the predicted performance distribution. To address this issue, this paper proposes a novel uncertainty reduction method by integrating Bayesian calibration with model validation adaptively. The observation domain of the quantity of interest is first discretized into multiple segments. An adaptive algorithm is then developed to perform model validation and Bayesian updating over these observation segments sequentially. Only information from observation segments where the model prediction is highly reliable is used for Bayesian updating; this is found to increase the effectiveness and efficiency of uncertainty reduction. A composite rotorcraft hub component fatigue life prediction model, which combines a finite element structural analysis model and a material damage model, is used to demonstrate the proposed method.

  6. Bayesian approach to inverse statistical mechanics.

    PubMed

    Habeck, Michael

    2014-05-01

    Inverse statistical mechanics aims to determine particle interactions from ensemble properties. This article looks at this inverse problem from a Bayesian perspective and discusses several statistical estimators to solve it. In addition, a sequential Monte Carlo algorithm is proposed that draws the interaction parameters from their posterior probability distribution. The posterior probability involves an intractable partition function that is estimated along with the interactions. The method is illustrated for inverse problems of varying complexity, including the estimation of a temperature, the inverse Ising problem, maximum entropy fitting, and the reconstruction of molecular interaction potentials.

  7. Bayesian approach to inverse statistical mechanics

    NASA Astrophysics Data System (ADS)

    Habeck, Michael

    2014-05-01

    Inverse statistical mechanics aims to determine particle interactions from ensemble properties. This article looks at this inverse problem from a Bayesian perspective and discusses several statistical estimators to solve it. In addition, a sequential Monte Carlo algorithm is proposed that draws the interaction parameters from their posterior probability distribution. The posterior probability involves an intractable partition function that is estimated along with the interactions. The method is illustrated for inverse problems of varying complexity, including the estimation of a temperature, the inverse Ising problem, maximum entropy fitting, and the reconstruction of molecular interaction potentials.

  8. Bayesian design of decision rules for failure detection

    NASA Technical Reports Server (NTRS)

    Chow, E. Y.; Willsky, A. S.

    1984-01-01

    The formulation of the decision making process of a failure detection algorithm as a Bayes sequential decision problem provides a simple conceptualization of the decision rule design problem. As the optimal Bayes rule is not computable, a methodology that is based on the Bayesian approach and aimed at a reduced computational requirement is developed for designing suboptimal rules. A numerical algorithm is constructed to facilitate the design and performance evaluation of these suboptimal rules. The result of applying this design methodology to an example shows that this approach is potentially a useful one.

  9. Adaptive Sequential Monte Carlo for Multiple Changepoint Analysis

    DOE PAGES

    Heard, Nicholas A.; Turcotte, Melissa J. M.

    2016-05-21

    Process monitoring and control requires detection of structural changes in a data stream in real time. This paper introduces an efficient sequential Monte Carlo algorithm designed for learning unknown changepoints in continuous time. The method is intuitively simple: new changepoints for the latest window of data are proposed by conditioning only on data observed since the most recent estimated changepoint, as these observations carry most of the information about the current state of the process. The proposed method shows improved performance over the current state of the art. Another advantage of the proposed algorithm is that it can be mademore » adaptive, varying the number of particles according to the apparent local complexity of the target changepoint probability distribution. This saves valuable computing time when changes in the changepoint distribution are negligible, and enables re-balancing of the importance weights of existing particles when a significant change in the target distribution is encountered. The plain and adaptive versions of the method are illustrated using the canonical continuous time changepoint problem of inferring the intensity of an inhomogeneous Poisson process, although the method is generally applicable to any changepoint problem. Performance is demonstrated using both conjugate and non-conjugate Bayesian models for the intensity. Lastly, appendices to the article are available online, illustrating the method on other models and applications.« less

  10. A path-level exact parallelization strategy for sequential simulation

    NASA Astrophysics Data System (ADS)

    Peredo, Oscar F.; Baeza, Daniel; Ortiz, Julián M.; Herrero, José R.

    2018-01-01

    Sequential Simulation is a well known method in geostatistical modelling. Following the Bayesian approach for simulation of conditionally dependent random events, Sequential Indicator Simulation (SIS) method draws simulated values for K categories (categorical case) or classes defined by K different thresholds (continuous case). Similarly, Sequential Gaussian Simulation (SGS) method draws simulated values from a multivariate Gaussian field. In this work, a path-level approach to parallelize SIS and SGS methods is presented. A first stage of re-arrangement of the simulation path is performed, followed by a second stage of parallel simulation for non-conflicting nodes. A key advantage of the proposed parallelization method is to generate identical realizations as with the original non-parallelized methods. Case studies are presented using two sequential simulation codes from GSLIB: SISIM and SGSIM. Execution time and speedup results are shown for large-scale domains, with many categories and maximum kriging neighbours in each case, achieving high speedup results in the best scenarios using 16 threads of execution in a single machine.

  11. A Memory-Based Theory of Verbal Cognition

    ERIC Educational Resources Information Center

    Dennis, Simon

    2005-01-01

    The syntagmatic paradigmatic model is a distributed, memory-based account of verbal processing. Built on a Bayesian interpretation of string edit theory, it characterizes the control of verbal cognition as the retrieval of sets of syntagmatic and paradigmatic constraints from sequential and relational long-term memory and the resolution of these…

  12. Sequential Bayesian geoacoustic inversion for mobile and compact source-receiver configuration.

    PubMed

    Carrière, Olivier; Hermand, Jean-Pierre

    2012-04-01

    Geoacoustic characterization of wide areas through inversion requires easily deployable configurations including free-drifting platforms, underwater gliders and autonomous vehicles, typically performing repeated transmissions during their course. In this paper, the inverse problem is formulated as sequential Bayesian filtering to take advantage of repeated transmission measurements. Nonlinear Kalman filters implement a random-walk model for geometry and environment and an acoustic propagation code in the measurement model. Data from MREA/BP07 sea trials are tested consisting of multitone and frequency-modulated signals (bands: 0.25-0.8 and 0.8-1.6 kHz) received on a shallow vertical array of four hydrophones 5-m spaced drifting over 0.7-1.6 km range. Space- and time-coherent processing are applied to the respective signal types. Kalman filter outputs are compared to a sequence of global optimizations performed independently on each received signal. For both signal types, the sequential approach is more accurate but also more efficient. Due to frequency diversity, the processing of modulated signals produces a more stable tracking. Although an extended Kalman filter provides comparable estimates of the tracked parameters, the ensemble Kalman filter is necessary to properly assess uncertainty. In spite of mild range dependence and simplified bottom model, all tracked geoacoustic parameters are consistent with high-resolution seismic profiling, core logging P-wave velocity, and previous inversion results with fixed geometries.

  13. Evaluation of Bayesian Sequential Proportion Estimation Using Analyst Labels

    NASA Technical Reports Server (NTRS)

    Lennington, R. K.; Abotteen, K. M. (Principal Investigator)

    1980-01-01

    The author has identified the following significant results. A total of ten Large Area Crop Inventory Experiment Phase 3 blind sites and analyst-interpreter labels were used in a study to compare proportional estimates obtained by the Bayes sequential procedure with estimates obtained from simple random sampling and from Procedure 1. The analyst error rate using the Bayes technique was shown to be no greater than that for the simple random sampling. Also, the segment proportion estimates produced using this technique had smaller bias and mean squared errors than the estimates produced using either simple random sampling or Procedure 1.

  14. Particle filters, a quasi-Monte-Carlo-solution for segmentation of coronaries.

    PubMed

    Florin, Charles; Paragios, Nikos; Williams, Jim

    2005-01-01

    In this paper we propose a Particle Filter-based approach for the segmentation of coronary arteries. To this end, successive planes of the vessel are modeled as unknown states of a sequential process. Such states consist of the orientation, position, shape model and appearance (in statistical terms) of the vessel that are recovered in an incremental fashion, using a sequential Bayesian filter (Particle Filter). In order to account for bifurcations and branchings, we consider a Monte Carlo sampling rule that propagates in parallel multiple hypotheses. Promising results on the segmentation of coronary arteries demonstrate the potential of the proposed approach.

  15. Online Bayesian Learning with Natural Sequential Prior Distribution Used for Wind Speed Prediction

    NASA Astrophysics Data System (ADS)

    Cheggaga, Nawal

    2017-11-01

    Predicting wind speed is one of the most important and critic tasks in a wind farm. All approaches, which directly describe the stochastic dynamics of the meteorological data are facing problems related to the nature of its non-Gaussian statistics and the presence of seasonal effects .In this paper, Online Bayesian learning has been successfully applied to online learning for three-layer perceptron's used for wind speed prediction. First a conventional transition model based on the squared norm of the difference between the current parameter vector and the previous parameter vector has been used. We noticed that the transition model does not adequately consider the difference between the current and the previous wind speed measurement. To adequately consider this difference, we use a natural sequential prior. The proposed transition model uses a Fisher information matrix to consider the difference between the observation models more naturally. The obtained results showed a good agreement between both series, measured and predicted. The mean relative error over the whole data set is not exceeding 5 %.

  16. Incremental Bayesian Category Learning From Natural Language.

    PubMed

    Frermann, Lea; Lapata, Mirella

    2016-08-01

    Models of category learning have been extensively studied in cognitive science and primarily tested on perceptual abstractions or artificial stimuli. In this paper, we focus on categories acquired from natural language stimuli, that is, words (e.g., chair is a member of the furniture category). We present a Bayesian model that, unlike previous work, learns both categories and their features in a single process. We model category induction as two interrelated subproblems: (a) the acquisition of features that discriminate among categories, and (b) the grouping of concepts into categories based on those features. Our model learns categories incrementally using particle filters, a sequential Monte Carlo method commonly used for approximate probabilistic inference that sequentially integrates newly observed data and can be viewed as a plausible mechanism for human learning. Experimental results show that our incremental learner obtains meaningful categories which yield a closer fit to behavioral data compared to related models while at the same time acquiring features which characterize the learned categories. (An earlier version of this work was published in Frermann and Lapata .). Copyright © 2015 Cognitive Science Society, Inc.

  17. As-built design specification for proportion estimate software subsystem

    NASA Technical Reports Server (NTRS)

    Obrien, S. (Principal Investigator)

    1980-01-01

    The Proportion Estimate Processor evaluates four estimation techniques in order to get an improved estimate of the proportion of a scene that is planted in a selected crop. The four techniques to be evaluated were provided by the techniques development section and are: (1) random sampling; (2) proportional allocation, relative count estimate; (3) proportional allocation, Bayesian estimate; and (4) sequential Bayesian allocation. The user is given two options for computation of the estimated mean square error. These are referred to as the cluster calculation option and the segment calculation option. The software for the Proportion Estimate Processor is operational on the IBM 3031 computer.

  18. Neglected chaos in international stock markets: Bayesian analysis of the joint return-volatility dynamical system

    NASA Astrophysics Data System (ADS)

    Tsionas, Mike G.; Michaelides, Panayotis G.

    2017-09-01

    We use a novel Bayesian inference procedure for the Lyapunov exponent in the dynamical system of returns and their unobserved volatility. In the dynamical system, computation of largest Lyapunov exponent by traditional methods is impossible as the stochastic nature has to be taken explicitly into account due to unobserved volatility. We apply the new techniques to daily stock return data for a group of six countries, namely USA, UK, Switzerland, Netherlands, Germany and France, from 2003 to 2014, by means of Sequential Monte Carlo for Bayesian inference. The evidence points to the direction that there is indeed noisy chaos both before and after the recent financial crisis. However, when a much simpler model is examined where the interaction between returns and volatility is not taken into consideration jointly, the hypothesis of chaotic dynamics does not receive much support by the data ("neglected chaos").

  19. Rich Analysis and Rational Models: Inferring Individual Behavior from Infant Looking Data

    ERIC Educational Resources Information Center

    Piantadosi, Steven T.; Kidd, Celeste; Aslin, Richard

    2014-01-01

    Studies of infant looking times over the past 50 years have provided profound insights about cognitive development, but their dependent measures and analytic techniques are quite limited. In the context of infants' attention to discrete sequential events, we show how a Bayesian data analysis approach can be combined with a rational cognitive…

  20. Learning of state-space models with highly informative observations: A tempered sequential Monte Carlo solution

    NASA Astrophysics Data System (ADS)

    Svensson, Andreas; Schön, Thomas B.; Lindsten, Fredrik

    2018-05-01

    Probabilistic (or Bayesian) modeling and learning offers interesting possibilities for systematic representation of uncertainty using probability theory. However, probabilistic learning often leads to computationally challenging problems. Some problems of this type that were previously intractable can now be solved on standard personal computers thanks to recent advances in Monte Carlo methods. In particular, for learning of unknown parameters in nonlinear state-space models, methods based on the particle filter (a Monte Carlo method) have proven very useful. A notoriously challenging problem, however, still occurs when the observations in the state-space model are highly informative, i.e. when there is very little or no measurement noise present, relative to the amount of process noise. The particle filter will then struggle in estimating one of the basic components for probabilistic learning, namely the likelihood p (data | parameters). To this end we suggest an algorithm which initially assumes that there is substantial amount of artificial measurement noise present. The variance of this noise is sequentially decreased in an adaptive fashion such that we, in the end, recover the original problem or possibly a very close approximation of it. The main component in our algorithm is a sequential Monte Carlo (SMC) sampler, which gives our proposed method a clear resemblance to the SMC2 method. Another natural link is also made to the ideas underlying the approximate Bayesian computation (ABC). We illustrate it with numerical examples, and in particular show promising results for a challenging Wiener-Hammerstein benchmark problem.

  1. Neuromusculoskeletal model self-calibration for on-line sequential bayesian moment estimation

    NASA Astrophysics Data System (ADS)

    Bueno, Diana R.; Montano, L.

    2017-04-01

    Objective. Neuromusculoskeletal models involve many subject-specific physiological parameters that need to be adjusted to adequately represent muscle properties. Traditionally, neuromusculoskeletal models have been calibrated with a forward-inverse dynamic optimization which is time-consuming and unfeasible for rehabilitation therapy. Non self-calibration algorithms have been applied to these models. To the best of our knowledge, the algorithm proposed in this work is the first on-line calibration algorithm for muscle models that allows a generic model to be adjusted to different subjects in a few steps. Approach. In this paper we propose a reformulation of the traditional muscle models that is able to sequentially estimate the kinetics (net joint moments), and also its full self-calibration (subject-specific internal parameters of the muscle from a set of arbitrary uncalibrated data), based on the unscented Kalman filter. The nonlinearity of the model as well as its calibration problem have obliged us to adopt the sum of Gaussians filter suitable for nonlinear systems. Main results. This sequential Bayesian self-calibration algorithm achieves a complete muscle model calibration using as input only a dataset of uncalibrated sEMG and kinematics data. The approach is validated experimentally using data from the upper limbs of 21 subjects. Significance. The results show the feasibility of neuromusculoskeletal model self-calibration. This study will contribute to a better understanding of the generalization of muscle models for subject-specific rehabilitation therapies. Moreover, this work is very promising for rehabilitation devices such as electromyography-driven exoskeletons or prostheses.

  2. Bayesian data assimilation provides rapid decision support for vector-borne diseases

    PubMed Central

    Jewell, Chris P.; Brown, Richard G.

    2015-01-01

    Predicting the spread of vector-borne diseases in response to incursions requires knowledge of both host and vector demographics in advance of an outbreak. Although host population data are typically available, for novel disease introductions there is a high chance of the pathogen using a vector for which data are unavailable. This presents a barrier to estimating the parameters of dynamical models representing host–vector–pathogen interaction, and hence limits their ability to provide quantitative risk forecasts. The Theileria orientalis (Ikeda) outbreak in New Zealand cattle demonstrates this problem: even though the vector has received extensive laboratory study, a high degree of uncertainty persists over its national demographic distribution. Addressing this, we develop a Bayesian data assimilation approach whereby indirect observations of vector activity inform a seasonal spatio-temporal risk surface within a stochastic epidemic model. We provide quantitative predictions for the future spread of the epidemic, quantifying uncertainty in the model parameters, case infection times and the disease status of undetected infections. Importantly, we demonstrate how our model learns sequentially as the epidemic unfolds and provide evidence for changing epidemic dynamics through time. Our approach therefore provides a significant advance in rapid decision support for novel vector-borne disease outbreaks. PMID:26136225

  3. A hierarchical Bayesian approach to adaptive vision testing: A case study with the contrast sensitivity function.

    PubMed

    Gu, Hairong; Kim, Woojae; Hou, Fang; Lesmes, Luis Andres; Pitt, Mark A; Lu, Zhong-Lin; Myung, Jay I

    2016-01-01

    Measurement efficiency is of concern when a large number of observations are required to obtain reliable estimates for parametric models of vision. The standard entropy-based Bayesian adaptive testing procedures addressed the issue by selecting the most informative stimulus in sequential experimental trials. Noninformative, diffuse priors were commonly used in those tests. Hierarchical adaptive design optimization (HADO; Kim, Pitt, Lu, Steyvers, & Myung, 2014) further improves the efficiency of the standard Bayesian adaptive testing procedures by constructing an informative prior using data from observers who have already participated in the experiment. The present study represents an empirical validation of HADO in estimating the human contrast sensitivity function. The results show that HADO significantly improves the accuracy and precision of parameter estimates, and therefore requires many fewer observations to obtain reliable inference about contrast sensitivity, compared to the method of quick contrast sensitivity function (Lesmes, Lu, Baek, & Albright, 2010), which uses the standard Bayesian procedure. The improvement with HADO was maintained even when the prior was constructed from heterogeneous populations or a relatively small number of observers. These results of this case study support the conclusion that HADO can be used in Bayesian adaptive testing by replacing noninformative, diffuse priors with statistically justified informative priors without introducing unwanted bias.

  4. A hierarchical Bayesian approach to adaptive vision testing: A case study with the contrast sensitivity function

    PubMed Central

    Gu, Hairong; Kim, Woojae; Hou, Fang; Lesmes, Luis Andres; Pitt, Mark A.; Lu, Zhong-Lin; Myung, Jay I.

    2016-01-01

    Measurement efficiency is of concern when a large number of observations are required to obtain reliable estimates for parametric models of vision. The standard entropy-based Bayesian adaptive testing procedures addressed the issue by selecting the most informative stimulus in sequential experimental trials. Noninformative, diffuse priors were commonly used in those tests. Hierarchical adaptive design optimization (HADO; Kim, Pitt, Lu, Steyvers, & Myung, 2014) further improves the efficiency of the standard Bayesian adaptive testing procedures by constructing an informative prior using data from observers who have already participated in the experiment. The present study represents an empirical validation of HADO in estimating the human contrast sensitivity function. The results show that HADO significantly improves the accuracy and precision of parameter estimates, and therefore requires many fewer observations to obtain reliable inference about contrast sensitivity, compared to the method of quick contrast sensitivity function (Lesmes, Lu, Baek, & Albright, 2010), which uses the standard Bayesian procedure. The improvement with HADO was maintained even when the prior was constructed from heterogeneous populations or a relatively small number of observers. These results of this case study support the conclusion that HADO can be used in Bayesian adaptive testing by replacing noninformative, diffuse priors with statistically justified informative priors without introducing unwanted bias. PMID:27105061

  5. Evaluation of non-animal methods for assessing skin sensitisation hazard: A Bayesian Value-of-Information analysis.

    PubMed

    Leontaridou, Maria; Gabbert, Silke; Van Ierland, Ekko C; Worth, Andrew P; Landsiedel, Robert

    2016-07-01

    This paper offers a Bayesian Value-of-Information (VOI) analysis for guiding the development of non-animal testing strategies, balancing information gains from testing with the expected social gains and costs from the adoption of regulatory decisions. Testing is assumed to have value, if, and only if, the information revealed from testing triggers a welfare-improving decision on the use (or non-use) of a substance. As an illustration, our VOI model is applied to a set of five individual non-animal prediction methods used for skin sensitisation hazard assessment, seven battery combinations of these methods, and 236 sequential 2-test and 3-test strategies. Their expected values are quantified and compared to the expected value of the local lymph node assay (LLNA) as the animal method. We find that battery and sequential combinations of non-animal prediction methods reveal a significantly higher expected value than the LLNA. This holds for the entire range of prior beliefs. Furthermore, our results illustrate that the testing strategy with the highest expected value does not necessarily have to follow the order of key events in the sensitisation adverse outcome pathway (AOP). 2016 FRAME.

  6. Constrained Bayesian Active Learning of Interference Channels in Cognitive Radio Networks

    NASA Astrophysics Data System (ADS)

    Tsakmalis, Anestis; Chatzinotas, Symeon; Ottersten, Bjorn

    2018-02-01

    In this paper, a sequential probing method for interference constraint learning is proposed to allow a centralized Cognitive Radio Network (CRN) accessing the frequency band of a Primary User (PU) in an underlay cognitive scenario with a designed PU protection specification. The main idea is that the CRN probes the PU and subsequently eavesdrops the reverse PU link to acquire the binary ACK/NACK packet. This feedback indicates whether the probing-induced interference is harmful or not and can be used to learn the PU interference constraint. The cognitive part of this sequential probing process is the selection of the power levels of the Secondary Users (SUs) which aims to learn the PU interference constraint with a minimum number of probing attempts while setting a limit on the number of harmful probing-induced interference events or equivalently of NACK packet observations over a time window. This constrained design problem is studied within the Active Learning (AL) framework and an optimal solution is derived and implemented with a sophisticated, accurate and fast Bayesian Learning method, the Expectation Propagation (EP). The performance of this solution is also demonstrated through numerical simulations and compared with modified versions of AL techniques we developed in earlier work.

  7. Sequential causal inference: Application to randomized trials of adaptive treatment strategies

    PubMed Central

    Dawson, Ree; Lavori, Philip W.

    2009-01-01

    SUMMARY Clinical trials that randomize subjects to decision algorithms, which adapt treatments over time according to individual response, have gained considerable interest as investigators seek designs that directly inform clinical decision making. We consider designs in which subjects are randomized sequentially at decision points, among adaptive treatment options under evaluation. We present a sequential method to estimate the comparative effects of the randomized adaptive treatments, which are formalized as adaptive treatment strategies. Our causal estimators are derived using Bayesian predictive inference. We use analytical and empirical calculations to compare the predictive estimators to (i) the ‘standard’ approach that allocates the sequentially obtained data to separate strategy-specific groups as would arise from randomizing subjects at baseline; (ii) the semi-parametric approach of marginal mean models that, under appropriate experimental conditions, provides the same sequential estimator of causal differences as the proposed approach. Simulation studies demonstrate that sequential causal inference offers substantial efficiency gains over the standard approach to comparing treatments, because the predictive estimators can take advantage of the monotone structure of shared data among adaptive strategies. We further demonstrate that the semi-parametric asymptotic variances, which are marginal ‘one-step’ estimators, may exhibit significant bias, in contrast to the predictive variances. We show that the conditions under which the sequential method is attractive relative to the other two approaches are those most likely to occur in real studies. PMID:17914714

  8. Sequential Monte Carlo for inference of latent ARMA time-series with innovations correlated in time

    NASA Astrophysics Data System (ADS)

    Urteaga, Iñigo; Bugallo, Mónica F.; Djurić, Petar M.

    2017-12-01

    We consider the problem of sequential inference of latent time-series with innovations correlated in time and observed via nonlinear functions. We accommodate time-varying phenomena with diverse properties by means of a flexible mathematical representation of the data. We characterize statistically such time-series by a Bayesian analysis of their densities. The density that describes the transition of the state from time t to the next time instant t+1 is used for implementation of novel sequential Monte Carlo (SMC) methods. We present a set of SMC methods for inference of latent ARMA time-series with innovations correlated in time for different assumptions in knowledge of parameters. The methods operate in a unified and consistent manner for data with diverse memory properties. We show the validity of the proposed approach by comprehensive simulations of the challenging stochastic volatility model.

  9. Classification and Sequential Pattern Analysis for Improving Managerial Efficiency and Providing Better Medical Service in Public Healthcare Centers

    PubMed Central

    Chung, Sukhoon; Rhee, Hyunsill; Suh, Yongmoo

    2010-01-01

    Objectives This study sought to find answers to the following questions: 1) Can we predict whether a patient will revisit a healthcare center? 2) Can we anticipate diseases of patients who revisit the center? Methods For the first question, we applied 5 classification algorithms (decision tree, artificial neural network, logistic regression, Bayesian networks, and Naïve Bayes) and the stacking-bagging method for building classification models. To solve the second question, we performed sequential pattern analysis. Results We determined: 1) In general, the most influential variables which impact whether a patient of a public healthcare center will revisit it or not are personal burden, insurance bill, period of prescription, age, systolic pressure, name of disease, and postal code. 2) The best plain classification model is dependent on the dataset. 3) Based on average of classification accuracy, the proposed stacking-bagging method outperformed all traditional classification models and our sequential pattern analysis revealed 16 sequential patterns. Conclusions Classification models and sequential patterns can help public healthcare centers plan and implement healthcare service programs and businesses that are more appropriate to local residents, encouraging them to revisit public health centers. PMID:21818426

  10. Final Report, DOE Early Career Award: Predictive modeling of complex physical systems: new tools for statistical inference, uncertainty quantification, and experimental design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marzouk, Youssef

    Predictive simulation of complex physical systems increasingly rests on the interplay of experimental observations with computational models. Key inputs, parameters, or structural aspects of models may be incomplete or unknown, and must be developed from indirect and limited observations. At the same time, quantified uncertainties are needed to qualify computational predictions in the support of design and decision-making. In this context, Bayesian statistics provides a foundation for inference from noisy and limited data, but at prohibitive computional expense. This project intends to make rigorous predictive modeling *feasible* in complex physical systems, via accelerated and scalable tools for uncertainty quantification, Bayesianmore » inference, and experimental design. Specific objectives are as follows: 1. Develop adaptive posterior approximations and dimensionality reduction approaches for Bayesian inference in high-dimensional nonlinear systems. 2. Extend accelerated Bayesian methodologies to large-scale {\\em sequential} data assimilation, fully treating nonlinear models and non-Gaussian state and parameter distributions. 3. Devise efficient surrogate-based methods for Bayesian model selection and the learning of model structure. 4. Develop scalable simulation/optimization approaches to nonlinear Bayesian experimental design, for both parameter inference and model selection. 5. Demonstrate these inferential tools on chemical kinetic models in reacting flow, constructing and refining thermochemical and electrochemical models from limited data. Demonstrate Bayesian filtering on canonical stochastic PDEs and in the dynamic estimation of inhomogeneous subsurface properties and flow fields.« less

  11. The Bayesian Learning Automaton — Empirical Evaluation with Two-Armed Bernoulli Bandit Problems

    NASA Astrophysics Data System (ADS)

    Granmo, Ole-Christoffer

    The two-armed Bernoulli bandit (TABB) problem is a classical optimization problem where an agent sequentially pulls one of two arms attached to a gambling machine, with each pull resulting either in a reward or a penalty. The reward probabilities of each arm are unknown, and thus one must balance between exploiting existing knowledge about the arms, and obtaining new information.

  12. Biochemical transport modeling, estimation, and detection in realistic environments

    NASA Astrophysics Data System (ADS)

    Ortner, Mathias; Nehorai, Arye

    2006-05-01

    Early detection and estimation of the spread of a biochemical contaminant are major issues for homeland security applications. We present an integrated approach combining the measurements given by an array of biochemical sensors with a physical model of the dispersion and statistical analysis to solve these problems and provide system performance measures. We approximate the dispersion model of the contaminant in a realistic environment through numerical simulations of reflected stochastic diffusions describing the microscopic transport phenomena due to wind and chemical diffusion using the Feynman-Kac formula. We consider arbitrary complex geometries and account for wind turbulence. Localizing the dispersive sources is useful for decontamination purposes and estimation of the cloud evolution. To solve the associated inverse problem, we propose a Bayesian framework based on a random field that is particularly powerful for localizing multiple sources with small amounts of measurements. We also develop a sequential detector using the numerical transport model we propose. Sequential detection allows on-line analysis and detecting wether a change has occurred. We first focus on the formulation of a suitable sequential detector that overcomes the presence of unknown parameters (e.g. release time, intensity and location). We compute a bound on the expected delay before false detection in order to decide the threshold of the test. For a fixed false-alarm rate, we obtain the detection probability of a substance release as a function of its location and initial concentration. Numerical examples are presented for two real-world scenarios: an urban area and an indoor ventilation duct.

  13. Formalizing Neurath's ship: Approximate algorithms for online causal learning.

    PubMed

    Bramley, Neil R; Dayan, Peter; Griffiths, Thomas L; Lagnado, David A

    2017-04-01

    Higher-level cognition depends on the ability to learn models of the world. We can characterize this at the computational level as a structure-learning problem with the goal of best identifying the prevailing causal relationships among a set of relata. However, the computational cost of performing exact Bayesian inference over causal models grows rapidly as the number of relata increases. This implies that the cognitive processes underlying causal learning must be substantially approximate. A powerful class of approximations that focuses on the sequential absorption of successive inputs is captured by the Neurath's ship metaphor in philosophy of science, where theory change is cast as a stochastic and gradual process shaped as much by people's limited willingness to abandon their current theory when considering alternatives as by the ground truth they hope to approach. Inspired by this metaphor and by algorithms for approximating Bayesian inference in machine learning, we propose an algorithmic-level model of causal structure learning under which learners represent only a single global hypothesis that they update locally as they gather evidence. We propose a related scheme for understanding how, under these limitations, learners choose informative interventions that manipulate the causal system to help elucidate its workings. We find support for our approach in the analysis of 3 experiments. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  14. Spike-Based Bayesian-Hebbian Learning of Temporal Sequences

    PubMed Central

    Lindén, Henrik; Lansner, Anders

    2016-01-01

    Many cognitive and motor functions are enabled by the temporal representation and processing of stimuli, but it remains an open issue how neocortical microcircuits can reliably encode and replay such sequences of information. To better understand this, a modular attractor memory network is proposed in which meta-stable sequential attractor transitions are learned through changes to synaptic weights and intrinsic excitabilities via the spike-based Bayesian Confidence Propagation Neural Network (BCPNN) learning rule. We find that the formation of distributed memories, embodied by increased periods of firing in pools of excitatory neurons, together with asymmetrical associations between these distinct network states, can be acquired through plasticity. The model’s feasibility is demonstrated using simulations of adaptive exponential integrate-and-fire model neurons (AdEx). We show that the learning and speed of sequence replay depends on a confluence of biophysically relevant parameters including stimulus duration, level of background noise, ratio of synaptic currents, and strengths of short-term depression and adaptation. Moreover, sequence elements are shown to flexibly participate multiple times in the sequence, suggesting that spiking attractor networks of this type can support an efficient combinatorial code. The model provides a principled approach towards understanding how multiple interacting plasticity mechanisms can coordinate hetero-associative learning in unison. PMID:27213810

  15. Bayesian data assimilation provides rapid decision support for vector-borne diseases.

    PubMed

    Jewell, Chris P; Brown, Richard G

    2015-07-06

    Predicting the spread of vector-borne diseases in response to incursions requires knowledge of both host and vector demographics in advance of an outbreak. Although host population data are typically available, for novel disease introductions there is a high chance of the pathogen using a vector for which data are unavailable. This presents a barrier to estimating the parameters of dynamical models representing host-vector-pathogen interaction, and hence limits their ability to provide quantitative risk forecasts. The Theileria orientalis (Ikeda) outbreak in New Zealand cattle demonstrates this problem: even though the vector has received extensive laboratory study, a high degree of uncertainty persists over its national demographic distribution. Addressing this, we develop a Bayesian data assimilation approach whereby indirect observations of vector activity inform a seasonal spatio-temporal risk surface within a stochastic epidemic model. We provide quantitative predictions for the future spread of the epidemic, quantifying uncertainty in the model parameters, case infection times and the disease status of undetected infections. Importantly, we demonstrate how our model learns sequentially as the epidemic unfolds and provide evidence for changing epidemic dynamics through time. Our approach therefore provides a significant advance in rapid decision support for novel vector-borne disease outbreaks. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  16. Combined Parameter and State Estimation Problem in a Complex Domain: RF Hyperthermia Treatment Using Nanoparticles

    NASA Astrophysics Data System (ADS)

    Bermeo Varon, L. A.; Orlande, H. R. B.; Eliçabe, G. E.

    2016-09-01

    The particle filter methods have been widely used to solve inverse problems with sequential Bayesian inference in dynamic models, simultaneously estimating sequential state variables and fixed model parameters. This methods are an approximation of sequences of probability distributions of interest, that using a large set of random samples, with presence uncertainties in the model, measurements and parameters. In this paper the main focus is the solution combined parameters and state estimation in the radiofrequency hyperthermia with nanoparticles in a complex domain. This domain contains different tissues like muscle, pancreas, lungs, small intestine and a tumor which is loaded iron oxide nanoparticles. The results indicated that excellent agreements between estimated and exact value are obtained.

  17. Astrocytic tracer dynamics estimated from [1-¹¹C]-acetate PET measurements.

    PubMed

    Arnold, Andrea; Calvetti, Daniela; Gjedde, Albert; Iversen, Peter; Somersalo, Erkki

    2015-12-01

    We address the problem of estimating the unknown parameters of a model of tracer kinetics from sequences of positron emission tomography (PET) scan data using a statistical sequential algorithm for the inference of magnitudes of dynamic parameters. The method, based on Bayesian statistical inference, is a modification of a recently proposed particle filtering and sequential Monte Carlo algorithm, where instead of preassigning the accuracy in the propagation of each particle, we fix the time step and account for the numerical errors in the innovation term. We apply the algorithm to PET images of [1-¹¹C]-acetate-derived tracer accumulation, estimating the transport rates in a three-compartment model of astrocytic uptake and metabolism of the tracer for a cohort of 18 volunteers from 3 groups, corresponding to healthy control individuals, cirrhotic liver and hepatic encephalopathy patients. The distribution of the parameters for the individuals and for the groups presented within the Bayesian framework support the hypothesis that the parameters for the hepatic encephalopathy group follow a significantly different distribution than the other two groups. The biological implications of the findings are also discussed. © The Authors 2014. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.

  18. Regional-scale integration of hydrological and geophysical data using Bayesian sequential simulation: application to field data

    NASA Astrophysics Data System (ADS)

    Ruggeri, Paolo; Irving, James; Gloaguen, Erwan; Holliger, Klaus

    2013-04-01

    Significant progress has been made with regard to the quantitative integration of geophysical and hydrological data at the local scale. However, extending corresponding approaches to the regional scale still represents a major challenge, yet is critically important for the development of groundwater flow and contaminant transport models. To address this issue, we have developed a regional-scale hydrogeophysical data integration technique based on a two-step Bayesian sequential simulation procedure. The objective is to simulate the regional-scale distribution of a hydraulic parameter based on spatially exhaustive, but poorly resolved, measurements of a pertinent geophysical parameter and locally highly resolved, but spatially sparse, measurements of the considered geophysical and hydraulic parameters. To this end, our approach first involves linking the low- and high-resolution geophysical data via a downscaling procedure before relating the downscaled regional-scale geophysical data to the high-resolution hydraulic parameter field. We present the application of this methodology to a pertinent field scenario, where we consider collocated high-resolution measurements of the electrical conductivity, measured using a cone penetrometer testing (CPT) system, and the hydraulic conductivity, estimated from EM flowmeter and slug test measurements, in combination with low-resolution exhaustive electrical conductivity estimates obtained from dipole-dipole ERT meausurements.

  19. Recursive Bayesian recurrent neural networks for time-series modeling.

    PubMed

    Mirikitani, Derrick T; Nikolaev, Nikolay

    2010-02-01

    This paper develops a probabilistic approach to recursive second-order training of recurrent neural networks (RNNs) for improved time-series modeling. A general recursive Bayesian Levenberg-Marquardt algorithm is derived to sequentially update the weights and the covariance (Hessian) matrix. The main strengths of the approach are a principled handling of the regularization hyperparameters that leads to better generalization, and stable numerical performance. The framework involves the adaptation of a noise hyperparameter and local weight prior hyperparameters, which represent the noise in the data and the uncertainties in the model parameters. Experimental investigations using artificial and real-world data sets show that RNNs equipped with the proposed approach outperform standard real-time recurrent learning and extended Kalman training algorithms for recurrent networks, as well as other contemporary nonlinear neural models, on time-series modeling.

  20. Bayesian Treatment of Uncertainty in Environmental Modeling: Optimization, Sampling and Data Assimilation Using the DREAM Software Package

    NASA Astrophysics Data System (ADS)

    Vrugt, J. A.

    2012-12-01

    In the past decade much progress has been made in the treatment of uncertainty in earth systems modeling. Whereas initial approaches has focused mostly on quantification of parameter and predictive uncertainty, recent methods attempt to disentangle the effects of parameter, forcing (input) data, model structural and calibration data errors. In this talk I will highlight some of our recent work involving theory, concepts and applications of Bayesian parameter and/or state estimation. In particular, new methods for sequential Monte Carlo (SMC) and Markov Chain Monte Carlo (MCMC) simulation will be presented with emphasis on massively parallel distributed computing and quantification of model structural errors. The theoretical and numerical developments will be illustrated using model-data synthesis problems in hydrology, hydrogeology and geophysics.

  1. Bayesian Inference for Functional Dynamics Exploring in fMRI Data.

    PubMed

    Guo, Xuan; Liu, Bing; Chen, Le; Chen, Guantao; Pan, Yi; Zhang, Jing

    2016-01-01

    This paper aims to review state-of-the-art Bayesian-inference-based methods applied to functional magnetic resonance imaging (fMRI) data. Particularly, we focus on one specific long-standing challenge in the computational modeling of fMRI datasets: how to effectively explore typical functional interactions from fMRI time series and the corresponding boundaries of temporal segments. Bayesian inference is a method of statistical inference which has been shown to be a powerful tool to encode dependence relationships among the variables with uncertainty. Here we provide an introduction to a group of Bayesian-inference-based methods for fMRI data analysis, which were designed to detect magnitude or functional connectivity change points and to infer their functional interaction patterns based on corresponding temporal boundaries. We also provide a comparison of three popular Bayesian models, that is, Bayesian Magnitude Change Point Model (BMCPM), Bayesian Connectivity Change Point Model (BCCPM), and Dynamic Bayesian Variable Partition Model (DBVPM), and give a summary of their applications. We envision that more delicate Bayesian inference models will be emerging and play increasingly important roles in modeling brain functions in the years to come.

  2. Cognitive-Behavioral Therapy for Insomnia to Reduce Chronic Migraine: A Sequential Bayesian Analysis.

    PubMed

    Smitherman, Todd A; Kuka, Alexander J; Calhoun, Anne H; Walters, A Brooke Pellegrino; Davis-Martin, Rachel E; Ambrose, Carrie E; Rains, Jeanetta C; Houle, Timothy T

    2018-05-06

    Insomnia is frequently comorbid with chronic migraine, and small trials suggest that cognitive-behavioral treatment of insomnia (CBTi) may reduce migraine frequency. This study endeavored to provide a quantitative synthesis of existing CBTi trials for adults with chronic migraine using Bayesian statistical methods, given their utility in combining prior knowledge with sequentially gathered data. Completer analyses of 2 randomized trials comparing CBTi to a sham control intervention (Calhoun and Ford, 2007; Smitherman et al, 2016) were used to quantify the effects of a brief course of treatment on headache frequency. Change in headache frequency from baseline to the primary endpoint (6-8 weeks posttreatment) was regressed on group status using a Gaussian linear model with each study specified in the order of completion. To estimate the combined effect, posterior distributions from the Calhoun and Ford study were used as informative priors for conditioning on the Smitherman et al data. In a combined analysis of these prior studies, monthly headache frequency of the treatment group decreased by 6.2 days (95%CrI: -9.7 to -2.7) more than the control group, supporting an interpretation that there is a 97.5% chance that the treatment intervention is at least 2.7 days better than the control intervention. The analysis supports the hypothesis that at least for those who complete treatment, there is high probability that individuals who receive CBTi experience greater headache reduction than those who receive a control intervention equated for therapist time and out-of-session skills practice. Cognitive-behavioral interventions for comorbid insomnia hold promise for reducing headache frequency among those with chronic migraine. These findings add to a small but growing body of literature that migraineurs with comorbid conditions often respond well to behavioral interventions, and that targeting comorbidities may improve migraine itself. © 2018 American Headache Society.

  3. A comparison of Monte Carlo-based Bayesian parameter estimation methods for stochastic models of genetic networks

    PubMed Central

    Zaikin, Alexey; Míguez, Joaquín

    2017-01-01

    We compare three state-of-the-art Bayesian inference methods for the estimation of the unknown parameters in a stochastic model of a genetic network. In particular, we introduce a stochastic version of the paradigmatic synthetic multicellular clock model proposed by Ullner et al., 2007. By introducing dynamical noise in the model and assuming that the partial observations of the system are contaminated by additive noise, we enable a principled mechanism to represent experimental uncertainties in the synthesis of the multicellular system and pave the way for the design of probabilistic methods for the estimation of any unknowns in the model. Within this setup, we tackle the Bayesian estimation of a subset of the model parameters. Specifically, we compare three Monte Carlo based numerical methods for the approximation of the posterior probability density function of the unknown parameters given a set of partial and noisy observations of the system. The schemes we assess are the particle Metropolis-Hastings (PMH) algorithm, the nonlinear population Monte Carlo (NPMC) method and the approximate Bayesian computation sequential Monte Carlo (ABC-SMC) scheme. We present an extensive numerical simulation study, which shows that while the three techniques can effectively solve the problem there are significant differences both in estimation accuracy and computational efficiency. PMID:28797087

  4. Heuristic Bayesian segmentation for discovery of coexpressed genes within genomic regions.

    PubMed

    Pehkonen, Petri; Wong, Garry; Törönen, Petri

    2010-01-01

    Segmentation aims to separate homogeneous areas from the sequential data, and plays a central role in data mining. It has applications ranging from finance to molecular biology, where bioinformatics tasks such as genome data analysis are active application fields. In this paper, we present a novel application of segmentation in locating genomic regions with coexpressed genes. We aim at automated discovery of such regions without requirement for user-given parameters. In order to perform the segmentation within a reasonable time, we use heuristics. Most of the heuristic segmentation algorithms require some decision on the number of segments. This is usually accomplished by using asymptotic model selection methods like the Bayesian information criterion. Such methods are based on some simplification, which can limit their usage. In this paper, we propose a Bayesian model selection to choose the most proper result from heuristic segmentation. Our Bayesian model presents a simple prior for the segmentation solutions with various segment numbers and a modified Dirichlet prior for modeling multinomial data. We show with various artificial data sets in our benchmark system that our model selection criterion has the best overall performance. The application of our method in yeast cell-cycle gene expression data reveals potential active and passive regions of the genome.

  5. Bayesian approach for assessing non-inferiority in a three-arm trial with pre-specified margin.

    PubMed

    Ghosh, Samiran; Ghosh, Santu; Tiwari, Ram C

    2016-02-28

    Non-inferiority trials are becoming increasingly popular for comparative effectiveness research. However, inclusion of the placebo arm, whenever possible, gives rise to a three-arm trial which has lesser burdensome assumptions than a standard two-arm non-inferiority trial. Most of the past developments in a three-arm trial consider defining a pre-specified fraction of unknown effect size of reference drug, that is, without directly specifying a fixed non-inferiority margin. However, in some recent developments, a more direct approach is being considered with pre-specified fixed margin albeit in the frequentist setup. Bayesian paradigm provides a natural path to integrate historical and current trials' information via sequential learning. In this paper, we propose a Bayesian approach for simultaneous testing of non-inferiority and assay sensitivity in a three-arm trial with normal responses. For the experimental arm, in absence of historical information, non-informative priors are assumed under two situations, namely when (i) variance is known and (ii) variance is unknown. A Bayesian decision criteria is derived and compared with the frequentist method using simulation studies. Finally, several published clinical trial examples are reanalyzed to demonstrate the benefit of the proposed procedure. Copyright © 2015 John Wiley & Sons, Ltd.

  6. Application of the Approximate Bayesian Computation methods in the stochastic estimation of atmospheric contamination parameters for mobile sources

    NASA Astrophysics Data System (ADS)

    Kopka, Piotr; Wawrzynczak, Anna; Borysiewicz, Mieczyslaw

    2016-11-01

    In this paper the Bayesian methodology, known as Approximate Bayesian Computation (ABC), is applied to the problem of the atmospheric contamination source identification. The algorithm input data are on-line arriving concentrations of the released substance registered by the distributed sensors network. This paper presents the Sequential ABC algorithm in detail and tests its efficiency in estimation of probabilistic distributions of atmospheric release parameters of a mobile contamination source. The developed algorithms are tested using the data from Over-Land Atmospheric Diffusion (OLAD) field tracer experiment. The paper demonstrates estimation of seven parameters characterizing the contamination source, i.e.: contamination source starting position (x,y), the direction of the motion of the source (d), its velocity (v), release rate (q), start time of release (ts) and its duration (td). The online-arriving new concentrations dynamically update the probability distributions of search parameters. The atmospheric dispersion Second-order Closure Integrated PUFF (SCIPUFF) Model is used as the forward model to predict the concentrations at the sensors locations.

  7. Microcomputer Network for Computerized Adaptive Testing (CAT)

    DTIC Science & Technology

    1984-03-01

    PRDC TR 84-33 \\Q.�d-33- \\ MICROCOMPUTER NETWOJlt FOR COMPUTERIZED ADAPTIVE TESTING ( CAT ) Baldwin Quan Thomas A . Park Gary Sandahl John H...ACCEIIION NO NPRDC TR 84-33 4. TITLE (-d Sul>tlllo) MICROCOMP UTER NETWORK FOR COMPUTERIZED ADA PTIVE TESTING ( CAT ) 1. Q B. uan T. A . Park...adaptive testing ( CAT ) Bayesian sequential testing 20. ABSTitACT (Continuo on ro•••• aide II noco .. _, _., ld-tlly ,.,. t.loclt _._.) DO Computerized

  8. Carbon Nanotube Growth Rate Regression using Support Vector Machines and Artificial Neural Networks

    DTIC Science & Technology

    2014-03-27

    intensity D peak. Reprinted with permission from [38]. The SVM classifier is trained using custom written Java code leveraging the Sequential Minimal...Society Encog is a machine learning framework for Java , C++ and .Net applications that supports Bayesian Networks, Hidden Markov Models, SVMs and ANNs [13...SVM classifiers are trained using Weka libraries and leveraging custom written Java code. The data set is created as an Attribute Relationship File

  9. Development of a software framework for data assimilation and its applications for streamflow forecasting in Japan

    NASA Astrophysics Data System (ADS)

    Noh, S. J.; Tachikawa, Y.; Shiiba, M.; Yorozu, K.; Kim, S.

    2012-04-01

    Data assimilation methods have received increased attention to accomplish uncertainty assessment and enhancement of forecasting capability in various areas. Despite of their potentials, applicable software frameworks to probabilistic approaches and data assimilation are still limited because the most of hydrologic modeling software are based on a deterministic approach. In this study, we developed a hydrological modeling framework for sequential data assimilation, so called MPI-OHyMoS. MPI-OHyMoS allows user to develop his/her own element models and to easily build a total simulation system model for hydrological simulations. Unlike process-based modeling framework, this software framework benefits from its object-oriented feature to flexibly represent hydrological processes without any change of the main library. Sequential data assimilation based on the particle filters is available for any hydrologic models based on MPI-OHyMoS considering various sources of uncertainty originated from input forcing, parameters and observations. The particle filters are a Bayesian learning process in which the propagation of all uncertainties is carried out by a suitable selection of randomly generated particles without any assumptions about the nature of the distributions. In MPI-OHyMoS, ensemble simulations are parallelized, which can take advantage of high performance computing (HPC) system. We applied this software framework for short-term streamflow forecasting of several catchments in Japan using a distributed hydrologic model. Uncertainty of model parameters and remotely-sensed rainfall data such as X-band or C-band radar is estimated and mitigated in the sequential data assimilation.

  10. Adaptive designs in clinical trials.

    PubMed

    Bowalekar, Suresh

    2011-01-01

    In addition to the expensive and lengthy process of developing a new medicine, the attrition rate in clinical research was on the rise, resulting in stagnation in the development of new compounds. As a consequence to this, the US Food and Drug Administration released a critical path initiative document in 2004, highlighting the need for developing innovative trial designs. One of the innovations suggested the use of adaptive designs for clinical trials. Thus, post critical path initiative, there is a growing interest in using adaptive designs for the development of pharmaceutical products. Adaptive designs are expected to have great potential to reduce the number of patients and duration of trial and to have relatively less exposure to new drug. Adaptive designs are not new in the sense that the task of interim analysis (IA)/review of the accumulated data used in adaptive designs existed in the past too. However, such reviews/analyses of accumulated data were not necessarily planned at the stage of planning clinical trial and the methods used were not necessarily compliant with clinical trial process. The Bayesian approach commonly used in adaptive designs was developed by Thomas Bayes in the 18th century, about hundred years prior to the development of modern statistical methods by the father of modern statistics, Sir Ronald A. Fisher, but the complexity involved in Bayesian approach prevented its use in real life practice. The advances in the field of computer and information technology over the last three to four decades has changed the scenario and the Bayesian techniques are being used in adaptive designs in addition to other sequential methods used in IA. This paper attempts to describe the various adaptive designs in clinical trial and views of stakeholders about feasibility of using them, without going into mathematical complexities.

  11. Multilevel Sequential Monte Carlo Samplers for Normalizing Constants

    DOE PAGES

    Moral, Pierre Del; Jasra, Ajay; Law, Kody J. H.; ...

    2017-08-24

    This article considers the sequential Monte Carlo (SMC) approximation of ratios of normalizing constants associated to posterior distributions which in principle rely on continuum models. Therefore, the Monte Carlo estimation error and the discrete approximation error must be balanced. A multilevel strategy is utilized to substantially reduce the cost to obtain a given error level in the approximation as compared to standard estimators. Two estimators are considered and relative variance bounds are given. The theoretical results are numerically illustrated for two Bayesian inverse problems arising from elliptic partial differential equations (PDEs). The examples involve the inversion of observations of themore » solution of (i) a 1-dimensional Poisson equation to infer the diffusion coefficient, and (ii) a 2-dimensional Poisson equation to infer the external forcing.« less

  12. Bayesian Immunological Model Development from the Literature: Example Investigation of Recent Thymic Emigrants†

    PubMed Central

    Holmes, Tyson H.; Lewis, David B.

    2014-01-01

    Bayesian estimation techniques offer a systematic and quantitative approach for synthesizing data drawn from the literature to model immunological systems. As detailed here, the practitioner begins with a theoretical model and then sequentially draws information from source data sets and/or published findings to inform estimation of model parameters. Options are available to weigh these various sources of information differentially per objective measures of their corresponding scientific strengths. This approach is illustrated in depth through a carefully worked example for a model of decline in T-cell receptor excision circle content of peripheral T cells during development and aging. Estimates from this model indicate that 21 years of age is plausible for the developmental timing of mean age of onset of decline in T-cell receptor excision circle content of peripheral T cells. PMID:25179832

  13. A Simulation Study Comparison of Bayesian Estimation with Conventional Methods for Estimating Unknown Change Points

    ERIC Educational Resources Information Center

    Wang, Lijuan; McArdle, John J.

    2008-01-01

    The main purpose of this research is to evaluate the performance of a Bayesian approach for estimating unknown change points using Monte Carlo simulations. The univariate and bivariate unknown change point mixed models were presented and the basic idea of the Bayesian approach for estimating the models was discussed. The performance of Bayesian…

  14. Automated Monitoring with a BSP Fault-Detection Test

    NASA Technical Reports Server (NTRS)

    Bickford, Randall L.; Herzog, James P.

    2003-01-01

    The figure schematically illustrates a method and procedure for automated monitoring of an asset, as well as a hardware- and-software system that implements the method and procedure. As used here, asset could signify an industrial process, power plant, medical instrument, aircraft, or any of a variety of other systems that generate electronic signals (e.g., sensor outputs). In automated monitoring, the signals are digitized and then processed in order to detect faults and otherwise monitor operational status and integrity of the monitored asset. The major distinguishing feature of the present method is that the fault-detection function is implemented by use of a Bayesian sequential probability (BSP) technique. This technique is superior to other techniques for automated monitoring because it affords sensitivity, not only to disturbances in the mean values, but also to very subtle changes in the statistical characteristics (variance, skewness, and bias) of the monitored signals.

  15. Dynamic Model Averaging in Large Model Spaces Using Dynamic Occam's Window.

    PubMed

    Onorante, Luca; Raftery, Adrian E

    2016-01-01

    Bayesian model averaging has become a widely used approach to accounting for uncertainty about the structural form of the model generating the data. When data arrive sequentially and the generating model can change over time, Dynamic Model Averaging (DMA) extends model averaging to deal with this situation. Often in macroeconomics, however, many candidate explanatory variables are available and the number of possible models becomes too large for DMA to be applied in its original form. We propose a new method for this situation which allows us to perform DMA without considering the whole model space, but using a subset of models and dynamically optimizing the choice of models at each point in time. This yields a dynamic form of Occam's window. We evaluate the method in the context of the problem of nowcasting GDP in the Euro area. We find that its forecasting performance compares well with that of other methods.

  16. Dynamic Model Averaging in Large Model Spaces Using Dynamic Occam’s Window*

    PubMed Central

    Onorante, Luca; Raftery, Adrian E.

    2015-01-01

    Bayesian model averaging has become a widely used approach to accounting for uncertainty about the structural form of the model generating the data. When data arrive sequentially and the generating model can change over time, Dynamic Model Averaging (DMA) extends model averaging to deal with this situation. Often in macroeconomics, however, many candidate explanatory variables are available and the number of possible models becomes too large for DMA to be applied in its original form. We propose a new method for this situation which allows us to perform DMA without considering the whole model space, but using a subset of models and dynamically optimizing the choice of models at each point in time. This yields a dynamic form of Occam’s window. We evaluate the method in the context of the problem of nowcasting GDP in the Euro area. We find that its forecasting performance compares well with that of other methods. PMID:26917859

  17. Modelling Odor Decoding in the Antennal Lobe by Combining Sequential Firing Rate Models with Bayesian Inference

    PubMed Central

    Cuevas Rivera, Dario; Bitzer, Sebastian; Kiebel, Stefan J.

    2015-01-01

    The olfactory information that is received by the insect brain is encoded in the form of spatiotemporal patterns in the projection neurons of the antennal lobe. These dense and overlapping patterns are transformed into a sparse code in Kenyon cells in the mushroom body. Although it is clear that this sparse code is the basis for rapid categorization of odors, it is yet unclear how the sparse code in Kenyon cells is computed and what information it represents. Here we show that this computation can be modeled by sequential firing rate patterns using Lotka-Volterra equations and Bayesian online inference. This new model can be understood as an ‘intelligent coincidence detector’, which robustly and dynamically encodes the presence of specific odor features. We found that the model is able to qualitatively reproduce experimentally observed activity in both the projection neurons and the Kenyon cells. In particular, the model explains mechanistically how sparse activity in the Kenyon cells arises from the dense code in the projection neurons. The odor classification performance of the model proved to be robust against noise and time jitter in the observed input sequences. As in recent experimental results, we found that recognition of an odor happened very early during stimulus presentation in the model. Critically, by using the model, we found surprising but simple computational explanations for several experimental phenomena. PMID:26451888

  18. Entropy-Bayesian Inversion of Time-Lapse Tomographic GPR data for Monitoring Dielectric Permittivity and Soil Moisture Variations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hou, Z; Terry, N; Hubbard, S S

    2013-02-12

    In this study, we evaluate the possibility of monitoring soil moisture variation using tomographic ground penetrating radar travel time data through Bayesian inversion, which is integrated with entropy memory function and pilot point concepts, as well as efficient sampling approaches. It is critical to accurately estimate soil moisture content and variations in vadose zone studies. Many studies have illustrated the promise and value of GPR tomographic data for estimating soil moisture and associated changes, however, challenges still exist in the inversion of GPR tomographic data in a manner that quantifies input and predictive uncertainty, incorporates multiple data types, handles non-uniquenessmore » and nonlinearity, and honors time-lapse tomograms collected in a series. To address these challenges, we develop a minimum relative entropy (MRE)-Bayesian based inverse modeling framework that non-subjectively defines prior probabilities, incorporates information from multiple sources, and quantifies uncertainty. The framework enables us to estimate dielectric permittivity at pilot point locations distributed within the tomogram, as well as the spatial correlation range. In the inversion framework, MRE is first used to derive prior probability distribution functions (pdfs) of dielectric permittivity based on prior information obtained from a straight-ray GPR inversion. The probability distributions are then sampled using a Quasi-Monte Carlo (QMC) approach, and the sample sets provide inputs to a sequential Gaussian simulation (SGSim) algorithm that constructs a highly resolved permittivity/velocity field for evaluation with a curved-ray GPR forward model. The likelihood functions are computed as a function of misfits, and posterior pdfs are constructed using a Gaussian kernel. Inversion of subsequent time-lapse datasets combines the Bayesian estimates from the previous inversion (as a memory function) with new data. The memory function and pilot point design takes advantage of the spatial-temporal correlation of the state variables. We first apply the inversion framework to a static synthetic example and then to a time-lapse GPR tomographic dataset collected during a dynamic experiment conducted at the Hanford Site in Richland, WA. We demonstrate that the MRE-Bayesian inversion enables us to merge various data types, quantify uncertainty, evaluate nonlinear models, and produce more detailed and better resolved estimates than straight-ray based inversion; therefore, it has the potential to improve estimates of inter-wellbore dielectric permittivity and soil moisture content and to monitor their temporal dynamics more accurately.« less

  19. Entropy-Bayesian Inversion of Time-Lapse Tomographic GPR data for Monitoring Dielectric Permittivity and Soil Moisture Variations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hou, Zhangshuan; Terry, Neil C.; Hubbard, Susan S.

    2013-02-22

    In this study, we evaluate the possibility of monitoring soil moisture variation using tomographic ground penetrating radar travel time data through Bayesian inversion, which is integrated with entropy memory function and pilot point concepts, as well as efficient sampling approaches. It is critical to accurately estimate soil moisture content and variations in vadose zone studies. Many studies have illustrated the promise and value of GPR tomographic data for estimating soil moisture and associated changes, however, challenges still exist in the inversion of GPR tomographic data in a manner that quantifies input and predictive uncertainty, incorporates multiple data types, handles non-uniquenessmore » and nonlinearity, and honors time-lapse tomograms collected in a series. To address these challenges, we develop a minimum relative entropy (MRE)-Bayesian based inverse modeling framework that non-subjectively defines prior probabilities, incorporates information from multiple sources, and quantifies uncertainty. The framework enables us to estimate dielectric permittivity at pilot point locations distributed within the tomogram, as well as the spatial correlation range. In the inversion framework, MRE is first used to derive prior probability density functions (pdfs) of dielectric permittivity based on prior information obtained from a straight-ray GPR inversion. The probability distributions are then sampled using a Quasi-Monte Carlo (QMC) approach, and the sample sets provide inputs to a sequential Gaussian simulation (SGSIM) algorithm that constructs a highly resolved permittivity/velocity field for evaluation with a curved-ray GPR forward model. The likelihood functions are computed as a function of misfits, and posterior pdfs are constructed using a Gaussian kernel. Inversion of subsequent time-lapse datasets combines the Bayesian estimates from the previous inversion (as a memory function) with new data. The memory function and pilot point design takes advantage of the spatial-temporal correlation of the state variables. We first apply the inversion framework to a static synthetic example and then to a time-lapse GPR tomographic dataset collected during a dynamic experiment conducted at the Hanford Site in Richland, WA. We demonstrate that the MRE-Bayesian inversion enables us to merge various data types, quantify uncertainty, evaluate nonlinear models, and produce more detailed and better resolved estimates than straight-ray based inversion; therefore, it has the potential to improve estimates of inter-wellbore dielectric permittivity and soil moisture content and to monitor their temporal dynamics more accurately.« less

  20. Sequential Probability Ratio Testing with Power Projective Base Method Improves Decision-Making for BCI

    PubMed Central

    Liu, Rong

    2017-01-01

    Obtaining a fast and reliable decision is an important issue in brain-computer interfaces (BCI), particularly in practical real-time applications such as wheelchair or neuroprosthetic control. In this study, the EEG signals were firstly analyzed with a power projective base method. Then we were applied a decision-making model, the sequential probability ratio testing (SPRT), for single-trial classification of motor imagery movement events. The unique strength of this proposed classification method lies in its accumulative process, which increases the discriminative power as more and more evidence is observed over time. The properties of the method were illustrated on thirteen subjects' recordings from three datasets. Results showed that our proposed power projective method outperformed two benchmark methods for every subject. Moreover, with sequential classifier, the accuracies across subjects were significantly higher than that with nonsequential ones. The average maximum accuracy of the SPRT method was 84.1%, as compared with 82.3% accuracy for the sequential Bayesian (SB) method. The proposed SPRT method provides an explicit relationship between stopping time, thresholds, and error, which is important for balancing the time-accuracy trade-off. These results suggest SPRT would be useful in speeding up decision-making while trading off errors in BCI. PMID:29348781

  1. Unmasking the masked Universe: the 2M++ catalogue through Bayesian eyes

    NASA Astrophysics Data System (ADS)

    Lavaux, Guilhem; Jasche, Jens

    2016-01-01

    This work describes a full Bayesian analysis of the Nearby Universe as traced by galaxies of the 2M++ survey. The analysis is run in two sequential steps. The first step self-consistently derives the luminosity-dependent galaxy biases, the power spectrum of matter fluctuations and matter density fields within a Gaussian statistic approximation. The second step makes a detailed analysis of the three-dimensional large-scale structures, assuming a fixed bias model and a fixed cosmology. This second step allows for the reconstruction of both the final density field and the initial conditions at z = 1000 assuming a fixed bias model. From these, we derive fields that self-consistently extrapolate the observed large-scale structures. We give two examples of these extrapolation and their utility for the detection of structures: the visibility of the Sloan Great Wall, and the detection and characterization of the Local Void using DIVA, a Lagrangian based technique to classify structures.

  2. Diagnosis and Management of Deployed Adults with Chest Pain.

    DTIC Science & Technology

    1983-01-31

    sequential Bayesian model using the likelihood ratios that he supplied to the United States Navy. Because the results of his study were not provided...THE EKG A. All BWH Patients ( n = 899 ) MODEL MI NO MI MI 179 20 199 TRUTH NO MI 248 452 700 427 472 899 SENSITIVITY = 79 = .90199 SPECIFICITY...WITH THE EKG C. BWH Males, < 60 years old, ( n = 250) MODEL MI NO MI MI 49 4 53 TRUTH NO MI 59 138 197 108 142 250 SENSITIVITY = - = .92 53 SPECIFICITY

  3. Updating categorical soil maps using limited survey data by Bayesian Markov chain cosimulation.

    PubMed

    Li, Weidong; Zhang, Chuanrong; Dey, Dipak K; Willig, Michael R

    2013-01-01

    Updating categorical soil maps is necessary for providing current, higher-quality soil data to agricultural and environmental management but may not require a costly thorough field survey because latest legacy maps may only need limited corrections. This study suggests a Markov chain random field (MCRF) sequential cosimulation (Co-MCSS) method for updating categorical soil maps using limited survey data provided that qualified legacy maps are available. A case study using synthetic data demonstrates that Co-MCSS can appreciably improve simulation accuracy of soil types with both contributions from a legacy map and limited sample data. The method indicates the following characteristics: (1) if a soil type indicates no change in an update survey or it has been reclassified into another type that similarly evinces no change, it will be simply reproduced in the updated map; (2) if a soil type has changes in some places, it will be simulated with uncertainty quantified by occurrence probability maps; (3) if a soil type has no change in an area but evinces changes in other distant areas, it still can be captured in the area with unobvious uncertainty. We concluded that Co-MCSS might be a practical method for updating categorical soil maps with limited survey data.

  4. Updating Categorical Soil Maps Using Limited Survey Data by Bayesian Markov Chain Cosimulation

    PubMed Central

    Dey, Dipak K.; Willig, Michael R.

    2013-01-01

    Updating categorical soil maps is necessary for providing current, higher-quality soil data to agricultural and environmental management but may not require a costly thorough field survey because latest legacy maps may only need limited corrections. This study suggests a Markov chain random field (MCRF) sequential cosimulation (Co-MCSS) method for updating categorical soil maps using limited survey data provided that qualified legacy maps are available. A case study using synthetic data demonstrates that Co-MCSS can appreciably improve simulation accuracy of soil types with both contributions from a legacy map and limited sample data. The method indicates the following characteristics: (1) if a soil type indicates no change in an update survey or it has been reclassified into another type that similarly evinces no change, it will be simply reproduced in the updated map; (2) if a soil type has changes in some places, it will be simulated with uncertainty quantified by occurrence probability maps; (3) if a soil type has no change in an area but evinces changes in other distant areas, it still can be captured in the area with unobvious uncertainty. We concluded that Co-MCSS might be a practical method for updating categorical soil maps with limited survey data. PMID:24027447

  5. Tales from Two Cores: Bayesian Re-Analyses of the Summit Lake and Blue Lakes Pollen Cores

    NASA Astrophysics Data System (ADS)

    Hall, M.

    2016-12-01

    Pollen cores from Summit Lake and Blue Lakes in Humboldt Co., Nevada provide palaeoclimatic information for the last 2000 yearsin the NW Great Basin. Summit Lake is in the northern Black Rock Range (41.5 N -119.1 W) and is at an elevation of 1780 m. The Blue Lakes sit at an elevation of 2434 m in the southern Pine Forest Range (41.6 N -118.6 W). The distance between the two lakes is 33.5 km. The cores were originally taken to reconstruct the fire history in the NW Great Basin. In this study, stochastic climate histories are created using a Bayesian methodology as implemented in the Bclim program. This Bayesian approach takes: 1) a multivariate approach based on modern pollen analogs, 2) accounts for the non-linear and non-Gaussian relationship between the climate and the pollen proxy, and 3) accounts for the uncertainties in the radiocarbon record and climate histories. For both cores, the following climatic variables are reported for the last 2 kya: Mean Temperature of the Coldest month (MTCO), Growing Degree Days above 5 Centigrade (GDD5), the ratio of Actual to Potential Evapotranspiration (AET/PET). Because it was sequentially sampled,the Artemesia/Chenopodiaceae ratio (A/C), an indicator of wetness, and the Grasses/Shrubs (G/S) ratio, an indicator of thevegetation communities, is calculated for each section of the Summit Lake core. Bayesian changepoint analyses of the Summit Lake core indicates that there is no significant difference in the mean or variance of the A/C ratio for the last 2 kya cal BP, but there is a significant decrease in G/S ratio dating to circa 700 ya cal BP. At Summit Lake, a statistically significant decrease in the GDD5 occurs at 1.4-1.5 kya cal BP, and a significant increase in the GDD5 occurs for the last 200 ya cal BP. The GDD5 and MTCO for Blue Lakes has a significant increase at 600 ya cal BP, and afterwards decreases in the next century. The regional archaeological record will be discussed in light of these changes.

  6. astroABC : An Approximate Bayesian Computation Sequential Monte Carlo sampler for cosmological parameter estimation

    NASA Astrophysics Data System (ADS)

    Jennings, E.; Madigan, M.

    2017-04-01

    Given the complexity of modern cosmological parameter inference where we are faced with non-Gaussian data and noise, correlated systematics and multi-probe correlated datasets,the Approximate Bayesian Computation (ABC) method is a promising alternative to traditional Markov Chain Monte Carlo approaches in the case where the Likelihood is intractable or unknown. The ABC method is called "Likelihood free" as it avoids explicit evaluation of the Likelihood by using a forward model simulation of the data which can include systematics. We introduce astroABC, an open source ABC Sequential Monte Carlo (SMC) sampler for parameter estimation. A key challenge in astrophysics is the efficient use of large multi-probe datasets to constrain high dimensional, possibly correlated parameter spaces. With this in mind astroABC allows for massive parallelization using MPI, a framework that handles spawning of processes across multiple nodes. A key new feature of astroABC is the ability to create MPI groups with different communicators, one for the sampler and several others for the forward model simulation, which speeds up sampling time considerably. For smaller jobs the Python multiprocessing option is also available. Other key features of this new sampler include: a Sequential Monte Carlo sampler; a method for iteratively adapting tolerance levels; local covariance estimate using scikit-learn's KDTree; modules for specifying optimal covariance matrix for a component-wise or multivariate normal perturbation kernel and a weighted covariance metric; restart files output frequently so an interrupted sampling run can be resumed at any iteration; output and restart files are backed up at every iteration; user defined distance metric and simulation methods; a module for specifying heterogeneous parameter priors including non-standard prior PDFs; a module for specifying a constant, linear, log or exponential tolerance level; well-documented examples and sample scripts. This code is hosted online at https://github.com/EliseJ/astroABC.

  7. Multilevel Sequential2 Monte Carlo for Bayesian inverse problems

    NASA Astrophysics Data System (ADS)

    Latz, Jonas; Papaioannou, Iason; Ullmann, Elisabeth

    2018-09-01

    The identification of parameters in mathematical models using noisy observations is a common task in uncertainty quantification. We employ the framework of Bayesian inversion: we combine monitoring and observational data with prior information to estimate the posterior distribution of a parameter. Specifically, we are interested in the distribution of a diffusion coefficient of an elliptic PDE. In this setting, the sample space is high-dimensional, and each sample of the PDE solution is expensive. To address these issues we propose and analyse a novel Sequential Monte Carlo (SMC) sampler for the approximation of the posterior distribution. Classical, single-level SMC constructs a sequence of measures, starting with the prior distribution, and finishing with the posterior distribution. The intermediate measures arise from a tempering of the likelihood, or, equivalently, a rescaling of the noise. The resolution of the PDE discretisation is fixed. In contrast, our estimator employs a hierarchy of PDE discretisations to decrease the computational cost. We construct a sequence of intermediate measures by decreasing the temperature or by increasing the discretisation level at the same time. This idea builds on and generalises the multi-resolution sampler proposed in P.S. Koutsourelakis (2009) [33] where a bridging scheme is used to transfer samples from coarse to fine discretisation levels. Importantly, our choice between tempering and bridging is fully adaptive. We present numerical experiments in 2D space, comparing our estimator to single-level SMC and the multi-resolution sampler.

  8. Human Inferences about Sequences: A Minimal Transition Probability Model

    PubMed Central

    2016-01-01

    The brain constantly infers the causes of the inputs it receives and uses these inferences to generate statistical expectations about future observations. Experimental evidence for these expectations and their violations include explicit reports, sequential effects on reaction times, and mismatch or surprise signals recorded in electrophysiology and functional MRI. Here, we explore the hypothesis that the brain acts as a near-optimal inference device that constantly attempts to infer the time-varying matrix of transition probabilities between the stimuli it receives, even when those stimuli are in fact fully unpredictable. This parsimonious Bayesian model, with a single free parameter, accounts for a broad range of findings on surprise signals, sequential effects and the perception of randomness. Notably, it explains the pervasive asymmetry between repetitions and alternations encountered in those studies. Our analysis suggests that a neural machinery for inferring transition probabilities lies at the core of human sequence knowledge. PMID:28030543

  9. Prospective evaluation of a Bayesian model to predict organizational change.

    PubMed

    Molfenter, Todd; Gustafson, Dave; Kilo, Chuck; Bhattacharya, Abhik; Olsson, Jesper

    2005-01-01

    This research examines a subjective Bayesian model's ability to predict organizational change outcomes and sustainability of those outcomes for project teams participating in a multi-organizational improvement collaborative.

  10. Bayesian Inference for Time Trends in Parameter Values using Weighted Evidence Sets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D. L. Kelly; A. Malkhasyan

    2010-09-01

    There is a nearly ubiquitous assumption in PSA that parameter values are at least piecewise-constant in time. As a result, Bayesian inference tends to incorporate many years of plant operation, over which there have been significant changes in plant operational and maintenance practices, plant management, etc. These changes can cause significant changes in parameter values over time; however, failure to perform Bayesian inference in the proper time-dependent framework can mask these changes. Failure to question the assumption of constant parameter values, and failure to perform Bayesian inference in the proper time-dependent framework were noted as important issues in NUREG/CR-6813, performedmore » for the U. S. Nuclear Regulatory Commission’s Advisory Committee on Reactor Safeguards in 2003. That report noted that “in-dustry lacks tools to perform time-trend analysis with Bayesian updating.” This paper describes an applica-tion of time-dependent Bayesian inference methods developed for the European Commission Ageing PSA Network. These methods utilize open-source software, implementing Markov chain Monte Carlo sampling. The paper also illustrates an approach to incorporating multiple sources of data via applicability weighting factors that address differences in key influences, such as vendor, component boundaries, conditions of the operating environment, etc.« less

  11. Bayesian Inference for Time Trends in Parameter Values: Case Study for the Ageing PSA Network of the European Commission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dana L. Kelly; Albert Malkhasyan

    2010-06-01

    There is a nearly ubiquitous assumption in PSA that parameter values are at least piecewise-constant in time. As a result, Bayesian inference tends to incorporate many years of plant operation, over which there have been significant changes in plant operational and maintenance practices, plant management, etc. These changes can cause significant changes in parameter values over time; however, failure to perform Bayesian inference in the proper time-dependent framework can mask these changes. Failure to question the assumption of constant parameter values, and failure to perform Bayesian inference in the proper time-dependent framework were noted as important issues in NUREG/CR-6813, performedmore » for the U. S. Nuclear Regulatory Commission’s Advisory Committee on Reactor Safeguards in 2003. That report noted that “industry lacks tools to perform time-trend analysis with Bayesian updating.” This paper describes an application of time-dependent Bayesian inference methods developed for the European Commission Ageing PSA Network. These methods utilize open-source software, implementing Markov chain Monte Carlo sampling. The paper also illustrates the development of a generic prior distribution, which incorporates multiple sources of generic data via weighting factors that address differences in key influences, such as vendor, component boundaries, conditions of the operating environment, etc.« less

  12. Bayesian analyses of time-interval data for environmental radiation monitoring.

    PubMed

    Luo, Peng; Sharp, Julia L; DeVol, Timothy A

    2013-01-01

    Time-interval (time difference between two consecutive pulses) analysis based on the principles of Bayesian inference was investigated for online radiation monitoring. Using experimental and simulated data, Bayesian analysis of time-interval data [Bayesian (ti)] was compared with Bayesian and a conventional frequentist analysis of counts in a fixed count time [Bayesian (cnt) and single interval test (SIT), respectively]. The performances of the three methods were compared in terms of average run length (ARL) and detection probability for several simulated detection scenarios. Experimental data were acquired with a DGF-4C system in list mode. Simulated data were obtained using Monte Carlo techniques to obtain a random sampling of the Poisson distribution. All statistical algorithms were developed using the R Project for statistical computing. Bayesian analysis of time-interval information provided a similar detection probability as Bayesian analysis of count information, but the authors were able to make a decision with fewer pulses at relatively higher radiation levels. In addition, for the cases with very short presence of the source (< count time), time-interval information is more sensitive to detect a change than count information since the source data is averaged by the background data over the entire count time. The relationships of the source time, change points, and modifications to the Bayesian approach for increasing detection probability are presented.

  13. Predictive Place-Cell Sequences for Goal-Finding Emerge from Goal Memory and the Cognitive Map: A Computational Model

    PubMed Central

    Gönner, Lorenz; Vitay, Julien; Hamker, Fred H.

    2017-01-01

    Hippocampal place-cell sequences observed during awake immobility often represent previous experience, suggesting a role in memory processes. However, recent reports of goals being overrepresented in sequential activity suggest a role in short-term planning, although a detailed understanding of the origins of hippocampal sequential activity and of its functional role is still lacking. In particular, it is unknown which mechanism could support efficient planning by generating place-cell sequences biased toward known goal locations, in an adaptive and constructive fashion. To address these questions, we propose a model of spatial learning and sequence generation as interdependent processes, integrating cortical contextual coding, synaptic plasticity and neuromodulatory mechanisms into a map-based approach. Following goal learning, sequential activity emerges from continuous attractor network dynamics biased by goal memory inputs. We apply Bayesian decoding on the resulting spike trains, allowing a direct comparison with experimental data. Simulations show that this model (1) explains the generation of never-experienced sequence trajectories in familiar environments, without requiring virtual self-motion signals, (2) accounts for the bias in place-cell sequences toward goal locations, (3) highlights their utility in flexible route planning, and (4) provides specific testable predictions. PMID:29075187

  14. EEG Classification with a Sequential Decision-Making Method in Motor Imagery BCI.

    PubMed

    Liu, Rong; Wang, Yongxuan; Newman, Geoffrey I; Thakor, Nitish V; Ying, Sarah

    2017-12-01

    To develop subject-specific classifier to recognize mental states fast and reliably is an important issue in brain-computer interfaces (BCI), particularly in practical real-time applications such as wheelchair or neuroprosthetic control. In this paper, a sequential decision-making strategy is explored in conjunction with an optimal wavelet analysis for EEG classification. The subject-specific wavelet parameters based on a grid-search method were first developed to determine evidence accumulative curve for the sequential classifier. Then we proposed a new method to set the two constrained thresholds in the sequential probability ratio test (SPRT) based on the cumulative curve and a desired expected stopping time. As a result, it balanced the decision time of each class, and we term it balanced threshold SPRT (BTSPRT). The properties of the method were illustrated on 14 subjects' recordings from offline and online tests. Results showed the average maximum accuracy of the proposed method to be 83.4% and the average decision time of 2.77[Formula: see text]s, when compared with 79.2% accuracy and a decision time of 3.01[Formula: see text]s for the sequential Bayesian (SB) method. The BTSPRT method not only improves the classification accuracy and decision speed comparing with the other nonsequential or SB methods, but also provides an explicit relationship between stopping time, thresholds and error, which is important for balancing the speed-accuracy tradeoff. These results suggest that BTSPRT would be useful in explicitly adjusting the tradeoff between rapid decision-making and error-free device control.

  15. Iterative Assessment of Statistically-Oriented and Standard Algorithms for Determining Muscle Onset with Intramuscular Electromyography.

    PubMed

    Tenan, Matthew S; Tweedell, Andrew J; Haynes, Courtney A

    2017-12-01

    The onset of muscle activity, as measured by electromyography (EMG), is a commonly applied metric in biomechanics. Intramuscular EMG is often used to examine deep musculature and there are currently no studies examining the effectiveness of algorithms for intramuscular EMG onset. The present study examines standard surface EMG onset algorithms (linear envelope, Teager-Kaiser Energy Operator, and sample entropy) and novel algorithms (time series mean-variance analysis, sequential/batch processing with parametric and nonparametric methods, and Bayesian changepoint analysis). Thirteen male and 5 female subjects had intramuscular EMG collected during isolated biceps brachii and vastus lateralis contractions, resulting in 103 trials. EMG onset was visually determined twice by 3 blinded reviewers. Since the reliability of visual onset was high (ICC (1,1) : 0.92), the mean of the 6 visual assessments was contrasted with the algorithmic approaches. Poorly performing algorithms were stepwise eliminated via (1) root mean square error analysis, (2) algorithm failure to identify onset/premature onset, (3) linear regression analysis, and (4) Bland-Altman plots. The top performing algorithms were all based on Bayesian changepoint analysis of rectified EMG and were statistically indistinguishable from visual analysis. Bayesian changepoint analysis has the potential to produce more reliable, accurate, and objective intramuscular EMG onset results than standard methodologies.

  16. EEG-fMRI Bayesian framework for neural activity estimation: a simulation study

    NASA Astrophysics Data System (ADS)

    Croce, Pierpaolo; Basti, Alessio; Marzetti, Laura; Zappasodi, Filippo; Del Gratta, Cosimo

    2016-12-01

    Objective. Due to the complementary nature of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI), and given the possibility of simultaneous acquisition, the joint data analysis can afford a better understanding of the underlying neural activity estimation. In this simulation study we want to show the benefit of the joint EEG-fMRI neural activity estimation in a Bayesian framework. Approach. We built a dynamic Bayesian framework in order to perform joint EEG-fMRI neural activity time course estimation. The neural activity is originated by a given brain area and detected by means of both measurement techniques. We have chosen a resting state neural activity situation to address the worst case in terms of the signal-to-noise ratio. To infer information by EEG and fMRI concurrently we used a tool belonging to the sequential Monte Carlo (SMC) methods: the particle filter (PF). Main results. First, despite a high computational cost, we showed the feasibility of such an approach. Second, we obtained an improvement in neural activity reconstruction when using both EEG and fMRI measurements. Significance. The proposed simulation shows the improvements in neural activity reconstruction with EEG-fMRI simultaneous data. The application of such an approach to real data allows a better comprehension of the neural dynamics.

  17. EEG-fMRI Bayesian framework for neural activity estimation: a simulation study.

    PubMed

    Croce, Pierpaolo; Basti, Alessio; Marzetti, Laura; Zappasodi, Filippo; Gratta, Cosimo Del

    2016-12-01

    Due to the complementary nature of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI), and given the possibility of simultaneous acquisition, the joint data analysis can afford a better understanding of the underlying neural activity estimation. In this simulation study we want to show the benefit of the joint EEG-fMRI neural activity estimation in a Bayesian framework. We built a dynamic Bayesian framework in order to perform joint EEG-fMRI neural activity time course estimation. The neural activity is originated by a given brain area and detected by means of both measurement techniques. We have chosen a resting state neural activity situation to address the worst case in terms of the signal-to-noise ratio. To infer information by EEG and fMRI concurrently we used a tool belonging to the sequential Monte Carlo (SMC) methods: the particle filter (PF). First, despite a high computational cost, we showed the feasibility of such an approach. Second, we obtained an improvement in neural activity reconstruction when using both EEG and fMRI measurements. The proposed simulation shows the improvements in neural activity reconstruction with EEG-fMRI simultaneous data. The application of such an approach to real data allows a better comprehension of the neural dynamics.

  18. A Calibrated Power Prior Approach to Borrow Information from Historical Data with Application to Biosimilar Clinical Trials.

    PubMed

    Pan, Haitao; Yuan, Ying; Xia, Jielai

    2017-11-01

    A biosimilar refers to a follow-on biologic intended to be approved for marketing based on biosimilarity to an existing patented biological product (i.e., the reference product). To develop a biosimilar product, it is essential to demonstrate biosimilarity between the follow-on biologic and the reference product, typically through two-arm randomization trials. We propose a Bayesian adaptive design for trials to evaluate biosimilar products. To take advantage of the abundant historical data on the efficacy of the reference product that is typically available at the time a biosimilar product is developed, we propose the calibrated power prior, which allows our design to adaptively borrow information from the historical data according to the congruence between the historical data and the new data collected from the current trial. We propose a new measure, the Bayesian biosimilarity index, to measure the similarity between the biosimilar and the reference product. During the trial, we evaluate the Bayesian biosimilarity index in a group sequential fashion based on the accumulating interim data, and stop the trial early once there is enough information to conclude or reject the similarity. Extensive simulation studies show that the proposed design has higher power than traditional designs. We applied the proposed design to a biosimilar trial for treating rheumatoid arthritis.

  19. A Bayesian Framework for Reliability Analysis of Spacecraft Deployments

    NASA Technical Reports Server (NTRS)

    Evans, John W.; Gallo, Luis; Kaminsky, Mark

    2012-01-01

    Deployable subsystems are essential to mission success of most spacecraft. These subsystems enable critical functions including power, communications and thermal control. The loss of any of these functions will generally result in loss of the mission. These subsystems and their components often consist of unique designs and applications for which various standardized data sources are not applicable for estimating reliability and for assessing risks. In this study, a two stage sequential Bayesian framework for reliability estimation of spacecraft deployment was developed for this purpose. This process was then applied to the James Webb Space Telescope (JWST) Sunshield subsystem, a unique design intended for thermal control of the Optical Telescope Element. Initially, detailed studies of NASA deployment history, "heritage information", were conducted, extending over 45 years of spacecraft launches. This information was then coupled to a non-informative prior and a binomial likelihood function to create a posterior distribution for deployments of various subsystems uSing Monte Carlo Markov Chain sampling. Select distributions were then coupled to a subsequent analysis, using test data and anomaly occurrences on successive ground test deployments of scale model test articles of JWST hardware, to update the NASA heritage data. This allowed for a realistic prediction for the reliability of the complex Sunshield deployment, with credibility limits, within this two stage Bayesian framework.

  20. A Survey of Methods for Computing Best Estimates of Endoatmospheric and Exoatmospheric Trajectories

    NASA Technical Reports Server (NTRS)

    Bernard, William P.

    2018-01-01

    Beginning with the mathematical prediction of planetary orbits in the early seventeenth century up through the most recent developments in sensor fusion methods, many techniques have emerged that can be employed on the problem of endo and exoatmospheric trajectory estimation. Although early methods were ad hoc, the twentieth century saw the emergence of many systematic approaches to estimation theory that produced a wealth of useful techniques. The broad genesis of estimation theory has resulted in an equally broad array of mathematical principles, methods and vocabulary. Among the fundamental ideas and methods that are briefly touched on are batch and sequential processing, smoothing, estimation, and prediction, sensor fusion, sensor fusion architectures, data association, Bayesian and non Bayesian filtering, the family of Kalman filters, models of the dynamics of the phases of a rocket's flight, and asynchronous, delayed, and asequent data. Along the way, a few trajectory estimation issues are addressed and much of the vocabulary is defined.

  1. Computational Prediction and Validation of an Expert's Evaluation of Chemical Probes

    PubMed Central

    Litterman, Nadia K.; Lipinski, Christopher A.; Bunin, Barry A.; Ekins, Sean

    2016-01-01

    In a decade with over half a billion dollars of investment, more than 300 chemical probes have been identified to have biological activity through NIH funded screening efforts. We have collected the evaluations of an experienced medicinal chemist on the likely chemistry quality of these probes based on a number of criteria including literature related to the probe and potential chemical reactivity. Over 20% of these probes were found to be undesirable. Analysis of the molecular properties of these compounds scored as desirable suggested higher pKa, molecular weight, heavy atom count and rotatable bond number. We were particularly interested whether the human evaluation aspect of medicinal chemistry due diligence could be computationally predicted. We used a process of sequential Bayesian model building and iterative testing as we included additional probes. Following external validation of these methods and comparing different machine learning methods we identified Bayesian models with accuracy comparable to other measures of drug-likeness and filtering rules created to date. PMID:25244007

  2. Anomaly Detection in Dynamic Networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turcotte, Melissa

    2014-10-14

    Anomaly detection in dynamic communication networks has many important security applications. These networks can be extremely large and so detecting any changes in their structure can be computationally challenging; hence, computationally fast, parallelisable methods for monitoring the network are paramount. For this reason the methods presented here use independent node and edge based models to detect locally anomalous substructures within communication networks. As a first stage, the aim is to detect changes in the data streams arising from node or edge communications. Throughout the thesis simple, conjugate Bayesian models for counting processes are used to model these data streams. Amore » second stage of analysis can then be performed on a much reduced subset of the network comprising nodes and edges which have been identified as potentially anomalous in the first stage. The first method assumes communications in a network arise from an inhomogeneous Poisson process with piecewise constant intensity. Anomaly detection is then treated as a changepoint problem on the intensities. The changepoint model is extended to incorporate seasonal behavior inherent in communication networks. This seasonal behavior is also viewed as a changepoint problem acting on a piecewise constant Poisson process. In a static time frame, inference is made on this extended model via a Gibbs sampling strategy. In a sequential time frame, where the data arrive as a stream, a novel, fast Sequential Monte Carlo (SMC) algorithm is introduced to sample from the sequence of posterior distributions of the change points over time. A second method is considered for monitoring communications in a large scale computer network. The usage patterns in these types of networks are very bursty in nature and don’t fit a Poisson process model. For tractable inference, discrete time models are considered, where the data are aggregated into discrete time periods and probability models are fitted to the communication counts. In a sequential analysis, anomalous behavior is then identified from outlying behavior with respect to the fitted predictive probability models. Seasonality is again incorporated into the model and is treated as a changepoint model on the transition probabilities of a discrete time Markov process. Second stage analytics are then developed which combine anomalous edges to identify anomalous substructures in the network.« less

  3. Joint analysis of input and parametric uncertainties in watershed water quality modeling: A formal Bayesian approach

    NASA Astrophysics Data System (ADS)

    Han, Feng; Zheng, Yi

    2018-06-01

    Significant Input uncertainty is a major source of error in watershed water quality (WWQ) modeling. It remains challenging to address the input uncertainty in a rigorous Bayesian framework. This study develops the Bayesian Analysis of Input and Parametric Uncertainties (BAIPU), an approach for the joint analysis of input and parametric uncertainties through a tight coupling of Markov Chain Monte Carlo (MCMC) analysis and Bayesian Model Averaging (BMA). The formal likelihood function for this approach is derived considering a lag-1 autocorrelated, heteroscedastic, and Skew Exponential Power (SEP) distributed error model. A series of numerical experiments were performed based on a synthetic nitrate pollution case and on a real study case in the Newport Bay Watershed, California. The Soil and Water Assessment Tool (SWAT) and Differential Evolution Adaptive Metropolis (DREAM(ZS)) were used as the representative WWQ model and MCMC algorithm, respectively. The major findings include the following: (1) the BAIPU can be implemented and used to appropriately identify the uncertain parameters and characterize the predictive uncertainty; (2) the compensation effect between the input and parametric uncertainties can seriously mislead the modeling based management decisions, if the input uncertainty is not explicitly accounted for; (3) the BAIPU accounts for the interaction between the input and parametric uncertainties and therefore provides more accurate calibration and uncertainty results than a sequential analysis of the uncertainties; and (4) the BAIPU quantifies the credibility of different input assumptions on a statistical basis and can be implemented as an effective inverse modeling approach to the joint inference of parameters and inputs.

  4. How Much Can We Learn from a Single Chromatographic Experiment? A Bayesian Perspective.

    PubMed

    Wiczling, Paweł; Kaliszan, Roman

    2016-01-05

    In this work, we proposed and investigated a Bayesian inference procedure to find the desired chromatographic conditions based on known analyte properties (lipophilicity, pKa, and polar surface area) using one preliminary experiment. A previously developed nonlinear mixed effect model was used to specify the prior information about a new analyte with known physicochemical properties. Further, the prior (no preliminary data) and posterior predictive distribution (prior + one experiment) were determined sequentially to search towards the desired separation. The following isocratic high-performance reversed-phase liquid chromatographic conditions were sought: (1) retention time of a single analyte within the range of 4-6 min and (2) baseline separation of two analytes with retention times within the range of 4-10 min. The empirical posterior Bayesian distribution of parameters was estimated using the "slice sampling" Markov Chain Monte Carlo (MCMC) algorithm implemented in Matlab. The simulations with artificial analytes and experimental data of ketoprofen and papaverine were used to test the proposed methodology. The simulation experiment showed that for a single and two randomly selected analytes, there is 97% and 74% probability of obtaining a successful chromatogram using none or one preliminary experiment. The desired separation for ketoprofen and papaverine was established based on a single experiment. It was confirmed that the search for a desired separation rarely requires a large number of chromatographic analyses at least for a simple optimization problem. The proposed Bayesian-based optimization scheme is a powerful method of finding a desired chromatographic separation based on a small number of preliminary experiments.

  5. Analysis of statistical and standard algorithms for detecting muscle onset with surface electromyography.

    PubMed

    Tenan, Matthew S; Tweedell, Andrew J; Haynes, Courtney A

    2017-01-01

    The timing of muscle activity is a commonly applied analytic method to understand how the nervous system controls movement. This study systematically evaluates six classes of standard and statistical algorithms to determine muscle onset in both experimental surface electromyography (EMG) and simulated EMG with a known onset time. Eighteen participants had EMG collected from the biceps brachii and vastus lateralis while performing a biceps curl or knee extension, respectively. Three established methods and three statistical methods for EMG onset were evaluated. Linear envelope, Teager-Kaiser energy operator + linear envelope and sample entropy were the established methods evaluated while general time series mean/variance, sequential and batch processing of parametric and nonparametric tools, and Bayesian changepoint analysis were the statistical techniques used. Visual EMG onset (experimental data) and objective EMG onset (simulated data) were compared with algorithmic EMG onset via root mean square error and linear regression models for stepwise elimination of inferior algorithms. The top algorithms for both data types were analyzed for their mean agreement with the gold standard onset and evaluation of 95% confidence intervals. The top algorithms were all Bayesian changepoint analysis iterations where the parameter of the prior (p0) was zero. The best performing Bayesian algorithms were p0 = 0 and a posterior probability for onset determination at 60-90%. While existing algorithms performed reasonably, the Bayesian changepoint analysis methodology provides greater reliability and accuracy when determining the singular onset of EMG activity in a time series. Further research is needed to determine if this class of algorithms perform equally well when the time series has multiple bursts of muscle activity.

  6. A Bayesian CUSUM plot: Diagnosing quality of treatment.

    PubMed

    Rosthøj, Steen; Jacobsen, Rikke-Line

    2017-12-01

    To present a CUSUM plot based on Bayesian diagnostic reasoning displaying evidence in favour of "healthy" rather than "sick" quality of treatment (QOT), and to demonstrate a technique using Kaplan-Meier survival curves permitting application to case series with ongoing follow-up. For a case series with known final outcomes: Consider each case a diagnostic test of good versus poor QOT (expected vs. increased failure rates), determine the likelihood ratio (LR) of the observed outcome, convert LR to weight taking log to base 2, and add up weights sequentially in a plot showing how many times odds in favour of good QOT have been doubled. For a series with observed survival times and an expected survival curve: Divide the curve into time intervals, determine "healthy" and specify "sick" risks of failure in each interval, construct a "sick" survival curve, determine the LR of survival or failure at the given observation times, convert to weights, and add up. The Bayesian plot was applied retrospectively to 39 children with acute lymphoblastic leukaemia with completed follow-up, using Nordic collaborative results as reference, showing equal odds between good and poor QOT. In the ongoing treatment trial, with 22 of 37 children still at risk for event, QOT has been monitored with average survival curves as reference, odds so far favoring good QOT 2:1. QOT in small patient series can be assessed with a Bayesian CUSUM plot, retrospectively when all treatment outcomes are known, but also in ongoing series with unfinished follow-up. © 2017 John Wiley & Sons, Ltd.

  7. Systematic evaluation of sequential geostatistical resampling within MCMC for posterior sampling of near-surface geophysical inverse problems

    NASA Astrophysics Data System (ADS)

    Ruggeri, Paolo; Irving, James; Holliger, Klaus

    2015-08-01

    We critically examine the performance of sequential geostatistical resampling (SGR) as a model proposal mechanism for Bayesian Markov-chain-Monte-Carlo (MCMC) solutions to near-surface geophysical inverse problems. Focusing on a series of simple yet realistic synthetic crosshole georadar tomographic examples characterized by different numbers of data, levels of data error and degrees of model parameter spatial correlation, we investigate the efficiency of three different resampling strategies with regard to their ability to generate statistically independent realizations from the Bayesian posterior distribution. Quite importantly, our results show that, no matter what resampling strategy is employed, many of the examined test cases require an unreasonably high number of forward model runs to produce independent posterior samples, meaning that the SGR approach as currently implemented will not be computationally feasible for a wide range of problems. Although use of a novel gradual-deformation-based proposal method can help to alleviate these issues, it does not offer a full solution. Further, we find that the nature of the SGR is found to strongly influence MCMC performance; however no clear rule exists as to what set of inversion parameters and/or overall proposal acceptance rate will allow for the most efficient implementation. We conclude that although the SGR methodology is highly attractive as it allows for the consideration of complex geostatistical priors as well as conditioning to hard and soft data, further developments are necessary in the context of novel or hybrid MCMC approaches for it to be considered generally suitable for near-surface geophysical inversions.

  8. A dynamic model of reasoning and memory.

    PubMed

    Hawkins, Guy E; Hayes, Brett K; Heit, Evan

    2016-02-01

    Previous models of category-based induction have neglected how the process of induction unfolds over time. We conceive of induction as a dynamic process and provide the first fine-grained examination of the distribution of response times observed in inductive reasoning. We used these data to develop and empirically test the first major quantitative modeling scheme that simultaneously accounts for inductive decisions and their time course. The model assumes that knowledge of similarity relations among novel test probes and items stored in memory drive an accumulation-to-bound sequential sampling process: Test probes with high similarity to studied exemplars are more likely to trigger a generalization response, and more rapidly, than items with low exemplar similarity. We contrast data and model predictions for inductive decisions with a recognition memory task using a common stimulus set. Hierarchical Bayesian analyses across 2 experiments demonstrated that inductive reasoning and recognition memory primarily differ in the threshold to trigger a decision: Observers required less evidence to make a property generalization judgment (induction) than an identity statement about a previously studied item (recognition). Experiment 1 and a condition emphasizing decision speed in Experiment 2 also found evidence that inductive decisions use lower quality similarity-based information than recognition. The findings suggest that induction might represent a less cautious form of recognition. We conclude that sequential sampling models grounded in exemplar-based similarity, combined with hierarchical Bayesian analysis, provide a more fine-grained and informative analysis of the processes involved in inductive reasoning than is possible solely through examination of choice data. PsycINFO Database Record (c) 2016 APA, all rights reserved.

  9. Ascertainment correction for Markov chain Monte Carlo segregation and linkage analysis of a quantitative trait.

    PubMed

    Ma, Jianzhong; Amos, Christopher I; Warwick Daw, E

    2007-09-01

    Although extended pedigrees are often sampled through probands with extreme levels of a quantitative trait, Markov chain Monte Carlo (MCMC) methods for segregation and linkage analysis have not been able to perform ascertainment corrections. Further, the extent to which ascertainment of pedigrees leads to biases in the estimation of segregation and linkage parameters has not been previously studied for MCMC procedures. In this paper, we studied these issues with a Bayesian MCMC approach for joint segregation and linkage analysis, as implemented in the package Loki. We first simulated pedigrees ascertained through individuals with extreme values of a quantitative trait in spirit of the sequential sampling theory of Cannings and Thompson [Cannings and Thompson [1977] Clin. Genet. 12:208-212]. Using our simulated data, we detected no bias in estimates of the trait locus location. However, in addition to allele frequencies, when the ascertainment threshold was higher than or close to the true value of the highest genotypic mean, bias was also found in the estimation of this parameter. When there were multiple trait loci, this bias destroyed the additivity of the effects of the trait loci, and caused biases in the estimation all genotypic means when a purely additive model was used for analyzing the data. To account for pedigree ascertainment with sequential sampling, we developed a Bayesian ascertainment approach and implemented Metropolis-Hastings updates in the MCMC samplers used in Loki. Ascertainment correction greatly reduced biases in parameter estimates. Our method is designed for multiple, but a fixed number of trait loci. Copyright (c) 2007 Wiley-Liss, Inc.

  10. Risk-based flood protection planning under climate change and modeling uncertainty: a pre-alpine case study

    NASA Astrophysics Data System (ADS)

    Dittes, Beatrice; Kaiser, Maria; Špačková, Olga; Rieger, Wolfgang; Disse, Markus; Straub, Daniel

    2018-05-01

    Planning authorities are faced with a range of questions when planning flood protection measures: is the existing protection adequate for current and future demands or should it be extended? How will flood patterns change in the future? How should the uncertainty pertaining to this influence the planning decision, e.g., for delaying planning or including a safety margin? Is it sufficient to follow a protection criterion (e.g., to protect from the 100-year flood) or should the planning be conducted in a risk-based way? How important is it for flood protection planning to accurately estimate flood frequency (changes), costs and damage? These are questions that we address for a medium-sized pre-alpine catchment in southern Germany, using a sequential Bayesian decision making framework that quantitatively addresses the full spectrum of uncertainty. We evaluate different flood protection systems considered by local agencies in a test study catchment. Despite large uncertainties in damage, cost and climate, the recommendation is robust for the most conservative approach. This demonstrates the feasibility of making robust decisions under large uncertainty. Furthermore, by comparison to a previous study, it highlights the benefits of risk-based planning over the planning of flood protection to a prescribed return period.

  11. A computationally efficient Bayesian sequential simulation approach for the assimilation of vast and diverse hydrogeophysical datasets

    NASA Astrophysics Data System (ADS)

    Nussbaumer, Raphaël; Gloaguen, Erwan; Mariéthoz, Grégoire; Holliger, Klaus

    2016-04-01

    Bayesian sequential simulation (BSS) is a powerful geostatistical technique, which notably has shown significant potential for the assimilation of datasets that are diverse with regard to the spatial resolution and their relationship. However, these types of applications of BSS require a large number of realizations to adequately explore the solution space and to assess the corresponding uncertainties. Moreover, such simulations generally need to be performed on very fine grids in order to adequately exploit the technique's potential for characterizing heterogeneous environments. Correspondingly, the computational cost of BSS algorithms in their classical form is very high, which so far has limited an effective application of this method to large models and/or vast datasets. In this context, it is also important to note that the inherent assumption regarding the independence of the considered datasets is generally regarded as being too strong in the context of sequential simulation. To alleviate these problems, we have revisited the classical implementation of BSS and incorporated two key features to increase the computational efficiency. The first feature is a combined quadrant spiral - superblock search, which targets run-time savings on large grids and adds flexibility with regard to the selection of neighboring points using equal directional sampling and treating hard data and previously simulated points separately. The second feature is a constant path of simulation, which enhances the efficiency for multiple realizations. We have also modified the aggregation operator to be more flexible with regard to the assumption of independence of the considered datasets. This is achieved through log-linear pooling, which essentially allows for attributing weights to the various data components. Finally, a multi-grid simulating path was created to enforce large-scale variance and to allow for adapting parameters, such as, for example, the log-linear weights or the type of simulation path at various scales. The newly implemented search method for kriging reduces the computational cost from an exponential dependence with regard to the grid size in the original algorithm to a linear relationship, as each neighboring search becomes independent from the grid size. For the considered examples, our results show a sevenfold reduction in run time for each additional realization when a constant simulation path is used. The traditional criticism that constant path techniques introduce a bias to the simulations was explored and our findings do indeed reveal a minor reduction in the diversity of the simulations. This bias can, however, be largely eliminated by changing the path type at different scales through the use of the multi-grid approach. Finally, we show that adapting the aggregation weight at each scale considered in our multi-grid approach allows for reproducing both the variogram and histogram, and the spatial trend of the underlying data.

  12. On-line Flagging of Anomalies and Adaptive Sequential Hypothesis Testing for Fine-feature Characterization of Geosynchronous Satellites

    NASA Astrophysics Data System (ADS)

    Chaudhary, A.; Payne, T.; Kinateder, K.; Dao, P.; Beecher, E.; Boone, D.; Elliott, B.

    The objective of on-line flagging in this paper is to perform interactive assessment of geosynchronous satellites anomalies such as cross-tagging of a satellites in a cluster, solar panel offset change, etc. This assessment will utilize a Bayesian belief propagation procedure and will include automated update of baseline signature data for the satellite, while accounting for the seasonal changes. Its purpose is to enable an ongoing, automated assessment of satellite behavior through its life cycle using the photometry data collected during the synoptic search performed by a ground or space-based sensor as a part of its metrics mission. The change in the satellite features will be reported along with the probabilities of Type I and Type II errors. The objective of adaptive sequential hypothesis testing in this paper is to define future sensor tasking for the purpose of characterization of fine features of the satellite. The tasking will be designed in order to maximize new information with the least number of photometry data points to be collected during the synoptic search by a ground or space-based sensor. Its calculation is based on the utilization of information entropy techniques. The tasking is defined by considering a sequence of hypotheses in regard to the fine features of the satellite. The optimal observation conditions are then ordered in order to maximize new information about a chosen fine feature. The combined objective of on-line flagging and adaptive sequential hypothesis testing is to progressively discover new information about the features of a geosynchronous satellites by leveraging the regular but sparse cadence of data collection during the synoptic search performed by a ground or space-based sensor. Automated Algorithm to Detect Changes in Geostationary Satellite's Configuration and Cross-Tagging Phan Dao, Air Force Research Laboratory/RVB By characterizing geostationary satellites based on photometry and color photometry, analysts can evaluate satellite operational status and affirm its true identity. The process of ingesting photometry data and deriving satellite physical characteristics can be directed by analysts in a batch mode, meaning using a batch of recent data, or by automated algorithms in an on-line mode in which the assessment is updated with each new data point. Tools used for detecting change to satellite's status or identity, whether performed with a human in the loop or automated algorithms, are generally not built to detect with minimum latency and traceable confidence intervals. To alleviate those deficiencies, we investigate the use of Hidden Markov Models (HMM), in a Bayesian Network framework, to infer the hidden state (changed or unchanged) of a three-axis stabilized geostationary satellite using broadband and color photometry. Unlike frequentist statistics which exploit only the stationary statistics of the observables in the database, HMM also exploits the temporal pattern of the observables as well. The algorithm also operates in “learning” mode to gradually evolve the HMM and accommodate natural changes such as due to the seasonal dependence of GEO satellite's light curve. Our technique is designed to operate with missing color data. The version that ingests both panchromatic and color data can accommodate gaps in color photometry data. That attribute is important because while color indices, e.g. Johnson R and B, enhance the belief (probability) of a hidden state, in real world situations, flux data is collected sporadically in an untasked collect, and color data is limited and sometimes absent. Fluxes are measured with experimental error whose effect on the algorithm will be studied. Photometry data in the AFRL's Geo Color Photometry Catalog and Geo Observations with Latitudinal Diversity Simultaneously (GOLDS) data sets are used to simulate a wide variety of operational changes and identity cross tags. The algorithm is tested against simulated sequences of observed magnitudes, mimicking both the cadence of untasked SSN and other ground sensors, occasional operational changes and possible occurrence of cross tags of in-cluster satellites. We would like to show that the on-line algorithm can detect change; sometimes right after the first post-change data point is analyzed, for zero latency. We also want to show the unsupervised “learning” capability that allows the HMM to evolve with time without user's assistance. For example, the users are not required to “label” the true state of the data points.

  13. Dynamic Bayesian network modeling for longitudinal brain morphometry

    PubMed Central

    Chen, Rong; Resnick, Susan M; Davatzikos, Christos; Herskovits, Edward H

    2011-01-01

    Identifying interactions among brain regions from structural magnetic-resonance images presents one of the major challenges in computational neuroanatomy. We propose a Bayesian data-mining approach to the detection of longitudinal morphological changes in the human brain. Our method uses a dynamic Bayesian network to represent evolving inter-regional dependencies. The major advantage of dynamic Bayesian network modeling is that it can represent complicated interactions among temporal processes. We validated our approach by analyzing a simulated atrophy study, and found that this approach requires only a small number of samples to detect the ground-truth temporal model. We further applied dynamic Bayesian network modeling to a longitudinal study of normal aging and mild cognitive impairment — the Baltimore Longitudinal Study of Aging. We found that interactions among regional volume-change rates for the mild cognitive impairment group are different from those for the normal-aging group. PMID:21963916

  14. A Bayesian Hybrid Adaptive Randomisation Design for Clinical Trials with Survival Outcomes.

    PubMed

    Moatti, M; Chevret, S; Zohar, S; Rosenberger, W F

    2016-01-01

    Response-adaptive randomisation designs have been proposed to improve the efficiency of phase III randomised clinical trials and improve the outcomes of the clinical trial population. In the setting of failure time outcomes, Zhang and Rosenberger (2007) developed a response-adaptive randomisation approach that targets an optimal allocation, based on a fixed sample size. The aim of this research is to propose a response-adaptive randomisation procedure for survival trials with an interim monitoring plan, based on the following optimal criterion: for fixed variance of the estimated log hazard ratio, what allocation minimizes the expected hazard of failure? We demonstrate the utility of the design by redesigning a clinical trial on multiple myeloma. To handle continuous monitoring of data, we propose a Bayesian response-adaptive randomisation procedure, where the log hazard ratio is the effect measure of interest. Combining the prior with the normal likelihood, the mean posterior estimate of the log hazard ratio allows derivation of the optimal target allocation. We perform a simulation study to assess and compare the performance of this proposed Bayesian hybrid adaptive design to those of fixed, sequential or adaptive - either frequentist or fully Bayesian - designs. Non informative normal priors of the log hazard ratio were used, as well as mixture of enthusiastic and skeptical priors. Stopping rules based on the posterior distribution of the log hazard ratio were computed. The method is then illustrated by redesigning a phase III randomised clinical trial of chemotherapy in patients with multiple myeloma, with mixture of normal priors elicited from experts. As expected, there was a reduction in the proportion of observed deaths in the adaptive vs. non-adaptive designs; this reduction was maximized using a Bayes mixture prior, with no clear-cut improvement by using a fully Bayesian procedure. The use of stopping rules allows a slight decrease in the observed proportion of deaths under the alternate hypothesis compared with the adaptive designs with no stopping rules. Such Bayesian hybrid adaptive survival trials may be promising alternatives to traditional designs, reducing the duration of survival trials, as well as optimizing the ethical concerns for patients enrolled in the trial.

  15. Axial superresolution via multiangle TIRF microscopy with sequential imaging and photobleaching

    PubMed Central

    Fu, Yan; Winter, Peter W.; Rojas, Raul; Wang, Victor; McAuliffe, Matthew; Patterson, George H.

    2016-01-01

    We report superresolution optical sectioning using a multiangle total internal reflection fluorescence (TIRF) microscope. TIRF images were constructed from several layers within a normal TIRF excitation zone by sequentially imaging and photobleaching the fluorescent molecules. The depth of the evanescent wave at different layers was altered by tuning the excitation light incident angle. The angle was tuned from the highest (the smallest TIRF depth) toward the critical angle (the largest TIRF depth) to preferentially photobleach fluorescence from the lower layers and allow straightforward observation of deeper structures without masking by the brighter signals closer to the coverglass. Reconstruction of the TIRF images enabled 3D imaging of biological samples with 20-nm axial resolution. Two-color imaging of epidermal growth factor (EGF) ligand and clathrin revealed the dynamics of EGF-activated clathrin-mediated endocytosis during internalization. Furthermore, Bayesian analysis of images collected during the photobleaching step of each plane enabled lateral superresolution (<100 nm) within each of the sections. PMID:27044072

  16. Of bits and wows: A Bayesian theory of surprise with applications to attention.

    PubMed

    Baldi, Pierre; Itti, Laurent

    2010-06-01

    The amount of information contained in a piece of data can be measured by the effect this data has on its observer. Fundamentally, this effect is to transform the observer's prior beliefs into posterior beliefs, according to Bayes theorem. Thus the amount of information can be measured in a natural way by the distance (relative entropy) between the prior and posterior distributions of the observer over the available space of hypotheses. This facet of information, termed "surprise", is important in dynamic situations where beliefs change, in particular during learning and adaptation. Surprise can often be computed analytically, for instance in the case of distributions from the exponential family, or it can be numerically approximated. During sequential Bayesian learning, surprise decreases as the inverse of the number of training examples. Theoretical properties of surprise are discussed, in particular how it differs and complements Shannon's definition of information. A computer vision neural network architecture is then presented capable of computing surprise over images and video stimuli. Hypothesizing that surprising data ought to attract natural or artificial attention systems, the output of this architecture is used in a psychophysical experiment to analyze human eye movements in the presence of natural video stimuli. Surprise is found to yield robust performance at predicting human gaze (ROC-like ordinal dominance score approximately 0.7 compared to approximately 0.8 for human inter-observer repeatability, approximately 0.6 for simpler intensity contrast-based predictor, and 0.5 for chance). The resulting theory of surprise is applicable across different spatio-temporal scales, modalities, and levels of abstraction. Copyright 2010 Elsevier Ltd. All rights reserved.

  17. Cervical disc arthroplasty for symptomatic cervical disc disease: Traditional and Bayesian meta-analysis with trial sequential analysis.

    PubMed

    Kan, Shun-Li; Yuan, Zhi-Fang; Ning, Guang-Zhi; Liu, Fei-Fei; Sun, Jing-Cheng; Feng, Shi-Qing

    2016-11-01

    Cervical disc arthroplasty (CDA) has been designed as a substitute for anterior cervical discectomy and fusion (ACDF) in the treatment of symptomatic cervical disc disease (CDD). Several researchers have compared CDA with ACDF for the treatment of symptomatic CDD; however, the findings of these studies are inconclusive. Using recently published evidence, this meta-analysis was conducted to further verify the benefits and harms of using CDA for treatment of symptomatic CDD. Relevant trials were identified by searching the PubMed, EMBASE, and Cochrane Library databases. Outcomes were reported as odds ratio or standardized mean difference. Both traditional frequentist and Bayesian approaches were used to synthesize evidence within random-effects models. Trial sequential analysis (TSA) was applied to test the robustness of our findings and obtain more conservative estimates. Nineteen trials were included. The findings of this meta-analysis demonstrated better overall, neck disability index (NDI), and neurological success; lower NDI and neck and arm pain scores; higher 36-Item Short Form Health Survey (SF-36) Physical Component Summary (PCS) and Mental Component Summary (MCS) scores; more patient satisfaction; greater range of motion at the operative level; and fewer secondary surgical procedures (all P < 0.05) in the CDA group compared with the ACDF group. CDA was not significantly different from ACDF in the rate of adverse events (P > 0.05). TSA of overall success suggested that the cumulative z-curve crossed both the conventional boundary and the trial sequential monitoring boundary for benefit, indicating sufficient and conclusive evidence had been ascertained. For treating symptomatic CDD, CDA was superior to ACDF in terms of overall, NDI, and neurological success; NDI and neck and arm pain scores; SF-36 PCS and MCS scores; patient satisfaction; ROM at the operative level; and secondary surgical procedures rate. Additionally, there was no significant difference between CDA and ACDF in the rate of adverse events. However, as the CDA procedure is a relatively newer operative technique, long-term results and evaluation are necessary before CDA is routinely used in clinical practice. Copyright © 2016 IJS Publishing Group Ltd. Published by Elsevier Ltd. All rights reserved.

  18. Capturing changes in flood risk with Bayesian approaches for flood damage assessment

    NASA Astrophysics Data System (ADS)

    Vogel, Kristin; Schröter, Kai; Kreibich, Heidi; Thieken, Annegret; Müller, Meike; Sieg, Tobias; Laudan, Jonas; Kienzler, Sarah; Weise, Laura; Merz, Bruno; Scherbaum, Frank

    2016-04-01

    Flood risk is a function of hazard as well as of exposure and vulnerability. All three components are under change over space and time and have to be considered for reliable damage estimations and risk analyses, since this is the basis for an efficient, adaptable risk management. Hitherto, models for estimating flood damage are comparatively simple and cannot sufficiently account for changing conditions. The Bayesian network approach allows for a multivariate modeling of complex systems without relying on expert knowledge about physical constraints. In a Bayesian network each model component is considered to be a random variable. The way of interactions between those variables can be learned from observations or be defined by expert knowledge. Even a combination of both is possible. Moreover, the probabilistic framework captures uncertainties related to the prediction and provides a probability distribution for the damage instead of a point estimate. The graphical representation of Bayesian networks helps to study the change of probabilities for changing circumstances and may thus simplify the communication between scientists and public authorities. In the framework of the DFG-Research Training Group "NatRiskChange" we aim to develop Bayesian networks for flood damage and vulnerability assessments of residential buildings and companies under changing conditions. A Bayesian network learned from data, collected over the last 15 years in flooded regions in the Elbe and Danube catchments (Germany), reveals the impact of many variables like building characteristics, precaution and warning situation on flood damage to residential buildings. While the handling of incomplete and hybrid (discrete mixed with continuous) data are the most challenging issues in the study on residential buildings, a similar study, that focuses on the vulnerability of small to medium sized companies, bears new challenges. Relying on a much smaller data set for the determination of the model parameters, overly complex models should be avoided. A so called Markov Blanket approach aims at the identification of the most relevant factors and constructs a Bayesian network based on those findings. With our approach we want to exploit a major advantage of Bayesian networks which is their ability to consider dependencies not only pairwise, but to capture the joint effects and interactions of driving forces. Hence, the flood damage network does not only show the impact of precaution on the building damage separately, but also reveals the mutual effects of precaution and the quality of warning for a variety of flood settings. Thus, it allows for a consideration of changing conditions and different courses of action and forms a novel and valuable tool for decision support. This study is funded by the Deutsche Forschungsgemeinschaft (DFG) within the research training program GRK 2043/1 "NatRiskChange - Natural hazards and risks in a changing world" at the University of Potsdam.

  19. Estimating the Effective Sample Size of Tree Topologies from Bayesian Phylogenetic Analyses

    PubMed Central

    Lanfear, Robert; Hua, Xia; Warren, Dan L.

    2016-01-01

    Bayesian phylogenetic analyses estimate posterior distributions of phylogenetic tree topologies and other parameters using Markov chain Monte Carlo (MCMC) methods. Before making inferences from these distributions, it is important to assess their adequacy. To this end, the effective sample size (ESS) estimates how many truly independent samples of a given parameter the output of the MCMC represents. The ESS of a parameter is frequently much lower than the number of samples taken from the MCMC because sequential samples from the chain can be non-independent due to autocorrelation. Typically, phylogeneticists use a rule of thumb that the ESS of all parameters should be greater than 200. However, we have no method to calculate an ESS of tree topology samples, despite the fact that the tree topology is often the parameter of primary interest and is almost always central to the estimation of other parameters. That is, we lack a method to determine whether we have adequately sampled one of the most important parameters in our analyses. In this study, we address this problem by developing methods to estimate the ESS for tree topologies. We combine these methods with two new diagnostic plots for assessing posterior samples of tree topologies, and compare their performance on simulated and empirical data sets. Combined, the methods we present provide new ways to assess the mixing and convergence of phylogenetic tree topologies in Bayesian MCMC analyses. PMID:27435794

  20. Impact of individual behaviour change on the spread of emerging infectious diseases.

    PubMed

    Yan, Q L; Tang, S Y; Xiao, Y N

    2018-03-15

    Human behaviour plays an important role in the spread of emerging infectious diseases, and understanding the influence of behaviour changes on epidemics can be key to improving control efforts. However, how the dynamics of individual behaviour changes affects the development of emerging infectious disease is a key public health issue. To develop different formula for individual behaviour change and introduce how to embed it into a dynamic model of infectious diseases, we choose A/H1N1 and Ebola as typical examples, combined with the epidemic reported cases and media related news reports. Thus, the logistic model with the health belief model is used to determine behaviour decisions through the health belief model constructs. Furthermore, we propose 4 candidate infectious disease models without and with individual behaviour change and use approximate Bayesian computation based on sequential Monte Carlo method for model selection. The main results indicate that the classical compartment model without behaviour change and the model with average rate of behaviour change depicted by an exponential function could fit the observed data best. The results provide a new way on how to choose an infectious disease model to predict the disease prevalence trend or to evaluate the influence of intervention measures on disease control. However, sensitivity analyses indicate that the accumulated number of hospital notifications and deaths could be largely reduced as the rate of behaviour change increases. Therefore, in terms of mitigating emerging infectious diseases, both media publicity focused on how to guide people's behaviour change and positive responses of individuals are critical. Copyright © 2017 John Wiley & Sons, Ltd.

  1. Analysis of statistical and standard algorithms for detecting muscle onset with surface electromyography

    PubMed Central

    Tweedell, Andrew J.; Haynes, Courtney A.

    2017-01-01

    The timing of muscle activity is a commonly applied analytic method to understand how the nervous system controls movement. This study systematically evaluates six classes of standard and statistical algorithms to determine muscle onset in both experimental surface electromyography (EMG) and simulated EMG with a known onset time. Eighteen participants had EMG collected from the biceps brachii and vastus lateralis while performing a biceps curl or knee extension, respectively. Three established methods and three statistical methods for EMG onset were evaluated. Linear envelope, Teager-Kaiser energy operator + linear envelope and sample entropy were the established methods evaluated while general time series mean/variance, sequential and batch processing of parametric and nonparametric tools, and Bayesian changepoint analysis were the statistical techniques used. Visual EMG onset (experimental data) and objective EMG onset (simulated data) were compared with algorithmic EMG onset via root mean square error and linear regression models for stepwise elimination of inferior algorithms. The top algorithms for both data types were analyzed for their mean agreement with the gold standard onset and evaluation of 95% confidence intervals. The top algorithms were all Bayesian changepoint analysis iterations where the parameter of the prior (p0) was zero. The best performing Bayesian algorithms were p0 = 0 and a posterior probability for onset determination at 60–90%. While existing algorithms performed reasonably, the Bayesian changepoint analysis methodology provides greater reliability and accuracy when determining the singular onset of EMG activity in a time series. Further research is needed to determine if this class of algorithms perform equally well when the time series has multiple bursts of muscle activity. PMID:28489897

  2. Three-Dimensional Bayesian Geostatistical Aquifer Characterization at the Hanford 300 Area using Tracer Test Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Xingyuan; Murakami, Haruko; Hahn, Melanie S.

    2012-06-01

    Tracer testing under natural or forced gradient flow holds the potential to provide useful information for characterizing subsurface properties, through monitoring, modeling and interpretation of the tracer plume migration in an aquifer. Non-reactive tracer experiments were conducted at the Hanford 300 Area, along with constant-rate injection tests and electromagnetic borehole flowmeter (EBF) profiling. A Bayesian data assimilation technique, the method of anchored distributions (MAD) [Rubin et al., 2010], was applied to assimilate the experimental tracer test data with the other types of data and to infer the three-dimensional heterogeneous structure of the hydraulic conductivity in the saturated zone of themore » Hanford formation. In this study, the Bayesian prior information on the underlying random hydraulic conductivity field was obtained from previous field characterization efforts using the constant-rate injection tests and the EBF data. The posterior distribution of the conductivity field was obtained by further conditioning the field on the temporal moments of tracer breakthrough curves at various observation wells. MAD was implemented with the massively-parallel three-dimensional flow and transport code PFLOTRAN to cope with the highly transient flow boundary conditions at the site and to meet the computational demands of MAD. A synthetic study proved that the proposed method could effectively invert tracer test data to capture the essential spatial heterogeneity of the three-dimensional hydraulic conductivity field. Application of MAD to actual field data shows that the hydrogeological model, when conditioned on the tracer test data, can reproduce the tracer transport behavior better than the field characterized without the tracer test data. This study successfully demonstrates that MAD can sequentially assimilate multi-scale multi-type field data through a consistent Bayesian framework.« less

  3. Bayesian estimation of differential transcript usage from RNA-seq data.

    PubMed

    Papastamoulis, Panagiotis; Rattray, Magnus

    2017-11-27

    Next generation sequencing allows the identification of genes consisting of differentially expressed transcripts, a term which usually refers to changes in the overall expression level. A specific type of differential expression is differential transcript usage (DTU) and targets changes in the relative within gene expression of a transcript. The contribution of this paper is to: (a) extend the use of cjBitSeq to the DTU context, a previously introduced Bayesian model which is originally designed for identifying changes in overall expression levels and (b) propose a Bayesian version of DRIMSeq, a frequentist model for inferring DTU. cjBitSeq is a read based model and performs fully Bayesian inference by MCMC sampling on the space of latent state of each transcript per gene. BayesDRIMSeq is a count based model and estimates the Bayes Factor of a DTU model against a null model using Laplace's approximation. The proposed models are benchmarked against the existing ones using a recent independent simulation study as well as a real RNA-seq dataset. Our results suggest that the Bayesian methods exhibit similar performance with DRIMSeq in terms of precision/recall but offer better calibration of False Discovery Rate.

  4. Time-varying nonstationary multivariate risk analysis using a dynamic Bayesian copula

    NASA Astrophysics Data System (ADS)

    Sarhadi, Ali; Burn, Donald H.; Concepción Ausín, María.; Wiper, Michael P.

    2016-03-01

    A time-varying risk analysis is proposed for an adaptive design framework in nonstationary conditions arising from climate change. A Bayesian, dynamic conditional copula is developed for modeling the time-varying dependence structure between mixed continuous and discrete multiattributes of multidimensional hydrometeorological phenomena. Joint Bayesian inference is carried out to fit the marginals and copula in an illustrative example using an adaptive, Gibbs Markov Chain Monte Carlo (MCMC) sampler. Posterior mean estimates and credible intervals are provided for the model parameters and the Deviance Information Criterion (DIC) is used to select the model that best captures different forms of nonstationarity over time. This study also introduces a fully Bayesian, time-varying joint return period for multivariate time-dependent risk analysis in nonstationary environments. The results demonstrate that the nature and the risk of extreme-climate multidimensional processes are changed over time under the impact of climate change, and accordingly the long-term decision making strategies should be updated based on the anomalies of the nonstationary environment.

  5. A Bayesian network to predict vulnerability to sea-level rise: data report

    USGS Publications Warehouse

    Gutierrez, Benjamin T.; Plant, Nathaniel G.; Thieler, E. Robert

    2011-01-01

    During the 21st century, sea-level rise is projected to have a wide range of effects on coastal environments, development, and infrastructure. Consequently, there has been an increased focus on developing modeling or other analytical approaches to evaluate potential impacts to inform coastal management. This report provides the data that were used to develop and evaluate the performance of a Bayesian network designed to predict long-term shoreline change due to sea-level rise. The data include local rates of relative sea-level rise, wave height, tide range, geomorphic classification, coastal slope, and shoreline-change rate compiled as part of the U.S. Geological Survey Coastal Vulnerability Index for the U.S. Atlantic coast. In this project, the Bayesian network is used to define relationships among driving forces, geologic constraints, and coastal responses. Using this information, the Bayesian network is used to make probabilistic predictions of shoreline change in response to different future sea-level-rise scenarios.

  6. Reuse, Recycle, Reweigh: Combating Influenza through Efficient Sequential Bayesian Computation for Massive Data.

    PubMed

    Tom, Jennifer A; Sinsheimer, Janet S; Suchard, Marc A

    Massive datasets in the gigabyte and terabyte range combined with the availability of increasingly sophisticated statistical tools yield analyses at the boundary of what is computationally feasible. Compromising in the face of this computational burden by partitioning the dataset into more tractable sizes results in stratified analyses, removed from the context that justified the initial data collection. In a Bayesian framework, these stratified analyses generate intermediate realizations, often compared using point estimates that fail to account for the variability within and correlation between the distributions these realizations approximate. However, although the initial concession to stratify generally precludes the more sensible analysis using a single joint hierarchical model, we can circumvent this outcome and capitalize on the intermediate realizations by extending the dynamic iterative reweighting MCMC algorithm. In doing so, we reuse the available realizations by reweighting them with importance weights, recycling them into a now tractable joint hierarchical model. We apply this technique to intermediate realizations generated from stratified analyses of 687 influenza A genomes spanning 13 years allowing us to revisit hypotheses regarding the evolutionary history of influenza within a hierarchical statistical framework.

  7. Reuse, Recycle, Reweigh: Combating Influenza through Efficient Sequential Bayesian Computation for Massive Data

    PubMed Central

    Tom, Jennifer A.; Sinsheimer, Janet S.; Suchard, Marc A.

    2015-01-01

    Massive datasets in the gigabyte and terabyte range combined with the availability of increasingly sophisticated statistical tools yield analyses at the boundary of what is computationally feasible. Compromising in the face of this computational burden by partitioning the dataset into more tractable sizes results in stratified analyses, removed from the context that justified the initial data collection. In a Bayesian framework, these stratified analyses generate intermediate realizations, often compared using point estimates that fail to account for the variability within and correlation between the distributions these realizations approximate. However, although the initial concession to stratify generally precludes the more sensible analysis using a single joint hierarchical model, we can circumvent this outcome and capitalize on the intermediate realizations by extending the dynamic iterative reweighting MCMC algorithm. In doing so, we reuse the available realizations by reweighting them with importance weights, recycling them into a now tractable joint hierarchical model. We apply this technique to intermediate realizations generated from stratified analyses of 687 influenza A genomes spanning 13 years allowing us to revisit hypotheses regarding the evolutionary history of influenza within a hierarchical statistical framework. PMID:26681992

  8. Signal Detection and Monitoring Based on Longitudinal Healthcare Data

    PubMed Central

    Suling, Marc; Pigeot, Iris

    2012-01-01

    Post-marketing detection and surveillance of potential safety hazards are crucial tasks in pharmacovigilance. To uncover such safety risks, a wide set of techniques has been developed for spontaneous reporting data and, more recently, for longitudinal data. This paper gives a broad overview of the signal detection process and introduces some types of data sources typically used. The most commonly applied signal detection algorithms are presented, covering simple frequentistic methods like the proportional reporting rate or the reporting odds ratio, more advanced Bayesian techniques for spontaneous and longitudinal data, e.g., the Bayesian Confidence Propagation Neural Network or the Multi-item Gamma-Poisson Shrinker and methods developed for longitudinal data only, like the IC temporal pattern detection. Additionally, the problem of adjustment for underlying confounding is discussed and the most common strategies to automatically identify false-positive signals are addressed. A drug monitoring technique based on Wald’s sequential probability ratio test is presented. For each method, a real-life application is given, and a wide set of literature for further reading is referenced. PMID:24300373

  9. Real-time detection of organic contamination events in water distribution systems by principal components analysis of ultraviolet spectral data.

    PubMed

    Zhang, Jian; Hou, Dibo; Wang, Ke; Huang, Pingjie; Zhang, Guangxin; Loáiciga, Hugo

    2017-05-01

    The detection of organic contaminants in water distribution systems is essential to protect public health from potential harmful compounds resulting from accidental spills or intentional releases. Existing methods for detecting organic contaminants are based on quantitative analyses such as chemical testing and gas/liquid chromatography, which are time- and reagent-consuming and involve costly maintenance. This study proposes a novel procedure based on discrete wavelet transform and principal component analysis for detecting organic contamination events from ultraviolet spectral data. Firstly, the spectrum of each observation is transformed using discrete wavelet with a coiflet mother wavelet to capture the abrupt change along the wavelength. Principal component analysis is then employed to approximate the spectra based on capture and fusion features. The significant value of Hotelling's T 2 statistics is calculated and used to detect outliers. An alarm of contamination event is triggered by sequential Bayesian analysis when the outliers appear continuously in several observations. The effectiveness of the proposed procedure is tested on-line using a pilot-scale setup and experimental data.

  10. Bayesian theories of conditioning in a changing world.

    PubMed

    Courville, Aaron C; Daw, Nathaniel D; Touretzky, David S

    2006-07-01

    The recent flowering of Bayesian approaches invites the re-examination of classic issues in behavior, even in areas as venerable as Pavlovian conditioning. A statistical account can offer a new, principled interpretation of behavior, and previous experiments and theories can inform many unexplored aspects of the Bayesian enterprise. Here we consider one such issue: the finding that surprising events provoke animals to learn faster. We suggest that, in a statistical account of conditioning, surprise signals change and therefore uncertainty and the need for new learning. We discuss inference in a world that changes and show how experimental results involving surprise can be interpreted from this perspective, and also how, thus understood, these phenomena help constrain statistical theories of animal and human learning.

  11. Fundamentals and Recent Developments in Approximate Bayesian Computation

    PubMed Central

    Lintusaari, Jarno; Gutmann, Michael U.; Dutta, Ritabrata; Kaski, Samuel; Corander, Jukka

    2017-01-01

    Abstract Bayesian inference plays an important role in phylogenetics, evolutionary biology, and in many other branches of science. It provides a principled framework for dealing with uncertainty and quantifying how it changes in the light of new evidence. For many complex models and inference problems, however, only approximate quantitative answers are obtainable. Approximate Bayesian computation (ABC) refers to a family of algorithms for approximate inference that makes a minimal set of assumptions by only requiring that sampling from a model is possible. We explain here the fundamentals of ABC, review the classical algorithms, and highlight recent developments. [ABC; approximate Bayesian computation; Bayesian inference; likelihood-free inference; phylogenetics; simulator-based models; stochastic simulation models; tree-based models.] PMID:28175922

  12. A practical Bayesian stepped wedge design for community-based cluster-randomized clinical trials: The British Columbia Telehealth Trial.

    PubMed

    Cunanan, Kristen M; Carlin, Bradley P; Peterson, Kevin A

    2016-12-01

    Many clinical trial designs are impractical for community-based clinical intervention trials. Stepped wedge trial designs provide practical advantages, but few descriptions exist of their clinical implementational features, statistical design efficiencies, and limitations. Enhance efficiency of stepped wedge trial designs by evaluating the impact of design characteristics on statistical power for the British Columbia Telehealth Trial. The British Columbia Telehealth Trial is a community-based, cluster-randomized, controlled clinical trial in rural and urban British Columbia. To determine the effect of an Internet-based telehealth intervention on healthcare utilization, 1000 subjects with an existing diagnosis of congestive heart failure or type 2 diabetes will be enrolled from 50 clinical practices. Hospital utilization is measured using a composite of disease-specific hospital admissions and emergency visits. The intervention comprises online telehealth data collection and counseling provided to support a disease-specific action plan developed by the primary care provider. The planned intervention is sequentially introduced across all participating practices. We adopt a fully Bayesian, Markov chain Monte Carlo-driven statistical approach, wherein we use simulation to determine the effect of cluster size, sample size, and crossover interval choice on type I error and power to evaluate differences in hospital utilization. For our Bayesian stepped wedge trial design, simulations suggest moderate decreases in power when crossover intervals from control to intervention are reduced from every 3 to 2 weeks, and dramatic decreases in power as the numbers of clusters decrease. Power and type I error performance were not notably affected by the addition of nonzero cluster effects or a temporal trend in hospitalization intensity. Stepped wedge trial designs that intervene in small clusters across longer periods can provide enhanced power to evaluate comparative effectiveness, while offering practical implementation advantages in geographic stratification, temporal change, use of existing data, and resource distribution. Current population estimates were used; however, models may not reflect actual event rates during the trial. In addition, temporal or spatial heterogeneity can bias treatment effect estimates. © The Author(s) 2016.

  13. Sparse source configurations in radio tomography of asteroids

    NASA Astrophysics Data System (ADS)

    Pursiainen, S.; Kaasalainen, M.

    2014-07-01

    Our research targets at progress in non-invasive imaging of asteroids to support future planetary research and extra-terrestrial mining activities. This presentation concerns principally radio tomography in which the permittivity distribution inside an asteroid is to be recovered based on the radio frequency signal transmitted from the asteroid's surface and gathered by an orbiter. The focus will be on a sparse distribution (Pursiainen and Kaasalainen, 2013) of signal sources that can be necessary in the challenging in situ environment and within tight payload limits. The general goal in our recent research has been to approximate the minimal number of source positions needed for robust localization of anomalies caused, for example, by an internal void. Characteristic to the localization problem are the large relative changes in signal speed caused by the high permittivity of typical asteroid minerals (e.g. basalt), meaning that a signal path can include strong refractions and reflections. This presentation introduces results of a laboratory experiment in which real travel time data was inverted using a hierarchical Bayesian approach combined with the iterative alternating sequential (IAS) posterior exploration algorithm. Special interest was paid to robustness of the inverse results regarding changes of the prior model and source positioning. According to our results, strongly refractive anomalies can be detected with three or four sources independently of their positioning.

  14. Bayesian Probability Theory

    NASA Astrophysics Data System (ADS)

    von der Linden, Wolfgang; Dose, Volker; von Toussaint, Udo

    2014-06-01

    Preface; Part I. Introduction: 1. The meaning of probability; 2. Basic definitions; 3. Bayesian inference; 4. Combinatrics; 5. Random walks; 6. Limit theorems; 7. Continuous distributions; 8. The central limit theorem; 9. Poisson processes and waiting times; Part II. Assigning Probabilities: 10. Transformation invariance; 11. Maximum entropy; 12. Qualified maximum entropy; 13. Global smoothness; Part III. Parameter Estimation: 14. Bayesian parameter estimation; 15. Frequentist parameter estimation; 16. The Cramer-Rao inequality; Part IV. Testing Hypotheses: 17. The Bayesian way; 18. The frequentist way; 19. Sampling distributions; 20. Bayesian vs frequentist hypothesis tests; Part V. Real World Applications: 21. Regression; 22. Inconsistent data; 23. Unrecognized signal contributions; 24. Change point problems; 25. Function estimation; 26. Integral equations; 27. Model selection; 28. Bayesian experimental design; Part VI. Probabilistic Numerical Techniques: 29. Numerical integration; 30. Monte Carlo methods; 31. Nested sampling; Appendixes; References; Index.

  15. Sequential updating of a new dynamic pharmacokinetic model for caffeine in premature neonates.

    PubMed

    Micallef, Sandrine; Amzal, Billy; Bach, Véronique; Chardon, Karen; Tourneux, Pierre; Bois, Frédéric Y

    2007-01-01

    Caffeine treatment is widely used in nursing care to reduce the risk of apnoea in premature neonates. To check the therapeutic efficacy of the treatment against apnoea, caffeine concentration in blood is an important indicator. The present study was aimed at building a pharmacokinetic model as a basis for a medical decision support tool. In the proposed model, time dependence of physiological parameters is introduced to describe rapid growth of neonates. To take into account the large variability in the population, the pharmacokinetic model is embedded in a population structure. The whole model is inferred within a Bayesian framework. To update caffeine concentration predictions as data of an incoming patient are collected, we propose a fast method that can be used in a medical context. This involves the sequential updating of model parameters (at individual and population levels) via a stochastic particle algorithm. Our model provides better predictions than the ones obtained with models previously published. We show, through an example, that sequential updating improves predictions of caffeine concentration in blood (reduce bias and length of credibility intervals). The update of the pharmacokinetic model using body mass and caffeine concentration data is studied. It shows how informative caffeine concentration data are in contrast to body mass data. This study provides the methodological basis to predict caffeine concentration in blood, after a given treatment if data are collected on the treated neonate.

  16. Approximate Bayesian Computation in the estimation of the parameters of the Forbush decrease model

    NASA Astrophysics Data System (ADS)

    Wawrzynczak, A.; Kopka, P.

    2017-12-01

    Realistic modeling of the complicated phenomena as Forbush decrease of the galactic cosmic ray intensity is a quite challenging task. One aspect is a numerical solution of the Fokker-Planck equation in five-dimensional space (three spatial variables, the time and particles energy). The second difficulty arises from a lack of detailed knowledge about the spatial and time profiles of the parameters responsible for the creation of the Forbush decrease. Among these parameters, the central role plays a diffusion coefficient. Assessment of the correctness of the proposed model can be done only by comparison of the model output with the experimental observations of the galactic cosmic ray intensity. We apply the Approximate Bayesian Computation (ABC) methodology to match the Forbush decrease model to experimental data. The ABC method is becoming increasing exploited for dynamic complex problems in which the likelihood function is costly to compute. The main idea of all ABC methods is to accept samples as an approximate posterior draw if its associated modeled data are close enough to the observed one. In this paper, we present application of the Sequential Monte Carlo Approximate Bayesian Computation algorithm scanning the space of the diffusion coefficient parameters. The proposed algorithm is adopted to create the model of the Forbush decrease observed by the neutron monitors at the Earth in March 2002. The model of the Forbush decrease is based on the stochastic approach to the solution of the Fokker-Planck equation.

  17. An introduction to Bayesian statistics in health psychology.

    PubMed

    Depaoli, Sarah; Rus, Holly M; Clifton, James P; van de Schoot, Rens; Tiemensma, Jitske

    2017-09-01

    The aim of the current article is to provide a brief introduction to Bayesian statistics within the field of health psychology. Bayesian methods are increasing in prevalence in applied fields, and they have been shown in simulation research to improve the estimation accuracy of structural equation models, latent growth curve (and mixture) models, and hierarchical linear models. Likewise, Bayesian methods can be used with small sample sizes since they do not rely on large sample theory. In this article, we discuss several important components of Bayesian statistics as they relate to health-based inquiries. We discuss the incorporation and impact of prior knowledge into the estimation process and the different components of the analysis that should be reported in an article. We present an example implementing Bayesian estimation in the context of blood pressure changes after participants experienced an acute stressor. We conclude with final thoughts on the implementation of Bayesian statistics in health psychology, including suggestions for reviewing Bayesian manuscripts and grant proposals. We have also included an extensive amount of online supplementary material to complement the content presented here, including Bayesian examples using many different software programmes and an extensive sensitivity analysis examining the impact of priors.

  18. Social Influences in Sequential Decision Making

    PubMed Central

    Schöbel, Markus; Rieskamp, Jörg; Huber, Rafael

    2016-01-01

    People often make decisions in a social environment. The present work examines social influence on people’s decisions in a sequential decision-making situation. In the first experimental study, we implemented an information cascade paradigm, illustrating that people infer information from decisions of others and use this information to make their own decisions. We followed a cognitive modeling approach to elicit the weight people give to social as compared to private individual information. The proposed social influence model shows that participants overweight their own private information relative to social information, contrary to the normative Bayesian account. In our second study, we embedded the abstract decision problem of Study 1 in a medical decision-making problem. We examined whether in a medical situation people also take others’ authority into account in addition to the information that their decisions convey. The social influence model illustrates that people weight social information differentially according to the authority of other decision makers. The influence of authority was strongest when an authority's decision contrasted with private information. Both studies illustrate how the social environment provides sources of information that people integrate differently for their decisions. PMID:26784448

  19. Optimal decision-making in mammals: insights from a robot study of rodent texture discrimination

    PubMed Central

    Lepora, Nathan F.; Fox, Charles W.; Evans, Mathew H.; Diamond, Mathew E.; Gurney, Kevin; Prescott, Tony J.

    2012-01-01

    Texture perception is studied here in a physical model of the rat whisker system consisting of a robot equipped with a biomimetic vibrissal sensor. Investigations of whisker motion in rodents have led to several explanations for texture discrimination, such as resonance or stick-slips. Meanwhile, electrophysiological studies of decision-making in monkeys have suggested a neural mechanism of evidence accumulation to threshold for competing percepts, described by a probabilistic model of Bayesian sequential analysis. For our robot whisker data, we find that variable reaction-time decision-making with sequential analysis performs better than the fixed response-time maximum-likelihood estimation. These probabilistic classifiers also use whatever available features of the whisker signals aid the discrimination, giving improved performance over a single-feature strategy, such as matching the peak power spectra of whisker vibrations. These results cast new light on how the various proposals for texture discrimination in rodents depend on the whisker contact mechanics and suggest the possibility of a common account of decision-making across mammalian species. PMID:22279155

  20. Social Influences in Sequential Decision Making.

    PubMed

    Schöbel, Markus; Rieskamp, Jörg; Huber, Rafael

    2016-01-01

    People often make decisions in a social environment. The present work examines social influence on people's decisions in a sequential decision-making situation. In the first experimental study, we implemented an information cascade paradigm, illustrating that people infer information from decisions of others and use this information to make their own decisions. We followed a cognitive modeling approach to elicit the weight people give to social as compared to private individual information. The proposed social influence model shows that participants overweight their own private information relative to social information, contrary to the normative Bayesian account. In our second study, we embedded the abstract decision problem of Study 1 in a medical decision-making problem. We examined whether in a medical situation people also take others' authority into account in addition to the information that their decisions convey. The social influence model illustrates that people weight social information differentially according to the authority of other decision makers. The influence of authority was strongest when an authority's decision contrasted with private information. Both studies illustrate how the social environment provides sources of information that people integrate differently for their decisions.

  1. Mechanisms of motivational interviewing in health promotion: a Bayesian mediation analysis

    PubMed Central

    2012-01-01

    Background Counselor behaviors that mediate the efficacy of motivational interviewing (MI) are not well understood, especially when applied to health behavior promotion. We hypothesized that client change talk mediates the relationship between counselor variables and subsequent client behavior change. Methods Purposeful sampling identified individuals from a prospective randomized worksite trial using an MI intervention to promote firefighters’ healthy diet and regular exercise that increased dietary intake of fruits and vegetables (n = 21) or did not increase intake of fruits and vegetables (n = 22). MI interactions were coded using the Motivational Interviewing Skill Code (MISC 2.1) to categorize counselor and firefighter verbal utterances. Both Bayesian and frequentist mediation analyses were used to investigate whether client change talk mediated the relationship between counselor skills and behavior change. Results Counselors’ global spirit, empathy, and direction and MI-consistent behavioral counts (e.g., reflections, open questions, affirmations, emphasize control) significantly correlated with firefighters’ total client change talk utterances (rs = 0.42, 0.40, 0.30, and 0.61, respectively), which correlated significantly with their fruit and vegetable intake increase (r = 0.33). Both Bayesian and frequentist mediation analyses demonstrated that findings were consistent with hypotheses, such that total client change talk mediated the relationship between counselor’s skills—MI-consistent behaviors [Bayesian mediated effect: αβ = .06 (.03), 95% CI = .02, .12] and MI spirit [Bayesian mediated effect: αβ = .06 (.03), 95% CI = .01, .13]—and increased fruit and vegetable consumption. Conclusion Motivational interviewing is a resource- and time-intensive intervention, and is currently being applied in many arenas. Previous research has identified the importance of counselor behaviors and client change talk in the treatment of substance use disorders. Our results indicate that similar mechanisms may underlie the effects of MI for dietary change. These results inform MI training and application by identifying those processes critical for MI success in health promotion domains. PMID:22681874

  2. Spatio-temporal interpolation of precipitation during monsoon periods in Pakistan

    NASA Astrophysics Data System (ADS)

    Hussain, Ijaz; Spöck, Gunter; Pilz, Jürgen; Yu, Hwa-Lung

    2010-08-01

    Spatio-temporal estimation of precipitation over a region is essential to the modeling of hydrologic processes for water resources management. The changes of magnitude and space-time heterogeneity of rainfall observations make space-time estimation of precipitation a challenging task. In this paper we propose a Box-Cox transformed hierarchical Bayesian multivariate spatio-temporal interpolation method for the skewed response variable. The proposed method is applied to estimate space-time monthly precipitation in the monsoon periods during 1974-2000, and 27-year monthly average precipitation data are obtained from 51 stations in Pakistan. The results of transformed hierarchical Bayesian multivariate spatio-temporal interpolation are compared to those of non-transformed hierarchical Bayesian interpolation by using cross-validation. The software developed by [11] is used for Bayesian non-stationary multivariate space-time interpolation. It is observed that the transformed hierarchical Bayesian method provides more accuracy than the non-transformed hierarchical Bayesian method.

  3. Beginning Bayes

    ERIC Educational Resources Information Center

    Erickson, Tim

    2017-01-01

    Understanding a Bayesian perspective demands comfort with conditional probability and with probabilities that appear to change as we acquire additional information. This paper suggests a simple context in conditional probability that helps develop the understanding students would need for a successful introduction to Bayesian reasoning.

  4. Bayesian Networks for Modeling Dredging Decisions

    DTIC Science & Technology

    2011-10-01

    change scenarios. Arctic Expert elicitation Netica Bacon et al . 2002 Identify factors that might lead to a change in land use from farming to...tree) algorithms developed by Lauritzen and Spiegelhalter (1988) and Jensen et al . (1990). Statistical inference is simply the process of...causality when constructing a Bayesian network (Kjaerulff and Madsen 2008, Darwiche 2009, Marcot et al . 2006). A knowledge representation approach is the

  5. Time-varying Concurrent Risk of Extreme Droughts and Heatwaves in California

    NASA Astrophysics Data System (ADS)

    Sarhadi, A.; Diffenbaugh, N. S.; Ausin, M. C.

    2016-12-01

    Anthropogenic global warming has changed the nature and the risk of extreme climate phenomena such as droughts and heatwaves. The concurrent of these nature-changing climatic extremes may result in intensifying undesirable consequences in terms of human health and destructive effects in water resources. The present study assesses the risk of concurrent extreme droughts and heatwaves under dynamic nonstationary conditions arising from climate change in California. For doing so, a generalized fully Bayesian time-varying multivariate risk framework is proposed evolving through time under dynamic human-induced environment. In this methodology, an extreme, Bayesian, dynamic copula (Gumbel) is developed to model the time-varying dependence structure between the two different climate extremes. The time-varying extreme marginals are previously modeled using a Generalized Extreme Value (GEV) distribution. Bayesian Markov Chain Monte Carlo (MCMC) inference is integrated to estimate parameters of the nonstationary marginals and copula using a Gibbs sampling method. Modelled marginals and copula are then used to develop a fully Bayesian, time-varying joint return period concept for the estimation of concurrent risk. Here we argue that climate change has increased the chance of concurrent droughts and heatwaves over decades in California. It is also demonstrated that a time-varying multivariate perspective should be incorporated to assess realistic concurrent risk of the extremes for water resources planning and management in a changing climate in this area. The proposed generalized methodology can be applied for other stochastic nature-changing compound climate extremes that are under the influence of climate change.

  6. The PMHT: solutions for some of its problems

    NASA Astrophysics Data System (ADS)

    Wieneke, Monika; Koch, Wolfgang

    2007-09-01

    Tracking multiple targets in a cluttered environment is a challenging task. Probabilistic Multiple Hypothesis Tracking (PMHT) is an efficient approach for dealing with it. Essentially PMHT is based on the method of Expectation-Maximization for handling with association conflicts. Linearity in the number of targets and measurements is the main motivation for a further development and extension of this methodology. Unfortunately, compared with the Probabilistic Data Association Filter (PDAF), PMHT has not yet shown its superiority in terms of track-lost statistics. Furthermore, the problem of track extraction and deletion is apparently not yet satisfactorily solved within this framework. Four properties of PMHT are responsible for its problems in track maintenance: Non-Adaptivity, Hospitality, Narcissism and Local Maxima. 1, 2 In this work we present a solution for each of them and derive an improved PMHT by integrating the solutions into the PMHT formalism. The new PMHT is evaluated by Monte-Carlo simulations. A sequential Likelihood-Ratio (LR) test for track extraction has been developed and already integrated into the framework of traditional Bayesian Multiple Hypothesis Tracking. 3 As a multi-scan approach, also the PMHT methodology has the potential for track extraction. In this paper an analogous integration of a sequential LR test into the PMHT framework is proposed. We present an LR formula for track extraction and deletion using the PMHT update formulae. As PMHT provides all required ingredients for a sequential LR calculation, the LR is thus a by-product of the PMHT iteration process. Therefore the resulting update formula for the sequential LR test affords the development of Track-Before-Detect algorithms for PMHT. The approach is illustrated by a simple example.

  7. A Dynamic Bayesian Network Model for the Production and Inventory Control

    NASA Astrophysics Data System (ADS)

    Shin, Ji-Sun; Takazaki, Noriyuki; Lee, Tae-Hong; Kim, Jin-Il; Lee, Hee-Hyol

    In general, the production quantities and delivered goods are changed randomly and then the total stock is also changed randomly. This paper deals with the production and inventory control using the Dynamic Bayesian Network. Bayesian Network is a probabilistic model which represents the qualitative dependence between two or more random variables by the graph structure, and indicates the quantitative relations between individual variables by the conditional probability. The probabilistic distribution of the total stock is calculated through the propagation of the probability on the network. Moreover, an adjusting rule of the production quantities to maintain the probability of a lower limit and a ceiling of the total stock to certain values is shown.

  8. Comparing methods of measuring geographic patterns in temporal trends: an application to county-level heart disease mortality in the United States, 1973 to 2010.

    PubMed

    Vaughan, Adam S; Kramer, Michael R; Waller, Lance A; Schieb, Linda J; Greer, Sophia; Casper, Michele

    2015-05-01

    To demonstrate the implications of choosing analytical methods for quantifying spatiotemporal trends, we compare the assumptions, implementation, and outcomes of popular methods using county-level heart disease mortality in the United States between 1973 and 2010. We applied four regression-based approaches (joinpoint regression, both aspatial and spatial generalized linear mixed models, and Bayesian space-time model) and compared resulting inferences for geographic patterns of local estimates of annual percent change and associated uncertainty. The average local percent change in heart disease mortality from each method was -4.5%, with the Bayesian model having the smallest range of values. The associated uncertainty in percent change differed markedly across the methods, with the Bayesian space-time model producing the narrowest range of variance (0.0-0.8). The geographic pattern of percent change was consistent across methods with smaller declines in the South Central United States and larger declines in the Northeast and Midwest. However, the geographic patterns of uncertainty differed markedly between methods. The similarity of results, including geographic patterns, for magnitude of percent change across these methods validates the underlying spatial pattern of declines in heart disease mortality. However, marked differences in degree of uncertainty indicate that Bayesian modeling offers substantially more precise estimates. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Description and effects of sequential behavior practice in teacher education.

    PubMed

    Sharpe, T; Lounsbery, M; Bahls, V

    1997-09-01

    This study examined the effects of a sequential behavior feedback protocol on the practice-teaching experiences of undergraduate teacher trainees. The performance competencies of teacher trainees were analyzed using an alternative opportunities for appropriate action measure. Data support the added utility of sequential (Sharpe, 1997a, 1997b) behavior analysis information in systematic observation approaches to teacher education. One field-based undergraduate practicum using sequential behavior (i.e., field systems analysis) principles was monitored. Summarized are the key elements of the (a) classroom instruction provided as a precursor to the practice teaching experience, (b) practice teaching experience, and (c) field systems observation tool used for evaluation and feedback, including multiple-baseline data (N = 4) to support this approach to teacher education. Results point to (a) the strong relationship between sequential behavior feedback and the positive change in four preservice teachers' day-to-day teaching practices in challenging situational contexts, and (b) the relationship between changes in teacher practices and positive changes in the behavioral practices of gymnasium pupils. Sequential behavior feedback was also socially validated by the undergraduate participants and Professional Development School teacher supervisors in the study.

  10. The Misidentified Identifiability Problem of Bayesian Knowledge Tracing

    ERIC Educational Resources Information Center

    Doroudi, Shayan; Brunskill, Emma

    2017-01-01

    In this paper, we investigate two purported problems with Bayesian Knowledge Tracing (BKT), a popular statistical model of student learning: "identifiability" and "semantic model degeneracy." In 2007, Beck and Chang stated that BKT is susceptible to an "identifiability problem"--various models with different…

  11. Utility-based designs for randomized comparative trials with categorical outcomes

    PubMed Central

    Murray, Thomas A.; Thall, Peter F.; Yuan, Ying

    2016-01-01

    A general utility-based testing methodology for design and conduct of randomized comparative clinical trials with categorical outcomes is presented. Numerical utilities of all elementary events are elicited to quantify their desirabilities. These numerical values are used to map the categorical outcome probability vector of each treatment to a mean utility, which is used as a one-dimensional criterion for constructing comparative tests. Bayesian tests are presented, including fixed sample and group sequential procedures, assuming Dirichlet-multinomial models for the priors and likelihoods. Guidelines are provided for establishing priors, eliciting utilities, and specifying hypotheses. Efficient posterior computation is discussed, and algorithms are provided for jointly calibrating test cutoffs and sample size to control overall type I error and achieve specified power. Asymptotic approximations for the power curve are used to initialize the algorithms. The methodology is applied to re-design a completed trial that compared two chemotherapy regimens for chronic lymphocytic leukemia, in which an ordinal efficacy outcome was dichotomized and toxicity was ignored to construct the trial’s design. The Bayesian tests also are illustrated by several types of categorical outcomes arising in common clinical settings. Freely available computer software for implementation is provided. PMID:27189672

  12. On uncertainty quantification in hydrogeology and hydrogeophysics

    NASA Astrophysics Data System (ADS)

    Linde, Niklas; Ginsbourger, David; Irving, James; Nobile, Fabio; Doucet, Arnaud

    2017-12-01

    Recent advances in sensor technologies, field methodologies, numerical modeling, and inversion approaches have contributed to unprecedented imaging of hydrogeological properties and detailed predictions at multiple temporal and spatial scales. Nevertheless, imaging results and predictions will always remain imprecise, which calls for appropriate uncertainty quantification (UQ). In this paper, we outline selected methodological developments together with pioneering UQ applications in hydrogeology and hydrogeophysics. The applied mathematics and statistics literature is not easy to penetrate and this review aims at helping hydrogeologists and hydrogeophysicists to identify suitable approaches for UQ that can be applied and further developed to their specific needs. To bypass the tremendous computational costs associated with forward UQ based on full-physics simulations, we discuss proxy-modeling strategies and multi-resolution (Multi-level Monte Carlo) methods. We consider Bayesian inversion for non-linear and non-Gaussian state-space problems and discuss how Sequential Monte Carlo may become a practical alternative. We also describe strategies to account for forward modeling errors in Bayesian inversion. Finally, we consider hydrogeophysical inversion, where petrophysical uncertainty is often ignored leading to overconfident parameter estimation. The high parameter and data dimensions encountered in hydrogeological and geophysical problems make UQ a complicated and important challenge that has only been partially addressed to date.

  13. Bayesian change point analysis of abundance trends for pelagic fishes in the upper San Francisco Estuary.

    PubMed

    Thomson, James R; Kimmerer, Wim J; Brown, Larry R; Newman, Ken B; Mac Nally, Ralph; Bennett, William A; Feyrer, Frederick; Fleishman, Erica

    2010-07-01

    We examined trends in abundance of four pelagic fish species (delta smelt, longfin smelt, striped bass, and threadfin shad) in the upper San Francisco Estuary, California, USA, over 40 years using Bayesian change point models. Change point models identify times of abrupt or unusual changes in absolute abundance (step changes) or in rates of change in abundance (trend changes). We coupled Bayesian model selection with linear regression splines to identify biotic or abiotic covariates with the strongest associations with abundances of each species. We then refitted change point models conditional on the selected covariates to explore whether those covariates could explain statistical trends or change points in species abundances. We also fitted a multispecies change point model that identified change points common to all species. All models included hierarchical structures to model data uncertainties, including observation errors and missing covariate values. There were step declines in abundances of all four species in the early 2000s, with a likely common decline in 2002. Abiotic variables, including water clarity, position of the 2 per thousand isohaline (X2), and the volume of freshwater exported from the estuary, explained some variation in species' abundances over the time series, but no selected covariates could explain statistically the post-2000 change points for any species.

  14. Developing a new Bayesian Risk Index for risk evaluation of soil contamination.

    PubMed

    Albuquerque, M T D; Gerassis, S; Sierra, C; Taboada, J; Martín, J E; Antunes, I M H R; Gallego, J R

    2017-12-15

    Industrial and agricultural activities heavily constrain soil quality. Potentially Toxic Elements (PTEs) are a threat to public health and the environment alike. In this regard, the identification of areas that require remediation is crucial. In the herein research a geochemical dataset (230 samples) comprising 14 elements (Cu, Pb, Zn, Ag, Ni, Mn, Fe, As, Cd, V, Cr, Ti, Al and S) was gathered throughout eight different zones distinguished by their main activity, namely, recreational, agriculture/livestock and heavy industry in the Avilés Estuary (North of Spain). Then a stratified systematic sampling method was used at short, medium, and long distances from each zone to obtain a representative picture of the total variability of the selected attributes. The information was then combined in four risk classes (Low, Moderate, High, Remediation) following reference values from several sediment quality guidelines (SQGs). A Bayesian analysis, inferred for each zone, allowed the characterization of PTEs correlations, the unsupervised learning network technique proving to be the best fit. Based on the Bayesian network structure obtained, Pb, As and Mn were selected as key contamination parameters. For these 3 elements, the conditional probability obtained was allocated to each observed point, and a simple, direct index (Bayesian Risk Index-BRI) was constructed as a linear rating of the pre-defined risk classes weighted by the previously obtained probability. Finally, the BRI underwent geostatistical modeling. One hundred Sequential Gaussian Simulations (SGS) were computed. The Mean Image and the Standard Deviation maps were obtained, allowing the definition of High/Low risk clusters (Local G clustering) and the computation of spatial uncertainty. High-risk clusters are mainly distributed within the area with the highest altitude (agriculture/livestock) showing an associated low spatial uncertainty, clearly indicating the need for remediation. Atmospheric emissions, mainly derived from the metallurgical industry, contribute to soil contamination by PTEs. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Finding Useful Questions: On Bayesian Diagnosticity, Probability, Impact, and Information Gain

    ERIC Educational Resources Information Center

    Nelson, Jonathan D.

    2005-01-01

    Several norms for how people should assess a question's usefulness have been proposed, notably Bayesian diagnosticity, information gain (mutual information), Kullback-Liebler distance, probability gain (error minimization), and impact (absolute change). Several probabilistic models of previous experiments on categorization, covariation assessment,…

  16. Bayesian modeling of flexible cognitive control

    PubMed Central

    Jiang, Jiefeng; Heller, Katherine; Egner, Tobias

    2014-01-01

    “Cognitive control” describes endogenous guidance of behavior in situations where routine stimulus-response associations are suboptimal for achieving a desired goal. The computational and neural mechanisms underlying this capacity remain poorly understood. We examine recent advances stemming from the application of a Bayesian learner perspective that provides optimal prediction for control processes. In reviewing the application of Bayesian models to cognitive control, we note that an important limitation in current models is a lack of a plausible mechanism for the flexible adjustment of control over conflict levels changing at varying temporal scales. We then show that flexible cognitive control can be achieved by a Bayesian model with a volatility-driven learning mechanism that modulates dynamically the relative dependence on recent and remote experiences in its prediction of future control demand. We conclude that the emergent Bayesian perspective on computational mechanisms of cognitive control holds considerable promise, especially if future studies can identify neural substrates of the variables encoded by these models, and determine the nature (Bayesian or otherwise) of their neural implementation. PMID:24929218

  17. A Bayesian modification to the Jelinski-Moranda software reliability growth model

    NASA Technical Reports Server (NTRS)

    Littlewood, B.; Sofer, A.

    1983-01-01

    The Jelinski-Moranda (JM) model for software reliability was examined. It is suggested that a major reason for the poor results given by this model is the poor performance of the maximum likelihood method (ML) of parameter estimation. A reparameterization and Bayesian analysis, involving a slight modelling change, are proposed. It is shown that this new Bayesian-Jelinski-Moranda model (BJM) is mathematically quite tractable, and several metrics of interest to practitioners are obtained. The BJM and JM models are compared by using several sets of real software failure data collected and in all cases the BJM model gives superior reliability predictions. A change in the assumption which underlay both models to present the debugging process more accurately is discussed.

  18. Improving the Accuracy of Planet Occurrence Rates from Kepler Using Approximate Bayesian Computation

    NASA Astrophysics Data System (ADS)

    Hsu, Danley C.; Ford, Eric B.; Ragozzine, Darin; Morehead, Robert C.

    2018-05-01

    We present a new framework to characterize the occurrence rates of planet candidates identified by Kepler based on hierarchical Bayesian modeling, approximate Bayesian computing (ABC), and sequential importance sampling. For this study, we adopt a simple 2D grid in planet radius and orbital period as our model and apply our algorithm to estimate occurrence rates for Q1–Q16 planet candidates orbiting solar-type stars. We arrive at significantly increased planet occurrence rates for small planet candidates (R p < 1.25 R ⊕) at larger orbital periods (P > 80 day) compared to the rates estimated by the more common inverse detection efficiency method (IDEM). Our improved methodology estimates that the occurrence rate density of small planet candidates in the habitable zone of solar-type stars is {1.6}-0.5+1.2 per factor of 2 in planet radius and orbital period. Additionally, we observe a local minimum in the occurrence rate for strong planet candidates marginalized over orbital period between 1.5 and 2 R ⊕ that is consistent with previous studies. For future improvements, the forward modeling approach of ABC is ideally suited to incorporating multiple populations, such as planets, astrophysical false positives, and pipeline false alarms, to provide accurate planet occurrence rates and uncertainties. Furthermore, ABC provides a practical statistical framework for answering complex questions (e.g., frequency of different planetary architectures) and providing sound uncertainties, even in the face of complex selection effects, observational biases, and follow-up strategies. In summary, ABC offers a powerful tool for accurately characterizing a wide variety of astrophysical populations.

  19. Arbitrary norm support vector machines.

    PubMed

    Huang, Kaizhu; Zheng, Danian; King, Irwin; Lyu, Michael R

    2009-02-01

    Support vector machines (SVM) are state-of-the-art classifiers. Typically L2-norm or L1-norm is adopted as a regularization term in SVMs, while other norm-based SVMs, for example, the L0-norm SVM or even the L(infinity)-norm SVM, are rarely seen in the literature. The major reason is that L0-norm describes a discontinuous and nonconvex term, leading to a combinatorially NP-hard optimization problem. In this letter, motivated by Bayesian learning, we propose a novel framework that can implement arbitrary norm-based SVMs in polynomial time. One significant feature of this framework is that only a sequence of sequential minimal optimization problems needs to be solved, thus making it practical in many real applications. The proposed framework is important in the sense that Bayesian priors can be efficiently plugged into most learning methods without knowing the explicit form. Hence, this builds a connection between Bayesian learning and the kernel machines. We derive the theoretical framework, demonstrate how our approach works on the L0-norm SVM as a typical example, and perform a series of experiments to validate its advantages. Experimental results on nine benchmark data sets are very encouraging. The implemented L0-norm is competitive with or even better than the standard L2-norm SVM in terms of accuracy but with a reduced number of support vectors, -9.46% of the number on average. When compared with another sparse model, the relevance vector machine, our proposed algorithm also demonstrates better sparse properties with a training speed over seven times faster.

  20. A statistical model investigating the prevalence of tuberculosis in New York City using counting processes with two change-points

    PubMed Central

    ACHCAR, J. A.; MARTINEZ, E. Z.; RUFFINO-NETTO, A.; PAULINO, C. D.; SOARES, P.

    2008-01-01

    SUMMARY We considered a Bayesian analysis for the prevalence of tuberculosis cases in New York City from 1970 to 2000. This counting dataset presented two change-points during this period. We modelled this counting dataset considering non-homogeneous Poisson processes in the presence of the two-change points. A Bayesian analysis for the data is considered using Markov chain Monte Carlo methods. Simulated Gibbs samples for the parameters of interest were obtained using WinBugs software. PMID:18346287

  1. Modeling haul-out behavior of walruses in Bering Sea ice

    USGS Publications Warehouse

    Udevitz, M.S.; Jay, C.V.; Fischbach, Anthony S.; Garlich-Miller, J. L.

    2009-01-01

    Understanding haul-out behavior of ice-associated pinnipeds is essential for designing and interpreting popula-tion surveys and for assessing effects of potential changes in their ice environments. We used satellite-linked transmitters to obtain sequential information about location and haul-out state for Pacific walruses, Odobenus rosmarus divergens (Il-liger, 1815), in the Bering Sea during April of 2004, 2005, and 2006. We used these data in a generalized mixed model of haul-out bout durations and a hierarchical Bayesian model of haul-out probabilities to assess factors related to walrus haul-out behavior, and provide the first predictive model of walrus haul-out behavior in sea ice habitat. Average haul-out bout duration was 9 h, but durations of haul-out bouts tended to increase with durations of preceding in-water bouts. On aver-age, tagged walruses spent only about 17% of their time hauled out on sea ice. Probability of being hauled out decreased with wind speed, increased with temperature, and followed a diurnal cycle with the highest values in the evening. Our haul-out probability model can be used to estimate the proportion of the population that is unavailable for detection in spring surveys of Pacific walruses on sea ice.

  2. MEG and fMRI Fusion for Non-Linear Estimation of Neural and BOLD Signal Changes

    PubMed Central

    Plis, Sergey M.; Calhoun, Vince D.; Weisend, Michael P.; Eichele, Tom; Lane, Terran

    2010-01-01

    The combined analysis of magnetoencephalography (MEG)/electroencephalography and functional magnetic resonance imaging (fMRI) measurements can lead to improvement in the description of the dynamical and spatial properties of brain activity. In this paper we empirically demonstrate this improvement using simulated and recorded task related MEG and fMRI activity. Neural activity estimates were derived using a dynamic Bayesian network with continuous real valued parameters by means of a sequential Monte Carlo technique. In synthetic data, we show that MEG and fMRI fusion improves estimation of the indirectly observed neural activity and smooths tracking of the blood oxygenation level dependent (BOLD) response. In recordings of task related neural activity the combination of MEG and fMRI produces a result with greater signal-to-noise ratio, that confirms the expectation arising from the nature of the experiment. The highly non-linear model of the BOLD response poses a difficult inference problem for neural activity estimation; computational requirements are also high due to the time and space complexity. We show that joint analysis of the data improves the system's behavior by stabilizing the differential equations system and by requiring fewer computational resources. PMID:21120141

  3. Hydrologic and geochemical data assimilation at the Hanford 300 Area

    NASA Astrophysics Data System (ADS)

    Chen, X.; Hammond, G. E.; Murray, C. J.; Zachara, J. M.

    2012-12-01

    In modeling the uranium migration within the Integrated Field Research Challenge (IFRC) site at the Hanford 300 Area, uncertainties arise from both hydrologic and geochemical sources. The hydrologic uncertainty includes the transient flow boundary conditions induced by dynamic variations in Columbia River stage and the underlying heterogeneous hydraulic conductivity field, while the geochemical uncertainty is a result of limited knowledge of the geochemical reaction processes and parameters, as well as heterogeneity in uranium source terms. In this work, multiple types of data, including the results from constant-injection tests, borehole flowmeter profiling, and conservative tracer tests, are sequentially assimilated across scales within a Bayesian framework to reduce the hydrologic uncertainty. The hydrologic data assimilation is then followed by geochemical data assimilation, where the goal is to infer the heterogeneous distribution of uranium sources using uranium breakthrough curves from a desorption test that took place at high spring water table. We demonstrate in our study that Ensemble-based data assimilation techniques (Ensemble Kalman filter and smoother) are efficient in integrating multiple types of data sequentially for uncertainty reduction. The computational demand is managed by using the multi-realization capability within the parallel PFLOTRAN simulator.

  4. Decision theory, reinforcement learning, and the brain.

    PubMed

    Dayan, Peter; Daw, Nathaniel D

    2008-12-01

    Decision making is a core competence for animals and humans acting and surviving in environments they only partially comprehend, gaining rewards and punishments for their troubles. Decision-theoretic concepts permeate experiments and computational models in ethology, psychology, and neuroscience. Here, we review a well-known, coherent Bayesian approach to decision making, showing how it unifies issues in Markovian decision problems, signal detection psychophysics, sequential sampling, and optimal exploration and discuss paradigmatic psychological and neural examples of each problem. We discuss computational issues concerning what subjects know about their task and how ambitious they are in seeking optimal solutions; we address algorithmic topics concerning model-based and model-free methods for making choices; and we highlight key aspects of the neural implementation of decision making.

  5. Genetic biasing through cultural transmission: do simple Bayesian models of language evolution generalize?

    PubMed

    Dediu, Dan

    2009-08-07

    The recent Bayesian approaches to language evolution and change seem to suggest that genetic biases can impact on the characteristics of language, but, at the same time, that its cultural transmission can partially free it from these same genetic constraints. One of the current debates centres on the striking differences between sampling and a posteriori maximising Bayesian learners, with the first converging on the prior bias while the latter allows a certain freedom to language evolution. The present paper shows that this difference disappears if populations more complex than a single teacher and a single learner are considered, with the resulting behaviours more similar to the sampler. This suggests that generalisations based on the language produced by Bayesian agents in such homogeneous single agent chains are not warranted. It is not clear which of the assumptions in such models are responsible, but these findings seem to support the rising concerns on the validity of the "acquisitionist" assumption, whereby the locus of language change and evolution is taken to be the first language acquirers (children) as opposed to the competent language users (the adults).

  6. Bayesian molecular dating: opening up the black box.

    PubMed

    Bromham, Lindell; Duchêne, Sebastián; Hua, Xia; Ritchie, Andrew M; Duchêne, David A; Ho, Simon Y W

    2018-05-01

    Molecular dating analyses allow evolutionary timescales to be estimated from genetic data, offering an unprecedented capacity for investigating the evolutionary past of all species. These methods require us to make assumptions about the relationship between genetic change and evolutionary time, often referred to as a 'molecular clock'. Although initially regarded with scepticism, molecular dating has now been adopted in many areas of biology. This broad uptake has been due partly to the development of Bayesian methods that allow complex aspects of molecular evolution, such as variation in rates of change across lineages, to be taken into account. But in order to do this, Bayesian dating methods rely on a range of assumptions about the evolutionary process, which vary in their degree of biological realism and empirical support. These assumptions can have substantial impacts on the estimates produced by molecular dating analyses. The aim of this review is to open the 'black box' of Bayesian molecular dating and have a look at the machinery inside. We explain the components of these dating methods, the important decisions that researchers must make in their analyses, and the factors that need to be considered when interpreting results. We illustrate the effects that the choices of different models and priors can have on the outcome of the analysis, and suggest ways to explore these impacts. We describe some major research directions that may improve the reliability of Bayesian dating. The goal of our review is to help researchers to make informed choices when using Bayesian phylogenetic methods to estimate evolutionary rates and timescales. © 2017 Cambridge Philosophical Society.

  7. Unraveling multiple changes in complex climate time series using Bayesian inference

    NASA Astrophysics Data System (ADS)

    Berner, Nadine; Trauth, Martin H.; Holschneider, Matthias

    2016-04-01

    Change points in time series are perceived as heterogeneities in the statistical or dynamical characteristics of observations. Unraveling such transitions yields essential information for the understanding of the observed system. The precise detection and basic characterization of underlying changes is therefore of particular importance in environmental sciences. We present a kernel-based Bayesian inference approach to investigate direct as well as indirect climate observations for multiple generic transition events. In order to develop a diagnostic approach designed to capture a variety of natural processes, the basic statistical features of central tendency and dispersion are used to locally approximate a complex time series by a generic transition model. A Bayesian inversion approach is developed to robustly infer on the location and the generic patterns of such a transition. To systematically investigate time series for multiple changes occurring at different temporal scales, the Bayesian inversion is extended to a kernel-based inference approach. By introducing basic kernel measures, the kernel inference results are composed into a proxy probability to a posterior distribution of multiple transitions. Thus, based on a generic transition model a probability expression is derived that is capable to indicate multiple changes within a complex time series. We discuss the method's performance by investigating direct and indirect climate observations. The approach is applied to environmental time series (about 100 a), from the weather station in Tuscaloosa, Alabama, and confirms documented instrumentation changes. Moreover, the approach is used to investigate a set of complex terrigenous dust records from the ODP sites 659, 721/722 and 967 interpreted as climate indicators of the African region of the Plio-Pleistocene period (about 5 Ma). The detailed inference unravels multiple transitions underlying the indirect climate observations coinciding with established global climate events.

  8. Sensitivity and specificity of a hand-held milk electrical conductivity meter compared to the California mastitis test for mastitis in dairy cattle.

    PubMed

    Fosgate, G T; Petzer, I M; Karzis, J

    2013-04-01

    Screening tests for mastitis can play an important role in proactive mastitis control programs. The primary objective of this study was to compare the sensitivity and specificity of milk electrical conductivity (EC) to the California mastitis test (CMT) in commercial dairy cattle in South Africa using Bayesian methods without a perfect reference test. A total of 1848 quarter milk specimens were collected from 173 cows sampled during six sequential farm visits. Of these samples, 25.8% yielded pathogenic bacterial isolates. The most frequently isolated species were coagulase negative Staphylococci (n=346), Streptococcus agalactiae (n=54), and Staphylococcus aureus (n=42). The overall cow-level prevalence of mastitis was 54% based on the Bayesian latent class (BLC) analysis. The CMT was more accurate than EC for classification of cows having somatic cell counts >200,000/mL and for isolation of a bacterial pathogen. BLC analysis also suggested an overall benefit of CMT over EC but the statistical evidence was not strong (P=0.257). The Bayesian model estimated the sensitivity and specificity of EC (measured via resistance) at a cut-point of >25 mΩ/cm to be 89.9% and 86.8%, respectively. The CMT had a sensitivity and specificity of 94.5% and 77.7%, respectively, when evaluated at the weak positive cut-point. EC was useful for identifying milk specimens harbouring pathogens but was not able to differentiate among evaluated bacterial isolates. Screening tests can be used to improve udder health as part of a proactive management plan. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. al3c: high-performance software for parameter inference using Approximate Bayesian Computation.

    PubMed

    Stram, Alexander H; Marjoram, Paul; Chen, Gary K

    2015-11-01

    The development of Approximate Bayesian Computation (ABC) algorithms for parameter inference which are both computationally efficient and scalable in parallel computing environments is an important area of research. Monte Carlo rejection sampling, a fundamental component of ABC algorithms, is trivial to distribute over multiple processors but is inherently inefficient. While development of algorithms such as ABC Sequential Monte Carlo (ABC-SMC) help address the inherent inefficiencies of rejection sampling, such approaches are not as easily scaled on multiple processors. As a result, current Bayesian inference software offerings that use ABC-SMC lack the ability to scale in parallel computing environments. We present al3c, a C++ framework for implementing ABC-SMC in parallel. By requiring only that users define essential functions such as the simulation model and prior distribution function, al3c abstracts the user from both the complexities of parallel programming and the details of the ABC-SMC algorithm. By using the al3c framework, the user is able to scale the ABC-SMC algorithm in parallel computing environments for his or her specific application, with minimal programming overhead. al3c is offered as a static binary for Linux and OS-X computing environments. The user completes an XML configuration file and C++ plug-in template for the specific application, which are used by al3c to obtain the desired results. Users can download the static binaries, source code, reference documentation and examples (including those in this article) by visiting https://github.com/ahstram/al3c. astram@usc.edu Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  10. Geotechnical parameter spatial distribution stochastic analysis based on multi-precision information assimilation

    NASA Astrophysics Data System (ADS)

    Wang, C.; Rubin, Y.

    2014-12-01

    Spatial distribution of important geotechnical parameter named compression modulus Es contributes considerably to the understanding of the underlying geological processes and the adequate assessment of the Es mechanics effects for differential settlement of large continuous structure foundation. These analyses should be derived using an assimilating approach that combines in-situ static cone penetration test (CPT) with borehole experiments. To achieve such a task, the Es distribution of stratum of silty clay in region A of China Expo Center (Shanghai) is studied using the Bayesian-maximum entropy method. This method integrates rigorously and efficiently multi-precision of different geotechnical investigations and sources of uncertainty. Single CPT samplings were modeled as a rational probability density curve by maximum entropy theory. Spatial prior multivariate probability density function (PDF) and likelihood PDF of the CPT positions were built by borehole experiments and the potential value of the prediction point, then, preceding numerical integration on the CPT probability density curves, the posterior probability density curve of the prediction point would be calculated by the Bayesian reverse interpolation framework. The results were compared between Gaussian Sequential Stochastic Simulation and Bayesian methods. The differences were also discussed between single CPT samplings of normal distribution and simulated probability density curve based on maximum entropy theory. It is shown that the study of Es spatial distributions can be improved by properly incorporating CPT sampling variation into interpolation process, whereas more informative estimations are generated by considering CPT Uncertainty for the estimation points. Calculation illustrates the significance of stochastic Es characterization in a stratum, and identifies limitations associated with inadequate geostatistical interpolation techniques. This characterization results will provide a multi-precision information assimilation method of other geotechnical parameters.

  11. The drift diffusion model as the choice rule in reinforcement learning.

    PubMed

    Pedersen, Mads Lund; Frank, Michael J; Biele, Guido

    2017-08-01

    Current reinforcement-learning models often assume simplified decision processes that do not fully reflect the dynamic complexities of choice processes. Conversely, sequential-sampling models of decision making account for both choice accuracy and response time, but assume that decisions are based on static decision values. To combine these two computational models of decision making and learning, we implemented reinforcement-learning models in which the drift diffusion model describes the choice process, thereby capturing both within- and across-trial dynamics. To exemplify the utility of this approach, we quantitatively fit data from a common reinforcement-learning paradigm using hierarchical Bayesian parameter estimation, and compared model variants to determine whether they could capture the effects of stimulant medication in adult patients with attention-deficit hyperactivity disorder (ADHD). The model with the best relative fit provided a good description of the learning process, choices, and response times. A parameter recovery experiment showed that the hierarchical Bayesian modeling approach enabled accurate estimation of the model parameters. The model approach described here, using simultaneous estimation of reinforcement-learning and drift diffusion model parameters, shows promise for revealing new insights into the cognitive and neural mechanisms of learning and decision making, as well as the alteration of such processes in clinical groups.

  12. Studies in Astronomical Time Series Analysis. VI. Bayesian Block Representations

    NASA Technical Reports Server (NTRS)

    Scargle, Jeffrey D.; Norris, Jay P.; Jackson, Brad; Chiang, James

    2013-01-01

    This paper addresses the problem of detecting and characterizing local variability in time series and other forms of sequential data. The goal is to identify and characterize statistically significant variations, at the same time suppressing the inevitable corrupting observational errors. We present a simple nonparametric modeling technique and an algorithm implementing it-an improved and generalized version of Bayesian Blocks [Scargle 1998]-that finds the optimal segmentation of the data in the observation interval. The structure of the algorithm allows it to be used in either a real-time trigger mode, or a retrospective mode. Maximum likelihood or marginal posterior functions to measure model fitness are presented for events, binned counts, and measurements at arbitrary times with known error distributions. Problems addressed include those connected with data gaps, variable exposure, extension to piece- wise linear and piecewise exponential representations, multivariate time series data, analysis of variance, data on the circle, other data modes, and dispersed data. Simulations provide evidence that the detection efficiency for weak signals is close to a theoretical asymptotic limit derived by [Arias-Castro, Donoho and Huo 2003]. In the spirit of Reproducible Research [Donoho et al. (2008)] all of the code and data necessary to reproduce all of the figures in this paper are included as auxiliary material.

  13. The drift diffusion model as the choice rule in reinforcement learning

    PubMed Central

    Frank, Michael J.

    2017-01-01

    Current reinforcement-learning models often assume simplified decision processes that do not fully reflect the dynamic complexities of choice processes. Conversely, sequential-sampling models of decision making account for both choice accuracy and response time, but assume that decisions are based on static decision values. To combine these two computational models of decision making and learning, we implemented reinforcement-learning models in which the drift diffusion model describes the choice process, thereby capturing both within- and across-trial dynamics. To exemplify the utility of this approach, we quantitatively fit data from a common reinforcement-learning paradigm using hierarchical Bayesian parameter estimation, and compared model variants to determine whether they could capture the effects of stimulant medication in adult patients with attention-deficit hyper-activity disorder (ADHD). The model with the best relative fit provided a good description of the learning process, choices, and response times. A parameter recovery experiment showed that the hierarchical Bayesian modeling approach enabled accurate estimation of the model parameters. The model approach described here, using simultaneous estimation of reinforcement-learning and drift diffusion model parameters, shows promise for revealing new insights into the cognitive and neural mechanisms of learning and decision making, as well as the alteration of such processes in clinical groups. PMID:27966103

  14. Comparative efficacy of simultaneous versus sequential multiple health behavior change interventions among adults: A systematic review of randomised trials.

    PubMed

    James, Erica; Freund, Megan; Booth, Angela; Duncan, Mitch J; Johnson, Natalie; Short, Camille E; Wolfenden, Luke; Stacey, Fiona G; Kay-Lambkin, Frances; Vandelanotte, Corneel

    2016-08-01

    Growing evidence points to the benefits of addressing multiple health behaviors rather than single behaviors. This review evaluates the relative effectiveness of simultaneous and sequentially delivered multiple health behavior change (MHBC) interventions. Secondary aims were to identify: a) the most effective spacing of sequentially delivered components; b) differences in efficacy of MHBC interventions for adoption/cessation behaviors and lifestyle/addictive behaviors, and; c) differences in trial retention between simultaneously and sequentially delivered interventions. MHBC intervention trials published up to October 2015 were identified through a systematic search. Eligible trials were randomised controlled trials that directly compared simultaneous and sequential delivery of a MHBC intervention. A narrative synthesis was undertaken. Six trials met the inclusion criteria and across these trials the behaviors targeted were smoking, diet, physical activity, and alcohol consumption. Three trials reported a difference in intervention effect between a sequential and simultaneous approach in at least one behavioral outcome. Of these, two trials favoured a sequential approach on smoking. One trial favoured a simultaneous approach on fat intake. There was no difference in retention between sequential and simultaneous approaches. There is limited evidence regarding the relative effectiveness of sequential and simultaneous approaches. Given only three of the six trials observed a difference in intervention effectiveness for one health behavior outcome, and the relatively consistent finding that the sequential and simultaneous approaches were more effective than a usual/minimal care control condition, it appears that both approaches should be considered equally efficacious. PROSPERO registration number: CRD42015027876. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Diagnostic causal reasoning with verbal information.

    PubMed

    Meder, Björn; Mayrhofer, Ralf

    2017-08-01

    In diagnostic causal reasoning, the goal is to infer the probability of causes from one or multiple observed effects. Typically, studies investigating such tasks provide subjects with precise quantitative information regarding the strength of the relations between causes and effects or sample data from which the relevant quantities can be learned. By contrast, we sought to examine people's inferences when causal information is communicated through qualitative, rather vague verbal expressions (e.g., "X occasionally causes A"). We conducted three experiments using a sequential diagnostic inference task, where multiple pieces of evidence were obtained one after the other. Quantitative predictions of different probabilistic models were derived using the numerical equivalents of the verbal terms, taken from an unrelated study with different subjects. We present a novel Bayesian model that allows for incorporating the temporal weighting of information in sequential diagnostic reasoning, which can be used to model both primacy and recency effects. On the basis of 19,848 judgments from 292 subjects, we found a remarkably close correspondence between the diagnostic inferences made by subjects who received only verbal information and those of a matched control group to whom information was presented numerically. Whether information was conveyed through verbal terms or numerical estimates, diagnostic judgments closely resembled the posterior probabilities entailed by the causes' prior probabilities and the effects' likelihoods. We observed interindividual differences regarding the temporal weighting of evidence in sequential diagnostic reasoning. Our work provides pathways for investigating judgment and decision making with verbal information within a computational modeling framework. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Why Bayesian Psychologists Should Change the Way They Use the Bayes Factor.

    PubMed

    Hoijtink, Herbert; van Kooten, Pascal; Hulsker, Koenraad

    2016-01-01

    The discussion following Bem's ( 2011 ) psi research highlights that applications of the Bayes factor in psychological research are not without problems. The first problem is the omission to translate subjective prior knowledge into subjective prior distributions. In the words of Savage ( 1961 ): "they make the Bayesian omelet without breaking the Bayesian egg." The second problem occurs if the Bayesian egg is not broken: the omission to choose default prior distributions such that the ensuing inferences are well calibrated. The third problem is the adherence to inadequate rules for the interpretation of the size of the Bayes factor. The current paper will elaborate these problems and show how to avoid them using the basic hypotheses and statistical model used in the first experiment described in Bem ( 2011 ). It will be argued that a thorough investigation of these problems in the context of more encompassing hypotheses and statistical models is called for if Bayesian psychologists want to add a well-founded Bayes factor to the tool kit of psychological researchers.

  17. Sequential recruitment of study participants may inflate genetic heritability estimates.

    PubMed

    Noce, Damia; Gögele, Martin; Schwienbacher, Christine; Caprioli, Giulia; De Grandi, Alessandro; Foco, Luisa; Platzgummer, Stefan; Pramstaller, Peter P; Pattaro, Cristian

    2017-06-01

    After the success of genome-wide association studies to uncover complex trait loci, attempts to explain the remaining genetic heritability (h 2 ) are mainly focused on unraveling rare variant associations and gene-gene or gene-environment interactions. Little attention is paid to the possibility that h 2 estimates are inflated as a consequence of the epidemiological study design. We studied the time series of 54 biochemical traits in 4373 individuals from the Cooperative Health Research In South Tyrol (CHRIS) study, a pedigree-based study enrolling ten participants/day over several years, with close relatives preferentially invited within the same day. We observed distributional changes of measured traits over time. We hypothesized that the combination of such changes with the pedigree structure might generate a shared-environment component with consequent h 2 inflation. We performed variance components (VC) h 2 estimation for all traits after accounting for the enrollment period in a linear mixed model (two-stage approach). Accounting for the enrollment period caused a median h 2 reduction of 4%. For 9 traits, the reduction was of >20%. Results were confirmed by a Bayesian Markov chain Monte Carlo analysis with all VCs included at the same time (one-stage approach). The electrolytes were the traits most affected by the enrollment period. The h 2 inflation was independent of the h 2 magnitude, laboratory protocol changes, and length of the enrollment period. The enrollment process may induce shared-environment effects even under very stringent and standardized operating procedures, causing h 2 inflation. Including the day of participation as a random effect is a sensitive way to avoid overestimation.

  18. Competing risk models in reliability systems, a weibull distribution model with bayesian analysis approach

    NASA Astrophysics Data System (ADS)

    Iskandar, Ismed; Satria Gondokaryono, Yudi

    2016-02-01

    In reliability theory, the most important problem is to determine the reliability of a complex system from the reliability of its components. The weakness of most reliability theories is that the systems are described and explained as simply functioning or failed. In many real situations, the failures may be from many causes depending upon the age and the environment of the system and its components. Another problem in reliability theory is one of estimating the parameters of the assumed failure models. The estimation may be based on data collected over censored or uncensored life tests. In many reliability problems, the failure data are simply quantitatively inadequate, especially in engineering design and maintenance system. The Bayesian analyses are more beneficial than the classical one in such cases. The Bayesian estimation analyses allow us to combine past knowledge or experience in the form of an apriori distribution with life test data to make inferences of the parameter of interest. In this paper, we have investigated the application of the Bayesian estimation analyses to competing risk systems. The cases are limited to the models with independent causes of failure by using the Weibull distribution as our model. A simulation is conducted for this distribution with the objectives of verifying the models and the estimators and investigating the performance of the estimators for varying sample size. The simulation data are analyzed by using Bayesian and the maximum likelihood analyses. The simulation results show that the change of the true of parameter relatively to another will change the value of standard deviation in an opposite direction. For a perfect information on the prior distribution, the estimation methods of the Bayesian analyses are better than those of the maximum likelihood. The sensitivity analyses show some amount of sensitivity over the shifts of the prior locations. They also show the robustness of the Bayesian analysis within the range between the true value and the maximum likelihood estimated value lines.

  19. Bayesian cross-validation for model evaluation and selection, with application to the North American Breeding Bird Survey

    USGS Publications Warehouse

    Link, William; Sauer, John R.

    2016-01-01

    The analysis of ecological data has changed in two important ways over the last 15 years. The development and easy availability of Bayesian computational methods has allowed and encouraged the fitting of complex hierarchical models. At the same time, there has been increasing emphasis on acknowledging and accounting for model uncertainty. Unfortunately, the ability to fit complex models has outstripped the development of tools for model selection and model evaluation: familiar model selection tools such as Akaike's information criterion and the deviance information criterion are widely known to be inadequate for hierarchical models. In addition, little attention has been paid to the evaluation of model adequacy in context of hierarchical modeling, i.e., to the evaluation of fit for a single model. In this paper, we describe Bayesian cross-validation, which provides tools for model selection and evaluation. We describe the Bayesian predictive information criterion and a Bayesian approximation to the BPIC known as the Watanabe-Akaike information criterion. We illustrate the use of these tools for model selection, and the use of Bayesian cross-validation as a tool for model evaluation, using three large data sets from the North American Breeding Bird Survey.

  20. Bayesian networks improve causal environmental ...

    EPA Pesticide Factsheets

    Rule-based weight of evidence approaches to ecological risk assessment may not account for uncertainties and generally lack probabilistic integration of lines of evidence. Bayesian networks allow causal inferences to be made from evidence by including causal knowledge about the problem, using this knowledge with probabilistic calculus to combine multiple lines of evidence, and minimizing biases in predicting or diagnosing causal relationships. Too often, sources of uncertainty in conventional weight of evidence approaches are ignored that can be accounted for with Bayesian networks. Specifying and propagating uncertainties improve the ability of models to incorporate strength of the evidence in the risk management phase of an assessment. Probabilistic inference from a Bayesian network allows evaluation of changes in uncertainty for variables from the evidence. The network structure and probabilistic framework of a Bayesian approach provide advantages over qualitative approaches in weight of evidence for capturing the impacts of multiple sources of quantifiable uncertainty on predictions of ecological risk. Bayesian networks can facilitate the development of evidence-based policy under conditions of uncertainty by incorporating analytical inaccuracies or the implications of imperfect information, structuring and communicating causal issues through qualitative directed graph formulations, and quantitatively comparing the causal power of multiple stressors on value

  1. Bayesian state space models for dynamic genetic network construction across multiple tissues.

    PubMed

    Liang, Yulan; Kelemen, Arpad

    2016-08-01

    Construction of gene-gene interaction networks and potential pathways is a challenging and important problem in genomic research for complex diseases while estimating the dynamic changes of the temporal correlations and non-stationarity are the keys in this process. In this paper, we develop dynamic state space models with hierarchical Bayesian settings to tackle this challenge for inferring the dynamic profiles and genetic networks associated with disease treatments. We treat both the stochastic transition matrix and the observation matrix time-variant and include temporal correlation structures in the covariance matrix estimations in the multivariate Bayesian state space models. The unevenly spaced short time courses with unseen time points are treated as hidden state variables. Hierarchical Bayesian approaches with various prior and hyper-prior models with Monte Carlo Markov Chain and Gibbs sampling algorithms are used to estimate the model parameters and the hidden state variables. We apply the proposed Hierarchical Bayesian state space models to multiple tissues (liver, skeletal muscle, and kidney) Affymetrix time course data sets following corticosteroid (CS) drug administration. Both simulation and real data analysis results show that the genomic changes over time and gene-gene interaction in response to CS treatment can be well captured by the proposed models. The proposed dynamic Hierarchical Bayesian state space modeling approaches could be expanded and applied to other large scale genomic data, such as next generation sequence (NGS) combined with real time and time varying electronic health record (EHR) for more comprehensive and robust systematic and network based analysis in order to transform big biomedical data into predictions and diagnostics for precision medicine and personalized healthcare with better decision making and patient outcomes.

  2. Value for money in changing clinical practice: should decisions about guidelines and implementation strategies be made sequentially or simultaneously?

    PubMed

    Hoomans, Ties; Severens, Johan L; Evers, Silvia M A A; Ament, Andre J H A

    2009-01-01

    Decisions about clinical practice change, that is, which guidelines to adopt and how to implement them, can be made sequentially or simultaneously. Decision makers adopting a sequential approach first compare the costs and effects of alternative guidelines to select the best set of guideline recommendations for patient management and subsequently examine the implementation costs and effects to choose the best strategy to implement the selected guideline. In an integral approach, decision makers simultaneously decide about the guideline and the implementation strategy on the basis of the overall value for money in changing clinical practice. This article demonstrates that the decision to use a sequential v. an integral approach affects the need for detailed information and the complexity of the decision analytic process. More importantly, it may lead to different choices of guidelines and implementation strategies for clinical practice change. The differences in decision making and decision analysis between the alternative approaches are comprehensively illustrated using 2 hypothetical examples. We argue that, in most cases, an integral approach to deciding about change in clinical practice is preferred, as this provides more efficient use of scarce health-care resources.

  3. Sequential Effects on Speeded Information Processing: A Developmental Study

    ERIC Educational Resources Information Center

    Smulders, S.F.A.; Notebaert, W.; Meijer, M.; Crone, E.A.; van der Molen, M.W.; Soetens, E.

    2005-01-01

    Two experiments were performed to assess age-related changes in sequential effects on choice reaction time (RT). Sequential effects portray the influence of previous trials on the RT to the current stimulus. In Experiment 1, three age groups (7-9, 10-12, and 18-25 years) performed a spatially compatible choice task, with response-to-stimulus…

  4. Bayesian Networks Improve Causal Environmental Assessments for Evidence-Based Policy.

    PubMed

    Carriger, John F; Barron, Mace G; Newman, Michael C

    2016-12-20

    Rule-based weight of evidence approaches to ecological risk assessment may not account for uncertainties and generally lack probabilistic integration of lines of evidence. Bayesian networks allow causal inferences to be made from evidence by including causal knowledge about the problem, using this knowledge with probabilistic calculus to combine multiple lines of evidence, and minimizing biases in predicting or diagnosing causal relationships. Too often, sources of uncertainty in conventional weight of evidence approaches are ignored that can be accounted for with Bayesian networks. Specifying and propagating uncertainties improve the ability of models to incorporate strength of the evidence in the risk management phase of an assessment. Probabilistic inference from a Bayesian network allows evaluation of changes in uncertainty for variables from the evidence. The network structure and probabilistic framework of a Bayesian approach provide advantages over qualitative approaches in weight of evidence for capturing the impacts of multiple sources of quantifiable uncertainty on predictions of ecological risk. Bayesian networks can facilitate the development of evidence-based policy under conditions of uncertainty by incorporating analytical inaccuracies or the implications of imperfect information, structuring and communicating causal issues through qualitative directed graph formulations, and quantitatively comparing the causal power of multiple stressors on valued ecological resources. These aspects are demonstrated through hypothetical problem scenarios that explore some major benefits of using Bayesian networks for reasoning and making inferences in evidence-based policy.

  5. Multiple model cardinalized probability hypothesis density filter

    NASA Astrophysics Data System (ADS)

    Georgescu, Ramona; Willett, Peter

    2011-09-01

    The Probability Hypothesis Density (PHD) filter propagates the first-moment approximation to the multi-target Bayesian posterior distribution while the Cardinalized PHD (CPHD) filter propagates both the posterior likelihood of (an unlabeled) target state and the posterior probability mass function of the number of targets. Extensions of the PHD filter to the multiple model (MM) framework have been published and were implemented either with a Sequential Monte Carlo or a Gaussian Mixture approach. In this work, we introduce the multiple model version of the more elaborate CPHD filter. We present the derivation of the prediction and update steps of the MMCPHD particularized for the case of two target motion models and proceed to show that in the case of a single model, the new MMCPHD equations reduce to the original CPHD equations.

  6. Analysis and Synthesis of Load Forecasting Data for Renewable Integration Studies: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steckler, N.; Florita, A.; Zhang, J.

    2013-11-01

    As renewable energy constitutes greater portions of the generation fleet, the importance of modeling uncertainty as part of integration studies also increases. In pursuit of optimal system operations, it is important to capture not only the definitive behavior of power plants, but also the risks associated with systemwide interactions. This research examines the dependence of load forecast errors on external predictor variables such as temperature, day type, and time of day. The analysis was utilized to create statistically relevant instances of sequential load forecasts with only a time series of historic, measured load available. The creation of such load forecastsmore » relies on Bayesian techniques for informing and updating the model, thus providing a basis for networked and adaptive load forecast models in future operational applications.« less

  7. Neutron multiplicity counting: Confidence intervals for reconstruction parameters

    DOE PAGES

    Verbeke, Jerome M.

    2016-03-09

    From nuclear materials accountability to homeland security, the need for improved nuclear material detection, assay, and authentication has grown over the past decades. Starting in the 1940s, neutron multiplicity counting techniques have enabled quantitative evaluation of masses and multiplications of fissile materials. In this paper, we propose a new method to compute uncertainties on these parameters using a model-based sequential Bayesian processor, resulting in credible regions in the fissile material mass and multiplication space. These uncertainties will enable us to evaluate quantitatively proposed improvements to the theoretical fission chain model. Additionally, because the processor can calculate uncertainties in real time,more » it is a useful tool in applications such as portal monitoring: monitoring can stop as soon as a preset confidence of non-threat is reached.« less

  8. Linguistics: evolution and language change.

    PubMed

    Bowern, Claire

    2015-01-05

    Linguists have long identified sound changes that occur in parallel. Now novel research shows how Bayesian modeling can capture complex concerted changes, revealing how evolution of sounds proceeds. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Genetic consequences of sequential founder events by an island-colonizing bird.

    PubMed

    Clegg, Sonya M; Degnan, Sandie M; Kikkawa, Jiro; Moritz, Craig; Estoup, Arnaud; Owens, Ian P F

    2002-06-11

    The importance of founder events in promoting evolutionary changes on islands has been a subject of long-running controversy. Resolution of this debate has been hindered by a lack of empirical evidence from naturally founded island populations. Here we undertake a genetic analysis of a series of historically documented, natural colonization events by the silvereye species-complex (Zosterops lateralis), a group used to illustrate the process of island colonization in the original founder effect model. Our results indicate that single founder events do not affect levels of heterozygosity or allelic diversity, nor do they result in immediate genetic differentiation between populations. Instead, four to five successive founder events are required before indices of diversity and divergence approach that seen in evolutionarily old forms. A Bayesian analysis based on computer simulation allows inferences to be made on the number of effective founders and indicates that founder effects are weak because island populations are established from relatively large flocks. Indeed, statistical support for a founder event model was not significantly higher than for a gradual-drift model for all recently colonized islands. Taken together, these results suggest that single colonization events in this species complex are rarely accompanied by severe founder effects, and multiple founder events and/or long-term genetic drift have been of greater consequence for neutral genetic diversity.

  10. Stable engraftment of human microbiota into mice with a single oral gavage following antibiotic conditioning.

    PubMed

    Staley, Christopher; Kaiser, Thomas; Beura, Lalit K; Hamilton, Matthew J; Weingarden, Alexa R; Bobr, Aleh; Kang, Johnthomas; Masopust, David; Sadowsky, Michael J; Khoruts, Alexander

    2017-08-01

    Human microbiota-associated (HMA) animal models relying on germ-free recipient mice are being used to study the relationship between intestinal microbiota and human disease. However, transfer of microbiota into germ-free animals also triggers global developmental changes in the recipient intestine, which can mask disease-specific attributes of the donor material. Therefore, a simple model of replacing microbiota into a developmentally mature intestinal environment remains highly desirable. Here we report on the development of a sequential, three-course antibiotic conditioning regimen that allows sustained engraftment of intestinal microorganisms following a single oral gavage with human donor microbiota. SourceTracker, a Bayesian, OTU-based algorithm, indicated that 59.3 ± 3.0% of the fecal bacterial communities in treated mice were attributable to the donor source. This overall degree of microbiota engraftment was similar in mice conditioned with antibiotics and germ-free mice. Limited surveys of systemic and mucosal immune sites did not show evidence of immune activation following introduction of human microbiota. The antibiotic treatment protocol described here followed by a single gavage of human microbiota may provide a useful, complimentary HMA model to that established in germ-free facilities. The model has the potential for further in-depth translational investigations of microbiota in a variety of human disease states.

  11. Conformational Transition Pathways of Epidermal Growth Factor Receptor Kinase Domain from Multiple Molecular Dynamics Simulations and Bayesian Clustering.

    PubMed

    Li, Yan; Li, Xiang; Ma, Weiya; Dong, Zigang

    2014-08-12

    The epidermal growth factor receptor (EGFR) is aberrantly activated in various cancer cells and an important target for cancer treatment. Deep understanding of EGFR conformational changes between the active and inactive states is of pharmaceutical interest. Here we present a strategy combining multiply targeted molecular dynamics simulations, unbiased molecular dynamics simulations, and Bayesian clustering to investigate transition pathways during the activation/inactivation process of EGFR kinase domain. Two distinct pathways between the active and inactive forms are designed, explored, and compared. Based on Bayesian clustering and rough two-dimensional free energy surfaces, the energy-favorable pathway is recognized, though DFG-flip happens in both pathways. In addition, another pathway with different intermediate states appears in our simulations. Comparison of distinct pathways also indicates that disruption of the Lys745-Glu762 interaction is critically important in DFG-flip while movement of the A-loop significantly facilitates the conformational change. Our simulations yield new insights into EGFR conformational transitions. Moreover, our results verify that this approach is valid and efficient in sampling of protein conformational changes and comparison of distinct pathways.

  12. Multilevel sequential Monte Carlo samplers

    DOE PAGES

    Beskos, Alexandros; Jasra, Ajay; Law, Kody; ...

    2016-08-24

    Here, we study the approximation of expectations w.r.t. probability distributions associated to the solution of partial differential equations (PDEs); this scenario appears routinely in Bayesian inverse problems. In practice, one often has to solve the associated PDE numerically, using, for instance finite element methods and leading to a discretisation bias, with the step-size level h L. In addition, the expectation cannot be computed analytically and one often resorts to Monte Carlo methods. In the context of this problem, it is known that the introduction of the multilevel Monte Carlo (MLMC) method can reduce the amount of computational effort to estimate expectations, for a given level of error. This is achieved via a telescoping identity associated to a Monte Carlo approximation of a sequence of probability distributions with discretisation levelsmore » $${\\infty}$$ >h 0>h 1 ...>h L. In many practical problems of interest, one cannot achieve an i.i.d. sampling of the associated sequence of probability distributions. A sequential Monte Carlo (SMC) version of the MLMC method is introduced to deal with this problem. In conclusion, it is shown that under appropriate assumptions, the attractive property of a reduction of the amount of computational effort to estimate expectations, for a given level of error, can be maintained within the SMC context.« less

  13. Visual perception as retrospective Bayesian decoding from high- to low-level features

    PubMed Central

    Ding, Stephanie; Cueva, Christopher J.; Tsodyks, Misha; Qian, Ning

    2017-01-01

    When a stimulus is presented, its encoding is known to progress from low- to high-level features. How these features are decoded to produce perception is less clear, and most models assume that decoding follows the same low- to high-level hierarchy of encoding. There are also theories arguing for global precedence, reversed hierarchy, or bidirectional processing, but they are descriptive without quantitative comparison with human perception. Moreover, observers often inspect different parts of a scene sequentially to form overall perception, suggesting that perceptual decoding requires working memory, yet few models consider how working-memory properties may affect decoding hierarchy. We probed decoding hierarchy by comparing absolute judgments of single orientations and relative/ordinal judgments between two sequentially presented orientations. We found that lower-level, absolute judgments failed to account for higher-level, relative/ordinal judgments. However, when ordinal judgment was used to retrospectively decode memory representations of absolute orientations, striking aspects of absolute judgments, including the correlation and forward/backward aftereffects between two reported orientations in a trial, were explained. We propose that the brain prioritizes decoding of higher-level features because they are more behaviorally relevant, and more invariant and categorical, and thus easier to specify and maintain in noisy working memory, and that more reliable higher-level decoding constrains less reliable lower-level decoding. PMID:29073108

  14. Temporally consistent probabilistic detection of new multiple sclerosis lesions in brain MRI.

    PubMed

    Elliott, Colm; Arnold, Douglas L; Collins, D Louis; Arbel, Tal

    2013-08-01

    Detection of new Multiple Sclerosis (MS) lesions on magnetic resonance imaging (MRI) is important as a marker of disease activity and as a potential surrogate for relapses. We propose an approach where sequential scans are jointly segmented, to provide a temporally consistent tissue segmentation while remaining sensitive to newly appearing lesions. The method uses a two-stage classification process: 1) a Bayesian classifier provides a probabilistic brain tissue classification at each voxel of reference and follow-up scans, and 2) a random-forest based lesion-level classification provides a final identification of new lesions. Generative models are learned based on 364 scans from 95 subjects from a multi-center clinical trial. The method is evaluated on sequential brain MRI of 160 subjects from a separate multi-center clinical trial, and is compared to 1) semi-automatically generated ground truth segmentations and 2) fully manual identification of new lesions generated independently by nine expert raters on a subset of 60 subjects. For new lesions greater than 0.15 cc in size, the classifier has near perfect performance (99% sensitivity, 2% false detection rate), as compared to ground truth. The proposed method was also shown to exceed the performance of any one of the nine expert manual identifications.

  15. Development of dynamic Bayesian models for web application test management

    NASA Astrophysics Data System (ADS)

    Azarnova, T. V.; Polukhin, P. V.; Bondarenko, Yu V.; Kashirina, I. L.

    2018-03-01

    The mathematical apparatus of dynamic Bayesian networks is an effective and technically proven tool that can be used to model complex stochastic dynamic processes. According to the results of the research, mathematical models and methods of dynamic Bayesian networks provide a high coverage of stochastic tasks associated with error testing in multiuser software products operated in a dynamically changing environment. Formalized representation of the discrete test process as a dynamic Bayesian model allows us to organize the logical connection between individual test assets for multiple time slices. This approach gives an opportunity to present testing as a discrete process with set structural components responsible for the generation of test assets. Dynamic Bayesian network-based models allow us to combine in one management area individual units and testing components with different functionalities and a direct influence on each other in the process of comprehensive testing of various groups of computer bugs. The application of the proposed models provides an opportunity to use a consistent approach to formalize test principles and procedures, methods used to treat situational error signs, and methods used to produce analytical conclusions based on test results.

  16. An evaluation of the Bayesian approach to fitting the N-mixture model for use with pseudo-replicated count data

    USGS Publications Warehouse

    Toribo, S.G.; Gray, B.R.; Liang, S.

    2011-01-01

    The N-mixture model proposed by Royle in 2004 may be used to approximate the abundance and detection probability of animal species in a given region. In 2006, Royle and Dorazio discussed the advantages of using a Bayesian approach in modelling animal abundance and occurrence using a hierarchical N-mixture model. N-mixture models assume replication on sampling sites, an assumption that may be violated when the site is not closed to changes in abundance during the survey period or when nominal replicates are defined spatially. In this paper, we studied the robustness of a Bayesian approach to fitting the N-mixture model for pseudo-replicated count data. Our simulation results showed that the Bayesian estimates for abundance and detection probability are slightly biased when the actual detection probability is small and are sensitive to the presence of extra variability within local sites.

  17. Conflict anticipation in alcohol dependence - A model-based fMRI study of stop signal task.

    PubMed

    Hu, Sien; Ide, Jaime S; Zhang, Sheng; Sinha, Rajita; Li, Chiang-Shan R

    2015-01-01

    Our previous work characterized altered cerebral activations during cognitive control in individuals with alcohol dependence (AD). A hallmark of cognitive control is the ability to anticipate changes and adjust behavior accordingly. Here, we employed a Bayesian model to describe trial-by-trial anticipation of the stop signal and modeled fMRI signals of conflict anticipation in a stop signal task. Our goal is to characterize the neural correlates of conflict anticipation and its relationship to response inhibition and alcohol consumption in AD. Twenty-four AD and 70 age and gender matched healthy control individuals (HC) participated in the study. fMRI data were pre-processed and modeled with SPM8. We modeled fMRI signals at trial onset with individual events parametrically modulated by estimated probability of the stop signal, p(Stop), and compared regional responses to conflict anticipation between AD and HC. To address the link to response inhibition, we regressed whole-brain responses to conflict anticipation against the stop signal reaction time (SSRT). Compared to HC (54/70), fewer AD (11/24) showed a significant sequential effect - a correlation between p(Stop) and RT during go trials - and the magnitude of sequential effect is diminished, suggesting a deficit in proactive control. Parametric analyses showed decreased learning rate and over-estimated prior mean of the stop signal in AD. In fMRI, both HC and AD responded to p(Stop) in bilateral inferior parietal cortex and anterior pre-supplementary motor area, although the magnitude of response increased in AD. In contrast, HC but not AD showed deactivation of the perigenual anterior cingulate cortex (pgACC). Furthermore, deactivation of the pgACC to increasing p(Stop) is positively correlated with the SSRT in HC but not AD. Recent alcohol consumption is correlated with increased activation of the thalamus and cerebellum in AD during conflict anticipation. The current results highlight altered proactive control that may serve as an additional behavioral and neural marker of alcohol dependence.

  18. Abrupt strategy change underlies gradual performance change: Bayesian hierarchical models of component and aggregate strategy use.

    PubMed

    Wynton, Sarah K A; Anglim, Jeromy

    2017-10-01

    While researchers have often sought to understand the learning curve in terms of multiple component processes, few studies have measured and mathematically modeled these processes on a complex task. In particular, there remains a need to reconcile how abrupt changes in strategy use can co-occur with gradual changes in task completion time. Thus, the current study aimed to assess the degree to which strategy change was abrupt or gradual, and whether strategy aggregation could partially explain gradual performance change. It also aimed to show how Bayesian methods could be used to model the effect of practice on strategy use. To achieve these aims, 162 participants completed 15 blocks of practice on a complex computer-based task-the Wynton-Anglim booking (WAB) task. The task allowed for multiple component strategies (i.e., memory retrieval, information reduction, and insight) that could also be aggregated to a global measure of strategy use. Bayesian hierarchical models were used to compare abrupt and gradual functions of component and aggregate strategy use. Task completion time was well-modeled by a power function, and global strategy use explained substantial variance in performance. Change in component strategy use tended to be abrupt, whereas change in global strategy use was gradual and well-modeled by a power function. Thus, differential timing of component strategy shifts leads to gradual changes in overall strategy efficiency, and this provides one reason for why smooth learning curves can co-occur with abrupt changes in strategy use. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  19. Evidence for decreased interaction and improved carotenoid bioavailability by sequential delivery of a supplement.

    PubMed

    Salter-Venzon, Dawna; Kazlova, Valentina; Izzy Ford, Samantha; Intra, Janjira; Klosner, Allison E; Gellenbeck, Kevin W

    2017-05-01

    Despite the notable health benefits of carotenoids for human health, the majority of human diets worldwide are repeatedly shown to be inadequate in intake of carotenoid-rich fruits and vegetables, according to current health recommendations. To address this deficit, strategies designed to increase dietary intakes and subsequent plasma levels of carotenoids are warranted. When mixed carotenoids are delivered into the intestinal tract simultaneously, competition occurs for micelle formation and absorption, affecting carotenoid bioavailability. Previously, we tested the in vitro viability of a carotenoid mix designed to deliver individual carotenoids sequentially spaced from one another over the 6 hr transit time of the human upper gastrointestinal system. We hypothesized that temporally and spatially separating the individual carotenoids would reduce competition for micelle formation, improve uptake, and maximize efficacy. Here, we test this hypothesis in a double-blind, repeated-measure, cross-over human study with 12 subjects by comparing the change of plasma carotenoid levels for 8 hr after oral doses of a sequentially spaced carotenoid mix, to a matched mix without sequential spacing. We find the carotenoid change from baseline, measured as area under the curve, is increased following consumption of the sequentially spaced mix compared to concomitant carotenoids delivery. These results demonstrate reduced interaction and regulation between the sequentially spaced carotenoids, suggesting improved bioavailability from a novel sequentially spaced carotenoid mix.

  20. A Particle Smoother with Sequential Importance Resampling for soil hydraulic parameter estimation: A lysimeter experiment

    NASA Astrophysics Data System (ADS)

    Montzka, Carsten; Hendricks Franssen, Harrie-Jan; Moradkhani, Hamid; Pütz, Thomas; Han, Xujun; Vereecken, Harry

    2013-04-01

    An adequate description of soil hydraulic properties is essential for a good performance of hydrological forecasts. So far, several studies showed that data assimilation could reduce the parameter uncertainty by considering soil moisture observations. However, these observations and also the model forcings were recorded with a specific measurement error. It seems a logical step to base state updating and parameter estimation on observations made at multiple time steps, in order to reduce the influence of outliers at single time steps given measurement errors and unknown model forcings. Such outliers could result in erroneous state estimation as well as inadequate parameters. This has been one of the reasons to use a smoothing technique as implemented for Bayesian data assimilation methods such as the Ensemble Kalman Filter (i.e. Ensemble Kalman Smoother). Recently, an ensemble-based smoother has been developed for state update with a SIR particle filter. However, this method has not been used for dual state-parameter estimation. In this contribution we present a Particle Smoother with sequentially smoothing of particle weights for state and parameter resampling within a time window as opposed to the single time step data assimilation used in filtering techniques. This can be seen as an intermediate variant between a parameter estimation technique using global optimization with estimation of single parameter sets valid for the whole period, and sequential Monte Carlo techniques with estimation of parameter sets evolving from one time step to another. The aims are i) to improve the forecast of evaporation and groundwater recharge by estimating hydraulic parameters, and ii) to reduce the impact of single erroneous model inputs/observations by a smoothing method. In order to validate the performance of the proposed method in a real world application, the experiment is conducted in a lysimeter environment.

  1. Bayesian change-point analyses in ecology

    Treesearch

    Brian Bekcage; Lawrence Joseph; Patrick Belisle; David B. Wolfson; William J. Platt

    2007-01-01

    Ecological and biological processes can change from one state to another once a threshold has been crossed in space or time. Threshold responses to incremental changes in underlying variables can characterize diverse processes from climate change to the desertification of arid lands from overgrazing.

  2. Architectures of Kepler Planet Systems with Approximate Bayesian Computation

    NASA Astrophysics Data System (ADS)

    Morehead, Robert C.; Ford, Eric B.

    2015-12-01

    The distribution of period normalized transit duration ratios among Kepler’s multiple transiting planet systems constrains the distributions of mutual orbital inclinations and orbital eccentricities. However, degeneracies in these parameters tied to the underlying number of planets in these systems complicate their interpretation. To untangle the true architecture of planet systems, the mutual inclination, eccentricity, and underlying planet number distributions must be considered simultaneously. The complexities of target selection, transit probability, detection biases, vetting, and follow-up observations make it impractical to write an explicit likelihood function. Approximate Bayesian computation (ABC) offers an intriguing path forward. In its simplest form, ABC generates a sample of trial population parameters from a prior distribution to produce synthetic datasets via a physically-motivated forward model. Samples are then accepted or rejected based on how close they come to reproducing the actual observed dataset to some tolerance. The accepted samples form a robust and useful approximation of the true posterior distribution of the underlying population parameters. We build on the considerable progress from the field of statistics to develop sequential algorithms for performing ABC in an efficient and flexible manner. We demonstrate the utility of ABC in exoplanet populations and present new constraints on the distributions of mutual orbital inclinations, eccentricities, and the relative number of short-period planets per star. We conclude with a discussion of the implications for other planet occurrence rate calculations, such as eta-Earth.

  3. Quantification of biophysical adaptation benefits from Climate-Smart Agriculture using a Bayesian Belief Network.

    PubMed

    de Nijs, Patrick J; Berry, Nicholas J; Wells, Geoff J; Reay, Dave S

    2014-10-20

    The need for smallholder farmers to adapt their practices to a changing climate is well recognised, particularly in Africa. The cost of adapting to climate change in Africa is estimated to be $20 to $30 billion per year, but the total amount pledged to finance adaptation falls significantly short of this requirement. The difficulty of assessing and monitoring when adaptation is achieved is one of the key barriers to the disbursement of performance-based adaptation finance. To demonstrate the potential of Bayesian Belief Networks for describing the impacts of specific activities on climate change resilience, we developed a simple model that incorporates climate projections, local environmental data, information from peer-reviewed literature and expert opinion to account for the adaptation benefits derived from Climate-Smart Agriculture activities in Malawi. This novel approach allows assessment of vulnerability to climate change under different land use activities and can be used to identify appropriate adaptation strategies and to quantify biophysical adaptation benefits from activities that are implemented. We suggest that multiple-indicator Bayesian Belief Network approaches can provide insights into adaptation planning for a wide range of applications and, if further explored, could be part of a set of important catalysts for the expansion of adaptation finance.

  4. Quantifying temporal trends in fisheries abundance using Bayesian dynamic linear models: A case study of riverine Smallmouth Bass populations

    USGS Publications Warehouse

    Schall, Megan K.; Blazer, Vicki S.; Lorantas, Robert M.; Smith, Geoffrey; Mullican, John E.; Keplinger, Brandon J.; Wagner, Tyler

    2018-01-01

    Detecting temporal changes in fish abundance is an essential component of fisheries management. Because of the need to understand short‐term and nonlinear changes in fish abundance, traditional linear models may not provide adequate information for management decisions. This study highlights the utility of Bayesian dynamic linear models (DLMs) as a tool for quantifying temporal dynamics in fish abundance. To achieve this goal, we quantified temporal trends of Smallmouth Bass Micropterus dolomieu catch per effort (CPE) from rivers in the mid‐Atlantic states, and we calculated annual probabilities of decline from the posterior distributions of annual rates of change in CPE. We were interested in annual declines because of recent concerns about fish health in portions of the study area. In general, periods of decline were greatest within the Susquehanna River basin, Pennsylvania. The declines in CPE began in the late 1990s—prior to observations of fish health problems—and began to stabilize toward the end of the time series (2011). In contrast, many of the other rivers investigated did not have the same magnitude or duration of decline in CPE. Bayesian DLMs provide information about annual changes in abundance that can inform management and are easily communicated with managers and stakeholders.

  5. Quantification of biophysical adaptation benefits from Climate-Smart Agriculture using a Bayesian Belief Network

    NASA Astrophysics Data System (ADS)

    de Nijs, Patrick J.; Berry, Nicholas J.; Wells, Geoff J.; Reay, Dave S.

    2014-10-01

    The need for smallholder farmers to adapt their practices to a changing climate is well recognised, particularly in Africa. The cost of adapting to climate change in Africa is estimated to be $20 to $30 billion per year, but the total amount pledged to finance adaptation falls significantly short of this requirement. The difficulty of assessing and monitoring when adaptation is achieved is one of the key barriers to the disbursement of performance-based adaptation finance. To demonstrate the potential of Bayesian Belief Networks for describing the impacts of specific activities on climate change resilience, we developed a simple model that incorporates climate projections, local environmental data, information from peer-reviewed literature and expert opinion to account for the adaptation benefits derived from Climate-Smart Agriculture activities in Malawi. This novel approach allows assessment of vulnerability to climate change under different land use activities and can be used to identify appropriate adaptation strategies and to quantify biophysical adaptation benefits from activities that are implemented. We suggest that multiple-indicator Bayesian Belief Network approaches can provide insights into adaptation planning for a wide range of applications and, if further explored, could be part of a set of important catalysts for the expansion of adaptation finance.

  6. A Defence of the AR4’s Bayesian Approach to Quantifying Uncertainty

    NASA Astrophysics Data System (ADS)

    Vezer, M. A.

    2009-12-01

    The field of climate change research is a kimberlite pipe filled with philosophic diamonds waiting to be mined and analyzed by philosophers. Within the scientific literature on climate change, there is much philosophical dialogue regarding the methods and implications of climate studies. To this date, however, discourse regarding the philosophy of climate science has been confined predominately to scientific - rather than philosophical - investigations. In this paper, I hope to bring one such issue to the surface for explicit philosophical analysis: The purpose of this paper is to address a philosophical debate pertaining to the expressions of uncertainty in the International Panel on Climate Change (IPCC) Fourth Assessment Report (AR4), which, as will be noted, has received significant attention in scientific journals and books, as well as sporadic glances from the popular press. My thesis is that the AR4’s Bayesian method of uncertainty analysis and uncertainty expression is justifiable on pragmatic grounds: it overcomes problems associated with vagueness, thereby facilitating communication between scientists and policy makers such that the latter can formulate decision analyses in response to the views of the former. Further, I argue that the most pronounced criticisms against the AR4’s Bayesian approach, which are outlined below, are misguided. §1 Introduction Central to AR4 is a list of terms related to uncertainty that in colloquial conversations would be considered vague. The IPCC attempts to reduce the vagueness of its expressions of uncertainty by calibrating uncertainty terms with numerical probability values derived from a subjective Bayesian methodology. This style of analysis and expression has stimulated some controversy, as critics reject as inappropriate and even misleading the association of uncertainty terms with Bayesian probabilities. [...] The format of the paper is as follows. The investigation begins (§2) with an explanation of background considerations relevant to the IPCC and its use of uncertainty expressions. It then (§3) outlines some general philosophical worries regarding vague expressions and (§4) relates those worries to the AR4 and its method of dealing with them, which is a subjective Bayesian probability analysis. The next phase of the paper (§5) examines the notions of ‘objective’ and ‘subjective’ probability interpretations and compares the IPCC’s subjective Bayesian strategy with a frequentist approach. It then (§6) addresses objections to that methodology, and concludes (§7) that those objections are wrongheaded.

  7. Bayesian network learning for natural hazard assessments

    NASA Astrophysics Data System (ADS)

    Vogel, Kristin

    2016-04-01

    Even though quite different in occurrence and consequences, from a modelling perspective many natural hazards share similar properties and challenges. Their complex nature as well as lacking knowledge about their driving forces and potential effects make their analysis demanding. On top of the uncertainty about the modelling framework, inaccurate or incomplete event observations and the intrinsic randomness of the natural phenomenon add up to different interacting layers of uncertainty, which require a careful handling. Thus, for reliable natural hazard assessments it is crucial not only to capture and quantify involved uncertainties, but also to express and communicate uncertainties in an intuitive way. Decision-makers, who often find it difficult to deal with uncertainties, might otherwise return to familiar (mostly deterministic) proceedings. In the scope of the DFG research training group „NatRiskChange" we apply the probabilistic framework of Bayesian networks for diverse natural hazard and vulnerability studies. The great potential of Bayesian networks was already shown in previous natural hazard assessments. Treating each model component as random variable, Bayesian networks aim at capturing the joint distribution of all considered variables. Hence, each conditional distribution of interest (e.g. the effect of precautionary measures on damage reduction) can be inferred. The (in-)dependencies between the considered variables can be learned purely data driven or be given by experts. Even a combination of both is possible. By translating the (in-)dependences into a graph structure, Bayesian networks provide direct insights into the workings of the system and allow to learn about the underlying processes. Besides numerous studies on the topic, learning Bayesian networks from real-world data remains challenging. In previous studies, e.g. on earthquake induced ground motion and flood damage assessments, we tackled the problems arising with continuous variables and incomplete observations. Further studies rise the challenge of relying on very small data sets. Since parameter estimates for complex models based on few observations are unreliable, it is necessary to focus on simplified, yet still meaningful models. A so called Markov Blanket approach is developed to identify the most relevant model components and to construct a simple Bayesian network based on those findings. Since the proceeding is completely data driven, it can easily be transferred to various applications in natural hazard domains. This study is funded by the Deutsche Forschungsgemeinschaft (DFG) within the research training programme GRK 2043/1 "NatRiskChange - Natural hazards and risks in a changing world" at Potsdam University.

  8. Trends in Extreme Rainfall Frequency in the Contiguous United States: Attribution to Climate Change and Climate Variability Modes

    NASA Astrophysics Data System (ADS)

    Armal, S.; Devineni, N.; Khanbilvardi, R.

    2017-12-01

    This study presents a systematic analysis for identifying and attributing trends in the annual frequency of extreme rainfall events across the contiguous United States to climate change and climate variability modes. A Bayesian multilevel model is developed for 1,244 stations simultaneously to test the null hypothesis of no trend and verify two alternate hypotheses: Trend can be attributed to changes in global surface temperature anomalies, or to a combination of cyclical climate modes with varying quasi-periodicities and global surface temperature anomalies. The Bayesian multilevel model provides the opportunity to pool information across stations and reduce the parameter estimation uncertainty, hence identifying the trends better. The choice of the best alternate hypotheses is made based on Watanabe-Akaike Information Criterion, a Bayesian pointwise predictive accuracy measure. Statistically significant time trends are observed in 742 of the 1,244 stations. Trends in 409 of these stations can be attributed to changes in global surface temperature anomalies. These stations are predominantly found in the Southeast and Northeast climate regions. The trends in 274 of these stations can be attributed to the El Nino Southern Oscillations, North Atlantic Oscillation, Pacific Decadal Oscillation and Atlantic Multi-Decadal Oscillation along with changes in global surface temperature anomalies. These stations are mainly found in the Northwest, West and Southwest climate regions.

  9. Tractable Experiment Design via Mathematical Surrogates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Brian J.

    This presentation summarizes the development and implementation of quantitative design criteria motivated by targeted inference objectives for identifying new, potentially expensive computational or physical experiments. The first application is concerned with estimating features of quantities of interest arising from complex computational models, such as quantiles or failure probabilities. A sequential strategy is proposed for iterative refinement of the importance distributions used to efficiently sample the uncertain inputs to the computational model. In the second application, effective use of mathematical surrogates is investigated to help alleviate the analytical and numerical intractability often associated with Bayesian experiment design. This approach allows formore » the incorporation of prior information into the design process without the need for gross simplification of the design criterion. Illustrative examples of both design problems will be presented as an argument for the relevance of these research problems.« less

  10. The development of a probabilistic approach to forecast coastal change

    USGS Publications Warehouse

    Lentz, Erika E.; Hapke, Cheryl J.; Rosati, Julie D.; Wang, Ping; Roberts, Tiffany M.

    2011-01-01

    This study demonstrates the applicability of a Bayesian probabilistic model as an effective tool in predicting post-storm beach changes along sandy coastlines. Volume change and net shoreline movement are modeled for two study sites at Fire Island, New York in response to two extratropical storms in 2007 and 2009. Both study areas include modified areas adjacent to unmodified areas in morphologically different segments of coast. Predicted outcomes are evaluated against observed changes to test model accuracy and uncertainty along 163 cross-shore transects. Results show strong agreement in the cross validation of predictions vs. observations, with 70-82% accuracies reported. Although no consistent spatial pattern in inaccurate predictions could be determined, the highest prediction uncertainties appeared in locations that had been recently replenished. Further testing and model refinement are needed; however, these initial results show that Bayesian networks have the potential to serve as important decision-support tools in forecasting coastal change.

  11. Learning and Risk Exposure in a Changing Climate

    NASA Astrophysics Data System (ADS)

    Moore, F.

    2015-12-01

    Climate change is a gradual process most apparent over long time-scales and large spatial scales, but it is experienced by those affected as changes in local weather. Climate change will gradually push the weather people experience outside the bounds of historic norms, resulting in unprecedented and extreme weather events. However, people do have the ability to learn about and respond to a changing climate. Therefore, connecting the weather people experience with their perceptions of climate change requires understanding how people infer the current state of the climate given their observations of weather. This learning process constitutes a first-order constraint on the rate of adaptation and is an important determinant of the dynamic adjustment costs associated with climate change. In this paper I explore two learning models that describe how local weather observations are translated into perceptions of climate change: an efficient Bayesian learning model and a simpler rolling-mean heuristic. Both have a period during which the learner's beliefs about the state of the climate are different from its true state, meaning the learner is exposed to a different range of extreme weather outcomes then they are prepared for. Using the example of surface temperature trends, I quantify this additional exposure to extreme heat events under both learning models and both RCP 8.5 and 2.6. Risk exposure increases for both learning models, but by substantially more for the rolling-mean learner. Moreover, there is an interaction between the learning model and the rate of climate change: the inefficient rolling-mean learner benefits much more from the slower rates of change under RCP 2.6 then the Bayesian. Finally, I present results from an experiment that suggests people are able to learn about a trending climate in a manner consistent with the Bayesian model.

  12. Traffic Video Image Segmentation Model Based on Bayesian and Spatio-Temporal Markov Random Field

    NASA Astrophysics Data System (ADS)

    Zhou, Jun; Bao, Xu; Li, Dawei; Yin, Yongwen

    2017-10-01

    Traffic video image is a kind of dynamic image and its background and foreground is changed at any time, which results in the occlusion. In this case, using the general method is more difficult to get accurate image segmentation. A segmentation algorithm based on Bayesian and Spatio-Temporal Markov Random Field is put forward, which respectively build the energy function model of observation field and label field to motion sequence image with Markov property, then according to Bayesian' rule, use the interaction of label field and observation field, that is the relationship of label field’s prior probability and observation field’s likelihood probability, get the maximum posterior probability of label field’s estimation parameter, use the ICM model to extract the motion object, consequently the process of segmentation is finished. Finally, the segmentation methods of ST - MRF and the Bayesian combined with ST - MRF were analyzed. Experimental results: the segmentation time in Bayesian combined with ST-MRF algorithm is shorter than in ST-MRF, and the computing workload is small, especially in the heavy traffic dynamic scenes the method also can achieve better segmentation effect.

  13. BUMPER: the Bayesian User-friendly Model for Palaeo-Environmental Reconstruction

    NASA Astrophysics Data System (ADS)

    Holden, Phil; Birks, John; Brooks, Steve; Bush, Mark; Hwang, Grace; Matthews-Bird, Frazer; Valencia, Bryan; van Woesik, Robert

    2017-04-01

    We describe the Bayesian User-friendly Model for Palaeo-Environmental Reconstruction (BUMPER), a Bayesian transfer function for inferring past climate and other environmental variables from microfossil assemblages. The principal motivation for a Bayesian approach is that the palaeoenvironment is treated probabilistically, and can be updated as additional data become available. Bayesian approaches therefore provide a reconstruction-specific quantification of the uncertainty in the data and in the model parameters. BUMPER is fully self-calibrating, straightforward to apply, and computationally fast, requiring 2 seconds to build a 100-taxon model from a 100-site training-set on a standard personal computer. We apply the model's probabilistic framework to generate thousands of artificial training-sets under ideal assumptions. We then use these to demonstrate both the general applicability of the model and the sensitivity of reconstructions to the characteristics of the training-set, considering assemblage richness, taxon tolerances, and the number of training sites. We demonstrate general applicability to real data, considering three different organism types (chironomids, diatoms, pollen) and different reconstructed variables. In all of these applications an identically configured model is used, the only change being the input files that provide the training-set environment and taxon-count data.

  14. Effects of a web-based tailored multiple-lifestyle intervention for adults: a two-year randomized controlled trial comparing sequential and simultaneous delivery modes.

    PubMed

    Schulz, Daniela N; Kremers, Stef P J; Vandelanotte, Corneel; van Adrichem, Mathieu J G; Schneider, Francine; Candel, Math J J M; de Vries, Hein

    2014-01-27

    Web-based computer-tailored interventions for multiple health behaviors can have a significant public health impact. Yet, few randomized controlled trials have tested this assumption. The objective of this paper was to test the effects of a sequential and simultaneous Web-based tailored intervention on multiple lifestyle behaviors. A randomized controlled trial was conducted with 3 tailoring conditions (ie, sequential, simultaneous, and control conditions) in the Netherlands in 2009-2012. Follow-up measurements took place after 12 and 24 months. The intervention content was based on the I-Change model. In a health risk appraisal, all respondents (N=5055) received feedback on their lifestyle behaviors that indicated whether they complied with the Dutch guidelines for physical activity, vegetable consumption, fruit consumption, alcohol intake, and smoking. Participants in the sequential (n=1736) and simultaneous (n=1638) conditions received tailored motivational feedback to change unhealthy behaviors one at a time (sequential) or all at the same time (simultaneous). Mixed model analyses were performed as primary analyses; regression analyses were done as sensitivity analyses. An overall risk score was used as outcome measure, then effects on the 5 individual lifestyle behaviors were assessed and a process evaluation was performed regarding exposure to and appreciation of the intervention. Both tailoring strategies were associated with small self-reported behavioral changes. The sequential condition had the most significant effects compared to the control condition after 12 months (T1, effect size=0.28). After 24 months (T2), the simultaneous condition was most effective (effect size=0.18). All 5 individual lifestyle behaviors changed over time, but few effects differed significantly between the conditions. At both follow-ups, the sequential condition had significant changes in smoking abstinence compared to the simultaneous condition (T1 effect size=0.31; T2 effect size=0.41). The sequential condition was more effective in decreasing alcohol consumption than the control condition at 24 months (effect size=0.27). Change was predicted by the amount of exposure to the intervention (total visiting time: beta=-.06; P=.01; total number of visits: beta=-.11; P<.001). Both interventions were appreciated well by respondents without significant differences between conditions. Although evidence was found for the effectiveness of both programs, no simple conclusive finding could be drawn about which intervention mode was more effective. The best kind of intervention may depend on the behavior that is targeted or on personal preferences and motivation. Further research is needed to identify moderators of intervention effectiveness. The results need to be interpreted in view of the high and selective dropout rates, multiple comparisons, and modest effect sizes. However, a large number of people were reached at low cost and behavioral change was achieved after 2 years. Nederlands Trial Register: NTR 2168; http://www.trialregister.nl/trialreg/admin/rctview.asp?TC=2168 (Archived by WebCite at http://www.webcitation.org/6MbUqttYB).

  15. Bayesian Population Forecasting: Extending the Lee-Carter Method.

    PubMed

    Wiśniowski, Arkadiusz; Smith, Peter W F; Bijak, Jakub; Raymer, James; Forster, Jonathan J

    2015-06-01

    In this article, we develop a fully integrated and dynamic Bayesian approach to forecast populations by age and sex. The approach embeds the Lee-Carter type models for forecasting the age patterns, with associated measures of uncertainty, of fertility, mortality, immigration, and emigration within a cohort projection model. The methodology may be adapted to handle different data types and sources of information. To illustrate, we analyze time series data for the United Kingdom and forecast the components of population change to the year 2024. We also compare the results obtained from different forecast models for age-specific fertility, mortality, and migration. In doing so, we demonstrate the flexibility and advantages of adopting the Bayesian approach for population forecasting and highlight areas where this work could be extended.

  16. Bayesian hierarchical model of ceftriaxone resistance proportions among Salmonella serotype Heidelberg infections.

    PubMed

    Gu, Weidong; Medalla, Felicita; Hoekstra, Robert M

    2018-02-01

    The National Antimicrobial Resistance Monitoring System (NARMS) at the Centers for Disease Control and Prevention tracks resistance among Salmonella infections. The annual number of Salmonella isolates of a particular serotype from states may be small, making direct estimation of resistance proportions unreliable. We developed a Bayesian hierarchical model to improve estimation by borrowing strength from relevant sampling units. We illustrate the models with different specifications of spatio-temporal interaction using 2004-2013 NARMS data for ceftriaxone-resistant Salmonella serotype Heidelberg. Our results show that Bayesian estimates of resistance proportions were smoother than observed values, and the difference between predicted and observed proportions was inversely related to the number of submitted isolates. The model with interaction allowed for tracking of annual changes in resistance proportions at the state level. We demonstrated that Bayesian hierarchical models provide a useful tool to examine spatio-temporal patterns of small sample size such as those found in NARMS. Published by Elsevier Ltd.

  17. A Bayesian consistent dual ensemble Kalman filter for state-parameter estimation in subsurface hydrology

    NASA Astrophysics Data System (ADS)

    Ait-El-Fquih, Boujemaa; El Gharamti, Mohamad; Hoteit, Ibrahim

    2016-08-01

    Ensemble Kalman filtering (EnKF) is an efficient approach to addressing uncertainties in subsurface groundwater models. The EnKF sequentially integrates field data into simulation models to obtain a better characterization of the model's state and parameters. These are generally estimated following joint and dual filtering strategies, in which, at each assimilation cycle, a forecast step by the model is followed by an update step with incoming observations. The joint EnKF directly updates the augmented state-parameter vector, whereas the dual EnKF empirically employs two separate filters, first estimating the parameters and then estimating the state based on the updated parameters. To develop a Bayesian consistent dual approach and improve the state-parameter estimates and their consistency, we propose in this paper a one-step-ahead (OSA) smoothing formulation of the state-parameter Bayesian filtering problem from which we derive a new dual-type EnKF, the dual EnKFOSA. Compared with the standard dual EnKF, it imposes a new update step to the state, which is shown to enhance the performance of the dual approach with almost no increase in the computational cost. Numerical experiments are conducted with a two-dimensional (2-D) synthetic groundwater aquifer model to investigate the performance and robustness of the proposed dual EnKFOSA, and to evaluate its results against those of the joint and dual EnKFs. The proposed scheme is able to successfully recover both the hydraulic head and the aquifer conductivity, providing further reliable estimates of their uncertainties. Furthermore, it is found to be more robust to different assimilation settings, such as the spatial and temporal distribution of the observations, and the level of noise in the data. Based on our experimental setups, it yields up to 25 % more accurate state and parameter estimations than the joint and dual approaches.

  18. Visual perception as retrospective Bayesian decoding from high- to low-level features.

    PubMed

    Ding, Stephanie; Cueva, Christopher J; Tsodyks, Misha; Qian, Ning

    2017-10-24

    When a stimulus is presented, its encoding is known to progress from low- to high-level features. How these features are decoded to produce perception is less clear, and most models assume that decoding follows the same low- to high-level hierarchy of encoding. There are also theories arguing for global precedence, reversed hierarchy, or bidirectional processing, but they are descriptive without quantitative comparison with human perception. Moreover, observers often inspect different parts of a scene sequentially to form overall perception, suggesting that perceptual decoding requires working memory, yet few models consider how working-memory properties may affect decoding hierarchy. We probed decoding hierarchy by comparing absolute judgments of single orientations and relative/ordinal judgments between two sequentially presented orientations. We found that lower-level, absolute judgments failed to account for higher-level, relative/ordinal judgments. However, when ordinal judgment was used to retrospectively decode memory representations of absolute orientations, striking aspects of absolute judgments, including the correlation and forward/backward aftereffects between two reported orientations in a trial, were explained. We propose that the brain prioritizes decoding of higher-level features because they are more behaviorally relevant, and more invariant and categorical, and thus easier to specify and maintain in noisy working memory, and that more reliable higher-level decoding constrains less reliable lower-level decoding. Published under the PNAS license.

  19. Characterization and Quantification of Uncertainty in the NARCCAP Regional Climate Model Ensemble and Application to Impacts on Water Systems

    NASA Astrophysics Data System (ADS)

    Mearns, L. O.; Sain, S. R.; McGinnis, S. A.; Steinschneider, S.; Brown, C. M.

    2015-12-01

    In this talk we present the development of a joint Bayesian Probabilistic Model for the climate change results of the North American Regional Climate Change Assessment Program (NARCCAP) that uses a unique prior in the model formulation. We use the climate change results (joint distribution of seasonal temperature and precipitation changes (future vs. current)) from the global climate models (GCMs) that provided boundary conditions for the six different regional climate models used in the program as informative priors for the bivariate Bayesian Model. The two variables involved are seasonal temperature and precipitation over sub-regions (i.e., Bukovsky Regions) of the full NARCCAP domain. The basic approach to the joint Bayesian hierarchical model follows the approach of Tebaldi and Sansó (2009). We compare model results using informative (i.e., GCM information) as well as uninformative priors. We apply these results to the Water Evaluation and Planning System (WEAP) model for the Colorado Springs Utility in Colorado. We investigate the layout of the joint pdfs in the context of the water model sensitivities to ranges of temperature and precipitation results to determine the likelihoods of future climate conditions that cannot be accommodated by possible adaptation options. Comparisons may also be made with joint pdfs formed from the CMIP5 collection of global climate models and empirically downscaled to the region of interest.

  20. Sparse Bayesian Learning for Nonstationary Data Sources

    NASA Astrophysics Data System (ADS)

    Fujimaki, Ryohei; Yairi, Takehisa; Machida, Kazuo

    This paper proposes an online Sparse Bayesian Learning (SBL) algorithm for modeling nonstationary data sources. Although most learning algorithms implicitly assume that a data source does not change over time (stationary), one in the real world usually does due to such various factors as dynamically changing environments, device degradation, sudden failures, etc (nonstationary). The proposed algorithm can be made useable for stationary online SBL by setting time decay parameters to zero, and as such it can be interpreted as a single unified framework for online SBL for use with stationary and nonstationary data sources. Tests both on four types of benchmark problems and on actual stock price data have shown it to perform well.

  1. Allostatic Self-efficacy: A Metacognitive Theory of Dyshomeostasis-Induced Fatigue and Depression.

    PubMed

    Stephan, Klaas E; Manjaly, Zina M; Mathys, Christoph D; Weber, Lilian A E; Paliwal, Saee; Gard, Tim; Tittgemeyer, Marc; Fleming, Stephen M; Haker, Helene; Seth, Anil K; Petzschner, Frederike H

    2016-01-01

    This paper outlines a hierarchical Bayesian framework for interoception, homeostatic/allostatic control, and meta-cognition that connects fatigue and depression to the experience of chronic dyshomeostasis. Specifically, viewing interoception as the inversion of a generative model of viscerosensory inputs allows for a formal definition of dyshomeostasis (as chronically enhanced surprise about bodily signals, or, equivalently, low evidence for the brain's model of bodily states) and allostasis (as a change in prior beliefs or predictions which define setpoints for homeostatic reflex arcs). Critically, we propose that the performance of interoceptive-allostatic circuitry is monitored by a metacognitive layer that updates beliefs about the brain's capacity to successfully regulate bodily states (allostatic self-efficacy). In this framework, fatigue and depression can be understood as sequential responses to the interoceptive experience of dyshomeostasis and the ensuing metacognitive diagnosis of low allostatic self-efficacy. While fatigue might represent an early response with adaptive value (cf. sickness behavior), the experience of chronic dyshomeostasis may trigger a generalized belief of low self-efficacy and lack of control (cf. learned helplessness), resulting in depression. This perspective implies alternative pathophysiological mechanisms that are reflected by differential abnormalities in the effective connectivity of circuits for interoception and allostasis. We discuss suitably extended models of effective connectivity that could distinguish these connectivity patterns in individual patients and may help inform differential diagnosis of fatigue and depression in the future.

  2. Allostatic Self-efficacy: A Metacognitive Theory of Dyshomeostasis-Induced Fatigue and Depression

    PubMed Central

    Stephan, Klaas E.; Manjaly, Zina M.; Mathys, Christoph D.; Weber, Lilian A. E.; Paliwal, Saee; Gard, Tim; Tittgemeyer, Marc; Fleming, Stephen M.; Haker, Helene; Seth, Anil K.; Petzschner, Frederike H.

    2016-01-01

    This paper outlines a hierarchical Bayesian framework for interoception, homeostatic/allostatic control, and meta-cognition that connects fatigue and depression to the experience of chronic dyshomeostasis. Specifically, viewing interoception as the inversion of a generative model of viscerosensory inputs allows for a formal definition of dyshomeostasis (as chronically enhanced surprise about bodily signals, or, equivalently, low evidence for the brain's model of bodily states) and allostasis (as a change in prior beliefs or predictions which define setpoints for homeostatic reflex arcs). Critically, we propose that the performance of interoceptive-allostatic circuitry is monitored by a metacognitive layer that updates beliefs about the brain's capacity to successfully regulate bodily states (allostatic self-efficacy). In this framework, fatigue and depression can be understood as sequential responses to the interoceptive experience of dyshomeostasis and the ensuing metacognitive diagnosis of low allostatic self-efficacy. While fatigue might represent an early response with adaptive value (cf. sickness behavior), the experience of chronic dyshomeostasis may trigger a generalized belief of low self-efficacy and lack of control (cf. learned helplessness), resulting in depression. This perspective implies alternative pathophysiological mechanisms that are reflected by differential abnormalities in the effective connectivity of circuits for interoception and allostasis. We discuss suitably extended models of effective connectivity that could distinguish these connectivity patterns in individual patients and may help inform differential diagnosis of fatigue and depression in the future. PMID:27895566

  3. The impact of using informative priors in a Bayesian cost-effectiveness analysis: an application of endovascular versus open surgical repair for abdominal aortic aneurysms in high-risk patients.

    PubMed

    McCarron, C Elizabeth; Pullenayegum, Eleanor M; Thabane, Lehana; Goeree, Ron; Tarride, Jean-Eric

    2013-04-01

    Bayesian methods have been proposed as a way of synthesizing all available evidence to inform decision making. However, few practical applications of the use of Bayesian methods for combining patient-level data (i.e., trial) with additional evidence (e.g., literature) exist in the cost-effectiveness literature. The objective of this study was to compare a Bayesian cost-effectiveness analysis using informative priors to a standard non-Bayesian nonparametric method to assess the impact of incorporating additional information into a cost-effectiveness analysis. Patient-level data from a previously published nonrandomized study were analyzed using traditional nonparametric bootstrap techniques and bivariate normal Bayesian models with vague and informative priors. Two different types of informative priors were considered to reflect different valuations of the additional evidence relative to the patient-level data (i.e., "face value" and "skeptical"). The impact of using different distributions and valuations was assessed in a sensitivity analysis. Models were compared in terms of incremental net monetary benefit (INMB) and cost-effectiveness acceptability frontiers (CEAFs). The bootstrapping and Bayesian analyses using vague priors provided similar results. The most pronounced impact of incorporating the informative priors was the increase in estimated life years in the control arm relative to what was observed in the patient-level data alone. Consequently, the incremental difference in life years originally observed in the patient-level data was reduced, and the INMB and CEAF changed accordingly. The results of this study demonstrate the potential impact and importance of incorporating additional information into an analysis of patient-level data, suggesting this could alter decisions as to whether a treatment should be adopted and whether more information should be acquired.

  4. Evaluation of Flagging Criteria of United States Kidney Transplant Center Performance: How to Best Define Outliers?

    PubMed

    Schold, Jesse D; Miller, Charles M; Henry, Mitchell L; Buccini, Laura D; Flechner, Stuart M; Goldfarb, David A; Poggio, Emilio D; Andreoni, Kenneth A

    2017-06-01

    Scientific Registry of Transplant Recipients report cards of US organ transplant center performance are publicly available and used for quality oversight. Low center performance (LP) evaluations are associated with changes in practice including reduced transplant rates and increased waitlist removals. In 2014, Scientific Registry of Transplant Recipients implemented new Bayesian methodology to evaluate performance which was not adopted by Center for Medicare and Medicaid Services (CMS). In May 2016, CMS altered their performance criteria, reducing the likelihood of LP evaluations. Our aims were to evaluate incidence, survival rates, and volume of LP centers with Bayesian, historical (old-CMS) and new-CMS criteria using 6 consecutive program-specific reports (PSR), January 2013 to July 2015 among adult kidney transplant centers. Bayesian, old-CMS and new-CMS criteria identified 13.4%, 8.3%, and 6.1% LP PSRs, respectively. Over the 3-year period, 31.9% (Bayesian), 23.4% (old-CMS), and 19.8% (new-CMS) of centers had 1 or more LP evaluation. For small centers (<83 transplants/PSR), there were 4-fold additional LP evaluations (52 vs 13 PSRs) for 1-year mortality with Bayesian versus new-CMS criteria. For large centers (>183 transplants/PSR), there were 3-fold additional LP evaluations for 1-year mortality with Bayesian versus new-CMS criteria with median differences in observed and expected patient survival of -1.6% and -2.2%, respectively. A significant proportion of kidney transplant centers are identified as low performing with relatively small survival differences compared with expected. Bayesian criteria have significantly higher flagging rates and new-CMS criteria modestly reduce flagging. Critical appraisal of performance criteria is needed to assess whether quality oversight is meeting intended goals and whether further modifications could reduce risk aversion, more efficiently allocate resources, and increase transplant opportunities.

  5. Impact of sequential proton density fat fraction for quantification of hepatic steatosis in nonalcoholic fatty liver disease.

    PubMed

    Idilman, Ilkay S; Keskin, Onur; Elhan, Atilla Halil; Idilman, Ramazan; Karcaaltincaba, Musturay

    2014-05-01

    To determine the utility of sequential MRI-estimated proton density fat fraction (MRI-PDFF) for quantification of the longitudinal changes in liver fat content in individuals with nonalcoholic fatty liver disease (NAFLD). A total of 18 consecutive individuals (M/F: 10/8, mean age: 47.7±9.8 years) diagnosed with NAFLD, who underwent sequential PDFF calculations for the quantification of hepatic steatosis at two different time points, were included in the study. All patients underwent T1-independent volumetric multi-echo gradient-echo imaging with T2* correction and spectral fat modeling. A close correlation for quantification of hepatic steatosis between the initial MRI-PDFF and liver biopsy was observed (rs=0.758, p<0.001). The median interval between two sequential MRI-PDFF measurements was 184 days. From baseline to the end of the follow-up period, serum GGT level and homeostasis model assessment score were significantly improved (p=0.015, p=0.006, respectively), whereas BMI, serum AST, and ALT levels were slightly decreased. MRI-PDFFs were significantly improved (p=0.004). A good correlation between two sequential MRI-PDFF calculations was observed (rs=0.714, p=0.001). With linear regression analyses, only delta serum ALT levels had a significant effect on delta MRI-PDFF calculations (r2=38.6%, p=0.006). At least 5.9% improvement in MRI-PDFF is needed to achieve a normalized abnormal ALT level. The improvement of MRI-PDFF score was associated with the improvement of biochemical parameters in patients who had improvement in delta MRI-PDFF (p<0.05). MRI-PDFF can be used for the quantification of the longitudinal changes of hepatic steatosis. The changes in serum ALT levels significantly reflected changes in MRI-PDFF in patients with NAFLD.

  6. Using Bayesian networks to support decision-focused information retrieval

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lehner, P.; Elsaesser, C.; Seligman, L.

    This paper has described an approach to controlling the process of pulling data/information from distributed data bases in a way that is specific to a persons specific decision making context. Our prototype implementation of this approach uses a knowledge-based planner to generate a plan, an automatically constructed Bayesian network to evaluate the plan, specialized processing of the network to derive key information items that would substantially impact the evaluation of the plan (e.g., determine that replanning is needed), automated construction of Standing Requests for Information (SRIs) which are automated functions that monitor changes and trends in distributed data base thatmore » are relevant to the key information items. This emphasis of this paper is on how Bayesian networks are used.« less

  7. Aminoglycoside Therapy Manager: An Advanced Computer Program for Decision Support for Drug Dosing and Therapeutic Monitoring

    PubMed Central

    Lenert, Leslie; Lurie, Jon; Coleman, Robert; Klosterman, Heidrun; Blaschke, Terrence

    1990-01-01

    In this paper, we will describe an advanced drug dosing program, Aminoglycoside Therapy Manager that reasons using Bayesian pharmacokinetic modeling and symbolic modeling of patient status and drug response. Our design is similar to the design of the Digitalis Therapy Advisor program, but extends previous work by incorporating a Bayesian pharmacokinetic model, a “meta-level” analysis of drug concentrations to identify sampling errors and changes in pharmacokinetics, and including the results of the “meta-level” analysis in reasoning for dosing and therapeutic monitoring recommendations. The program is user friendly and runs on low cost general-purpose hardware. Validation studies show that the program is as accurate in predicting future drug concentrations as an expert using commercial Bayesian forecasting software.

  8. Bayesian calibration for forensic age estimation.

    PubMed

    Ferrante, Luigi; Skrami, Edlira; Gesuita, Rosaria; Cameriere, Roberto

    2015-05-10

    Forensic medicine is increasingly called upon to assess the age of individuals. Forensic age estimation is mostly required in relation to illegal immigration and identification of bodies or skeletal remains. A variety of age estimation methods are based on dental samples and use of regression models, where the age of an individual is predicted by morphological tooth changes that take place over time. From the medico-legal point of view, regression models, with age as the dependent random variable entail that age tends to be overestimated in the young and underestimated in the old. To overcome this bias, we describe a new full Bayesian calibration method (asymmetric Laplace Bayesian calibration) for forensic age estimation that uses asymmetric Laplace distribution as the probability model. The method was compared with three existing approaches (two Bayesian and a classical method) using simulated data. Although its accuracy was comparable with that of the other methods, the asymmetric Laplace Bayesian calibration appears to be significantly more reliable and robust in case of misspecification of the probability model. The proposed method was also applied to a real dataset of values of the pulp chamber of the right lower premolar measured on x-ray scans of individuals of known age. Copyright © 2015 John Wiley & Sons, Ltd.

  9. Failure detection system design methodology. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Chow, E. Y.

    1980-01-01

    The design of a failure detection and identification system consists of designing a robust residual generation process and a high performance decision making process. The design of these two processes are examined separately. Residual generation is based on analytical redundancy. Redundancy relations that are insensitive to modelling errors and noise effects are important for designing robust residual generation processes. The characterization of the concept of analytical redundancy in terms of a generalized parity space provides a framework in which a systematic approach to the determination of robust redundancy relations are developed. The Bayesian approach is adopted for the design of high performance decision processes. The FDI decision problem is formulated as a Bayes sequential decision problem. Since the optimal decision rule is incomputable, a methodology for designing suboptimal rules is proposed. A numerical algorithm is developed to facilitate the design and performance evaluation of suboptimal rules.

  10. Localization of Mobile Robots Using Odometry and an External Vision Sensor

    PubMed Central

    Pizarro, Daniel; Mazo, Manuel; Santiso, Enrique; Marron, Marta; Jimenez, David; Cobreces, Santiago; Losada, Cristina

    2010-01-01

    This paper presents a sensor system for robot localization based on the information obtained from a single camera attached in a fixed place external to the robot. Our approach firstly obtains the 3D geometrical model of the robot based on the projection of its natural appearance in the camera while the robot performs an initialization trajectory. This paper proposes a structure-from-motion solution that uses the odometry sensors inside the robot as a metric reference. Secondly, an online localization method based on a sequential Bayesian inference is proposed, which uses the geometrical model of the robot as a link between image measurements and pose estimation. The online approach is resistant to hard occlusions and the experimental setup proposed in this paper shows its effectiveness in real situations. The proposed approach has many applications in both the industrial and service robot fields. PMID:22319318

  11. Localization of mobile robots using odometry and an external vision sensor.

    PubMed

    Pizarro, Daniel; Mazo, Manuel; Santiso, Enrique; Marron, Marta; Jimenez, David; Cobreces, Santiago; Losada, Cristina

    2010-01-01

    This paper presents a sensor system for robot localization based on the information obtained from a single camera attached in a fixed place external to the robot. Our approach firstly obtains the 3D geometrical model of the robot based on the projection of its natural appearance in the camera while the robot performs an initialization trajectory. This paper proposes a structure-from-motion solution that uses the odometry sensors inside the robot as a metric reference. Secondly, an online localization method based on a sequential Bayesian inference is proposed, which uses the geometrical model of the robot as a link between image measurements and pose estimation. The online approach is resistant to hard occlusions and the experimental setup proposed in this paper shows its effectiveness in real situations. The proposed approach has many applications in both the industrial and service robot fields.

  12. Remembrance of inferences past: Amortization in human hypothesis generation.

    PubMed

    Dasgupta, Ishita; Schulz, Eric; Goodman, Noah D; Gershman, Samuel J

    2018-05-21

    Bayesian models of cognition assume that people compute probability distributions over hypotheses. However, the required computations are frequently intractable or prohibitively expensive. Since people often encounter many closely related distributions, selective reuse of computations (amortized inference) is a computationally efficient use of the brain's limited resources. We present three experiments that provide evidence for amortization in human probabilistic reasoning. When sequentially answering two related queries about natural scenes, participants' responses to the second query systematically depend on the structure of the first query. This influence is sensitive to the content of the queries, only appearing when the queries are related. Using a cognitive load manipulation, we find evidence that people amortize summary statistics of previous inferences, rather than storing the entire distribution. These findings support the view that the brain trades off accuracy and computational cost, to make efficient use of its limited cognitive resources to approximate probabilistic inference. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. A D-vine copula-based model for repeated measurements extending linear mixed models with homogeneous correlation structure.

    PubMed

    Killiches, Matthias; Czado, Claudia

    2018-03-22

    We propose a model for unbalanced longitudinal data, where the univariate margins can be selected arbitrarily and the dependence structure is described with the help of a D-vine copula. We show that our approach is an extremely flexible extension of the widely used linear mixed model if the correlation is homogeneous over the considered individuals. As an alternative to joint maximum-likelihood a sequential estimation approach for the D-vine copula is provided and validated in a simulation study. The model can handle missing values without being forced to discard data. Since conditional distributions are known analytically, we easily make predictions for future events. For model selection, we adjust the Bayesian information criterion to our situation. In an application to heart surgery data our model performs clearly better than competing linear mixed models. © 2018, The International Biometric Society.

  14. Effects of a Web-Based Tailored Multiple-Lifestyle Intervention for Adults: A Two-Year Randomized Controlled Trial Comparing Sequential and Simultaneous Delivery Modes

    PubMed Central

    Kremers, Stef PJ; Vandelanotte, Corneel; van Adrichem, Mathieu JG; Schneider, Francine; Candel, Math JJM; de Vries, Hein

    2014-01-01

    Background Web-based computer-tailored interventions for multiple health behaviors can have a significant public health impact. Yet, few randomized controlled trials have tested this assumption. Objective The objective of this paper was to test the effects of a sequential and simultaneous Web-based tailored intervention on multiple lifestyle behaviors. Methods A randomized controlled trial was conducted with 3 tailoring conditions (ie, sequential, simultaneous, and control conditions) in the Netherlands in 2009-2012. Follow-up measurements took place after 12 and 24 months. The intervention content was based on the I-Change model. In a health risk appraisal, all respondents (N=5055) received feedback on their lifestyle behaviors that indicated whether they complied with the Dutch guidelines for physical activity, vegetable consumption, fruit consumption, alcohol intake, and smoking. Participants in the sequential (n=1736) and simultaneous (n=1638) conditions received tailored motivational feedback to change unhealthy behaviors one at a time (sequential) or all at the same time (simultaneous). Mixed model analyses were performed as primary analyses; regression analyses were done as sensitivity analyses. An overall risk score was used as outcome measure, then effects on the 5 individual lifestyle behaviors were assessed and a process evaluation was performed regarding exposure to and appreciation of the intervention. Results Both tailoring strategies were associated with small self-reported behavioral changes. The sequential condition had the most significant effects compared to the control condition after 12 months (T1, effect size=0.28). After 24 months (T2), the simultaneous condition was most effective (effect size=0.18). All 5 individual lifestyle behaviors changed over time, but few effects differed significantly between the conditions. At both follow-ups, the sequential condition had significant changes in smoking abstinence compared to the simultaneous condition (T1 effect size=0.31; T2 effect size=0.41). The sequential condition was more effective in decreasing alcohol consumption than the control condition at 24 months (effect size=0.27). Change was predicted by the amount of exposure to the intervention (total visiting time: beta=–.06; P=.01; total number of visits: beta=–.11; P<.001). Both interventions were appreciated well by respondents without significant differences between conditions. Conclusions Although evidence was found for the effectiveness of both programs, no simple conclusive finding could be drawn about which intervention mode was more effective. The best kind of intervention may depend on the behavior that is targeted or on personal preferences and motivation. Further research is needed to identify moderators of intervention effectiveness. The results need to be interpreted in view of the high and selective dropout rates, multiple comparisons, and modest effect sizes. However, a large number of people were reached at low cost and behavioral change was achieved after 2 years. Trial Registration Nederlands Trial Register: NTR 2168; http://www.trialregister.nl/trialreg/admin/rctview.asp?TC=2168 (Archived by WebCite at http://www.webcitation.org/6MbUqttYB). PMID:24472854

  15. Bayesian identification of multiple seismic change points and varying seismic rates caused by induced seismicity

    NASA Astrophysics Data System (ADS)

    Montoya-Noguera, Silvana; Wang, Yu

    2017-04-01

    The Central and Eastern United States (CEUS) has experienced an abnormal increase in seismic activity, which is believed to be related to anthropogenic activities. The U.S. Geological Survey has acknowledged this situation and developed the CEUS 2016 1 year seismic hazard model using the catalog of 2015 by assuming stationary seismicity in that period. However, due to the nonstationary nature of induced seismicity, it is essential to identify change points for accurate probabilistic seismic hazard analysis (PSHA). We present a Bayesian procedure to identify the most probable change points in seismicity and define their respective seismic rates. It uses prior distributions in agreement with conventional PSHA and updates them with recent data to identify seismicity changes. It can determine the change points in a regional scale and may incorporate different types of information in an objective manner. It is first successfully tested with simulated data, and then it is used to evaluate Oklahoma's regional seismicity.

  16. Reviewing Bayesian Networks potentials for climate change impacts assessment and management: A multi-risk perspective.

    PubMed

    Sperotto, Anna; Molina, José-Luis; Torresan, Silvia; Critto, Andrea; Marcomini, Antonio

    2017-11-01

    The evaluation and management of climate change impacts on natural and human systems required the adoption of a multi-risk perspective in which the effect of multiple stressors, processes and interconnections are simultaneously modelled. Despite Bayesian Networks (BNs) are popular integrated modelling tools to deal with uncertain and complex domains, their application in the context of climate change still represent a limited explored field. The paper, drawing on the review of existing applications in the field of environmental management, discusses the potential and limitation of applying BNs to improve current climate change risk assessment procedures. Main potentials include the advantage to consider multiple stressors and endpoints in the same framework, their flexibility in dealing and communicate with the uncertainty of climate projections and the opportunity to perform scenario analysis. Some limitations (i.e. representation of temporal and spatial dynamics, quantitative validation), however, should be overcome to boost BNs use in climate change impacts assessment and management. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Constructing a clinical decision-making framework for image-guided radiotherapy using a Bayesian Network

    NASA Astrophysics Data System (ADS)

    Hargrave, C.; Moores, M.; Deegan, T.; Gibbs, A.; Poulsen, M.; Harden, F.; Mengersen, K.

    2014-03-01

    A decision-making framework for image-guided radiotherapy (IGRT) is being developed using a Bayesian Network (BN) to graphically describe, and probabilistically quantify, the many interacting factors that are involved in this complex clinical process. Outputs of the BN will provide decision-support for radiation therapists to assist them to make correct inferences relating to the likelihood of treatment delivery accuracy for a given image-guided set-up correction. The framework is being developed as a dynamic object-oriented BN, allowing for complex modelling with specific subregions, as well as representation of the sequential decision-making and belief updating associated with IGRT. A prototype graphic structure for the BN was developed by analysing IGRT practices at a local radiotherapy department and incorporating results obtained from a literature review. Clinical stakeholders reviewed the BN to validate its structure. The BN consists of a sub-network for evaluating the accuracy of IGRT practices and technology. The directed acyclic graph (DAG) contains nodes and directional arcs representing the causal relationship between the many interacting factors such as tumour site and its associated critical organs, technology and technique, and inter-user variability. The BN was extended to support on-line and off-line decision-making with respect to treatment plan compliance. Following conceptualisation of the framework, the BN will be quantified. It is anticipated that the finalised decision-making framework will provide a foundation to develop better decision-support strategies and automated correction algorithms for IGRT.

  18. Debris Object Orbit Initialization Using the Probabilistic Admissible Region with Asynchronous Heterogeneous Observations

    NASA Astrophysics Data System (ADS)

    Zaidi, W. H.; Faber, W. R.; Hussein, I. I.; Mercurio, M.; Roscoe, C. W. T.; Wilkins, M. P.

    One of the most challenging problems in treating space debris is the characterization of the orbit of a newly detected and uncorrelated measurement. The admissible region is defined as the set of physically acceptable orbits (i.e. orbits with negative energies) consistent with one or more measurements of a Resident Space Object (RSO). Given additional constraints on the orbital semi-major axis, eccentricity, etc., the admissible region can be constrained, resulting in the constrained admissible region (CAR). Based on known statistics of the measurement process, one can replace hard constraints with a Probabilistic Admissible Region (PAR), a concept introduced in 2014 as a Monte Carlo uncertainty representation approach using topocentric spherical coordinates. Ultimately, a PAR can be used to initialize a sequential Bayesian estimator and to prioritize orbital propagations in a multiple hypothesis tracking framework such as Finite Set Statistics (FISST). To date, measurements used to build the PAR have been collected concurrently and by the same sensor. In this paper, we allow measurements to have different time stamps. We also allow for non-collocated sensor collections; optical data can be collected by one sensor at a given time and radar data collected by another sensor located elsewhere. We then revisit first principles to link asynchronous optical and radar measurements using both the conservation of specific orbital energy and specific orbital angular momentum. The result from the proposed algorithm is an implicit-Bayesian and non-Gaussian representation of orbital state uncertainty.

  19. Framework to evaluate the worth of hydraulic conductivity data for optimal groundwater resources management in ecologically sensitive areas

    NASA Astrophysics Data System (ADS)

    Feyen, Luc; Gorelick, Steven M.

    2005-03-01

    We propose a framework that combines simulation optimization with Bayesian decision analysis to evaluate the worth of hydraulic conductivity data for optimal groundwater resources management in ecologically sensitive areas. A stochastic simulation optimization management model is employed to plan regionally distributed groundwater pumping while preserving the hydroecological balance in wetland areas. Because predictions made by an aquifer model are uncertain, groundwater supply systems operate below maximum yield. Collecting data from the groundwater system can potentially reduce predictive uncertainty and increase safe water production. The price paid for improvement in water management is the cost of collecting the additional data. Efficient data collection using Bayesian decision analysis proceeds in three stages: (1) The prior analysis determines the optimal pumping scheme and profit from water sales on the basis of known information. (2) The preposterior analysis estimates the optimal measurement locations and evaluates whether each sequential measurement will be cost-effective before it is taken. (3) The posterior analysis then revises the prior optimal pumping scheme and consequent profit, given the new information. Stochastic simulation optimization employing a multiple-realization approach is used to determine the optimal pumping scheme in each of the three stages. The cost of new data must not exceed the expected increase in benefit obtained in optimal groundwater exploitation. An example based on groundwater management practices in Florida aimed at wetland protection showed that the cost of data collection more than paid for itself by enabling a safe and reliable increase in production.

  20. A probabilistic model framework for evaluating year-to-year variation in crop productivity

    NASA Astrophysics Data System (ADS)

    Yokozawa, M.; Iizumi, T.; Tao, F.

    2008-12-01

    Most models describing the relation between crop productivity and weather condition have so far been focused on mean changes of crop yield. For keeping stable food supply against abnormal weather as well as climate change, evaluating the year-to-year variations in crop productivity rather than the mean changes is more essential. We here propose a new framework of probabilistic model based on Bayesian inference and Monte Carlo simulation. As an example, we firstly introduce a model on paddy rice production in Japan. It is called PRYSBI (Process- based Regional rice Yield Simulator with Bayesian Inference; Iizumi et al., 2008). The model structure is the same as that of SIMRIW, which was developed and used widely in Japan. The model includes three sub- models describing phenological development, biomass accumulation and maturing of rice crop. These processes are formulated to include response nature of rice plant to weather condition. This model inherently was developed to predict rice growth and yield at plot paddy scale. We applied it to evaluate the large scale rice production with keeping the same model structure. Alternatively, we assumed the parameters as stochastic variables. In order to let the model catch up actual yield at larger scale, model parameters were determined based on agricultural statistical data of each prefecture of Japan together with weather data averaged over the region. The posterior probability distribution functions (PDFs) of parameters included in the model were obtained using Bayesian inference. The MCMC (Markov Chain Monte Carlo) algorithm was conducted to numerically solve the Bayesian theorem. For evaluating the year-to-year changes in rice growth/yield under this framework, we firstly iterate simulations with set of parameter values sampled from the estimated posterior PDF of each parameter and then take the ensemble mean weighted with the posterior PDFs. We will also present another example for maize productivity in China. The framework proposed here provides us information on uncertainties, possibilities and limitations on future improvements in crop model as well.

  1. Bayesian prediction of future ice sheet volume using local approximation Markov chain Monte Carlo methods

    NASA Astrophysics Data System (ADS)

    Davis, A. D.; Heimbach, P.; Marzouk, Y.

    2017-12-01

    We develop a Bayesian inverse modeling framework for predicting future ice sheet volume with associated formal uncertainty estimates. Marine ice sheets are drained by fast-flowing ice streams, which we simulate using a flowline model. Flowline models depend on geometric parameters (e.g., basal topography), parameterized physical processes (e.g., calving laws and basal sliding), and climate parameters (e.g., surface mass balance), most of which are unknown or uncertain. Given observations of ice surface velocity and thickness, we define a Bayesian posterior distribution over static parameters, such as basal topography. We also define a parameterized distribution over variable parameters, such as future surface mass balance, which we assume are not informed by the data. Hyperparameters are used to represent climate change scenarios, and sampling their distributions mimics internal variation. For example, a warming climate corresponds to increasing mean surface mass balance but an individual sample may have periods of increasing or decreasing surface mass balance. We characterize the predictive distribution of ice volume by evaluating the flowline model given samples from the posterior distribution and the distribution over variable parameters. Finally, we determine the effect of climate change on future ice sheet volume by investigating how changing the hyperparameters affects the predictive distribution. We use state-of-the-art Bayesian computation to address computational feasibility. Characterizing the posterior distribution (using Markov chain Monte Carlo), sampling the full range of variable parameters and evaluating the predictive model is prohibitively expensive. Furthermore, the required resolution of the inferred basal topography may be very high, which is often challenging for sampling methods. Instead, we leverage regularity in the predictive distribution to build a computationally cheaper surrogate over the low dimensional quantity of interest (future ice sheet volume). Continual surrogate refinement guarantees asymptotic sampling from the predictive distribution. Directly characterizing the predictive distribution in this way allows us to assess the ice sheet's sensitivity to climate variability and change.

  2. Mixture class recovery in GMM under varying degrees of class separation: frequentist versus Bayesian estimation.

    PubMed

    Depaoli, Sarah

    2013-06-01

    Growth mixture modeling (GMM) represents a technique that is designed to capture change over time for unobserved subgroups (or latent classes) that exhibit qualitatively different patterns of growth. The aim of the current article was to explore the impact of latent class separation (i.e., how similar growth trajectories are across latent classes) on GMM performance. Several estimation conditions were compared: maximum likelihood via the expectation maximization (EM) algorithm and the Bayesian framework implementing diffuse priors, "accurate" informative priors, weakly informative priors, data-driven informative priors, priors reflecting partial-knowledge of parameters, and "inaccurate" (but informative) priors. The main goal was to provide insight about the optimal estimation condition under different degrees of latent class separation for GMM. Results indicated that optimal parameter recovery was obtained though the Bayesian approach using "accurate" informative priors, and partial-knowledge priors showed promise for the recovery of the growth trajectory parameters. Maximum likelihood and the remaining Bayesian estimation conditions yielded poor parameter recovery for the latent class proportions and the growth trajectories. (PsycINFO Database Record (c) 2013 APA, all rights reserved).

  3. Inverse Bayesian inference as a key of consciousness featuring a macroscopic quantum logical structure.

    PubMed

    Gunji, Yukio-Pegio; Shinohara, Shuji; Haruna, Taichi; Basios, Vasileios

    2017-02-01

    To overcome the dualism between mind and matter and to implement consciousness in science, a physical entity has to be embedded with a measurement process. Although quantum mechanics have been regarded as a candidate for implementing consciousness, nature at its macroscopic level is inconsistent with quantum mechanics. We propose a measurement-oriented inference system comprising Bayesian and inverse Bayesian inferences. While Bayesian inference contracts probability space, the newly defined inverse one relaxes the space. These two inferences allow an agent to make a decision corresponding to an immediate change in their environment. They generate a particular pattern of joint probability for data and hypotheses, comprising multiple diagonal and noisy matrices. This is expressed as a nondistributive orthomodular lattice equivalent to quantum logic. We also show that an orthomodular lattice can reveal information generated by inverse syllogism as well as the solutions to the frame and symbol-grounding problems. Our model is the first to connect macroscopic cognitive processes with the mathematical structure of quantum mechanics with no additional assumptions. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  4. How People Use Social Information to Find out What to Want in the Paradigmatic Case of Inter-temporal Preferences

    PubMed Central

    Dolan, Raymond J.

    2016-01-01

    The weight with which a specific outcome feature contributes to preference quantifies a person’s ‘taste’ for that feature. However, far from being fixed personality characteristics, tastes are plastic. They tend to align, for example, with those of others even if such conformity is not rewarded. We hypothesised that people can be uncertain about their tastes. Personal tastes are therefore uncertain beliefs. People can thus learn about them by considering evidence, such as the preferences of relevant others, and then performing Bayesian updating. If a person’s choice variability reflects uncertainty, as in random-preference models, then a signature of Bayesian updating is that the degree of taste change should correlate with that person’s choice variability. Temporal discounting coefficients are an important example of taste–for patience. These coefficients quantify impulsivity, have good psychometric properties and can change upon observing others’ choices. We examined discounting preferences in a novel, large community study of 14–24 year olds. We assessed discounting behaviour, including decision variability, before and after participants observed another person’s choices. We found good evidence for taste uncertainty and for Bayesian taste updating. First, participants displayed decision variability which was better accounted for by a random-taste than by a response-noise model. Second, apparent taste shifts were well described by a Bayesian model taking into account taste uncertainty and the relevance of social information. Our findings have important neuroscientific, clinical and developmental significance. PMID:27447491

  5. Human values and beliefs and concern about climate change: a Bayesian longitudinal analysis.

    PubMed

    Prati, Gabriele; Pietrantoni, Luca; Albanesi, Cinzia

    2018-01-01

    The aim of this study was to investigate the influence of human values on beliefs and concern about climate change using a longitudinal design and Bayesian analysis. A sample of 298 undergraduate/master students filled out the same questionnaire on two occasions at an interval of 2 months. The questionnaire included measures of beliefs and concern about climate change (i.e., perceived consequences, risk perception, and skepticism) and human values (i.e., the Portrait Values Questionnaire). After controlling for gender and the respective baseline score, universalism at Time 1 was associated with higher levels of perceived consequences of climate change and lower levels of climate change skepticism. Self-direction at Time 1 predicted Time 2 climate change risk perception and perceived consequences of climate change. Hedonism at Time 1 was associated with Time 2 climate change risk perception. The other human values at Time 1 were not associated with any of the measures of beliefs and concern about climate change at Time 2. The results of this study suggest that a focus on universalism and self-direction values seems to be a more successful approach to stimulate public engagement with climate change than a focus on other human values.

  6. A cost and policy analysis comparing immediate sequential cataract surgery and delayed sequential cataract surgery from the physician perspective in the United States.

    PubMed

    Neel, Sean T

    2014-11-01

    A cost analysis was performed to evaluate the effect on physicians in the United States of a transition from delayed sequential cataract surgery to immediate sequential cataract surgery. Financial and efficiency impacts of this change were evaluated to determine whether efficiency gains could offset potential reduced revenue. A cost analysis using Medicare cataract surgery volume estimates, Medicare 2012 physician cataract surgery reimbursement schedules, and estimates of potential additional office visit revenue comparing immediate sequential cataract surgery with delayed sequential cataract surgery for a single specialty ophthalmology practice in West Tennessee. This model should give an indication of the effect on physicians on a national basis. A single specialty ophthalmology practice in West Tennessee was found to have a cataract surgery revenue loss of $126,000, increased revenue from office visits of $34,449 to $106,271 (minimum and maximum offset methods), and a net loss of $19,900 to $91,700 (base case) with the conversion to immediate sequential cataract surgery. Physicians likely stand to lose financially, and this loss cannot be offset by increased patient visits under the current reimbursement system. This may result in physician resistance to converting to immediate sequential cataract surgery, gaming, and supplier-induced demand.

  7. A sequential sampling account of response bias and speed-accuracy tradeoffs in a conflict detection task.

    PubMed

    Vuckovic, Anita; Kwantes, Peter J; Humphreys, Michael; Neal, Andrew

    2014-03-01

    Signal Detection Theory (SDT; Green & Swets, 1966) is a popular tool for understanding decision making. However, it does not account for the time taken to make a decision, nor why response bias might change over time. Sequential sampling models provide a way of accounting for speed-accuracy trade-offs and response bias shifts. In this study, we test the validity of a sequential sampling model of conflict detection in a simulated air traffic control task by assessing whether two of its key parameters respond to experimental manipulations in a theoretically consistent way. Through experimental instructions, we manipulated participants' response bias and the relative speed or accuracy of their responses. The sequential sampling model was able to replicate the trends in the conflict responses as well as response time across all conditions. Consistent with our predictions, manipulating response bias was associated primarily with changes in the model's Criterion parameter, whereas manipulating speed-accuracy instructions was associated with changes in the Threshold parameter. The success of the model in replicating the human data suggests we can use the parameters of the model to gain an insight into the underlying response bias and speed-accuracy preferences common to dynamic decision-making tasks. © 2013 American Psychological Association

  8. Assessment of groundwater level estimation uncertainty using sequential Gaussian simulation and Bayesian bootstrapping

    NASA Astrophysics Data System (ADS)

    Varouchakis, Emmanouil; Hristopulos, Dionissios

    2015-04-01

    Space-time geostatistical approaches can improve the reliability of dynamic groundwater level models in areas with limited spatial and temporal data. Space-time residual Kriging (STRK) is a reliable method for spatiotemporal interpolation that can incorporate auxiliary information. The method usually leads to an underestimation of the prediction uncertainty. The uncertainty of spatiotemporal models is usually estimated by determining the space-time Kriging variance or by means of cross validation analysis. For de-trended data the former is not usually applied when complex spatiotemporal trend functions are assigned. A Bayesian approach based on the bootstrap idea and sequential Gaussian simulation are employed to determine the uncertainty of the spatiotemporal model (trend and covariance) parameters. These stochastic modelling approaches produce multiple realizations, rank the prediction results on the basis of specified criteria and capture the range of the uncertainty. The correlation of the spatiotemporal residuals is modeled using a non-separable space-time variogram based on the Spartan covariance family (Hristopulos and Elogne 2007, Varouchakis and Hristopulos 2013). We apply these simulation methods to investigate the uncertainty of groundwater level variations. The available dataset consists of bi-annual (dry and wet hydrological period) groundwater level measurements in 15 monitoring locations for the time period 1981 to 2010. The space-time trend function is approximated using a physical law that governs the groundwater flow in the aquifer in the presence of pumping. The main objective of this research is to compare the performance of two simulation methods for prediction uncertainty estimation. In addition, we investigate the performance of the Spartan spatiotemporal covariance function for spatiotemporal geostatistical analysis. Hristopulos, D.T. and Elogne, S.N. 2007. Analytic properties and covariance functions for a new class of generalized Gibbs random fields. IΕΕΕ Transactions on Information Theory, 53:4667-4467. Varouchakis, E.A. and Hristopulos, D.T. 2013. Improvement of groundwater level prediction in sparsely gauged basins using physical laws and local geographic features as auxiliary variables. Advances in Water Resources, 52:34-49. Research supported by the project SPARTA 1591: "Development of Space-Time Random Fields based on Local Interaction Models and Applications in the Processing of Spatiotemporal Datasets". "SPARTA" is implemented under the "ARISTEIA" Action of the operational programme Education and Lifelong Learning and is co-funded by the European Social Fund (ESF) and National Resources.

  9. Probabilistic prediction of barrier-island response to hurricanes

    USGS Publications Warehouse

    Plant, Nathaniel G.; Stockdon, Hilary F.

    2012-01-01

    Prediction of barrier-island response to hurricane attack is important for assessing the vulnerability of communities, infrastructure, habitat, and recreational assets to the impacts of storm surge, waves, and erosion. We have demonstrated that a conceptual model intended to make qualitative predictions of the type of beach response to storms (e.g., beach erosion, dune erosion, dune overwash, inundation) can be reformulated in a Bayesian network to make quantitative predictions of the morphologic response. In an application of this approach at Santa Rosa Island, FL, predicted dune-crest elevation changes in response to Hurricane Ivan explained about 20% to 30% of the observed variance. An extended Bayesian network based on the original conceptual model, which included dune elevations, storm surge, and swash, but with the addition of beach and dune widths as input variables, showed improved skill compared to the original model, explaining 70% of dune elevation change variance and about 60% of dune and shoreline position change variance. This probabilistic approach accurately represented prediction uncertainty (measured with the log likelihood ratio), and it outperformed the baseline prediction (i.e., the prior distribution based on the observations). Finally, sensitivity studies demonstrated that degrading the resolution of the Bayesian network or removing data from the calibration process reduced the skill of the predictions by 30% to 40%. The reduction in skill did not change conclusions regarding the relative importance of the input variables, and the extended model's skill always outperformed the original model.

  10. Electromagnetic-induction logging to monitor changing chloride concentrations

    USGS Publications Warehouse

    Metzger, Loren F.; Izbicki, John A.

    2013-01-01

    Water from the San Joaquin Delta, having chloride concentrations up to 3590 mg/L, has intruded fresh water aquifers underlying Stockton, California. Changes in chloride concentrations at depth within these aquifers were evaluated using sequential electromagnetic (EM) induction logs collected during 2004 through 2007 at seven multiple-well sites as deep as 268 m. Sequential EM logging is useful for identifying changes in groundwater quality through polyvinyl chloride-cased wells in intervals not screened by wells. These unscreened intervals represent more than 90% of the aquifer at the sites studied. Sequential EM logging suggested degrading groundwater quality in numerous thin intervals, typically between 1 and 7 m in thickness, especially in the northern part of the study area. Some of these intervals were unscreened by wells, and would not have been identified by traditional groundwater sample collection. Sequential logging also identified intervals with improving water quality—possibly due to groundwater management practices that have limited pumping and promoted artificial recharge. EM resistivity was correlated with chloride concentrations in sampled wells and in water from core material. Natural gamma log data were used to account for the effect of aquifer lithology on EM resistivity. Results of this study show that a sequential EM logging is useful for identifying and monitoring the movement of high-chloride water, having lower salinities and chloride concentrations than sea water, in aquifer intervals not screened by wells, and that increases in chloride in water from wells in the area are consistent with high-chloride water originating from the San Joaquin Delta rather than from the underlying saline aquifer.

  11. Evolution in Mind: Evolutionary Dynamics, Cognitive Processes, and Bayesian Inference.

    PubMed

    Suchow, Jordan W; Bourgin, David D; Griffiths, Thomas L

    2017-07-01

    Evolutionary theory describes the dynamics of population change in settings affected by reproduction, selection, mutation, and drift. In the context of human cognition, evolutionary theory is most often invoked to explain the origins of capacities such as language, metacognition, and spatial reasoning, framing them as functional adaptations to an ancestral environment. However, evolutionary theory is useful for understanding the mind in a second way: as a mathematical framework for describing evolving populations of thoughts, ideas, and memories within a single mind. In fact, deep correspondences exist between the mathematics of evolution and of learning, with perhaps the deepest being an equivalence between certain evolutionary dynamics and Bayesian inference. This equivalence permits reinterpretation of evolutionary processes as algorithms for Bayesian inference and has relevance for understanding diverse cognitive capacities, including memory and creativity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Sequential Online Wellness Programming Is an Effective Strategy to Promote Behavior Change

    ERIC Educational Resources Information Center

    MacNab, Lindsay R.; Francis, Sarah L.

    2015-01-01

    The growing number of United States youth and adults categorized as overweight or obese illustrates a need for research-based family wellness interventions. Sequential, online, Extension-delivered family wellness interventions offer a time- and cost-effective approach for both participants and Extension educators. The 6-week, online Healthy…

  13. Effect of Same-day Sequential Exposure to Nitrogen Dioxide and Ozone on Cardiac and Ventilatory Function in Mice

    EPA Science Inventory

    This study examines the cardiac and ventilatory effects of sequential exposure to nitrogen dioxide and then ozone. The data show that mice exposed to both gases have increased arrhythmia and breathing changes not observed in the other groups. Although the mechanisms underlying ai...

  14. Nitrogen stress triggered biochemical and morphological changes in the microalgae Scenedesmus sp. CCNM 1077.

    PubMed

    Pancha, Imran; Chokshi, Kaumeel; George, Basil; Ghosh, Tonmoy; Paliwal, Chetan; Maurya, Rahulkumar; Mishra, Sandhya

    2014-03-01

    The aim of present study was to investigate the effects of nitrogen limitation as well as sequential nitrogen starvation on morphological and biochemical changes in Scenedesmus sp. CCNM 1077. The results revealed that the nitrogen limitation and sequential nitrogen starvation conditions significantly decreases the photosynthetic activity as well as crude protein content in the organism, while dry cell weight and biomass productivity are largely unaffected up to nitrate concentration of about 30.87mg/L and 3 days nitrate limitation condition. Nitrate stress was found to have a significant effect on cell morphology of Scenedesmus sp. CCNM 1077. Total removal of nitrate from the growth medium resulted in highest lipid (27.93%) and carbohydrate content (45.74%), making it a potential feed stock for biodiesel and bio-ethanol production. This is a unique approach to understand morphological and biochemical changes in freshwater microalgae under nitrate limitation as well as sequential nitrate removal conditions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Estimating Pressure Reactivity Using Noninvasive Doppler-Based Systolic Flow Index.

    PubMed

    Zeiler, Frederick A; Smielewski, Peter; Donnelly, Joseph; Czosnyka, Marek; Menon, David K; Ercole, Ari

    2018-04-05

    The study objective was to derive models that estimate the pressure reactivity index (PRx) using the noninvasive transcranial Doppler (TCD) based systolic flow index (Sx_a) and mean flow index (Mx_a), both based on mean arterial pressure, in traumatic brain injury (TBI). Using a retrospective database of 347 patients with TBI with intracranial pressure and TCD time series recordings, we derived PRx, Sx_a, and Mx_a. We first derived the autocorrelative structure of PRx based on: (A) autoregressive integrative moving average (ARIMA) modeling in representative patients, and (B) within sequential linear mixed effects (LME) models with various embedded ARIMA error structures for PRx for the entire population. Finally, we performed sequential LME models with embedded PRx ARIMA modeling to find the best model for estimating PRx using Sx_a and Mx_a. Model adequacy was assessed via normally distributed residual density. Model superiority was assessed via Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC), log likelihood (LL), and analysis of variance testing between models. The most appropriate ARIMA structure for PRx in this population was (2,0,2). This was applied in sequential LME modeling. Two models were superior (employing random effects in the independent variables and intercept): (A) PRx ∼ Sx_a, and (B) PRx ∼ Sx_a + Mx_a. Correlation between observed and estimated PRx with these two models was: (A) 0.794 (p < 0.0001, 95% confidence interval (CI) = 0.788-0.799), and (B) 0.814 (p < 0.0001, 95% CI = 0.809-0.819), with acceptable agreement on Bland-Altman analysis. Through using linear mixed effects modeling and accounting for the ARIMA structure of PRx, one can estimate PRx using noninvasive TCD-based indices. We have described our first attempts at such modeling and PRx estimation, establishing the strong link between two aspects of cerebral autoregulation: measures of cerebral blood flow and those of pulsatile cerebral blood volume. Further work is required to validate.

  16. Tracing the influence of land-use change on water quality and coral reefs using a Bayesian model.

    PubMed

    Brown, Christopher J; Jupiter, Stacy D; Albert, Simon; Klein, Carissa J; Mangubhai, Sangeeta; Maina, Joseph M; Mumby, Peter; Olley, Jon; Stewart-Koster, Ben; Tulloch, Vivitskaia; Wenger, Amelia

    2017-07-06

    Coastal ecosystems can be degraded by poor water quality. Tracing the causes of poor water quality back to land-use change is necessary to target catchment management for coastal zone management. However, existing models for tracing the sources of pollution require extensive data-sets which are not available for many of the world's coral reef regions that may have severe water quality issues. Here we develop a hierarchical Bayesian model that uses freely available satellite data to infer the connection between land-uses in catchments and water clarity in coastal oceans. We apply the model to estimate the influence of land-use change on water clarity in Fiji. We tested the model's predictions against underwater surveys, finding that predictions of poor water quality are consistent with observations of high siltation and low coverage of sediment-sensitive coral genera. The model thus provides a means to link land-use change to declines in coastal water quality.

  17. Towards a global flood detection system using social media

    NASA Astrophysics Data System (ADS)

    de Bruijn, Jens; de Moel, Hans; Jongman, Brenden; Aerts, Jeroen

    2017-04-01

    It is widely recognized that an early warning is critical in improving international disaster response. Analysis of social media in real-time can provide valuable information about an event or help to detect unexpected events. For successful and reliable detection systems that work globally, it is important that sufficient data is available and that the algorithm works both in data-rich and data-poor environments. In this study, both a new geotagging system and multi-level event detection system for flood hazards was developed using Twitter data. Geotagging algorithms that regard one tweet as a single document are well-studied. However, no algorithms exist that combine several sequential tweets mentioning keywords regarding a specific event type. Within the time frame of an event, multiple users use event related keywords that refer to the same place name. This notion allows us to treat several sequential tweets posted in the last 24 hours as one document. For all these tweets, we collect a series of spatial indicators given in the tweet metadata and extract additional topological indicators from the text. Using these indicators, we can reduce ambiguity and thus better estimate what locations are tweeted about. Using these localized tweets, Bayesian change-point analysis is used to find significant increases of tweets mentioning countries, provinces or towns. In data-poor environments detection of events on a country level is possible, while in other, data-rich, environments detection on a city level is achieved. Additionally, on a city-level we analyse the spatial dependence of mentioned places. If multiple places within a limited spatial extent are mentioned, detection confidence increases. We run the algorithm using 2 years of Twitter data with flood related keywords in 13 major languages and validate against a flood event database. We find that the geotagging algorithm yields significantly more data than previously developed algorithms and successfully deals with ambiguous place names. In addition, we show that our detection system can both quickly and reliably detect floods, even in countries where data is scarce, while achieving high detail in countries where more data is available.

  18. Abrupt Strategy Change Underlies Gradual Performance Change: Bayesian Hierarchical Models of Component and Aggregate Strategy Use

    ERIC Educational Resources Information Center

    Wynton, Sarah K. A.; Anglim, Jeromy

    2017-01-01

    While researchers have often sought to understand the learning curve in terms of multiple component processes, few studies have measured and mathematically modeled these processes on a complex task. In particular, there remains a need to reconcile how abrupt changes in strategy use can co-occur with gradual changes in task completion time. Thus,…

  19. Assessment of Data Fusion Algorithms for Earth Observation Change Detection Processes.

    PubMed

    Molina, Iñigo; Martinez, Estibaliz; Morillo, Carmen; Velasco, Jesus; Jara, Alvaro

    2016-09-30

    In this work a parametric multi-sensor Bayesian data fusion approach and a Support Vector Machine (SVM) are used for a Change Detection problem. For this purpose two sets of SPOT5-PAN images have been used, which are in turn used for Change Detection Indices (CDIs) calculation. For minimizing radiometric differences, a methodology based on zonal "invariant features" is suggested. The choice of one or the other CDI for a change detection process is a subjective task as each CDI is probably more or less sensitive to certain types of changes. Likewise, this idea might be employed to create and improve a "change map", which can be accomplished by means of the CDI's informational content. For this purpose, information metrics such as the Shannon Entropy and "Specific Information" have been used to weight the changes and no-changes categories contained in a certain CDI and thus introduced in the Bayesian information fusion algorithm. Furthermore, the parameters of the probability density functions (pdf's) that best fit the involved categories have also been estimated. Conversely, these considerations are not necessary for mapping procedures based on the discriminant functions of a SVM. This work has confirmed the capabilities of probabilistic information fusion procedure under these circumstances.

  20. A Bayesian Multilevel Model for Microcystin Prediction in ...

    EPA Pesticide Factsheets

    The frequency of cyanobacteria blooms in North American lakes is increasing. A major concernwith rising cyanobacteria blooms is microcystin, a common cyanobacterial hepatotoxin. Toexplore the conditions that promote high microcystin concentrations, we analyzed the US EPANational Lake Assessment (NLA) dataset collected in the summer of 2007. The NLA datasetis reported for nine eco-regions. We used the results of random forest modeling as a means ofvariable selection from which we developed a Bayesian multilevel model of microcystin concentrations.Model parameters under a multilevel modeling framework are eco-region specific, butthey are also assumed to be exchangeable across eco-regions for broad continental scaling. Theexchangeability assumption ensures that both the common patterns and eco-region specific featureswill be reflected in the model. Furthermore, the method incorporates appropriate estimatesof uncertainty. Our preliminary results show associations between microcystin and turbidity, totalnutrients, and N:P ratios. The NLA 2012 will be used for Bayesian updating. The results willhelp develop management strategies to alleviate microcystin impacts and improve lake quality. This work provides a probabilistic framework for predicting microcystin presences in lakes. It would allow for insights to be made about how changes in nutrient concentrations could potentially change toxin levels.

  1. Bayesian nonparametric regression with varying residual density

    PubMed Central

    Pati, Debdeep; Dunson, David B.

    2013-01-01

    We consider the problem of robust Bayesian inference on the mean regression function allowing the residual density to change flexibly with predictors. The proposed class of models is based on a Gaussian process prior for the mean regression function and mixtures of Gaussians for the collection of residual densities indexed by predictors. Initially considering the homoscedastic case, we propose priors for the residual density based on probit stick-breaking (PSB) scale mixtures and symmetrized PSB (sPSB) location-scale mixtures. Both priors restrict the residual density to be symmetric about zero, with the sPSB prior more flexible in allowing multimodal densities. We provide sufficient conditions to ensure strong posterior consistency in estimating the regression function under the sPSB prior, generalizing existing theory focused on parametric residual distributions. The PSB and sPSB priors are generalized to allow residual densities to change nonparametrically with predictors through incorporating Gaussian processes in the stick-breaking components. This leads to a robust Bayesian regression procedure that automatically down-weights outliers and influential observations in a locally-adaptive manner. Posterior computation relies on an efficient data augmentation exact block Gibbs sampler. The methods are illustrated using simulated and real data applications. PMID:24465053

  2. Induction of simultaneous and sequential malolactic fermentation in durian wine.

    PubMed

    Taniasuri, Fransisca; Lee, Pin-Rou; Liu, Shao-Quan

    2016-08-02

    This study represented for the first time the impact of malolactic fermentation (MLF) induced by Oenococcus oeni and its inoculation strategies (simultaneous vs. sequential) on the fermentation performance as well as aroma compound profile of durian wine. There was no negative impact of simultaneous inoculation of O. oeni and Saccharomyces cerevisiae on the growth and fermentation kinetics of S. cerevisiae as compared to sequential fermentation. Simultaneous MLF did not lead to an excessive increase in volatile acidity as compared to sequential MLF. The kinetic changes of organic acids (i.e. malic, lactic, succinic, acetic and α-ketoglutaric acids) varied with simultaneous and sequential MLF relative to yeast alone. MLF, regardless of inoculation mode, resulted in higher production of fermentation-derived volatiles as compared to control (alcoholic fermentation only), including esters, volatile fatty acids, and terpenes, except for higher alcohols. Most indigenous volatile sulphur compounds in durian were decreased to trace levels with little differences among the control, simultaneous and sequential MLF. Among the different wines, the wine with simultaneous MLF had higher concentrations of terpenes and acetate esters while sequential MLF had increased concentrations of medium- and long-chain ethyl esters. Relative to alcoholic fermentation only, both simultaneous and sequential MLF reduced acetaldehyde substantially with sequential MLF being more effective. These findings illustrate that MLF is an effective and novel way of modulating the volatile and aroma compound profile of durian wine. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. The forecasting of menstruation based on a state-space modeling of basal body temperature time series.

    PubMed

    Fukaya, Keiichi; Kawamori, Ai; Osada, Yutaka; Kitazawa, Masumi; Ishiguro, Makio

    2017-09-20

    Women's basal body temperature (BBT) shows a periodic pattern that associates with menstrual cycle. Although this fact suggests a possibility that daily BBT time series can be useful for estimating the underlying phase state as well as for predicting the length of current menstrual cycle, little attention has been paid to model BBT time series. In this study, we propose a state-space model that involves the menstrual phase as a latent state variable to explain the daily fluctuation of BBT and the menstruation cycle length. Conditional distributions of the phase are obtained by using sequential Bayesian filtering techniques. A predictive distribution of the next menstruation day can be derived based on this conditional distribution and the model, leading to a novel statistical framework that provides a sequentially updated prediction for upcoming menstruation day. We applied this framework to a real data set of women's BBT and menstruation days and compared prediction accuracy of the proposed method with that of previous methods, showing that the proposed method generally provides a better prediction. Because BBT can be obtained with relatively small cost and effort, the proposed method can be useful for women's health management. Potential extensions of this framework as the basis of modeling and predicting events that are associated with the menstrual cycles are discussed. © 2017 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. © 2017 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd.

  4. Detecting Signals of Disproportionate Reporting from Singapore's Spontaneous Adverse Event Reporting System: An Application of the Sequential Probability Ratio Test.

    PubMed

    Chan, Cheng Leng; Rudrappa, Sowmya; Ang, Pei San; Li, Shu Chuen; Evans, Stephen J W

    2017-08-01

    The ability to detect safety concerns from spontaneous adverse drug reaction reports in a timely and efficient manner remains important in public health. This paper explores the behaviour of the Sequential Probability Ratio Test (SPRT) and ability to detect signals of disproportionate reporting (SDRs) in the Singapore context. We used SPRT with a combination of two hypothesised relative risks (hRRs) of 2 and 4.1 to detect signals of both common and rare adverse events in our small database. We compared SPRT with other methods in terms of number of signals detected and whether labelled adverse drug reactions were detected or the reaction terms were considered serious. The other methods used were reporting odds ratio (ROR), Bayesian Confidence Propagation Neural Network (BCPNN) and Gamma Poisson Shrinker (GPS). The SPRT produced 2187 signals in common with all methods, 268 unique signals, and 70 signals in common with at least one other method, and did not produce signals in 178 cases where two other methods detected them, and there were 403 signals unique to one of the other methods. In terms of sensitivity, ROR performed better than other methods, but the SPRT method found more new signals. The performances of the methods were similar for negative predictive value and specificity. Using a combination of hRRs for SPRT could be a useful screening tool for regulatory agencies, and more detailed investigation of the medical utility of the system is merited.

  5. Mining patterns in persistent surveillance systems with smart query and visual analytics

    NASA Astrophysics Data System (ADS)

    Habibi, Mohammad S.; Shirkhodaie, Amir

    2013-05-01

    In Persistent Surveillance Systems (PSS) the ability to detect and characterize events geospatially help take pre-emptive steps to counter adversary's actions. Interactive Visual Analytic (VA) model offers this platform for pattern investigation and reasoning to comprehend and/or predict such occurrences. The need for identifying and offsetting these threats requires collecting information from diverse sources, which brings with it increasingly abstract data. These abstract semantic data have a degree of inherent uncertainty and imprecision, and require a method for their filtration before being processed further. In this paper, we have introduced an approach based on Vector Space Modeling (VSM) technique for classification of spatiotemporal sequential patterns of group activities. The feature vectors consist of an array of attributes extracted from generated sensors semantic annotated messages. To facilitate proper similarity matching and detection of time-varying spatiotemporal patterns, a Temporal-Dynamic Time Warping (DTW) method with Gaussian Mixture Model (GMM) for Expectation Maximization (EM) is introduced. DTW is intended for detection of event patterns from neighborhood-proximity semantic frames derived from established ontology. GMM with EM, on the other hand, is employed as a Bayesian probabilistic model to estimated probability of events associated with a detected spatiotemporal pattern. In this paper, we present a new visual analytic tool for testing and evaluation group activities detected under this control scheme. Experimental results demonstrate the effectiveness of proposed approach for discovery and matching of subsequences within sequentially generated patterns space of our experiments.

  6. Sequential planning of flood protection infrastructure under limited historic flood record and climate change uncertainty

    NASA Astrophysics Data System (ADS)

    Dittes, Beatrice; Špačková, Olga; Straub, Daniel

    2017-04-01

    Flood protection is often designed to safeguard people and property following regulations and standards, which specify a target design flood protection level, such as the 100-year flood level prescribed in Germany (DWA, 2011). In practice, the magnitude of such an event is only known within a range of uncertainty, which is caused by limited historic records and uncertain climate change impacts, among other factors (Hall & Solomatine, 2008). As more observations and improved climate projections become available in the future, the design flood estimate changes and the capacity of the flood protection may be deemed insufficient at a future point in time. This problem can be mitigated by the implementation of flexible flood protection systems (that can easily be adjusted in the future) and/or by adding an additional reserve to the flood protection, i.e. by applying a safety factor to the design. But how high should such a safety factor be? And how much should the decision maker be willing to pay to make the system flexible, i.e. what is the Value of Flexibility (Špačková & Straub, 2017)? We propose a decision model that identifies cost-optimal decisions on flood protection capacity in the face of uncertainty (Dittes et al. 2017). It considers sequential adjustments of the protection system during its lifetime, taking into account its flexibility. The proposed framework is based on pre-posterior Bayesian decision analysis, using Decision Trees and Markov Decision Processes, and is fully quantitative. It can include a wide range of uncertainty components such as uncertainty associated with limited historic record or uncertain climate or socio-economic change. It is shown that since flexible systems are less costly to adjust when flood estimates are changing, they justify initially lower safety factors. Investigation on the Value of Flexibility (VoF) demonstrates that VoF depends on the type and degree of uncertainty, on the learning effect (i.e. kind and quality of information that we will gather in the future) and on the formulation of the optimization problem (risk-based vs. rule-based approach). The application of the framework is demonstrated on catchments in Germany. References: DWA (Deutsche Vereinigung für Wasserwirtschaft Abwasser und Abfall eV.) 2011. Merkblatt DWA-M 507-1: Deiche an Fließgewässern. (A. Bieberstein, Ed.). Hennef: DWA Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall e. V. Hall, J., & Solomatine, D. 2008. A framework for uncertainty analysis in flood risk management decisions. International Journal of River Basin Management, 6(2), 85-98. http://doi.org/10.1080/15715124.2008.9635339 Špačková, O. & Straub, D. 2017. Long-term adaption decisions via fully and partially observable Markov decision processes. Sustainable and Resilient Infrastructure. In print.

  7. Assessing global vegetation activity using spatio-temporal Bayesian modelling

    NASA Astrophysics Data System (ADS)

    Mulder, Vera L.; van Eck, Christel M.; Friedlingstein, Pierre; Regnier, Pierre A. G.

    2016-04-01

    This work demonstrates the potential of modelling vegetation activity using a hierarchical Bayesian spatio-temporal model. This approach allows modelling changes in vegetation and climate simultaneous in space and time. Changes of vegetation activity such as phenology are modelled as a dynamic process depending on climate variability in both space and time. Additionally, differences in observed vegetation status can be contributed to other abiotic ecosystem properties, e.g. soil and terrain properties. Although these properties do not change in time, they do change in space and may provide valuable information in addition to the climate dynamics. The spatio-temporal Bayesian models were calibrated at a regional scale because the local trends in space and time can be better captured by the model. The regional subsets were defined according to the SREX segmentation, as defined by the IPCC. Each region is considered being relatively homogeneous in terms of large-scale climate and biomes, still capturing small-scale (grid-cell level) variability. Modelling within these regions is hence expected to be less uncertain due to the absence of these large-scale patterns, compared to a global approach. This overall modelling approach allows the comparison of model behavior for the different regions and may provide insights on the main dynamic processes driving the interaction between vegetation and climate within different regions. The data employed in this study encompasses the global datasets for soil properties (SoilGrids), terrain properties (Global Relief Model based on SRTM DEM and ETOPO), monthly time series of satellite-derived vegetation indices (GIMMS NDVI3g) and climate variables (Princeton Meteorological Forcing Dataset). The findings proved the potential of a spatio-temporal Bayesian modelling approach for assessing vegetation dynamics, at a regional scale. The observed interrelationships of the employed data and the different spatial and temporal trends support our hypothesis. That is, the change of vegetation in space and time may be better understood when modelling vegetation change as both a dynamic and multivariate process. Therefore, future research will focus on a multivariate dynamical spatio-temporal modelling approach. This ongoing research is performed within the context of the project "Global impacts of hydrological and climatic extremes on vegetation" (project acronym: SAT-EX) which is part of the Belgian research programme for Earth Observation Stereo III.

  8. Functions Represented as Linear Sequential Data: Relationships between Presentation and Student Responses

    ERIC Educational Resources Information Center

    Ayalon, Michal; Watson, Anne; Lerman, Steve

    2015-01-01

    This study investigates students' ways of attending to linear sequential data in two tasks, and conjectures possible relationships between those ways and elements of the task design. Drawing on the substantial literature about such situations, we focus for this paper on linear rate of change, and on covariation and correspondence approaches to…

  9. Optimum target sizes for a sequential sawing process

    Treesearch

    H. Dean Claxton

    1972-01-01

    A method for solving a class of problems in random sequential processes is presented. Sawing cedar pencil blocks is used to illustrate the method. Equations are developed for the function representing loss from improper sizing of blocks. A weighted over-all distribution for sawing and drying operations is developed and graphed. Loss minimizing changes in the control...

  10. Randomized Controlled Trial for Behavioral Smoking and Weight Control Treatment: Effect of Concurrent Versus Sequential Intervention.

    ERIC Educational Resources Information Center

    Spring, Bonnie; Pagoto, Sherry; Pingitore, Regina; Doran, Neal; Schneider, Kristin; Hedeker, Don

    2004-01-01

    The authors compared simultaneous versus sequential approaches to multiple health behavior change in diet, exercise, and cigarette smoking. Female regular smokers (N = 315) randomized to 3 conditions received 16 weeks of behavioral smoking treatment, quit smoking at Week 5, and were followed for 9 months after quit date. Weight management was…

  11. Beyond Grand Rounds: A Comprehensive and Sequential Intervention to Improve Identification of Delirium

    ERIC Educational Resources Information Center

    Ramaswamy, Ravishankar; Dix, Edward F.; Drew, Janet E.; Diamond, James J.; Inouye, Sharon K.; Roehl, Barbara J. O.

    2011-01-01

    Purpose of the Study: Delirium is a widespread concern for hospitalized seniors, yet is often unrecognized. A comprehensive and sequential intervention (CSI) aiming to effect change in clinician behavior by improving knowledge about delirium was tested. Design and Methods: A 2-day CSI program that consisted of progressive 4-part didactic series,…

  12. Bayesian Cue Integration as a Developmental Outcome of Reward Mediated Learning

    PubMed Central

    Weisswange, Thomas H.; Rothkopf, Constantin A.; Rodemann, Tobias; Triesch, Jochen

    2011-01-01

    Average human behavior in cue combination tasks is well predicted by Bayesian inference models. As this capability is acquired over developmental timescales, the question arises, how it is learned. Here we investigated whether reward dependent learning, that is well established at the computational, behavioral, and neuronal levels, could contribute to this development. It is shown that a model free reinforcement learning algorithm can indeed learn to do cue integration, i.e. weight uncertain cues according to their respective reliabilities and even do so if reliabilities are changing. We also consider the case of causal inference where multimodal signals can originate from one or multiple separate objects and should not always be integrated. In this case, the learner is shown to develop a behavior that is closest to Bayesian model averaging. We conclude that reward mediated learning could be a driving force for the development of cue integration and causal inference. PMID:21750717

  13. Estimation of gross land-use change and its uncertainty using a Bayesian data assimilation approach

    NASA Astrophysics Data System (ADS)

    Levy, Peter; van Oijen, Marcel; Buys, Gwen; Tomlinson, Sam

    2018-03-01

    We present a method for estimating land-use change using a Bayesian data assimilation approach. The approach provides a general framework for combining multiple disparate data sources with a simple model. This allows us to constrain estimates of gross land-use change with reliable national-scale census data, whilst retaining the detailed information available from several other sources. Eight different data sources, with three different data structures, were combined in our posterior estimate of land use and land-use change, and other data sources could easily be added in future. The tendency for observations to underestimate gross land-use change is accounted for by allowing for a skewed distribution in the likelihood function. The data structure produced has high temporal and spatial resolution, and is appropriate for dynamic process-based modelling. Uncertainty is propagated appropriately into the output, so we have a full posterior distribution of output and parameters. The data are available in the widely used netCDF file format from http://eidc.ceh.ac.uk/.

  14. Eyewitness identification: Bayesian information gain, base-rate effect equivalency curves, and reasonable suspicion.

    PubMed

    Wells, Gary L; Yang, Yueran; Smalarz, Laura

    2015-04-01

    We provide a novel Bayesian treatment of the eyewitness identification problem as it relates to various system variables, such as instruction effects, lineup presentation format, lineup-filler similarity, lineup administrator influence, and show-ups versus lineups. We describe why eyewitness identification is a natural Bayesian problem and how numerous important observations require careful consideration of base rates. Moreover, we argue that the base rate in eyewitness identification should be construed as a system variable (under the control of the justice system). We then use prior-by-posterior curves and information-gain curves to examine data obtained from a large number of published experiments. Next, we show how information-gain curves are moderated by system variables and by witness confidence and we note how information-gain curves reveal that lineups are consistently more proficient at incriminating the guilty than they are at exonerating the innocent. We then introduce a new type of analysis that we developed called base rate effect-equivalency (BREE) curves. BREE curves display how much change in the base rate is required to match the impact of any given system variable. The results indicate that even relatively modest changes to the base rate can have more impact on the reliability of eyewitness identification evidence than do the traditional system variables that have received so much attention in the literature. We note how this Bayesian analysis of eyewitness identification has implications for the question of whether there ought to be a reasonable-suspicion criterion for placing a person into the jeopardy of an identification procedure. (c) 2015 APA, all rights reserved).

  15. Speech Perception and Production by Sequential Bilingual Children: A Longitudinal Study of Voice Onset Time Acquisition

    PubMed Central

    McCarthy, Kathleen M; Mahon, Merle; Rosen, Stuart; Evans, Bronwen G

    2014-01-01

    The majority of bilingual speech research has focused on simultaneous bilinguals. Yet, in immigrant communities, children are often initially exposed to their family language (L1), before becoming gradually immersed in the host country's language (L2). This is typically referred to as sequential bilingualism. Using a longitudinal design, this study explored the perception and production of the English voicing contrast in 55 children (40 Sylheti-English sequential bilinguals and 15 English monolinguals). Children were tested twice: when they were in nursery (52-month-olds) and 1 year later. Sequential bilinguals' perception and production of English plosives were initially driven by their experience with their L1, but after starting school, changed to match that of their monolingual peers. PMID:25123987

  16. Climatic Models Ensemble-based Mid-21st Century Runoff Projections: A Bayesian Framework

    NASA Astrophysics Data System (ADS)

    Achieng, K. O.; Zhu, J.

    2017-12-01

    There are a number of North American Regional Climate Change Assessment Program (NARCCAP) climatic models that have been used to project surface runoff in the mid-21st century. Statistical model selection techniques are often used to select the model that best fits data. However, model selection techniques often lead to different conclusions. In this study, ten models are averaged in Bayesian paradigm to project runoff. Bayesian Model Averaging (BMA) is used to project and identify effect of model uncertainty on future runoff projections. Baseflow separation - a two-digital filter which is also called Eckhardt filter - is used to separate USGS streamflow (total runoff) into two components: baseflow and surface runoff. We use this surface runoff as the a priori runoff when conducting BMA of runoff simulated from the ten RCM models. The primary objective of this study is to evaluate how well RCM multi-model ensembles simulate surface runoff, in a Bayesian framework. Specifically, we investigate and discuss the following questions: How well do ten RCM models ensemble jointly simulate surface runoff by averaging over all the models using BMA, given a priori surface runoff? What are the effects of model uncertainty on surface runoff simulation?

  17. Bayesian Computation Emerges in Generic Cortical Microcircuits through Spike-Timing-Dependent Plasticity

    PubMed Central

    Nessler, Bernhard; Pfeiffer, Michael; Buesing, Lars; Maass, Wolfgang

    2013-01-01

    The principles by which networks of neurons compute, and how spike-timing dependent plasticity (STDP) of synaptic weights generates and maintains their computational function, are unknown. Preceding work has shown that soft winner-take-all (WTA) circuits, where pyramidal neurons inhibit each other via interneurons, are a common motif of cortical microcircuits. We show through theoretical analysis and computer simulations that Bayesian computation is induced in these network motifs through STDP in combination with activity-dependent changes in the excitability of neurons. The fundamental components of this emergent Bayesian computation are priors that result from adaptation of neuronal excitability and implicit generative models for hidden causes that are created in the synaptic weights through STDP. In fact, a surprising result is that STDP is able to approximate a powerful principle for fitting such implicit generative models to high-dimensional spike inputs: Expectation Maximization. Our results suggest that the experimentally observed spontaneous activity and trial-to-trial variability of cortical neurons are essential features of their information processing capability, since their functional role is to represent probability distributions rather than static neural codes. Furthermore it suggests networks of Bayesian computation modules as a new model for distributed information processing in the cortex. PMID:23633941

  18. Robust sequential working memory recall in heterogeneous cognitive networks

    PubMed Central

    Rabinovich, Mikhail I.; Sokolov, Yury; Kozma, Robert

    2014-01-01

    Psychiatric disorders are often caused by partial heterogeneous disinhibition in cognitive networks, controlling sequential and spatial working memory (SWM). Such dynamic connectivity changes suggest that the normal relationship between the neuronal components within the network deteriorates. As a result, competitive network dynamics is qualitatively altered. This dynamics defines the robust recall of the sequential information from memory and, thus, the SWM capacity. To understand pathological and non-pathological bifurcations of the sequential memory dynamics, here we investigate the model of recurrent inhibitory-excitatory networks with heterogeneous inhibition. We consider the ensemble of units with all-to-all inhibitory connections, in which the connection strengths are monotonically distributed at some interval. Based on computer experiments and studying the Lyapunov exponents, we observed and analyzed the new phenomenon—clustered sequential dynamics. The results are interpreted in the context of the winnerless competition principle. Accordingly, clustered sequential dynamics is represented in the phase space of the model by two weakly interacting quasi-attractors. One of them is similar to the sequential heteroclinic chain—the regular image of SWM, while the other is a quasi-chaotic attractor. Coexistence of these quasi-attractors means that the recall of the normal information sequence is intermittently interrupted by episodes with chaotic dynamics. We indicate potential dynamic ways for augmenting damaged working memory and other cognitive functions. PMID:25452717

  19. Aging and sequential modulations of poorer strategy effects: An EEG study in arithmetic problem solving.

    PubMed

    Hinault, Thomas; Lemaire, Patrick; Phillips, Natalie

    2016-01-01

    This study investigated age-related differences in electrophysiological signatures of sequential modulations of poorer strategy effects. Sequential modulations of poorer strategy effects refer to decreased poorer strategy effects (i.e., poorer performance when the cued strategy is not the best) on current problem following poorer strategy problems compared to after better strategy problems. Analyses on electrophysiological (EEG) data revealed important age-related changes in time, frequency, and coherence of brain activities underlying sequential modulations of poorer strategy effects. More specifically, sequential modulations of poorer strategy effects were associated with earlier and later time windows (i.e., between 200- and 550 ms and between 850- and 1250 ms). Event-related potentials (ERPs) also revealed an earlier onset in older adults, together with more anterior and less lateralized activations. Furthermore, sequential modulations of poorer strategy effects were associated with theta and alpha frequencies in young adults while these modulations were found in delta frequency and theta inter-hemispheric coherence in older adults, consistent with qualitatively distinct patterns of brain activity. These findings have important implications to further our understanding of age-related differences and similarities in sequential modulations of cognitive control processes during arithmetic strategy execution. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Developing and Testing a Model to Predict Outcomes of Organizational Change

    PubMed Central

    Gustafson, David H; Sainfort, François; Eichler, Mary; Adams, Laura; Bisognano, Maureen; Steudel, Harold

    2003-01-01

    Objective To test the effectiveness of a Bayesian model employing subjective probability estimates for predicting success and failure of health care improvement projects. Data Sources Experts' subjective assessment data for model development and independent retrospective data on 221 healthcare improvement projects in the United States, Canada, and the Netherlands collected between 1996 and 2000 for validation. Methods A panel of theoretical and practical experts and literature in organizational change were used to identify factors predicting the outcome of improvement efforts. A Bayesian model was developed to estimate probability of successful change using subjective estimates of likelihood ratios and prior odds elicited from the panel of experts. A subsequent retrospective empirical analysis of change efforts in 198 health care organizations was performed to validate the model. Logistic regression and ROC analysis were used to evaluate the model's performance using three alternative definitions of success. Data Collection For the model development, experts' subjective assessments were elicited using an integrative group process. For the validation study, a staff person intimately involved in each improvement project responded to a written survey asking questions about model factors and project outcomes. Results Logistic regression chi-square statistics and areas under the ROC curve demonstrated a high level of model performance in predicting success. Chi-square statistics were significant at the 0.001 level and areas under the ROC curve were greater than 0.84. Conclusions A subjective Bayesian model was effective in predicting the outcome of actual improvement projects. Additional prospective evaluations as well as testing the impact of this model as an intervention are warranted. PMID:12785571

  1. Bayesian change-point analysis reveals developmental change in a classic theory of mind task.

    PubMed

    Baker, Sara T; Leslie, Alan M; Gallistel, C R; Hood, Bruce M

    2016-12-01

    Although learning and development reflect changes situated in an individual brain, most discussions of behavioral change are based on the evidence of group averages. Our reliance on group-averaged data creates a dilemma. On the one hand, we need to use traditional inferential statistics. On the other hand, group averages are highly ambiguous when we need to understand change in the individual; the average pattern of change may characterize all, some, or none of the individuals in the group. Here we present a new method for statistically characterizing developmental change in each individual child we study. Using false-belief tasks, fifty-two children in two cohorts were repeatedly tested for varying lengths of time between 3 and 5 years of age. Using a novel Bayesian change point analysis, we determined both the presence and-just as importantly-the absence of change in individual longitudinal cumulative records. Whenever the analysis supports a change conclusion, it identifies in that child's record the most likely point at which change occurred. Results show striking variability in patterns of change and stability across individual children. We then group the individuals by their various patterns of change or no change. The resulting patterns provide scarce support for sudden changes in competence and shed new light on the concepts of "passing" and "failing" in developmental studies. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Two-step sequential pretreatment for the enhanced enzymatic hydrolysis of coffee spent waste.

    PubMed

    Ravindran, Rajeev; Jaiswal, Swarna; Abu-Ghannam, Nissreen; Jaiswal, Amit K

    2017-09-01

    In the present study, eight different pretreatments of varying nature (physical, chemical and physico-chemical) followed by a sequential, combinatorial pretreatment strategy was applied to spent coffee waste to attain maximum sugar yield. Pretreated samples were analysed for total reducing sugar, individual sugars and generation of inhibitory compounds such as furfural and hydroxymethyl furfural (HMF) which can hinder microbial growth and enzyme activity. Native spent coffee waste was high in hemicellulose content. Galactose was found to be the predominant sugar in spent coffee waste. Results showed that sequential pretreatment yielded 350.12mg of reducing sugar/g of substrate, which was 1.7-fold higher than in native spent coffee waste (203.4mg/g of substrate). Furthermore, extensive delignification was achieved using sequential pretreatment strategy. XRD, FTIR, and DSC profiles of the pretreated substrates were studied to analyse the various changes incurred in sequentially pretreated spent coffee waste as opposed to native spent coffee waste. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. High statistics study of in-medium S- and P-wave quarkonium states in lattice Non-relativistic QCD

    NASA Astrophysics Data System (ADS)

    Kim, S.; Petreczky, P.; Rothkopf, A.

    2017-11-01

    Many measurements of quarkonium suppression at the LHC, e.g. the nuclear modification factor RAA of J / Ψ, are well described by a multitude of different models. Thus pinpointing the underlying physics aspects is difficult and guidance based on first principles is needed. Here we present the current status of our ongoing high precision study of in-medium spectral properties of both bottomonium and charmonium based on NRQCD on the lattice. This effective field theory allows us to capture the physics of quarkonium without modeling assumptions in a thermal QCD medium. In our study a first principles and realistic description of the QCD medium is provided by state-of-the-art lattices of the HotQCD collaboration at almost physical pion mass. Our updated results corroborate a picture of sequential modification of states with respect to their vacuum binding energy. Using a novel low-gain variant of the Bayesian BR method for reconstructing spectral functions we find that remnant features of the Upsilon may survive up to T ∼ 400MeV, while the χb signal disappears around T ∼ 270MeV. The c c ‾ analysis hints at melting of χc below T ∼ 190MeV while some J / Ψ remnant feature might survive up to T ∼ 245MeV. An improved understanding of the numerical artifacts in the Bayesian approach and the availability of increased statistics have made possible a first quantitative study of the in-medium ground state masses, which tend to lower values as T increases, consistent with lattice potential based studies.

  4. Bayesian parameter estimation for the Wnt pathway: an infinite mixture models approach.

    PubMed

    Koutroumpas, Konstantinos; Ballarini, Paolo; Votsi, Irene; Cournède, Paul-Henry

    2016-09-01

    Likelihood-free methods, like Approximate Bayesian Computation (ABC), have been extensively used in model-based statistical inference with intractable likelihood functions. When combined with Sequential Monte Carlo (SMC) algorithms they constitute a powerful approach for parameter estimation and model selection of mathematical models of complex biological systems. A crucial step in the ABC-SMC algorithms, significantly affecting their performance, is the propagation of a set of parameter vectors through a sequence of intermediate distributions using Markov kernels. In this article, we employ Dirichlet process mixtures (DPMs) to design optimal transition kernels and we present an ABC-SMC algorithm with DPM kernels. We illustrate the use of the proposed methodology using real data for the canonical Wnt signaling pathway. A multi-compartment model of the pathway is developed and it is compared to an existing model. The results indicate that DPMs are more efficient in the exploration of the parameter space and can significantly improve ABC-SMC performance. In comparison to alternative sampling schemes that are commonly used, the proposed approach can bring potential benefits in the estimation of complex multimodal distributions. The method is used to estimate the parameters and the initial state of two models of the Wnt pathway and it is shown that the multi-compartment model fits better the experimental data. Python scripts for the Dirichlet Process Gaussian Mixture model and the Gibbs sampler are available at https://sites.google.com/site/kkoutroumpas/software konstantinos.koutroumpas@ecp.fr. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  5. Contamination Event Detection with Multivariate Time-Series Data in Agricultural Water Monitoring †

    PubMed Central

    Mao, Yingchi; Qi, Hai; Ping, Ping; Li, Xiaofang

    2017-01-01

    Time series data of multiple water quality parameters are obtained from the water sensor networks deployed in the agricultural water supply network. The accurate and efficient detection and warning of contamination events to prevent pollution from spreading is one of the most important issues when pollution occurs. In order to comprehensively reduce the event detection deviation, a spatial–temporal-based event detection approach with multivariate time-series data for water quality monitoring (M-STED) was proposed. The M-STED approach includes three parts. The first part is that M-STED adopts a Rule K algorithm to select backbone nodes as the nodes in the CDS, and forward the sensed data of multiple water parameters. The second part is to determine the state of each backbone node with back propagation neural network models and the sequential Bayesian analysis in the current timestamp. The third part is to establish a spatial model with Bayesian networks to estimate the state of the backbones in the next timestamp and trace the “outlier” node to its neighborhoods to detect a contamination event. The experimental results indicate that the average detection rate is more than 80% with M-STED and the false detection rate is lower than 9%, respectively. The M-STED approach can improve the rate of detection by about 40% and reduce the false alarm rate by about 45%, compared with the event detection with a single water parameter algorithm, S-STED. Moreover, the proposed M-STED can exhibit better performance in terms of detection delay and scalability. PMID:29207535

  6. Individual differences in attention influence perceptual decision making.

    PubMed

    Nunez, Michael D; Srinivasan, Ramesh; Vandekerckhove, Joachim

    2015-01-01

    Sequential sampling decision-making models have been successful in accounting for reaction time (RT) and accuracy data in two-alternative forced choice tasks. These models have been used to describe the behavior of populations of participants, and explanatory structures have been proposed to account for between individual variability in model parameters. In this study we show that individual differences in behavior from a novel perceptual decision making task can be attributed to (1) differences in evidence accumulation rates, (2) differences in variability of evidence accumulation within trials, and (3) differences in non-decision times across individuals. Using electroencephalography (EEG), we demonstrate that these differences in cognitive variables, in turn, can be explained by attentional differences as measured by phase-locking of steady-state visual evoked potential (SSVEP) responses to the signal and noise components of the visual stimulus. Parameters of a cognitive model (a diffusion model) were obtained from accuracy and RT distributions and related to phase-locking indices (PLIs) of SSVEPs with a single step in a hierarchical Bayesian framework. Participants who were able to suppress the SSVEP response to visual noise in high frequency bands were able to accumulate correct evidence faster and had shorter non-decision times (preprocessing or motor response times), leading to more accurate responses and faster response times. We show that the combination of cognitive modeling and neural data in a hierarchical Bayesian framework relates physiological processes to the cognitive processes of participants, and that a model with a new (out-of-sample) participant's neural data can predict that participant's behavior more accurately than models without physiological data.

  7. Prediction of near-term breast cancer risk using a Bayesian belief network

    NASA Astrophysics Data System (ADS)

    Zheng, Bin; Ramalingam, Pandiyarajan; Hariharan, Harishwaran; Leader, Joseph K.; Gur, David

    2013-03-01

    Accurately predicting near-term breast cancer risk is an important prerequisite for establishing an optimal personalized breast cancer screening paradigm. In previous studies, we investigated and tested the feasibility of developing a unique near-term breast cancer risk prediction model based on a new risk factor associated with bilateral mammographic density asymmetry between the left and right breasts of a woman using a single feature. In this study we developed a multi-feature based Bayesian belief network (BBN) that combines bilateral mammographic density asymmetry with three other popular risk factors, namely (1) age, (2) family history, and (3) average breast density, to further increase the discriminatory power of our cancer risk model. A dataset involving "prior" negative mammography examinations of 348 women was used in the study. Among these women, 174 had breast cancer detected and verified in the next sequential screening examinations, and 174 remained negative (cancer-free). A BBN was applied to predict the risk of each woman having cancer detected six to 18 months later following the negative screening mammography. The prediction results were compared with those using single features. The prediction accuracy was significantly increased when using the BBN. The area under the ROC curve increased from an AUC=0.70 to 0.84 (p<0.01), while the positive predictive value (PPV) and negative predictive value (NPV) also increased from a PPV=0.61 to 0.78 and an NPV=0.65 to 0.75, respectively. This study demonstrates that a multi-feature based BBN can more accurately predict the near-term breast cancer risk than with a single feature.

  8. Comparing cluster-level dynamic treatment regimens using sequential, multiple assignment, randomized trials: Regression estimation and sample size considerations.

    PubMed

    NeCamp, Timothy; Kilbourne, Amy; Almirall, Daniel

    2017-08-01

    Cluster-level dynamic treatment regimens can be used to guide sequential treatment decision-making at the cluster level in order to improve outcomes at the individual or patient-level. In a cluster-level dynamic treatment regimen, the treatment is potentially adapted and re-adapted over time based on changes in the cluster that could be impacted by prior intervention, including aggregate measures of the individuals or patients that compose it. Cluster-randomized sequential multiple assignment randomized trials can be used to answer multiple open questions preventing scientists from developing high-quality cluster-level dynamic treatment regimens. In a cluster-randomized sequential multiple assignment randomized trial, sequential randomizations occur at the cluster level and outcomes are observed at the individual level. This manuscript makes two contributions to the design and analysis of cluster-randomized sequential multiple assignment randomized trials. First, a weighted least squares regression approach is proposed for comparing the mean of a patient-level outcome between the cluster-level dynamic treatment regimens embedded in a sequential multiple assignment randomized trial. The regression approach facilitates the use of baseline covariates which is often critical in the analysis of cluster-level trials. Second, sample size calculators are derived for two common cluster-randomized sequential multiple assignment randomized trial designs for use when the primary aim is a between-dynamic treatment regimen comparison of the mean of a continuous patient-level outcome. The methods are motivated by the Adaptive Implementation of Effective Programs Trial which is, to our knowledge, the first-ever cluster-randomized sequential multiple assignment randomized trial in psychiatry.

  9. The risk assessment of sudden water pollution for river network system under multi-source random emission

    NASA Astrophysics Data System (ADS)

    Li, D.

    2016-12-01

    Sudden water pollution accidents are unavoidable risk events that we must learn to co-exist with. In China's Taihu River Basin, the river flow conditions are complicated with frequently artificial interference. Sudden water pollution accident occurs mainly in the form of a large number of abnormal discharge of wastewater, and has the characteristics with the sudden occurrence, the uncontrollable scope, the uncertainty object and the concentrated distribution of many risk sources. Effective prevention of pollution accidents that may occur is of great significance for the water quality safety management. Bayesian networks can be applied to represent the relationship between pollution sources and river water quality intuitively. Using the time sequential Monte Carlo algorithm, the pollution sources state switching model, water quality model for river network and Bayesian reasoning is integrated together, and the sudden water pollution risk assessment model for river network is developed to quantify the water quality risk under the collective influence of multiple pollution sources. Based on the isotope water transport mechanism, a dynamic tracing model of multiple pollution sources is established, which can describe the relationship between the excessive risk of the system and the multiple risk sources. Finally, the diagnostic reasoning algorithm based on Bayesian network is coupled with the multi-source tracing model, which can identify the contribution of each risk source to the system risk under the complex flow conditions. Taking Taihu Lake water system as the research object, the model is applied to obtain the reasonable results under the three typical years. Studies have shown that the water quality risk at critical sections are influenced by the pollution risk source, the boundary water quality, the hydrological conditions and self -purification capacity, and the multiple pollution sources have obvious effect on water quality risk of the receiving water body. The water quality risk assessment approach developed in this study offers a effective tool for systematically quantifying the random uncertainty in plain river network system, and it also provides the technical support for the decision-making of controlling the sudden water pollution through identification of critical pollution sources.

  10. New Approaches For Asteroid Spin State and Shape Modeling From Delay-Doppler Radar Images

    NASA Astrophysics Data System (ADS)

    Raissi, Chedy; Lamee, Mehdi; Mosiane, Olorato; Vassallo, Corinne; Busch, Michael W.; Greenberg, Adam; Benner, Lance A. M.; Naidu, Shantanu P.; Duong, Nicholas

    2016-10-01

    Delay-Doppler radar imaging is a powerful technique to characterize the trajectories, shapes, and spin states of near-Earth asteroids; and has yielded detailed models of dozens of objects. Reconstructing objects' shapes and spins from delay-Doppler data is a computationally intensive inversion problem. Since the 1990s, delay-Doppler data has been analyzed using the SHAPE software. SHAPE performs sequential single-parameter fitting, and requires considerable computer runtime and human intervention (Hudson 1993, Magri et al. 2007). Recently, multiple-parameter fitting algorithms have been shown to more efficiently invert delay-Doppler datasets (Greenberg & Margot 2015) - decreasing runtime while improving accuracy. However, extensive human oversight of the shape modeling process is still required. We have explored two new techniques to better automate delay-Doppler shape modeling: Bayesian optimization and a machine-learning neural network.One of the most time-intensive steps of the shape modeling process is to perform a grid search to constrain the target's spin state. We have implemented a Bayesian optimization routine that uses SHAPE to autonomously search the space of spin-state parameters. To test the efficacy of this technique, we compared it to results with human-guided SHAPE for asteroids 1992 UY4, 2000 RS11, and 2008 EV5. Bayesian optimization yielded similar spin state constraints within a factor of 3 less computer runtime.The shape modeling process could be further accelerated using a deep neural network to replace iterative fitting. We have implemented a neural network with a variational autoencoder (VAE), using a subset of known asteroid shapes and a large set of synthetic radar images as inputs to train the network. Conditioning the VAE in this manner allows the user to give the network a set of radar images and get a 3D shape model as an output. Additional development will be required to train a network to reliably render shapes from delay-Doppler images.This work was supported by NASA Ames, NVIDIA, Autodesk and the SETI Institute as part of the NASA Frontier Development Lab program.

  11. Effects of simultaneous and optimized sequential cardiac resynchronization therapy on myocardial oxidative metabolism and efficiency.

    PubMed

    Christenson, Stuart D; Chareonthaitawee, Panithaya; Burnes, John E; Hill, Michael R S; Kemp, Brad J; Khandheria, Bijoy K; Hayes, David L; Gibbons, Raymond J

    2008-02-01

    Cardiac resynchronization therapy (CRT) can improve left ventricular (LV) hemodynamics and function. Recent data suggest the energy cost of such improvement is favorable. The effects of sequential CRT on myocardial oxidative metabolism (MVO(2)) and efficiency have not been previously assessed. Eight patients with NYHA class III heart failure were studied 196 +/- 180 days after CRT implant. Dynamic [(11)C]acetate positron emission tomography (PET) and echocardiography were performed after 1 hour of: 1) AAI pacing, 2) simultaneous CRT, and 3) sequential CRT. MVO(2) was calculated using the monoexponential clearance rate of [(11)C]acetate (k(mono)). Myocardial efficiency was expressed in terms of the work metabolic index (WMI). P values represent overall significance from repeated measures analysis. Global LV and right ventricular (RV) MVO(2) were not significantly different between pacing modes, but the septal/lateral MVO(2) ratio differed significantly with the change in pacing mode (AAI pacing = 0.696 +/- 0.094 min(-1), simultaneous CRT = 0.975 +/- 0.143 min(-1), and sequential CRT = 0.938 +/- 0.189 min(-1); overall P = 0.001). Stroke volume index (SVI) (AAI pacing = 26.7 +/- 10.4 mL/m(2), simultaneous CRT = 30.6 +/- 11.2 mL/m(2), sequential CRT = 33.5 +/- 12.2 mL/m(2); overall P < 0.001) and WMI (AAI pacing = 3.29 +/- 1.34 mmHg*mL/m(2)*10(6), simultaneous CRT = 4.29 +/- 1.72 mmHg*mL/m(2)*10(6), sequential CRT = 4.79 +/- 1.92 mmHg*mL/m(2)*10(6); overall P = 0.002) also differed between pacing modes. Compared with simultaneous CRT, additional changes in septal/lateral MVO(2), SVI, and WMI with sequential CRT were not statistically significant on post hoc analysis. In this small selected population, CRT increases LV SVI without increasing MVO(2), resulting in improved myocardial efficiency. Additional improvements in LV work, oxidative metabolism, and efficiency from simultaneous to sequential CRT were not significant.

  12. Behavioral preference in sequential decision-making and its association with anxiety.

    PubMed

    Zhang, Dandan; Gu, Ruolei

    2018-06-01

    In daily life, people often make consecutive decisions before the ultimate goal is reached (i.e., sequential decision-making). However, this kind of decision-making has been largely overlooked in the literature. The current study investigated whether behavioral preference would change during sequential decisions, and the neural processes underlying the potential changes. For this purpose, we revised the classic balloon analogue risk task and recorded the electroencephalograph (EEG) signals associated with each step of decision-making. Independent component analysis performed on EEG data revealed that four EEG components elicited by periodic feedback in the current step predicted participants' decisions (gamble vs. no gamble) in the next step. In order of time sequence, these components were: bilateral occipital alpha rhythm, bilateral frontal theta rhythm, middle frontal theta rhythm, and bilateral sensorimotor mu rhythm. According to the information flows between these EEG oscillations, we proposed a brain model that describes the temporal dynamics of sequential decision-making. Finally, we found that the tendency to gamble (as well as the power intensity of bilateral frontal theta rhythms) was sensitive to the individual level of trait anxiety in certain steps, which may help understand the role of emotion in decision-making. © 2018 Wiley Periodicals, Inc.

  13. Endogenous Sequential Cortical Activity Evoked by Visual Stimuli

    PubMed Central

    Miller, Jae-eun Kang; Hamm, Jordan P.; Jackson, Jesse; Yuste, Rafael

    2015-01-01

    Although the functional properties of individual neurons in primary visual cortex have been studied intensely, little is known about how neuronal groups could encode changing visual stimuli using temporal activity patterns. To explore this, we used in vivo two-photon calcium imaging to record the activity of neuronal populations in primary visual cortex of awake mice in the presence and absence of visual stimulation. Multidimensional analysis of the network activity allowed us to identify neuronal ensembles defined as groups of cells firing in synchrony. These synchronous groups of neurons were themselves activated in sequential temporal patterns, which repeated at much higher proportions than chance and were triggered by specific visual stimuli such as natural visual scenes. Interestingly, sequential patterns were also present in recordings of spontaneous activity without any sensory stimulation and were accompanied by precise firing sequences at the single-cell level. Moreover, intrinsic dynamics could be used to predict the occurrence of future neuronal ensembles. Our data demonstrate that visual stimuli recruit similar sequential patterns to the ones observed spontaneously, consistent with the hypothesis that already existing Hebbian cell assemblies firing in predefined temporal sequences could be the microcircuit substrate that encodes visual percepts changing in time. PMID:26063915

  14. Sequential events in the irreversible thermal denaturation of human brain-type creatine kinase by spectroscopic methods.

    PubMed

    Gao, Yan-Song; Su, Jing-Tan; Yan, Yong-Bin

    2010-06-25

    The non-cooperative or sequential events which occur during protein thermal denaturation are closely correlated with protein folding, stability, and physiological functions. In this research, the sequential events of human brain-type creatine kinase (hBBCK) thermal denaturation were studied by differential scanning calorimetry (DSC), CD, and intrinsic fluorescence spectroscopy. DSC experiments revealed that the thermal denaturation of hBBCK was calorimetrically irreversible. The existence of several endothermic peaks suggested that the denaturation involved stepwise conformational changes, which were further verified by the discrepancy in the transition curves obtained from various spectroscopic probes. During heating, the disruption of the active site structure occurred prior to the secondary and tertiary structural changes. The thermal unfolding and aggregation of hBBCK was found to occur through sequential events. This is quite different from that of muscle-type CK (MMCK). The results herein suggest that BBCK and MMCK undergo quite dissimilar thermal unfolding pathways, although they are highly conserved in the primary and tertiary structures. A minor difference in structure might endow the isoenzymes dissimilar local stabilities in structure, which further contribute to isoenzyme-specific thermal stabilities.

  15. A novel Bayesian approach to acoustic emission data analysis.

    PubMed

    Agletdinov, E; Pomponi, E; Merson, D; Vinogradov, A

    2016-12-01

    Acoustic emission (AE) technique is a popular tool for materials characterization and non-destructive testing. Originating from the stochastic motion of defects in solids, AE is a random process by nature. The challenging problem arises whenever an attempt is made to identify specific points corresponding to the changes in the trends in the fluctuating AE time series. A general Bayesian framework is proposed for the analysis of AE time series, aiming at automated finding the breakpoints signaling a crossover in the dynamics of underlying AE sources. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Determination of the priority indexes for the oil refinery wastewater treatment process

    NASA Astrophysics Data System (ADS)

    Chesnokova, M. G.; Myshlyavtsev, A. V.; Kriga, A. S.; Shaporenko, A. P.; Markelov, V. V.

    2017-08-01

    The wastewater biological treatment intensity and effectiveness are influenced by many factors: temperature, pH, presence and concentration of toxic substances, the biomass concentration et al. Regulation of them allows controlling the biological treatment process. Using the Bayesian theorem the link between changes was determined and the wastewater indexes normative limits exceeding influence for activated sludge characteristics alteration probability was evaluated. The estimation of total, or aposterioric, priority index presence probability, which characterizes the wastewater treatment level, is an important way to use the Bayesian theorem in activated sludge swelling prediction at the oil refinery biological treatment unit.

  17. Building Motivation in African American Caregivers of Adolescents With Obesity: Application of Sequential Analysis.

    PubMed

    Jacques-Tiura, Angela J; Carcone, April Idalski; Naar, Sylvie; Brogan Hartlieb, Kathryn; Albrecht, Terrance L; Barton, Ellen

    2017-03-01

    We sought to examine communication between counselors and caregivers of adolescents with obesity to determine what types of counselor behaviors increased caregivers' motivational statements regarding supporting their child's weight loss. We coded 20-min Motivational Interviewing sessions with 37 caregivers of African American 12-16-year-olds using the Minority Youth Sequential Coding for Observing Process Exchanges. We used sequential analysis to determine which counselor communication codes predicted caregiver motivational statements. Counselors' questions to elicit motivational statements and emphasis on autonomy increased the likelihood of both caregiver change talk and commitment language statements. Counselors' reflections of change talk predicted further change talk, and reflections of commitment language predicted more commitment language. When working to increase motivation among caregivers of adolescents with overweight or obesity, providers should strive to reflect motivational statements, ask questions to elicit motivational statements, and emphasize caregivers' autonomy. © The Author 2016. Published by Oxford University Press on behalf of the Society of Pediatric Psychology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  18. Comparison of solution-mixed and sequentially processed P3HT: F4TCNQ films: effect of doping-induced aggregation on film morphology

    DOE PAGES

    Jacobs, Ian E.; Aasen, Erik W.; Oliveira, Julia L.; ...

    2016-03-23

    Doping polymeric semiconductors often drastically reduces the solubility of the polymer, leading to difficulties in processing doped films. Here, we compare optical, electrical, and morphological properties of P3HT films doped with F4TCNQ, both from mixed solutions and using sequential solution processing with orthogonal solvents. We demonstrate that sequential doping occurs rapidly (<1 s), and that the film doping level can be precisely controlled by varying the concentration of the doping solution. Furthermore, the choice of sequential doping solvent controls whether dopant anions are included or excluded from polymer crystallites. Atomic force microscopy (AFM) reveals that sequential doping produces significantly moremore » uniform films on the nanoscale than the mixed-solution method. In addition, we show that mixed-solution doping induces the formation of aggregates even at low doping levels, resulting in drastic changes to film morphology. Sequentially coated films show 3–15 times higher conductivities at a given doping level than solution-doped films, with sequentially doped films processed to exclude dopant anions from polymer crystallites showing the highest conductivities. In conclusion, we propose a mechanism for doping induced aggregation in which the shift of the polymer HOMO level upon aggregation couples ionization and solvation energies. To show that the methodology is widely applicable, we demonstrate that several different polymer:dopant systems can be prepared by sequential doping.« less

  19. Comparison of solution-mixed and sequentially processed P3HT: F4TCNQ films: effect of doping-induced aggregation on film morphology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacobs, Ian E.; Aasen, Erik W.; Oliveira, Julia L.

    Doping polymeric semiconductors often drastically reduces the solubility of the polymer, leading to difficulties in processing doped films. Here, we compare optical, electrical, and morphological properties of P3HT films doped with F4TCNQ, both from mixed solutions and using sequential solution processing with orthogonal solvents. We demonstrate that sequential doping occurs rapidly (<1 s), and that the film doping level can be precisely controlled by varying the concentration of the doping solution. Furthermore, the choice of sequential doping solvent controls whether dopant anions are included or excluded from polymer crystallites. Atomic force microscopy (AFM) reveals that sequential doping produces significantly moremore » uniform films on the nanoscale than the mixed-solution method. In addition, we show that mixed-solution doping induces the formation of aggregates even at low doping levels, resulting in drastic changes to film morphology. Sequentially coated films show 3–15 times higher conductivities at a given doping level than solution-doped films, with sequentially doped films processed to exclude dopant anions from polymer crystallites showing the highest conductivities. In conclusion, we propose a mechanism for doping induced aggregation in which the shift of the polymer HOMO level upon aggregation couples ionization and solvation energies. To show that the methodology is widely applicable, we demonstrate that several different polymer:dopant systems can be prepared by sequential doping.« less

  20. A Bayesian-based system to assess wave-driven flooding hazards on coral reef-lined coasts

    USGS Publications Warehouse

    Pearson, S. G.; Storlazzi, Curt; van Dongeren, A. R.; Tissier, M. F. S.; Reniers, A. J. H. M.

    2017-01-01

    Many low-elevation, coral reef-lined, tropical coasts are vulnerable to the effects of climate change, sea level rise, and wave-induced flooding. The considerable morphological diversity of these coasts and the variability of the hydrodynamic forcing that they are exposed to make predicting wave-induced flooding a challenge. A process-based wave-resolving hydrodynamic model (XBeach Non-Hydrostatic, “XBNH”) was used to create a large synthetic database for use in a “Bayesian Estimator for Wave Attack in Reef Environments” (BEWARE), relating incident hydrodynamics and coral reef geomorphology to coastal flooding hazards on reef-lined coasts. Building on previous work, BEWARE improves system understanding of reef hydrodynamics by examining the intrinsic reef and extrinsic forcing factors controlling runup and flooding on reef-lined coasts. The Bayesian estimator has high predictive skill for the XBNH model outputs that are flooding indicators, and was validated for a number of available field cases. It was found that, in order to accurately predict flooding hazards, water depth over the reef flat, incident wave conditions, and reef flat width are the most essential factors, whereas other factors such as beach slope and bed friction due to the presence or absence of corals are less important. BEWARE is a potentially powerful tool for use in early warning systems or risk assessment studies, and can be used to make projections about how wave-induced flooding on coral reef-lined coasts may change due to climate change.

  1. Assessment of Data Fusion Algorithms for Earth Observation Change Detection Processes

    PubMed Central

    Molina, Iñigo; Martinez, Estibaliz; Morillo, Carmen; Velasco, Jesus; Jara, Alvaro

    2016-01-01

    In this work a parametric multi-sensor Bayesian data fusion approach and a Support Vector Machine (SVM) are used for a Change Detection problem. For this purpose two sets of SPOT5-PAN images have been used, which are in turn used for Change Detection Indices (CDIs) calculation. For minimizing radiometric differences, a methodology based on zonal “invariant features” is suggested. The choice of one or the other CDI for a change detection process is a subjective task as each CDI is probably more or less sensitive to certain types of changes. Likewise, this idea might be employed to create and improve a “change map”, which can be accomplished by means of the CDI’s informational content. For this purpose, information metrics such as the Shannon Entropy and “Specific Information” have been used to weight the changes and no-changes categories contained in a certain CDI and thus introduced in the Bayesian information fusion algorithm. Furthermore, the parameters of the probability density functions (pdf’s) that best fit the involved categories have also been estimated. Conversely, these considerations are not necessary for mapping procedures based on the discriminant functions of a SVM. This work has confirmed the capabilities of probabilistic information fusion procedure under these circumstances. PMID:27706048

  2. Do Bayesian adaptive trials offer advantages for comparative effectiveness research? Protocol for the RE-ADAPT study

    PubMed Central

    Luce, Bryan R; Broglio, Kristine R; Ishak, K Jack; Mullins, C Daniel; Vanness, David J; Fleurence, Rachael; Saunders, Elijah; Davis, Barry R

    2013-01-01

    Background Randomized clinical trials, particularly for comparative effectiveness research (CER), are frequently criticized for being overly restrictive or untimely for health-care decision making. Purpose Our prospectively designed REsearch in ADAptive methods for Pragmatic Trials (RE-ADAPT) study is a ‘proof of concept’ to stimulate investment in Bayesian adaptive designs for future CER trials. Methods We will assess whether Bayesian adaptive designs offer potential efficiencies in CER by simulating a re-execution of the Antihypertensive and Lipid Lowering Treatment to Prevent Heart Attack Trial (ALLHAT) study using actual data from ALLHAT. Results We prospectively define seven alternate designs consisting of various combinations of arm dropping, adaptive randomization, and early stopping and describe how these designs will be compared to the original ALLHAT design. We identify the one particular design that would have been executed, which incorporates early stopping and information-based adaptive randomization. Limitations While the simulation realistically emulates patient enrollment, interim analyses, and adaptive changes to design, it cannot incorporate key features like the involvement of data monitoring committee in making decisions about adaptive changes. Conclusion This article describes our analytic approach for RE-ADAPT. The next stage of the project is to conduct the re-execution analyses using the seven prespecified designs and the original ALLHAT data. PMID:23983160

  3. A Bayesian Multilevel Model for Microcystin Prediction in ...

    EPA Pesticide Factsheets

    The frequency of cyanobacteria blooms in North American lakes is increasing. A major concern with rising cyanobacteria blooms is microcystin, a common cyanobacterial hepatotoxin. To explore the conditions that promote high microcystin concentrations, we analyzed the US EPA National Lake Assessment (NLA) dataset collected in the summer of 2007. The NLA dataset is reported for nine eco-regions. We used the results of random forest modeling as a means ofvariable selection from which we developed a Bayesian multilevel model of microcystin concentrations. Model parameters under a multilevel modeling framework are eco-region specific, butthey are also assumed to be exchangeable across eco-regions for broad continental scaling. The exchangeability assumption ensures that both the common patterns and eco-region specific features will be reflected in the model. Furthermore, the method incorporates appropriate estimates of uncertainty. Our preliminary results show associations between microcystin and turbidity, total nutrients, and N:P ratios. Upon release of a comparable 2012 NLA dataset, we will apply Bayesian updating. The results will help develop management strategies to alleviate microcystin impacts and improve lake quality. This work provides a probabilistic framework for predicting microcystin presences in lakes. It would allow for insights to be made about how changes in nutrient concentrations could potentially change toxin levels.

  4. Conditional adaptive Bayesian spectral analysis of nonstationary biomedical time series.

    PubMed

    Bruce, Scott A; Hall, Martica H; Buysse, Daniel J; Krafty, Robert T

    2018-03-01

    Many studies of biomedical time series signals aim to measure the association between frequency-domain properties of time series and clinical and behavioral covariates. However, the time-varying dynamics of these associations are largely ignored due to a lack of methods that can assess the changing nature of the relationship through time. This article introduces a method for the simultaneous and automatic analysis of the association between the time-varying power spectrum and covariates, which we refer to as conditional adaptive Bayesian spectrum analysis (CABS). The procedure adaptively partitions the grid of time and covariate values into an unknown number of approximately stationary blocks and nonparametrically estimates local spectra within blocks through penalized splines. CABS is formulated in a fully Bayesian framework, in which the number and locations of partition points are random, and fit using reversible jump Markov chain Monte Carlo techniques. Estimation and inference averaged over the distribution of partitions allows for the accurate analysis of spectra with both smooth and abrupt changes. The proposed methodology is used to analyze the association between the time-varying spectrum of heart rate variability and self-reported sleep quality in a study of older adults serving as the primary caregiver for their ill spouse. © 2017, The International Biometric Society.

  5. Neural Mechanisms for Integrating Prior Knowledge and Likelihood in Value-Based Probabilistic Inference

    PubMed Central

    Ting, Chih-Chung; Yu, Chia-Chen; Maloney, Laurence T.

    2015-01-01

    In Bayesian decision theory, knowledge about the probabilities of possible outcomes is captured by a prior distribution and a likelihood function. The prior reflects past knowledge and the likelihood summarizes current sensory information. The two combined (integrated) form a posterior distribution that allows estimation of the probability of different possible outcomes. In this study, we investigated the neural mechanisms underlying Bayesian integration using a novel lottery decision task in which both prior knowledge and likelihood information about reward probability were systematically manipulated on a trial-by-trial basis. Consistent with Bayesian integration, as sample size increased, subjects tended to weigh likelihood information more compared with prior information. Using fMRI in humans, we found that the medial prefrontal cortex (mPFC) correlated with the mean of the posterior distribution, a statistic that reflects the integration of prior knowledge and likelihood of reward probability. Subsequent analysis revealed that both prior and likelihood information were represented in mPFC and that the neural representations of prior and likelihood in mPFC reflected changes in the behaviorally estimated weights assigned to these different sources of information in response to changes in the environment. Together, these results establish the role of mPFC in prior-likelihood integration and highlight its involvement in representing and integrating these distinct sources of information. PMID:25632152

  6. Design and protocol of a randomized multiple behavior change trial: Make Better Choices 2 (MBC2).

    PubMed

    Pellegrini, Christine A; Steglitz, Jeremy; Johnston, Winter; Warnick, Jennifer; Adams, Tiara; McFadden, H G; Siddique, Juned; Hedeker, Donald; Spring, Bonnie

    2015-03-01

    Suboptimal diet and inactive lifestyle are among the most prevalent preventable causes of premature death. Interventions that target multiple behaviors are potentially efficient; however the optimal way to initiate and maintain multiple health behavior changes is unknown. The Make Better Choices 2 (MBC2) trial aims to examine whether sustained healthful diet and activity change are best achieved by targeting diet and activity behaviors simultaneously or sequentially. Study design approximately 250 inactive adults with poor quality diet will be randomized to 3 conditions examining the best way to prescribe healthy diet and activity change. The 3 intervention conditions prescribe: 1) an increase in fruit and vegetable consumption (F/V+), decrease in sedentary leisure screen time (Sed-), and increase in physical activity (PA+) simultaneously (Simultaneous); 2) F/V+ and Sed- first, and then sequentially add PA+ (Sequential); or 3) Stress Management Control that addresses stress, relaxation, and sleep. All participants will receive a smartphone application to self-monitor behaviors and regular coaching calls to help facilitate behavior change during the 9 month intervention. Healthy lifestyle change in fruit/vegetable and saturated fat intakes, sedentary leisure screen time, and physical activity will be assessed at 3, 6, and 9 months. MBC2 is a randomized m-Health intervention examining methods to maximize initiation and maintenance of multiple healthful behavior changes. Results from this trial will provide insight about an optimal technology supported approach to promote improvement in diet and physical activity. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Missing value imputation in DNA microarrays based on conjugate gradient method.

    PubMed

    Dorri, Fatemeh; Azmi, Paeiz; Dorri, Faezeh

    2012-02-01

    Analysis of gene expression profiles needs a complete matrix of gene array values; consequently, imputation methods have been suggested. In this paper, an algorithm that is based on conjugate gradient (CG) method is proposed to estimate missing values. k-nearest neighbors of the missed entry are first selected based on absolute values of their Pearson correlation coefficient. Then a subset of genes among the k-nearest neighbors is labeled as the best similar ones. CG algorithm with this subset as its input is then used to estimate the missing values. Our proposed CG based algorithm (CGimpute) is evaluated on different data sets. The results are compared with sequential local least squares (SLLSimpute), Bayesian principle component analysis (BPCAimpute), local least squares imputation (LLSimpute), iterated local least squares imputation (ILLSimpute) and adaptive k-nearest neighbors imputation (KNNKimpute) methods. The average of normalized root mean squares error (NRMSE) and relative NRMSE in different data sets with various missing rates shows CGimpute outperforms other methods. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Empirical intrinsic geometry for nonlinear modeling and time series filtering.

    PubMed

    Talmon, Ronen; Coifman, Ronald R

    2013-07-30

    In this paper, we present a method for time series analysis based on empirical intrinsic geometry (EIG). EIG enables one to reveal the low-dimensional parametric manifold as well as to infer the underlying dynamics of high-dimensional time series. By incorporating concepts of information geometry, this method extends existing geometric analysis tools to support stochastic settings and parametrizes the geometry of empirical distributions. However, the statistical models are not required as priors; hence, EIG may be applied to a wide range of real signals without existing definitive models. We show that the inferred model is noise-resilient and invariant under different observation and instrumental modalities. In addition, we show that it can be extended efficiently to newly acquired measurements in a sequential manner. These two advantages enable us to revisit the Bayesian approach and incorporate empirical dynamics and intrinsic geometry into a nonlinear filtering framework. We show applications to nonlinear and non-Gaussian tracking problems as well as to acoustic signal localization.

  9. A recursive Bayesian updating model of haptic stiffness perception.

    PubMed

    Wu, Bing; Klatzky, Roberta L

    2018-06-01

    Stiffness of many materials follows Hooke's Law, but the mechanism underlying the haptic perception of stiffness is not as simple as it seems in the physical definition. The present experiments support a model by which stiffness perception is adaptively updated during dynamic interaction. Participants actively explored virtual springs and estimated their stiffness relative to a reference. The stimuli were simulations of linear springs or nonlinear springs created by modulating a linear counterpart with low-amplitude, half-cycle (Experiment 1) or full-cycle (Experiment 2) sinusoidal force. Experiment 1 showed that subjective stiffness increased (decreased) as a linear spring was positively (negatively) modulated by a half-sinewave force. In Experiment 2, an opposite pattern was observed for full-sinewave modulations. Modeling showed that the results were best described by an adaptive process that sequentially and recursively updated an estimate of stiffness using the force and displacement information sampled over trajectory and time. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  10. Ensemble-marginalized Kalman filter for linear time-dependent PDEs with noisy boundary conditions: application to heat transfer in building walls

    NASA Astrophysics Data System (ADS)

    Iglesias, Marco; Sawlan, Zaid; Scavino, Marco; Tempone, Raúl; Wood, Christopher

    2018-07-01

    In this work, we present the ensemble-marginalized Kalman filter (EnMKF), a sequential algorithm analogous to our previously proposed approach (Ruggeri et al 2017 Bayesian Anal. 12 407–33, Iglesias et al 2018 Int. J. Heat Mass Transfer 116 417–31), for estimating the state and parameters of linear parabolic partial differential equations in initial-boundary value problems when the boundary data are noisy. We apply EnMKF to infer the thermal properties of building walls and to estimate the corresponding heat flux from real and synthetic data. Compared with a modified ensemble Kalman filter (EnKF) that is not marginalized, EnMKF reduces the bias error, avoids the collapse of the ensemble without needing to add inflation, and converges to the mean field posterior using or less of the ensemble size required by EnKF. According to our results, the marginalization technique in EnMKF is key to performance improvement with smaller ensembles at any fixed time.

  11. On equivalent parameter learning in simplified feature space based on Bayesian asymptotic analysis.

    PubMed

    Yamazaki, Keisuke

    2012-07-01

    Parametric models for sequential data, such as hidden Markov models, stochastic context-free grammars, and linear dynamical systems, are widely used in time-series analysis and structural data analysis. Computation of the likelihood function is one of primary considerations in many learning methods. Iterative calculation of the likelihood such as the model selection is still time-consuming though there are effective algorithms based on dynamic programming. The present paper studies parameter learning in a simplified feature space to reduce the computational cost. Simplifying data is a common technique seen in feature selection and dimension reduction though an oversimplified space causes adverse learning results. Therefore, we mathematically investigate a condition of the feature map to have an asymptotically equivalent convergence point of estimated parameters, referred to as the vicarious map. As a demonstration to find vicarious maps, we consider the feature space, which limits the length of data, and derive a necessary length for parameter learning in hidden Markov models. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Using Bayesian Nonparametric Hidden Semi-Markov Models to Disentangle Affect Processes during Marital Interaction

    PubMed Central

    Griffin, William A.; Li, Xun

    2016-01-01

    Sequential affect dynamics generated during the interaction of intimate dyads, such as married couples, are associated with a cascade of effects—some good and some bad—on each partner, close family members, and other social contacts. Although the effects are well documented, the probabilistic structures associated with micro-social processes connected to the varied outcomes remain enigmatic. Using extant data we developed a method of classifying and subsequently generating couple dynamics using a Hierarchical Dirichlet Process Hidden semi-Markov Model (HDP-HSMM). Our findings indicate that several key aspects of existing models of marital interaction are inadequate: affect state emissions and their durations, along with the expected variability differences between distressed and nondistressed couples are present but highly nuanced; and most surprisingly, heterogeneity among highly satisfied couples necessitate that they be divided into subgroups. We review how this unsupervised learning technique generates plausible dyadic sequences that are sensitive to relationship quality and provide a natural mechanism for computational models of behavioral and affective micro-social processes. PMID:27187319

  13. Bayesian data analysis for newcomers.

    PubMed

    Kruschke, John K; Liddell, Torrin M

    2018-02-01

    This article explains the foundational concepts of Bayesian data analysis using virtually no mathematical notation. Bayesian ideas already match your intuitions from everyday reasoning and from traditional data analysis. Simple examples of Bayesian data analysis are presented that illustrate how the information delivered by a Bayesian analysis can be directly interpreted. Bayesian approaches to null-value assessment are discussed. The article clarifies misconceptions about Bayesian methods that newcomers might have acquired elsewhere. We discuss prior distributions and explain how they are not a liability but an important asset. We discuss the relation of Bayesian data analysis to Bayesian models of mind, and we briefly discuss what methodological problems Bayesian data analysis is not meant to solve. After you have read this article, you should have a clear sense of how Bayesian data analysis works and the sort of information it delivers, and why that information is so intuitive and useful for drawing conclusions from data.

  14. The Biasing Influence of Worldview on Climate Change Attitudes

    NASA Astrophysics Data System (ADS)

    Cook, J.

    2012-12-01

    It is well established that political ideology has a strong influence on public opinion about climate change. According to one survey (Leiserowitz et al 2011), the percentage of Democrats accepting that climate change is happening is over double the percentage of Tea Partiers. There is also evidence of ideologically driven belief polarization, where two people receiving the same evidence update their beliefs in opposite direction. Presenting scientific evidence can result in a backfire effect where conservatives become more sceptical of climate change. It is possible to model (and hence better understand) the backfire effect using Bayesian Networks which simulate belief updating using Bayes Law. In this model, trust in science is the driving force behind polarization and worldview is the knob that controls trust. One consequence of this model is that attempts to increase trust in science are expected to be largely ineffective for conservatives. It suggests that a potentially constructive approach is to reduce the biasing influence of worldview by affirming conservative values while presenting climate messages. Experimental data comparing the effectiveness of various interventions are presented and discussed in the context of the Bayesian Network model.

  15. SSME propellant path leak detection real-time

    NASA Technical Reports Server (NTRS)

    Crawford, R. A.; Smith, L. M.

    1994-01-01

    Included are four documents that outline the technical aspects of the research performed on NASA Grant NAG8-140: 'A System for Sequential Step Detection with Application to Video Image Processing'; 'Leak Detection from the SSME Using Sequential Image Processing'; 'Digital Image Processor Specifications for Real-Time SSME Leak Detection'; and 'A Color Change Detection System for Video Signals with Applications to Spectral Analysis of Rocket Engine Plumes'.

  16. Determining Type I and Type II Errors when Applying Information Theoretic Change Detection Metrics for Data Association and Space Situational Awareness

    NASA Astrophysics Data System (ADS)

    Wilkins, M.; Moyer, E. J.; Hussein, Islam I.; Schumacher, P. W., Jr.

    Correlating new detections back to a large catalog of resident space objects (RSOs) requires solving one of three types of data association problems: observation-to-track, track-to-track, or observation-to-observation. The authors previous work has explored the use of various information divergence metrics for solving these problems: Kullback-Leibler (KL) divergence, mutual information, and Bhattacharrya distance. In addition to approaching the data association problem strictly from the metric tracking aspect, we have explored fusing metric and photometric data using Bayesian probabilistic reasoning for RSO identification to aid in our ability to correlate data to specific RS Os. In this work, we will focus our attention on the KL Divergence, which is a measure of the information gained when new evidence causes the observer to revise their beliefs. We can apply the Principle of Minimum Discrimination Information such that new data produces as small an information gain as possible and this information change is bounded by ɛ. Choosing an appropriate value for ɛ for both convergence and change detection is a function of your risk tolerance. Small ɛ for change detection increases alarm rates while larger ɛ for convergence means that new evidence need not be identical in information content. We need to understand what this change detection metric implies for Type I α and Type II β errors when we are forced to make a decision on whether new evidence represents a true change in characterization of an object or is merely within the bounds of our measurement uncertainty. This is unclear for the case of fusing multiple kinds and qualities of characterization evidence that may exist in different metric spaces or are even semantic statements. To this end, we explore the use of Sequential Probability Ratio Testing where we suppose that we may need to collect additional evidence before accepting or rejecting the null hypothesis that a change has occurred. In this work, we will explore the effects of choosing ɛ as a function of α and β. Our intent is that this work will help bridge understanding between the well-trodden grounds of Type I and Type II errors and changes in information theoretic content.

  17. Sequential Change of Wound Calculated by Image Analysis Using a Color Patch Method during a Secondary Intention Healing.

    PubMed

    Yang, Sejung; Park, Junhee; Lee, Hanuel; Kim, Soohyun; Lee, Byung-Uk; Chung, Kee-Yang; Oh, Byungho

    2016-01-01

    Photographs of skin wounds have the most important information during the secondary intention healing (SIH). However, there is no standard method for handling those images and analyzing them efficiently and conveniently. To investigate the sequential changes of SIH depending on the body sites using a color patch method. We performed retrospective reviews of 30 patients (11 facial and 19 non-facial areas) who underwent SIH for the restoration of skin defects and captured sequential photographs with a color patch which is specially designed for automatically calculating defect and scar sizes. Using a novel image analysis method with a color patch, skin defects were calculated more accurately (range of error rate: -3.39% ~ + 3.05%). All patients had smaller scar size than the original defect size after SIH treatment (rates of decrease: 18.8% ~ 86.1%), and facial area showed significantly higher decrease rate compared with the non-facial area such as scalp and extremities (67.05 ± 12.48 vs. 53.29 ± 18.11, P < 0.05). From the result of estimating the date corresponding to the half of the final decrement, all of the facial area showed improvements within two weeks (8.45 ± 3.91), and non-facial area needed 14.33 ± 9.78 days. From the results of sequential changes of skin defects, SIH can be recommended as an alternative treatment method for restoration with more careful dressing for initial two weeks.

  18. Comparison of Image Quality and Radiation Dose of Coronary Computed Tomography Angiography Between Conventional Helical Scanning and a Strategy Incorporating Sequential Scanning

    PubMed Central

    Einstein, Andrew J.; Wolff, Steven D.; Manheimer, Eric D.; Thompson, James; Terry, Sylvia; Uretsky, Seth; Pilip, Adalbert; Peters, M. Robert

    2009-01-01

    Radiation dose from coronary computed tomography angiography may be reduced using a sequential scanning protocol rather than a conventional helical scanning protocol. Here we compare radiation dose and image quality from coronary computed tomography angiography in a single center between an initial period during which helical scanning with electrocardiographically-controlled tube current modulation was used for all patients (n=138) and after adoption of a strategy incorporating sequential scanning whenever appropriate (n=261). Using the sequential-if-appropriate strategy, sequential scanning was employed in 86.2% of patients. Compared to the helical-only strategy, this strategy was associated with a 65.1% dose reduction (mean dose-length product of 305.2 vs. 875.1 and mean effective dose of 14.9 mSv vs. 5.2 mSv, respectively), with no significant change in overall image quality, step artifacts, motion artifacts, or perceived image noise. For the 225 patients undergoing sequential scanning, the dose-length product was 201.9 ± 90.0 mGy·cm, while for patients undergoing helical scanning under either strategy, the dose-length product was 890.9 ± 293.3 mGy·cm (p<0.0001), corresponding to mean effective doses of 3.4 mSv and 15.1 mSv, respectively, a 77.5% reduction. Image quality was significantly greater for the sequential studies, reflecting the poorer image quality in patients undergoing helical scanning in the sequential-if-appropriate strategy. In conclusion, a sequential-if-appropriate diagnostic strategy reduces dose markedly compared to a helical-only strategy, with no significant difference in image quality. PMID:19892048

  19. Light-sheet Bayesian microscopy enables deep-cell super-resolution imaging of heterochromatin in live human embryonic stem cells.

    PubMed

    Hu, Ying S; Zhu, Quan; Elkins, Keri; Tse, Kevin; Li, Yu; Fitzpatrick, James A J; Verma, Inder M; Cang, Hu

    2013-01-01

    Heterochromatin in the nucleus of human embryonic cells plays an important role in the epigenetic regulation of gene expression. The architecture of heterochromatin and its dynamic organization remain elusive because of the lack of fast and high-resolution deep-cell imaging tools. We enable this task by advancing instrumental and algorithmic implementation of the localization-based super-resolution technique. We present light-sheet Bayesian super-resolution microscopy (LSBM). We adapt light-sheet illumination for super-resolution imaging by using a novel prism-coupled condenser design to illuminate a thin slice of the nucleus with high signal-to-noise ratio. Coupled with a Bayesian algorithm that resolves overlapping fluorophores from high-density areas, we show, for the first time, nanoscopic features of the heterochromatin structure in both fixed and live human embryonic stem cells. The enhanced temporal resolution allows capturing the dynamic change of heterochromatin with a lateral resolution of 50-60 nm on a time scale of 2.3 s. Light-sheet Bayesian microscopy opens up broad new possibilities of probing nanometer-scale nuclear structures and real-time sub-cellular processes and other previously difficult-to-access intracellular regions of living cells at the single-molecule, and single cell level.

  20. Light-sheet Bayesian microscopy enables deep-cell super-resolution imaging of heterochromatin in live human embryonic stem cells

    PubMed Central

    Hu, Ying S; Zhu, Quan; Elkins, Keri; Tse, Kevin; Li, Yu; Fitzpatrick, James A J; Verma, Inder M; Cang, Hu

    2016-01-01

    Background Heterochromatin in the nucleus of human embryonic cells plays an important role in the epigenetic regulation of gene expression. The architecture of heterochromatin and its dynamic organization remain elusive because of the lack of fast and high-resolution deep-cell imaging tools. We enable this task by advancing instrumental and algorithmic implementation of the localization-based super-resolution technique. Results We present light-sheet Bayesian super-resolution microscopy (LSBM). We adapt light-sheet illumination for super-resolution imaging by using a novel prism-coupled condenser design to illuminate a thin slice of the nucleus with high signal-to-noise ratio. Coupled with a Bayesian algorithm that resolves overlapping fluorophores from high-density areas, we show, for the first time, nanoscopic features of the heterochromatin structure in both fixed and live human embryonic stem cells. The enhanced temporal resolution allows capturing the dynamic change of heterochromatin with a lateral resolution of 50–60 nm on a time scale of 2.3 s. Conclusion Light-sheet Bayesian microscopy opens up broad new possibilities of probing nanometer-scale nuclear structures and real-time sub-cellular processes and other previously difficult-to-access intracellular regions of living cells at the single-molecule, and single cell level. PMID:27795878

  1. Sequential Cotard and Capgras delusions.

    PubMed

    Wright, S; Young, A W; Hellawell, D J

    1993-09-01

    We report sequential Cotard and Capgras delusions in the same patient, KH, and offer a simple hypothesis to account for this link. The Cotard delusion occurred when KH was depressed and the Capgras delusion arose in the context of persecutory delusions. We suggest that the Cotard and Capgras delusions reflect different interpretations of similar anomalous experiences, and that the persecutory delusions and suspiciousness that are often noted in Capgras cases contribute to the patients' mistaking a change in themselves for a change in others ('they are impostors'), whereas people who are depressed exaggerate the negative effects of the same change whilst correctly attributing it to themselves ('I am dead'). This explains why there might be an underlying similarity between delusions which are phenomenally distinct.

  2. Modulation of Limbic and Prefrontal Connectivity by Electroconvulsive Therapy in Treatment-resistant Depression: A Preliminary Study.

    PubMed

    Cano, Marta; Cardoner, Narcís; Urretavizcaya, Mikel; Martínez-Zalacaín, Ignacio; Goldberg, Ximena; Via, Esther; Contreras-Rodríguez, Oren; Camprodon, Joan; de Arriba-Arnau, Aida; Hernández-Ribas, Rosa; Pujol, Jesús; Soriano-Mas, Carles; Menchón, José M

    2016-01-01

    Although current models of depression suggest that a sequential modulation of limbic and prefrontal connectivity is needed for illness recovery, neuroimaging studies of electroconvulsive therapy (ECT) have focused on assessing functional connectivity (FC) before and after an ECT course, without characterizing functional changes occurring at early treatment phases. To assess sequential changes in limbic and prefrontal FC during the course of ECT and their impact on clinical response. Longitudinal intralimbic and limbic-prefrontal networks connectivity study. We assessed 15 patients with treatment-resistant depression at four different time-points throughout the entire course of an ECT protocol and 10 healthy participants at two functional neuroimaging examinations. Furthermore, a path analysis to test direct and indirect predictive effects of limbic and prefrontal FC changes on clinical response measured with the Hamilton Rating Scale for Depression was also performed. An early significant intralimbic FC decrease significantly predicted a later increase in limbic-prefrontal FC, which in turn significantly predicted clinical improvement at the end of an ECT course. Our data support that treatment response involves sequential changes in FC within regions of the intralimbic and limbic-prefrontal networks. This approach may help in identifying potential early biomarkers of treatment response. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. ANALYSES OF RESPONSE–STIMULUS SEQUENCES IN DESCRIPTIVE OBSERVATIONS

    PubMed Central

    Samaha, Andrew L; Vollmer, Timothy R; Borrero, Carrie; Sloman, Kimberly; Pipkin, Claire St. Peter; Bourret, Jason

    2009-01-01

    Descriptive observations were conducted to record problem behavior displayed by participants and to record antecedents and consequences delivered by caregivers. Next, functional analyses were conducted to identify reinforcers for problem behavior. Then, using data from the descriptive observations, lag-sequential analyses were conducted to examine changes in the probability of environmental events across time in relation to occurrences of problem behavior. The results of the lag-sequential analyses were interpreted in light of the results of functional analyses. Results suggested that events identified as reinforcers in a functional analysis followed behavior in idiosyncratic ways: after a range of delays and frequencies. Thus, it is possible that naturally occurring reinforcement contingencies are arranged in ways different from those typically evaluated in applied research. Further, these complex response–stimulus relations can be represented by lag-sequential analyses. However, limitations to the lag-sequential analysis are evident. PMID:19949537

  4. A Bayesian-Based Approach to Marine Spatial Planning: Evaluating Spatial and Temporal Variance in the Provision of Ecosystem Services Before and After the Establishment Oregon's Marine Protected Areas

    NASA Astrophysics Data System (ADS)

    Black, B.; Harte, M.; Goldfinger, C.

    2017-12-01

    Participating in a ten-year monitoring project to assess the ecological, social, and socioeconomic impacts of Oregon's Marine Protected Areas (MPAs), we have worked in partnership with the Oregon Department of Fish and Wildlife (ODFW) to develop a Bayesian geospatial method to evaluate the spatial and temporal variance in the provision of ecosystem services produced by Oregon's MPAs. Probabilistic (Bayesian) approaches to Marine Spatial Planning (MSP) show considerable potential for addressing issues such as uncertainty, cumulative effects, and the need to integrate stakeholder-held information and preferences into decision making processes. To that end, we have created a Bayesian-based geospatial approach to MSP capable of modelling the evolution of the provision of ecosystem services before and after the establishment of Oregon's MPAs. Our approach permits both planners and stakeholders to view expected impacts of differing policies, behaviors, or choices made concerning Oregon's MPAs and surrounding areas in a geospatial (map) format while simultaneously considering multiple parties' beliefs on the policies or uses in question. We quantify the influence of the MPAs as the shift in the spatial distribution of ecosystem services, both inside and outside the protected areas, over time. Once the MPAs' influence on the provision of coastal ecosystem services has been evaluated, it is possible to view these impacts through geovisualization techniques. As a specific example of model use and output, a user could investigate the effects of altering the habitat preferences of a rockfish species over a prescribed period of time (5, 10, 20 years post-harvesting restrictions, etc.) on the relative intensity of spillover from nearby reserves (please see submitted figure). Particular strengths of our Bayesian-based approach include its ability to integrate highly disparate input types (qualitative or quantitative), to accommodate data gaps, address uncertainty, and to investigate temporal and spatial variation. This approach conveys the modeled outcome of proposed policy changes and is also a vehicle through which stakeholders and planners can work together to compare and deliberate on the impacts of policy and management changes, a capacity of considerable utility for planners and stakeholders engaged in MSP.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jennings, E.; Madigan, M.

    Given the complexity of modern cosmological parameter inference where we arefaced with non-Gaussian data and noise, correlated systematics and multi-probecorrelated data sets, the Approximate Bayesian Computation (ABC) method is apromising alternative to traditional Markov Chain Monte Carlo approaches in thecase where the Likelihood is intractable or unknown. The ABC method is called"Likelihood free" as it avoids explicit evaluation of the Likelihood by using aforward model simulation of the data which can include systematics. Weintroduce astroABC, an open source ABC Sequential Monte Carlo (SMC) sampler forparameter estimation. A key challenge in astrophysics is the efficient use oflarge multi-probe datasets to constrainmore » high dimensional, possibly correlatedparameter spaces. With this in mind astroABC allows for massive parallelizationusing MPI, a framework that handles spawning of jobs across multiple nodes. Akey new feature of astroABC is the ability to create MPI groups with differentcommunicators, one for the sampler and several others for the forward modelsimulation, which speeds up sampling time considerably. For smaller jobs thePython multiprocessing option is also available. Other key features include: aSequential Monte Carlo sampler, a method for iteratively adapting tolerancelevels, local covariance estimate using scikit-learn's KDTree, modules forspecifying optimal covariance matrix for a component-wise or multivariatenormal perturbation kernel, output and restart files are backed up everyiteration, user defined metric and simulation methods, a module for specifyingheterogeneous parameter priors including non-standard prior PDFs, a module forspecifying a constant, linear, log or exponential tolerance level,well-documented examples and sample scripts. This code is hosted online athttps://github.com/EliseJ/astroABC« less

  6. Effects of model complexity and priors on estimation using sequential importance sampling/resampling for species conservation

    USGS Publications Warehouse

    Dunham, Kylee; Grand, James B.

    2016-01-01

    We examined the effects of complexity and priors on the accuracy of models used to estimate ecological and observational processes, and to make predictions regarding population size and structure. State-space models are useful for estimating complex, unobservable population processes and making predictions about future populations based on limited data. To better understand the utility of state space models in evaluating population dynamics, we used them in a Bayesian framework and compared the accuracy of models with differing complexity, with and without informative priors using sequential importance sampling/resampling (SISR). Count data were simulated for 25 years using known parameters and observation process for each model. We used kernel smoothing to reduce the effect of particle depletion, which is common when estimating both states and parameters with SISR. Models using informative priors estimated parameter values and population size with greater accuracy than their non-informative counterparts. While the estimates of population size and trend did not suffer greatly in models using non-informative priors, the algorithm was unable to accurately estimate demographic parameters. This model framework provides reasonable estimates of population size when little to no information is available; however, when information on some vital rates is available, SISR can be used to obtain more precise estimates of population size and process. Incorporating model complexity such as that required by structured populations with stage-specific vital rates affects precision and accuracy when estimating latent population variables and predicting population dynamics. These results are important to consider when designing monitoring programs and conservation efforts requiring management of specific population segments.

  7. [Co-composting high moisture vegetable waste and flower waste in a sequential fed operation].

    PubMed

    Zhang, Xiangfeng; Wang, Hongtao; Nie, Yongfeng

    2003-11-01

    Co-composting of high moisture vegetable wastes (celery and cabbage) and flower wastes (carnation) were studied in a sequential fed bed. The preliminary materials of composting were celery and carnation wastes. The sequential fed materials of composting were cabbage wastes and were fed every 4 days. Moisture content of mixture materials was between 60% and 70%. Composting was done in an aerobic static bed of composting based temperature feedback and control via aeration rate regulation. Aeration was ended when temperature of the pile was about 40 degrees C. Changes of composting of temperature, aeration rate, water content, organic matter, ash, pH, volume, NH4(+)-N, and NO3(-)-N were studied. Results show that co-composting of high moisture vegetable wastes and flower wastes, in a sequential fed aerobic static bed based temperature feedback and control via aeration rate regulation, can stabilize organic matter and removal water rapidly. The sequential fed operation are effective to overcome the difficult which traditional composting cannot applied successfully where high moisture vegetable wastes in more excess of flower wastes, such as Dianchi coastal.

  8. Enhancing the performance of tungsten doped InZnO thin film transistors via sequential ambient annealing

    NASA Astrophysics Data System (ADS)

    Park, Hyun-Woo; Song, Aeran; Kwon, Sera; Choi, Dukhyun; Kim, Younghak; Jun, Byung-Hyuk; Kim, Han-Ki; Chung, Kwun-Bum

    2018-03-01

    This study suggests a sequential ambient annealing process as an excellent post-treatment method to enhance the device performance and stability of W (tungsten) doped InZnO thin film transistors (WIZO-TFTs). Sequential ambient annealing at 250 °C significantly enhanced the device performance and stability of WIZO-TFTs, compared with other post-treatment methods, such as air ambient annealing and vacuum ambient annealing at 250 °C. To understand the enhanced device performance and stability of WIZO-TFT with sequential ambient annealing, we investigate the correlations between device performance and stability and electronic structures, such as band alignment, a feature of the conduction band, and band edge states below the conduction band. The enhanced performance of WIZO-TFTs with sequential ambient annealing is related to the modification of the electronic structure. In addition, the dominant mechanism responsible for the enhanced device performance and stability of WIZO-TFTs is considered to be a change in the shallow-level and deep-level band edge states below the conduction band.

  9. Dissolution curve comparisons through the F(2) parameter, a Bayesian extension of the f(2) statistic.

    PubMed

    Novick, Steven; Shen, Yan; Yang, Harry; Peterson, John; LeBlond, Dave; Altan, Stan

    2015-01-01

    Dissolution (or in vitro release) studies constitute an important aspect of pharmaceutical drug development. One important use of such studies is for justifying a biowaiver for post-approval changes which requires establishing equivalence between the new and old product. We propose a statistically rigorous modeling approach for this purpose based on the estimation of what we refer to as the F2 parameter, an extension of the commonly used f2 statistic. A Bayesian test procedure is proposed in relation to a set of composite hypotheses that capture the similarity requirement on the absolute mean differences between test and reference dissolution profiles. Several examples are provided to illustrate the application. Results of our simulation study comparing the performance of f2 and the proposed method show that our Bayesian approach is comparable to or in many cases superior to the f2 statistic as a decision rule. Further useful extensions of the method, such as the use of continuous-time dissolution modeling, are considered.

  10. Reducing uncertainties in decadal variability of the global carbon budget with multiple datasets

    PubMed Central

    Li, Wei; Ciais, Philippe; Wang, Yilong; Peng, Shushi; Broquet, Grégoire; Ballantyne, Ashley P.; Canadell, Josep G.; Cooper, Leila; Friedlingstein, Pierre; Le Quéré, Corinne; Myneni, Ranga B.; Peters, Glen P.; Piao, Shilong; Pongratz, Julia

    2016-01-01

    Conventional calculations of the global carbon budget infer the land sink as a residual between emissions, atmospheric accumulation, and the ocean sink. Thus, the land sink accumulates the errors from the other flux terms and bears the largest uncertainty. Here, we present a Bayesian fusion approach that combines multiple observations in different carbon reservoirs to optimize the land (B) and ocean (O) carbon sinks, land use change emissions (L), and indirectly fossil fuel emissions (F) from 1980 to 2014. Compared with the conventional approach, Bayesian optimization decreases the uncertainties in B by 41% and in O by 46%. The L uncertainty decreases by 47%, whereas F uncertainty is marginally improved through the knowledge of natural fluxes. Both ocean and net land uptake (B + L) rates have positive trends of 29 ± 8 and 37 ± 17 Tg C⋅y−2 since 1980, respectively. Our Bayesian fusion of multiple observations reduces uncertainties, thereby allowing us to isolate important variability in global carbon cycle processes. PMID:27799533

  11. ANUBIS: artificial neuromodulation using a Bayesian inference system.

    PubMed

    Smith, Benjamin J H; Saaj, Chakravarthini M; Allouis, Elie

    2013-01-01

    Gain tuning is a crucial part of controller design and depends not only on an accurate understanding of the system in question, but also on the designer's ability to predict what disturbances and other perturbations the system will encounter throughout its operation. This letter presents ANUBIS (artificial neuromodulation using a Bayesian inference system), a novel biologically inspired technique for automatically tuning controller parameters in real time. ANUBIS is based on the Bayesian brain concept and modifies it by incorporating a model of the neuromodulatory system comprising four artificial neuromodulators. It has been applied to the controller of EchinoBot, a prototype walking rover for Martian exploration. ANUBIS has been implemented at three levels of the controller; gait generation, foot trajectory planning using Bézier curves, and foot trajectory tracking using a terminal sliding mode controller. We compare the results to a similar system that has been tuned using a multilayer perceptron. The use of Bayesian inference means that the system retains mathematical interpretability, unlike other intelligent tuning techniques, which use neural networks, fuzzy logic, or evolutionary algorithms. The simulation results show that ANUBIS provides significant improvements in efficiency and adaptability of the three controller components; it allows the robot to react to obstacles and uncertainties faster than the system tuned with the MLP, while maintaining stability and accuracy. As well as advancing rover autonomy, ANUBIS could also be applied to other situations where operating conditions are likely to change or cannot be accurately modeled in advance, such as process control. In addition, it demonstrates one way in which neuromodulation could fit into the Bayesian brain framework.

  12. From bridewealth to dowry? : A bayesian estimation of ancestral states of marriage transfers in Indo-European groups.

    PubMed

    Fortunato, Laura; Holden, Clare; Mace, Ruth

    2006-12-01

    Significant amounts of wealth have been exchanged as part of marriage settlements throughout history. Although various models have been proposed for interpreting these practices, their development over time has not been investigated systematically. In this paper we use a Bayesian MCMC phylogenetic comparative approach to reconstruct the evolution of two forms of wealth transfers at marriage, dowry and bridewealth, for 51 Indo-European cultural groups. Results indicate that dowry is more likely to have been the ancestral practice, and that a minimum of four changes to bridewealth is necessary to explain the observed distribution of the two states across the cultural groups.

  13. The Development of Bayesian Theory and Its Applications in Business and Bioinformatics

    NASA Astrophysics Data System (ADS)

    Zhang, Yifei

    2018-03-01

    Bayesian Theory originated from an Essay of a British mathematician named Thomas Bayes in 1763, and after its development in 20th century, Bayesian Statistics has been taking a significant part in statistical study of all fields. Due to the recent breakthrough of high-dimensional integral, Bayesian Statistics has been improved and perfected, and now it can be used to solve problems that Classical Statistics failed to solve. This paper summarizes Bayesian Statistics’ history, concepts and applications, which are illustrated in five parts: the history of Bayesian Statistics, the weakness of Classical Statistics, Bayesian Theory and its development and applications. The first two parts make a comparison between Bayesian Statistics and Classical Statistics in a macroscopic aspect. And the last three parts focus on Bayesian Theory in specific -- from introducing some particular Bayesian Statistics’ concepts to listing their development and finally their applications.

  14. Bayesian demography 250 years after Bayes

    PubMed Central

    Bijak, Jakub; Bryant, John

    2016-01-01

    Bayesian statistics offers an alternative to classical (frequentist) statistics. It is distinguished by its use of probability distributions to describe uncertain quantities, which leads to elegant solutions to many difficult statistical problems. Although Bayesian demography, like Bayesian statistics more generally, is around 250 years old, only recently has it begun to flourish. The aim of this paper is to review the achievements of Bayesian demography, address some misconceptions, and make the case for wider use of Bayesian methods in population studies. We focus on three applications: demographic forecasts, limited data, and highly structured or complex models. The key advantages of Bayesian methods are the ability to integrate information from multiple sources and to describe uncertainty coherently. Bayesian methods also allow for including additional (prior) information next to the data sample. As such, Bayesian approaches are complementary to many traditional methods, which can be productively re-expressed in Bayesian terms. PMID:26902889

  15. Analyzing Communication Architectures Using Commercial Off-The-Shelf (COTS) Modeling and Simulation Tools

    DTIC Science & Technology

    1998-06-01

    4] By 2010, we should be able to change how we conduct the most intense joint operations. Instead of relying on massed forces and sequential ...not independent, sequential steps. Data probes to support the analysis phase were required to complete the logical models. This generated a need...Networks) Identify Granularity (System Level) - Establish Physical Bounds or Limits to Systems • Determine System Test Configuration and Lineup

  16. Challenges in predicting climate change impacts on pome fruit phenology

    NASA Astrophysics Data System (ADS)

    Darbyshire, Rebecca; Webb, Leanne; Goodwin, Ian; Barlow, E. W. R.

    2014-08-01

    Climate projection data were applied to two commonly used pome fruit flowering models to investigate potential differences in predicted full bloom timing. The two methods, fixed thermal time and sequential chill-growth, produced different results for seven apple and pear varieties at two Australian locations. The fixed thermal time model predicted incremental advancement of full bloom, while results were mixed from the sequential chill-growth model. To further investigate how the sequential chill-growth model reacts under climate perturbed conditions, four simulations were created to represent a wider range of species physiological requirements. These were applied to five Australian locations covering varied climates. Lengthening of the chill period and contraction of the growth period was common to most results. The relative dominance of the chill or growth component tended to predict whether full bloom advanced, remained similar or was delayed with climate warming. The simplistic structure of the fixed thermal time model and the exclusion of winter chill conditions in this method indicate it is unlikely to be suitable for projection analyses. The sequential chill-growth model includes greater complexity; however, reservations in using this model for impact analyses remain. The results demonstrate that appropriate representation of physiological processes is essential to adequately predict changes to full bloom under climate perturbed conditions with greater model development needed.

  17. Changes in transthoracic impedance during sequential biphasic defibrillation.

    PubMed

    Deakin, Charles D; Ambler, Jonathan J S; Shaw, Steven

    2008-08-01

    Sequential monophasic defibrillation reduces transthoracic impedance (TTI) and progressively increases current flow for any given energy level. The effect of sequential biphasic shocks on TTI is unknown. We therefore studied patients undergoing elective cardioversion using a biphasic waveform to establish whether this is a phenomenon seen in the clinical setting. Adults undergoing elective DC cardioversion for atrial flutter or fibrillation received sequential transthoracic shocks using an escalating protocol (70J, 100J, 150J, 200J, and 300J) with a truncated exponential biphasic waveform. TTI was calculated through the defibrillator circuit and recorded electronically. Successful cardioversion terminated further defibrillation shocks. A total of 58 patients underwent elective cardioversion. Cardioversion was successful in 93.1% patients. First shock TTI was 92.2 [52.0-126.0]Omega (n=58) and decreased significantly with each sequential shock. Mean TTI in patients receiving five shocks (n=5) was 85.0Omega. Sequential biphasic defibrillation decreases TTI in a similar manner to that seen with monophasic waveforms. The effect is likely during defibrillation during cardiac arrest by the quick succession in which shocks are delivered and the lack of cutaneous blood flow which limits the inflammatory response. The ability of biphasic defibrillators to adjust their waveform according to TTI is likely to minimise any effect of these findings on defibrillation efficacy.

  18. A Bayesian Measurment Error Model for Misaligned Radiographic Data

    DOE PAGES

    Lennox, Kristin P.; Glascoe, Lee G.

    2013-09-06

    An understanding of the inherent variability in micro-computed tomography (micro-CT) data is essential to tasks such as statistical process control and the validation of radiographic simulation tools. The data present unique challenges to variability analysis due to the relatively low resolution of radiographs, and also due to minor variations from run to run which can result in misalignment or magnification changes between repeated measurements of a sample. Positioning changes artificially inflate the variability of the data in ways that mask true physical phenomena. We present a novel Bayesian nonparametric regression model that incorporates both additive and multiplicative measurement error inmore » addition to heteroscedasticity to address this problem. We also use this model to assess the effects of sample thickness and sample position on measurement variability for an aluminum specimen. Supplementary materials for this article are available online.« less

  19. Response of hydrology to climate change in the southern Appalachian mountains using Bayesian inference

    Treesearch

    Wei Wu; James S. Clark; James M. Vose

    2012-01-01

    Predicting long-term consequences of climate change on hydrologic processes has been limited due to the needs to accommodate the uncertainties in hydrological measurements for calibration, and to account for the uncertainties in the models that would ingest those calibrations and uncertainties in climate predictions as basis for hydrological predictions. We implemented...

  20. Climate change and vulnerability of bull trout (Salvelinus confluentus ) in a fire-prone landscape

    Treesearch

    Jeffrey A. Falke; Rebecca L. Flitcroft; Jason B. Dunham; Kristina M. McNyset; Paul F. Hessburg; Gordon H. Reeves; C. Tara Marshall

    2015-01-01

    Linked atmospheric and wildfire changes will complicate future management of native coldwater fishes in fire-prone landscapes, and new approaches to management that incorporate uncertainty are needed to address this challenge. We used a Bayesian network (BN) approach to evaluate population vulnerability of bull trout (Salvelinus confluentus) in the Wenatchee River...

  1. Study of the field-sequential modulation of Nd:YVO4/MgO:PPLN based intra-cavity frequency doubling green laser

    NASA Astrophysics Data System (ADS)

    Zhang, Bin; Gan, Yi; Xu, Chang-Qing

    2018-06-01

    The field sequential modulation of a Nd:YVO4/MgO:PPLN intra-cavity, frequency doubling green laser was studied. The modulation frequency was set at 1 kHz and the duty cycle was changed from 20% to CW operation. It was shown that the quasi-phase matched (QPM) temperature decreases with an increase of the modulation duty cycle, and in turn causing the peak efficiency to rise. It was found that the temperature change in MgO:PPLN and the thermal lens effect in Nd:YVO4 crystal were the respective origins of these observed experimental phenomena.

  2. Simultaneous and sequential hemorrhage of multiple cerebral cavernous malformations: a case report.

    PubMed

    Louis, Nundia; Marsh, Robert

    2016-02-09

    The etiology of cerebral cavernous malformation hemorrhage is not well understood. Causative physiologic parameters preceding hemorrhagic cavernous malformation events are often not reported. We present a case of an individual with sequential simultaneous hemorrhages in multiple cerebral cavernous malformations with a new onset diagnosis of hypertension. A 42-year-old white man was admitted to our facility with worsening headache, left facial and tongue numbness, dizziness, diplopia, and elevated blood pressure. His past medical history was significant for new onset diagnosis of hypertension and chronic seasonal allergies. Serial imaging over the ensuing 8 days revealed sequential hemorrhagic lesions. He underwent suboccipital craniotomy for resection of the lesions located in the fourth ventricle and right cerebellum. One month after surgery, he had near complete resolution of his symptoms with mild residual vertigo but symptomatic chronic hypertension. Many studies have focused on genetic and inflammatory mechanisms contributing to cerebral cavernous malformation rupture, but few have reported on the potential of hemodynamic changes contributing to cerebral cavernous malformation rupture. Systemic blood pressure changes clearly have an effect on angioma pressures. When considering the histopathological features of cerebral cavernous malformation architecture, changes in arterial pressure could cause meaningful alterations in hemorrhage propensity and patterns.

  3. Timed sequential chemotherapy of cytoxan-refractory multiple myeloma with cytoxan and adriamycin based on induced tumor proliferation.

    PubMed

    Karp, J E; Humphrey, R L; Burke, P J

    1981-03-01

    Malignant plasma cell proliferation and induced humoral stimulatory activity (HSA) occur in vivo at a predictable time following drug administration. Sequential sera from 11 patients with poor-risk multiple myeloma (MM) undergoing treatment with Cytoxan (CY) 2400 mq/sq m were assayed for their in vitro effects on malignant bone marrow plasma cell tritiated thymidine (3HTdR) incorporation. Peak HSA was detected day 9 following CY. Sequential changes in marrow malignant plasma cell 3HTdR-labeling indices (LI) paralleled changes in serum activity, with peak LI occurring at the time of peak HS. An in vitro model of chemotherapy demonstrated that malignant plasma cell proliferation was enhanced by HSA, as determined by 3HTdR incorporation assay, 3HTdR LI, and tumor cells counts, and that stimulated plasma cells were more sensitive to cytotoxic effects of adriamycin (ADR) than were cells cultured in autologous pretreatment serum. Based on these studies, we designed a clinical trial to treat 12 CY-refractory poor-risk patients with MM in which ADR (60 mg/sq m) was administered at the time of peak HSA and residual tumor cell LI (day 9) following initial CY, 2400 mg/m (CY1ADR9). Eight of 12 (67%) responded to timed sequential chemotherapy with a greater than 50% decrement in monoclonal protein marker and a median survival projected to be greater than 8 mo duration (range 4-21+ mo). These clinical results using timed sequential CY1ADR9 compare favorably with results obtained using ADR in nonsequential chemotherapeutic regimens.

  4. Modeling Heterogeneity in Relationships between Initial Status and Rates of Change: Latent Variable Regression in a Three-Level Hierarchical Model. CSE Report 647

    ERIC Educational Resources Information Center

    Choi, Kilchan; Seltzer, Michael

    2005-01-01

    In studies of change in education and numerous other fields, interest often centers on how differences in the status of individuals at the start of a time period of substantive interest relate to differences in subsequent change. This report presents a fully Bayesian approach to estimating three-level hierarchical models in which latent variable…

  5. Rational Irrationality: Modeling Climate Change Belief Polarization Using Bayesian Networks.

    PubMed

    Cook, John; Lewandowsky, Stephan

    2016-01-01

    Belief polarization is said to occur when two people respond to the same evidence by updating their beliefs in opposite directions. This response is considered to be "irrational" because it involves contrary updating, a form of belief updating that appears to violate normatively optimal responding, as for example dictated by Bayes' theorem. In light of much evidence that people are capable of normatively optimal behavior, belief polarization presents a puzzling exception. We show that Bayesian networks, or Bayes nets, can simulate rational belief updating. When fit to experimental data, Bayes nets can help identify the factors that contribute to polarization. We present a study into belief updating concerning the reality of climate change in response to information about the scientific consensus on anthropogenic global warming (AGW). The study used representative samples of Australian and U.S. Among Australians, consensus information partially neutralized the influence of worldview, with free-market supporters showing a greater increase in acceptance of human-caused global warming relative to free-market opponents. In contrast, while consensus information overall had a positive effect on perceived consensus among U.S. participants, there was a reduction in perceived consensus and acceptance of human-caused global warming for strong supporters of unregulated free markets. Fitting a Bayes net model to the data indicated that under a Bayesian framework, free-market support is a significant driver of beliefs about climate change and trust in climate scientists. Further, active distrust of climate scientists among a small number of U.S. conservatives drives contrary updating in response to consensus information among this particular group. Copyright © 2016 Cognitive Science Society, Inc.

  6. Bayesian demosaicing using Gaussian scale mixture priors with local adaptivity in the dual tree complex wavelet packet transform domain

    NASA Astrophysics Data System (ADS)

    Goossens, Bart; Aelterman, Jan; Luong, Hiep; Pizurica, Aleksandra; Philips, Wilfried

    2013-02-01

    In digital cameras and mobile phones, there is an ongoing trend to increase the image resolution, decrease the sensor size and to use lower exposure times. Because smaller sensors inherently lead to more noise and a worse spatial resolution, digital post-processing techniques are required to resolve many of the artifacts. Color filter arrays (CFAs), which use alternating patterns of color filters, are very popular because of price and power consumption reasons. However, color filter arrays require the use of a post-processing technique such as demosaicing to recover full resolution RGB images. Recently, there has been some interest in techniques that jointly perform the demosaicing and denoising. This has the advantage that the demosaicing and denoising can be performed optimally (e.g. in the MSE sense) for the considered noise model, while avoiding artifacts introduced when using demosaicing and denoising sequentially. In this paper, we will continue the research line of the wavelet-based demosaicing techniques. These approaches are computationally simple and very suited for combination with denoising. Therefore, we will derive Bayesian Minimum Squared Error (MMSE) joint demosaicing and denoising rules in the complex wavelet packet domain, taking local adaptivity into account. As an image model, we will use Gaussian Scale Mixtures, thereby taking advantage of the directionality of the complex wavelets. Our results show that this technique is well capable of reconstructing fine details in the image, while removing all of the noise, at a relatively low computational cost. In particular, the complete reconstruction (including color correction, white balancing etc) of a 12 megapixel RAW image takes 3.5 sec on a recent mid-range GPU.

  7. Filtering observations without the initial guess

    NASA Astrophysics Data System (ADS)

    Chin, T. M.; Abbondanza, C.; Gross, R. S.; Heflin, M. B.; Parker, J. W.; Soja, B.; Wu, X.

    2017-12-01

    Noisy geophysical observations sampled irregularly over space and time are often numerically "analyzed" or "filtered" before scientific usage. The standard analysis and filtering techniques based on the Bayesian principle requires "a priori" joint distribution of all the geophysical parameters of interest. However, such prior distributions are seldom known fully in practice, and best-guess mean values (e.g., "climatology" or "background" data if available) accompanied by some arbitrarily set covariance values are often used in lieu. It is therefore desirable to be able to exploit efficient (time sequential) Bayesian algorithms like the Kalman filter while not forced to provide a prior distribution (i.e., initial mean and covariance). An example of this is the estimation of the terrestrial reference frame (TRF) where requirement for numerical precision is such that any use of a priori constraints on the observation data needs to be minimized. We will present the Information Filter algorithm, a variant of the Kalman filter that does not require an initial distribution, and apply the algorithm (and an accompanying smoothing algorithm) to the TRF estimation problem. We show that the information filter allows temporal propagation of partial information on the distribution (marginal distribution of a transformed version of the state vector), instead of the full distribution (mean and covariance) required by the standard Kalman filter. The information filter appears to be a natural choice for the task of filtering observational data in general cases where prior assumption on the initial estimate is not available and/or desirable. For application to data assimilation problems, reduced-order approximations of both the information filter and square-root information filter (SRIF) have been published, and the former has previously been applied to a regional configuration of the HYCOM ocean general circulation model. Such approximation approaches are also briefed in the presentation.

  8. Bayesian tomography by interacting Markov chains

    NASA Astrophysics Data System (ADS)

    Romary, T.

    2017-12-01

    In seismic tomography, we seek to determine the velocity of the undergound from noisy first arrival travel time observations. In most situations, this is an ill posed inverse problem that admits several unperfect solutions. Given an a priori distribution over the parameters of the velocity model, the Bayesian formulation allows to state this problem as a probabilistic one, with a solution under the form of a posterior distribution. The posterior distribution is generally high dimensional and may exhibit multimodality. Moreover, as it is known only up to a constant, the only sensible way to addressthis problem is to try to generate simulations from the posterior. The natural tools to perform these simulations are Monte Carlo Markov chains (MCMC). Classical implementations of MCMC algorithms generally suffer from slow mixing: the generated states are slow to enter the stationary regime, that is to fit the observations, and when one mode of the posterior is eventually identified, it may become difficult to visit others. Using a varying temperature parameter relaxing the constraint on the data may help to enter the stationary regime. Besides, the sequential nature of MCMC makes them ill fitted toparallel implementation. Running a large number of chains in parallel may be suboptimal as the information gathered by each chain is not mutualized. Parallel tempering (PT) can be seen as a first attempt to make parallel chains at different temperatures communicate but only exchange information between current states. In this talk, I will show that PT actually belongs to a general class of interacting Markov chains algorithm. I will also show that this class enables to design interacting schemes that can take advantage of the whole history of the chain, by authorizing exchanges toward already visited states. The algorithms will be illustrated with toy examples and an application to first arrival traveltime tomography.

  9. A Bayesian model for quantifying the change in mortality associated with future ozone exposures under climate change.

    PubMed

    Alexeeff, Stacey E; Pfister, Gabriele G; Nychka, Doug

    2016-03-01

    Climate change is expected to have many impacts on the environment, including changes in ozone concentrations at the surface level. A key public health concern is the potential increase in ozone-related summertime mortality if surface ozone concentrations rise in response to climate change. Although ozone formation depends partly on summertime weather, which exhibits considerable inter-annual variability, previous health impact studies have not incorporated the variability of ozone into their prediction models. A major source of uncertainty in the health impacts is the variability of the modeled ozone concentrations. We propose a Bayesian model and Monte Carlo estimation method for quantifying health effects of future ozone. An advantage of this approach is that we include the uncertainty in both the health effect association and the modeled ozone concentrations. Using our proposed approach, we quantify the expected change in ozone-related summertime mortality in the contiguous United States between 2000 and 2050 under a changing climate. The mortality estimates show regional patterns in the expected degree of impact. We also illustrate the results when using a common technique in previous work that averages ozone to reduce the size of the data, and contrast these findings with our own. Our analysis yields more realistic inferences, providing clearer interpretation for decision making regarding the impacts of climate change. © 2015, The International Biometric Society.

  10. Raman Spectroscopy of Experimental Oral Carcinogenesis: Study on Sequential Cancer Progression in Hamster Buccal Pouch Model.

    PubMed

    Kumar, Piyush; Bhattacharjee, Tanmoy; Ingle, Arvind; Maru, Girish; Krishna, C Murali

    2016-10-01

    Oral cancers suffer from poor 5-year survival rates, owing to late detection of the disease. Current diagnostic/screening tools need to be upgraded in view of disadvantages like invasiveness, tedious sample preparation, long output times, and interobserver variances. Raman spectroscopy has been shown to identify many disease conditions, including oral cancers, from healthy conditions. Further studies in exploring sequential changes in oral carcinogenesis are warranted. In this Raman spectroscopy study, sequential progression in experimental oral carcinogenesis in Hamster buccal pouch model was investigated using 3 approaches-ex vivo, in vivo sequential, and in vivo follow-up. In all these studies, spectral changes show lipid dominance in early stages while later stages and tumors showed increased protein to lipid ratio and nucleic acids. On similar lines, early weeks of 7,12-dimethylbenz(a)anthracene-treated and control groups showed higher overlap and low classification. The classification efficiency increased progressively, reached a plateau phase and subsequently increased up to 100% by 14 weeks. The misclassifications between treated and control spectra suggested some changes in controls as well, which was confirmed by a careful reexamination of histopathological slides. These findings suggests Raman spectroscopy may be able to identify microheterogeneity, which may often go unnoticed in conventional biochemistry wherein tissue extracts are employed, as well as in histopathology. In vivo findings, quite comparable to gold-standard supported ex vivo findings, give further proof of Raman spectroscopy being a promising label-free, noninvasive diagnostic adjunct for future clinical applications. © The Author(s) 2015.

  11. Alcohol and the pancreas. II. Pancreatic morphology of advanced alcoholic pancreatitis.

    PubMed

    Noronha, M; Bordalo, O; Dreiling, D A

    1981-08-01

    The histopathology of advanced chronic alcoholic pancreatitis is dominated by cellular degeneration, atrophy and fibrosis. Sequential changes in the histopathology of alcoholic pancreatic disease has been defined and traced from initial injury to end-stage disease. These sequential histopathologies have been correlated with clinical syndrome and secretory patterns. The data are more consistent with a toxic-metabolic pathogenesis of alcoholic pancreatitis than the previous Big Duct and Small Duct hypotheses.

  12. Sequential changes of main components in different kinds of milk powders using two-dimensional infrared correlation analysis

    NASA Astrophysics Data System (ADS)

    Zhou, Qun; Sun, Su-Qin; Yu, Lu; Xu, Chang-Hua; Noda, Isao; Zhang, Xin-Rong

    2006-11-01

    Infrared (IR) spectroscopy and two-dimensional (2D) correlation IR spectroscopy are shown to offer some information about stability and shelf life of milk powders without separation and extraction of individual components in this paper. Temperature has been chosen as the perturbation to monitor the infrared behavior of various milk powders, namely, whole milk powder (WMP), sweet whole milk powder (Sweet WMP), low-fat milk powder (LFMP), and skim milk powder (SMP). The sequential order of changes in protein, fat and carbohydrates (mainly lactose) in milk powders is studied for the first time. The protein changes before the sucrose in WMP, whereas the sucrose changes before the protein in Sweet WMP under temperature perturbation. It is also found that in SMP, carbohydrate changes prior to protein whereas in LFMP and WMP protein changes first as the temperature is increased. The conclusion can provide some useful reference to understand the thermal stability of milk powders.

  13. A Bayesian approach for temporally scaling climate for modeling ecological systems

    USGS Publications Warehouse

    Post van der Burg, Max; Anteau, Michael J.; McCauley, Lisa A.; Wiltermuth, Mark T.

    2016-01-01

    With climate change becoming more of concern, many ecologists are including climate variables in their system and statistical models. The Standardized Precipitation Evapotranspiration Index (SPEI) is a drought index that has potential advantages in modeling ecological response variables, including a flexible computation of the index over different timescales. However, little development has been made in terms of the choice of timescale for SPEI. We developed a Bayesian modeling approach for estimating the timescale for SPEI and demonstrated its use in modeling wetland hydrologic dynamics in two different eras (i.e., historical [pre-1970] and contemporary [post-2003]). Our goal was to determine whether differences in climate between the two eras could explain changes in the amount of water in wetlands. Our results showed that wetland water surface areas tended to be larger in wetter conditions, but also changed less in response to climate fluctuations in the contemporary era. We also found that the average timescale parameter was greater in the historical period, compared with the contemporary period. We were not able to determine whether this shift in timescale was due to a change in the timing of wet–dry periods or whether it was due to changes in the way wetlands responded to climate. Our results suggest that perhaps some interaction between climate and hydrologic response may be at work, and further analysis is needed to determine which has a stronger influence. Despite this, we suggest that our modeling approach enabled us to estimate the relevant timescale for SPEI and make inferences from those estimates. Likewise, our approach provides a mechanism for using prior information with future data to assess whether these patterns may continue over time. We suggest that ecologists consider using temporally scalable climate indices in conjunction with Bayesian analysis for assessing the role of climate in ecological systems.

  14. Efficient Mean Field Variational Algorithm for Data Assimilation (Invited)

    NASA Astrophysics Data System (ADS)

    Vrettas, M. D.; Cornford, D.; Opper, M.

    2013-12-01

    Data assimilation algorithms combine available observations of physical systems with the assumed model dynamics in a systematic manner, to produce better estimates of initial conditions for prediction. Broadly they can be categorized in three main approaches: (a) sequential algorithms, (b) sampling methods and (c) variational algorithms which transform the density estimation problem to an optimization problem. However, given finite computational resources, only a handful of ensemble Kalman filters and 4DVar algorithms have been applied operationally to very high dimensional geophysical applications, such as weather forecasting. In this paper we present a recent extension to our variational Bayesian algorithm which seeks the ';optimal' posterior distribution over the continuous time states, within a family of non-stationary Gaussian processes. Our initial work on variational Bayesian approaches to data assimilation, unlike the well-known 4DVar method which seeks only the most probable solution, computes the best time varying Gaussian process approximation to the posterior smoothing distribution for dynamical systems that can be represented by stochastic differential equations. This approach was based on minimising the Kullback-Leibler divergence, over paths, between the true posterior and our Gaussian process approximation. Whilst the observations were informative enough to keep the posterior smoothing density close to Gaussian the algorithm proved very effective on low dimensional systems (e.g. O(10)D). However for higher dimensional systems, the high computational demands make the algorithm prohibitively expensive. To overcome the difficulties presented in the original framework and make our approach more efficient in higher dimensional systems we have been developing a new mean field version of the algorithm which treats the state variables at any given time as being independent in the posterior approximation, while still accounting for their relationships in the mean solution arising from the original system dynamics. Here we present this new mean field approach, illustrating its performance on a range of benchmark data assimilation problems whose dimensionality varies from O(10) to O(10^3)D. We emphasise that the variational Bayesian approach we adopt, unlike other variational approaches, provides a natural bound on the marginal likelihood of the observations given the model parameters which also allows for inference of (hyper-) parameters such as observational errors, parameters in the dynamical model and model error representation. We also stress that since our approach is intrinsically parallel it can be implemented very efficiently to address very long data assimilation time windows. Moreover, like most traditional variational approaches our Bayesian variational method has the benefit of being posed as an optimisation problem therefore its complexity can be tuned to the available computational resources. We finish with a sketch of possible future directions.

  15. A Bayesian Account of Visual-Vestibular Interactions in the Rod-and-Frame Task.

    PubMed

    Alberts, Bart B G T; de Brouwer, Anouk J; Selen, Luc P J; Medendorp, W Pieter

    2016-01-01

    Panoramic visual cues, as generated by the objects in the environment, provide the brain with important information about gravity direction. To derive an optimal, i.e., Bayesian, estimate of gravity direction, the brain must combine panoramic information with gravity information detected by the vestibular system. Here, we examined the individual sensory contributions to this estimate psychometrically. We asked human subjects to judge the orientation (clockwise or counterclockwise relative to gravity) of a briefly flashed luminous rod, presented within an oriented square frame (rod-in-frame). Vestibular contributions were manipulated by tilting the subject's head, whereas visual contributions were manipulated by changing the viewing distance of the rod and frame. Results show a cyclical modulation of the frame-induced bias in perceived verticality across a 90° range of frame orientations. The magnitude of this bias decreased significantly with larger viewing distance, as if visual reliability was reduced. Biases increased significantly when the head was tilted, as if vestibular reliability was reduced. A Bayesian optimal integration model, with distinct vertical and horizontal panoramic weights, a gain factor to allow for visual reliability changes, and ocular counterroll in response to head tilt, provided a good fit to the data. We conclude that subjects flexibly weigh visual panoramic and vestibular information based on their orientation-dependent reliability, resulting in the observed verticality biases and the associated response variabilities.

  16. Cholinergic stimulation enhances Bayesian belief updating in the deployment of spatial attention.

    PubMed

    Vossel, Simone; Bauer, Markus; Mathys, Christoph; Adams, Rick A; Dolan, Raymond J; Stephan, Klaas E; Friston, Karl J

    2014-11-19

    The exact mechanisms whereby the cholinergic neurotransmitter system contributes to attentional processing remain poorly understood. Here, we applied computational modeling to psychophysical data (obtained from a spatial attention task) under a psychopharmacological challenge with the cholinesterase inhibitor galantamine (Reminyl). This allowed us to characterize the cholinergic modulation of selective attention formally, in terms of hierarchical Bayesian inference. In a placebo-controlled, within-subject, crossover design, 16 healthy human subjects performed a modified version of Posner's location-cueing task in which the proportion of validly and invalidly cued targets (percentage of cue validity, % CV) changed over time. Saccadic response speeds were used to estimate the parameters of a hierarchical Bayesian model to test whether cholinergic stimulation affected the trial-wise updating of probabilistic beliefs that underlie the allocation of attention or whether galantamine changed the mapping from those beliefs to subsequent eye movements. Behaviorally, galantamine led to a greater influence of probabilistic context (% CV) on response speed than placebo. Crucially, computational modeling suggested this effect was due to an increase in the rate of belief updating about cue validity (as opposed to the increased sensitivity of behavioral responses to those beliefs). We discuss these findings with respect to cholinergic effects on hierarchical cortical processing and in relation to the encoding of expected uncertainty or precision. Copyright © 2014 the authors 0270-6474/14/3415735-08$15.00/0.

  17. A Bayesian Account of Visual–Vestibular Interactions in the Rod-and-Frame Task

    PubMed Central

    de Brouwer, Anouk J.; Medendorp, W. Pieter

    2016-01-01

    Abstract Panoramic visual cues, as generated by the objects in the environment, provide the brain with important information about gravity direction. To derive an optimal, i.e., Bayesian, estimate of gravity direction, the brain must combine panoramic information with gravity information detected by the vestibular system. Here, we examined the individual sensory contributions to this estimate psychometrically. We asked human subjects to judge the orientation (clockwise or counterclockwise relative to gravity) of a briefly flashed luminous rod, presented within an oriented square frame (rod-in-frame). Vestibular contributions were manipulated by tilting the subject’s head, whereas visual contributions were manipulated by changing the viewing distance of the rod and frame. Results show a cyclical modulation of the frame-induced bias in perceived verticality across a 90° range of frame orientations. The magnitude of this bias decreased significantly with larger viewing distance, as if visual reliability was reduced. Biases increased significantly when the head was tilted, as if vestibular reliability was reduced. A Bayesian optimal integration model, with distinct vertical and horizontal panoramic weights, a gain factor to allow for visual reliability changes, and ocular counterroll in response to head tilt, provided a good fit to the data. We conclude that subjects flexibly weigh visual panoramic and vestibular information based on their orientation-dependent reliability, resulting in the observed verticality biases and the associated response variabilities. PMID:27844055

  18. The Bayesian Decoding of Force Stimuli from Slowly Adapting Type I Fibers in Humans.

    PubMed

    Kasi, Patrick; Wright, James; Khamis, Heba; Birznieks, Ingvars; van Schaik, André

    2016-01-01

    It is well known that signals encoded by mechanoreceptors facilitate precise object manipulation in humans. It is therefore of interest to study signals encoded by the mechanoreceptors because this will contribute further towards the understanding of fundamental sensory mechanisms that are responsible for coordinating force components during object manipulation. From a practical point of view, this may suggest strategies for designing sensory-controlled biomedical devices and robotic manipulators. We use a two-stage nonlinear decoding paradigm to reconstruct the force stimulus given signals from slowly adapting type one (SA-I) tactile afferents. First, we describe a nonhomogeneous Poisson encoding model which is a function of the force stimulus and the force's rate of change. In the decoding phase, we use a recursive nonlinear Bayesian filter to reconstruct the force profile, given the SA-I spike patterns and parameters described by the encoding model. Under the current encoding model, the mode ratio of force to its derivative is: 1.26 to 1.02. This indicates that the force derivative contributes significantly to the rate of change to the SA-I afferent spike modulation. Furthermore, using recursive Bayesian decoding algorithms is advantageous because it can incorporate past and current information in order to make predictions--consistent with neural systems--with little computational resources. This makes it suitable for interfacing with prostheses.

  19. The Bayesian Decoding of Force Stimuli from Slowly Adapting Type I Fibers in Humans

    PubMed Central

    Wright, James; Khamis, Heba; Birznieks, Ingvars; van Schaik, André

    2016-01-01

    It is well known that signals encoded by mechanoreceptors facilitate precise object manipulation in humans. It is therefore of interest to study signals encoded by the mechanoreceptors because this will contribute further towards the understanding of fundamental sensory mechanisms that are responsible for coordinating force components during object manipulation. From a practical point of view, this may suggest strategies for designing sensory-controlled biomedical devices and robotic manipulators. We use a two-stage nonlinear decoding paradigm to reconstruct the force stimulus given signals from slowly adapting type one (SA-I) tactile afferents. First, we describe a nonhomogeneous Poisson encoding model which is a function of the force stimulus and the force’s rate of change. In the decoding phase, we use a recursive nonlinear Bayesian filter to reconstruct the force profile, given the SA-I spike patterns and parameters described by the encoding model. Under the current encoding model, the mode ratio of force to its derivative is: 1.26 to 1.02. This indicates that the force derivative contributes significantly to the rate of change to the SA-I afferent spike modulation. Furthermore, using recursive Bayesian decoding algorithms is advantageous because it can incorporate past and current information in order to make predictions—consistent with neural systems—with little computational resources. This makes it suitable for interfacing with prostheses. PMID:27077750

  20. Model Diagnostics for Bayesian Networks

    ERIC Educational Resources Information Center

    Sinharay, Sandip

    2006-01-01

    Bayesian networks are frequently used in educational assessments primarily for learning about students' knowledge and skills. There is a lack of works on assessing fit of Bayesian networks. This article employs the posterior predictive model checking method, a popular Bayesian model checking tool, to assess fit of simple Bayesian networks. A…

  1. A Gentle Introduction to Bayesian Analysis: Applications to Developmental Research

    PubMed Central

    van de Schoot, Rens; Kaplan, David; Denissen, Jaap; Asendorpf, Jens B; Neyer, Franz J; van Aken, Marcel AG

    2014-01-01

    Bayesian statistical methods are becoming ever more popular in applied and fundamental research. In this study a gentle introduction to Bayesian analysis is provided. It is shown under what circumstances it is attractive to use Bayesian estimation, and how to interpret properly the results. First, the ingredients underlying Bayesian methods are introduced using a simplified example. Thereafter, the advantages and pitfalls of the specification of prior knowledge are discussed. To illustrate Bayesian methods explained in this study, in a second example a series of studies that examine the theoretical framework of dynamic interactionism are considered. In the Discussion the advantages and disadvantages of using Bayesian statistics are reviewed, and guidelines on how to report on Bayesian statistics are provided. PMID:24116396

  2. Inverse sequential procedures for the monitoring of time series

    NASA Technical Reports Server (NTRS)

    Radok, Uwe; Brown, Timothy

    1993-01-01

    Climate changes traditionally have been detected from long series of observations and long after they happened. The 'inverse sequential' monitoring procedure is designed to detect changes as soon as they occur. Frequency distribution parameters are estimated both from the most recent existing set of observations and from the same set augmented by 1,2,...j new observations. Individual-value probability products ('likelihoods') are then calculated which yield probabilities for erroneously accepting the existing parameter(s) as valid for the augmented data set and vice versa. A parameter change is signaled when these probabilities (or a more convenient and robust compound 'no change' probability) show a progressive decrease. New parameters are then estimated from the new observations alone to restart the procedure. The detailed algebra is developed and tested for Gaussian means and variances, Poisson and chi-square means, and linear or exponential trends; a comprehensive and interactive Fortran program is provided in the appendix.

  3. Using a Bayesian Network to predict shore-line change vulnerability to sea-level rise for the coasts of the United States

    USGS Publications Warehouse

    Gutierrez, Benjamin T.; Plant, Nathaniel G.; Pendleton, Elizabeth A.; Thieler, E. Robert

    2014-01-01

    Sea-level rise is an ongoing phenomenon that is expected to continue and is projected to have a wide range of effects on coastal environments and infrastructure during the 21st century and beyond. Consequently, there is a need to assemble relevant datasets and to develop modeling or other analytical approaches to evaluate the likelihood of particular sea-level rise impacts, such as coastal erosion, and to inform coastal management decisions with this information. This report builds on previous work that compiled oceanographic and geomorphic data as part of the U.S. Geological Survey’s Coastal Vulnerability Index (CVI) for the U.S. Atlantic coast, and developed a Bayesian Network to predict shoreline-change rates based on sea-level rise plus variables that describe the hydrodynamic and geologic setting. This report extends the previous analysis to include the Gulf and Pacific coasts of the continental United States and Alaska and Hawaii, which required using methods applied to the USGS CVI dataset to extract data for these regions. The Bayesian Network converts inputs that include observations of local rates of relative sea-level change, mean wave height, mean tide range, a geomorphic classification, coastal slope, and observed shoreline-change rates to calculate the probability of the shoreline-erosion rate exceeding a threshold level of 1 meter per year for the coasts of the United States. The calculated probabilities were compared to the historical observations of shoreline change to evaluate the hindcast success rate of the most likely probability of shoreline change. Highest accuracy was determined for the coast of Hawaii (98 percent success rate) and lowest accuracy was determined for the Gulf of Mexico (34 percent success rate). The minimum success rate rose to nearly 80 percent (Atlantic and Gulf coasts) when success included shoreline-change outcomes that were adjacent to the most likely outcome. Additionally, the probabilistic approach determines the confidence in calculated outcomes as the probability of the most likely outcome. The confidence was highest along the Pacific coast and it was lowest along the Alaskan coast.

  4. Investigation of Inconsistent ENDF/B-VII.1 Independent and Cumulative Fission Product Yields with Proposed Revisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pigni, M.T., E-mail: pignimt@ornl.gov; Francis, M.W.; Gauld, I.C.

    A recent implementation of ENDF/B-VII.1 independent fission product yields and nuclear decay data identified inconsistencies in the data caused by the use of updated nuclear schemes in the decay sub-library that are not reflected in legacy fission product yield data. Recent changes in the decay data sub-library, particularly the delayed neutron branching fractions, result in calculated fission product concentrations that do not agree with the cumulative fission yields in the library as well as with experimental measurements. To address these issues, a comprehensive set of independent fission product yields was generated for thermal and fission spectrum neutron-induced fission for {supmore » 235,238}U and {sup 239,241}Pu in order to provide a preliminary assessment of the updated fission product yield data consistency. These updated independent fission product yields were utilized in the ORIGEN code to compare the calculated fission product inventories with experimentally measured inventories, with particular attention given to the noble gases. Another important outcome of this work is the development of fission product yield covariance data necessary for fission product uncertainty quantification. The evaluation methodology combines a sequential Bayesian method to guarantee consistency between independent and cumulative yields along with the physical constraints on the independent yields. This work was motivated to improve the performance of the ENDF/B-VII.1 library for stable and long-lived fission products. The revised fission product yields and the new covariance data are proposed as a revision to the fission yield data currently in ENDF/B-VII.1.« less

  5. Sample size and classification error for Bayesian change-point models with unlabelled sub-groups and incomplete follow-up.

    PubMed

    White, Simon R; Muniz-Terrera, Graciela; Matthews, Fiona E

    2018-05-01

    Many medical (and ecological) processes involve the change of shape, whereby one trajectory changes into another trajectory at a specific time point. There has been little investigation into the study design needed to investigate these models. We consider the class of fixed effect change-point models with an underlying shape comprised two joined linear segments, also known as broken-stick models. We extend this model to include two sub-groups with different trajectories at the change-point, a change and no change class, and also include a missingness model to account for individuals with incomplete follow-up. Through a simulation study, we consider the relationship of sample size to the estimates of the underlying shape, the existence of a change-point, and the classification-error of sub-group labels. We use a Bayesian framework to account for the missing labels, and the analysis of each simulation is performed using standard Markov chain Monte Carlo techniques. Our simulation study is inspired by cognitive decline as measured by the Mini-Mental State Examination, where our extended model is appropriate due to the commonly observed mixture of individuals within studies who do or do not exhibit accelerated decline. We find that even for studies of modest size ( n = 500, with 50 individuals observed past the change-point) in the fixed effect setting, a change-point can be detected and reliably estimated across a range of observation-errors.

  6. A Gentle Introduction to Bayesian Analysis: Applications to Developmental Research

    ERIC Educational Resources Information Center

    van de Schoot, Rens; Kaplan, David; Denissen, Jaap; Asendorpf, Jens B.; Neyer, Franz J.; van Aken, Marcel A. G.

    2014-01-01

    Bayesian statistical methods are becoming ever more popular in applied and fundamental research. In this study a gentle introduction to Bayesian analysis is provided. It is shown under what circumstances it is attractive to use Bayesian estimation, and how to interpret properly the results. First, the ingredients underlying Bayesian methods are…

  7. Bayesian correction for covariate measurement error: A frequentist evaluation and comparison with regression calibration.

    PubMed

    Bartlett, Jonathan W; Keogh, Ruth H

    2018-06-01

    Bayesian approaches for handling covariate measurement error are well established and yet arguably are still relatively little used by researchers. For some this is likely due to unfamiliarity or disagreement with the Bayesian inferential paradigm. For others a contributory factor is the inability of standard statistical packages to perform such Bayesian analyses. In this paper, we first give an overview of the Bayesian approach to handling covariate measurement error, and contrast it with regression calibration, arguably the most commonly adopted approach. We then argue why the Bayesian approach has a number of statistical advantages compared to regression calibration and demonstrate that implementing the Bayesian approach is usually quite feasible for the analyst. Next, we describe the closely related maximum likelihood and multiple imputation approaches and explain why we believe the Bayesian approach to generally be preferable. We then empirically compare the frequentist properties of regression calibration and the Bayesian approach through simulation studies. The flexibility of the Bayesian approach to handle both measurement error and missing data is then illustrated through an analysis of data from the Third National Health and Nutrition Examination Survey.

  8. Bayesian Covariate Selection in Mixed-Effects Models For Longitudinal Shape Analysis

    PubMed Central

    Muralidharan, Prasanna; Fishbaugh, James; Kim, Eun Young; Johnson, Hans J.; Paulsen, Jane S.; Gerig, Guido; Fletcher, P. Thomas

    2016-01-01

    The goal of longitudinal shape analysis is to understand how anatomical shape changes over time, in response to biological processes, including growth, aging, or disease. In many imaging studies, it is also critical to understand how these shape changes are affected by other factors, such as sex, disease diagnosis, IQ, etc. Current approaches to longitudinal shape analysis have focused on modeling age-related shape changes, but have not included the ability to handle covariates. In this paper, we present a novel Bayesian mixed-effects shape model that incorporates simultaneous relationships between longitudinal shape data and multiple predictors or covariates to the model. Moreover, we place an Automatic Relevance Determination (ARD) prior on the parameters, that lets us automatically select which covariates are most relevant to the model based on observed data. We evaluate our proposed model and inference procedure on a longitudinal study of Huntington's disease from PREDICT-HD. We first show the utility of the ARD prior for model selection in a univariate modeling of striatal volume, and next we apply the full high-dimensional longitudinal shape model to putamen shapes. PMID:28090246

  9. Fully Bayesian Analysis of High-throughput Targeted Metabolomics Assays

    EPA Science Inventory

    High-throughput metabolomic assays that allow simultaneous targeted screening of hundreds of metabolites have recently become available in kit form. Such assays provide a window into understanding changes to biochemical pathways due to chemical exposure or disease, and are usefu...

  10. Modeling Heterogeneity in Relationships between Initial Status and Rates of Change: Treating Latent Variable Regression Coefficients as Random Coefficients in a Three-Level Hierarchical Model

    ERIC Educational Resources Information Center

    Choi, Kilchan; Seltzer, Michael

    2010-01-01

    In studies of change in education and numerous other fields, interest often centers on how differences in the status of individuals at the start of a period of substantive interest relate to differences in subsequent change. In this article, the authors present a fully Bayesian approach to estimating three-level Hierarchical Models in which latent…

  11. Optimization of a novel sequential alkalic and metal salt pretreatment for enhanced delignification and enzymatic saccharification of corn cobs.

    PubMed

    Sewsynker-Sukai, Yeshona; Gueguim Kana, E B

    2017-11-01

    This study presents a sequential sodium phosphate dodecahydrate (Na 3 PO 4 ·12H 2 O) and zinc chloride (ZnCl 2 ) pretreatment to enhance delignification and enzymatic saccharification of corn cobs. The effects of process parameters of Na 3 PO 4 ·12H 2 O concentration (5-15%), ZnCl 2 concentration (1-5%) and solid to liquid ratio (5-15%) on reducing sugar yield from corn cobs were investigated. The sequential pretreatment model was developed and optimized with a high coefficient of determination value (0.94). Maximum reducing sugar yield of 1.10±0.01g/g was obtained with 14.02% Na 3 PO 4 ·12H 2 O, 3.65% ZnCl 2 and 5% solid to liquid ratio. Scanning electron microscopy (SEM) and Fourier Transform Infrared analysis (FTIR) showed major lignocellulosic structural changes after the optimized sequential pretreatment with 63.61% delignification. In addition, a 10-fold increase in the sugar yield was observed compared to previous reports on the same substrate. This sequential pretreatment strategy was efficient for enhancing enzymatic saccharification of corn cobs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. The use of sequential extraction to evaluate the remediation potential of heavy metals from contaminated harbour sediment

    NASA Astrophysics Data System (ADS)

    Nystrøm, G. M.; Ottosen, L. M.; Villumsen, A.

    2003-05-01

    In this work sequential extraction is performed with harbour sediment in order to evaluate the electrodialytic remediation potential for harbour sediments. Sequential extraction was performed on a sample of Norwegian harbour sediment; with the original sediment and after the sediment was treated with acid. The results from the sequential extraction show that 75% Zn and Pb and about 50% Cu are found in the most mobile phases in the original sediment and more than 90% Zn and Pb and 75% Cu are found in the most mobile phase in the sediment treated with acid. Electrodialytic remediation experiments were made. The method uses a low direct current as cleaning agent, removing the heavy metals towards the anode and cathode according to the charge of the heavy metals in the electric field. The electrodialytic experiments show that up to 50% Cu, 85% Zn and 60% Pb can be removed after 20 days. Thus, there is still a potential for a higher removal, with some changes in the experimental set-up and longer remediation time. The experiments show that thc use of sequential extraction can be used to predict the electrodialytic remediation potential for harbour sediments.

  13. Sequential therapy with "vacuum sealing drainage-artificial dermis implantation-thin partial thickness skin grafting" for deep and infected wound surfaces in children.

    PubMed

    Yuan, X-G; Zhang, X; Fu, Y-X; Tian, X-F; Liu, Y; Xiao, J; Li, T-W; Qiu, L

    2016-05-01

    To evaluate the efficacy of a "vacuum sealing drainage (VSD) - artificial dermis implantation (ADI) - thin partial thickness skin grafting (TSG)" sequential therapy for deep and infected wounds in children. Fifty-three pediatric patients with deep and infected wounds were treated with sequential VSD-ADI-TSG therapy. The efficacy of this treatment was compared with that of the surgical debridement-change dressings-thin partial thickness skin grafting previously performed on 20 patients. Survival of tissue grafts, color and flexibility, subcutaneous fullness and scar formation of the graft site were examined and compared. The sequential therapy combined the advantages of the VSD treatment, in reducing tissue necrosis and infection on the wound surfaces and promoting the growth of granulation tissue, with the enhancement of grafting by artificial dermis. Compared with the 20 controls, skin grafted on the artificial dermis was more smooth and glossy, while the textures of the region were more elastic, and the scars were significantly lighter in Vancouver scale. The sequential VSD-ADI-TSG therapy is a simple and effective treatment for children with deep and infected wounds. IV. Copyright © 2016. Published by Elsevier Masson SAS.

  14. Program SPACECAP: software for estimating animal density using spatially explicit capture-recapture models

    USGS Publications Warehouse

    Gopalaswamy, Arjun M.; Royle, J. Andrew; Hines, James E.; Singh, Pallavi; Jathanna, Devcharan; Kumar, N. Samba; Karanth, K. Ullas

    2012-01-01

    1. The advent of spatially explicit capture-recapture models is changing the way ecologists analyse capture-recapture data. However, the advantages offered by these new models are not fully exploited because they can be difficult to implement. 2. To address this need, we developed a user-friendly software package, created within the R programming environment, called SPACECAP. This package implements Bayesian spatially explicit hierarchical models to analyse spatial capture-recapture data. 3. Given that a large number of field biologists prefer software with graphical user interfaces for analysing their data, SPACECAP is particularly useful as a tool to increase the adoption of Bayesian spatially explicit capture-recapture methods in practice.

  15. Simulation modeling analysis of sequential relations among therapeutic alliance, symptoms, and adherence to child-centered play therapy between a child with autism spectrum disorder and two therapists.

    PubMed

    Goodman, Geoff; Chung, Hyewon; Fischel, Leah; Athey-Lloyd, Laura

    2017-07-01

    This study examined the sequential relations among three pertinent variables in child psychotherapy: therapeutic alliance (TA) (including ruptures and repairs), autism symptoms, and adherence to child-centered play therapy (CCPT) process. A 2-year CCPT of a 6-year-old Caucasian boy diagnosed with autism spectrum disorder was conducted weekly with two doctoral-student therapists, working consecutively for 1 year each, in a university-based community mental-health clinic. Sessions were video-recorded and coded using the Child Psychotherapy Process Q-Set (CPQ), a measure of the TA, and an autism symptom measure. Sequential relations among these variables were examined using simulation modeling analysis (SMA). In Therapist 1's treatment, unexpectedly, autism symptoms decreased three sessions after a rupture occurred in the therapeutic dyad. In Therapist 2's treatment, adherence to CCPT process increased 2 weeks after a repair occurred in the therapeutic dyad. The TA decreased 1 week after autism symptoms increased. Finally, adherence to CCPT process decreased 1 week after autism symptoms increased. The authors concluded that (1) sequential relations differ by therapist even though the child remains constant, (2) therapeutic ruptures can have an unexpected effect on autism symptoms, and (3) changes in autism symptoms can precede as well as follow changes in process variables.

  16. Stochastic extreme downscaling model for an assessment of changes in rainfall intensity-duration-frequency curves over South Korea using multiple regional climate models

    NASA Astrophysics Data System (ADS)

    So, Byung-Jin; Kim, Jin-Young; Kwon, Hyun-Han; Lima, Carlos H. R.

    2017-10-01

    A conditional copula function based downscaling model in a fully Bayesian framework is developed in this study to evaluate future changes in intensity-duration frequency (IDF) curves in South Korea. The model incorporates a quantile mapping approach for bias correction while integrated Bayesian inference allows accounting for parameter uncertainties. The proposed approach is used to temporally downscale expected changes in daily rainfall, inferred from multiple CORDEX-RCMs based on Representative Concentration Pathways (RCPs) 4.5 and 8.5 scenarios, into sub-daily temporal scales. Among the CORDEX-RCMs, a noticeable increase in rainfall intensity is observed in the HadGem3-RA (9%), RegCM (28%), and SNU_WRF (13%) on average, whereas no noticeable changes are observed in the GRIMs (-2%) for the period 2020-2050. More specifically, a 5-30% increase in rainfall intensity is expected in all of the CORDEX-RCMs for 50-year return values under the RCP 8.5 scenario. Uncertainty in simulated rainfall intensity gradually decreases toward the longer durations, which is largely associated with the enhanced strength of the relationship with the 24-h annual maximum rainfalls (AMRs). A primary advantage of the proposed model is that projected changes in future rainfall intensities are well preserved.

  17. Automated detection of changes in sequential color ocular fundus images

    NASA Astrophysics Data System (ADS)

    Sakuma, Satoshi; Nakanishi, Tadashi; Takahashi, Yasuko; Fujino, Yuichi; Tsubouchi, Tetsuro; Nakanishi, Norimasa

    1998-06-01

    A recent trend is the automatic screening of color ocular fundus images. The examination of such images is used in the early detection of several adult diseases such as hypertension and diabetes. Since this type of examination is easier than CT, costs less, and has no harmful side effects, it will become a routine medical examination. Normal ocular fundus images are found in more than 90% of all people. To deal with the increasing number of such images, this paper proposes a new approach to process them automatically and accurately. Our approach, based on individual comparison, identifies changes in sequential images: a previously diagnosed normal reference image is compared to a non- diagnosed image.

  18. CACTI: free, open-source software for the sequential coding of behavioral interactions.

    PubMed

    Glynn, Lisa H; Hallgren, Kevin A; Houck, Jon M; Moyers, Theresa B

    2012-01-01

    The sequential analysis of client and clinician speech in psychotherapy sessions can help to identify and characterize potential mechanisms of treatment and behavior change. Previous studies required coding systems that were time-consuming, expensive, and error-prone. Existing software can be expensive and inflexible, and furthermore, no single package allows for pre-parsing, sequential coding, and assignment of global ratings. We developed a free, open-source, and adaptable program to meet these needs: The CASAA Application for Coding Treatment Interactions (CACTI). Without transcripts, CACTI facilitates the real-time sequential coding of behavioral interactions using WAV-format audio files. Most elements of the interface are user-modifiable through a simple XML file, and can be further adapted using Java through the terms of the GNU Public License. Coding with this software yields interrater reliabilities comparable to previous methods, but at greatly reduced time and expense. CACTI is a flexible research tool that can simplify psychotherapy process research, and has the potential to contribute to the improvement of treatment content and delivery.

  19. Sulfur K-edge XANES and acid volatile sulfide analyses of changes in chemical speciation of S and Fe during sequential extraction of trace metals in anoxic sludge from biogas reactors.

    PubMed

    Shakeri Yekta, Sepehr; Gustavsson, Jenny; Svensson, Bo H; Skyllberg, Ulf

    2012-01-30

    The effect of sequential extraction of trace metals on sulfur (S) speciation in anoxic sludge samples from two lab-scale biogas reactors augmented with Fe was investigated. Analyses of sulfur K-edge X-ray absorption near edge structure (S XANES) spectroscopy and acid volatile sulfide (AVS) were conducted on the residues from each step of the sequential extraction. The S speciation in sludge samples after AVS analysis was also determined by S XANES. Sulfur was mainly present as FeS (≈ 60% of total S) and reduced organic S (≈ 30% of total S), such as organic sulfide and thiol groups, in the anoxic solid phase. Sulfur XANES and AVS analyses showed that during first step of the extraction procedure (the removal of exchangeable cations), a part of the FeS fraction corresponding to 20% of total S was transformed to zero-valent S, whereas Fe was not released into the solution during this transformation. After the last extraction step (organic/sulfide fraction) a secondary Fe phase was formed. The change in chemical speciation of S and Fe occurring during sequential extraction procedure suggests indirect effects on trace metals associated to the FeS fraction that may lead to incorrect results. Furthermore, by S XANES it was verified that the AVS analysis effectively removed the FeS fraction. The present results identified critical limitations for the application of sequential extraction for trace metal speciation analysis outside the framework for which the methods were developed. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. The current state of Bayesian methods in medical product development: survey results and recommendations from the DIA Bayesian Scientific Working Group.

    PubMed

    Natanegara, Fanni; Neuenschwander, Beat; Seaman, John W; Kinnersley, Nelson; Heilmann, Cory R; Ohlssen, David; Rochester, George

    2014-01-01

    Bayesian applications in medical product development have recently gained popularity. Despite many advances in Bayesian methodology and computations, increase in application across the various areas of medical product development has been modest. The DIA Bayesian Scientific Working Group (BSWG), which includes representatives from industry, regulatory agencies, and academia, has adopted the vision to ensure Bayesian methods are well understood, accepted more broadly, and appropriately utilized to improve decision making and enhance patient outcomes. As Bayesian applications in medical product development are wide ranging, several sub-teams were formed to focus on various topics such as patient safety, non-inferiority, prior specification, comparative effectiveness, joint modeling, program-wide decision making, analytical tools, and education. The focus of this paper is on the recent effort of the BSWG Education sub-team to administer a Bayesian survey to statisticians across 17 organizations involved in medical product development. We summarize results of this survey, from which we provide recommendations on how to accelerate progress in Bayesian applications throughout medical product development. The survey results support findings from the literature and provide additional insight on regulatory acceptance of Bayesian methods and information on the need for a Bayesian infrastructure within an organization. The survey findings support the claim that only modest progress in areas of education and implementation has been made recently, despite substantial progress in Bayesian statistical research and software availability. Copyright © 2013 John Wiley & Sons, Ltd.

  1. Dose-Finding Study of Omeprazole on Gastric pH in Neonates with Gastro-Esophageal Acid Reflux Using a Bayesian Sequential Approach.

    PubMed

    Kaguelidou, Florentia; Alberti, Corinne; Biran, Valerie; Bourdon, Olivier; Farnoux, Caroline; Zohar, Sarah; Jacqz-Aigrain, Evelyne

    2016-01-01

    Proton pump inhibitors are frequently administered on clinical symptoms in neonates but benefit remains controversial. Clinical trials validating omeprazole dosage in neonates are limited. The objective of this trial was to determine the minimum effective dose (MED) of omeprazole to treat pathological acid reflux in neonates using reflux index as surrogate marker. Double blind dose-finding trial with continual reassessment method of individual dose administration using a Bayesian approach, aiming to select drug dose as close as possible to the predefined target level of efficacy (with a credibility interval of 95%). Neonatal Intensive Care unit of the Robert Debré University Hospital in Paris, France. Neonates with a postmenstrual age ≥ 35 weeks and a pathologic 24-hour intra-esophageal pH monitoring defined by a reflux index ≥ 5% over 24 hours were considered for participation. Recruitment was stratified to 3 groups according to gestational age at birth. Five preselected doses of oral omeprazole from 1 to 3 mg/kg/day. Primary outcome, measured at 35 weeks postmenstrual age or more, was a reflux index <5% during the 24-h pH monitoring registered 72±24 hours after omeprazole initiation. Fifty-four neonates with a reflux index ranging from 5.06 to 27.7% were included. Median age was 37.5 days and median postmenstrual age was 36 weeks. In neonates born at less than 32 weeks of GA (n = 30), the MED was 2.5mg/kg/day with an estimated mean posterior probability of success of 97.7% (95% credibility interval: 90.3-99.7%). The MED was 1mg/kg/day for neonates born at more than 32 GA (n = 24). Omeprazole is extensively prescribed on clinical symptoms but efficacy is not demonstrated while safety concerns do exist. When treatment is required, the daily dose needs to be validated in preterm and term neonates. Optimal doses of omeprazole to increase gastric pH and decrease reflux index below 5% over 24 hours, determined using an adaptive Bayesian design differ among neonates. Both gestational and postnatal ages account for these differences but their differential impact on omeprazole doses remains to be determined.

  2. On the Adequacy of Bayesian Evaluations of Categorization Models: Reply to Vanpaemel and Lee (2012)

    ERIC Educational Resources Information Center

    Wills, Andy J.; Pothos, Emmanuel M.

    2012-01-01

    Vanpaemel and Lee (2012) argued, and we agree, that the comparison of formal models can be facilitated by Bayesian methods. However, Bayesian methods neither precede nor supplant our proposals (Wills & Pothos, 2012), as Bayesian methods can be applied both to our proposals and to their polar opposites. Furthermore, the use of Bayesian methods to…

  3. Using Bayesian Belief Networks to Explore the Effects of Nitrogen Inputs on Wetland Ecosystem Services

    EPA Science Inventory

    Increased reactive nitrogen (Nr) inputs to freshwater wetlands resulting from infrastructure development due to population growth along with intensive agricultural practices associated with food production can threaten regulating (i.e. climate change, water purification, and wast...

  4. Moving beyond qualitative evaluations of Bayesian models of cognition.

    PubMed

    Hemmer, Pernille; Tauber, Sean; Steyvers, Mark

    2015-06-01

    Bayesian models of cognition provide a powerful way to understand the behavior and goals of individuals from a computational point of view. Much of the focus in the Bayesian cognitive modeling approach has been on qualitative model evaluations, where predictions from the models are compared to data that is often averaged over individuals. In many cognitive tasks, however, there are pervasive individual differences. We introduce an approach to directly infer individual differences related to subjective mental representations within the framework of Bayesian models of cognition. In this approach, Bayesian data analysis methods are used to estimate cognitive parameters and motivate the inference process within a Bayesian cognitive model. We illustrate this integrative Bayesian approach on a model of memory. We apply the model to behavioral data from a memory experiment involving the recall of heights of people. A cross-validation analysis shows that the Bayesian memory model with inferred subjective priors predicts withheld data better than a Bayesian model where the priors are based on environmental statistics. In addition, the model with inferred priors at the individual subject level led to the best overall generalization performance, suggesting that individual differences are important to consider in Bayesian models of cognition.

  5. Rational hypocrisy: a Bayesian analysis based on informal argumentation and slippery slopes.

    PubMed

    Rai, Tage S; Holyoak, Keith J

    2014-01-01

    Moral hypocrisy is typically viewed as an ethical accusation: Someone is applying different moral standards to essentially identical cases, dishonestly claiming that one action is acceptable while otherwise equivalent actions are not. We suggest that in some instances the apparent logical inconsistency stems from different evaluations of a weak argument, rather than dishonesty per se. Extending Corner, Hahn, and Oaksford's (2006) analysis of slippery slope arguments, we develop a Bayesian framework in which accusations of hypocrisy depend on inferences of shared category membership between proposed actions and previous standards, based on prior probabilities that inform the strength of competing hypotheses. Across three experiments, we demonstrate that inferences of hypocrisy increase as perceptions of the likelihood of shared category membership between precedent cases and current cases increase, that these inferences follow established principles of category induction, and that the presence of self-serving motives increases inferences of hypocrisy independent of changes in the actions themselves. Taken together, these results demonstrate that Bayesian analyses of weak arguments may have implications for assessing moral reasoning. © 2014 Cognitive Science Society, Inc.

  6. Credible occurrence probabilities for extreme geophysical events: earthquakes, volcanic eruptions, magnetic storms

    USGS Publications Warehouse

    Love, Jeffrey J.

    2012-01-01

    Statistical analysis is made of rare, extreme geophysical events recorded in historical data -- counting the number of events $k$ with sizes that exceed chosen thresholds during specific durations of time $\\tau$. Under transformations that stabilize data and model-parameter variances, the most likely Poisson-event occurrence rate, $k/\\tau$, applies for frequentist inference and, also, for Bayesian inference with a Jeffreys prior that ensures posterior invariance under changes of variables. Frequentist confidence intervals and Bayesian (Jeffreys) credibility intervals are approximately the same and easy to calculate: $(1/\\tau)[(\\sqrt{k} - z/2)^{2},(\\sqrt{k} + z/2)^{2}]$, where $z$ is a parameter that specifies the width, $z=1$ ($z=2$) corresponding to $1\\sigma$, $68.3\\%$ ($2\\sigma$, $95.4\\%$). If only a few events have been observed, as is usually the case for extreme events, then these "error-bar" intervals might be considered to be relatively wide. From historical records, we estimate most likely long-term occurrence rates, 10-yr occurrence probabilities, and intervals of frequentist confidence and Bayesian credibility for large earthquakes, explosive volcanic eruptions, and magnetic storms.

  7. A Fatigue Crack Size Evaluation Method Based on Lamb Wave Simulation and Limited Experimental Data

    PubMed Central

    He, Jingjing; Ran, Yunmeng; Liu, Bin; Yang, Jinsong; Guan, Xuefei

    2017-01-01

    This paper presents a systematic and general method for Lamb wave-based crack size quantification using finite element simulations and Bayesian updating. The method consists of construction of a baseline quantification model using finite element simulation data and Bayesian updating with limited Lamb wave data from target structure. The baseline model correlates two proposed damage sensitive features, namely the normalized amplitude and phase change, with the crack length through a response surface model. The two damage sensitive features are extracted from the first received S0 mode wave package. The model parameters of the baseline model are estimated using finite element simulation data. To account for uncertainties from numerical modeling, geometry, material and manufacturing between the baseline model and the target model, Bayesian method is employed to update the baseline model with a few measurements acquired from the actual target structure. A rigorous validation is made using in-situ fatigue testing and Lamb wave data from coupon specimens and realistic lap-joint components. The effectiveness and accuracy of the proposed method is demonstrated under different loading and damage conditions. PMID:28902148

  8. A novel approach for pilot error detection using Dynamic Bayesian Networks.

    PubMed

    Saada, Mohamad; Meng, Qinggang; Huang, Tingwen

    2014-06-01

    In the last decade Dynamic Bayesian Networks (DBNs) have become one type of the most attractive probabilistic modelling framework extensions of Bayesian Networks (BNs) for working under uncertainties from a temporal perspective. Despite this popularity not many researchers have attempted to study the use of these networks in anomaly detection or the implications of data anomalies on the outcome of such models. An abnormal change in the modelled environment's data at a given time, will cause a trailing chain effect on data of all related environment variables in current and consecutive time slices. Albeit this effect fades with time, it still can have an ill effect on the outcome of such models. In this paper we propose an algorithm for pilot error detection, using DBNs as the modelling framework for learning and detecting anomalous data. We base our experiments on the actions of an aircraft pilot, and a flight simulator is created for running the experiments. The proposed anomaly detection algorithm has achieved good results in detecting pilot errors and effects on the whole system.

  9. Bayesian dynamic mediation analysis.

    PubMed

    Huang, Jing; Yuan, Ying

    2017-12-01

    Most existing methods for mediation analysis assume that mediation is a stationary, time-invariant process, which overlooks the inherently dynamic nature of many human psychological processes and behavioral activities. In this article, we consider mediation as a dynamic process that continuously changes over time. We propose Bayesian multilevel time-varying coefficient models to describe and estimate such dynamic mediation effects. By taking the nonparametric penalized spline approach, the proposed method is flexible and able to accommodate any shape of the relationship between time and mediation effects. Simulation studies show that the proposed method works well and faithfully reflects the true nature of the mediation process. By modeling mediation effect nonparametrically as a continuous function of time, our method provides a valuable tool to help researchers obtain a more complete understanding of the dynamic nature of the mediation process underlying psychological and behavioral phenomena. We also briefly discuss an alternative approach of using dynamic autoregressive mediation model to estimate the dynamic mediation effect. The computer code is provided to implement the proposed Bayesian dynamic mediation analysis. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  10. Evaluating science arguments: evidence, uncertainty, and argument strength.

    PubMed

    Corner, Adam; Hahn, Ulrike

    2009-09-01

    Public debates about socioscientific issues are increasingly prevalent, but the public response to messages about, for example, climate change, does not always seem to match the seriousness of the problem identified by scientists. Is there anything unique about appeals based on scientific evidence-do people evaluate science and nonscience arguments differently? In an attempt to apply a systematic framework to people's evaluation of science arguments, the authors draw on the Bayesian approach to informal argumentation. The Bayesian approach permits questions about how people evaluate science arguments to be posed and comparisons to be made between the evaluation of science and nonscience arguments. In an experiment involving three separate argument evaluation tasks, the authors investigated whether people's evaluations of science and nonscience arguments differed in any meaningful way. Although some differences were observed in the relative strength of science and nonscience arguments, the evaluation of science arguments was determined by the same factors as nonscience arguments. Our results suggest that science communicators wishing to construct a successful appeal can make use of the Bayesian framework to distinguish strong and weak arguments. 2009 APA, all rights reserved

  11. Inverse sequential detection of parameter changes in developing time series

    NASA Technical Reports Server (NTRS)

    Radok, Uwe; Brown, Timothy J.

    1992-01-01

    Progressive values of two probabilities are obtained for parameter estimates derived from an existing set of values and from the same set enlarged by one or more new values, respectively. One probability is that of erroneously preferring the second of these estimates for the existing data ('type 1 error'), while the second probability is that of erroneously accepting their estimates for the enlarged test ('type 2 error'). A more stable combined 'no change' probability which always falls between 0.5 and 0 is derived from the (logarithmic) width of the uncertainty region of an equivalent 'inverted' sequential probability ratio test (SPRT, Wald 1945) in which the error probabilities are calculated rather than prescribed. A parameter change is indicated when the compound probability undergoes a progressive decrease. The test is explicitly formulated and exemplified for Gaussian samples.

  12. Sequential change detection and monitoring of temporal trends in random-effects meta-analysis.

    PubMed

    Dogo, Samson Henry; Clark, Allan; Kulinskaya, Elena

    2017-06-01

    Temporal changes in magnitude of effect sizes reported in many areas of research are a threat to the credibility of the results and conclusions of meta-analysis. Numerous sequential methods for meta-analysis have been proposed to detect changes and monitor trends in effect sizes so that meta-analysis can be updated when necessary and interpreted based on the time it was conducted. The difficulties of sequential meta-analysis under the random-effects model are caused by dependencies in increments introduced by the estimation of the heterogeneity parameter τ 2 . In this paper, we propose the use of a retrospective cumulative sum (CUSUM)-type test with bootstrap critical values. This method allows retrospective analysis of the past trajectory of cumulative effects in random-effects meta-analysis and its visualization on a chart similar to CUSUM chart. Simulation results show that the new method demonstrates good control of Type I error regardless of the number or size of the studies and the amount of heterogeneity. Application of the new method is illustrated on two examples of medical meta-analyses. © 2016 The Authors. Research Synthesis Methods published by John Wiley & Sons Ltd. © 2016 The Authors. Research Synthesis Methods published by John Wiley & Sons Ltd.

  13. A comparative analysis of sex change in Labridae supports the size advantage hypothesis.

    PubMed

    Kazancioğlu, Erem; Alonzo, Suzanne H

    2010-08-01

    The size advantage hypothesis (SAH) predicts that the rate of increase in male and female fitness with size (the size advantage) drives the evolution of sequential hermaphroditism or sex change. Despite qualitative agreement between empirical patterns and SAH, only one comparative study tested SAH quantitatively. Here, we perform the first comparative analysis of sex change in Labridae, a group of hermaphroditic and dioecious (non-sex changer) fish with several model sex-changing species. We also estimate, for the first time, rates of evolutionary transitions between sex change and dioecy. Our analyses support SAH and indicate that the evolution of hermaphroditism is correlated to the size advantage. Furthermore, we find that transitions from sex change to dioecy are less likely under stronger size advantage. We cannot determine, however, how the size advantage affects transitions from dioecy to sex change. Finally, contrary to what is generally expected, we find that transitions from dioecy to sex change are more likely than transitions from sex change to dioecy. The similarity of sexual differentiation in hermaphroditic and dioecious labrids might underlie this pattern. We suggest that elucidating the developmental basis of sex change is critical to predict and explain patterns of the evolutionary history of sequential hermaphroditism.

  14. Program Completion of a Web-Based Tailored Lifestyle Intervention for Adults: Differences between a Sequential and a Simultaneous Approach

    PubMed Central

    Schneider, Francine; de Vries, Hein; van Osch, Liesbeth ADM; van Nierop, Peter WM; Kremers, Stef PJ

    2012-01-01

    Background Unhealthy lifestyle behaviors often co-occur and are related to chronic diseases. One effective method to change multiple lifestyle behaviors is web-based computer tailoring. Dropout from Internet interventions, however, is rather high, and it is challenging to retain participants in web-based tailored programs, especially programs targeting multiple behaviors. To date, it is unknown how much information people can handle in one session while taking part in a multiple behavior change intervention, which could be presented either sequentially (one behavior at a time) or simultaneously (all behaviors at once). Objectives The first objective was to compare dropout rates of 2 computer-tailored interventions: a sequential and a simultaneous strategy. The second objective was to assess which personal characteristics are associated with completion rates of the 2 interventions. Methods Using an RCT design, demographics, health status, physical activity, vegetable consumption, fruit consumption, alcohol intake, and smoking were self-assessed through web-based questionnaires among 3473 adults, recruited through Regional Health Authorities in the Netherlands in the autumn of 2009. First, a health risk appraisal was offered, indicating whether respondents were meeting the 5 national health guidelines. Second, psychosocial determinants of the lifestyle behaviors were assessed and personal advice was provided, about one or more lifestyle behaviors. Results Our findings indicate a high non-completion rate for both types of intervention (71.0%; n = 2167), with more incompletes in the simultaneous intervention (77.1%; n = 1169) than in the sequential intervention (65.0%; n = 998). In both conditions, discontinuation was predicted by a lower age (sequential condition: OR = 1.04; P < .001; CI = 1.02-1.05; simultaneous condition: OR = 1.04; P < .001; CI = 1.02-1.05) and an unhealthy lifestyle (sequential condition: OR = 0.86; P = .01; CI = 0.76-0.97; simultaneous condition: OR = 0.49; P < .001; CI = 0.42-0.58). In the sequential intervention, being male (OR = 1.27; P = .04; CI = 1.01-1.59) also predicted dropout. When respondents failed to adhere to at least 2 of the guidelines, those receiving the simultaneous intervention were more inclined to drop out than were those receiving the sequential intervention. Conclusion Possible reasons for the higher dropout rate in our simultaneous intervention may be the amount of time required and information overload. Strategies to optimize program completion as well as continued use of computer-tailored interventions should be studied. Trial Registration Dutch Trial Register NTR2168 PMID:22403770

  15. Program completion of a web-based tailored lifestyle intervention for adults: differences between a sequential and a simultaneous approach.

    PubMed

    Schulz, Daniela N; Schneider, Francine; de Vries, Hein; van Osch, Liesbeth A D M; van Nierop, Peter W M; Kremers, Stef P J

    2012-03-08

    Unhealthy lifestyle behaviors often co-occur and are related to chronic diseases. One effective method to change multiple lifestyle behaviors is web-based computer tailoring. Dropout from Internet interventions, however, is rather high, and it is challenging to retain participants in web-based tailored programs, especially programs targeting multiple behaviors. To date, it is unknown how much information people can handle in one session while taking part in a multiple behavior change intervention, which could be presented either sequentially (one behavior at a time) or simultaneously (all behaviors at once). The first objective was to compare dropout rates of 2 computer-tailored interventions: a sequential and a simultaneous strategy. The second objective was to assess which personal characteristics are associated with completion rates of the 2 interventions. Using an RCT design, demographics, health status, physical activity, vegetable consumption, fruit consumption, alcohol intake, and smoking were self-assessed through web-based questionnaires among 3473 adults, recruited through Regional Health Authorities in the Netherlands in the autumn of 2009. First, a health risk appraisal was offered, indicating whether respondents were meeting the 5 national health guidelines. Second, psychosocial determinants of the lifestyle behaviors were assessed and personal advice was provided, about one or more lifestyle behaviors. Our findings indicate a high non-completion rate for both types of intervention (71.0%; n = 2167), with more incompletes in the simultaneous intervention (77.1%; n = 1169) than in the sequential intervention (65.0%; n = 998). In both conditions, discontinuation was predicted by a lower age (sequential condition: OR = 1.04; P < .001; CI = 1.02-1.05; simultaneous condition: OR = 1.04; P < .001; CI = 1.02-1.05) and an unhealthy lifestyle (sequential condition: OR = 0.86; P = .01; CI = 0.76-0.97; simultaneous condition: OR = 0.49; P < .001; CI = 0.42-0.58). In the sequential intervention, being male (OR = 1.27; P = .04; CI = 1.01-1.59) also predicted dropout. When respondents failed to adhere to at least 2 of the guidelines, those receiving the simultaneous intervention were more inclined to drop out than were those receiving the sequential intervention. Possible reasons for the higher dropout rate in our simultaneous intervention may be the amount of time required and information overload. Strategies to optimize program completion as well as continued use of computer-tailored interventions should be studied. Dutch Trial Register NTR2168.

  16. An N-terminal di-proline motif is essential for fatty acid–dependent degradation of Δ9-desaturase in Drosophila

    PubMed Central

    Murakami, Akira; Nagao, Kohjiro; Juni, Naoto; Hara, Yuji; Umeda, Masato

    2017-01-01

    The Δ9-fatty acid desaturase introduces a double bond at the Δ9 position of the acyl moiety of acyl-CoA and regulates the cellular levels of unsaturated fatty acids. However, it is unclear how Δ9-desaturase expression is regulated in response to changes in the levels of fatty acid desaturation. In this study, we found that the degradation of DESAT1, the sole Δ9-desaturase in the Drosophila cell line S2, was significantly enhanced when the amounts of unsaturated acyl chains of membrane phospholipids were increased by supplementation with unsaturated fatty acids, such as oleic and linoleic acids. In contrast, inhibition of DESAT1 activity remarkably suppressed its degradation. Of note, removal of the DESAT1 N-terminal domain abolished the responsiveness of DESAT1 degradation to the level of fatty acid unsaturation. Further truncation and amino acid replacement analyses revealed that two sequential prolines, the second and third residues of DESAT1, were responsible for the unsaturated fatty acid–dependent degradation. Although degradation of mouse stearoyl-CoA desaturase 1 (SCD1) was unaffected by changes in fatty acid unsaturation, introduction of the N-terminal sequential proline residues into SCD1 conferred responsiveness to unsaturated fatty acid–dependent degradation. Furthermore, we also found that the Ca2+-dependent cysteine protease calpain is involved in the sequential proline–dependent degradation of DESAT1. In light of these findings, we designated the sequential prolines at the second and third positions of DESAT1 as a “di-proline motif,” which plays a crucial role in the regulation of Δ9-desaturase expression in response to changes in the level of cellular unsaturated fatty acids. PMID:28972163

  17. DM-BLD: differential methylation detection using a hierarchical Bayesian model exploiting local dependency.

    PubMed

    Wang, Xiao; Gu, Jinghua; Hilakivi-Clarke, Leena; Clarke, Robert; Xuan, Jianhua

    2017-01-15

    The advent of high-throughput DNA methylation profiling techniques has enabled the possibility of accurate identification of differentially methylated genes for cancer research. The large number of measured loci facilitates whole genome methylation study, yet posing great challenges for differential methylation detection due to the high variability in tumor samples. We have developed a novel probabilistic approach, D: ifferential M: ethylation detection using a hierarchical B: ayesian model exploiting L: ocal D: ependency (DM-BLD), to detect differentially methylated genes based on a Bayesian framework. The DM-BLD approach features a joint model to capture both the local dependency of measured loci and the dependency of methylation change in samples. Specifically, the local dependency is modeled by Leroux conditional autoregressive structure; the dependency of methylation changes is modeled by a discrete Markov random field. A hierarchical Bayesian model is developed to fully take into account the local dependency for differential analysis, in which differential states are embedded as hidden variables. Simulation studies demonstrate that DM-BLD outperforms existing methods for differential methylation detection, particularly when the methylation change is moderate and the variability of methylation in samples is high. DM-BLD has been applied to breast cancer data to identify important methylated genes (such as polycomb target genes and genes involved in transcription factor activity) associated with breast cancer recurrence. A Matlab package of DM-BLD is available at http://www.cbil.ece.vt.edu/software.htm CONTACT: Xuan@vt.eduSupplementary information: Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  18. Bayesian structural equation modeling in sport and exercise psychology.

    PubMed

    Stenling, Andreas; Ivarsson, Andreas; Johnson, Urban; Lindwall, Magnus

    2015-08-01

    Bayesian statistics is on the rise in mainstream psychology, but applications in sport and exercise psychology research are scarce. In this article, the foundations of Bayesian analysis are introduced, and we will illustrate how to apply Bayesian structural equation modeling in a sport and exercise psychology setting. More specifically, we contrasted a confirmatory factor analysis on the Sport Motivation Scale II estimated with the most commonly used estimator, maximum likelihood, and a Bayesian approach with weakly informative priors for cross-loadings and correlated residuals. The results indicated that the model with Bayesian estimation and weakly informative priors provided a good fit to the data, whereas the model estimated with a maximum likelihood estimator did not produce a well-fitting model. The reasons for this discrepancy between maximum likelihood and Bayesian estimation are discussed as well as potential advantages and caveats with the Bayesian approach.

  19. An iterative particle filter approach for coupled hydro-geophysical inversion of a controlled infiltration experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manoli, Gabriele, E-mail: manoli@dmsa.unipd.it; Nicholas School of the Environment, Duke University, Durham, NC 27708; Rossi, Matteo

    The modeling of unsaturated groundwater flow is affected by a high degree of uncertainty related to both measurement and model errors. Geophysical methods such as Electrical Resistivity Tomography (ERT) can provide useful indirect information on the hydrological processes occurring in the vadose zone. In this paper, we propose and test an iterated particle filter method to solve the coupled hydrogeophysical inverse problem. We focus on an infiltration test monitored by time-lapse ERT and modeled using Richards equation. The goal is to identify hydrological model parameters from ERT electrical potential measurements. Traditional uncoupled inversion relies on the solution of two sequentialmore » inverse problems, the first one applied to the ERT measurements, the second one to Richards equation. This approach does not ensure an accurate quantitative description of the physical state, typically violating mass balance. To avoid one of these two inversions and incorporate in the process more physical simulation constraints, we cast the problem within the framework of a SIR (Sequential Importance Resampling) data assimilation approach that uses a Richards equation solver to model the hydrological dynamics and a forward ERT simulator combined with Archie's law to serve as measurement model. ERT observations are then used to update the state of the system as well as to estimate the model parameters and their posterior distribution. The limitations of the traditional sequential Bayesian approach are investigated and an innovative iterative approach is proposed to estimate the model parameters with high accuracy. The numerical properties of the developed algorithm are verified on both homogeneous and heterogeneous synthetic test cases based on a real-world field experiment.« less

  20. Modeling distributional changes in winter precipitation of Canada using Bayesian spatiotemporal quantile regression subjected to different teleconnections

    NASA Astrophysics Data System (ADS)

    Tan, Xuezhi; Gan, Thian Yew; Chen, Shu; Liu, Bingjun

    2018-05-01

    Climate change and large-scale climate patterns may result in changes in probability distributions of climate variables that are associated with changes in the mean and variability, and severity of extreme climate events. In this paper, we applied a flexible framework based on the Bayesian spatiotemporal quantile (BSTQR) model to identify climate changes at different quantile levels and their teleconnections to large-scale climate patterns such as El Niño-Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), North Atlantic Oscillation (NAO) and Pacific-North American (PNA). Using the BSTQR model with time (year) as a covariate, we estimated changes in Canadian winter precipitation and their uncertainties at different quantile levels. There were some stations in eastern Canada showing distributional changes in winter precipitation such as an increase in low quantiles but a decrease in high quantiles. Because quantile functions in the BSTQR model vary with space and time and assimilate spatiotemporal precipitation data, the BSTQR model produced much spatially smoother and less uncertain quantile changes than the classic regression without considering spatiotemporal correlations. Using the BSTQR model with five teleconnection indices (i.e., SOI, PDO, PNA, NP and NAO) as covariates, we investigated effects of large-scale climate patterns on Canadian winter precipitation at different quantile levels. Winter precipitation responses to these five teleconnections were found to occur differently at different quantile levels. Effects of five teleconnections on Canadian winter precipitation were stronger at low and high than at medium quantile levels.

  1. Acute radiation nephritis. Its evolution on sequential bone imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palestro, C.; Fineman, D.; Goldsmith, S.J.

    1988-11-01

    Acute radiation nephritis typically affects the kidneys 3-12 months after radiation exposure and may occur with doses as low as 2500 rads. After an initial latent period, the affected portions of the kidneys become swollen and edematous, and develop multiple petechiae. Necrotizing vasculitis and interstitial hemorrhage occur, and the end stage is that of scarring. Two patients are presented in whom localized acute radiation nephritis developed, and whose kidneys demonstrated the characteristic sequential changes of this entity on serial bone imaging.

  2. Demographic Divergence History of Pied Flycatcher and Collared Flycatcher Inferred from Whole-Genome Re-sequencing Data

    PubMed Central

    Nadachowska-Brzyska, Krystyna; Burri, Reto; Olason, Pall I.; Kawakami, Takeshi; Smeds, Linnéa; Ellegren, Hans

    2013-01-01

    Profound knowledge of demographic history is a prerequisite for the understanding and inference of processes involved in the evolution of population differentiation and speciation. Together with new coalescent-based methods, the recent availability of genome-wide data enables investigation of differentiation and divergence processes at unprecedented depth. We combined two powerful approaches, full Approximate Bayesian Computation analysis (ABC) and pairwise sequentially Markovian coalescent modeling (PSMC), to reconstruct the demographic history of the split between two avian speciation model species, the pied flycatcher and collared flycatcher. Using whole-genome re-sequencing data from 20 individuals, we investigated 15 demographic models including different levels and patterns of gene flow, and changes in effective population size over time. ABC provided high support for recent (mode 0.3 my, range <0.7 my) species divergence, declines in effective population size of both species since their initial divergence, and unidirectional recent gene flow from pied flycatcher into collared flycatcher. The estimated divergence time and population size changes, supported by PSMC results, suggest that the ancestral species persisted through one of the glacial periods of middle Pleistocene and then split into two large populations that first increased in size before going through severe bottlenecks and expanding into their current ranges. Secondary contact appears to have been established after the last glacial maximum. The severity of the bottlenecks at the last glacial maximum is indicated by the discrepancy between current effective population sizes (20,000–80,000) and census sizes (5–50 million birds) of the two species. The recent divergence time challenges the supposition that avian speciation is a relatively slow process with extended times for intrinsic postzygotic reproductive barriers to evolve. Our study emphasizes the importance of using genome-wide data to unravel tangled demographic histories. Moreover, it constitutes one of the first examples of the inference of divergence history from genome-wide data in non-model species. PMID:24244198

  3. Demographic divergence history of pied flycatcher and collared flycatcher inferred from whole-genome re-sequencing data.

    PubMed

    Nadachowska-Brzyska, Krystyna; Burri, Reto; Olason, Pall I; Kawakami, Takeshi; Smeds, Linnéa; Ellegren, Hans

    2013-11-01

    Profound knowledge of demographic history is a prerequisite for the understanding and inference of processes involved in the evolution of population differentiation and speciation. Together with new coalescent-based methods, the recent availability of genome-wide data enables investigation of differentiation and divergence processes at unprecedented depth. We combined two powerful approaches, full Approximate Bayesian Computation analysis (ABC) and pairwise sequentially Markovian coalescent modeling (PSMC), to reconstruct the demographic history of the split between two avian speciation model species, the pied flycatcher and collared flycatcher. Using whole-genome re-sequencing data from 20 individuals, we investigated 15 demographic models including different levels and patterns of gene flow, and changes in effective population size over time. ABC provided high support for recent (mode 0.3 my, range <0.7 my) species divergence, declines in effective population size of both species since their initial divergence, and unidirectional recent gene flow from pied flycatcher into collared flycatcher. The estimated divergence time and population size changes, supported by PSMC results, suggest that the ancestral species persisted through one of the glacial periods of middle Pleistocene and then split into two large populations that first increased in size before going through severe bottlenecks and expanding into their current ranges. Secondary contact appears to have been established after the last glacial maximum. The severity of the bottlenecks at the last glacial maximum is indicated by the discrepancy between current effective population sizes (20,000-80,000) and census sizes (5-50 million birds) of the two species. The recent divergence time challenges the supposition that avian speciation is a relatively slow process with extended times for intrinsic postzygotic reproductive barriers to evolve. Our study emphasizes the importance of using genome-wide data to unravel tangled demographic histories. Moreover, it constitutes one of the first examples of the inference of divergence history from genome-wide data in non-model species.

  4. Conceptual issues in Bayesian divergence time estimation

    PubMed Central

    2016-01-01

    Bayesian inference of species divergence times is an unusual statistical problem, because the divergence time parameters are not identifiable unless both fossil calibrations and sequence data are available. Commonly used marginal priors on divergence times derived from fossil calibrations may conflict with node order on the phylogenetic tree causing a change in the prior on divergence times for a particular topology. Care should be taken to avoid confusing this effect with changes due to informative sequence data. This effect is illustrated with examples. A topology-consistent prior that preserves the marginal priors is defined and examples are constructed. Conflicts between fossil calibrations and relative branch lengths (based on sequence data) can cause estimates of divergence times that are grossly incorrect, yet have a narrow posterior distribution. An example of this effect is given; it is recommended that overly narrow posterior distributions of divergence times should be carefully scrutinized. This article is part of the themed issue ‘Dating species divergences using rocks and clocks’. PMID:27325831

  5. Conceptual issues in Bayesian divergence time estimation.

    PubMed

    Rannala, Bruce

    2016-07-19

    Bayesian inference of species divergence times is an unusual statistical problem, because the divergence time parameters are not identifiable unless both fossil calibrations and sequence data are available. Commonly used marginal priors on divergence times derived from fossil calibrations may conflict with node order on the phylogenetic tree causing a change in the prior on divergence times for a particular topology. Care should be taken to avoid confusing this effect with changes due to informative sequence data. This effect is illustrated with examples. A topology-consistent prior that preserves the marginal priors is defined and examples are constructed. Conflicts between fossil calibrations and relative branch lengths (based on sequence data) can cause estimates of divergence times that are grossly incorrect, yet have a narrow posterior distribution. An example of this effect is given; it is recommended that overly narrow posterior distributions of divergence times should be carefully scrutinized.This article is part of the themed issue 'Dating species divergences using rocks and clocks'. © 2016 The Author(s).

  6. Translating Uncertain Sea Level Projections Into Infrastructure Impacts Using a Bayesian Framework

    NASA Astrophysics Data System (ADS)

    Moftakhari, Hamed; AghaKouchak, Amir; Sanders, Brett F.; Matthew, Richard A.; Mazdiyasni, Omid

    2017-12-01

    Climate change may affect ocean-driven coastal flooding regimes by both raising the mean sea level (msl) and altering ocean-atmosphere interactions. For reliable projections of coastal flood risk, information provided by different climate models must be considered in addition to associated uncertainties. In this paper, we propose a framework to project future coastal water levels and quantify the resulting flooding hazard to infrastructure. We use Bayesian Model Averaging to generate a weighted ensemble of storm surge predictions from eight climate models for two coastal counties in California. The resulting ensembles combined with msl projections, and predicted astronomical tides are then used to quantify changes in the likelihood of road flooding under representative concentration pathways 4.5 and 8.5 in the near-future (1998-2063) and mid-future (2018-2083). The results show that road flooding rates will be significantly higher in the near-future and mid-future compared to the recent past (1950-2015) if adaptation measures are not implemented.

  7. Optical characterization limits of nanoparticle aggregates at different wavelengths using approximate Bayesian computation

    NASA Astrophysics Data System (ADS)

    Eriçok, Ozan Burak; Ertürk, Hakan

    2018-07-01

    Optical characterization of nanoparticle aggregates is a complex inverse problem that can be solved by deterministic or statistical methods. Previous studies showed that there exists a different lower size limit of reliable characterization, corresponding to the wavelength of light source used. In this study, these characterization limits are determined considering a light source wavelength range changing from ultraviolet to near infrared (266-1064 nm) relying on numerical light scattering experiments. Two different measurement ensembles are considered. Collection of well separated aggregates made up of same sized particles and that of having particle size distribution. Filippov's cluster-cluster algorithm is used to generate the aggregates and the light scattering behavior is calculated by discrete dipole approximation. A likelihood-free Approximate Bayesian Computation, relying on Adaptive Population Monte Carlo method, is used for characterization. It is found that when the wavelength range of 266-1064 nm is used, successful characterization limit changes from 21-62 nm effective radius for monodisperse and polydisperse soot aggregates.

  8. A utility-based design for randomized comparative trials with ordinal outcomes and prognostic subgroups.

    PubMed

    Murray, Thomas A; Yuan, Ying; Thall, Peter F; Elizondo, Joan H; Hofstetter, Wayne L

    2018-01-22

    A design is proposed for randomized comparative trials with ordinal outcomes and prognostic subgroups. The design accounts for patient heterogeneity by allowing possibly different comparative conclusions within subgroups. The comparative testing criterion is based on utilities for the levels of the ordinal outcome and a Bayesian probability model. Designs based on two alternative models that include treatment-subgroup interactions are considered, the proportional odds model and a non-proportional odds model with a hierarchical prior that shrinks toward the proportional odds model. A third design that assumes homogeneity and ignores possible treatment-subgroup interactions also is considered. The three approaches are applied to construct group sequential designs for a trial of nutritional prehabilitation versus standard of care for esophageal cancer patients undergoing chemoradiation and surgery, including both untreated patients and salvage patients whose disease has recurred following previous therapy. A simulation study is presented that compares the three designs, including evaluation of within-subgroup type I and II error probabilities under a variety of scenarios including different combinations of treatment-subgroup interactions. © 2018, The International Biometric Society.

  9. Rich analysis and rational models: Inferring individual behavior from infant looking data

    PubMed Central

    Piantadosi, Steven T.; Kidd, Celeste; Aslin, Richard

    2013-01-01

    Studies of infant looking times over the past 50 years have provided profound insights about cognitive development, but their dependent measures and analytic techniques are quite limited. In the context of infants' attention to discrete sequential events, we show how a Bayesian data analysis approach can be combined with a rational cognitive model to create a rich data analysis framework for infant looking times. We formalize (i) a statistical learning model (ii) a parametric linking between the learning model's beliefs and infants' looking behavior, and (iii) a data analysis model that infers parameters of the cognitive model and linking function for groups and individuals. Using this approach, we show that recent findings from Kidd, Piantadosi, and Aslin (2012) of a U-shaped relationship between look-away probability and stimulus complexity even holds within infants and is not due to averaging subjects with different types of behavior. Our results indicate that individual infants prefer stimuli of intermediate complexity, reserving attention for events that are moderately predictable given their probabilistic expectations about the world. PMID:24750256

  10. Rich analysis and rational models: inferring individual behavior from infant looking data.

    PubMed

    Piantadosi, Steven T; Kidd, Celeste; Aslin, Richard

    2014-05-01

    Studies of infant looking times over the past 50 years have provided profound insights about cognitive development, but their dependent measures and analytic techniques are quite limited. In the context of infants' attention to discrete sequential events, we show how a Bayesian data analysis approach can be combined with a rational cognitive model to create a rich data analysis framework for infant looking times. We formalize (i) a statistical learning model, (ii) a parametric linking between the learning model's beliefs and infants' looking behavior, and (iii) a data analysis approach and model that infers parameters of the cognitive model and linking function for groups and individuals. Using this approach, we show that recent findings from Kidd, Piantadosi and Aslin (iv) of a U-shaped relationship between look-away probability and stimulus complexity even holds within infants and is not due to averaging subjects with different types of behavior. Our results indicate that individual infants prefer stimuli of intermediate complexity, reserving attention for events that are moderately predictable given their probabilistic expectations about the world. © 2014 John Wiley & Sons Ltd.

  11. An information theoretic approach to use high-fidelity codes to calibrate low-fidelity codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, Allison, E-mail: lewis.allison10@gmail.com; Smith, Ralph; Williams, Brian

    For many simulation models, it can be prohibitively expensive or physically infeasible to obtain a complete set of experimental data to calibrate model parameters. In such cases, one can alternatively employ validated higher-fidelity codes to generate simulated data, which can be used to calibrate the lower-fidelity code. In this paper, we employ an information-theoretic framework to determine the reduction in parameter uncertainty that is obtained by evaluating the high-fidelity code at a specific set of design conditions. These conditions are chosen sequentially, based on the amount of information that they contribute to the low-fidelity model parameters. The goal is tomore » employ Bayesian experimental design techniques to minimize the number of high-fidelity code evaluations required to accurately calibrate the low-fidelity model. We illustrate the performance of this framework using heat and diffusion examples, a 1-D kinetic neutron diffusion equation, and a particle transport model, and include initial results from the integration of the high-fidelity thermal-hydraulics code Hydra-TH with a low-fidelity exponential model for the friction correlation factor.« less

  12. Bayes factor design analysis: Planning for compelling evidence.

    PubMed

    Schönbrodt, Felix D; Wagenmakers, Eric-Jan

    2018-02-01

    A sizeable literature exists on the use of frequentist power analysis in the null-hypothesis significance testing (NHST) paradigm to facilitate the design of informative experiments. In contrast, there is almost no literature that discusses the design of experiments when Bayes factors (BFs) are used as a measure of evidence. Here we explore Bayes Factor Design Analysis (BFDA) as a useful tool to design studies for maximum efficiency and informativeness. We elaborate on three possible BF designs, (a) a fixed-n design, (b) an open-ended Sequential Bayes Factor (SBF) design, where researchers can test after each participant and can stop data collection whenever there is strong evidence for either [Formula: see text] or [Formula: see text], and (c) a modified SBF design that defines a maximal sample size where data collection is stopped regardless of the current state of evidence. We demonstrate how the properties of each design (i.e., expected strength of evidence, expected sample size, expected probability of misleading evidence, expected probability of weak evidence) can be evaluated using Monte Carlo simulations and equip researchers with the necessary information to compute their own Bayesian design analyses.

  13. Reconstructing Past Admixture Processes from Local Genomic Ancestry Using Wavelet Transformation

    PubMed Central

    Sanderson, Jean; Sudoyo, Herawati; Karafet, Tatiana M.; Hammer, Michael F.; Cox, Murray P.

    2015-01-01

    Admixture between long-separated populations is a defining feature of the genomes of many species. The mosaic block structure of admixed genomes can provide information about past contact events, including the time and extent of admixture. Here, we describe an improved wavelet-based technique that better characterizes ancestry block structure from observed genomic patterns. principal components analysis is first applied to genomic data to identify the primary population structure, followed by wavelet decomposition to develop a new characterization of local ancestry information along the chromosomes. For testing purposes, this method is applied to human genome-wide genotype data from Indonesia, as well as virtual genetic data generated using genome-scale sequential coalescent simulations under a wide range of admixture scenarios. Time of admixture is inferred using an approximate Bayesian computation framework, providing robust estimates of both admixture times and their associated levels of uncertainty. Crucially, we demonstrate that this revised wavelet approach, which we have released as the R package adwave, provides improved statistical power over existing wavelet-based techniques and can be used to address a broad range of admixture questions. PMID:25852078

  14. Joint passive radar tracking and target classification using radar cross section

    NASA Astrophysics Data System (ADS)

    Herman, Shawn M.

    2004-01-01

    We present a recursive Bayesian solution for the problem of joint tracking and classification of airborne targets. In our system, we allow for complications due to multiple targets, false alarms, and missed detections. More importantly, though, we utilize the full benefit of a joint approach by implementing our tracker using an aerodynamically valid flight model that requires aircraft-specific coefficients such as wing area and vehicle mass, which are provided by our classifier. A key feature that bridges the gap between tracking and classification is radar cross section (RCS). By modeling the true deterministic relationship that exists between RCS and target aspect, we are able to gain both valuable class information and an estimate of target orientation. However, the lack of a closed-form relationship between RCS and target aspect prevents us from using the Kalman filter or its variants. Instead, we rely upon a sequential Monte Carlo-based approach known as particle filtering. In addition to allowing us to include RCS as a measurement, the particle filter also simplifies the implementation of our nonlinear non-Gaussian flight model.

  15. Joint passive radar tracking and target classification using radar cross section

    NASA Astrophysics Data System (ADS)

    Herman, Shawn M.

    2003-12-01

    We present a recursive Bayesian solution for the problem of joint tracking and classification of airborne targets. In our system, we allow for complications due to multiple targets, false alarms, and missed detections. More importantly, though, we utilize the full benefit of a joint approach by implementing our tracker using an aerodynamically valid flight model that requires aircraft-specific coefficients such as wing area and vehicle mass, which are provided by our classifier. A key feature that bridges the gap between tracking and classification is radar cross section (RCS). By modeling the true deterministic relationship that exists between RCS and target aspect, we are able to gain both valuable class information and an estimate of target orientation. However, the lack of a closed-form relationship between RCS and target aspect prevents us from using the Kalman filter or its variants. Instead, we rely upon a sequential Monte Carlo-based approach known as particle filtering. In addition to allowing us to include RCS as a measurement, the particle filter also simplifies the implementation of our nonlinear non-Gaussian flight model.

  16. Assimilating Remote Sensing Observations of Leaf Area Index and Soil Moisture for Wheat Yield Estimates: An Observing System Simulation Experiment

    NASA Technical Reports Server (NTRS)

    Nearing, Grey S.; Crow, Wade T.; Thorp, Kelly R.; Moran, Mary S.; Reichle, Rolf H.; Gupta, Hoshin V.

    2012-01-01

    Observing system simulation experiments were used to investigate ensemble Bayesian state updating data assimilation of observations of leaf area index (LAI) and soil moisture (theta) for the purpose of improving single-season wheat yield estimates with the Decision Support System for Agrotechnology Transfer (DSSAT) CropSim-Ceres model. Assimilation was conducted in an energy-limited environment and a water-limited environment. Modeling uncertainty was prescribed to weather inputs, soil parameters and initial conditions, and cultivar parameters and through perturbations to model state transition equations. The ensemble Kalman filter and the sequential importance resampling filter were tested for the ability to attenuate effects of these types of uncertainty on yield estimates. LAI and theta observations were synthesized according to characteristics of existing remote sensing data, and effects of observation error were tested. Results indicate that the potential for assimilation to improve end-of-season yield estimates is low. Limitations are due to a lack of root zone soil moisture information, error in LAI observations, and a lack of correlation between leaf and grain growth.

  17. Risk Assessment of Pollution Emergencies in Water Source Areas of the Hanjiang-to-Weihe River Diversion Project

    NASA Astrophysics Data System (ADS)

    Liu, Luyao; Feng, Minquan

    2018-03-01

    [Objective] This study quantitatively evaluated risk probabilities of sudden water pollution accidents under the influence of risk sources, thus providing an important guarantee for risk source identification during water diversion from the Hanjiang River to the Weihe River. [Methods] The research used Bayesian networks to represent the correlation between accidental risk sources. It also adopted the sequential Monte Carlo algorithm to combine water quality simulation with state simulation of risk sources, thereby determining standard-exceeding probabilities of sudden water pollution accidents. [Results] When the upstream inflow was 138.15 m3/s and the average accident duration was 48 h, the probabilities were 0.0416 and 0.0056 separately. When the upstream inflow was 55.29 m3/s and the average accident duration was 48 h, the probabilities were 0.0225 and 0.0028 separately. [Conclusions] The research conducted a risk assessment on sudden water pollution accidents, thereby providing an important guarantee for the smooth implementation, operation, and water quality of the Hanjiang-to-Weihe River Diversion Project.

  18. Evaluation of Semi-supervised Learning for Classification of Protein Crystallization Imagery.

    PubMed

    Sigdel, Madhav; Dinç, İmren; Dinç, Semih; Sigdel, Madhu S; Pusey, Marc L; Aygün, Ramazan S

    2014-03-01

    In this paper, we investigate the performance of two wrapper methods for semi-supervised learning algorithms for classification of protein crystallization images with limited labeled images. Firstly, we evaluate the performance of semi-supervised approach using self-training with naïve Bayesian (NB) and sequential minimum optimization (SMO) as the base classifiers. The confidence values returned by these classifiers are used to select high confident predictions to be used for self-training. Secondly, we analyze the performance of Yet Another Two Stage Idea (YATSI) semi-supervised learning using NB, SMO, multilayer perceptron (MLP), J48 and random forest (RF) classifiers. These results are compared with the basic supervised learning using the same training sets. We perform our experiments on a dataset consisting of 2250 protein crystallization images for different proportions of training and test data. Our results indicate that NB and SMO using both self-training and YATSI semi-supervised approaches improve accuracies with respect to supervised learning. On the other hand, MLP, J48 and RF perform better using basic supervised learning. Overall, random forest classifier yields the best accuracy with supervised learning for our dataset.

  19. Phylodynamic analysis of the dissemination of HIV-1 CRF01_AE in Vietnam.

    PubMed

    Liao, Huanan; Tee, Kok Keng; Hase, Saiki; Uenishi, Rie; Li, Xiao-Jie; Kusagawa, Shigeru; Thang, Pham Hong; Hien, Nguyen Tran; Pybus, Oliver G; Takebe, Yutaka

    2009-08-15

    To estimate the epidemic history of HIV-1 CRF01_AE in Vietnam and adjacent Guangxi, China, we determined near full-length nucleotide sequences of CRF01_AE from a total of 33 specimens collected in 1997-1998 from different geographic regions and risk populations in Vietnam. Phylogenetic and Bayesian molecular clock analyses were performed to estimate the date of origin of CRF01_AE lineages. Our study reconstructs the timescale of CRF01_AE expansion in Vietnam and neighboring regions and suggests that the series of CRF01_AE epidemics in Vietnam arose by the sequential introduction of founder strains into new locations and risk groups. CRF01_AE appears to have been present among heterosexuals in South-Vietnam for more than a decade prior to its epidemic spread in the early 1990s. In the late 1980s, the virus spread to IDUs in Southern Vietnam and subsequently in the mid-1990s to IDUs further north. Our results indicate the northward dissemination of CRF01_AE during this time.

  20. Sequential Multiplex Analyte Capturing for Phosphoprotein Profiling*

    PubMed Central

    Poetz, Oliver; Henzler, Tanja; Hartmann, Michael; Kazmaier, Cornelia; Templin, Markus F.; Herget, Thomas; Joos, Thomas O.

    2010-01-01

    Microarray-based sandwich immunoassays can simultaneously detect dozens of proteins. However, their use in quantifying large numbers of proteins is hampered by cross-reactivity and incompatibilities caused by the immunoassays themselves. Sequential multiplex analyte capturing addresses these problems by repeatedly probing the same sample with different sets of antibody-coated, magnetic suspension bead arrays. As a miniaturized immunoassay format, suspension bead array-based assays fulfill the criteria of the ambient analyte theory, and our experiments reveal that the analyte concentrations are not significantly changed. The value of sequential multiplex analyte capturing was demonstrated by probing tumor cell line lysates for the abundance of seven different receptor tyrosine kinases and their degree of phosphorylation and by measuring the complex phosphorylation pattern of the epidermal growth factor receptor in the same sample from the same cavity. PMID:20682761

  1. Changing Career Patterns. ERIC Digest No. 219.

    ERIC Educational Resources Information Center

    Brown, Bettina Lankard

    The linear career path that once kept people working in the same job is not the standard career route for today's workers. Instead, many workers are now pursuing varied career paths that reflect sequential career changes. Although job mobility no longer carries the stigma once associated with job change, it can still be emotionally stressful. Job…

  2. Using a Bayesian network to clarify areas requiring research in a host-pathogen system.

    PubMed

    Bower, D S; Mengersen, K; Alford, R A; Schwarzkopf, L

    2017-12-01

    Bayesian network analyses can be used to interactively change the strength of effect of variables in a model to explore complex relationships in new ways. In doing so, they allow one to identify influential nodes that are not well studied empirically so that future research can be prioritized. We identified relationships in host and pathogen biology to examine disease-driven declines of amphibians associated with amphibian chytrid fungus (Batrachochytrium dendrobatidis). We constructed a Bayesian network consisting of behavioral, genetic, physiological, and environmental variables that influence disease and used them to predict host population trends. We varied the impacts of specific variables in the model to reveal factors with the most influence on host population trend. The behavior of the nodes (the way in which the variables probabilistically responded to changes in states of the parents, which are the nodes or variables that directly influenced them in the graphical model) was consistent with published results. The frog population had a 49% probability of decline when all states were set at their original values, and this probability increased when body temperatures were cold, the immune system was not suppressing infection, and the ambient environment was conducive to growth of B. dendrobatidis. These findings suggest the construction of our model reflected the complex relationships characteristic of host-pathogen interactions. Changes to climatic variables alone did not strongly influence the probability of population decline, which suggests that climate interacts with other factors such as the capacity of the frog immune system to suppress disease. Changes to the adaptive immune system and disease reservoirs had a large effect on the population trend, but there was little empirical information available for model construction. Our model inputs can be used as a base to examine other systems, and our results show that such analyses are useful tools for reviewing existing literature, identifying links poorly supported by evidence, and understanding complexities in emerging infectious-disease systems. © 2017 Society for Conservation Biology.

  3. Temporal changes and variability in temperature series over Peninsular Malaysia

    NASA Astrophysics Data System (ADS)

    Suhaila, Jamaludin

    2015-02-01

    With the current concern over climate change, the descriptions on how temperature series changed over time are very useful. Annual mean temperature has been analyzed for several stations over Peninsular Malaysia. Non-parametric statistical techniques such as Mann-Kendall test and Theil-Sen slope estimation are used primarily for assessing the significance and detection of trends, while a nonparametric Pettitt's test and sequential Mann-Kendall test are adopted to detect any abrupt climate change. Statistically significance increasing trends for annual mean temperature are detected for almost all studied stations with the magnitude of significant trend varied from 0.02°C to 0.05°C per year. The results shows that climate over Peninsular Malaysia is getting warmer than before. In addition, the results of the abrupt changes in temperature using Pettitt's and sequential Mann-Kendall test reveal the beginning of trends which can be related to El Nino episodes that occur in Malaysia. In general, the analysis results can help local stakeholders and water managers to understand the risks and vulnerabilities related to climate change in terms of mean events in the region.

  4. Chronic Lyme borreliosis associated with minimal change glomerular disease: a case report.

    PubMed

    Florens, N; Lemoine, S; Guebre-Egziabher, F; Valour, F; Kanitakis, J; Rabeyrin, M; Juillard, L

    2017-02-06

    There are only few cases of renal pathology induced by Lyme borreliosis in the literature, as this damage is rare and uncommon in humans. This patient is the first case of minimal change glomerular disease associated with chronic Lyme borreliosis. A 65-year-old Caucasian woman was admitted for an acute edematous syndrome related to a nephrotic syndrome. Clinical examination revealed violaceous skin lesions of the right calf and the gluteal region that occurred 2 years ago. Serological tests were positive for Lyme borreliosis and skin biopsy revealed lesions of chronic atrophic acrodermatitis. Renal biopsy showed minimal change glomerular disease. The skin lesions and the nephrotic syndrome resolved with a sequential treatment with first ceftriaxone and then corticosteroids. We report here the first case of minimal change disease associated with Lyme borreliosis. The pathogenesis of minimal change disease in the setting of Lyme disease is discussed but the association of Lyme and minimal change disease may imply a synergistic effect of phenotypic and bacterial factors. Regression of proteinuria after a sequential treatment with ceftriaxone and corticosteroids seems to strengthen this conceivable association.

  5. Development and comparison of Bayesian modularization method in uncertainty assessment of hydrological models

    NASA Astrophysics Data System (ADS)

    Li, L.; Xu, C.-Y.; Engeland, K.

    2012-04-01

    With respect to model calibration, parameter estimation and analysis of uncertainty sources, different approaches have been used in hydrological models. Bayesian method is one of the most widely used methods for uncertainty assessment of hydrological models, which incorporates different sources of information into a single analysis through Bayesian theorem. However, none of these applications can well treat the uncertainty in extreme flows of hydrological models' simulations. This study proposes a Bayesian modularization method approach in uncertainty assessment of conceptual hydrological models by considering the extreme flows. It includes a comprehensive comparison and evaluation of uncertainty assessments by a new Bayesian modularization method approach and traditional Bayesian models using the Metropolis Hasting (MH) algorithm with the daily hydrological model WASMOD. Three likelihood functions are used in combination with traditional Bayesian: the AR (1) plus Normal and time period independent model (Model 1), the AR (1) plus Normal and time period dependent model (Model 2) and the AR (1) plus multi-normal model (Model 3). The results reveal that (1) the simulations derived from Bayesian modularization method are more accurate with the highest Nash-Sutcliffe efficiency value, and (2) the Bayesian modularization method performs best in uncertainty estimates of entire flows and in terms of the application and computational efficiency. The study thus introduces a new approach for reducing the extreme flow's effect on the discharge uncertainty assessment of hydrological models via Bayesian. Keywords: extreme flow, uncertainty assessment, Bayesian modularization, hydrological model, WASMOD

  6. Hierarchical Bayesian Logistic Regression to forecast metabolic control in type 2 DM patients.

    PubMed

    Dagliati, Arianna; Malovini, Alberto; Decata, Pasquale; Cogni, Giulia; Teliti, Marsida; Sacchi, Lucia; Cerra, Carlo; Chiovato, Luca; Bellazzi, Riccardo

    2016-01-01

    In this work we present our efforts in building a model able to forecast patients' changes in clinical conditions when repeated measurements are available. In this case the available risk calculators are typically not applicable. We propose a Hierarchical Bayesian Logistic Regression model, which allows taking into account individual and population variability in model parameters estimate. The model is used to predict metabolic control and its variation in type 2 diabetes mellitus. In particular we have analyzed a population of more than 1000 Italian type 2 diabetic patients, collected within the European project Mosaic. The results obtained in terms of Matthews Correlation Coefficient are significantly better than the ones gathered with standard logistic regression model, based on data pooling.

  7. Research on Risk Manage of Power Construction Project Based on Bayesian Network

    NASA Astrophysics Data System (ADS)

    Jia, Zhengyuan; Fan, Zhou; Li, Yong

    With China's changing economic structure and increasingly fierce competition in the market, the uncertainty and risk factors in the projects of electric power construction are increasingly complex, the projects will face huge risks or even fail if we don't consider or ignore these risk factors. Therefore, risk management in the projects of electric power construction plays an important role. The paper emphatically elaborated the influence of cost risk in electric power projects through study overall risk management and the behavior of individual in risk management, and introduced the Bayesian network to the project risk management. The paper obtained the order of key factors according to both scene analysis and causal analysis for effective risk management.

  8. Reducing sedation time for thyroplasty with arytenoid adduction with sequential anesthetic technique.

    PubMed

    Saadeh, Charles K; Rosero, Eric B; Joshi, Girish P; Ozayar, Esra; Mau, Ted

    2017-12-01

    To determine the extent to which a sequential anesthetic technique 1) shortens time under sedation for thyroplasty with arytenoid adduction (TP-AA), 2) affects the total operative time, and 3) changes the voice outcome compared to TP-AA performed entirely under sedation/analgesia. Case-control study. A new sequential anesthetic technique of performing most of the TP-AA surgery under general anesthesia (GA), followed by transition to sedation/analgesia (SA) for voice assessment, was developed to achieve smooth emergence from GA. Twenty-five TP-AA cases performed with the sequential GA-SA technique were compared with 25 TP-AA controls performed completely under sedation/analgesia. The primary outcome measure was the time under sedation. Voice improvement, as assessed by Consensus Auditory-Perceptual Evaluation of Voice, and total operative time were secondary outcome measures. With the conventional all-SA anesthetic, the duration of SA was 209 ± 26.3 minutes. With the sequential GA-SA technique, the duration of SA was 79.0 ± 18.9 minutes, a 62.3% reduction (P < 0.0001). There was no significant difference in the total operative time (209.5 vs. 200.9 minutes; P = 0.42) or in voice outcome. This sequential anesthetic technique has been easily adopted by multiple anesthesiologists and nurse anesthetists at our institution. TP-AA is effectively performed under sequential GA-SA technique with a significant reduction in the duration of time under sedation. This allows the surgeon to perform the technically more challenging part of the surgery under GA, without having to contend with variability in patient tolerance for laryngeal manipulation under sedation. 3b. Laryngoscope, 127:2813-2817, 2017. © 2017 The American Laryngological, Rhinological and Otological Society, Inc.

  9. Speech detection in noise and spatial unmasking in children with simultaneous versus sequential bilateral cochlear implants.

    PubMed

    Chadha, Neil K; Papsin, Blake C; Jiwani, Salima; Gordon, Karen A

    2011-09-01

    To measure speech detection in noise performance for children with bilateral cochlear implants (BiCI), to compare performance in children with simultaneous implant versus those with sequential implant, and to compare performance to normal-hearing children. Prospective cohort study. Tertiary academic pediatric center. Children with early-onset bilateral deafness and 2-year BiCI experience, comprising the "sequential" group (>2 yr interimplantation delay, n = 12) and "simultaneous group" (no interimplantation delay, n = 10) and normal-hearing controls (n = 8). Thresholds to speech detection (at 0-degree azimuth) were measured with noise at 0-degree azimuth or ± 90-degree azimuth. Spatial unmasking (SU) as the noise condition changed from 0-degree azimuth to ± 90-degree azimuth and binaural summation advantage (BSA) of 2 over 1 CI. Speech detection in noise was significantly poorer than controls for both BiCI groups (p < 0.0001). However, the SU in the simultaneous group approached levels found in normal controls (7.2 ± 0.6 versus 8.6 ± 0.6 dB, p > 0.05) and was significantly better than that in the sequential group (3.9 ± 0.4 dB, p < 0.05). Spatial unmasking was unaffected by the side of noise presentation in the simultaneous group but, in the sequential group, was significantly better when noise was moved to the second rather than the first implanted ear (4.8 ± 0.5 versus 3.0 ± 0.4 dB, p < 0.05). This was consistent with a larger BSA from the sequential group's second rather than first CI. Children with simultaneously implanted BiCI demonstrated an advantage over children with sequential implant by using spatial cues to improve speech detection in noise.

  10. Impacts of climate change on cropping patterns in a tropical, sub-humid watershed

    PubMed Central

    Zwart, Sander J.; Hein, Lars

    2018-01-01

    In recent decades, there have been substantial increases in crop production in sub-Saharan Africa (SSA) as a result of higher yields, increased cropping intensity, expansion of irrigated cropping systems, and rainfed cropland expansion. Yet, to date much of the research focus of the impact of climate change on crop production in the coming decades has been on crop yield responses. In this study, we analyse the impact of climate change on the potential for increasing rainfed cropping intensity through sequential cropping and irrigation expansion in central Benin. Our approach combines hydrological modelling and scenario analysis involving two Representative Concentration Pathways (RCPs), two water-use scenarios for the watershed based on the Shared Socioeconomic Pathways (SSPs), and environmental water requirements leading to sustained streamflow. Our analyses show that in Benin, warmer temperatures will severely limit crop production increases achieved through the expansion of sequential cropping. Depending on the climate change scenario, between 50% and 95% of cultivated areas that can currently support sequential cropping or will need to revert to single cropping. The results also show that the irrigation potential of the watershed will be at least halved by mid-century in all scenario combinations. Given the urgent need to increase crop production to meet the demands of a growing population in SSA, our study outlines challenges and the need for planned development that need to be overcome to improve food security in the coming decades. PMID:29513753

  11. Sequential growth for lifetime extension in biomimetic polypyrrole actuator systems

    NASA Astrophysics Data System (ADS)

    Sarrazin, J. C.; Mascaro, Stephen A.

    2015-04-01

    Electroactive polymers (EAPs) present prospective use in actuation and manipulation devices due to their low electrical activation requirements, biocompatibility, and mechanical performance. One of the main drawbacks with EAP actuators is a decrease in performance over extended periods of operation caused by over-oxidation of the polymer and general polymer degradation. Synthesis of the EAP material, polypyrrole with an embedded metal helix allows for sequential growth of the polymer during operation. The helical metal electrode acts as a scaffolding to support the polymer, and direct the 3-dimensional change in volume of the polymer along the axis of the helix during oxidative and reductive cycling. The metal helix also provides a working metal electrode through the entire length of the polymer actuator to distribute charge for actuation, as well as for sequential growth steps during the lifetime of operation of the polymer. This work demonstrates the method of sequential growth can be utilized after extended periods of use to partially restore electrical and mechanical performance of polypyrrole actuators. Since the actuation must be temporarily stopped to allow for a sequential growth cycle to be performed and reverse some of the polymer degradation, these actuator systems more closely mimic natural muscle in their analogous maintenance and repair.

  12. Bayesian Analysis of Biogeography when the Number of Areas is Large

    PubMed Central

    Landis, Michael J.; Matzke, Nicholas J.; Moore, Brian R.; Huelsenbeck, John P.

    2013-01-01

    Historical biogeography is increasingly studied from an explicitly statistical perspective, using stochastic models to describe the evolution of species range as a continuous-time Markov process of dispersal between and extinction within a set of discrete geographic areas. The main constraint of these methods is the computational limit on the number of areas that can be specified. We propose a Bayesian approach for inferring biogeographic history that extends the application of biogeographic models to the analysis of more realistic problems that involve a large number of areas. Our solution is based on a “data-augmentation” approach, in which we first populate the tree with a history of biogeographic events that is consistent with the observed species ranges at the tips of the tree. We then calculate the likelihood of a given history by adopting a mechanistic interpretation of the instantaneous-rate matrix, which specifies both the exponential waiting times between biogeographic events and the relative probabilities of each biogeographic change. We develop this approach in a Bayesian framework, marginalizing over all possible biogeographic histories using Markov chain Monte Carlo (MCMC). Besides dramatically increasing the number of areas that can be accommodated in a biogeographic analysis, our method allows the parameters of a given biogeographic model to be estimated and different biogeographic models to be objectively compared. Our approach is implemented in the program, BayArea. [ancestral area analysis; Bayesian biogeographic inference; data augmentation; historical biogeography; Markov chain Monte Carlo.] PMID:23736102

  13. Double the dates and go for Bayes - Impacts of model choice, dating density and quality on chronologies

    NASA Astrophysics Data System (ADS)

    Blaauw, Maarten; Christen, J. Andrés; Bennett, K. D.; Reimer, Paula J.

    2018-05-01

    Reliable chronologies are essential for most Quaternary studies, but little is known about how age-depth model choice, as well as dating density and quality, affect the precision and accuracy of chronologies. A meta-analysis suggests that most existing late-Quaternary studies contain fewer than one date per millennium, and provide millennial-scale precision at best. We use existing and simulated sediment cores to estimate what dating density and quality are required to obtain accurate chronologies at a desired precision. For many sites, a doubling in dating density would significantly improve chronologies and thus their value for reconstructing and interpreting past environmental changes. Commonly used classical age-depth models stop becoming more precise after a minimum dating density is reached, but the precision of Bayesian age-depth models which take advantage of chronological ordering continues to improve with more dates. Our simulations show that classical age-depth models severely underestimate uncertainty and are inaccurate at low dating densities, and also perform poorly at high dating densities. On the other hand, Bayesian age-depth models provide more realistic precision estimates, including at low to average dating densities, and are much more robust against dating scatter and outliers. Indeed, Bayesian age-depth models outperform classical ones at all tested dating densities, qualities and time-scales. We recommend that chronologies should be produced using Bayesian age-depth models taking into account chronological ordering and based on a minimum of 2 dates per millennium.

  14. Models and simulation of 3D neuronal dendritic trees using Bayesian networks.

    PubMed

    López-Cruz, Pedro L; Bielza, Concha; Larrañaga, Pedro; Benavides-Piccione, Ruth; DeFelipe, Javier

    2011-12-01

    Neuron morphology is crucial for neuronal connectivity and brain information processing. Computational models are important tools for studying dendritic morphology and its role in brain function. We applied a class of probabilistic graphical models called Bayesian networks to generate virtual dendrites from layer III pyramidal neurons from three different regions of the neocortex of the mouse. A set of 41 morphological variables were measured from the 3D reconstructions of real dendrites and their probability distributions used in a machine learning algorithm to induce the model from the data. A simulation algorithm is also proposed to obtain new dendrites by sampling values from Bayesian networks. The main advantage of this approach is that it takes into account and automatically locates the relationships between variables in the data instead of using predefined dependencies. Therefore, the methodology can be applied to any neuronal class while at the same time exploiting class-specific properties. Also, a Bayesian network was defined for each part of the dendrite, allowing the relationships to change in the different sections and to model heterogeneous developmental factors or spatial influences. Several univariate statistical tests and a novel multivariate test based on Kullback-Leibler divergence estimation confirmed that virtual dendrites were similar to real ones. The analyses of the models showed relationships that conform to current neuroanatomical knowledge and support model correctness. At the same time, studying the relationships in the models can help to identify new interactions between variables related to dendritic morphology.

  15. Bayesian data analysis in population ecology: motivations, methods, and benefits

    USGS Publications Warehouse

    Dorazio, Robert

    2016-01-01

    During the 20th century ecologists largely relied on the frequentist system of inference for the analysis of their data. However, in the past few decades ecologists have become increasingly interested in the use of Bayesian methods of data analysis. In this article I provide guidance to ecologists who would like to decide whether Bayesian methods can be used to improve their conclusions and predictions. I begin by providing a concise summary of Bayesian methods of analysis, including a comparison of differences between Bayesian and frequentist approaches to inference when using hierarchical models. Next I provide a list of problems where Bayesian methods of analysis may arguably be preferred over frequentist methods. These problems are usually encountered in analyses based on hierarchical models of data. I describe the essentials required for applying modern methods of Bayesian computation, and I use real-world examples to illustrate these methods. I conclude by summarizing what I perceive to be the main strengths and weaknesses of using Bayesian methods to solve ecological inference problems.

  16. A Bayesian-frequentist two-stage single-arm phase II clinical trial design.

    PubMed

    Dong, Gaohong; Shih, Weichung Joe; Moore, Dirk; Quan, Hui; Marcella, Stephen

    2012-08-30

    It is well-known that both frequentist and Bayesian clinical trial designs have their own advantages and disadvantages. To have better properties inherited from these two types of designs, we developed a Bayesian-frequentist two-stage single-arm phase II clinical trial design. This design allows both early acceptance and rejection of the null hypothesis ( H(0) ). The measures (for example probability of trial early termination, expected sample size, etc.) of the design properties under both frequentist and Bayesian settings are derived. Moreover, under the Bayesian setting, the upper and lower boundaries are determined with predictive probability of trial success outcome. Given a beta prior and a sample size for stage I, based on the marginal distribution of the responses at stage I, we derived Bayesian Type I and Type II error rates. By controlling both frequentist and Bayesian error rates, the Bayesian-frequentist two-stage design has special features compared with other two-stage designs. Copyright © 2012 John Wiley & Sons, Ltd.

  17. Study protocol: combining experimental methods, econometrics and simulation modelling to determine price elasticities for studying food taxes and subsidies (The Price ExaM Study).

    PubMed

    Waterlander, Wilma E; Blakely, Tony; Nghiem, Nhung; Cleghorn, Christine L; Eyles, Helen; Genc, Murat; Wilson, Nick; Jiang, Yannan; Swinburn, Boyd; Jacobi, Liana; Michie, Jo; Ni Mhurchu, Cliona

    2016-07-19

    There is a need for accurate and precise food price elasticities (PE, change in consumer demand in response to change in price) to better inform policy on health-related food taxes and subsidies. The Price Experiment and Modelling (Price ExaM) study aims to: I) derive accurate and precise food PE values; II) quantify the impact of price changes on quantity and quality of discrete food group purchases and; III) model the potential health and disease impacts of a range of food taxes and subsidies. To achieve this, we will use a novel method that includes a randomised Virtual Supermarket experiment and econometric methods. Findings will be applied in simulation models to estimate population health impact (quality-adjusted life-years [QALYs]) using a multi-state life-table model. The study will consist of four sequential steps: 1. We generate 5000 price sets with random price variation for all 1412 Virtual Supermarket food and beverage products. Then we add systematic price variation for foods to simulate five taxes and subsidies: a fruit and vegetable subsidy and taxes on sugar, saturated fat, salt, and sugar-sweetened beverages. 2. Using an experimental design, 1000 adult New Zealand shoppers complete five household grocery shops in the Virtual Supermarket where they are randomly assigned to one of the 5000 price sets each time. 3. Output data (i.e., multiple observations of price configurations and purchased amounts) are used as inputs to econometric models (using Bayesian methods) to estimate accurate PE values. 4. A disease simulation model will be run with the new PE values as inputs to estimate QALYs gained and health costs saved for the five policy interventions. The Price ExaM study has the potential to enhance public health and economic disciplines by introducing internationally novel scientific methods to estimate accurate and precise food PE values. These values will be used to model the potential health and disease impacts of various food pricing policy options. Findings will inform policy on health-related food taxes and subsidies. Australian New Zealand Clinical Trials Registry ACTRN12616000122459 (registered 3 February 2016).

  18. Effects of Nitrogen Inputs on Freshwater Wetland Ecosystem Services–A Bayesian Network Analysis

    EPA Science Inventory

    Wetlands can provide a balance between regulating water quality and one aspect of mitigating climate change, by reducing the quantity of reactive nitrogen (Nr) reaching downstream receiving water bodies, while emitting negligible amounts of nitrous oxide (N2O) during incomplete d...

  19. The Consolidation/Transition Model in Moral Reasoning Development.

    ERIC Educational Resources Information Center

    Walker, Lawrence J.; Gustafson, Paul; Hennig, Karl H.

    2001-01-01

    This longitudinal study with 62 children and adolescents examined the validity of the consolidation/transition model in the context of moral reasoning development. Results of standard statistical and Bayesian techniques supported the hypotheses regarding cyclical patterns of change and predictors of stage transition, and demonstrated the utility…

  20. Using SPM 12’s Second-Level Bayesian Inference Procedure for fMRI Analysis: Practical Guidelines for End Users

    PubMed Central

    Han, Hyemin; Park, Joonsuk

    2018-01-01

    Recent debates about the conventional traditional threshold used in the fields of neuroscience and psychology, namely P < 0.05, have spurred researchers to consider alternative ways to analyze fMRI data. A group of methodologists and statisticians have considered Bayesian inference as a candidate methodology. However, few previous studies have attempted to provide end users of fMRI analysis tools, such as SPM 12, with practical guidelines about how to conduct Bayesian inference. In the present study, we aim to demonstrate how to utilize Bayesian inference, Bayesian second-level inference in particular, implemented in SPM 12 by analyzing fMRI data available to public via NeuroVault. In addition, to help end users understand how Bayesian inference actually works in SPM 12, we examine outcomes from Bayesian second-level inference implemented in SPM 12 by comparing them with those from classical second-level inference. Finally, we provide practical guidelines about how to set the parameters for Bayesian inference and how to interpret the results, such as Bayes factors, from the inference. We also discuss the practical and philosophical benefits of Bayesian inference and directions for future research. PMID:29456498

  1. Bayesian regression model for recurrent event data with event-varying covariate effects and event effect.

    PubMed

    Lin, Li-An; Luo, Sheng; Davis, Barry R

    2018-01-01

    In the course of hypertension, cardiovascular disease events (e.g., stroke, heart failure) occur frequently and recurrently. The scientific interest in such study may lie in the estimation of treatment effect while accounting for the correlation among event times. The correlation among recurrent event times come from two sources: subject-specific heterogeneity (e.g., varied lifestyles, genetic variations, and other unmeasurable effects) and event dependence (i.e., event incidences may change the risk of future recurrent events). Moreover, event incidences may change the disease progression so that there may exist event-varying covariate effects (the covariate effects may change after each event) and event effect (the effect of prior events on the future events). In this article, we propose a Bayesian regression model that not only accommodates correlation among recurrent events from both sources, but also explicitly characterizes the event-varying covariate effects and event effect. This model is especially useful in quantifying how the incidences of events change the effects of covariates and risk of future events. We compare the proposed model with several commonly used recurrent event models and apply our model to the motivating lipid-lowering trial (LLT) component of the Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT) (ALLHAT-LLT).

  2. Bayesian regression model for recurrent event data with event-varying covariate effects and event effect

    PubMed Central

    Lin, Li-An; Luo, Sheng; Davis, Barry R.

    2017-01-01

    In the course of hypertension, cardiovascular disease events (e.g., stroke, heart failure) occur frequently and recurrently. The scientific interest in such study may lie in the estimation of treatment effect while accounting for the correlation among event times. The correlation among recurrent event times come from two sources: subject-specific heterogeneity (e.g., varied lifestyles, genetic variations, and other unmeasurable effects) and event dependence (i.e., event incidences may change the risk of future recurrent events). Moreover, event incidences may change the disease progression so that there may exist event-varying covariate effects (the covariate effects may change after each event) and event effect (the effect of prior events on the future events). In this article, we propose a Bayesian regression model that not only accommodates correlation among recurrent events from both sources, but also explicitly characterizes the event-varying covariate effects and event effect. This model is especially useful in quantifying how the incidences of events change the effects of covariates and risk of future events. We compare the proposed model with several commonly used recurrent event models and apply our model to the motivating lipid-lowering trial (LLT) component of the Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT) (ALLHAT-LLT). PMID:29755162

  3. Predicting the relatiave vulnerability of near-coastal species to climate change using a rule-based ecoinformatics approach

    EPA Science Inventory

    Background/Questions/Methods Near-coastal species are threatened by multiple climate change drivers, including temperature increases, ocean acidification, and sea level rise. To identify vulnerable habitats, geographic regions, and species, we developed a sequential, rule-based...

  4. Prior approval: the growth of Bayesian methods in psychology.

    PubMed

    Andrews, Mark; Baguley, Thom

    2013-02-01

    Within the last few years, Bayesian methods of data analysis in psychology have proliferated. In this paper, we briefly review the history or the Bayesian approach to statistics, and consider the implications that Bayesian methods have for the theory and practice of data analysis in psychology.

  5. A local approach for focussed Bayesian fusion

    NASA Astrophysics Data System (ADS)

    Sander, Jennifer; Heizmann, Michael; Goussev, Igor; Beyerer, Jürgen

    2009-04-01

    Local Bayesian fusion approaches aim to reduce high storage and computational costs of Bayesian fusion which is separated from fixed modeling assumptions. Using the small world formalism, we argue why this proceeding is conform with Bayesian theory. Then, we concentrate on the realization of local Bayesian fusion by focussing the fusion process solely on local regions that are task relevant with a high probability. The resulting local models correspond then to restricted versions of the original one. In a previous publication, we used bounds for the probability of misleading evidence to show the validity of the pre-evaluation of task specific knowledge and prior information which we perform to build local models. In this paper, we prove the validity of this proceeding using information theoretic arguments. For additional efficiency, local Bayesian fusion can be realized in a distributed manner. Here, several local Bayesian fusion tasks are evaluated and unified after the actual fusion process. For the practical realization of distributed local Bayesian fusion, software agents are predestinated. There is a natural analogy between the resulting agent based architecture and criminal investigations in real life. We show how this analogy can be used to improve the efficiency of distributed local Bayesian fusion additionally. Using a landscape model, we present an experimental study of distributed local Bayesian fusion in the field of reconnaissance, which highlights its high potential.

  6. A Bayesian Nonparametric Approach to Test Equating

    ERIC Educational Resources Information Center

    Karabatsos, George; Walker, Stephen G.

    2009-01-01

    A Bayesian nonparametric model is introduced for score equating. It is applicable to all major equating designs, and has advantages over previous equating models. Unlike the previous models, the Bayesian model accounts for positive dependence between distributions of scores from two tests. The Bayesian model and the previous equating models are…

  7. Bayesian Model Averaging for Propensity Score Analysis

    ERIC Educational Resources Information Center

    Kaplan, David; Chen, Jianshen

    2013-01-01

    The purpose of this study is to explore Bayesian model averaging in the propensity score context. Previous research on Bayesian propensity score analysis does not take into account model uncertainty. In this regard, an internally consistent Bayesian framework for model building and estimation must also account for model uncertainty. The…

  8. Combining information from multiple flood projections in a hierarchical Bayesian framework

    NASA Astrophysics Data System (ADS)

    Le Vine, Nataliya

    2016-04-01

    This study demonstrates, in the context of flood frequency analysis, the potential of a recently proposed hierarchical Bayesian approach to combine information from multiple models. The approach explicitly accommodates shared multimodel discrepancy as well as the probabilistic nature of the flood estimates, and treats the available models as a sample from a hypothetical complete (but unobserved) set of models. The methodology is applied to flood estimates from multiple hydrological projections (the Future Flows Hydrology data set) for 135 catchments in the UK. The advantages of the approach are shown to be: (1) to ensure adequate "baseline" with which to compare future changes; (2) to reduce flood estimate uncertainty; (3) to maximize use of statistical information in circumstances where multiple weak predictions individually lack power, but collectively provide meaningful information; (4) to diminish the importance of model consistency when model biases are large; and (5) to explicitly consider the influence of the (model performance) stationarity assumption. Moreover, the analysis indicates that reducing shared model discrepancy is the key to further reduction of uncertainty in the flood frequency analysis. The findings are of value regarding how conclusions about changing exposure to flooding are drawn, and to flood frequency change attribution studies.

  9. Simulation of Optimal Decision-Making Under the Impacts of Climate Change.

    PubMed

    Møller, Lea Ravnkilde; Drews, Martin; Larsen, Morten Andreas Dahl

    2017-07-01

    Climate change causes transformations to the conditions of existing agricultural practices appointing farmers to continuously evaluate their agricultural strategies, e.g., towards optimising revenue. In this light, this paper presents a framework for applying Bayesian updating to simulate decision-making, reaction patterns and updating of beliefs among farmers in a developing country, when faced with the complexity of adapting agricultural systems to climate change. We apply the approach to a case study from Ghana, where farmers seek to decide on the most profitable of three agricultural systems (dryland crops, irrigated crops and livestock) by a continuous updating of beliefs relative to realised trajectories of climate (change), represented by projections of temperature and precipitation. The climate data is based on combinations of output from three global/regional climate model combinations and two future scenarios (RCP4.5 and RCP8.5) representing moderate and unsubstantial greenhouse gas reduction policies, respectively. The results indicate that the climate scenario (input) holds a significant influence on the development of beliefs, net revenues and thereby optimal farming practices. Further, despite uncertainties in the underlying net revenue functions, the study shows that when the beliefs of the farmer (decision-maker) opposes the development of the realised climate, the Bayesian methodology allows for simulating an adjustment of such beliefs, when improved information becomes available. The framework can, therefore, help facilitating the optimal choice between agricultural systems considering the influence of climate change.

  10. Structural and Functional Impacts of ER Coactivator Sequential Recruitment.

    PubMed

    Yi, Ping; Wang, Zhao; Feng, Qin; Chou, Chao-Kai; Pintilie, Grigore D; Shen, Hong; Foulds, Charles E; Fan, Guizhen; Serysheva, Irina; Ludtke, Steven J; Schmid, Michael F; Hung, Mien-Chie; Chiu, Wah; O'Malley, Bert W

    2017-09-07

    Nuclear receptors recruit multiple coactivators sequentially to activate transcription. This "ordered" recruitment allows different coactivator activities to engage the nuclear receptor complex at different steps of transcription. Estrogen receptor (ER) recruits steroid receptor coactivator-3 (SRC-3) primary coactivator and secondary coactivators, p300/CBP and CARM1. CARM1 recruitment lags behind the binding of SRC-3 and p300 to ER. Combining cryo-electron microscopy (cryo-EM) structure analysis and biochemical approaches, we demonstrate that there is a close crosstalk between early- and late-recruited coactivators. The sequential recruitment of CARM1 not only adds a protein arginine methyltransferase activity to the ER-coactivator complex, it also alters the structural organization of the pre-existing ERE/ERα/SRC-3/p300 complex. It induces a p300 conformational change and significantly increases p300 HAT activity on histone H3K18 residues, which, in turn, promotes CARM1 methylation activity on H3R17 residues to enhance transcriptional activity. This study reveals a structural role for a coactivator sequential recruitment and biochemical process in ER-mediated transcription. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. CACTI: Free, Open-Source Software for the Sequential Coding of Behavioral Interactions

    PubMed Central

    Glynn, Lisa H.; Hallgren, Kevin A.; Houck, Jon M.; Moyers, Theresa B.

    2012-01-01

    The sequential analysis of client and clinician speech in psychotherapy sessions can help to identify and characterize potential mechanisms of treatment and behavior change. Previous studies required coding systems that were time-consuming, expensive, and error-prone. Existing software can be expensive and inflexible, and furthermore, no single package allows for pre-parsing, sequential coding, and assignment of global ratings. We developed a free, open-source, and adaptable program to meet these needs: The CASAA Application for Coding Treatment Interactions (CACTI). Without transcripts, CACTI facilitates the real-time sequential coding of behavioral interactions using WAV-format audio files. Most elements of the interface are user-modifiable through a simple XML file, and can be further adapted using Java through the terms of the GNU Public License. Coding with this software yields interrater reliabilities comparable to previous methods, but at greatly reduced time and expense. CACTI is a flexible research tool that can simplify psychotherapy process research, and has the potential to contribute to the improvement of treatment content and delivery. PMID:22815713

  12. Simulated impact of climate change on hydrology of multiple watersheds using traditional and recommended snowmelt runoff model methodology

    USDA-ARS?s Scientific Manuscript database

    For more than three decades, researchers have utilized the Snowmelt Runoff Model (SRM) to test the impacts of climate change on streamflow of snow-fed systems. In this study, the hydrological effects of climate change are modeled over three sequential years using SRM with both typical and recommende...

  13. Evaluating Google, Twitter, and Wikipedia as Tools for Influenza Surveillance Using Bayesian Change Point Analysis: A Comparative Analysis.

    PubMed

    Sharpe, J Danielle; Hopkins, Richard S; Cook, Robert L; Striley, Catherine W

    2016-10-20

    Traditional influenza surveillance relies on influenza-like illness (ILI) syndrome that is reported by health care providers. It primarily captures individuals who seek medical care and misses those who do not. Recently, Web-based data sources have been studied for application to public health surveillance, as there is a growing number of people who search, post, and tweet about their illnesses before seeking medical care. Existing research has shown some promise of using data from Google, Twitter, and Wikipedia to complement traditional surveillance for ILI. However, past studies have evaluated these Web-based sources individually or dually without comparing all 3 of them, and it would be beneficial to know which of the Web-based sources performs best in order to be considered to complement traditional methods. The objective of this study is to comparatively analyze Google, Twitter, and Wikipedia by examining which best corresponds with Centers for Disease Control and Prevention (CDC) ILI data. It was hypothesized that Wikipedia will best correspond with CDC ILI data as previous research found it to be least influenced by high media coverage in comparison with Google and Twitter. Publicly available, deidentified data were collected from the CDC, Google Flu Trends, HealthTweets, and Wikipedia for the 2012-2015 influenza seasons. Bayesian change point analysis was used to detect seasonal changes, or change points, in each of the data sources. Change points in Google, Twitter, and Wikipedia that occurred during the exact week, 1 preceding week, or 1 week after the CDC's change points were compared with the CDC data as the gold standard. All analyses were conducted using the R package "bcp" version 4.0.0 in RStudio version 0.99.484 (RStudio Inc). In addition, sensitivity and positive predictive values (PPV) were calculated for Google, Twitter, and Wikipedia. During the 2012-2015 influenza seasons, a high sensitivity of 92% was found for Google, whereas the PPV for Google was 85%. A low sensitivity of 50% was calculated for Twitter; a low PPV of 43% was found for Twitter also. Wikipedia had the lowest sensitivity of 33% and lowest PPV of 40%. Of the 3 Web-based sources, Google had the best combination of sensitivity and PPV in detecting Bayesian change points in influenza-related data streams. Findings demonstrated that change points in Google, Twitter, and Wikipedia data occasionally aligned well with change points captured in CDC ILI data, yet these sources did not detect all changes in CDC data and should be further studied and developed.

  14. The human as a detector of changes in variance and bandwidth

    NASA Technical Reports Server (NTRS)

    Curry, R. E.; Govindaraj, T.

    1977-01-01

    The detection of changes in random process variance and bandwidth was studied. Psychophysical thresholds for these two parameters were determined using an adaptive staircase technique for second order random processes at two nominal periods (1 and 3 seconds) and damping ratios (0.2 and 0.707). Thresholds for bandwidth changes were approximately 9% of nominal except for the (3sec,0.2) process which yielded thresholds of 12%. Variance thresholds averaged 17% of nominal except for the (3sec,0.2) process in which they were 32%. Detection times for suprathreshold changes in the parameters may be roughly described by the changes in RMS velocity of the process. A more complex model is presented which consists of a Kalman filter designed for the nominal process using velocity as the input, and a modified Wald sequential test for changes in the variance of the residual. The model predictions agree moderately well with the experimental data. Models using heuristics, e.g. level crossing counters, were also examined and are found to be descriptive but do not afford the unification of the Kalman filter/sequential test model used for changes in mean.

  15. Semisupervised learning using Bayesian interpretation: application to LS-SVM.

    PubMed

    Adankon, Mathias M; Cheriet, Mohamed; Biem, Alain

    2011-04-01

    Bayesian reasoning provides an ideal basis for representing and manipulating uncertain knowledge, with the result that many interesting algorithms in machine learning are based on Bayesian inference. In this paper, we use the Bayesian approach with one and two levels of inference to model the semisupervised learning problem and give its application to the successful kernel classifier support vector machine (SVM) and its variant least-squares SVM (LS-SVM). Taking advantage of Bayesian interpretation of LS-SVM, we develop a semisupervised learning algorithm for Bayesian LS-SVM using our approach based on two levels of inference. Experimental results on both artificial and real pattern recognition problems show the utility of our method.

  16. Quantitative Assessment of Medical Student Learning through Effective Cognitive Bayesian Representation

    ERIC Educational Resources Information Center

    Zhang, Zhidong; Lu, Jingyan

    2014-01-01

    The changes of learning environments and the advancement of learning theories have increasingly demanded for feedback that can describe learning progress trajectories. Effective assessment should be able to evaluate how learners acquire knowledge and develop problem solving skills. Additionally, it should identify what issues these learners have…

  17. Storage and Retrieval Changes that Occur in the Development and Release of PI

    ERIC Educational Resources Information Center

    Chechile, Richard; Butler, Keith

    1975-01-01

    A Bayesian statistical procedure separating storage from retrieval was used to study development and release of proactive interference in the Brown-Peterson paradigm. A theory of PI is developed stressing response competition at test time and interference in transfer between short- and long-term memory. (CHK)

  18. Effects of pretransplant sarcopenia and sequential changes in sarcopenic parameters after living donor liver transplantation.

    PubMed

    Kaido, Toshimi; Tamai, Yumiko; Hamaguchi, Yuhei; Okumura, Shinya; Kobayashi, Atsushi; Shirai, Hisaya; Yagi, Shintaro; Kamo, Naoko; Hammad, Ahmed; Inagaki, Nobuya; Uemoto, Shinji

    2017-01-01

    Sarcopenia is characterized by muscle mass depletion and decrease in muscle power or physical activity. We previously reported that low skeletal muscle mass (SMM) is closely involved with posttransplant mortality in patients undergoing living donor liver transplantation (LDLT). The aim of this study was to prospectively investigate the effects of pretransplant sarcopenia on survival and examine sequential changes in sarcopenic parameters after LDLT. Sarcopenia was defined by measuring SMM using a multifrequency body composition analyzer and assessing grip strength (GS) in 72 adults who underwent LDLT at Kyoto University Hospital between January 2013 and October 2015. The effects of pretransplant sarcopenia on short-term survival and sequential changes in SMM and GS were prospectively analyzed. Of 72 patients, 10 (14%) were defined as having pretransplant sarcopenia. Overall survival rates were significantly lower in patients with sarcopenia (n = 10) than those without sarcopenia (n = 62; P < 0.001). SMM worsened after LDLT and did not return to preoperative levels until 1 y after LDLT. In contrast, GS returned to preoperative levels at 6 mo after LDLT, following sharp decrease at 1 mo after LDLT. This prospective study confirmed that pretransplant sarcopenia is closely associated with short-term survival after LDLT and that GS recovers before SMM. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Bayesian Regression with Network Prior: Optimal Bayesian Filtering Perspective

    PubMed Central

    Qian, Xiaoning; Dougherty, Edward R.

    2017-01-01

    The recently introduced intrinsically Bayesian robust filter (IBRF) provides fully optimal filtering relative to a prior distribution over an uncertainty class ofjoint random process models, whereas formerly the theory was limited to model-constrained Bayesian robust filters, for which optimization was limited to the filters that are optimal for models in the uncertainty class. This paper extends the IBRF theory to the situation where there are both a prior on the uncertainty class and sample data. The result is optimal Bayesian filtering (OBF), where optimality is relative to the posterior distribution derived from the prior and the data. The IBRF theories for effective characteristics and canonical expansions extend to the OBF setting. A salient focus of the present work is to demonstrate the advantages of Bayesian regression within the OBF setting over the classical Bayesian approach in the context otlinear Gaussian models. PMID:28824268

  20. An introduction to using Bayesian linear regression with clinical data.

    PubMed

    Baldwin, Scott A; Larson, Michael J

    2017-11-01

    Statistical training psychology focuses on frequentist methods. Bayesian methods are an alternative to standard frequentist methods. This article provides researchers with an introduction to fundamental ideas in Bayesian modeling. We use data from an electroencephalogram (EEG) and anxiety study to illustrate Bayesian models. Specifically, the models examine the relationship between error-related negativity (ERN), a particular event-related potential, and trait anxiety. Methodological topics covered include: how to set up a regression model in a Bayesian framework, specifying priors, examining convergence of the model, visualizing and interpreting posterior distributions, interval estimates, expected and predicted values, and model comparison tools. We also discuss situations where Bayesian methods can outperform frequentist methods as well has how to specify more complicated regression models. Finally, we conclude with recommendations about reporting guidelines for those using Bayesian methods in their own research. We provide data and R code for replicating our analyses. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. A SAS Interface for Bayesian Analysis with WinBUGS

    ERIC Educational Resources Information Center

    Zhang, Zhiyong; McArdle, John J.; Wang, Lijuan; Hamagami, Fumiaki

    2008-01-01

    Bayesian methods are becoming very popular despite some practical difficulties in implementation. To assist in the practical application of Bayesian methods, we show how to implement Bayesian analysis with WinBUGS as part of a standard set of SAS routines. This implementation procedure is first illustrated by fitting a multiple regression model…

  2. BMDS: A Collection of R Functions for Bayesian Multidimensional Scaling

    ERIC Educational Resources Information Center

    Okada, Kensuke; Shigemasu, Kazuo

    2009-01-01

    Bayesian multidimensional scaling (MDS) has attracted a great deal of attention because: (1) it provides a better fit than do classical MDS and ALSCAL; (2) it provides estimation errors of the distances; and (3) the Bayesian dimension selection criterion, MDSIC, provides a direct indication of optimal dimensionality. However, Bayesian MDS is not…

  3. A Two-Step Bayesian Approach for Propensity Score Analysis: Simulations and Case Study

    ERIC Educational Resources Information Center

    Kaplan, David; Chen, Jianshen

    2012-01-01

    A two-step Bayesian propensity score approach is introduced that incorporates prior information in the propensity score equation and outcome equation without the problems associated with simultaneous Bayesian propensity score approaches. The corresponding variance estimators are also provided. The two-step Bayesian propensity score is provided for…

  4. Bayesian inference for psychology. Part II: Example applications with JASP.

    PubMed

    Wagenmakers, Eric-Jan; Love, Jonathon; Marsman, Maarten; Jamil, Tahira; Ly, Alexander; Verhagen, Josine; Selker, Ravi; Gronau, Quentin F; Dropmann, Damian; Boutin, Bruno; Meerhoff, Frans; Knight, Patrick; Raj, Akash; van Kesteren, Erik-Jan; van Doorn, Johnny; Šmíra, Martin; Epskamp, Sacha; Etz, Alexander; Matzke, Dora; de Jong, Tim; van den Bergh, Don; Sarafoglou, Alexandra; Steingroever, Helen; Derks, Koen; Rouder, Jeffrey N; Morey, Richard D

    2018-02-01

    Bayesian hypothesis testing presents an attractive alternative to p value hypothesis testing. Part I of this series outlined several advantages of Bayesian hypothesis testing, including the ability to quantify evidence and the ability to monitor and update this evidence as data come in, without the need to know the intention with which the data were collected. Despite these and other practical advantages, Bayesian hypothesis tests are still reported relatively rarely. An important impediment to the widespread adoption of Bayesian tests is arguably the lack of user-friendly software for the run-of-the-mill statistical problems that confront psychologists for the analysis of almost every experiment: the t-test, ANOVA, correlation, regression, and contingency tables. In Part II of this series we introduce JASP ( http://www.jasp-stats.org ), an open-source, cross-platform, user-friendly graphical software package that allows users to carry out Bayesian hypothesis tests for standard statistical problems. JASP is based in part on the Bayesian analyses implemented in Morey and Rouder's BayesFactor package for R. Armed with JASP, the practical advantages of Bayesian hypothesis testing are only a mouse click away.

  5. Applying Bayesian statistics to the study of psychological trauma: A suggestion for future research.

    PubMed

    Yalch, Matthew M

    2016-03-01

    Several contemporary researchers have noted the virtues of Bayesian methods of data analysis. Although debates continue about whether conventional or Bayesian statistics is the "better" approach for researchers in general, there are reasons why Bayesian methods may be well suited to the study of psychological trauma in particular. This article describes how Bayesian statistics offers practical solutions to the problems of data non-normality, small sample size, and missing data common in research on psychological trauma. After a discussion of these problems and the effects they have on trauma research, this article explains the basic philosophical and statistical foundations of Bayesian statistics and how it provides solutions to these problems using an applied example. Results of the literature review and the accompanying example indicates the utility of Bayesian statistics in addressing problems common in trauma research. Bayesian statistics provides a set of methodological tools and a broader philosophical framework that is useful for trauma researchers. Methodological resources are also provided so that interested readers can learn more. (c) 2016 APA, all rights reserved).

  6. Ecological Risk Assessment of Perchlorate in Avian Species, Rodents, Amphibians and Fish

    DTIC Science & Technology

    2003-04-01

    http://www .indiana.edu/- axolotl ). 10.0 JUSTIFICATION OF TEST SYSTEM Perchlorate occurs in ground and surface waters in 44 states in the USA... axolotl ). * Sequentially numbered in order of the date that the change is effective Dept. of Biological Sciences (DBS) Box 43131 Lubbock, TX 79409...KCl, 0.025 giL; CaCh2 H20, 0.65 g/L; MgS04·7H20, 0.1 giL (http://www.indiana.edu/~ axolotl ). *Sequentially numbered in order of the date that the

  7. Embedding the results of focussed Bayesian fusion into a global context

    NASA Astrophysics Data System (ADS)

    Sander, Jennifer; Heizmann, Michael

    2014-05-01

    Bayesian statistics offers a well-founded and powerful fusion methodology also for the fusion of heterogeneous information sources. However, except in special cases, the needed posterior distribution is not analytically derivable. As consequence, Bayesian fusion may cause unacceptably high computational and storage costs in practice. Local Bayesian fusion approaches aim at reducing the complexity of the Bayesian fusion methodology significantly. This is done by concentrating the actual Bayesian fusion on the potentially most task relevant parts of the domain of the Properties of Interest. Our research on these approaches is motivated by an analogy to criminal investigations where criminalists pursue clues also only locally. This publication follows previous publications on a special local Bayesian fusion technique called focussed Bayesian fusion. Here, the actual calculation of the posterior distribution gets completely restricted to a suitably chosen local context. By this, the global posterior distribution is not completely determined. Strategies for using the results of a focussed Bayesian analysis appropriately are needed. In this publication, we primarily contrast different ways of embedding the results of focussed Bayesian fusion explicitly into a global context. To obtain a unique global posterior distribution, we analyze the application of the Maximum Entropy Principle that has been shown to be successfully applicable in metrology and in different other areas. To address the special need for making further decisions subsequently to the actual fusion task, we further analyze criteria for decision making under partial information.

  8. Bayesian flood forecasting methods: A review

    NASA Astrophysics Data System (ADS)

    Han, Shasha; Coulibaly, Paulin

    2017-08-01

    Over the past few decades, floods have been seen as one of the most common and largely distributed natural disasters in the world. If floods could be accurately forecasted in advance, then their negative impacts could be greatly minimized. It is widely recognized that quantification and reduction of uncertainty associated with the hydrologic forecast is of great importance for flood estimation and rational decision making. Bayesian forecasting system (BFS) offers an ideal theoretic framework for uncertainty quantification that can be developed for probabilistic flood forecasting via any deterministic hydrologic model. It provides suitable theoretical structure, empirically validated models and reasonable analytic-numerical computation method, and can be developed into various Bayesian forecasting approaches. This paper presents a comprehensive review on Bayesian forecasting approaches applied in flood forecasting from 1999 till now. The review starts with an overview of fundamentals of BFS and recent advances in BFS, followed with BFS application in river stage forecasting and real-time flood forecasting, then move to a critical analysis by evaluating advantages and limitations of Bayesian forecasting methods and other predictive uncertainty assessment approaches in flood forecasting, and finally discusses the future research direction in Bayesian flood forecasting. Results show that the Bayesian flood forecasting approach is an effective and advanced way for flood estimation, it considers all sources of uncertainties and produces a predictive distribution of the river stage, river discharge or runoff, thus gives more accurate and reliable flood forecasts. Some emerging Bayesian forecasting methods (e.g. ensemble Bayesian forecasting system, Bayesian multi-model combination) were shown to overcome limitations of single model or fixed model weight and effectively reduce predictive uncertainty. In recent years, various Bayesian flood forecasting approaches have been developed and widely applied, but there is still room for improvements. Future research in the context of Bayesian flood forecasting should be on assimilation of various sources of newly available information and improvement of predictive performance assessment methods.

  9. Investigation of inconsistent ENDF/B-VII.1 independent and cumulative fission product yields with proposed revisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pigni, Marco T; Francis, Matthew W; Gauld, Ian C

    A recent implementation of ENDF/B-VII. independent fission product yields and nuclear decay data identified inconsistencies in the data caused by the use of updated nuclear scheme in the decay sub-library that is not reflected in legacy fission product yield data. Recent changes in the decay data sub-library, particularly the delayed neutron branching fractions, result in calculated fission product concentrations that are incompatible with the cumulative fission yields in the library, and also with experimental measurements. A comprehensive set of independent fission product yields was generated for thermal and fission spectrum neutron induced fission for 235,238U and 239,241Pu in order tomore » provide a preliminary assessment of the updated fission product yield data consistency. These updated independent fission product yields were utilized in the ORIGEN code to evaluate the calculated fission product inventories with experimentally measured inventories, with particular attention given to the noble gases. An important outcome of this work is the development of fission product yield covariance data necessary for fission product uncertainty quantification. The evaluation methodology combines a sequential Bayesian method to guarantee consistency between independent and cumulative yields along with the physical constraints on the independent yields. This work was motivated to improve the performance of the ENDF/B-VII.1 library in the case of stable and long-lived cumulative yields due to the inconsistency of ENDF/B-VII.1 fission p;roduct yield and decay data sub-libraries. The revised fission product yields and the new covariance data are proposed as a revision to the fission yield data currently in ENDF/B-VII.1.« less

  10. Active SAmpling Protocol (ASAP) to Optimize Individual Neurocognitive Hypothesis Testing: A BCI-Inspired Dynamic Experimental Design.

    PubMed

    Sanchez, Gaëtan; Lecaignard, Françoise; Otman, Anatole; Maby, Emmanuel; Mattout, Jérémie

    2016-01-01

    The relatively young field of Brain-Computer Interfaces has promoted the use of electrophysiology and neuroimaging in real-time. In the meantime, cognitive neuroscience studies, which make extensive use of functional exploration techniques, have evolved toward model-based experiments and fine hypothesis testing protocols. Although these two developments are mostly unrelated, we argue that, brought together, they may trigger an important shift in the way experimental paradigms are being designed, which should prove fruitful to both endeavors. This change simply consists in using real-time neuroimaging in order to optimize advanced neurocognitive hypothesis testing. We refer to this new approach as the instantiation of an Active SAmpling Protocol (ASAP). As opposed to classical (static) experimental protocols, ASAP implements online model comparison, enabling the optimization of design parameters (e.g., stimuli) during the course of data acquisition. This follows the well-known principle of sequential hypothesis testing. What is radically new, however, is our ability to perform online processing of the huge amount of complex data that brain imaging techniques provide. This is all the more relevant at a time when physiological and psychological processes are beginning to be approached using more realistic, generative models which may be difficult to tease apart empirically. Based upon Bayesian inference, ASAP proposes a generic and principled way to optimize experimental design adaptively. In this perspective paper, we summarize the main steps in ASAP. Using synthetic data we illustrate its superiority in selecting the right perceptual model compared to a classical design. Finally, we briefly discuss its future potential for basic and clinical neuroscience as well as some remaining challenges.

  11. Mate choice when males are in patches: optimal strategies and good rules of thumb.

    PubMed

    Hutchinson, John M C; Halupka, Konrad

    2004-11-07

    In standard mate-choice models, females encounter males sequentially and decide whether to inspect the quality of another male or to accept a male already inspected. What changes when males are clumped in patches and there is a significant cost to travel between patches? We use stochastic dynamic programming to derive optimum strategies under various assumptions. With zero costs to returning to a male in the current patch, the optimal strategy accepts males above a quality threshold which is constant whenever one or more males in the patch remain uninspected; this threshold drops when inspecting the last male in the patch, so returns may occur only then and are never to a male in a previously inspected patch. With non-zero within-patch return costs, such a two-threshold rule still performs extremely well, but a more gradual decline in acceptance threshold is optimal. Inability to return at all need not decrease performance by much. The acceptance threshold should also decline if it gets harder to discover the last males in a patch. Optimal strategies become more complex when mean male quality varies systematically between patches or years, and females estimate this in a Bayesian manner through inspecting male qualities. It can then be optimal to switch patch before inspecting all males on a patch, or, exceptionally, to return to an earlier patch. We compare performance of various rules of thumb in these environments and in ones without a patch structure. A two-threshold rule performs excellently, as do various simplifications of it. The best-of-N rule outperforms threshold rules only in non-patchy environments with between-year quality variation. The cutoff rule performs poorly.

  12. Bayesian Model Averaging with Change Points to Assess the Impact of Vaccination and Public Health Interventions

    PubMed Central

    Warren, Joshua L.; Schuck-Paim, Cynthia; Lustig, Roger; Lewnard, Joseph A.; Fuentes, Rodrigo; Bruhn, Christian A. W.; Taylor, Robert J.; Simonsen, Lone; Weinberger, Daniel M.

    2017-01-01

    Background: Pneumococcal conjugate vaccines (PCVs) prevent invasive pneumococcal disease and pneumonia. However, some low-and middle-income countries have yet to introduce PCV into their immunization programs due, in part, to lack of certainty about the potential impact. Assessing PCV benefits is challenging because specific data on pneumococcal disease are often lacking, and it can be difficult to separate the effects of factors other than the vaccine that could also affect pneumococcal disease rates. Methods: We assess PCV impact by combining Bayesian model averaging with change-point models to estimate the timing and magnitude of vaccine-associated changes, while controlling for seasonality and other covariates. We applied our approach to monthly time series of age-stratified hospitalizations related to pneumococcal infection in children younger 5 years of age in the United States, Brazil, and Chile. Results: Our method accurately detected changes in data in which we knew true and noteworthy changes occurred, i.e., in simulated data and for invasive pneumococcal disease. Moreover, 24 months after the vaccine introduction, we detected reductions of 14%, 9%, and 9% in the United States, Brazil, and Chile, respectively, in all-cause pneumonia (ACP) hospitalizations for age group 0 to <1 years of age. Conclusions: Our approach provides a flexible and sensitive method to detect changes in disease incidence that occur after the introduction of a vaccine or other intervention, while avoiding biases that exist in current approaches to time-trend analyses. PMID:28767518

  13. Bayesian modeling approach for characterizing groundwater arsenic contamination in the Mekong River basin.

    PubMed

    Cha, YoonKyung; Kim, Young Mo; Choi, Jae-Woo; Sthiannopkao, Suthipong; Cho, Kyung Hwa

    2016-01-01

    In the Mekong River basin, groundwater from tube-wells is a major drinking water source. However, arsenic (As) contamination in groundwater resources has become a critical issue in the watershed. In this study, As species such as total As (AsTOT), As(III), and As(V), were monitored across the watershed to investigate their characteristics and inter-relationships with water quality parameters, including pH and redox potential (Eh). The data illustrated a dramatic change in the relationship between AsTOT and Eh over a specific Eh range, suggesting the importance of Eh in predicting AsTOT. Thus, a Bayesian change-point model was developed to predict AsTOT concentrations based on Eh and pH, to determine changes in the AsTOT-Eh relationship. The model captured the Eh change-point (∼-100±15mV), which was compatible with the data. Importantly, the inclusion of this change-point in the model resulted in improved model fit and prediction accuracy; AsTOT concentrations were strongly negatively related to Eh values higher than the change-point. The process underlying this relationship was subsequently posited to be the reductive dissolution of mineral oxides and As release. Overall, AsTOT showed a weak positive relationship with Eh at a lower range, similar to those commonly observed in the Mekong River basin delta. It is expected that these results would serve as a guide for establishing public health strategies in the Mekong River Basin. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Geomagnetic field secular variation in Pacific Ocean: A Bayesian reference curve based on Holocene Hawaiian lava flows

    NASA Astrophysics Data System (ADS)

    Tema, E.; Herrero-Bervera, E.; Lanos, Ph.

    2017-11-01

    Hawaii is an ideal place for reconstructing the past variations of the Earth's magnetic field in the Pacific Ocean thanks to the almost continuous volcanic activity during the last 10 000 yrs. We present here an updated compilation of palaeomagnetic data from historic and radiocarbon dated Hawaiian lava flows available for the last ten millennia. A total of 278 directional and 66 intensity reference data have been used for the calculation of the first full geomagnetic field reference secular variation (SV) curves for central Pacific covering the last ten millennia. The obtained SV curves are calculated following recent advances on curve building based on the Bayesian statistics and are well constrained for the last five millennia while for older periods their error envelopes are wide due to the scarce number of reference data. The new Bayesian SV curves show three clear intensity maxima during the last 3000 yrs that are accompanied by sharp directional changes. Such short-term variations of the geomagnetic field could be interpreted as archaeomagnetic jerks and could be an interesting feature of the geomagnetic field variation in the Pacific Ocean that should be further explored by new data.

  15. A Bayesian state-space approach for damage detection and classification

    NASA Astrophysics Data System (ADS)

    Dzunic, Zoran; Chen, Justin G.; Mobahi, Hossein; Büyüköztürk, Oral; Fisher, John W.

    2017-11-01

    The problem of automatic damage detection in civil structures is complex and requires a system that can interpret collected sensor data into meaningful information. We apply our recently developed switching Bayesian model for dependency analysis to the problems of damage detection and classification. The model relies on a state-space approach that accounts for noisy measurement processes and missing data, which also infers the statistical temporal dependency between measurement locations signifying the potential flow of information within the structure. A Gibbs sampling algorithm is used to simultaneously infer the latent states, parameters of the state dynamics, the dependence graph, and any changes in behavior. By employing a fully Bayesian approach, we are able to characterize uncertainty in these variables via their posterior distribution and provide probabilistic estimates of the occurrence of damage or a specific damage scenario. We also implement a single class classification method which is more realistic for most real world situations where training data for a damaged structure is not available. We demonstrate the methodology with experimental test data from a laboratory model structure and accelerometer data from a real world structure during different environmental and excitation conditions.

  16. Hierarchical Bayesian Spatio–Temporal Analysis of Climatic and Socio–Economic Determinants of Rocky Mountain Spotted Fever

    PubMed Central

    Raghavan, Ram K.; Goodin, Douglas G.; Neises, Daniel; Anderson, Gary A.; Ganta, Roman R.

    2016-01-01

    This study aims to examine the spatio-temporal dynamics of Rocky Mountain spotted fever (RMSF) prevalence in four contiguous states of Midwestern United States, and to determine the impact of environmental and socio–economic factors associated with this disease. Bayesian hierarchical models were used to quantify space and time only trends and spatio–temporal interaction effect in the case reports submitted to the state health departments in the region. Various socio–economic, environmental and climatic covariates screened a priori in a bivariate procedure were added to a main–effects Bayesian model in progressive steps to evaluate important drivers of RMSF space-time patterns in the region. Our results show a steady increase in RMSF incidence over the study period to newer geographic areas, and the posterior probabilities of county-specific trends indicate clustering of high risk counties in the central and southern parts of the study region. At the spatial scale of a county, the prevalence levels of RMSF is influenced by poverty status, average relative humidity, and average land surface temperature (>35°C) in the region, and the relevance of these factors in the context of climate–change impacts on tick–borne diseases are discussed. PMID:26942604

  17. Hierarchical Bayesian Spatio-Temporal Analysis of Climatic and Socio-Economic Determinants of Rocky Mountain Spotted Fever.

    PubMed

    Raghavan, Ram K; Goodin, Douglas G; Neises, Daniel; Anderson, Gary A; Ganta, Roman R

    2016-01-01

    This study aims to examine the spatio-temporal dynamics of Rocky Mountain spotted fever (RMSF) prevalence in four contiguous states of Midwestern United States, and to determine the impact of environmental and socio-economic factors associated with this disease. Bayesian hierarchical models were used to quantify space and time only trends and spatio-temporal interaction effect in the case reports submitted to the state health departments in the region. Various socio-economic, environmental and climatic covariates screened a priori in a bivariate procedure were added to a main-effects Bayesian model in progressive steps to evaluate important drivers of RMSF space-time patterns in the region. Our results show a steady increase in RMSF incidence over the study period to newer geographic areas, and the posterior probabilities of county-specific trends indicate clustering of high risk counties in the central and southern parts of the study region. At the spatial scale of a county, the prevalence levels of RMSF is influenced by poverty status, average relative humidity, and average land surface temperature (>35°C) in the region, and the relevance of these factors in the context of climate-change impacts on tick-borne diseases are discussed.

  18. Bayesian approach for peak detection in two-dimensional chromatography.

    PubMed

    Vivó-Truyols, Gabriel

    2012-03-20

    A new method for peak detection in two-dimensional chromatography is presented. In a first step, the method starts with a conventional one-dimensional peak detection algorithm to detect modulated peaks. In a second step, a sophisticated algorithm is constructed to decide which of the individual one-dimensional peaks have been originated from the same compound and should then be arranged in a two-dimensional peak. The merging algorithm is based on Bayesian inference. The user sets prior information about certain parameters (e.g., second-dimension retention time variability, first-dimension band broadening, chromatographic noise). On the basis of these priors, the algorithm calculates the probability of myriads of peak arrangements (i.e., ways of merging one-dimensional peaks), finding which of them holds the highest value. Uncertainty in each parameter can be accounted by adapting conveniently its probability distribution function, which in turn may change the final decision of the most probable peak arrangement. It has been demonstrated that the Bayesian approach presented in this paper follows the chromatographers' intuition. The algorithm has been applied and tested with LC × LC and GC × GC data and takes around 1 min to process chromatograms with several thousands of peaks.

  19. A bayesian analysis for identifying DNA copy number variations using a compound poisson process.

    PubMed

    Chen, Jie; Yiğiter, Ayten; Wang, Yu-Ping; Deng, Hong-Wen

    2010-01-01

    To study chromosomal aberrations that may lead to cancer formation or genetic diseases, the array-based Comparative Genomic Hybridization (aCGH) technique is often used for detecting DNA copy number variants (CNVs). Various methods have been developed for gaining CNVs information based on aCGH data. However, most of these methods make use of the log-intensity ratios in aCGH data without taking advantage of other information such as the DNA probe (e.g., biomarker) positions/distances contained in the data. Motivated by the specific features of aCGH data, we developed a novel method that takes into account the estimation of a change point or locus of the CNV in aCGH data with its associated biomarker position on the chromosome using a compound Poisson process. We used a Bayesian approach to derive the posterior probability for the estimation of the CNV locus. To detect loci of multiple CNVs in the data, a sliding window process combined with our derived Bayesian posterior probability was proposed. To evaluate the performance of the method in the estimation of the CNV locus, we first performed simulation studies. Finally, we applied our approach to real data from aCGH experiments, demonstrating its applicability.

  20. Calculating shock arrival in expansion tubes and shock tunnels using Bayesian changepoint analysis

    NASA Astrophysics Data System (ADS)

    James, Christopher M.; Bourke, Emily J.; Gildfind, David E.

    2018-06-01

    To understand the flow conditions generated in expansion tubes and shock tunnels, shock speeds are generally calculated based on shock arrival times at high-frequency wall-mounted pressure transducers. These calculations require that the shock arrival times are obtained accurately. This can be non-trivial for expansion tubes especially because pressure rises may be small and shock speeds high. Inaccurate shock arrival times can be a significant source of uncertainty. To help address this problem, this paper investigates two separate but complimentary techniques. Principally, it proposes using a Bayesian changepoint detection method to automatically calculate shock arrival, potentially reducing error and simplifying the shock arrival finding process. To compliment this, a technique for filtering the raw data without losing the shock arrival time is also presented and investigated. To test the validity of the proposed techniques, tests are performed using both a theoretical step change with different levels of noise and real experimental data. It was found that with conditions added to ensure that a real shock arrival time was found, the Bayesian changepoint analysis method was able to automatically find the shock arrival time, even for noisy signals.

Top