Sample records for bayesian single event

  1. Bayesian Models Leveraging Bioactivity and Cytotoxicity Information for Drug Discovery

    PubMed Central

    Ekins, Sean; Reynolds, Robert C.; Kim, Hiyun; Koo, Mi-Sun; Ekonomidis, Marilyn; Talaue, Meliza; Paget, Steve D.; Woolhiser, Lisa K.; Lenaerts, Anne J.; Bunin, Barry A.; Connell, Nancy; Freundlich, Joel S.

    2013-01-01

    SUMMARY Identification of unique leads represents a significant challenge in drug discovery. This hurdle is magnified in neglected diseases such as tuberculosis. We have leveraged public high-throughput screening (HTS) data, to experimentally validate virtual screening approach employing Bayesian models built with bioactivity information (single-event model) as well as bioactivity and cytotoxicity information (dual-event model). We virtually screen a commercial library and experimentally confirm actives with hit rates exceeding typical HTS results by 1-2 orders of magnitude. The first dual-event Bayesian model identified compounds with antitubercular whole-cell activity and low mammalian cell cytotoxicity from a published set of antimalarials. The most potent hit exhibits the in vitro activity and in vitro/in vivo safety profile of a drug lead. These Bayesian models offer significant economies in time and cost to drug discovery. PMID:23521795

  2. Bayesian Statistical Inference in Ion-Channel Models with Exact Missed Event Correction.

    PubMed

    Epstein, Michael; Calderhead, Ben; Girolami, Mark A; Sivilotti, Lucia G

    2016-07-26

    The stochastic behavior of single ion channels is most often described as an aggregated continuous-time Markov process with discrete states. For ligand-gated channels each state can represent a different conformation of the channel protein or a different number of bound ligands. Single-channel recordings show only whether the channel is open or shut: states of equal conductance are aggregated, so transitions between them have to be inferred indirectly. The requirement to filter noise from the raw signal further complicates the modeling process, as it limits the time resolution of the data. The consequence of the reduced bandwidth is that openings or shuttings that are shorter than the resolution cannot be observed; these are known as missed events. Postulated models fitted using filtered data must therefore explicitly account for missed events to avoid bias in the estimation of rate parameters and therefore assess parameter identifiability accurately. In this article, we present the first, to our knowledge, Bayesian modeling of ion-channels with exact missed events correction. Bayesian analysis represents uncertain knowledge of the true value of model parameters by considering these parameters as random variables. This allows us to gain a full appreciation of parameter identifiability and uncertainty when estimating values for model parameters. However, Bayesian inference is particularly challenging in this context as the correction for missed events increases the computational complexity of the model likelihood. Nonetheless, we successfully implemented a two-step Markov chain Monte Carlo method that we called "BICME", which performs Bayesian inference in models of realistic complexity. The method is demonstrated on synthetic and real single-channel data from muscle nicotinic acetylcholine channels. We show that parameter uncertainty can be characterized more accurately than with maximum-likelihood methods. Our code for performing inference in these ion channel models is publicly available. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  3. Bayesian analysis of rare events

    NASA Astrophysics Data System (ADS)

    Straub, Daniel; Papaioannou, Iason; Betz, Wolfgang

    2016-06-01

    In many areas of engineering and science there is an interest in predicting the probability of rare events, in particular in applications related to safety and security. Increasingly, such predictions are made through computer models of physical systems in an uncertainty quantification framework. Additionally, with advances in IT, monitoring and sensor technology, an increasing amount of data on the performance of the systems is collected. This data can be used to reduce uncertainty, improve the probability estimates and consequently enhance the management of rare events and associated risks. Bayesian analysis is the ideal method to include the data into the probabilistic model. It ensures a consistent probabilistic treatment of uncertainty, which is central in the prediction of rare events, where extrapolation from the domain of observation is common. We present a framework for performing Bayesian updating of rare event probabilities, termed BUS. It is based on a reinterpretation of the classical rejection-sampling approach to Bayesian analysis, which enables the use of established methods for estimating probabilities of rare events. By drawing upon these methods, the framework makes use of their computational efficiency. These methods include the First-Order Reliability Method (FORM), tailored importance sampling (IS) methods and Subset Simulation (SuS). In this contribution, we briefly review these methods in the context of the BUS framework and investigate their applicability to Bayesian analysis of rare events in different settings. We find that, for some applications, FORM can be highly efficient and is surprisingly accurate, enabling Bayesian analysis of rare events with just a few model evaluations. In a general setting, BUS implemented through IS and SuS is more robust and flexible.

  4. Stochastic modeling of neurobiological time series: Power, coherence, Granger causality, and separation of evoked responses from ongoing activity

    NASA Astrophysics Data System (ADS)

    Chen, Yonghong; Bressler, Steven L.; Knuth, Kevin H.; Truccolo, Wilson A.; Ding, Mingzhou

    2006-06-01

    In this article we consider the stochastic modeling of neurobiological time series from cognitive experiments. Our starting point is the variable-signal-plus-ongoing-activity model. From this model a differentially variable component analysis strategy is developed from a Bayesian perspective to estimate event-related signals on a single trial basis. After subtracting out the event-related signal from recorded single trial time series, the residual ongoing activity is treated as a piecewise stationary stochastic process and analyzed by an adaptive multivariate autoregressive modeling strategy which yields power, coherence, and Granger causality spectra. Results from applying these methods to local field potential recordings from monkeys performing cognitive tasks are presented.

  5. Good fences make for good neighbors but bad science: a review of what improves Bayesian reasoning and why

    PubMed Central

    Brase, Gary L.; Hill, W. Trey

    2015-01-01

    Bayesian reasoning, defined here as the updating of a posterior probability following new information, has historically been problematic for humans. Classic psychology experiments have tested human Bayesian reasoning through the use of word problems and have evaluated each participant’s performance against the normatively correct answer provided by Bayes’ theorem. The standard finding is of generally poor performance. Over the past two decades, though, progress has been made on how to improve Bayesian reasoning. Most notably, research has demonstrated that the use of frequencies in a natural sampling framework—as opposed to single-event probabilities—can improve participants’ Bayesian estimates. Furthermore, pictorial aids and certain individual difference factors also can play significant roles in Bayesian reasoning success. The mechanics of how to build tasks which show these improvements is not under much debate. The explanations for why naturally sampled frequencies and pictures help Bayesian reasoning remain hotly contested, however, with many researchers falling into ingrained “camps” organized around two dominant theoretical perspectives. The present paper evaluates the merits of these theoretical perspectives, including the weight of empirical evidence, theoretical coherence, and predictive power. By these criteria, the ecological rationality approach is clearly better than the heuristics and biases view. Progress in the study of Bayesian reasoning will depend on continued research that honestly, vigorously, and consistently engages across these different theoretical accounts rather than staying “siloed” within one particular perspective. The process of science requires an understanding of competing points of view, with the ultimate goal being integration. PMID:25873904

  6. Good fences make for good neighbors but bad science: a review of what improves Bayesian reasoning and why.

    PubMed

    Brase, Gary L; Hill, W Trey

    2015-01-01

    Bayesian reasoning, defined here as the updating of a posterior probability following new information, has historically been problematic for humans. Classic psychology experiments have tested human Bayesian reasoning through the use of word problems and have evaluated each participant's performance against the normatively correct answer provided by Bayes' theorem. The standard finding is of generally poor performance. Over the past two decades, though, progress has been made on how to improve Bayesian reasoning. Most notably, research has demonstrated that the use of frequencies in a natural sampling framework-as opposed to single-event probabilities-can improve participants' Bayesian estimates. Furthermore, pictorial aids and certain individual difference factors also can play significant roles in Bayesian reasoning success. The mechanics of how to build tasks which show these improvements is not under much debate. The explanations for why naturally sampled frequencies and pictures help Bayesian reasoning remain hotly contested, however, with many researchers falling into ingrained "camps" organized around two dominant theoretical perspectives. The present paper evaluates the merits of these theoretical perspectives, including the weight of empirical evidence, theoretical coherence, and predictive power. By these criteria, the ecological rationality approach is clearly better than the heuristics and biases view. Progress in the study of Bayesian reasoning will depend on continued research that honestly, vigorously, and consistently engages across these different theoretical accounts rather than staying "siloed" within one particular perspective. The process of science requires an understanding of competing points of view, with the ultimate goal being integration.

  7. Bayesian analysis of rare events

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Straub, Daniel, E-mail: straub@tum.de; Papaioannou, Iason; Betz, Wolfgang

    2016-06-01

    In many areas of engineering and science there is an interest in predicting the probability of rare events, in particular in applications related to safety and security. Increasingly, such predictions are made through computer models of physical systems in an uncertainty quantification framework. Additionally, with advances in IT, monitoring and sensor technology, an increasing amount of data on the performance of the systems is collected. This data can be used to reduce uncertainty, improve the probability estimates and consequently enhance the management of rare events and associated risks. Bayesian analysis is the ideal method to include the data into themore » probabilistic model. It ensures a consistent probabilistic treatment of uncertainty, which is central in the prediction of rare events, where extrapolation from the domain of observation is common. We present a framework for performing Bayesian updating of rare event probabilities, termed BUS. It is based on a reinterpretation of the classical rejection-sampling approach to Bayesian analysis, which enables the use of established methods for estimating probabilities of rare events. By drawing upon these methods, the framework makes use of their computational efficiency. These methods include the First-Order Reliability Method (FORM), tailored importance sampling (IS) methods and Subset Simulation (SuS). In this contribution, we briefly review these methods in the context of the BUS framework and investigate their applicability to Bayesian analysis of rare events in different settings. We find that, for some applications, FORM can be highly efficient and is surprisingly accurate, enabling Bayesian analysis of rare events with just a few model evaluations. In a general setting, BUS implemented through IS and SuS is more robust and flexible.« less

  8. Phylogenetic analysis and victim contact tracing of rabies virus from humans and dogs in Bali, Indonesia.

    PubMed

    Mahardika, G N K; Dibia, N; Budayanti, N S; Susilawathi, N M; Subrata, K; Darwinata, A E; Wignall, F S; Richt, J A; Valdivia-Granda, W A; Sudewi, A A R

    2014-06-01

    The emergence of human and animal rabies in Bali since November 2008 has attracted local, national and international interest. The potential origin and time of introduction of rabies virus to Bali is described. The nucleoprotein (N) gene of rabies virus from dog brain and human clinical specimens was sequenced using an automated DNA sequencer. Phylogenetic inference with Bayesian Markov Chain Monte Carlo (MCMC) analysis using the Bayesian Evolutionary Analysis by Sampling Trees (BEAST) v. 1.7.5 software confirmed that the outbreak of rabies in Bali was caused by an Indonesian lineage virus following a single introduction. The ancestor of Bali viruses was the descendant of a virus from Kalimantan. Contact tracing showed that the event most likely occurred in early 2008. The introduction of rabies into a large unvaccinated dog population in Bali clearly demonstrates the risk of disease transmission for government agencies and should lead to an increased preparedness and efforts for sustained risk reduction to prevent such events from occurring in future.

  9. Bayesian analysis of caustic-crossing microlensing events

    NASA Astrophysics Data System (ADS)

    Cassan, A.; Horne, K.; Kains, N.; Tsapras, Y.; Browne, P.

    2010-06-01

    Aims: Caustic-crossing binary-lens microlensing events are important anomalous events because they are capable of detecting an extrasolar planet companion orbiting the lens star. Fast and robust modelling methods are thus of prime interest in helping to decide whether a planet is detected by an event. Cassan introduced a new set of parameters to model binary-lens events, which are closely related to properties of the light curve. In this work, we explain how Bayesian priors can be added to this framework, and investigate on interesting options. Methods: We develop a mathematical formulation that allows us to compute analytically the priors on the new parameters, given some previous knowledge about other physical quantities. We explicitly compute the priors for a number of interesting cases, and show how this can be implemented in a fully Bayesian, Markov chain Monte Carlo algorithm. Results: Using Bayesian priors can accelerate microlens fitting codes by reducing the time spent considering physically implausible models, and helps us to discriminate between alternative models based on the physical plausibility of their parameters.

  10. Single-Trial Event-Related Potential Correlates of Belief Updating

    PubMed Central

    Murawski, Carsten; Bode, Stefan

    2015-01-01

    Abstract Belief updating—the process by which an agent alters an internal model of its environment—is a core function of the CNS. Recent theory has proposed broad principles by which belief updating might operate, but more precise details of its implementation in the human brain remain unclear. In order to address this question, we studied how two components of the human event-related potential encoded different aspects of belief updating. Participants completed a novel perceptual learning task while electroencephalography was recorded. Participants learned the mapping between the contrast of a dynamic visual stimulus and a monetary reward and updated their beliefs about a target contrast on each trial. A Bayesian computational model was formulated to estimate belief states at each trial and was used to quantify the following two variables: belief update size and belief uncertainty. Robust single-trial regression was used to assess how these model-derived variables were related to the amplitudes of the P3 and the stimulus-preceding negativity (SPN), respectively. Results showed a positive relationship between belief update size and P3 amplitude at one fronto-central electrode, and a negative relationship between SPN amplitude and belief uncertainty at a left central and a right parietal electrode. These results provide evidence that belief update size and belief uncertainty have distinct neural signatures that can be tracked in single trials in specific ERP components. This, in turn, provides evidence that the cognitive mechanisms underlying belief updating in humans can be described well within a Bayesian framework. PMID:26473170

  11. Search for electroweak single top quark production with cdf in proton - anti-proton collisions at √s = 1.96-TeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walter, Thorsten

    2005-06-17

    In this thesis two searches for electroweak single top quark production with the CDF experiment have been presented, a cutbased search and an iterated discriminant analysis. Both searches find no significant evidence for electroweak single top production using a data set corresponding to an integrated luminosity of 162 pb -1 collected with CDF. Therefore limits on s- and t-channel single top production are determined using a likelihood technique. For the cutbased search a likelihood function based on lepton charge times pseudorapidity of the non-bottom jet was used if exactly one bottom jet was identified in the event. In case ofmore » two identified bottom jets a likelihood function based on the total number of observed events was used. The systematic uncertainties have been treated in a Bayesian approach, all sources of systematic uncertainties have been integrated out. An improved signal modeling using the MadEvent Monte Carlo program matched to NLO calculations has been used. The obtained limits for the s- and t-channel single top production cross sections are 13.6 pb and 10.1 pb, respectively. To date, these are most stringent limits published for the s- and the t-channel single top quark production modes.« less

  12. Bayesian Design of Superiority Clinical Trials for Recurrent Events Data with Applications to Bleeding and Transfusion Events in Myelodyplastic Syndrome

    PubMed Central

    Chen, Ming-Hui; Zeng, Donglin; Hu, Kuolung; Jia, Catherine

    2014-01-01

    Summary In many biomedical studies, patients may experience the same type of recurrent event repeatedly over time, such as bleeding, multiple infections and disease. In this article, we propose a Bayesian design to a pivotal clinical trial in which lower risk myelodysplastic syndromes (MDS) patients are treated with MDS disease modifying therapies. One of the key study objectives is to demonstrate the investigational product (treatment) effect on reduction of platelet transfusion and bleeding events while receiving MDS therapies. In this context, we propose a new Bayesian approach for the design of superiority clinical trials using recurrent events frailty regression models. Historical recurrent events data from an already completed phase 2 trial are incorporated into the Bayesian design via the partial borrowing power prior of Ibrahim et al. (2012, Biometrics 68, 578–586). An efficient Gibbs sampling algorithm, a predictive data generation algorithm, and a simulation-based algorithm are developed for sampling from the fitting posterior distribution, generating the predictive recurrent events data, and computing various design quantities such as the type I error rate and power, respectively. An extensive simulation study is conducted to compare the proposed method to the existing frequentist methods and to investigate various operating characteristics of the proposed design. PMID:25041037

  13. A Bayes linear Bayes method for estimation of correlated event rates.

    PubMed

    Quigley, John; Wilson, Kevin J; Walls, Lesley; Bedford, Tim

    2013-12-01

    Typically, full Bayesian estimation of correlated event rates can be computationally challenging since estimators are intractable. When estimation of event rates represents one activity within a larger modeling process, there is an incentive to develop more efficient inference than provided by a full Bayesian model. We develop a new subjective inference method for correlated event rates based on a Bayes linear Bayes model under the assumption that events are generated from a homogeneous Poisson process. To reduce the elicitation burden we introduce homogenization factors to the model and, as an alternative to a subjective prior, an empirical method using the method of moments is developed. Inference under the new method is compared against estimates obtained under a full Bayesian model, which takes a multivariate gamma prior, where the predictive and posterior distributions are derived in terms of well-known functions. The mathematical properties of both models are presented. A simulation study shows that the Bayes linear Bayes inference method and the full Bayesian model provide equally reliable estimates. An illustrative example, motivated by a problem of estimating correlated event rates across different users in a simple supply chain, shows how ignoring the correlation leads to biased estimation of event rates. © 2013 Society for Risk Analysis.

  14. Multivariate Bayesian modeling of known and unknown causes of events--an application to biosurveillance.

    PubMed

    Shen, Yanna; Cooper, Gregory F

    2012-09-01

    This paper investigates Bayesian modeling of known and unknown causes of events in the context of disease-outbreak detection. We introduce a multivariate Bayesian approach that models multiple evidential features of every person in the population. This approach models and detects (1) known diseases (e.g., influenza and anthrax) by using informative prior probabilities and (2) unknown diseases (e.g., a new, highly contagious respiratory virus that has never been seen before) by using relatively non-informative prior probabilities. We report the results of simulation experiments which support that this modeling method can improve the detection of new disease outbreaks in a population. A contribution of this paper is that it introduces a multivariate Bayesian approach for jointly modeling both known and unknown causes of events. Such modeling has general applicability in domains where the space of known causes is incomplete. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  15. Numerical study on the sequential Bayesian approach for radioactive materials detection

    NASA Astrophysics Data System (ADS)

    Qingpei, Xiang; Dongfeng, Tian; Jianyu, Zhu; Fanhua, Hao; Ge, Ding; Jun, Zeng

    2013-01-01

    A new detection method, based on the sequential Bayesian approach proposed by Candy et al., offers new horizons for the research of radioactive detection. Compared with the commonly adopted detection methods incorporated with statistical theory, the sequential Bayesian approach offers the advantages of shorter verification time during the analysis of spectra that contain low total counts, especially in complex radionuclide components. In this paper, a simulation experiment platform implanted with the methodology of sequential Bayesian approach was developed. Events sequences of γ-rays associating with the true parameters of a LaBr3(Ce) detector were obtained based on an events sequence generator using Monte Carlo sampling theory to study the performance of the sequential Bayesian approach. The numerical experimental results are in accordance with those of Candy. Moreover, the relationship between the detection model and the event generator, respectively represented by the expected detection rate (Am) and the tested detection rate (Gm) parameters, is investigated. To achieve an optimal performance for this processor, the interval of the tested detection rate as a function of the expected detection rate is also presented.

  16. Causal learning and inference as a rational process: the new synthesis.

    PubMed

    Holyoak, Keith J; Cheng, Patricia W

    2011-01-01

    Over the past decade, an active line of research within the field of human causal learning and inference has converged on a general representational framework: causal models integrated with bayesian probabilistic inference. We describe this new synthesis, which views causal learning and inference as a fundamentally rational process, and review a sample of the empirical findings that support the causal framework over associative alternatives. Causal events, like all events in the distal world as opposed to our proximal perceptual input, are inherently unobservable. A central assumption of the causal approach is that humans (and potentially nonhuman animals) have been designed in such a way as to infer the most invariant causal relations for achieving their goals based on observed events. In contrast, the associative approach assumes that learners only acquire associations among important observed events, omitting the representation of the distal relations. By incorporating bayesian inference over distributions of causal strength and causal structures, along with noisy-logical (i.e., causal) functions for integrating the influences of multiple causes on a single effect, human judgments about causal strength and structure can be predicted accurately for relatively simple causal structures. Dynamic models of learning based on the causal framework can explain patterns of acquisition observed with serial presentation of contingency data and are consistent with available neuroimaging data. The approach has been extended to a diverse range of inductive tasks, including category-based and analogical inferences.

  17. Genetic consequences of sequential founder events by an island-colonizing bird.

    PubMed

    Clegg, Sonya M; Degnan, Sandie M; Kikkawa, Jiro; Moritz, Craig; Estoup, Arnaud; Owens, Ian P F

    2002-06-11

    The importance of founder events in promoting evolutionary changes on islands has been a subject of long-running controversy. Resolution of this debate has been hindered by a lack of empirical evidence from naturally founded island populations. Here we undertake a genetic analysis of a series of historically documented, natural colonization events by the silvereye species-complex (Zosterops lateralis), a group used to illustrate the process of island colonization in the original founder effect model. Our results indicate that single founder events do not affect levels of heterozygosity or allelic diversity, nor do they result in immediate genetic differentiation between populations. Instead, four to five successive founder events are required before indices of diversity and divergence approach that seen in evolutionarily old forms. A Bayesian analysis based on computer simulation allows inferences to be made on the number of effective founders and indicates that founder effects are weak because island populations are established from relatively large flocks. Indeed, statistical support for a founder event model was not significantly higher than for a gradual-drift model for all recently colonized islands. Taken together, these results suggest that single colonization events in this species complex are rarely accompanied by severe founder effects, and multiple founder events and/or long-term genetic drift have been of greater consequence for neutral genetic diversity.

  18. A new Bayesian Inference-based Phase Associator for Earthquake Early Warning

    NASA Astrophysics Data System (ADS)

    Meier, Men-Andrin; Heaton, Thomas; Clinton, John; Wiemer, Stefan

    2013-04-01

    State of the art network-based Earthquake Early Warning (EEW) systems can provide warnings for large magnitude 7+ earthquakes. Although regions in the direct vicinity of the epicenter will not receive warnings prior to damaging shaking, real-time event characterization is available before the destructive S-wave arrival across much of the strongly affected region. In contrast, in the case of the more frequent medium size events, such as the devastating 1994 Mw6.7 Northridge, California, earthquake, providing timely warning to the smaller damage zone is more difficult. For such events the "blind zone" of current systems (e.g. the CISN ShakeAlert system in California) is similar in size to the area over which severe damage occurs. We propose a faster and more robust Bayesian inference-based event associator, that in contrast to the current standard associators (e.g. Earthworm Binder), is tailored to EEW and exploits information other than only phase arrival times. In particular, the associator potentially allows for reliable automated event association with as little as two observations, which, compared to the ShakeAlert system, would speed up the real-time characterizations by about ten seconds and thus reduce the blind zone area by up to 80%. We compile an extensive data set of regional and teleseismic earthquake and noise waveforms spanning a wide range of earthquake magnitudes and tectonic regimes. We pass these waveforms through a causal real-time filterbank with passband filters between 0.1 and 50Hz, and, updating every second from the event detection, extract the maximum amplitudes in each frequency band. Using this dataset, we define distributions of amplitude maxima in each passband as a function of epicentral distance and magnitude. For the real-time data, we pass incoming broadband and strong motion waveforms through the same filterbank and extract an evolving set of maximum amplitudes in each passband. We use the maximum amplitude distributions to check whether the incoming waveforms are consistent with amplitude and frequency patterns of local earthquakes by means of a maximum likelihood approach. If such a single-station event likelihood is larger than a predefined threshold value we check whether there are neighboring stations that also have single-station event likelihoods above the threshold. If this is the case for at least one other station, we evaluate whether the respective relative arrival times are in agreement with a common earthquake origin (assuming a simple velocity model and using an Equal Differential Time location scheme). Additionally we check if there are stations where, given the preliminary location, observations would be expected but were not reported ("not-yet-arrived data"). Together, the single-station event likelihood functions and the location likelihood function constitute the multi-station event likelihood function. This function can then be combined with various types of prior information (such as station noise levels, preceding seismicity, fault proximity, etc.) to obtain a Bayesian posterior distribution, representing the degree of belief that the ensemble of the current real-time observations correspond to a local earthquake, rather than to some other signal source irrelevant for EEW. Additional to the reduction of the blind zone size, this approach facilitates the eventual development of an end-to-end probabilistic framework for an EEW system that provides systematic real-time assessment of the risk of false alerts, which enables end users of EEW to implement damage mitigation strategies only above a specified certainty level.

  19. Improving photoelectron counting and particle identification in scintillation detectors with Bayesian techniques

    NASA Astrophysics Data System (ADS)

    Akashi-Ronquest, M.; Amaudruz, P.-A.; Batygov, M.; Beltran, B.; Bodmer, M.; Boulay, M. G.; Broerman, B.; Buck, B.; Butcher, A.; Cai, B.; Caldwell, T.; Chen, M.; Chen, Y.; Cleveland, B.; Coakley, K.; Dering, K.; Duncan, F. A.; Formaggio, J. A.; Gagnon, R.; Gastler, D.; Giuliani, F.; Gold, M.; Golovko, V. V.; Gorel, P.; Graham, K.; Grace, E.; Guerrero, N.; Guiseppe, V.; Hallin, A. L.; Harvey, P.; Hearns, C.; Henning, R.; Hime, A.; Hofgartner, J.; Jaditz, S.; Jillings, C. J.; Kachulis, C.; Kearns, E.; Kelsey, J.; Klein, J. R.; Kuźniak, M.; LaTorre, A.; Lawson, I.; Li, O.; Lidgard, J. J.; Liimatainen, P.; Linden, S.; McFarlane, K.; McKinsey, D. N.; MacMullin, S.; Mastbaum, A.; Mathew, R.; McDonald, A. B.; Mei, D.-M.; Monroe, J.; Muir, A.; Nantais, C.; Nicolics, K.; Nikkel, J. A.; Noble, T.; O'Dwyer, E.; Olsen, K.; Orebi Gann, G. D.; Ouellet, C.; Palladino, K.; Pasuthip, P.; Perumpilly, G.; Pollmann, T.; Rau, P.; Retière, F.; Rielage, K.; Schnee, R.; Seibert, S.; Skensved, P.; Sonley, T.; Vázquez-Jáuregui, E.; Veloce, L.; Walding, J.; Wang, B.; Wang, J.; Ward, M.; Zhang, C.

    2015-05-01

    Many current and future dark matter and neutrino detectors are designed to measure scintillation light with a large array of photomultiplier tubes (PMTs). The energy resolution and particle identification capabilities of these detectors depend in part on the ability to accurately identify individual photoelectrons in PMT waveforms despite large variability in pulse amplitudes and pulse pileup. We describe a Bayesian technique that can identify the times of individual photoelectrons in a sampled PMT waveform without deconvolution, even when pileup is present. To demonstrate the technique, we apply it to the general problem of particle identification in single-phase liquid argon dark matter detectors. Using the output of the Bayesian photoelectron counting algorithm described in this paper, we construct several test statistics for rejection of backgrounds for dark matter searches in argon. Compared to simpler methods based on either observed charge or peak finding, the photoelectron counting technique improves both energy resolution and particle identification of low energy events in calibration data from the DEAP-1 detector and simulation of the larger MiniCLEAN dark matter detector.

  20. Bayesian truthing and experimental validation in homeland security and defense

    NASA Astrophysics Data System (ADS)

    Jannson, Tomasz; Forrester, Thomas; Wang, Wenjian; Kostrzewski, Andrew; Pradhan, Ranjit

    2014-05-01

    In this paper we discuss relations between Bayesian Truthing (experimental validation), Bayesian statistics, and Binary Sensing in the context of selected Homeland Security and Intelligence, Surveillance, Reconnaissance (ISR) optical and nonoptical application scenarios. The basic Figure of Merit (FoM) is Positive Predictive Value (PPV), as well as false positives and false negatives. By using these simple binary statistics, we can analyze, classify, and evaluate a broad variety of events including: ISR; natural disasters; QC; and terrorism-related, GIS-related, law enforcement-related, and other C3I events.

  1. Measurement of the single top production cross section in proton-antiproton collisions at 1.96 TeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanasijczuk, Andres Jorge

    2010-03-25

    This thesis describes a search for singly produced top quarks via an electroweak vertex in head-on proton-antiproton collisions at a center of mass energy of √s = 1.96 TeV. The analysis uses a total of 2.3 fb -1 of data collected with the D0 detector at Fermilab, corresponding to two different run periods of the Tevatron collider. Two channels contribute to single top quark production at the Tevatron, the s-channel and the t-channel. In the s-channel, a virtual W boson is produced from the aniquilation of a quark and an antiquark and a top and a bottom quarks are produced from the W decay. The top quark decays almost exclusively into a W boson and a bottom quark. Final states are considered in which the W boson decays leptonically into an electron or a muon plus a neutrino. Thus, at the detector level, the final state characterizing the s-channel contains one lepton, missing energy accounting for the neutrino, and two jets from the two bottom quarks. In the t-channel, the final state has an additional jet coming from a light quark. Clearly, a precise reconstruction of the events requires a precise measurement of the energy of the jets. A multivariate technique, Bayesian neural networks, is used to extract the single top signal from the overwhelming background still left after event selection. A Bayesian likelihood probability is then computed to measure the single top cross section. Assuming the observed excess is due to single top events, the measured single top quark production cross section is σ(pmore » $$\\bar{p}$$ → tb + X, tqb + X) = 4.70 +1.18 -0.93 pb. The observed excess is associated with a p-value of (3.2 ± 2.3) x 10 -8, assuming the background-only hypothesis. This p-value corresponds to an excess over background of 5.4 standard deviations for a Gaussian density. The p-value computed using the standard model signal cross section of 3.46 pb is (22.7 ± 0.6) x 10 -6, corresponding to an expected significance of 4.08 standard deviations.« less

  2. Contamination Event Detection with Multivariate Time-Series Data in Agricultural Water Monitoring †

    PubMed Central

    Mao, Yingchi; Qi, Hai; Ping, Ping; Li, Xiaofang

    2017-01-01

    Time series data of multiple water quality parameters are obtained from the water sensor networks deployed in the agricultural water supply network. The accurate and efficient detection and warning of contamination events to prevent pollution from spreading is one of the most important issues when pollution occurs. In order to comprehensively reduce the event detection deviation, a spatial–temporal-based event detection approach with multivariate time-series data for water quality monitoring (M-STED) was proposed. The M-STED approach includes three parts. The first part is that M-STED adopts a Rule K algorithm to select backbone nodes as the nodes in the CDS, and forward the sensed data of multiple water parameters. The second part is to determine the state of each backbone node with back propagation neural network models and the sequential Bayesian analysis in the current timestamp. The third part is to establish a spatial model with Bayesian networks to estimate the state of the backbones in the next timestamp and trace the “outlier” node to its neighborhoods to detect a contamination event. The experimental results indicate that the average detection rate is more than 80% with M-STED and the false detection rate is lower than 9%, respectively. The M-STED approach can improve the rate of detection by about 40% and reduce the false alarm rate by about 45%, compared with the event detection with a single water parameter algorithm, S-STED. Moreover, the proposed M-STED can exhibit better performance in terms of detection delay and scalability. PMID:29207535

  3. A Bayesian-frequentist two-stage single-arm phase II clinical trial design.

    PubMed

    Dong, Gaohong; Shih, Weichung Joe; Moore, Dirk; Quan, Hui; Marcella, Stephen

    2012-08-30

    It is well-known that both frequentist and Bayesian clinical trial designs have their own advantages and disadvantages. To have better properties inherited from these two types of designs, we developed a Bayesian-frequentist two-stage single-arm phase II clinical trial design. This design allows both early acceptance and rejection of the null hypothesis ( H(0) ). The measures (for example probability of trial early termination, expected sample size, etc.) of the design properties under both frequentist and Bayesian settings are derived. Moreover, under the Bayesian setting, the upper and lower boundaries are determined with predictive probability of trial success outcome. Given a beta prior and a sample size for stage I, based on the marginal distribution of the responses at stage I, we derived Bayesian Type I and Type II error rates. By controlling both frequentist and Bayesian error rates, the Bayesian-frequentist two-stage design has special features compared with other two-stage designs. Copyright © 2012 John Wiley & Sons, Ltd.

  4. Enhancements to the Bayesian Infrasound Source Location Method

    DTIC Science & Technology

    2012-09-01

    ENHANCEMENTS TO THE BAYESIAN INFRASOUND SOURCE LOCATION METHOD Omar E. Marcillo, Stephen J. Arrowsmith, Rod W. Whitaker, and Dale N. Anderson Los...ABSTRACT We report on R&D that is enabling enhancements to the Bayesian Infrasound Source Location (BISL) method for infrasound event location...the Bayesian Infrasound Source Location Method 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER

  5. Bayesian Analysis for Risk Assessment of Selected Medical Events in Support of the Integrated Medical Model Effort

    NASA Technical Reports Server (NTRS)

    Gilkey, Kelly M.; Myers, Jerry G.; McRae, Michael P.; Griffin, Elise A.; Kallrui, Aditya S.

    2012-01-01

    The Exploration Medical Capability project is creating a catalog of risk assessments using the Integrated Medical Model (IMM). The IMM is a software-based system intended to assist mission planners in preparing for spaceflight missions by helping them to make informed decisions about medical preparations and supplies needed for combating and treating various medical events using Probabilistic Risk Assessment. The objective is to use statistical analyses to inform the IMM decision tool with estimated probabilities of medical events occurring during an exploration mission. Because data regarding astronaut health are limited, Bayesian statistical analysis is used. Bayesian inference combines prior knowledge, such as data from the general U.S. population, the U.S. Submarine Force, or the analog astronaut population located at the NASA Johnson Space Center, with observed data for the medical condition of interest. The posterior results reflect the best evidence for specific medical events occurring in flight. Bayes theorem provides a formal mechanism for combining available observed data with data from similar studies to support the quantification process. The IMM team performed Bayesian updates on the following medical events: angina, appendicitis, atrial fibrillation, atrial flutter, dental abscess, dental caries, dental periodontal disease, gallstone disease, herpes zoster, renal stones, seizure, and stroke.

  6. On the uncertainty in single molecule fluorescent lifetime and energy emission measurements

    NASA Technical Reports Server (NTRS)

    Brown, Emery N.; Zhang, Zhenhua; Mccollom, Alex D.

    1995-01-01

    Time-correlated single photon counting has recently been combined with mode-locked picosecond pulsed excitation to measure the fluorescent lifetimes and energy emissions of single molecules in a flow stream. Maximum likelihood (ML) and least square methods agree and are optimal when the number of detected photons is large however, in single molecule fluorescence experiments the number of detected photons can be less than 20, 67% of those can be noise and the detection time is restricted to 10 nanoseconds. Under the assumption that the photon signal and background noise are two independent inhomogeneous poisson processes, we derive the exact joint arrival time probably density of the photons collected in a single counting experiment performed in the presence of background noise. The model obviates the need to bin experimental data for analysis, and makes it possible to analyze formally the effect of background noise on the photon detection experiment using both ML or Bayesian methods. For both methods we derive the joint and marginal probability densities of the fluorescent lifetime and fluorescent emission. the ML and Bayesian methods are compared in an analysis of simulated single molecule fluorescence experiments of Rhodamine 110 using different combinations of expected background nose and expected fluorescence emission. While both the ML or Bayesian procedures perform well for analyzing fluorescence emissions, the Bayesian methods provide more realistic measures of uncertainty in the fluorescent lifetimes. The Bayesian methods would be especially useful for measuring uncertainty in fluorescent lifetime estimates in current single molecule flow stream experiments where the expected fluorescence emission is low. Both the ML and Bayesian algorithms can be automated for applications in molecular biology.

  7. On the Uncertainty in Single Molecule Fluorescent Lifetime and Energy Emission Measurements

    NASA Technical Reports Server (NTRS)

    Brown, Emery N.; Zhang, Zhenhua; McCollom, Alex D.

    1996-01-01

    Time-correlated single photon counting has recently been combined with mode-locked picosecond pulsed excitation to measure the fluorescent lifetimes and energy emissions of single molecules in a flow stream. Maximum likelihood (ML) and least squares methods agree and are optimal when the number of detected photons is large, however, in single molecule fluorescence experiments the number of detected photons can be less than 20, 67 percent of those can be noise, and the detection time is restricted to 10 nanoseconds. Under the assumption that the photon signal and background noise are two independent inhomogeneous Poisson processes, we derive the exact joint arrival time probability density of the photons collected in a single counting experiment performed in the presence of background noise. The model obviates the need to bin experimental data for analysis, and makes it possible to analyze formally the effect of background noise on the photon detection experiment using both ML or Bayesian methods. For both methods we derive the joint and marginal probability densities of the fluorescent lifetime and fluorescent emission. The ML and Bayesian methods are compared in an analysis of simulated single molecule fluorescence experiments of Rhodamine 110 using different combinations of expected background noise and expected fluorescence emission. While both the ML or Bayesian procedures perform well for analyzing fluorescence emissions, the Bayesian methods provide more realistic measures of uncertainty in the fluorescent lifetimes. The Bayesian methods would be especially useful for measuring uncertainty in fluorescent lifetime estimates in current single molecule flow stream experiments where the expected fluorescence emission is low. Both the ML and Bayesian algorithms can be automated for applications in molecular biology.

  8. The natural mathematics of behavior analysis.

    PubMed

    Li, Don; Hautus, Michael J; Elliffe, Douglas

    2018-04-19

    Models that generate event records have very general scope regarding the dimensions of the target behavior that we measure. From a set of predicted event records, we can generate predictions for any dependent variable that we could compute from the event records of our subjects. In this sense, models that generate event records permit us a freely multivariate analysis. To explore this proposition, we conducted a multivariate examination of Catania's Operant Reserve on single VI schedules in transition using a Markov Chain Monte Carlo scheme for Approximate Bayesian Computation. Although we found systematic deviations between our implementation of Catania's Operant Reserve and our observed data (e.g., mismatches in the shape of the interresponse time distributions), the general approach that we have demonstrated represents an avenue for modelling behavior that transcends the typical constraints of algebraic models. © 2018 Society for the Experimental Analysis of Behavior.

  9. Credible occurrence probabilities for extreme geophysical events: earthquakes, volcanic eruptions, magnetic storms

    USGS Publications Warehouse

    Love, Jeffrey J.

    2012-01-01

    Statistical analysis is made of rare, extreme geophysical events recorded in historical data -- counting the number of events $k$ with sizes that exceed chosen thresholds during specific durations of time $\\tau$. Under transformations that stabilize data and model-parameter variances, the most likely Poisson-event occurrence rate, $k/\\tau$, applies for frequentist inference and, also, for Bayesian inference with a Jeffreys prior that ensures posterior invariance under changes of variables. Frequentist confidence intervals and Bayesian (Jeffreys) credibility intervals are approximately the same and easy to calculate: $(1/\\tau)[(\\sqrt{k} - z/2)^{2},(\\sqrt{k} + z/2)^{2}]$, where $z$ is a parameter that specifies the width, $z=1$ ($z=2$) corresponding to $1\\sigma$, $68.3\\%$ ($2\\sigma$, $95.4\\%$). If only a few events have been observed, as is usually the case for extreme events, then these "error-bar" intervals might be considered to be relatively wide. From historical records, we estimate most likely long-term occurrence rates, 10-yr occurrence probabilities, and intervals of frequentist confidence and Bayesian credibility for large earthquakes, explosive volcanic eruptions, and magnetic storms.

  10. Evidence for Two Neutrino Bursts from SN1987A

    NASA Astrophysics Data System (ADS)

    Valentim, Rodolfo; Horvath, Jorge E.; Rangel, Eraldo M.

    The SN1987A in the Giant Magellanic Cloud was an amazing and extraordinary event because it was detected in real time for different neutrinos experiments (νs) around the world. Approximate ˜ 25 events were observed in three different experiments: Kamiokande II (KII) ˜ 12, Irvine-Michigan-Brookhaven (IMB) ˜ 8 e Baksan ˜ 5, plus a contrived burst at Mont Blanc (Liquid Scintillator Detector - LSD) later dismissed because of energetic requirements (Aglietta et al. 1988). The neutrinos have an important play role into the neutron star newborn: at the moment when the supernova explodes the compact object remnant is freezing by neutrinos ( ˜ 99% energy is lost in the few seconds of the explosion). The work is motivated by neutrinos’ event in relation arrival times where there is a temporal gap between set of events ( ˜ 6s). The first part of dataset came from the ordinary mechanism of freezing and the second part suggests different mechanism of neutrinos production. We tested two models of cooling for neutrinos from SN1987A: 1st an exponential cooling is an ordinary model of cooling and 2nd a two-step temperature model that it considers two bursts separated with temporal gap. Our analysis was done with Bayesian tools (Bayesian Information Criterion - BIC) The result showed strong evidence in favor of a two-step model against one single exponential cooling (ln Bij > 5.0), and suggests the existence of two neutrino bursts at the moment the neutron star was born.

  11. Probabilistic safety analysis of earth retaining structures during earthquakes

    NASA Astrophysics Data System (ADS)

    Grivas, D. A.; Souflis, C.

    1982-07-01

    A procedure is presented for determining the probability of failure of Earth retaining structures under static or seismic conditions. Four possible modes of failure (overturning, base sliding, bearing capacity, and overall sliding) are examined and their combined effect is evaluated with the aid of combinatorial analysis. The probability of failure is shown to be a more adequate measure of safety than the customary factor of safety. As Earth retaining structures may fail in four distinct modes, a system analysis can provide a single estimate for the possibility of failure. A Bayesian formulation of the safety retaining walls is found to provide an improved measure for the predicted probability of failure under seismic loading. The presented Bayesian analysis can account for the damage incurred to a retaining wall during an earthquake to provide an improved estimate for its probability of failure during future seismic events.

  12. New Insights into Handling Missing Values in Environmental Epidemiological Studies

    PubMed Central

    Roda, Célina; Nicolis, Ioannis; Momas, Isabelle; Guihenneuc, Chantal

    2014-01-01

    Missing data are unavoidable in environmental epidemiologic surveys. The aim of this study was to compare methods for handling large amounts of missing values: omission of missing values, single and multiple imputations (through linear regression or partial least squares regression), and a fully Bayesian approach. These methods were applied to the PARIS birth cohort, where indoor domestic pollutant measurements were performed in a random sample of babies' dwellings. A simulation study was conducted to assess performances of different approaches with a high proportion of missing values (from 50% to 95%). Different simulation scenarios were carried out, controlling the true value of the association (odds ratio of 1.0, 1.2, and 1.4), and varying the health outcome prevalence. When a large amount of data is missing, omitting these missing data reduced statistical power and inflated standard errors, which affected the significance of the association. Single imputation underestimated the variability, and considerably increased risk of type I error. All approaches were conservative, except the Bayesian joint model. In the case of a common health outcome, the fully Bayesian approach is the most efficient approach (low root mean square error, reasonable type I error, and high statistical power). Nevertheless for a less prevalent event, the type I error is increased and the statistical power is reduced. The estimated posterior distribution of the OR is useful to refine the conclusion. Among the methods handling missing values, no approach is absolutely the best but when usual approaches (e.g. single imputation) are not sufficient, joint modelling approach of missing process and health association is more efficient when large amounts of data are missing. PMID:25226278

  13. Bayesian model reduction and empirical Bayes for group (DCM) studies

    PubMed Central

    Friston, Karl J.; Litvak, Vladimir; Oswal, Ashwini; Razi, Adeel; Stephan, Klaas E.; van Wijk, Bernadette C.M.; Ziegler, Gabriel; Zeidman, Peter

    2016-01-01

    This technical note describes some Bayesian procedures for the analysis of group studies that use nonlinear models at the first (within-subject) level – e.g., dynamic causal models – and linear models at subsequent (between-subject) levels. Its focus is on using Bayesian model reduction to finesse the inversion of multiple models of a single dataset or a single (hierarchical or empirical Bayes) model of multiple datasets. These applications of Bayesian model reduction allow one to consider parametric random effects and make inferences about group effects very efficiently (in a few seconds). We provide the relatively straightforward theoretical background to these procedures and illustrate their application using a worked example. This example uses a simulated mismatch negativity study of schizophrenia. We illustrate the robustness of Bayesian model reduction to violations of the (commonly used) Laplace assumption in dynamic causal modelling and show how its recursive application can facilitate both classical and Bayesian inference about group differences. Finally, we consider the application of these empirical Bayesian procedures to classification and prediction. PMID:26569570

  14. Moving in time: Bayesian causal inference explains movement coordination to auditory beats

    PubMed Central

    Elliott, Mark T.; Wing, Alan M.; Welchman, Andrew E.

    2014-01-01

    Many everyday skilled actions depend on moving in time with signals that are embedded in complex auditory streams (e.g. musical performance, dancing or simply holding a conversation). Such behaviour is apparently effortless; however, it is not known how humans combine auditory signals to support movement production and coordination. Here, we test how participants synchronize their movements when there are potentially conflicting auditory targets to guide their actions. Participants tapped their fingers in time with two simultaneously presented metronomes of equal tempo, but differing in phase and temporal regularity. Synchronization therefore depended on integrating the two timing cues into a single-event estimate or treating the cues as independent and thereby selecting one signal over the other. We show that a Bayesian inference process explains the situations in which participants choose to integrate or separate signals, and predicts motor timing errors. Simulations of this causal inference process demonstrate that this model provides a better description of the data than other plausible models. Our findings suggest that humans exploit a Bayesian inference process to control movement timing in situations where the origin of auditory signals needs to be resolved. PMID:24850915

  15. SensibleSleep: A Bayesian Model for Learning Sleep Patterns from Smartphone Events

    PubMed Central

    Sekara, Vedran; Jonsson, Håkan; Larsen, Jakob Eg; Lehmann, Sune

    2017-01-01

    We propose a Bayesian model for extracting sleep patterns from smartphone events. Our method is able to identify individuals’ daily sleep periods and their evolution over time, and provides an estimation of the probability of sleep and wake transitions. The model is fitted to more than 400 participants from two different datasets, and we verify the results against ground truth from dedicated armband sleep trackers. We show that the model is able to produce reliable sleep estimates with an accuracy of 0.89, both at the individual and at the collective level. Moreover the Bayesian model is able to quantify uncertainty and encode prior knowledge about sleep patterns. Compared with existing smartphone-based systems, our method requires only screen on/off events, and is therefore much less intrusive in terms of privacy and more battery-efficient. PMID:28076375

  16. SensibleSleep: A Bayesian Model for Learning Sleep Patterns from Smartphone Events.

    PubMed

    Cuttone, Andrea; Bækgaard, Per; Sekara, Vedran; Jonsson, Håkan; Larsen, Jakob Eg; Lehmann, Sune

    2017-01-01

    We propose a Bayesian model for extracting sleep patterns from smartphone events. Our method is able to identify individuals' daily sleep periods and their evolution over time, and provides an estimation of the probability of sleep and wake transitions. The model is fitted to more than 400 participants from two different datasets, and we verify the results against ground truth from dedicated armband sleep trackers. We show that the model is able to produce reliable sleep estimates with an accuracy of 0.89, both at the individual and at the collective level. Moreover the Bayesian model is able to quantify uncertainty and encode prior knowledge about sleep patterns. Compared with existing smartphone-based systems, our method requires only screen on/off events, and is therefore much less intrusive in terms of privacy and more battery-efficient.

  17. Bayesian truthing as experimental verification of C4ISR sensors

    NASA Astrophysics Data System (ADS)

    Jannson, Tomasz; Forrester, Thomas; Romanov, Volodymyr; Wang, Wenjian; Nielsen, Thomas; Kostrzewski, Andrew

    2015-05-01

    In this paper, the general methodology for experimental verification/validation of C4ISR and other sensors' performance, is presented, based on Bayesian inference, in general, and binary sensors, in particular. This methodology, called Bayesian Truthing, defines Performance Metrics for binary sensors in: physics, optics, electronics, medicine, law enforcement, C3ISR, QC, ATR (Automatic Target Recognition), terrorism related events, and many others. For Bayesian Truthing, the sensing medium itself is not what is truly important; it is how the decision process is affected.

  18. Statistical Modeling for Radiation Hardness Assurance

    NASA Technical Reports Server (NTRS)

    Ladbury, Raymond L.

    2014-01-01

    We cover the models and statistics associated with single event effects (and total ionizing dose), why we need them, and how to use them: What models are used, what errors exist in real test data, and what the model allows us to say about the DUT will be discussed. In addition, how to use other sources of data such as historical, heritage, and similar part and how to apply experience, physics, and expert opinion to the analysis will be covered. Also included will be concepts of Bayesian statistics, data fitting, and bounding rates.

  19. Bayesian model reduction and empirical Bayes for group (DCM) studies.

    PubMed

    Friston, Karl J; Litvak, Vladimir; Oswal, Ashwini; Razi, Adeel; Stephan, Klaas E; van Wijk, Bernadette C M; Ziegler, Gabriel; Zeidman, Peter

    2016-03-01

    This technical note describes some Bayesian procedures for the analysis of group studies that use nonlinear models at the first (within-subject) level - e.g., dynamic causal models - and linear models at subsequent (between-subject) levels. Its focus is on using Bayesian model reduction to finesse the inversion of multiple models of a single dataset or a single (hierarchical or empirical Bayes) model of multiple datasets. These applications of Bayesian model reduction allow one to consider parametric random effects and make inferences about group effects very efficiently (in a few seconds). We provide the relatively straightforward theoretical background to these procedures and illustrate their application using a worked example. This example uses a simulated mismatch negativity study of schizophrenia. We illustrate the robustness of Bayesian model reduction to violations of the (commonly used) Laplace assumption in dynamic causal modelling and show how its recursive application can facilitate both classical and Bayesian inference about group differences. Finally, we consider the application of these empirical Bayesian procedures to classification and prediction. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Variable Discretisation for Anomaly Detection using Bayesian Networks

    DTIC Science & Technology

    2017-01-01

    UNCLASSIFIED DST- Group –TR–3328 1 Introduction Bayesian network implementations usually require each variable to take on a finite number of mutually...UNCLASSIFIED Variable Discretisation for Anomaly Detection using Bayesian Networks Jonathan Legg National Security and ISR Division Defence Science...and Technology Group DST- Group –TR–3328 ABSTRACT Anomaly detection is the process by which low probability events are automatically found against a

  1. A new prior for bayesian anomaly detection: application to biosurveillance.

    PubMed

    Shen, Y; Cooper, G F

    2010-01-01

    Bayesian anomaly detection computes posterior probabilities of anomalous events by combining prior beliefs and evidence from data. However, the specification of prior probabilities can be challenging. This paper describes a Bayesian prior in the context of disease outbreak detection. The goal is to provide a meaningful, easy-to-use prior that yields a posterior probability of an outbreak that performs at least as well as a standard frequentist approach. If this goal is achieved, the resulting posterior could be usefully incorporated into a decision analysis about how to act in light of a possible disease outbreak. This paper describes a Bayesian method for anomaly detection that combines learning from data with a semi-informative prior probability over patterns of anomalous events. A univariate version of the algorithm is presented here for ease of illustration of the essential ideas. The paper describes the algorithm in the context of disease-outbreak detection, but it is general and can be used in other anomaly detection applications. For this application, the semi-informative prior specifies that an increased count over baseline is expected for the variable being monitored, such as the number of respiratory chief complaints per day at a given emergency department. The semi-informative prior is derived based on the baseline prior, which is estimated from using historical data. The evaluation reported here used semi-synthetic data to evaluate the detection performance of the proposed Bayesian method and a control chart method, which is a standard frequentist algorithm that is closest to the Bayesian method in terms of the type of data it uses. The disease-outbreak detection performance of the Bayesian method was statistically significantly better than that of the control chart method when proper baseline periods were used to estimate the baseline behavior to avoid seasonal effects. When using longer baseline periods, the Bayesian method performed as well as the control chart method. The time complexity of the Bayesian algorithm is linear in the number of the observed events being monitored, due to a novel, closed-form derivation that is introduced in the paper. This paper introduces a novel prior probability for Bayesian outbreak detection that is expressive, easy-to-apply, computationally efficient, and performs as well or better than a standard frequentist method.

  2. Simultaneous Determination of Structure and Event Location Using Body and Surface Wave Measurements at a Single Station: Preparation for Mars Data from the InSight Mission

    NASA Astrophysics Data System (ADS)

    Panning, M. P.; Banerdt, W. B.; Beucler, E.; Blanchette-Guertin, J. F.; Boese, M.; Clinton, J. F.; Drilleau, M.; James, S. R.; Kawamura, T.; Khan, A.; Lognonne, P. H.; Mocquet, A.; van Driel, M.

    2015-12-01

    An important challenge for the upcoming InSight mission to Mars, which will deliver a broadband seismic station to Mars along with other geophysical instruments in 2016, is to accurately determine event locations with the use of a single station. Locations are critical for the primary objective of the mission, determining the internal structure of Mars, as well as a secondary objective of measuring the activity of distribution of seismic events. As part of the mission planning process, a variety of techniques have been explored for location of marsquakes and inversion of structure, and preliminary procedures and software are already under development as part of the InSight Mars Quake and Mars Structure Services. One proposed method, involving the use of recordings of multiple-orbit surface waves, has already been tested with synthetic data and Earth recordings. This method has the strength of not requiring an a priori velocity model of Mars for quake location, but will only be practical for larger events. For smaller events where only first orbit surface waves and body waves are observable, other methods are required. In this study, we implement a transdimensional Bayesian inversion approach to simultaneously invert for basic velocity structure and location parameters (epicentral distance and origin time) using only measurements of body wave arrival times and dispersion of first orbit surface waves. The method is tested with synthetic data with expected Mars noise and Earth data for single events and groups of events and evaluated for errors in both location and structural determination, as well as tradeoffs between resolvable parameters and the effect of 3D crustal variations.

  3. Bayesian Estimation of Fugitive Methane Point Source Emission Rates from a SingleDownwind High-Frequency Gas Sensor

    EPA Science Inventory

    Bayesian Estimation of Fugitive Methane Point Source Emission Rates from a Single Downwind High-Frequency Gas Sensor With the tremendous advances in onshore oil and gas exploration and production (E&P) capability comes the realization that new tools are needed to support env...

  4. Single-Case Time Series with Bayesian Analysis: A Practitioner's Guide.

    ERIC Educational Resources Information Center

    Jones, W. Paul

    2003-01-01

    This article illustrates a simplified time series analysis for use by the counseling researcher practitioner in single-case baseline plus intervention studies with a Bayesian probability analysis to integrate findings from replications. The C statistic is recommended as a primary analysis tool with particular relevance in the context of actual…

  5. Waveform-based Bayesian full moment tensor inversion and uncertainty determination for the induced seismicity in an oil/gas field

    NASA Astrophysics Data System (ADS)

    Gu, Chen; Marzouk, Youssef M.; Toksöz, M. Nafi

    2018-03-01

    Small earthquakes occur due to natural tectonic motions and are induced by oil and gas production processes. In many oil/gas fields and hydrofracking processes, induced earthquakes result from fluid extraction or injection. The locations and source mechanisms of these earthquakes provide valuable information about the reservoirs. Analysis of induced seismic events has mostly assumed a double-couple source mechanism. However, recent studies have shown a non-negligible percentage of non-double-couple components of source moment tensors in hydraulic fracturing events, assuming a full moment tensor source mechanism. Without uncertainty quantification of the moment tensor solution, it is difficult to determine the reliability of these source models. This study develops a Bayesian method to perform waveform-based full moment tensor inversion and uncertainty quantification for induced seismic events, accounting for both location and velocity model uncertainties. We conduct tests with synthetic events to validate the method, and then apply our newly developed Bayesian inversion approach to real induced seismicity in an oil/gas field in the sultanate of Oman—determining the uncertainties in the source mechanism and in the location of that event.

  6. Robust Bayesian Fluorescence Lifetime Estimation, Decay Model Selection and Instrument Response Determination for Low-Intensity FLIM Imaging

    PubMed Central

    Rowley, Mark I.; Coolen, Anthonius C. C.; Vojnovic, Borivoj; Barber, Paul R.

    2016-01-01

    We present novel Bayesian methods for the analysis of exponential decay data that exploit the evidence carried by every detected decay event and enables robust extension to advanced processing. Our algorithms are presented in the context of fluorescence lifetime imaging microscopy (FLIM) and particular attention has been paid to model the time-domain system (based on time-correlated single photon counting) with unprecedented accuracy. We present estimates of decay parameters for mono- and bi-exponential systems, offering up to a factor of two improvement in accuracy compared to previous popular techniques. Results of the analysis of synthetic and experimental data are presented, and areas where the superior precision of our techniques can be exploited in Förster Resonance Energy Transfer (FRET) experiments are described. Furthermore, we demonstrate two advanced processing methods: decay model selection to choose between differing models such as mono- and bi-exponential, and the simultaneous estimation of instrument and decay parameters. PMID:27355322

  7. Bayesian Approach for Flexible Modeling of Semicompeting Risks Data

    PubMed Central

    Han, Baoguang; Yu, Menggang; Dignam, James J.; Rathouz, Paul J.

    2016-01-01

    Summary Semicompeting risks data arise when two types of events, non-terminal and terminal, are observed. When the terminal event occurs first, it censors the non-terminal event, but not vice versa. To account for possible dependent censoring of the non-terminal event by the terminal event and to improve prediction of the terminal event using the non-terminal event information, it is crucial to model their association properly. Motivated by a breast cancer clinical trial data analysis, we extend the well-known illness-death models to allow flexible random effects to capture heterogeneous association structures in the data. Our extension also represents a generalization of the popular shared frailty models that usually assume that the non-terminal event does not affect the hazards of the terminal event beyond a frailty term. We propose a unified Bayesian modeling approach that can utilize existing software packages for both model fitting and individual specific event prediction. The approach is demonstrated via both simulation studies and a breast cancer data set analysis. PMID:25274445

  8. Control charts for monitoring accumulating adverse event count frequencies from single and multiple blinded trials.

    PubMed

    Gould, A Lawrence

    2016-12-30

    Conventional practice monitors accumulating information about drug safety in terms of the numbers of adverse events reported from trials in a drug development program. Estimates of between-treatment adverse event risk differences can be obtained readily from unblinded trials with adjustment for differences among trials using conventional statistical methods. Recent regulatory guidelines require monitoring the cumulative frequency of adverse event reports to identify possible between-treatment adverse event risk differences without unblinding ongoing trials. Conventional statistical methods for assessing between-treatment adverse event risks cannot be applied when the trials are blinded. However, CUSUM charts can be used to monitor the accumulation of adverse event occurrences. CUSUM charts for monitoring adverse event occurrence in a Bayesian paradigm are based on assumptions about the process generating the adverse event counts in a trial as expressed by informative prior distributions. This article describes the construction of control charts for monitoring adverse event occurrence based on statistical models for the processes, characterizes their statistical properties, and describes how to construct useful prior distributions. Application of the approach to two adverse events of interest in a real trial gave nearly identical results for binomial and Poisson observed event count likelihoods. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  9. An introduction to using Bayesian linear regression with clinical data.

    PubMed

    Baldwin, Scott A; Larson, Michael J

    2017-11-01

    Statistical training psychology focuses on frequentist methods. Bayesian methods are an alternative to standard frequentist methods. This article provides researchers with an introduction to fundamental ideas in Bayesian modeling. We use data from an electroencephalogram (EEG) and anxiety study to illustrate Bayesian models. Specifically, the models examine the relationship between error-related negativity (ERN), a particular event-related potential, and trait anxiety. Methodological topics covered include: how to set up a regression model in a Bayesian framework, specifying priors, examining convergence of the model, visualizing and interpreting posterior distributions, interval estimates, expected and predicted values, and model comparison tools. We also discuss situations where Bayesian methods can outperform frequentist methods as well has how to specify more complicated regression models. Finally, we conclude with recommendations about reporting guidelines for those using Bayesian methods in their own research. We provide data and R code for replicating our analyses. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Multilevel modeling of single-case data: A comparison of maximum likelihood and Bayesian estimation.

    PubMed

    Moeyaert, Mariola; Rindskopf, David; Onghena, Patrick; Van den Noortgate, Wim

    2017-12-01

    The focus of this article is to describe Bayesian estimation, including construction of prior distributions, and to compare parameter recovery under the Bayesian framework (using weakly informative priors) and the maximum likelihood (ML) framework in the context of multilevel modeling of single-case experimental data. Bayesian estimation results were found similar to ML estimation results in terms of the treatment effect estimates, regardless of the functional form and degree of information included in the prior specification in the Bayesian framework. In terms of the variance component estimates, both the ML and Bayesian estimation procedures result in biased and less precise variance estimates when the number of participants is small (i.e., 3). By increasing the number of participants to 5 or 7, the relative bias is close to 5% and more precise estimates are obtained for all approaches, except for the inverse-Wishart prior using the identity matrix. When a more informative prior was added, more precise estimates for the fixed effects and random effects were obtained, even when only 3 participants were included. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  11. Sparse Event Modeling with Hierarchical Bayesian Kernel Methods

    DTIC Science & Technology

    2016-01-05

    SECURITY CLASSIFICATION OF: The research objective of this proposal was to develop a predictive Bayesian kernel approach to model count data based on...several predictive variables. Such an approach, which we refer to as the Poisson Bayesian kernel model , is able to model the rate of occurrence of...which adds specificity to the model and can make nonlinear data more manageable. Early results show that the 1. REPORT DATE (DD-MM-YYYY) 4. TITLE

  12. Learning oncogenetic networks by reducing to mixed integer linear programming.

    PubMed

    Shahrabi Farahani, Hossein; Lagergren, Jens

    2013-01-01

    Cancer can be a result of accumulation of different types of genetic mutations such as copy number aberrations. The data from tumors are cross-sectional and do not contain the temporal order of the genetic events. Finding the order in which the genetic events have occurred and progression pathways are of vital importance in understanding the disease. In order to model cancer progression, we propose Progression Networks, a special case of Bayesian networks, that are tailored to model disease progression. Progression networks have similarities with Conjunctive Bayesian Networks (CBNs) [1],a variation of Bayesian networks also proposed for modeling disease progression. We also describe a learning algorithm for learning Bayesian networks in general and progression networks in particular. We reduce the hard problem of learning the Bayesian and progression networks to Mixed Integer Linear Programming (MILP). MILP is a Non-deterministic Polynomial-time complete (NP-complete) problem for which very good heuristics exists. We tested our algorithm on synthetic and real cytogenetic data from renal cell carcinoma. We also compared our learned progression networks with the networks proposed in earlier publications. The software is available on the website https://bitbucket.org/farahani/diprog.

  13. Continuous event monitoring via a Bayesian predictive approach.

    PubMed

    Di, Jianing; Wang, Daniel; Brashear, H Robert; Dragalin, Vladimir; Krams, Michael

    2016-01-01

    In clinical trials, continuous monitoring of event incidence rate plays a critical role in making timely decisions affecting trial outcome. For example, continuous monitoring of adverse events protects the safety of trial participants, while continuous monitoring of efficacy events helps identify early signals of efficacy or futility. Because the endpoint of interest is often the event incidence associated with a given length of treatment duration (e.g., incidence proportion of an adverse event with 2 years of dosing), assessing the event proportion before reaching the intended treatment duration becomes challenging, especially when the event onset profile evolves over time with accumulated exposure. In particular, in the earlier part of the study, ignoring censored subjects may result in significant bias in estimating the cumulative event incidence rate. Such a problem is addressed using a predictive approach in the Bayesian framework. In the proposed approach, experts' prior knowledge about both the frequency and timing of the event occurrence is combined with observed data. More specifically, during any interim look, each event-free subject will be counted with a probability that is derived using prior knowledge. The proposed approach is particularly useful in early stage studies for signal detection based on limited information. But it can also be used as a tool for safety monitoring (e.g., data monitoring committee) during later stage trials. Application of the approach is illustrated using a case study where the incidence rate of an adverse event is continuously monitored during an Alzheimer's disease clinical trial. The performance of the proposed approach is also assessed and compared with other Bayesian and frequentist methods via simulation. Copyright © 2015 John Wiley & Sons, Ltd.

  14. Development of a Bayesian Belief Network Runway Incursion Model

    NASA Technical Reports Server (NTRS)

    Green, Lawrence L.

    2014-01-01

    In a previous paper, a statistical analysis of runway incursion (RI) events was conducted to ascertain their relevance to the top ten Technical Challenges (TC) of the National Aeronautics and Space Administration (NASA) Aviation Safety Program (AvSP). The study revealed connections to perhaps several of the AvSP top ten TC. That data also identified several primary causes and contributing factors for RI events that served as the basis for developing a system-level Bayesian Belief Network (BBN) model for RI events. The system-level BBN model will allow NASA to generically model the causes of RI events and to assess the effectiveness of technology products being developed under NASA funding. These products are intended to reduce the frequency of RI events in particular, and to improve runway safety in general. The development, structure and assessment of that BBN for RI events by a Subject Matter Expert panel are documented in this paper.

  15. Coping with Trial-to-Trial Variability of Event Related Signals: A Bayesian Inference Approach

    NASA Technical Reports Server (NTRS)

    Ding, Mingzhou; Chen, Youghong; Knuth, Kevin H.; Bressler, Steven L.; Schroeder, Charles E.

    2005-01-01

    In electro-neurophysiology, single-trial brain responses to a sensory stimulus or a motor act are commonly assumed to result from the linear superposition of a stereotypic event-related signal (e.g. the event-related potential or ERP) that is invariant across trials and some ongoing brain activity often referred to as noise. To extract the signal, one performs an ensemble average of the brain responses over many identical trials to attenuate the noise. To date, h s simple signal-plus-noise (SPN) model has been the dominant approach in cognitive neuroscience. Mounting empirical evidence has shown that the assumptions underlying this model may be overly simplistic. More realistic models have been proposed that account for the trial-to-trial variability of the event-related signal as well as the possibility of multiple differentially varying components within a given ERP waveform. The variable-signal-plus-noise (VSPN) model, which has been demonstrated to provide the foundation for separation and characterization of multiple differentially varying components, has the potential to provide a rich source of information for questions related to neural functions that complement the SPN model. Thus, being able to estimate the amplitude and latency of each ERP component on a trial-by-trial basis provides a critical link between the perceived benefits of the VSPN model and its many concrete applications. In this paper we describe a Bayesian approach to deal with this issue and the resulting strategy is referred to as the differentially Variable Component Analysis (dVCA). We compare the performance of dVCA on simulated data with Independent Component Analysis (ICA) and analyze neurobiological recordings from monkeys performing cognitive tasks.

  16. The Variability and Interpretation of Earthquake Source Mechanisms in The Geysers Geothermal Field From a Bayesian Standpoint Based on the Choice of a Noise Model

    NASA Astrophysics Data System (ADS)

    Mustać, Marija; Tkalčić, Hrvoje; Burky, Alexander L.

    2018-01-01

    Moment tensor (MT) inversion studies of events in The Geysers geothermal field mostly focused on microseismicity and found a large number of earthquakes with significant non-double-couple (non-DC) seismic radiation. Here we concentrate on the largest events in the area in recent years using a hierarchical Bayesian MT inversion. Initially, we show that the non-DC components of the MT can be reliably retrieved using regional waveform data from a small number of stations. Subsequently, we present results for a number of events and show that accounting for noise correlations can lead to retrieval of a lower isotropic (ISO) component and significantly different focal mechanisms. We compute the Bayesian evidence to compare solutions obtained with different assumptions of the noise covariance matrix. Although a diagonal covariance matrix produces a better waveform fit, inversions that account for noise correlations via an empirically estimated noise covariance matrix account for interdependences of data errors and are preferred from a Bayesian point of view. This implies that improper treatment of data noise in waveform inversions can result in fitting the noise and misinterpreting the non-DC components. Finally, one of the analyzed events is characterized as predominantly DC, while the others still have significant non-DC components, probably as a result of crack opening, which is a reasonable hypothesis for The Geysers geothermal field geological setting.

  17. Rigorous Approach in Investigation of Seismic Structure and Source Characteristicsin Northeast Asia: Hierarchical and Trans-dimensional Bayesian Inversion

    NASA Astrophysics Data System (ADS)

    Mustac, M.; Kim, S.; Tkalcic, H.; Rhie, J.; Chen, Y.; Ford, S. R.; Sebastian, N.

    2015-12-01

    Conventional approaches to inverse problems suffer from non-linearity and non-uniqueness in estimations of seismic structures and source properties. Estimated results and associated uncertainties are often biased by applied regularizations and additional constraints, which are commonly introduced to solve such problems. Bayesian methods, however, provide statistically meaningful estimations of models and their uncertainties constrained by data information. In addition, hierarchical and trans-dimensional (trans-D) techniques are inherently implemented in the Bayesian framework to account for involved error statistics and model parameterizations, and, in turn, allow more rigorous estimations of the same. Here, we apply Bayesian methods throughout the entire inference process to estimate seismic structures and source properties in Northeast Asia including east China, the Korean peninsula, and the Japanese islands. Ambient noise analysis is first performed to obtain a base three-dimensional (3-D) heterogeneity model using continuous broadband waveforms from more than 300 stations. As for the tomography of surface wave group and phase velocities in the 5-70 s band, we adopt a hierarchical and trans-D Bayesian inversion method using Voronoi partition. The 3-D heterogeneity model is further improved by joint inversions of teleseismic receiver functions and dispersion data using a newly developed high-efficiency Bayesian technique. The obtained model is subsequently used to prepare 3-D structural Green's functions for the source characterization. A hierarchical Bayesian method for point source inversion using regional complete waveform data is applied to selected events from the region. The seismic structure and source characteristics with rigorously estimated uncertainties from the novel Bayesian methods provide enhanced monitoring and discrimination of seismic events in northeast Asia.

  18. Bayesian approach to the assessment of the population-specific risk of inhibitors in hemophilia A patients: a case study

    PubMed Central

    Cheng, Ji; Iorio, Alfonso; Marcucci, Maura; Romanov, Vadim; Pullenayegum, Eleanor M; Marshall, John K; Thabane, Lehana

    2016-01-01

    Background Developing inhibitors is a rare event during the treatment of hemophilia A. The multifacets and uncertainty surrounding the development of inhibitors further complicate the process of estimating inhibitor rate from the limited data. Bayesian statistical modeling provides a useful tool in generating, enhancing, and exploring the evidence through incorporating all the available information. Methods We built our Bayesian analysis using three study cases to estimate the inhibitor rates of patients with hemophilia A in three different scenarios: Case 1, a single cohort of previously treated patients (PTPs) or previously untreated patients; Case 2, a meta-analysis of PTP cohorts; and Case 3, a previously unexplored patient population – patients with baseline low-titer inhibitor or history of inhibitor development. The data used in this study were extracted from three published ADVATE (antihemophilic factor [recombinant] is a product of Baxter for treating hemophilia A) post-authorization surveillance studies. Noninformative and informative priors were applied to Bayesian standard (Case 1) or random-effects (Case 2 and Case 3) logistic models. Bayesian probabilities of satisfying three meaningful thresholds of the risk of developing a clinical significant inhibitor (10/100, 5/100 [high rates], and 1/86 [the Food and Drug Administration mandated cutoff rate in PTPs]) were calculated. The effect of discounting prior information or scaling up the study data was evaluated. Results Results based on noninformative priors were similar to the classical approach. Using priors from PTPs lowered the point estimate and narrowed the 95% credible intervals (Case 1: from 1.3 [0.5, 2.7] to 0.8 [0.5, 1.1]; Case 2: from 1.9 [0.6, 6.0] to 0.8 [0.5, 1.1]; Case 3: 2.3 [0.5, 6.8] to 0.7 [0.5, 1.1]). All probabilities of satisfying a threshold of 1/86 were above 0.65. Increasing the number of patients by two and ten times substantially narrowed the credible intervals for the single cohort study (1.4 [0.7, 2.3] and 1.4 [1.1, 1.8], respectively). Increasing the number of studies by two and ten times for the multiple study scenarios (Case 2: 1.9 [0.6, 4.0] and 1.9 [1.5, 2.6]; Case 3: 2.4 [0.9, 5.0] and 2.6 [1.9, 3.5], respectively) had a similar effect. Conclusion Bayesian approach as a robust, transparent, and reproducible analytic method can be efficiently used to estimate the inhibitor rate of hemophilia A in complex clinical settings. PMID:27822129

  19. Bayesian approach to the assessment of the population-specific risk of inhibitors in hemophilia A patients: a case study.

    PubMed

    Cheng, Ji; Iorio, Alfonso; Marcucci, Maura; Romanov, Vadim; Pullenayegum, Eleanor M; Marshall, John K; Thabane, Lehana

    2016-01-01

    Developing inhibitors is a rare event during the treatment of hemophilia A. The multifacets and uncertainty surrounding the development of inhibitors further complicate the process of estimating inhibitor rate from the limited data. Bayesian statistical modeling provides a useful tool in generating, enhancing, and exploring the evidence through incorporating all the available information. We built our Bayesian analysis using three study cases to estimate the inhibitor rates of patients with hemophilia A in three different scenarios: Case 1, a single cohort of previously treated patients (PTPs) or previously untreated patients; Case 2, a meta-analysis of PTP cohorts; and Case 3, a previously unexplored patient population - patients with baseline low-titer inhibitor or history of inhibitor development. The data used in this study were extracted from three published ADVATE (antihemophilic factor [recombinant] is a product of Baxter for treating hemophilia A) post-authorization surveillance studies. Noninformative and informative priors were applied to Bayesian standard (Case 1) or random-effects (Case 2 and Case 3) logistic models. Bayesian probabilities of satisfying three meaningful thresholds of the risk of developing a clinical significant inhibitor (10/100, 5/100 [high rates], and 1/86 [the Food and Drug Administration mandated cutoff rate in PTPs]) were calculated. The effect of discounting prior information or scaling up the study data was evaluated. Results based on noninformative priors were similar to the classical approach. Using priors from PTPs lowered the point estimate and narrowed the 95% credible intervals (Case 1: from 1.3 [0.5, 2.7] to 0.8 [0.5, 1.1]; Case 2: from 1.9 [0.6, 6.0] to 0.8 [0.5, 1.1]; Case 3: 2.3 [0.5, 6.8] to 0.7 [0.5, 1.1]). All probabilities of satisfying a threshold of 1/86 were above 0.65. Increasing the number of patients by two and ten times substantially narrowed the credible intervals for the single cohort study (1.4 [0.7, 2.3] and 1.4 [1.1, 1.8], respectively). Increasing the number of studies by two and ten times for the multiple study scenarios (Case 2: 1.9 [0.6, 4.0] and 1.9 [1.5, 2.6]; Case 3: 2.4 [0.9, 5.0] and 2.6 [1.9, 3.5], respectively) had a similar effect. Bayesian approach as a robust, transparent, and reproducible analytic method can be efficiently used to estimate the inhibitor rate of hemophilia A in complex clinical settings.

  20. Bayesian Inference for Signal-Based Seismic Monitoring

    NASA Astrophysics Data System (ADS)

    Moore, D.

    2015-12-01

    Traditional seismic monitoring systems rely on discrete detections produced by station processing software, discarding significant information present in the original recorded signal. SIG-VISA (Signal-based Vertically Integrated Seismic Analysis) is a system for global seismic monitoring through Bayesian inference on seismic signals. By modeling signals directly, our forward model is able to incorporate a rich representation of the physics underlying the signal generation process, including source mechanisms, wave propagation, and station response. This allows inference in the model to recover the qualitative behavior of recent geophysical methods including waveform matching and double-differencing, all as part of a unified Bayesian monitoring system that simultaneously detects and locates events from a global network of stations. We demonstrate recent progress in scaling up SIG-VISA to efficiently process the data stream of global signals recorded by the International Monitoring System (IMS), including comparisons against existing processing methods that show increased sensitivity from our signal-based model and in particular the ability to locate events (including aftershock sequences that can tax analyst processing) precisely from waveform correlation effects. We also provide a Bayesian analysis of an alleged low-magnitude event near the DPRK test site in May 2010 [1] [2], investigating whether such an event could plausibly be detected through automated processing in a signal-based monitoring system. [1] Zhang, Miao and Wen, Lianxing. "Seismological Evidence for a Low-Yield Nuclear Test on 12 May 2010 in North Korea". Seismological Research Letters, January/February 2015. [2] Richards, Paul. "A Seismic Event in North Korea on 12 May 2010". CTBTO SnT 2015 oral presentation, video at https://video-archive.ctbto.org/index.php/kmc/preview/partner_id/103/uiconf_id/4421629/entry_id/0_ymmtpps0/delivery/http

  1. NET-VISA, a Bayesian method next-generation automatic association software. Latest developments and operational assessment.

    NASA Astrophysics Data System (ADS)

    Le Bras, Ronan; Kushida, Noriyuki; Mialle, Pierrick; Tomuta, Elena; Arora, Nimar

    2017-04-01

    The Preparatory Commission for the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) has been developing a Bayesian method and software to perform the key step of automatic association of seismological, hydroacoustic, and infrasound (SHI) parametric data. In our preliminary testing in the CTBTO, NET_VISA shows much better performance than its currently operating automatic association module, with a rate for automatic events matching the analyst-reviewed events increased by 10%, signifying that the percentage of missed events is lowered by 40%. Initial tests involving analysts also showed that the new software will complete the automatic bulletins of the CTBTO by adding previously missed events. Because products by the CTBTO are also widely distributed to its member States as well as throughout the seismological community, the introduction of a new technology must be carried out carefully, and the first step of operational integration is to first use NET-VISA results within the interactive analysts' software so that the analysts can check the robustness of the Bayesian approach. We report on the latest results both on the progress for automatic processing and for the initial introduction of NET-VISA results in the analyst review process

  2. A Bayesian framework for infrasound location

    NASA Astrophysics Data System (ADS)

    Modrak, Ryan T.; Arrowsmith, Stephen J.; Anderson, Dale N.

    2010-04-01

    We develop a framework for location of infrasound events using backazimuth and infrasonic arrival times from multiple arrays. Bayesian infrasonic source location (BISL) developed here estimates event location and associated credibility regions. BISL accounts for unknown source-to-array path or phase by formulating infrasonic group velocity as random. Differences between observed and predicted source-to-array traveltimes are partitioned into two additive Gaussian sources, measurement error and model error, the second of which accounts for the unknown influence of wind and temperature on path. By applying the technique to both synthetic tests and ground-truth events, we highlight the complementary nature of back azimuths and arrival times for estimating well-constrained event locations. BISL is an extension to methods developed earlier by Arrowsmith et al. that provided simple bounds on location using a grid-search technique.

  3. Mining pharmacovigilance data using Bayesian logistic regression with James-Stein type shrinkage estimation.

    PubMed

    An, Lihua; Fung, Karen Y; Krewski, Daniel

    2010-09-01

    Spontaneous adverse event reporting systems are widely used to identify adverse reactions to drugs following their introduction into the marketplace. In this article, a James-Stein type shrinkage estimation strategy was developed in a Bayesian logistic regression model to analyze pharmacovigilance data. This method is effective in detecting signals as it combines information and borrows strength across medically related adverse events. Computer simulation demonstrated that the shrinkage estimator is uniformly better than the maximum likelihood estimator in terms of mean squared error. This method was used to investigate the possible association of a series of diabetic drugs and the risk of cardiovascular events using data from the Canada Vigilance Online Database.

  4. Robust Bayesian hypocentre and uncertainty region estimation: the effect of heavy-tailed distributions and prior information in cases with poor, inconsistent and insufficient arrival times

    NASA Astrophysics Data System (ADS)

    Martinsson, J.

    2013-03-01

    We propose methods for robust Bayesian inference of the hypocentre in presence of poor, inconsistent and insufficient phase arrival times. The objectives are to increase the robustness, the accuracy and the precision by introducing heavy-tailed distributions and an informative prior distribution of the seismicity. The effects of the proposed distributions are studied under real measurement conditions in two underground mine networks and validated using 53 blasts with known hypocentres. To increase the robustness against poor, inconsistent or insufficient arrivals, a Gaussian Mixture Model is used as a hypocentre prior distribution to describe the seismically active areas, where the parameters are estimated based on previously located events in the region. The prior is truncated to constrain the solution to valid geometries, for example below the ground surface, excluding known cavities, voids and fractured zones. To reduce the sensitivity to outliers, different heavy-tailed distributions are evaluated to model the likelihood distribution of the arrivals given the hypocentre and the origin time. Among these distributions, the multivariate t-distribution is shown to produce the overall best performance, where the tail-mass adapts to the observed data. Hypocentre and uncertainty region estimates are based on simulations from the posterior distribution using Markov Chain Monte Carlo techniques. Velocity graphs (equivalent to traveltime graphs) are estimated using blasts from known locations, and applied to reduce the main uncertainties and thereby the final estimation error. To focus on the behaviour and the performance of the proposed distributions, a basic single-event Bayesian procedure is considered in this study for clarity. Estimation results are shown with different distributions, with and without prior distribution of seismicity, with wrong prior distribution, with and without error compensation, with and without error description, with insufficient arrival times and in presence of significant outliers. A particular focus is on visual results and comparisons to give a better understanding of the Bayesian advantage and to show the effects of heavy-tailed distributions and informative prior information on real data.

  5. Genetic biasing through cultural transmission: do simple Bayesian models of language evolution generalize?

    PubMed

    Dediu, Dan

    2009-08-07

    The recent Bayesian approaches to language evolution and change seem to suggest that genetic biases can impact on the characteristics of language, but, at the same time, that its cultural transmission can partially free it from these same genetic constraints. One of the current debates centres on the striking differences between sampling and a posteriori maximising Bayesian learners, with the first converging on the prior bias while the latter allows a certain freedom to language evolution. The present paper shows that this difference disappears if populations more complex than a single teacher and a single learner are considered, with the resulting behaviours more similar to the sampler. This suggests that generalisations based on the language produced by Bayesian agents in such homogeneous single agent chains are not warranted. It is not clear which of the assumptions in such models are responsible, but these findings seem to support the rising concerns on the validity of the "acquisitionist" assumption, whereby the locus of language change and evolution is taken to be the first language acquirers (children) as opposed to the competent language users (the adults).

  6. Bayesian regression model for recurrent event data with event-varying covariate effects and event effect.

    PubMed

    Lin, Li-An; Luo, Sheng; Davis, Barry R

    2018-01-01

    In the course of hypertension, cardiovascular disease events (e.g., stroke, heart failure) occur frequently and recurrently. The scientific interest in such study may lie in the estimation of treatment effect while accounting for the correlation among event times. The correlation among recurrent event times come from two sources: subject-specific heterogeneity (e.g., varied lifestyles, genetic variations, and other unmeasurable effects) and event dependence (i.e., event incidences may change the risk of future recurrent events). Moreover, event incidences may change the disease progression so that there may exist event-varying covariate effects (the covariate effects may change after each event) and event effect (the effect of prior events on the future events). In this article, we propose a Bayesian regression model that not only accommodates correlation among recurrent events from both sources, but also explicitly characterizes the event-varying covariate effects and event effect. This model is especially useful in quantifying how the incidences of events change the effects of covariates and risk of future events. We compare the proposed model with several commonly used recurrent event models and apply our model to the motivating lipid-lowering trial (LLT) component of the Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT) (ALLHAT-LLT).

  7. Bayesian regression model for recurrent event data with event-varying covariate effects and event effect

    PubMed Central

    Lin, Li-An; Luo, Sheng; Davis, Barry R.

    2017-01-01

    In the course of hypertension, cardiovascular disease events (e.g., stroke, heart failure) occur frequently and recurrently. The scientific interest in such study may lie in the estimation of treatment effect while accounting for the correlation among event times. The correlation among recurrent event times come from two sources: subject-specific heterogeneity (e.g., varied lifestyles, genetic variations, and other unmeasurable effects) and event dependence (i.e., event incidences may change the risk of future recurrent events). Moreover, event incidences may change the disease progression so that there may exist event-varying covariate effects (the covariate effects may change after each event) and event effect (the effect of prior events on the future events). In this article, we propose a Bayesian regression model that not only accommodates correlation among recurrent events from both sources, but also explicitly characterizes the event-varying covariate effects and event effect. This model is especially useful in quantifying how the incidences of events change the effects of covariates and risk of future events. We compare the proposed model with several commonly used recurrent event models and apply our model to the motivating lipid-lowering trial (LLT) component of the Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT) (ALLHAT-LLT). PMID:29755162

  8. Tracking composite material damage evolution using Bayesian filtering and flash thermography data

    NASA Astrophysics Data System (ADS)

    Gregory, Elizabeth D.; Holland, Steve D.

    2016-05-01

    We propose a method for tracking the condition of a composite part using Bayesian filtering of ash thermography data over the lifetime of the part. In this demonstration, composite panels were fabricated; impacted to induce subsurface delaminations; and loaded in compression over multiple time steps, causing the delaminations to grow in size. Flash thermography data was collected between each damage event to serve as a time history of the part. The ash thermography indicated some areas of damage but provided little additional information as to the exact nature or depth of the damage. Computed tomography (CT) data was also collected after each damage event and provided a high resolution volume model of damage that acted as truth. After each cycle, the condition estimate, from the ash thermography data and the Bayesian filter, was compared to 'ground truth'. The Bayesian process builds on the lifetime history of ash thermography scans and can give better estimates of material condition as compared to the most recent scan alone, which is common practice in the aerospace industry. Bayesian inference provides probabilistic estimates of damage condition that are updated as each new set of data becomes available. The method was tested on simulated data and then on an experimental data set.

  9. A Flexible Hierarchical Bayesian Modeling Technique for Risk Analysis of Major Accidents.

    PubMed

    Yu, Hongyang; Khan, Faisal; Veitch, Brian

    2017-09-01

    Safety analysis of rare events with potentially catastrophic consequences is challenged by data scarcity and uncertainty. Traditional causation-based approaches, such as fault tree and event tree (used to model rare event), suffer from a number of weaknesses. These include the static structure of the event causation, lack of event occurrence data, and need for reliable prior information. In this study, a new hierarchical Bayesian modeling based technique is proposed to overcome these drawbacks. The proposed technique can be used as a flexible technique for risk analysis of major accidents. It enables both forward and backward analysis in quantitative reasoning and the treatment of interdependence among the model parameters. Source-to-source variability in data sources is also taken into account through a robust probabilistic safety analysis. The applicability of the proposed technique has been demonstrated through a case study in marine and offshore industry. © 2017 Society for Risk Analysis.

  10. Bayesian Network Meta-Analysis for Unordered Categorical Outcomes with Incomplete Data

    ERIC Educational Resources Information Center

    Schmid, Christopher H.; Trikalinos, Thomas A.; Olkin, Ingram

    2014-01-01

    We develop a Bayesian multinomial network meta-analysis model for unordered (nominal) categorical outcomes that allows for partially observed data in which exact event counts may not be known for each category. This model properly accounts for correlations of counts in mutually exclusive categories and enables proper comparison and ranking of…

  11. Epistemic-based investigation of the probability of hazard scenarios using Bayesian network for the lifting operation of floating objects

    NASA Astrophysics Data System (ADS)

    Toroody, Ahmad Bahoo; Abaiee, Mohammad Mahdi; Gholamnia, Reza; Ketabdari, Mohammad Javad

    2016-09-01

    Owing to the increase in unprecedented accidents with new root causes in almost all operational areas, the importance of risk management has dramatically risen. Risk assessment, one of the most significant aspects of risk management, has a substantial impact on the system-safety level of organizations, industries, and operations. If the causes of all kinds of failure and the interactions between them are considered, effective risk assessment can be highly accurate. A combination of traditional risk assessment approaches and modern scientific probability methods can help in realizing better quantitative risk assessment methods. Most researchers face the problem of minimal field data with respect to the probability and frequency of each failure. Because of this limitation in the availability of epistemic knowledge, it is important to conduct epistemic estimations by applying the Bayesian theory for identifying plausible outcomes. In this paper, we propose an algorithm and demonstrate its application in a case study for a light-weight lifting operation in the Persian Gulf of Iran. First, we identify potential accident scenarios and present them in an event tree format. Next, excluding human error, we use the event tree to roughly estimate the prior probability of other hazard-promoting factors using a minimal amount of field data. We then use the Success Likelihood Index Method (SLIM) to calculate the probability of human error. On the basis of the proposed event tree, we use the Bayesian network of the provided scenarios to compensate for the lack of data. Finally, we determine the resulting probability of each event based on its evidence in the epistemic estimation format by building on two Bayesian network types: the probability of hazard promotion factors and the Bayesian theory. The study results indicate that despite the lack of available information on the operation of floating objects, a satisfactory result can be achieved using epistemic data.

  12. Impact of censoring on learning Bayesian networks in survival modelling.

    PubMed

    Stajduhar, Ivan; Dalbelo-Basić, Bojana; Bogunović, Nikola

    2009-11-01

    Bayesian networks are commonly used for presenting uncertainty and covariate interactions in an easily interpretable way. Because of their efficient inference and ability to represent causal relationships, they are an excellent choice for medical decision support systems in diagnosis, treatment, and prognosis. Although good procedures for learning Bayesian networks from data have been defined, their performance in learning from censored survival data has not been widely studied. In this paper, we explore how to use these procedures to learn about possible interactions between prognostic factors and their influence on the variate of interest. We study how censoring affects the probability of learning correct Bayesian network structures. Additionally, we analyse the potential usefulness of the learnt models for predicting the time-independent probability of an event of interest. We analysed the influence of censoring with a simulation on synthetic data sampled from randomly generated Bayesian networks. We used two well-known methods for learning Bayesian networks from data: a constraint-based method and a score-based method. We compared the performance of each method under different levels of censoring to those of the naive Bayes classifier and the proportional hazards model. We did additional experiments on several datasets from real-world medical domains. The machine-learning methods treated censored cases in the data as event-free. We report and compare results for several commonly used model evaluation metrics. On average, the proportional hazards method outperformed other methods in most censoring setups. As part of the simulation study, we also analysed structural similarities of the learnt networks. Heavy censoring, as opposed to no censoring, produces up to a 5% surplus and up to 10% missing total arcs. It also produces up to 50% missing arcs that should originally be connected to the variate of interest. Presented methods for learning Bayesian networks from data can be used to learn from censored survival data in the presence of light censoring (up to 20%) by treating censored cases as event-free. Given intermediate or heavy censoring, the learnt models become tuned to the majority class and would thus require a different approach.

  13. Predicting coastal cliff erosion using a Bayesian probabilistic model

    USGS Publications Warehouse

    Hapke, Cheryl J.; Plant, Nathaniel G.

    2010-01-01

    Regional coastal cliff retreat is difficult to model due to the episodic nature of failures and the along-shore variability of retreat events. There is a growing demand, however, for predictive models that can be used to forecast areas vulnerable to coastal erosion hazards. Increasingly, probabilistic models are being employed that require data sets of high temporal density to define the joint probability density function that relates forcing variables (e.g. wave conditions) and initial conditions (e.g. cliff geometry) to erosion events. In this study we use a multi-parameter Bayesian network to investigate correlations between key variables that control and influence variations in cliff retreat processes. The network uses Bayesian statistical methods to estimate event probabilities using existing observations. Within this framework, we forecast the spatial distribution of cliff retreat along two stretches of cliffed coast in Southern California. The input parameters are the height and slope of the cliff, a descriptor of material strength based on the dominant cliff-forming lithology, and the long-term cliff erosion rate that represents prior behavior. The model is forced using predicted wave impact hours. Results demonstrate that the Bayesian approach is well-suited to the forward modeling of coastal cliff retreat, with the correct outcomes forecast in 70–90% of the modeled transects. The model also performs well in identifying specific locations of high cliff erosion, thus providing a foundation for hazard mapping. This approach can be employed to predict cliff erosion at time-scales ranging from storm events to the impacts of sea-level rise at the century-scale.

  14. Presentation of the results of a Bayesian automatic event detection and localization program to human analysts

    NASA Astrophysics Data System (ADS)

    Kushida, N.; Kebede, F.; Feitio, P.; Le Bras, R.

    2016-12-01

    The Preparatory Commission for the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) has been developing and testing NET-VISA (Arora et al., 2013), a Bayesian automatic event detection and localization program, and evaluating its performance in a realistic operational mode. In our preliminary testing at the CTBTO, NET-VISA shows better performance than its currently operating automatic localization program. However, given CTBTO's role and its international context, a new technology should be introduced cautiously when it replaces a key piece of the automatic processing. We integrated the results of NET-VISA into the Analyst Review Station, extensively used by the analysts so that they can check the accuracy and robustness of the Bayesian approach. We expect the workload of the analysts to be reduced because of the better performance of NET-VISA in finding missed events and getting a more complete set of stations than the current system which has been operating for nearly twenty years. The results of a series of tests indicate that the expectations born from the automatic tests, which show an overall overlap improvement of 11%, meaning that the missed events rate is cut by 42%, hold for the integrated interactive module as well. New events are found by analysts, which qualify for the CTBTO Reviewed Event Bulletin, beyond the ones analyzed through the standard procedures. Arora, N., Russell, S., and Sudderth, E., NET-VISA: Network Processing Vertically Integrated Seismic Analysis, 2013, Bull. Seismol. Soc. Am., 103, 709-729.

  15. Effect of supersaturated oxygen delivery on infarct size after percutaneous coronary intervention in acute myocardial infarction.

    PubMed

    Stone, Gregg W; Martin, Jack L; de Boer, Menko-Jan; Margheri, Massimo; Bramucci, Ezio; Blankenship, James C; Metzger, D Christopher; Gibbons, Raymond J; Lindsay, Barbara S; Weiner, Bonnie H; Lansky, Alexandra J; Krucoff, Mitchell W; Fahy, Martin; Boscardin, W John

    2009-10-01

    Myocardial salvage is often suboptimal after percutaneous coronary intervention in ST-segment elevation myocardial infarction. Posthoc subgroup analysis from a previous trial (AMIHOT I) suggested that intracoronary delivery of supersaturated oxygen (SSO(2)) may reduce infarct size in patients with large ST-segment elevation myocardial infarction treated early. A prospective, multicenter trial was performed in which 301 patients with anterior ST-segment elevation myocardial infarction undergoing percutaneous coronary intervention within 6 hours of symptom onset were randomized to a 90-minute intracoronary SSO(2) infusion in the left anterior descending artery infarct territory (n=222) or control (n=79). The primary efficacy measure was infarct size in the intention-to-treat population (powered for superiority), and the primary safety measure was composite major adverse cardiovascular events at 30 days in the intention-to-treat and per-protocol populations (powered for noninferiority), with Bayesian hierarchical modeling used to allow partial pooling of evidence from AMIHOT I. Among 281 randomized patients with tc-99m-sestamibi single-photon emission computed tomography data in AMIHOT II, median (interquartile range) infarct size was 26.5% (8.5%, 44%) with control compared with 20% (6%, 37%) after SSO(2). The pooled adjusted infarct size was 25% (7%, 42%) with control compared with 18.5% (3.5%, 34.5%) after SSO(2) (P(Wilcoxon)=0.02; Bayesian posterior probability of superiority, 96.9%). The Bayesian pooled 30-day mean (+/-SE) rates of major adverse cardiovascular events were 5.0+/-1.4% for control and 5.9+/-1.4% for SSO(2) by intention-to-treat, and 5.1+/-1.5% for control and 4.7+/-1.5% for SSO(2) by per-protocol analysis (posterior probability of noninferiority, 99.5% and 99.9%, respectively). Among patients with anterior ST-segment elevation myocardial infarction undergoing percutaneous coronary intervention within 6 hours of symptom onset, infusion of SSO(2) into the left anterior descending artery infarct territory results in a significant reduction in infarct size with noninferior rates of major adverse cardiovascular events at 30 days. Clinical Trial Registration- clinicaltrials.gov Identifier: NCT00175058.

  16. A combined Fuzzy and Naive Bayesian strategy can be used to assign event codes to injury narratives.

    PubMed

    Marucci-Wellman, H; Lehto, M; Corns, H

    2011-12-01

    Bayesian methods show promise for classifying injury narratives from large administrative datasets into cause groups. This study examined a combined approach where two Bayesian models (Fuzzy and Naïve) were used to either classify a narrative or select it for manual review. Injury narratives were extracted from claims filed with a worker's compensation insurance provider between January 2002 and December 2004. Narratives were separated into a training set (n=11,000) and prediction set (n=3,000). Expert coders assigned two-digit Bureau of Labor Statistics Occupational Injury and Illness Classification event codes to each narrative. Fuzzy and Naïve Bayesian models were developed using manually classified cases in the training set. Two semi-automatic machine coding strategies were evaluated. The first strategy assigned cases for manual review if the Fuzzy and Naïve models disagreed on the classification. The second strategy selected additional cases for manual review from the Agree dataset using prediction strength to reach a level of 50% computer coding and 50% manual coding. When agreement alone was used as the filtering strategy, the majority were coded by the computer (n=1,928, 64%) leaving 36% for manual review. The overall combined (human plus computer) sensitivity was 0.90 and positive predictive value (PPV) was >0.90 for 11 of 18 2-digit event categories. Implementing the 2nd strategy improved results with an overall sensitivity of 0.95 and PPV >0.90 for 17 of 18 categories. A combined Naïve-Fuzzy Bayesian approach can classify some narratives with high accuracy and identify others most beneficial for manual review, reducing the burden on human coders.

  17. With or without you: predictive coding and Bayesian inference in the brain

    PubMed Central

    Aitchison, Laurence; Lengyel, Máté

    2018-01-01

    Two theoretical ideas have emerged recently with the ambition to provide a unifying functional explanation of neural population coding and dynamics: predictive coding and Bayesian inference. Here, we describe the two theories and their combination into a single framework: Bayesian predictive coding. We clarify how the two theories can be distinguished, despite sharing core computational concepts and addressing an overlapping set of empirical phenomena. We argue that predictive coding is an algorithmic / representational motif that can serve several different computational goals of which Bayesian inference is but one. Conversely, while Bayesian inference can utilize predictive coding, it can also be realized by a variety of other representations. We critically evaluate the experimental evidence supporting Bayesian predictive coding and discuss how to test it more directly. PMID:28942084

  18. Initial Evaluation of Signal-Based Bayesian Monitoring

    NASA Astrophysics Data System (ADS)

    Moore, D.; Russell, S.

    2016-12-01

    We present SIGVISA (Signal-based Vertically Integrated Seismic Analysis), a next-generation system for global seismic monitoring through Bayesian inference on seismic signals. Traditional seismic monitoring systems rely on discrete detections produced by station processing software, discarding significant information present in the original recorded signal. By modeling signals directly, our forward model is able to incorporate a rich representation of the physics underlying the signal generation process, including source mechanisms, wave propagation, and station response. This allows inference in the model to recover the qualitative behavior of geophysical methods including waveform matching and double-differencing, all as part of a unified Bayesian monitoring system that simultaneously detects and locates events from a network of stations. We report results from an evaluation of SIGVISA monitoring the western United States for a two-week period following the magnitude 6.0 event in Wells, NV in February 2008. During this period, SIGVISA detects more than twice as many events as NETVISA, and three times as many as SEL3, while operating at the same precision; at lower precisions it detects up to five times as many events as SEL3. At the same time, signal-based monitoring reduces mean location errors by a factor of four relative to detection-based systems. We provide evidence that, given only IMS data, SIGVISA detects events that are missed by regional monitoring networks, indicating that our evaluations may even underestimate its performance. Finally, SIGVISA matches or exceeds the detection rates of existing systems for de novo events - events with no nearby historical seismicity - and detects through automated processing a number of such events missed even by the human analysts generating the LEB.

  19. A Bayesian Hierarchical Modeling Scheme for Estimating Erosion Rates Under Current Climate Conditions

    NASA Astrophysics Data System (ADS)

    Lowman, L.; Barros, A. P.

    2014-12-01

    Computational modeling of surface erosion processes is inherently difficult because of the four-dimensional nature of the problem and the multiple temporal and spatial scales that govern individual mechanisms. Landscapes are modified via surface and fluvial erosion and exhumation, each of which takes place over a range of time scales. Traditional field measurements of erosion/exhumation rates are scale dependent, often valid for a single point-wise location or averaging over large aerial extents and periods with intense and mild erosion. We present a method of remotely estimating erosion rates using a Bayesian hierarchical model based upon the stream power erosion law (SPEL). A Bayesian approach allows for estimating erosion rates using the deterministic relationship given by the SPEL and data on channel slopes and precipitation at the basin and sub-basin scale. The spatial scale associated with this framework is the elevation class, where each class is characterized by distinct morphologic behavior observed through different modes in the distribution of basin outlet elevations. Interestingly, the distributions of first-order outlets are similar in shape and extent to the distribution of precipitation events (i.e. individual storms) over a 14-year period between 1998-2011. We demonstrate an application of the Bayesian hierarchical modeling framework for five basins and one intermontane basin located in the central Andes between 5S and 20S. Using remotely sensed data of current annual precipitation rates from the Tropical Rainfall Measuring Mission (TRMM) and topography from a high resolution (3 arc-seconds) digital elevation map (DEM), our erosion rate estimates are consistent with decadal-scale estimates based on landslide mapping and sediment flux observations and 1-2 orders of magnitude larger than most millennial and million year timescale estimates from thermochronology and cosmogenic nuclides.

  20. Factors affecting GEBV accuracy with single-step Bayesian models.

    PubMed

    Zhou, Lei; Mrode, Raphael; Zhang, Shengli; Zhang, Qin; Li, Bugao; Liu, Jian-Feng

    2018-01-01

    A single-step approach to obtain genomic prediction was first proposed in 2009. Many studies have investigated the components of GEBV accuracy in genomic selection. However, it is still unclear how the population structure and the relationships between training and validation populations influence GEBV accuracy in terms of single-step analysis. Here, we explored the components of GEBV accuracy in single-step Bayesian analysis with a simulation study. Three scenarios with various numbers of QTL (5, 50, and 500) were simulated. Three models were implemented to analyze the simulated data: single-step genomic best linear unbiased prediction (GBLUP; SSGBLUP), single-step BayesA (SS-BayesA), and single-step BayesB (SS-BayesB). According to our results, GEBV accuracy was influenced by the relationships between the training and validation populations more significantly for ungenotyped animals than for genotyped animals. SS-BayesA/BayesB showed an obvious advantage over SSGBLUP with the scenarios of 5 and 50 QTL. SS-BayesB model obtained the lowest accuracy with the 500 QTL in the simulation. SS-BayesA model was the most efficient and robust considering all QTL scenarios. Generally, both the relationships between training and validation populations and LD between markers and QTL contributed to GEBV accuracy in the single-step analysis, and the advantages of single-step Bayesian models were more apparent when the trait is controlled by fewer QTL.

  1. A Bayesian technique for improving the sensitivity of the atmospheric neutrino L/E analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blake, A. S. T.; Chapman, J. D.; Thomson, M. A.

    Tmore » his paper outlines a method for improving the precision of atmospheric neutrino oscillation measurements. One experimental signature for these oscillations is an observed deficit in the rate of ν μ charged-current interactions with an oscillatory dependence on L ν / E ν , where L ν is the neutrino propagation distance and E mrow is="true"> ν is the neutrino energy. For contained-vertex atmospheric neutrino interactions, the L ν / E ν resolution varies significantly from event to event. he precision of the oscillation measurement can be improved by incorporating information on L ν / E ν resolution into the oscillation analysis. In the analysis presented here, a Bayesian technique is used to estimate the L ν / E ν resolution of observed atmospheric neutrinos on an event-by-event basis. By separating the events into bins of L ν / E ν resolution in the oscillation analysis, a significant improvement in oscillation sensitivity can be achieved.« less

  2. Defining Probability in Sex Offender Risk Assessment.

    PubMed

    Elwood, Richard W

    2016-12-01

    There is ongoing debate and confusion over using actuarial scales to predict individuals' risk of sexual recidivism. Much of the debate comes from not distinguishing Frequentist from Bayesian definitions of probability. Much of the confusion comes from applying Frequentist probability to individuals' risk. By definition, only Bayesian probability can be applied to the single case. The Bayesian concept of probability resolves most of the confusion and much of the debate in sex offender risk assessment. Although Bayesian probability is well accepted in risk assessment generally, it has not been widely used to assess the risk of sex offenders. I review the two concepts of probability and show how the Bayesian view alone provides a coherent scheme to conceptualize individuals' risk of sexual recidivism.

  3. Development and Execution of the RUNSAFE Runway Safety Bayesian Belief Network Model

    NASA Technical Reports Server (NTRS)

    Green, Lawrence L.

    2015-01-01

    One focus area of the National Aeronautics and Space Administration (NASA) is to improve aviation safety. Runway safety is one such thrust of investigation and research. The two primary components of this runway safety research are in runway incursion (RI) and runway excursion (RE) events. These are adverse ground-based aviation incidents that endanger crew, passengers, aircraft and perhaps other nearby people or property. A runway incursion is the incorrect presence of an aircraft, vehicle or person on the protected area of a surface designated for the landing and take-off of aircraft; one class of RI events simultaneously involves two aircraft, such as one aircraft incorrectly landing on a runway while another aircraft is taking off from the same runway. A runway excursion is an incident involving only a single aircraft defined as a veer-off or overrun off the runway surface. Within the scope of this effort at NASA Langley Research Center (LaRC), generic RI, RE and combined (RI plus RE, or RUNSAFE) event models have each been developed and implemented as a Bayesian Belief Network (BBN). Descriptions of runway safety issues from the literature searches have been used to develop the BBN models. Numerous considerations surrounding the process of developing the event models have been documented in this report. The event models were then thoroughly reviewed by a Subject Matter Expert (SME) panel through multiple knowledge elicitation sessions. Numerous improvements to the model structure (definitions, node names, node states and the connecting link topology) were made by the SME panel. Sample executions of the final RUNSAFE model have been presented herein for baseline and worst-case scenarios. Finally, a parameter sensitivity analysis for a given scenario was performed to show the risk drivers. The NASA and LaRC research in runway safety event modeling through the use of BBN technology is important for several reasons. These include: 1) providing a means to clearly understand the cause and effect patterns leading to safety issues, incidents and accidents, 2) enabling the prioritization of specialty areas needing more attention to improve aviation safety, and 3) enabling the identification of gaps within NASA's Aviation Safety funding portfolio

  4. Joint distribution approaches to simultaneously quantifying benefit and risk.

    PubMed

    Shaffer, Michele L; Watterberg, Kristi L

    2006-10-12

    The benefit-risk ratio has been proposed to measure the tradeoff between benefits and risks of two therapies for a single binary measure of efficacy and a single adverse event. The ratio is calculated from the difference in risk and difference in benefit between therapies. Small sample sizes or expected differences in benefit or risk can lead to no solution or problematic solutions for confidence intervals. Alternatively, using the joint distribution of benefit and risk, confidence regions for the differences in risk and benefit can be constructed in the benefit-risk plane. The information in the joint distribution can be summarized by choosing regions of interest in this plane. Using Bayesian methodology provides a very flexible framework for summarizing information in the joint distribution. Data from a National Institute of Child Health & Human Development trial of hydrocortisone illustrate the construction of confidence regions and regions of interest in the benefit-risk plane, where benefit is survival without supplemental oxygen at 36 weeks postmenstrual age, and risk is gastrointestinal perforation. For the subgroup of infants exposed to chorioamnionitis the confidence interval based on the benefit-risk ratio is wide (Benefit-risk ratio: 1.52; 90% confidence interval: 0.23 to 5.25). Choosing regions of appreciable risk and acceptable risk in the benefit-risk plane confirms the uncertainty seen in the wide confidence interval for the benefit-risk ratio--there is a greater than 50% chance of falling into the region of acceptable risk--while visually allowing the uncertainty in risk and benefit to be shown separately. Applying Bayesian methodology, an incremental net health benefit analysis shows there is a 72% chance of having a positive incremental net benefit if hydrocortisone is used in place of placebo if one is willing to incur at most one gastrointestinal perforation for each additional infant that survives without supplemental oxygen. If the benefit-risk ratio is presented, the joint distribution of benefit and risk also should be shown. These regions avoid the ambiguity associated with collapsing benefit and risk to a single dimension. Bayesian methods allow even greater flexibility in simultaneously quantifying benefit and risk.

  5. Reducing uncertainty in Climate Response Time Scale by Bayesian Analysis of the 8.2 ka event

    NASA Astrophysics Data System (ADS)

    Lorenz, A.; Held, H.; Bauer, E.; Schneider von Deimling, T.

    2009-04-01

    We analyze the possibility of uncertainty reduction in Climate Response Time Scale by utilizing Greenland ice-core data that contain the 8.2 ka event within a Bayesian model-data intercomparison with the Earth system model of intermediate complexity, CLIMBER-2.3. Within a stochastic version of the model it has been possible to mimic the 8.2 ka event within a plausible experimental setting and with relatively good accuracy considering the timing of the event in comparison to other modeling exercises [1]. The simulation of the centennial cold event is effectively determined by the oceanic cooling rate which depends largely on the ocean diffusivity described by diffusion coefficients of relatively wide uncertainty ranges. The idea now is to discriminate between the different values of diffusivities according to their likelihood to rightly represent the duration of the 8.2 ka event and thus to exploit the paleo data to constrain uncertainty in model parameters in analogue to [2]. Implementing this inverse Bayesian Analysis with this model the technical difficulty arises to establish the related likelihood numerically in addition to the uncertain model parameters: While mainstream uncertainty analyses can assume a quasi-Gaussian shape of likelihood, with weather fluctuating around a long term mean, the 8.2 ka event as a highly nonlinear effect precludes such an a priori assumption. As a result of this study [3] the Bayesian Analysis showed a reduction of uncertainty in vertical ocean diffusivity parameters of factor 2 compared to prior knowledge. This learning effect on the model parameters is propagated to other model outputs of interest; e.g. the inverse ocean heat capacity, which is important for the dominant time scale of climate response to anthropogenic forcing which, in combination with climate sensitivity, strongly influences the climate systems reaction for the near- and medium-term future. 1 References [1] E. Bauer, A. Ganopolski, M. Montoya: Simulation of the cold climate event 8200 years ago by meltwater outburst from lake Agassiz. Paleoceanography 19:PA3014, (2004) [2] T. Schneider von Deimling, H. Held, A. Ganopolski, S. Rahmstorf, Climate sensitivity estimated from ensemble simulations of glacial climates, Climate Dynamics 27, 149-163, DOI 10.1007/s00382-006-0126-8 (2006). [3] A. Lorenz, Diploma Thesis, U Potsdam (2007).

  6. Development of a Bayesian Belief Network Runway Incursion and Excursion Model

    NASA Technical Reports Server (NTRS)

    Green, Lawrence L.

    2014-01-01

    In a previous work, a statistical analysis of runway incursion (RI) event data was conducted to ascertain the relevance of this data to the top ten Technical Challenges (TC) of the National Aeronautics and Space Administration (NASA) Aviation Safety Program (AvSP). The study revealed connections to several of the AvSP top ten TC and identified numerous primary causes and contributing factors of RI events. The statistical analysis served as the basis for developing a system-level Bayesian Belief Network (BBN) model for RI events, also previously reported. Through literature searches and data analysis, this RI event network has now been extended to also model runway excursion (RE) events. These RI and RE event networks have been further modified and vetted by a Subject Matter Expert (SME) panel. The combined system-level BBN model will allow NASA to generically model the causes of RI and RE events and to assess the effectiveness of technology products being developed under NASA funding. These products are intended to reduce the frequency of runway safety incidents/accidents, and to improve runway safety in general. The development and structure of the BBN for both RI and RE events are documented in this paper.

  7. Power in Bayesian Mediation Analysis for Small Sample Research

    PubMed Central

    Miočević, Milica; MacKinnon, David P.; Levy, Roy

    2018-01-01

    It was suggested that Bayesian methods have potential for increasing power in mediation analysis (Koopman, Howe, Hollenbeck, & Sin, 2015; Yuan & MacKinnon, 2009). This paper compares the power of Bayesian credibility intervals for the mediated effect to the power of normal theory, distribution of the product, percentile, and bias-corrected bootstrap confidence intervals at N≤ 200. Bayesian methods with diffuse priors have power comparable to the distribution of the product and bootstrap methods, and Bayesian methods with informative priors had the most power. Varying degrees of precision of prior distributions were also examined. Increased precision led to greater power only when N≥ 100 and the effects were small, N < 60 and the effects were large, and N < 200 and the effects were medium. An empirical example from psychology illustrated a Bayesian analysis of the single mediator model from prior selection to interpreting results. PMID:29662296

  8. Power in Bayesian Mediation Analysis for Small Sample Research.

    PubMed

    Miočević, Milica; MacKinnon, David P; Levy, Roy

    2017-01-01

    It was suggested that Bayesian methods have potential for increasing power in mediation analysis (Koopman, Howe, Hollenbeck, & Sin, 2015; Yuan & MacKinnon, 2009). This paper compares the power of Bayesian credibility intervals for the mediated effect to the power of normal theory, distribution of the product, percentile, and bias-corrected bootstrap confidence intervals at N≤ 200. Bayesian methods with diffuse priors have power comparable to the distribution of the product and bootstrap methods, and Bayesian methods with informative priors had the most power. Varying degrees of precision of prior distributions were also examined. Increased precision led to greater power only when N≥ 100 and the effects were small, N < 60 and the effects were large, and N < 200 and the effects were medium. An empirical example from psychology illustrated a Bayesian analysis of the single mediator model from prior selection to interpreting results.

  9. Bayesian enhancement two-stage design for single-arm phase II clinical trials with binary and time-to-event endpoints.

    PubMed

    Shi, Haolun; Yin, Guosheng

    2018-02-21

    Simon's two-stage design is one of the most commonly used methods in phase II clinical trials with binary endpoints. The design tests the null hypothesis that the response rate is less than an uninteresting level, versus the alternative hypothesis that the response rate is greater than a desirable target level. From a Bayesian perspective, we compute the posterior probabilities of the null and alternative hypotheses given that a promising result is declared in Simon's design. Our study reveals that because the frequentist hypothesis testing framework places its focus on the null hypothesis, a potentially efficacious treatment identified by rejecting the null under Simon's design could have only less than 10% posterior probability of attaining the desirable target level. Due to the indifference region between the null and alternative, rejecting the null does not necessarily mean that the drug achieves the desirable response level. To clarify such ambiguity, we propose a Bayesian enhancement two-stage (BET) design, which guarantees a high posterior probability of the response rate reaching the target level, while allowing for early termination and sample size saving in case that the drug's response rate is smaller than the clinically uninteresting level. Moreover, the BET design can be naturally adapted to accommodate survival endpoints. We conduct extensive simulation studies to examine the empirical performance of our design and present two trial examples as applications. © 2018, The International Biometric Society.

  10. Analyzing Single-Molecule Time Series via Nonparametric Bayesian Inference

    PubMed Central

    Hines, Keegan E.; Bankston, John R.; Aldrich, Richard W.

    2015-01-01

    The ability to measure the properties of proteins at the single-molecule level offers an unparalleled glimpse into biological systems at the molecular scale. The interpretation of single-molecule time series has often been rooted in statistical mechanics and the theory of Markov processes. While existing analysis methods have been useful, they are not without significant limitations including problems of model selection and parameter nonidentifiability. To address these challenges, we introduce the use of nonparametric Bayesian inference for the analysis of single-molecule time series. These methods provide a flexible way to extract structure from data instead of assuming models beforehand. We demonstrate these methods with applications to several diverse settings in single-molecule biophysics. This approach provides a well-constrained and rigorously grounded method for determining the number of biophysical states underlying single-molecule data. PMID:25650922

  11. Bayesian view of single-qubit clocks, and an energy versus accuracy tradeoff

    NASA Astrophysics Data System (ADS)

    Gopalkrishnan, Manoj; Kandula, Varshith; Sriram, Praveen; Deshpande, Abhishek; Muralidharan, Bhaskaran

    2017-09-01

    We bring a Bayesian approach to the analysis of clocks. Using exponential distributions as priors for clocks, we analyze how well one can keep time with a single qubit freely precessing under a magnetic field. We find that, at least with a single qubit, quantum mechanics does not allow exact timekeeping, in contrast to classical mechanics, which does. We find the design of the single-qubit clock that leads to maximum accuracy. Further, we find an energy versus accuracy tradeoff—the energy cost is at least kBT times the improvement in accuracy as measured by the entropy reduction in going from the prior distribution to the posterior distribution. We propose a physical realization of the single-qubit clock using charge transport across a capacitively coupled quantum dot.

  12. Nonparametric Bayesian Modeling for Automated Database Schema Matching

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferragut, Erik M; Laska, Jason A

    2015-01-01

    The problem of merging databases arises in many government and commercial applications. Schema matching, a common first step, identifies equivalent fields between databases. We introduce a schema matching framework that builds nonparametric Bayesian models for each field and compares them by computing the probability that a single model could have generated both fields. Our experiments show that our method is more accurate and faster than the existing instance-based matching algorithms in part because of the use of nonparametric Bayesian models.

  13. Characterize kinematic rupture history of large earthquakes with Multiple Haskell sources

    NASA Astrophysics Data System (ADS)

    Jia, Z.; Zhan, Z.

    2017-12-01

    Earthquakes are often regarded as continuous rupture along a single fault, but the occurrence of complex large events involving multiple faults and dynamic triggering challenges this view. Such rupture complexities cause difficulties in existing finite fault inversion algorithms, because they rely on specific parameterizations and regularizations to obtain physically meaningful solutions. Furthermore, it is difficult to assess reliability and uncertainty of obtained rupture models. Here we develop a Multi-Haskell Source (MHS) method to estimate rupture process of large earthquakes as a series of sub-events of varying location, timing and directivity. Each sub-event is characterized by a Haskell rupture model with uniform dislocation and constant unilateral rupture velocity. This flexible yet simple source parameterization allows us to constrain first-order rupture complexity of large earthquakes robustly. Additionally, relatively few parameters in the inverse problem yields improved uncertainty analysis based on Markov chain Monte Carlo sampling in a Bayesian framework. Synthetic tests and application of MHS method on real earthquakes show that our method can capture major features of large earthquake rupture process, and provide information for more detailed rupture history analysis.

  14. Bayesian framework for modeling diffusion processes with nonlinear drift based on nonlinear and incomplete observations.

    PubMed

    Wu, Hao; Noé, Frank

    2011-03-01

    Diffusion processes are relevant for a variety of phenomena in the natural sciences, including diffusion of cells or biomolecules within cells, diffusion of molecules on a membrane or surface, and diffusion of a molecular conformation within a complex energy landscape. Many experimental tools exist now to track such diffusive motions in single cells or molecules, including high-resolution light microscopy, optical tweezers, fluorescence quenching, and Förster resonance energy transfer (FRET). Experimental observations are most often indirect and incomplete: (1) They do not directly reveal the potential or diffusion constants that govern the diffusion process, (2) they have limited time and space resolution, and (3) the highest-resolution experiments do not track the motion directly but rather probe it stochastically by recording single events, such as photons, whose properties depend on the state of the system under investigation. Here, we propose a general Bayesian framework to model diffusion processes with nonlinear drift based on incomplete observations as generated by various types of experiments. A maximum penalized likelihood estimator is given as well as a Gibbs sampling method that allows to estimate the trajectories that have caused the measurement, the nonlinear drift or potential function and the noise or diffusion matrices, as well as uncertainty estimates of these properties. The approach is illustrated on numerical simulations of FRET experiments where it is shown that trajectories, potentials, and diffusion constants can be efficiently and reliably estimated even in cases with little statistics or nonequilibrium measurement conditions.

  15. A Bayesian network model to assess the public health risk associated with wet weather sewer overflows discharging into waterways.

    PubMed

    Goulding, R; Jayasuriya, N; Horan, E

    2012-10-15

    Overflows from sanitary sewers during wet weather, which occur when the hydraulic capacity of the sewer system is exceeded, are considered a potential threat to the ecological and public health of the waterways which receive these overflows. As a result, water retailers in Australia and internationally commit significant resources to manage and abate sewer overflows. However, whilst some studies have contributed to an increased understanding of the impacts and risks associated with these events, they are relatively few in number and there still is a general lack of knowledge in this area. A Bayesian network model to assess the public health risk associated with wet weather sewer overflows is presented in this paper. The Bayesian network approach is shown to provide significant benefits in the assessment of public health risks associated with wet weather sewer overflows. In particular, the ability for the model to account for the uncertainty inherent in sewer overflow events and subsequent impacts through the use of probabilities is a valuable function. In addition, the paper highlights the benefits of the probabilistic inference function of the Bayesian network in prioritising management options to minimise public health risks associated with sewer overflows. Copyright © 2012. Published by Elsevier Ltd.

  16. Phylogeny of the cycads based on multiple single-copy nuclear genes: congruence of concatenated parsimony, likelihood and species tree inference methods.

    PubMed

    Salas-Leiva, Dayana E; Meerow, Alan W; Calonje, Michael; Griffith, M Patrick; Francisco-Ortega, Javier; Nakamura, Kyoko; Stevenson, Dennis W; Lewis, Carl E; Namoff, Sandra

    2013-11-01

    Despite a recent new classification, a stable phylogeny for the cycads has been elusive, particularly regarding resolution of Bowenia, Stangeria and Dioon. In this study, five single-copy nuclear genes (SCNGs) are applied to the phylogeny of the order Cycadales. The specific aim is to evaluate several gene tree-species tree reconciliation approaches for developing an accurate phylogeny of the order, to contrast them with concatenated parsimony analysis and to resolve the erstwhile problematic phylogenetic position of these three genera. DNA sequences of five SCNGs were obtained for 20 cycad species representing all ten genera of Cycadales. These were analysed with parsimony, maximum likelihood (ML) and three Bayesian methods of gene tree-species tree reconciliation, using Cycas as the outgroup. A calibrated date estimation was developed with Bayesian methods, and biogeographic analysis was also conducted. Concatenated parsimony, ML and three species tree inference methods resolve exactly the same tree topology with high support at most nodes. Dioon and Bowenia are the first and second branches of Cycadales after Cycas, respectively, followed by an encephalartoid clade (Macrozamia-Lepidozamia-Encephalartos), which is sister to a zamioid clade, of which Ceratozamia is the first branch, and in which Stangeria is sister to Microcycas and Zamia. A single, well-supported phylogenetic hypothesis of the generic relationships of the Cycadales is presented. However, massive extinction events inferred from the fossil record that eliminated broader ancestral distributions within Zamiaceae compromise accurate optimization of ancestral biogeographical areas for that hypothesis. While major lineages of Cycadales are ancient, crown ages of all modern genera are no older than 12 million years, supporting a recent hypothesis of mostly Miocene radiations. This phylogeny can contribute to an accurate infrafamilial classification of Zamiaceae.

  17. A Bayesian Approach to Estimating Coupling Between Neural Components: Evaluation of the Multiple Component, Event-Related Potential (mcERP) Algorithm

    NASA Technical Reports Server (NTRS)

    Shah, Ankoor S.; Knuth, Kevin H.; Truccolo, Wilson A.; Ding, Ming-Zhou; Bressler, Steven L.; Schroeder, Charles E.; Clancy, Daniel (Technical Monitor)

    2002-01-01

    Accurate measurement of single-trial responses is key to a definitive use of complex electromagnetic and hemodynamic measurements in the investigation of brain dynamics. We developed the multiple component, Event-Related Potential (mcERP) approach to single-trial response estimation. To improve our resolution of dynamic interactions between neuronal ensembles located in different layers within a cortical region and/or in different cortical regions. The mcERP model assets that multiple components defined as stereotypic waveforms comprise the stimulus-evoked response and that these components may vary in amplitude and latency from trial to trial. Maximum a posteriori (MAP) solutions for the model are obtained by iterating a set of equations derived from the posterior probability. Our first goal was to use the ANTWERP algorithm to analyze interactions (specifically latency and amplitude correlation) between responses in different layers within a cortical region. Thus, we evaluated the model by applying the algorithm to synthetic data containing two correlated local components and one independent far-field component. Three cases were considered: the local components were correlated by an interaction in their single-trial amplitudes, by an interaction in their single-trial latencies, or by an interaction in both amplitude and latency. We then analyzed the accuracy with which the algorithm estimated the component waveshapes and the single-trial parameters as a function of the linearity of each of these relationships. Extensions of these analyses to real data are discussed as well as ongoing work to incorporate more detailed prior information.

  18. Entropic Inference

    NASA Astrophysics Data System (ADS)

    Caticha, Ariel

    2011-03-01

    In this tutorial we review the essential arguments behing entropic inference. We focus on the epistemological notion of information and its relation to the Bayesian beliefs of rational agents. The problem of updating from a prior to a posterior probability distribution is tackled through an eliminative induction process that singles out the logarithmic relative entropy as the unique tool for inference. The resulting method of Maximum relative Entropy (ME), includes as special cases both MaxEnt and Bayes' rule, and therefore unifies the two themes of these workshops—the Maximum Entropy and the Bayesian methods—into a single general inference scheme.

  19. Source Detection with Bayesian Inference on ROSAT All-Sky Survey Data Sample

    NASA Astrophysics Data System (ADS)

    Guglielmetti, F.; Voges, W.; Fischer, R.; Boese, G.; Dose, V.

    2004-07-01

    We employ Bayesian inference for the joint estimation of sources and background on ROSAT All-Sky Survey (RASS) data. The probabilistic method allows for detection improvement of faint extended celestial sources compared to the Standard Analysis Software System (SASS). Background maps were estimated in a single step together with the detection of sources without pixel censoring. Consistent uncertainties of background and sources are provided. The source probability is evaluated for single pixels as well as for pixel domains to enhance source detection of weak and extended sources.

  20. Impact assessment of extreme storm events using a Bayesian network

    USGS Publications Warehouse

    den Heijer, C.(Kees); Knipping, Dirk T.J.A.; Plant, Nathaniel G.; van Thiel de Vries, Jaap S. M.; Baart, Fedor; van Gelder, Pieter H. A. J. M.

    2012-01-01

    This paper describes an investigation on the usefulness of Bayesian Networks in the safety assessment of dune coasts. A network has been created that predicts the erosion volume based on hydraulic boundary conditions and a number of cross-shore profile indicators. Field measurement data along a large part of the Dutch coast has been used to train the network. Corresponding storm impact on the dunes was calculated with an empirical dune erosion model named duros+. Comparison between the Bayesian Network predictions and the original duros+ results, here considered as observations, results in a skill up to 0.88, provided that the training data covers the range of predictions. Hence, the predictions from a deterministic model (duros+) can be captured in a probabilistic model (Bayesian Network) such that both the process knowledge and uncertainties can be included in impact and vulnerability assessments.

  1. A comprehensive probabilistic analysis model of oil pipelines network based on Bayesian network

    NASA Astrophysics Data System (ADS)

    Zhang, C.; Qin, T. X.; Jiang, B.; Huang, C.

    2018-02-01

    Oil pipelines network is one of the most important facilities of energy transportation. But oil pipelines network accident may result in serious disasters. Some analysis models for these accidents have been established mainly based on three methods, including event-tree, accident simulation and Bayesian network. Among these methods, Bayesian network is suitable for probabilistic analysis. But not all the important influencing factors are considered and the deployment rule of the factors has not been established. This paper proposed a probabilistic analysis model of oil pipelines network based on Bayesian network. Most of the important influencing factors, including the key environment condition and emergency response are considered in this model. Moreover, the paper also introduces a deployment rule for these factors. The model can be used in probabilistic analysis and sensitive analysis of oil pipelines network accident.

  2. Bayesian analyses of time-interval data for environmental radiation monitoring.

    PubMed

    Luo, Peng; Sharp, Julia L; DeVol, Timothy A

    2013-01-01

    Time-interval (time difference between two consecutive pulses) analysis based on the principles of Bayesian inference was investigated for online radiation monitoring. Using experimental and simulated data, Bayesian analysis of time-interval data [Bayesian (ti)] was compared with Bayesian and a conventional frequentist analysis of counts in a fixed count time [Bayesian (cnt) and single interval test (SIT), respectively]. The performances of the three methods were compared in terms of average run length (ARL) and detection probability for several simulated detection scenarios. Experimental data were acquired with a DGF-4C system in list mode. Simulated data were obtained using Monte Carlo techniques to obtain a random sampling of the Poisson distribution. All statistical algorithms were developed using the R Project for statistical computing. Bayesian analysis of time-interval information provided a similar detection probability as Bayesian analysis of count information, but the authors were able to make a decision with fewer pulses at relatively higher radiation levels. In addition, for the cases with very short presence of the source (< count time), time-interval information is more sensitive to detect a change than count information since the source data is averaged by the background data over the entire count time. The relationships of the source time, change points, and modifications to the Bayesian approach for increasing detection probability are presented.

  3. CytoBayesJ: software tools for Bayesian analysis of cytogenetic radiation dosimetry data.

    PubMed

    Ainsbury, Elizabeth A; Vinnikov, Volodymyr; Puig, Pedro; Maznyk, Nataliya; Rothkamm, Kai; Lloyd, David C

    2013-08-30

    A number of authors have suggested that a Bayesian approach may be most appropriate for analysis of cytogenetic radiation dosimetry data. In the Bayesian framework, probability of an event is described in terms of previous expectations and uncertainty. Previously existing, or prior, information is used in combination with experimental results to infer probabilities or the likelihood that a hypothesis is true. It has been shown that the Bayesian approach increases both the accuracy and quality assurance of radiation dose estimates. New software entitled CytoBayesJ has been developed with the aim of bringing Bayesian analysis to cytogenetic biodosimetry laboratory practice. CytoBayesJ takes a number of Bayesian or 'Bayesian like' methods that have been proposed in the literature and presents them to the user in the form of simple user-friendly tools, including testing for the most appropriate model for distribution of chromosome aberrations and calculations of posterior probability distributions. The individual tools are described in detail and relevant examples of the use of the methods and the corresponding CytoBayesJ software tools are given. In this way, the suitability of the Bayesian approach to biological radiation dosimetry is highlighted and its wider application encouraged by providing a user-friendly software interface and manual in English and Russian. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Supervised Time Series Event Detector for Building Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2016-04-13

    A machine learning based approach is developed to detect events that have rarely been seen in the historical data. The data can include building energy consumption, sensor data, environmental data and any data that may affect the building's energy consumption. The algorithm is a modified nonlinear Bayesian support vector machine, which examines daily energy consumption profile, detect the days with abnormal events, and diagnose the cause of the events.

  5. Using Bayesian Adaptive Trial Designs for Comparative Effectiveness Research: A Virtual Trial Execution.

    PubMed

    Luce, Bryan R; Connor, Jason T; Broglio, Kristine R; Mullins, C Daniel; Ishak, K Jack; Saunders, Elijah; Davis, Barry R

    2016-09-20

    Bayesian and adaptive clinical trial designs offer the potential for more efficient processes that result in lower sample sizes and shorter trial durations than traditional designs. To explore the use and potential benefits of Bayesian adaptive clinical trial designs in comparative effectiveness research. Virtual execution of ALLHAT (Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial) as if it had been done according to a Bayesian adaptive trial design. Comparative effectiveness trial of antihypertensive medications. Patient data sampled from the more than 42 000 patients enrolled in ALLHAT with publicly available data. Number of patients randomly assigned between groups, trial duration, observed numbers of events, and overall trial results and conclusions. The Bayesian adaptive approach and original design yielded similar overall trial conclusions. The Bayesian adaptive trial randomly assigned more patients to the better-performing group and would probably have ended slightly earlier. This virtual trial execution required limited resampling of ALLHAT patients for inclusion in RE-ADAPT (REsearch in ADAptive methods for Pragmatic Trials). Involvement of a data monitoring committee and other trial logistics were not considered. In a comparative effectiveness research trial, Bayesian adaptive trial designs are a feasible approach and potentially generate earlier results and allocate more patients to better-performing groups. National Heart, Lung, and Blood Institute.

  6. Bayesian cloud detection for MERIS, AATSR, and their combination

    NASA Astrophysics Data System (ADS)

    Hollstein, A.; Fischer, J.; Carbajal Henken, C.; Preusker, R.

    2014-11-01

    A broad range of different of Bayesian cloud detection schemes is applied to measurements from the Medium Resolution Imaging Spectrometer (MERIS), the Advanced Along-Track Scanning Radiometer (AATSR), and their combination. The cloud masks were designed to be numerically efficient and suited for the processing of large amounts of data. Results from the classical and naive approach to Bayesian cloud masking are discussed for MERIS and AATSR as well as for their combination. A sensitivity study on the resolution of multidimensional histograms, which were post-processed by Gaussian smoothing, shows how theoretically insufficient amounts of truth data can be used to set up accurate classical Bayesian cloud masks. Sets of exploited features from single and derived channels are numerically optimized and results for naive and classical Bayesian cloud masks are presented. The application of the Bayesian approach is discussed in terms of reproducing existing algorithms, enhancing existing algorithms, increasing the robustness of existing algorithms, and on setting up new classification schemes based on manually classified scenes.

  7. Bayesian cloud detection for MERIS, AATSR, and their combination

    NASA Astrophysics Data System (ADS)

    Hollstein, A.; Fischer, J.; Carbajal Henken, C.; Preusker, R.

    2015-04-01

    A broad range of different of Bayesian cloud detection schemes is applied to measurements from the Medium Resolution Imaging Spectrometer (MERIS), the Advanced Along-Track Scanning Radiometer (AATSR), and their combination. The cloud detection schemes were designed to be numerically efficient and suited for the processing of large numbers of data. Results from the classical and naive approach to Bayesian cloud masking are discussed for MERIS and AATSR as well as for their combination. A sensitivity study on the resolution of multidimensional histograms, which were post-processed by Gaussian smoothing, shows how theoretically insufficient numbers of truth data can be used to set up accurate classical Bayesian cloud masks. Sets of exploited features from single and derived channels are numerically optimized and results for naive and classical Bayesian cloud masks are presented. The application of the Bayesian approach is discussed in terms of reproducing existing algorithms, enhancing existing algorithms, increasing the robustness of existing algorithms, and on setting up new classification schemes based on manually classified scenes.

  8. Development and comparison of Bayesian modularization method in uncertainty assessment of hydrological models

    NASA Astrophysics Data System (ADS)

    Li, L.; Xu, C.-Y.; Engeland, K.

    2012-04-01

    With respect to model calibration, parameter estimation and analysis of uncertainty sources, different approaches have been used in hydrological models. Bayesian method is one of the most widely used methods for uncertainty assessment of hydrological models, which incorporates different sources of information into a single analysis through Bayesian theorem. However, none of these applications can well treat the uncertainty in extreme flows of hydrological models' simulations. This study proposes a Bayesian modularization method approach in uncertainty assessment of conceptual hydrological models by considering the extreme flows. It includes a comprehensive comparison and evaluation of uncertainty assessments by a new Bayesian modularization method approach and traditional Bayesian models using the Metropolis Hasting (MH) algorithm with the daily hydrological model WASMOD. Three likelihood functions are used in combination with traditional Bayesian: the AR (1) plus Normal and time period independent model (Model 1), the AR (1) plus Normal and time period dependent model (Model 2) and the AR (1) plus multi-normal model (Model 3). The results reveal that (1) the simulations derived from Bayesian modularization method are more accurate with the highest Nash-Sutcliffe efficiency value, and (2) the Bayesian modularization method performs best in uncertainty estimates of entire flows and in terms of the application and computational efficiency. The study thus introduces a new approach for reducing the extreme flow's effect on the discharge uncertainty assessment of hydrological models via Bayesian. Keywords: extreme flow, uncertainty assessment, Bayesian modularization, hydrological model, WASMOD

  9. Physics-based, Bayesian sequential detection method and system for radioactive contraband

    DOEpatents

    Candy, James V; Axelrod, Michael C; Breitfeller, Eric F; Chambers, David H; Guidry, Brian L; Manatt, Douglas R; Meyer, Alan W; Sale, Kenneth E

    2014-03-18

    A distributed sequential method and system for detecting and identifying radioactive contraband from highly uncertain (noisy) low-count, radionuclide measurements, i.e. an event mode sequence (EMS), using a statistical approach based on Bayesian inference and physics-model-based signal processing based on the representation of a radionuclide as a monoenergetic decomposition of monoenergetic sources. For a given photon event of the EMS, the appropriate monoenergy processing channel is determined using a confidence interval condition-based discriminator for the energy amplitude and interarrival time and parameter estimates are used to update a measured probability density function estimate for a target radionuclide. A sequential likelihood ratio test is then used to determine one of two threshold conditions signifying that the EMS is either identified as the target radionuclide or not, and if not, then repeating the process for the next sequential photon event of the EMS until one of the two threshold conditions is satisfied.

  10. How Much Can We Learn from a Single Chromatographic Experiment? A Bayesian Perspective.

    PubMed

    Wiczling, Paweł; Kaliszan, Roman

    2016-01-05

    In this work, we proposed and investigated a Bayesian inference procedure to find the desired chromatographic conditions based on known analyte properties (lipophilicity, pKa, and polar surface area) using one preliminary experiment. A previously developed nonlinear mixed effect model was used to specify the prior information about a new analyte with known physicochemical properties. Further, the prior (no preliminary data) and posterior predictive distribution (prior + one experiment) were determined sequentially to search towards the desired separation. The following isocratic high-performance reversed-phase liquid chromatographic conditions were sought: (1) retention time of a single analyte within the range of 4-6 min and (2) baseline separation of two analytes with retention times within the range of 4-10 min. The empirical posterior Bayesian distribution of parameters was estimated using the "slice sampling" Markov Chain Monte Carlo (MCMC) algorithm implemented in Matlab. The simulations with artificial analytes and experimental data of ketoprofen and papaverine were used to test the proposed methodology. The simulation experiment showed that for a single and two randomly selected analytes, there is 97% and 74% probability of obtaining a successful chromatogram using none or one preliminary experiment. The desired separation for ketoprofen and papaverine was established based on a single experiment. It was confirmed that the search for a desired separation rarely requires a large number of chromatographic analyses at least for a simple optimization problem. The proposed Bayesian-based optimization scheme is a powerful method of finding a desired chromatographic separation based on a small number of preliminary experiments.

  11. Bayesian inference on risk differences: an application to multivariate meta-analysis of adverse events in clinical trials.

    PubMed

    Chen, Yong; Luo, Sheng; Chu, Haitao; Wei, Peng

    2013-05-01

    Multivariate meta-analysis is useful in combining evidence from independent studies which involve several comparisons among groups based on a single outcome. For binary outcomes, the commonly used statistical models for multivariate meta-analysis are multivariate generalized linear mixed effects models which assume risks, after some transformation, follow a multivariate normal distribution with possible correlations. In this article, we consider an alternative model for multivariate meta-analysis where the risks are modeled by the multivariate beta distribution proposed by Sarmanov (1966). This model have several attractive features compared to the conventional multivariate generalized linear mixed effects models, including simplicity of likelihood function, no need to specify a link function, and has a closed-form expression of distribution functions for study-specific risk differences. We investigate the finite sample performance of this model by simulation studies and illustrate its use with an application to multivariate meta-analysis of adverse events of tricyclic antidepressants treatment in clinical trials.

  12. A Framework for Final Drive Simultaneous Failure Diagnosis Based on Fuzzy Entropy and Sparse Bayesian Extreme Learning Machine

    PubMed Central

    Ye, Qing; Pan, Hao; Liu, Changhua

    2015-01-01

    This research proposes a novel framework of final drive simultaneous failure diagnosis containing feature extraction, training paired diagnostic models, generating decision threshold, and recognizing simultaneous failure modes. In feature extraction module, adopt wavelet package transform and fuzzy entropy to reduce noise interference and extract representative features of failure mode. Use single failure sample to construct probability classifiers based on paired sparse Bayesian extreme learning machine which is trained only by single failure modes and have high generalization and sparsity of sparse Bayesian learning approach. To generate optimal decision threshold which can convert probability output obtained from classifiers into final simultaneous failure modes, this research proposes using samples containing both single and simultaneous failure modes and Grid search method which is superior to traditional techniques in global optimization. Compared with other frequently used diagnostic approaches based on support vector machine and probability neural networks, experiment results based on F 1-measure value verify that the diagnostic accuracy and efficiency of the proposed framework which are crucial for simultaneous failure diagnosis are superior to the existing approach. PMID:25722717

  13. Accounting for uncertainty in the historical response rate of the standard treatment in single-arm two-stage designs based on Bayesian power functions.

    PubMed

    Matano, Francesca; Sambucini, Valeria

    2016-11-01

    In phase II single-arm studies, the response rate of the experimental treatment is typically compared with a fixed target value that should ideally represent the true response rate for the standard of care therapy. Generally, this target value is estimated through previous data, but the inherent variability in the historical response rate is not taken into account. In this paper, we present a Bayesian procedure to construct single-arm two-stage designs that allows to incorporate uncertainty in the response rate of the standard treatment. In both stages, the sample size determination criterion is based on the concepts of conditional and predictive Bayesian power functions. Different kinds of prior distributions, which play different roles in the designs, are introduced, and some guidelines for their elicitation are described. Finally, some numerical results about the performance of the designs are provided and a real data example is illustrated. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  14. Bayesian estimation of seasonal course of canopy leaf area index from hyperspectral satellite data

    NASA Astrophysics Data System (ADS)

    Varvia, Petri; Rautiainen, Miina; Seppänen, Aku

    2018-03-01

    In this paper, Bayesian inversion of a physically-based forest reflectance model is investigated to estimate of boreal forest canopy leaf area index (LAI) from EO-1 Hyperion hyperspectral data. The data consist of multiple forest stands with different species compositions and structures, imaged in three phases of the growing season. The Bayesian estimates of canopy LAI are compared to reference estimates based on a spectral vegetation index. The forest reflectance model contains also other unknown variables in addition to LAI, for example leaf single scattering albedo and understory reflectance. In the Bayesian approach, these variables are estimated simultaneously with LAI. The feasibility and seasonal variation of these estimates is also examined. Credible intervals for the estimates are also calculated and evaluated. The results show that the Bayesian inversion approach is significantly better than using a comparable spectral vegetation index regression.

  15. Non-Bayesian Inference: Causal Structure Trumps Correlation

    ERIC Educational Resources Information Center

    Bes, Benedicte; Sloman, Steven; Lucas, Christopher G.; Raufaste, Eric

    2012-01-01

    The study tests the hypothesis that conditional probability judgments can be influenced by causal links between the target event and the evidence even when the statistical relations among variables are held constant. Three experiments varied the causal structure relating three variables and found that (a) the target event was perceived as more…

  16. Multilocus approach to clarify species status and the divergence history of the Bemisia tabaci (Hemiptera: Aleyrodidae) species complex.

    PubMed

    Hsieh, Chia-Hung; Ko, Chiun-Cheng; Chung, Cheng-Han; Wang, Hurng-Yi

    2014-07-01

    The sweet potato whitefly, Bemisia tabaci, is a highly differentiated species complex. Despite consisting of several morphologically indistinguishable entities and frequent invasions on all continents with important associated economic losses, the phylogenetic relationships, species status, and evolutionary history of this species complex is still debated. We sequenced and analyzed one mitochondrial and three single-copy nuclear genes from 9 of the 12 genetic groups of B. tabaci and 5 closely related species. Bayesian species delimitation was applied to investigate the speciation events of B. tabaci. The species statuses of the different genetic groups were strongly supported under different prior settings and phylogenetic scenarios. Divergence histories were estimated by a multispecies coalescence approach implemented in (*)BEAST. Based on mitochondrial locus, B. tabaci was originated 6.47 million years ago (MYA). Nevertheless, the time was 1.25MYA based on nuclear loci. According to the method of approximate Bayesian computation, this difference is probably due to different degrees of migration among loci; i.e., although the mitochondrial locus had differentiated, gene flow at nuclear loci was still possible, a scenario similar to parapatric mode of speciation. This is the first study in whiteflies using multilocus data and incorporating Bayesian coalescence approaches, both of which provide a more biologically realistic framework for delimiting species status and delineating the divergence history of B. tabaci. Our study illustrates that gene flow during species divergence should not be overlooked and has a great impact on divergence time estimation. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Intermediate-term forecasting of aftershocks from an early aftershock sequence: Bayesian and ensemble forecasting approaches

    NASA Astrophysics Data System (ADS)

    Omi, Takahiro; Ogata, Yosihiko; Hirata, Yoshito; Aihara, Kazuyuki

    2015-04-01

    Because aftershock occurrences can cause significant seismic risks for a considerable time after the main shock, prospective forecasting of the intermediate-term aftershock activity as soon as possible is important. The epidemic-type aftershock sequence (ETAS) model with the maximum likelihood estimate effectively reproduces general aftershock activity including secondary or higher-order aftershocks and can be employed for the forecasting. However, because we cannot always expect the accurate parameter estimation from incomplete early aftershock data where many events are missing, such forecasting using only a single estimated parameter set (plug-in forecasting) can frequently perform poorly. Therefore, we here propose Bayesian forecasting that combines the forecasts by the ETAS model with various probable parameter sets given the data. By conducting forecasting tests of 1 month period aftershocks based on the first 1 day data after the main shock as an example of the early intermediate-term forecasting, we show that the Bayesian forecasting performs better than the plug-in forecasting on average in terms of the log-likelihood score. Furthermore, to improve forecasting of large aftershocks, we apply a nonparametric (NP) model using magnitude data during the learning period and compare its forecasting performance with that of the Gutenberg-Richter (G-R) formula. We show that the NP forecast performs better than the G-R formula in some cases but worse in other cases. Therefore, robust forecasting can be obtained by employing an ensemble forecast that combines the two complementary forecasts. Our proposed method is useful for a stable unbiased intermediate-term assessment of aftershock probabilities.

  18. Parallel Markov chain Monte Carlo - bridging the gap to high-performance Bayesian computation in animal breeding and genetics.

    PubMed

    Wu, Xiao-Lin; Sun, Chuanyu; Beissinger, Timothy M; Rosa, Guilherme Jm; Weigel, Kent A; Gatti, Natalia de Leon; Gianola, Daniel

    2012-09-25

    Most Bayesian models for the analysis of complex traits are not analytically tractable and inferences are based on computationally intensive techniques. This is true of Bayesian models for genome-enabled selection, which uses whole-genome molecular data to predict the genetic merit of candidate animals for breeding purposes. In this regard, parallel computing can overcome the bottlenecks that can arise from series computing. Hence, a major goal of the present study is to bridge the gap to high-performance Bayesian computation in the context of animal breeding and genetics. Parallel Monte Carlo Markov chain algorithms and strategies are described in the context of animal breeding and genetics. Parallel Monte Carlo algorithms are introduced as a starting point including their applications to computing single-parameter and certain multiple-parameter models. Then, two basic approaches for parallel Markov chain Monte Carlo are described: one aims at parallelization within a single chain; the other is based on running multiple chains, yet some variants are discussed as well. Features and strategies of the parallel Markov chain Monte Carlo are illustrated using real data, including a large beef cattle dataset with 50K SNP genotypes. Parallel Markov chain Monte Carlo algorithms are useful for computing complex Bayesian models, which does not only lead to a dramatic speedup in computing but can also be used to optimize model parameters in complex Bayesian models. Hence, we anticipate that use of parallel Markov chain Monte Carlo will have a profound impact on revolutionizing the computational tools for genomic selection programs.

  19. Parallel Markov chain Monte Carlo - bridging the gap to high-performance Bayesian computation in animal breeding and genetics

    PubMed Central

    2012-01-01

    Background Most Bayesian models for the analysis of complex traits are not analytically tractable and inferences are based on computationally intensive techniques. This is true of Bayesian models for genome-enabled selection, which uses whole-genome molecular data to predict the genetic merit of candidate animals for breeding purposes. In this regard, parallel computing can overcome the bottlenecks that can arise from series computing. Hence, a major goal of the present study is to bridge the gap to high-performance Bayesian computation in the context of animal breeding and genetics. Results Parallel Monte Carlo Markov chain algorithms and strategies are described in the context of animal breeding and genetics. Parallel Monte Carlo algorithms are introduced as a starting point including their applications to computing single-parameter and certain multiple-parameter models. Then, two basic approaches for parallel Markov chain Monte Carlo are described: one aims at parallelization within a single chain; the other is based on running multiple chains, yet some variants are discussed as well. Features and strategies of the parallel Markov chain Monte Carlo are illustrated using real data, including a large beef cattle dataset with 50K SNP genotypes. Conclusions Parallel Markov chain Monte Carlo algorithms are useful for computing complex Bayesian models, which does not only lead to a dramatic speedup in computing but can also be used to optimize model parameters in complex Bayesian models. Hence, we anticipate that use of parallel Markov chain Monte Carlo will have a profound impact on revolutionizing the computational tools for genomic selection programs. PMID:23009363

  20. A Bayesian additive model for understanding public transport usage in special events.

    PubMed

    Rodrigues, Filipe; Borysov, Stanislav; Ribeiro, Bernardete; Pereira, Francisco

    2016-12-02

    Public special events, like sports games, concerts and festivals are well known to create disruptions in transportation systems, often catching the operators by surprise. Although these are usually planned well in advance, their impact is difficult to predict, even when organisers and transportation operators coordinate. The problem highly increases when several events happen concurrently. To solve these problems, costly processes, heavily reliant on manual search and personal experience, are usual practice in large cities like Singapore, London or Tokyo. This paper presents a Bayesian additive model with Gaussian process components that combines smart card records from public transport with context information about events that is continuously mined from the Web. We develop an efficient approximate inference algorithm using expectation propagation, which allows us to predict the total number of public transportation trips to the special event areas, thereby contributing to a more adaptive transportation system. Furthermore, for multiple concurrent event scenarios, the proposed algorithm is able to disaggregate gross trip counts into their most likely components related to specific events and routine behavior. Using real data from Singapore, we show that the presented model outperforms the best baseline model by up to 26% in R2 and also has explanatory power for its individual components.

  1. Bayesian Techniques for Comparing Time-dependent GRMHD Simulations to Variable Event Horizon Telescope Observations

    NASA Astrophysics Data System (ADS)

    Kim, Junhan; Marrone, Daniel P.; Chan, Chi-Kwan; Medeiros, Lia; Özel, Feryal; Psaltis, Dimitrios

    2016-12-01

    The Event Horizon Telescope (EHT) is a millimeter-wavelength, very-long-baseline interferometry (VLBI) experiment that is capable of observing black holes with horizon-scale resolution. Early observations have revealed variable horizon-scale emission in the Galactic Center black hole, Sagittarius A* (Sgr A*). Comparing such observations to time-dependent general relativistic magnetohydrodynamic (GRMHD) simulations requires statistical tools that explicitly consider the variability in both the data and the models. We develop here a Bayesian method to compare time-resolved simulation images to variable VLBI data, in order to infer model parameters and perform model comparisons. We use mock EHT data based on GRMHD simulations to explore the robustness of this Bayesian method and contrast it to approaches that do not consider the effects of variability. We find that time-independent models lead to offset values of the inferred parameters with artificially reduced uncertainties. Moreover, neglecting the variability in the data and the models often leads to erroneous model selections. We finally apply our method to the early EHT data on Sgr A*.

  2. BAYESIAN TECHNIQUES FOR COMPARING TIME-DEPENDENT GRMHD SIMULATIONS TO VARIABLE EVENT HORIZON TELESCOPE OBSERVATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Junhan; Marrone, Daniel P.; Chan, Chi-Kwan

    2016-12-01

    The Event Horizon Telescope (EHT) is a millimeter-wavelength, very-long-baseline interferometry (VLBI) experiment that is capable of observing black holes with horizon-scale resolution. Early observations have revealed variable horizon-scale emission in the Galactic Center black hole, Sagittarius A* (Sgr A*). Comparing such observations to time-dependent general relativistic magnetohydrodynamic (GRMHD) simulations requires statistical tools that explicitly consider the variability in both the data and the models. We develop here a Bayesian method to compare time-resolved simulation images to variable VLBI data, in order to infer model parameters and perform model comparisons. We use mock EHT data based on GRMHD simulations to explore themore » robustness of this Bayesian method and contrast it to approaches that do not consider the effects of variability. We find that time-independent models lead to offset values of the inferred parameters with artificially reduced uncertainties. Moreover, neglecting the variability in the data and the models often leads to erroneous model selections. We finally apply our method to the early EHT data on Sgr A*.« less

  3. Bayesian models: A statistical primer for ecologists

    USGS Publications Warehouse

    Hobbs, N. Thompson; Hooten, Mevin B.

    2015-01-01

    Bayesian modeling has become an indispensable tool for ecological research because it is uniquely suited to deal with complexity in a statistically coherent way. This textbook provides a comprehensive and accessible introduction to the latest Bayesian methods—in language ecologists can understand. Unlike other books on the subject, this one emphasizes the principles behind the computations, giving ecologists a big-picture understanding of how to implement this powerful statistical approach.Bayesian Models is an essential primer for non-statisticians. It begins with a definition of probability and develops a step-by-step sequence of connected ideas, including basic distribution theory, network diagrams, hierarchical models, Markov chain Monte Carlo, and inference from single and multiple models. This unique book places less emphasis on computer coding, favoring instead a concise presentation of the mathematical statistics needed to understand how and why Bayesian analysis works. It also explains how to write out properly formulated hierarchical Bayesian models and use them in computing, research papers, and proposals.This primer enables ecologists to understand the statistical principles behind Bayesian modeling and apply them to research, teaching, policy, and management.Presents the mathematical and statistical foundations of Bayesian modeling in language accessible to non-statisticiansCovers basic distribution theory, network diagrams, hierarchical models, Markov chain Monte Carlo, and moreDeemphasizes computer coding in favor of basic principlesExplains how to write out properly factored statistical expressions representing Bayesian models

  4. Bayesian ensemble refinement by replica simulations and reweighting.

    PubMed

    Hummer, Gerhard; Köfinger, Jürgen

    2015-12-28

    We describe different Bayesian ensemble refinement methods, examine their interrelation, and discuss their practical application. With ensemble refinement, the properties of dynamic and partially disordered (bio)molecular structures can be characterized by integrating a wide range of experimental data, including measurements of ensemble-averaged observables. We start from a Bayesian formulation in which the posterior is a functional that ranks different configuration space distributions. By maximizing this posterior, we derive an optimal Bayesian ensemble distribution. For discrete configurations, this optimal distribution is identical to that obtained by the maximum entropy "ensemble refinement of SAXS" (EROS) formulation. Bayesian replica ensemble refinement enhances the sampling of relevant configurations by imposing restraints on averages of observables in coupled replica molecular dynamics simulations. We show that the strength of the restraints should scale linearly with the number of replicas to ensure convergence to the optimal Bayesian result in the limit of infinitely many replicas. In the "Bayesian inference of ensembles" method, we combine the replica and EROS approaches to accelerate the convergence. An adaptive algorithm can be used to sample directly from the optimal ensemble, without replicas. We discuss the incorporation of single-molecule measurements and dynamic observables such as relaxation parameters. The theoretical analysis of different Bayesian ensemble refinement approaches provides a basis for practical applications and a starting point for further investigations.

  5. Bayesian ensemble refinement by replica simulations and reweighting

    NASA Astrophysics Data System (ADS)

    Hummer, Gerhard; Köfinger, Jürgen

    2015-12-01

    We describe different Bayesian ensemble refinement methods, examine their interrelation, and discuss their practical application. With ensemble refinement, the properties of dynamic and partially disordered (bio)molecular structures can be characterized by integrating a wide range of experimental data, including measurements of ensemble-averaged observables. We start from a Bayesian formulation in which the posterior is a functional that ranks different configuration space distributions. By maximizing this posterior, we derive an optimal Bayesian ensemble distribution. For discrete configurations, this optimal distribution is identical to that obtained by the maximum entropy "ensemble refinement of SAXS" (EROS) formulation. Bayesian replica ensemble refinement enhances the sampling of relevant configurations by imposing restraints on averages of observables in coupled replica molecular dynamics simulations. We show that the strength of the restraints should scale linearly with the number of replicas to ensure convergence to the optimal Bayesian result in the limit of infinitely many replicas. In the "Bayesian inference of ensembles" method, we combine the replica and EROS approaches to accelerate the convergence. An adaptive algorithm can be used to sample directly from the optimal ensemble, without replicas. We discuss the incorporation of single-molecule measurements and dynamic observables such as relaxation parameters. The theoretical analysis of different Bayesian ensemble refinement approaches provides a basis for practical applications and a starting point for further investigations.

  6. Trans-dimensional and hierarchical Bayesian approaches toward rigorous estimation of seismic sources and structures in the Northeast Asia

    NASA Astrophysics Data System (ADS)

    Kim, Seongryong; Tkalčić, Hrvoje; Mustać, Marija; Rhie, Junkee; Ford, Sean

    2016-04-01

    A framework is presented within which we provide rigorous estimations for seismic sources and structures in the Northeast Asia. We use Bayesian inversion methods, which enable statistical estimations of models and their uncertainties based on data information. Ambiguities in error statistics and model parameterizations are addressed by hierarchical and trans-dimensional (trans-D) techniques, which can be inherently implemented in the Bayesian inversions. Hence reliable estimation of model parameters and their uncertainties is possible, thus avoiding arbitrary regularizations and parameterizations. Hierarchical and trans-D inversions are performed to develop a three-dimensional velocity model using ambient noise data. To further improve the model, we perform joint inversions with receiver function data using a newly developed Bayesian method. For the source estimation, a novel moment tensor inversion method is presented and applied to regional waveform data of the North Korean nuclear explosion tests. By the combination of new Bayesian techniques and the structural model, coupled with meaningful uncertainties related to each of the processes, more quantitative monitoring and discrimination of seismic events is possible.

  7. Perception as Evidence Accumulation and Bayesian Inference: Insights from Masked Priming

    ERIC Educational Resources Information Center

    Norris, Dennis; Kinoshita, Sachiko

    2008-01-01

    The authors argue that perception is Bayesian inference based on accumulation of noisy evidence and that, in masked priming, the perceptual system is tricked into treating the prime and the target as a single object. Of the 2 algorithms considered for formalizing how the evidence sampled from a prime and target is combined, only 1 was shown to be…

  8. Bayesian reconstruction and use of anatomical a priori information for emission tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowsher, J.E.; Johnson, V.E.; Turkington, T.G.

    1996-10-01

    A Bayesian method is presented for simultaneously segmenting and reconstructing emission computed tomography (ECT) images and for incorporating high-resolution, anatomical information into those reconstructions. The anatomical information is often available from other imaging modalities such as computed tomography (CT) or magnetic resonance imaging (MRI). The Bayesian procedure models the ECT radiopharmaceutical distribution as consisting of regions, such that radiopharmaceutical activity is similar throughout each region. It estimates the number of regions, the mean activity of each region, and the region classification and mean activity of each voxel. Anatomical information is incorporated by assigning higher prior probabilities to ECT segmentations inmore » which each ECT region stays within a single anatomical region. This approach is effective because anatomical tissue type often strongly influences radiopharmaceutical uptake. The Bayesian procedure is evaluated using physically acquired single-photon emission computed tomography (SPECT) projection data and MRI for the three-dimensional (3-D) Hoffman brain phantom. A clinically realistic count level is used. A cold lesion within the brain phantom is created during the SPECT scan but not during the MRI to demonstrate that the estimation procedure can detect ECT structure that is not present anatomically.« less

  9. Choosing MUSE: Validation of a Low-Cost, Portable EEG System for ERP Research

    PubMed Central

    Krigolson, Olave E.; Williams, Chad C.; Norton, Angela; Hassall, Cameron D.; Colino, Francisco L.

    2017-01-01

    In recent years there has been an increase in the number of portable low-cost electroencephalographic (EEG) systems available to researchers. However, to date the validation of the use of low-cost EEG systems has focused on continuous recording of EEG data and/or the replication of large system EEG setups reliant on event-markers to afford examination of event-related brain potentials (ERP). Here, we demonstrate that it is possible to conduct ERP research without being reliant on event markers using a portable MUSE EEG system and a single computer. Specifically, we report the results of two experiments using data collected with the MUSE EEG system—one using the well-known visual oddball paradigm and the other using a standard reward-learning task. Our results demonstrate that we could observe and quantify the N200 and P300 ERP components in the visual oddball task and the reward positivity (the mirror opposite component to the feedback-related negativity) in the reward-learning task. Specifically, single sample t-tests of component existence (all p's < 0.05), computation of Bayesian credible intervals, and 95% confidence intervals all statistically verified the existence of the N200, P300, and reward positivity in all analyses. We provide with this research paper an open source website with all the instructions, methods, and software to replicate our findings and to provide researchers with an easy way to use the MUSE EEG system for ERP research. Importantly, our work highlights that with a single computer and a portable EEG system such as the MUSE one can conduct ERP research with ease thus greatly extending the possible use of the ERP methodology to a variety of novel contexts. PMID:28344546

  10. Choosing MUSE: Validation of a Low-Cost, Portable EEG System for ERP Research.

    PubMed

    Krigolson, Olave E; Williams, Chad C; Norton, Angela; Hassall, Cameron D; Colino, Francisco L

    2017-01-01

    In recent years there has been an increase in the number of portable low-cost electroencephalographic (EEG) systems available to researchers. However, to date the validation of the use of low-cost EEG systems has focused on continuous recording of EEG data and/or the replication of large system EEG setups reliant on event-markers to afford examination of event-related brain potentials (ERP). Here, we demonstrate that it is possible to conduct ERP research without being reliant on event markers using a portable MUSE EEG system and a single computer. Specifically, we report the results of two experiments using data collected with the MUSE EEG system-one using the well-known visual oddball paradigm and the other using a standard reward-learning task. Our results demonstrate that we could observe and quantify the N200 and P300 ERP components in the visual oddball task and the reward positivity (the mirror opposite component to the feedback-related negativity) in the reward-learning task. Specifically, single sample t -tests of component existence (all p 's < 0.05), computation of Bayesian credible intervals, and 95% confidence intervals all statistically verified the existence of the N200, P300, and reward positivity in all analyses. We provide with this research paper an open source website with all the instructions, methods, and software to replicate our findings and to provide researchers with an easy way to use the MUSE EEG system for ERP research. Importantly, our work highlights that with a single computer and a portable EEG system such as the MUSE one can conduct ERP research with ease thus greatly extending the possible use of the ERP methodology to a variety of novel contexts.

  11. Quantum state estimation when qubits are lost: a no-data-left-behind approach

    DOE PAGES

    Williams, Brian P.; Lougovski, Pavel

    2017-04-06

    We present an approach to Bayesian mean estimation of quantum states using hyperspherical parametrization and an experiment-specific likelihood which allows utilization of all available data, even when qubits are lost. With this method, we report the first closed-form Bayesian mean and maximum likelihood estimates for the ideal single qubit. Due to computational constraints, we utilize numerical sampling to determine the Bayesian mean estimate for a photonic two-qubit experiment in which our novel analysis reduces burdens associated with experimental asymmetries and inefficiencies. This method can be applied to quantum states of any dimension and experimental complexity.

  12. Application of IATA - A case study in evaluating the global and local performance of a Bayesian Network model for Skin Sensitization

    EPA Science Inventory

    Since the publication of the Adverse Outcome Pathway (AOP) for skin sensitization, there have been many efforts to develop systematic approaches to integrate the information generated from different key events for decision making. The types of information characterizing key event...

  13. Valence-Dependent Belief Updating: Computational Validation

    PubMed Central

    Kuzmanovic, Bojana; Rigoux, Lionel

    2017-01-01

    People tend to update beliefs about their future outcomes in a valence-dependent way: they are likely to incorporate good news and to neglect bad news. However, belief formation is a complex process which depends not only on motivational factors such as the desire for favorable conclusions, but also on multiple cognitive variables such as prior beliefs, knowledge about personal vulnerabilities and resources, and the size of the probabilities and estimation errors. Thus, we applied computational modeling in order to test for valence-induced biases in updating while formally controlling for relevant cognitive factors. We compared biased and unbiased Bayesian models of belief updating, and specified alternative models based on reinforcement learning. The experiment consisted of 80 trials with 80 different adverse future life events. In each trial, participants estimated the base rate of one of these events and estimated their own risk of experiencing the event before and after being confronted with the actual base rate. Belief updates corresponded to the difference between the two self-risk estimates. Valence-dependent updating was assessed by comparing trials with good news (better-than-expected base rates) with trials with bad news (worse-than-expected base rates). After receiving bad relative to good news, participants' updates were smaller and deviated more strongly from rational Bayesian predictions, indicating a valence-induced bias. Model comparison revealed that the biased (i.e., optimistic) Bayesian model of belief updating better accounted for data than the unbiased (i.e., rational) Bayesian model, confirming that the valence of the new information influenced the amount of updating. Moreover, alternative computational modeling based on reinforcement learning demonstrated higher learning rates for good than for bad news, as well as a moderating role of personal knowledge. Finally, in this specific experimental context, the approach based on reinforcement learning was superior to the Bayesian approach. The computational validation of valence-dependent belief updating represents a novel support for a genuine optimism bias in human belief formation. Moreover, the precise control of relevant cognitive variables justifies the conclusion that the motivation to adopt the most favorable self-referential conclusions biases human judgments. PMID:28706499

  14. Valence-Dependent Belief Updating: Computational Validation.

    PubMed

    Kuzmanovic, Bojana; Rigoux, Lionel

    2017-01-01

    People tend to update beliefs about their future outcomes in a valence-dependent way: they are likely to incorporate good news and to neglect bad news. However, belief formation is a complex process which depends not only on motivational factors such as the desire for favorable conclusions, but also on multiple cognitive variables such as prior beliefs, knowledge about personal vulnerabilities and resources, and the size of the probabilities and estimation errors. Thus, we applied computational modeling in order to test for valence-induced biases in updating while formally controlling for relevant cognitive factors. We compared biased and unbiased Bayesian models of belief updating, and specified alternative models based on reinforcement learning. The experiment consisted of 80 trials with 80 different adverse future life events. In each trial, participants estimated the base rate of one of these events and estimated their own risk of experiencing the event before and after being confronted with the actual base rate. Belief updates corresponded to the difference between the two self-risk estimates. Valence-dependent updating was assessed by comparing trials with good news (better-than-expected base rates) with trials with bad news (worse-than-expected base rates). After receiving bad relative to good news, participants' updates were smaller and deviated more strongly from rational Bayesian predictions, indicating a valence-induced bias. Model comparison revealed that the biased (i.e., optimistic) Bayesian model of belief updating better accounted for data than the unbiased (i.e., rational) Bayesian model, confirming that the valence of the new information influenced the amount of updating. Moreover, alternative computational modeling based on reinforcement learning demonstrated higher learning rates for good than for bad news, as well as a moderating role of personal knowledge. Finally, in this specific experimental context, the approach based on reinforcement learning was superior to the Bayesian approach. The computational validation of valence-dependent belief updating represents a novel support for a genuine optimism bias in human belief formation. Moreover, the precise control of relevant cognitive variables justifies the conclusion that the motivation to adopt the most favorable self-referential conclusions biases human judgments.

  15. OGLE-2016-BLG-0263Lb: Microlensing Detection of a Very Low-mass Binary Companion through a Repeating Event Channel

    NASA Astrophysics Data System (ADS)

    Han, C.; Udalski, A.; Gould, A.; Bond, I. A.; and; Albrow, M. D.; Chung, S.-J.; Jung, Y. K.; Ryu, Y.-H.; Shin, I.-G.; Yee, J. C.; Zhu, W.; Cha, S.-M.; Kim, S.-L.; Kim, D.-J.; Lee, C.-U.; Lee, Y.; Park, B.-G.; KMTNet Collaboration; Skowron, J.; Mróz, P.; Pietrukowicz, P.; Kozłowski, S.; Poleski, R.; Szymański, M. K.; Soszyński, I.; Ulaczyk, K.; Pawlak, M.; OGLE Collaboration; Abe, F.; Asakura, Y.; Barry, R.; Bennett, D. P.; Bhattacharya, A.; Donachie, M.; Evans, P.; Fukui, A.; Hirao, Y.; Itow, Y.; Koshimoto, N.; Li, M. C. A.; Ling, C. H.; Masuda, K.; Matsubara, Y.; Muraki, Y.; Nagakane, M.; Ohnishi, K.; Ranc, C.; Rattenbury, N. J.; Saito, To.; Sharan, A.; Sullivan, D. J.; Sumi, T.; Suzuki, D.; Tristram, P. J.; Yamada, T.; Yamada, T.; Yonehara, A.; The MOA Collaboration

    2017-10-01

    We report the discovery of a planet-mass companion to the microlens OGLE-2016-BLG-0263L. Unlike most low-mass companions that were detected through perturbations to the smooth and symmetric light curves produced by the primary, the companion was discovered through the channel of a repeating event, in which the companion itself produced its own single-mass light curve after the event produced by the primary had ended. Thanks to the continuous coverage of the second peak by high-cadence surveys, the possibility of the repeating nature due to source binarity is excluded with a 96% confidence level. The mass of the companion estimated by a Bayesian analysis is {M}{{p}}={4.1}-2.5+6.5 {M}{{J}}. The projected primary-companion separation is {a}\\perp ={6.5}-1.9+1.3 au. The ratio of the separation to the snow-line distance of {a}\\perp /{a}{sl}˜ 15.4 corresponds to the region beyond Neptune, the outermost planet of the solar system. We discuss the importance of high-cadence surveys in expanding the range of microlensing detections of low-mass companions and future space-based microlensing surveys.

  16. Building a Database for a Quantitative Model

    NASA Technical Reports Server (NTRS)

    Kahn, C. Joseph; Kleinhammer, Roger

    2014-01-01

    A database can greatly benefit a quantitative analysis. The defining characteristic of a quantitative risk, or reliability, model is the use of failure estimate data. Models can easily contain a thousand Basic Events, relying on hundreds of individual data sources. Obviously, entering so much data by hand will eventually lead to errors. Not so obviously entering data this way does not aid linking the Basic Events to the data sources. The best way to organize large amounts of data on a computer is with a database. But a model does not require a large, enterprise-level database with dedicated developers and administrators. A database built in Excel can be quite sufficient. A simple spreadsheet database can link every Basic Event to the individual data source selected for them. This database can also contain the manipulations appropriate for how the data is used in the model. These manipulations include stressing factors based on use and maintenance cycles, dormancy, unique failure modes, the modeling of multiple items as a single "Super component" Basic Event, and Bayesian Updating based on flight and testing experience. A simple, unique metadata field in both the model and database provides a link from any Basic Event in the model to its data source and all relevant calculations. The credibility for the entire model often rests on the credibility and traceability of the data.

  17. Enhancements of Bayesian Blocks; Application to Large Light Curve Databases

    NASA Technical Reports Server (NTRS)

    Scargle, Jeff

    2015-01-01

    Bayesian Blocks are optimal piecewise linear representations (step function fits) of light-curves. The simple algorithm implementing this idea, using dynamic programming, has been extended to include more data modes and fitness metrics, multivariate analysis, and data on the circle (Studies in Astronomical Time Series Analysis. VI. Bayesian Block Representations, Scargle, Norris, Jackson and Chiang 2013, ApJ, 764, 167), as well as new results on background subtraction and refinement of the procedure for precise timing of transient events in sparse data. Example demonstrations will include exploratory analysis of the Kepler light curve archive in a search for "star-tickling" signals from extraterrestrial civilizations. (The Cepheid Galactic Internet, Learned, Kudritzki, Pakvasa1, and Zee, 2008, arXiv: 0809.0339; Walkowicz et al., in progress).

  18. Bayesian theories of conditioning in a changing world.

    PubMed

    Courville, Aaron C; Daw, Nathaniel D; Touretzky, David S

    2006-07-01

    The recent flowering of Bayesian approaches invites the re-examination of classic issues in behavior, even in areas as venerable as Pavlovian conditioning. A statistical account can offer a new, principled interpretation of behavior, and previous experiments and theories can inform many unexplored aspects of the Bayesian enterprise. Here we consider one such issue: the finding that surprising events provoke animals to learn faster. We suggest that, in a statistical account of conditioning, surprise signals change and therefore uncertainty and the need for new learning. We discuss inference in a world that changes and show how experimental results involving surprise can be interpreted from this perspective, and also how, thus understood, these phenomena help constrain statistical theories of animal and human learning.

  19. Supermatrix and species tree methods resolve phylogenetic relationships within the big cats, Panthera (Carnivora: Felidae).

    PubMed

    Davis, Brian W; Li, Gang; Murphy, William J

    2010-07-01

    The pantherine lineage of cats diverged from the remainder of modern Felidae less than 11 million years ago and consists of the five big cats of the genus Panthera, the lion, tiger, jaguar, leopard, and snow leopard, as well as the closely related clouded leopard. A significant problem exists with respect to the precise phylogeny of these highly threatened great cats. Despite multiple publications on the subject, no two molecular studies have reconstructed Panthera with the same topology. These evolutionary relationships remain unresolved partially due to the recent and rapid radiation of pantherines in the Pliocene, individual speciation events occurring within less than 1 million years, and probable introgression between lineages following their divergence. We provide an alternative, highly supported interpretation of the evolutionary history of the pantherine lineage using novel and published DNA sequence data from the autosomes, both sex chromosomes and the mitochondrial genome. New sequences were generated for 39 single-copy regions of the felid Y chromosome, as well as four mitochondrial and four autosomal gene segments, totaling 28.7 kb. Phylogenetic analysis of these new data, combined with all published data in GenBank, highlighted the prevalence of phylogenetic disparities stemming either from the amplification of a mitochondrial to nuclear translocation event (numt), or errors in species identification. Our 47.6 kb combined dataset was analyzed as a supermatrix and with respect to individual partitions using maximum likelihood and Bayesian phylogenetic inference, in conjunction with Bayesian Estimation of Species Trees (BEST) which accounts for heterogeneous gene histories. Our results yield a robust consensus topology supporting the monophyly of lion and leopard, with jaguar sister to these species, as well as a sister species relationship of tiger and snow leopard. These results highlight new avenues for the study of speciation genomics and understanding the historical events surrounding the origin of the members of this lineage. Copyright 2010 Elsevier Inc. All rights reserved.

  20. A semiparametric Bayesian proportional hazards model for interval censored data with frailty effects.

    PubMed

    Henschel, Volkmar; Engel, Jutta; Hölzel, Dieter; Mansmann, Ulrich

    2009-02-10

    Multivariate analysis of interval censored event data based on classical likelihood methods is notoriously cumbersome. Likelihood inference for models which additionally include random effects are not available at all. Developed algorithms bear problems for practical users like: matrix inversion, slow convergence, no assessment of statistical uncertainty. MCMC procedures combined with imputation are used to implement hierarchical models for interval censored data within a Bayesian framework. Two examples from clinical practice demonstrate the handling of clustered interval censored event times as well as multilayer random effects for inter-institutional quality assessment. The software developed is called survBayes and is freely available at CRAN. The proposed software supports the solution of complex analyses in many fields of clinical epidemiology as well as health services research.

  1. Trending in Probability of Collision Measurements via a Bayesian Zero-Inflated Beta Mixed Model

    NASA Technical Reports Server (NTRS)

    Vallejo, Jonathon; Hejduk, Matt; Stamey, James

    2015-01-01

    We investigate the performance of a generalized linear mixed model in predicting the Probabilities of Collision (Pc) for conjunction events. Specifically, we apply this model to the log(sub 10) transformation of these probabilities and argue that this transformation yields values that can be considered bounded in practice. Additionally, this bounded random variable, after scaling, is zero-inflated. Consequently, we model these values using the zero-inflated Beta distribution, and utilize the Bayesian paradigm and the mixed model framework to borrow information from past and current events. This provides a natural way to model the data and provides a basis for answering questions of interest, such as what is the likelihood of observing a probability of collision equal to the effective value of zero on a subsequent observation.

  2. A comparison of machine learning and Bayesian modelling for molecular serotyping.

    PubMed

    Newton, Richard; Wernisch, Lorenz

    2017-08-11

    Streptococcus pneumoniae is a human pathogen that is a major cause of infant mortality. Identifying the pneumococcal serotype is an important step in monitoring the impact of vaccines used to protect against disease. Genomic microarrays provide an effective method for molecular serotyping. Previously we developed an empirical Bayesian model for the classification of serotypes from a molecular serotyping array. With only few samples available, a model driven approach was the only option. In the meanwhile, several thousand samples have been made available to us, providing an opportunity to investigate serotype classification by machine learning methods, which could complement the Bayesian model. We compare the performance of the original Bayesian model with two machine learning algorithms: Gradient Boosting Machines and Random Forests. We present our results as an example of a generic strategy whereby a preliminary probabilistic model is complemented or replaced by a machine learning classifier once enough data are available. Despite the availability of thousands of serotyping arrays, a problem encountered when applying machine learning methods is the lack of training data containing mixtures of serotypes; due to the large number of possible combinations. Most of the available training data comprises samples with only a single serotype. To overcome the lack of training data we implemented an iterative analysis, creating artificial training data of serotype mixtures by combining raw data from single serotype arrays. With the enhanced training set the machine learning algorithms out perform the original Bayesian model. However, for serotypes currently lacking sufficient training data the best performing implementation was a combination of the results of the Bayesian Model and the Gradient Boosting Machine. As well as being an effective method for classifying biological data, machine learning can also be used as an efficient method for revealing subtle biological insights, which we illustrate with an example.

  3. Using naturalistic driving data to explore the association between traffic safety-related events and crash risk at driver level.

    PubMed

    Wu, Kun-Feng; Aguero-Valverde, Jonathan; Jovanis, Paul P

    2014-11-01

    There has been considerable research conducted over the last 40 years using traffic safety-related events to support road safety analyses. Dating back to traffic conflict studies from the 1960s these observational studies of driver behavior have been criticized due to: poor quality data; lack of available and useful exposure measures linked to the observations; the incomparability of self-reported safety-related events; and, the difficulty in assessing culpability for safety-related events. This study seeks to explore the relationships between driver characteristics and traffic safety-related events, and between traffic safety-related events and crash involvement while mitigating some of those limitations. The Virginia Tech Transportation Institute 100-Car Naturalistic Driving Study dataset, in which the participants' vehicles were instrumented with various cameras and sensors during the study period, was used for this study. The study data set includes 90 drivers observed for 12-13 months driving. This study focuses on single vehicle run-off-road safety-related events only, including 14 crashes and 182 safety-related events (30 near crashes, and 152 crash-relevant incidents). Among the findings are: (1) drivers under age 25 are significantly more likely to be involved in safety-related events and crashes; and (2) significantly positive correlations exist between crashes, near crashes, and crash-relevant incidents. Although there is still much to learn about the factors affecting the positive correlation between safety-related events and crashes, a Bayesian multivariate Poisson log-normal model is shown to be useful to quantify the associations between safety-related events and crash risk while controlling for driver characteristics. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Development and comparison in uncertainty assessment based Bayesian modularization method in hydrological modeling

    NASA Astrophysics Data System (ADS)

    Li, Lu; Xu, Chong-Yu; Engeland, Kolbjørn

    2013-04-01

    SummaryWith respect to model calibration, parameter estimation and analysis of uncertainty sources, various regression and probabilistic approaches are used in hydrological modeling. A family of Bayesian methods, which incorporates different sources of information into a single analysis through Bayes' theorem, is widely used for uncertainty assessment. However, none of these approaches can well treat the impact of high flows in hydrological modeling. This study proposes a Bayesian modularization uncertainty assessment approach in which the highest streamflow observations are treated as suspect information that should not influence the inference of the main bulk of the model parameters. This study includes a comprehensive comparison and evaluation of uncertainty assessments by our new Bayesian modularization method and standard Bayesian methods using the Metropolis-Hastings (MH) algorithm with the daily hydrological model WASMOD. Three likelihood functions were used in combination with standard Bayesian method: the AR(1) plus Normal model independent of time (Model 1), the AR(1) plus Normal model dependent on time (Model 2) and the AR(1) plus Multi-normal model (Model 3). The results reveal that the Bayesian modularization method provides the most accurate streamflow estimates measured by the Nash-Sutcliffe efficiency and provide the best in uncertainty estimates for low, medium and entire flows compared to standard Bayesian methods. The study thus provides a new approach for reducing the impact of high flows on the discharge uncertainty assessment of hydrological models via Bayesian method.

  5. From reading numbers to seeing ratios: a benefit of icons for risk comprehension.

    PubMed

    Tubau, Elisabet; Rodríguez-Ferreiro, Javier; Barberia, Itxaso; Colomé, Àngels

    2018-06-21

    Promoting a better understanding of statistical data is becoming increasingly important for improving risk comprehension and decision-making. In this regard, previous studies on Bayesian problem solving have shown that iconic representations help infer frequencies in sets and subsets. Nevertheless, the mechanisms by which icons enhance performance remain unclear. Here, we tested the hypothesis that the benefit offered by icon arrays lies in a better alignment between presented and requested relationships, which should facilitate the comprehension of the requested ratio beyond the represented quantities. To this end, we analyzed individual risk estimates based on data presented either in standard verbal presentations (percentages and natural frequency formats) or as icon arrays. Compared to the other formats, icons led to estimates that were more accurate, and importantly, promoted the use of equivalent expressions for the requested probability. Furthermore, whereas the accuracy of the estimates based on verbal formats depended on their alignment with the text, all the estimates based on icons were equally accurate. Therefore, these results support the proposal that icons enhance the comprehension of the ratio and its mapping onto the requested probability and point to relational misalignment as potential interference for text-based Bayesian reasoning. The present findings also argue against an intrinsic difficulty with understanding single-event probabilities.

  6. When Absence of Evidence Is Evidence of Absence: Rational Inferences From Absent Data.

    PubMed

    Hsu, Anne S; Horng, Andy; Griffiths, Thomas L; Chater, Nick

    2017-05-01

    Identifying patterns in the world requires noticing not only unusual occurrences, but also unusual absences. We examined how people learn from absences, manipulating the extent to which an absence is expected. People can make two types of inferences from the absence of an event: either the event is possible but has not yet occurred, or the event never occurs. A rational analysis using Bayesian inference predicts that inferences from absent data should depend on how much the absence is expected to occur, with less probable absences being more salient. We tested this prediction in two experiments in which we elicited people's judgments about patterns in the data as a function of absence salience. We found that people were able to decide that absences either were mere coincidences or were indicative of a significant pattern in the data in a manner that was consistent with predictions of a simple Bayesian model. Copyright © 2016 Cognitive Science Society, Inc.

  7. BASiCS: Bayesian Analysis of Single-Cell Sequencing Data

    PubMed Central

    Vallejos, Catalina A.; Marioni, John C.; Richardson, Sylvia

    2015-01-01

    Single-cell mRNA sequencing can uncover novel cell-to-cell heterogeneity in gene expression levels in seemingly homogeneous populations of cells. However, these experiments are prone to high levels of unexplained technical noise, creating new challenges for identifying genes that show genuine heterogeneous expression within the population of cells under study. BASiCS (Bayesian Analysis of Single-Cell Sequencing data) is an integrated Bayesian hierarchical model where: (i) cell-specific normalisation constants are estimated as part of the model parameters, (ii) technical variability is quantified based on spike-in genes that are artificially introduced to each analysed cell’s lysate and (iii) the total variability of the expression counts is decomposed into technical and biological components. BASiCS also provides an intuitive detection criterion for highly (or lowly) variable genes within the population of cells under study. This is formalised by means of tail posterior probabilities associated to high (or low) biological cell-to-cell variance contributions, quantities that can be easily interpreted by users. We demonstrate our method using gene expression measurements from mouse Embryonic Stem Cells. Cross-validation and meaningful enrichment of gene ontology categories within genes classified as highly (or lowly) variable supports the efficacy of our approach. PMID:26107944

  8. BASiCS: Bayesian Analysis of Single-Cell Sequencing Data.

    PubMed

    Vallejos, Catalina A; Marioni, John C; Richardson, Sylvia

    2015-06-01

    Single-cell mRNA sequencing can uncover novel cell-to-cell heterogeneity in gene expression levels in seemingly homogeneous populations of cells. However, these experiments are prone to high levels of unexplained technical noise, creating new challenges for identifying genes that show genuine heterogeneous expression within the population of cells under study. BASiCS (Bayesian Analysis of Single-Cell Sequencing data) is an integrated Bayesian hierarchical model where: (i) cell-specific normalisation constants are estimated as part of the model parameters, (ii) technical variability is quantified based on spike-in genes that are artificially introduced to each analysed cell's lysate and (iii) the total variability of the expression counts is decomposed into technical and biological components. BASiCS also provides an intuitive detection criterion for highly (or lowly) variable genes within the population of cells under study. This is formalised by means of tail posterior probabilities associated to high (or low) biological cell-to-cell variance contributions, quantities that can be easily interpreted by users. We demonstrate our method using gene expression measurements from mouse Embryonic Stem Cells. Cross-validation and meaningful enrichment of gene ontology categories within genes classified as highly (or lowly) variable supports the efficacy of our approach.

  9. Bayesian Analysis of Biogeography when the Number of Areas is Large

    PubMed Central

    Landis, Michael J.; Matzke, Nicholas J.; Moore, Brian R.; Huelsenbeck, John P.

    2013-01-01

    Historical biogeography is increasingly studied from an explicitly statistical perspective, using stochastic models to describe the evolution of species range as a continuous-time Markov process of dispersal between and extinction within a set of discrete geographic areas. The main constraint of these methods is the computational limit on the number of areas that can be specified. We propose a Bayesian approach for inferring biogeographic history that extends the application of biogeographic models to the analysis of more realistic problems that involve a large number of areas. Our solution is based on a “data-augmentation” approach, in which we first populate the tree with a history of biogeographic events that is consistent with the observed species ranges at the tips of the tree. We then calculate the likelihood of a given history by adopting a mechanistic interpretation of the instantaneous-rate matrix, which specifies both the exponential waiting times between biogeographic events and the relative probabilities of each biogeographic change. We develop this approach in a Bayesian framework, marginalizing over all possible biogeographic histories using Markov chain Monte Carlo (MCMC). Besides dramatically increasing the number of areas that can be accommodated in a biogeographic analysis, our method allows the parameters of a given biogeographic model to be estimated and different biogeographic models to be objectively compared. Our approach is implemented in the program, BayArea. [ancestral area analysis; Bayesian biogeographic inference; data augmentation; historical biogeography; Markov chain Monte Carlo.] PMID:23736102

  10. A Bayesian account of quantum histories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marlow, Thomas

    2006-05-15

    We investigate whether quantum history theories can be consistent with Bayesian reasoning and whether such an analysis helps clarify the interpretation of such theories. First, we summarise and extend recent work categorising two different approaches to formalising multi-time measurements in quantum theory. The standard approach consists of describing an ordered series of measurements in terms of history propositions with non-additive 'probabilities.' The non-standard approach consists of defining multi-time measurements to consist of sets of exclusive and exhaustive history propositions and recovering the single-time exclusivity of results when discussing single-time history propositions. We analyse whether such history propositions can be consistentmore » with Bayes' rule. We show that certain class of histories are given a natural Bayesian interpretation, namely, the linearly positive histories originally introduced by Goldstein and Page. Thus, we argue that this gives a certain amount of interpretational clarity to the non-standard approach. We also attempt a justification of our analysis using Cox's axioms of probability theory.« less

  11. Improved Accuracy Using Recursive Bayesian Estimation Based Language Model Fusion in ERP-Based BCI Typing Systems

    PubMed Central

    Orhan, U.; Erdogmus, D.; Roark, B.; Oken, B.; Purwar, S.; Hild, K. E.; Fowler, A.; Fried-Oken, M.

    2013-01-01

    RSVP Keyboard™ is an electroencephalography (EEG) based brain computer interface (BCI) typing system, designed as an assistive technology for the communication needs of people with locked-in syndrome (LIS). It relies on rapid serial visual presentation (RSVP) and does not require precise eye gaze control. Existing BCI typing systems which uses event related potentials (ERP) in EEG suffer from low accuracy due to low signal-to-noise ratio. Henceforth, RSVP Keyboard™ utilizes a context based decision making via incorporating a language model, to improve the accuracy of letter decisions. To further improve the contributions of the language model, we propose recursive Bayesian estimation, which relies on non-committing string decisions, and conduct an offline analysis, which compares it with the existing naïve Bayesian fusion approach. The results indicate the superiority of the recursive Bayesian fusion and in the next generation of RSVP Keyboard™ we plan to incorporate this new approach. PMID:23366432

  12. Application of a predictive Bayesian model to environmental accounting.

    PubMed

    Anex, R P; Englehardt, J D

    2001-03-30

    Environmental accounting techniques are intended to capture important environmental costs and benefits that are often overlooked in standard accounting practices. Environmental accounting methods themselves often ignore or inadequately represent large but highly uncertain environmental costs and costs conditioned by specific prior events. Use of a predictive Bayesian model is demonstrated for the assessment of such highly uncertain environmental and contingent costs. The predictive Bayesian approach presented generates probability distributions for the quantity of interest (rather than parameters thereof). A spreadsheet implementation of a previously proposed predictive Bayesian model, extended to represent contingent costs, is described and used to evaluate whether a firm should undertake an accelerated phase-out of its PCB containing transformers. Variability and uncertainty (due to lack of information) in transformer accident frequency and severity are assessed simultaneously using a combination of historical accident data, engineering model-based cost estimates, and subjective judgement. Model results are compared using several different risk measures. Use of the model for incorporation of environmental risk management into a company's overall risk management strategy is discussed.

  13. Novel health economic evaluation of a vaccination strategy to prevent HPV-related diseases: the BEST study.

    PubMed

    Favato, Giampiero; Baio, Gianluca; Capone, Alessandro; Marcellusi, Andrea; Costa, Silvano; Garganese, Giorgia; Picardo, Mauro; Drummond, Mike; Jonsson, Bengt; Scambia, Giovanni; Zweifel, Peter; Mennini, Francesco S

    2012-12-01

    The development of human papillomavirus (HPV)-related diseases is not understood perfectly and uncertainties associated with commonly utilized probabilistic models must be considered. The study assessed the cost-effectiveness of a quadrivalent-based multicohort HPV vaccination strategy within a Bayesian framework. A full Bayesian multicohort Markov model was used, in which all unknown quantities were associated with suitable probability distributions reflecting the state of currently available knowledge. These distributions were informed by observed data or expert opinion. The model cycle lasted 1 year, whereas the follow-up time horizon was 90 years. Precancerous cervical lesions, cervical cancers, and anogenital warts were considered as outcomes. The base case scenario (2 cohorts of girls aged 12 and 15 y) and other multicohort vaccination strategies (additional cohorts aged 18 and 25 y) were cost-effective, with a discounted cost per quality-adjusted life-year gained that corresponded to €12,013, €13,232, and €15,890 for vaccination programs based on 2, 3, and 4 cohorts, respectively. With multicohort vaccination strategies, the reduction in the number of HPV-related events occurred earlier (range, 3.8-6.4 y) when compared with a single cohort. The analysis of the expected value of information showed that the results of the model were subject to limited uncertainty (cost per patient = €12.6). This methodological approach is designed to incorporate the uncertainty associated with HPV vaccination. Modeling the cost-effectiveness of a multicohort vaccination program with Bayesian statistics confirmed the value for money of quadrivalent-based HPV vaccination. The expected value of information gave the most appropriate and feasible representation of the true value of this program.

  14. Tracing the spatio-temporal dynamics of endangered fin whales (Balaenoptera physalus) within baleen whale (Mysticeti) lineages: a mitogenomic perspective.

    PubMed

    Yu, Jihyun; Nam, Bo-Hye; Yoon, Joon; Kim, Eun Bae; Park, Jung Youn; Kim, Heebal; Yoon, Sook Hee

    2017-12-01

    To explore the spatio-temporal dynamics of endangered fin whales (Balaenoptera physalus) within the baleen whale (Mysticeti) lineages, we analyzed 148 published mitochondrial genome sequences of baleen whales. We used a Bayesian coalescent approach as well as Bayesian inferences and maximum likelihood methods. The results showed that the fin whales had a single maternal origin, and that there is a significant correlation between geographic location and evolution of global fin whales. The most recent common female ancestor of this species lived approximately 9.88 million years ago (Mya). Here, North Pacific fin whales first appeared about 7.48 Mya, followed by a subsequent divergence in Southern Hemisphere approximately 6.63 Mya and North Atlantic about 4.42 Mya. Relatively recently, approximately 1.76 and 1.42 Mya, there were two additional occurrences of North Pacific populations; one originated from the Southern Hemisphere and the other from an uncertain location. The evolutionary rate of this species was 1.002 × 10 -3 substitutions/site/My. Our Bayesian skyline plot illustrates that the fin whale population has the rapid expansion event since ~ 2.5 Mya, during the Quaternary glaciation stage. Additionally, this study indicates that the fin whale has a sister group relationship with humpback whale (Meganoptera novaeangliae) within the baleen whale lineages. Of the 16 genomic regions, NADH5 showed the most powerful signal for baleen whale phylogenetics. Interestingly, fin whales have 16 species-specific amino acid residues in eight mitochondrial genes: NADH2, COX2, COX3, ATPase6, ATPase8, NADH4, NADH5, and Cytb.

  15. A simple Bayesian approach to quantifying confidence level of adverse event incidence proportion in small samples.

    PubMed

    Liu, Fang

    2016-01-01

    In both clinical development and post-marketing of a new therapy or a new treatment, incidence of an adverse event (AE) is always a concern. When sample sizes are small, large sample-based inferential approaches on an AE incidence proportion in a certain time period no longer apply. In this brief discussion, we introduce a simple Bayesian framework to quantify, in small sample studies and the rare AE case, (1) the confidence level that the incidence proportion of a particular AE p is over or below a threshold, (2) the lower or upper bounds on p with a certain level of confidence, and (3) the minimum required number of patients with an AE before we can be certain that p surpasses a specific threshold, or the maximum allowable number of patients with an AE after which we can no longer be certain that p is below a certain threshold, given a certain confidence level. The method is easy to understand and implement; the interpretation of the results is intuitive. This article also demonstrates the usefulness of simple Bayesian concepts when it comes to answering practical questions.

  16. SIG-VISA: Signal-based Vertically Integrated Seismic Monitoring

    NASA Astrophysics Data System (ADS)

    Moore, D.; Mayeda, K. M.; Myers, S. C.; Russell, S.

    2013-12-01

    Traditional seismic monitoring systems rely on discrete detections produced by station processing software; however, while such detections may constitute a useful summary of station activity, they discard large amounts of information present in the original recorded signal. We present SIG-VISA (Signal-based Vertically Integrated Seismic Analysis), a system for seismic monitoring through Bayesian inference on seismic signals. By directly modeling the recorded signal, our approach incorporates additional information unavailable to detection-based methods, enabling higher sensitivity and more accurate localization using techniques such as waveform matching. SIG-VISA's Bayesian forward model of seismic signal envelopes includes physically-derived models of travel times and source characteristics as well as Gaussian process (kriging) statistical models of signal properties that combine interpolation of historical data with extrapolation of learned physical trends. Applying Bayesian inference, we evaluate the model on earthquakes as well as the 2009 DPRK test event, demonstrating a waveform matching effect as part of the probabilistic inference, along with results on event localization and sensitivity. In particular, we demonstrate increased sensitivity from signal-based modeling, in which the SIGVISA signal model finds statistical evidence for arrivals even at stations for which the IMS station processing failed to register any detection.

  17. The evolutionary host switches of Polychromophilus: a multi-gene phylogeny of the bat malaria genus suggests a second invasion of mammals by a haemosporidian parasite

    PubMed Central

    2012-01-01

    Background The majority of Haemosporida species infect birds or reptiles, but many important genera, including Plasmodium, infect mammals. Dipteran vectors shared by avian, reptilian and mammalian Haemosporida, suggest multiple invasions of Mammalia during haemosporidian evolution; yet, phylogenetic analyses have detected only a single invasion event. Until now, several important mammal-infecting genera have been absent in these analyses. This study focuses on the evolutionary origin of Polychromophilus, a unique malaria genus that only infects bats (Microchiroptera) and is transmitted by bat flies (Nycteribiidae). Methods Two species of Polychromophilus were obtained from wild bats caught in Switzerland. These were molecularly characterized using four genes (asl, clpc, coI, cytb) from the three different genomes (nucleus, apicoplast, mitochondrion). These data were then combined with data of 60 taxa of Haemosporida available in GenBank. Bayesian inference, maximum likelihood and a range of rooting methods were used to test specific hypotheses concerning the phylogenetic relationships between Polychromophilus and the other haemosporidian genera. Results The Polychromophilus melanipherus and Polychromophilus murinus samples show genetically distinct patterns and group according to species. The Bayesian tree topology suggests that the monophyletic clade of Polychromophilus falls within the avian/saurian clade of Plasmodium and directed hypothesis testing confirms the Plasmodium origin. Conclusion Polychromophilus' ancestor was most likely a bird- or reptile-infecting Plasmodium before it switched to bats. The invasion of mammals as hosts has, therefore, not been a unique event in the evolutionary history of Haemosporida, despite the suspected costs of adapting to a new host. This was, moreover, accompanied by a switch in dipteran host. PMID:22356874

  18. Light-sheet Bayesian microscopy enables deep-cell super-resolution imaging of heterochromatin in live human embryonic stem cells.

    PubMed

    Hu, Ying S; Zhu, Quan; Elkins, Keri; Tse, Kevin; Li, Yu; Fitzpatrick, James A J; Verma, Inder M; Cang, Hu

    2013-01-01

    Heterochromatin in the nucleus of human embryonic cells plays an important role in the epigenetic regulation of gene expression. The architecture of heterochromatin and its dynamic organization remain elusive because of the lack of fast and high-resolution deep-cell imaging tools. We enable this task by advancing instrumental and algorithmic implementation of the localization-based super-resolution technique. We present light-sheet Bayesian super-resolution microscopy (LSBM). We adapt light-sheet illumination for super-resolution imaging by using a novel prism-coupled condenser design to illuminate a thin slice of the nucleus with high signal-to-noise ratio. Coupled with a Bayesian algorithm that resolves overlapping fluorophores from high-density areas, we show, for the first time, nanoscopic features of the heterochromatin structure in both fixed and live human embryonic stem cells. The enhanced temporal resolution allows capturing the dynamic change of heterochromatin with a lateral resolution of 50-60 nm on a time scale of 2.3 s. Light-sheet Bayesian microscopy opens up broad new possibilities of probing nanometer-scale nuclear structures and real-time sub-cellular processes and other previously difficult-to-access intracellular regions of living cells at the single-molecule, and single cell level.

  19. Light-sheet Bayesian microscopy enables deep-cell super-resolution imaging of heterochromatin in live human embryonic stem cells

    PubMed Central

    Hu, Ying S; Zhu, Quan; Elkins, Keri; Tse, Kevin; Li, Yu; Fitzpatrick, James A J; Verma, Inder M; Cang, Hu

    2016-01-01

    Background Heterochromatin in the nucleus of human embryonic cells plays an important role in the epigenetic regulation of gene expression. The architecture of heterochromatin and its dynamic organization remain elusive because of the lack of fast and high-resolution deep-cell imaging tools. We enable this task by advancing instrumental and algorithmic implementation of the localization-based super-resolution technique. Results We present light-sheet Bayesian super-resolution microscopy (LSBM). We adapt light-sheet illumination for super-resolution imaging by using a novel prism-coupled condenser design to illuminate a thin slice of the nucleus with high signal-to-noise ratio. Coupled with a Bayesian algorithm that resolves overlapping fluorophores from high-density areas, we show, for the first time, nanoscopic features of the heterochromatin structure in both fixed and live human embryonic stem cells. The enhanced temporal resolution allows capturing the dynamic change of heterochromatin with a lateral resolution of 50–60 nm on a time scale of 2.3 s. Conclusion Light-sheet Bayesian microscopy opens up broad new possibilities of probing nanometer-scale nuclear structures and real-time sub-cellular processes and other previously difficult-to-access intracellular regions of living cells at the single-molecule, and single cell level. PMID:27795878

  20. Bayesian statistical inference enhances the interpretation of contemporary randomized controlled trials.

    PubMed

    Wijeysundera, Duminda N; Austin, Peter C; Hux, Janet E; Beattie, W Scott; Laupacis, Andreas

    2009-01-01

    Randomized trials generally use "frequentist" statistics based on P-values and 95% confidence intervals. Frequentist methods have limitations that might be overcome, in part, by Bayesian inference. To illustrate these advantages, we re-analyzed randomized trials published in four general medical journals during 2004. We used Medline to identify randomized superiority trials with two parallel arms, individual-level randomization and dichotomous or time-to-event primary outcomes. Studies with P<0.05 in favor of the intervention were deemed "positive"; otherwise, they were "negative." We used several prior distributions and exact conjugate analyses to calculate Bayesian posterior probabilities for clinically relevant effects. Of 88 included studies, 39 were positive using a frequentist analysis. Although the Bayesian posterior probabilities of any benefit (relative risk or hazard ratio<1) were high in positive studies, these probabilities were lower and variable for larger benefits. The positive studies had only moderate probabilities for exceeding the effects that were assumed for calculating the sample size. By comparison, there were moderate probabilities of any benefit in negative studies. Bayesian and frequentist analyses complement each other when interpreting the results of randomized trials. Future reports of randomized trials should include both.

  1. Bayesian flood forecasting methods: A review

    NASA Astrophysics Data System (ADS)

    Han, Shasha; Coulibaly, Paulin

    2017-08-01

    Over the past few decades, floods have been seen as one of the most common and largely distributed natural disasters in the world. If floods could be accurately forecasted in advance, then their negative impacts could be greatly minimized. It is widely recognized that quantification and reduction of uncertainty associated with the hydrologic forecast is of great importance for flood estimation and rational decision making. Bayesian forecasting system (BFS) offers an ideal theoretic framework for uncertainty quantification that can be developed for probabilistic flood forecasting via any deterministic hydrologic model. It provides suitable theoretical structure, empirically validated models and reasonable analytic-numerical computation method, and can be developed into various Bayesian forecasting approaches. This paper presents a comprehensive review on Bayesian forecasting approaches applied in flood forecasting from 1999 till now. The review starts with an overview of fundamentals of BFS and recent advances in BFS, followed with BFS application in river stage forecasting and real-time flood forecasting, then move to a critical analysis by evaluating advantages and limitations of Bayesian forecasting methods and other predictive uncertainty assessment approaches in flood forecasting, and finally discusses the future research direction in Bayesian flood forecasting. Results show that the Bayesian flood forecasting approach is an effective and advanced way for flood estimation, it considers all sources of uncertainties and produces a predictive distribution of the river stage, river discharge or runoff, thus gives more accurate and reliable flood forecasts. Some emerging Bayesian forecasting methods (e.g. ensemble Bayesian forecasting system, Bayesian multi-model combination) were shown to overcome limitations of single model or fixed model weight and effectively reduce predictive uncertainty. In recent years, various Bayesian flood forecasting approaches have been developed and widely applied, but there is still room for improvements. Future research in the context of Bayesian flood forecasting should be on assimilation of various sources of newly available information and improvement of predictive performance assessment methods.

  2. Prediction of Individual Serum Infliximab Concentrations in Inflammatory Bowel Disease by a Bayesian Dashboard System.

    PubMed

    Eser, Alexander; Primas, Christian; Reinisch, Sieglinde; Vogelsang, Harald; Novacek, Gottfried; Mould, Diane R; Reinisch, Walter

    2018-01-30

    Despite a robust exposure-response relationship of infliximab in inflammatory bowel disease (IBD), attempts to adjust dosing to individually predicted serum concentrations of infliximab (SICs) are lacking. Compared with labor-intensive conventional software for pharmacokinetic (PK) modeling (eg, NONMEM) dashboards are easy-to-use programs incorporating complex Bayesian statistics to determine individual pharmacokinetics. We evaluated various infliximab detection assays and the number of samples needed to precisely forecast individual SICs using a Bayesian dashboard. We assessed long-term infliximab retention in patients being dosed concordantly versus discordantly with Bayesian dashboard recommendations. Three hundred eighty-two serum samples from 117 adult IBD patients on infliximab maintenance therapy were analyzed by 3 commercially available assays. Data from each assay was modeled using NONMEM and a Bayesian dashboard. PK parameter precision and residual variability were assessed. Forecast concentrations from both systems were compared with observed concentrations. Infliximab retention was assessed by prediction for dose intensification via Bayesian dashboard versus real-life practice. Forecast precision of SICs varied between detection assays. At least 3 SICs from a reliable assay are needed for an accurate forecast. The Bayesian dashboard performed similarly to NONMEM to predict SICs. Patients dosed concordantly with Bayesian dashboard recommendations had a significantly longer median drug survival than those dosed discordantly (51.5 versus 4.6 months, P < .0001). The Bayesian dashboard helps to assess the diagnostic performance of infliximab detection assays. Three, not single, SICs provide sufficient information for individualized dose adjustment when incorporated into the Bayesian dashboard. Treatment adjusted to forecasted SICs is associated with longer drug retention of infliximab. © 2018, The American College of Clinical Pharmacology.

  3. Bayesian cross-validation for model evaluation and selection, with application to the North American Breeding Bird Survey

    USGS Publications Warehouse

    Link, William; Sauer, John R.

    2016-01-01

    The analysis of ecological data has changed in two important ways over the last 15 years. The development and easy availability of Bayesian computational methods has allowed and encouraged the fitting of complex hierarchical models. At the same time, there has been increasing emphasis on acknowledging and accounting for model uncertainty. Unfortunately, the ability to fit complex models has outstripped the development of tools for model selection and model evaluation: familiar model selection tools such as Akaike's information criterion and the deviance information criterion are widely known to be inadequate for hierarchical models. In addition, little attention has been paid to the evaluation of model adequacy in context of hierarchical modeling, i.e., to the evaluation of fit for a single model. In this paper, we describe Bayesian cross-validation, which provides tools for model selection and evaluation. We describe the Bayesian predictive information criterion and a Bayesian approximation to the BPIC known as the Watanabe-Akaike information criterion. We illustrate the use of these tools for model selection, and the use of Bayesian cross-validation as a tool for model evaluation, using three large data sets from the North American Breeding Bird Survey.

  4. Iterative Bayesian Estimation of Travel Times on Urban Arterials: Fusing Loop Detector and Probe Vehicle Data.

    PubMed

    Liu, Kai; Cui, Meng-Ying; Cao, Peng; Wang, Jiang-Bo

    2016-01-01

    On urban arterials, travel time estimation is challenging especially from various data sources. Typically, fusing loop detector data and probe vehicle data to estimate travel time is a troublesome issue while considering the data issue of uncertain, imprecise and even conflicting. In this paper, we propose an improved data fusing methodology for link travel time estimation. Link travel times are simultaneously pre-estimated using loop detector data and probe vehicle data, based on which Bayesian fusion is then applied to fuse the estimated travel times. Next, Iterative Bayesian estimation is proposed to improve Bayesian fusion by incorporating two strategies: 1) substitution strategy which replaces the lower accurate travel time estimation from one sensor with the current fused travel time; and 2) specially-designed conditions for convergence which restrict the estimated travel time in a reasonable range. The estimation results show that, the proposed method outperforms probe vehicle data based method, loop detector based method and single Bayesian fusion, and the mean absolute percentage error is reduced to 4.8%. Additionally, iterative Bayesian estimation performs better for lighter traffic flows when the variability of travel time is practically higher than other periods.

  5. Iterative Bayesian Estimation of Travel Times on Urban Arterials: Fusing Loop Detector and Probe Vehicle Data

    PubMed Central

    Cui, Meng-Ying; Cao, Peng; Wang, Jiang-Bo

    2016-01-01

    On urban arterials, travel time estimation is challenging especially from various data sources. Typically, fusing loop detector data and probe vehicle data to estimate travel time is a troublesome issue while considering the data issue of uncertain, imprecise and even conflicting. In this paper, we propose an improved data fusing methodology for link travel time estimation. Link travel times are simultaneously pre-estimated using loop detector data and probe vehicle data, based on which Bayesian fusion is then applied to fuse the estimated travel times. Next, Iterative Bayesian estimation is proposed to improve Bayesian fusion by incorporating two strategies: 1) substitution strategy which replaces the lower accurate travel time estimation from one sensor with the current fused travel time; and 2) specially-designed conditions for convergence which restrict the estimated travel time in a reasonable range. The estimation results show that, the proposed method outperforms probe vehicle data based method, loop detector based method and single Bayesian fusion, and the mean absolute percentage error is reduced to 4.8%. Additionally, iterative Bayesian estimation performs better for lighter traffic flows when the variability of travel time is practically higher than other periods. PMID:27362654

  6. A small-area ecologic study of myocardial infarction, neighborhood deprivation, and sex: a Bayesian modeling approach.

    PubMed

    Deguen, Séverine; Lalloue, Benoît; Bard, Denis; Havard, Sabrina; Arveiler, Dominique; Zmirou-Navier, Denis

    2010-07-01

    Socioeconomic inequalities in the risk of coronary heart disease (CHD) are well documented for men and women. CHD incidence is greater for men but its association with socioeconomic status is usually found to be stronger among women. We explored the sex-specific association between neighborhood deprivation level and the risk of myocardial infarction (MI) at a small-area scale. We studied 1193 myocardial infarction events in people aged 35-74 years in the Strasbourg metropolitan area, France (2000-2003). We used a deprivation index to assess the neighborhood deprivation level. To take into account spatial dependence and the variability of MI rates due to the small number of events, we used a hierarchical Bayesian modeling approach. We fitted hierarchical Bayesian models to estimate sex-specific relative and absolute MI risks across deprivation categories. We tested departure from additive joint effects of deprivation and sex. The risk of MI increased with the deprivation level for both sexes, but was higher for men for all deprivation classes. Relative rates increased along the deprivation scale more steadily for women and followed a different pattern: linear for men and nonlinear for women. Our data provide evidence of effect modification, with departure from an additive joint effect of deprivation and sex. We document sex differences in the socioeconomic gradient of MI risk in Strasbourg. Women appear more susceptible at levels of extreme deprivation; this result is not a chance finding, given the large difference in event rates between men and women.

  7. Detection of photosynthetic responses of cool-temperate forests following extreme climate events using Bayesian inversion

    NASA Astrophysics Data System (ADS)

    Toda, M.; Knohl, A.; Herbst, M.; Keenan, T. F.; Yokozawa, M.

    2016-12-01

    The increase in extreme climate events associated with ongoing global warming may create severe damage to terrestrial ecosystems, changing plant structure and the eco-physiological functions that regulate ecosystem carbon exchange. However, most damage is usually due to moderate, rather than catastrophic, disturbances. The nature of plant functional responses to such disturbances, and the resulting effects on the terrestrial carbon cycle, remain poorly understood. To unravel the scientific question, tower-based eddy covariance data in the cool-temperate forests were used to constrain plant eco-physiological parameters in a persimoneous ecosystem model that may have affected carbon dynamics following extreme climate events using the statistic Bayesian inversion approach. In the present study, we raised two types of extreme events relevant for cool-temperate regions, i.e. a typhoon with mechanistic foliage destraction and a heat wave with severe drought. With appropriate evaluation of parameter and predictive uncertainties, the inversion analysis shows annual trajectory of activated photosynthetic responses following climate extremes compared the pre-disturbance state in each forest. We address that forests with moderate disturbance show substantial and rapid photosynthetic recovery, enhanced productivity, and, thus, ecosystem carbon exchange, although the effect of extreme climatic events varies depending on the stand successional phase and the type, intensity, timing and legacy of the disturbance.

  8. THREAT ANTICIPATION AND DECEPTIVE REASONING USING BAYESIAN BELIEF NETWORKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allgood, Glenn O; Olama, Mohammed M; Lake, Joe E

    Recent events highlight the need for tools to anticipate threats posed by terrorists. Assessing these threats requires combining information from disparate data sources such as analytic models, simulations, historical data, sensor networks, and user judgments. These disparate data can be combined in a coherent, analytically defensible, and understandable manner using a Bayesian belief network (BBN). In this paper, we develop a BBN threat anticipatory model based on a deceptive reasoning algorithm using a network engineering process that treats the probability distributions of the BBN nodes within the broader context of the system development process.

  9. Phylogeny of the cycads based on multiple single-copy nuclear genes: congruence of concatenated parsimony, likelihood and species tree inference methods

    PubMed Central

    Salas-Leiva, Dayana E.; Meerow, Alan W.; Calonje, Michael; Griffith, M. Patrick; Francisco-Ortega, Javier; Nakamura, Kyoko; Stevenson, Dennis W.; Lewis, Carl E.; Namoff, Sandra

    2013-01-01

    Background and aims Despite a recent new classification, a stable phylogeny for the cycads has been elusive, particularly regarding resolution of Bowenia, Stangeria and Dioon. In this study, five single-copy nuclear genes (SCNGs) are applied to the phylogeny of the order Cycadales. The specific aim is to evaluate several gene tree–species tree reconciliation approaches for developing an accurate phylogeny of the order, to contrast them with concatenated parsimony analysis and to resolve the erstwhile problematic phylogenetic position of these three genera. Methods DNA sequences of five SCNGs were obtained for 20 cycad species representing all ten genera of Cycadales. These were analysed with parsimony, maximum likelihood (ML) and three Bayesian methods of gene tree–species tree reconciliation, using Cycas as the outgroup. A calibrated date estimation was developed with Bayesian methods, and biogeographic analysis was also conducted. Key Results Concatenated parsimony, ML and three species tree inference methods resolve exactly the same tree topology with high support at most nodes. Dioon and Bowenia are the first and second branches of Cycadales after Cycas, respectively, followed by an encephalartoid clade (Macrozamia–Lepidozamia–Encephalartos), which is sister to a zamioid clade, of which Ceratozamia is the first branch, and in which Stangeria is sister to Microcycas and Zamia. Conclusions A single, well-supported phylogenetic hypothesis of the generic relationships of the Cycadales is presented. However, massive extinction events inferred from the fossil record that eliminated broader ancestral distributions within Zamiaceae compromise accurate optimization of ancestral biogeographical areas for that hypothesis. While major lineages of Cycadales are ancient, crown ages of all modern genera are no older than 12 million years, supporting a recent hypothesis of mostly Miocene radiations. This phylogeny can contribute to an accurate infrafamilial classification of Zamiaceae. PMID:23997230

  10. Measurement of the charge asymmetry in top quark pair production in pp collisions at $$\\sqrt{s}=7\\ \\mathrm{TeV}$$ using the ATLAS detector

    DOE PAGES

    Aad, G.; Abbott, B.; Abdallah, J.; ...

    2012-06-15

    A measurement of the top-antitop production charge asymmetry A C is presented using data corresponding to an integrated luminosity of 1.04 fb -1 of pp collisions at √s = 7 TeV collected by the ATLAS detector at the LHC. Events are selected with a single lepton (electron or muon), missing transverse momentum and at least four jets of which at least one jet is identified as coming from a b-quark. A kinematic fit is used to reconstruct the tt event topology. After background subtraction, a Bayesian unfolding procedure is performed to correct for acceptance and detector effects. The measured valuemore » of A C is A C =-0.019±0.028 (stat.)±0.024 (syst.), consistent with the prediction from the MC@NLO Monte Carlo generator of A C = 0.006±0.002. Measurements of A C in two ranges of invariant mass of the top-antitop pair are also shown.« less

  11. Predictability of extreme weather events for NE U.S.: improvement of the numerical prediction using a Bayesian regression approach

    NASA Astrophysics Data System (ADS)

    Yang, J.; Astitha, M.; Anagnostou, E. N.; Hartman, B.; Kallos, G. B.

    2015-12-01

    Weather prediction accuracy has become very important for the Northeast U.S. given the devastating effects of extreme weather events in the recent years. Weather forecasting systems are used towards building strategies to prevent catastrophic losses for human lives and the environment. Concurrently, weather forecast tools and techniques have evolved with improved forecast skill as numerical prediction techniques are strengthened by increased super-computing resources. In this study, we examine the combination of two state-of-the-science atmospheric models (WRF and RAMS/ICLAMS) by utilizing a Bayesian regression approach to improve the prediction of extreme weather events for NE U.S. The basic concept behind the Bayesian regression approach is to take advantage of the strengths of two atmospheric modeling systems and, similar to the multi-model ensemble approach, limit their weaknesses which are related to systematic and random errors in the numerical prediction of physical processes. The first part of this study is focused on retrospective simulations of seventeen storms that affected the region in the period 2004-2013. Optimal variances are estimated by minimizing the root mean square error and are applied to out-of-sample weather events. The applicability and usefulness of this approach are demonstrated by conducting an error analysis based on in-situ observations from meteorological stations of the National Weather Service (NWS) for wind speed and wind direction, and NCEP Stage IV radar data, mosaicked from the regional multi-sensor for precipitation. The preliminary results indicate a significant improvement in the statistical metrics of the modeled-observed pairs for meteorological variables using various combinations of the sixteen events as predictors of the seventeenth. This presentation will illustrate the implemented methodology and the obtained results for wind speed, wind direction and precipitation, as well as set the research steps that will be followed in the future.

  12. Safety of currently licensed hepatitis B surface antigen vaccines in the United States, Vaccine Adverse Event Reporting System (VAERS), 2005-2015.

    PubMed

    Haber, Penina; Moro, Pedro L; Ng, Carmen; Lewis, Paige W; Hibbs, Beth; Schillie, Sarah F; Nelson, Noele P; Li, Rongxia; Stewart, Brock; Cano, Maria V

    2018-01-25

    Currently four recombinant hepatitis B (HepB) vaccines are in use in the United States. HepB vaccines are recommended for infants, children and adults. We assessed adverse events (AEs) following HepB vaccines reported to the Vaccine Adverse Event Reporting System (VAERS), a national spontaneous reporting system. We searched VAERS for reports of AEs following single antigen HepB vaccine and HepB-containing vaccines (either given alone or with other vaccines), from January 2005 - December 2015. We conducted descriptive analyses and performed empirical Bayesian data mining to assess disproportionate reporting. We reviewed serious reports including reports of special interest. VAERS received 20,231 reports following HepB or HepB-containing vaccines: 10,291 (51%) in persons <2 years of age; 2588 (13%) in persons 2-18 years and 5867 (29%) in persons >18 years; for 1485 (7.3%) age was missing. Dizziness and nausea (8.4% each) were the most frequently reported AEs following a single antigen HepB vaccine: fever (23%) and injection site erythema (11%) were most frequent following Hep-containing vaccines. Of the 4444 (22%) reports after single antigen HepB vaccine, 303 (6.8%) were serious, including 45 deaths. Most commonly reported cause of death was Sudden Infant Death Syndrome (197). Most common non-death serious reports following single antigen HepB vaccines among infants aged <1 month, were nervous system disorders (15) among children aged 1-23 months; infections and infestation (8) among persons age 2-18 years blood and lymphatic systemic disorders; and general disorders and administration site conditions among persons age >18 years. Most common vaccination error following single antigen HepB was incorrect product storage. Review current U.S.-licensed HepB vaccines administered alone or in combination with other vaccines did not reveal new or unexpected safety concerns. Vaccination errors were identified which indicate the need for training and education of providers on HepB vaccine indications and recommendations. Published by Elsevier Ltd.

  13. The impossibility of probabilities

    NASA Astrophysics Data System (ADS)

    Zimmerman, Peter D.

    2017-11-01

    This paper discusses the problem of assigning probabilities to the likelihood of nuclear terrorism events, in particular examining the limitations of using Bayesian priors for this purpose. It suggests an alternate approach to analyzing the threat of nuclear terrorism.

  14. Bayesian survival analysis in clinical trials: What methods are used in practice?

    PubMed

    Brard, Caroline; Le Teuff, Gwénaël; Le Deley, Marie-Cécile; Hampson, Lisa V

    2017-02-01

    Background Bayesian statistics are an appealing alternative to the traditional frequentist approach to designing, analysing, and reporting of clinical trials, especially in rare diseases. Time-to-event endpoints are widely used in many medical fields. There are additional complexities to designing Bayesian survival trials which arise from the need to specify a model for the survival distribution. The objective of this article was to critically review the use and reporting of Bayesian methods in survival trials. Methods A systematic review of clinical trials using Bayesian survival analyses was performed through PubMed and Web of Science databases. This was complemented by a full text search of the online repositories of pre-selected journals. Cost-effectiveness, dose-finding studies, meta-analyses, and methodological papers using clinical trials were excluded. Results In total, 28 articles met the inclusion criteria, 25 were original reports of clinical trials and 3 were re-analyses of a clinical trial. Most trials were in oncology (n = 25), were randomised controlled (n = 21) phase III trials (n = 13), and half considered a rare disease (n = 13). Bayesian approaches were used for monitoring in 14 trials and for the final analysis only in 14 trials. In the latter case, Bayesian survival analyses were used for the primary analysis in four cases, for the secondary analysis in seven cases, and for the trial re-analysis in three cases. Overall, 12 articles reported fitting Bayesian regression models (semi-parametric, n = 3; parametric, n = 9). Prior distributions were often incompletely reported: 20 articles did not define the prior distribution used for the parameter of interest. Over half of the trials used only non-informative priors for monitoring and the final analysis (n = 12) when it was specified. Indeed, no articles fitting Bayesian regression models placed informative priors on the parameter of interest. The prior for the treatment effect was based on historical data in only four trials. Decision rules were pre-defined in eight cases when trials used Bayesian monitoring, and in only one case when trials adopted a Bayesian approach to the final analysis. Conclusion Few trials implemented a Bayesian survival analysis and few incorporated external data into priors. There is scope to improve the quality of reporting of Bayesian methods in survival trials. Extension of the Consolidated Standards of Reporting Trials statement for reporting Bayesian clinical trials is recommended.

  15. Reconstruction of calmodulin single-molecule FRET states, dye interactions, and CaMKII peptide binding by MultiNest and classic maximum entropy

    NASA Astrophysics Data System (ADS)

    DeVore, Matthew S.; Gull, Stephen F.; Johnson, Carey K.

    2013-08-01

    We analyzed single molecule FRET burst measurements using Bayesian nested sampling. The MultiNest algorithm produces accurate FRET efficiency distributions from single-molecule data. FRET efficiency distributions recovered by MultiNest and classic maximum entropy are compared for simulated data and for calmodulin labeled at residues 44 and 117. MultiNest compares favorably with maximum entropy analysis for simulated data, judged by the Bayesian evidence. FRET efficiency distributions recovered for calmodulin labeled with two different FRET dye pairs depended on the dye pair and changed upon Ca2+ binding. We also looked at the FRET efficiency distributions of calmodulin bound to the calcium/calmodulin dependent protein kinase II (CaMKII) binding domain. For both dye pairs, the FRET efficiency distribution collapsed to a single peak in the case of calmodulin bound to the CaMKII peptide. These measurements strongly suggest that consideration of dye-protein interactions is crucial in forming an accurate picture of protein conformations from FRET data.

  16. Reconstruction of Calmodulin Single-Molecule FRET States, Dye-Interactions, and CaMKII Peptide Binding by MultiNest and Classic Maximum Entropy

    PubMed Central

    DeVore, Matthew S.; Gull, Stephen F.; Johnson, Carey K.

    2013-01-01

    We analyze single molecule FRET burst measurements using Bayesian nested sampling. The MultiNest algorithm produces accurate FRET efficiency distributions from single-molecule data. FRET efficiency distributions recovered by MultiNest and classic maximum entropy are compared for simulated data and for calmodulin labeled at residues 44 and 117. MultiNest compares favorably with maximum entropy analysis for simulated data, judged by the Bayesian evidence. FRET efficiency distributions recovered for calmodulin labeled with two different FRET dye pairs depended on the dye pair and changed upon Ca2+ binding. We also looked at the FRET efficiency distributions of calmodulin bound to the calcium/calmodulin dependent protein kinase II (CaMKII) binding domain. For both dye pairs, the FRET efficiency distribution collapsed to a single peak in the case of calmodulin bound to the CaMKII peptide. These measurements strongly suggest that consideration of dye-protein interactions is crucial in forming an accurate picture of protein conformations from FRET data. PMID:24223465

  17. Reconstruction of Calmodulin Single-Molecule FRET States, Dye-Interactions, and CaMKII Peptide Binding by MultiNest and Classic Maximum Entropy.

    PubMed

    Devore, Matthew S; Gull, Stephen F; Johnson, Carey K

    2013-08-30

    We analyze single molecule FRET burst measurements using Bayesian nested sampling. The MultiNest algorithm produces accurate FRET efficiency distributions from single-molecule data. FRET efficiency distributions recovered by MultiNest and classic maximum entropy are compared for simulated data and for calmodulin labeled at residues 44 and 117. MultiNest compares favorably with maximum entropy analysis for simulated data, judged by the Bayesian evidence. FRET efficiency distributions recovered for calmodulin labeled with two different FRET dye pairs depended on the dye pair and changed upon Ca 2+ binding. We also looked at the FRET efficiency distributions of calmodulin bound to the calcium/calmodulin dependent protein kinase II (CaMKII) binding domain. For both dye pairs, the FRET efficiency distribution collapsed to a single peak in the case of calmodulin bound to the CaMKII peptide. These measurements strongly suggest that consideration of dye-protein interactions is crucial in forming an accurate picture of protein conformations from FRET data.

  18. Probabilistic modeling of bifurcations in single-cell gene expression data using a Bayesian mixture of factor analyzers.

    PubMed

    Campbell, Kieran R; Yau, Christopher

    2017-03-15

    Modeling bifurcations in single-cell transcriptomics data has become an increasingly popular field of research. Several methods have been proposed to infer bifurcation structure from such data, but all rely on heuristic non-probabilistic inference. Here we propose the first generative, fully probabilistic model for such inference based on a Bayesian hierarchical mixture of factor analyzers. Our model exhibits competitive performance on large datasets despite implementing full Markov-Chain Monte Carlo sampling, and its unique hierarchical prior structure enables automatic determination of genes driving the bifurcation process. We additionally propose an Empirical-Bayes like extension that deals with the high levels of zero-inflation in single-cell RNA-seq data and quantify when such models are useful. We apply or model to both real and simulated single-cell gene expression data and compare the results to existing pseudotime methods. Finally, we discuss both the merits and weaknesses of such a unified, probabilistic approach in the context practical bioinformatics analyses.

  19. BOP2: Bayesian optimal design for phase II clinical trials with simple and complex endpoints.

    PubMed

    Zhou, Heng; Lee, J Jack; Yuan, Ying

    2017-09-20

    We propose a flexible Bayesian optimal phase II (BOP2) design that is capable of handling simple (e.g., binary) and complicated (e.g., ordinal, nested, and co-primary) endpoints under a unified framework. We use a Dirichlet-multinomial model to accommodate different types of endpoints. At each interim, the go/no-go decision is made by evaluating a set of posterior probabilities of the events of interest, which is optimized to maximize power or minimize the number of patients under the null hypothesis. Unlike other existing Bayesian designs, the BOP2 design explicitly controls the type I error rate, thereby bridging the gap between Bayesian designs and frequentist designs. In addition, the stopping boundary of the BOP2 design can be enumerated prior to the onset of the trial. These features make the BOP2 design accessible to a wide range of users and regulatory agencies and particularly easy to implement in practice. Simulation studies show that the BOP2 design has favorable operating characteristics with higher power and lower risk of incorrectly terminating the trial than some existing Bayesian phase II designs. The software to implement the BOP2 design is freely available at www.trialdesign.org. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  20. Quantification of uncertainty in flood risk assessment for flood protection planning: a Bayesian approach

    NASA Astrophysics Data System (ADS)

    Dittes, Beatrice; Špačková, Olga; Ebrahimian, Negin; Kaiser, Maria; Rieger, Wolfgang; Disse, Markus; Straub, Daniel

    2017-04-01

    Flood risk estimates are subject to significant uncertainties, e.g. due to limited records of historic flood events, uncertainty in flood modeling, uncertain impact of climate change or uncertainty in the exposure and loss estimates. In traditional design of flood protection systems, these uncertainties are typically just accounted for implicitly, based on engineering judgment. In the AdaptRisk project, we develop a fully quantitative framework for planning of flood protection systems under current and future uncertainties using quantitative pre-posterior Bayesian decision analysis. In this contribution, we focus on the quantification of the uncertainties and study their relative influence on the flood risk estimate and on the planning of flood protection systems. The following uncertainty components are included using a Bayesian approach: 1) inherent and statistical (i.e. limited record length) uncertainty; 2) climate uncertainty that can be learned from an ensemble of GCM-RCM models; 3) estimates of climate uncertainty components not covered in 2), such as bias correction, incomplete ensemble, local specifics not captured by the GCM-RCM models; 4) uncertainty in the inundation modelling; 5) uncertainty in damage estimation. We also investigate how these uncertainties are possibly reduced in the future when new evidence - such as new climate models, observed extreme events, and socio-economic data - becomes available. Finally, we look into how this new evidence influences the risk assessment and effectivity of flood protection systems. We demonstrate our methodology for a pre-alpine catchment in southern Germany: the Mangfall catchment in Bavaria that includes the city of Rosenheim, which suffered significant losses during the 2013 flood event.

  1. Bayesian analysis of time-series data under case-crossover designs: posterior equivalence and inference.

    PubMed

    Li, Shi; Mukherjee, Bhramar; Batterman, Stuart; Ghosh, Malay

    2013-12-01

    Case-crossover designs are widely used to study short-term exposure effects on the risk of acute adverse health events. While the frequentist literature on this topic is vast, there is no Bayesian work in this general area. The contribution of this paper is twofold. First, the paper establishes Bayesian equivalence results that require characterization of the set of priors under which the posterior distributions of the risk ratio parameters based on a case-crossover and time-series analysis are identical. Second, the paper studies inferential issues under case-crossover designs in a Bayesian framework. Traditionally, a conditional logistic regression is used for inference on risk-ratio parameters in case-crossover studies. We consider instead a more general full likelihood-based approach which makes less restrictive assumptions on the risk functions. Formulation of a full likelihood leads to growth in the number of parameters proportional to the sample size. We propose a semi-parametric Bayesian approach using a Dirichlet process prior to handle the random nuisance parameters that appear in a full likelihood formulation. We carry out a simulation study to compare the Bayesian methods based on full and conditional likelihood with the standard frequentist approaches for case-crossover and time-series analysis. The proposed methods are illustrated through the Detroit Asthma Morbidity, Air Quality and Traffic study, which examines the association between acute asthma risk and ambient air pollutant concentrations. © 2013, The International Biometric Society.

  2. Bayesian hierarchical modeling for detecting safety signals in clinical trials.

    PubMed

    Xia, H Amy; Ma, Haijun; Carlin, Bradley P

    2011-09-01

    Detection of safety signals from clinical trial adverse event data is critical in drug development, but carries a challenging statistical multiplicity problem. Bayesian hierarchical mixture modeling is appealing for its ability to borrow strength across subgroups in the data, as well as moderate extreme findings most likely due merely to chance. We implement such a model for subject incidence (Berry and Berry, 2004 ) using a binomial likelihood, and extend it to subject-year adjusted incidence rate estimation under a Poisson likelihood. We use simulation to choose a signal detection threshold, and illustrate some effective graphics for displaying the flagged signals.

  3. Probabilistic Approaches for Multi-Hazard Risk Assessment of Structures and Systems

    NASA Astrophysics Data System (ADS)

    Kwag, Shinyoung

    Performance assessment of structures, systems, and components for multi-hazard scenarios has received significant attention in recent years. However, the concept of multi-hazard analysis is quite broad in nature and the focus of existing literature varies across a wide range of problems. In some cases, such studies focus on hazards that either occur simultaneously or are closely correlated with each other. For example, seismically induced flooding or seismically induced fires. In other cases, multi-hazard studies relate to hazards that are not dependent or correlated but have strong likelihood of occurrence at different times during the lifetime of a structure. The current approaches for risk assessment need enhancement to account for multi-hazard risks. It must be able to account for uncertainty propagation in a systems-level analysis, consider correlation among events or failure modes, and allow integration of newly available information from continually evolving simulation models, experimental observations, and field measurements. This dissertation presents a detailed study that proposes enhancements by incorporating Bayesian networks and Bayesian updating within a performance-based probabilistic framework. The performance-based framework allows propagation of risk as well as uncertainties in the risk estimates within a systems analysis. Unlike conventional risk assessment techniques such as a fault-tree analysis, a Bayesian network can account for statistical dependencies and correlations among events/hazards. The proposed approach is extended to develop a risk-informed framework for quantitative validation and verification of high fidelity system-level simulation tools. Validation of such simulations can be quite formidable within the context of a multi-hazard risk assessment in nuclear power plants. The efficiency of this approach lies in identification of critical events, components, and systems that contribute to the overall risk. Validation of any event or component on the critical path is relatively more important in a risk-informed environment. Significance of multi-hazard risk is also illustrated for uncorrelated hazards of earthquakes and high winds which may result in competing design objectives. It is also illustrated that the number of computationally intensive nonlinear simulations needed in performance-based risk assessment for external hazards can be significantly reduced by using the power of Bayesian updating in conjunction with the concept of equivalent limit-state.

  4. A new Bayesian Event Tree tool to track and quantify volcanic unrest and its application to Kawah Ijen volcano

    NASA Astrophysics Data System (ADS)

    Tonini, Roberto; Sandri, Laura; Rouwet, Dmitri; Caudron, Corentin; Marzocchi, Warner; Suparjan

    2016-07-01

    Although most of volcanic hazard studies focus on magmatic eruptions, volcanic hazardous events can also occur when no migration of magma can be recognized. Examples are tectonic and hydrothermal unrest that may lead to phreatic eruptions. Recent events (e.g., Ontake eruption on September 2014) have demonstrated that phreatic eruptions are still hard to forecast, despite being potentially very hazardous. For these reasons, it is of paramount importance to identify indicators that define the condition of nonmagmatic unrest, in particular for hydrothermal systems. Often, this type of unrest is driven by movement of fluids, requiring alternative monitoring setups, beyond the classical seismic-geodetic-geochemical architectures. Here we present a new version of the probabilistic BET (Bayesian Event Tree) model, specifically developed to include the forecasting of nonmagmatic unrest and related hazards. The structure of the new event tree differs from the previous schemes by adding a specific branch to detail nonmagmatic unrest outcomes. A further goal of this work consists in providing a user-friendly, open-access, and straightforward tool to handle the probabilistic forecast and visualize the results as possible support during a volcanic crisis. The new event tree and tool are here applied to Kawah Ijen stratovolcano, Indonesia, as exemplificative application. In particular, the tool is set on the basis of monitoring data for the learning period 2000-2010, and is then blindly applied to the test period 2010-2012, during which significant unrest phases occurred.

  5. Bayesian Retrieval of Complete Posterior PDFs of Oceanic Rain Rate From Microwave Observations

    NASA Technical Reports Server (NTRS)

    Chiu, J. Christine; Petty, Grant W.

    2005-01-01

    This paper presents a new Bayesian algorithm for retrieving surface rain rate from Tropical Rainfall Measurements Mission (TRMM) Microwave Imager (TMI) over the ocean, along with validations against estimates from the TRMM Precipitation Radar (PR). The Bayesian approach offers a rigorous basis for optimally combining multichannel observations with prior knowledge. While other rain rate algorithms have been published that are based at least partly on Bayesian reasoning, this is believed to be the first self-contained algorithm that fully exploits Bayes Theorem to yield not just a single rain rate, but rather a continuous posterior probability distribution of rain rate. To advance our understanding of theoretical benefits of the Bayesian approach, we have conducted sensitivity analyses based on two synthetic datasets for which the true conditional and prior distribution are known. Results demonstrate that even when the prior and conditional likelihoods are specified perfectly, biased retrievals may occur at high rain rates. This bias is not the result of a defect of the Bayesian formalism but rather represents the expected outcome when the physical constraint imposed by the radiometric observations is weak, due to saturation effects. It is also suggested that the choice of the estimators and the prior information are both crucial to the retrieval. In addition, the performance of our Bayesian algorithm is found to be comparable to that of other benchmark algorithms in real-world applications, while having the additional advantage of providing a complete continuous posterior probability distribution of surface rain rate.

  6. Multi-Detection Events, Probability Density Functions, and Reduced Location Area

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eslinger, Paul W.; Schrom, Brian T.

    2016-03-01

    Abstract Several efforts have been made in the Comprehensive Nuclear-Test-Ban Treaty (CTBT) community to assess the benefits of combining detections of radionuclides to improve the location estimates available from atmospheric transport modeling (ATM) backtrack calculations. We present a Bayesian estimation approach rather than a simple dilution field of regard approach to allow xenon detections and non-detections to be combined mathematically. This system represents one possible probabilistic approach to radionuclide event formation. Application of this method to a recent interesting radionuclide event shows a substantial reduction in the location uncertainty of that event.

  7. New radiocarbon dating and demographic insights into San Juan ante Portam Latinam, a possible Late Neolithic war grave in North-Central Iberia.

    PubMed

    Fernández-Crespo, Teresa; Schulting, Rick J; Ordoño, Javier; Duering, Andreas; Etxeberria, Francisco; Herrasti, Lourdes; Armendariz, Ángel; Vegas, José I; Bronk Ramsey, Christopher

    2018-03-15

    San Juan ante Portam Latinam is one of a small number of European Neolithic sites meeting many of the archaeological criteria expected for a mass grave, and furthermore presents evidence for violent conflict. This study aims to differentiate between what is potentially a single episode of deposition, versus deposition over some centuries, or, alternatively, that resulting from a combination of catastrophic and attritional mortality. The criteria developed are intended to have wider applicability to other such proposed events. Ten new AMS 14 C determinations on human bone from the site, together with previously available dates, are analyzed through Bayesian modeling to refine the site's chronology. This is used together with the population's demographic profile as the basis for agent-based demographic modeling. The new radiocarbon results, while improving the site's chronology, fail to resolve the question whether the burial represents a single event, or deposition over decades or centuries-primarily because the dates fall within the late fourth millennium BC plateau in the calibration curve. The demographic modeling indicates that the population's age and sex distribution fits neither a single catastrophic event nor a fully attritional mortality profile, but instead may partake of elements of both. It is proposed that San Juan ante Portam Latinam was used as burial place for the mainly adolescent and adult male dead of a particular or multiple violent engagements (e.g., battles), while previously or subsequently seeing use for attritional burial by other members of one or more surrounding communities dead over the course of a few generations. The overall bias towards males, particularly to the extent that many may represent conflict mortality, has implications for the structure of the surviving community, the members of which may have experienced increased vulnerability in the face of neighboring aggressors. © 2018 Wiley Periodicals, Inc.

  8. Immune allied genetic algorithm for Bayesian network structure learning

    NASA Astrophysics Data System (ADS)

    Song, Qin; Lin, Feng; Sun, Wei; Chang, KC

    2012-06-01

    Bayesian network (BN) structure learning is a NP-hard problem. In this paper, we present an improved approach to enhance efficiency of BN structure learning. To avoid premature convergence in traditional single-group genetic algorithm (GA), we propose an immune allied genetic algorithm (IAGA) in which the multiple-population and allied strategy are introduced. Moreover, in the algorithm, we apply prior knowledge by injecting immune operator to individuals which can effectively prevent degeneration. To illustrate the effectiveness of the proposed technique, we present some experimental results.

  9. Nonparametric Bayesian Segmentation of a Multivariate Inhomogeneous Space-Time Poisson Process.

    PubMed

    Ding, Mingtao; He, Lihan; Dunson, David; Carin, Lawrence

    2012-12-01

    A nonparametric Bayesian model is proposed for segmenting time-evolving multivariate spatial point process data. An inhomogeneous Poisson process is assumed, with a logistic stick-breaking process (LSBP) used to encourage piecewise-constant spatial Poisson intensities. The LSBP explicitly favors spatially contiguous segments, and infers the number of segments based on the observed data. The temporal dynamics of the segmentation and of the Poisson intensities are modeled with exponential correlation in time, implemented in the form of a first-order autoregressive model for uniformly sampled discrete data, and via a Gaussian process with an exponential kernel for general temporal sampling. We consider and compare two different inference techniques: a Markov chain Monte Carlo sampler, which has relatively high computational complexity; and an approximate and efficient variational Bayesian analysis. The model is demonstrated with a simulated example and a real example of space-time crime events in Cincinnati, Ohio, USA.

  10. A Bayesian approach to estimating variance components within a multivariate generalizability theory framework.

    PubMed

    Jiang, Zhehan; Skorupski, William

    2017-12-12

    In many behavioral research areas, multivariate generalizability theory (mG theory) has been typically used to investigate the reliability of certain multidimensional assessments. However, traditional mG-theory estimation-namely, using frequentist approaches-has limits, leading researchers to fail to take full advantage of the information that mG theory can offer regarding the reliability of measurements. Alternatively, Bayesian methods provide more information than frequentist approaches can offer. This article presents instructional guidelines on how to implement mG-theory analyses in a Bayesian framework; in particular, BUGS code is presented to fit commonly seen designs from mG theory, including single-facet designs, two-facet crossed designs, and two-facet nested designs. In addition to concrete examples that are closely related to the selected designs and the corresponding BUGS code, a simulated dataset is provided to demonstrate the utility and advantages of the Bayesian approach. This article is intended to serve as a tutorial reference for applied researchers and methodologists conducting mG-theory studies.

  11. A Sparse Bayesian Approach for Forward-Looking Superresolution Radar Imaging

    PubMed Central

    Zhang, Yin; Zhang, Yongchao; Huang, Yulin; Yang, Jianyu

    2017-01-01

    This paper presents a sparse superresolution approach for high cross-range resolution imaging of forward-looking scanning radar based on the Bayesian criterion. First, a novel forward-looking signal model is established as the product of the measurement matrix and the cross-range target distribution, which is more accurate than the conventional convolution model. Then, based on the Bayesian criterion, the widely-used sparse regularization is considered as the penalty term to recover the target distribution. The derivation of the cost function is described, and finally, an iterative expression for minimizing this function is presented. Alternatively, this paper discusses how to estimate the single parameter of Gaussian noise. With the advantage of a more accurate model, the proposed sparse Bayesian approach enjoys a lower model error. Meanwhile, when compared with the conventional superresolution methods, the proposed approach shows high cross-range resolution and small location error. The superresolution results for the simulated point target, scene data, and real measured data are presented to demonstrate the superior performance of the proposed approach. PMID:28604583

  12. Unraveling multiple changes in complex climate time series using Bayesian inference

    NASA Astrophysics Data System (ADS)

    Berner, Nadine; Trauth, Martin H.; Holschneider, Matthias

    2016-04-01

    Change points in time series are perceived as heterogeneities in the statistical or dynamical characteristics of observations. Unraveling such transitions yields essential information for the understanding of the observed system. The precise detection and basic characterization of underlying changes is therefore of particular importance in environmental sciences. We present a kernel-based Bayesian inference approach to investigate direct as well as indirect climate observations for multiple generic transition events. In order to develop a diagnostic approach designed to capture a variety of natural processes, the basic statistical features of central tendency and dispersion are used to locally approximate a complex time series by a generic transition model. A Bayesian inversion approach is developed to robustly infer on the location and the generic patterns of such a transition. To systematically investigate time series for multiple changes occurring at different temporal scales, the Bayesian inversion is extended to a kernel-based inference approach. By introducing basic kernel measures, the kernel inference results are composed into a proxy probability to a posterior distribution of multiple transitions. Thus, based on a generic transition model a probability expression is derived that is capable to indicate multiple changes within a complex time series. We discuss the method's performance by investigating direct and indirect climate observations. The approach is applied to environmental time series (about 100 a), from the weather station in Tuscaloosa, Alabama, and confirms documented instrumentation changes. Moreover, the approach is used to investigate a set of complex terrigenous dust records from the ODP sites 659, 721/722 and 967 interpreted as climate indicators of the African region of the Plio-Pleistocene period (about 5 Ma). The detailed inference unravels multiple transitions underlying the indirect climate observations coinciding with established global climate events.

  13. The interplay of stressful life events and coping skills on risk for suicidal behavior among youth students in contemporary China: a large scale cross-sectional study.

    PubMed

    Tang, Fang; Xue, Fuzhong; Qin, Ping

    2015-07-31

    Stressful life events are common among youth students and may induce psychological problems and even suicidal behaviors in those with poor coping skills. This study aims to assess the influence of stressful life events and coping skills on risk for suicidal behavior and to elucidate the underlying mechanism using a large sample of university students in China. 5972 students, randomly selected from 6 universities, completed the questionnaire survey. Logistic regression analysis was performed to estimate the effect of stressful life events and coping skills on risk for suicidal behavior. Bayesian network was further adopted to probe their probabilistic relationships. Of the 5972 students, 7.64% reported the presence of suicidal behavior (attempt or ideation) within the past one year period. Stressful life events such as strong conflicts with classmates and a failure in study exam constituted strong risk factors for suicidal behavior. The influence of coping skills varied according to the strategies adapted toward problems with a high score of approach coping skills significantly associated with a reduced risk of suicidal behavior. The Bayesian network indicated that the probability of suicidal behavior associated with specific life events was to a large extent conditional on coping skills. For instance, a stressful experience of having strong conflicts with classmates could result in a probability of suicidal behavior of 21.25% and 15.36% respectively, for female and male students with the score of approach coping skills under the average. Stressful life events and deficient coping skills are strong risk factors for suicidal behavior among youth students. The results underscore the importance of prevention efforts to improve coping skills towards stressful life events.

  14. Assessment of genetic and nongenetic interactions for the prediction of depressive symptomatology: an analysis of the Wisconsin Longitudinal Study using machine learning algorithms.

    PubMed

    Roetker, Nicholas S; Page, C David; Yonker, James A; Chang, Vicky; Roan, Carol L; Herd, Pamela; Hauser, Taissa S; Hauser, Robert M; Atwood, Craig S

    2013-10-01

    We examined depression within a multidimensional framework consisting of genetic, environmental, and sociobehavioral factors and, using machine learning algorithms, explored interactions among these factors that might better explain the etiology of depressive symptoms. We measured current depressive symptoms using the Center for Epidemiologic Studies Depression Scale (n = 6378 participants in the Wisconsin Longitudinal Study). Genetic factors were 78 single nucleotide polymorphisms (SNPs); environmental factors-13 stressful life events (SLEs), plus a composite proportion of SLEs index; and sociobehavioral factors-18 personality, intelligence, and other health or behavioral measures. We performed traditional SNP associations via logistic regression likelihood ratio testing and explored interactions with support vector machines and Bayesian networks. After correction for multiple testing, we found no significant single genotypic associations with depressive symptoms. Machine learning algorithms showed no evidence of interactions. Naïve Bayes produced the best models in both subsets and included only environmental and sociobehavioral factors. We found no single or interactive associations with genetic factors and depressive symptoms. Various environmental and sociobehavioral factors were more predictive of depressive symptoms, yet their impacts were independent of one another. A genome-wide analysis of genetic alterations using machine learning methodologies will provide a framework for identifying genetic-environmental-sociobehavioral interactions in depressive symptoms.

  15. Sensitivity of Global Methane Bayesian Inversion to Surface Observation Data Sets and Chemical-Transport Model Resolution

    NASA Astrophysics Data System (ADS)

    Lew, E. J.; Butenhoff, C. L.; Karmakar, S.; Rice, A. L.; Khalil, A. K.

    2017-12-01

    Methane is the second most important greenhouse gas after carbon dioxide. In efforts to control emissions, a careful examination of the methane budget and source strengths is required. To determine methane surface fluxes, Bayesian methods are often used to provide top-down constraints. Inverse modeling derives unknown fluxes using observed methane concentrations, a chemical transport model (CTM) and prior information. The Bayesian inversion reduces prior flux uncertainties by exploiting information content in the data. While the Bayesian formalism produces internal error estimates of source fluxes, systematic or external errors that arise from user choices in the inversion scheme are often much larger. Here we examine model sensitivity and uncertainty of our inversion under different observation data sets and CTM grid resolution. We compare posterior surface fluxes using the data product GLOBALVIEW-CH4 against the event-level molar mixing ratio data available from NOAA. GLOBALVIEW-CH4 is a collection of CH4 concentration estimates from 221 sites, collected by 12 laboratories, that have been interpolated and extracted to provide weekly records from 1984-2008. Differently, the event-level NOAA data records methane mixing ratios field measurements from 102 sites, containing sampling frequency irregularities and gaps in time. Furthermore, the sampling platform types used by the data sets may influence the posterior flux estimates, namely fixed surface, tower, ship and aircraft sites. To explore the sensitivity of the posterior surface fluxes to the observation network geometry, inversions composed of all sites, only aircraft, only ship, only tower and only fixed surface sites, are performed and compared. Also, we investigate the sensitivity of the error reduction associated with the resolution of the GEOS-Chem simulation (4°×5° vs 2°×2.5°) used to calculate the response matrix. Using a higher resolution grid decreased the model-data error at most sites, thereby increasing the information at that site. These different inversions—event-level and interpolated data, higher and lower resolutions—are compared using an ensemble of descriptive and comparative statistics. Analyzing the sensitivity of the inverse model leads to more accurate estimates of the methane source category uncertainty.

  16. Bayesian Model Averaging of Artificial Intelligence Models for Hydraulic Conductivity Estimation

    NASA Astrophysics Data System (ADS)

    Nadiri, A.; Chitsazan, N.; Tsai, F. T.; Asghari Moghaddam, A.

    2012-12-01

    This research presents a Bayesian artificial intelligence model averaging (BAIMA) method that incorporates multiple artificial intelligence (AI) models to estimate hydraulic conductivity and evaluate estimation uncertainties. Uncertainty in the AI model outputs stems from error in model input as well as non-uniqueness in selecting different AI methods. Using one single AI model tends to bias the estimation and underestimate uncertainty. BAIMA employs Bayesian model averaging (BMA) technique to address the issue of using one single AI model for estimation. BAIMA estimates hydraulic conductivity by averaging the outputs of AI models according to their model weights. In this study, the model weights were determined using the Bayesian information criterion (BIC) that follows the parsimony principle. BAIMA calculates the within-model variances to account for uncertainty propagation from input data to AI model output. Between-model variances are evaluated to account for uncertainty due to model non-uniqueness. We employed Takagi-Sugeno fuzzy logic (TS-FL), artificial neural network (ANN) and neurofuzzy (NF) to estimate hydraulic conductivity for the Tasuj plain aquifer, Iran. BAIMA combined three AI models and produced better fitting than individual models. While NF was expected to be the best AI model owing to its utilization of both TS-FL and ANN models, the NF model is nearly discarded by the parsimony principle. The TS-FL model and the ANN model showed equal importance although their hydraulic conductivity estimates were quite different. This resulted in significant between-model variances that are normally ignored by using one AI model.

  17. Bayesian Estimation of Random Coefficient Dynamic Factor Models

    ERIC Educational Resources Information Center

    Song, Hairong; Ferrer, Emilio

    2012-01-01

    Dynamic factor models (DFMs) have typically been applied to multivariate time series data collected from a single unit of study, such as a single individual or dyad. The goal of DFMs application is to capture dynamics of multivariate systems. When multiple units are available, however, DFMs are not suited to capture variations in dynamics across…

  18. Bayesian Estimates of Autocorrelations in Single-Case Designs

    ERIC Educational Resources Information Center

    Shadish, William R.; Rindskopf, David M.; Hedges, Larry V.; Sullivan, Kristynn J.

    2012-01-01

    Researchers in the single-case design tradition have debated the size and importance of the observed autocorrelations in those designs. All of the past estimates of the autocorrelation in that literature have taken the observed autocorrelation estimates as the data to be used in the debate. However, estimates of the autocorrelation are subject to…

  19. Search for anomalous Wtb couplings and flavour-changing neutral currents in t-channel single top quark production in pp collisions at $$ \\sqrt{s}=7 $$ and 8 TeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.

    Single top quark events produced in the t channel are used to set limits on anomalous Wtb couplings and to search for top quark flavour-changing neutral current (FCNC) interactions. The data taken with the CMS detector at the LHC in proton-proton collisions atmore » $$ \\sqrt{s}=7 $$ and 8 TeV correspond to integrated luminosities of 5.0 and 19.7 fb$$^{-1}$$, respectively. We performed an analysis using events with one muon and two or three jets. A Bayesian neural network technique is used to discriminate between the signal and backgrounds, which are observed to be consistent with the standard model prediction. The 95% confidence level (CL) exclusion limits on anomalous right-handed vector, and left- and right-handed tensor Wtb couplings are measured to be |f$$_{V}^{R}$$ |<0.16, |f$$_{T}^{L}$$ |<0.057, and -0.049 < f$$_{T}^{R}$$<0.048, respectively. Furthermore, for the FCNC couplings κ$$_{tug}$$ and κ$$_{tcg}$$, the 95% CL upper limits on coupling strengths are |κ$$_{tug}$$|/Λ<4.1×10$$^{-3}$$ TeV$$^{-1}$$ and |κ$$_{tcg}$$|/Λ<1.8×10$$^{-2}$$ TeV$$^{-1}$$, where Λ is the scale for new physics, and correspond to upper limits on the branching fractions of 2.0 × 10$$^{-5}$$ and 4.1 × 10$$^{-4}$$ for the decays t → ug and t → cg, respectively.« less

  20. Search for anomalous Wtb couplings and flavour-changing neutral currents in t-channel single top quark production in pp collisions at $$ \\sqrt{s}=7 $$ and 8 TeV

    DOE PAGES

    Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; ...

    2017-02-07

    Single top quark events produced in the t channel are used to set limits on anomalous Wtb couplings and to search for top quark flavour-changing neutral current (FCNC) interactions. The data taken with the CMS detector at the LHC in proton-proton collisions atmore » $$ \\sqrt{s}=7 $$ and 8 TeV correspond to integrated luminosities of 5.0 and 19.7 fb$$^{-1}$$, respectively. We performed an analysis using events with one muon and two or three jets. A Bayesian neural network technique is used to discriminate between the signal and backgrounds, which are observed to be consistent with the standard model prediction. The 95% confidence level (CL) exclusion limits on anomalous right-handed vector, and left- and right-handed tensor Wtb couplings are measured to be |f$$_{V}^{R}$$ |<0.16, |f$$_{T}^{L}$$ |<0.057, and -0.049 < f$$_{T}^{R}$$<0.048, respectively. Furthermore, for the FCNC couplings κ$$_{tug}$$ and κ$$_{tcg}$$, the 95% CL upper limits on coupling strengths are |κ$$_{tug}$$|/Λ<4.1×10$$^{-3}$$ TeV$$^{-1}$$ and |κ$$_{tcg}$$|/Λ<1.8×10$$^{-2}$$ TeV$$^{-1}$$, where Λ is the scale for new physics, and correspond to upper limits on the branching fractions of 2.0 × 10$$^{-5}$$ and 4.1 × 10$$^{-4}$$ for the decays t → ug and t → cg, respectively.« less

  1. Inclusion of historical information in flood frequency analysis using a Bayesian MCMC technique: a case study for the power dam Orlík, Czech Republic

    NASA Astrophysics Data System (ADS)

    Gaál, Ladislav; Szolgay, Ján; Kohnová, Silvia; Hlavčová, Kamila; Viglione, Alberto

    2010-01-01

    The paper deals with at-site flood frequency estimation in the case when also information on hydrological events from the past with extraordinary magnitude are available. For the joint frequency analysis of systematic observations and historical data, respectively, the Bayesian framework is chosen, which, through adequately defined likelihood functions, allows for incorporation of different sources of hydrological information, e.g., maximum annual flood peaks, historical events as well as measurement errors. The distribution of the parameters of the fitted distribution function and the confidence intervals of the flood quantiles are derived by means of the Markov chain Monte Carlo simulation (MCMC) technique. The paper presents a sensitivity analysis related to the choice of the most influential parameters of the statistical model, which are the length of the historical period h and the perception threshold X0. These are involved in the statistical model under the assumption that except for the events termed as ‘historical’ ones, none of the (unknown) peak discharges from the historical period h should have exceeded the threshold X0. Both higher values of h and lower values of X0 lead to narrower confidence intervals of the estimated flood quantiles; however, it is emphasized that one should be prudent of selecting those parameters, in order to avoid making inferences with wrong assumptions on the unknown hydrological events having occurred in the past. The Bayesian MCMC methodology is presented on the example of the maximum discharges observed during the warm half year at the station Vltava-Kamýk (Czech Republic) in the period 1877-2002. Although the 2002 flood peak, which is related to the vast flooding that affected a large part of Central Europe at that time, occurred in the near past, in the analysis it is treated virtually as a ‘historical’ event in order to illustrate some crucial aspects of including information on extreme historical floods into at-site flood frequency analyses.

  2. Application of Bayesian Networks to hindcast barrier island morphodynamics

    USGS Publications Warehouse

    Wilson, Kathleen E.; Adams, Peter N.; Hapke, Cheryl J.; Lentz, Erika E.; Brenner, Owen T.

    2015-01-01

    We refine a preliminary Bayesian Network by 1) increasing model experience through additional observations, 2) including anthropogenic modification history, and 3) replacing parameterized wave impact values with maximum run-up elevation. Further, we develop and train a pair of generalized models with an additional dataset encompassing a different storm event, which expands the observations beyond our hindcast objective. We compare the skill of the generalized models against the Nor'Ida specific model formulation, balancing the reduced skill with an expectation of increased transferability. Results of Nor'Ida hindcasts ranged in skill from 0.37 to 0.51 and accuracy of 65.0 to 81.9%.

  3. Bayesian methodology for the design and interpretation of clinical trials in critical care medicine: a primer for clinicians.

    PubMed

    Kalil, Andre C; Sun, Junfeng

    2014-10-01

    To review Bayesian methodology and its utility to clinical decision making and research in the critical care field. Clinical, epidemiological, and biostatistical studies on Bayesian methods in PubMed and Embase from their inception to December 2013. Bayesian methods have been extensively used by a wide range of scientific fields, including astronomy, engineering, chemistry, genetics, physics, geology, paleontology, climatology, cryptography, linguistics, ecology, and computational sciences. The application of medical knowledge in clinical research is analogous to the application of medical knowledge in clinical practice. Bedside physicians have to make most diagnostic and treatment decisions on critically ill patients every day without clear-cut evidence-based medicine (more subjective than objective evidence). Similarly, clinical researchers have to make most decisions about trial design with limited available data. Bayesian methodology allows both subjective and objective aspects of knowledge to be formally measured and transparently incorporated into the design, execution, and interpretation of clinical trials. In addition, various degrees of knowledge and several hypotheses can be tested at the same time in a single clinical trial without the risk of multiplicity. Notably, the Bayesian technology is naturally suited for the interpretation of clinical trial findings for the individualized care of critically ill patients and for the optimization of public health policies. We propose that the application of the versatile Bayesian methodology in conjunction with the conventional statistical methods is not only ripe for actual use in critical care clinical research but it is also a necessary step to maximize the performance of clinical trials and its translation to the practice of critical care medicine.

  4. The phylodynamics of the rabies virus in the Russian Federation

    PubMed Central

    Lukashev, Alexander N.; Poleshchuk, Elena M.; Dedkov, Vladimir G.; Tkachev, Sergey E.; Sidorov, Gennadiy N.; Karganova, Galina G.; Galkina, Irina V.; Shchelkanov, Mikhail Yu.; Shipulin, German A.

    2017-01-01

    Near complete rabies virus N gene sequences (1,110 nt) were determined for 82 isolates obtained from different regions of Russia between 2008 and 2016. These sequences were analyzed together with 108 representative GenBank sequences from 1977–2016 using the Bayesian coalescent approach. The timing of the major evolutionary events was estimated. Most of the isolates represented the steppe rabies virus group C, which was found over a vast geographic region from Central Russia to Mongolia and split into three groups (C0-C2) with discrete geographic prevalence. A single strain of the steppe rabies virus lineage was isolated in the far eastern part of Russia (Primorsky Krai), likely as a result of a recent anthropogenic introduction. For the first time the polar rabies virus group A2, previously reported in Alaska, was described in the northern part of European Russia and at the Franz Josef Land. Phylogenetic analysis suggested that all currently circulating rabies virus groups in the Russian Federation were introduced within the few last centuries, with most of the groups spreading in the 20th century. The dating of evolutionary events was highly concordant with the historical epidemiological data. PMID:28225771

  5. Pharmacological Fingerprints of Contextual Uncertainty

    PubMed Central

    Ruge, Diane; Stephan, Klaas E.

    2016-01-01

    Successful interaction with the environment requires flexible updating of our beliefs about the world. By estimating the likelihood of future events, it is possible to prepare appropriate actions in advance and execute fast, accurate motor responses. According to theoretical proposals, agents track the variability arising from changing environments by computing various forms of uncertainty. Several neuromodulators have been linked to uncertainty signalling, but comprehensive empirical characterisation of their relative contributions to perceptual belief updating, and to the selection of motor responses, is lacking. Here we assess the roles of noradrenaline, acetylcholine, and dopamine within a single, unified computational framework of uncertainty. Using pharmacological interventions in a sample of 128 healthy human volunteers and a hierarchical Bayesian learning model, we characterise the influences of noradrenergic, cholinergic, and dopaminergic receptor antagonism on individual computations of uncertainty during a probabilistic serial reaction time task. We propose that noradrenaline influences learning of uncertain events arising from unexpected changes in the environment. In contrast, acetylcholine balances attribution of uncertainty to chance fluctuations within an environmental context, defined by a stable set of probabilistic associations, or to gross environmental violations following a contextual switch. Dopamine supports the use of uncertainty representations to engender fast, adaptive responses. PMID:27846219

  6. Bayesian analysis of biogeography when the number of areas is large.

    PubMed

    Landis, Michael J; Matzke, Nicholas J; Moore, Brian R; Huelsenbeck, John P

    2013-11-01

    Historical biogeography is increasingly studied from an explicitly statistical perspective, using stochastic models to describe the evolution of species range as a continuous-time Markov process of dispersal between and extinction within a set of discrete geographic areas. The main constraint of these methods is the computational limit on the number of areas that can be specified. We propose a Bayesian approach for inferring biogeographic history that extends the application of biogeographic models to the analysis of more realistic problems that involve a large number of areas. Our solution is based on a "data-augmentation" approach, in which we first populate the tree with a history of biogeographic events that is consistent with the observed species ranges at the tips of the tree. We then calculate the likelihood of a given history by adopting a mechanistic interpretation of the instantaneous-rate matrix, which specifies both the exponential waiting times between biogeographic events and the relative probabilities of each biogeographic change. We develop this approach in a Bayesian framework, marginalizing over all possible biogeographic histories using Markov chain Monte Carlo (MCMC). Besides dramatically increasing the number of areas that can be accommodated in a biogeographic analysis, our method allows the parameters of a given biogeographic model to be estimated and different biogeographic models to be objectively compared. Our approach is implemented in the program, BayArea.

  7. Propagation of the velocity model uncertainties to the seismic event location

    NASA Astrophysics Data System (ADS)

    Gesret, A.; Desassis, N.; Noble, M.; Romary, T.; Maisons, C.

    2015-01-01

    Earthquake hypocentre locations are crucial in many domains of application (academic and industrial) as seismic event location maps are commonly used to delineate faults or fractures. The interpretation of these maps depends on location accuracy and on the reliability of the associated uncertainties. The largest contribution to location and uncertainty errors is due to the fact that the velocity model errors are usually not correctly taken into account. We propose a new Bayesian formulation that integrates properly the knowledge on the velocity model into the formulation of the probabilistic earthquake location. In this work, the velocity model uncertainties are first estimated with a Bayesian tomography of active shot data. We implement a sampling Monte Carlo type algorithm to generate velocity models distributed according to the posterior distribution. In a second step, we propagate the velocity model uncertainties to the seismic event location in a probabilistic framework. This enables to obtain more reliable hypocentre locations as well as their associated uncertainties accounting for picking and velocity model uncertainties. We illustrate the tomography results and the gain in accuracy of earthquake location for two synthetic examples and one real data case study in the context of induced microseismicity.

  8. Comparative phylogeography of Mississippi embayment fishes.

    PubMed

    Egge, Jacob J D; Hagbo, Taylor J

    2015-01-01

    The Mississippi Embayment is a prominent physiographic feature of eastern North America consisting of primarily lowland aquatic habitats and a fish fauna that is largely distinct from nearby highland regions. Numerous studies have demonstrated that both pre-Pleistocene and Pleistocene events have had a strong influence on the distributions and relationships of highland fishes in eastern North America. However, the extent to which these same events affected Embayment distributed taxa remains largely unexplored. The purpose of this study was to investigate the relative roles of pre-Pleistocene and Pleistocene events in shaping phylogeographic relationships of four stream dwelling fishes in the Mississippi Embayment. Molecular genetic analyses of the mitochondrial gene cytochrome b were performed for three ictalurid catfish species (Noturus miurus, n = 67; Noturus hildebrandi, n = 93, and Noturus phaeus, n = 44) and one minnow species (Cyprinella camura, n = 78), all distributed in tributary streams of the Mississippi Embayment. Phylogenetic relationships and divergence times among haplotypes for each species were estimated using maximum likelihood and Bayesian methods. Phylogenetic analyses recovered 6 major haplotype clades within N. miurus, 5 within N. hildbrandi, 8 within N. phaeus, and 8 within C. camura. All three Noturus species show a high degree of isolation by drainage, which is less evident in C. camura. A clade of haplotypes from tributaries in the southern portion of the Mississippi Embayment was consistently recovered in all four species. Divergence times among clades spanned the Pleistocene, Pliocene, and Miocene. Novel relationships presented here for C. camura and N. phaeus suggest the potential for cryptic species. Pre-Pleistocene and Pleistocene era sea level fluctuations coincide with some divergence events, but no single event explains any common divergence across all taxa. Like their highland relatives, a combination of both pre-Pleistocene and Pleistocene era events have driven divergences among Embayment lineages.

  9. Combined target factor analysis and Bayesian soft-classification of interference-contaminated samples: forensic fire debris analysis.

    PubMed

    Williams, Mary R; Sigman, Michael E; Lewis, Jennifer; Pitan, Kelly McHugh

    2012-10-10

    A bayesian soft classification method combined with target factor analysis (TFA) is described and tested for the analysis of fire debris data. The method relies on analysis of the average mass spectrum across the chromatographic profile (i.e., the total ion spectrum, TIS) from multiple samples taken from a single fire scene. A library of TIS from reference ignitable liquids with assigned ASTM classification is used as the target factors in TFA. The class-conditional distributions of correlations between the target and predicted factors for each ASTM class are represented by kernel functions and analyzed by bayesian decision theory. The soft classification approach assists in assessing the probability that ignitable liquid residue from a specific ASTM E1618 class, is present in a set of samples from a single fire scene, even in the presence of unspecified background contributions from pyrolysis products. The method is demonstrated with sample data sets and then tested on laboratory-scale burn data and large-scale field test burns. The overall performance achieved in laboratory and field test of the method is approximately 80% correct classification of fire debris samples. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  10. Statistical properties of four effect-size measures for mediation models.

    PubMed

    Miočević, Milica; O'Rourke, Holly P; MacKinnon, David P; Brown, Hendricks C

    2018-02-01

    This project examined the performance of classical and Bayesian estimators of four effect size measures for the indirect effect in a single-mediator model and a two-mediator model. Compared to the proportion and ratio mediation effect sizes, standardized mediation effect-size measures were relatively unbiased and efficient in the single-mediator model and the two-mediator model. Percentile and bias-corrected bootstrap interval estimates of ab/s Y , and ab(s X )/s Y in the single-mediator model outperformed interval estimates of the proportion and ratio effect sizes in terms of power, Type I error rate, coverage, imbalance, and interval width. For the two-mediator model, standardized effect-size measures were superior to the proportion and ratio effect-size measures. Furthermore, it was found that Bayesian point and interval summaries of posterior distributions of standardized effect-size measures reduced excessive relative bias for certain parameter combinations. The standardized effect-size measures are the best effect-size measures for quantifying mediated effects.

  11. Bayesian segregation analysis of production traits in two strains of laying chickens.

    PubMed

    Szydłowski, M; Szwaczkowski, T

    2001-02-01

    A bayesian marker-free segregation analysis was applied to search for evidence of segregating genes affecting production traits in two strains of laying hens under long-term selection. The study used data from 6 generations of Leghorn (H77) and New Hampshire (N88) breeding nuclei. Estimation of marginal posterior means of variance components and parameters of a single autosomal locus was performed by use of the Gibbs sampler. The results showed evidence for a mixed major gene: -polygenic inheritance of BW and age at sexual maturity (ASM) in both strains. Single genes affecting BW and ASM explained one-third of the genetic variance. For ASM large overdominance effect at single locus was estimated. Initial egg production (IEP) and average egg weight (EW) showed a polygenic model of inheritance. The polygenic heritability estimates for BW, ASM, IEP, and EW were 0.32, 0.25, 0.23, and 0.08 in Strain H77 and 0.25, 0.24, 0.11, and 0.38 in Strain N88, respectively.

  12. INACTIVATION OF BACILLUS GLOBIGII BY CHLORINATION: A HIERARCHICAL BAYESIAN MODEL

    EPA Science Inventory

    Recent events where spores of Bacillus anthracis have been used as a bioterrorist weapon have prompted interest in determining the resistance of this organism to commonly used disinfectants, such as chlorine, chlorine dioxide and ozone. This work was undertaken to study ...

  13. Nonlinear, discrete flood event models, 1. Bayesian estimation of parameters

    NASA Astrophysics Data System (ADS)

    Bates, Bryson C.; Townley, Lloyd R.

    1988-05-01

    In this paper (Part 1), a Bayesian procedure for parameter estimation is applied to discrete flood event models. The essence of the procedure is the minimisation of a sum of squares function for models in which the computed peak discharge is nonlinear in terms of the parameters. This objective function is dependent on the observed and computed peak discharges for several storms on the catchment, information on the structure of observation error, and prior information on parameter values. The posterior covariance matrix gives a measure of the precision of the estimated parameters. The procedure is demonstrated using rainfall and runoff data from seven Australian catchments. It is concluded that the procedure is a powerful alternative to conventional parameter estimation techniques in situations where a number of floods are available for parameter estimation. Parts 2 and 3 will discuss the application of statistical nonlinearity measures and prediction uncertainty analysis to calibrated flood models. Bates (this volume) and Bates and Townley (this volume).

  14. Data free inference with processed data products

    DOE PAGES

    Chowdhary, K.; Najm, H. N.

    2014-07-12

    Here, we consider the context of probabilistic inference of model parameters given error bars or confidence intervals on model output values, when the data is unavailable. We introduce a class of algorithms in a Bayesian framework, relying on maximum entropy arguments and approximate Bayesian computation methods, to generate consistent data with the given summary statistics. Once we obtain consistent data sets, we pool the respective posteriors, to arrive at a single, averaged density on the parameters. This approach allows us to perform accurate forward uncertainty propagation consistent with the reported statistics.

  15. Prospects for distinguishing dark matter models using annual modulation

    DOE PAGES

    Witte, Samuel J.; Gluscevic, Vera; McDermott, Samuel D.

    2017-02-24

    It has recently been demonstrated that, in the event of a putative signal in dark matter direct detection experiments, properly identifying the underlying dark matter-nuclei interaction promises to be a challenging task. Given the most optimistic expectations for the number counts of recoil events in the forthcoming Generation 2 experiments, differentiating between interactions that produce distinct features in the recoil energy spectra will only be possible if a strong signal is observed simultaneously on a variety of complementary targets. However, there is a wide range of viable theories that give rise to virtually identical energy spectra, and may only differmore » by the dependence of the recoil rate on the dark matter velocity. In this work, we investigate how degeneracy between such competing models may be broken by analyzing the time dependence of nuclear recoils, i.e. the annual modulation of the rate. For this purpose, we simulate dark matter events for a variety of interactions and experiments, and perform a Bayesian model-selection analysis on all simulated data sets, evaluating the chance of correctly identifying the input model for a given experimental setup. Lastly, we find that including information on the annual modulation of the rate may significantly enhance the ability of a single target to distinguish dark matter models with nearly degenerate recoil spectra, but only with exposures beyond the expectations of Generation 2 experiments.« less

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Witte, Samuel J.; Gluscevic, Vera; McDermott, Samuel D.

    It has recently been demonstrated that, in the event of a putative signal in dark matter direct detection experiments, properly identifying the underlying dark matter-nuclei interaction promises to be a challenging task. Given the most optimistic expectations for the number counts of recoil events in the forthcoming Generation 2 experiments, differentiating between interactions that produce distinct features in the recoil energy spectra will only be possible if a strong signal is observed simultaneously on a variety of complementary targets. However, there is a wide range of viable theories that give rise to virtually identical energy spectra, and may only differmore » by the dependence of the recoil rate on the dark matter velocity. In this work, we investigate how degeneracy between such competing models may be broken by analyzing the time dependence of nuclear recoils, i.e. the annual modulation of the rate. For this purpose, we simulate dark matter events for a variety of interactions and experiments, and perform a Bayesian model-selection analysis on all simulated data sets, evaluating the chance of correctly identifying the input model for a given experimental setup. Lastly, we find that including information on the annual modulation of the rate may significantly enhance the ability of a single target to distinguish dark matter models with nearly degenerate recoil spectra, but only with exposures beyond the expectations of Generation 2 experiments.« less

  17. Relation Extraction with Weak Supervision and Distributional Semantics

    DTIC Science & Technology

    2013-05-01

    country is no longer a member of the organization), a player and an event, a team and a sport, etc. Multiple meanings of a relation phrase are success ...Zimbabwe, the Commonwealth> <force, country> <American forces, Vietnam>; <Roman Legions, Britain> < player , event> <Brandon Bass, the NBA draft>; <Agassi...training data. We found that dealing with incorrectly labeled examples is critical for its success . We develop a latent Bayesian framework for this

  18. Quantifying properties of hot and dense QCD matter through systematic model-to-data comparison

    DOE PAGES

    Bernhard, Jonah E.; Marcy, Peter W.; Coleman-Smith, Christopher E.; ...

    2015-05-22

    We systematically compare an event-by-event heavy-ion collision model to data from the CERN Large Hadron Collider. Using a general Bayesian method, we probe multiple model parameters including fundamental quark-gluon plasma properties such as the specific shear viscosity η/s, calibrate the model to optimally reproduce experimental data, and extract quantitative constraints for all parameters simultaneously. Furthermore, the method is universal and easily extensible to other data and collision models.

  19. Identification of failure type in corroded pipelines: a bayesian probabilistic approach.

    PubMed

    Breton, T; Sanchez-Gheno, J C; Alamilla, J L; Alvarez-Ramirez, J

    2010-07-15

    Spillover of hazardous materials from transport pipelines can lead to catastrophic events with serious and dangerous environmental impact, potential fire events and human fatalities. The problem is more serious for large pipelines when the construction material is under environmental corrosion conditions, as in the petroleum and gas industries. In this way, predictive models can provide a suitable framework for risk evaluation, maintenance policies and substitution procedure design that should be oriented to reduce increased hazards. This work proposes a bayesian probabilistic approach to identify and predict the type of failure (leakage or rupture) for steel pipelines under realistic corroding conditions. In the first step of the modeling process, the mechanical performance of the pipe is considered for establishing conditions under which either leakage or rupture failure can occur. In the second step, experimental burst tests are used to introduce a mean probabilistic boundary defining a region where the type of failure is uncertain. In the boundary vicinity, the failure discrimination is carried out with a probabilistic model where the events are considered as random variables. In turn, the model parameters are estimated with available experimental data and contrasted with a real catastrophic event, showing good discrimination capacity. The results are discussed in terms of policies oriented to inspection and maintenance of large-size pipelines in the oil and gas industry. 2010 Elsevier B.V. All rights reserved.

  20. A Bayesian model for time-to-event data with informative censoring

    PubMed Central

    Kaciroti, Niko A.; Raghunathan, Trivellore E.; Taylor, Jeremy M. G.; Julius, Stevo

    2012-01-01

    Randomized trials with dropouts or censored data and discrete time-to-event type outcomes are frequently analyzed using the Kaplan–Meier or product limit (PL) estimation method. However, the PL method assumes that the censoring mechanism is noninformative and when this assumption is violated, the inferences may not be valid. We propose an expanded PL method using a Bayesian framework to incorporate informative censoring mechanism and perform sensitivity analysis on estimates of the cumulative incidence curves. The expanded method uses a model, which can be viewed as a pattern mixture model, where odds for having an event during the follow-up interval (tk−1,tk], conditional on being at risk at tk−1, differ across the patterns of missing data. The sensitivity parameters relate the odds of an event, between subjects from a missing-data pattern with the observed subjects for each interval. The large number of the sensitivity parameters is reduced by considering them as random and assumed to follow a log-normal distribution with prespecified mean and variance. Then we vary the mean and variance to explore sensitivity of inferences. The missing at random (MAR) mechanism is a special case of the expanded model, thus allowing exploration of the sensitivity to inferences as departures from the inferences under the MAR assumption. The proposed approach is applied to data from the TRial Of Preventing HYpertension. PMID:22223746

  1. A Simple Effect Size Estimator for Single Case Designs Using WinBUGS

    ERIC Educational Resources Information Center

    Rindskopf, David; Shadish, William; Hedges, Larry V.

    2012-01-01

    This conference presentation demonstrates a multilevel model for analyzing single case designs. The model is implemented in the Bayesian program WinBUGS. The authors show how it is possible to estimate a d-statistic like the one in Hedges, Pustejovsky and Shadish (2012) in this program. Results are demonstrated on an example.

  2. Real-time eruption forecasting using the material Failure Forecast Method with a Bayesian approach

    NASA Astrophysics Data System (ADS)

    Boué, A.; Lesage, P.; Cortés, G.; Valette, B.; Reyes-Dávila, G.

    2015-04-01

    Many attempts for deterministic forecasting of eruptions and landslides have been performed using the material Failure Forecast Method (FFM). This method consists in adjusting an empirical power law on precursory patterns of seismicity or deformation. Until now, most of the studies have presented hindsight forecasts based on complete time series of precursors and do not evaluate the ability of the method for carrying out real-time forecasting with partial precursory sequences. In this study, we present a rigorous approach of the FFM designed for real-time applications on volcano-seismic precursors. We use a Bayesian approach based on the FFM theory and an automatic classification of seismic events. The probability distributions of the data deduced from the performance of this classification are used as input. As output, it provides the probability of the forecast time at each observation time before the eruption. The spread of the a posteriori probability density function of the prediction time and its stability with respect to the observation time are used as criteria to evaluate the reliability of the forecast. We test the method on precursory accelerations of long-period seismicity prior to vulcanian explosions at Volcán de Colima (Mexico). For explosions preceded by a single phase of seismic acceleration, we obtain accurate and reliable forecasts using approximately 80% of the whole precursory sequence. It is, however, more difficult to apply the method to multiple acceleration patterns.

  3. Identification of somatic mutations in cancer through Bayesian-based analysis of sequenced genome pairs

    PubMed Central

    2013-01-01

    Background The field of cancer genomics has rapidly adopted next-generation sequencing (NGS) in order to study and characterize malignant tumors with unprecedented resolution. In particular for cancer, one is often trying to identify somatic mutations – changes specific to a tumor and not within an individual’s germline. However, false positive and false negative detections often result from lack of sufficient variant evidence, contamination of the biopsy by stromal tissue, sequencing errors, and the erroneous classification of germline variation as tumor-specific. Results We have developed a generalized Bayesian analysis framework for matched tumor/normal samples with the purpose of identifying tumor-specific alterations such as single nucleotide mutations, small insertions/deletions, and structural variation. We describe our methodology, and discuss its application to other types of paired-tissue analysis such as the detection of loss of heterozygosity as well as allelic imbalance. We also demonstrate the high level of sensitivity and specificity in discovering simulated somatic mutations, for various combinations of a) genomic coverage and b) emulated heterogeneity. Conclusion We present a Java-based implementation of our methods named Seurat, which is made available for free academic use. We have demonstrated and reported on the discovery of different types of somatic change by applying Seurat to an experimentally-derived cancer dataset using our methods; and have discussed considerations and practices regarding the accurate detection of somatic events in cancer genomes. Seurat is available at https://sites.google.com/site/seuratsomatic. PMID:23642077

  4. Identification of somatic mutations in cancer through Bayesian-based analysis of sequenced genome pairs.

    PubMed

    Christoforides, Alexis; Carpten, John D; Weiss, Glen J; Demeure, Michael J; Von Hoff, Daniel D; Craig, David W

    2013-05-04

    The field of cancer genomics has rapidly adopted next-generation sequencing (NGS) in order to study and characterize malignant tumors with unprecedented resolution. In particular for cancer, one is often trying to identify somatic mutations--changes specific to a tumor and not within an individual's germline. However, false positive and false negative detections often result from lack of sufficient variant evidence, contamination of the biopsy by stromal tissue, sequencing errors, and the erroneous classification of germline variation as tumor-specific. We have developed a generalized Bayesian analysis framework for matched tumor/normal samples with the purpose of identifying tumor-specific alterations such as single nucleotide mutations, small insertions/deletions, and structural variation. We describe our methodology, and discuss its application to other types of paired-tissue analysis such as the detection of loss of heterozygosity as well as allelic imbalance. We also demonstrate the high level of sensitivity and specificity in discovering simulated somatic mutations, for various combinations of a) genomic coverage and b) emulated heterogeneity. We present a Java-based implementation of our methods named Seurat, which is made available for free academic use. We have demonstrated and reported on the discovery of different types of somatic change by applying Seurat to an experimentally-derived cancer dataset using our methods; and have discussed considerations and practices regarding the accurate detection of somatic events in cancer genomes. Seurat is available at https://sites.google.com/site/seuratsomatic.

  5. Long-Period Exoplanets from Photometric Transit Surveys

    NASA Astrophysics Data System (ADS)

    Osborn, Hugh

    2017-10-01

    Photometric transit surveys on the ground & in space have detected thousands of transiting exoplanets, typically by analytically combining the signals from multiple transits. This technique of exoplanet detection was exploited in K2 to detect nearly 200 candidate planets, and extensive follow-up was able to confirm the planet K2-110b as a 2.6±0.1R⊕, 16.7±3.2M⊙ planet on a 14d orbit around a K-dwarf. The ability to push beyond the time limit set by transit surveys to detect long-period transiting objects from a single eclipse was also studied. This was performed by developing a search technique to search for planets around bright stars in WASP and NGTS photometry, finding NGTS to be marginally better than WASP at detecting such planets with 4.14±0.16 per year compared to 1.43±0.15, and detecting many planet candidates for which follow-up is on-going. This search was then adapted to search for deep, long-duration eclipses in all WASP targets. The results of this survey are described in this thesis, as well as detailed results for the candidate PDS-110, a young T-Tauri star which exhibited ∼20d-long, 30%-deep eclipses in 2008 and 2011. Space-based photometers such as Kepler have the precision to identify small exoplanets and eclipsing binary candidates from only a single eclipse. K2, with its 75d campaign duration and high-precision photometry, is not only ideally suited to detect significant numbers of single-eclipsing objects, but also to characterise them from a single event. The Bayesian transit-fitting tool ("Namaste: An MCMC Analysis of Single Transit Exoplanets") was developed to extract planetary and orbital information from single transits, and was applied to 71 candidate events detected in K2 photometry. The techniques developed in this thesis are highly applicable to future transit surveys such as TESS & PLATO, which will be able to discover & characterise large numbers of long period planets in this way

  6. A Bayesian Multinomial Probit MODEL FOR THE ANALYSIS OF PANEL CHOICE DATA.

    PubMed

    Fong, Duncan K H; Kim, Sunghoon; Chen, Zhe; DeSarbo, Wayne S

    2016-03-01

    A new Bayesian multinomial probit model is proposed for the analysis of panel choice data. Using a parameter expansion technique, we are able to devise a Markov Chain Monte Carlo algorithm to compute our Bayesian estimates efficiently. We also show that the proposed procedure enables the estimation of individual level coefficients for the single-period multinomial probit model even when the available prior information is vague. We apply our new procedure to consumer purchase data and reanalyze a well-known scanner panel dataset that reveals new substantive insights. In addition, we delineate a number of advantageous features of our proposed procedure over several benchmark models. Finally, through a simulation analysis employing a fractional factorial design, we demonstrate that the results from our proposed model are quite robust with respect to differing factors across various conditions.

  7. Learning Negotiation Policies Using IB3 and Bayesian Networks

    NASA Astrophysics Data System (ADS)

    Nalepa, Gislaine M.; Ávila, Bráulio C.; Enembreck, Fabrício; Scalabrin, Edson E.

    This paper presents an intelligent offer policy in a negotiation environment, in which each agent involved learns the preferences of its opponent in order to improve its own performance. Each agent must also be able to detect drifts in the opponent's preferences so as to quickly adjust itself to their new offer policy. For this purpose, two simple learning techniques were first evaluated: (i) based on instances (IB3) and (ii) based on Bayesian Networks. Additionally, as its known that in theory group learning produces better results than individual/single learning, the efficiency of IB3 and Bayesian classifier groups were also analyzed. Finally, each decision model was evaluated in moments of concept drift, being the drift gradual, moderate or abrupt. Results showed that both groups of classifiers were able to effectively detect drifts in the opponent's preferences.

  8. Evolution in Mind: Evolutionary Dynamics, Cognitive Processes, and Bayesian Inference.

    PubMed

    Suchow, Jordan W; Bourgin, David D; Griffiths, Thomas L

    2017-07-01

    Evolutionary theory describes the dynamics of population change in settings affected by reproduction, selection, mutation, and drift. In the context of human cognition, evolutionary theory is most often invoked to explain the origins of capacities such as language, metacognition, and spatial reasoning, framing them as functional adaptations to an ancestral environment. However, evolutionary theory is useful for understanding the mind in a second way: as a mathematical framework for describing evolving populations of thoughts, ideas, and memories within a single mind. In fact, deep correspondences exist between the mathematics of evolution and of learning, with perhaps the deepest being an equivalence between certain evolutionary dynamics and Bayesian inference. This equivalence permits reinterpretation of evolutionary processes as algorithms for Bayesian inference and has relevance for understanding diverse cognitive capacities, including memory and creativity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Bayesian approach to MSD-based analysis of particle motion in live cells.

    PubMed

    Monnier, Nilah; Guo, Syuan-Ming; Mori, Masashi; He, Jun; Lénárt, Péter; Bathe, Mark

    2012-08-08

    Quantitative tracking of particle motion using live-cell imaging is a powerful approach to understanding the mechanism of transport of biological molecules, organelles, and cells. However, inferring complex stochastic motion models from single-particle trajectories in an objective manner is nontrivial due to noise from sampling limitations and biological heterogeneity. Here, we present a systematic Bayesian approach to multiple-hypothesis testing of a general set of competing motion models based on particle mean-square displacements that automatically classifies particle motion, properly accounting for sampling limitations and correlated noise while appropriately penalizing model complexity according to Occam's Razor to avoid over-fitting. We test the procedure rigorously using simulated trajectories for which the underlying physical process is known, demonstrating that it chooses the simplest physical model that explains the observed data. Further, we show that computed model probabilities provide a reliability test for the downstream biological interpretation of associated parameter values. We subsequently illustrate the broad utility of the approach by applying it to disparate biological systems including experimental particle trajectories from chromosomes, kinetochores, and membrane receptors undergoing a variety of complex motions. This automated and objective Bayesian framework easily scales to large numbers of particle trajectories, making it ideal for classifying the complex motion of large numbers of single molecules and cells from high-throughput screens, as well as single-cell-, tissue-, and organism-level studies. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  10. Computational statistics using the Bayesian Inference Engine

    NASA Astrophysics Data System (ADS)

    Weinberg, Martin D.

    2013-09-01

    This paper introduces the Bayesian Inference Engine (BIE), a general parallel, optimized software package for parameter inference and model selection. This package is motivated by the analysis needs of modern astronomical surveys and the need to organize and reuse expensive derived data. The BIE is the first platform for computational statistics designed explicitly to enable Bayesian update and model comparison for astronomical problems. Bayesian update is based on the representation of high-dimensional posterior distributions using metric-ball-tree based kernel density estimation. Among its algorithmic offerings, the BIE emphasizes hybrid tempered Markov chain Monte Carlo schemes that robustly sample multimodal posterior distributions in high-dimensional parameter spaces. Moreover, the BIE implements a full persistence or serialization system that stores the full byte-level image of the running inference and previously characterized posterior distributions for later use. Two new algorithms to compute the marginal likelihood from the posterior distribution, developed for and implemented in the BIE, enable model comparison for complex models and data sets. Finally, the BIE was designed to be a collaborative platform for applying Bayesian methodology to astronomy. It includes an extensible object-oriented and easily extended framework that implements every aspect of the Bayesian inference. By providing a variety of statistical algorithms for all phases of the inference problem, a scientist may explore a variety of approaches with a single model and data implementation. Additional technical details and download details are available from http://www.astro.umass.edu/bie. The BIE is distributed under the GNU General Public License.

  11. Updating: Learning versus Supposing

    ERIC Educational Resources Information Center

    Zhao, Jiaying; Crupi, Vincenzo; Tentori, Katya; Fitelson, Branden; Osherson, Daniel

    2012-01-01

    Bayesian orthodoxy posits a tight relationship between conditional probability and updating. Namely, the probability of an event "A" after learning "B" should equal the conditional probability of "A" given "B" prior to learning "B". We examine whether ordinary judgment conforms to the orthodox view. In three experiments we found substantial…

  12. Cross-Cultural Invariance of the Mental Toughness Inventory Among Australian, Chinese, and Malaysian Athletes: A Bayesian Estimation Approach.

    PubMed

    Gucciardi, Daniel F; Zhang, Chun-Qing; Ponnusamy, Vellapandian; Si, Gangyan; Stenling, Andreas

    2016-04-01

    The aims of this study were to assess the cross-cultural invariance of athletes' self-reports of mental toughness and to introduce and illustrate the application of approximate measurement invariance using Bayesian estimation for sport and exercise psychology scholars. Athletes from Australia (n = 353, Mage = 19.13, SD = 3.27, men = 161), China (n = 254, Mage = 17.82, SD = 2.28, men = 138), and Malaysia (n = 341, Mage = 19.13, SD = 3.27, men = 200) provided a cross-sectional snapshot of their mental toughness. The cross-cultural invariance of the mental toughness inventory in terms of (a) the factor structure (configural invariance), (b) factor loadings (metric invariance), and (c) item intercepts (scalar invariance) was tested using an approximate measurement framework with Bayesian estimation. Results indicated that approximate metric and scalar invariance was established. From a methodological standpoint, this study demonstrated the usefulness and flexibility of Bayesian estimation for single-sample and multigroup analyses of measurement instruments. Substantively, the current findings suggest that the measurement of mental toughness requires cultural adjustments to better capture the contextually salient (emic) aspects of this concept.

  13. Bayesian modelling of the emission spectrum of the Joint European Torus Lithium Beam Emission Spectroscopy system.

    PubMed

    Kwak, Sehyun; Svensson, J; Brix, M; Ghim, Y-C

    2016-02-01

    A Bayesian model of the emission spectrum of the JET lithium beam has been developed to infer the intensity of the Li I (2p-2s) line radiation and associated uncertainties. The detected spectrum for each channel of the lithium beam emission spectroscopy system is here modelled by a single Li line modified by an instrumental function, Bremsstrahlung background, instrumental offset, and interference filter curve. Both the instrumental function and the interference filter curve are modelled with non-parametric Gaussian processes. All free parameters of the model, the intensities of the Li line, Bremsstrahlung background, and instrumental offset, are inferred using Bayesian probability theory with a Gaussian likelihood for photon statistics and electronic background noise. The prior distributions of the free parameters are chosen as Gaussians. Given these assumptions, the intensity of the Li line and corresponding uncertainties are analytically available using a Bayesian linear inversion technique. The proposed approach makes it possible to extract the intensity of Li line without doing a separate background subtraction through modulation of the Li beam.

  14. Real-time prediction of acute cardiovascular events using hardware-implemented Bayesian networks.

    PubMed

    Tylman, Wojciech; Waszyrowski, Tomasz; Napieralski, Andrzej; Kamiński, Marek; Trafidło, Tamara; Kulesza, Zbigniew; Kotas, Rafał; Marciniak, Paweł; Tomala, Radosław; Wenerski, Maciej

    2016-02-01

    This paper presents a decision support system that aims to estimate a patient׳s general condition and detect situations which pose an immediate danger to the patient׳s health or life. The use of this system might be especially important in places such as accident and emergency departments or admission wards, where a small medical team has to take care of many patients in various general conditions. Particular stress is laid on cardiovascular and pulmonary conditions, including those leading to sudden cardiac arrest. The proposed system is a stand-alone microprocessor-based device that works in conjunction with a standard vital signs monitor, which provides input signals such as temperature, blood pressure, pulseoxymetry, ECG, and ICG. The signals are preprocessed and analysed by a set of artificial intelligence algorithms, the core of which is based on Bayesian networks. The paper focuses on the construction and evaluation of the Bayesian network, both its structure and numerical specification. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. A Bayesian Approach for Sensor Optimisation in Impact Identification

    PubMed Central

    Mallardo, Vincenzo; Sharif Khodaei, Zahra; Aliabadi, Ferri M. H.

    2016-01-01

    This paper presents a Bayesian approach for optimizing the position of sensors aimed at impact identification in composite structures under operational conditions. The uncertainty in the sensor data has been represented by statistical distributions of the recorded signals. An optimisation strategy based on the genetic algorithm is proposed to find the best sensor combination aimed at locating impacts on composite structures. A Bayesian-based objective function is adopted in the optimisation procedure as an indicator of the performance of meta-models developed for different sensor combinations to locate various impact events. To represent a real structure under operational load and to increase the reliability of the Structural Health Monitoring (SHM) system, the probability of malfunctioning sensors is included in the optimisation. The reliability and the robustness of the procedure is tested with experimental and numerical examples. Finally, the proposed optimisation algorithm is applied to a composite stiffened panel for both the uniform and non-uniform probability of impact occurrence. PMID:28774064

  16. Predicting ICU mortality: a comparison of stationary and nonstationary temporal models.

    PubMed Central

    Kayaalp, M.; Cooper, G. F.; Clermont, G.

    2000-01-01

    OBJECTIVE: This study evaluates the effectiveness of the stationarity assumption in predicting the mortality of intensive care unit (ICU) patients at the ICU discharge. DESIGN: This is a comparative study. A stationary temporal Bayesian network learned from data was compared to a set of (33) nonstationary temporal Bayesian networks learned from data. A process observed as a sequence of events is stationary if its stochastic properties stay the same when the sequence is shifted in a positive or negative direction by a constant time parameter. The temporal Bayesian networks forecast mortalities of patients, where each patient has one record per day. The predictive performance of the stationary model is compared with nonstationary models using the area under the receiver operating characteristics (ROC) curves. RESULTS: The stationary model usually performed best. However, one nonstationary model using large data sets performed significantly better than the stationary model. CONCLUSION: Results suggest that using a combination of stationary and nonstationary models may predict better than using either alone. PMID:11079917

  17. Π4U: A high performance computing framework for Bayesian uncertainty quantification of complex models

    NASA Astrophysics Data System (ADS)

    Hadjidoukas, P. E.; Angelikopoulos, P.; Papadimitriou, C.; Koumoutsakos, P.

    2015-03-01

    We present Π4U, an extensible framework, for non-intrusive Bayesian Uncertainty Quantification and Propagation (UQ+P) of complex and computationally demanding physical models, that can exploit massively parallel computer architectures. The framework incorporates Laplace asymptotic approximations as well as stochastic algorithms, along with distributed numerical differentiation and task-based parallelism for heterogeneous clusters. Sampling is based on the Transitional Markov Chain Monte Carlo (TMCMC) algorithm and its variants. The optimization tasks associated with the asymptotic approximations are treated via the Covariance Matrix Adaptation Evolution Strategy (CMA-ES). A modified subset simulation method is used for posterior reliability measurements of rare events. The framework accommodates scheduling of multiple physical model evaluations based on an adaptive load balancing library and shows excellent scalability. In addition to the software framework, we also provide guidelines as to the applicability and efficiency of Bayesian tools when applied to computationally demanding physical models. Theoretical and computational developments are demonstrated with applications drawn from molecular dynamics, structural dynamics and granular flow.

  18. Information Modeling to Assess Eruptive Behavior and Possible Threats on Mt. Etna, Italy

    NASA Astrophysics Data System (ADS)

    Pshenichny, C.; Behncke, B.

    2008-12-01

    One of the best-studied volcanoes of the world, Mt. Etna in Sicily repeatedly exhibits eruptive scenarios that depart from the behavior considered typical for this volcano. Episodes of intense explosive activity, pyroclastic density currents, dome growth, cone collapse, and phreatomagmatic explosions pose a variety of previously underestimated threats to human lives in the summit area of the volcano. However, retrospective analysis of these events shows that they were likely caused by the same very sets of premises and starting conditions as "normal" effusive eruptions, yet combined in an unexpected, probably unique, way. Physical modeling tells us what may happen in terms of physical parameters but not what events we will actually see on a volcano. Bayesian modeling of volcanoes can unite physical parameters and observed events but, unlike physics, it lacks strictness of terms used to describe the events and, hence, may fail to provide a reasonably impartial, complete and self-consistent set of possible scenarios to be expected. Therefore, a tool is needed to process the observational knowledge as strictly as physical matters are treated by mathematics to provide an appropriate event-based framework for assessment of natural hazards during volcanic eruptions. This task requires a modeling not of the volcano itself but of our knowledge of it, and therefore falls into the field of informatis, knowledge engineering, and artificial intelligence. We involved an approach of artificial intelligence developed specially for the needs of geoscience, the method of event bush. Scenarios inferred from event bush fit the observed ones and allow one to foresee other low-probable events that may occur at the volcano. Application of the event bush provides a more impartial vision of volcanic phenomena and may serve as an intermediary between physical modeling, the expert knowledge and numerical assessment, e.g., by means of Bayesian belief networks.

  19. Optimal Predictions in Everyday Cognition: The Wisdom of Individuals or Crowds?

    ERIC Educational Resources Information Center

    Mozer, Michael C.; Pashler, Harold; Homaei, Hadjar

    2008-01-01

    Griffiths and Tenenbaum (2006) asked individuals to make predictions about the duration or extent of everyday events (e.g., cake baking times), and reported that predictions were optimal, employing Bayesian inference based on veridical prior distributions. Although the predictions conformed strikingly to statistics of the world, they reflect…

  20. Using a Bayesian Model to Combine LDA Features with Crowdsourced Responses

    DTIC Science & Technology

    2013-02-05

    particularly relevant to Orchid it is an example of a scenario in disaster recovery which is one of Orchids application domains. Examples of soft...locations of events. 12 Acknowledgements We gratefully acknowledge funding from the UK Research Council EPSRC for project ORCHID , grant EP/I011587/1

  1. Locating seismicity on the Arctic plate boundary using multiple-event techniques and empirical signal processing

    NASA Astrophysics Data System (ADS)

    Gibbons, S. J.; Harris, D. B.; Dahl-Jensen, T.; Kværna, T.; Larsen, T. B.; Paulsen, B.; Voss, P. H.

    2017-12-01

    The oceanic boundary separating the Eurasian and North American plates between 70° and 84° north hosts large earthquakes which are well recorded teleseismically, and many more seismic events at far lower magnitudes that are well recorded only at regional distances. Existing seismic bulletins have considerable spread and bias resulting from limited station coverage and deficiencies in the velocity models applied. This is particularly acute for the lower magnitude events which may only be constrained by a small number of Pn and Sn arrivals. Over the past two decades there has been a significant improvement in the seismic network in the Arctic: a difficult region to instrument due to the harsh climate, a sparsity of accessible sites (particularly at significant distances from the sea), and the expense and difficult logistics of deploying and maintaining stations. New deployments and upgrades to stations on Greenland, Svalbard, Jan Mayen, Hopen, and Bjørnøya have resulted in a sparse but stable regional seismic network which results in events down to magnitudes below 3 generating high-quality Pn and Sn signals on multiple stations. A catalogue of several hundred events in the region since 1998 has been generated using many new phase readings on stations on both sides of the spreading ridge in addition to teleseismic P phases. A Bayesian multiple event relocation has resulted in a significant reduction in the spread of hypocentre estimates for both large and small events. Whereas single event location algorithms minimize vectors of time residuals on an event-by-event basis, the Bayesloc program finds a joint probability distribution of origins, hypocentres, and corrections to traveltime predictions for large numbers of events. The solutions obtained favour those event hypotheses resulting in time residuals which are most consistent over a given source region. The relocations have been performed with different 1-D velocity models applicable to the Arctic region and hypocentres obtained using Bayesloc have been shown to be relatively insensitive to the specified velocity structure in the crust and upper mantle, even for events only constrained by regional phases. The patterns of time residuals resulting from the multiple-event location procedure provide well-constrained time correction surfaces for single-event location estimates and are sufficiently stable to identify a number of picking errors and instrumental timing anomalies. This allows for subsequent quality control of the input data and further improvement in the location estimates. We use the relocated events to form narrowband empirical steering vectors for wave fronts arriving at the SPITS array on Svalbard for azimuth and apparent velocity estimation. We demonstrate that empirical matched field parameter estimation determined by source region is a viable supplement to planewave f-k analysis, mitigating bias and obviating the need for Slowness and Azimuth Station Corrections. A database of reference events and phase arrivals is provided to facilitate further refinement of event locations and the construction of empirical signal detectors.

  2. Fully Bayesian Estimation of Data from Single Case Designs

    ERIC Educational Resources Information Center

    Rindskopf, David

    2013-01-01

    Single case designs (SCDs) generally consist of a small number of short time series in two or more phases. The analysis of SCDs statistically fits in the framework of a multilevel model, or hierarchical model. The usual analysis does not take into account the uncertainty in the estimation of the random effects. This not only has an effect on the…

  3. A molecular phylogeny of the Pacific clade of Cyrtandra (Gesneriaceae) reveals a Fijian origin, recent diversification, and the importance of founder events.

    PubMed

    Johnson, Melissa A; Clark, John R; Wagner, Warren L; McDade, Lucinda A

    2017-11-01

    Cyrtandra (Gesneriaceae) is among the largest genera of flowering plants in the remote oceanic islands of the Pacific, with an estimated 175 species distributed across an area that extends from the Solomon Islands, east to the Marquesas Islands, and north to the Hawaiian Islands. The vast majority of species are single-island endemics that inhabit upland rainforests. Although previous molecular phylogenetic studies greatly advanced our understanding of the diversification of Pacific Cyrtandra, a number of uncertainties remain regarding phylogenetic relationships, divergence times, and biogeographic patterns within this large and widely dispersed group. In the present study, five loci (ITS, ETS, Cyrt1, psbA-trnH, and rpl32-trnL) were amplified and sequenced for phylogenetic reconstruction of 121 Cyrtandra taxa. Maximum likelihood and Bayesian inference confirmed that C. taviunensis from Fiji is sister to the remaining members of the Pacific clade. Dating analyses and ancestral area estimation indicates that the Pacific clade of Cyrtandra originated in Fiji during the Miocene ca. 9mya. All major crown lineages within the Pacific clade appeared < 5mya, coincident with the emergence of numerous Pacific islands and a subsequent increase in available habitat. The biogeographic history of Cyrtandra in the Pacific has been shaped by extinction, dispersal distance, and founder events. Biogeographic stochastic mapping analyses suggest that cladogenesis within Pacific Cyrtandra involved a combination of narrow (within-area) sympatry and founder events. A mean of 24 founder events was recovered between Pacific archipelagos, while a mean of 10 founder events was recovered within the Hawaiian archipelago. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Value of evidence from syndromic surveillance with cumulative evidence from multiple data streams with delayed reporting.

    PubMed

    Struchen, R; Vial, F; Andersson, M G

    2017-04-26

    Delayed reporting of health data may hamper the early detection of infectious diseases in surveillance systems. Furthermore, combining multiple data streams, e.g. aiming at improving a system's sensitivity, can be challenging. In this study, we used a Bayesian framework where the result is presented as the value of evidence, i.e. the likelihood ratio for the evidence under outbreak versus baseline conditions. Based on a historical data set of routinely collected cattle mortality events, we evaluated outbreak detection performance (sensitivity, time to detection, in-control run length) under the Bayesian approach among three scenarios: presence of delayed data reporting, but not accounting for it; presence of delayed data reporting accounted for; and absence of delayed data reporting (i.e. an ideal system). Performance on larger and smaller outbreaks was compared with a classical approach, considering syndromes separately or combined. We found that the Bayesian approach performed better than the classical approach, especially for the smaller outbreaks. Furthermore, the Bayesian approach performed similarly well in the scenario where delayed reporting was accounted for to the scenario where it was absent. We argue that the value of evidence framework may be suitable for surveillance systems with multiple syndromes and delayed reporting of data.

  5. Analysis of phase II methodologies for single-arm clinical trials with multiple endpoints in rare cancers: An example in Ewing's sarcoma.

    PubMed

    Dutton, P; Love, S B; Billingham, L; Hassan, A B

    2018-05-01

    Trials run in either rare diseases, such as rare cancers, or rare sub-populations of common diseases are challenging in terms of identifying, recruiting and treating sufficient patients in a sensible period. Treatments for rare diseases are often designed for other disease areas and then later proposed as possible treatments for the rare disease after initial phase I testing is complete. To ensure the trial is in the best interests of the patient participants, frequent interim analyses are needed to force the trial to stop promptly if the treatment is futile or toxic. These non-definitive phase II trials should also be stopped for efficacy to accelerate research progress if the treatment proves to be particularly promising. In this paper, we review frequentist and Bayesian methods that have been adapted to incorporate two binary endpoints and frequent interim analyses. The Eurosarc Trial of Linsitinib in advanced Ewing Sarcoma (LINES) is used as a motivating example and provides a suitable platform to compare these approaches. The Bayesian approach provides greater design flexibility, but does not provide additional value over the frequentist approaches in a single trial setting when the prior is non-informative. However, Bayesian designs are able to borrow from any previous experience, using prior information to improve efficiency.

  6. Bayesian Travel Time Inversion adopting Gaussian Process Regression

    NASA Astrophysics Data System (ADS)

    Mauerberger, S.; Holschneider, M.

    2017-12-01

    A major application in seismology is the determination of seismic velocity models. Travel time measurements are putting an integral constraint on the velocity between source and receiver. We provide insight into travel time inversion from a correlation-based Bayesian point of view. Therefore, the concept of Gaussian process regression is adopted to estimate a velocity model. The non-linear travel time integral is approximated by a 1st order Taylor expansion. A heuristic covariance describes correlations amongst observations and a priori model. That approach enables us to assess a proxy of the Bayesian posterior distribution at ordinary computational costs. No multi dimensional numeric integration nor excessive sampling is necessary. Instead of stacking the data, we suggest to progressively build the posterior distribution. Incorporating only a single evidence at a time accounts for the deficit of linearization. As a result, the most probable model is given by the posterior mean whereas uncertainties are described by the posterior covariance.As a proof of concept, a synthetic purely 1d model is addressed. Therefore a single source accompanied by multiple receivers is considered on top of a model comprising a discontinuity. We consider travel times of both phases - direct and reflected wave - corrupted by noise. Left and right of the interface are assumed independent where the squared exponential kernel serves as covariance.

  7. Bayesian Integration of Information in Hippocampal Place Cells

    PubMed Central

    Madl, Tamas; Franklin, Stan; Chen, Ke; Montaldi, Daniela; Trappl, Robert

    2014-01-01

    Accurate spatial localization requires a mechanism that corrects for errors, which might arise from inaccurate sensory information or neuronal noise. In this paper, we propose that Hippocampal place cells might implement such an error correction mechanism by integrating different sources of information in an approximately Bayes-optimal fashion. We compare the predictions of our model with physiological data from rats. Our results suggest that useful predictions regarding the firing fields of place cells can be made based on a single underlying principle, Bayesian cue integration, and that such predictions are possible using a remarkably small number of model parameters. PMID:24603429

  8. A Comparison of the β-Substitution Method and a Bayesian Method for Analyzing Left-Censored Data

    PubMed Central

    Huynh, Tran; Quick, Harrison; Ramachandran, Gurumurthy; Banerjee, Sudipto; Stenzel, Mark; Sandler, Dale P.; Engel, Lawrence S.; Kwok, Richard K.; Blair, Aaron; Stewart, Patricia A.

    2016-01-01

    Classical statistical methods for analyzing exposure data with values below the detection limits are well described in the occupational hygiene literature, but an evaluation of a Bayesian approach for handling such data is currently lacking. Here, we first describe a Bayesian framework for analyzing censored data. We then present the results of a simulation study conducted to compare the β-substitution method with a Bayesian method for exposure datasets drawn from lognormal distributions and mixed lognormal distributions with varying sample sizes, geometric standard deviations (GSDs), and censoring for single and multiple limits of detection. For each set of factors, estimates for the arithmetic mean (AM), geometric mean, GSD, and the 95th percentile (X0.95) of the exposure distribution were obtained. We evaluated the performance of each method using relative bias, the root mean squared error (rMSE), and coverage (the proportion of the computed 95% uncertainty intervals containing the true value). The Bayesian method using non-informative priors and the β-substitution method were generally comparable in bias and rMSE when estimating the AM and GM. For the GSD and the 95th percentile, the Bayesian method with non-informative priors was more biased and had a higher rMSE than the β-substitution method, but use of more informative priors generally improved the Bayesian method’s performance, making both the bias and the rMSE more comparable to the β-substitution method. An advantage of the Bayesian method is that it provided estimates of uncertainty for these parameters of interest and good coverage, whereas the β-substitution method only provided estimates of uncertainty for the AM, and coverage was not as consistent. Selection of one or the other method depends on the needs of the practitioner, the availability of prior information, and the distribution characteristics of the measurement data. We suggest the use of Bayesian methods if the practitioner has the computational resources and prior information, as the method would generally provide accurate estimates and also provides the distributions of all of the parameters, which could be useful for making decisions in some applications. PMID:26209598

  9. An improved approximate-Bayesian model-choice method for estimating shared evolutionary history

    PubMed Central

    2014-01-01

    Background To understand biological diversification, it is important to account for large-scale processes that affect the evolutionary history of groups of co-distributed populations of organisms. Such events predict temporally clustered divergences times, a pattern that can be estimated using genetic data from co-distributed species. I introduce a new approximate-Bayesian method for comparative phylogeographical model-choice that estimates the temporal distribution of divergences across taxa from multi-locus DNA sequence data. The model is an extension of that implemented in msBayes. Results By reparameterizing the model, introducing more flexible priors on demographic and divergence-time parameters, and implementing a non-parametric Dirichlet-process prior over divergence models, I improved the robustness, accuracy, and power of the method for estimating shared evolutionary history across taxa. Conclusions The results demonstrate the improved performance of the new method is due to (1) more appropriate priors on divergence-time and demographic parameters that avoid prohibitively small marginal likelihoods for models with more divergence events, and (2) the Dirichlet-process providing a flexible prior on divergence histories that does not strongly disfavor models with intermediate numbers of divergence events. The new method yields more robust estimates of posterior uncertainty, and thus greatly reduces the tendency to incorrectly estimate models of shared evolutionary history with strong support. PMID:24992937

  10. Assessment of Genetic and Nongenetic Interactions for the Prediction of Depressive Symptomatology: An Analysis of the Wisconsin Longitudinal Study Using Machine Learning Algorithms

    PubMed Central

    Roetker, Nicholas S.; Yonker, James A.; Chang, Vicky; Roan, Carol L.; Herd, Pamela; Hauser, Taissa S.; Hauser, Robert M.

    2013-01-01

    Objectives. We examined depression within a multidimensional framework consisting of genetic, environmental, and sociobehavioral factors and, using machine learning algorithms, explored interactions among these factors that might better explain the etiology of depressive symptoms. Methods. We measured current depressive symptoms using the Center for Epidemiologic Studies Depression Scale (n = 6378 participants in the Wisconsin Longitudinal Study). Genetic factors were 78 single nucleotide polymorphisms (SNPs); environmental factors—13 stressful life events (SLEs), plus a composite proportion of SLEs index; and sociobehavioral factors—18 personality, intelligence, and other health or behavioral measures. We performed traditional SNP associations via logistic regression likelihood ratio testing and explored interactions with support vector machines and Bayesian networks. Results. After correction for multiple testing, we found no significant single genotypic associations with depressive symptoms. Machine learning algorithms showed no evidence of interactions. Naïve Bayes produced the best models in both subsets and included only environmental and sociobehavioral factors. Conclusions. We found no single or interactive associations with genetic factors and depressive symptoms. Various environmental and sociobehavioral factors were more predictive of depressive symptoms, yet their impacts were independent of one another. A genome-wide analysis of genetic alterations using machine learning methodologies will provide a framework for identifying genetic–environmental–sociobehavioral interactions in depressive symptoms. PMID:23927508

  11. Probiotics in Helicobacter pylori eradication therapy: Systematic review and network meta-analysis.

    PubMed

    Wang, Fan; Feng, Juerong; Chen, Pengfei; Liu, Xiaoping; Ma, Minxing; Zhou, Rui; Chang, Ying; Liu, Jing; Li, Jin; Zhao, Qiu

    2017-09-01

    Several probiotics were effective in the eradication treatment for Helicobacter pylori (Hp), but their comparative efficacy was unknown. To compare the efficacy of different probiotics when supplemented in Hp eradication therapy. A comprehensive search was conducted to identify all relevant studies in multiple databases and previous meta-analyses. Bayesian network meta-analysis was performed to combine direct and indirect evidence and estimate the relative effects. One hundred and forty studies (44 English and 96 Chinese) were identified with a total of 20,215 patients, and more than 10 probiotic strategies were supplemented in Hp eradication therapy. The rates of eradication and adverse events were 84.1 and 14.4% in probiotic group, while 70.5 and 30.1% in the control group. In general, supplementary probiotics were effective in improving the efficacy of Hp eradication and decreasing the incidence of adverse events, despite of few ineffective subtypes. In triple eradication therapy, there was no significant difference among the effective probiotics, and combined probiotics did not show a better efficacy and tolerance than single use. In triple therapy of 7 days and 14 days, Lactobacillus acidopilus was a slightly better choice, while Saccharomyces boulardii was more applicable for 10-day triple therapy. Compared to placebo, most probiotic strategies were effective when supplemented in Hp eradication therapy. In triple eradication therapy, no probiotic showed a superior efficacy to the others. Compared to single use, combined probiotics could not improve the efficacy or tolerance significantly. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  12. High-resolution age modelling of peat bog profiles using pre and post-bomb 14C, 210Pb and cryptotephra data from six Albertan peat bogs

    NASA Astrophysics Data System (ADS)

    Davies, L. J.; Froese, D. G.; Appleby, P.; van Bellen, S.; Magnan, G.; Mullan-Boudreau, G.; Noernberg, T.; Shotyk, W.; Zaccone, C.

    2016-12-01

    Age modelling of recent peat profiles is frequently undertaken for high-resolution modern studies, but the most common techniques applied (e.g. 14C, 210Pb, cryptotephra) are rarely combined and used for testing and inter-comparison. Here, we integrate three age-dating approaches to produce a single age model to comprehensively investigate variations in the chronometers and individual site histories since 1900. OxCal's P_Sequence function is used to model dates produced using 14C (pre- and post-bomb), 210Pb (corroborated with 137Cs and 241Am) from six peat bogs in central and northern Alberta. Physical and chemical characteristics of the cores (e.g. macrofossils, humification, ash content, dry density) provide important constraints for the model by highlighting periods with significant changes in accumulation rate (e.g. fire events, permafrost development, prolonged surficial drying). Sub-cm resolution output shows there are consistent differences in how the 14C and 210Pb signals are preserved in peat profiles, with 14C commonly showing a slight bias toward older ages at the same depth relative to 210Pb data. These methods can successfully be combined in a Bayesian model and used to produce a single age model that more accurately accounts for the uncertainties inherent in each method. Understanding these differences and combining the results of these methods results in a stronger chronology at each site investigated here despite observed differences in ecological setting, accumulation rates, fire events/frequency and permafrost development.

  13. Bayesian dose-response analysis for epidemiological studies with complex uncertainty in dose estimation.

    PubMed

    Kwon, Deukwoo; Hoffman, F Owen; Moroz, Brian E; Simon, Steven L

    2016-02-10

    Most conventional risk analysis methods rely on a single best estimate of exposure per person, which does not allow for adjustment for exposure-related uncertainty. Here, we propose a Bayesian model averaging method to properly quantify the relationship between radiation dose and disease outcomes by accounting for shared and unshared uncertainty in estimated dose. Our Bayesian risk analysis method utilizes multiple realizations of sets (vectors) of doses generated by a two-dimensional Monte Carlo simulation method that properly separates shared and unshared errors in dose estimation. The exposure model used in this work is taken from a study of the risk of thyroid nodules among a cohort of 2376 subjects who were exposed to fallout from nuclear testing in Kazakhstan. We assessed the performance of our method through an extensive series of simulations and comparisons against conventional regression risk analysis methods. When the estimated doses contain relatively small amounts of uncertainty, the Bayesian method using multiple a priori plausible draws of dose vectors gave similar results to the conventional regression-based methods of dose-response analysis. However, when large and complex mixtures of shared and unshared uncertainties are present, the Bayesian method using multiple dose vectors had significantly lower relative bias than conventional regression-based risk analysis methods and better coverage, that is, a markedly increased capability to include the true risk coefficient within the 95% credible interval of the Bayesian-based risk estimate. An evaluation of the dose-response using our method is presented for an epidemiological study of thyroid disease following radiation exposure. Copyright © 2015 John Wiley & Sons, Ltd.

  14. Model-based Bayesian inference for ROC data analysis

    NASA Astrophysics Data System (ADS)

    Lei, Tianhu; Bae, K. Ty

    2013-03-01

    This paper presents a study of model-based Bayesian inference to Receiver Operating Characteristics (ROC) data. The model is a simple version of general non-linear regression model. Different from Dorfman model, it uses a probit link function with a covariate variable having zero-one two values to express binormal distributions in a single formula. Model also includes a scale parameter. Bayesian inference is implemented by Markov Chain Monte Carlo (MCMC) method carried out by Bayesian analysis Using Gibbs Sampling (BUGS). Contrast to the classical statistical theory, Bayesian approach considers model parameters as random variables characterized by prior distributions. With substantial amount of simulated samples generated by sampling algorithm, posterior distributions of parameters as well as parameters themselves can be accurately estimated. MCMC-based BUGS adopts Adaptive Rejection Sampling (ARS) protocol which requires the probability density function (pdf) which samples are drawing from be log concave with respect to the targeted parameters. Our study corrects a common misconception and proves that pdf of this regression model is log concave with respect to its scale parameter. Therefore, ARS's requirement is satisfied and a Gaussian prior which is conjugate and possesses many analytic and computational advantages is assigned to the scale parameter. A cohort of 20 simulated data sets and 20 simulations from each data set are used in our study. Output analysis and convergence diagnostics for MCMC method are assessed by CODA package. Models and methods by using continuous Gaussian prior and discrete categorical prior are compared. Intensive simulations and performance measures are given to illustrate our practice in the framework of model-based Bayesian inference using MCMC method.

  15. Bayesian network model of crowd emotion and negative behavior

    NASA Astrophysics Data System (ADS)

    Ramli, Nurulhuda; Ghani, Noraida Abdul; Hatta, Zulkarnain Ahmad; Hashim, Intan Hashimah Mohd; Sulong, Jasni; Mahudin, Nor Diana Mohd; Rahman, Shukran Abd; Saad, Zarina Mat

    2014-12-01

    The effects of overcrowding have become a major concern for event organizers. One aspect of this concern has been the idea that overcrowding can enhance the occurrence of serious incidents during events. As one of the largest Muslim religious gathering attended by pilgrims from all over the world, Hajj has become extremely overcrowded with many incidents being reported. The purpose of this study is to analyze the nature of human emotion and negative behavior resulting from overcrowding during Hajj events from data gathered in Malaysian Hajj Experience Survey in 2013. The sample comprised of 147 Malaysian pilgrims (70 males and 77 females). Utilizing a probabilistic model called Bayesian network, this paper models the dependence structure between different emotions and negative behaviors of pilgrims in the crowd. The model included the following variables of emotion: negative, negative comfortable, positive, positive comfortable and positive spiritual and variables of negative behaviors; aggressive and hazardous acts. The study demonstrated that emotions of negative, negative comfortable, positive spiritual and positive emotion have a direct influence on aggressive behavior whereas emotion of negative comfortable, positive spiritual and positive have a direct influence on hazardous acts behavior. The sensitivity analysis showed that a low level of negative and negative comfortable emotions leads to a lower level of aggressive and hazardous behavior. Findings of the study can be further improved to identify the exact cause and risk factors of crowd-related incidents in preventing crowd disasters during the mass gathering events.

  16. Multi-angle backscatter classification and sub-bottom profiling for improved seafloor characterization

    NASA Astrophysics Data System (ADS)

    Alevizos, Evangelos; Snellen, Mirjam; Simons, Dick; Siemes, Kerstin; Greinert, Jens

    2018-06-01

    This study applies three classification methods exploiting the angular dependence of acoustic seafloor backscatter along with high resolution sub-bottom profiling for seafloor sediment characterization in the Eckernförde Bay, Baltic Sea Germany. This area is well suited for acoustic backscatter studies due to its shallowness, its smooth bathymetry and the presence of a wide range of sediment types. Backscatter data were acquired using a Seabeam1180 (180 kHz) multibeam echosounder and sub-bottom profiler data were recorded using a SES-2000 parametric sonar transmitting 6 and 12 kHz. The high density of seafloor soundings allowed extracting backscatter layers for five beam angles over a large part of the surveyed area. A Bayesian probability method was employed for sediment classification based on the backscatter variability at a single incidence angle, whereas Maximum Likelihood Classification (MLC) and Principal Components Analysis (PCA) were applied to the multi-angle layers. The Bayesian approach was used for identifying the optimum number of acoustic classes because cluster validation is carried out prior to class assignment and class outputs are ordinal categorical values. The method is based on the principle that backscatter values from a single incidence angle express a normal distribution for a particular sediment type. The resulting Bayesian classes were well correlated to median grain sizes and the percentage of coarse material. The MLC method uses angular response information from five layers of training areas extracted from the Bayesian classification map. The subsequent PCA analysis is based on the transformation of these five layers into two principal components that comprise most of the data variability. These principal components were clustered in five classes after running an external cluster validation test. In general both methods MLC and PCA, separated the various sediment types effectively, showing good agreement (kappa >0.7) with the Bayesian approach which also correlates well with ground truth data (r2 > 0.7). In addition, sub-bottom data were used in conjunction with the Bayesian classification results to characterize acoustic classes with respect to their geological and stratigraphic interpretation. The joined interpretation of seafloor and sub-seafloor data sets proved to be an efficient approach for a better understanding of seafloor backscatter patchiness and to discriminate acoustically similar classes in different geological/bathymetric settings.

  17. Elastic Properties of Novel Co- and CoNi-Based Superalloys Determined through Bayesian Inference and Resonant Ultrasound Spectroscopy

    NASA Astrophysics Data System (ADS)

    Goodlet, Brent R.; Mills, Leah; Bales, Ben; Charpagne, Marie-Agathe; Murray, Sean P.; Lenthe, William C.; Petzold, Linda; Pollock, Tresa M.

    2018-06-01

    Bayesian inference is employed to precisely evaluate single crystal elastic properties of novel γ -γ ' Co- and CoNi-based superalloys from simple and non-destructive resonant ultrasound spectroscopy (RUS) measurements. Nine alloys from three Co-, CoNi-, and Ni-based alloy classes were evaluated in the fully aged condition, with one alloy per class also evaluated in the solution heat-treated condition. Comparisons are made between the elastic properties of the three alloy classes and among the alloys of a single class, with the following trends observed. A monotonic rise in the c_{44} (shear) elastic constant by a total of 12 pct is observed between the three alloy classes as Co is substituted for Ni. Elastic anisotropy ( A) is also increased, with a large majority of the nearly 13 pct increase occurring after Co becomes the dominant constituent. Together the five CoNi alloys, with Co:Ni ratios from 1:1 to 1.5:1, exhibited remarkably similar properties with an average A 1.8 pct greater than the Ni-based alloy CMSX-4. Custom code demonstrating a substantial advance over previously reported methods for RUS inversion is also reported here for the first time. CmdStan-RUS is built upon the open-source probabilistic programing language of Stan and formulates the inverse problem using Bayesian methods. Bayesian posterior distributions are efficiently computed with Hamiltonian Monte Carlo (HMC), while initial parameterization is randomly generated from weakly informative prior distributions. Remarkably robust convergence behavior is demonstrated across multiple independent HMC chains in spite of initial parameterization often very far from actual parameter values. Experimental procedures are substantially simplified by allowing any arbitrary misorientation between the specimen and crystal axes, as elastic properties and misorientation are estimated simultaneously.

  18. A Bayesian Approach to the Overlap Analysis of Epidemiologically Linked Traits.

    PubMed

    Asimit, Jennifer L; Panoutsopoulou, Kalliope; Wheeler, Eleanor; Berndt, Sonja I; Cordell, Heather J; Morris, Andrew P; Zeggini, Eleftheria; Barroso, Inês

    2015-12-01

    Diseases often cooccur in individuals more often than expected by chance, and may be explained by shared underlying genetic etiology. A common approach to genetic overlap analyses is to use summary genome-wide association study data to identify single-nucleotide polymorphisms (SNPs) that are associated with multiple traits at a selected P-value threshold. However, P-values do not account for differences in power, whereas Bayes' factors (BFs) do, and may be approximated using summary statistics. We use simulation studies to compare the power of frequentist and Bayesian approaches with overlap analyses, and to decide on appropriate thresholds for comparison between the two methods. It is empirically illustrated that BFs have the advantage over P-values of a decreasing type I error rate as study size increases for single-disease associations. Consequently, the overlap analysis of traits from different-sized studies encounters issues in fair P-value threshold selection, whereas BFs are adjusted automatically. Extensive simulations show that Bayesian overlap analyses tend to have higher power than those that assess association strength with P-values, particularly in low-power scenarios. Calibration tables between BFs and P-values are provided for a range of sample sizes, as well as an approximation approach for sample sizes that are not in the calibration table. Although P-values are sometimes thought more intuitive, these tables assist in removing the opaqueness of Bayesian thresholds and may also be used in the selection of a BF threshold to meet a certain type I error rate. An application of our methods is used to identify variants associated with both obesity and osteoarthritis. © 2015 The Authors. *Genetic Epidemiology published by Wiley Periodicals, Inc.

  19. Bayesian depth estimation from monocular natural images.

    PubMed

    Su, Che-Chun; Cormack, Lawrence K; Bovik, Alan C

    2017-05-01

    Estimating an accurate and naturalistic dense depth map from a single monocular photographic image is a difficult problem. Nevertheless, human observers have little difficulty understanding the depth structure implied by photographs. Two-dimensional (2D) images of the real-world environment contain significant statistical information regarding the three-dimensional (3D) structure of the world that the vision system likely exploits to compute perceived depth, monocularly as well as binocularly. Toward understanding how this might be accomplished, we propose a Bayesian model of monocular depth computation that recovers detailed 3D scene structures by extracting reliable, robust, depth-sensitive statistical features from single natural images. These features are derived using well-accepted univariate natural scene statistics (NSS) models and recent bivariate/correlation NSS models that describe the relationships between 2D photographic images and their associated depth maps. This is accomplished by building a dictionary of canonical local depth patterns from which NSS features are extracted as prior information. The dictionary is used to create a multivariate Gaussian mixture (MGM) likelihood model that associates local image features with depth patterns. A simple Bayesian predictor is then used to form spatial depth estimates. The depth results produced by the model, despite its simplicity, correlate well with ground-truth depths measured by a current-generation terrestrial light detection and ranging (LIDAR) scanner. Such a strong form of statistical depth information could be used by the visual system when creating overall estimated depth maps incorporating stereopsis, accommodation, and other conditions. Indeed, even in isolation, the Bayesian predictor delivers depth estimates that are competitive with state-of-the-art "computer vision" methods that utilize highly engineered image features and sophisticated machine learning algorithms.

  20. Semiparametric Bayesian commensurate survival model for post-market medical device surveillance with non-exchangeable historical data.

    PubMed

    Murray, Thomas A; Hobbs, Brian P; Lystig, Theodore C; Carlin, Bradley P

    2014-03-01

    Trial investigators often have a primary interest in the estimation of the survival curve in a population for which there exists acceptable historical information from which to borrow strength. However, borrowing strength from a historical trial that is non-exchangeable with the current trial can result in biased conclusions. In this article we propose a fully Bayesian semiparametric method for the purpose of attenuating bias and increasing efficiency when jointly modeling time-to-event data from two possibly non-exchangeable sources of information. We illustrate the mechanics of our methods by applying them to a pair of post-market surveillance datasets regarding adverse events in persons on dialysis that had either a bare metal or drug-eluting stent implanted during a cardiac revascularization surgery. We finish with a discussion of the advantages and limitations of this approach to evidence synthesis, as well as directions for future work in this area. The article's Supplementary Materials offer simulations to show our procedure's bias, mean squared error, and coverage probability properties in a variety of settings. © 2013, The International Biometric Society.

  1. Seismic Characterization of EGS Reservoirs

    NASA Astrophysics Data System (ADS)

    Templeton, D. C.; Pyle, M. L.; Matzel, E.; Myers, S.; Johannesson, G.

    2014-12-01

    To aid in the seismic characterization of Engineered Geothermal Systems (EGS), we enhance the traditional microearthquake detection and location methodologies at two EGS systems. We apply the Matched Field Processing (MFP) seismic imaging technique to detect new seismic events using known discrete microearthquake sources. Events identified using MFP are typically smaller magnitude events or events that occur within the coda of a larger event. Additionally, we apply a Bayesian multiple-event seismic location algorithm, called MicroBayesLoc, to estimate the 95% probability ellipsoids for events with high signal-to-noise ratios (SNR). Such probability ellipsoid information can provide evidence for determining if a seismic lineation could be real or simply within the anticipated error range. We apply this methodology to the Basel EGS data set and compare it to another EGS dataset. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  2. New high precision U-Pb calibration of the late Early-Triassic (Smithian-Spathian Boundary, South China)

    NASA Astrophysics Data System (ADS)

    Widmann, Philipp; Leu, Marc; Goudemand, Nicolas; Schaltegger, Urs; Bucher, Hugo

    2017-04-01

    Following the Permian-Triassic mass extinction (PTME), the Early Triassic is characterized by large short-lived perturbations of the global carbon cycle associated with radiation and extinction pulses of the biota. More stable conditions resumed in the Middle Triassic (Anisian). The exact ages and duration of these short-lived but intense radiation-extinction events as well as carbon cycle perturbations are poorly constrained and a robust intercalibration of U-Pb dates, biochronozones and carbon isotope fluctuations is still lacking. An accurate and precise time frame is essential in order to quantify the dynamics of the underlying mechanistic processes and to assess the validity of the various explanatory scenarios. The most drastic Early Triassic extinction occurred at the Smithian-Spathian boundary (SSB) and is associated with a globally recognized sharp positive excursion of the marine d13C signal. Based on the most recently published ages for the Permian-Triassic boundary (251.938 ± 0.029 Ma, Baresel et al., 2016) and for the Early-Middle Triassic boundary (247.05 ± 0.16 Ma, Ovtcharova et al., 2015), we know the Early Triassic lasted 4.9 myr. However, neither the position of the SSB nor the durations of the major biotic and abiotic events around the SSB are constrained by radiometric dates. Here, we will present new high precision, chemical abrasion, isotope dilution, thermal ionization mass spectrometry (CA-ID-TIMS) U-Pb ages from single zircon crystals, sampled from closely spaced volcanic ash layers that bracket the SSB in the Nanpanjiang Basin (Guizhou province, South China). These ash layers are found in a mixed carbonate-siliciclastic, conodont-rich sedimentary succession (Luolou Formation) that is well calibrated biochronologically. We obtained best estimates of the ages of the SSB and associated events by applying Bayesian age modelling. References: Baresel, B., Bucher, H., Brosse, M., Cordey, F., Guodun, K., and Schaltegger, U., 2016. Precise age for the Permian-Triassic boundary in South China from high precision U-Pb geochronology and Bayesian age-depth modelling: Solid Earth Discussions, doi: 10 .5194 /se -2016 -145. Ovtcharova, M., Goudemand, N., Hammer, O., Guodun, K., Cordey, F., Galfetti, T., Schaltegger, U. and Bucher, H. 2015. Developing a strategy for accurate definition of a geological boundary through radio-isotopic and biochronological dating: the Early-Middle Triassic boundary (South China). Earth-Science Reviews, 146, 65-76.

  3. The tempo and mode of New World monkey evolution and biogeography in the context of phylogenomic analysis.

    PubMed

    Jameson Kiesling, Natalie M; Yi, Soojin V; Xu, Ke; Gianluca Sperone, F; Wildman, Derek E

    2015-01-01

    The development and evolution of organisms is heavily influenced by their environment. Thus, understanding the historical biogeography of taxa can provide insights into their evolutionary history, adaptations and trade-offs realized throughout time. In the present study we have taken a phylogenomic approach to infer New World monkey phylogeny, upon which we have reconstructed the biogeographic history of extant platyrrhines. In order to generate sufficient phylogenetic signal within the New World monkey clade, we carried out a large-scale phylogenetic analysis of approximately 40 kb of non-genic genomic DNA sequence in a 36 species subset of extant New World monkeys. Maximum parsimony, maximum likelihood and Bayesian inference analysis all converged on a single optimal tree topology. Divergence dating and biogeographic analysis reconstruct the timing and geographic location of divergence events. The ancestral area reconstruction describes the geographic locations of the last common ancestor of extant platyrrhines and provides insight into key biogeographic events occurring during platyrrhine diversification. Through these analyses we conclude that the diversification of the platyrrhines took place concurrently with the establishment and diversification of the Amazon rainforest. This suggests that an expanding rainforest environment rather than geographic isolation drove platyrrhine diversification. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Dealing with uncertainty in the probability of overtopping of a flood mitigation dam

    NASA Astrophysics Data System (ADS)

    Michailidi, Eleni Maria; Bacchi, Baldassare

    2017-05-01

    In recent years, copula multivariate functions were used to model, probabilistically, the most important variables of flood events: discharge peak, flood volume and duration. However, in most of the cases, the sampling uncertainty, from which small-sized samples suffer, is neglected. In this paper, considering a real reservoir controlled by a dam as a case study, we apply a structure-based approach to estimate the probability of reaching specific reservoir levels, taking into account the key components of an event (flood peak, volume, hydrograph shape) and of the reservoir (rating curve, volume-water depth relation). Additionally, we improve information about the peaks from historical data and reports through a Bayesian framework, allowing the incorporation of supplementary knowledge from different sources and its associated error. As it is seen here, the extra information can result in a very different inferred parameter set and consequently this is reflected as a strong variability of the reservoir level, associated with a given return period. Most importantly, the sampling uncertainty is accounted for in both cases (single-site and multi-site with historical information scenarios), and Monte Carlo confidence intervals for the maximum water level are calculated. It is shown that water levels of specific return periods in a lot of cases overlap, thus making risk assessment, without providing confidence intervals, deceiving.

  5. Bayesian adaptive phase II screening design for combination trials.

    PubMed

    Cai, Chunyan; Yuan, Ying; Johnson, Valen E

    2013-01-01

    Trials of combination therapies for the treatment of cancer are playing an increasingly important role in the battle against this disease. To more efficiently handle the large number of combination therapies that must be tested, we propose a novel Bayesian phase II adaptive screening design to simultaneously select among possible treatment combinations involving multiple agents. Our design is based on formulating the selection procedure as a Bayesian hypothesis testing problem in which the superiority of each treatment combination is equated to a single hypothesis. During the trial conduct, we use the current values of the posterior probabilities of all hypotheses to adaptively allocate patients to treatment combinations. Simulation studies show that the proposed design substantially outperforms the conventional multiarm balanced factorial trial design. The proposed design yields a significantly higher probability for selecting the best treatment while allocating substantially more patients to efficacious treatments. The proposed design is most appropriate for the trials combining multiple agents and screening out the efficacious combination to be further investigated. The proposed Bayesian adaptive phase II screening design substantially outperformed the conventional complete factorial design. Our design allocates more patients to better treatments while providing higher power to identify the best treatment at the end of the trial.

  6. Quantum Inference on Bayesian Networks

    NASA Astrophysics Data System (ADS)

    Yoder, Theodore; Low, Guang Hao; Chuang, Isaac

    2014-03-01

    Because quantum physics is naturally probabilistic, it seems reasonable to expect physical systems to describe probabilities and their evolution in a natural fashion. Here, we use quantum computation to speedup sampling from a graphical probability model, the Bayesian network. A specialization of this sampling problem is approximate Bayesian inference, where the distribution on query variables is sampled given the values e of evidence variables. Inference is a key part of modern machine learning and artificial intelligence tasks, but is known to be NP-hard. Classically, a single unbiased sample is obtained from a Bayesian network on n variables with at most m parents per node in time (nmP(e) - 1 / 2) , depending critically on P(e) , the probability the evidence might occur in the first place. However, by implementing a quantum version of rejection sampling, we obtain a square-root speedup, taking (n2m P(e) -1/2) time per sample. The speedup is the result of amplitude amplification, which is proving to be broadly applicable in sampling and machine learning tasks. In particular, we provide an explicit and efficient circuit construction that implements the algorithm without the need for oracle access.

  7. Applications of Bayesian Procrustes shape analysis to ensemble radar reflectivity nowcast verification

    NASA Astrophysics Data System (ADS)

    Fox, Neil I.; Micheas, Athanasios C.; Peng, Yuqiang

    2016-07-01

    This paper introduces the use of Bayesian full Procrustes shape analysis in object-oriented meteorological applications. In particular, the Procrustes methodology is used to generate mean forecast precipitation fields from a set of ensemble forecasts. This approach has advantages over other ensemble averaging techniques in that it can produce a forecast that retains the morphological features of the precipitation structures and present the range of forecast outcomes represented by the ensemble. The production of the ensemble mean avoids the problems of smoothing that result from simple pixel or cell averaging, while producing credible sets that retain information on ensemble spread. Also in this paper, the full Bayesian Procrustes scheme is used as an object verification tool for precipitation forecasts. This is an extension of a previously presented Procrustes shape analysis based verification approach into a full Bayesian format designed to handle the verification of precipitation forecasts that match objects from an ensemble of forecast fields to a single truth image. The methodology is tested on radar reflectivity nowcasts produced in the Warning Decision Support System - Integrated Information (WDSS-II) by varying parameters in the K-means cluster tracking scheme.

  8. Evaluating fossil calibrations for dating phylogenies in light of rates of molecular evolution: a comparison of three approaches.

    PubMed

    Lukoschek, Vimoksalehi; Scott Keogh, J; Avise, John C

    2012-01-01

    Evolutionary and biogeographic studies increasingly rely on calibrated molecular clocks to date key events. Although there has been significant recent progress in development of the techniques used for molecular dating, many issues remain. In particular, controversies abound over the appropriate use and placement of fossils for calibrating molecular clocks. Several methods have been proposed for evaluating candidate fossils; however, few studies have compared the results obtained by different approaches. Moreover, no previous study has incorporated the effects of nucleotide saturation from different data types in the evaluation of candidate fossils. In order to address these issues, we compared three approaches for evaluating fossil calibrations: the single-fossil cross-validation method of Near, Meylan, and Shaffer (2005. Assessing concordance of fossil calibration points in molecular clock studies: an example using turtles. Am. Nat. 165:137-146), the empirical fossil coverage method of Marshall (2008. A simple method for bracketing absolute divergence times on molecular phylogenies using multiple fossil calibration points. Am. Nat. 171:726-742), and the Bayesian multicalibration method of Sanders and Lee (2007. Evaluating molecular clock calibrations using Bayesian analyses with soft and hard bounds. Biol. Lett. 3:275-279) and explicitly incorporate the effects of data type (nuclear vs. mitochondrial DNA) for identifying the most reliable or congruent fossil calibrations. We used advanced (Caenophidian) snakes as a case study; however, our results are applicable to any taxonomic group with multiple candidate fossils, provided appropriate taxon sampling and sufficient molecular sequence data are available. We found that data type strongly influenced which fossil calibrations were identified as outliers, regardless of which method was used. Despite the use of complex partitioned models of sequence evolution and multiple calibrations throughout the tree, saturation severely compressed basal branch lengths obtained from mitochondrial DNA compared with nuclear DNA. The effects of mitochondrial saturation were not ameliorated by analyzing a combined nuclear and mitochondrial data set. Although removing the third codon positions from the mitochondrial coding regions did not ameliorate saturation effects in the single-fossil cross-validations, it did in the Bayesian multicalibration analyses. Saturation significantly influenced the fossils that were selected as most reliable for all three methods evaluated. Our findings highlight the need to critically evaluate the fossils selected by data with different rates of nucleotide substitution and how data with different evolutionary rates affect the results of each method for evaluating fossils. Our empirical evaluation demonstrates that the advantages of using multiple independent fossil calibrations significantly outweigh any disadvantages.

  9. Safety related drug-labelling changes: findings from two data mining algorithms.

    PubMed

    Hauben, Manfred; Reich, Lester

    2004-01-01

    With increasing volumes of postmarketing safety surveillance data, data mining algorithms (DMAs) have been developed to search large spontaneous reporting system (SRS) databases for disproportional statistical dependencies between drugs and events. A crucial question is the proper deployment of such techniques within the universe of methods historically used for signal detection. One question of interest is comparative performance of algorithms based on simple forms of disproportionality analysis versus those incorporating Bayesian modelling. A potential benefit of Bayesian methods is a reduced volume of signals, including false-positive signals. To compare performance of two well described DMAs (proportional reporting ratios [PRRs] and an empirical Bayesian algorithm known as multi-item gamma Poisson shrinker [MGPS]) using commonly recommended thresholds on a diverse data set of adverse events that triggered drug labelling changes. PRRs and MGPS were retrospectively applied to a diverse sample of drug-event combinations (DECs) identified on a government Internet site for a 7-month period. Metrics for this comparative analysis included the number and proportion of these DECs that generated signals of disproportionate reporting with PRRs, MGPS, both or neither method, differential timing of signal generation between the two methods, and clinical nature of events that generated signals with only one, both or neither method. There were 136 relevant DECs that triggered safety-related labelling changes for 39 drugs during a 7-month period. PRRs generated a signal of disproportionate reporting with almost twice as many DECs as MGPS (77 vs 40). No DECs were flagged by MGPS only. PRRs highlighted DECs in advance of MGPS (1-15 years) and a label change (1-30 years). For 59 DECs, there was no signal with either DMA. DECs generating signals of disproportionate reporting with only PRRs were both medically serious and non-serious. In most instances in which a DEC generated a signal of disproportionate reporting with both DMAs (almost twice as many with PRRs), the signal was generated using PRRs in advance of MGPS. No medically important events were signalled only by MGPS. It is likely that the incremental utility of DMAs are highly situation-dependent. It is clear, however, that the volume of signals generated by itself is an inadequate criterion for comparison and that clinical nature of signalled events and differential timing of signals needs to be considered. Accepting commonly recommended threshold criteria for DMAs examined in this study as universal benchmarks for signal detection is not justified.

  10. Divergence and codon usage bias of Betanodavirus, a neurotropic pathogen in fish.

    PubMed

    He, Mei; Teng, Chun-Bo

    2015-02-01

    Betanodavirus is a small bipartite RNA virus of global economical significance that can cause severe neurological disorders to an increasing number of marine fish species. Herein, to further the understanding of the evolution of betanodavirus, Bayesian coalescent analyses were conducted to the time-stamped entire coding sequences of their RNA polymerase and coat protein genes. Similar moderate nucleotide substitution rates were then estimated for the two genes. According to age calculations, the divergence of the two genes into the four genotypes initiated nearly simultaneously at ∼700 years ago, despite the different scenarios, whereas the seven analyzed chimeric isolates might be the outcomes of a single genetic reassortment event taking place in the early 1980s in Southern Europe. Furthermore, codon usage bias analyses indicated that each gene had influences in addition to mutational bias and codon choice of betanodavirus was not completely complied with that of fish host. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. A path-level exact parallelization strategy for sequential simulation

    NASA Astrophysics Data System (ADS)

    Peredo, Oscar F.; Baeza, Daniel; Ortiz, Julián M.; Herrero, José R.

    2018-01-01

    Sequential Simulation is a well known method in geostatistical modelling. Following the Bayesian approach for simulation of conditionally dependent random events, Sequential Indicator Simulation (SIS) method draws simulated values for K categories (categorical case) or classes defined by K different thresholds (continuous case). Similarly, Sequential Gaussian Simulation (SGS) method draws simulated values from a multivariate Gaussian field. In this work, a path-level approach to parallelize SIS and SGS methods is presented. A first stage of re-arrangement of the simulation path is performed, followed by a second stage of parallel simulation for non-conflicting nodes. A key advantage of the proposed parallelization method is to generate identical realizations as with the original non-parallelized methods. Case studies are presented using two sequential simulation codes from GSLIB: SISIM and SGSIM. Execution time and speedup results are shown for large-scale domains, with many categories and maximum kriging neighbours in each case, achieving high speedup results in the best scenarios using 16 threads of execution in a single machine.

  12. Measurement of the charge asymmetry in top-quark pair production in the lepton-plus-jets final state in pp collision data at [Formula: see text] with the ATLAS detector.

    PubMed

    Aad, G; Abbott, B; Abdallah, J; Abdinov, O; Aben, R; Abolins, M; AbouZeid, O S; Abramowicz, H; Abreu, H; Abreu, R; Abulaiti, Y; Acharya, B S; Adamczyk, L; Adams, D L; Adelman, J; Adomeit, S; Adye, T; Affolder, A A; Agatonovic-Jovin, T; Agricola, J; Aguilar-Saavedra, J A; Ahlen, S P; Ahmadov, F; Aielli, G; Akerstedt, H; Åkesson, T P A; Akimov, A V; Alberghi, G L; Albert, J; Albrand, S; Alconada Verzini, M J; Aleksa, M; Aleksandrov, I N; Alexa, C; Alexander, G; Alexopoulos, T; Alhroob, M; Alimonti, G; Alio, L; Alison, J; Alkire, S P; Allbrooke, B M M; Allport, P P; Aloisio, A; Alonso, A; Alonso, F; Alpigiani, C; Altheimer, A; Alvarez Gonzalez, B; Álvarez Piqueras, D; Alviggi, M G; Amadio, B T; Amako, K; Amaral Coutinho, Y; Amelung, C; Amidei, D; Amor Dos Santos, S P; Amorim, A; Amoroso, S; Amram, N; Amundsen, G; Anastopoulos, C; Ancu, L S; Andari, N; Andeen, T; Anders, C F; Anders, G; Anders, J K; Anderson, K J; Andreazza, A; Andrei, V; Angelidakis, S; Angelozzi, I; Anger, P; Angerami, A; Anghinolfi, F; Anisenkov, A V; Anjos, N; Annovi, A; Antonelli, M; Antonov, A; Antos, J; Anulli, F; Aoki, M; Aperio Bella, L; Arabidze, G; Arai, Y; Araque, J P; Arce, A T H; Arduh, F A; Arguin, J-F; Argyropoulos, S; Arik, M; Armbruster, A J; Arnaez, O; Arnold, H; Arratia, M; Arslan, O; Artamonov, A; Artoni, G; Asai, S; Asbah, N; Ashkenazi, A; Åsman, B; Asquith, L; Assamagan, K; Astalos, R; Atkinson, M; Atlay, N B; Augsten, K; Aurousseau, M; Avolio, G; Axen, B; Ayoub, M K; Azuelos, G; Baak, M A; Baas, A E; Baca, M J; Bacci, C; Bachacou, H; Bachas, K; Backes, M; Backhaus, M; Bagiacchi, P; Bagnaia, P; Bai, Y; Bain, T; Baines, J T; Baker, O K; Baldin, E M; Balek, P; Balestri, T; Balli, F; Balunas, W K; Banas, E; Banerjee, Sw; Bannoura, A A E; Barak, L; Barberio, E L; Barberis, D; Barbero, M; Barillari, T; Barisonzi, M; Barklow, T; Barlow, N; Barnes, S L; Barnett, B M; Barnett, R M; Barnovska, Z; Baroncelli, A; Barone, G; Barr, A J; Barreiro, F; Barreiro Guimarães da Costa, J; Bartoldus, R; Barton, A E; Bartos, P; Basalaev, A; Bassalat, A; Basye, A; Bates, R L; Batista, S J; Batley, J R; Battaglia, M; Bauce, M; Bauer, F; Bawa, H S; Beacham, J B; Beattie, M D; Beau, T; Beauchemin, P H; Beccherle, R; Bechtle, P; Beck, H P; Becker, K; Becker, M; Beckingham, M; Becot, C; Beddall, A J; Beddall, A; Bednyakov, V A; Bee, C P; Beemster, L J; Beermann, T A; Begel, M; Behr, J K; Belanger-Champagne, C; Bell, W H; Bella, G; Bellagamba, L; Bellerive, A; Bellomo, M; Belotskiy, K; Beltramello, O; Benary, O; Benchekroun, D; Bender, M; Bendtz, K; Benekos, N; Benhammou, Y; Benhar Noccioli, E; Benitez Garcia, J A; Benjamin, D P; Bensinger, J R; Bentvelsen, S; Beresford, L; Beretta, M; Berge, D; Bergeaas Kuutmann, E; Berger, N; Berghaus, F; Beringer, J; Bernard, C; Bernard, N R; Bernius, C; Bernlochner, F U; Berry, T; Berta, P; Bertella, C; Bertoli, G; Bertolucci, F; Bertsche, C; Bertsche, D; Besana, M I; Besjes, G J; Bessidskaia Bylund, O; Bessner, M; Besson, N; Betancourt, C; Bethke, S; Bevan, A J; Bhimji, W; Bianchi, R M; Bianchini, L; Bianco, M; Biebel, O; Biedermann, D; Bieniek, S P; Biesuz, N V; Biglietti, M; Bilbao De Mendizabal, J; Bilokon, H; Bindi, M; Binet, S; Bingul, A; Bini, C; Biondi, S; Bjergaard, D M; Black, C W; Black, J E; Black, K M; Blackburn, D; Blair, R E; Blanchard, J-B; Blanco, J E; Blazek, T; Bloch, I; Blocker, C; Blum, W; Blumenschein, U; Blunier, S; Bobbink, G J; Bobrovnikov, V S; Bocchetta, S S; Bocci, A; Bock, C; Boehler, M; Bogaerts, J A; Bogavac, D; Bogdanchikov, A G; Bohm, C; Boisvert, V; Bold, T; Boldea, V; Boldyrev, A S; Bomben, M; Bona, M; Boonekamp, M; Borisov, A; Borissov, G; Borroni, S; Bortfeldt, J; Bortolotto, V; Bos, K; Boscherini, D; Bosman, M; Boudreau, J; Bouffard, J; Bouhova-Thacker, E V; Boumediene, D; Bourdarios, C; Bousson, N; Boutle, S K; Boveia, A; Boyd, J; Boyko, I R; Bozic, I; Bracinik, J; Brandt, A; Brandt, G; Brandt, O; Bratzler, U; Brau, B; Brau, J E; Braun, H M; Breaden Madden, W D; Brendlinger, K; Brennan, A J; Brenner, L; Brenner, R; Bressler, S; Bristow, T M; Britton, D; Britzger, D; Brochu, F M; Brock, I; Brock, R; Bronner, J; Brooijmans, G; Brooks, T; Brooks, W K; Brosamer, J; Brost, E; Bruckman de Renstrom, P A; Bruncko, D; Bruneliere, R; Bruni, A; Bruni, G; Bruschi, M; Bruscino, N; Bryngemark, L; Buanes, T; Buat, Q; Buchholz, P; Buckley, A G; Buda, S I; Budagov, I A; Buehrer, F; Bugge, L; Bugge, M K; Bulekov, O; Bullock, D; Burckhart, H; Burdin, S; Burgard, C D; Burghgrave, B; Burke, S; Burmeister, I; Busato, E; Büscher, D; Büscher, V; Bussey, P; Butler, J M; Butt, A I; Buttar, C M; Butterworth, J M; Butti, P; Buttinger, W; Buzatu, A; Buzykaev, A R; Cabrera Urbán, S; Caforio, D; Cairo, V M; Cakir, O; Calace, N; Calafiura, P; Calandri, A; Calderini, G; Calfayan, P; Caloba, L P; Calvet, D; Calvet, S; Camacho Toro, R; Camarda, S; Camarri, P; Cameron, D; Caminal Armadans, R; Campana, S; Campanelli, M; Campoverde, A; Canale, V; Canepa, A; Cano Bret, M; Cantero, J; Cantrill, R; Cao, T; Capeans Garrido, M D M; Caprini, I; Caprini, M; Capua, M; Caputo, R; Carbone, R M; Cardarelli, R; Cardillo, F; Carli, T; Carlino, G; Carminati, L; Caron, S; Carquin, E; Carrillo-Montoya, G D; Carter, J R; Carvalho, J; Casadei, D; Casado, M P; Casolino, M; Castaneda-Miranda, E; Castelli, A; Castillo Gimenez, V; Castro, N F; Catastini, P; Catinaccio, A; Catmore, J R; Cattai, A; Caudron, J; Cavaliere, V; Cavalli, D; Cavalli-Sforza, M; Cavasinni, V; Ceradini, F; Cerio, B C; Cerny, K; Cerqueira, A S; Cerri, A; Cerrito, L; Cerutti, F; Cerv, M; Cervelli, A; Cetin, S A; Chafaq, A; Chakraborty, D; Chalupkova, I; Chan, Y L; Chang, P; Chapman, J D; Charlton, D G; Chau, C C; Chavez Barajas, C A; Cheatham, S; Chegwidden, A; Chekanov, S; Chekulaev, S V; Chelkov, G A; Chelstowska, M A; Chen, C; Chen, H; Chen, K; Chen, L; Chen, S; Chen, S; Chen, X; Chen, Y; Cheng, H C; Cheng, Y; Cheplakov, A; Cheremushkina, E; Cherkaoui El Moursli, R; Chernyatin, V; Cheu, E; Chevalier, L; Chiarella, V; Chiarelli, G; Chiodini, G; Chisholm, A S; Chislett, R T; Chitan, A; Chizhov, M V; Choi, K; Chouridou, S; Chow, B K B; Christodoulou, V; Chromek-Burckhart, D; Chudoba, J; Chuinard, A J; Chwastowski, J J; Chytka, L; Ciapetti, G; Ciftci, A K; Cinca, D; Cindro, V; Cioara, I A; Ciocio, A; Cirotto, F; Citron, Z H; Ciubancan, M; Clark, A; Clark, B L; Clark, P J; Clarke, R N; Clement, C; Coadou, Y; Cobal, M; Coccaro, A; Cochran, J; Coffey, L; Cogan, J G; Colasurdo, L; Cole, B; Cole, S; Colijn, A P; Collot, J; Colombo, T; Compostella, G; Conde Muiño, P; Coniavitis, E; Connell, S H; Connelly, I A; Consorti, V; Constantinescu, S; Conta, C; Conti, G; Conventi, F; Cooke, M; Cooper, B D; Cooper-Sarkar, A M; Cornelissen, T; Corradi, M; Corriveau, F; Corso-Radu, A; Cortes-Gonzalez, A; Cortiana, G; Costa, G; Costa, M J; Costanzo, D; Côté, D; Cottin, G; Cowan, G; Cox, B E; Cranmer, K; Cree, G; Crépé-Renaudin, S; Crescioli, F; Cribbs, W A; Crispin Ortuzar, M; Cristinziani, M; Croft, V; Crosetti, G; Cuhadar Donszelmann, T; Cummings, J; Curatolo, M; Cúth, J; Cuthbert, C; Czirr, H; Czodrowski, P; D'Auria, S; D'Onofrio, M; Da Cunha Sargedas De Sousa, M J; Da Via, C; Dabrowski, W; Dafinca, A; Dai, T; Dale, O; Dallaire, F; Dallapiccola, C; Dam, M; Dandoy, J R; Dang, N P; Daniells, A C; Danninger, M; Dano Hoffmann, M; Dao, V; Darbo, G; Darmora, S; Dassoulas, J; Dattagupta, A; Davey, W; David, C; Davidek, T; Davies, E; Davies, M; Davison, P; Davygora, Y; Dawe, E; Dawson, I; Daya-Ishmukhametova, R K; De, K; de Asmundis, R; De Benedetti, A; De Castro, S; De Cecco, S; De Groot, N; de Jong, P; De la Torre, H; De Lorenzi, F; De Pedis, D; De Salvo, A; De Sanctis, U; De Santo, A; De Vivie De Regie, J B; Dearnaley, W J; Debbe, R; Debenedetti, C; Dedovich, D V; Deigaard, I; Del Peso, J; Del Prete, T; Delgove, D; Deliot, F; Delitzsch, C M; Deliyergiyev, M; Dell'Acqua, A; Dell'Asta, L; Dell'Orso, M; Della Pietra, M; Della Volpe, D; Delmastro, M; Delsart, P A; Deluca, C; DeMarco, D A; Demers, S; Demichev, M; Demilly, A; Denisov, S P; Derendarz, D; Derkaoui, J E; Derue, F; Dervan, P; Desch, K; Deterre, C; Dette, K; Deviveiros, P O; Dewhurst, A; Dhaliwal, S; Di Ciaccio, A; Di Ciaccio, L; Di Domenico, A; Di Donato, C; Di Girolamo, A; Di Girolamo, B; Di Mattia, A; Di Micco, B; Di Nardo, R; Di Simone, A; Di Sipio, R; Di Valentino, D; Diaconu, C; Diamond, M; Dias, F A; Diaz, M A; Diehl, E B; Dietrich, J; Diglio, S; Dimitrievska, A; Dingfelder, J; Dita, P; Dita, S; Dittus, F; Djama, F; Djobava, T; Djuvsland, J I; do Vale, M A B; Dobos, D; Dobre, M; Doglioni, C; Dohmae, T; Dolejsi, J; Dolezal, Z; Dolgoshein, B A; Donadelli, M; Donati, S; Dondero, P; Donini, J; Dopke, J; Doria, A; Dova, M T; Doyle, A T; Drechsler, E; Dris, M; Dubreuil, E; Duchovni, E; Duckeck, G; Ducu, O A; Duda, D; Dudarev, A; Duflot, L; Duguid, L; Dührssen, M; Dunford, M; Duran Yildiz, H; Düren, M; Durglishvili, A; Duschinger, D; Dutta, B; Dyndal, M; Eckardt, C; Ecker, K M; Edgar, R C; Edson, W; Edwards, N C; Ehrenfeld, W; Eifert, T; Eigen, G; Einsweiler, K; Ekelof, T; El Kacimi, M; Ellert, M; Elles, S; Ellinghaus, F; Elliot, A A; Ellis, N; Elmsheuser, J; Elsing, M; Emeliyanov, D; Enari, Y; Endner, O C; Endo, M; Erdmann, J; Ereditato, A; Ernis, G; Ernst, J; Ernst, M; Errede, S; Ertel, E; Escalier, M; Esch, H; Escobar, C; Esposito, B; Etienvre, A I; Etzion, E; Evans, H; Ezhilov, A; Fabbri, L; Facini, G; Fakhrutdinov, R M; Falciano, S; Falla, R J; Faltova, J; Fang, Y; Fanti, M; Farbin, A; Farilla, A; Farooque, T; Farrell, S; Farrington, S M; Farthouat, P; Fassi, F; Fassnacht, P; Fassouliotis, D; Faucci Giannelli, M; Favareto, A; Fayard, L; Fedin, O L; Fedorko, W; Feigl, S; Feligioni, L; Feng, C; Feng, E J; Feng, H; Fenyuk, A B; Feremenga, L; Fernandez Martinez, P; Fernandez Perez, S; Ferrando, J; Ferrari, A; Ferrari, P; Ferrari, R; Ferreira de Lima, D E; Ferrer, A; Ferrere, D; Ferretti, C; Ferretto Parodi, A; Fiascaris, M; Fiedler, F; Filipčič, A; Filipuzzi, M; Filthaut, F; Fincke-Keeler, M; Finelli, K D; Fiolhais, M C N; Fiorini, L; Firan, A; Fischer, A; Fischer, C; Fischer, J; Fisher, W C; Flaschel, N; Fleck, I; Fleischmann, P; Fletcher, G T; Fletcher, G; Fletcher, R R M; Flick, T; Floderus, A; Flores Castillo, L R; Flowerdew, M J; Formica, A; Forti, A; Fournier, D; Fox, H; Fracchia, S; Francavilla, P; Franchini, M; Francis, D; Franconi, L; Franklin, M; Frate, M; Fraternali, M; Freeborn, D; French, S T; Friedrich, F; Froidevaux, D; Frost, J A; Fukunaga, C; Fullana Torregrosa, E; Fulsom, B G; Fusayasu, T; Fuster, J; Gabaldon, C; Gabizon, O; Gabrielli, A; Gabrielli, A; Gach, G P; Gadatsch, S; Gadomski, S; Gagliardi, G; Gagnon, P; Galea, C; Galhardo, B; Gallas, E J; Gallop, B J; Gallus, P; Galster, G; Gan, K K; Gao, J; Gao, Y; Gao, Y S; Garay Walls, F M; Garberson, F; García, C; García Navarro, J E; Garcia-Sciveres, M; Gardner, R W; Garelli, N; Garonne, V; Gatti, C; Gaudiello, A; Gaudio, G; Gaur, B; Gauthier, L; Gauzzi, P; Gavrilenko, I L; Gay, C; Gaycken, G; Gazis, E N; Ge, P; Gecse, Z; Gee, C N P; Geich-Gimbel, Ch; Geisler, M P; Gemme, C; Genest, M H; Gentile, S; George, M; George, S; Gerbaudo, D; Gershon, A; Ghasemi, S; Ghazlane, H; Giacobbe, B; Giagu, S; Giangiobbe, V; Giannetti, P; Gibbard, B; Gibson, S M; Gignac, M; Gilchriese, M; Gillam, T P S; Gillberg, D; Gilles, G; Gingrich, D M; Giokaris, N; Giordani, M P; Giorgi, F M; Giorgi, F M; Giraud, P F; Giromini, P; Giugni, D; Giuliani, C; Giulini, M; Gjelsten, B K; Gkaitatzis, S; Gkialas, I; Gkougkousis, E L; Gladilin, L K; Glasman, C; Glatzer, J; Glaysher, P C F; Glazov, A; Goblirsch-Kolb, M; Goddard, J R; Godlewski, J; Goldfarb, S; Golling, T; Golubkov, D; Gomes, A; Gonçalo, R; Goncalves Pinto Firmino Da Costa, J; Gonella, L; González de la Hoz, S; Gonzalez Parra, G; Gonzalez-Sevilla, S; Goossens, L; Gorbounov, P A; Gordon, H A; Gorelov, I; Gorini, B; Gorini, E; Gorišek, A; Gornicki, E; Goshaw, A T; Gössling, C; Gostkin, M I; Goujdami, D; Goussiou, A G; Govender, N; Gozani, E; Grabas, H M X; Graber, L; Grabowska-Bold, I; Gradin, P O J; Grafström, P; Gramling, J; Gramstad, E; Grancagnolo, S; Gratchev, V; Gray, H M; Graziani, E; Greenwood, Z D; Grefe, C; Gregersen, K; Gregor, I M; Grenier, P; Griffiths, J; Grillo, A A; Grimm, K; Grinstein, S; Gris, Ph; Grivaz, J-F; Grohs, J P; Grohsjean, A; Gross, E; Grosse-Knetter, J; Grossi, G C; Grout, Z J; Guan, L; Guenther, J; Guescini, F; Guest, D; Gueta, O; Guido, E; Guillemin, T; Guindon, S; Gul, U; Gumpert, C; Guo, J; Guo, Y; Gupta, S; Gustavino, G; Gutierrez, P; Gutierrez Ortiz, N G; Gutschow, C; Guyot, C; Gwenlan, C; Gwilliam, C B; Haas, A; Haber, C; Hadavand, H K; Haddad, N; Haefner, P; Hageböck, S; Hajduk, Z; Hakobyan, H; Haleem, M; Haley, J; Hall, D; Halladjian, G; Hallewell, G D; Hamacher, K; Hamal, P; Hamano, K; Hamilton, A; Hamity, G N; Hamnett, P G; Han, L; Hanagaki, K; Hanawa, K; Hance, M; Haney, B; Hanke, P; Hanna, R; Hansen, J B; Hansen, J D; Hansen, M C; Hansen, P H; Hara, K; Hard, A S; Harenberg, T; Hariri, F; Harkusha, S; Harrington, R D; Harrison, P F; Hartjes, F; Hasegawa, M; Hasegawa, Y; Hasib, A; Hassani, S; Haug, S; Hauser, R; Hauswald, L; Havranek, M; Hawkes, C M; Hawkings, R J; Hawkins, A D; Hayashi, T; Hayden, D; Hays, C P; Hays, J M; Hayward, H S; Haywood, S J; Head, S J; Heck, T; Hedberg, V; Heelan, L; Heim, S; Heim, T; Heinemann, B; Heinrich, L; Hejbal, J; Helary, L; Hellman, S; Hellmich, D; Helsens, C; Henderson, J; Henderson, R C W; Heng, Y; Hengler, C; Henkelmann, S; Henrichs, A; Henriques Correia, A M; Henrot-Versille, S; Herbert, G H; Hernández Jiménez, Y; Herten, G; Hertenberger, R; Hervas, L; Hesketh, G G; Hessey, N P; Hetherly, J W; Hickling, R; Higón-Rodriguez, E; Hill, E; Hill, J C; Hiller, K H; Hillier, S J; Hinchliffe, I; Hines, E; Hinman, R R; Hirose, M; Hirschbuehl, D; Hobbs, J; Hod, N; Hodgkinson, M C; Hodgson, P; Hoecker, A; Hoeferkamp, M R; Hoenig, F; Hohlfeld, M; Hohn, D; Holmes, T R; Homann, M; Hong, T M; Hopkins, W H; Horii, Y; Horton, A J; Hostachy, J-Y; Hou, S; Hoummada, A; Howard, J; Howarth, J; Hrabovsky, M; Hristova, I; Hrivnac, J; Hryn'ova, T; Hrynevich, A; Hsu, C; Hsu, P J; Hsu, S-C; Hu, D; Hu, Q; Hu, X; Huang, Y; Hubacek, Z; Hubaut, F; Huegging, F; Huffman, T B; Hughes, E W; Hughes, G; Huhtinen, M; Hülsing, T A; Huseynov, N; Huston, J; Huth, J; Iacobucci, G; Iakovidis, G; Ibragimov, I; Iconomidou-Fayard, L; Ideal, E; Idrissi, Z; Iengo, P; Igonkina, O; Iizawa, T; Ikegami, Y; Ikematsu, K; Ikeno, M; Ilchenko, Y; Iliadis, D; Ilic, N; Ince, T; Introzzi, G; Ioannou, P; Iodice, M; Iordanidou, K; Ippolito, V; Irles Quiles, A; Isaksson, C; Ishino, M; Ishitsuka, M; Ishmukhametov, R; Issever, C; Istin, S; Iturbe Ponce, J M; Iuppa, R; Ivarsson, J; Iwanski, W; Iwasaki, H; Izen, J M; Izzo, V; Jabbar, S; Jackson, B; Jackson, M; Jackson, P; Jaekel, M R; Jain, V; Jakobs, K; Jakobsen, S; Jakoubek, T; Jakubek, J; Jamin, D O; Jana, D K; Jansen, E; Jansky, R; Janssen, J; Janus, M; Jarlskog, G; Javadov, N; Javůrek, T; Jeanty, L; Jejelava, J; Jeng, G-Y; Jennens, D; Jenni, P; Jentzsch, J; Jeske, C; Jézéquel, S; Ji, H; Jia, J; Jiang, Y; Jiggins, S; Jimenez Pena, J; Jin, S; Jinaru, A; Jinnouchi, O; Joergensen, M D; Johansson, P; Johns, K A; Johnson, W J; Jon-And, K; Jones, G; Jones, R W L; Jones, T J; Jongmanns, J; Jorge, P M; Joshi, K D; Jovicevic, J; Ju, X; Jussel, P; Juste Rozas, A; Kaci, M; Kaczmarska, A; Kado, M; Kagan, H; Kagan, M; Kahn, S J; Kajomovitz, E; Kalderon, C W; Kama, S; Kamenshchikov, A; Kanaya, N; Kaneti, S; Kantserov, V A; Kanzaki, J; Kaplan, B; Kaplan, L S; Kapliy, A; Kar, D; Karakostas, K; Karamaoun, A; Karastathis, N; Kareem, M J; Karentzos, E; Karnevskiy, M; Karpov, S N; Karpova, Z M; Karthik, K; Kartvelishvili, V; Karyukhin, A N; Kasahara, K; Kashif, L; Kass, R D; Kastanas, A; Kataoka, Y; Kato, C; Katre, A; Katzy, J; Kawade, K; Kawagoe, K; Kawamoto, T; Kawamura, G; Kazama, S; Kazanin, V F; Keeler, R; Kehoe, R; Keller, J S; Kempster, J J; Keoshkerian, H; Kepka, O; Kerševan, B P; Kersten, S; Keyes, R A; Khalil-Zada, F; Khandanyan, H; Khanov, A; Kharlamov, A G; Khoo, T J; Khovanskiy, V; Khramov, E; Khubua, J; Kido, S; Kim, H Y; Kim, S H; Kim, Y K; Kimura, N; Kind, O M; King, B T; King, M; King, S B; Kirk, J; Kiryunin, A E; Kishimoto, T; Kisielewska, D; Kiss, F; Kiuchi, K; Kivernyk, O; Kladiva, E; Klein, M H; Klein, M; Klein, U; Kleinknecht, K; Klimek, P; Klimentov, A; Klingenberg, R; Klinger, J A; Klioutchnikova, T; Kluge, E-E; Kluit, P; Kluth, S; Knapik, J; Kneringer, E; Knoops, E B F G; Knue, A; Kobayashi, A; Kobayashi, D; Kobayashi, T; Kobel, M; Kocian, M; Kodys, P; Koffas, T; Koffeman, E; Kogan, L A; Kohlmann, S; Kohout, Z; Kohriki, T; Koi, T; Kolanoski, H; Kolb, M; Koletsou, I; Komar, A A; Komori, Y; Kondo, T; Kondrashova, N; Köneke, K; König, A C; Kono, T; Konoplich, R; Konstantinidis, N; Kopeliansky, R; Koperny, S; Köpke, L; Kopp, A K; Korcyl, K; Kordas, K; Korn, A; Korol, A A; Korolkov, I; Korolkova, E V; Kortner, O; Kortner, S; Kosek, T; Kostyukhin, V V; Kotov, V M; Kotwal, A; Kourkoumeli-Charalampidi, A; Kourkoumelis, C; Kouskoura, V; Koutsman, A; Kowalewski, R; Kowalski, T Z; Kozanecki, W; Kozhin, A S; Kramarenko, V A; Kramberger, G; Krasnopevtsev, D; Krasny, M W; Krasznahorkay, A; Kraus, J K; Kravchenko, A; Kreiss, S; Kretz, M; Kretzschmar, J; Kreutzfeldt, K; Krieger, P; Krizka, K; Kroeninger, K; Kroha, H; Kroll, J; Kroseberg, J; Krstic, J; Kruchonak, U; Krüger, H; Krumnack, N; Kruse, A; Kruse, M C; Kruskal, M; Kubota, T; Kucuk, H; Kuday, S; Kuehn, S; Kugel, A; Kuger, F; Kuhl, A; Kuhl, T; Kukhtin, V; Kukla, R; Kulchitsky, Y; Kuleshov, S; Kuna, M; Kunigo, T; Kupco, A; Kurashige, H; Kurochkin, Y A; Kus, V; Kuwertz, E S; Kuze, M; Kvita, J; Kwan, T; Kyriazopoulos, D; La Rosa, A; La Rosa Navarro, J L; La Rotonda, L; Lacasta, C; Lacava, F; Lacey, J; Lacker, H; Lacour, D; Lacuesta, V R; Ladygin, E; Lafaye, R; Laforge, B; Lagouri, T; Lai, S; Lambourne, L; Lammers, S; Lampen, C L; Lampl, W; Lançon, E; Landgraf, U; Landon, M P J; Lang, V S; Lange, J C; Lankford, A J; Lanni, F; Lantzsch, K; Lanza, A; Laplace, S; Lapoire, C; Laporte, J F; Lari, T; Lasagni Manghi, F; Lassnig, M; Laurelli, P; Lavrijsen, W; Law, A T; Laycock, P; Lazovich, T; Le Dortz, O; Le Guirriec, E; Le Menedeu, E; LeBlanc, M; LeCompte, T; Ledroit-Guillon, F; Lee, C A; Lee, S C; Lee, L; Lefebvre, G; Lefebvre, M; Legger, F; Leggett, C; Lehan, A; Lehmann Miotto, G; Lei, X; Leight, W A; Leisos, A; Leister, A G; Leite, M A L; Leitner, R; Lellouch, D; Lemmer, B; Leney, K J C; Lenz, T; Lenzi, B; Leone, R; Leone, S; Leonidopoulos, C; Leontsinis, S; Leroy, C; Lester, C G; Levchenko, M; Levêque, J; Levin, D; Levinson, L J; Levy, M; Lewis, A; Leyko, A M; Leyton, M; Li, B; Li, H; Li, H L; Li, L; Li, L; Li, S; Li, X; Li, Y; Liang, Z; Liao, H; Liberti, B; Liblong, A; Lichard, P; Lie, K; Liebal, J; Liebig, W; Limbach, C; Limosani, A; Lin, S C; Lin, T H; Linde, F; Lindquist, B E; Linnemann, J T; Lipeles, E; Lipniacka, A; Lisovyi, M; Liss, T M; Lissauer, D; Lister, A; Litke, A M; Liu, B; Liu, D; Liu, H; Liu, J; Liu, J B; Liu, K; Liu, L; Liu, M; Liu, M; Liu, Y; Livan, M; Lleres, A; Llorente Merino, J; Lloyd, S L; Lo Sterzo, F; Lobodzinska, E; Loch, P; Lockman, W S; Loebinger, F K; Loevschall-Jensen, A E; Loew, K M; Loginov, A; Lohse, T; Lohwasser, K; Lokajicek, M; Long, B A; Long, J D; Long, R E; Looper, K A; Lopes, L; Lopez Mateos, D; Lopez Paredes, B; Lopez Paz, I; Lorenz, J; Lorenzo Martinez, N; Losada, M; Lösel, P J; Lou, X; Lounis, A; Love, J; Love, P A; Lu, H; Lu, N; Lubatti, H J; Luci, C; Lucotte, A; Luedtke, C; Luehring, F; Lukas, W; Luminari, L; Lundberg, O; Lund-Jensen, B; Lynn, D; Lysak, R; Lytken, E; Ma, H; Ma, L L; Maccarrone, G; Macchiolo, A; Macdonald, C M; Maček, B; Machado Miguens, J; Macina, D; Madaffari, D; Madar, R; Maddocks, H J; Mader, W F; Madsen, A; Maeda, J; Maeland, S; Maeno, T; Maevskiy, A; Magradze, E; Mahboubi, K; Mahlstedt, J; Maiani, C; Maidantchik, C; Maier, A A; Maier, T; Maio, A; Majewski, S; Makida, Y; Makovec, N; Malaescu, B; Malecki, Pa; Maleev, V P; Malek, F; Mallik, U; Malon, D; Malone, C; Maltezos, S; Malyshev, V M; Malyukov, S; Mamuzic, J; Mancini, G; Mandelli, B; Mandelli, L; Mandić, I; Mandrysch, R; Maneira, J; Manfredini, A; Manhaes de Andrade Filho, L; Manjarres Ramos, J; Mann, A; Manousakis-Katsikakis, A; Mansoulie, B; Mantifel, R; Mantoani, M; Mapelli, L; March, L; Marchiori, G; Marcisovsky, M; Marino, C P; Marjanovic, M; Marley, D E; Marroquim, F; Marsden, S P; Marshall, Z; Marti, L F; Marti-Garcia, S; Martin, B; Martin, T A; Martin, V J; Martin Dit Latour, B; Martinez, M; Martin-Haugh, S; Martoiu, V S; Martyniuk, A C; Marx, M; Marzano, F; Marzin, A; Masetti, L; Mashimo, T; Mashinistov, R; Masik, J; Maslennikov, A L; Massa, I; Massa, L; Mastrandrea, P; Mastroberardino, A; Masubuchi, T; Mättig, P; Mattmann, J; Maurer, J; Maxfield, S J; Maximov, D A; Mazini, R; Mazza, S M; Mc Goldrick, G; Mc Kee, S P; McCarn, A; McCarthy, R L; McCarthy, T G; McCubbin, N A; McFarlane, K W; Mcfayden, J A; Mchedlidze, G; McMahon, S J; McPherson, R A; Medinnis, M; Meehan, S; Mehlhase, S; Mehta, A; Meier, K; Meineck, C; Meirose, B; Mellado Garcia, B R; Meloni, F; Mengarelli, A; Menke, S; Meoni, E; Mercurio, K M; Mergelmeyer, S; Mermod, P; Merola, L; Meroni, C; Merritt, F S; Messina, A; Metcalfe, J; Mete, A S; Meyer, C; Meyer, C; Meyer, J-P; Meyer, J; Meyer Zu Theenhausen, H; Middleton, R P; Miglioranzi, S; Mijović, L; Mikenberg, G; Mikestikova, M; Mikuž, M; Milesi, M; Milic, A; Miller, D W; Mills, C; Milov, A; Milstead, D A; Minaenko, A A; Minami, Y; Minashvili, I A; Mincer, A I; Mindur, B; Mineev, M; Ming, Y; Mir, L M; Mistry, K P; Mitani, T; Mitrevski, J; Mitsou, V A; Miucci, A; Miyagawa, P S; Mjörnmark, J U; Moa, T; Mochizuki, K; Mohapatra, S; Mohr, W; Molander, S; Moles-Valls, R; Monden, R; Mönig, K; Monini, C; Monk, J; Monnier, E; Montalbano, A; Montejo Berlingen, J; Monticelli, F; Monzani, S; Moore, R W; Morange, N; Moreno, D; Moreno Llácer, M; Morettini, P; Mori, D; Mori, T; Morii, M; Morinaga, M; Morisbak, V; Moritz, S; Morley, A K; Mornacchi, G; Morris, J D; Mortensen, S S; Morton, A; Morvaj, L; Mosidze, M; Moss, J; Motohashi, K; Mount, R; Mountricha, E; Mouraviev, S V; Moyse, E J W; Muanza, S; Mudd, R D; Mueller, F; Mueller, J; Mueller, R S P; Mueller, T; Muenstermann, D; Mullen, P; Mullier, G A; Murillo Quijada, J A; Murray, W J; Musheghyan, H; Musto, E; Myagkov, A G; Myska, M; Nachman, B P; Nackenhorst, O; Nadal, J; Nagai, K; Nagai, R; Nagai, Y; Nagano, K; Nagarkar, A; Nagasaka, Y; Nagata, K; Nagel, M; Nagy, E; Nairz, A M; Nakahama, Y; Nakamura, K; Nakamura, T; Nakano, I; Namasivayam, H; Naranjo Garcia, R F; Narayan, R; Narrias Villar, D I; Naumann, T; Navarro, G; Nayyar, R; Neal, H A; Nechaeva, P Yu; Neep, T J; Nef, P D; Negri, A; Negrini, M; Nektarijevic, S; Nellist, C; Nelson, A; Nemecek, S; Nemethy, P; Nepomuceno, A A; Nessi, M; Neubauer, M S; Neumann, M; Neves, R M; Nevski, P; Newman, P R; Nguyen, D H; Nickerson, R B; Nicolaidou, R; Nicquevert, B; Nielsen, J; Nikiforou, N; Nikiforov, A; Nikolaenko, V; Nikolic-Audit, I; Nikolopoulos, K; Nilsen, J K; Nilsson, P; Ninomiya, Y; Nisati, A; Nisius, R; Nobe, T; Nomachi, M; Nomidis, I; Nooney, T; Norberg, S; Nordberg, M; Novgorodova, O; Nowak, S; Nozaki, M; Nozka, L; Ntekas, K; Nunes Hanninger, G; Nunnemann, T; Nurse, E; Nuti, F; O'Brien, B J; O'grady, F; O'Neil, D C; O'Shea, V; Oakham, F G; Oberlack, H; Obermann, T; Ocariz, J; Ochi, A; Ochoa, I; Ochoa-Ricoux, J P; Oda, S; Odaka, S; Ogren, H; Oh, A; Oh, S H; Ohm, C C; Ohman, H; Oide, H; Okamura, W; Okawa, H; Okumura, Y; Okuyama, T; Olariu, A; Olivares Pino, S A; Oliveira Damazio, D; Olszewski, A; Olszowska, J; Onofre, A; Onogi, K; Onyisi, P U E; Oram, C J; Oreglia, M J; Oren, Y; Orestano, D; Orlando, N; Oropeza Barrera, C; Orr, R S; Osculati, B; Ospanov, R; Otero Y Garzon, G; Otono, H; Ouchrif, M; Ould-Saada, F; Ouraou, A; Oussoren, K P; Ouyang, Q; Ovcharova, A; Owen, M; Owen, R E; Ozcan, V E; Ozturk, N; Pachal, K; Pacheco Pages, A; Padilla Aranda, C; Pagáčová, M; Pagan Griso, S; Paganis, E; Paige, F; Pais, P; Pajchel, K; Palacino, G; Palestini, S; Palka, M; Pallin, D; Palma, A; Pan, Y B; Panagiotopoulou, E St; Pandini, C E; Panduro Vazquez, J G; Pani, P; Panitkin, S; Pantea, D; Paolozzi, L; Papadopoulou, Th D; Papageorgiou, K; Paramonov, A; Paredes Hernandez, D; Parker, M A; Parker, K A; Parodi, F; Parsons, J A; Parzefall, U; Pasqualucci, E; Passaggio, S; Pastore, F; Pastore, Fr; Pásztor, G; Pataraia, S; Patel, N D; Pater, J R; Pauly, T; Pearce, J; Pearson, B; Pedersen, L E; Pedersen, M; Pedraza Lopez, S; Pedro, R; Peleganchuk, S V; Pelikan, D; Penc, O; Peng, C; Peng, H; Penning, B; Penwell, J; Perepelitsa, D V; Perez Codina, E; Pérez García-Estañ, M T; Perini, L; Pernegger, H; Perrella, S; Peschke, R; Peshekhonov, V D; Peters, K; Peters, R F Y; Petersen, B A; Petersen, T C; Petit, E; Petridis, A; Petridou, C; Petroff, P; Petrolo, E; Petrucci, F; Pettersson, N E; Pezoa, R; Phillips, P W; Piacquadio, G; Pianori, E; Picazio, A; Piccaro, E; Piccinini, M; Pickering, M A; Piegaia, R; Pignotti, D T; Pilcher, J E; Pilkington, A D; Pin, A W J; Pina, J; Pinamonti, M; Pinfold, J L; Pingel, A; Pires, S; Pirumov, H; Pitt, M; Pizio, C; Plazak, L; Pleier, M-A; Pleskot, V; Plotnikova, E; Plucinski, P; Pluth, D; Poettgen, R; Poggioli, L; Pohl, D; Polesello, G; Poley, A; Policicchio, A; Polifka, R; Polini, A; Pollard, C S; Polychronakos, V; Pommès, K; Pontecorvo, L; Pope, B G; Popeneciu, G A; Popovic, D S; Poppleton, A; Pospisil, S; Potamianos, K; Potrap, I N; Potter, C J; Potter, C T; Poulard, G; Poveda, J; Pozdnyakov, V; Pralavorio, P; Pranko, A; Prasad, S; Prell, S; Price, D; Price, L E; Primavera, M; Prince, S; Proissl, M; Prokofiev, K; Prokoshin, F; Protopapadaki, E; Protopopescu, S; Proudfoot, J; Przybycien, M; Ptacek, E; Puddu, D; Pueschel, E; Puldon, D; Purohit, M; Puzo, P; Qian, J; Qin, G; Qin, Y; Quadt, A; Quarrie, D R; Quayle, W B; Queitsch-Maitland, M; Quilty, D; Raddum, S; Radeka, V; Radescu, V; Radhakrishnan, S K; Radloff, P; Rados, P; Ragusa, F; Rahal, G; Rajagopalan, S; Rammensee, M; Rangel-Smith, C; Rauscher, F; Rave, S; Ravenscroft, T; Raymond, M; Read, A L; Readioff, N P; Rebuzzi, D M; Redelbach, A; Redlinger, G; Reece, R; Reeves, K; Rehnisch, L; Reichert, J; Reisin, H; Rembser, C; Ren, H; Renaud, A; Rescigno, M; Resconi, S; Rezanova, O L; Reznicek, P; Rezvani, R; Richter, R; Richter, S; Richter-Was, E; Ricken, O; Ridel, M; Rieck, P; Riegel, C J; Rieger, J; Rifki, O; Rijssenbeek, M; Rimoldi, A; Rinaldi, L; Ristić, B; Ritsch, E; Riu, I; Rizatdinova, F; Rizvi, E; Robertson, S H; Robichaud-Veronneau, A; Robinson, D; Robinson, J E M; Robson, A; Roda, C; Roe, S; Røhne, O; Romaniouk, A; Romano, M; Romano Saez, S M; Romero Adam, E; Rompotis, N; Ronzani, M; Roos, L; Ros, E; Rosati, S; Rosbach, K; Rose, P; Rosendahl, P L; Rosenthal, O; Rossetti, V; Rossi, E; Rossi, L P; Rosten, J H N; Rosten, R; Rotaru, M; Roth, I; Rothberg, J; Rousseau, D; Royon, C R; Rozanov, A; Rozen, Y; Ruan, X; Rubbo, F; Rubinskiy, I; Rud, V I; Rudolph, C; Rudolph, M S; Rühr, F; Ruiz-Martinez, A; Rurikova, Z; Rusakovich, N A; Ruschke, A; Russell, H L; Rutherfoord, J P; Ruthmann, N; Ryabov, Y F; Rybar, M; Rybkin, G; Ryder, N C; Saavedra, A F; Sabato, G; Sacerdoti, S; Saddique, A; Sadrozinski, H F-W; Sadykov, R; Safai Tehrani, F; Saha, P; Sahinsoy, M; Saimpert, M; Saito, T; Sakamoto, H; Sakurai, Y; Salamanna, G; Salamon, A; Salazar Loyola, J E; Saleem, M; Salek, D; Sales De Bruin, P H; Salihagic, D; Salnikov, A; Salt, J; Salvatore, D; Salvatore, F; Salvucci, A; Salzburger, A; Sammel, D; Sampsonidis, D; Sanchez, A; Sánchez, J; Sanchez Martinez, V; Sandaker, H; Sandbach, R L; Sander, H G; Sanders, M P; Sandhoff, M; Sandoval, C; Sandstroem, R; Sankey, D P C; Sannino, M; Sansoni, A; Santoni, C; Santonico, R; Santos, H; Santoyo Castillo, I; Sapp, K; Sapronov, A; Saraiva, J G; Sarrazin, B; Sasaki, O; Sasaki, Y; Sato, K; Sauvage, G; Sauvan, E; Savage, G; Savard, P; Sawyer, C; Sawyer, L; Saxon, J; Sbarra, C; Sbrizzi, A; Scanlon, T; Scannicchio, D A; Scarcella, M; Scarfone, V; Schaarschmidt, J; Schacht, P; Schaefer, D; Schaefer, R; Schaeffer, J; Schaepe, S; Schaetzel, S; Schäfer, U; Schaffer, A C; Schaile, D; Schamberger, R D; Scharf, V; Schegelsky, V A; Scheirich, D; Schernau, M; Schiavi, C; Schillo, C; Schioppa, M; Schlenker, S; Schmieden, K; Schmitt, C; Schmitt, S; Schmitt, S; Schneider, B; Schnellbach, Y J; Schnoor, U; Schoeffel, L; Schoening, A; Schoenrock, B D; Schopf, E; Schorlemmer, A L S; Schott, M; Schouten, D; Schovancova, J; Schramm, S; Schreyer, M; Schuh, N; Schultens, M J; Schultz-Coulon, H-C; Schulz, H; Schumacher, M; Schumm, B A; Schune, Ph; Schwanenberger, C; Schwartzman, A; Schwarz, T A; Schwegler, Ph; Schweiger, H; Schwemling, Ph; Schwienhorst, R; Schwindling, J; Schwindt, T; Sciacca, F G; Scifo, E; Sciolla, G; Scuri, F; Scutti, F; Searcy, J; Sedov, G; Sedykh, E; Seema, P; Seidel, S C; Seiden, A; Seifert, F; Seixas, J M; Sekhniaidze, G; Sekhon, K; Sekula, S J; Seliverstov, D M; Semprini-Cesari, N; Serfon, C; Serin, L; Serkin, L; Serre, T; Sessa, M; Seuster, R; Severini, H; Sfiligoj, T; Sforza, F; Sfyrla, A; Shabalina, E; Shamim, M; Shan, L Y; Shang, R; Shank, J T; Shapiro, M; Shatalov, P B; Shaw, K; Shaw, S M; Shcherbakova, A; Shehu, C Y; Sherwood, P; Shi, L; Shimizu, S; Shimmin, C O; Shimojima, M; Shiyakova, M; Shmeleva, A; Shoaleh Saadi, D; Shochet, M J; Shojaii, S; Shrestha, S; Shulga, E; Shupe, M A; Shushkevich, S; Sicho, P; Sidebo, P E; Sidiropoulou, O; Sidorov, D; Sidoti, A; Siegert, F; Sijacki, Dj; Silva, J; Silver, Y; Silverstein, S B; Simak, V; Simard, O; Simic, Lj; Simion, S; Simioni, E; Simmons, B; Simon, D; Sinervo, P; Sinev, N B; Sioli, M; Siragusa, G; Sisakyan, A N; Sivoklokov, S Yu; Sjölin, J; Sjursen, T B; Skinner, M B; Skottowe, H P; Skubic, P; Slater, M; Slavicek, T; Slawinska, M; Sliwa, K; Smakhtin, V; Smart, B H; Smestad, L; Smirnov, S Yu; Smirnov, Y; Smirnova, L N; Smirnova, O; Smith, M N K; Smith, R W; Smizanska, M; Smolek, K; Snesarev, A A; Snidero, G; Snyder, S; Sobie, R; Socher, F; Soffer, A; Soh, D A; Sokhrannyi, G; Solans, C A; Solar, M; Solc, J; Soldatov, E Yu; Soldevila, U; Solodkov, A A; Soloshenko, A; Solovyanov, O V; Solovyev, V; Sommer, P; Song, H Y; Soni, N; Sood, A; Sopczak, A; Sopko, B; Sopko, V; Sorin, V; Sosa, D; Sosebee, M; Sotiropoulou, C L; Soualah, R; Soukharev, A M; South, D; Sowden, B C; Spagnolo, S; Spalla, M; Spangenberg, M; Spanò, F; Spearman, W R; Sperlich, D; Spettel, F; Spighi, R; Spigo, G; Spiller, L A; Spousta, M; Denis, R D St; Stabile, A; Staerz, S; Stahlman, J; Stamen, R; Stamm, S; Stanecka, E; Stanescu, C; Stanescu-Bellu, M; Stanitzki, M M; Stapnes, S; Starchenko, E A; Stark, J; Staroba, P; Starovoitov, P; Staszewski, R; Steinberg, P; Stelzer, B; Stelzer, H J; Stelzer-Chilton, O; Stenzel, H; Stewart, G A; Stillings, J A; Stockton, M C; Stoebe, M; Stoicea, G; Stolte, P; Stonjek, S; Stradling, A R; Straessner, A; Stramaglia, M E; Strandberg, J; Strandberg, S; Strandlie, A; Strauss, E; Strauss, M; Strizenec, P; Ströhmer, R; Strom, D M; Stroynowski, R; Strubig, A; Stucci, S A; Stugu, B; Styles, N A; Su, D; Su, J; Subramaniam, R; Succurro, A; Sugaya, Y; Suk, M; Sulin, V V; Sultansoy, S; Sumida, T; Sun, S; Sun, X; Sundermann, J E; Suruliz, K; Susinno, G; Sutton, M R; Suzuki, S; Svatos, M; Swiatlowski, M; Sykora, I; Sykora, T; Ta, D; Taccini, C; Tackmann, K; Taenzer, J; Taffard, A; Tafirout, R; Taiblum, N; Takai, H; Takashima, R; Takeda, H; Takeshita, T; Takubo, Y; Talby, M; Talyshev, A A; Tam, J Y C; Tan, K G; Tanaka, J; Tanaka, R; Tanaka, S; Tannenwald, B B; Tannoury, N; Tapia Araya, S; Tapprogge, S; Tarem, S; Tarrade, F; Tartarelli, G F; Tas, P; Tasevsky, M; Tashiro, T; Tassi, E; Tavares Delgado, A; Tayalati, Y; Taylor, F E; Taylor, G N; Taylor, P T E; Taylor, W; Teischinger, F A; Teixeira Dias Castanheira, M; Teixeira-Dias, P; Temming, K K; Temple, D; Ten Kate, H; Teng, P K; Teoh, J J; Tepel, F; Terada, S; Terashi, K; Terron, J; Terzo, S; Testa, M; Teuscher, R J; Theveneaux-Pelzer, T; Thomas, J P; Thomas-Wilsker, J; Thompson, E N; Thompson, P D; Thompson, R J; Thompson, A S; Thomsen, L A; Thomson, E; Thomson, M; Thun, R P; Tibbetts, M J; Ticse Torres, R E; Tikhomirov, V O; Tikhonov, Yu A; Timoshenko, S; Tiouchichine, E; Tipton, P; Tisserant, S; Todome, K; Todorov, T; Todorova-Nova, S; Tojo, J; Tokár, S; Tokushuku, K; Tollefson, K; Tolley, E; Tomlinson, L; Tomoto, M; Tompkins, L; Toms, K; Torrence, E; Torres, H; Torró Pastor, E; Toth, J; Touchard, F; Tovey, D R; Trefzger, T; Tremblet, L; Tricoli, A; Trigger, I M; Trincaz-Duvoid, S; Tripiana, M F; Trischuk, W; Trocmé, B; Troncon, C; Trottier-McDonald, M; Trovatelli, M; Truong, L; Trzebinski, M; Trzupek, A; Tsarouchas, C; Tseng, J C-L; Tsiareshka, P V; Tsionou, D; Tsipolitis, G; Tsirintanis, N; Tsiskaridze, S; Tsiskaridze, V; Tskhadadze, E G; Tsui, K M; Tsukerman, I I; Tsulaia, V; Tsuno, S; Tsybychev, D; Tudorache, A; Tudorache, V; Tuna, A N; Tupputi, S A; Turchikhin, S; Turecek, D; Turra, R; Turvey, A J; Tuts, P M; Tykhonov, A; Tylmad, M; Tyndel, M; Ueda, I; Ueno, R; Ughetto, M; Ugland, M; Ukegawa, F; Unal, G; Undrus, A; Unel, G; Ungaro, F C; Unno, Y; Unverdorben, C; Urban, J; Urquijo, P; Urrejola, P; Usai, G; Usanova, A; Vacavant, L; Vacek, V; Vachon, B; Valderanis, C; Valencic, N; Valentinetti, S; Valero, A; Valery, L; Valkar, S; Vallecorsa, S; Valls Ferrer, J A; Van Den Wollenberg, W; Van Der Deijl, P C; van der Geer, R; van der Graaf, H; van Eldik, N; van Gemmeren, P; Van Nieuwkoop, J; van Vulpen, I; van Woerden, M C; Vanadia, M; Vandelli, W; Vanguri, R; Vaniachine, A; Vannucci, F; Vardanyan, G; Vari, R; Varnes, E W; Varol, T; Varouchas, D; Vartapetian, A; Varvell, K E; Vazeille, F; Vazquez Schroeder, T; Veatch, J; Veloce, L M; Veloso, F; Velz, T; Veneziano, S; Ventura, A; Ventura, D; Venturi, M; Venturi, N; Venturini, A; Vercesi, V; Verducci, M; Verkerke, W; Vermeulen, J C; Vest, A; Vetterli, M C; Viazlo, O; Vichou, I; Vickey, T; Vickey Boeriu, O E; Viehhauser, G H A; Viel, S; Vigne, R; Villa, M; Villaplana Perez, M; Vilucchi, E; Vincter, M G; Vinogradov, V B; Vivarelli, I; Vives Vaque, F; Vlachos, S; Vladoiu, D; Vlasak, M; Vogel, M; Vokac, P; Volpi, G; Volpi, M; von der Schmitt, H; von Radziewski, H; von Toerne, E; Vorobel, V; Vorobev, K; Vos, M; Voss, R; Vossebeld, J H; Vranjes, N; Vranjes Milosavljevic, M; Vrba, V; Vreeswijk, M; Vuillermet, R; Vukotic, I; Vykydal, Z; Wagner, P; Wagner, W; Wahlberg, H; Wahrmund, S; Wakabayashi, J; Walder, J; Walker, R; Walkowiak, W; Wang, C; Wang, F; Wang, H; Wang, H; Wang, J; Wang, J; Wang, K; Wang, R; Wang, S M; Wang, T; Wang, T; Wang, X; Wanotayaroj, C; Warburton, A; Ward, C P; Wardrope, D R; Washbrook, A; Wasicki, C; Watkins, P M; Watson, A T; Watson, I J; Watson, M F; Watts, G; Watts, S; Waugh, B M; Webb, S; Weber, M S; Weber, S W; Webster, J S; Weidberg, A R; Weinert, B; Weingarten, J; Weiser, C; Weits, H; Wells, P S; Wenaus, T; Wengler, T; Wenig, S; Wermes, N; Werner, M; Werner, P; Wessels, M; Wetter, J; Whalen, K; Wharton, A M; White, A; White, M J; White, R; White, S; Whiteson, D; Wickens, F J; Wiedenmann, W; Wielers, M; Wienemann, P; Wiglesworth, C; Wiik-Fuchs, L A M; Wildauer, A; Wilkens, H G; Williams, H H; Williams, S; Willis, C; Willocq, S; Wilson, A; Wilson, J A; Wingerter-Seez, I; Winklmeier, F; Winter, B T; Wittgen, M; Wittkowski, J; Wollstadt, S J; Wolter, M W; Wolters, H; Wosiek, B K; Wotschack, J; Woudstra, M J; Wozniak, K W; Wu, M; Wu, M; Wu, S L; Wu, X; Wu, Y; Wyatt, T R; Wynne, B M; Xella, S; Xu, D; Xu, L; Yabsley, B; Yacoob, S; Yakabe, R; Yamada, M; Yamaguchi, D; Yamaguchi, Y; Yamamoto, A; Yamamoto, S; Yamanaka, T; Yamauchi, K; Yamazaki, Y; Yan, Z; Yang, H; Yang, H; Yang, Y; Yao, W-M; Yap, Y C; Yasu, Y; Yatsenko, E; Yau Wong, K H; Ye, J; Ye, S; Yeletskikh, I; Yen, A L; Yildirim, E; Yorita, K; Yoshida, R; Yoshihara, K; Young, C; Young, C J S; Youssef, S; Yu, D R; Yu, J; Yu, J M; Yu, J; Yuan, L; Yuen, S P Y; Yurkewicz, A; Yusuff, I; Zabinski, B; Zaidan, R; Zaitsev, A M; Zalieckas, J; Zaman, A; Zambito, S; Zanello, L; Zanzi, D; Zeitnitz, C; Zeman, M; Zemla, A; Zeng, Q; Zengel, K; Zenin, O; Ženiš, T; Zerwas, D; Zhang, D; Zhang, F; Zhang, G; Zhang, H; Zhang, J; Zhang, L; Zhang, R; Zhang, X; Zhang, Z; Zhao, X; Zhao, Y; Zhao, Z; Zhemchugov, A; Zhong, J; Zhou, B; Zhou, C; Zhou, L; Zhou, L; Zhou, M; Zhou, N; Zhu, C G; Zhu, H; Zhu, J; Zhu, Y; Zhuang, X; Zhukov, K; Zibell, A; Zieminska, D; Zimine, N I; Zimmermann, C; Zimmermann, S; Zinonos, Z; Zinser, M; Ziolkowski, M; Živković, L; Zobernig, G; Zoccoli, A; Zur Nedden, M; Zurzolo, G; Zwalinski, L

    This paper reports inclusive and differential measurements of the [Formula: see text] charge asymmetry [Formula: see text] in [Formula: see text] of [Formula: see text][Formula: see text] collisions recorded by the ATLAS experiment at the Large Hadron Collider at CERN. Three differential measurements are performed as a function of the invariant mass, transverse momentum and longitudinal boost of the [Formula: see text] system. The [Formula: see text] pairs are selected in the single-lepton channels ( e or [Formula: see text]) with at least four jets, and a likelihood fit is used to reconstruct the [Formula: see text] event kinematics. A Bayesian unfolding procedure is performed to infer the asymmetry at parton level from the observed data distribution. The inclusive [Formula: see text] charge asymmetry is measured to be [Formula: see text] (stat. [Formula: see text] syst.). The inclusive and differential measurements are compatible with the values predicted by the Standard Model.

  13. Bayesian imperfect information analysis for clinical recurrent data

    PubMed Central

    Chang, Chih-Kuang; Chang, Chi-Chang

    2015-01-01

    In medical research, clinical practice must often be undertaken with imperfect information from limited resources. This study applied Bayesian imperfect information-value analysis to realistic situations to produce likelihood functions and posterior distributions, to a clinical decision-making problem for recurrent events. In this study, three kinds of failure models are considered, and our methods illustrated with an analysis of imperfect information from a trial of immunotherapy in the treatment of chronic granulomatous disease. In addition, we present evidence toward a better understanding of the differing behaviors along with concomitant variables. Based on the results of simulations, the imperfect information value of the concomitant variables was evaluated and different realistic situations were compared to see which could yield more accurate results for medical decision-making. PMID:25565853

  14. Probabilistic Cross-identification of Cosmic Events

    NASA Astrophysics Data System (ADS)

    Budavári, Tamás

    2011-08-01

    I discuss a novel approach to identifying cosmic events in separate and independent observations. The focus is on the true events, such as supernova explosions, that happen once and, hence, whose measurements are not repeatable. Their classification and analysis must make the best use of all available data. Bayesian hypothesis testing is used to associate streams of events in space and time. Probabilities are assigned to the matches by studying their rates of occurrence. A case study of Type Ia supernovae illustrates how to use light curves in the cross-identification process. Constraints from realistic light curves happen to be well approximated by Gaussians in time, which makes the matching process very efficient. Model-dependent associations are computationally more demanding but can further boost one's confidence.

  15. Case studies in Bayesian microbial risk assessments.

    PubMed

    Kennedy, Marc C; Clough, Helen E; Turner, Joanne

    2009-12-21

    The quantification of uncertainty and variability is a key component of quantitative risk analysis. Recent advances in Bayesian statistics make it ideal for integrating multiple sources of information, of different types and quality, and providing a realistic estimate of the combined uncertainty in the final risk estimates. We present two case studies related to foodborne microbial risks. In the first, we combine models to describe the sequence of events resulting in illness from consumption of milk contaminated with VTEC O157. We used Monte Carlo simulation to propagate uncertainty in some of the inputs to computer models describing the farm and pasteurisation process. Resulting simulated contamination levels were then assigned to consumption events from a dietary survey. Finally we accounted for uncertainty in the dose-response relationship and uncertainty due to limited incidence data to derive uncertainty about yearly incidences of illness in young children. Options for altering the risk were considered by running the model with different hypothetical policy-driven exposure scenarios. In the second case study we illustrate an efficient Bayesian sensitivity analysis for identifying the most important parameters of a complex computer code that simulated VTEC O157 prevalence within a managed dairy herd. This was carried out in 2 stages, first to screen out the unimportant inputs, then to perform a more detailed analysis on the remaining inputs. The method works by building a Bayesian statistical approximation to the computer code using a number of known code input/output pairs (training runs). We estimated that the expected total number of children aged 1.5-4.5 who become ill due to VTEC O157 in milk is 8.6 per year, with 95% uncertainty interval (0,11.5). The most extreme policy we considered was banning on-farm pasteurisation of milk, which reduced the estimate to 6.4 with 95% interval (0,11). In the second case study the effective number of inputs was reduced from 30 to 7 in the screening stage, and just 2 inputs were found to explain 82.8% of the output variance. A combined total of 500 runs of the computer code were used. These case studies illustrate the use of Bayesian statistics to perform detailed uncertainty and sensitivity analyses, integrating multiple information sources in a way that is both rigorous and efficient.

  16. Integrated survival analysis using an event-time approach in a Bayesian framework

    USGS Publications Warehouse

    Walsh, Daniel P.; Dreitz, VJ; Heisey, Dennis M.

    2015-01-01

    Event-time or continuous-time statistical approaches have been applied throughout the biostatistical literature and have led to numerous scientific advances. However, these techniques have traditionally relied on knowing failure times. This has limited application of these analyses, particularly, within the ecological field where fates of marked animals may be unknown. To address these limitations, we developed an integrated approach within a Bayesian framework to estimate hazard rates in the face of unknown fates. We combine failure/survival times from individuals whose fates are known and times of which are interval-censored with information from those whose fates are unknown, and model the process of detecting animals with unknown fates. This provides the foundation for our integrated model and permits necessary parameter estimation. We provide the Bayesian model, its derivation, and use simulation techniques to investigate the properties and performance of our approach under several scenarios. Lastly, we apply our estimation technique using a piece-wise constant hazard function to investigate the effects of year, age, chick size and sex, sex of the tending adult, and nesting habitat on mortality hazard rates of the endangered mountain plover (Charadrius montanus) chicks. Traditional models were inappropriate for this analysis because fates of some individual chicks were unknown due to failed radio transmitters. Simulations revealed biases of posterior mean estimates were minimal (≤ 4.95%), and posterior distributions behaved as expected with RMSE of the estimates decreasing as sample sizes, detection probability, and survival increased. We determined mortality hazard rates for plover chicks were highest at <5 days old and were lower for chicks with larger birth weights and/or whose nest was within agricultural habitats. Based on its performance, our approach greatly expands the range of problems for which event-time analyses can be used by eliminating the need for having completely known fate data.

  17. Integrated survival analysis using an event-time approach in a Bayesian framework.

    PubMed

    Walsh, Daniel P; Dreitz, Victoria J; Heisey, Dennis M

    2015-02-01

    Event-time or continuous-time statistical approaches have been applied throughout the biostatistical literature and have led to numerous scientific advances. However, these techniques have traditionally relied on knowing failure times. This has limited application of these analyses, particularly, within the ecological field where fates of marked animals may be unknown. To address these limitations, we developed an integrated approach within a Bayesian framework to estimate hazard rates in the face of unknown fates. We combine failure/survival times from individuals whose fates are known and times of which are interval-censored with information from those whose fates are unknown, and model the process of detecting animals with unknown fates. This provides the foundation for our integrated model and permits necessary parameter estimation. We provide the Bayesian model, its derivation, and use simulation techniques to investigate the properties and performance of our approach under several scenarios. Lastly, we apply our estimation technique using a piece-wise constant hazard function to investigate the effects of year, age, chick size and sex, sex of the tending adult, and nesting habitat on mortality hazard rates of the endangered mountain plover (Charadrius montanus) chicks. Traditional models were inappropriate for this analysis because fates of some individual chicks were unknown due to failed radio transmitters. Simulations revealed biases of posterior mean estimates were minimal (≤ 4.95%), and posterior distributions behaved as expected with RMSE of the estimates decreasing as sample sizes, detection probability, and survival increased. We determined mortality hazard rates for plover chicks were highest at <5 days old and were lower for chicks with larger birth weights and/or whose nest was within agricultural habitats. Based on its performance, our approach greatly expands the range of problems for which event-time analyses can be used by eliminating the need for having completely known fate data.

  18. Pathway analysis of high-throughput biological data within a Bayesian network framework.

    PubMed

    Isci, Senol; Ozturk, Cengizhan; Jones, Jon; Otu, Hasan H

    2011-06-15

    Most current approaches to high-throughput biological data (HTBD) analysis either perform individual gene/protein analysis or, gene/protein set enrichment analysis for a list of biologically relevant molecules. Bayesian Networks (BNs) capture linear and non-linear interactions, handle stochastic events accounting for noise, and focus on local interactions, which can be related to causal inference. Here, we describe for the first time an algorithm that models biological pathways as BNs and identifies pathways that best explain given HTBD by scoring fitness of each network. Proposed method takes into account the connectivity and relatedness between nodes of the pathway through factoring pathway topology in its model. Our simulations using synthetic data demonstrated robustness of our approach. We tested proposed method, Bayesian Pathway Analysis (BPA), on human microarray data regarding renal cell carcinoma (RCC) and compared our results with gene set enrichment analysis. BPA was able to find broader and more specific pathways related to RCC. Accompanying BPA software (BPAS) package is freely available for academic use at http://bumil.boun.edu.tr/bpa.

  19. Bayesian network prior: network analysis of biological data using external knowledge

    PubMed Central

    Isci, Senol; Dogan, Haluk; Ozturk, Cengizhan; Otu, Hasan H.

    2014-01-01

    Motivation: Reverse engineering GI networks from experimental data is a challenging task due to the complex nature of the networks and the noise inherent in the data. One way to overcome these hurdles would be incorporating the vast amounts of external biological knowledge when building interaction networks. We propose a framework where GI networks are learned from experimental data using Bayesian networks (BNs) and the incorporation of external knowledge is also done via a BN that we call Bayesian Network Prior (BNP). BNP depicts the relation between various evidence types that contribute to the event ‘gene interaction’ and is used to calculate the probability of a candidate graph (G) in the structure learning process. Results: Our simulation results on synthetic, simulated and real biological data show that the proposed approach can identify the underlying interaction network with high accuracy even when the prior information is distorted and outperforms existing methods. Availability: Accompanying BNP software package is freely available for academic use at http://bioe.bilgi.edu.tr/BNP. Contact: hasan.otu@bilgi.edu.tr Supplementary Information: Supplementary data are available at Bioinformatics online. PMID:24215027

  20. Use of Bayesian event trees in semi-quantitative volcano eruption forecasting and hazard analysis

    NASA Astrophysics Data System (ADS)

    Wright, Heather; Pallister, John; Newhall, Chris

    2015-04-01

    Use of Bayesian event trees to forecast eruptive activity during volcano crises is an increasingly common practice for the USGS-USAID Volcano Disaster Assistance Program (VDAP) in collaboration with foreign counterparts. This semi-quantitative approach combines conceptual models of volcanic processes with current monitoring data and patterns of occurrence to reach consensus probabilities. This approach allows a response team to draw upon global datasets, local observations, and expert judgment, where the relative influence of these data depends upon the availability and quality of monitoring data and the degree to which the volcanic history is known. The construction of such event trees additionally relies upon existence and use of relevant global databases and documented past periods of unrest. Because relevant global databases may be underpopulated or nonexistent, uncertainty in probability estimations may be large. Our 'hybrid' approach of combining local and global monitoring data and expert judgment facilitates discussion and constructive debate between disciplines: including seismology, gas geochemistry, geodesy, petrology, physical volcanology and technology/engineering, where difference in opinion between response team members contributes to definition of the uncertainty in the probability estimations. In collaboration with foreign colleagues, we have created event trees for numerous areas experiencing volcanic unrest. Event trees are created for a specified time frame and are updated, revised, or replaced as the crisis proceeds. Creation of an initial tree is often prompted by a change in monitoring data, such that rapid assessment of probability is needed. These trees are intended as a vehicle for discussion and a way to document relevant data and models, where the target audience is the scientists themselves. However, the probabilities derived through the event-tree analysis can also be used to help inform communications with emergency managers and the public. VDAP trees evaluate probabilities of: magmatic intrusion, likelihood of eruption, magnitude of eruption, and types of associated hazardous events and their extents. In a few cases, trees have been extended to also assess and communicate vulnerability and relative risk.

  1. Bayesian Monitoring Systems for the CTBT: Historical Development and New Results

    NASA Astrophysics Data System (ADS)

    Russell, S.; Arora, N. S.; Moore, D.

    2016-12-01

    A project at Berkeley, begun in 2009 in collaboration with CTBTO andmore recently with LLNL, has reformulated the global seismicmonitoring problem in a Bayesian framework. A first-generation system,NETVISA, has been built comprising a spatial event prior andgenerative models of event transmission and detection, as well as aMonte Carlo inference algorithm. The probabilistic model allows forseamless integration of various disparate sources of information,including negative information (the absence of detections). Workingfrom arrivals extracted by traditional station processing fromInternational Monitoring System (IMS) data, NETVISA achieves areduction of around 60% in the number of missed events compared withthe currently deployed network processing system. It also finds manyevents that are missed by the human analysts who postprocess the IMSoutput. Recent improvements include the integration of models forinfrasound and hydroacoustic detections and a global depth model fornatural seismicity trained from ISC data. NETVISA is now fullycompatible with the CTBTO operating environment. A second-generation model called SIGVISA extends NETVISA's generativemodel all the way from events to raw signal data, avoiding theerror-prone bottom-up detection phase of station processing. SIGVISA'smodel automatically captures the phenomena underlying existingdetection and location techniques such as multilateration, waveformcorrelation matching, and double-differencing, and integrates theminto a global inference process that also (like NETVISA) handles denovo events. Initial results for the Western US in early 2008 (whenthe transportable US Array was operating) shows that SIGVISA finds,from IMS data only, more than twice the number of events recorded inthe CTBTO Late Event Bulletin (LEB). For mb 1.0-2.5, the ratio is more than10; put another way, for this data set, SIGVISA lowers the detectionthreshold by roughly one magnitude compared to LEB. The broader message of this work is that probabilistic inference basedon a vertically integrated generative model that directly expressesgeophysical knowledge can be a much more effective approach forinterpreting scientific data than the traditional bottom-up processingpipeline.

  2. Bayesian reconstruction of transmission within outbreaks using genomic variants.

    PubMed

    De Maio, Nicola; Worby, Colin J; Wilson, Daniel J; Stoesser, Nicole

    2018-04-01

    Pathogen genome sequencing can reveal details of transmission histories and is a powerful tool in the fight against infectious disease. In particular, within-host pathogen genomic variants identified through heterozygous nucleotide base calls are a potential source of information to identify linked cases and infer direction and time of transmission. However, using such data effectively to model disease transmission presents a number of challenges, including differentiating genuine variants from those observed due to sequencing error, as well as the specification of a realistic model for within-host pathogen population dynamics. Here we propose a new Bayesian approach to transmission inference, BadTrIP (BAyesian epiDemiological TRansmission Inference from Polymorphisms), that explicitly models evolution of pathogen populations in an outbreak, transmission (including transmission bottlenecks), and sequencing error. BadTrIP enables the inference of host-to-host transmission from pathogen sequencing data and epidemiological data. By assuming that genomic variants are unlinked, our method does not require the computationally intensive and unreliable reconstruction of individual haplotypes. Using simulations we show that BadTrIP is robust in most scenarios and can accurately infer transmission events by efficiently combining information from genetic and epidemiological sources; thanks to its realistic model of pathogen evolution and the inclusion of epidemiological data, BadTrIP is also more accurate than existing approaches. BadTrIP is distributed as an open source package (https://bitbucket.org/nicofmay/badtrip) for the phylogenetic software BEAST2. We apply our method to reconstruct transmission history at the early stages of the 2014 Ebola outbreak, showcasing the power of within-host genomic variants to reconstruct transmission events.

  3. Reasoning and choice in the Monty Hall Dilemma (MHD): implications for improving Bayesian reasoning

    PubMed Central

    Tubau, Elisabet; Aguilar-Lleyda, David; Johnson, Eric D.

    2015-01-01

    The Monty Hall Dilemma (MHD) is a two-step decision problem involving counterintuitive conditional probabilities. The first choice is made among three equally probable options, whereas the second choice takes place after the elimination of one of the non-selected options which does not hide the prize. Differing from most Bayesian problems, statistical information in the MHD has to be inferred, either by learning outcome probabilities or by reasoning from the presented sequence of events. This often leads to suboptimal decisions and erroneous probability judgments. Specifically, decision makers commonly develop a wrong intuition that final probabilities are equally distributed, together with a preference for their first choice. Several studies have shown that repeated practice enhances sensitivity to the different reward probabilities, but does not facilitate correct Bayesian reasoning. However, modest improvements in probability judgments have been observed after guided explanations. To explain these dissociations, the present review focuses on two types of causes producing the observed biases: Emotional-based choice biases and cognitive limitations in understanding probabilistic information. Among the latter, we identify a crucial cause for the universal difficulty in overcoming the equiprobability illusion: Incomplete representation of prior and conditional probabilities. We conclude that repeated practice and/or high incentives can be effective for overcoming choice biases, but promoting an adequate partitioning of possibilities seems to be necessary for overcoming cognitive illusions and improving Bayesian reasoning. PMID:25873906

  4. Analysis of phase II methodologies for single-arm clinical trials with multiple endpoints in rare cancers: An example in Ewing’s sarcoma

    PubMed Central

    Dutton, P; Love, SB; Billingham, L; Hassan, AB

    2016-01-01

    Trials run in either rare diseases, such as rare cancers, or rare sub-populations of common diseases are challenging in terms of identifying, recruiting and treating sufficient patients in a sensible period. Treatments for rare diseases are often designed for other disease areas and then later proposed as possible treatments for the rare disease after initial phase I testing is complete. To ensure the trial is in the best interests of the patient participants, frequent interim analyses are needed to force the trial to stop promptly if the treatment is futile or toxic. These non-definitive phase II trials should also be stopped for efficacy to accelerate research progress if the treatment proves to be particularly promising. In this paper, we review frequentist and Bayesian methods that have been adapted to incorporate two binary endpoints and frequent interim analyses. The Eurosarc Trial of Linsitinib in advanced Ewing Sarcoma (LINES) is used as a motivating example and provides a suitable platform to compare these approaches. The Bayesian approach provides greater design flexibility, but does not provide additional value over the frequentist approaches in a single trial setting when the prior is non-informative. However, Bayesian designs are able to borrow from any previous experience, using prior information to improve efficiency. PMID:27587590

  5. Bayesian estimation of multicomponent relaxation parameters in magnetic resonance fingerprinting.

    PubMed

    McGivney, Debra; Deshmane, Anagha; Jiang, Yun; Ma, Dan; Badve, Chaitra; Sloan, Andrew; Gulani, Vikas; Griswold, Mark

    2018-07-01

    To estimate multiple components within a single voxel in magnetic resonance fingerprinting when the number and types of tissues comprising the voxel are not known a priori. Multiple tissue components within a single voxel are potentially separable with magnetic resonance fingerprinting as a result of differences in signal evolutions of each component. The Bayesian framework for inverse problems provides a natural and flexible setting for solving this problem when the tissue composition per voxel is unknown. Assuming that only a few entries from the dictionary contribute to a mixed signal, sparsity-promoting priors can be placed upon the solution. An iterative algorithm is applied to compute the maximum a posteriori estimator of the posterior probability density to determine the magnetic resonance fingerprinting dictionary entries that contribute most significantly to mixed or pure voxels. Simulation results show that the algorithm is robust in finding the component tissues of mixed voxels. Preliminary in vivo data confirm this result, and show good agreement in voxels containing pure tissue. The Bayesian framework and algorithm shown provide accurate solutions for the partial-volume problem in magnetic resonance fingerprinting. The flexibility of the method will allow further study into different priors and hyperpriors that can be applied in the model. Magn Reson Med 80:159-170, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  6. Rich Analysis and Rational Models: Inferring Individual Behavior from Infant Looking Data

    ERIC Educational Resources Information Center

    Piantadosi, Steven T.; Kidd, Celeste; Aslin, Richard

    2014-01-01

    Studies of infant looking times over the past 50 years have provided profound insights about cognitive development, but their dependent measures and analytic techniques are quite limited. In the context of infants' attention to discrete sequential events, we show how a Bayesian data analysis approach can be combined with a rational cognitive…

  7. A Comparison of the β-Substitution Method and a Bayesian Method for Analyzing Left-Censored Data.

    PubMed

    Huynh, Tran; Quick, Harrison; Ramachandran, Gurumurthy; Banerjee, Sudipto; Stenzel, Mark; Sandler, Dale P; Engel, Lawrence S; Kwok, Richard K; Blair, Aaron; Stewart, Patricia A

    2016-01-01

    Classical statistical methods for analyzing exposure data with values below the detection limits are well described in the occupational hygiene literature, but an evaluation of a Bayesian approach for handling such data is currently lacking. Here, we first describe a Bayesian framework for analyzing censored data. We then present the results of a simulation study conducted to compare the β-substitution method with a Bayesian method for exposure datasets drawn from lognormal distributions and mixed lognormal distributions with varying sample sizes, geometric standard deviations (GSDs), and censoring for single and multiple limits of detection. For each set of factors, estimates for the arithmetic mean (AM), geometric mean, GSD, and the 95th percentile (X0.95) of the exposure distribution were obtained. We evaluated the performance of each method using relative bias, the root mean squared error (rMSE), and coverage (the proportion of the computed 95% uncertainty intervals containing the true value). The Bayesian method using non-informative priors and the β-substitution method were generally comparable in bias and rMSE when estimating the AM and GM. For the GSD and the 95th percentile, the Bayesian method with non-informative priors was more biased and had a higher rMSE than the β-substitution method, but use of more informative priors generally improved the Bayesian method's performance, making both the bias and the rMSE more comparable to the β-substitution method. An advantage of the Bayesian method is that it provided estimates of uncertainty for these parameters of interest and good coverage, whereas the β-substitution method only provided estimates of uncertainty for the AM, and coverage was not as consistent. Selection of one or the other method depends on the needs of the practitioner, the availability of prior information, and the distribution characteristics of the measurement data. We suggest the use of Bayesian methods if the practitioner has the computational resources and prior information, as the method would generally provide accurate estimates and also provides the distributions of all of the parameters, which could be useful for making decisions in some applications. © The Author 2015. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  8. Demographic expansion of two Tamarix species along the Yellow River caused by geological events and climate change in the Pleistocene.

    PubMed

    Liang, Hong-Yan; Feng, Zhi-Pei; Pei, Bing; Li, Yong; Yang, Xi-Tian

    2018-01-08

    The geological events and climatic fluctuations during the Pleistocene played important roles in shaping patterns of species distribution. However, few studies have evaluated the patterns of species distribution that were influenced by the Yellow River. The present work analyzed the demography of two endemic tree species that are widely distributed along the Yellow River, Tamarix austromongolica and Tamarix chinensis, to understand the role of the Yellow River and Pleistocene climate in shaping their distribution patterns. The most common chlorotype, chlorotype 1, was found in all populations, and its divergence time could be dated back to 0.19 million years ago (Ma). This dating coincides well with the formation of the modern Yellow River and the timing of Marine Isotope Stages 5e-6 (MIS 5e-6). Bayesian reconstructions along with models of paleodistribution revealed that these two species experienced a demographic expansion in population size during the Quaternary period. Approximate Bayesian computation analyses supported a scenario of expansion approximately from the upper to lower reaches of the Yellow River. Our results provide support for the roles of the Yellow River and the Pleistocene climate in driving demographic expansion of the populations of T. austromongolica and T. chinensis. These findings are useful for understanding the effects of geological events and past climatic fluctuations on species distribution patterns.

  9. Application Bayesian Model Averaging method for ensemble system for Poland

    NASA Astrophysics Data System (ADS)

    Guzikowski, Jakub; Czerwinska, Agnieszka

    2014-05-01

    The aim of the project is to evaluate methods for generating numerical ensemble weather prediction using a meteorological data from The Weather Research & Forecasting Model and calibrating this data by means of Bayesian Model Averaging (WRF BMA) approach. We are constructing height resolution short range ensemble forecasts using meteorological data (temperature) generated by nine WRF's models. WRF models have 35 vertical levels and 2.5 km x 2.5 km horizontal resolution. The main emphasis is that the used ensemble members has a different parameterization of the physical phenomena occurring in the boundary layer. To calibrate an ensemble forecast we use Bayesian Model Averaging (BMA) approach. The BMA predictive Probability Density Function (PDF) is a weighted average of predictive PDFs associated with each individual ensemble member, with weights that reflect the member's relative skill. For test we chose a case with heat wave and convective weather conditions in Poland area from 23th July to 1st August 2013. From 23th July to 29th July 2013 temperature oscillated below or above 30 Celsius degree in many meteorology stations and new temperature records were added. During this time the growth of the hospitalized patients with cardiovascular system problems was registered. On 29th July 2013 an advection of moist tropical air masses was recorded in the area of Poland causes strong convection event with mesoscale convection system (MCS). MCS caused local flooding, damage to the transport infrastructure, destroyed buildings, trees and injuries and direct threat of life. Comparison of the meteorological data from ensemble system with the data recorded on 74 weather stations localized in Poland is made. We prepare a set of the model - observations pairs. Then, the obtained data from single ensemble members and median from WRF BMA system are evaluated on the basis of the deterministic statistical error Root Mean Square Error (RMSE), Mean Absolute Error (MAE). To evaluation probabilistic data The Brier Score (BS) and Continuous Ranked Probability Score (CRPS) were used. Finally comparison between BMA calibrated data and data from ensemble members will be displayed.

  10. Maximum likelihood inference implies a high, not a low, ancestral haploid chromosome number in Araceae, with a critique of the bias introduced by ‘x’

    PubMed Central

    Cusimano, Natalie; Sousa, Aretuza; Renner, Susanne S.

    2012-01-01

    Background and Aims For 84 years, botanists have relied on calculating the highest common factor for series of haploid chromosome numbers to arrive at a so-called basic number, x. This was done without consistent (reproducible) reference to species relationships and frequencies of different numbers in a clade. Likelihood models that treat polyploidy, chromosome fusion and fission as events with particular probabilities now allow reconstruction of ancestral chromosome numbers in an explicit framework. We have used a modelling approach to reconstruct chromosome number change in the large monocot family Araceae and to test earlier hypotheses about basic numbers in the family. Methods Using a maximum likelihood approach and chromosome counts for 26 % of the 3300 species of Araceae and representative numbers for each of the other 13 families of Alismatales, polyploidization events and single chromosome changes were inferred on a genus-level phylogenetic tree for 113 of the 117 genera of Araceae. Key Results The previously inferred basic numbers x = 14 and x = 7 are rejected. Instead, maximum likelihood optimization revealed an ancestral haploid chromosome number of n = 16, Bayesian inference of n = 18. Chromosome fusion (loss) is the predominant inferred event, whereas polyploidization events occurred less frequently and mainly towards the tips of the tree. Conclusions The bias towards low basic numbers (x) introduced by the algebraic approach to inferring chromosome number changes, prevalent among botanists, may have contributed to an unrealistic picture of ancestral chromosome numbers in many plant clades. The availability of robust quantitative methods for reconstructing ancestral chromosome numbers on molecular phylogenetic trees (with or without branch length information), with confidence statistics, makes the calculation of x an obsolete approach, at least when applied to large clades. PMID:22210850

  11. Model selection and Bayesian inference for high-resolution seabed reflection inversion.

    PubMed

    Dettmer, Jan; Dosso, Stan E; Holland, Charles W

    2009-02-01

    This paper applies Bayesian inference, including model selection and posterior parameter inference, to inversion of seabed reflection data to resolve sediment structure at a spatial scale below the pulse length of the acoustic source. A practical approach to model selection is used, employing the Bayesian information criterion to decide on the number of sediment layers needed to sufficiently fit the data while satisfying parsimony to avoid overparametrization. Posterior parameter inference is carried out using an efficient Metropolis-Hastings algorithm for high-dimensional models, and results are presented as marginal-probability depth distributions for sound velocity, density, and attenuation. The approach is applied to plane-wave reflection-coefficient inversion of single-bounce data collected on the Malta Plateau, Mediterranean Sea, which indicate complex fine structure close to the water-sediment interface. This fine structure is resolved in the geoacoustic inversion results in terms of four layers within the upper meter of sediments. The inversion results are in good agreement with parameter estimates from a gravity core taken at the experiment site.

  12. Classical and Bayesian Seismic Yield Estimation: The 1998 Indian and Pakistani Tests

    NASA Astrophysics Data System (ADS)

    Shumway, R. H.

    2001-10-01

    - The nuclear tests in May, 1998, in India and Pakistan have stimulated a renewed interest in yield estimation, based on limited data from uncalibrated test sites. We study here the problem of estimating yields using classical and Bayesian methods developed by Shumway (1992), utilizing calibration data from the Semipalatinsk test site and measured magnitudes for the 1998 Indian and Pakistani tests given by Murphy (1998). Calibration is done using multivariate classical or Bayesian linear regression, depending on the availability of measured magnitude-yield data and prior information. Confidence intervals for the classical approach are derived applying an extension of Fieller's method suggested by Brown (1982). In the case where prior information is available, the posterior predictive magnitude densities are inverted to give posterior intervals for yield. Intervals obtained using the joint distribution of magnitudes are comparable to the single-magnitude estimates produced by Murphy (1998) and reinforce the conclusion that the announced yields of the Indian and Pakistani tests were too high.

  13. Classical and Bayesian Seismic Yield Estimation: The 1998 Indian and Pakistani Tests

    NASA Astrophysics Data System (ADS)

    Shumway, R. H.

    The nuclear tests in May, 1998, in India and Pakistan have stimulated a renewed interest in yield estimation, based on limited data from uncalibrated test sites. We study here the problem of estimating yields using classical and Bayesian methods developed by Shumway (1992), utilizing calibration data from the Semipalatinsk test site and measured magnitudes for the 1998 Indian and Pakistani tests given by Murphy (1998). Calibration is done using multivariate classical or Bayesian linear regression, depending on the availability of measured magnitude-yield data and prior information. Confidence intervals for the classical approach are derived applying an extension of Fieller's method suggested by Brown (1982). In the case where prior information is available, the posterior predictive magnitude densities are inverted to give posterior intervals for yield. Intervals obtained using the joint distribution of magnitudes are comparable to the single-magnitude estimates produced by Murphy (1998) and reinforce the conclusion that the announced yields of the Indian and Pakistani tests were too high.

  14. Towards a Bayesian evaluation of features in questioned handwritten signatures.

    PubMed

    Gaborini, Lorenzo; Biedermann, Alex; Taroni, Franco

    2017-05-01

    In this work, we propose the construction of a evaluative framework for supporting experts in questioned signature examinations. Through the use of Bayesian networks, we envision to quantify the probative value of well defined measurements performed on questioned signatures, in a way that is both formalised and part of a coherent approach to evaluation. At the current stage, our project is explorative, focusing on the broad range of aspects that relate to comparative signature examinations. The goal is to identify writing features which are both highly discriminant, and easy for forensic examiners to detect. We also seek for a balance between case-specific features and characteristics which can be measured in the vast majority of signatures. Care is also taken at preserving the interpretability at every step of the reasoning process. This paves the way for future work, which will aim at merging the different contributions to a single probabilistic measure of strength of evidence using Bayesian networks. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  15. Comparing Families of Dynamic Causal Models

    PubMed Central

    Penny, Will D.; Stephan, Klaas E.; Daunizeau, Jean; Rosa, Maria J.; Friston, Karl J.; Schofield, Thomas M.; Leff, Alex P.

    2010-01-01

    Mathematical models of scientific data can be formally compared using Bayesian model evidence. Previous applications in the biological sciences have mainly focussed on model selection in which one first selects the model with the highest evidence and then makes inferences based on the parameters of that model. This “best model” approach is very useful but can become brittle if there are a large number of models to compare, and if different subjects use different models. To overcome this shortcoming we propose the combination of two further approaches: (i) family level inference and (ii) Bayesian model averaging within families. Family level inference removes uncertainty about aspects of model structure other than the characteristic of interest. For example: What are the inputs to the system? Is processing serial or parallel? Is it linear or nonlinear? Is it mediated by a single, crucial connection? We apply Bayesian model averaging within families to provide inferences about parameters that are independent of further assumptions about model structure. We illustrate the methods using Dynamic Causal Models of brain imaging data. PMID:20300649

  16. Model selection and assessment for multi­-species occupancy models

    USGS Publications Warehouse

    Broms, Kristin M.; Hooten, Mevin B.; Fitzpatrick, Ryan M.

    2016-01-01

    While multi-species occupancy models (MSOMs) are emerging as a popular method for analyzing biodiversity data, formal checking and validation approaches for this class of models have lagged behind. Concurrent with the rise in application of MSOMs among ecologists, a quiet regime shift is occurring in Bayesian statistics where predictive model comparison approaches are experiencing a resurgence. Unlike single-species occupancy models that use integrated likelihoods, MSOMs are usually couched in a Bayesian framework and contain multiple levels. Standard model checking and selection methods are often unreliable in this setting and there is only limited guidance in the ecological literature for this class of models. We examined several different contemporary Bayesian hierarchical approaches for checking and validating MSOMs and applied these methods to a freshwater aquatic study system in Colorado, USA, to better understand the diversity and distributions of plains fishes. Our findings indicated distinct differences among model selection approaches, with cross-validation techniques performing the best in terms of prediction.

  17. WebMOTIFS: automated discovery, filtering and scoring of DNA sequence motifs using multiple programs and Bayesian approaches

    PubMed Central

    Romer, Katherine A.; Kayombya, Guy-Richard; Fraenkel, Ernest

    2007-01-01

    WebMOTIFS provides a web interface that facilitates the discovery and analysis of DNA-sequence motifs. Several studies have shown that the accuracy of motif discovery can be significantly improved by using multiple de novo motif discovery programs and using randomized control calculations to identify the most significant motifs or by using Bayesian approaches. WebMOTIFS makes it easy to apply these strategies. Using a single submission form, users can run several motif discovery programs and score, cluster and visualize the results. In addition, the Bayesian motif discovery program THEME can be used to determine the class of transcription factors that is most likely to regulate a set of sequences. Input can be provided as a list of gene or probe identifiers. Used with the default settings, WebMOTIFS accurately identifies biologically relevant motifs from diverse data in several species. WebMOTIFS is freely available at http://fraenkel.mit.edu/webmotifs. PMID:17584794

  18. Bayesian State-Space Modelling of Conventional Acoustic Tracking Provides Accurate Descriptors of Home Range Behavior in a Small-Bodied Coastal Fish Species

    PubMed Central

    Alós, Josep; Palmer, Miquel; Balle, Salvador; Arlinghaus, Robert

    2016-01-01

    State-space models (SSM) are increasingly applied in studies involving biotelemetry-generated positional data because they are able to estimate movement parameters from positions that are unobserved or have been observed with non-negligible observational error. Popular telemetry systems in marine coastal fish consist of arrays of omnidirectional acoustic receivers, which generate a multivariate time-series of detection events across the tracking period. Here we report a novel Bayesian fitting of a SSM application that couples mechanistic movement properties within a home range (a specific case of random walk weighted by an Ornstein-Uhlenbeck process) with a model of observational error typical for data obtained from acoustic receiver arrays. We explored the performance and accuracy of the approach through simulation modelling and extensive sensitivity analyses of the effects of various configurations of movement properties and time-steps among positions. Model results show an accurate and unbiased estimation of the movement parameters, and in most cases the simulated movement parameters were properly retrieved. Only in extreme situations (when fast swimming speeds are combined with pooling the number of detections over long time-steps) the model produced some bias that needs to be accounted for in field applications. Our method was subsequently applied to real acoustic tracking data collected from a small marine coastal fish species, the pearly razorfish, Xyrichtys novacula. The Bayesian SSM we present here constitutes an alternative for those used to the Bayesian way of reasoning. Our Bayesian SSM can be easily adapted and generalized to any species, thereby allowing studies in freely roaming animals on the ecological and evolutionary consequences of home ranges and territory establishment, both in fishes and in other taxa. PMID:27119718

  19. A Bayesian Belief Network of Threat Anticipation and Terrorist Motivations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olama, Mohammed M; Allgood, Glenn O; Davenport, Kristen M

    Recent events highlight the need for efficient tools for anticipating the threat posed by terrorists, whether individual or groups. Antiterrorism includes fostering awareness of potential threats, deterring aggressors, developing security measures, planning for future events, halting an event in process, and ultimately mitigating and managing the consequences of an event. To analyze such components, one must understand various aspects of threat elements like physical assets and their economic and social impacts. To this aim, we developed a three-layer Bayesian belief network (BBN) model that takes into consideration the relative threat of an attack against a particular asset (physical layer) asmore » well as the individual psychology and motivations that would induce a person to either act alone or join a terrorist group and commit terrorist acts (social and economic layers). After researching the many possible motivations to become a terrorist, the main factors are compiled and sorted into categories such as initial and personal indicators, exclusion factors, and predictive behaviors. Assessing such threats requires combining information from disparate data sources most of which involve uncertainties. BBN combines these data in a coherent, analytically defensible, and understandable manner. The developed BBN model takes into consideration the likelihood and consequence of a threat in order to draw inferences about the risk of a terrorist attack so that mitigation efforts can be optimally deployed. The model is constructed using a network engineering process that treats the probability distributions of all the BBN nodes within the broader context of the system development process.« less

  20. Bayesian probabilities for Mw 9.0+ earthquakes in the Aleutian Islands from a regionally scaled global rate

    NASA Astrophysics Data System (ADS)

    Butler, Rhett; Frazer, L. Neil; Templeton, William J.

    2016-05-01

    We use the global rate of Mw ≥ 9.0 earthquakes, and standard Bayesian procedures, to estimate the probability of such mega events in the Aleutian Islands, where they pose a significant risk to Hawaii. We find that the probability of such an earthquake along the Aleutians island arc is 6.5% to 12% over the next 50 years (50% credibility interval) and that the annualized risk to Hawai'i is about $30 M. Our method (the regionally scaled global rate method or RSGR) is to scale the global rate of Mw 9.0+ events in proportion to the fraction of global subduction (units of area per year) that takes place in the Aleutians. The RSGR method assumes that Mw 9.0+ events are a Poisson process with a rate that is both globally and regionally stationary on the time scale of centuries, and it follows the principle of Burbidge et al. (2008) who used the product of fault length and convergence rate, i.e., the area being subducted per annum, to scale the Poisson rate for the GSS to sections of the Indonesian subduction zone. Before applying RSGR to the Aleutians, we first apply it to five other regions of the global subduction system where its rate predictions can be compared with those from paleotsunami, paleoseismic, and geoarcheology data. To obtain regional rates from paleodata, we give a closed-form solution for the probability density function of the Poisson rate when event count and observation time are both uncertain.

  1. Advances in computer simulation of genome evolution: toward more realistic evolutionary genomics analysis by approximate bayesian computation.

    PubMed

    Arenas, Miguel

    2015-04-01

    NGS technologies present a fast and cheap generation of genomic data. Nevertheless, ancestral genome inference is not so straightforward due to complex evolutionary processes acting on this material such as inversions, translocations, and other genome rearrangements that, in addition to their implicit complexity, can co-occur and confound ancestral inferences. Recently, models of genome evolution that accommodate such complex genomic events are emerging. This letter explores these novel evolutionary models and proposes their incorporation into robust statistical approaches based on computer simulations, such as approximate Bayesian computation, that may produce a more realistic evolutionary analysis of genomic data. Advantages and pitfalls in using these analytical methods are discussed. Potential applications of these ancestral genomic inferences are also pointed out.

  2. BAYESIAN HIERARCHICAL MODELING OF PERSONAL EXPOSURE TO PARTICULATE MATTER

    EPA Science Inventory

    In the US EPA's 1998 Baltimore Epidemiology-Exposure Panel Study, a group of 21 residents of a single building retirement community wore personal monitors recording personal fine particulate air pollution concentrations (PM2.5) for 27 days, while other monitors recorde...

  3. Information and Entropy

    NASA Astrophysics Data System (ADS)

    Caticha, Ariel

    2007-11-01

    What is information? Is it physical? We argue that in a Bayesian theory the notion of information must be defined in terms of its effects on the beliefs of rational agents. Information is whatever constrains rational beliefs and therefore it is the force that induces us to change our minds. This problem of updating from a prior to a posterior probability distribution is tackled through an eliminative induction process that singles out the logarithmic relative entropy as the unique tool for inference. The resulting method of Maximum relative Entropy (ME), which is designed for updating from arbitrary priors given information in the form of arbitrary constraints, includes as special cases both MaxEnt (which allows arbitrary constraints) and Bayes' rule (which allows arbitrary priors). Thus, ME unifies the two themes of these workshops—the Maximum Entropy and the Bayesian methods—into a single general inference scheme that allows us to handle problems that lie beyond the reach of either of the two methods separately. I conclude with a couple of simple illustrative examples.

  4. Bayesian Correction for Misclassification in Multilevel Count Data Models.

    PubMed

    Nelson, Tyler; Song, Joon Jin; Chin, Yoo-Mi; Stamey, James D

    2018-01-01

    Covariate misclassification is well known to yield biased estimates in single level regression models. The impact on hierarchical count models has been less studied. A fully Bayesian approach to modeling both the misclassified covariate and the hierarchical response is proposed. Models with a single diagnostic test and with multiple diagnostic tests are considered. Simulation studies show the ability of the proposed model to appropriately account for the misclassification by reducing bias and improving performance of interval estimators. A real data example further demonstrated the consequences of ignoring the misclassification. Ignoring misclassification yielded a model that indicated there was a significant, positive impact on the number of children of females who observed spousal abuse between their parents. When the misclassification was accounted for, the relationship switched to negative, but not significant. Ignoring misclassification in standard linear and generalized linear models is well known to lead to biased results. We provide an approach to extend misclassification modeling to the important area of hierarchical generalized linear models.

  5. Influence of Climate Warming on Arctic Mammals? New Insights from Ancient DNA Studies of the Collared Lemming Dicrostonyx torquatus

    PubMed Central

    Prost, Stefan; Smirnov, Nickolay; Fedorov, Vadim B.; Sommer, Robert S.; Stiller, Mathias; Nagel, Doris; Knapp, Michael; Hofreiter, Michael

    2010-01-01

    Background Global temperature increased by approximately half a degree (Celsius) within the last 150 years. Even this moderate warming had major impacts on Earth's ecological and biological systems, especially in the Arctic where the magnitude of abiotic changes even exceeds those in temperate and tropical biomes. Therefore, understanding the biological consequences of climate change on high latitudes is of critical importance for future conservation of the species living in this habitat. The past 25,000 years can be used as a model for such changes, as they were marked by prominent climatic changes that influenced geographical distribution, demographic history and pattern of genetic variation of many extant species. We sequenced ancient and modern DNA of the collared lemming (Dicrostonyx torquatus), which is a key species of the arctic biota, from a single site (Pymva Shor, Northern Pre Urals, Russia) to see if climate warming events after the Last Glacial Maximum had detectable effects on the genetic variation of this arctic rodent species, which is strongly associated with a cold and dry climate. Results Using three dimensional network reconstructions we found a dramatic decline in genetic diversity following the LGM. Model-based approaches such as Approximate Bayesian Computation and Markov Chain Monte Carlo based Bayesian inference show that there is evidence for a population decline in the collared lemming following the LGM, with the population size dropping to a minimum during the Greenland Interstadial 1 (Bølling/Allerød) warming phase at 14.5 kyrs BP. Conclusion Our results show that previous climate warming events had a strong influence on genetic diversity and population size of collared lemmings. Due to its already severely compromised genetic diversity a similar population reduction as a result of the predicted future climate change could completely abolish the remaining genetic diversity in this population. Local population extinctions of collared lemmings would have severe effects on the arctic ecosystem, as collared lemmings are a key species in the trophic interactions and ecosystem processes in the Arctic. PMID:20523724

  6. A three-genome phylogeny of malaria parasites (Plasmodium and closely related genera): evolution of life-history traits and host switches.

    PubMed

    Martinsen, Ellen S; Perkins, Susan L; Schall, Jos J

    2008-04-01

    Phylogenetic analysis of genomic data allows insights into the evolutionary history of pathogens, especially the events leading to host switching and diversification, as well as alterations of the life cycle (life-history traits). Hundreds, perhaps thousands, of malaria parasite species exploit squamate reptiles, birds, and mammals as vertebrate hosts as well as many genera of dipteran vectors, but the evolutionary and ecological events that led to this diversification and success remain unresolved. For a century, systematic parasitologists classified malaria parasites into genera based on morphology, life cycle, and vertebrate and insect host taxa. Molecular systematic studies based on single genes challenged the phylogenetic significance of these characters, but several significant nodes were not well supported. We recovered the first well resolved large phylogeny of Plasmodium and related haemosporidian parasites using sequence data for four genes from the parasites' three genomes by combining all data, correcting for variable rates of substitution by gene and site, and using both Bayesian and maximum parsimony analyses. Major clades are associated with vector shifts into different dipteran families, with other characters used in traditional parasitological studies, such as morphology and life-history traits, having variable phylogenetic significance. The common parasites of birds now placed into the genus Haemoproteus are found in two divergent clades, and the genus Plasmodium is paraphyletic with respect to Hepatocystis, a group of species with very different life history and morphology. The Plasmodium of mammal hosts form a well supported clade (including Plasmodium falciparum, the most important human malaria parasite), and this clade is associated with specialization to Anopheles mosquito vectors. The Plasmodium of birds and squamate reptiles all fall within a single clade, with evidence for repeated switching between birds and squamate hosts.

  7. Lead isotope ratios for bullets, forensic evaluation in a Bayesian paradigm.

    PubMed

    Sjåstad, Knut-Endre; Lucy, David; Andersen, Tom

    2016-01-01

    Forensic science is a discipline concerned with collection, examination and evaluation of physical evidence related to criminal cases. The results from the activities of the forensic scientist may ultimately be presented to the court in such a way that the triers of fact understand the implications of the data. Forensic science has been, and still is, driven by development of new technology, and in the last two decades evaluation of evidence based on logical reasoning and Bayesian statistic has reached some level of general acceptance within the forensic community. Tracing of lead fragments of unknown origin to a given source of ammunition is a task that might be of interest for the Court. Use of data from lead isotope ratios analysis interpreted within a Bayesian framework has shown to be suitable method to guide the Court to draw their conclusion for such task. In this work we have used isotopic composition of lead from small arms projectiles (cal. .22) and developed an approach based on Bayesian statistics and likelihood ratio calculation. The likelihood ratio is a single quantity that provides a measure of the value of evidence that can be used in the deliberation of the court. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Bayesian adaptive phase II screening design for combination trials

    PubMed Central

    Cai, Chunyan; Yuan, Ying; Johnson, Valen E

    2013-01-01

    Background Trials of combination therapies for the treatment of cancer are playing an increasingly important role in the battle against this disease. To more efficiently handle the large number of combination therapies that must be tested, we propose a novel Bayesian phase II adaptive screening design to simultaneously select among possible treatment combinations involving multiple agents. Methods Our design is based on formulating the selection procedure as a Bayesian hypothesis testing problem in which the superiority of each treatment combination is equated to a single hypothesis. During the trial conduct, we use the current values of the posterior probabilities of all hypotheses to adaptively allocate patients to treatment combinations. Results Simulation studies show that the proposed design substantially outperforms the conventional multiarm balanced factorial trial design. The proposed design yields a significantly higher probability for selecting the best treatment while allocating substantially more patients to efficacious treatments. Limitations The proposed design is most appropriate for the trials combining multiple agents and screening out the efficacious combination to be further investigated. Conclusions The proposed Bayesian adaptive phase II screening design substantially outperformed the conventional complete factorial design. Our design allocates more patients to better treatments while providing higher power to identify the best treatment at the end of the trial. PMID:23359875

  9. Towards a global flood detection system using social media

    NASA Astrophysics Data System (ADS)

    de Bruijn, Jens; de Moel, Hans; Jongman, Brenden; Aerts, Jeroen

    2017-04-01

    It is widely recognized that an early warning is critical in improving international disaster response. Analysis of social media in real-time can provide valuable information about an event or help to detect unexpected events. For successful and reliable detection systems that work globally, it is important that sufficient data is available and that the algorithm works both in data-rich and data-poor environments. In this study, both a new geotagging system and multi-level event detection system for flood hazards was developed using Twitter data. Geotagging algorithms that regard one tweet as a single document are well-studied. However, no algorithms exist that combine several sequential tweets mentioning keywords regarding a specific event type. Within the time frame of an event, multiple users use event related keywords that refer to the same place name. This notion allows us to treat several sequential tweets posted in the last 24 hours as one document. For all these tweets, we collect a series of spatial indicators given in the tweet metadata and extract additional topological indicators from the text. Using these indicators, we can reduce ambiguity and thus better estimate what locations are tweeted about. Using these localized tweets, Bayesian change-point analysis is used to find significant increases of tweets mentioning countries, provinces or towns. In data-poor environments detection of events on a country level is possible, while in other, data-rich, environments detection on a city level is achieved. Additionally, on a city-level we analyse the spatial dependence of mentioned places. If multiple places within a limited spatial extent are mentioned, detection confidence increases. We run the algorithm using 2 years of Twitter data with flood related keywords in 13 major languages and validate against a flood event database. We find that the geotagging algorithm yields significantly more data than previously developed algorithms and successfully deals with ambiguous place names. In addition, we show that our detection system can both quickly and reliably detect floods, even in countries where data is scarce, while achieving high detail in countries where more data is available.

  10. Phylogenetic Analyses: A Toolbox Expanding towards Bayesian Methods

    PubMed Central

    Aris-Brosou, Stéphane; Xia, Xuhua

    2008-01-01

    The reconstruction of phylogenies is becoming an increasingly simple activity. This is mainly due to two reasons: the democratization of computing power and the increased availability of sophisticated yet user-friendly software. This review describes some of the latest additions to the phylogenetic toolbox, along with some of their theoretical and practical limitations. It is shown that Bayesian methods are under heavy development, as they offer the possibility to solve a number of long-standing issues and to integrate several steps of the phylogenetic analyses into a single framework. Specific topics include not only phylogenetic reconstruction, but also the comparison of phylogenies, the detection of adaptive evolution, and the estimation of divergence times between species. PMID:18483574

  11. Sparse Bayesian Learning for Nonstationary Data Sources

    NASA Astrophysics Data System (ADS)

    Fujimaki, Ryohei; Yairi, Takehisa; Machida, Kazuo

    This paper proposes an online Sparse Bayesian Learning (SBL) algorithm for modeling nonstationary data sources. Although most learning algorithms implicitly assume that a data source does not change over time (stationary), one in the real world usually does due to such various factors as dynamically changing environments, device degradation, sudden failures, etc (nonstationary). The proposed algorithm can be made useable for stationary online SBL by setting time decay parameters to zero, and as such it can be interpreted as a single unified framework for online SBL for use with stationary and nonstationary data sources. Tests both on four types of benchmark problems and on actual stock price data have shown it to perform well.

  12. Application of Bayesian Reliability Concepts to Cruise Missile Electronic Components

    DTIC Science & Technology

    1989-09-01

    and contrast them with the more prevalent classical inference view. 3 II. literature Review Introduction This literature review will consider current ...events on the basis of whatever evidence is currently available. Then if additional evidence is subsequently obtained, the initial probabilities are...Chay contends there is no longer any need to approximate continuous prior distributions through discretization because current computer calculations

  13. Bayesian chronological analyses consistent with synchronous age of 12,835–12,735 Cal B.P. for Younger Dryas boundary on four continents

    PubMed Central

    Kennett, James P.; Kennett, Douglas J.; Culleton, Brendan J.; Aura Tortosa, J. Emili; Bischoff, James L.; Bunch, Ted E.; Daniel, I. Randolph; Erlandson, Jon M.; Ferraro, David; Firestone, Richard B.; Goodyear, Albert C.; Israde-Alcántara, Isabel; Johnson, John R.; Jordá Pardo, Jesús F.; Kimbel, David R.; LeCompte, Malcolm A.; Lopinot, Neal H.; Mahaney, William C.; Moore, Andrew M. T.; Moore, Christopher R.; Ray, Jack H.; Stafford, Thomas W.; Tankersley, Kenneth Barnett; Wittke, James H.; Wolbach, Wendy S.; West, Allen

    2015-01-01

    The Younger Dryas impact hypothesis posits that a cosmic impact across much of the Northern Hemisphere deposited the Younger Dryas boundary (YDB) layer, containing peak abundances in a variable assemblage of proxies, including magnetic and glassy impact-related spherules, high-temperature minerals and melt glass, nanodiamonds, carbon spherules, aciniform carbon, platinum, and osmium. Bayesian chronological modeling was applied to 354 dates from 23 stratigraphic sections in 12 countries on four continents to establish a modeled YDB age range for this event of 12,835–12,735 Cal B.P. at 95% probability. This range overlaps that of a peak in extraterrestrial platinum in the Greenland Ice Sheet and of the earliest age of the Younger Dryas climate episode in six proxy records, suggesting a causal connection between the YDB impact event and the Younger Dryas. Two statistical tests indicate that both modeled and unmodeled ages in the 30 records are consistent with synchronous deposition of the YDB layer within the limits of dating uncertainty (∼100 y). The widespread distribution of the YDB layer suggests that it may serve as a datum layer. PMID:26216981

  14. Enhancing Flood Prediction Reliability Using Bayesian Model Averaging

    NASA Astrophysics Data System (ADS)

    Liu, Z.; Merwade, V.

    2017-12-01

    Uncertainty analysis is an indispensable part of modeling the hydrology and hydrodynamics of non-idealized environmental systems. Compared to reliance on prediction from one model simulation, using on ensemble of predictions that consider uncertainty from different sources is more reliable. In this study, Bayesian model averaging (BMA) is applied to Black River watershed in Arkansas and Missouri by combining multi-model simulations to get reliable deterministic water stage and probabilistic inundation extent predictions. The simulation ensemble is generated from 81 LISFLOOD-FP subgrid model configurations that include uncertainty from channel shape, channel width, channel roughness and discharge. Model simulation outputs are trained with observed water stage data during one flood event, and BMA prediction ability is validated for another flood event. Results from this study indicate that BMA does not always outperform all members in the ensemble, but it provides relatively robust deterministic flood stage predictions across the basin. Station based BMA (BMA_S) water stage prediction has better performance than global based BMA (BMA_G) prediction which is superior to the ensemble mean prediction. Additionally, high-frequency flood inundation extent (probability greater than 60%) in BMA_G probabilistic map is more accurate than the probabilistic flood inundation extent based on equal weights.

  15. A Bayesian mixture model for missing data in marine mammal growth analysis

    PubMed Central

    Shotwell, Mary E.; McFee, Wayne E.; Slate, Elizabeth H.

    2016-01-01

    Much of what is known about bottle nose dolphin (Tursiops truncatus) anatomy and physiology is based on necropsies from stranding events. Measurements of total body length, total body mass, and age are used to estimate growth. It is more feasible to retrieve and transport smaller animals for total body mass measurement than larger animals, introducing a systematic bias in sampling. Adverse weather events, volunteer availability, and other unforeseen circumstances also contribute to incomplete measurement. We have developed a Bayesian mixture model to describe growth in detected stranded animals using data from both those that are fully measured and those not fully measured. Our approach uses a shared random effect to link the missingness mechanism (i.e. full/partial measurement) to distinct growth curves in the fully and partially measured populations, thereby enabling drawing of strength for estimation. We use simulation to compare our model to complete case analysis and two common multiple imputation methods according to model mean square error. Results indicate that our mixture model provides better fit both when the two populations are present and when they are not. The feasibility and utility of our new method is demonstrated by application to South Carolina strandings data. PMID:28503080

  16. A Bayesian analysis of the 2016 Pedernales (Ecuador) earthquake rupture process

    NASA Astrophysics Data System (ADS)

    Gombert, B.; Duputel, Z.; Jolivet, R.; Rivera, L. A.; Simons, M.; Jiang, J.; Liang, C.; Fielding, E. J.

    2017-12-01

    The 2016 Mw = 7.8 Pedernales earthquake is the largest event to strike Ecuador since 1979. Long period W-phase and Global CMT solutions suggest that slip is not perpendicular to the trench axis, in agreement with the convergence obliquity of the Ecuadorian subduction. In this study, we propose a new co-seismic kinematic slip model obtained from the joint inversion of multiple observations in an unregularized and fully Bayesian framework. We use a comprehensive static dataset composed of several InSAR scenes, GPS static offsets, and tsunami waveforms from two nearby DART stations. The kinematic component of the rupture process is constrained by an extensive network of High-Rate GPS and accelerometers. Our solution includes the ensemble of all plausible models that are consistent with our prior information and fit the available observations within data and prediction uncertainties. We analyse the source process in light of the historical seismicity, in particular the Mw = 7.8 1942 earthquake for which the rupture extent overlaps with the 2016 event. In addition, we conduct a probabilistic comparison of co-seismic slip with a stochastic interseismic coupling model obtained from GPS data, putting a light on the processes at play within the Ecuadorian subduction margin.

  17. Phylogenetic evidence for cladogenetic polyploidization in land plants.

    PubMed

    Zhan, Shing H; Drori, Michal; Goldberg, Emma E; Otto, Sarah P; Mayrose, Itay

    2016-07-01

    Polyploidization is a common and recurring phenomenon in plants and is often thought to be a mechanism of "instant speciation". Whether polyploidization is associated with the formation of new species (cladogenesis) or simply occurs over time within a lineage (anagenesis), however, has never been assessed systematically. We tested this hypothesis using phylogenetic and karyotypic information from 235 plant genera (mostly angiosperms). We first constructed a large database of combined sequence and chromosome number data sets using an automated procedure. We then applied likelihood models (ClaSSE) that estimate the degree of synchronization between polyploidization and speciation events in maximum likelihood and Bayesian frameworks. Our maximum likelihood analysis indicated that 35 genera supported a model that includes cladogenetic transitions over a model with only anagenetic transitions, whereas three genera supported a model that incorporates anagenetic transitions over one with only cladogenetic transitions. Furthermore, the Bayesian analysis supported a preponderance of cladogenetic change in four genera but did not support a preponderance of anagenetic change in any genus. Overall, these phylogenetic analyses provide the first broad confirmation that polyploidization is temporally associated with speciation events, suggesting that it is indeed a major speciation mechanism in plants, at least in some genera. © 2016 Botanical Society of America.

  18. Bayesian chronological analyses consistent with synchronous age of 12,835-12,735 Cal B.P. for Younger Dryas boundary on four continents

    NASA Astrophysics Data System (ADS)

    Kennett, James P.; Kennett, Douglas J.; Culleton, Brendan J.; Emili Aura Tortosa, J.; Bischoff, James L.; Bunch, Ted E.; Daniel, I. Randolph, Jr.; Erlandson, Jon M.; Ferraro, David; Firestone, Richard B.; Goodyear, Albert C.; Israde-Alcántara, Isabel; Johnson, John R.; Jordá Pardo, Jesús F.; Kimbel, David R.; LeCompte, Malcolm A.; Lopinot, Neal H.; Mahaney, William C.; Moore, Andrew M. T.; Moore, Christopher R.; Ray, Jack H.; Stafford, Thomas W., Jr.; Barnett Tankersley, Kenneth; Wittke, James H.; Wolbach, Wendy S.; West, Allen

    2015-08-01

    The Younger Dryas impact hypothesis posits that a cosmic impact across much of the Northern Hemisphere deposited the Younger Dryas boundary (YDB) layer, containing peak abundances in a variable assemblage of proxies, including magnetic and glassy impact-related spherules, high-temperature minerals and melt glass, nanodiamonds, carbon spherules, aciniform carbon, platinum, and osmium. Bayesian chronological modeling was applied to 354 dates from 23 stratigraphic sections in 12 countries on four continents to establish a modeled YDB age range for this event of 12,835-12,735 Cal B.P. at 95% probability. This range overlaps that of a peak in extraterrestrial platinum in the Greenland Ice Sheet and of the earliest age of the Younger Dryas climate episode in six proxy records, suggesting a causal connection between the YDB impact event and the Younger Dryas. Two statistical tests indicate that both modeled and unmodeled ages in the 30 records are consistent with synchronous deposition of the YDB layer within the limits of dating uncertainty (∼100 y). The widespread distribution of the YDB layer suggests that it may serve as a datum layer.

  19. Bayesian chronological analyses consistent with synchronous age of 12,835-12,735 Cal B.P. for Younger Dryas boundary on four continents.

    PubMed

    Kennett, James P; Kennett, Douglas J; Culleton, Brendan J; Aura Tortosa, J Emili; Bischoff, James L; Bunch, Ted E; Daniel, I Randolph; Erlandson, Jon M; Ferraro, David; Firestone, Richard B; Goodyear, Albert C; Israde-Alcántara, Isabel; Johnson, John R; Jordá Pardo, Jesús F; Kimbel, David R; LeCompte, Malcolm A; Lopinot, Neal H; Mahaney, William C; Moore, Andrew M T; Moore, Christopher R; Ray, Jack H; Stafford, Thomas W; Tankersley, Kenneth Barnett; Wittke, James H; Wolbach, Wendy S; West, Allen

    2015-08-11

    The Younger Dryas impact hypothesis posits that a cosmic impact across much of the Northern Hemisphere deposited the Younger Dryas boundary (YDB) layer, containing peak abundances in a variable assemblage of proxies, including magnetic and glassy impact-related spherules, high-temperature minerals and melt glass, nanodiamonds, carbon spherules, aciniform carbon, platinum, and osmium. Bayesian chronological modeling was applied to 354 dates from 23 stratigraphic sections in 12 countries on four continents to establish a modeled YDB age range for this event of 12,835-12,735 Cal B.P. at 95% probability. This range overlaps that of a peak in extraterrestrial platinum in the Greenland Ice Sheet and of the earliest age of the Younger Dryas climate episode in six proxy records, suggesting a causal connection between the YDB impact event and the Younger Dryas. Two statistical tests indicate that both modeled and unmodeled ages in the 30 records are consistent with synchronous deposition of the YDB layer within the limits of dating uncertainty (∼ 100 y). The widespread distribution of the YDB layer suggests that it may serve as a datum layer.

  20. Nonparametric Bayesian clustering to detect bipolar methylated genomic loci.

    PubMed

    Wu, Xiaowei; Sun, Ming-An; Zhu, Hongxiao; Xie, Hehuang

    2015-01-16

    With recent development in sequencing technology, a large number of genome-wide DNA methylation studies have generated massive amounts of bisulfite sequencing data. The analysis of DNA methylation patterns helps researchers understand epigenetic regulatory mechanisms. Highly variable methylation patterns reflect stochastic fluctuations in DNA methylation, whereas well-structured methylation patterns imply deterministic methylation events. Among these methylation patterns, bipolar patterns are important as they may originate from allele-specific methylation (ASM) or cell-specific methylation (CSM). Utilizing nonparametric Bayesian clustering followed by hypothesis testing, we have developed a novel statistical approach to identify bipolar methylated genomic regions in bisulfite sequencing data. Simulation studies demonstrate that the proposed method achieves good performance in terms of specificity and sensitivity. We used the method to analyze data from mouse brain and human blood methylomes. The bipolar methylated segments detected are found highly consistent with the differentially methylated regions identified by using purified cell subsets. Bipolar DNA methylation often indicates epigenetic heterogeneity caused by ASM or CSM. With allele-specific events filtered out or appropriately taken into account, our proposed approach sheds light on the identification of cell-specific genes/pathways under strong epigenetic control in a heterogeneous cell population.

  1. Meteorological Trigger Conditions for Different Geomorphic Processes in Steep Mountain Channels in the Austrian Alps

    NASA Astrophysics Data System (ADS)

    Kaitna, R.; Braun, M.

    2016-12-01

    Steep mountain channels episodically can experience very different geomorphic processes, ranging from flash floods, intensive bedload transport, debris floods, and debris flows. Rainfall-related trigger conditions and geomorphic disposition for each of these processes to occur, as well as conditions leading to one process and not to the other, are not well understood. In this contribution, we analyze triggering rainfalls for all documented events in the Eastern (Austrian) Alps on a daily and sub-daily basis. The analysis with daily rainfall data covers more than 6640 events between 1901 and 2014 and the analysis based on sub-daily (10 min interval) rainfall data includes around 950 events between 1992 and 2014. Of the four investigated event types, we find that debris flows are typically associated with the least cumulative rainfall, while intensive bedload transport as well as torrential floods occur when there is a substantial amount of cumulative rainfall. Debris floods are occurring on average with cumulative rainfall in a range between the aforementioned processes. Comparison of historical data shows, that about 90% of events are triggered with a combination of extreme rainfall and temperature. Bayesian analysis reveals that a high degree of geomorphic events is associated with very short rainfall durations that cannot be resolved with daily rainfall data. A comparison of both datasets shows that subdaily data gives more accurate results. Additionally, we find a high degree of regional differences, e.g. between regions north and south of the Alpine chain or high or low Alpine regions. There is indication that especially debris flows need less total rainfall amount when occurring in regions with a high relief energy than in less steep environments. The limitation of our analysis is mainly due to the distance between the locations of event triggering and rainfall measurement and the definition of rainfall events for the Bayesian analysis. In a next step, we will connect our results with the analyses of the hydrological as well as geomorphological disposition in selected study regions and with projections of changing climate conditions.

  2. Knowledge engineering in volcanology: Practical claims and general approach

    NASA Astrophysics Data System (ADS)

    Pshenichny, Cyril A.

    2014-10-01

    Knowledge engineering, being a branch of artificial intelligence, offers a variety of methods for elicitation and structuring of knowledge in a given domain. Only a few of them (ontologies and semantic nets, event/probability trees, Bayesian belief networks and event bushes) are known to volcanologists. Meanwhile, the tasks faced by volcanology and the solutions found so far favor a much wider application of knowledge engineering, especially tools for handling dynamic knowledge. This raises some fundamental logical and mathematical problems and requires an organizational effort, but may strongly improve panel discussions, enhance decision support, optimize physical modeling and support scientific collaboration.

  3. Learning and Risk Exposure in a Changing Climate

    NASA Astrophysics Data System (ADS)

    Moore, F.

    2015-12-01

    Climate change is a gradual process most apparent over long time-scales and large spatial scales, but it is experienced by those affected as changes in local weather. Climate change will gradually push the weather people experience outside the bounds of historic norms, resulting in unprecedented and extreme weather events. However, people do have the ability to learn about and respond to a changing climate. Therefore, connecting the weather people experience with their perceptions of climate change requires understanding how people infer the current state of the climate given their observations of weather. This learning process constitutes a first-order constraint on the rate of adaptation and is an important determinant of the dynamic adjustment costs associated with climate change. In this paper I explore two learning models that describe how local weather observations are translated into perceptions of climate change: an efficient Bayesian learning model and a simpler rolling-mean heuristic. Both have a period during which the learner's beliefs about the state of the climate are different from its true state, meaning the learner is exposed to a different range of extreme weather outcomes then they are prepared for. Using the example of surface temperature trends, I quantify this additional exposure to extreme heat events under both learning models and both RCP 8.5 and 2.6. Risk exposure increases for both learning models, but by substantially more for the rolling-mean learner. Moreover, there is an interaction between the learning model and the rate of climate change: the inefficient rolling-mean learner benefits much more from the slower rates of change under RCP 2.6 then the Bayesian. Finally, I present results from an experiment that suggests people are able to learn about a trending climate in a manner consistent with the Bayesian model.

  4. Bayesian quantitative precipitation forecasts in terms of quantiles

    NASA Astrophysics Data System (ADS)

    Bentzien, Sabrina; Friederichs, Petra

    2014-05-01

    Ensemble prediction systems (EPS) for numerical weather predictions on the mesoscale are particularly developed to obtain probabilistic guidance for high impact weather. An EPS not only issues a deterministic future state of the atmosphere but a sample of possible future states. Ensemble postprocessing then translates such a sample of forecasts into probabilistic measures. This study focus on probabilistic quantitative precipitation forecasts in terms of quantiles. Quantiles are particular suitable to describe precipitation at various locations, since no assumption is required on the distribution of precipitation. The focus is on the prediction during high-impact events and related to the Volkswagen Stiftung funded project WEX-MOP (Mesoscale Weather Extremes - Theory, Spatial Modeling and Prediction). Quantile forecasts are derived from the raw ensemble and via quantile regression. Neighborhood method and time-lagging are effective tools to inexpensively increase the ensemble spread, which results in more reliable forecasts especially for extreme precipitation events. Since an EPS provides a large amount of potentially informative predictors, a variable selection is required in order to obtain a stable statistical model. A Bayesian formulation of quantile regression allows for inference about the selection of predictive covariates by the use of appropriate prior distributions. Moreover, the implementation of an additional process layer for the regression parameters accounts for spatial variations of the parameters. Bayesian quantile regression and its spatially adaptive extension is illustrated for the German-focused mesoscale weather prediction ensemble COSMO-DE-EPS, which runs (pre)operationally since December 2010 at the German Meteorological Service (DWD). Objective out-of-sample verification uses the quantile score (QS), a weighted absolute error between quantile forecasts and observations. The QS is a proper scoring function and can be decomposed into reliability, resolutions and uncertainty parts. A quantile reliability plot gives detailed insights in the predictive performance of the quantile forecasts.

  5. Improving Bayesian credibility intervals for classifier error rates using maximum entropy empirical priors.

    PubMed

    Gustafsson, Mats G; Wallman, Mikael; Wickenberg Bolin, Ulrika; Göransson, Hanna; Fryknäs, M; Andersson, Claes R; Isaksson, Anders

    2010-06-01

    Successful use of classifiers that learn to make decisions from a set of patient examples require robust methods for performance estimation. Recently many promising approaches for determination of an upper bound for the error rate of a single classifier have been reported but the Bayesian credibility interval (CI) obtained from a conventional holdout test still delivers one of the tightest bounds. The conventional Bayesian CI becomes unacceptably large in real world applications where the test set sizes are less than a few hundred. The source of this problem is that fact that the CI is determined exclusively by the result on the test examples. In other words, there is no information at all provided by the uniform prior density distribution employed which reflects complete lack of prior knowledge about the unknown error rate. Therefore, the aim of the study reported here was to study a maximum entropy (ME) based approach to improved prior knowledge and Bayesian CIs, demonstrating its relevance for biomedical research and clinical practice. It is demonstrated how a refined non-uniform prior density distribution can be obtained by means of the ME principle using empirical results from a few designs and tests using non-overlapping sets of examples. Experimental results show that ME based priors improve the CIs when employed to four quite different simulated and two real world data sets. An empirically derived ME prior seems promising for improving the Bayesian CI for the unknown error rate of a designed classifier. Copyright 2010 Elsevier B.V. All rights reserved.

  6. Quantifying Uncertainty in Near Surface Electromagnetic Imaging Using Bayesian Methods

    NASA Astrophysics Data System (ADS)

    Blatter, D. B.; Ray, A.; Key, K.

    2017-12-01

    Geoscientists commonly use electromagnetic methods to image the Earth's near surface. Field measurements of EM fields are made (often with the aid an artificial EM source) and then used to infer near surface electrical conductivity via a process known as inversion. In geophysics, the standard inversion tool kit is robust and can provide an estimate of the Earth's near surface conductivity that is both geologically reasonable and compatible with the measured field data. However, standard inverse methods struggle to provide a sense of the uncertainty in the estimate they provide. This is because the task of finding an Earth model that explains the data to within measurement error is non-unique - that is, there are many, many such models; but the standard methods provide only one "answer." An alternative method, known as Bayesian inversion, seeks to explore the full range of Earth model parameters that can adequately explain the measured data, rather than attempting to find a single, "ideal" model. Bayesian inverse methods can therefore provide a quantitative assessment of the uncertainty inherent in trying to infer near surface conductivity from noisy, measured field data. This study applies a Bayesian inverse method (called trans-dimensional Markov chain Monte Carlo) to transient airborne EM data previously collected over Taylor Valley - one of the McMurdo Dry Valleys in Antarctica. Our results confirm the reasonableness of previous estimates (made using standard methods) of near surface conductivity beneath Taylor Valley. In addition, we demonstrate quantitatively the uncertainty associated with those estimates. We demonstrate that Bayesian inverse methods can provide quantitative uncertainty to estimates of near surface conductivity.

  7. Evaluating impacts using a BACI design, ratios, and a Bayesian approach with a focus on restoration.

    PubMed

    Conner, Mary M; Saunders, W Carl; Bouwes, Nicolaas; Jordan, Chris

    2015-10-01

    Before-after-control-impact (BACI) designs are an effective method to evaluate natural and human-induced perturbations on ecological variables when treatment sites cannot be randomly chosen. While effect sizes of interest can be tested with frequentist methods, using Bayesian Markov chain Monte Carlo (MCMC) sampling methods, probabilities of effect sizes, such as a ≥20 % increase in density after restoration, can be directly estimated. Although BACI and Bayesian methods are used widely for assessing natural and human-induced impacts for field experiments, the application of hierarchal Bayesian modeling with MCMC sampling to BACI designs is less common. Here, we combine these approaches and extend the typical presentation of results with an easy to interpret ratio, which provides an answer to the main study question-"How much impact did a management action or natural perturbation have?" As an example of this approach, we evaluate the impact of a restoration project, which implemented beaver dam analogs, on survival and density of juvenile steelhead. Results indicated the probabilities of a ≥30 % increase were high for survival and density after the dams were installed, 0.88 and 0.99, respectively, while probabilities for a higher increase of ≥50 % were variable, 0.17 and 0.82, respectively. This approach demonstrates a useful extension of Bayesian methods that can easily be generalized to other study designs from simple (e.g., single factor ANOVA, paired t test) to more complicated block designs (e.g., crossover, split-plot). This approach is valuable for estimating the probabilities of restoration impacts or other management actions.

  8. Bayesian networks for evaluation of evidence from forensic entomology.

    PubMed

    Andersson, M Gunnar; Sundström, Anders; Lindström, Anders

    2013-09-01

    In the aftermath of a CBRN incident, there is an urgent need to reconstruct events in order to bring the perpetrators to court and to take preventive actions for the future. The challenge is to discriminate, based on available information, between alternative scenarios. Forensic interpretation is used to evaluate to what extent results from the forensic investigation favor the prosecutors' or the defendants' arguments, using the framework of Bayesian hypothesis testing. Recently, several new scientific disciplines have been used in a forensic context. In the AniBioThreat project, the framework was applied to veterinary forensic pathology, tracing of pathogenic microorganisms, and forensic entomology. Forensic entomology is an important tool for estimating the postmortem interval in, for example, homicide investigations as a complement to more traditional methods. In this article we demonstrate the applicability of the Bayesian framework for evaluating entomological evidence in a forensic investigation through the analysis of a hypothetical scenario involving suspect movement of carcasses from a clandestine laboratory. Probabilities of different findings under the alternative hypotheses were estimated using a combination of statistical analysis of data, expert knowledge, and simulation, and entomological findings are used to update the beliefs about the prosecutors' and defendants' hypotheses and to calculate the value of evidence. The Bayesian framework proved useful for evaluating complex hypotheses using findings from several insect species, accounting for uncertainty about development rate, temperature, and precolonization. The applicability of the forensic statistic approach to evaluating forensic results from a CBRN incident is discussed.

  9. A Framework to Understand Extreme Space Weather Event Probability.

    PubMed

    Jonas, Seth; Fronczyk, Kassandra; Pratt, Lucas M

    2018-03-12

    An extreme space weather event has the potential to disrupt or damage infrastructure systems and technologies that many societies rely on for economic and social well-being. Space weather events occur regularly, but extreme events are less frequent, with a small number of historical examples over the last 160 years. During the past decade, published works have (1) examined the physical characteristics of the extreme historical events and (2) discussed the probability or return rate of select extreme geomagnetic disturbances, including the 1859 Carrington event. Here we present initial findings on a unified framework approach to visualize space weather event probability, using a Bayesian model average, in the context of historical extreme events. We present disturbance storm time (Dst) probability (a proxy for geomagnetic disturbance intensity) across multiple return periods and discuss parameters of interest to policymakers and planners in the context of past extreme space weather events. We discuss the current state of these analyses, their utility to policymakers and planners, the current limitations when compared to other hazards, and several gaps that need to be filled to enhance space weather risk assessments. © 2018 Society for Risk Analysis.

  10. Hierarchical Bayesian inference of the initial mass function in composite stellar populations

    NASA Astrophysics Data System (ADS)

    Dries, M.; Trager, S. C.; Koopmans, L. V. E.; Popping, G.; Somerville, R. S.

    2018-03-01

    The initial mass function (IMF) is a key ingredient in many studies of galaxy formation and evolution. Although the IMF is often assumed to be universal, there is continuing evidence that it is not universal. Spectroscopic studies that derive the IMF of the unresolved stellar populations of a galaxy often assume that this spectrum can be described by a single stellar population (SSP). To alleviate these limitations, in this paper we have developed a unique hierarchical Bayesian framework for modelling composite stellar populations (CSPs). Within this framework, we use a parametrized IMF prior to regulate a direct inference of the IMF. We use this new framework to determine the number of SSPs that is required to fit a set of realistic CSP mock spectra. The CSP mock spectra that we use are based on semi-analytic models and have an IMF that varies as a function of stellar velocity dispersion of the galaxy. Our results suggest that using a single SSP biases the determination of the IMF slope to a higher value than the true slope, although the trend with stellar velocity dispersion is overall recovered. If we include more SSPs in the fit, the Bayesian evidence increases significantly and the inferred IMF slopes of our mock spectra converge, within the errors, to their true values. Most of the bias is already removed by using two SSPs instead of one. We show that we can reconstruct the variable IMF of our mock spectra for signal-to-noise ratios exceeding ˜75.

  11. A Cross-Correlational Analysis between Electroencephalographic and End-Tidal Carbon Dioxide Signals: Methodological Issues in the Presence of Missing Data and Real Data Results

    PubMed Central

    Morelli, Maria Sole; Giannoni, Alberto; Passino, Claudio; Landini, Luigi; Emdin, Michele; Vanello, Nicola

    2016-01-01

    Electroencephalographic (EEG) irreducible artifacts are common and the removal of corrupted segments from the analysis may be required. The present study aims at exploring the effects of different EEG Missing Data Segment (MDS) distributions on cross-correlation analysis, involving EEG and physiological signals. The reliability of cross-correlation analysis both at single subject and at group level as a function of missing data statistics was evaluated using dedicated simulations. Moreover, a Bayesian-based approach for combining the single subject results at group level by considering each subject’s reliability was introduced. Starting from the above considerations, the cross-correlation function between EEG Global Field Power (GFP) in delta band and end-tidal CO2 (PETCO2) during rest and voluntary breath-hold was evaluated in six healthy subjects. The analysis of simulated data results at single subject level revealed a worsening of precision and accuracy in the cross-correlation analysis in the presence of MDS. At the group level, a large improvement in the results’ reliability with respect to single subject analysis was observed. The proposed Bayesian approach showed a slight improvement with respect to simple average results. Real data results were discussed in light of the simulated data tests and of the current physiological findings. PMID:27809243

  12. A cost minimisation and Bayesian inference model predicts startle reflex modulation across species.

    PubMed

    Bach, Dominik R

    2015-04-07

    In many species, rapid defensive reflexes are paramount to escaping acute danger. These reflexes are modulated by the state of the environment. This is exemplified in fear-potentiated startle, a more vigorous startle response during conditioned anticipation of an unrelated threatening event. Extant explanations of this phenomenon build on descriptive models of underlying psychological states, or neural processes. Yet, they fail to predict invigorated startle during reward anticipation and instructed attention, and do not explain why startle reflex modulation evolved. Here, we fill this lacuna by developing a normative cost minimisation model based on Bayesian optimality principles. This model predicts the observed pattern of startle modification by rewards, punishments, instructed attention, and several other states. Moreover, the mathematical formalism furnishes predictions that can be tested experimentally. Comparing the model with existing data suggests a specific neural implementation of the underlying computations which yields close approximations to the optimal solution under most circumstances. This analysis puts startle modification into the framework of Bayesian decision theory and predictive coding, and illustrates the importance of an adaptive perspective to interpret defensive behaviour across species. Copyright © 2015 The Author. Published by Elsevier Ltd.. All rights reserved.

  13. A statistical kinematic source inversion approach based on the QUESO library for uncertainty quantification and prediction

    NASA Astrophysics Data System (ADS)

    Zielke, Olaf; McDougall, Damon; Mai, Martin; Babuska, Ivo

    2014-05-01

    Seismic, often augmented with geodetic data, are frequently used to invert for the spatio-temporal evolution of slip along a rupture plane. The resulting images of the slip evolution for a single event, inferred by different research teams, often vary distinctly, depending on the adopted inversion approach and rupture model parameterization. This observation raises the question, which of the provided kinematic source inversion solutions is most reliable and most robust, and — more generally — how accurate are fault parameterization and solution predictions? These issues are not included in "standard" source inversion approaches. Here, we present a statistical inversion approach to constrain kinematic rupture parameters from teleseismic body waves. The approach is based a) on a forward-modeling scheme that computes synthetic (body-)waves for a given kinematic rupture model, and b) on the QUESO (Quantification of Uncertainty for Estimation, Simulation, and Optimization) library that uses MCMC algorithms and Bayes theorem for sample selection. We present Bayesian inversions for rupture parameters in synthetic earthquakes (i.e. for which the exact rupture history is known) in an attempt to identify the cross-over at which further model discretization (spatial and temporal resolution of the parameter space) is no longer attributed to a decreasing misfit. Identification of this cross-over is of importance as it reveals the resolution power of the studied data set (i.e. teleseismic body waves), enabling one to constrain kinematic earthquake rupture histories of real earthquakes at a resolution that is supported by data. In addition, the Bayesian approach allows for mapping complete posterior probability density functions of the desired kinematic source parameters, thus enabling us to rigorously assess the uncertainties in earthquake source inversions.

  14. Unveiling an ancient biological invasion: molecular analysis of an old European alien, the crested porcupine (Hystrix cristata).

    PubMed

    Trucchi, Emiliano; Sbordoni, Valerio

    2009-05-18

    Biological invasions can be considered one of the main threats to biodiversity, and the recognition of common ecological and evolutionary features among invaders can help developing a predictive framework to control further invasions. In particular, the analysis of successful invasive species and of their autochthonous source populations by means of genetic, phylogeographic and demographic tools can provide novel insights into the study of biological invasion patterns. Today, long-term dynamics of biological invasions are still poorly understood and need further investigations. Moreover, distribution and molecular data on native populations could contribute to the recognition of common evolutionary features of successful aliens. We analyzed 2,195 mitochondrial base pairs, including Cytochrome b, Control Region and rRNA 12S, in 161 Italian and 27 African specimens and assessed the ancient invasive origin of Italian crested porcupine (Hystrix cristata) populations from Tunisia. Molecular coalescent-based Bayesian analyses proposed the Roman Age as a putative timeframe of introduction and suggested a retention of genetic diversity during the early phases of colonization. The characterization of the native African genetic background revealed the existence of two differentiated clades: a Mediterranean group and a Sub-Saharan one. Both standard population genetic and advanced molecular demography tools (Bayesian Skyline Plot) did not evidence a clear genetic signature of the expected increase in population size after introduction. Along with the genetic diversity retention during the bottlenecked steps of introduction, this finding could be better described by hypothesizing a multi-invasion event. Evidences of the ancient anthropogenic invasive origin of the Italian Hystrix cristata populations were clearly shown and the native African genetic background was preliminary described. A more complex pattern than a simple demographic exponential growth from a single propagule seems to have characterized this long-term invasion.

  15. Association of variants in innate immune genes with asthma and eczema

    PubMed Central

    Sharma, Sunita; Poon, Audrey; Himes, Blanca E.; Lasky-Su, Jessica; Sordillo, Joanne E.; Belanger, Kathleen; Milton, Donald K.; Bracken, Michael B.; Triche, Elizabeth W.; Leaderer, Brian P.; Gold, Diane R.; Litonjua, Augusto A.

    2012-01-01

    Background The innate immune pathway is important in the pathogenesis of asthma and eczema. However, only a few variants in these genes have been associated with either disease. We investigate the association between polymorphisms of genes in the innate immune pathway with childhood asthma and eczema. In addition, we compare individual associations with those discovered using a multivariate approach. Methods Using a novel method, case control based association testing (C2BAT), 569 single nucleotide polymorphisms (SNPs) in 44 innate immune genes were tested for association with asthma and eczema in children from the Boston Home Allergens and Asthma Study and the Connecticut Childhood Asthma Study. The screening algorithm was used to identify the top SNPs associated with asthma and eczema. We next investigated the interaction of innate immune variants with asthma and eczema risk using Bayesian networks. Results After correction for multiple comparisons, 7 SNPs in 6 genes (CARD25, TGFB1, LY96, ACAA1, DEFB1, and IFNG) were associated with asthma (adjusted p-value<0.02), while 5 SNPs in 3 different genes (CD80, STAT4, and IRAKI) were significantly associated with eczema (adjusted p-value < 0.02). None of these SNPs were associated with both asthma and eczema. Bayesian network analysis identified 4 SNPs that were predictive of asthma and 10 SNPs that predicted eczema. Of the genes identified using Bayesian networks, only CD80 was associated with eczema in the single-SNP study. Using novel methodology that allows for screening and replication in the same population, we have identified associations of innate immune genes with asthma and eczema. Bayesian network analysis suggests that additional SNPs influence disease susceptibility via SNP interactions. Conclusion Our findings suggest that innate immune genes contribute to the pathogenesis of asthma and eczema, and that these diseases likely have different genetic determinants. PMID:22192168

  16. Host shifts enhance diversification of ectomycorrhizal fungi: diversification rate analysis of the ectomycorrhizal fungal genera Strobilomyces and Afroboletus with an 80-gene phylogeny.

    PubMed

    Sato, Hirotoshi; Tanabe, Akifumi S; Toju, Hirokazu

    2017-04-01

    Mutualisms with new host lineages can provide symbionts with novel ecological opportunities to expand their geographical distribution, thereby leading to evolutionary diversification. Because ectomycorrhizal (ECM) fungi provide ideal opportunities to test the relationship between host shifts and diversification, we tested whether mutualism with new host lineages could increase the diversification rates of ECM fungi. Using a Bayesian tree inferred from 23 027-base nucleotide sequences of 80 single-copy genes, we tested whether the diversification rate had changed through host-shift events in the monophyletic clade containing the ECM fungal genera Strobilomyces and Afroboletus. The results indicated that these fungi were initially associated with Caesalpinioideae/Monotoideae in Africa, acquired associations with Dipterocarpoideae in tropical Asia, and then switched to Fagaceae/Pinaceae and Nothofagaceae/Eucalyptus. Fungal lineages associated with Fagaceae/Pinaceae were inferred to have approximately four-fold and two-fold greater diversification rates than those associated with Caesalpinioideae/Monotoideae and Dipterocarpoideae or Nothofagaceae/Eucalyptus, respectively. Moreover, the diversification rate shift was inferred to follow the host shift to Fagaceae/Pinaceae. Our study suggests that host-shift events, particularly those occurring with respect to Fagaceae/Pinaceae, can provide ecological opportunities for the rapid diversification of Strobilomyces-Afroboletus. Although further studies are needed for generalization, we propose a possible diversification scenario of ECM fungi. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  17. The association of shift-level nurse staffing with adverse patient events.

    PubMed

    Patrician, Patricia A; Loan, Lori; McCarthy, Mary; Fridman, Moshe; Donaldson, Nancy; Bingham, Mona; Brosch, Laura R

    2011-02-01

    The objective of this study was to demonstrate the association between nurse staffing and adverse events at the shift level. Despite a growing body of research linking nurse staffing and patient outcomes, the relationship of staffing to patient falls and medication errors remains equivocal, possibly due to dependence on aggregated data. Thirteen military hospitals participated in creating a longitudinal nursing outcomes database to monitor nurse staffing, patient falls and medication errors, and other outcomes. Unit types were analyzed separately to stratify patient and nurse staffing characteristics. Bayesian hierarchical logistic regression modeling was used to examine associations between staffing and adverse events. RN skill mix, total nursing care hours, and experience, measured by a proxy variable, were associated with shift-level adverse events. Consideration must be given to nurse staffing and experience levels on every shift.

  18. The double slit experiment and the time reversed fire alarm

    NASA Astrophysics Data System (ADS)

    Halabi, Tarek

    2011-03-01

    When both slits of the double slit experiment are open, closing one paradoxically increases the detection rate at some points on the detection screen. Feynman famously warned that temptation to "understand" such a puzzling feature only draws us into blind alleys. Nevertheless, we gain insight into this feature by drawing an analogy between the double slit experiment and a time reversed fire alarm. Much as closing the slit increases probability of a future detection, ruling out fire drill scenarios, having heard the fire alarm, increases probability of a past fire (using Bayesian inference). Classically, Bayesian inference is associated with computing probabilities of past events. We therefore identify this feature of the double slit experiment with a time reversed thermodynamic arrow. We believe that much of the enigma of quantum mechanics is simply due to some variation of time's arrow.

  19. P300 Chinese input system based on Bayesian LDA.

    PubMed

    Jin, Jing; Allison, Brendan Z; Brunner, Clemens; Wang, Bei; Wang, Xingyu; Zhang, Jianhua; Neuper, Christa; Pfurtscheller, Gert

    2010-02-01

    A brain-computer interface (BCI) is a new communication channel between humans and computers that translates brain activity into recognizable command and control signals. Attended events can evoke P300 potentials in the electroencephalogram. Hence, the P300 has been used in BCI systems to spell, control cursors or robotic devices, and other tasks. This paper introduces a novel P300 BCI to communicate Chinese characters. To improve classification accuracy, an optimization algorithm (particle swarm optimization, PSO) is used for channel selection (i.e., identifying the best electrode configuration). The effects of different electrode configurations on classification accuracy were tested by Bayesian linear discriminant analysis offline. The offline results from 11 subjects show that this new P300 BCI can effectively communicate Chinese characters and that the features extracted from the electrodes obtained by PSO yield good performance.

  20. Bayesian selection of Markov models for symbol sequences: application to microsaccadic eye movements.

    PubMed

    Bettenbühl, Mario; Rusconi, Marco; Engbert, Ralf; Holschneider, Matthias

    2012-01-01

    Complex biological dynamics often generate sequences of discrete events which can be described as a Markov process. The order of the underlying Markovian stochastic process is fundamental for characterizing statistical dependencies within sequences. As an example for this class of biological systems, we investigate the Markov order of sequences of microsaccadic eye movements from human observers. We calculate the integrated likelihood of a given sequence for various orders of the Markov process and use this in a Bayesian framework for statistical inference on the Markov order. Our analysis shows that data from most participants are best explained by a first-order Markov process. This is compatible with recent findings of a statistical coupling of subsequent microsaccade orientations. Our method might prove to be useful for a broad class of biological systems.

  1. Estimating effectiveness in HIV prevention trials with a Bayesian hierarchical compound Poisson frailty model

    PubMed Central

    Coley, Rebecca Yates; Browna, Elizabeth R.

    2016-01-01

    Inconsistent results in recent HIV prevention trials of pre-exposure prophylactic interventions may be due to heterogeneity in risk among study participants. Intervention effectiveness is most commonly estimated with the Cox model, which compares event times between populations. When heterogeneity is present, this population-level measure underestimates intervention effectiveness for individuals who are at risk. We propose a likelihood-based Bayesian hierarchical model that estimates the individual-level effectiveness of candidate interventions by accounting for heterogeneity in risk with a compound Poisson-distributed frailty term. This model reflects the mechanisms of HIV risk and allows that some participants are not exposed to HIV and, therefore, have no risk of seroconversion during the study. We assess model performance via simulation and apply the model to data from an HIV prevention trial. PMID:26869051

  2. Protocol for evaluation of the cost-effectiveness of ePrescribing systems and candidate prototype for other related health information technologies

    PubMed Central

    2014-01-01

    Background This protocol concerns the assessment of cost-effectiveness of hospital health information technology (HIT) in four hospitals. Two of these hospitals are acquiring ePrescribing systems incorporating extensive decision support, while the other two will implement systems incorporating more basic clinical algorithms. Implementation of an ePrescribing system will have diffuse effects over myriad clinical processes, so the protocol has to deal with a large amount of information collected at various ‘levels’ across the system. Methods/Design The method we propose is use of Bayesian ideas as a philosophical guide. Assessment of cost-effectiveness requires a number of parameters in order to measure incremental cost utility or benefit – the effectiveness of the intervention in reducing frequency of preventable adverse events; utilities for these adverse events; costs of HIT systems; and cost consequences of adverse events averted. There is no single end-point that adequately and unproblematically captures the effectiveness of the intervention; we therefore plan to observe changes in error rates and adverse events in four error categories (death, permanent disability, moderate disability, minimal effect). For each category we will elicit and pool subjective probability densities from experts for reductions in adverse events, resulting from deployment of the intervention in a hospital with extensive decision support. The experts will have been briefed with quantitative and qualitative data from the study and external data sources prior to elicitation. Following this, there will be a process of deliberative dialogues so that experts can “re-calibrate” their subjective probability estimates. The consolidated densities assembled from the repeat elicitation exercise will then be used to populate a health economic model, along with salient utilities. The credible limits from these densities can define thresholds for sensitivity analyses. Discussion The protocol we present here was designed for evaluation of ePrescribing systems. However, the methodology we propose could be used whenever research cannot provide a direct and unbiased measure of comparative effectiveness. PMID:25038609

  3. Bayesian design criteria: computation, comparison, and application to a pharmacokinetic and a pharmacodynamic model.

    PubMed

    Merlé, Y; Mentré, F

    1995-02-01

    In this paper 3 criteria to design experiments for Bayesian estimation of the parameters of nonlinear models with respect to their parameters, when a prior distribution is available, are presented: the determinant of the Bayesian information matrix, the determinant of the pre-posterior covariance matrix, and the expected information provided by an experiment. A procedure to simplify the computation of these criteria is proposed in the case of continuous prior distributions and is compared with the criterion obtained from a linearization of the model about the mean of the prior distribution for the parameters. This procedure is applied to two models commonly encountered in the area of pharmacokinetics and pharmacodynamics: the one-compartment open model with bolus intravenous single-dose injection and the Emax model. They both involve two parameters. Additive as well as multiplicative gaussian measurement errors are considered with normal prior distributions. Various combinations of the variances of the prior distribution and of the measurement error are studied. Our attention is restricted to designs with limited numbers of measurements (1 or 2 measurements). This situation often occurs in practice when Bayesian estimation is performed. The optimal Bayesian designs that result vary with the variances of the parameter distribution and with the measurement error. The two-point optimal designs sometimes differ from the D-optimal designs for the mean of the prior distribution and may consist of replicating measurements. For the studied cases, the determinant of the Bayesian information matrix and its linearized form lead to the same optimal designs. In some cases, the pre-posterior covariance matrix can be far from its lower bound, namely, the inverse of the Bayesian information matrix, especially for the Emax model and a multiplicative measurement error. The expected information provided by the experiment and the determinant of the pre-posterior covariance matrix generally lead to the same designs except for the Emax model and the multiplicative measurement error. Results show that these criteria can be easily computed and that they could be incorporated in modules for designing experiments.

  4. Physics of ultrasonic wave propagation in bone and heart characterized using Bayesian parameter estimation

    NASA Astrophysics Data System (ADS)

    Anderson, Christian Carl

    This Dissertation explores the physics underlying the propagation of ultrasonic waves in bone and in heart tissue through the use of Bayesian probability theory. Quantitative ultrasound is a noninvasive modality used for clinical detection, characterization, and evaluation of bone quality and cardiovascular disease. Approaches that extend the state of knowledge of the physics underpinning the interaction of ultrasound with inherently inhomogeneous and isotropic tissue have the potential to enhance its clinical utility. Simulations of fast and slow compressional wave propagation in cancellous bone were carried out to demonstrate the plausibility of a proposed explanation for the widely reported anomalous negative dispersion in cancellous bone. The results showed that negative dispersion could arise from analysis that proceeded under the assumption that the data consist of only a single ultrasonic wave, when in fact two overlapping and interfering waves are present. The confounding effect of overlapping fast and slow waves was addressed by applying Bayesian parameter estimation to simulated data, to experimental data acquired on bone-mimicking phantoms, and to data acquired in vitro on cancellous bone. The Bayesian approach successfully estimated the properties of the individual fast and slow waves even when they strongly overlapped in the acquired data. The Bayesian parameter estimation technique was further applied to an investigation of the anisotropy of ultrasonic properties in cancellous bone. The degree to which fast and slow waves overlap is partially determined by the angle of insonation of ultrasound relative to the predominant direction of trabecular orientation. In the past, studies of anisotropy have been limited by interference between fast and slow waves over a portion of the range of insonation angles. Bayesian analysis estimated attenuation, velocity, and amplitude parameters over the entire range of insonation angles, allowing a more complete characterization of anisotropy. A novel piecewise linear model for the cyclic variation of ultrasonic backscatter from myocardium was proposed. Models of cyclic variation for 100 type 2 diabetes patients and 43 normal control subjects were constructed using Bayesian parameter estimation. Parameters determined from the model, specifically rise time and slew rate, were found to be more reliable in differentiating between subject groups than the previously employed magnitude parameter.

  5. Psychosocial stress factors, including the relationship with the coach, and their influence on acute and overuse injury risk in elite female football players.

    PubMed

    Pensgaard, Anne Marte; Ivarsson, Andreas; Nilstad, Agnethe; Solstad, Bård Erlend; Steffen, Kathrin

    2018-01-01

    The relationship between specific types of stressors (eg, teammates, coach) and acute versus overuse injuries is not well understood. To examine the roles of different types of stressors as well as the effect of motivational climate on the occurrence of acute and overuse injuries. Players in the Norwegian elite female football league (n=193 players from 12 teams) participated in baseline screening tests prior to the 2009 competitive football season. As part of the screening, we included the Life Event Survey for Collegiate Athletes and the Perceived Motivational Climate in Sport Questionnaire (Norwegian short version). Acute and overuse time-loss injuries and exposure to training and matches were recorded prospectively in the football season using weekly text messaging. Data were analysed with Bayesian logistic regression analyses. Using Bayesian logistic regression analyses, we showed that perceived negative life event stress from teammates was associated with an increased risk of acute injuries (OR=1.23, 95% credibility interval (1.01 to 1.48)). There was a credible positive association between perceived negative life event stress from the coach and the risk of overuse injuries (OR=1.21, 95% credibility interval (1.01 to 1.45)). Players who report teammates as a source of stress have a greater risk of sustaining an acute injury, while players reporting the coach as a source of stress are at greater risk of sustaining an overuse injury. Motivational climate did not relate to increased injury occurrence.

  6. Do people reason rationally about causally related events? Markov violations, weak inferences, and failures of explaining away.

    PubMed

    Rottman, Benjamin M; Hastie, Reid

    2016-06-01

    Making judgments by relying on beliefs about the causal relationships between events is a fundamental capacity of everyday cognition. In the last decade, Causal Bayesian Networks have been proposed as a framework for modeling causal reasoning. Two experiments were conducted to provide comprehensive data sets with which to evaluate a variety of different types of judgments in comparison to the standard Bayesian networks calculations. Participants were introduced to a fictional system of three events and observed a set of learning trials that instantiated the multivariate distribution relating the three variables. We tested inferences on chains X1→Y→X2, common cause structures X1←Y→X2, and common effect structures X1→Y←X2, on binary and numerical variables, and with high and intermediate causal strengths. We tested transitive inferences, inferences when one variable is irrelevant because it is blocked by an intervening variable (Markov Assumption), inferences from two variables to a middle variable, and inferences about the presence of one cause when the alternative cause was known to have occurred (the normative "explaining away" pattern). Compared to the normative account, in general, when the judgments should change, they change in the normative direction. However, we also discuss a few persistent violations of the standard normative model. In addition, we evaluate the relative success of 12 theoretical explanations for these deviations. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Biogeographical Consequences of Cenozoic Tectonic Events within East Asian Margins: A Case Study of Hynobius Biogeography

    PubMed Central

    Li, Jun; Fu, Cuizhang; Lei, Guangchun

    2011-01-01

    Few studies have explored the role of Cenozoic tectonic evolution in shaping patterns and processes of extant animal distributions within East Asian margins. We select Hynobius salamanders (Amphibia: Hynobiidae) as a model to examine biogeographical consequences of Cenozoic tectonic events within East Asian margins. First, we use GenBank molecular data to reconstruct phylogenetic interrelationships of Hynobius by Bayesian and maximum likelihood analyses. Second, we estimate the divergence time using the Bayesian relaxed clock approach and infer dispersal/vicariance histories under the ‘dispersal–extinction–cladogenesis’ model. Finally, we test whether evolutionary history and biogeographical processes of Hynobius should coincide with the predictions of two major hypotheses (the ‘vicariance’/‘out of southwestern Japan’ hypothesis). The resulting phylogeny confirmed Hynobius as a monophyletic group, which could be divided into nine major clades associated with six geographical areas. Our results show that: (1) the most recent common ancestor of Hynobius was distributed in southwestern Japan and Hokkaido Island, (2) a sister taxon relationship between Hynobius retardatus and all remaining species was the results of a vicariance event between Hokkaido Island and southwestern Japan in the Middle Eocene, (3) ancestral Hynobius in southwestern Japan dispersed into the Taiwan Island, central China, ‘Korean Peninsula and northeastern China’ as well as northeastern Honshu during the Late Eocene–Late Miocene. Our findings suggest that Cenozoic tectonic evolution plays an important role in shaping disjunctive distributions of extant Hynobius within East Asian margins. PMID:21738684

  8. Paleoearthquakes on the southern San Andreas Fault, Wrightwood, California, 3000 to 1500 B.C.: A new method for evaluating paleoseismic evidence and earthquake horizons

    USGS Publications Warehouse

    Scharer, K.M.; Weldon, R.J.; Fumal, T.E.; Biasi, G.P.

    2007-01-01

    We present evidence of 11-14 earthquakes that occurred between 3000 and 1500 B.C. on the San Andreas fault at the Wrightwood paleoseismic site. Earthquake evidence is presented in a novel form in which we rank (high, moderate, poor, or low) the quality of all evidence of ground deformation, which are called "event indicators." Event indicator quality reflects our confidence that the morphologic and sedimentologic evidence can be attributable to a ground-deforming earthquake and that the earthquake horizon is accurately identified by the morphology of the feature. In four vertical meters of section exposed in ten trenches, we document 316 event indicators attributable to 32 separate stratigraphic horizons. Each stratigraphic horizon is evaluated based on the sum of rank (Rs), maximum rank (Rm), average rank (Ra), number of observations (Obs), and sum of higher-quality event indicators (Rs>1). Of the 32 stratigraphic horizons, 14 contain 83% of the event indicators and are qualified based on the number and quality of event indicators; the remaining 18 do not have satisfactory evidence for further consideration. Eleven of the 14 stratigraphic horizons have sufficient number and quality of event indicators to be qualified as "probable" to "very likely" earthquakes; the remaining three stratigraphic horizons are associated with somewhat ambiguous features and are qualified as "possible" earthquakes. Although no single measurement defines an obvious threshold for designation as an earthquake horizon, Rs, Rm, and Rs>1 correlate best with the interpreted earthquake quality. Earthquake age distributions are determined from radio-carbon ages of peat samples using a Bayesian approach to layer dating. The average recurrence interval for the 10 consecutive and highest-quality earthquakes is 111 (93-131) years and individual intervals are ??50% of the average. With comparison with the previously published 14-15 earthquake record between A.D. 500 and present, we find no evidence to suggest significant variations in the average recurrence rate at Wrightwood during the past 5000 years.

  9. A Bayesian kriging approach for blending satellite and ground precipitation observations

    USGS Publications Warehouse

    Verdin, Andrew P.; Rajagopalan, Balaji; Kleiber, William; Funk, Christopher C.

    2015-01-01

    Drought and flood management practices require accurate estimates of precipitation. Gauge observations, however, are often sparse in regions with complicated terrain, clustered in valleys, and of poor quality. Consequently, the spatial extent of wet events is poorly represented. Satellite-derived precipitation data are an attractive alternative, though they tend to underestimate the magnitude of wet events due to their dependency on retrieval algorithms and the indirect relationship between satellite infrared observations and precipitation intensities. Here we offer a Bayesian kriging approach for blending precipitation gauge data and the Climate Hazards Group Infrared Precipitation satellite-derived precipitation estimates for Central America, Colombia, and Venezuela. First, the gauge observations are modeled as a linear function of satellite-derived estimates and any number of other variables—for this research we include elevation. Prior distributions are defined for all model parameters and the posterior distributions are obtained simultaneously via Markov chain Monte Carlo sampling. The posterior distributions of these parameters are required for spatial estimation, and thus are obtained prior to implementing the spatial kriging model. This functional framework is applied to model parameters obtained by sampling from the posterior distributions, and the residuals of the linear model are subject to a spatial kriging model. Consequently, the posterior distributions and uncertainties of the blended precipitation estimates are obtained. We demonstrate this method by applying it to pentadal and monthly total precipitation fields during 2009. The model's performance and its inherent ability to capture wet events are investigated. We show that this blending method significantly improves upon the satellite-derived estimates and is also competitive in its ability to represent wet events. This procedure also provides a means to estimate a full conditional distribution of the “true” observed precipitation value at each grid cell.

  10. The roles of history and ecology in chloroplast phylogeographic patterns of the bird-dispersed plant parasite Phoradendron californicum (Viscaceae) in the Sonoran Desert.

    PubMed

    Lira-Noriega, Andrés; Toro-Núñez, Oscar; Oaks, Jamie R; Mort, Mark E

    2015-01-01

    • A recurrent explanation for phylogeographic discontinuities in the Baja California Peninsula and the Sonoran Desert Region has been the association of vicariant events with Pliocene and Pleistocene seaway breaks. Nevertheless, despite its relevance for plant dispersal, other explanations such as ecological and paleoclimatic factors have received little attention. Here, we analyzed the role of several of these factors to describe the phylogeographic patterns of the desert mistletoe, Phoradendron californicum.• Using noncoding chloroplast regions, we assess the marginal probability of 19 a priori hypotheses related to geological and ecological factors to predict the cpDNA variation in P. californicum using a Bayesian coalescent framework. Complementarily, we used the macrofossil record and niche model projections on Last Glacial Maximum climatic conditions for hosts, mistletoe, and a bird specialist to interpret phylogeographic patterns.• Genealogical reconstructions revealed five clades, which suggest a combination of cryptic divergence, long-distance seed dispersal, and isolating postdivergence events. Bayesian hypothesis test favored a series of Pliocene and Pleistocene geological events related to the formation of the Baja California Peninsula and seaways across the peninsula as the most supported explanation for this genealogical pattern. However, age estimates, niche projections, and fossil records show dynamic host-mistletoe interactions and evidence of host races, indicating that ecological and geological factors have been interacting during the formation and structuring of phylogeographic divergence.• Variation in cpDNA across the species range results from the interplay of vicariant events, past climatic oscillations, and more dynamic factors related to ecological processes at finer temporal and spatial scales. © 2015 Botanical Society of America, Inc.

  11. Bayesian estimation of post-Messinian divergence times in Balearic Island lizards.

    PubMed

    Brown, R P; Terrasa, B; Pérez-Mellado, V; Castro, J A; Hoskisson, P A; Picornell, A; Ramon, M M

    2008-07-01

    Phylogenetic relationships and timings of major cladogenesis events are investigated in the Balearic Island lizards Podarcislilfordi and P.pityusensis using 2675bp of mitochondrial and nuclear DNA sequences. Partitioned Bayesian and Maximum Parsimony analyses provided a well-resolved phylogeny with high node-support values. Bayesian MCMC estimation of node dates was investigated by comparing means of posterior distributions from different subsets of the sequence against the most robust analysis which used multiple partitions and allowed for rate heterogeneity among branches under a rate-drift model. Evolutionary rates were systematically underestimated and thus divergence times overestimated when sequences containing lower numbers of variable sites were used (based on ingroup node constraints). The following analyses allowed the best recovery of node times under the constant-rate (i.e., perfect clock) model: (i) all cytochrome b sequence (partitioned by codon position), (ii) cytochrome b (codon position 3 alone), (iii) NADH dehydrogenase (subunits 1 and 2; partitioned by codon position), (iv) cytochrome b and NADH dehydrogenase sequence together (six gene-codon partitions), (v) all unpartitioned sequence, (vi) a full multipartition analysis (nine partitions). Of these, only (iv) and (vi) performed well under the rate-drift model. These findings have significant implications for dating of recent divergence times in other taxa. The earliest P.lilfordi cladogenesis event (divergence of Menorcan populations), occurred before the end of the Pliocene, some 2.6Ma. Subsequent events led to a West Mallorcan lineage (2.0Ma ago), followed 1.2Ma ago by divergence of populations from the southern part of the Cabrera archipelago from a widely-distributed group from north Cabrera, northern and southern Mallorcan islets. Divergence within P.pityusensis is more recent with the main Ibiza and Formentera clades sharing a common ancestor at about 1.0Ma ago. Climatic and sea level changes are likely to have initiated cladogenesis, with lineages making secondary contact during periodic landbridge formation. This oscillating cross-archipelago pattern in which ancient divergence is followed by repeated contact resembles that seen between East-West refugia populations from mainland Europe.

  12. Reclaiming the past: Using hierarchical Bayesian analysis to fill missing values in the tide gauge mean sea level record, with application to extreme value analysis

    NASA Astrophysics Data System (ADS)

    Piecuch, C. G.; Huybers, P. J.; Tingley, M.

    2015-12-01

    Tide gauge records of mean sea level are some of the most valuable instrumental time series of oceanic variability and change. Yet these time series sometimes have short record lengths and intermittently missing values. Such issues can limit the utility of the data, for example, precluding rigorous analyses of return periods of extreme mean sea level events and whether they are unprecedented. With a view to filling gaps in the tide gauge mean sea level time series, we describe a hierarchical Bayesian modeling approach. The model, which is predicated on the notion of conditional probabilities, comprises three levels: a process level, which casts mean sea level as a field with spatiotemporal covariance; a data level, which represents tide gauge observations as noisy, biased versions of the true process; and a prior level, which gives prior functional forms to model parameters. Using Bayes' rule, this technique gives estimates of the posterior probability of the process and the parameters given the observations. To demonstrate the approach, we apply it to 2,967 station-years of annual mean sea level observations over 1856-2013 from 70 tide gauges along the United States East Coast from Florida to Maine (i.e., 26.8% record completeness). The model overcomes the data paucity by sharing information across space and time. The result is an ensemble of realizations, each member of which is a possible history of sea level changes at these locations over this period, which is consistent with and equally likely given the tide gauge data and underlying model assumptions. Using the ensemble of histories furnished by the Bayesian model, we identify extreme events of mean sea level change in the tide gauge time series. Specifically, we use the model to address the particular hypothesis (with rigorous uncertainty quantification) that a recently reported interannual sea level rise during 2008-2010 was unprecedented in the instrumental record along the northeast coast of North America, and that it had a return period of 850 years. Preliminary analysis suggests that this event was likely unprecedented on the coast of Maine in the last century.

  13. Performance of the 'material Failure Forecast Method' in real-time situations: A Bayesian approach applied on effusive and explosive eruptions

    NASA Astrophysics Data System (ADS)

    Boué, A.; Lesage, P.; Cortés, G.; Valette, B.; Reyes-Dávila, G.; Arámbula-Mendoza, R.; Budi-Santoso, A.

    2016-11-01

    Most attempts of deterministic eruption forecasting are based on the material Failure Forecast Method (FFM). This method assumes that a precursory observable, such as the rate of seismic activity, can be described by a simple power law which presents a singularity at a time close to the eruption onset. Until now, this method has been applied only in a small number of cases, generally for forecasts in hindsight. In this paper, a rigorous Bayesian approach of the FFM designed for real-time applications is applied. Using an automatic recognition system, seismo-volcanic events are detected and classified according to their physical mechanism and time series of probability distributions of the rates of events are calculated. At each time of observation, a Bayesian inversion provides estimations of the exponent of the power law and of the time of eruption, together with their probability density functions. Two criteria are defined in order to evaluate the quality and reliability of the forecasts. Our automated procedure has allowed the analysis of long, continuous seismic time series: 13 years from Volcán de Colima, Mexico, 10 years from Piton de la Fournaise, Reunion Island, France, and several months from Merapi volcano, Java, Indonesia. The new forecasting approach has been applied to 64 pre-eruptive sequences which present various types of dominant seismic activity (volcano-tectonic or long-period events) and patterns of seismicity with different level of complexity. This has allowed us to test the FFM assumptions, to determine in which conditions the method can be applied, and to quantify the success rate of the forecasts. 62% of the precursory sequences analysed are suitable for the application of FFM and half of the total number of eruptions are successfully forecast in hindsight. In real-time, the method allows for the successful forecast of 36% of all the eruptions considered. Nevertheless, real-time forecasts are successful for 83% of the cases that fulfil the reliability criteria. Therefore, good confidence on the method is obtained when the reliability criteria are met.

  14. A Bayesian network approach to the database search problem in criminal proceedings

    PubMed Central

    2012-01-01

    Background The ‘database search problem’, that is, the strengthening of a case - in terms of probative value - against an individual who is found as a result of a database search, has been approached during the last two decades with substantial mathematical analyses, accompanied by lively debate and centrally opposing conclusions. This represents a challenging obstacle in teaching but also hinders a balanced and coherent discussion of the topic within the wider scientific and legal community. This paper revisits and tracks the associated mathematical analyses in terms of Bayesian networks. Their derivation and discussion for capturing probabilistic arguments that explain the database search problem are outlined in detail. The resulting Bayesian networks offer a distinct view on the main debated issues, along with further clarity. Methods As a general framework for representing and analyzing formal arguments in probabilistic reasoning about uncertain target propositions (that is, whether or not a given individual is the source of a crime stain), this paper relies on graphical probability models, in particular, Bayesian networks. This graphical probability modeling approach is used to capture, within a single model, a series of key variables, such as the number of individuals in a database, the size of the population of potential crime stain sources, and the rarity of the corresponding analytical characteristics in a relevant population. Results This paper demonstrates the feasibility of deriving Bayesian network structures for analyzing, representing, and tracking the database search problem. The output of the proposed models can be shown to agree with existing but exclusively formulaic approaches. Conclusions The proposed Bayesian networks allow one to capture and analyze the currently most well-supported but reputedly counter-intuitive and difficult solution to the database search problem in a way that goes beyond the traditional, purely formulaic expressions. The method’s graphical environment, along with its computational and probabilistic architectures, represents a rich package that offers analysts and discussants with additional modes of interaction, concise representation, and coherent communication. PMID:22849390

  15. Bayesian Forecasting Tool to Predict the Need for Antidote in Acute Acetaminophen Overdose.

    PubMed

    Desrochers, Julie; Wojciechowski, Jessica; Klein-Schwartz, Wendy; Gobburu, Jogarao V S; Gopalakrishnan, Mathangi

    2017-08-01

    Acetaminophen (APAP) overdose is the leading cause of acute liver injury in the United States. Patients with elevated plasma acetaminophen concentrations (PACs) require hepatoprotective treatment with N-acetylcysteine (NAC). These patients have been primarily risk-stratified using the Rumack-Matthew nomogram. Previous studies of acute APAP overdoses found that the nomogram failed to accurately predict the need for the antidote. The objectives of this study were to develop a population pharmacokinetic (PK) model for APAP following acute overdose and evaluate the utility of population PK model-based Bayesian forecasting in NAC administration decisions. Limited APAP concentrations from a retrospective cohort of acute overdosed subjects from the Maryland Poison Center were used to develop the population PK model and to investigate the effect of type of APAP products and other prognostic factors. The externally validated population PK model was used a prior for Bayesian forecasting to predict the individual PK profile when one or two observed PACs were available. The utility of Bayesian forecasted APAP concentration-time profiles inferred from one (first) or two (first and second) PAC observations were also tested in their ability to predict the observed NAC decisions. A one-compartment model with first-order absorption and elimination adequately described the data with single activated charcoal and APAP products as significant covariates on absorption and bioavailability. The Bayesian forecasted individual concentration-time profiles had acceptable bias (6.2% and 9.8%) and accuracy (40.5% and 41.9%) when either one or two PACs were considered, respectively. The sensitivity and negative predictive value of the Bayesian forecasted NAC decisions using one PAC were 84% and 92.6%, respectively. The population PK analysis provided a platform for acceptably predicting an individual's concentration-time profile following acute APAP overdose with at least one PAC, and the individual's covariate profile, and can potentially be used for making early NAC administration decisions. © 2017 Pharmacotherapy Publications, Inc.

  16. Collective odor source estimation and search in time-variant airflow environments using mobile robots.

    PubMed

    Meng, Qing-Hao; Yang, Wei-Xing; Wang, Yang; Zeng, Ming

    2011-01-01

    This paper addresses the collective odor source localization (OSL) problem in a time-varying airflow environment using mobile robots. A novel OSL methodology which combines odor-source probability estimation and multiple robots' search is proposed. The estimation phase consists of two steps: firstly, the separate probability-distribution map of odor source is estimated via Bayesian rules and fuzzy inference based on a single robot's detection events; secondly, the separate maps estimated by different robots at different times are fused into a combined map by way of distance based superposition. The multi-robot search behaviors are coordinated via a particle swarm optimization algorithm, where the estimated odor-source probability distribution is used to express the fitness functions. In the process of OSL, the estimation phase provides the prior knowledge for the searching while the searching verifies the estimation results, and both phases are implemented iteratively. The results of simulations for large-scale advection-diffusion plume environments and experiments using real robots in an indoor airflow environment validate the feasibility and robustness of the proposed OSL method.

  17. Collective Odor Source Estimation and Search in Time-Variant Airflow Environments Using Mobile Robots

    PubMed Central

    Meng, Qing-Hao; Yang, Wei-Xing; Wang, Yang; Zeng, Ming

    2011-01-01

    This paper addresses the collective odor source localization (OSL) problem in a time-varying airflow environment using mobile robots. A novel OSL methodology which combines odor-source probability estimation and multiple robots’ search is proposed. The estimation phase consists of two steps: firstly, the separate probability-distribution map of odor source is estimated via Bayesian rules and fuzzy inference based on a single robot’s detection events; secondly, the separate maps estimated by different robots at different times are fused into a combined map by way of distance based superposition. The multi-robot search behaviors are coordinated via a particle swarm optimization algorithm, where the estimated odor-source probability distribution is used to express the fitness functions. In the process of OSL, the estimation phase provides the prior knowledge for the searching while the searching verifies the estimation results, and both phases are implemented iteratively. The results of simulations for large-scale advection–diffusion plume environments and experiments using real robots in an indoor airflow environment validate the feasibility and robustness of the proposed OSL method. PMID:22346650

  18. Measurement of the charge asymmetry in top-quark pair production in the lepton-plus-jets final state in pp collision data at √s = 8 TeV with the ATLAS detector

    DOE PAGES

    Aad, G.; Abbott, B.; Abdallah, J.; ...

    2016-02-19

    This paper reports inclusive and differential measurements of the tt¯ charge asymmetry A C in 20.3 fb –1 of √s = 8 TeV pp collisions recorded by the ATLAS experiment at the Large Hadron Collider at CERN. Three differential measurements are performed as a function of the invariant mass, transverse momentum and longitudinal boost of the tt¯ system. The tt¯ pairs are selected in the single-lepton channels (e or μ) with at least four jets, and a likelihood fit is used to reconstruct the tt¯ event kinematics. A Bayesian unfolding procedure is performed to infer the asymmetry at parton levelmore » from the observed data distribution. The inclusive tt¯ charge asymmetry is measured to be A C = 0.009 ± 0.005) (stat. + syst.). As a result, the inclusive and differential measurements are compatible with the values predicted by the Standard Model.« less

  19. In defence of model-based inference in phylogeography

    PubMed Central

    Beaumont, Mark A.; Nielsen, Rasmus; Robert, Christian; Hey, Jody; Gaggiotti, Oscar; Knowles, Lacey; Estoup, Arnaud; Panchal, Mahesh; Corander, Jukka; Hickerson, Mike; Sisson, Scott A.; Fagundes, Nelson; Chikhi, Lounès; Beerli, Peter; Vitalis, Renaud; Cornuet, Jean-Marie; Huelsenbeck, John; Foll, Matthieu; Yang, Ziheng; Rousset, Francois; Balding, David; Excoffier, Laurent

    2017-01-01

    Recent papers have promoted the view that model-based methods in general, and those based on Approximate Bayesian Computation (ABC) in particular, are flawed in a number of ways, and are therefore inappropriate for the analysis of phylogeographic data. These papers further argue that Nested Clade Phylogeographic Analysis (NCPA) offers the best approach in statistical phylogeography. In order to remove the confusion and misconceptions introduced by these papers, we justify and explain the reasoning behind model-based inference. We argue that ABC is a statistically valid approach, alongside other computational statistical techniques that have been successfully used to infer parameters and compare models in population genetics. We also examine the NCPA method and highlight numerous deficiencies, either when used with single or multiple loci. We further show that the ages of clades are carelessly used to infer ages of demographic events, that these ages are estimated under a simple model of panmixia and population stationarity but are then used under different and unspecified models to test hypotheses, a usage the invalidates these testing procedures. We conclude by encouraging researchers to study and use model-based inference in population genetics. PMID:29284924

  20. QUEST+: A general multidimensional Bayesian adaptive psychometric method.

    PubMed

    Watson, Andrew B

    2017-03-01

    QUEST+ is a Bayesian adaptive psychometric testing method that allows an arbitrary number of stimulus dimensions, psychometric function parameters, and trial outcomes. It is a generalization and extension of the original QUEST procedure and incorporates many subsequent developments in the area of parametric adaptive testing. With a single procedure, it is possible to implement a wide variety of experimental designs, including conventional threshold measurement; measurement of psychometric function parameters, such as slope and lapse; estimation of the contrast sensitivity function; measurement of increment threshold functions; measurement of noise-masking functions; Thurstone scale estimation using pair comparisons; and categorical ratings on linear and circular stimulus dimensions. QUEST+ provides a general method to accelerate data collection in many areas of cognitive and perceptual science.

  1. Bayesian analysis of the astrobiological implications of life’s early emergence on Earth

    PubMed Central

    Spiegel, David S.; Turner, Edwin L.

    2012-01-01

    Life arose on Earth sometime in the first few hundred million years after the young planet had cooled to the point that it could support water-based organisms on its surface. The early emergence of life on Earth has been taken as evidence that the probability of abiogenesis is high, if starting from young Earth-like conditions. We revisit this argument quantitatively in a Bayesian statistical framework. By constructing a simple model of the probability of abiogenesis, we calculate a Bayesian estimate of its posterior probability, given the data that life emerged fairly early in Earth’s history and that, billions of years later, curious creatures noted this fact and considered its implications. We find that, given only this very limited empirical information, the choice of Bayesian prior for the abiogenesis probability parameter has a dominant influence on the computed posterior probability. Although terrestrial life's early emergence provides evidence that life might be abundant in the universe if early-Earth-like conditions are common, the evidence is inconclusive and indeed is consistent with an arbitrarily low intrinsic probability of abiogenesis for plausible uninformative priors. Finding a single case of life arising independently of our lineage (on Earth, elsewhere in the solar system, or on an extrasolar planet) would provide much stronger evidence that abiogenesis is not extremely rare in the universe. PMID:22198766

  2. Bayesian analysis of the astrobiological implications of life's early emergence on Earth.

    PubMed

    Spiegel, David S; Turner, Edwin L

    2012-01-10

    Life arose on Earth sometime in the first few hundred million years after the young planet had cooled to the point that it could support water-based organisms on its surface. The early emergence of life on Earth has been taken as evidence that the probability of abiogenesis is high, if starting from young Earth-like conditions. We revisit this argument quantitatively in a bayesian statistical framework. By constructing a simple model of the probability of abiogenesis, we calculate a bayesian estimate of its posterior probability, given the data that life emerged fairly early in Earth's history and that, billions of years later, curious creatures noted this fact and considered its implications. We find that, given only this very limited empirical information, the choice of bayesian prior for the abiogenesis probability parameter has a dominant influence on the computed posterior probability. Although terrestrial life's early emergence provides evidence that life might be abundant in the universe if early-Earth-like conditions are common, the evidence is inconclusive and indeed is consistent with an arbitrarily low intrinsic probability of abiogenesis for plausible uninformative priors. Finding a single case of life arising independently of our lineage (on Earth, elsewhere in the solar system, or on an extrasolar planet) would provide much stronger evidence that abiogenesis is not extremely rare in the universe.

  3. Inverse and forward modeling under uncertainty using MRE-based Bayesian approach

    NASA Astrophysics Data System (ADS)

    Hou, Z.; Rubin, Y.

    2004-12-01

    A stochastic inverse approach for subsurface characterization is proposed and applied to shallow vadose zone at a winery field site in north California and to a gas reservoir at the Ormen Lange field site in the North Sea. The approach is formulated in a Bayesian-stochastic framework, whereby the unknown parameters are identified in terms of their statistical moments or their probabilities. Instead of the traditional single-valued estimation /prediction provided by deterministic methods, the approach gives a probability distribution for an unknown parameter. This allows calculating the mean, the mode, and the confidence interval, which is useful for a rational treatment of uncertainty and its consequences. The approach also allows incorporating data of various types and different error levels, including measurements of state variables as well as information such as bounds on or statistical moments of the unknown parameters, which may represent prior information. To obtain minimally subjective prior probabilities required for the Bayesian approach, the principle of Minimum Relative Entropy (MRE) is employed. The approach is tested in field sites for flow parameters identification and soil moisture estimation in the vadose zone and for gas saturation estimation at great depth below the ocean floor. Results indicate the potential of coupling various types of field data within a MRE-based Bayesian formalism for improving the estimation of the parameters of interest.

  4. Conventional, Bayesian, and Modified Prony's methods for characterizing fast and slow waves in equine cancellous bone

    PubMed Central

    Groopman, Amber M.; Katz, Jonathan I.; Holland, Mark R.; Fujita, Fuminori; Matsukawa, Mami; Mizuno, Katsunori; Wear, Keith A.; Miller, James G.

    2015-01-01

    Conventional, Bayesian, and the modified least-squares Prony's plus curve-fitting (MLSP + CF) methods were applied to data acquired using 1 MHz center frequency, broadband transducers on a single equine cancellous bone specimen that was systematically shortened from 11.8 mm down to 0.5 mm for a total of 24 sample thicknesses. Due to overlapping fast and slow waves, conventional analysis methods were restricted to data from sample thicknesses ranging from 11.8 mm to 6.0 mm. In contrast, Bayesian and MLSP + CF methods successfully separated fast and slow waves and provided reliable estimates of the ultrasonic properties of fast and slow waves for sample thicknesses ranging from 11.8 mm down to 3.5 mm. Comparisons of the three methods were carried out for phase velocity at the center frequency and the slope of the attenuation coefficient for the fast and slow waves. Good agreement among the three methods was also observed for average signal loss at the center frequency. The Bayesian and MLSP + CF approaches were able to separate the fast and slow waves and provide good estimates of the fast and slow wave properties even when the two wave modes overlapped in both time and frequency domains making conventional analysis methods unreliable. PMID:26328678

  5. Collaborative autonomous sensing with Bayesians in the loop

    NASA Astrophysics Data System (ADS)

    Ahmed, Nisar

    2016-10-01

    There is a strong push to develop intelligent unmanned autonomy that complements human reasoning for applications as diverse as wilderness search and rescue, military surveillance, and robotic space exploration. More than just replacing humans for `dull, dirty and dangerous' work, autonomous agents are expected to cope with a whole host of uncertainties while working closely together with humans in new situations. The robotics revolution firmly established the primacy of Bayesian algorithms for tackling challenging perception, learning and decision-making problems. Since the next frontier of autonomy demands the ability to gather information across stretches of time and space that are beyond the reach of a single autonomous agent, the next generation of Bayesian algorithms must capitalize on opportunities to draw upon the sensing and perception abilities of humans-in/on-the-loop. This work summarizes our recent research toward harnessing `human sensors' for information gathering tasks. The basic idea behind is to allow human end users (i.e. non-experts in robotics, statistics, machine learning, etc.) to directly `talk to' the information fusion engine and perceptual processes aboard any autonomous agent. Our approach is grounded in rigorous Bayesian modeling and fusion of flexible semantic information derived from user-friendly interfaces, such as natural language chat and locative hand-drawn sketches. This naturally enables `plug and play' human sensing with existing probabilistic algorithms for planning and perception, and has been successfully demonstrated with human-robot teams in target localization applications.

  6. Genetic basis of climatic adaptation in scots pine by bayesian quantitative trait locus analysis.

    PubMed Central

    Hurme, P; Sillanpää, M J; Arjas, E; Repo, T; Savolainen, O

    2000-01-01

    We examined the genetic basis of large adaptive differences in timing of bud set and frost hardiness between natural populations of Scots pine. As a mapping population, we considered an "open-pollinated backcross" progeny by collecting seeds of a single F(1) tree (cross between trees from southern and northern Finland) growing in southern Finland. Due to the special features of the design (no marker information available on grandparents or the father), we applied a Bayesian quantitative trait locus (QTL) mapping method developed previously for outcrossed offspring. We found four potential QTL for timing of bud set and seven for frost hardiness. Bayesian analyses detected more QTL than ANOVA for frost hardiness, but the opposite was true for bud set. These QTL included alleles with rather large effects, and additionally smaller QTL were supported. The largest QTL for bud set date accounted for about a fourth of the mean difference between populations. Thus, natural selection during adaptation has resulted in selection of at least some alleles of rather large effect. PMID:11063704

  7. Efficient Bayesian experimental design for contaminant source identification

    NASA Astrophysics Data System (ADS)

    Zhang, Jiangjiang; Zeng, Lingzao; Chen, Cheng; Chen, Dingjiang; Wu, Laosheng

    2015-01-01

    In this study, an efficient full Bayesian approach is developed for the optimal sampling well location design and source parameters identification of groundwater contaminants. An information measure, i.e., the relative entropy, is employed to quantify the information gain from concentration measurements in identifying unknown parameters. In this approach, the sampling locations that give the maximum expected relative entropy are selected as the optimal design. After the sampling locations are determined, a Bayesian approach based on Markov Chain Monte Carlo (MCMC) is used to estimate unknown parameters. In both the design and estimation, the contaminant transport equation is required to be solved many times to evaluate the likelihood. To reduce the computational burden, an interpolation method based on the adaptive sparse grid is utilized to construct a surrogate for the contaminant transport equation. The approximated likelihood can be evaluated directly from the surrogate, which greatly accelerates the design and estimation process. The accuracy and efficiency of our approach are demonstrated through numerical case studies. It is shown that the methods can be used to assist in both single sampling location and monitoring network design for contaminant source identifications in groundwater.

  8. A Hierarchical Bayesian Model for Crowd Emotions

    PubMed Central

    Urizar, Oscar J.; Baig, Mirza S.; Barakova, Emilia I.; Regazzoni, Carlo S.; Marcenaro, Lucio; Rauterberg, Matthias

    2016-01-01

    Estimation of emotions is an essential aspect in developing intelligent systems intended for crowded environments. However, emotion estimation in crowds remains a challenging problem due to the complexity in which human emotions are manifested and the capability of a system to perceive them in such conditions. This paper proposes a hierarchical Bayesian model to learn in unsupervised manner the behavior of individuals and of the crowd as a single entity, and explore the relation between behavior and emotions to infer emotional states. Information about the motion patterns of individuals are described using a self-organizing map, and a hierarchical Bayesian network builds probabilistic models to identify behaviors and infer the emotional state of individuals and the crowd. This model is trained and tested using data produced from simulated scenarios that resemble real-life environments. The conducted experiments tested the efficiency of our method to learn, detect and associate behaviors with emotional states yielding accuracy levels of 74% for individuals and 81% for the crowd, similar in performance with existing methods for pedestrian behavior detection but with novel concepts regarding the analysis of crowds. PMID:27458366

  9. Exploring the full natural variability of eruption sizes within probabilistic hazard assessment of tephra dispersal

    NASA Astrophysics Data System (ADS)

    Selva, Jacopo; Sandri, Laura; Costa, Antonio; Tonini, Roberto; Folch, Arnau; Macedonio, Giovanni

    2014-05-01

    The intrinsic uncertainty and variability associated to the size of next eruption strongly affects short to long-term tephra hazard assessment. Often, emergency plans are established accounting for the effects of one or a few representative scenarios (meant as a specific combination of eruptive size and vent position), selected with subjective criteria. On the other hand, probabilistic hazard assessments (PHA) consistently explore the natural variability of such scenarios. PHA for tephra dispersal needs the definition of eruptive scenarios (usually by grouping possible eruption sizes and vent positions in classes) with associated probabilities, a meteorological dataset covering a representative time period, and a tephra dispersal model. PHA results from combining simulations considering different volcanological and meteorological conditions through a weight given by their specific probability of occurrence. However, volcanological parameters, such as erupted mass, eruption column height and duration, bulk granulometry, fraction of aggregates, typically encompass a wide range of values. Because of such a variability, single representative scenarios or size classes cannot be adequately defined using single values for the volcanological inputs. Here we propose a method that accounts for this within-size-class variability in the framework of Event Trees. The variability of each parameter is modeled with specific Probability Density Functions, and meteorological and volcanological inputs are chosen by using a stratified sampling method. This procedure allows avoiding the bias introduced by selecting single representative scenarios and thus neglecting most of the intrinsic eruptive variability. When considering within-size-class variability, attention must be paid to appropriately weight events falling within the same size class. While a uniform weight to all the events belonging to a size class is the most straightforward idea, this implies a strong dependence on the thresholds dividing classes: under this choice, the largest event of a size class has a much larger weight than the smallest event of the subsequent size class. In order to overcome this problem, in this study, we propose an innovative solution able to smoothly link the weight variability within each size class to the variability among the size classes through a common power law, and, simultaneously, respect the probability of different size classes conditional to the occurrence of an eruption. Embedding this procedure into the Bayesian Event Tree scheme enables for tephra fall PHA, quantified through hazard curves and maps representing readable results applicable in planning risk mitigation actions, and for the quantification of its epistemic uncertainties. As examples, we analyze long-term tephra fall PHA at Vesuvius and Campi Flegrei. We integrate two tephra dispersal models (the analytical HAZMAP and the numerical FALL3D) into BET_VH. The ECMWF reanalysis dataset are used for exploring different meteorological conditions. The results obtained clearly show that PHA accounting for the whole natural variability significantly differs from that based on a representative scenarios, as in volcanic hazard common practice.

  10. Effects of space radiation on electronic microcircuits

    NASA Technical Reports Server (NTRS)

    Kolasinski, W. A.

    1989-01-01

    The single event effects or phenomena (SEP), which so far have been observed as events falling on one or another of the SE classes: Single Event Upset (SEU), Single Event Latchup (SEL) and Single Event Burnout (SEB), are examined. Single event upset is defined as a lasting, reversible change in the state of a multistable (usually bistable) electronic circuit such as a flip-flop or latch. In a computer memory, SEUs manifest themselves as unexplained bit flips. Since latchup is in general caused by a single event of short duration, the single event part of the SEL term is superfluous. Nevertheless, it is used customarily to differentiate latchup due to a single heavy charged particle striking a sensitive cell from more ordinary kinds of latchup. Single event burnout (SEB) refers usually to total instantaneous failure of a power FET when struck by a single particle, with the device shorting out the power supply. An unforeseen failure of these kinds can be catastrophic to a space mission, and the possibilities are discussed.

  11. Fusion with Language Models Improves Spelling Accuracy for ERP-based Brain Computer Interface Spellers

    PubMed Central

    Orhan, Umut; Erdogmus, Deniz; Roark, Brian; Purwar, Shalini; Hild, Kenneth E.; Oken, Barry; Nezamfar, Hooman; Fried-Oken, Melanie

    2013-01-01

    Event related potentials (ERP) corresponding to a stimulus in electroencephalography (EEG) can be used to detect the intent of a person for brain computer interfaces (BCI). This paradigm is widely utilized to build letter-by-letter text input systems using BCI. Nevertheless using a BCI-typewriter depending only on EEG responses will not be sufficiently accurate for single-trial operation in general, and existing systems utilize many-trial schemes to achieve accuracy at the cost of speed. Hence incorporation of a language model based prior or additional evidence is vital to improve accuracy and speed. In this paper, we study the effects of Bayesian fusion of an n-gram language model with a regularized discriminant analysis ERP detector for EEG-based BCIs. The letter classification accuracies are rigorously evaluated for varying language model orders as well as number of ERP-inducing trials. The results demonstrate that the language models contribute significantly to letter classification accuracy. Specifically, we find that a BCI-speller supported by a 4-gram language model may achieve the same performance using 3-trial ERP classification for the initial letters of the words and using single trial ERP classification for the subsequent ones. Overall, fusion of evidence from EEG and language models yields a significant opportunity to increase the word rate of a BCI based typing system. PMID:22255652

  12. Bayesian whole-genome prediction and genome-wide association analysis with missing genotypes using variable selection

    USDA-ARS?s Scientific Manuscript database

    Single-step Genomic Best Linear Unbiased Predictor (ssGBLUP) has become increasingly popular for whole-genome prediction (WGP) modeling as it utilizes any available pedigree and phenotypes on both genotyped and non-genotyped individuals. The WGP accuracy of ssGBLUP has been demonstrated to be greate...

  13. Bayesian Estimation and Inference Using Stochastic Electronics

    PubMed Central

    Thakur, Chetan Singh; Afshar, Saeed; Wang, Runchun M.; Hamilton, Tara J.; Tapson, Jonathan; van Schaik, André

    2016-01-01

    In this paper, we present the implementation of two types of Bayesian inference problems to demonstrate the potential of building probabilistic algorithms in hardware using single set of building blocks with the ability to perform these computations in real time. The first implementation, referred to as the BEAST (Bayesian Estimation and Stochastic Tracker), demonstrates a simple problem where an observer uses an underlying Hidden Markov Model (HMM) to track a target in one dimension. In this implementation, sensors make noisy observations of the target position at discrete time steps. The tracker learns the transition model for target movement, and the observation model for the noisy sensors, and uses these to estimate the target position by solving the Bayesian recursive equation online. We show the tracking performance of the system and demonstrate how it can learn the observation model, the transition model, and the external distractor (noise) probability interfering with the observations. In the second implementation, referred to as the Bayesian INference in DAG (BIND), we show how inference can be performed in a Directed Acyclic Graph (DAG) using stochastic circuits. We show how these building blocks can be easily implemented using simple digital logic gates. An advantage of the stochastic electronic implementation is that it is robust to certain types of noise, which may become an issue in integrated circuit (IC) technology with feature sizes in the order of tens of nanometers due to their low noise margin, the effect of high-energy cosmic rays and the low supply voltage. In our framework, the flipping of random individual bits would not affect the system performance because information is encoded in a bit stream. PMID:27047326

  14. Substantial advantage of a combined Bayesian and genotyping approach in testosterone doping tests.

    PubMed

    Schulze, Jenny Jakobsson; Lundmark, Jonas; Garle, Mats; Ekström, Lena; Sottas, Pierre-Edouard; Rane, Anders

    2009-03-01

    Testosterone abuse is conventionally assessed by the urinary testosterone/epitestosterone (T/E) ratio, levels above 4.0 being considered suspicious. A deletion polymorphism in the gene coding for UGT2B17 is strongly associated with reduced testosterone glucuronide (TG) levels in urine. Many of the individuals devoid of the gene would not reach a T/E ratio of 4.0 after testosterone intake. Future test programs will most likely shift from population based- to individual-based T/E cut-off ratios using Bayesian inference. A longitudinal analysis is dependent on an individual's true negative baseline T/E ratio. The aim was to investigate whether it is possible to increase the sensitivity and specificity of the T/E test by addition of UGT2B17 genotype information in a Bayesian framework. A single intramuscular dose of 500mg testosterone enanthate was given to 55 healthy male volunteers with either two, one or no allele (ins/ins, ins/del or del/del) of the UGT2B17 gene. Urinary excretion of TG and the T/E ratio was measured during 15 days. The Bayesian analysis was conducted to calculate the individual T/E cut-off ratio. When adding the genotype information, the program returned lower individual cut-off ratios in all del/del subjects increasing the sensitivity of the test considerably. It will be difficult, if not impossible, to discriminate between a true negative baseline T/E value and a false negative one without knowledge of the UGT2B17 genotype. UGT2B17 genotype information is crucial, both to decide which initial cut-off ratio to use for an individual, and for increasing the sensitivity of the Bayesian analysis.

  15. Bayesian Estimation and Inference Using Stochastic Electronics.

    PubMed

    Thakur, Chetan Singh; Afshar, Saeed; Wang, Runchun M; Hamilton, Tara J; Tapson, Jonathan; van Schaik, André

    2016-01-01

    In this paper, we present the implementation of two types of Bayesian inference problems to demonstrate the potential of building probabilistic algorithms in hardware using single set of building blocks with the ability to perform these computations in real time. The first implementation, referred to as the BEAST (Bayesian Estimation and Stochastic Tracker), demonstrates a simple problem where an observer uses an underlying Hidden Markov Model (HMM) to track a target in one dimension. In this implementation, sensors make noisy observations of the target position at discrete time steps. The tracker learns the transition model for target movement, and the observation model for the noisy sensors, and uses these to estimate the target position by solving the Bayesian recursive equation online. We show the tracking performance of the system and demonstrate how it can learn the observation model, the transition model, and the external distractor (noise) probability interfering with the observations. In the second implementation, referred to as the Bayesian INference in DAG (BIND), we show how inference can be performed in a Directed Acyclic Graph (DAG) using stochastic circuits. We show how these building blocks can be easily implemented using simple digital logic gates. An advantage of the stochastic electronic implementation is that it is robust to certain types of noise, which may become an issue in integrated circuit (IC) technology with feature sizes in the order of tens of nanometers due to their low noise margin, the effect of high-energy cosmic rays and the low supply voltage. In our framework, the flipping of random individual bits would not affect the system performance because information is encoded in a bit stream.

  16. Reference analysis of the signal + background model in counting experiments

    NASA Astrophysics Data System (ADS)

    Casadei, D.

    2012-01-01

    The model representing two independent Poisson processes, labelled as ``signal'' and ``background'' and both contributing additively to the total number of counted events, is considered from a Bayesian point of view. This is a widely used model for the searches of rare or exotic events in presence of a background source, as for example in the searches performed by high-energy physics experiments. In the assumption of prior knowledge about the background yield, a reference prior is obtained for the signal alone and its properties are studied. Finally, the properties of the full solution, the marginal reference posterior, are illustrated with few examples.

  17. Jump spillover between oil prices and exchange rates

    NASA Astrophysics Data System (ADS)

    Li, Xiao-Ping; Zhou, Chun-Yang; Wu, Chong-Feng

    2017-11-01

    In this paper, we investigate the jump spillover effects between oil prices and exchange rates. To identify the latent historical jumps for exchange rates and oil prices, we use a Bayesian MCMC approach to estimate the stochastic volatility model with correlated jumps in both returns and volatilities for each. We examine the simultaneous jump intensities and the conditional jump spillover probabilities between oil prices and exchange rates, finding strong evidence of jump spillover effects. Further analysis shows that the jump spillovers are mainly due to exogenous events such as financial crises and geopolitical events. Thus, the findings have important implications for financial risk management.

  18. Meta-analysis of the effect of natural frequencies on Bayesian reasoning.

    PubMed

    McDowell, Michelle; Jacobs, Perke

    2017-12-01

    The natural frequency facilitation effect describes the finding that people are better able to solve descriptive Bayesian inference tasks when represented as joint frequencies obtained through natural sampling, known as natural frequencies, than as conditional probabilities. The present meta-analysis reviews 20 years of research seeking to address when, why, and for whom natural frequency formats are most effective. We review contributions from research associated with the 2 dominant theoretical perspectives, the ecological rationality framework and nested-sets theory, and test potential moderators of the effect. A systematic review of relevant literature yielded 35 articles representing 226 performance estimates. These estimates were statistically integrated using a bivariate mixed-effects model that yields summary estimates of average performances across the 2 formats and estimates of the effects of different study characteristics on performance. These study characteristics range from moderators representing individual characteristics (e.g., numeracy, expertise), to methodological differences (e.g., use of incentives, scoring criteria) and features of problem representation (e.g., short menu format, visual aid). Short menu formats (less computationally complex representations showing joint-events) and visual aids demonstrated some of the strongest moderation effects, improving performance for both conditional probability and natural frequency formats. A number of methodological factors (e.g., exposure to both problem formats) were also found to affect performance rates, emphasizing the importance of a systematic approach. We suggest how research on Bayesian reasoning can be strengthened by broadening the definition of successful Bayesian reasoning to incorporate choice and process and by applying different research methodologies. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  19. A Bayesian CUSUM plot: Diagnosing quality of treatment.

    PubMed

    Rosthøj, Steen; Jacobsen, Rikke-Line

    2017-12-01

    To present a CUSUM plot based on Bayesian diagnostic reasoning displaying evidence in favour of "healthy" rather than "sick" quality of treatment (QOT), and to demonstrate a technique using Kaplan-Meier survival curves permitting application to case series with ongoing follow-up. For a case series with known final outcomes: Consider each case a diagnostic test of good versus poor QOT (expected vs. increased failure rates), determine the likelihood ratio (LR) of the observed outcome, convert LR to weight taking log to base 2, and add up weights sequentially in a plot showing how many times odds in favour of good QOT have been doubled. For a series with observed survival times and an expected survival curve: Divide the curve into time intervals, determine "healthy" and specify "sick" risks of failure in each interval, construct a "sick" survival curve, determine the LR of survival or failure at the given observation times, convert to weights, and add up. The Bayesian plot was applied retrospectively to 39 children with acute lymphoblastic leukaemia with completed follow-up, using Nordic collaborative results as reference, showing equal odds between good and poor QOT. In the ongoing treatment trial, with 22 of 37 children still at risk for event, QOT has been monitored with average survival curves as reference, odds so far favoring good QOT 2:1. QOT in small patient series can be assessed with a Bayesian CUSUM plot, retrospectively when all treatment outcomes are known, but also in ongoing series with unfinished follow-up. © 2017 John Wiley & Sons, Ltd.

  20. None of the above: A Bayesian account of the detection of novel categories.

    PubMed

    Navarro, Daniel J; Kemp, Charles

    2017-10-01

    Every time we encounter a new object, action, or event, there is some chance that we will need to assign it to a novel category. We describe and evaluate a class of probabilistic models that detect when an object belongs to a category that has not previously been encountered. The models incorporate a prior distribution that is influenced by the distribution of previous objects among categories, and we present 2 experiments that demonstrate that people are also sensitive to this distributional information. Two additional experiments confirm that distributional information is combined with similarity when both sources of information are available. We compare our approach to previous models of unsupervised categorization and to several heuristic-based models, and find that a hierarchical Bayesian approach provides the best account of our data. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  1. A Bayesian modelling framework for tornado occurrences in North America

    NASA Astrophysics Data System (ADS)

    Cheng, Vincent Y. S.; Arhonditsis, George B.; Sills, David M. L.; Gough, William A.; Auld, Heather

    2015-03-01

    Tornadoes represent one of nature’s most hazardous phenomena that have been responsible for significant destruction and devastating fatalities. Here we present a Bayesian modelling approach for elucidating the spatiotemporal patterns of tornado activity in North America. Our analysis shows a significant increase in the Canadian Prairies and the Northern Great Plains during the summer, indicating a clear transition of tornado activity from the United States to Canada. The linkage between monthly-averaged atmospheric variables and likelihood of tornado events is characterized by distinct seasonality; the convective available potential energy is the predominant factor in the summer; vertical wind shear appears to have a strong signature primarily in the winter and secondarily in the summer; and storm relative environmental helicity is most influential in the spring. The present probabilistic mapping can be used to draw inference on the likelihood of tornado occurrence in any location in North America within a selected time period of the year.

  2. A Bayesian modelling framework for tornado occurrences in North America.

    PubMed

    Cheng, Vincent Y S; Arhonditsis, George B; Sills, David M L; Gough, William A; Auld, Heather

    2015-03-25

    Tornadoes represent one of nature's most hazardous phenomena that have been responsible for significant destruction and devastating fatalities. Here we present a Bayesian modelling approach for elucidating the spatiotemporal patterns of tornado activity in North America. Our analysis shows a significant increase in the Canadian Prairies and the Northern Great Plains during the summer, indicating a clear transition of tornado activity from the United States to Canada. The linkage between monthly-averaged atmospheric variables and likelihood of tornado events is characterized by distinct seasonality; the convective available potential energy is the predominant factor in the summer; vertical wind shear appears to have a strong signature primarily in the winter and secondarily in the summer; and storm relative environmental helicity is most influential in the spring. The present probabilistic mapping can be used to draw inference on the likelihood of tornado occurrence in any location in North America within a selected time period of the year.

  3. Real-time Bayesian anomaly detection in streaming environmental data

    NASA Astrophysics Data System (ADS)

    Hill, David J.; Minsker, Barbara S.; Amir, Eyal

    2009-04-01

    With large volumes of data arriving in near real time from environmental sensors, there is a need for automated detection of anomalous data caused by sensor or transmission errors or by infrequent system behaviors. This study develops and evaluates three automated anomaly detection methods using dynamic Bayesian networks (DBNs), which perform fast, incremental evaluation of data as they become available, scale to large quantities of data, and require no a priori information regarding process variables or types of anomalies that may be encountered. This study investigates these methods' abilities to identify anomalies in eight meteorological data streams from Corpus Christi, Texas. The results indicate that DBN-based detectors, using either robust Kalman filtering or Rao-Blackwellized particle filtering, outperform a DBN-based detector using Kalman filtering, with the former having false positive/negative rates of less than 2%. These methods were successful at identifying data anomalies caused by two real events: a sensor failure and a large storm.

  4. Implementation of a Bayesian design in a dose-escalation study of an experimental agent in healthy volunteers.

    PubMed

    Zhou, Yinghui; Whitehead, John; Korhonen, Pasi; Mustonen, Mika

    2008-03-01

    Bayesian decision procedures have recently been developed for dose escalation in phase I clinical trials concerning pharmacokinetic responses observed in healthy volunteers. This article describes how that general methodology was extended and evaluated for implementation in a specific phase I trial of a novel compound. At the time of writing, the study is ongoing, and it will be some time before the sponsor will wish to put the results into the public domain. This article is an account of how the study was designed in a way that should prove to be safe, accurate, and efficient whatever the true nature of the compound. The study involves the observation of two pharmacokinetic endpoints relating to the plasma concentration of the compound itself and of a metabolite as well as a safety endpoint relating to the occurrence of adverse events. Construction of the design and its evaluation via simulation are presented.

  5. Gaussian process surrogates for failure detection: A Bayesian experimental design approach

    NASA Astrophysics Data System (ADS)

    Wang, Hongqiao; Lin, Guang; Li, Jinglai

    2016-05-01

    An important task of uncertainty quantification is to identify the probability of undesired events, in particular, system failures, caused by various sources of uncertainties. In this work we consider the construction of Gaussian process surrogates for failure detection and failure probability estimation. In particular, we consider the situation that the underlying computer models are extremely expensive, and in this setting, determining the sampling points in the state space is of essential importance. We formulate the problem as an optimal experimental design for Bayesian inferences of the limit state (i.e., the failure boundary) and propose an efficient numerical scheme to solve the resulting optimization problem. In particular, the proposed limit-state inference method is capable of determining multiple sampling points at a time, and thus it is well suited for problems where multiple computer simulations can be performed in parallel. The accuracy and performance of the proposed method is demonstrated by both academic and practical examples.

  6. Bayesian function-on-function regression for multilevel functional data.

    PubMed

    Meyer, Mark J; Coull, Brent A; Versace, Francesco; Cinciripini, Paul; Morris, Jeffrey S

    2015-09-01

    Medical and public health research increasingly involves the collection of complex and high dimensional data. In particular, functional data-where the unit of observation is a curve or set of curves that are finely sampled over a grid-is frequently obtained. Moreover, researchers often sample multiple curves per person resulting in repeated functional measures. A common question is how to analyze the relationship between two functional variables. We propose a general function-on-function regression model for repeatedly sampled functional data on a fine grid, presenting a simple model as well as a more extensive mixed model framework, and introducing various functional Bayesian inferential procedures that account for multiple testing. We examine these models via simulation and a data analysis with data from a study that used event-related potentials to examine how the brain processes various types of images. © 2015, The International Biometric Society.

  7. A Bayesian hierarchical model with spatial variable selection: the effect of weather on insurance claims

    PubMed Central

    Scheel, Ida; Ferkingstad, Egil; Frigessi, Arnoldo; Haug, Ola; Hinnerichsen, Mikkel; Meze-Hausken, Elisabeth

    2013-01-01

    Climate change will affect the insurance industry. We develop a Bayesian hierarchical statistical approach to explain and predict insurance losses due to weather events at a local geographic scale. The number of weather-related insurance claims is modelled by combining generalized linear models with spatially smoothed variable selection. Using Gibbs sampling and reversible jump Markov chain Monte Carlo methods, this model is fitted on daily weather and insurance data from each of the 319 municipalities which constitute southern and central Norway for the period 1997–2006. Precise out-of-sample predictions validate the model. Our results show interesting regional patterns in the effect of different weather covariates. In addition to being useful for insurance pricing, our model can be used for short-term predictions based on weather forecasts and for long-term predictions based on downscaled climate models. PMID:23396890

  8. Spatiotemporal analysis and mapping of oral cancer risk in changhua county (taiwan): an application of generalized bayesian maximum entropy method.

    PubMed

    Yu, Hwa-Lung; Chiang, Chi-Ting; Lin, Shu-De; Chang, Tsun-Kuo

    2010-02-01

    Incidence rate of oral cancer in Changhua County is the highest among the 23 counties of Taiwan during 2001. However, in health data analysis, crude or adjusted incidence rates of a rare event (e.g., cancer) for small populations often exhibit high variances and are, thus, less reliable. We proposed a generalized Bayesian Maximum Entropy (GBME) analysis of spatiotemporal disease mapping under conditions of considerable data uncertainty. GBME was used to study the oral cancer population incidence in Changhua County (Taiwan). Methodologically, GBME is based on an epistematics principles framework and generates spatiotemporal estimates of oral cancer incidence rates. In a way, it accounts for the multi-sourced uncertainty of rates, including small population effects, and the composite space-time dependence of rare events in terms of an extended Poisson-based semivariogram. The results showed that GBME analysis alleviates the noises of oral cancer data from population size effect. Comparing to the raw incidence data, the maps of GBME-estimated results can identify high risk oral cancer regions in Changhua County, where the prevalence of betel quid chewing and cigarette smoking is relatively higher than the rest of the areas. GBME method is a valuable tool for spatiotemporal disease mapping under conditions of uncertainty. 2010 Elsevier Inc. All rights reserved.

  9. Statistical Symbolic Execution with Informed Sampling

    NASA Technical Reports Server (NTRS)

    Filieri, Antonio; Pasareanu, Corina S.; Visser, Willem; Geldenhuys, Jaco

    2014-01-01

    Symbolic execution techniques have been proposed recently for the probabilistic analysis of programs. These techniques seek to quantify the likelihood of reaching program events of interest, e.g., assert violations. They have many promising applications but have scalability issues due to high computational demand. To address this challenge, we propose a statistical symbolic execution technique that performs Monte Carlo sampling of the symbolic program paths and uses the obtained information for Bayesian estimation and hypothesis testing with respect to the probability of reaching the target events. To speed up the convergence of the statistical analysis, we propose Informed Sampling, an iterative symbolic execution that first explores the paths that have high statistical significance, prunes them from the state space and guides the execution towards less likely paths. The technique combines Bayesian estimation with a partial exact analysis for the pruned paths leading to provably improved convergence of the statistical analysis. We have implemented statistical symbolic execution with in- formed sampling in the Symbolic PathFinder tool. We show experimentally that the informed sampling obtains more precise results and converges faster than a purely statistical analysis and may also be more efficient than an exact symbolic analysis. When the latter does not terminate symbolic execution with informed sampling can give meaningful results under the same time and memory limits.

  10. Determining Crust and Upper Mantle Structure by Bayesian Joint Inversion of Receiver Functions and Surface Wave Dispersion at a Single Station: Preparation for Data from the InSight Mission

    NASA Astrophysics Data System (ADS)

    Jia, M.; Panning, M. P.; Lekic, V.; Gao, C.

    2017-12-01

    The InSight (Interior Exploration using Seismic Investigations, Geodesy and Heat Transport) mission will deploy a geophysical station on Mars in 2018. Using seismology to explore the interior structure of the Mars is one of the main targets, and as part of the mission, we will use 3-component seismic data to constrain the crust and upper mantle structure including P and S wave velocities and densities underneath the station. We will apply a reversible jump Markov chain Monte Carlo algorithm in the transdimensional hierarchical Bayesian inversion framework, in which the number of parameters in the model space and the noise level of the observed data are also treated as unknowns in the inversion process. Bayesian based methods produce an ensemble of models which can be analyzed to quantify uncertainties and trade-offs of the model parameters. In order to get better resolution, we will simultaneously invert three different types of seismic data: receiver functions, surface wave dispersion (SWD), and ZH ratios. Because the InSight mission will only deliver a single seismic station to Mars, and both the source location and the interior structure will be unknown, we will jointly invert the ray parameter in our approach. In preparation for this work, we first verify our approach by using a set of synthetic data. We find that SWD can constrain the absolute value of velocities while receiver functions constrain the discontinuities. By joint inversion, the velocity structure in the crust and upper mantle is well recovered. Then, we apply our approach to real data from an earth-based seismic station BFO located in Black Forest Observatory in Germany, as already used in a demonstration study for single station location methods. From the comparison of the results, our hierarchical treatment shows its advantage over the conventional method in which the noise level of observed data is fixed as a prior.

  11. Functional Multi-Locus QTL Mapping of Temporal Trends in Scots Pine Wood Traits

    PubMed Central

    Li, Zitong; Hallingbäck, Henrik R.; Abrahamsson, Sara; Fries, Anders; Gull, Bengt Andersson; Sillanpää, Mikko J.; García-Gil, M. Rosario

    2014-01-01

    Quantitative trait loci (QTL) mapping of wood properties in conifer species has focused on single time point measurements or on trait means based on heterogeneous wood samples (e.g., increment cores), thus ignoring systematic within-tree trends. In this study, functional QTL mapping was performed for a set of important wood properties in increment cores from a 17-yr-old Scots pine (Pinus sylvestris L.) full-sib family with the aim of detecting wood trait QTL for general intercepts (means) and for linear slopes by increasing cambial age. Two multi-locus functional QTL analysis approaches were proposed and their performances were compared on trait datasets comprising 2 to 9 time points, 91 to 455 individual tree measurements and genotype datasets of amplified length polymorphisms (AFLP), and single nucleotide polymorphism (SNP) markers. The first method was a multilevel LASSO analysis whereby trend parameter estimation and QTL mapping were conducted consecutively; the second method was our Bayesian linear mixed model whereby trends and underlying genetic effects were estimated simultaneously. We also compared several different hypothesis testing methods under either the LASSO or the Bayesian framework to perform QTL inference. In total, five and four significant QTL were observed for the intercepts and slopes, respectively, across wood traits such as earlywood percentage, wood density, radial fiberwidth, and spiral grain angle. Four of these QTL were represented by candidate gene SNPs, thus providing promising targets for future research in QTL mapping and molecular function. Bayesian and LASSO methods both detected similar sets of QTL given datasets that comprised large numbers of individuals. PMID:25305041

  12. Functional multi-locus QTL mapping of temporal trends in Scots pine wood traits.

    PubMed

    Li, Zitong; Hallingbäck, Henrik R; Abrahamsson, Sara; Fries, Anders; Gull, Bengt Andersson; Sillanpää, Mikko J; García-Gil, M Rosario

    2014-10-09

    Quantitative trait loci (QTL) mapping of wood properties in conifer species has focused on single time point measurements or on trait means based on heterogeneous wood samples (e.g., increment cores), thus ignoring systematic within-tree trends. In this study, functional QTL mapping was performed for a set of important wood properties in increment cores from a 17-yr-old Scots pine (Pinus sylvestris L.) full-sib family with the aim of detecting wood trait QTL for general intercepts (means) and for linear slopes by increasing cambial age. Two multi-locus functional QTL analysis approaches were proposed and their performances were compared on trait datasets comprising 2 to 9 time points, 91 to 455 individual tree measurements and genotype datasets of amplified length polymorphisms (AFLP), and single nucleotide polymorphism (SNP) markers. The first method was a multilevel LASSO analysis whereby trend parameter estimation and QTL mapping were conducted consecutively; the second method was our Bayesian linear mixed model whereby trends and underlying genetic effects were estimated simultaneously. We also compared several different hypothesis testing methods under either the LASSO or the Bayesian framework to perform QTL inference. In total, five and four significant QTL were observed for the intercepts and slopes, respectively, across wood traits such as earlywood percentage, wood density, radial fiberwidth, and spiral grain angle. Four of these QTL were represented by candidate gene SNPs, thus providing promising targets for future research in QTL mapping and molecular function. Bayesian and LASSO methods both detected similar sets of QTL given datasets that comprised large numbers of individuals. Copyright © 2014 Li et al.

  13. Bootstrap study of genome-enabled prediction reliabilities using haplotype blocks across Nordic Red cattle breeds.

    PubMed

    Cuyabano, B C D; Su, G; Rosa, G J M; Lund, M S; Gianola, D

    2015-10-01

    This study compared the accuracy of genome-enabled prediction models using individual single nucleotide polymorphisms (SNP) or haplotype blocks as covariates when using either a single breed or a combined population of Nordic Red cattle. The main objective was to compare predictions of breeding values of complex traits using a combined training population with haplotype blocks, with predictions using a single breed as training population and individual SNP as predictors. To compare the prediction reliabilities, bootstrap samples were taken from the test data set. With the bootstrapped samples of prediction reliabilities, we built and graphed confidence ellipses to allow comparisons. Finally, measures of statistical distances were used to calculate the gain in predictive ability. Our analyses are innovative in the context of assessment of predictive models, allowing a better understanding of prediction reliabilities and providing a statistical basis to effectively calibrate whether one prediction scenario is indeed more accurate than another. An ANOVA indicated that use of haplotype blocks produced significant gains mainly when Bayesian mixture models were used but not when Bayesian BLUP was fitted to the data. Furthermore, when haplotype blocks were used to train prediction models in a combined Nordic Red cattle population, we obtained up to a statistically significant 5.5% average gain in prediction accuracy, over predictions using individual SNP and training the model with a single breed. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  14. Single molecule force spectroscopy at high data acquisition: A Bayesian nonparametric analysis

    NASA Astrophysics Data System (ADS)

    Sgouralis, Ioannis; Whitmore, Miles; Lapidus, Lisa; Comstock, Matthew J.; Pressé, Steve

    2018-03-01

    Bayesian nonparametrics (BNPs) are poised to have a deep impact in the analysis of single molecule data as they provide posterior probabilities over entire models consistent with the supplied data, not just model parameters of one preferred model. Thus they provide an elegant and rigorous solution to the difficult problem encountered when selecting an appropriate candidate model. Nevertheless, BNPs' flexibility to learn models and their associated parameters from experimental data is a double-edged sword. Most importantly, BNPs are prone to increasing the complexity of the estimated models due to artifactual features present in time traces. Thus, because of experimental challenges unique to single molecule methods, naive application of available BNP tools is not possible. Here we consider traces with time correlations and, as a specific example, we deal with force spectroscopy traces collected at high acquisition rates. While high acquisition rates are required in order to capture dwells in short-lived molecular states, in this setup, a slow response of the optical trap instrumentation (i.e., trapped beads, ambient fluid, and tethering handles) distorts the molecular signals introducing time correlations into the data that may be misinterpreted as true states by naive BNPs. Our adaptation of BNP tools explicitly takes into consideration these response dynamics, in addition to drift and noise, and makes unsupervised time series analysis of correlated single molecule force spectroscopy measurements possible, even at acquisition rates similar to or below the trap's response times.

  15. Seismic Characterization of the Newberry and Cooper Basin EGS Sites

    NASA Astrophysics Data System (ADS)

    Templeton, D. C.; Wang, J.; Goebel, M.; Johannesson, G.; Myers, S. C.; Harris, D.; Cladouhos, T. T.

    2015-12-01

    To aid in the seismic characterization of Engineered Geothermal Systems (EGS), we enhance traditional microearthquake detection and location methodologies at two EGS systems: the Newberry EGS site and the Habanero EGS site in the Cooper Basin of South Australia. We apply the Matched Field Processing (MFP) seismic imaging technique to detect new seismic events using known discrete microearthquake sources. Events identified using MFP typically have smaller magnitudes or occur within the coda of a larger event. Additionally, we apply a Bayesian multiple-event location algorithm, called MicroBayesLoc, to estimate the 95% probability ellipsoids for events with high signal-to-noise ratios (SNR). Such probability ellipsoid information can provide evidence for determining if a seismic lineation is real, or simply within the anticipated error range. At the Newberry EGS site, 235 events were reported in the original catalog. MFP identified 164 additional events (an increase of over 70% more events). For the relocated events in the Newberry catalog, we can distinguish two distinct seismic swarms that fall outside of one another's 95% probability error ellipsoids.This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  16. DETECTORS AND EXPERIMENTAL METHODS: Equivalent properties of single event burnout induced by different sources

    NASA Astrophysics Data System (ADS)

    Yang, Shi-Yu; Cao, Zhou; Da, Dao-An; Xue, Yu-Xiong

    2009-05-01

    The experimental results of single event burnout induced by heavy ions and 252Cf fission fragments in power MOSFET devices have been investigated. It is concluded that the characteristics of single event burnout induced by 252Cf fission fragments is consistent to that in heavy ions. The power MOSFET in the “turn-off" state is more susceptible to single event burnout than it is in the “turn-on" state. The thresholds of the drain-source voltage for single event burnout induced by 173 MeV bromine ions and 252Cf fission fragments are close to each other, and the burnout cross section is sensitive to variation of the drain-source voltage above the threshold of single event burnout. In addition, the current waveforms of single event burnouts induced by different sources are similar. Different power MOSFET devices may have different probabilities for the occurrence of single event burnout.

  17. HIV Migration Between Blood and Cerebrospinal Fluid or Semen Over Time

    PubMed Central

    Chaillon, Antoine; Gianella, Sara; Wertheim, Joel O.; Richman, Douglas D.; Mehta, Sanjay R.; Smith, David M.

    2014-01-01

    Previous studies reported associations between neuropathogenesis and human immunodeficiency virus (HIV) compartmentalization in cerebrospinal fluid (CSF) and between sexual transmission and human immunodeficiency virus type 1 (HIV) compartmentalization in semen. It remains unclear, however, how compartmentalization dynamics change over time. To address this, we used statistical methods and Bayesian phylogenetic approaches to reconstruct temporal dynamics of HIV migration between blood and CSF and between blood and the male genital tract. We investigated 11 HIV-infected individuals with paired semen and blood samples and 4 individuals with paired CSF and blood samples. Aligned partial HIV env sequences were analyzed by (1) phylogenetic reconstruction, using a Bayesian Markov-chain Monte Carlo approach; (2) evaluation of viral compartmentalization, using tree-based and distance-based methods; and (3) analysis of migration events, using a discrete Bayesian asymmetric phylogeographic approach of diffusion with Markov jump counts estimation. Finally, we evaluated potential correlates of viral gene flow across anatomical compartments. We observed bidirectional replenishment of viral compartments and asynchronous peaks of viral migration from and to blood over time, suggesting that disruption of viral compartment is transient and directionally selected. These findings imply that viral subpopulations in anatomical sites are an active part of the whole viral population and that compartmental reservoirs could have implications in future eradication studies. PMID:24302756

  18. Detection of cylinder unbalance from Bayesian inference combining cylinder pressure and vibration block measurement in a Diesel engine

    NASA Astrophysics Data System (ADS)

    Nguyen, Emmanuel; Antoni, Jerome; Grondin, Olivier

    2009-12-01

    In the automotive industry, the necessary reduction of pollutant emission for new Diesel engines requires the control of combustion events. This control is efficient provided combustion parameters such as combustion occurrence and combustion energy are relevant. Combustion parameters are traditionally measured from cylinder pressure sensors. However this kind of sensor is expensive and has a limited lifetime. Thus this paper proposes to use only one cylinder pressure on a multi-cylinder engine and to extract combustion parameters from the other cylinders with low cost knock sensors. Knock sensors measure the vibration circulating on the engine block, hence they do not all contain the information on the combustion processes, but they are also contaminated by other mechanical noises that disorder the signal. The question is how to combine the information coming from one cylinder pressure and knock sensors to obtain the most relevant combustion parameters in all engine cylinders. In this paper, the issue is addressed trough the Bayesian inference formalism. In that cylinder where a cylinder pressure sensor is mounted, combustion parameters will be measured directly. In the other cylinders, they will be measured indirectly from Bayesian inference. Experimental results obtained on a four cylinder Diesel engine demonstrate the effectiveness of the proposed algorithm toward that purpose.

  19. [Reliability theory based on quality risk network analysis for Chinese medicine injection].

    PubMed

    Li, Zheng; Kang, Li-Yuan; Fan, Xiao-Hui

    2014-08-01

    A new risk analysis method based upon reliability theory was introduced in this paper for the quality risk management of Chinese medicine injection manufacturing plants. The risk events including both cause and effect ones were derived in the framework as nodes with a Bayesian network analysis approach. It thus transforms the risk analysis results from failure mode and effect analysis (FMEA) into a Bayesian network platform. With its structure and parameters determined, the network can be used to evaluate the system reliability quantitatively with probabilistic analytical appraoches. Using network analysis tools such as GeNie and AgenaRisk, we are able to find the nodes that are most critical to influence the system reliability. The importance of each node to the system can be quantitatively evaluated by calculating the effect of the node on the overall risk, and minimization plan can be determined accordingly to reduce their influences and improve the system reliability. Using the Shengmai injection manufacturing plant of SZYY Ltd as a user case, we analyzed the quality risk with both static FMEA analysis and dynamic Bayesian Network analysis. The potential risk factors for the quality of Shengmai injection manufacturing were identified with the network analysis platform. Quality assurance actions were further defined to reduce the risk and improve the product quality.

  20. A Bayesian Approach to the Paleomagnetic Conglomerate Test

    NASA Astrophysics Data System (ADS)

    Heslop, David; Roberts, Andrew P.

    2018-02-01

    The conglomerate test has served the paleomagnetic community for over 60 years as a means to detect remagnetizations. The test states that if a suite of clasts within a bed have uniformly random paleomagnetic directions, then the conglomerate cannot have experienced a pervasive event that remagnetized the clasts in the same direction. The current form of the conglomerate test is based on null hypothesis testing, which results in a binary "pass" (uniformly random directions) or "fail" (nonrandom directions) outcome. We have recast the conglomerate test in a Bayesian framework with the aim of providing more information concerning the level of support a given data set provides for a hypothesis of uniformly random paleomagnetic directions. Using this approach, we place the conglomerate test in a fully probabilistic framework that allows for inconclusive results when insufficient information is available to draw firm conclusions concerning the randomness or nonrandomness of directions. With our method, sample sets larger than those typically employed in paleomagnetism may be required to achieve strong support for a hypothesis of random directions. Given the potentially detrimental effect of unrecognized remagnetizations on paleomagnetic reconstructions, it is important to provide a means to draw statistically robust data-driven inferences. Our Bayesian analysis provides a means to do this for the conglomerate test.

  1. We introduce an algorithm for the simultaneous reconstruction of faults and slip fields. We prove that the minimum of a related regularized functional converges to the unique solution of the fault inverse problem. We consider a Bayesian approach. We use a parallel multi-core platform and we discuss techniques to save on computational time.

    NASA Astrophysics Data System (ADS)

    Volkov, D.

    2017-12-01

    We introduce an algorithm for the simultaneous reconstruction of faults and slip fields on those faults. We define a regularized functional to be minimized for the reconstruction. We prove that the minimum of that functional converges to the unique solution of the related fault inverse problem. Due to inherent uncertainties in measurements, rather than seeking a deterministic solution to the fault inverse problem, we consider a Bayesian approach. The advantage of such an approach is that we obtain a way of quantifying uncertainties as part of our final answer. On the downside, this Bayesian approach leads to a very large computation. To contend with the size of this computation we developed an algorithm for the numerical solution to the stochastic minimization problem which can be easily implemented on a parallel multi-core platform and we discuss techniques to save on computational time. After showing how this algorithm performs on simulated data and assessing the effect of noise, we apply it to measured data. The data was recorded during a slow slip event in Guerrero, Mexico.

  2. Kinematic Structural Modelling in Bayesian Networks

    NASA Astrophysics Data System (ADS)

    Schaaf, Alexander; de la Varga, Miguel; Florian Wellmann, J.

    2017-04-01

    We commonly capture our knowledge about the spatial distribution of distinct geological lithologies in the form of 3-D geological models. Several methods exist to create these models, each with its own strengths and limitations. We present here an approach to combine the functionalities of two modeling approaches - implicit interpolation and kinematic modelling methods - into one framework, while explicitly considering parameter uncertainties and thus model uncertainty. In recent work, we proposed an approach to implement implicit modelling algorithms into Bayesian networks. This was done to address the issues of input data uncertainty and integration of geological information from varying sources in the form of geological likelihood functions. However, one general shortcoming of implicit methods is that they usually do not take any physical constraints into consideration, which can result in unrealistic model outcomes and artifacts. On the other hand, kinematic structural modelling intends to reconstruct the history of a geological system based on physically driven kinematic events. This type of modelling incorporates simplified, physical laws into the model, at the cost of a substantial increment of usable uncertain parameters. In the work presented here, we show an integration of these two different modelling methodologies, taking advantage of the strengths of both of them. First, we treat the two types of models separately, capturing the information contained in the kinematic models and their specific parameters in the form of likelihood functions, in order to use them in the implicit modelling scheme. We then go further and combine the two modelling approaches into one single Bayesian network. This enables the direct flow of information between the parameters of the kinematic modelling step and the implicit modelling step and links the exclusive input data and likelihoods of the two different modelling algorithms into one probabilistic inference framework. In addition, we use the capabilities of Noddy to analyze the topology of structural models to demonstrate how topological information, such as the connectivity of two layers across an unconformity, can be used as a likelihood function. In an application to a synthetic case study, we show that our approach leads to a successful combination of the two different modelling concepts. Specifically, we show that we derive ensemble realizations of implicit models that now incorporate the knowledge of the kinematic aspects, representing an important step forward in the integration of knowledge and a corresponding estimation of uncertainties in structural geological models.

  3. ESS++: a C++ objected-oriented algorithm for Bayesian stochastic search model exploration

    PubMed Central

    Bottolo, Leonardo; Langley, Sarah R.; Petretto, Enrico; Tiret, Laurence; Tregouet, David; Richardson, Sylvia

    2011-01-01

    Summary: ESS++ is a C++ implementation of a fully Bayesian variable selection approach for single and multiple response linear regression. ESS++ works well both when the number of observations is larger than the number of predictors and in the ‘large p, small n’ case. In the current version, ESS++ can handle several hundred observations, thousands of predictors and a few responses simultaneously. The core engine of ESS++ for the selection of relevant predictors is based on Evolutionary Monte Carlo. Our implementation is open source, allowing community-based alterations and improvements. Availability: C++ source code and documentation including compilation instructions are available under GNU licence at http://bgx.org.uk/software/ESS.html. Contact: l.bottolo@imperial.ac.uk Supplementary information: Supplementary data are available at Bioinformatics online. PMID:21233165

  4. Classification of Active Microwave and Passive Optical Data Based on Bayesian Theory and Mrf

    NASA Astrophysics Data System (ADS)

    Yu, F.; Li, H. T.; Han, Y. S.; Gu, H. Y.

    2012-08-01

    A classifier based on Bayesian theory and Markov random field (MRF) is presented to classify the active microwave and passive optical remote sensing data, which have demonstrated their respective advantages in inversion of surface soil moisture content. In the method, the VV, VH polarization of ASAR and all the 7 TM bands are taken as the input of the classifier to get the class labels of each pixel of the images. And the model is validated for the necessities of integration of TM and ASAR, it shows that, the total precision of classification in this paper is 89.4%. Comparing with the classification with single TM, the accuracy increase 11.5%, illustrating that synthesis of active and passive optical remote sensing data is efficient and potential in classification.

  5. Neuronal integration of dynamic sources: Bayesian learning and Bayesian inference.

    PubMed

    Siegelmann, Hava T; Holzman, Lars E

    2010-09-01

    One of the brain's most basic functions is integrating sensory data from diverse sources. This ability causes us to question whether the neural system is computationally capable of intelligently integrating data, not only when sources have known, fixed relative dependencies but also when it must determine such relative weightings based on dynamic conditions, and then use these learned weightings to accurately infer information about the world. We suggest that the brain is, in fact, fully capable of computing this parallel task in a single network and describe a neural inspired circuit with this property. Our implementation suggests the possibility that evidence learning requires a more complex organization of the network than was previously assumed, where neurons have different specialties, whose emergence brings the desired adaptivity seen in human online inference.

  6. Phylogenetic inference under varying proportions of indel-induced alignment gaps

    PubMed Central

    Dwivedi, Bhakti; Gadagkar, Sudhindra R

    2009-01-01

    Background The effect of alignment gaps on phylogenetic accuracy has been the subject of numerous studies. In this study, we investigated the relationship between the total number of gapped sites and phylogenetic accuracy, when the gaps were introduced (by means of computer simulation) to reflect indel (insertion/deletion) events during the evolution of DNA sequences. The resulting (true) alignments were subjected to commonly used gap treatment and phylogenetic inference methods. Results (1) In general, there was a strong – almost deterministic – relationship between the amount of gap in the data and the level of phylogenetic accuracy when the alignments were very "gappy", (2) gaps resulting from deletions (as opposed to insertions) contributed more to the inaccuracy of phylogenetic inference, (3) the probabilistic methods (Bayesian, PhyML & "MLε, " a method implemented in DNAML in PHYLIP) performed better at most levels of gap percentage when compared to parsimony (MP) and distance (NJ) methods, with Bayesian analysis being clearly the best, (4) methods that treat gapped sites as missing data yielded less accurate trees when compared to those that attribute phylogenetic signal to the gapped sites (by coding them as binary character data – presence/absence, or as in the MLε method), and (5) in general, the accuracy of phylogenetic inference depended upon the amount of available data when the gaps resulted from mainly deletion events, and the amount of missing data when insertion events were equally likely to have caused the alignment gaps. Conclusion When gaps in an alignment are a consequence of indel events in the evolution of the sequences, the accuracy of phylogenetic analysis is likely to improve if: (1) alignment gaps are categorized as arising from insertion events or deletion events and then treated separately in the analysis, (2) the evolutionary signal provided by indels is harnessed in the phylogenetic analysis, and (3) methods that utilize the phylogenetic signal in indels are developed for distance methods too. When the true homology is known and the amount of gaps is 20 percent of the alignment length or less, the methods used in this study are likely to yield trees with 90–100 percent accuracy. PMID:19698168

  7. Divergent evolutionary processes associated with colonization of offshore islands.

    PubMed

    Martínková, Natália; Barnett, Ross; Cucchi, Thomas; Struchen, Rahel; Pascal, Marine; Pascal, Michel; Fischer, Martin C; Higham, Thomas; Brace, Selina; Ho, Simon Y W; Quéré, Jean-Pierre; O'Higgins, Paul; Excoffier, Laurent; Heckel, Gerald; Hoelzel, A Rus; Dobney, Keith M; Searle, Jeremy B

    2013-10-01

    Oceanic islands have been a test ground for evolutionary theory, but here, we focus on the possibilities for evolutionary study created by offshore islands. These can be colonized through various means and by a wide range of species, including those with low dispersal capabilities. We use morphology, modern and ancient sequences of cytochrome b (cytb) and microsatellite genotypes to examine colonization history and evolutionary change associated with occupation of the Orkney archipelago by the common vole (Microtus arvalis), a species found in continental Europe but not in Britain. Among possible colonization scenarios, our results are most consistent with human introduction at least 5100 bp (confirmed by radiocarbon dating). We used approximate Bayesian computation of population history to infer the coast of Belgium as the possible source and estimated the evolutionary timescale using a Bayesian coalescent approach. We showed substantial morphological divergence of the island populations, including a size increase presumably driven by selection and reduced microsatellite variation likely reflecting founder events and genetic drift. More surprisingly, our results suggest that a recent and widespread cytb replacement event in the continental source area purged cytb variation there, whereas the ancestral diversity is largely retained in the colonized islands as a genetic 'ark'. The replacement event in the continental M. arvalis was probably triggered by anthropogenic causes (land-use change). Our studies illustrate that small offshore islands can act as field laboratories for studying various evolutionary processes over relatively short timescales, informing about the mainland source area as well as the island. © 2013 John Wiley & Sons Ltd.

  8. A review of statistical methods to analyze extreme precipitation and temperature events in the Mediterranean region

    NASA Astrophysics Data System (ADS)

    Lazoglou, Georgia; Anagnostopoulou, Christina; Tolika, Konstantia; Kolyva-Machera, Fotini

    2018-04-01

    The increasing trend of the intensity and frequency of temperature and precipitation extremes during the past decades has substantial environmental and socioeconomic impacts. Thus, the objective of the present study is the comparison of several statistical methods of the extreme value theory (EVT) in order to identify which is the most appropriate to analyze the behavior of the extreme precipitation, and high and low temperature events, in the Mediterranean region. The extremes choice was made using both the block maxima and the peaks over threshold (POT) technique and as a consequence both the generalized extreme value (GEV) and generalized Pareto distributions (GPDs) were used to fit them. The results were compared, in order to select the most appropriate distribution for extremes characterization. Moreover, this study evaluates the maximum likelihood estimation, the L-moments and the Bayesian method, based on both graphical and statistical goodness-of-fit tests. It was revealed that the GPD can characterize accurately both precipitation and temperature extreme events. Additionally, GEV distribution with the Bayesian method is proven to be appropriate especially for the greatest values of extremes. Another important objective of this investigation was the estimation of the precipitation and temperature return levels for three return periods (50, 100, and 150 years) classifying the data into groups with similar characteristics. Finally, the return level values were estimated with both GEV and GPD and with the three different estimation methods, revealing that the selected method can affect the return level values for both the parameter of precipitation and temperature.

  9. Psychosocial stress factors, including the relationship with the coach, and their influence on acute and overuse injury risk in elite female football players

    PubMed Central

    Pensgaard, Anne Marte; Ivarsson, Andreas; Nilstad, Agnethe; Solstad, Bård Erlend; Steffen, Kathrin

    2018-01-01

    Background The relationship between specific types of stressors (eg, teammates, coach) and acute versus overuse injuries is not well understood. Objective To examine the roles of different types of stressors as well as the effect of motivational climate on the occurrence of acute and overuse injuries. Methods Players in the Norwegian elite female football league (n=193 players from 12 teams) participated in baseline screening tests prior to the 2009 competitive football season. As part of the screening, we included the Life Event Survey for Collegiate Athletes and the Perceived Motivational Climate in Sport Questionnaire (Norwegian short version). Acute and overuse time-loss injuries and exposure to training and matches were recorded prospectively in the football season using weekly text messaging. Data were analysed with Bayesian logistic regression analyses. Results Using Bayesian logistic regression analyses, we showed that perceived negative life event stress from teammates was associated with an increased risk of acute injuries (OR=1.23, 95% credibility interval (1.01 to 1.48)). There was a credible positive association between perceived negative life event stress from the coach and the risk of overuse injuries (OR=1.21, 95% credibility interval (1.01 to 1.45)). Conclusions Players who report teammates as a source of stress have a greater risk of sustaining an acute injury, while players reporting the coach as a source of stress are at greater risk of sustaining an overuse injury. Motivational climate did not relate to increased injury occurrence. PMID:29629182

  10. Estimate of main local sources to ambient ultrafine particle number concentrations in an urban area

    NASA Astrophysics Data System (ADS)

    Rahman, Md Mahmudur; Mazaheri, Mandana; Clifford, Sam; Morawska, Lidia

    2017-09-01

    Quantifying and apportioning the contribution of a range of sources to ultrafine particles (UFPs, D < 100 nm) is a challenge due to the complex nature of the urban environments. Although vehicular emissions have long been considered one of the major sources of ultrafine particles in urban areas, the contribution of other major urban sources is not yet fully understood. This paper aims to determine and quantify the contribution of local ground traffic, nucleated particle (NP) formation and distant non-traffic (e.g. airport, oil refineries, and seaport) sources to the total ambient particle number concentration (PNC) in a busy, inner-city area in Brisbane, Australia using Bayesian statistical modelling and other exploratory tools. The Bayesian model was trained on the PNC data on days where NP formations were known to have not occurred, hourly traffic counts, solar radiation data, and smooth daily trend. The model was applied to apportion and quantify the contribution of NP formations and local traffic and non-traffic sources to UFPs. The data analysis incorporated long-term measured time-series of total PNC (D ≥ 6 nm), particle number size distributions (PSD, D = 8 to 400 nm), PM2.5, PM10, NOx, CO, meteorological parameters and traffic counts at a stationary monitoring site. The developed Bayesian model showed reliable predictive performances in quantifying the contribution of NP formation events to UFPs (up to 4 × 104 particles cm- 3), with a significant day to day variability. The model identified potential NP formation and no-formations days based on PNC data and quantified the sources contribution to UFPs. Exploratory statistical analyses show that total mean PNC during the middle of the day was up to 32% higher than during peak morning and evening traffic periods, which were associated with NP formation events. The majority of UFPs measured during the peak traffic and NP formation periods were between 30-100 nm and smaller than 30 nm, respectively. To date, this is the first application of Bayesian model to apportion different sources contribution to UFPs, and therefore the importance of this study is not only in its modelling outcomes but in demonstrating the applicability and advantages of this statistical approach to air pollution studies.

  11. Bayesian inference and assessment for rare-event bycatch in marine fisheries: a drift gillnet fishery case study.

    PubMed

    Martin, Summer L; Stohs, Stephen M; Moore, Jeffrey E

    2015-03-01

    Fisheries bycatch is a global threat to marine megafauna. Environmental laws require bycatch assessment for protected species, but this is difficult when bycatch is rare. Low bycatch rates, combined with low observer coverage, may lead to biased, imprecise estimates when using standard ratio estimators. Bayesian model-based approaches incorporate uncertainty, produce less volatile estimates, and enable probabilistic evaluation of estimates relative to management thresholds. Here, we demonstrate a pragmatic decision-making process that uses Bayesian model-based inferences to estimate the probability of exceeding management thresholds for bycatch in fisheries with < 100% observer coverage. Using the California drift gillnet fishery as a case study, we (1) model rates of rare-event bycatch and mortality using Bayesian Markov chain Monte Carlo estimation methods and 20 years of observer data; (2) predict unobserved counts of bycatch and mortality; (3) infer expected annual mortality; (4) determine probabilities of mortality exceeding regulatory thresholds; and (5) classify the fishery as having low, medium, or high bycatch impact using those probabilities. We focused on leatherback sea turtles (Dermochelys coriacea) and humpback whales (Megaptera novaeangliae). Candidate models included Poisson or zero-inflated Poisson likelihood, fishing effort, and a bycatch rate that varied with area, time, or regulatory regime. Regulatory regime had the strongest effect on leatherback bycatch, with the highest levels occurring prior to a regulatory change. Area had the strongest effect on humpback bycatch. Cumulative bycatch estimates for the 20-year period were 104-242 leatherbacks (52-153 deaths) and 6-50 humpbacks (0-21 deaths). The probability of exceeding a regulatory threshold under the U.S. Marine Mammal Protection Act (Potential Biological Removal, PBR) of 0.113 humpback deaths was 0.58, warranting a "medium bycatch impact" classification of the fishery. No PBR thresholds exist for leatherbacks, but the probability of exceeding an anticipated level of two deaths per year, stated as part of a U.S. Endangered Species Act assessment process, was 0.0007. The approach demonstrated here would allow managers to objectively and probabilistically classify fisheries with respect to bycatch impacts on species that have population-relevant mortality reference points, and declare with a stipulated level of certainty that bycatch did or did not exceed estimated upper bounds.

  12. Making the Most of What We Have: A Practical Application of Multidimensional Item Response Theory in Test Scoring

    ERIC Educational Resources Information Center

    de la Torre, Jimmy; Patz, Richard J.

    2005-01-01

    This article proposes a practical method that capitalizes on the availability of information from multiple tests measuring correlated abilities given in a single test administration. By simultaneously estimating different abilities with the use of a hierarchical Bayesian framework, more precise estimates for each ability dimension are obtained.…

  13. A bayesian cross-validation approach to evaluate genetic baselines and forecast the necessary number of informative single nucleotide polymorphisms

    USDA-ARS?s Scientific Manuscript database

    Mixed stock analysis (MSA) is a powerful tool used in the management and conservation of numerous species. Its function is to estimate the sources of contributions in a mixture of populations of a species, as well as to estimate the probabilities that individuals originated at a source. Considerable...

  14. Genomic selection for BCWD resistance in Rainbow trout using RADSNP and SNP genotyping platforms, single-step GBLUP and Bayesian variable selection models

    USDA-ARS?s Scientific Manuscript database

    Bacterial cold water disease (BCWD) causes significant economic losses in salmonid aquaculture. At the National Center for Cool and Cold Water Aquaculture (NCCCWA), we have pursued selective breeding to increase rainbow trout genetic resistance against BCWD and found that post-challenge survival is ...

  15. Bayesian network learning for natural hazard assessments

    NASA Astrophysics Data System (ADS)

    Vogel, Kristin

    2016-04-01

    Even though quite different in occurrence and consequences, from a modelling perspective many natural hazards share similar properties and challenges. Their complex nature as well as lacking knowledge about their driving forces and potential effects make their analysis demanding. On top of the uncertainty about the modelling framework, inaccurate or incomplete event observations and the intrinsic randomness of the natural phenomenon add up to different interacting layers of uncertainty, which require a careful handling. Thus, for reliable natural hazard assessments it is crucial not only to capture and quantify involved uncertainties, but also to express and communicate uncertainties in an intuitive way. Decision-makers, who often find it difficult to deal with uncertainties, might otherwise return to familiar (mostly deterministic) proceedings. In the scope of the DFG research training group „NatRiskChange" we apply the probabilistic framework of Bayesian networks for diverse natural hazard and vulnerability studies. The great potential of Bayesian networks was already shown in previous natural hazard assessments. Treating each model component as random variable, Bayesian networks aim at capturing the joint distribution of all considered variables. Hence, each conditional distribution of interest (e.g. the effect of precautionary measures on damage reduction) can be inferred. The (in-)dependencies between the considered variables can be learned purely data driven or be given by experts. Even a combination of both is possible. By translating the (in-)dependences into a graph structure, Bayesian networks provide direct insights into the workings of the system and allow to learn about the underlying processes. Besides numerous studies on the topic, learning Bayesian networks from real-world data remains challenging. In previous studies, e.g. on earthquake induced ground motion and flood damage assessments, we tackled the problems arising with continuous variables and incomplete observations. Further studies rise the challenge of relying on very small data sets. Since parameter estimates for complex models based on few observations are unreliable, it is necessary to focus on simplified, yet still meaningful models. A so called Markov Blanket approach is developed to identify the most relevant model components and to construct a simple Bayesian network based on those findings. Since the proceeding is completely data driven, it can easily be transferred to various applications in natural hazard domains. This study is funded by the Deutsche Forschungsgemeinschaft (DFG) within the research training programme GRK 2043/1 "NatRiskChange - Natural hazards and risks in a changing world" at Potsdam University.

  16. A Bayesian Alternative for Multi-objective Ecohydrological Model Specification

    NASA Astrophysics Data System (ADS)

    Tang, Y.; Marshall, L. A.; Sharma, A.; Ajami, H.

    2015-12-01

    Process-based ecohydrological models combine the study of hydrological, physical, biogeochemical and ecological processes of the catchments, which are usually more complex and parametric than conceptual hydrological models. Thus, appropriate calibration objectives and model uncertainty analysis are essential for ecohydrological modeling. In recent years, Bayesian inference has become one of the most popular tools for quantifying the uncertainties in hydrological modeling with the development of Markov Chain Monte Carlo (MCMC) techniques. Our study aims to develop appropriate prior distributions and likelihood functions that minimize the model uncertainties and bias within a Bayesian ecohydrological framework. In our study, a formal Bayesian approach is implemented in an ecohydrological model which combines a hydrological model (HyMOD) and a dynamic vegetation model (DVM). Simulations focused on one objective likelihood (Streamflow/LAI) and multi-objective likelihoods (Streamflow and LAI) with different weights are compared. Uniform, weakly informative and strongly informative prior distributions are used in different simulations. The Kullback-leibler divergence (KLD) is used to measure the dis(similarity) between different priors and corresponding posterior distributions to examine the parameter sensitivity. Results show that different prior distributions can strongly influence posterior distributions for parameters, especially when the available data is limited or parameters are insensitive to the available data. We demonstrate differences in optimized parameters and uncertainty limits in different cases based on multi-objective likelihoods vs. single objective likelihoods. We also demonstrate the importance of appropriately defining the weights of objectives in multi-objective calibration according to different data types.

  17. A Bayesian Analysis of the Post-seismic Deformation of the Great 11 March 2011 Tohoku-Oki (Mw 9.0) Earthquake: Implications for Future Earthquake Occurrence

    NASA Astrophysics Data System (ADS)

    Ortega Culaciati, F. H.; Simons, M.; Minson, S. E.; Owen, S. E.; Moore, A. W.; Hetland, E. A.

    2011-12-01

    We aim to quantify the spatial distribution of after-slip following the Great 11 March 2011 Tohoku-Oki (Mw 9.0) earthquake and its implications for the occurrence of a future Great Earthquake, particularly in the Ibaraki region of Japan. We use a Bayesian approach (CATMIP algorithm), constrained by on-land Geonet GPS time series, to infer models of after-slip to date in the Japan megathrust. Unlike traditional inverse methods, in which a single optimum model is found, the Bayesian approach allows a complete characterization of the model parameter space by searching a-posteriori estimates of the range of plausible models. We use the Kullback-Liebler information divergence as a metric of the information gain on each subsurface slip patch, to quantify the extent to which land-based geodetic observations can constrain the upper parts of the megathrust, where the Great Tohoku-Oki earthquake took place. We aim to understand the relationships of spatial distribution of fault slip behavior in the different stages of the seismic cycle. We compare our post-seismic slip distributions to inter- and co-seismic slip distributions obtained through a Bayesian methodology as well as through traditional (optimization) inverse estimates in the published literature. We discuss implications of these analyses for the occurrence of a large earthquake in the Japan megathrust regions adjacent to the Great Tohoku-Oki earthquake.

  18. Passive (Micro-) Seismic Event Detection by Identifying Embedded "Event" Anomalies Within Statistically Describable Background Noise

    NASA Astrophysics Data System (ADS)

    Baziw, Erick; Verbeek, Gerald

    2012-12-01

    Among engineers there is considerable interest in the real-time identification of "events" within time series data with a low signal to noise ratio. This is especially true for acoustic emission analysis, which is utilized to assess the integrity and safety of many structures and is also applied in the field of passive seismic monitoring (PSM). Here an array of seismic receivers are used to acquire acoustic signals to monitor locations where seismic activity is expected: underground excavations, deep open pits and quarries, reservoirs into which fluids are injected or from which fluids are produced, permeable subsurface formations, or sites of large underground explosions. The most important element of PSM is event detection: the monitoring of seismic acoustic emissions is a continuous, real-time process which typically runs 24 h a day, 7 days a week, and therefore a PSM system with poor event detection can easily acquire terabytes of useless data as it does not identify crucial acoustic events. This paper outlines a new algorithm developed for this application, the so-called SEED™ (Signal Enhancement and Event Detection) algorithm. The SEED™ algorithm uses real-time Bayesian recursive estimation digital filtering techniques for PSM signal enhancement and event detection.

  19. Analyzing System on A Chip Single Event Upset Responses using Single Event Upset Data, Classical Reliability Models, and Space Environment Data

    NASA Technical Reports Server (NTRS)

    Berg, Melanie; LaBel, Kenneth; Campola, Michael; Xapsos, Michael

    2017-01-01

    We are investigating the application of classical reliability performance metrics combined with standard single event upset (SEU) analysis data. We expect to relate SEU behavior to system performance requirements. Our proposed methodology will provide better prediction of SEU responses in harsh radiation environments with confidence metrics. single event upset (SEU), single event effect (SEE), field programmable gate array devises (FPGAs)

  20. On "black swans" and "perfect storms": risk analysis and management when statistics are not enough.

    PubMed

    Paté-Cornell, Elisabeth

    2012-11-01

    Two images, "black swans" and "perfect storms," have struck the public's imagination and are used--at times indiscriminately--to describe the unthinkable or the extremely unlikely. These metaphors have been used as excuses to wait for an accident to happen before taking risk management measures, both in industry and government. These two images represent two distinct types of uncertainties (epistemic and aleatory). Existing statistics are often insufficient to support risk management because the sample may be too small and the system may have changed. Rationality as defined by the von Neumann axioms leads to a combination of both types of uncertainties into a single probability measure--Bayesian probability--and accounts only for risk aversion. Yet, the decisionmaker may also want to be ambiguity averse. This article presents an engineering risk analysis perspective on the problem, using all available information in support of proactive risk management decisions and considering both types of uncertainty. These measures involve monitoring of signals, precursors, and near-misses, as well as reinforcement of the system and a thoughtful response strategy. It also involves careful examination of organizational factors such as the incentive system, which shape human performance and affect the risk of errors. In all cases, including rare events, risk quantification does not allow "prediction" of accidents and catastrophes. Instead, it is meant to support effective risk management rather than simply reacting to the latest events and headlines. © 2012 Society for Risk Analysis.

  1. A novel method to accurately locate and count large numbers of steps by photobleaching

    PubMed Central

    Tsekouras, Konstantinos; Custer, Thomas C.; Jashnsaz, Hossein; Walter, Nils G.; Pressé, Steve

    2016-01-01

    Photobleaching event counting is a single-molecule fluorescence technique that is increasingly being used to determine the stoichiometry of protein and RNA complexes composed of many subunits in vivo as well as in vitro. By tagging protein or RNA subunits with fluorophores, activating them, and subsequently observing as the fluorophores photobleach, one obtains information on the number of subunits in a complex. The noise properties in a photobleaching time trace depend on the number of active fluorescent subunits. Thus, as fluorophores stochastically photobleach, noise properties of the time trace change stochastically, and these varying noise properties have created a challenge in identifying photobleaching steps in a time trace. Although photobleaching steps are often detected by eye, this method only works for high individual fluorophore emission signal-to-noise ratios and small numbers of fluorophores. With filtering methods or currently available algorithms, it is possible to reliably identify photobleaching steps for up to 20–30 fluorophores and signal-to-noise ratios down to ∼1. Here we present a new Bayesian method of counting steps in photobleaching time traces that takes into account stochastic noise variation in addition to complications such as overlapping photobleaching events that may arise from fluorophore interactions, as well as on-off blinking. Our method is capable of detecting ≥50 photobleaching steps even for signal-to-noise ratios as low as 0.1, can find up to ≥500 steps for more favorable noise profiles, and is computationally inexpensive. PMID:27654946

  2. Combining probabilistic hazard assessment with cost-benefit analysis to support decision making in a volcanic crisis from the Auckland Volcanic Field, New Zealand

    NASA Astrophysics Data System (ADS)

    Sandri, Laura; Jolly, Gill; Lindsay, Jan; Howe, Tracy; Marzocchi, Warner

    2010-05-01

    One of the main challenges of modern volcanology is to provide the public with robust and useful information for decision-making in land-use planning and in emergency management. From the scientific point of view, this translates into reliable and quantitative long- and short-term volcanic hazard assessment and eruption forecasting. Because of the complexity in characterizing volcanic events, and of the natural variability of volcanic processes, a probabilistic approach is more suitable than deterministic modeling. In recent years, two probabilistic codes have been developed for quantitative short- and long-term eruption forecasting (BET_EF) and volcanic hazard assessment (BET_VH). Both of them are based on a Bayesian Event Tree, in which volcanic events are seen as a chain of logical steps of increasing detail. At each node of the tree, the probability is computed by taking into account different sources of information, such as geological and volcanological models, past occurrences, expert opinion and numerical modeling of volcanic phenomena. Since it is a Bayesian tool, the output probability is not a single number, but a probability distribution accounting for aleatory and epistemic uncertainty. In this study, we apply BET_VH in order to quantify the long-term volcanic hazard due to base surge invasion in the region around Auckland, New Zealand's most populous city. Here, small basaltic eruptions from monogenetic cones pose a considerable risk to the city in case of phreatomagmatic activity: evidence for base surges are not uncommon in deposits from past events. Currently, we are particularly focussing on the scenario simulated during Exercise Ruaumoko, a national disaster exercise based on the build-up to an eruption in the Auckland Volcanic Field. Based on recent papers by Marzocchi and Woo, we suggest a possible quantitative strategy to link probabilistic scientific output and Boolean decision making. It is based on cost-benefit analysis, in which all costs and benefits of mitigation actions have to be evaluated and compared, weighting them with the probability of occurrence of a specific threatening volcanic event. An action should be taken when the benefit of that action outweighs the costs. It is worth remarking that this strategy does not guarantee to recommend a decision that we would have taken with the benefit of hindsight. However, this strategy will be successful over the long-tem. Furthermore, it has the overwhelming advantage of providing a quantitative decision rule that is set before any emergency, and thus it will be justifiable at any stage of the process. In our present application, we are trying to set up a cost-benefit scheme for the call of an evacuation to protect people in the Auckland Volcanic Field against base surge invasion. Considering the heterogeneity of the urban environment and the size of the region at risk, we propose a cost-benefit scheme that is space dependent, to take into account higher costs when an eruption threatens sensible sites for the city and/or the nation, such as the international airport or the harbour. Finally, we compare our findings with the present Contingency Plan for Auckland.

  3. Bayesian logistic regression in detection of gene-steroid interaction for cancer at PDLIM5 locus.

    PubMed

    Wang, Ke-Sheng; Owusu, Daniel; Pan, Yue; Xie, Changchun

    2016-06-01

    The PDZ and LIM domain 5 (PDLIM5) gene may play a role in cancer, bipolar disorder, major depression, alcohol dependence and schizophrenia; however, little is known about the interaction effect of steroid and PDLIM5 gene on cancer. This study examined 47 single-nucleotide polymorphisms (SNPs) within the PDLIM5 gene in the Marshfield sample with 716 cancer patients (any diagnosed cancer, excluding minor skin cancer) and 2848 noncancer controls. Multiple logistic regression model in PLINK software was used to examine the association of each SNP with cancer. Bayesian logistic regression in PROC GENMOD in SAS statistical software, ver. 9.4 was used to detect gene- steroid interactions influencing cancer. Single marker analysis using PLINK identified 12 SNPs associated with cancer (P< 0.05); especially, SNP rs6532496 revealed the strongest association with cancer (P = 6.84 × 10⁻³); while the next best signal was rs951613 (P = 7.46 × 10⁻³). Classic logistic regression in PROC GENMOD showed that both rs6532496 and rs951613 revealed strong gene-steroid interaction effects (OR=2.18, 95% CI=1.31-3.63 with P = 2.9 × 10⁻³ for rs6532496 and OR=2.07, 95% CI=1.24-3.45 with P = 5.43 × 10⁻³ for rs951613, respectively). Results from Bayesian logistic regression showed stronger interaction effects (OR=2.26, 95% CI=1.2-3.38 for rs6532496 and OR=2.14, 95% CI=1.14-3.2 for rs951613, respectively). All the 12 SNPs associated with cancer revealed significant gene-steroid interaction effects (P < 0.05); whereas 13 SNPs showed gene-steroid interaction effects without main effect on cancer. SNP rs4634230 revealed the strongest gene-steroid interaction effect (OR=2.49, 95% CI=1.5-4.13 with P = 4.0 × 10⁻⁴ based on the classic logistic regression and OR=2.59, 95% CI=1.4-3.97 from Bayesian logistic regression; respectively). This study provides evidence of common genetic variants within the PDLIM5 gene and interactions between PLDIM5 gene polymorphisms and steroid use influencing cancer.

  4. A Bayesian state-space approach for damage detection and classification

    NASA Astrophysics Data System (ADS)

    Dzunic, Zoran; Chen, Justin G.; Mobahi, Hossein; Büyüköztürk, Oral; Fisher, John W.

    2017-11-01

    The problem of automatic damage detection in civil structures is complex and requires a system that can interpret collected sensor data into meaningful information. We apply our recently developed switching Bayesian model for dependency analysis to the problems of damage detection and classification. The model relies on a state-space approach that accounts for noisy measurement processes and missing data, which also infers the statistical temporal dependency between measurement locations signifying the potential flow of information within the structure. A Gibbs sampling algorithm is used to simultaneously infer the latent states, parameters of the state dynamics, the dependence graph, and any changes in behavior. By employing a fully Bayesian approach, we are able to characterize uncertainty in these variables via their posterior distribution and provide probabilistic estimates of the occurrence of damage or a specific damage scenario. We also implement a single class classification method which is more realistic for most real world situations where training data for a damaged structure is not available. We demonstrate the methodology with experimental test data from a laboratory model structure and accelerometer data from a real world structure during different environmental and excitation conditions.

  5. Inferring Phylogenetic Networks Using PhyloNet.

    PubMed

    Wen, Dingqiao; Yu, Yun; Zhu, Jiafan; Nakhleh, Luay

    2018-07-01

    PhyloNet was released in 2008 as a software package for representing and analyzing phylogenetic networks. At the time of its release, the main functionalities in PhyloNet consisted of measures for comparing network topologies and a single heuristic for reconciling gene trees with a species tree. Since then, PhyloNet has grown significantly. The software package now includes a wide array of methods for inferring phylogenetic networks from data sets of unlinked loci while accounting for both reticulation (e.g., hybridization) and incomplete lineage sorting. In particular, PhyloNet now allows for maximum parsimony, maximum likelihood, and Bayesian inference of phylogenetic networks from gene tree estimates. Furthermore, Bayesian inference directly from sequence data (sequence alignments or biallelic markers) is implemented. Maximum parsimony is based on an extension of the "minimizing deep coalescences" criterion to phylogenetic networks, whereas maximum likelihood and Bayesian inference are based on the multispecies network coalescent. All methods allow for multiple individuals per species. As computing the likelihood of a phylogenetic network is computationally hard, PhyloNet allows for evaluation and inference of networks using a pseudolikelihood measure. PhyloNet summarizes the results of the various analyzes and generates phylogenetic networks in the extended Newick format that is readily viewable by existing visualization software.

  6. A Bayesian framework to estimate diversification rates and their variation through time and space

    PubMed Central

    2011-01-01

    Background Patterns of species diversity are the result of speciation and extinction processes, and molecular phylogenetic data can provide valuable information to derive their variability through time and across clades. Bayesian Markov chain Monte Carlo methods offer a promising framework to incorporate phylogenetic uncertainty when estimating rates of diversification. Results We introduce a new approach to estimate diversification rates in a Bayesian framework over a distribution of trees under various constant and variable rate birth-death and pure-birth models, and test it on simulated phylogenies. Furthermore, speciation and extinction rates and their posterior credibility intervals can be estimated while accounting for non-random taxon sampling. The framework is particularly suitable for hypothesis testing using Bayes factors, as we demonstrate analyzing dated phylogenies of Chondrostoma (Cyprinidae) and Lupinus (Fabaceae). In addition, we develop a model that extends the rate estimation to a meta-analysis framework in which different data sets are combined in a single analysis to detect general temporal and spatial trends in diversification. Conclusions Our approach provides a flexible framework for the estimation of diversification parameters and hypothesis testing while simultaneously accounting for uncertainties in the divergence times and incomplete taxon sampling. PMID:22013891

  7. Bayesian structural inference for hidden processes.

    PubMed

    Strelioff, Christopher C; Crutchfield, James P

    2014-04-01

    We introduce a Bayesian approach to discovering patterns in structurally complex processes. The proposed method of Bayesian structural inference (BSI) relies on a set of candidate unifilar hidden Markov model (uHMM) topologies for inference of process structure from a data series. We employ a recently developed exact enumeration of topological ε-machines. (A sequel then removes the topological restriction.) This subset of the uHMM topologies has the added benefit that inferred models are guaranteed to be ε-machines, irrespective of estimated transition probabilities. Properties of ε-machines and uHMMs allow for the derivation of analytic expressions for estimating transition probabilities, inferring start states, and comparing the posterior probability of candidate model topologies, despite process internal structure being only indirectly present in data. We demonstrate BSI's effectiveness in estimating a process's randomness, as reflected by the Shannon entropy rate, and its structure, as quantified by the statistical complexity. We also compare using the posterior distribution over candidate models and the single, maximum a posteriori model for point estimation and show that the former more accurately reflects uncertainty in estimated values. We apply BSI to in-class examples of finite- and infinite-order Markov processes, as well to an out-of-class, infinite-state hidden process.

  8. Bayesian structural inference for hidden processes

    NASA Astrophysics Data System (ADS)

    Strelioff, Christopher C.; Crutchfield, James P.

    2014-04-01

    We introduce a Bayesian approach to discovering patterns in structurally complex processes. The proposed method of Bayesian structural inference (BSI) relies on a set of candidate unifilar hidden Markov model (uHMM) topologies for inference of process structure from a data series. We employ a recently developed exact enumeration of topological ɛ-machines. (A sequel then removes the topological restriction.) This subset of the uHMM topologies has the added benefit that inferred models are guaranteed to be ɛ-machines, irrespective of estimated transition probabilities. Properties of ɛ-machines and uHMMs allow for the derivation of analytic expressions for estimating transition probabilities, inferring start states, and comparing the posterior probability of candidate model topologies, despite process internal structure being only indirectly present in data. We demonstrate BSI's effectiveness in estimating a process's randomness, as reflected by the Shannon entropy rate, and its structure, as quantified by the statistical complexity. We also compare using the posterior distribution over candidate models and the single, maximum a posteriori model for point estimation and show that the former more accurately reflects uncertainty in estimated values. We apply BSI to in-class examples of finite- and infinite-order Markov processes, as well to an out-of-class, infinite-state hidden process.

  9. Fast Bayesian experimental design: Laplace-based importance sampling for the expected information gain

    NASA Astrophysics Data System (ADS)

    Beck, Joakim; Dia, Ben Mansour; Espath, Luis F. R.; Long, Quan; Tempone, Raúl

    2018-06-01

    In calculating expected information gain in optimal Bayesian experimental design, the computation of the inner loop in the classical double-loop Monte Carlo requires a large number of samples and suffers from underflow if the number of samples is small. These drawbacks can be avoided by using an importance sampling approach. We present a computationally efficient method for optimal Bayesian experimental design that introduces importance sampling based on the Laplace method to the inner loop. We derive the optimal values for the method parameters in which the average computational cost is minimized according to the desired error tolerance. We use three numerical examples to demonstrate the computational efficiency of our method compared with the classical double-loop Monte Carlo, and a more recent single-loop Monte Carlo method that uses the Laplace method as an approximation of the return value of the inner loop. The first example is a scalar problem that is linear in the uncertain parameter. The second example is a nonlinear scalar problem. The third example deals with the optimal sensor placement for an electrical impedance tomography experiment to recover the fiber orientation in laminate composites.

  10. Inferring Alcoholism SNPs and Regulatory Chemical Compounds Based on Ensemble Bayesian Network.

    PubMed

    Chen, Huan; Sun, Jiatong; Jiang, Hong; Wang, Xianyue; Wu, Lingxiang; Wu, Wei; Wang, Qh

    2017-01-01

    The disturbance of consciousness is one of the most common symptoms of those have alcoholism and may cause disability and mortality. Previous studies indicated that several single nucleotide polymorphisms (SNP) increase the susceptibility of alcoholism. In this study, we utilized the Ensemble Bayesian Network (EBN) method to identify causal SNPs of alcoholism based on the verified GAW14 data. We built a Bayesian network combining random process and greedy search by using Genetic Analysis Workshop 14 (GAW14) dataset to establish EBN of SNPs. Then we predicted the association between SNPs and alcoholism by determining Bayes' prior probability. Thirteen out of eighteen SNPs directly connected with alcoholism were found concordance with potential risk regions of alcoholism in OMIM database. As many SNPs were found contributing to alteration on gene expression, known as expression quantitative trait loci (eQTLs), we further sought to identify chemical compounds acting as regulators of alcoholism genes captured by causal SNPs. Chloroprene and valproic acid were identified as the expression regulators for genes C11orf66 and SALL3 which were captured by alcoholism SNPs, respectively. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  11. Phylogenetic analysis of honey bee behavioral evolution.

    PubMed

    Raffiudin, Rika; Crozier, Ross H

    2007-05-01

    DNA sequences from three mitochondrial (rrnL, cox2, nad2) and one nuclear gene (itpr) from all 9 known honey bee species (Apis), a 10th possible species, Apis dorsata binghami, and three outgroup species (Bombus terrestris, Melipona bicolor and Trigona fimbriata) were used to infer Apis phylogenetic relationships using Bayesian analysis. The dwarf honey bees were confirmed as basal, and the giant and cavity-nesting species to be monophyletic. All nodes were strongly supported except that grouping Apis cerana with A. nigrocincta. Two thousand post-burnin trees from the phylogenetic analysis were used in a Bayesian comparative analysis to explore the evolution of dance type, nest structure, comb structure and dance sound within Apis. The ancestral honey bee species was inferred with high support to have nested in the open, and to have more likely than not had a silent vertical waggle dance and a single comb. The common ancestor of the giant and cavity-dwelling bees is strongly inferred to have had a buzzing vertical directional dance. All pairwise combinations of characters showed strong association, but the multiple comparisons problem reduces the ability to infer associations between states between characters. Nevertheless, a buzzing dance is significantly associated with cavity-nesting, several vertical combs, and dancing vertically, a horizontal dance is significantly associated with a nest with a single comb wrapped around the support, and open nesting with a single pendant comb and a silent waggle dance.

  12. Scaling and Single Event Effects (SEE) Sensitivity

    NASA Technical Reports Server (NTRS)

    Oldham, Timothy R.

    2003-01-01

    This paper begins by discussing the potential for scaling down transistors and other components to fit more of them on chips in order to increasing computer processing speed. It also addresses technical challenges to further scaling. Components have been scaled down enough to allow single particles to have an effect, known as a Single Event Effect (SEE). This paper explores the relationship between scaling and the following SEEs: Single Event Upsets (SEU) on DRAMs and SRAMs, Latch-up, Snap-back, Single Event Burnout (SEB), Single Event Gate Rupture (SEGR), and Ion-induced soft breakdown (SBD).

  13. Analog ensemble and Bayesian regression techniques to improve the wind speed prediction during extreme storms in the NE U.S.

    NASA Astrophysics Data System (ADS)

    Yang, J.; Astitha, M.; Delle Monache, L.; Alessandrini, S.

    2016-12-01

    Accuracy of weather forecasts in Northeast U.S. has become very important in recent years, given the serious and devastating effects of extreme weather events. Despite the use of evolved forecasting tools and techniques strengthened by increased super-computing resources, the weather forecasting systems still have their limitations in predicting extreme events. In this study, we examine the combination of analog ensemble and Bayesian regression techniques to improve the prediction of storms that have impacted NE U.S., mostly defined by the occurrence of high wind speeds (i.e. blizzards, winter storms, hurricanes and thunderstorms). The predicted wind speed, wind direction and temperature by two state-of-the-science atmospheric models (WRF and RAMS/ICLAMS) are combined using the mentioned techniques, exploring various ways that those variables influence the minimization of the prediction error (systematic and random). This study is focused on retrospective simulations of 146 storms that affected the NE U.S. in the period 2005-2016. In order to evaluate the techniques, leave-one-out cross validation procedure was implemented regarding 145 storms as the training dataset. The analog ensemble method selects a set of past observations that corresponded to the best analogs of the numerical weather prediction and provides a set of ensemble members of the selected observation dataset. The set of ensemble members can then be used in a deterministic or probabilistic way. In the Bayesian regression framework, optimal variances are estimated for the training partition by minimizing the root mean square error and are applied to the out-of-sample storm. The preliminary results indicate a significant improvement in the statistical metrics of 10-m wind speed for 146 storms using both techniques (20-30% bias and error reduction in all observation-model pairs). In this presentation, we discuss the various combinations of atmospheric predictors and techniques and illustrate how the long record of predicted storms is valuable in the improvement of wind speed prediction.

  14. Inferences of biogeographical histories within subfamily Hyacinthoideae using S-DIVA and Bayesian binary MCMC analysis implemented in RASP (Reconstruct Ancestral State in Phylogenies)

    PubMed Central

    Ali, Syed Shujait; Yu, Yan; Pfosser, Martin; Wetschnig, Wolfgang

    2012-01-01

    Background and Aims Subfamily Hyacinthoideae (Hyacinthaceae) comprises more than 400 species. Members are distributed in sub-Saharan Africa, Madagascar, India, eastern Asia, the Mediterranean region and Eurasia. Hyacinthoideae, like many other plant lineages, show disjunct distribution patterns. The aim of this study was to reconstruct the biogeographical history of Hyacinthoideae based on phylogenetic analyses, to find the possible ancestral range of Hyacinthoideae and to identify factors responsible for the current disjunct distribution pattern. Methods Parsimony and Bayesian approaches were applied to obtain phylogenetic trees, based on sequences of the trnL-F region. Biogeographical inferences were obtained by applying statistical dispersal-vicariance analysis (S-DIVA) and Bayesian binary MCMC (BBM) analysis implemented in RASP (Reconstruct Ancestral State in Phylogenies). Key Results S-DIVA and BBM analyses suggest that the Hyacinthoideae clade seem to have originated in sub-Saharan Africa. Dispersal and vicariance played vital roles in creating the disjunct distribution pattern. Results also suggest an early dispersal to the Mediterranean region, and thus the northward route (from sub-Saharan Africa to Mediterranean) of dispersal is plausible for members of subfamily Hyacinthoideae. Conclusions Biogeographical analyses reveal that subfamily Hyacinthoideae has originated in sub-Saharan Africa. S-DIVA indicates an early dispersal event to the Mediterranean region followed by a vicariance event, which resulted in Hyacintheae and Massonieae tribes. By contrast, BBM analysis favours dispersal to the Mediterranean region, eastern Asia and Europe. Biogeographical analysis suggests that sub-Saharan Africa and the Mediterranean region have played vital roles as centres of diversification and radiation within subfamily Hyacinthoideae. In this bimodal distribution pattern, sub-Saharan Africa is the primary centre of diversity and the Mediterranean region is the secondary centre of diversity. Sub-Saharan Africa was the source area for radiation toward Madagascar, the Mediterranean region and India. Radiations occurred from the Mediterranean region to eastern Asia, Europe, western Asia and India. PMID:22039008

  15. PyBetVH: A Python tool for probabilistic volcanic hazard assessment and for generation of Bayesian hazard curves and maps

    NASA Astrophysics Data System (ADS)

    Tonini, Roberto; Sandri, Laura; Anne Thompson, Mary

    2015-06-01

    PyBetVH is a completely new, free, open-source and cross-platform software implementation of the Bayesian Event Tree for Volcanic Hazard (BET_VH), a tool for estimating the probability of any magmatic hazardous phenomenon occurring in a selected time frame, accounting for all the uncertainties. New capabilities of this implementation include the ability to calculate hazard curves which describe the distribution of the exceedance probability as a function of intensity (e.g., tephra load) on a grid of points covering the target area. The computed hazard curves are (i) absolute (accounting for the probability of eruption in a given time frame, and for all the possible vent locations and eruptive sizes) and (ii) Bayesian (computed at different percentiles, in order to quantify the epistemic uncertainty). Such curves allow representation of the full information contained in the probabilistic volcanic hazard assessment (PVHA) and are well suited to become a main input to quantitative risk analyses. PyBetVH allows for interactive visualization of both the computed hazard curves, and the corresponding Bayesian hazard/probability maps. PyBetVH is designed to minimize the efforts of end users, making PVHA results accessible to people who may be less experienced in probabilistic methodologies, e.g. decision makers. The broad compatibility of Python language has also allowed PyBetVH to be installed on the VHub cyber-infrastructure, where it can be run online or downloaded at no cost. PyBetVH can be used to assess any type of magmatic hazard from any volcano. Here we illustrate how to perform a PVHA through PyBetVH using the example of analyzing tephra fallout from the Okataina Volcanic Centre (OVC), New Zealand, and highlight the range of outputs that the tool can generate.

  16. Bayesian relaxed clock estimation of divergence times in foraminifera.

    PubMed

    Groussin, Mathieu; Pawlowski, Jan; Yang, Ziheng

    2011-10-01

    Accurate and precise estimation of divergence times during the Neo-Proterozoic is necessary to understand the speciation dynamic of early Eukaryotes. However such deep divergences are difficult to date, as the molecular clock is seriously violated. Recent improvements in Bayesian molecular dating techniques allow the relaxation of the molecular clock hypothesis as well as incorporation of multiple and flexible fossil calibrations. Divergence times can then be estimated even when the evolutionary rate varies among lineages and even when the fossil calibrations involve substantial uncertainties. In this paper, we used a Bayesian method to estimate divergence times in Foraminifera, a group of unicellular eukaryotes, known for their excellent fossil record but also for the high evolutionary rates of their genomes. Based on multigene data we reconstructed the phylogeny of Foraminifera and dated their origin and the major radiation events. Our estimates suggest that Foraminifera emerged during the Cryogenian (650-920 Ma, Neo-Proterozoic), with a mean time around 770 Ma, about 220 Myr before the first appearance of reliable foraminiferal fossils in sediments (545 Ma). Most dates are in agreement with the fossil record, but in general our results suggest earlier origins of foraminiferal orders. We found that the posterior time estimates were robust to specifications of the prior. Our results highlight inter-species variations of evolutionary rates in Foraminifera. Their effect was partially overcome by using the partitioned Bayesian analysis to accommodate rate heterogeneity among data partitions and using the relaxed molecular clock to account for changing evolutionary rates. However, more coding genes appear necessary to obtain more precise estimates of divergence times and to resolve the conflicts between fossil and molecular date estimates. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Spatial Distribution of the Coefficient of Variation and Bayesian Forecast for the Paleo-Earthquakes in Japan

    NASA Astrophysics Data System (ADS)

    Nomura, Shunichi; Ogata, Yosihiko

    2016-04-01

    We propose a Bayesian method of probability forecasting for recurrent earthquakes of inland active faults in Japan. Renewal processes with the Brownian Passage Time (BPT) distribution are applied for over a half of active faults in Japan by the Headquarters for Earthquake Research Promotion (HERP) of Japan. Long-term forecast with the BPT distribution needs two parameters; the mean and coefficient of variation (COV) for recurrence intervals. The HERP applies a common COV parameter for all of these faults because most of them have very few specified paleoseismic events, which is not enough to estimate reliable COV values for respective faults. However, different COV estimates are proposed for the same paleoseismic catalog by some related works. It can make critical difference in forecast to apply different COV estimates and so COV should be carefully selected for individual faults. Recurrence intervals on a fault are, on the average, determined by the long-term slip rate caused by the tectonic motion but fluctuated by nearby seismicities which influence surrounding stress field. The COVs of recurrence intervals depend on such stress perturbation and so have spatial trends due to the heterogeneity of tectonic motion and seismicity. Thus we introduce a spatial structure on its COV parameter by Bayesian modeling with a Gaussian process prior. The COVs on active faults are correlated and take similar values for closely located faults. It is found that the spatial trends in the estimated COV values coincide with the density of active faults in Japan. We also show Bayesian forecasts by the proposed model using Markov chain Monte Carlo method. Our forecasts are different from HERP's forecast especially on the active faults where HERP's forecasts are very high or low.

  18. Specialist and generalist symbionts show counterintuitive levels of genetic diversity and discordant demographic histories along the Florida Reef Tract

    NASA Astrophysics Data System (ADS)

    Titus, Benjamin M.; Daly, Marymegan

    2017-03-01

    Specialist and generalist life histories are expected to result in contrasting levels of genetic diversity at the population level, and symbioses are expected to lead to patterns that reflect a shared biogeographic history and co-diversification. We test these assumptions using mtDNA sequencing and a comparative phylogeographic approach for six co-occurring crustacean species that are symbiotic with sea anemones on western Atlantic coral reefs, yet vary in their host specificities: four are host specialists and two are host generalists. We first conducted species discovery analyses to delimit cryptic lineages, followed by classic population genetic diversity analyses for each delimited taxon, and then reconstructed the demographic history for each taxon using traditional summary statistics, Bayesian skyline plots, and approximate Bayesian computation to test for signatures of recent and concerted population expansion. The genetic diversity values recovered here contravene the expectations of the specialist-generalist variation hypothesis and classic population genetics theory; all specialist lineages had greater genetic diversity than generalists. Demography suggests recent population expansions in all taxa, although Bayesian skyline plots and approximate Bayesian computation suggest the timing and magnitude of these events were idiosyncratic. These results do not meet the a priori expectation of concordance among symbiotic taxa and suggest that intrinsic aspects of species biology may contribute more to phylogeographic history than extrinsic forces that shape whole communities. The recovery of two cryptic specialist lineages adds an additional layer of biodiversity to this symbiosis and contributes to an emerging pattern of cryptic speciation in the specialist taxa. Our results underscore the differences in the evolutionary processes acting on marine systems from the terrestrial processes that often drive theory. Finally, we continue to highlight the Florida Reef Tract as an important biodiversity hotspot.

  19. Frequency Dependence of Single-Event Upset in Highly Advanced PowerPC Microprocessors

    NASA Technical Reports Server (NTRS)

    Irom, Farokh; Farmanesh, Farhad; White, Mark; Kouba, Coy K.

    2006-01-01

    Single-event upset effects from heavy ions were measured for Motorola silicon-on-insulator (SOI) microprocessor with 90 nm feature sizes at three frequencies of 500, 1066 and 1600 MHz. Frequency dependence of single-event upsets is discussed. The results of our studies suggest the single-event upset in registers and D-Cache tend to increase with frequency. This might have important implications for the overall single-event upset trend as technology moves toward higher frequencies.

  20. No auditory experience, no tinnitus: Lessons from subjects with congenital- and acquired single-sided deafness.

    PubMed

    Lee, Sang-Yeon; Nam, Dong Woo; Koo, Ja-Won; De Ridder, Dirk; Vanneste, Sven; Song, Jae-Jin

    2017-10-01

    Recent studies have adopted the Bayesian brain model to explain the generation of tinnitus in subjects with auditory deafferentation. That is, as the human brain works in a Bayesian manner to reduce environmental uncertainty, missing auditory information due to hearing loss may cause auditory phantom percepts, i.e., tinnitus. This type of deafferentation-induced auditory phantom percept should be preceded by auditory experience because the fill-in phenomenon, namely tinnitus, is based upon auditory prediction and the resultant prediction error. For example, a recent animal study observed the absence of tinnitus in cats with congenital single-sided deafness (SSD; Eggermont and Kral, Hear Res 2016). However, no human studies have investigated the presence and characteristics of tinnitus in subjects with congenital SSD. Thus, the present study sought to reveal differences in the generation of tinnitus between subjects with congenital SSD and those with acquired SSD to evaluate the replicability of previous animal studies. This study enrolled 20 subjects with congenital SSD and 44 subjects with acquired SSD and examined the presence and characteristics of tinnitus in the groups. None of the 20 subjects with congenital SSD perceived tinnitus on the affected side, whereas 30 of 44 subjects with acquired SSD experienced tinnitus on the affected side. Additionally, there were significant positive correlations between tinnitus characteristics and the audiometric characteristics of the SSD. In accordance with the findings of the recent animal study, tinnitus was absent in subjects with congenital SSD, but relatively frequent in subjects with acquired SSD, which suggests that the development of tinnitus should be preceded by auditory experience. In other words, subjects with profound congenital peripheral deafferentation do not develop auditory phantom percepts because no auditory predictions are available from the Bayesian brain. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Modeling Dynamic Contrast-Enhanced MRI Data with a Constrained Local AIF.

    PubMed

    Duan, Chong; Kallehauge, Jesper F; Pérez-Torres, Carlos J; Bretthorst, G Larry; Beeman, Scott C; Tanderup, Kari; Ackerman, Joseph J H; Garbow, Joel R

    2018-02-01

    This study aims to develop a constrained local arterial input function (cL-AIF) to improve quantitative analysis of dynamic contrast-enhanced (DCE)-magnetic resonance imaging (MRI) data by accounting for the contrast-agent bolus amplitude error in the voxel-specific AIF. Bayesian probability theory-based parameter estimation and model selection were used to compare tracer kinetic modeling employing either the measured remote-AIF (R-AIF, i.e., the traditional approach) or an inferred cL-AIF against both in silico DCE-MRI data and clinical, cervical cancer DCE-MRI data. When the data model included the cL-AIF, tracer kinetic parameters were correctly estimated from in silico data under contrast-to-noise conditions typical of clinical DCE-MRI experiments. Considering the clinical cervical cancer data, Bayesian model selection was performed for all tumor voxels of the 16 patients (35,602 voxels in total). Among those voxels, a tracer kinetic model that employed the voxel-specific cL-AIF was preferred (i.e., had a higher posterior probability) in 80 % of the voxels compared to the direct use of a single R-AIF. Maps of spatial variation in voxel-specific AIF bolus amplitude and arrival time for heterogeneous tissues, such as cervical cancer, are accessible with the cL-AIF approach. The cL-AIF method, which estimates unique local-AIF amplitude and arrival time for each voxel within the tissue of interest, provides better modeling of DCE-MRI data than the use of a single, measured R-AIF. The Bayesian-based data analysis described herein affords estimates of uncertainties for each model parameter, via posterior probability density functions, and voxel-wise comparison across methods/models, via model selection in data modeling.

  2. Bayesian model averaging method for evaluating associations between air pollution and respiratory mortality: a time-series study

    PubMed Central

    Fang, Xin; Li, Runkui; Kan, Haidong; Bottai, Matteo; Fang, Fang

    2016-01-01

    Objective To demonstrate an application of Bayesian model averaging (BMA) with generalised additive mixed models (GAMM) and provide a novel modelling technique to assess the association between inhalable coarse particles (PM10) and respiratory mortality in time-series studies. Design A time-series study using regional death registry between 2009 and 2010. Setting 8 districts in a large metropolitan area in Northern China. Participants 9559 permanent residents of the 8 districts who died of respiratory diseases between 2009 and 2010. Main outcome measures Per cent increase in daily respiratory mortality rate (MR) per interquartile range (IQR) increase of PM10 concentration and corresponding 95% confidence interval (CI) in single-pollutant and multipollutant (including NOx, CO) models. Results The Bayesian model averaged GAMM (GAMM+BMA) and the optimal GAMM of PM10, multipollutants and principal components (PCs) of multipollutants showed comparable results for the effect of PM10 on daily respiratory MR, that is, one IQR increase in PM10 concentration corresponded to 1.38% vs 1.39%, 1.81% vs 1.83% and 0.87% vs 0.88% increase, respectively, in daily respiratory MR. However, GAMM+BMA gave slightly but noticeable wider CIs for the single-pollutant model (−1.09 to 4.28 vs −1.08 to 3.93) and the PCs-based model (−2.23 to 4.07 vs −2.03 vs 3.88). The CIs of the multiple-pollutant model from two methods are similar, that is, −1.12 to 4.85 versus −1.11 versus 4.83. Conclusions The BMA method may represent a useful tool for modelling uncertainty in time-series studies when evaluating the effect of air pollution on fatal health outcomes. PMID:27531727

  3. A Bayesian Supertree Model for Genome-Wide Species Tree Reconstruction

    PubMed Central

    De Oliveira Martins, Leonardo; Mallo, Diego; Posada, David

    2016-01-01

    Current phylogenomic data sets highlight the need for species tree methods able to deal with several sources of gene tree/species tree incongruence. At the same time, we need to make most use of all available data. Most species tree methods deal with single processes of phylogenetic discordance, namely, gene duplication and loss, incomplete lineage sorting (ILS) or horizontal gene transfer. In this manuscript, we address the problem of species tree inference from multilocus, genome-wide data sets regardless of the presence of gene duplication and loss and ILS therefore without the need to identify orthologs or to use a single individual per species. We do this by extending the idea of Maximum Likelihood (ML) supertrees to a hierarchical Bayesian model where several sources of gene tree/species tree disagreement can be accounted for in a modular manner. We implemented this model in a computer program called guenomu whose inputs are posterior distributions of unrooted gene tree topologies for multiple gene families, and whose output is the posterior distribution of rooted species tree topologies. We conducted extensive simulations to evaluate the performance of our approach in comparison with other species tree approaches able to deal with more than one leaf from the same species. Our method ranked best under simulated data sets, in spite of ignoring branch lengths, and performed well on empirical data, as well as being fast enough to analyze relatively large data sets. Our Bayesian supertree method was also very successful in obtaining better estimates of gene trees, by reducing the uncertainty in their distributions. In addition, our results show that under complex simulation scenarios, gene tree parsimony is also a competitive approach once we consider its speed, in contrast to more sophisticated models. PMID:25281847

  4. Geotechnical parameter spatial distribution stochastic analysis based on multi-precision information assimilation

    NASA Astrophysics Data System (ADS)

    Wang, C.; Rubin, Y.

    2014-12-01

    Spatial distribution of important geotechnical parameter named compression modulus Es contributes considerably to the understanding of the underlying geological processes and the adequate assessment of the Es mechanics effects for differential settlement of large continuous structure foundation. These analyses should be derived using an assimilating approach that combines in-situ static cone penetration test (CPT) with borehole experiments. To achieve such a task, the Es distribution of stratum of silty clay in region A of China Expo Center (Shanghai) is studied using the Bayesian-maximum entropy method. This method integrates rigorously and efficiently multi-precision of different geotechnical investigations and sources of uncertainty. Single CPT samplings were modeled as a rational probability density curve by maximum entropy theory. Spatial prior multivariate probability density function (PDF) and likelihood PDF of the CPT positions were built by borehole experiments and the potential value of the prediction point, then, preceding numerical integration on the CPT probability density curves, the posterior probability density curve of the prediction point would be calculated by the Bayesian reverse interpolation framework. The results were compared between Gaussian Sequential Stochastic Simulation and Bayesian methods. The differences were also discussed between single CPT samplings of normal distribution and simulated probability density curve based on maximum entropy theory. It is shown that the study of Es spatial distributions can be improved by properly incorporating CPT sampling variation into interpolation process, whereas more informative estimations are generated by considering CPT Uncertainty for the estimation points. Calculation illustrates the significance of stochastic Es characterization in a stratum, and identifies limitations associated with inadequate geostatistical interpolation techniques. This characterization results will provide a multi-precision information assimilation method of other geotechnical parameters.

  5. Bayesian seismic inversion based on rock-physics prior modeling for the joint estimation of acoustic impedance, porosity and lithofacies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Passos de Figueiredo, Leandro, E-mail: leandrop.fgr@gmail.com; Grana, Dario; Santos, Marcio

    We propose a Bayesian approach for seismic inversion to estimate acoustic impedance, porosity and lithofacies within the reservoir conditioned to post-stack seismic and well data. The link between elastic and petrophysical properties is given by a joint prior distribution for the logarithm of impedance and porosity, based on a rock-physics model. The well conditioning is performed through a background model obtained by well log interpolation. Two different approaches are presented: in the first approach, the prior is defined by a single Gaussian distribution, whereas in the second approach it is defined by a Gaussian mixture to represent the well datamore » multimodal distribution and link the Gaussian components to different geological lithofacies. The forward model is based on a linearized convolutional model. For the single Gaussian case, we obtain an analytical expression for the posterior distribution, resulting in a fast algorithm to compute the solution of the inverse problem, i.e. the posterior distribution of acoustic impedance and porosity as well as the facies probability given the observed data. For the Gaussian mixture prior, it is not possible to obtain the distributions analytically, hence we propose a Gibbs algorithm to perform the posterior sampling and obtain several reservoir model realizations, allowing an uncertainty analysis of the estimated properties and lithofacies. Both methodologies are applied to a real seismic dataset with three wells to obtain 3D models of acoustic impedance, porosity and lithofacies. The methodologies are validated through a blind well test and compared to a standard Bayesian inversion approach. Using the probability of the reservoir lithofacies, we also compute a 3D isosurface probability model of the main oil reservoir in the studied field.« less

  6. Accommodating Uncertainty in Prior Distributions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Picard, Richard Roy; Vander Wiel, Scott Alan

    2017-01-19

    A fundamental premise of Bayesian methodology is that a priori information is accurately summarized by a single, precisely de ned prior distribution. In many cases, especially involving informative priors, this premise is false, and the (mis)application of Bayes methods produces posterior quantities whose apparent precisions are highly misleading. We examine the implications of uncertainty in prior distributions, and present graphical methods for dealing with them.

  7. Is a Single-Bladed Knife Enough to Dissect Human Cognition? Commentary on Griffiths et al.

    ERIC Educational Resources Information Center

    Fu, Wai-Tat

    2008-01-01

    Griffiths, Christian, and Kalish (this issue) present an iterative-learning paradigm applying a Bayesian model to understand inductive biases in categorization. The authors argue that the paradigm is useful as an exploratory tool to understand inductive biases in situations where little is known about the task. It is argued that a theory developed…

  8. Analysis of health trait data from on-farm computer systems in the U.S. II: Comparison of genomic analyses including two-stage and single-step methods

    USDA-ARS?s Scientific Manuscript database

    The development of genomic selection methodology, with accompanying substantial gains in reliability for low-heritability traits, may dramatically improve the feasibility of genetic improvement of dairy cow health. Many methods for genomic analysis have now been developed, including the “Bayesian Al...

  9. Probability-Based Recognition Framework for Underwater Landmarks Using Sonar Images †.

    PubMed

    Lee, Yeongjun; Choi, Jinwoo; Ko, Nak Yong; Choi, Hyun-Taek

    2017-08-24

    This paper proposes a probability-based framework for recognizing underwater landmarks using sonar images. Current recognition methods use a single image, which does not provide reliable results because of weaknesses of the sonar image such as unstable acoustic source, many speckle noises, low resolution images, single channel image, and so on. However, using consecutive sonar images, if the status-i.e., the existence and identity (or name)-of an object is continuously evaluated by a stochastic method, the result of the recognition method is available for calculating the uncertainty, and it is more suitable for various applications. Our proposed framework consists of three steps: (1) candidate selection, (2) continuity evaluation, and (3) Bayesian feature estimation. Two probability methods-particle filtering and Bayesian feature estimation-are used to repeatedly estimate the continuity and feature of objects in consecutive images. Thus, the status of the object is repeatedly predicted and updated by a stochastic method. Furthermore, we develop an artificial landmark to increase detectability by an imaging sonar, which we apply to the characteristics of acoustic waves, such as instability and reflection depending on the roughness of the reflector surface. The proposed method is verified by conducting basin experiments, and the results are presented.

  10. Bayesian multiproxy temperature reconstruction with black spruce ring widths and stable isotopes from the northern Quebec taiga

    NASA Astrophysics Data System (ADS)

    Gennaretti, Fabio; Huard, David; Naulier, Maud; Savard, Martine; Bégin, Christian; Arseneault, Dominique; Guiot, Joel

    2017-12-01

    Northeastern North America has very few millennium-long, high-resolution climate proxy records. However, very recently, a new tree-ring dataset suitable for temperature reconstructions over the last millennium was developed in the northern Quebec taiga. This dataset is composed of one δ18O and six ring width chronologies. Until now, these chronologies have only been used in independent temperature reconstructions (from δ18O or ring width) showing some differences. Here, we added to the dataset a δ13C chronology and developed a significantly improved millennium-long multiproxy reconstruction (997-2006 CE) accounting for uncertainties with a Bayesian approach that evaluates the likelihood of each proxy model. We also undertook a methodological sensitivity analysis to assess the different responses of each proxy to abrupt forcings such as strong volcanic eruptions. Ring width showed a larger response to single eruptions and a larger cumulative impact of multiple eruptions during active volcanic periods, δ18O showed intermediate responses, and δ13C was mostly insensitive to volcanic eruptions. We conclude that all reconstructions based on a single proxy can be misleading because of the possible reduced or amplified responses to specific forcing agents.

  11. Bayesian modelling of uncertainties of Monte Carlo radiative-transfer simulations

    NASA Astrophysics Data System (ADS)

    Beaujean, Frederik; Eggers, Hans C.; Kerzendorf, Wolfgang E.

    2018-04-01

    One of the big challenges in astrophysics is the comparison of complex simulations to observations. As many codes do not directly generate observables (e.g. hydrodynamic simulations), the last step in the modelling process is often a radiative-transfer treatment. For this step, the community relies increasingly on Monte Carlo radiative transfer due to the ease of implementation and scalability with computing power. We show how to estimate the statistical uncertainty given the output of just a single radiative-transfer simulation in which the number of photon packets follows a Poisson distribution and the weight (e.g. energy or luminosity) of a single packet may follow an arbitrary distribution. Our Bayesian approach produces a posterior distribution that is valid for any number of packets in a bin, even zero packets, and is easy to implement in practice. Our analytic results for large number of packets show that we generalise existing methods that are valid only in limiting cases. The statistical problem considered here appears in identical form in a wide range of Monte Carlo simulations including particle physics and importance sampling. It is particularly powerful in extracting information when the available data are sparse or quantities are small.

  12. Bayesian modelling of uncertainties of Monte Carlo radiative-transfer simulations

    NASA Astrophysics Data System (ADS)

    Beaujean, Frederik; Eggers, Hans C.; Kerzendorf, Wolfgang E.

    2018-07-01

    One of the big challenges in astrophysics is the comparison of complex simulations to observations. As many codes do not directly generate observables (e.g. hydrodynamic simulations), the last step in the modelling process is often a radiative-transfer treatment. For this step, the community relies increasingly on Monte Carlo radiative transfer due to the ease of implementation and scalability with computing power. We consider simulations in which the number of photon packets is Poisson distributed, while the weight assigned to a single photon packet follows any distribution of choice. We show how to estimate the statistical uncertainty of the sum of weights in each bin from the output of a single radiative-transfer simulation. Our Bayesian approach produces a posterior distribution that is valid for any number of packets in a bin, even zero packets, and is easy to implement in practice. Our analytic results for large number of packets show that we generalize existing methods that are valid only in limiting cases. The statistical problem considered here appears in identical form in a wide range of Monte Carlo simulations including particle physics and importance sampling. It is particularly powerful in extracting information when the available data are sparse or quantities are small.

  13. Bayesian Networks Predict Neuronal Transdifferentiation.

    PubMed

    Ainsworth, Richard I; Ai, Rizi; Ding, Bo; Li, Nan; Zhang, Kai; Wang, Wei

    2018-05-30

    We employ the language of Bayesian networks to systematically construct gene-regulation topologies from deep-sequencing single-nucleus RNA-Seq data for human neurons. From the perspective of the cell-state potential landscape, we identify attractors that correspond closely to different neuron subtypes. Attractors are also recovered for cell states from an independent data set confirming our models accurate description of global genetic regulations across differing cell types of the neocortex (not included in the training data). Our model recovers experimentally confirmed genetic regulations and community analysis reveals genetic associations in common pathways. Via a comprehensive scan of all theoretical three-gene perturbations of gene knockout and overexpression, we discover novel neuronal trans-differrentiation recipes (including perturbations of SATB2, GAD1, POU6F2 and ADARB2) for excitatory projection neuron and inhibitory interneuron subtypes. Copyright © 2018, G3: Genes, Genomes, Genetics.

  14. A Method of Face Detection with Bayesian Probability

    NASA Astrophysics Data System (ADS)

    Sarker, Goutam

    2010-10-01

    The objective of face detection is to identify all images which contain a face, irrespective of its orientation, illumination conditions etc. This is a hard problem, because the faces are highly variable in size, shape lighting conditions etc. Many methods have been designed and developed to detect faces in a single image. The present paper is based on one `Appearance Based Method' which relies on learning the facial and non facial features from image examples. This in its turn is based on statistical analysis of examples and counter examples of facial images and employs Bayesian Conditional Classification Rule to detect the probability of belongingness of a face (or non-face) within an image frame. The detection rate of the present system is very high and thereby the number of false positive and false negative detection is substantially low.

  15. A New Bayesian Approach for Estimating the Presence of a Suspected Compound in Routine Screening Analysis.

    PubMed

    Woldegebriel, Michael; Vivó-Truyols, Gabriel

    2016-10-04

    A novel method for compound identification in liquid chromatography-high resolution mass spectrometry (LC-HRMS) is proposed. The method, based on Bayesian statistics, accommodates all possible uncertainties involved, from instrumentation up to data analysis into a single model yielding the probability of the compound of interest being present/absent in the sample. This approach differs from the classical methods in two ways. First, it is probabilistic (instead of deterministic); hence, it computes the probability that the compound is (or is not) present in a sample. Second, it answers the hypothesis "the compound is present", opposed to answering the question "the compound feature is present". This second difference implies a shift in the way data analysis is tackled, since the probability of interfering compounds (i.e., isomers and isobaric compounds) is also taken into account.

  16. Screening for SNPs with Allele-Specific Methylation based on Next-Generation Sequencing Data.

    PubMed

    Hu, Bo; Ji, Yuan; Xu, Yaomin; Ting, Angela H

    2013-05-01

    Allele-specific methylation (ASM) has long been studied but mainly documented in the context of genomic imprinting and X chromosome inactivation. Taking advantage of the next-generation sequencing technology, we conduct a high-throughput sequencing experiment with four prostate cell lines to survey the whole genome and identify single nucleotide polymorphisms (SNPs) with ASM. A Bayesian approach is proposed to model the counts of short reads for each SNP conditional on its genotypes of multiple subjects, leading to a posterior probability of ASM. We flag SNPs with high posterior probabilities of ASM by accounting for multiple comparisons based on posterior false discovery rates. Applying the Bayesian approach to the in-house prostate cell line data, we identify 269 SNPs as candidates of ASM. A simulation study is carried out to demonstrate the quantitative performance of the proposed approach.

  17. Comparing flood loss models of different complexity

    NASA Astrophysics Data System (ADS)

    Schröter, Kai; Kreibich, Heidi; Vogel, Kristin; Riggelsen, Carsten; Scherbaum, Frank; Merz, Bruno

    2013-04-01

    Any deliberation on flood risk requires the consideration of potential flood losses. In particular, reliable flood loss models are needed to evaluate cost-effectiveness of mitigation measures, to assess vulnerability, for comparative risk analysis and financial appraisal during and after floods. In recent years, considerable improvements have been made both concerning the data basis and the methodological approaches used for the development of flood loss models. Despite of that, flood loss models remain an important source of uncertainty. Likewise the temporal and spatial transferability of flood loss models is still limited. This contribution investigates the predictive capability of different flood loss models in a split sample cross regional validation approach. For this purpose, flood loss models of different complexity, i.e. based on different numbers of explaining variables, are learned from a set of damage records that was obtained from a survey after the Elbe flood in 2002. The validation of model predictions is carried out for different flood events in the Elbe and Danube river basins in 2002, 2005 and 2006 for which damage records are available from surveys after the flood events. The models investigated are a stage-damage model, the rule based model FLEMOps+r as well as novel model approaches which are derived using data mining techniques of regression trees and Bayesian networks. The Bayesian network approach to flood loss modelling provides attractive additional information concerning the probability distribution of both model predictions and explaining variables.

  18. Helping to distinguish primary from secondary transfer events for trace DNA.

    PubMed

    Taylor, Duncan; Biedermann, Alex; Samie, Lydie; Pun, Ka-Man; Hicks, Tacha; Champod, Christophe

    2017-05-01

    DNA is routinely recovered in criminal investigations. The sensitivity of laboratory equipment and DNA profiling kits means that it is possible to generate DNA profiles from very small amounts of cellular material. As a consequence, it has been shown that DNA we detect may not have arisen from a direct contact with an item, but rather through one or more intermediaries. Naturally the questions arising in court, particularly when considering trace DNA, are of how DNA may have come to be on an item. While scientists cannot directly answer this question, forensic biological results can help in discriminating between alleged activities. Much experimental research has been published showing the transfer and persistence of DNA under varying conditions, but as of yet the results of these studies have not been combined to deal with broad questions about transfer mechanisms. In this work we use published data and Bayesian networks to develop a statistical logical framework by which questions of transfer mechanism can be approached probabilistically. We also identify a number of areas where further work could be carried out in order to improve our knowledge base when helping to address questions about transfer mechanisms. Finally, we apply the constructed Bayesian network to ground truth known data to determine if, with current knowledge, there is any power in DNA quantities to distinguish primary and secondary transfer events. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Phylogeography of the Central American lancehead Bothrops asper (SERPENTES: VIPERIDAE)

    PubMed Central

    Parkinson, Christopher L.; Daza, Juan M.; Wüster, Wolfgang

    2017-01-01

    The uplift and final connection of the Central American land bridge is considered the major event that allowed biotic exchange between vertebrate lineages of northern and southern origin in the New World. However, given the complex tectonics that shaped Middle America, there is still substantial controversy over details of this geographical reconnection, and its role in determining biogeographic patterns in the region. Here, we examine the phylogeography of Bothrops asper, a widely distributed pitviper in Middle America and northwestern South America, in an attempt to evaluate how the final Isthmian uplift and other biogeographical boundaries in the region influenced genealogical lineage divergence in this species. We examined sequence data from two mitochondrial genes (MT-CYB and MT-ND4) from 111 specimens of B. asper, representing 70 localities throughout the species’ distribution. We reconstructed phylogeographic patterns using maximum likelihood and Bayesian methods and estimated divergence time using the Bayesian relaxed clock method. Within the nominal species, an early split led to two divergent lineages of B. asper: one includes five phylogroups distributed in Caribbean Middle America and southwestern Ecuador, and the other comprises five other groups scattered in the Pacific slope of Isthmian Central America and northwestern South America. Our results provide evidence of a complex transition that involves at least two dispersal events into Middle America during the final closure of the Isthmus. PMID:29176806

  20. Coupled Land-Atmosphere Dynamics Govern Long Duration Floods: A Pilot Study in Missouri River Basin Using a Bayesian Hierarchical Model

    NASA Astrophysics Data System (ADS)

    Najibi, N.; Lu, M.; Devineni, N.

    2017-12-01

    Long duration floods cause substantial damages and prolonged interruptions to water resource facilities and critical infrastructure. We present a novel generalized statistical and physical based model for flood duration with a deeper understanding of dynamically coupled nexus of the land surface wetness, effective atmospheric circulation and moisture transport/release. We applied the model on large reservoirs in the Missouri River Basin. The results indicate that the flood duration is not only a function of available moisture in the air, but also the antecedent condition of the blocking system of atmospheric pressure, resulting in enhanced moisture convergence, as well as the effectiveness of moisture condensation process leading to release. Quantifying these dynamics with a two-layer climate informed Bayesian multilevel model, we explain more than 80% variations in flood duration. The model considers the complex interaction between moisture transport, synoptic-to-large-scale atmospheric circulation pattern, and the antecedent wetness condition in the basin. Our findings suggest that synergy between a large low-pressure blocking system and a higher rate of divergent wind often triggers a long duration flood, and the prerequisite for moisture supply to trigger such event is moderate, which is more associated with magnitude than duration. In turn, this condition causes an extremely long duration flood if the surface wetness rate advancing to the flood event was already increased.

  1. Phylogeography of the Central American lancehead Bothrops asper (SERPENTES: VIPERIDAE).

    PubMed

    Saldarriaga-Córdoba, Mónica; Parkinson, Christopher L; Daza, Juan M; Wüster, Wolfgang; Sasa, Mahmood

    2017-01-01

    The uplift and final connection of the Central American land bridge is considered the major event that allowed biotic exchange between vertebrate lineages of northern and southern origin in the New World. However, given the complex tectonics that shaped Middle America, there is still substantial controversy over details of this geographical reconnection, and its role in determining biogeographic patterns in the region. Here, we examine the phylogeography of Bothrops asper, a widely distributed pitviper in Middle America and northwestern South America, in an attempt to evaluate how the final Isthmian uplift and other biogeographical boundaries in the region influenced genealogical lineage divergence in this species. We examined sequence data from two mitochondrial genes (MT-CYB and MT-ND4) from 111 specimens of B. asper, representing 70 localities throughout the species' distribution. We reconstructed phylogeographic patterns using maximum likelihood and Bayesian methods and estimated divergence time using the Bayesian relaxed clock method. Within the nominal species, an early split led to two divergent lineages of B. asper: one includes five phylogroups distributed in Caribbean Middle America and southwestern Ecuador, and the other comprises five other groups scattered in the Pacific slope of Isthmian Central America and northwestern South America. Our results provide evidence of a complex transition that involves at least two dispersal events into Middle America during the final closure of the Isthmus.

  2. Joint model-based clustering of nonlinear longitudinal trajectories and associated time-to-event data analysis, linked by latent class membership: with application to AIDS clinical studies.

    PubMed

    Huang, Yangxin; Lu, Xiaosun; Chen, Jiaqing; Liang, Juan; Zangmeister, Miriam

    2017-10-27

    Longitudinal and time-to-event data are often observed together. Finite mixture models are currently used to analyze nonlinear heterogeneous longitudinal data, which, by releasing the homogeneity restriction of nonlinear mixed-effects (NLME) models, can cluster individuals into one of the pre-specified classes with class membership probabilities. This clustering may have clinical significance, and be associated with clinically important time-to-event data. This article develops a joint modeling approach to a finite mixture of NLME models for longitudinal data and proportional hazard Cox model for time-to-event data, linked by individual latent class indicators, under a Bayesian framework. The proposed joint models and method are applied to a real AIDS clinical trial data set, followed by simulation studies to assess the performance of the proposed joint model and a naive two-step model, in which finite mixture model and Cox model are fitted separately.

  3. The multi temporal/multi-model approach to predictive uncertainty assessment in real-time flood forecasting

    NASA Astrophysics Data System (ADS)

    Barbetta, Silvia; Coccia, Gabriele; Moramarco, Tommaso; Brocca, Luca; Todini, Ezio

    2017-08-01

    This work extends the multi-temporal approach of the Model Conditional Processor (MCP-MT) to the multi-model case and to the four Truncated Normal Distributions (TNDs) approach, demonstrating the improvement on the single-temporal one. The study is framed in the context of probabilistic Bayesian decision-making that is appropriate to take rational decisions on uncertain future outcomes. As opposed to the direct use of deterministic forecasts, the probabilistic forecast identifies a predictive probability density function that represents a fundamental knowledge on future occurrences. The added value of MCP-MT is the identification of the probability that a critical situation will happen within the forecast lead-time and when, more likely, it will occur. MCP-MT is thoroughly tested for both single-model and multi-model configurations at a gauged site on the Tiber River, central Italy. The stages forecasted by two operative deterministic models, STAFOM-RCM and MISDc, are considered for the study. The dataset used for the analysis consists of hourly data from 34 flood events selected on a time series of six years. MCP-MT improves over the original models' forecasts: the peak overestimation and the rising limb delayed forecast, characterizing MISDc and STAFOM-RCM respectively, are significantly mitigated, with a reduced mean error on peak stage from 45 to 5 cm and an increased coefficient of persistence from 0.53 up to 0.75. The results show that MCP-MT outperforms the single-temporal approach and is potentially useful for supporting decision-making because the exceedance probability of hydrometric thresholds within a forecast horizon and the most probable flooding time can be estimated.

  4. Single Event Effect Testing of the Micron MT46V128M8

    NASA Technical Reports Server (NTRS)

    Stansberry, Scott; Campola, Michael; Wilcox, Ted; Seidleck, Christina; Phan, Anthony

    2017-01-01

    The Micron MT46V128M8 was tested for single event effects (SEE) at the Texas AM University Cyclotron Facility (TAMU) in June of 2017. Testing revealed a sensitivity to device hang-ups classified as single event functional interrupts (SEFI) and possible soft data errors classified as single event upsets (SEU).

  5. Resources for Radiation Test Data

    NASA Technical Reports Server (NTRS)

    O'Bryan, Martha V.; Casey, Megan C.; Lauenstein, Jean-Marie; LaBel, Ken

    2016-01-01

    The performance of electronic devices in a space radiation environment is often limited by susceptibility to single-event effects (SEE), total ionizing dose (TID), and displacement damage (DD). Interpreting the results of SEE, TID, and DD testing of complex devices is quite difficult given the rapidly changing nature of both technology and the related radiation issues. Radiation testing is performed to establish the sensitivities of candidate spacecraft electronics to single-event upset (SEU), single-event latchup (SEL), single-event gate rupture (SEGR), single-event burnout (SEB), single-event transients (SETs), TID, and DD effects. Knowing where to search for these test results is a valuable resource for the aerospace engineer or spacecraft design engineer. This poster is intended to be a resource tool for finding radiation test data.

  6. Calibrated Multiple Event Relocations of the Central and Eastern United States

    NASA Astrophysics Data System (ADS)

    Yeck, W. L.; Benz, H.; McNamara, D. E.; Bergman, E.; Herrmann, R. B.; Myers, S. C.

    2015-12-01

    Earthquake locations are a first-order observable which form the basis of a wide range of seismic analyses. Currently, the ANSS catalog primarily contains published single-event earthquake locations that rely on assumed 1D velocity models. Increasing the accuracy of cataloged earthquake hypocenter locations and origin times and constraining their associated errors can improve our understanding of Earth structure and have a fundamental impact on subsequent seismic studies. Multiple-event relocation algorithms often increase the precision of relative earthquake hypocenters but are hindered by their limited ability to provide realistic location uncertainties for individual earthquakes. Recently, a Bayesian approach to the multiple event relocation problem has proven to have many benefits including the ability to: (1) handle large data sets; (2) easily incorporate a priori hypocenter information; (3) model phase assignment errors; and, (4) correct for errors in the assumed travel time model. In this study we employ bayseloc [Myers et al., 2007, 2009] to relocate earthquakes in the Central and Eastern United States from 1964-present. We relocate ~11,000 earthquakes with a dataset of ~439,000 arrival time observations. Our dataset includes arrival-time observations from the ANSS catalog supplemented with arrival-time data from the Reviewed ISC Bulletin (prior to 1981), targeted local studies, and arrival-time data from the TA Array. One significant benefit of the bayesloc algorithm is its ability to incorporate a priori constraints on the probability distributions of specific earthquake locations parameters. To constrain the inversion, we use high-quality calibrated earthquake locations from local studies, including studies from: Raton Basin, Colorado; Mineral, Virginia; Guy, Arkansas; Cheneville, Quebec; Oklahoma; and Mt. Carmel, Illinois. We also add depth constraints to 232 earthquakes from regional moment tensors. Finally, we add constraints from four historic (1964-1973) ground truth events from a verification database. We (1) evaluate our ability to improve our location estimations, (2) use improved locations to evaluate Earth structure in seismically active regions, and (3) examine improvements to the estimated locations of historic large magnitude earthquakes.

  7. Global invasion network of the brown marmorated stink bug, Halyomorpha halys.

    PubMed

    Valentin, Rafael E; Nielsen, Anne L; Wiman, Nik G; Lee, Doo-Hyung; Fonseca, Dina M

    2017-08-29

    Human mediated transportation into novel habitats is a prerequisite for the establishment of non-native species that become invasive, so knowledge of common sources may allow prevention. The brown marmorated stink bug (BMSB, Halyomorpha halys) is an East Asian species now established across North America and Europe, that in the Eastern United States of America (US) and Italy is causing significant economic losses to agriculture. After US populations were shown to originate from Northern China, others have tried to source BMSB populations now in Canada, Switzerland, Italy, France, Greece, and Hungary. Due to selection of different molecular markers, however, integrating all the datasets to obtain a broader picture of BMSB's expansion has been difficult. To address this limitation we focused on a single locus, the barcode region in the cytochrome oxidase I mitochondrial gene, and analyzed representative BMSB samples from across its current global range using an Approximate Bayesian Computation approach. We found that China is the likely source of most non-native populations, with at least four separate introductions in North America and three in Europe. Additionally, we found evidence of one bridgehead event: a likely Eastern US source for the central Italy populations that interestingly share enhanced pest status.

  8. Large-scale genomic analyses reveal the population structure and evolutionary trends of Streptococcus agalactiae strains in Brazilian fish farms.

    PubMed

    Barony, Gustavo M; Tavares, Guilherme C; Pereira, Felipe L; Carvalho, Alex F; Dorella, Fernanda A; Leal, Carlos A G; Figueiredo, Henrique C P

    2017-10-19

    Streptococcus agalactiae is a major pathogen and a hindrance on tilapia farming worldwide. The aims of this work were to analyze the genomic evolution of Brazilian strains of S. agalactiae and to establish spatial and temporal relations between strains isolated from different outbreaks of streptococcosis. A total of 39 strains were obtained from outbreaks and their whole genomes were sequenced and annotated for comparative analysis of multilocus sequence typing, genomic similarity and whole genome multilocus sequence typing (wgMLST). The Brazilian strains presented two sequence types, including a newly described ST, and a non-typeable lineage. The use of wgMLST could differentiate each strain in a single clone and was used to establish temporal and geographical correlations among strains. Bayesian phylogenomic analysis suggests that the studied Brazilian population was co-introduced in the country with their host, approximately 60 years ago. Brazilian strains of S. agalactiae were shown to be heterogeneous in their genome sequences and were distributed in different regions of the country according to their genotype, which allowed the use of wgMLST analysis to track each outbreak event individually.

  9. Cretaceous origin and repeated tertiary diversification of the redefined butterflies

    PubMed Central

    Heikkilä, Maria; Kaila, Lauri; Mutanen, Marko; Peña, Carlos; Wahlberg, Niklas

    2012-01-01

    Although the taxonomy of the ca 18 000 species of butterflies and skippers is well known, the family-level relationships are still debated. Here, we present, to our knowledge, the most comprehensive phylogenetic analysis of the superfamilies Papilionoidea, Hesperioidea and Hedyloidea to date based on morphological and molecular data. We reconstructed their phylogenetic relationships using parsimony and Bayesian approaches. We estimated times and rates of diversification along lineages in order to reconstruct their evolutionary history. Our results suggest that the butterflies, as traditionally understood, are paraphyletic, with Papilionidae being the sister-group to Hesperioidea, Hedyloidea and all other butterflies. Hence, the families in the current three superfamilies should be placed in a single superfamily Papilionoidea. In addition, we find that Hedylidae is sister to Hesperiidae, and this novel relationship is supported by two morphological characters. The families diverged in the Early Cretaceous but diversified after the Cretaceous–Palaeogene event. The diversification of butterflies is characterized by a slow speciation rate in the lineage leading to Baronia brevicornis, a period of stasis by the skippers after divergence and a burst of diversification in the lineages leading to Nymphalidae, Riodinidae and Lycaenidae. PMID:21920981

  10. Cretaceous origin and repeated tertiary diversification of the redefined butterflies.

    PubMed

    Heikkilä, Maria; Kaila, Lauri; Mutanen, Marko; Peña, Carlos; Wahlberg, Niklas

    2012-03-22

    Although the taxonomy of the ca 18 000 species of butterflies and skippers is well known, the family-level relationships are still debated. Here, we present, to our knowledge, the most comprehensive phylogenetic analysis of the superfamilies Papilionoidea, Hesperioidea and Hedyloidea to date based on morphological and molecular data. We reconstructed their phylogenetic relationships using parsimony and Bayesian approaches. We estimated times and rates of diversification along lineages in order to reconstruct their evolutionary history. Our results suggest that the butterflies, as traditionally understood, are paraphyletic, with Papilionidae being the sister-group to Hesperioidea, Hedyloidea and all other butterflies. Hence, the families in the current three superfamilies should be placed in a single superfamily Papilionoidea. In addition, we find that Hedylidae is sister to Hesperiidae, and this novel relationship is supported by two morphological characters. The families diverged in the Early Cretaceous but diversified after the Cretaceous-Palaeogene event. The diversification of butterflies is characterized by a slow speciation rate in the lineage leading to Baronia brevicornis, a period of stasis by the skippers after divergence and a burst of diversification in the lineages leading to Nymphalidae, Riodinidae and Lycaenidae.

  11. Diverse sampling of East African haemosporidians reveals chiropteran origin of malaria parasites in primates and rodents.

    PubMed

    Lutz, Holly L; Patterson, Bruce D; Kerbis Peterhans, Julian C; Stanley, William T; Webala, Paul W; Gnoske, Thomas P; Hackett, Shannon J; Stanhope, Michael J

    2016-06-01

    Phylogenies of parasites provide hypotheses on the history of their movements between hosts, leading to important insights regarding the processes of host switching that underlie modern-day epidemics. Haemosporidian (malaria) parasites lack a well resolved phylogeny, which has impeded the study of evolutionary processes associated with host-switching in this group. Here we present a novel phylogenetic hypothesis that suggests bats served as the ancestral hosts of malaria parasites in primates and rodents. Expanding upon current taxon sampling of Afrotropical bat and bird parasites, we find strong support for all major nodes in the haemosporidian tree using both Bayesian and maximum likelihood approaches. Our analyses support a single transition of haemosporidian parasites from saurian to chiropteran hosts, and do not support a monophyletic relationship between Plasmodium parasites of birds and mammals. We find, for the first time, that Hepatocystis and Plasmodium parasites of mammals represent reciprocally monophyletic evolutionary lineages. These results highlight the importance of broad taxonomic sampling when analyzing phylogenetic relationships, and have important implications for our understanding of key host switching events in the history of malaria parasite evolution. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Diagnosis of combined faults in Rotary Machinery by Non-Naive Bayesian approach

    NASA Astrophysics Data System (ADS)

    Asr, Mahsa Yazdanian; Ettefagh, Mir Mohammad; Hassannejad, Reza; Razavi, Seyed Naser

    2017-02-01

    When combined faults happen in different parts of the rotating machines, their features are profoundly dependent. Experts are completely familiar with individuals faults characteristics and enough data are available from single faults but the problem arises, when the faults combined and the separation of characteristics becomes complex. Therefore, the experts cannot declare exact information about the symptoms of combined fault and its quality. In this paper to overcome this drawback, a novel method is proposed. The core idea of the method is about declaring combined fault without using combined fault features as training data set and just individual fault features are applied in training step. For this purpose, after data acquisition and resampling the obtained vibration signals, Empirical Mode Decomposition (EMD) is utilized to decompose multi component signals to Intrinsic Mode Functions (IMFs). With the use of correlation coefficient, proper IMFs for feature extraction are selected. In feature extraction step, Shannon energy entropy of IMFs was extracted as well as statistical features. It is obvious that most of extracted features are strongly dependent. To consider this matter, Non-Naive Bayesian Classifier (NNBC) is appointed, which release the fundamental assumption of Naive Bayesian, i.e., the independence among features. To demonstrate the superiority of NNBC, other counterpart methods, include Normal Naive Bayesian classifier, Kernel Naive Bayesian classifier and Back Propagation Neural Networks were applied and the classification results are compared. An experimental vibration signals, collected from automobile gearbox, were used to verify the effectiveness of the proposed method. During the classification process, only the features, related individually to healthy state, bearing failure and gear failures, were assigned for training the classifier. But, combined fault features (combined gear and bearing failures) were examined as test data. The achieved probabilities for the test data show that the combined fault can be identified with high success rate.

  13. Bayesian models for comparative analysis integrating phylogenetic uncertainty.

    PubMed

    de Villemereuil, Pierre; Wells, Jessie A; Edwards, Robert D; Blomberg, Simon P

    2012-06-28

    Uncertainty in comparative analyses can come from at least two sources: a) phylogenetic uncertainty in the tree topology or branch lengths, and b) uncertainty due to intraspecific variation in trait values, either due to measurement error or natural individual variation. Most phylogenetic comparative methods do not account for such uncertainties. Not accounting for these sources of uncertainty leads to false perceptions of precision (confidence intervals will be too narrow) and inflated significance in hypothesis testing (e.g. p-values will be too small). Although there is some application-specific software for fitting Bayesian models accounting for phylogenetic error, more general and flexible software is desirable. We developed models to directly incorporate phylogenetic uncertainty into a range of analyses that biologists commonly perform, using a Bayesian framework and Markov Chain Monte Carlo analyses. We demonstrate applications in linear regression, quantification of phylogenetic signal, and measurement error models. Phylogenetic uncertainty was incorporated by applying a prior distribution for the phylogeny, where this distribution consisted of the posterior tree sets from Bayesian phylogenetic tree estimation programs. The models were analysed using simulated data sets, and applied to a real data set on plant traits, from rainforest plant species in Northern Australia. Analyses were performed using the free and open source software OpenBUGS and JAGS. Incorporating phylogenetic uncertainty through an empirical prior distribution of trees leads to more precise estimation of regression model parameters than using a single consensus tree and enables a more realistic estimation of confidence intervals. In addition, models incorporating measurement errors and/or individual variation, in one or both variables, are easily formulated in the Bayesian framework. We show that BUGS is a useful, flexible general purpose tool for phylogenetic comparative analyses, particularly for modelling in the face of phylogenetic uncertainty and accounting for measurement error or individual variation in explanatory variables. Code for all models is provided in the BUGS model description language.

  14. Bayesian models for comparative analysis integrating phylogenetic uncertainty

    PubMed Central

    2012-01-01

    Background Uncertainty in comparative analyses can come from at least two sources: a) phylogenetic uncertainty in the tree topology or branch lengths, and b) uncertainty due to intraspecific variation in trait values, either due to measurement error or natural individual variation. Most phylogenetic comparative methods do not account for such uncertainties. Not accounting for these sources of uncertainty leads to false perceptions of precision (confidence intervals will be too narrow) and inflated significance in hypothesis testing (e.g. p-values will be too small). Although there is some application-specific software for fitting Bayesian models accounting for phylogenetic error, more general and flexible software is desirable. Methods We developed models to directly incorporate phylogenetic uncertainty into a range of analyses that biologists commonly perform, using a Bayesian framework and Markov Chain Monte Carlo analyses. Results We demonstrate applications in linear regression, quantification of phylogenetic signal, and measurement error models. Phylogenetic uncertainty was incorporated by applying a prior distribution for the phylogeny, where this distribution consisted of the posterior tree sets from Bayesian phylogenetic tree estimation programs. The models were analysed using simulated data sets, and applied to a real data set on plant traits, from rainforest plant species in Northern Australia. Analyses were performed using the free and open source software OpenBUGS and JAGS. Conclusions Incorporating phylogenetic uncertainty through an empirical prior distribution of trees leads to more precise estimation of regression model parameters than using a single consensus tree and enables a more realistic estimation of confidence intervals. In addition, models incorporating measurement errors and/or individual variation, in one or both variables, are easily formulated in the Bayesian framework. We show that BUGS is a useful, flexible general purpose tool for phylogenetic comparative analyses, particularly for modelling in the face of phylogenetic uncertainty and accounting for measurement error or individual variation in explanatory variables. Code for all models is provided in the BUGS model description language. PMID:22741602

  15. Trends in Extreme Rainfall Frequency in the Contiguous United States: Attribution to Climate Change and Climate Variability Modes

    NASA Astrophysics Data System (ADS)

    Armal, S.; Devineni, N.; Khanbilvardi, R.

    2017-12-01

    This study presents a systematic analysis for identifying and attributing trends in the annual frequency of extreme rainfall events across the contiguous United States to climate change and climate variability modes. A Bayesian multilevel model is developed for 1,244 stations simultaneously to test the null hypothesis of no trend and verify two alternate hypotheses: Trend can be attributed to changes in global surface temperature anomalies, or to a combination of cyclical climate modes with varying quasi-periodicities and global surface temperature anomalies. The Bayesian multilevel model provides the opportunity to pool information across stations and reduce the parameter estimation uncertainty, hence identifying the trends better. The choice of the best alternate hypotheses is made based on Watanabe-Akaike Information Criterion, a Bayesian pointwise predictive accuracy measure. Statistically significant time trends are observed in 742 of the 1,244 stations. Trends in 409 of these stations can be attributed to changes in global surface temperature anomalies. These stations are predominantly found in the Southeast and Northeast climate regions. The trends in 274 of these stations can be attributed to the El Nino Southern Oscillations, North Atlantic Oscillation, Pacific Decadal Oscillation and Atlantic Multi-Decadal Oscillation along with changes in global surface temperature anomalies. These stations are mainly found in the Northwest, West and Southwest climate regions.

  16. Bayesian inference and interpretation of centroid moment tensors of the 2016 Kumamoto earthquake sequence, Kyushu, Japan

    NASA Astrophysics Data System (ADS)

    Hallo, Miroslav; Asano, Kimiyuki; Gallovič, František

    2017-09-01

    On April 16, 2016, Kumamoto prefecture in Kyushu region, Japan, was devastated by a shallow M JMA7.3 earthquake. The series of foreshocks started by M JMA6.5 foreshock 28 h before the mainshock. They have originated in Hinagu fault zone intersecting the mainshock Futagawa fault zone; hence, the tectonic background for this earthquake sequence is rather complex. Here we infer centroid moment tensors (CMTs) for 11 events with M JMA between 4.8 and 6.5, using strong motion records of the K-NET, KiK-net and F-net networks. We use upgraded Bayesian full-waveform inversion code ISOLA-ObsPy, which takes into account uncertainty of the velocity model. Such an approach allows us to reliably assess uncertainty of the CMT parameters including the centroid position. The solutions show significant systematic spatial and temporal variations throughout the sequence. Foreshocks are right-lateral steeply dipping strike-slip events connected to the NE-SW shear zone. Those located close to the intersection of the Hinagu and Futagawa fault zones are dipping slightly to ESE, while those in the southern area are dipping to WNW. Contrarily, aftershocks are mostly normal dip-slip events, being related to the N-S extensional tectonic regime. Most of the deviatoric moment tensors contain only minor CLVD component, which can be attributed to the velocity model uncertainty. Nevertheless, two of the CMTs involve a significant CLVD component, which may reflect complex rupture process. Decomposition of those moment tensors into two pure shear moment tensors suggests combined right-lateral strike-slip and normal dip-slip mechanisms, consistent with the tectonic settings of the intersection of the Hinagu and Futagawa fault zones.[Figure not available: see fulltext.

  17. Biogeographic history of Pistacia (Anacardiaceae), emphasizing the evolution of the Madrean-Tethyan and the eastern Asian-Tethyan disjunctions.

    PubMed

    Xie, Lei; Yang, Zhi-Yun; Wen, Jun; Li, De-Zhu; Yi, Ting-Shuang

    2014-08-01

    Pistacia L. exhibits a disjunct distribution in Mediterranean Eurasia and adjacent North Africa, eastern Asia, and North to Central America. The spatio-temporal diversification history of Pistacia was assessed to test hypotheses on the Madrean-Tethyan and the Eurasian Tethyan disjunctions through phylogenetic and biogeographic analyses. Maximum parsimony and Bayesian methods were employed to analyze sequences of multiple nuclear and plastid loci of Pistacia species. Bayesian dating analysis was conducted to estimate the divergence times of clades. The likelihood method LAGRANGE was used to infer ancestral areas. The New World species of Pistacia formed a clade sister to the Old World clade in all phylogenetic analyses. The eastern Asian Pistacia weinmannifolia-P. cucphuongensis clade was sister to a clade of the remaining Old World species, which were further resolved into three subclades. Pistacia was estimated to have originated at 37.60 mya (with 95% highest posterior density interval (HPD): 25.42-48.51 mya). A vicariance event in the early Miocene (19.79 mya with 95% HPD: 10.88-30.36 mya) was inferred to account for the intercontinental disjunction between the New World and the Old World species, which is consistent with the Madrean-Tethyan hypothesis. The two Old World eastern Asian-Tethyan disjunctions are best explained by one vicariance event in the early Miocene (15.87 mya with 95% HPD: 8.36-24.36 mya) and one dispersal event in late Miocene (5.89 mya with 95% HPD: 2.68-9.16 mya). The diversification of the Old World Pistacia species was significantly affected by extensive geological and climatic changes in the Qinghai-Tibetan plateau (QTP) and in the Mediterranean region. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Mitogenomes of two neotropical bird species and the multiple independent origin of mitochondrial gene orders in Passeriformes.

    PubMed

    Caparroz, Renato; Rocha, Amanda V; Cabanne, Gustavo S; Tubaro, Pablo; Aleixo, Alexandre; Lemmon, Emily M; Lemmon, Alan R

    2018-06-01

    At least four mitogenome arrangements occur in Passeriformes and differences among them are derived from an initial tandem duplication involving a segment containing the control region (CR), followed by loss or reduction of some parts of this segment. However, it is still unclear how often duplication events have occurred in this bird order. In this study, the mitogenomes from two species of Neotropical passerines (Sicalis olivascens and Lepidocolaptes angustirostris) with different gene arrangements were first determined. We also estimated how often duplication events occurred in Passeriformes and if the two CR copies demonstrate a pattern of concerted evolution in Sylvioidea. One tissue sample for each species was used to obtain the mitogenomes as a byproduct using next generation sequencing. The evolutionary history of mitogenome rearrangements was reconstructed mapping these characters onto a mitogenome Bayesian phylogenetic tree of Passeriformes. Finally, we performed a Bayesian analysis for both CRs from some Sylvioidea species in order to evaluate the evolutionary process involving these two copies. Both mitogenomes described comprise 2 rRNAs, 22 tRNAs, 13 protein-codon genes and the CR. However, S. olivascens has 16,768 bp showing the ancestral avian arrangement, while L. angustirostris has 16,973 bp and the remnant CR2 arrangement. Both species showed the expected gene order compared to their closest relatives. The ancestral state reconstruction suggesting at least six independent duplication events followed by partial deletions or loss of one copy in some lineages. Our results also provide evidence that both CRs in some Sylvioidea species seem to be maintained in an apparently functional state, perhaps by concerted evolution, and that this mechanism may be important for the evolution of the bird mitogenome.

  19. A methodology for risk analysis based on hybrid Bayesian networks: application to the regasification system of liquefied natural gas onboard a floating storage and regasification unit.

    PubMed

    Martins, Marcelo Ramos; Schleder, Adriana Miralles; Droguett, Enrique López

    2014-12-01

    This article presents an iterative six-step risk analysis methodology based on hybrid Bayesian networks (BNs). In typical risk analysis, systems are usually modeled as discrete and Boolean variables with constant failure rates via fault trees. Nevertheless, in many cases, it is not possible to perform an efficient analysis using only discrete and Boolean variables. The approach put forward by the proposed methodology makes use of BNs and incorporates recent developments that facilitate the use of continuous variables whose values may have any probability distributions. Thus, this approach makes the methodology particularly useful in cases where the available data for quantification of hazardous events probabilities are scarce or nonexistent, there is dependence among events, or when nonbinary events are involved. The methodology is applied to the risk analysis of a regasification system of liquefied natural gas (LNG) on board an FSRU (floating, storage, and regasification unit). LNG is becoming an important energy source option and the world's capacity to produce LNG is surging. Large reserves of natural gas exist worldwide, particularly in areas where the resources exceed the demand. Thus, this natural gas is liquefied for shipping and the storage and regasification process usually occurs at onshore plants. However, a new option for LNG storage and regasification has been proposed: the FSRU. As very few FSRUs have been put into operation, relevant failure data on FSRU systems are scarce. The results show the usefulness of the proposed methodology for cases where the risk analysis must be performed under considerable uncertainty. © 2014 Society for Risk Analysis.

  20. Bayesian Redshift Classification of Emission-line Galaxies with Photometric Equivalent Widths

    NASA Astrophysics Data System (ADS)

    Leung, Andrew S.; Acquaviva, Viviana; Gawiser, Eric; Ciardullo, Robin; Komatsu, Eiichiro; Malz, A. I.; Zeimann, Gregory R.; Bridge, Joanna S.; Drory, Niv; Feldmeier, John J.; Finkelstein, Steven L.; Gebhardt, Karl; Gronwall, Caryl; Hagen, Alex; Hill, Gary J.; Schneider, Donald P.

    2017-07-01

    We present a Bayesian approach to the redshift classification of emission-line galaxies when only a single emission line is detected spectroscopically. We consider the case of surveys for high-redshift Lyα-emitting galaxies (LAEs), which have traditionally been classified via an inferred rest-frame equivalent width (EW {W}{Lyα }) greater than 20 Å. Our Bayesian method relies on known prior probabilities in measured emission-line luminosity functions and EW distributions for the galaxy populations, and returns the probability that an object in question is an LAE given the characteristics observed. This approach will be directly relevant for the Hobby-Eberly Telescope Dark Energy Experiment (HETDEX), which seeks to classify ˜106 emission-line galaxies into LAEs and low-redshift [{{O}} {{II}}] emitters. For a simulated HETDEX catalog with realistic measurement noise, our Bayesian method recovers 86% of LAEs missed by the traditional {W}{Lyα } > 20 Å cutoff over 2 < z < 3, outperforming the EW cut in both contamination and incompleteness. This is due to the method’s ability to trade off between the two types of binary classification error by adjusting the stringency of the probability requirement for classifying an observed object as an LAE. In our simulations of HETDEX, this method reduces the uncertainty in cosmological distance measurements by 14% with respect to the EW cut, equivalent to recovering 29% more cosmological information. Rather than using binary object labels, this method enables the use of classification probabilities in large-scale structure analyses. It can be applied to narrowband emission-line surveys as well as upcoming large spectroscopic surveys including Euclid and WFIRST.

  1. A methodology to model causal relationships on offshore safety assessment focusing on human and organizational factors.

    PubMed

    Ren, J; Jenkinson, I; Wang, J; Xu, D L; Yang, J B

    2008-01-01

    Focusing on people and organizations, this paper aims to contribute to offshore safety assessment by proposing a methodology to model causal relationships. The methodology is proposed in a general sense that it will be capable of accommodating modeling of multiple risk factors considered in offshore operations and will have the ability to deal with different types of data that may come from different resources. Reason's "Swiss cheese" model is used to form a generic offshore safety assessment framework, and Bayesian Network (BN) is tailored to fit into the framework to construct a causal relationship model. The proposed framework uses a five-level-structure model to address latent failures within the causal sequence of events. The five levels include Root causes level, Trigger events level, Incidents level, Accidents level, and Consequences level. To analyze and model a specified offshore installation safety, a BN model was established following the guideline of the proposed five-level framework. A range of events was specified, and the related prior and conditional probabilities regarding the BN model were assigned based on the inherent characteristics of each event. This paper shows that Reason's "Swiss cheese" model and BN can be jointly used in offshore safety assessment. On the one hand, the five-level conceptual model is enhanced by BNs that are capable of providing graphical demonstration of inter-relationships as well as calculating numerical values of occurrence likelihood for each failure event. Bayesian inference mechanism also makes it possible to monitor how a safety situation changes when information flow travel forwards and backwards within the networks. On the other hand, BN modeling relies heavily on experts' personal experiences and is therefore highly domain specific. "Swiss cheese" model is such a theoretic framework that it is based on solid behavioral theory and therefore can be used to provide industry with a roadmap for BN modeling and implications. A case study of the collision risk between a Floating Production, Storage and Offloading (FPSO) unit and authorized vessels caused by human and organizational factors (HOFs) during operations is used to illustrate an industrial application of the proposed methodology.

  2. Statistical Surrogate Modeling of Atmospheric Dispersion Events Using Bayesian Adaptive Splines

    NASA Astrophysics Data System (ADS)

    Francom, D.; Sansó, B.; Bulaevskaya, V.; Lucas, D. D.

    2016-12-01

    Uncertainty in the inputs of complex computer models, including atmospheric dispersion and transport codes, is often assessed via statistical surrogate models. Surrogate models are computationally efficient statistical approximations of expensive computer models that enable uncertainty analysis. We introduce Bayesian adaptive spline methods for producing surrogate models that capture the major spatiotemporal patterns of the parent model, while satisfying all the necessities of flexibility, accuracy and computational feasibility. We present novel methodological and computational approaches motivated by a controlled atmospheric tracer release experiment conducted at the Diablo Canyon nuclear power plant in California. Traditional methods for building statistical surrogate models often do not scale well to experiments with large amounts of data. Our approach is well suited to experiments involving large numbers of model inputs, large numbers of simulations, and functional output for each simulation. Our approach allows us to perform global sensitivity analysis with ease. We also present an approach to calibration of simulators using field data.

  3. Bayesian networks and information theory for audio-visual perception modeling.

    PubMed

    Besson, Patricia; Richiardi, Jonas; Bourdin, Christophe; Bringoux, Lionel; Mestre, Daniel R; Vercher, Jean-Louis

    2010-09-01

    Thanks to their different senses, human observers acquire multiple information coming from their environment. Complex cross-modal interactions occur during this perceptual process. This article proposes a framework to analyze and model these interactions through a rigorous and systematic data-driven process. This requires considering the general relationships between the physical events or factors involved in the process, not only in quantitative terms, but also in term of the influence of one factor on another. We use tools from information theory and probabilistic reasoning to derive relationships between the random variables of interest, where the central notion is that of conditional independence. Using mutual information analysis to guide the model elicitation process, a probabilistic causal model encoded as a Bayesian network is obtained. We exemplify the method by using data collected in an audio-visual localization task for human subjects, and we show that it yields a well-motivated model with good predictive ability. The model elicitation process offers new prospects for the investigation of the cognitive mechanisms of multisensory perception.

  4. Bayesian ISOLA: new tool for automated centroid moment tensor inversion

    NASA Astrophysics Data System (ADS)

    Vackář, Jiří; Burjánek, Jan; Gallovič, František; Zahradník, Jiří; Clinton, John

    2017-08-01

    We have developed a new, fully automated tool for the centroid moment tensor (CMT) inversion in a Bayesian framework. It includes automated data retrieval, data selection where station components with various instrumental disturbances are rejected and full-waveform inversion in a space-time grid around a provided hypocentre. A data covariance matrix calculated from pre-event noise yields an automated weighting of the station recordings according to their noise levels and also serves as an automated frequency filter suppressing noisy frequency ranges. The method is tested on synthetic and observed data. It is applied on a data set from the Swiss seismic network and the results are compared with the existing high-quality MT catalogue. The software package programmed in Python is designed to be as versatile as possible in order to be applicable in various networks ranging from local to regional. The method can be applied either to the everyday network data flow, or to process large pre-existing earthquake catalogues and data sets.

  5. Real-time realizations of the Bayesian Infrasonic Source Localization Method

    NASA Astrophysics Data System (ADS)

    Pinsky, V.; Arrowsmith, S.; Hofstetter, A.; Nippress, A.

    2015-12-01

    The Bayesian Infrasonic Source Localization method (BISL), introduced by Mordak et al. (2010) and upgraded by Marcillo et al. (2014) is destined for the accurate estimation of the atmospheric event origin at local, regional and global scales by the seismic and infrasonic networks and arrays. The BISL is based on probabilistic models of the source-station infrasonic signal propagation time, picking time and azimuth estimate merged with a prior knowledge about celerity distribution. It requires at each hypothetical source location, integration of the product of the corresponding source-station likelihood functions multiplied by a prior probability density function of celerity over the multivariate parameter space. The present BISL realization is generally time-consuming procedure based on numerical integration. The computational scheme proposed simplifies the target function so that integrals are taken exactly and are represented via standard functions. This makes the procedure much faster and realizable in real-time without practical loss of accuracy. The procedure executed as PYTHON-FORTRAN code demonstrates high performance on a set of the model and real data.

  6. Driver Fatigue Classification With Independent Component by Entropy Rate Bound Minimization Analysis in an EEG-Based System.

    PubMed

    Chai, Rifai; Naik, Ganesh R; Nguyen, Tuan Nghia; Ling, Sai Ho; Tran, Yvonne; Craig, Ashley; Nguyen, Hung T

    2017-05-01

    This paper presents a two-class electroencephal-ography-based classification for classifying of driver fatigue (fatigue state versus alert state) from 43 healthy participants. The system uses independent component by entropy rate bound minimization analysis (ERBM-ICA) for the source separation, autoregressive (AR) modeling for the features extraction, and Bayesian neural network for the classification algorithm. The classification results demonstrate a sensitivity of 89.7%, a specificity of 86.8%, and an accuracy of 88.2%. The combination of ERBM-ICA (source separator), AR (feature extractor), and Bayesian neural network (classifier) provides the best outcome with a p-value < 0.05 with the highest value of area under the receiver operating curve (AUC-ROC = 0.93) against other methods such as power spectral density as feature extractor (AUC-ROC = 0.81). The results of this study suggest the method could be utilized effectively for a countermeasure device for driver fatigue identification and other adverse event applications.

  7. Probabilistic sensitivity analysis for decision trees with multiple branches: use of the Dirichlet distribution in a Bayesian framework.

    PubMed

    Briggs, Andrew H; Ades, A E; Price, Martin J

    2003-01-01

    In structuring decision models of medical interventions, it is commonly recommended that only 2 branches be used for each chance node to avoid logical inconsistencies that can arise during sensitivity analyses if the branching probabilities do not sum to 1. However, information may be naturally available in an unconditional form, and structuring a tree in conditional form may complicate rather than simplify the sensitivity analysis of the unconditional probabilities. Current guidance emphasizes using probabilistic sensitivity analysis, and a method is required to provide probabilistic probabilities over multiple branches that appropriately represents uncertainty while satisfying the requirement that mutually exclusive event probabilities should sum to 1. The authors argue that the Dirichlet distribution, the multivariate equivalent of the beta distribution, is appropriate for this purpose and illustrate its use for generating a fully probabilistic transition matrix for a Markov model. Furthermore, they demonstrate that by adopting a Bayesian approach, the problem of observing zero counts for transitions of interest can be overcome.

  8. Compendium of Single Event Effects, Total Ionizing Dose, and Displacement Damage for Candidate Spacecraft Electronics for NASA

    NASA Technical Reports Server (NTRS)

    LaBel, Kenneth A.; OBryan, Martha V.; Chen, Dakai; Campola, Michael J.; Casey, Megan C.; Pellish, Jonathan A.; Lauenstein, Jean-Marie; Wilcox, Edward P.; Topper, Alyson D.; Ladbury, Raymond L.; hide

    2014-01-01

    We present results and analysis investigating the effects of radiation on a variety of candidate spacecraft electronics to proton and heavy ion induced single event effects (SEE), proton-induced displacement damage (DD), and total ionizing dose (TID). Introduction: This paper is a summary of test results.NASA spacecraft are subjected to a harsh space environment that includes exposure to various types of ionizing radiation. The performance of electronic devices in a space radiation environment is often limited by its susceptibility to single event effects (SEE), total ionizing dose (TID), and displacement damage (DD). Ground-based testing is used to evaluate candidate spacecraft electronics to determine risk to spaceflight applications. Interpreting the results of radiation testing of complex devices is quite difficult. Given the rapidly changing nature of technology, radiation test data are most often application-specific and adequate understanding of the test conditions is critical. Studies discussed herein were undertaken to establish the application-specific sensitivities of candidate spacecraft and emerging electronic devices to single-event upset (SEU), single-event latchup (SEL), single-event gate rupture (SEGR), single-event burnout (SEB), single-event transient (SET), TID, enhanced low dose rate sensitivity (ELDRS), and DD effects.

  9. Bayesian data analysis for newcomers.

    PubMed

    Kruschke, John K; Liddell, Torrin M

    2018-02-01

    This article explains the foundational concepts of Bayesian data analysis using virtually no mathematical notation. Bayesian ideas already match your intuitions from everyday reasoning and from traditional data analysis. Simple examples of Bayesian data analysis are presented that illustrate how the information delivered by a Bayesian analysis can be directly interpreted. Bayesian approaches to null-value assessment are discussed. The article clarifies misconceptions about Bayesian methods that newcomers might have acquired elsewhere. We discuss prior distributions and explain how they are not a liability but an important asset. We discuss the relation of Bayesian data analysis to Bayesian models of mind, and we briefly discuss what methodological problems Bayesian data analysis is not meant to solve. After you have read this article, you should have a clear sense of how Bayesian data analysis works and the sort of information it delivers, and why that information is so intuitive and useful for drawing conclusions from data.

  10. Using Bayesian statistics for modeling PTSD through Latent Growth Mixture Modeling: implementation and discussion.

    PubMed

    Depaoli, Sarah; van de Schoot, Rens; van Loey, Nancy; Sijbrandij, Marit

    2015-01-01

    After traumatic events, such as disaster, war trauma, and injuries including burns (which is the focus here), the risk to develop posttraumatic stress disorder (PTSD) is approximately 10% (Breslau & Davis, 1992). Latent Growth Mixture Modeling can be used to classify individuals into distinct groups exhibiting different patterns of PTSD (Galatzer-Levy, 2015). Currently, empirical evidence points to four distinct trajectories of PTSD patterns in those who have experienced burn trauma. These trajectories are labeled as: resilient, recovery, chronic, and delayed onset trajectories (e.g., Bonanno, 2004; Bonanno, Brewin, Kaniasty, & Greca, 2010; Maercker, Gäbler, O'Neil, Schützwohl, & Müller, 2013; Pietrzak et al., 2013). The delayed onset trajectory affects only a small group of individuals, that is, about 4-5% (O'Donnell, Elliott, Lau, & Creamer, 2007). In addition to its low frequency, the later onset of this trajectory may contribute to the fact that these individuals can be easily overlooked by professionals. In this special symposium on Estimating PTSD trajectories (Van de Schoot, 2015a), we illustrate how to properly identify this small group of individuals through the Bayesian estimation framework using previous knowledge through priors (see, e.g., Depaoli & Boyajian, 2014; Van de Schoot, Broere, Perryck, Zondervan-Zwijnenburg, & Van Loey, 2015). We used latent growth mixture modeling (LGMM) (Van de Schoot, 2015b) to estimate PTSD trajectories across 4 years that followed a traumatic burn. We demonstrate and compare results from traditional (maximum likelihood) and Bayesian estimation using priors (see, Depaoli, 2012, 2013). Further, we discuss where priors come from and how to define them in the estimation process. We demonstrate that only the Bayesian approach results in the desired theory-driven solution of PTSD trajectories. Since the priors are chosen subjectively, we also present a sensitivity analysis of the Bayesian results to illustrate how to check the impact of the prior knowledge integrated into the model. We conclude with recommendations and guidelines for researchers looking to implement theory-driven LGMM, and we tailor this discussion to the context of PTSD research.

  11. Occupancy in community-level studies

    USGS Publications Warehouse

    MacKenzie, Darryl I.; Nichols, James; Royle, Andy; Pollock, Kenneth H.; Bailey, Larissa L.; Hines, James

    2018-01-01

    Another type of multi-species studies, are those focused on community-level metrics such as species richness. In this chapter we detail how some of the single-species occupancy models described in earlier chapters have been applied, or extended, for use in such studies, while accounting for imperfect detection. We highlight how Bayesian methods using MCMC are particularly useful in such settings to easily calculate relevant community-level summaries based on presence/absence data. These modeling approaches can be used to assess richness at a single point in time, or to investigate changes in the species pool over time.

  12. Bayesian Methods for the Physical Sciences. Learning from Examples in Astronomy and Physics.

    NASA Astrophysics Data System (ADS)

    Andreon, Stefano; Weaver, Brian

    2015-05-01

    Chapter 1: This chapter presents some basic steps for performing a good statistical analysis, all summarized in about one page. Chapter 2: This short chapter introduces the basics of probability theory inan intuitive fashion using simple examples. It also illustrates, again with examples, how to propagate errors and the difference between marginal and profile likelihoods. Chapter 3: This chapter introduces the computational tools and methods that we use for sampling from the posterior distribution. Since all numerical computations, and Bayesian ones are no exception, may end in errors, we also provide a few tips to check that the numerical computation is sampling from the posterior distribution. Chapter 4: Many of the concepts of building, running, and summarizing the resultsof a Bayesian analysis are described with this step-by-step guide using a basic (Gaussian) model. The chapter also introduces examples using Poisson and Binomial likelihoods, and how to combine repeated independent measurements. Chapter 5: All statistical analyses make assumptions, and Bayesian analyses are no exception. This chapter emphasizes that results depend on data and priors (assumptions). We illustrate this concept with examples where the prior plays greatly different roles, from major to negligible. We also provide some advice on how to look for information useful for sculpting the prior. Chapter 6: In this chapter we consider examples for which we want to estimate more than a single parameter. These common problems include estimating location and spread. We also consider examples that require the modeling of two populations (one we are interested in and a nuisance population) or averaging incompatible measurements. We also introduce quite complex examples dealing with upper limits and with a larger-than-expected scatter. Chapter 7: Rarely is a sample randomly selected from the population we wish to study. Often, samples are affected by selection effects, e.g., easier-to-collect events or objects are over-represented in samples and difficult-to-collect are under-represented if not missing altogether. In this chapter we show how to account for non-random data collection to infer the properties of the population from the studied sample. Chapter 8: In this chapter we introduce regression models, i.e., how to fit (regress) one, or more quantities, against each other through a functional relationship and estimate any unknown parameters that dictate this relationship. Questions of interest include: how to deal with samples affected by selection effects? How does a rich data structure influence the fitted parameters? And what about non-linear multiple-predictor fits, upper/lower limits, measurements errors of different amplitudes and an intrinsic variety in the studied populations or an extra source of variability? A number of examples illustrate how to answer these questions and how to predict the value of an unavailable quantity by exploiting the existence of a trend with another, available, quantity. Chapter 9: This chapter provides some advice on how the careful scientist should perform model checking and sensitivity analysis, i.e., how to answer the following questions: is the considered model at odds with the current available data (the fitted data), for example because it is over-simplified compared to some specific complexity pointed out by the data? Furthermore, are the data informative about the quantity being measured or are results sensibly dependent on details of the fitted model? And, finally, what about if assumptions are uncertain? A number of examples illustrate how to answer these questions. Chapter 10: This chapter compares the performance of Bayesian methods against simple, non-Bayesian alternatives, such as maximum likelihood, minimal chi square, ordinary and weighted least square, bivariate correlated errors and intrinsic scatter, and robust estimates of location and scale. Performances are evaluated in terms of quality of the prediction, accuracy of the estimates, and fairness and noisiness of the quoted errors. We also focus on three failures of maximum likelihood methods occurring with small samples, with mixtures, and with regressions with errors in the predictor quantity.

  13. Single Event Effect Testing of the Analog Devices ADV212

    NASA Technical Reports Server (NTRS)

    Wilcox, Ted; Campola, Michael; Kadari, Madhu; Nadendla, Seshagiri R.

    2017-01-01

    The Analog Devices ADV212 was initially tested for single event effects (SEE) at the Texas AM University Cyclotron Facility (TAMU) in July of 2013. Testing revealed a sensitivity to device hang-ups classified as single event functional interrupts (SEFI), soft data errors classified as single event upsets (SEU), and, of particular concern, single event latch-ups (SEL). All error types occurred so frequently as to make accurate measurements of the exposure time, and thus total particle fluence, challenging. To mitigate some of the risk posed by single event latch-ups, circuitry was added to the electrical design to detect a high current event and automatically recycle power and reboot the device. An additional heavy-ion test was scheduled to validate the operation of the recovery circuitry and the continuing functionality of the ADV212 after a substantial number of latch-up events. As a secondary goal, more precise data would be gathered by an improved test method, described in this test report.

  14. Rather than by direct acquisition via lateral gene transfer, GHF5 cellulases were passed on from early Pratylenchidae to root-knot and cyst nematodes.

    PubMed

    Rybarczyk-Mydłowska, Katarzyna; Maboreke, Hazel Ruvimbo; van Megen, Hanny; van den Elsen, Sven; Mooyman, Paul; Smant, Geert; Bakker, Jaap; Helder, Johannes

    2012-11-21

    Plant parasitic nematodes are unusual Metazoans as they are equipped with genes that allow for symbiont-independent degradation of plant cell walls. Among the cell wall-degrading enzymes, glycoside hydrolase family 5 (GHF5) cellulases are relatively well characterized, especially for high impact parasites such as root-knot and cyst nematodes. Interestingly, ancestors of extant nematodes most likely acquired these GHF5 cellulases from a prokaryote donor by one or multiple lateral gene transfer events. To obtain insight into the origin of GHF5 cellulases among evolutionary advanced members of the order Tylenchida, cellulase biodiversity data from less distal family members were collected and analyzed. Single nematodes were used to obtain (partial) genomic sequences of cellulases from representatives of the genera Meloidogyne, Pratylenchus, Hirschmanniella and Globodera. Combined Bayesian analysis of ≈ 100 cellulase sequences revealed three types of catalytic domains (A, B, and C). Represented by 84 sequences, type B is numerically dominant, and the overall topology of the catalytic domain type shows remarkable resemblance with trees based on neutral (= pathogenicity-unrelated) small subunit ribosomal DNA sequences. Bayesian analysis further suggested a sister relationship between the lesion nematode Pratylenchus thornei and all type B cellulases from root-knot nematodes. Yet, the relationship between the three catalytic domain types remained unclear. Superposition of intron data onto the cellulase tree suggests that types B and C are related, and together distinct from type A that is characterized by two unique introns. All Tylenchida members investigated here harbored one or multiple GHF5 cellulases. Three types of catalytic domains are distinguished, and the presence of at least two types is relatively common among plant parasitic Tylenchida. Analysis of coding sequences of cellulases suggests that root-knot and cyst nematodes did not acquire this gene directly by lateral genes transfer. More likely, these genes were passed on by ancestors of a family nowadays known as the Pratylenchidae.

  15. PyClone: statistical inference of clonal population structure in cancer.

    PubMed

    Roth, Andrew; Khattra, Jaswinder; Yap, Damian; Wan, Adrian; Laks, Emma; Biele, Justina; Ha, Gavin; Aparicio, Samuel; Bouchard-Côté, Alexandre; Shah, Sohrab P

    2014-04-01

    We introduce PyClone, a statistical model for inference of clonal population structures in cancers. PyClone is a Bayesian clustering method for grouping sets of deeply sequenced somatic mutations into putative clonal clusters while estimating their cellular prevalences and accounting for allelic imbalances introduced by segmental copy-number changes and normal-cell contamination. Single-cell sequencing validation demonstrates PyClone's accuracy.

  16. Data Analysis Techniques for Physical Scientists

    NASA Astrophysics Data System (ADS)

    Pruneau, Claude A.

    2017-10-01

    Preface; How to read this book; 1. The scientific method; Part I. Foundation in Probability and Statistics: 2. Probability; 3. Probability models; 4. Classical inference I: estimators; 5. Classical inference II: optimization; 6. Classical inference III: confidence intervals and statistical tests; 7. Bayesian inference; Part II. Measurement Techniques: 8. Basic measurements; 9. Event reconstruction; 10. Correlation functions; 11. The multiple facets of correlation functions; 12. Data correction methods; Part III. Simulation Techniques: 13. Monte Carlo methods; 14. Collision and detector modeling; List of references; Index.

  17. Audio-visual speech cue combination.

    PubMed

    Arnold, Derek H; Tear, Morgan; Schindel, Ryan; Roseboom, Warrick

    2010-04-16

    Different sources of sensory information can interact, often shaping what we think we have seen or heard. This can enhance the precision of perceptual decisions relative to those made on the basis of a single source of information. From a computational perspective, there are multiple reasons why this might happen, and each predicts a different degree of enhanced precision. Relatively slight improvements can arise when perceptual decisions are made on the basis of multiple independent sensory estimates, as opposed to just one. These improvements can arise as a consequence of probability summation. Greater improvements can occur if two initially independent estimates are summated to form a single integrated code, especially if the summation is weighted in accordance with the variance associated with each independent estimate. This form of combination is often described as a Bayesian maximum likelihood estimate. Still greater improvements are possible if the two sources of information are encoded via a common physiological process. Here we show that the provision of simultaneous audio and visual speech cues can result in substantial sensitivity improvements, relative to single sensory modality based decisions. The magnitude of the improvements is greater than can be predicted on the basis of either a Bayesian maximum likelihood estimate or a probability summation. Our data suggest that primary estimates of speech content are determined by a physiological process that takes input from both visual and auditory processing, resulting in greater sensitivity than would be possible if initially independent audio and visual estimates were formed and then subsequently combined.

  18. Analysis and meta-analysis of single-case designs: an introduction.

    PubMed

    Shadish, William R

    2014-04-01

    The last 10 years have seen great progress in the analysis and meta-analysis of single-case designs (SCDs). This special issue includes five articles that provide an overview of current work on that topic, including standardized mean difference statistics, multilevel models, Bayesian statistics, and generalized additive models. Each article analyzes a common example across articles and presents syntax or macros for how to do them. These articles are followed by commentaries from single-case design researchers and journal editors. This introduction briefly describes each article and then discusses several issues that must be addressed before we can know what analyses will eventually be best to use in SCD research. These issues include modeling trend, modeling error covariances, computing standardized effect size estimates, assessing statistical power, incorporating more accurate models of outcome distributions, exploring whether Bayesian statistics can improve estimation given the small samples common in SCDs, and the need for annotated syntax and graphical user interfaces that make complex statistics accessible to SCD researchers. The article then discusses reasons why SCD researchers are likely to incorporate statistical analyses into their research more often in the future, including changing expectations and contingencies regarding SCD research from outside SCD communities, changes and diversity within SCD communities, corrections of erroneous beliefs about the relationship between SCD research and statistics, and demonstrations of how statistics can help SCD researchers better meet their goals. Copyright © 2013 Society for the Study of School Psychology. Published by Elsevier Ltd. All rights reserved.

  19. Optical+Near-IR Bayesian Classification of Quasars

    NASA Astrophysics Data System (ADS)

    Mehta, Sajjan S.; Richards, G. T.; Myers, A. D.

    2011-05-01

    We describe the details of an optimal Bayesian classification of quasars with combined optical+near-IR photometry from the SDSS and UKIDSS LAS surveys. Using only deep co-added SDSS photometry from the "Stripe 82" region and requiring full four-band UKIDSS detections, we reliably identify 2665 quasar candidates with a computed efficiency in excess of 99%. Relaxing the data constraints to combinations of two-band detections yields up to 6424 candidates with minimal trade-off in completeness and efficiency. The completeness and efficiency of the sample are investigated with existing spectra from the SDSS, 2SLAQ, and AUS surveys in addition to recent single-slit observations from Palomar Observatory, which revealed 22 quasars from a subsample of 29 high-z candidates. SDSS-III/BOSS observations will allow further exploration of the completeness/efficiency of the sample over 2.2

  20. Combination of dynamic Bayesian network classifiers for the recognition of degraded characters

    NASA Astrophysics Data System (ADS)

    Likforman-Sulem, Laurence; Sigelle, Marc

    2009-01-01

    We investigate in this paper the combination of DBN (Dynamic Bayesian Network) classifiers, either independent or coupled, for the recognition of degraded characters. The independent classifiers are a vertical HMM and a horizontal HMM whose observable outputs are the image columns and the image rows respectively. The coupled classifiers, presented in a previous study, associate the vertical and horizontal observation streams into single DBNs. The scores of the independent and coupled classifiers are then combined linearly at the decision level. We compare the different classifiers -independent, coupled or linearly combined- on two tasks: the recognition of artificially degraded handwritten digits and the recognition of real degraded old printed characters. Our results show that coupled DBNs perform better on degraded characters than the linear combination of independent HMM scores. Our results also show that the best classifier is obtained by linearly combining the scores of the best coupled DBN and the best independent HMM.

Top