A Gentle Introduction to Bayesian Analysis: Applications to Developmental Research
van de Schoot, Rens; Kaplan, David; Denissen, Jaap; Asendorpf, Jens B; Neyer, Franz J; van Aken, Marcel AG
2014-01-01
Bayesian statistical methods are becoming ever more popular in applied and fundamental research. In this study a gentle introduction to Bayesian analysis is provided. It is shown under what circumstances it is attractive to use Bayesian estimation, and how to interpret properly the results. First, the ingredients underlying Bayesian methods are introduced using a simplified example. Thereafter, the advantages and pitfalls of the specification of prior knowledge are discussed. To illustrate Bayesian methods explained in this study, in a second example a series of studies that examine the theoretical framework of dynamic interactionism are considered. In the Discussion the advantages and disadvantages of using Bayesian statistics are reviewed, and guidelines on how to report on Bayesian statistics are provided. PMID:24116396
Applying Bayesian statistics to the study of psychological trauma: A suggestion for future research.
Yalch, Matthew M
2016-03-01
Several contemporary researchers have noted the virtues of Bayesian methods of data analysis. Although debates continue about whether conventional or Bayesian statistics is the "better" approach for researchers in general, there are reasons why Bayesian methods may be well suited to the study of psychological trauma in particular. This article describes how Bayesian statistics offers practical solutions to the problems of data non-normality, small sample size, and missing data common in research on psychological trauma. After a discussion of these problems and the effects they have on trauma research, this article explains the basic philosophical and statistical foundations of Bayesian statistics and how it provides solutions to these problems using an applied example. Results of the literature review and the accompanying example indicates the utility of Bayesian statistics in addressing problems common in trauma research. Bayesian statistics provides a set of methodological tools and a broader philosophical framework that is useful for trauma researchers. Methodological resources are also provided so that interested readers can learn more. (c) 2016 APA, all rights reserved).
Probabilistic models in human sensorimotor control
Wolpert, Daniel M.
2009-01-01
Sensory and motor uncertainty form a fundamental constraint on human sensorimotor control. Bayesian decision theory (BDT) has emerged as a unifying framework to understand how the central nervous system performs optimal estimation and control in the face of such uncertainty. BDT has two components: Bayesian statistics and decision theory. Here we review Bayesian statistics and show how it applies to estimating the state of the world and our own body. Recent results suggest that when learning novel tasks we are able to learn the statistical properties of both the world and our own sensory apparatus so as to perform estimation using Bayesian statistics. We review studies which suggest that humans can combine multiple sources of information to form maximum likelihood estimates, can incorporate prior beliefs about possible states of the world so as to generate maximum a posteriori estimates and can use Kalman filter-based processes to estimate time-varying states. Finally, we review Bayesian decision theory in motor control and how the central nervous system processes errors to determine loss functions and optimal actions. We review results that suggest we plan movements based on statistics of our actions that result from signal-dependent noise on our motor outputs. Taken together these studies provide a statistical framework for how the motor system performs in the presence of uncertainty. PMID:17628731
A Tutorial in Bayesian Potential Outcomes Mediation Analysis.
Miočević, Milica; Gonzalez, Oscar; Valente, Matthew J; MacKinnon, David P
2018-01-01
Statistical mediation analysis is used to investigate intermediate variables in the relation between independent and dependent variables. Causal interpretation of mediation analyses is challenging because randomization of subjects to levels of the independent variable does not rule out the possibility of unmeasured confounders of the mediator to outcome relation. Furthermore, commonly used frequentist methods for mediation analysis compute the probability of the data given the null hypothesis, which is not the probability of a hypothesis given the data as in Bayesian analysis. Under certain assumptions, applying the potential outcomes framework to mediation analysis allows for the computation of causal effects, and statistical mediation in the Bayesian framework gives indirect effects probabilistic interpretations. This tutorial combines causal inference and Bayesian methods for mediation analysis so the indirect and direct effects have both causal and probabilistic interpretations. Steps in Bayesian causal mediation analysis are shown in the application to an empirical example.
NASA Astrophysics Data System (ADS)
Rubin, D.; Aldering, G.; Barbary, K.; Boone, K.; Chappell, G.; Currie, M.; Deustua, S.; Fagrelius, P.; Fruchter, A.; Hayden, B.; Lidman, C.; Nordin, J.; Perlmutter, S.; Saunders, C.; Sofiatti, C.; Supernova Cosmology Project, The
2015-11-01
While recent supernova (SN) cosmology research has benefited from improved measurements, current analysis approaches are not statistically optimal and will prove insufficient for future surveys. This paper discusses the limitations of current SN cosmological analyses in treating outliers, selection effects, shape- and color-standardization relations, unexplained dispersion, and heterogeneous observations. We present a new Bayesian framework, called UNITY (Unified Nonlinear Inference for Type-Ia cosmologY), that incorporates significant improvements in our ability to confront these effects. We apply the framework to real SN observations and demonstrate smaller statistical and systematic uncertainties. We verify earlier results that SNe Ia require nonlinear shape and color standardizations, but we now include these nonlinear relations in a statistically well-justified way. This analysis was primarily performed blinded, in that the basic framework was first validated on simulated data before transitioning to real data. We also discuss possible extensions of the method.
Bayesian Parameter Inference and Model Selection by Population Annealing in Systems Biology
Murakami, Yohei
2014-01-01
Parameter inference and model selection are very important for mathematical modeling in systems biology. Bayesian statistics can be used to conduct both parameter inference and model selection. Especially, the framework named approximate Bayesian computation is often used for parameter inference and model selection in systems biology. However, Monte Carlo methods needs to be used to compute Bayesian posterior distributions. In addition, the posterior distributions of parameters are sometimes almost uniform or very similar to their prior distributions. In such cases, it is difficult to choose one specific value of parameter with high credibility as the representative value of the distribution. To overcome the problems, we introduced one of the population Monte Carlo algorithms, population annealing. Although population annealing is usually used in statistical mechanics, we showed that population annealing can be used to compute Bayesian posterior distributions in the approximate Bayesian computation framework. To deal with un-identifiability of the representative values of parameters, we proposed to run the simulations with the parameter ensemble sampled from the posterior distribution, named “posterior parameter ensemble”. We showed that population annealing is an efficient and convenient algorithm to generate posterior parameter ensemble. We also showed that the simulations with the posterior parameter ensemble can, not only reproduce the data used for parameter inference, but also capture and predict the data which was not used for parameter inference. Lastly, we introduced the marginal likelihood in the approximate Bayesian computation framework for Bayesian model selection. We showed that population annealing enables us to compute the marginal likelihood in the approximate Bayesian computation framework and conduct model selection depending on the Bayes factor. PMID:25089832
Philosophy and the practice of Bayesian statistics
Gelman, Andrew; Shalizi, Cosma Rohilla
2015-01-01
A substantial school in the philosophy of science identifies Bayesian inference with inductive inference and even rationality as such, and seems to be strengthened by the rise and practical success of Bayesian statistics. We argue that the most successful forms of Bayesian statistics do not actually support that particular philosophy but rather accord much better with sophisticated forms of hypothetico-deductivism. We examine the actual role played by prior distributions in Bayesian models, and the crucial aspects of model checking and model revision, which fall outside the scope of Bayesian confirmation theory. We draw on the literature on the consistency of Bayesian updating and also on our experience of applied work in social science. Clarity about these matters should benefit not just philosophy of science, but also statistical practice. At best, the inductivist view has encouraged researchers to fit and compare models without checking them; at worst, theorists have actively discouraged practitioners from performing model checking because it does not fit into their framework. PMID:22364575
Philosophy and the practice of Bayesian statistics.
Gelman, Andrew; Shalizi, Cosma Rohilla
2013-02-01
A substantial school in the philosophy of science identifies Bayesian inference with inductive inference and even rationality as such, and seems to be strengthened by the rise and practical success of Bayesian statistics. We argue that the most successful forms of Bayesian statistics do not actually support that particular philosophy but rather accord much better with sophisticated forms of hypothetico-deductivism. We examine the actual role played by prior distributions in Bayesian models, and the crucial aspects of model checking and model revision, which fall outside the scope of Bayesian confirmation theory. We draw on the literature on the consistency of Bayesian updating and also on our experience of applied work in social science. Clarity about these matters should benefit not just philosophy of science, but also statistical practice. At best, the inductivist view has encouraged researchers to fit and compare models without checking them; at worst, theorists have actively discouraged practitioners from performing model checking because it does not fit into their framework. © 2012 The British Psychological Society.
NASA Astrophysics Data System (ADS)
Lee, K. David; Wiesenfeld, Eric; Gelfand, Andrew
2007-04-01
One of the greatest challenges in modern combat is maintaining a high level of timely Situational Awareness (SA). In many situations, computational complexity and accuracy considerations make the development and deployment of real-time, high-level inference tools very difficult. An innovative hybrid framework that combines Bayesian inference, in the form of Bayesian Networks, and Possibility Theory, in the form of Fuzzy Logic systems, has recently been introduced to provide a rigorous framework for high-level inference. In previous research, the theoretical basis and benefits of the hybrid approach have been developed. However, lacking is a concrete experimental comparison of the hybrid framework with traditional fusion methods, to demonstrate and quantify this benefit. The goal of this research, therefore, is to provide a statistical analysis on the comparison of the accuracy and performance of hybrid network theory, with pure Bayesian and Fuzzy systems and an inexact Bayesian system approximated using Particle Filtering. To accomplish this task, domain specific models will be developed under these different theoretical approaches and then evaluated, via Monte Carlo Simulation, in comparison to situational ground truth to measure accuracy and fidelity. Following this, a rigorous statistical analysis of the performance results will be performed, to quantify the benefit of hybrid inference to other fusion tools.
A systematic review of Bayesian articles in psychology: The last 25 years.
van de Schoot, Rens; Winter, Sonja D; Ryan, Oisín; Zondervan-Zwijnenburg, Mariëlle; Depaoli, Sarah
2017-06-01
Although the statistical tools most often used by researchers in the field of psychology over the last 25 years are based on frequentist statistics, it is often claimed that the alternative Bayesian approach to statistics is gaining in popularity. In the current article, we investigated this claim by performing the very first systematic review of Bayesian psychological articles published between 1990 and 2015 (n = 1,579). We aim to provide a thorough presentation of the role Bayesian statistics plays in psychology. This historical assessment allows us to identify trends and see how Bayesian methods have been integrated into psychological research in the context of different statistical frameworks (e.g., hypothesis testing, cognitive models, IRT, SEM, etc.). We also describe take-home messages and provide "big-picture" recommendations to the field as Bayesian statistics becomes more popular. Our review indicated that Bayesian statistics is used in a variety of contexts across subfields of psychology and related disciplines. There are many different reasons why one might choose to use Bayes (e.g., the use of priors, estimating otherwise intractable models, modeling uncertainty, etc.). We found in this review that the use of Bayes has increased and broadened in the sense that this methodology can be used in a flexible manner to tackle many different forms of questions. We hope this presentation opens the door for a larger discussion regarding the current state of Bayesian statistics, as well as future trends. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Bayesian stable isotope mixing models
In this paper we review recent advances in Stable Isotope Mixing Models (SIMMs) and place them into an over-arching Bayesian statistical framework which allows for several useful extensions. SIMMs are used to quantify the proportional contributions of various sources to a mixtur...
NASA Astrophysics Data System (ADS)
Berliner, M.
2017-12-01
Bayesian statistical decision theory offers a natural framework for decision-policy making in the presence of uncertainty. Key advantages of the approach include efficient incorporation of information and observations. However, in complicated settings it is very difficult, perhaps essentially impossible, to formalize the mathematical inputs needed in the approach. Nevertheless, using the approach as a template is useful for decision support; that is, organizing and communicating our analyses. Bayesian hierarchical modeling is valuable in quantifying and managing uncertainty such cases. I review some aspects of the idea emphasizing statistical model development and use in the context of sea-level rise.
Nonlinear and non-Gaussian Bayesian based handwriting beautification
NASA Astrophysics Data System (ADS)
Shi, Cao; Xiao, Jianguo; Xu, Canhui; Jia, Wenhua
2013-03-01
A framework is proposed in this paper to effectively and efficiently beautify handwriting by means of a novel nonlinear and non-Gaussian Bayesian algorithm. In the proposed framework, format and size of handwriting image are firstly normalized, and then typeface in computer system is applied to optimize vision effect of handwriting. The Bayesian statistics is exploited to characterize the handwriting beautification process as a Bayesian dynamic model. The model parameters to translate, rotate and scale typeface in computer system are controlled by state equation, and the matching optimization between handwriting and transformed typeface is employed by measurement equation. Finally, the new typeface, which is transformed from the original one and gains the best nonlinear and non-Gaussian optimization, is the beautification result of handwriting. Experimental results demonstrate the proposed framework provides a creative handwriting beautification methodology to improve visual acceptance.
When mechanism matters: Bayesian forecasting using models of ecological diffusion
Hefley, Trevor J.; Hooten, Mevin B.; Russell, Robin E.; Walsh, Daniel P.; Powell, James A.
2017-01-01
Ecological diffusion is a theory that can be used to understand and forecast spatio-temporal processes such as dispersal, invasion, and the spread of disease. Hierarchical Bayesian modelling provides a framework to make statistical inference and probabilistic forecasts, using mechanistic ecological models. To illustrate, we show how hierarchical Bayesian models of ecological diffusion can be implemented for large data sets that are distributed densely across space and time. The hierarchical Bayesian approach is used to understand and forecast the growth and geographic spread in the prevalence of chronic wasting disease in white-tailed deer (Odocoileus virginianus). We compare statistical inference and forecasts from our hierarchical Bayesian model to phenomenological regression-based methods that are commonly used to analyse spatial occurrence data. The mechanistic statistical model based on ecological diffusion led to important ecological insights, obviated a commonly ignored type of collinearity, and was the most accurate method for forecasting.
Dorazio, R.M.; Johnson, F.A.
2003-01-01
Bayesian inference and decision theory may be used in the solution of relatively complex problems of natural resource management, owing to recent advances in statistical theory and computing. In particular, Markov chain Monte Carlo algorithms provide a computational framework for fitting models of adequate complexity and for evaluating the expected consequences of alternative management actions. We illustrate these features using an example based on management of waterfowl habitat.
Fine Mapping Causal Variants with an Approximate Bayesian Method Using Marginal Test Statistics
Chen, Wenan; Larrabee, Beth R.; Ovsyannikova, Inna G.; Kennedy, Richard B.; Haralambieva, Iana H.; Poland, Gregory A.; Schaid, Daniel J.
2015-01-01
Two recently developed fine-mapping methods, CAVIAR and PAINTOR, demonstrate better performance over other fine-mapping methods. They also have the advantage of using only the marginal test statistics and the correlation among SNPs. Both methods leverage the fact that the marginal test statistics asymptotically follow a multivariate normal distribution and are likelihood based. However, their relationship with Bayesian fine mapping, such as BIMBAM, is not clear. In this study, we first show that CAVIAR and BIMBAM are actually approximately equivalent to each other. This leads to a fine-mapping method using marginal test statistics in the Bayesian framework, which we call CAVIAR Bayes factor (CAVIARBF). Another advantage of the Bayesian framework is that it can answer both association and fine-mapping questions. We also used simulations to compare CAVIARBF with other methods under different numbers of causal variants. The results showed that both CAVIARBF and BIMBAM have better performance than PAINTOR and other methods. Compared to BIMBAM, CAVIARBF has the advantage of using only marginal test statistics and takes about one-quarter to one-fifth of the running time. We applied different methods on two independent cohorts of the same phenotype. Results showed that CAVIARBF, BIMBAM, and PAINTOR selected the same top 3 SNPs; however, CAVIARBF and BIMBAM had better consistency in selecting the top 10 ranked SNPs between the two cohorts. Software is available at https://bitbucket.org/Wenan/caviarbf. PMID:25948564
2014-10-02
intervals (Neil, Tailor, Marquez, Fenton , & Hear, 2007). This is cumbersome, error prone and usually inaccurate. Even though a universal framework...Science. Neil, M., Tailor, M., Marquez, D., Fenton , N., & Hear. (2007). Inference in Bayesian networks using dynamic discretisation. Statistics
Whose statistical reasoning is facilitated by a causal structure intervention?
McNair, Simon; Feeney, Aidan
2015-02-01
People often struggle when making Bayesian probabilistic estimates on the basis of competing sources of statistical evidence. Recently, Krynski and Tenenbaum (Journal of Experimental Psychology: General, 136, 430-450, 2007) proposed that a causal Bayesian framework accounts for peoples' errors in Bayesian reasoning and showed that, by clarifying the causal relations among the pieces of evidence, judgments on a classic statistical reasoning problem could be significantly improved. We aimed to understand whose statistical reasoning is facilitated by the causal structure intervention. In Experiment 1, although we observed causal facilitation effects overall, the effect was confined to participants high in numeracy. We did not find an overall facilitation effect in Experiment 2 but did replicate the earlier interaction between numerical ability and the presence or absence of causal content. This effect held when we controlled for general cognitive ability and thinking disposition. Our results suggest that clarifying causal structure facilitates Bayesian judgments, but only for participants with sufficient understanding of basic concepts in probability and statistics.
A Bayesian Missing Data Framework for Generalized Multiple Outcome Mixed Treatment Comparisons
ERIC Educational Resources Information Center
Hong, Hwanhee; Chu, Haitao; Zhang, Jing; Carlin, Bradley P.
2016-01-01
Bayesian statistical approaches to mixed treatment comparisons (MTCs) are becoming more popular because of their flexibility and interpretability. Many randomized clinical trials report multiple outcomes with possible inherent correlations. Moreover, MTC data are typically sparse (although richer than standard meta-analysis, comparing only two…
Sequential Inverse Problems Bayesian Principles and the Logistic Map Example
NASA Astrophysics Data System (ADS)
Duan, Lian; Farmer, Chris L.; Moroz, Irene M.
2010-09-01
Bayesian statistics provides a general framework for solving inverse problems, but is not without interpretation and implementation problems. This paper discusses difficulties arising from the fact that forward models are always in error to some extent. Using a simple example based on the one-dimensional logistic map, we argue that, when implementation problems are minimal, the Bayesian framework is quite adequate. In this paper the Bayesian Filter is shown to be able to recover excellent state estimates in the perfect model scenario (PMS) and to distinguish the PMS from the imperfect model scenario (IMS). Through a quantitative comparison of the way in which the observations are assimilated in both the PMS and the IMS scenarios, we suggest that one can, sometimes, measure the degree of imperfection.
Fine Mapping Causal Variants with an Approximate Bayesian Method Using Marginal Test Statistics.
Chen, Wenan; Larrabee, Beth R; Ovsyannikova, Inna G; Kennedy, Richard B; Haralambieva, Iana H; Poland, Gregory A; Schaid, Daniel J
2015-07-01
Two recently developed fine-mapping methods, CAVIAR and PAINTOR, demonstrate better performance over other fine-mapping methods. They also have the advantage of using only the marginal test statistics and the correlation among SNPs. Both methods leverage the fact that the marginal test statistics asymptotically follow a multivariate normal distribution and are likelihood based. However, their relationship with Bayesian fine mapping, such as BIMBAM, is not clear. In this study, we first show that CAVIAR and BIMBAM are actually approximately equivalent to each other. This leads to a fine-mapping method using marginal test statistics in the Bayesian framework, which we call CAVIAR Bayes factor (CAVIARBF). Another advantage of the Bayesian framework is that it can answer both association and fine-mapping questions. We also used simulations to compare CAVIARBF with other methods under different numbers of causal variants. The results showed that both CAVIARBF and BIMBAM have better performance than PAINTOR and other methods. Compared to BIMBAM, CAVIARBF has the advantage of using only marginal test statistics and takes about one-quarter to one-fifth of the running time. We applied different methods on two independent cohorts of the same phenotype. Results showed that CAVIARBF, BIMBAM, and PAINTOR selected the same top 3 SNPs; however, CAVIARBF and BIMBAM had better consistency in selecting the top 10 ranked SNPs between the two cohorts. Software is available at https://bitbucket.org/Wenan/caviarbf. Copyright © 2015 by the Genetics Society of America.
Modeling Error Distributions of Growth Curve Models through Bayesian Methods
ERIC Educational Resources Information Center
Zhang, Zhiyong
2016-01-01
Growth curve models are widely used in social and behavioral sciences. However, typical growth curve models often assume that the errors are normally distributed although non-normal data may be even more common than normal data. In order to avoid possible statistical inference problems in blindly assuming normality, a general Bayesian framework is…
Bayesian analysis of the flutter margin method in aeroelasticity
Khalil, Mohammad; Poirel, Dominique; Sarkar, Abhijit
2016-08-27
A Bayesian statistical framework is presented for Zimmerman and Weissenburger flutter margin method which considers the uncertainties in aeroelastic modal parameters. The proposed methodology overcomes the limitations of the previously developed least-square based estimation technique which relies on the Gaussian approximation of the flutter margin probability density function (pdf). Using the measured free-decay responses at subcritical (preflutter) airspeeds, the joint non-Gaussain posterior pdf of the modal parameters is sampled using the Metropolis–Hastings (MH) Markov chain Monte Carlo (MCMC) algorithm. The posterior MCMC samples of the modal parameters are then used to obtain the flutter margin pdfs and finally the fluttermore » speed pdf. The usefulness of the Bayesian flutter margin method is demonstrated using synthetic data generated from a two-degree-of-freedom pitch-plunge aeroelastic model. The robustness of the statistical framework is demonstrated using different sets of measurement data. In conclusion, it will be shown that the probabilistic (Bayesian) approach reduces the number of test points required in providing a flutter speed estimate for a given accuracy and precision.« less
Combining statistical inference and decisions in ecology
Williams, Perry J.; Hooten, Mevin B.
2016-01-01
Statistical decision theory (SDT) is a sub-field of decision theory that formally incorporates statistical investigation into a decision-theoretic framework to account for uncertainties in a decision problem. SDT provides a unifying analysis of three types of information: statistical results from a data set, knowledge of the consequences of potential choices (i.e., loss), and prior beliefs about a system. SDT links the theoretical development of a large body of statistical methods including point estimation, hypothesis testing, and confidence interval estimation. The theory and application of SDT have mainly been developed and published in the fields of mathematics, statistics, operations research, and other decision sciences, but have had limited exposure in ecology. Thus, we provide an introduction to SDT for ecologists and describe its utility for linking the conventionally separate tasks of statistical investigation and decision making in a single framework. We describe the basic framework of both Bayesian and frequentist SDT, its traditional use in statistics, and discuss its application to decision problems that occur in ecology. We demonstrate SDT with two types of decisions: Bayesian point estimation, and an applied management problem of selecting a prescribed fire rotation for managing a grassland bird species. Central to SDT, and decision theory in general, are loss functions. Thus, we also provide basic guidance and references for constructing loss functions for an SDT problem.
Bayesian networks for evaluation of evidence from forensic entomology.
Andersson, M Gunnar; Sundström, Anders; Lindström, Anders
2013-09-01
In the aftermath of a CBRN incident, there is an urgent need to reconstruct events in order to bring the perpetrators to court and to take preventive actions for the future. The challenge is to discriminate, based on available information, between alternative scenarios. Forensic interpretation is used to evaluate to what extent results from the forensic investigation favor the prosecutors' or the defendants' arguments, using the framework of Bayesian hypothesis testing. Recently, several new scientific disciplines have been used in a forensic context. In the AniBioThreat project, the framework was applied to veterinary forensic pathology, tracing of pathogenic microorganisms, and forensic entomology. Forensic entomology is an important tool for estimating the postmortem interval in, for example, homicide investigations as a complement to more traditional methods. In this article we demonstrate the applicability of the Bayesian framework for evaluating entomological evidence in a forensic investigation through the analysis of a hypothetical scenario involving suspect movement of carcasses from a clandestine laboratory. Probabilities of different findings under the alternative hypotheses were estimated using a combination of statistical analysis of data, expert knowledge, and simulation, and entomological findings are used to update the beliefs about the prosecutors' and defendants' hypotheses and to calculate the value of evidence. The Bayesian framework proved useful for evaluating complex hypotheses using findings from several insect species, accounting for uncertainty about development rate, temperature, and precolonization. The applicability of the forensic statistic approach to evaluating forensic results from a CBRN incident is discussed.
IMAGINE: Interstellar MAGnetic field INference Engine
NASA Astrophysics Data System (ADS)
Steininger, Theo
2018-03-01
IMAGINE (Interstellar MAGnetic field INference Engine) performs inference on generic parametric models of the Galaxy. The modular open source framework uses highly optimized tools and technology such as the MultiNest sampler (ascl:1109.006) and the information field theory framework NIFTy (ascl:1302.013) to create an instance of the Milky Way based on a set of parameters for physical observables, using Bayesian statistics to judge the mismatch between measured data and model prediction. The flexibility of the IMAGINE framework allows for simple refitting for newly available data sets and makes state-of-the-art Bayesian methods easily accessible particularly for random components of the Galactic magnetic field.
BAYESIAN ESTIMATION OF THERMONUCLEAR REACTION RATES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iliadis, C.; Anderson, K. S.; Coc, A.
The problem of estimating non-resonant astrophysical S -factors and thermonuclear reaction rates, based on measured nuclear cross sections, is of major interest for nuclear energy generation, neutrino physics, and element synthesis. Many different methods have been applied to this problem in the past, almost all of them based on traditional statistics. Bayesian methods, on the other hand, are now in widespread use in the physical sciences. In astronomy, for example, Bayesian statistics is applied to the observation of extrasolar planets, gravitational waves, and Type Ia supernovae. However, nuclear physics, in particular, has been slow to adopt Bayesian methods. We presentmore » astrophysical S -factors and reaction rates based on Bayesian statistics. We develop a framework that incorporates robust parameter estimation, systematic effects, and non-Gaussian uncertainties in a consistent manner. The method is applied to the reactions d(p, γ ){sup 3}He, {sup 3}He({sup 3}He,2p){sup 4}He, and {sup 3}He( α , γ ){sup 7}Be, important for deuterium burning, solar neutrinos, and Big Bang nucleosynthesis.« less
Boehm, Udo; Steingroever, Helen; Wagenmakers, Eric-Jan
2018-06-01
An important tool in the advancement of cognitive science are quantitative models that represent different cognitive variables in terms of model parameters. To evaluate such models, their parameters are typically tested for relationships with behavioral and physiological variables that are thought to reflect specific cognitive processes. However, many models do not come equipped with the statistical framework needed to relate model parameters to covariates. Instead, researchers often revert to classifying participants into groups depending on their values on the covariates, and subsequently comparing the estimated model parameters between these groups. Here we develop a comprehensive solution to the covariate problem in the form of a Bayesian regression framework. Our framework can be easily added to existing cognitive models and allows researchers to quantify the evidential support for relationships between covariates and model parameters using Bayes factors. Moreover, we present a simulation study that demonstrates the superiority of the Bayesian regression framework to the conventional classification-based approach.
Bayesian Group Bridge for Bi-level Variable Selection.
Mallick, Himel; Yi, Nengjun
2017-06-01
A Bayesian bi-level variable selection method (BAGB: Bayesian Analysis of Group Bridge) is developed for regularized regression and classification. This new development is motivated by grouped data, where generic variables can be divided into multiple groups, with variables in the same group being mechanistically related or statistically correlated. As an alternative to frequentist group variable selection methods, BAGB incorporates structural information among predictors through a group-wise shrinkage prior. Posterior computation proceeds via an efficient MCMC algorithm. In addition to the usual ease-of-interpretation of hierarchical linear models, the Bayesian formulation produces valid standard errors, a feature that is notably absent in the frequentist framework. Empirical evidence of the attractiveness of the method is illustrated by extensive Monte Carlo simulations and real data analysis. Finally, several extensions of this new approach are presented, providing a unified framework for bi-level variable selection in general models with flexible penalties.
Combining statistical inference and decisions in ecology.
Williams, Perry J; Hooten, Mevin B
2016-09-01
Statistical decision theory (SDT) is a sub-field of decision theory that formally incorporates statistical investigation into a decision-theoretic framework to account for uncertainties in a decision problem. SDT provides a unifying analysis of three types of information: statistical results from a data set, knowledge of the consequences of potential choices (i.e., loss), and prior beliefs about a system. SDT links the theoretical development of a large body of statistical methods, including point estimation, hypothesis testing, and confidence interval estimation. The theory and application of SDT have mainly been developed and published in the fields of mathematics, statistics, operations research, and other decision sciences, but have had limited exposure in ecology. Thus, we provide an introduction to SDT for ecologists and describe its utility for linking the conventionally separate tasks of statistical investigation and decision making in a single framework. We describe the basic framework of both Bayesian and frequentist SDT, its traditional use in statistics, and discuss its application to decision problems that occur in ecology. We demonstrate SDT with two types of decisions: Bayesian point estimation and an applied management problem of selecting a prescribed fire rotation for managing a grassland bird species. Central to SDT, and decision theory in general, are loss functions. Thus, we also provide basic guidance and references for constructing loss functions for an SDT problem. © 2016 by the Ecological Society of America.
Theory-based Bayesian models of inductive learning and reasoning.
Tenenbaum, Joshua B; Griffiths, Thomas L; Kemp, Charles
2006-07-01
Inductive inference allows humans to make powerful generalizations from sparse data when learning about word meanings, unobserved properties, causal relationships, and many other aspects of the world. Traditional accounts of induction emphasize either the power of statistical learning, or the importance of strong constraints from structured domain knowledge, intuitive theories or schemas. We argue that both components are necessary to explain the nature, use and acquisition of human knowledge, and we introduce a theory-based Bayesian framework for modeling inductive learning and reasoning as statistical inferences over structured knowledge representations.
Data free inference with processed data products
Chowdhary, K.; Najm, H. N.
2014-07-12
Here, we consider the context of probabilistic inference of model parameters given error bars or confidence intervals on model output values, when the data is unavailable. We introduce a class of algorithms in a Bayesian framework, relying on maximum entropy arguments and approximate Bayesian computation methods, to generate consistent data with the given summary statistics. Once we obtain consistent data sets, we pool the respective posteriors, to arrive at a single, averaged density on the parameters. This approach allows us to perform accurate forward uncertainty propagation consistent with the reported statistics.
Bayesian multimodel inference for dose-response studies
Link, W.A.; Albers, P.H.
2007-01-01
Statistical inference in dose?response studies is model-based: The analyst posits a mathematical model of the relation between exposure and response, estimates parameters of the model, and reports conclusions conditional on the model. Such analyses rarely include any accounting for the uncertainties associated with model selection. The Bayesian inferential system provides a convenient framework for model selection and multimodel inference. In this paper we briefly describe the Bayesian paradigm and Bayesian multimodel inference. We then present a family of models for multinomial dose?response data and apply Bayesian multimodel inferential methods to the analysis of data on the reproductive success of American kestrels (Falco sparveriuss) exposed to various sublethal dietary concentrations of methylmercury.
On a full Bayesian inference for force reconstruction problems
NASA Astrophysics Data System (ADS)
Aucejo, M.; De Smet, O.
2018-05-01
In a previous paper, the authors introduced a flexible methodology for reconstructing mechanical sources in the frequency domain from prior local information on both their nature and location over a linear and time invariant structure. The proposed approach was derived from Bayesian statistics, because of its ability in mathematically accounting for experimenter's prior knowledge. However, since only the Maximum a Posteriori estimate was computed, the posterior uncertainty about the regularized solution given the measured vibration field, the mechanical model and the regularization parameter was not assessed. To answer this legitimate question, this paper fully exploits the Bayesian framework to provide, from a Markov Chain Monte Carlo algorithm, credible intervals and other statistical measures (mean, median, mode) for all the parameters of the force reconstruction problem.
Bayesian Image Segmentations by Potts Prior and Loopy Belief Propagation
NASA Astrophysics Data System (ADS)
Tanaka, Kazuyuki; Kataoka, Shun; Yasuda, Muneki; Waizumi, Yuji; Hsu, Chiou-Ting
2014-12-01
This paper presents a Bayesian image segmentation model based on Potts prior and loopy belief propagation. The proposed Bayesian model involves several terms, including the pairwise interactions of Potts models, and the average vectors and covariant matrices of Gauss distributions in color image modeling. These terms are often referred to as hyperparameters in statistical machine learning theory. In order to determine these hyperparameters, we propose a new scheme for hyperparameter estimation based on conditional maximization of entropy in the Potts prior. The algorithm is given based on loopy belief propagation. In addition, we compare our conditional maximum entropy framework with the conventional maximum likelihood framework, and also clarify how the first order phase transitions in loopy belief propagations for Potts models influence our hyperparameter estimation procedures.
Statistical estimation via convex optimization for trending and performance monitoring
NASA Astrophysics Data System (ADS)
Samar, Sikandar
This thesis presents an optimization-based statistical estimation approach to find unknown trends in noisy data. A Bayesian framework is used to explicitly take into account prior information about the trends via trend models and constraints. The main focus is on convex formulation of the Bayesian estimation problem, which allows efficient computation of (globally) optimal estimates. There are two main parts of this thesis. The first part formulates trend estimation in systems described by known detailed models as a convex optimization problem. Statistically optimal estimates are then obtained by maximizing a concave log-likelihood function subject to convex constraints. We consider the problem of increasing problem dimension as more measurements become available, and introduce a moving horizon framework to enable recursive estimation of the unknown trend by solving a fixed size convex optimization problem at each horizon. We also present a distributed estimation framework, based on the dual decomposition method, for a system formed by a network of complex sensors with local (convex) estimation. Two specific applications of the convex optimization-based Bayesian estimation approach are described in the second part of the thesis. Batch estimation for parametric diagnostics in a flight control simulation of a space launch vehicle is shown to detect incipient fault trends despite the natural masking properties of feedback in the guidance and control loops. Moving horizon approach is used to estimate time varying fault parameters in a detailed nonlinear simulation model of an unmanned aerial vehicle. An excellent performance is demonstrated in the presence of winds and turbulence.
An introduction to using Bayesian linear regression with clinical data.
Baldwin, Scott A; Larson, Michael J
2017-11-01
Statistical training psychology focuses on frequentist methods. Bayesian methods are an alternative to standard frequentist methods. This article provides researchers with an introduction to fundamental ideas in Bayesian modeling. We use data from an electroencephalogram (EEG) and anxiety study to illustrate Bayesian models. Specifically, the models examine the relationship between error-related negativity (ERN), a particular event-related potential, and trait anxiety. Methodological topics covered include: how to set up a regression model in a Bayesian framework, specifying priors, examining convergence of the model, visualizing and interpreting posterior distributions, interval estimates, expected and predicted values, and model comparison tools. We also discuss situations where Bayesian methods can outperform frequentist methods as well has how to specify more complicated regression models. Finally, we conclude with recommendations about reporting guidelines for those using Bayesian methods in their own research. We provide data and R code for replicating our analyses. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vrugt, Jasper A; Robinson, Bruce A; Ter Braak, Cajo J F
In recent years, a strong debate has emerged in the hydrologic literature regarding what constitutes an appropriate framework for uncertainty estimation. Particularly, there is strong disagreement whether an uncertainty framework should have its roots within a proper statistical (Bayesian) context, or whether such a framework should be based on a different philosophy and implement informal measures and weaker inference to summarize parameter and predictive distributions. In this paper, we compare a formal Bayesian approach using Markov Chain Monte Carlo (MCMC) with generalized likelihood uncertainty estimation (GLUE) for assessing uncertainty in conceptual watershed modeling. Our formal Bayesian approach is implemented usingmore » the recently developed differential evolution adaptive metropolis (DREAM) MCMC scheme with a likelihood function that explicitly considers model structural, input and parameter uncertainty. Our results demonstrate that DREAM and GLUE can generate very similar estimates of total streamflow uncertainty. This suggests that formal and informal Bayesian approaches have more common ground than the hydrologic literature and ongoing debate might suggest. The main advantage of formal approaches is, however, that they attempt to disentangle the effect of forcing, parameter and model structural error on total predictive uncertainty. This is key to improving hydrologic theory and to better understand and predict the flow of water through catchments.« less
NASA Astrophysics Data System (ADS)
Kim, Seongryong; Tkalčić, Hrvoje; Mustać, Marija; Rhie, Junkee; Ford, Sean
2016-04-01
A framework is presented within which we provide rigorous estimations for seismic sources and structures in the Northeast Asia. We use Bayesian inversion methods, which enable statistical estimations of models and their uncertainties based on data information. Ambiguities in error statistics and model parameterizations are addressed by hierarchical and trans-dimensional (trans-D) techniques, which can be inherently implemented in the Bayesian inversions. Hence reliable estimation of model parameters and their uncertainties is possible, thus avoiding arbitrary regularizations and parameterizations. Hierarchical and trans-D inversions are performed to develop a three-dimensional velocity model using ambient noise data. To further improve the model, we perform joint inversions with receiver function data using a newly developed Bayesian method. For the source estimation, a novel moment tensor inversion method is presented and applied to regional waveform data of the North Korean nuclear explosion tests. By the combination of new Bayesian techniques and the structural model, coupled with meaningful uncertainties related to each of the processes, more quantitative monitoring and discrimination of seismic events is possible.
Schwartz, Rachel S; Mueller, Rachel L
2010-01-11
Estimates of divergence dates between species improve our understanding of processes ranging from nucleotide substitution to speciation. Such estimates are frequently based on molecular genetic differences between species; therefore, they rely on accurate estimates of the number of such differences (i.e. substitutions per site, measured as branch length on phylogenies). We used simulations to determine the effects of dataset size, branch length heterogeneity, branch depth, and analytical framework on branch length estimation across a range of branch lengths. We then reanalyzed an empirical dataset for plethodontid salamanders to determine how inaccurate branch length estimation can affect estimates of divergence dates. The accuracy of branch length estimation varied with branch length, dataset size (both number of taxa and sites), branch length heterogeneity, branch depth, dataset complexity, and analytical framework. For simple phylogenies analyzed in a Bayesian framework, branches were increasingly underestimated as branch length increased; in a maximum likelihood framework, longer branch lengths were somewhat overestimated. Longer datasets improved estimates in both frameworks; however, when the number of taxa was increased, estimation accuracy for deeper branches was less than for tip branches. Increasing the complexity of the dataset produced more misestimated branches in a Bayesian framework; however, in an ML framework, more branches were estimated more accurately. Using ML branch length estimates to re-estimate plethodontid salamander divergence dates generally resulted in an increase in the estimated age of older nodes and a decrease in the estimated age of younger nodes. Branch lengths are misestimated in both statistical frameworks for simulations of simple datasets. However, for complex datasets, length estimates are quite accurate in ML (even for short datasets), whereas few branches are estimated accurately in a Bayesian framework. Our reanalysis of empirical data demonstrates the magnitude of effects of Bayesian branch length misestimation on divergence date estimates. Because the length of branches for empirical datasets can be estimated most reliably in an ML framework when branches are <1 substitution/site and datasets are > or =1 kb, we suggest that divergence date estimates using datasets, branch lengths, and/or analytical techniques that fall outside of these parameters should be interpreted with caution.
ERIC Educational Resources Information Center
Marmolejo-Ramos, Fernando; Cousineau, Denis
2017-01-01
The number of articles showing dissatisfaction with the null hypothesis statistical testing (NHST) framework has been progressively increasing over the years. Alternatives to NHST have been proposed and the Bayesian approach seems to have achieved the highest amount of visibility. In this last part of the special issue, a few alternative…
Bayesian approach for counting experiment statistics applied to a neutrino point source analysis
NASA Astrophysics Data System (ADS)
Bose, D.; Brayeur, L.; Casier, M.; de Vries, K. D.; Golup, G.; van Eijndhoven, N.
2013-12-01
In this paper we present a model independent analysis method following Bayesian statistics to analyse data from a generic counting experiment and apply it to the search for neutrinos from point sources. We discuss a test statistic defined following a Bayesian framework that will be used in the search for a signal. In case no signal is found, we derive an upper limit without the introduction of approximations. The Bayesian approach allows us to obtain the full probability density function for both the background and the signal rate. As such, we have direct access to any signal upper limit. The upper limit derivation directly compares with a frequentist approach and is robust in the case of low-counting observations. Furthermore, it allows also to account for previous upper limits obtained by other analyses via the concept of prior information without the need of the ad hoc application of trial factors. To investigate the validity of the presented Bayesian approach, we have applied this method to the public IceCube 40-string configuration data for 10 nearby blazars and we have obtained a flux upper limit, which is in agreement with the upper limits determined via a frequentist approach. Furthermore, the upper limit obtained compares well with the previously published result of IceCube, using the same data set.
NASA Astrophysics Data System (ADS)
Chen, Mingjie; Izady, Azizallah; Abdalla, Osman A.; Amerjeed, Mansoor
2018-02-01
Bayesian inference using Markov Chain Monte Carlo (MCMC) provides an explicit framework for stochastic calibration of hydrogeologic models accounting for uncertainties; however, the MCMC sampling entails a large number of model calls, and could easily become computationally unwieldy if the high-fidelity hydrogeologic model simulation is time consuming. This study proposes a surrogate-based Bayesian framework to address this notorious issue, and illustrates the methodology by inverse modeling a regional MODFLOW model. The high-fidelity groundwater model is approximated by a fast statistical model using Bagging Multivariate Adaptive Regression Spline (BMARS) algorithm, and hence the MCMC sampling can be efficiently performed. In this study, the MODFLOW model is developed to simulate the groundwater flow in an arid region of Oman consisting of mountain-coast aquifers, and used to run representative simulations to generate training dataset for BMARS model construction. A BMARS-based Sobol' method is also employed to efficiently calculate input parameter sensitivities, which are used to evaluate and rank their importance for the groundwater flow model system. According to sensitivity analysis, insensitive parameters are screened out of Bayesian inversion of the MODFLOW model, further saving computing efforts. The posterior probability distribution of input parameters is efficiently inferred from the prescribed prior distribution using observed head data, demonstrating that the presented BMARS-based Bayesian framework is an efficient tool to reduce parameter uncertainties of a groundwater system.
Bayesian Factor Analysis as a Variable Selection Problem: Alternative Priors and Consequences
Lu, Zhao-Hua; Chow, Sy-Miin; Loken, Eric
2016-01-01
Factor analysis is a popular statistical technique for multivariate data analysis. Developments in the structural equation modeling framework have enabled the use of hybrid confirmatory/exploratory approaches in which factor loading structures can be explored relatively flexibly within a confirmatory factor analysis (CFA) framework. Recently, a Bayesian structural equation modeling (BSEM) approach (Muthén & Asparouhov, 2012) has been proposed as a way to explore the presence of cross-loadings in CFA models. We show that the issue of determining factor loading patterns may be formulated as a Bayesian variable selection problem in which Muthén and Asparouhov’s approach can be regarded as a BSEM approach with ridge regression prior (BSEM-RP). We propose another Bayesian approach, denoted herein as the Bayesian structural equation modeling with spike and slab prior (BSEM-SSP), which serves as a one-stage alternative to the BSEM-RP. We review the theoretical advantages and disadvantages of both approaches and compare their empirical performance relative to two modification indices-based approaches and exploratory factor analysis with target rotation. A teacher stress scale data set (Byrne, 2012; Pettegrew & Wolf, 1982) is used to demonstrate our approach. PMID:27314566
Multiscale hidden Markov models for photon-limited imaging
NASA Astrophysics Data System (ADS)
Nowak, Robert D.
1999-06-01
Photon-limited image analysis is often hindered by low signal-to-noise ratios. A novel Bayesian multiscale modeling and analysis method is developed in this paper to assist in these challenging situations. In addition to providing a very natural and useful framework for modeling an d processing images, Bayesian multiscale analysis is often much less computationally demanding compared to classical Markov random field models. This paper focuses on a probabilistic graph model called the multiscale hidden Markov model (MHMM), which captures the key inter-scale dependencies present in natural image intensities. The MHMM framework presented here is specifically designed for photon-limited imagin applications involving Poisson statistics, and applications to image intensity analysis are examined.
Reconstructing constructivism: causal models, Bayesian learning mechanisms, and the theory theory.
Gopnik, Alison; Wellman, Henry M
2012-11-01
We propose a new version of the "theory theory" grounded in the computational framework of probabilistic causal models and Bayesian learning. Probabilistic models allow a constructivist but rigorous and detailed approach to cognitive development. They also explain the learning of both more specific causal hypotheses and more abstract framework theories. We outline the new theoretical ideas, explain the computational framework in an intuitive and nontechnical way, and review an extensive but relatively recent body of empirical results that supports these ideas. These include new studies of the mechanisms of learning. Children infer causal structure from statistical information, through their own actions on the world and through observations of the actions of others. Studies demonstrate these learning mechanisms in children from 16 months to 4 years old and include research on causal statistical learning, informal experimentation through play, and imitation and informal pedagogy. They also include studies of the variability and progressive character of intuitive theory change, particularly theory of mind. These studies investigate both the physical and the psychological and social domains. We conclude with suggestions for further collaborative projects between developmental and computational cognitive scientists.
Computational statistics using the Bayesian Inference Engine
NASA Astrophysics Data System (ADS)
Weinberg, Martin D.
2013-09-01
This paper introduces the Bayesian Inference Engine (BIE), a general parallel, optimized software package for parameter inference and model selection. This package is motivated by the analysis needs of modern astronomical surveys and the need to organize and reuse expensive derived data. The BIE is the first platform for computational statistics designed explicitly to enable Bayesian update and model comparison for astronomical problems. Bayesian update is based on the representation of high-dimensional posterior distributions using metric-ball-tree based kernel density estimation. Among its algorithmic offerings, the BIE emphasizes hybrid tempered Markov chain Monte Carlo schemes that robustly sample multimodal posterior distributions in high-dimensional parameter spaces. Moreover, the BIE implements a full persistence or serialization system that stores the full byte-level image of the running inference and previously characterized posterior distributions for later use. Two new algorithms to compute the marginal likelihood from the posterior distribution, developed for and implemented in the BIE, enable model comparison for complex models and data sets. Finally, the BIE was designed to be a collaborative platform for applying Bayesian methodology to astronomy. It includes an extensible object-oriented and easily extended framework that implements every aspect of the Bayesian inference. By providing a variety of statistical algorithms for all phases of the inference problem, a scientist may explore a variety of approaches with a single model and data implementation. Additional technical details and download details are available from http://www.astro.umass.edu/bie. The BIE is distributed under the GNU General Public License.
NASA Astrophysics Data System (ADS)
Eadie, Gwendolyn M.; Springford, Aaron; Harris, William E.
2017-02-01
We present a hierarchical Bayesian method for estimating the total mass and mass profile of the Milky Way Galaxy. The new hierarchical Bayesian approach further improves the framework presented by Eadie et al. and Eadie and Harris and builds upon the preliminary reports by Eadie et al. The method uses a distribution function f({ E },L) to model the Galaxy and kinematic data from satellite objects, such as globular clusters (GCs), to trace the Galaxy’s gravitational potential. A major advantage of the method is that it not only includes complete and incomplete data simultaneously in the analysis, but also incorporates measurement uncertainties in a coherent and meaningful way. We first test the hierarchical Bayesian framework, which includes measurement uncertainties, using the same data and power-law model assumed in Eadie and Harris and find the results are similar but more strongly constrained. Next, we take advantage of the new statistical framework and incorporate all possible GC data, finding a cumulative mass profile with Bayesian credible regions. This profile implies a mass within 125 kpc of 4.8× {10}11{M}⊙ with a 95% Bayesian credible region of (4.0{--}5.8)× {10}11{M}⊙ . Our results also provide estimates of the true specific energies of all the GCs. By comparing these estimated energies to the measured energies of GCs with complete velocity measurements, we observe that (the few) remote tracers with complete measurements may play a large role in determining a total mass estimate of the Galaxy. Thus, our study stresses the need for more remote tracers with complete velocity measurements.
Wavelet-Bayesian inference of cosmic strings embedded in the cosmic microwave background
NASA Astrophysics Data System (ADS)
McEwen, J. D.; Feeney, S. M.; Peiris, H. V.; Wiaux, Y.; Ringeval, C.; Bouchet, F. R.
2017-12-01
Cosmic strings are a well-motivated extension to the standard cosmological model and could induce a subdominant component in the anisotropies of the cosmic microwave background (CMB), in addition to the standard inflationary component. The detection of strings, while observationally challenging, would provide a direct probe of physics at very high-energy scales. We develop a framework for cosmic string inference from observations of the CMB made over the celestial sphere, performing a Bayesian analysis in wavelet space where the string-induced CMB component has distinct statistical properties to the standard inflationary component. Our wavelet-Bayesian framework provides a principled approach to compute the posterior distribution of the string tension Gμ and the Bayesian evidence ratio comparing the string model to the standard inflationary model. Furthermore, we present a technique to recover an estimate of any string-induced CMB map embedded in observational data. Using Planck-like simulations, we demonstrate the application of our framework and evaluate its performance. The method is sensitive to Gμ ∼ 5 × 10-7 for Nambu-Goto string simulations that include an integrated Sachs-Wolfe contribution only and do not include any recombination effects, before any parameters of the analysis are optimized. The sensitivity of the method compares favourably with other techniques applied to the same simulations.
A Bayesian Framework for Word Segmentation: Exploring the Effects of Context
ERIC Educational Resources Information Center
Goldwater, Sharon; Griffiths, Thomas L.; Johnson, Mark
2009-01-01
Since the experiments of Saffran et al. [Saffran, J., Aslin, R., & Newport, E. (1996). Statistical learning in 8-month-old infants. "Science," 274, 1926-1928], there has been a great deal of interest in the question of how statistical regularities in the speech stream might be used by infants to begin to identify individual words. In this work, we…
Ghosh, Sujit K
2010-01-01
Bayesian methods are rapidly becoming popular tools for making statistical inference in various fields of science including biology, engineering, finance, and genetics. One of the key aspects of Bayesian inferential method is its logical foundation that provides a coherent framework to utilize not only empirical but also scientific information available to a researcher. Prior knowledge arising from scientific background, expert judgment, or previously collected data is used to build a prior distribution which is then combined with current data via the likelihood function to characterize the current state of knowledge using the so-called posterior distribution. Bayesian methods allow the use of models of complex physical phenomena that were previously too difficult to estimate (e.g., using asymptotic approximations). Bayesian methods offer a means of more fully understanding issues that are central to many practical problems by allowing researchers to build integrated models based on hierarchical conditional distributions that can be estimated even with limited amounts of data. Furthermore, advances in numerical integration methods, particularly those based on Monte Carlo methods, have made it possible to compute the optimal Bayes estimators. However, there is a reasonably wide gap between the background of the empirically trained scientists and the full weight of Bayesian statistical inference. Hence, one of the goals of this chapter is to bridge the gap by offering elementary to advanced concepts that emphasize linkages between standard approaches and full probability modeling via Bayesian methods.
A New Mathematical Framework for Design Under Uncertainty
2016-05-05
blending multiple information sources via auto-regressive stochastic modeling. A computationally efficient machine learning framework is developed based on...sion and machine learning approaches; see Fig. 1. This will lead to a comprehensive description of system performance with less uncertainty than in the...Bayesian optimization of super-cavitating hy- drofoils The goal of this study is to demonstrate the capabilities of statistical learning and
Moving beyond qualitative evaluations of Bayesian models of cognition.
Hemmer, Pernille; Tauber, Sean; Steyvers, Mark
2015-06-01
Bayesian models of cognition provide a powerful way to understand the behavior and goals of individuals from a computational point of view. Much of the focus in the Bayesian cognitive modeling approach has been on qualitative model evaluations, where predictions from the models are compared to data that is often averaged over individuals. In many cognitive tasks, however, there are pervasive individual differences. We introduce an approach to directly infer individual differences related to subjective mental representations within the framework of Bayesian models of cognition. In this approach, Bayesian data analysis methods are used to estimate cognitive parameters and motivate the inference process within a Bayesian cognitive model. We illustrate this integrative Bayesian approach on a model of memory. We apply the model to behavioral data from a memory experiment involving the recall of heights of people. A cross-validation analysis shows that the Bayesian memory model with inferred subjective priors predicts withheld data better than a Bayesian model where the priors are based on environmental statistics. In addition, the model with inferred priors at the individual subject level led to the best overall generalization performance, suggesting that individual differences are important to consider in Bayesian models of cognition.
Bayesian Sensitivity Analysis of Statistical Models with Missing Data
ZHU, HONGTU; IBRAHIM, JOSEPH G.; TANG, NIANSHENG
2013-01-01
Methods for handling missing data depend strongly on the mechanism that generated the missing values, such as missing completely at random (MCAR) or missing at random (MAR), as well as other distributional and modeling assumptions at various stages. It is well known that the resulting estimates and tests may be sensitive to these assumptions as well as to outlying observations. In this paper, we introduce various perturbations to modeling assumptions and individual observations, and then develop a formal sensitivity analysis to assess these perturbations in the Bayesian analysis of statistical models with missing data. We develop a geometric framework, called the Bayesian perturbation manifold, to characterize the intrinsic structure of these perturbations. We propose several intrinsic influence measures to perform sensitivity analysis and quantify the effect of various perturbations to statistical models. We use the proposed sensitivity analysis procedure to systematically investigate the tenability of the non-ignorable missing at random (NMAR) assumption. Simulation studies are conducted to evaluate our methods, and a dataset is analyzed to illustrate the use of our diagnostic measures. PMID:24753718
Bettenbühl, Mario; Rusconi, Marco; Engbert, Ralf; Holschneider, Matthias
2012-01-01
Complex biological dynamics often generate sequences of discrete events which can be described as a Markov process. The order of the underlying Markovian stochastic process is fundamental for characterizing statistical dependencies within sequences. As an example for this class of biological systems, we investigate the Markov order of sequences of microsaccadic eye movements from human observers. We calculate the integrated likelihood of a given sequence for various orders of the Markov process and use this in a Bayesian framework for statistical inference on the Markov order. Our analysis shows that data from most participants are best explained by a first-order Markov process. This is compatible with recent findings of a statistical coupling of subsequent microsaccade orientations. Our method might prove to be useful for a broad class of biological systems.
Environmental statistics and optimal regulation.
Sivak, David A; Thomson, Matt
2014-09-01
Any organism is embedded in an environment that changes over time. The timescale for and statistics of environmental change, the precision with which the organism can detect its environment, and the costs and benefits of particular protein expression levels all will affect the suitability of different strategies--such as constitutive expression or graded response--for regulating protein levels in response to environmental inputs. We propose a general framework-here specifically applied to the enzymatic regulation of metabolism in response to changing concentrations of a basic nutrient-to predict the optimal regulatory strategy given the statistics of fluctuations in the environment and measurement apparatus, respectively, and the costs associated with enzyme production. We use this framework to address three fundamental questions: (i) when a cell should prefer thresholding to a graded response; (ii) when there is a fitness advantage to implementing a Bayesian decision rule; and (iii) when retaining memory of the past provides a selective advantage. We specifically find that: (i) relative convexity of enzyme expression cost and benefit influences the fitness of thresholding or graded responses; (ii) intermediate levels of measurement uncertainty call for a sophisticated Bayesian decision rule; and (iii) in dynamic contexts, intermediate levels of uncertainty call for retaining memory of the past. Statistical properties of the environment, such as variability and correlation times, set optimal biochemical parameters, such as thresholds and decay rates in signaling pathways. Our framework provides a theoretical basis for interpreting molecular signal processing algorithms and a classification scheme that organizes known regulatory strategies and may help conceptualize heretofore unknown ones.
Reconstructing constructivism: Causal models, Bayesian learning mechanisms and the theory theory
Gopnik, Alison; Wellman, Henry M.
2012-01-01
We propose a new version of the “theory theory” grounded in the computational framework of probabilistic causal models and Bayesian learning. Probabilistic models allow a constructivist but rigorous and detailed approach to cognitive development. They also explain the learning of both more specific causal hypotheses and more abstract framework theories. We outline the new theoretical ideas, explain the computational framework in an intuitive and non-technical way, and review an extensive but relatively recent body of empirical results that supports these ideas. These include new studies of the mechanisms of learning. Children infer causal structure from statistical information, through their own actions on the world and through observations of the actions of others. Studies demonstrate these learning mechanisms in children from 16 months to 4 years old and include research on causal statistical learning, informal experimentation through play, and imitation and informal pedagogy. They also include studies of the variability and progressive character of intuitive theory change, particularly theory of mind. These studies investigate both the physical and psychological and social domains. We conclude with suggestions for further collaborative projects between developmental and computational cognitive scientists. PMID:22582739
Nariai, N; Kim, S; Imoto, S; Miyano, S
2004-01-01
We propose a statistical method to estimate gene networks from DNA microarray data and protein-protein interactions. Because physical interactions between proteins or multiprotein complexes are likely to regulate biological processes, using only mRNA expression data is not sufficient for estimating a gene network accurately. Our method adds knowledge about protein-protein interactions to the estimation method of gene networks under a Bayesian statistical framework. In the estimated gene network, a protein complex is modeled as a virtual node based on principal component analysis. We show the effectiveness of the proposed method through the analysis of Saccharomyces cerevisiae cell cycle data. The proposed method improves the accuracy of the estimated gene networks, and successfully identifies some biological facts.
Climatic Models Ensemble-based Mid-21st Century Runoff Projections: A Bayesian Framework
NASA Astrophysics Data System (ADS)
Achieng, K. O.; Zhu, J.
2017-12-01
There are a number of North American Regional Climate Change Assessment Program (NARCCAP) climatic models that have been used to project surface runoff in the mid-21st century. Statistical model selection techniques are often used to select the model that best fits data. However, model selection techniques often lead to different conclusions. In this study, ten models are averaged in Bayesian paradigm to project runoff. Bayesian Model Averaging (BMA) is used to project and identify effect of model uncertainty on future runoff projections. Baseflow separation - a two-digital filter which is also called Eckhardt filter - is used to separate USGS streamflow (total runoff) into two components: baseflow and surface runoff. We use this surface runoff as the a priori runoff when conducting BMA of runoff simulated from the ten RCM models. The primary objective of this study is to evaluate how well RCM multi-model ensembles simulate surface runoff, in a Bayesian framework. Specifically, we investigate and discuss the following questions: How well do ten RCM models ensemble jointly simulate surface runoff by averaging over all the models using BMA, given a priori surface runoff? What are the effects of model uncertainty on surface runoff simulation?
The Development of Bayesian Theory and Its Applications in Business and Bioinformatics
NASA Astrophysics Data System (ADS)
Zhang, Yifei
2018-03-01
Bayesian Theory originated from an Essay of a British mathematician named Thomas Bayes in 1763, and after its development in 20th century, Bayesian Statistics has been taking a significant part in statistical study of all fields. Due to the recent breakthrough of high-dimensional integral, Bayesian Statistics has been improved and perfected, and now it can be used to solve problems that Classical Statistics failed to solve. This paper summarizes Bayesian Statistics’ history, concepts and applications, which are illustrated in five parts: the history of Bayesian Statistics, the weakness of Classical Statistics, Bayesian Theory and its development and applications. The first two parts make a comparison between Bayesian Statistics and Classical Statistics in a macroscopic aspect. And the last three parts focus on Bayesian Theory in specific -- from introducing some particular Bayesian Statistics’ concepts to listing their development and finally their applications.
NASA Astrophysics Data System (ADS)
Rajabi, Mohammad Mahdi; Ataie-Ashtiani, Behzad
2016-05-01
Bayesian inference has traditionally been conceived as the proper framework for the formal incorporation of expert knowledge in parameter estimation of groundwater models. However, conventional Bayesian inference is incapable of taking into account the imprecision essentially embedded in expert provided information. In order to solve this problem, a number of extensions to conventional Bayesian inference have been introduced in recent years. One of these extensions is 'fuzzy Bayesian inference' which is the result of integrating fuzzy techniques into Bayesian statistics. Fuzzy Bayesian inference has a number of desirable features which makes it an attractive approach for incorporating expert knowledge in the parameter estimation process of groundwater models: (1) it is well adapted to the nature of expert provided information, (2) it allows to distinguishably model both uncertainty and imprecision, and (3) it presents a framework for fusing expert provided information regarding the various inputs of the Bayesian inference algorithm. However an important obstacle in employing fuzzy Bayesian inference in groundwater numerical modeling applications is the computational burden, as the required number of numerical model simulations often becomes extremely exhaustive and often computationally infeasible. In this paper, a novel approach of accelerating the fuzzy Bayesian inference algorithm is proposed which is based on using approximate posterior distributions derived from surrogate modeling, as a screening tool in the computations. The proposed approach is first applied to a synthetic test case of seawater intrusion (SWI) in a coastal aquifer. It is shown that for this synthetic test case, the proposed approach decreases the number of required numerical simulations by an order of magnitude. Then the proposed approach is applied to a real-world test case involving three-dimensional numerical modeling of SWI in Kish Island, located in the Persian Gulf. An expert elicitation methodology is developed and applied to the real-world test case in order to provide a road map for the use of fuzzy Bayesian inference in groundwater modeling applications.
Structured statistical models of inductive reasoning.
Kemp, Charles; Tenenbaum, Joshua B
2009-01-01
Everyday inductive inferences are often guided by rich background knowledge. Formal models of induction should aim to incorporate this knowledge and should explain how different kinds of knowledge lead to the distinctive patterns of reasoning found in different inductive contexts. This article presents a Bayesian framework that attempts to meet both goals and describes [corrected] 4 applications of the framework: a taxonomic model, a spatial model, a threshold model, and a causal model. Each model makes probabilistic inferences about the extensions of novel properties, but the priors for the 4 models are defined over different kinds of structures that capture different relationships between the categories in a domain. The framework therefore shows how statistical inference can operate over structured background knowledge, and the authors argue that this interaction between structure and statistics is critical for explaining the power and flexibility of human reasoning.
Space Object Detection and Tracking Within a Finite Set Statistics Framework
2017-04-13
Software for source extraction. Astronomy and Astrophysics Supplement Series, 117(2):393–404, 1996. [4] William M. Bolstad. Introduction to Bayesian...Urban, T Corbin, G Wycoff, Ulrich Bastian, Peter Schwekendiek, and A Wicenec. The tycho-2 catalogue of the 2.5 million brightest stars. Astronomy and
Why environmental scientists are becoming Bayesians
James S. Clark
2005-01-01
Advances in computational statistics provide a general framework for the high dimensional models typically needed for ecological inference and prediction. Hierarchical Bayes (HB) represents a modelling structure with capacity to exploit diverse sources of information, to accommodate influences that are unknown (or unknowable), and to draw inference on large numbers of...
Structured Statistical Models of Inductive Reasoning
ERIC Educational Resources Information Center
Kemp, Charles; Tenenbaum, Joshua B.
2009-01-01
Everyday inductive inferences are often guided by rich background knowledge. Formal models of induction should aim to incorporate this knowledge and should explain how different kinds of knowledge lead to the distinctive patterns of reasoning found in different inductive contexts. This article presents a Bayesian framework that attempts to meet…
A Monte Carlo–Based Bayesian Approach for Measuring Agreement in a Qualitative Scale
Pérez Sánchez, Carlos Javier
2014-01-01
Agreement analysis has been an active research area whose techniques have been widely applied in psychology and other fields. However, statistical agreement among raters has been mainly considered from a classical statistics point of view. Bayesian methodology is a viable alternative that allows the inclusion of subjective initial information coming from expert opinions, personal judgments, or historical data. A Bayesian approach is proposed by providing a unified Monte Carlo–based framework to estimate all types of measures of agreement in a qualitative scale of response. The approach is conceptually simple and it has a low computational cost. Both informative and non-informative scenarios are considered. In case no initial information is available, the results are in line with the classical methodology, but providing more information on the measures of agreement. For the informative case, some guidelines are presented to elicitate the prior distribution. The approach has been applied to two applications related to schizophrenia diagnosis and sensory analysis. PMID:29881002
Uncertainty Management for Diagnostics and Prognostics of Batteries using Bayesian Techniques
NASA Technical Reports Server (NTRS)
Saha, Bhaskar; Goebel, kai
2007-01-01
Uncertainty management has always been the key hurdle faced by diagnostics and prognostics algorithms. A Bayesian treatment of this problem provides an elegant and theoretically sound approach to the modern Condition- Based Maintenance (CBM)/Prognostic Health Management (PHM) paradigm. The application of the Bayesian techniques to regression and classification in the form of Relevance Vector Machine (RVM), and to state estimation as in Particle Filters (PF), provides a powerful tool to integrate the diagnosis and prognosis of battery health. The RVM, which is a Bayesian treatment of the Support Vector Machine (SVM), is used for model identification, while the PF framework uses the learnt model, statistical estimates of noise and anticipated operational conditions to provide estimates of remaining useful life (RUL) in the form of a probability density function (PDF). This type of prognostics generates a significant value addition to the management of any operation involving electrical systems.
Monden, Rei; de Vos, Stijn; Morey, Richard; Wagenmakers, Eric-Jan; de Jonge, Peter; Roest, Annelieke M
2016-12-01
The Food and Drug Administration (FDA) uses a p < 0.05 null-hypothesis significance testing framework to evaluate "substantial evidence" for drug efficacy. This framework only allows dichotomous conclusions and does not quantify the strength of evidence supporting efficacy. The efficacy of FDA-approved antidepressants for the treatment of anxiety disorders was re-evaluated in a Bayesian framework that quantifies the strength of the evidence. Data from 58 double-blind placebo-controlled trials were retrieved from the FDA for the second-generation antidepressants for the treatment of anxiety disorders. Bayes factors (BFs) were calculated for all treatment arms compared to placebo and were compared with the corresponding p-values and the FDA conclusion categories. BFs ranged from 0.07 to 131,400, indicating a range of no support of evidence to strong evidence for the efficacy. Results also indicate a varying strength of evidence between the trials with p < 0.05. In sum, there were large differences in BFs across trials. Among trials providing "substantial evidence" according to the FDA, only 27 out of 59 dose groups obtained strong support for efficacy according to the typically used cutoff of BF ≥ 20. The Bayesian framework can provide valuable information on the strength of the evidence for drug efficacy. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
A Bayesian Approach for Summarizing and Modeling Time-Series Exposure Data with Left Censoring.
Houseman, E Andres; Virji, M Abbas
2017-08-01
Direct reading instruments are valuable tools for measuring exposure as they provide real-time measurements for rapid decision making. However, their use is limited to general survey applications in part due to issues related to their performance. Moreover, statistical analysis of real-time data is complicated by autocorrelation among successive measurements, non-stationary time series, and the presence of left-censoring due to limit-of-detection (LOD). A Bayesian framework is proposed that accounts for non-stationary autocorrelation and LOD issues in exposure time-series data in order to model workplace factors that affect exposure and estimate summary statistics for tasks or other covariates of interest. A spline-based approach is used to model non-stationary autocorrelation with relatively few assumptions about autocorrelation structure. Left-censoring is addressed by integrating over the left tail of the distribution. The model is fit using Markov-Chain Monte Carlo within a Bayesian paradigm. The method can flexibly account for hierarchical relationships, random effects and fixed effects of covariates. The method is implemented using the rjags package in R, and is illustrated by applying it to real-time exposure data. Estimates for task means and covariates from the Bayesian model are compared to those from conventional frequentist models including linear regression, mixed-effects, and time-series models with different autocorrelation structures. Simulations studies are also conducted to evaluate method performance. Simulation studies with percent of measurements below the LOD ranging from 0 to 50% showed lowest root mean squared errors for task means and the least biased standard deviations from the Bayesian model compared to the frequentist models across all levels of LOD. In the application, task means from the Bayesian model were similar to means from the frequentist models, while the standard deviations were different. Parameter estimates for covariates were significant in some frequentist models, but in the Bayesian model their credible intervals contained zero; such discrepancies were observed in multiple datasets. Variance components from the Bayesian model reflected substantial autocorrelation, consistent with the frequentist models, except for the auto-regressive moving average model. Plots of means from the Bayesian model showed good fit to the observed data. The proposed Bayesian model provides an approach for modeling non-stationary autocorrelation in a hierarchical modeling framework to estimate task means, standard deviations, quantiles, and parameter estimates for covariates that are less biased and have better performance characteristics than some of the contemporary methods. Published by Oxford University Press on behalf of the British Occupational Hygiene Society 2017.
Exoplanet Biosignatures: A Framework for Their Assessment.
Catling, David C; Krissansen-Totton, Joshua; Kiang, Nancy Y; Crisp, David; Robinson, Tyler D; DasSarma, Shiladitya; Rushby, Andrew J; Del Genio, Anthony; Bains, William; Domagal-Goldman, Shawn
2018-04-20
Finding life on exoplanets from telescopic observations is an ultimate goal of exoplanet science. Life produces gases and other substances, such as pigments, which can have distinct spectral or photometric signatures. Whether or not life is found with future data must be expressed with probabilities, requiring a framework of biosignature assessment. We present a framework in which we advocate using biogeochemical "Exo-Earth System" models to simulate potential biosignatures in spectra or photometry. Given actual observations, simulations are used to find the Bayesian likelihoods of those data occurring for scenarios with and without life. The latter includes "false positives" wherein abiotic sources mimic biosignatures. Prior knowledge of factors influencing planetary inhabitation, including previous observations, is combined with the likelihoods to give the Bayesian posterior probability of life existing on a given exoplanet. Four components of observation and analysis are necessary. (1) Characterization of stellar (e.g., age and spectrum) and exoplanetary system properties, including "external" exoplanet parameters (e.g., mass and radius), to determine an exoplanet's suitability for life. (2) Characterization of "internal" exoplanet parameters (e.g., climate) to evaluate habitability. (3) Assessment of potential biosignatures within the environmental context (components 1-2), including corroborating evidence. (4) Exclusion of false positives. We propose that resulting posterior Bayesian probabilities of life's existence map to five confidence levels, ranging from "very likely" (90-100%) to "very unlikely" (<10%) inhabited. Key Words: Bayesian statistics-Biosignatures-Drake equation-Exoplanets-Habitability-Planetary science. Astrobiology 18, xxx-xxx.
Quantitative trait nucleotide analysis using Bayesian model selection.
Blangero, John; Goring, Harald H H; Kent, Jack W; Williams, Jeff T; Peterson, Charles P; Almasy, Laura; Dyer, Thomas D
2005-10-01
Although much attention has been given to statistical genetic methods for the initial localization and fine mapping of quantitative trait loci (QTLs), little methodological work has been done to date on the problem of statistically identifying the most likely functional polymorphisms using sequence data. In this paper we provide a general statistical genetic framework, called Bayesian quantitative trait nucleotide (BQTN) analysis, for assessing the likely functional status of genetic variants. The approach requires the initial enumeration of all genetic variants in a set of resequenced individuals. These polymorphisms are then typed in a large number of individuals (potentially in families), and marker variation is related to quantitative phenotypic variation using Bayesian model selection and averaging. For each sequence variant a posterior probability of effect is obtained and can be used to prioritize additional molecular functional experiments. An example of this quantitative nucleotide analysis is provided using the GAW12 simulated data. The results show that the BQTN method may be useful for choosing the most likely functional variants within a gene (or set of genes). We also include instructions on how to use our computer program, SOLAR, for association analysis and BQTN analysis.
NASA Astrophysics Data System (ADS)
Mustac, M.; Kim, S.; Tkalcic, H.; Rhie, J.; Chen, Y.; Ford, S. R.; Sebastian, N.
2015-12-01
Conventional approaches to inverse problems suffer from non-linearity and non-uniqueness in estimations of seismic structures and source properties. Estimated results and associated uncertainties are often biased by applied regularizations and additional constraints, which are commonly introduced to solve such problems. Bayesian methods, however, provide statistically meaningful estimations of models and their uncertainties constrained by data information. In addition, hierarchical and trans-dimensional (trans-D) techniques are inherently implemented in the Bayesian framework to account for involved error statistics and model parameterizations, and, in turn, allow more rigorous estimations of the same. Here, we apply Bayesian methods throughout the entire inference process to estimate seismic structures and source properties in Northeast Asia including east China, the Korean peninsula, and the Japanese islands. Ambient noise analysis is first performed to obtain a base three-dimensional (3-D) heterogeneity model using continuous broadband waveforms from more than 300 stations. As for the tomography of surface wave group and phase velocities in the 5-70 s band, we adopt a hierarchical and trans-D Bayesian inversion method using Voronoi partition. The 3-D heterogeneity model is further improved by joint inversions of teleseismic receiver functions and dispersion data using a newly developed high-efficiency Bayesian technique. The obtained model is subsequently used to prepare 3-D structural Green's functions for the source characterization. A hierarchical Bayesian method for point source inversion using regional complete waveform data is applied to selected events from the region. The seismic structure and source characteristics with rigorously estimated uncertainties from the novel Bayesian methods provide enhanced monitoring and discrimination of seismic events in northeast Asia.
Markov Random Fields, Stochastic Quantization and Image Analysis
1990-01-01
Markov random fields based on the lattice Z2 have been extensively used in image analysis in a Bayesian framework as a-priori models for the...of Image Analysis can be given some fundamental justification then there is a remarkable connection between Probabilistic Image Analysis , Statistical Mechanics and Lattice-based Euclidean Quantum Field Theory.
The US EPA’s ToxCastTM program seeks to combine advances in high-throughput screening technology with methodologies from statistics and computer science to develop high-throughput decision support tools for assessing chemical hazard and risk. To develop new methods of analysis of...
Bayesian characterization of uncertainty in species interaction strengths.
Wolf, Christopher; Novak, Mark; Gitelman, Alix I
2017-06-01
Considerable effort has been devoted to the estimation of species interaction strengths. This effort has focused primarily on statistical significance testing and obtaining point estimates of parameters that contribute to interaction strength magnitudes, leaving the characterization of uncertainty associated with those estimates unconsidered. We consider a means of characterizing the uncertainty of a generalist predator's interaction strengths by formulating an observational method for estimating a predator's prey-specific per capita attack rates as a Bayesian statistical model. This formulation permits the explicit incorporation of multiple sources of uncertainty. A key insight is the informative nature of several so-called non-informative priors that have been used in modeling the sparse data typical of predator feeding surveys. We introduce to ecology a new neutral prior and provide evidence for its superior performance. We use a case study to consider the attack rates in a New Zealand intertidal whelk predator, and we illustrate not only that Bayesian point estimates can be made to correspond with those obtained by frequentist approaches, but also that estimation uncertainty as described by 95% intervals is more useful and biologically realistic using the Bayesian method. In particular, unlike in bootstrap confidence intervals, the lower bounds of the Bayesian posterior intervals for attack rates do not include zero when a predator-prey interaction is in fact observed. We conclude that the Bayesian framework provides a straightforward, probabilistic characterization of interaction strength uncertainty, enabling future considerations of both the deterministic and stochastic drivers of interaction strength and their impact on food webs.
Tom, Jennifer A; Sinsheimer, Janet S; Suchard, Marc A
Massive datasets in the gigabyte and terabyte range combined with the availability of increasingly sophisticated statistical tools yield analyses at the boundary of what is computationally feasible. Compromising in the face of this computational burden by partitioning the dataset into more tractable sizes results in stratified analyses, removed from the context that justified the initial data collection. In a Bayesian framework, these stratified analyses generate intermediate realizations, often compared using point estimates that fail to account for the variability within and correlation between the distributions these realizations approximate. However, although the initial concession to stratify generally precludes the more sensible analysis using a single joint hierarchical model, we can circumvent this outcome and capitalize on the intermediate realizations by extending the dynamic iterative reweighting MCMC algorithm. In doing so, we reuse the available realizations by reweighting them with importance weights, recycling them into a now tractable joint hierarchical model. We apply this technique to intermediate realizations generated from stratified analyses of 687 influenza A genomes spanning 13 years allowing us to revisit hypotheses regarding the evolutionary history of influenza within a hierarchical statistical framework.
Tom, Jennifer A.; Sinsheimer, Janet S.; Suchard, Marc A.
2015-01-01
Massive datasets in the gigabyte and terabyte range combined with the availability of increasingly sophisticated statistical tools yield analyses at the boundary of what is computationally feasible. Compromising in the face of this computational burden by partitioning the dataset into more tractable sizes results in stratified analyses, removed from the context that justified the initial data collection. In a Bayesian framework, these stratified analyses generate intermediate realizations, often compared using point estimates that fail to account for the variability within and correlation between the distributions these realizations approximate. However, although the initial concession to stratify generally precludes the more sensible analysis using a single joint hierarchical model, we can circumvent this outcome and capitalize on the intermediate realizations by extending the dynamic iterative reweighting MCMC algorithm. In doing so, we reuse the available realizations by reweighting them with importance weights, recycling them into a now tractable joint hierarchical model. We apply this technique to intermediate realizations generated from stratified analyses of 687 influenza A genomes spanning 13 years allowing us to revisit hypotheses regarding the evolutionary history of influenza within a hierarchical statistical framework. PMID:26681992
Exploiting Data Missingness in Bayesian Network Modeling
NASA Astrophysics Data System (ADS)
Rodrigues de Morais, Sérgio; Aussem, Alex
This paper proposes a framework built on the use of Bayesian networks (BN) for representing statistical dependencies between the existing random variables and additional dummy boolean variables, which represent the presence/absence of the respective random variable value. We show how augmenting the BN with these additional variables helps pinpoint the mechanism through which missing data contributes to the classification task. The missing data mechanism is thus explicitly taken into account to predict the class variable using the data at hand. Extensive experiments on synthetic and real-world incomplete data sets reveals that the missingness information improves classification accuracy.
Improved Bayesian Infrasonic Source Localization for regional infrasound
Blom, Philip S.; Marcillo, Omar; Arrowsmith, Stephen J.
2015-10-20
The Bayesian Infrasonic Source Localization (BISL) methodology is examined and simplified providing a generalized method of estimating the source location and time for an infrasonic event and the mathematical framework is used therein. The likelihood function describing an infrasonic detection used in BISL has been redefined to include the von Mises distribution developed in directional statistics and propagation-based, physically derived celerity-range and azimuth deviation models. Frameworks for constructing propagation-based celerity-range and azimuth deviation statistics are presented to demonstrate how stochastic propagation modelling methods can be used to improve the precision and accuracy of the posterior probability density function describing themore » source localization. Infrasonic signals recorded at a number of arrays in the western United States produced by rocket motor detonations at the Utah Test and Training Range are used to demonstrate the application of the new mathematical framework and to quantify the improvement obtained by using the stochastic propagation modelling methods. Moreover, using propagation-based priors, the spatial and temporal confidence bounds of the source decreased by more than 40 per cent in all cases and by as much as 80 per cent in one case. Further, the accuracy of the estimates remained high, keeping the ground truth within the 99 per cent confidence bounds for all cases.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ciuca, Razvan; Hernández, Oscar F., E-mail: razvan.ciuca@mail.mcgill.ca, E-mail: oscarh@physics.mcgill.ca
There exists various proposals to detect cosmic strings from Cosmic Microwave Background (CMB) or 21 cm temperature maps. Current proposals do not aim to find the location of strings on sky maps, all of these approaches can be thought of as a statistic on a sky map. We propose a Bayesian interpretation of cosmic string detection and within that framework, we derive a connection between estimates of cosmic string locations and cosmic string tension G μ. We use this Bayesian framework to develop a machine learning framework for detecting strings from sky maps and outline how to implement this frameworkmore » with neural networks. The neural network we trained was able to detect and locate cosmic strings on noiseless CMB temperature map down to a string tension of G μ=5 ×10{sup −9} and when analyzing a CMB temperature map that does not contain strings, the neural network gives a 0.95 probability that G μ≤2.3×10{sup −9}.« less
Liu, Fang; Eugenio, Evercita C
2018-04-01
Beta regression is an increasingly popular statistical technique in medical research for modeling of outcomes that assume values in (0, 1), such as proportions and patient reported outcomes. When outcomes take values in the intervals [0,1), (0,1], or [0,1], zero-or-one-inflated beta (zoib) regression can be used. We provide a thorough review on beta regression and zoib regression in the modeling, inferential, and computational aspects via the likelihood-based and Bayesian approaches. We demonstrate the statistical and practical importance of correctly modeling the inflation at zero/one rather than ad hoc replacing them with values close to zero/one via simulation studies; the latter approach can lead to biased estimates and invalid inferences. We show via simulation studies that the likelihood-based approach is computationally faster in general than MCMC algorithms used in the Bayesian inferences, but runs the risk of non-convergence, large biases, and sensitivity to starting values in the optimization algorithm especially with clustered/correlated data, data with sparse inflation at zero and one, and data that warrant regularization of the likelihood. The disadvantages of the regular likelihood-based approach make the Bayesian approach an attractive alternative in these cases. Software packages and tools for fitting beta and zoib regressions in both the likelihood-based and Bayesian frameworks are also reviewed.
Rasmussen, Peter M.; Smith, Amy F.; Sakadžić, Sava; Boas, David A.; Pries, Axel R.; Secomb, Timothy W.; Østergaard, Leif
2017-01-01
Objective In vivo imaging of the microcirculation and network-oriented modeling have emerged as powerful means of studying microvascular function and understanding its physiological significance. Network-oriented modeling may provide the means of summarizing vast amounts of data produced by high-throughput imaging techniques in terms of key, physiological indices. To estimate such indices with sufficient certainty, however, network-oriented analysis must be robust to the inevitable presence of uncertainty due to measurement errors as well as model errors. Methods We propose the Bayesian probabilistic data analysis framework as a means of integrating experimental measurements and network model simulations into a combined and statistically coherent analysis. The framework naturally handles noisy measurements and provides posterior distributions of model parameters as well as physiological indices associated with uncertainty. Results We applied the analysis framework to experimental data from three rat mesentery networks and one mouse brain cortex network. We inferred distributions for more than five hundred unknown pressure and hematocrit boundary conditions. Model predictions were consistent with previous analyses, and remained robust when measurements were omitted from model calibration. Conclusion Our Bayesian probabilistic approach may be suitable for optimizing data acquisition and for analyzing and reporting large datasets acquired as part of microvascular imaging studies. PMID:27987383
A crash course on data analysis in asteroseismology
NASA Astrophysics Data System (ADS)
Appourchaux, Thierry
2014-02-01
In this course, I try to provide a few basics required for performing data analysis in asteroseismology. First, I address how one can properly treat times series: the sampling, the filtering effect, the use of Fourier transform, the associated statistics. Second, I address how one can apply statistics for decision making and for parameter estimation either in a frequentist of a Bayesian framework. Last, I review how these basic principle have been applied (or not) in asteroseismology.
Chen, Wenan; McDonnell, Shannon K; Thibodeau, Stephen N; Tillmans, Lori S; Schaid, Daniel J
2016-11-01
Functional annotations have been shown to improve both the discovery power and fine-mapping accuracy in genome-wide association studies. However, the optimal strategy to incorporate the large number of existing annotations is still not clear. In this study, we propose a Bayesian framework to incorporate functional annotations in a systematic manner. We compute the maximum a posteriori solution and use cross validation to find the optimal penalty parameters. By extending our previous fine-mapping method CAVIARBF into this framework, we require only summary statistics as input. We also derived an exact calculation of Bayes factors using summary statistics for quantitative traits, which is necessary when a large proportion of trait variance is explained by the variants of interest, such as in fine mapping expression quantitative trait loci (eQTL). We compared the proposed method with PAINTOR using different strategies to combine annotations. Simulation results show that the proposed method achieves the best accuracy in identifying causal variants among the different strategies and methods compared. We also find that for annotations with moderate effects from a large annotation pool, screening annotations individually and then combining the top annotations can produce overly optimistic results. We applied these methods on two real data sets: a meta-analysis result of lipid traits and a cis-eQTL study of normal prostate tissues. For the eQTL data, incorporating annotations significantly increased the number of potential causal variants with high probabilities. Copyright © 2016 by the Genetics Society of America.
Truth, models, model sets, AIC, and multimodel inference: a Bayesian perspective
Barker, Richard J.; Link, William A.
2015-01-01
Statistical inference begins with viewing data as realizations of stochastic processes. Mathematical models provide partial descriptions of these processes; inference is the process of using the data to obtain a more complete description of the stochastic processes. Wildlife and ecological scientists have become increasingly concerned with the conditional nature of model-based inference: what if the model is wrong? Over the last 2 decades, Akaike's Information Criterion (AIC) has been widely and increasingly used in wildlife statistics for 2 related purposes, first for model choice and second to quantify model uncertainty. We argue that for the second of these purposes, the Bayesian paradigm provides the natural framework for describing uncertainty associated with model choice and provides the most easily communicated basis for model weighting. Moreover, Bayesian arguments provide the sole justification for interpreting model weights (including AIC weights) as coherent (mathematically self consistent) model probabilities. This interpretation requires treating the model as an exact description of the data-generating mechanism. We discuss the implications of this assumption, and conclude that more emphasis is needed on model checking to provide confidence in the quality of inference.
Lead isotope ratios for bullets, forensic evaluation in a Bayesian paradigm.
Sjåstad, Knut-Endre; Lucy, David; Andersen, Tom
2016-01-01
Forensic science is a discipline concerned with collection, examination and evaluation of physical evidence related to criminal cases. The results from the activities of the forensic scientist may ultimately be presented to the court in such a way that the triers of fact understand the implications of the data. Forensic science has been, and still is, driven by development of new technology, and in the last two decades evaluation of evidence based on logical reasoning and Bayesian statistic has reached some level of general acceptance within the forensic community. Tracing of lead fragments of unknown origin to a given source of ammunition is a task that might be of interest for the Court. Use of data from lead isotope ratios analysis interpreted within a Bayesian framework has shown to be suitable method to guide the Court to draw their conclusion for such task. In this work we have used isotopic composition of lead from small arms projectiles (cal. .22) and developed an approach based on Bayesian statistics and likelihood ratio calculation. The likelihood ratio is a single quantity that provides a measure of the value of evidence that can be used in the deliberation of the court. Copyright © 2015 Elsevier B.V. All rights reserved.
Incorporating Biological Knowledge into Evaluation of Casual Regulatory Hypothesis
NASA Technical Reports Server (NTRS)
Chrisman, Lonnie; Langley, Pat; Bay, Stephen; Pohorille, Andrew; DeVincenzi, D. (Technical Monitor)
2002-01-01
Biological data can be scarce and costly to obtain. The small number of samples available typically limits statistical power and makes reliable inference of causal relations extremely difficult. However, we argue that statistical power can be increased substantially by incorporating prior knowledge and data from diverse sources. We present a Bayesian framework that combines information from different sources and we show empirically that this lets one make correct causal inferences with small sample sizes that otherwise would be impossible.
Goal-oriented Site Characterization in Hydrogeological Applications: An Overview
NASA Astrophysics Data System (ADS)
Nowak, W.; de Barros, F.; Rubin, Y.
2011-12-01
In this study, we address the importance of goal-oriented site characterization. Given the multiple sources of uncertainty in hydrogeological applications, information needs of modeling, prediction and decision support should be satisfied with efficient and rational field campaigns. In this work, we provide an overview of an optimal sampling design framework based on Bayesian decision theory, statistical parameter inference and Bayesian model averaging. It optimizes the field sampling campaign around decisions on environmental performance metrics (e.g., risk, arrival times, etc.) while accounting for parametric and model uncertainty in the geostatistical characterization, in forcing terms, and measurement error. The appealing aspects of the framework lie on its goal-oriented character and that it is directly linked to the confidence in a specified decision. We illustrate how these concepts could be applied in a human health risk problem where uncertainty from both hydrogeological and health parameters are accounted.
NASA Astrophysics Data System (ADS)
Walker, David M.; Allingham, David; Lee, Heung Wing Joseph; Small, Michael
2010-02-01
Small world network models have been effective in capturing the variable behaviour of reported case data of the SARS coronavirus outbreak in Hong Kong during 2003. Simulations of these models have previously been realized using informed “guesses” of the proposed model parameters and tested for consistency with the reported data by surrogate analysis. In this paper we attempt to provide statistically rigorous parameter distributions using Approximate Bayesian Computation sampling methods. We find that such sampling schemes are a useful framework for fitting parameters of stochastic small world network models where simulation of the system is straightforward but expressing a likelihood is cumbersome.
Lawson, Andrew B; Choi, Jungsoon; Cai, Bo; Hossain, Monir; Kirby, Russell S; Liu, Jihong
2012-09-01
We develop a new Bayesian two-stage space-time mixture model to investigate the effects of air pollution on asthma. The two-stage mixture model proposed allows for the identification of temporal latent structure as well as the estimation of the effects of covariates on health outcomes. In the paper, we also consider spatial misalignment of exposure and health data. A simulation study is conducted to assess the performance of the 2-stage mixture model. We apply our statistical framework to a county-level ambulatory care asthma data set in the US state of Georgia for the years 1999-2008.
Gomez-Ramirez, Jaime; Sanz, Ricardo
2013-09-01
One of the most important scientific challenges today is the quantitative and predictive understanding of biological function. Classical mathematical and computational approaches have been enormously successful in modeling inert matter, but they may be inadequate to address inherent features of biological systems. We address the conceptual and methodological obstacles that lie in the inverse problem in biological systems modeling. We introduce a full Bayesian approach (FBA), a theoretical framework to study biological function, in which probability distributions are conditional on biophysical information that physically resides in the biological system that is studied by the scientist. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Yan, Wang-Ji; Ren, Wei-Xin
2018-01-01
This study applies the theoretical findings of circularly-symmetric complex normal ratio distribution Yan and Ren (2016) [1,2] to transmissibility-based modal analysis from a statistical viewpoint. A probabilistic model of transmissibility function in the vicinity of the resonant frequency is formulated in modal domain, while some insightful comments are offered. It theoretically reveals that the statistics of transmissibility function around the resonant frequency is solely dependent on 'noise-to-signal' ratio and mode shapes. As a sequel to the development of the probabilistic model of transmissibility function in modal domain, this study poses the process of modal identification in the context of Bayesian framework by borrowing a novel paradigm. Implementation issues unique to the proposed approach are resolved by Lagrange multiplier approach. Also, this study explores the possibility of applying Bayesian analysis in distinguishing harmonic components and structural ones. The approaches are verified through simulated data and experimentally testing data. The uncertainty behavior due to variation of different factors is also discussed in detail.
Non-arbitrage in financial markets: A Bayesian approach for verification
NASA Astrophysics Data System (ADS)
Cerezetti, F. V.; Stern, Julio Michael
2012-10-01
The concept of non-arbitrage plays an essential role in finance theory. Under certain regularity conditions, the Fundamental Theorem of Asset Pricing states that, in non-arbitrage markets, prices of financial instruments are martingale processes. In this theoretical framework, the analysis of the statistical distributions of financial assets can assist in understanding how participants behave in the markets, and may or may not engender arbitrage conditions. Assuming an underlying Variance Gamma statistical model, this study aims to test, using the FBST - Full Bayesian Significance Test, if there is a relevant price difference between essentially the same financial asset traded at two distinct locations. Specifically, we investigate and compare the behavior of call options on the BOVESPA Index traded at (a) the Equities Segment and (b) the Derivatives Segment of BM&FBovespa. Our results seem to point out significant statistical differences. To what extent this evidence is actually the expression of perennial arbitrage opportunities is still an open question.
Bayesian statistics in medicine: a 25 year review.
Ashby, Deborah
2006-11-15
This review examines the state of Bayesian thinking as Statistics in Medicine was launched in 1982, reflecting particularly on its applicability and uses in medical research. It then looks at each subsequent five-year epoch, with a focus on papers appearing in Statistics in Medicine, putting these in the context of major developments in Bayesian thinking and computation with reference to important books, landmark meetings and seminal papers. It charts the growth of Bayesian statistics as it is applied to medicine and makes predictions for the future. From sparse beginnings, where Bayesian statistics was barely mentioned, Bayesian statistics has now permeated all the major areas of medical statistics, including clinical trials, epidemiology, meta-analyses and evidence synthesis, spatial modelling, longitudinal modelling, survival modelling, molecular genetics and decision-making in respect of new technologies.
A Bayesian approach to meta-analysis of plant pathology studies.
Mila, A L; Ngugi, H K
2011-01-01
Bayesian statistical methods are used for meta-analysis in many disciplines, including medicine, molecular biology, and engineering, but have not yet been applied for quantitative synthesis of plant pathology studies. In this paper, we illustrate the key concepts of Bayesian statistics and outline the differences between Bayesian and classical (frequentist) methods in the way parameters describing population attributes are considered. We then describe a Bayesian approach to meta-analysis and present a plant pathological example based on studies evaluating the efficacy of plant protection products that induce systemic acquired resistance for the management of fire blight of apple. In a simple random-effects model assuming a normal distribution of effect sizes and no prior information (i.e., a noninformative prior), the results of the Bayesian meta-analysis are similar to those obtained with classical methods. Implementing the same model with a Student's t distribution and a noninformative prior for the effect sizes, instead of a normal distribution, yields similar results for all but acibenzolar-S-methyl (Actigard) which was evaluated only in seven studies in this example. Whereas both the classical (P = 0.28) and the Bayesian analysis with a noninformative prior (95% credibility interval [CRI] for the log response ratio: -0.63 to 0.08) indicate a nonsignificant effect for Actigard, specifying a t distribution resulted in a significant, albeit variable, effect for this product (CRI: -0.73 to -0.10). These results confirm the sensitivity of the analytical outcome (i.e., the posterior distribution) to the choice of prior in Bayesian meta-analyses involving a limited number of studies. We review some pertinent literature on more advanced topics, including modeling of among-study heterogeneity, publication bias, analyses involving a limited number of studies, and methods for dealing with missing data, and show how these issues can be approached in a Bayesian framework. Bayesian meta-analysis can readily include information not easily incorporated in classical methods, and allow for a full evaluation of competing models. Given the power and flexibility of Bayesian methods, we expect them to become widely adopted for meta-analysis of plant pathology studies.
Bayesian demography 250 years after Bayes
Bijak, Jakub; Bryant, John
2016-01-01
Bayesian statistics offers an alternative to classical (frequentist) statistics. It is distinguished by its use of probability distributions to describe uncertain quantities, which leads to elegant solutions to many difficult statistical problems. Although Bayesian demography, like Bayesian statistics more generally, is around 250 years old, only recently has it begun to flourish. The aim of this paper is to review the achievements of Bayesian demography, address some misconceptions, and make the case for wider use of Bayesian methods in population studies. We focus on three applications: demographic forecasts, limited data, and highly structured or complex models. The key advantages of Bayesian methods are the ability to integrate information from multiple sources and to describe uncertainty coherently. Bayesian methods also allow for including additional (prior) information next to the data sample. As such, Bayesian approaches are complementary to many traditional methods, which can be productively re-expressed in Bayesian terms. PMID:26902889
Antal, Péter; Kiszel, Petra Sz.; Gézsi, András; Hadadi, Éva; Virág, Viktor; Hajós, Gergely; Millinghoffer, András; Nagy, Adrienne; Kiss, András; Semsei, Ágnes F.; Temesi, Gergely; Melegh, Béla; Kisfali, Péter; Széll, Márta; Bikov, András; Gálffy, Gabriella; Tamási, Lilla; Falus, András; Szalai, Csaba
2012-01-01
Genetic studies indicate high number of potential factors related to asthma. Based on earlier linkage analyses we selected the 11q13 and 14q22 asthma susceptibility regions, for which we designed a partial genome screening study using 145 SNPs in 1201 individuals (436 asthmatic children and 765 controls). The results were evaluated with traditional frequentist methods and we applied a new statistical method, called Bayesian network based Bayesian multilevel analysis of relevance (BN-BMLA). This method uses Bayesian network representation to provide detailed characterization of the relevance of factors, such as joint significance, the type of dependency, and multi-target aspects. We estimated posteriors for these relations within the Bayesian statistical framework, in order to estimate the posteriors whether a variable is directly relevant or its association is only mediated. With frequentist methods one SNP (rs3751464 in the FRMD6 gene) provided evidence for an association with asthma (OR = 1.43(1.2–1.8); p = 3×10−4). The possible role of the FRMD6 gene in asthma was also confirmed in an animal model and human asthmatics. In the BN-BMLA analysis altogether 5 SNPs in 4 genes were found relevant in connection with asthma phenotype: PRPF19 on chromosome 11, and FRMD6, PTGER2 and PTGDR on chromosome 14. In a subsequent step a partial dataset containing rhinitis and further clinical parameters was used, which allowed the analysis of relevance of SNPs for asthma and multiple targets. These analyses suggested that SNPs in the AHNAK and MS4A2 genes were indirectly associated with asthma. This paper indicates that BN-BMLA explores the relevant factors more comprehensively than traditional statistical methods and extends the scope of strong relevance based methods to include partial relevance, global characterization of relevance and multi-target relevance. PMID:22432035
Fully Bayesian Estimation of Data from Single Case Designs
ERIC Educational Resources Information Center
Rindskopf, David
2013-01-01
Single case designs (SCDs) generally consist of a small number of short time series in two or more phases. The analysis of SCDs statistically fits in the framework of a multilevel model, or hierarchical model. The usual analysis does not take into account the uncertainty in the estimation of the random effects. This not only has an effect on the…
Bayesian Decision Theoretical Framework for Clustering
ERIC Educational Resources Information Center
Chen, Mo
2011-01-01
In this thesis, we establish a novel probabilistic framework for the data clustering problem from the perspective of Bayesian decision theory. The Bayesian decision theory view justifies the important questions: what is a cluster and what a clustering algorithm should optimize. We prove that the spectral clustering (to be specific, the…
Bayesian Computation for Log-Gaussian Cox Processes: A Comparative Analysis of Methods
Teng, Ming; Nathoo, Farouk S.; Johnson, Timothy D.
2017-01-01
The Log-Gaussian Cox Process is a commonly used model for the analysis of spatial point pattern data. Fitting this model is difficult because of its doubly-stochastic property, i.e., it is an hierarchical combination of a Poisson process at the first level and a Gaussian Process at the second level. Various methods have been proposed to estimate such a process, including traditional likelihood-based approaches as well as Bayesian methods. We focus here on Bayesian methods and several approaches that have been considered for model fitting within this framework, including Hamiltonian Monte Carlo, the Integrated nested Laplace approximation, and Variational Bayes. We consider these approaches and make comparisons with respect to statistical and computational efficiency. These comparisons are made through several simulation studies as well as through two applications, the first examining ecological data and the second involving neuroimaging data. PMID:29200537
Bayesian classification theory
NASA Technical Reports Server (NTRS)
Hanson, Robin; Stutz, John; Cheeseman, Peter
1991-01-01
The task of inferring a set of classes and class descriptions most likely to explain a given data set can be placed on a firm theoretical foundation using Bayesian statistics. Within this framework and using various mathematical and algorithmic approximations, the AutoClass system searches for the most probable classifications, automatically choosing the number of classes and complexity of class descriptions. A simpler version of AutoClass has been applied to many large real data sets, has discovered new independently-verified phenomena, and has been released as a robust software package. Recent extensions allow attributes to be selectively correlated within particular classes, and allow classes to inherit or share model parameters though a class hierarchy. We summarize the mathematical foundations of AutoClass.
Inverse and forward modeling under uncertainty using MRE-based Bayesian approach
NASA Astrophysics Data System (ADS)
Hou, Z.; Rubin, Y.
2004-12-01
A stochastic inverse approach for subsurface characterization is proposed and applied to shallow vadose zone at a winery field site in north California and to a gas reservoir at the Ormen Lange field site in the North Sea. The approach is formulated in a Bayesian-stochastic framework, whereby the unknown parameters are identified in terms of their statistical moments or their probabilities. Instead of the traditional single-valued estimation /prediction provided by deterministic methods, the approach gives a probability distribution for an unknown parameter. This allows calculating the mean, the mode, and the confidence interval, which is useful for a rational treatment of uncertainty and its consequences. The approach also allows incorporating data of various types and different error levels, including measurements of state variables as well as information such as bounds on or statistical moments of the unknown parameters, which may represent prior information. To obtain minimally subjective prior probabilities required for the Bayesian approach, the principle of Minimum Relative Entropy (MRE) is employed. The approach is tested in field sites for flow parameters identification and soil moisture estimation in the vadose zone and for gas saturation estimation at great depth below the ocean floor. Results indicate the potential of coupling various types of field data within a MRE-based Bayesian formalism for improving the estimation of the parameters of interest.
Tipping point analysis of atmospheric oxygen concentration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Livina, V. N.; Forbes, A. B.; Vaz Martins, T. M.
2015-03-15
We apply tipping point analysis to nine observational oxygen concentration records around the globe, analyse their dynamics and perform projections under possible future scenarios, leading to oxygen deficiency in the atmosphere. The analysis is based on statistical physics framework with stochastic modelling, where we represent the observed data as a composition of deterministic and stochastic components estimated from the observed data using Bayesian and wavelet techniques.
A probabilistic model framework for evaluating year-to-year variation in crop productivity
NASA Astrophysics Data System (ADS)
Yokozawa, M.; Iizumi, T.; Tao, F.
2008-12-01
Most models describing the relation between crop productivity and weather condition have so far been focused on mean changes of crop yield. For keeping stable food supply against abnormal weather as well as climate change, evaluating the year-to-year variations in crop productivity rather than the mean changes is more essential. We here propose a new framework of probabilistic model based on Bayesian inference and Monte Carlo simulation. As an example, we firstly introduce a model on paddy rice production in Japan. It is called PRYSBI (Process- based Regional rice Yield Simulator with Bayesian Inference; Iizumi et al., 2008). The model structure is the same as that of SIMRIW, which was developed and used widely in Japan. The model includes three sub- models describing phenological development, biomass accumulation and maturing of rice crop. These processes are formulated to include response nature of rice plant to weather condition. This model inherently was developed to predict rice growth and yield at plot paddy scale. We applied it to evaluate the large scale rice production with keeping the same model structure. Alternatively, we assumed the parameters as stochastic variables. In order to let the model catch up actual yield at larger scale, model parameters were determined based on agricultural statistical data of each prefecture of Japan together with weather data averaged over the region. The posterior probability distribution functions (PDFs) of parameters included in the model were obtained using Bayesian inference. The MCMC (Markov Chain Monte Carlo) algorithm was conducted to numerically solve the Bayesian theorem. For evaluating the year-to-year changes in rice growth/yield under this framework, we firstly iterate simulations with set of parameter values sampled from the estimated posterior PDF of each parameter and then take the ensemble mean weighted with the posterior PDFs. We will also present another example for maize productivity in China. The framework proposed here provides us information on uncertainties, possibilities and limitations on future improvements in crop model as well.
Walker, Martin; Basáñez, María-Gloria; Ouédraogo, André Lin; Hermsen, Cornelus; Bousema, Teun; Churcher, Thomas S
2015-01-16
Quantitative molecular methods (QMMs) such as quantitative real-time polymerase chain reaction (q-PCR), reverse-transcriptase PCR (qRT-PCR) and quantitative nucleic acid sequence-based amplification (QT-NASBA) are increasingly used to estimate pathogen density in a variety of clinical and epidemiological contexts. These methods are often classified as semi-quantitative, yet estimates of reliability or sensitivity are seldom reported. Here, a statistical framework is developed for assessing the reliability (uncertainty) of pathogen densities estimated using QMMs and the associated diagnostic sensitivity. The method is illustrated with quantification of Plasmodium falciparum gametocytaemia by QT-NASBA. The reliability of pathogen (e.g. gametocyte) densities, and the accompanying diagnostic sensitivity, estimated by two contrasting statistical calibration techniques, are compared; a traditional method and a mixed model Bayesian approach. The latter accounts for statistical dependence of QMM assays run under identical laboratory protocols and permits structural modelling of experimental measurements, allowing precision to vary with pathogen density. Traditional calibration cannot account for inter-assay variability arising from imperfect QMMs and generates estimates of pathogen density that have poor reliability, are variable among assays and inaccurately reflect diagnostic sensitivity. The Bayesian mixed model approach assimilates information from replica QMM assays, improving reliability and inter-assay homogeneity, providing an accurate appraisal of quantitative and diagnostic performance. Bayesian mixed model statistical calibration supersedes traditional techniques in the context of QMM-derived estimates of pathogen density, offering the potential to improve substantially the depth and quality of clinical and epidemiological inference for a wide variety of pathogens.
Bayesian B-spline mapping for dynamic quantitative traits.
Xing, Jun; Li, Jiahan; Yang, Runqing; Zhou, Xiaojing; Xu, Shizhong
2012-04-01
Owing to their ability and flexibility to describe individual gene expression at different time points, random regression (RR) analyses have become a popular procedure for the genetic analysis of dynamic traits whose phenotypes are collected over time. Specifically, when modelling the dynamic patterns of gene expressions in the RR framework, B-splines have been proved successful as an alternative to orthogonal polynomials. In the so-called Bayesian B-spline quantitative trait locus (QTL) mapping, B-splines are used to characterize the patterns of QTL effects and individual-specific time-dependent environmental errors over time, and the Bayesian shrinkage estimation method is employed to estimate model parameters. Extensive simulations demonstrate that (1) in terms of statistical power, Bayesian B-spline mapping outperforms the interval mapping based on the maximum likelihood; (2) for the simulated dataset with complicated growth curve simulated by B-splines, Legendre polynomial-based Bayesian mapping is not capable of identifying the designed QTLs accurately, even when higher-order Legendre polynomials are considered and (3) for the simulated dataset using Legendre polynomials, the Bayesian B-spline mapping can find the same QTLs as those identified by Legendre polynomial analysis. All simulation results support the necessity and flexibility of B-spline in Bayesian mapping of dynamic traits. The proposed method is also applied to a real dataset, where QTLs controlling the growth trajectory of stem diameters in Populus are located.
Bayesian Atmospheric Radiative Transfer (BART) Code and Application to WASP-43b
NASA Astrophysics Data System (ADS)
Blecic, Jasmina; Harrington, Joseph; Cubillos, Patricio; Bowman, Oliver; Rojo, Patricio; Stemm, Madison; Lust, Nathaniel B.; Challener, Ryan; Foster, Austin James; Foster, Andrew S.; Blumenthal, Sarah D.; Bruce, Dylan
2016-01-01
We present a new open-source Bayesian radiative-transfer framework, Bayesian Atmospheric Radiative Transfer (BART, https://github.com/exosports/BART), and its application to WASP-43b. BART initializes a model for the atmospheric retrieval calculation, generates thousands of theoretical model spectra using parametrized pressure and temperature profiles and line-by-line radiative-transfer calculation, and employs a statistical package to compare the models with the observations. It consists of three self-sufficient modules available to the community under the reproducible-research license, the Thermochemical Equilibrium Abundances module (TEA, https://github.com/dzesmin/TEA, Blecic et al. 2015}, the radiative-transfer module (Transit, https://github.com/exosports/transit), and the Multi-core Markov-chain Monte Carlo statistical module (MCcubed, https://github.com/pcubillos/MCcubed, Cubillos et al. 2015). We applied BART on all available WASP-43b secondary eclipse data from the space- and ground-based observations constraining the temperature-pressure profile and molecular abundances of the dayside atmosphere of WASP-43b. This work was supported by NASA Planetary Atmospheres grant NNX12AI69G and NASA Astrophysics Data Analysis Program grant NNX13AF38G. JB holds a NASA Earth and Space Science Fellowship.
Quantification of downscaled precipitation uncertainties via Bayesian inference
NASA Astrophysics Data System (ADS)
Nury, A. H.; Sharma, A.; Marshall, L. A.
2017-12-01
Prediction of precipitation from global climate model (GCM) outputs remains critical to decision-making in water-stressed regions. In this regard, downscaling of GCM output has been a useful tool for analysing future hydro-climatological states. Several downscaling approaches have been developed for precipitation downscaling, including those using dynamical or statistical downscaling methods. Frequently, outputs from dynamical downscaling are not readily transferable across regions for significant methodical and computational difficulties. Statistical downscaling approaches provide a flexible and efficient alternative, providing hydro-climatological outputs across multiple temporal and spatial scales in many locations. However these approaches are subject to significant uncertainty, arising due to uncertainty in the downscaled model parameters and in the use of different reanalysis products for inferring appropriate model parameters. Consequently, these will affect the performance of simulation in catchment scale. This study develops a Bayesian framework for modelling downscaled daily precipitation from GCM outputs. This study aims to introduce uncertainties in downscaling evaluating reanalysis datasets against observational rainfall data over Australia. In this research a consistent technique for quantifying downscaling uncertainties by means of Bayesian downscaling frame work has been proposed. The results suggest that there are differences in downscaled precipitation occurrences and extremes.
Bayesian models: A statistical primer for ecologists
Hobbs, N. Thompson; Hooten, Mevin B.
2015-01-01
Bayesian modeling has become an indispensable tool for ecological research because it is uniquely suited to deal with complexity in a statistically coherent way. This textbook provides a comprehensive and accessible introduction to the latest Bayesian methods—in language ecologists can understand. Unlike other books on the subject, this one emphasizes the principles behind the computations, giving ecologists a big-picture understanding of how to implement this powerful statistical approach.Bayesian Models is an essential primer for non-statisticians. It begins with a definition of probability and develops a step-by-step sequence of connected ideas, including basic distribution theory, network diagrams, hierarchical models, Markov chain Monte Carlo, and inference from single and multiple models. This unique book places less emphasis on computer coding, favoring instead a concise presentation of the mathematical statistics needed to understand how and why Bayesian analysis works. It also explains how to write out properly formulated hierarchical Bayesian models and use them in computing, research papers, and proposals.This primer enables ecologists to understand the statistical principles behind Bayesian modeling and apply them to research, teaching, policy, and management.Presents the mathematical and statistical foundations of Bayesian modeling in language accessible to non-statisticiansCovers basic distribution theory, network diagrams, hierarchical models, Markov chain Monte Carlo, and moreDeemphasizes computer coding in favor of basic principlesExplains how to write out properly factored statistical expressions representing Bayesian models
Bayesian Methods for Effective Field Theories
NASA Astrophysics Data System (ADS)
Wesolowski, Sarah
Microscopic predictions of the properties of atomic nuclei have reached a high level of precision in the past decade. This progress mandates improved uncertainty quantification (UQ) for a robust comparison of experiment with theory. With the uncertainty from many-body methods under control, calculations are now sensitive to the input inter-nucleon interactions. These interactions include parameters that must be fit to experiment, inducing both uncertainty from the fit and from missing physics in the operator structure of the Hamiltonian. Furthermore, the implementation of the inter-nucleon interactions is not unique, which presents the additional problem of assessing results using different interactions. Effective field theories (EFTs) take advantage of a separation of high- and low-energy scales in the problem to form a power-counting scheme that allows the organization of terms in the Hamiltonian based on their expected contribution to observable predictions. This scheme gives a natural framework for quantification of uncertainty due to missing physics. The free parameters of the EFT, called the low-energy constants (LECs), must be fit to data, but in a properly constructed EFT these constants will be natural-sized, i.e., of order unity. The constraints provided by the EFT, namely the size of the systematic uncertainty from truncation of the theory and the natural size of the LECs, are assumed information even before a calculation is performed or a fit is done. Bayesian statistical methods provide a framework for treating uncertainties that naturally incorporates prior information as well as putting stochastic and systematic uncertainties on an equal footing. For EFT UQ Bayesian methods allow the relevant EFT properties to be incorporated quantitatively as prior probability distribution functions (pdfs). Following the logic of probability theory, observable quantities and underlying physical parameters such as the EFT breakdown scale may be expressed as pdfs that incorporate the prior pdfs. Problems of model selection, such as distinguishing between competing EFT implementations, are also natural in a Bayesian framework. In this thesis we focus on two complementary topics for EFT UQ using Bayesian methods--quantifying EFT truncation uncertainty and parameter estimation for LECs. Using the order-by-order calculations and underlying EFT constraints as prior information, we show how to estimate EFT truncation uncertainties. We then apply the result to calculating truncation uncertainties on predictions of nucleon-nucleon scattering in chiral effective field theory. We apply model-checking diagnostics to our calculations to ensure that the statistical model of truncation uncertainty produces consistent results. A framework for EFT parameter estimation based on EFT convergence properties and naturalness is developed which includes a series of diagnostics to ensure the extraction of the maximum amount of available information from data to estimate LECs with minimal bias. We develop this framework using model EFTs and apply it to the problem of extrapolating lattice quantum chromodynamics results for the nucleon mass. We then apply aspects of the parameter estimation framework to perform case studies in chiral EFT parameter estimation, investigating a possible operator redundancy at fourth order in the chiral expansion and the appropriate inclusion of truncation uncertainty in estimating LECs.
Yu, Wenxi; Liu, Yang; Ma, Zongwei; Bi, Jun
2017-08-01
Using satellite-based aerosol optical depth (AOD) measurements and statistical models to estimate ground-level PM 2.5 is a promising way to fill the areas that are not covered by ground PM 2.5 monitors. The statistical models used in previous studies are primarily Linear Mixed Effects (LME) and Geographically Weighted Regression (GWR) models. In this study, we developed a new regression model between PM 2.5 and AOD using Gaussian processes in a Bayesian hierarchical setting. Gaussian processes model the stochastic nature of the spatial random effects, where the mean surface and the covariance function is specified. The spatial stochastic process is incorporated under the Bayesian hierarchical framework to explain the variation of PM 2.5 concentrations together with other factors, such as AOD, spatial and non-spatial random effects. We evaluate the results of our model and compare them with those of other, conventional statistical models (GWR and LME) by within-sample model fitting and out-of-sample validation (cross validation, CV). The results show that our model possesses a CV result (R 2 = 0.81) that reflects higher accuracy than that of GWR and LME (0.74 and 0.48, respectively). Our results indicate that Gaussian process models have the potential to improve the accuracy of satellite-based PM 2.5 estimates.
Bayesian inference for the spatio-temporal invasion of alien species.
Cook, Alex; Marion, Glenn; Butler, Adam; Gibson, Gavin
2007-08-01
In this paper we develop a Bayesian approach to parameter estimation in a stochastic spatio-temporal model of the spread of invasive species across a landscape. To date, statistical techniques, such as logistic and autologistic regression, have outstripped stochastic spatio-temporal models in their ability to handle large numbers of covariates. Here we seek to address this problem by making use of a range of covariates describing the bio-geographical features of the landscape. Relative to regression techniques, stochastic spatio-temporal models are more transparent in their representation of biological processes. They also explicitly model temporal change, and therefore do not require the assumption that the species' distribution (or other spatial pattern) has already reached equilibrium as is often the case with standard statistical approaches. In order to illustrate the use of such techniques we apply them to the analysis of data detailing the spread of an invasive plant, Heracleum mantegazzianum, across Britain in the 20th Century using geo-referenced covariate information describing local temperature, elevation and habitat type. The use of Markov chain Monte Carlo sampling within a Bayesian framework facilitates statistical assessments of differences in the suitability of different habitat classes for H. mantegazzianum, and enables predictions of future spread to account for parametric uncertainty and system variability. Our results show that ignoring such covariate information may lead to biased estimates of key processes and implausible predictions of future distributions.
Harrigan, George G; Harrison, Jay M
2012-01-01
New transgenic (GM) crops are subjected to extensive safety assessments that include compositional comparisons with conventional counterparts as a cornerstone of the process. The influence of germplasm, location, environment, and agronomic treatments on compositional variability is, however, often obscured in these pair-wise comparisons. Furthermore, classical statistical significance testing can often provide an incomplete and over-simplified summary of highly responsive variables such as crop composition. In order to more clearly describe the influence of the numerous sources of compositional variation we present an introduction to two alternative but complementary approaches to data analysis and interpretation. These include i) exploratory data analysis (EDA) with its emphasis on visualization and graphics-based approaches and ii) Bayesian statistical methodology that provides easily interpretable and meaningful evaluations of data in terms of probability distributions. The EDA case-studies include analyses of herbicide-tolerant GM soybean and insect-protected GM maize and soybean. Bayesian approaches are presented in an analysis of herbicide-tolerant GM soybean. Advantages of these approaches over classical frequentist significance testing include the more direct interpretation of results in terms of probabilities pertaining to quantities of interest and no confusion over the application of corrections for multiple comparisons. It is concluded that a standardized framework for these methodologies could provide specific advantages through enhanced clarity of presentation and interpretation in comparative assessments of crop composition.
McDonnell, J D; Schunck, N; Higdon, D; Sarich, J; Wild, S M; Nazarewicz, W
2015-03-27
Statistical tools of uncertainty quantification can be used to assess the information content of measured observables with respect to present-day theoretical models, to estimate model errors and thereby improve predictive capability, to extrapolate beyond the regions reached by experiment, and to provide meaningful input to applications and planned measurements. To showcase new opportunities offered by such tools, we make a rigorous analysis of theoretical statistical uncertainties in nuclear density functional theory using Bayesian inference methods. By considering the recent mass measurements from the Canadian Penning Trap at Argonne National Laboratory, we demonstrate how the Bayesian analysis and a direct least-squares optimization, combined with high-performance computing, can be used to assess the information content of the new data with respect to a model based on the Skyrme energy density functional approach. Employing the posterior probability distribution computed with a Gaussian process emulator, we apply the Bayesian framework to propagate theoretical statistical uncertainties in predictions of nuclear masses, two-neutron dripline, and fission barriers. Overall, we find that the new mass measurements do not impose a constraint that is strong enough to lead to significant changes in the model parameters. The example discussed in this study sets the stage for quantifying and maximizing the impact of new measurements with respect to current modeling and guiding future experimental efforts, thus enhancing the experiment-theory cycle in the scientific method.
Ander, Bradley P.; Zhang, Xiaoshuai; Xue, Fuzhong; Sharp, Frank R.; Yang, Xiaowei
2013-01-01
The discovery of genetic or genomic markers plays a central role in the development of personalized medicine. A notable challenge exists when dealing with the high dimensionality of the data sets, as thousands of genes or millions of genetic variants are collected on a relatively small number of subjects. Traditional gene-wise selection methods using univariate analyses face difficulty to incorporate correlational, structural, or functional structures amongst the molecular measures. For microarray gene expression data, we first summarize solutions in dealing with ‘large p, small n’ problems, and then propose an integrative Bayesian variable selection (iBVS) framework for simultaneously identifying causal or marker genes and regulatory pathways. A novel partial least squares (PLS) g-prior for iBVS is developed to allow the incorporation of prior knowledge on gene-gene interactions or functional relationships. From the point view of systems biology, iBVS enables user to directly target the joint effects of multiple genes and pathways in a hierarchical modeling diagram to predict disease status or phenotype. The estimated posterior selection probabilities offer probabilitic and biological interpretations. Both simulated data and a set of microarray data in predicting stroke status are used in validating the performance of iBVS in a Probit model with binary outcomes. iBVS offers a general framework for effective discovery of various molecular biomarkers by combining data-based statistics and knowledge-based priors. Guidelines on making posterior inferences, determining Bayesian significance levels, and improving computational efficiencies are also discussed. PMID:23844055
Peng, Bin; Zhu, Dianwen; Ander, Bradley P; Zhang, Xiaoshuai; Xue, Fuzhong; Sharp, Frank R; Yang, Xiaowei
2013-01-01
The discovery of genetic or genomic markers plays a central role in the development of personalized medicine. A notable challenge exists when dealing with the high dimensionality of the data sets, as thousands of genes or millions of genetic variants are collected on a relatively small number of subjects. Traditional gene-wise selection methods using univariate analyses face difficulty to incorporate correlational, structural, or functional structures amongst the molecular measures. For microarray gene expression data, we first summarize solutions in dealing with 'large p, small n' problems, and then propose an integrative Bayesian variable selection (iBVS) framework for simultaneously identifying causal or marker genes and regulatory pathways. A novel partial least squares (PLS) g-prior for iBVS is developed to allow the incorporation of prior knowledge on gene-gene interactions or functional relationships. From the point view of systems biology, iBVS enables user to directly target the joint effects of multiple genes and pathways in a hierarchical modeling diagram to predict disease status or phenotype. The estimated posterior selection probabilities offer probabilitic and biological interpretations. Both simulated data and a set of microarray data in predicting stroke status are used in validating the performance of iBVS in a Probit model with binary outcomes. iBVS offers a general framework for effective discovery of various molecular biomarkers by combining data-based statistics and knowledge-based priors. Guidelines on making posterior inferences, determining Bayesian significance levels, and improving computational efficiencies are also discussed.
NASA Astrophysics Data System (ADS)
Frost, Andrew J.; Thyer, Mark A.; Srikanthan, R.; Kuczera, George
2007-07-01
SummaryMulti-site simulation of hydrological data are required for drought risk assessment of large multi-reservoir water supply systems. In this paper, a general Bayesian framework is presented for the calibration and evaluation of multi-site hydrological data at annual timescales. Models included within this framework are the hidden Markov model (HMM) and the widely used lag-1 autoregressive (AR(1)) model. These models are extended by the inclusion of a Box-Cox transformation and a spatial correlation function in a multi-site setting. Parameter uncertainty is evaluated using Markov chain Monte Carlo techniques. Models are evaluated by their ability to reproduce a range of important extreme statistics and compared using Bayesian model selection techniques which evaluate model probabilities. The case study, using multi-site annual rainfall data situated within catchments which contribute to Sydney's main water supply, provided the following results: Firstly, in terms of model probabilities and diagnostics, the inclusion of the Box-Cox transformation was preferred. Secondly the AR(1) and HMM performed similarly, while some other proposed AR(1)/HMM models with regionally pooled parameters had greater posterior probability than these two models. The practical significance of parameter and model uncertainty was illustrated using a case study involving drought security analysis for urban water supply. It was shown that ignoring parameter uncertainty resulted in a significant overestimate of reservoir yield and an underestimation of system vulnerability to severe drought.
Environmental statistics and optimal regulation
NASA Astrophysics Data System (ADS)
Sivak, David; Thomson, Matt
2015-03-01
The precision with which an organism can detect its environment, and the timescale for and statistics of environmental change, will affect the suitability of different strategies for regulating protein levels in response to environmental inputs. We propose a general framework--here applied to the enzymatic regulation of metabolism in response to changing nutrient concentrations--to predict the optimal regulatory strategy given the statistics of fluctuations in the environment and measurement apparatus, and the costs associated with enzyme production. We find: (i) relative convexity of enzyme expression cost and benefit influences the fitness of thresholding or graded responses; (ii) intermediate levels of measurement uncertainty call for a sophisticated Bayesian decision rule; and (iii) in dynamic contexts, intermediate levels of uncertainty call for retaining memory of the past. Statistical properties of the environment, such as variability and correlation times, set optimal biochemical parameters, such as thresholds and decay rates in signaling pathways. Our framework provides a theoretical basis for interpreting molecular signal processing algorithms and a classification scheme that organizes known regulatory strategies and may help conceptualize heretofore unknown ones.
Environmental Statistics and Optimal Regulation
2014-01-01
Any organism is embedded in an environment that changes over time. The timescale for and statistics of environmental change, the precision with which the organism can detect its environment, and the costs and benefits of particular protein expression levels all will affect the suitability of different strategies–such as constitutive expression or graded response–for regulating protein levels in response to environmental inputs. We propose a general framework–here specifically applied to the enzymatic regulation of metabolism in response to changing concentrations of a basic nutrient–to predict the optimal regulatory strategy given the statistics of fluctuations in the environment and measurement apparatus, respectively, and the costs associated with enzyme production. We use this framework to address three fundamental questions: (i) when a cell should prefer thresholding to a graded response; (ii) when there is a fitness advantage to implementing a Bayesian decision rule; and (iii) when retaining memory of the past provides a selective advantage. We specifically find that: (i) relative convexity of enzyme expression cost and benefit influences the fitness of thresholding or graded responses; (ii) intermediate levels of measurement uncertainty call for a sophisticated Bayesian decision rule; and (iii) in dynamic contexts, intermediate levels of uncertainty call for retaining memory of the past. Statistical properties of the environment, such as variability and correlation times, set optimal biochemical parameters, such as thresholds and decay rates in signaling pathways. Our framework provides a theoretical basis for interpreting molecular signal processing algorithms and a classification scheme that organizes known regulatory strategies and may help conceptualize heretofore unknown ones. PMID:25254493
Visual shape perception as Bayesian inference of 3D object-centered shape representations.
Erdogan, Goker; Jacobs, Robert A
2017-11-01
Despite decades of research, little is known about how people visually perceive object shape. We hypothesize that a promising approach to shape perception is provided by a "visual perception as Bayesian inference" framework which augments an emphasis on visual representation with an emphasis on the idea that shape perception is a form of statistical inference. Our hypothesis claims that shape perception of unfamiliar objects can be characterized as statistical inference of 3D shape in an object-centered coordinate system. We describe a computational model based on our theoretical framework, and provide evidence for the model along two lines. First, we show that, counterintuitively, the model accounts for viewpoint-dependency of object recognition, traditionally regarded as evidence against people's use of 3D object-centered shape representations. Second, we report the results of an experiment using a shape similarity task, and present an extensive evaluation of existing models' abilities to account for the experimental data. We find that our shape inference model captures subjects' behaviors better than competing models. Taken as a whole, our experimental and computational results illustrate the promise of our approach and suggest that people's shape representations of unfamiliar objects are probabilistic, 3D, and object-centered. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
A Bayesian Approach to the Paleomagnetic Conglomerate Test
NASA Astrophysics Data System (ADS)
Heslop, David; Roberts, Andrew P.
2018-02-01
The conglomerate test has served the paleomagnetic community for over 60 years as a means to detect remagnetizations. The test states that if a suite of clasts within a bed have uniformly random paleomagnetic directions, then the conglomerate cannot have experienced a pervasive event that remagnetized the clasts in the same direction. The current form of the conglomerate test is based on null hypothesis testing, which results in a binary "pass" (uniformly random directions) or "fail" (nonrandom directions) outcome. We have recast the conglomerate test in a Bayesian framework with the aim of providing more information concerning the level of support a given data set provides for a hypothesis of uniformly random paleomagnetic directions. Using this approach, we place the conglomerate test in a fully probabilistic framework that allows for inconclusive results when insufficient information is available to draw firm conclusions concerning the randomness or nonrandomness of directions. With our method, sample sets larger than those typically employed in paleomagnetism may be required to achieve strong support for a hypothesis of random directions. Given the potentially detrimental effect of unrecognized remagnetizations on paleomagnetic reconstructions, it is important to provide a means to draw statistically robust data-driven inferences. Our Bayesian analysis provides a means to do this for the conglomerate test.
Hierarchical Bayesian Modeling of Fluid-Induced Seismicity
NASA Astrophysics Data System (ADS)
Broccardo, M.; Mignan, A.; Wiemer, S.; Stojadinovic, B.; Giardini, D.
2017-11-01
In this study, we present a Bayesian hierarchical framework to model fluid-induced seismicity. The framework is based on a nonhomogeneous Poisson process with a fluid-induced seismicity rate proportional to the rate of injected fluid. The fluid-induced seismicity rate model depends upon a set of physically meaningful parameters and has been validated for six fluid-induced case studies. In line with the vision of hierarchical Bayesian modeling, the rate parameters are considered as random variables. We develop both the Bayesian inference and updating rules, which are used to develop a probabilistic forecasting model. We tested the Basel 2006 fluid-induced seismic case study to prove that the hierarchical Bayesian model offers a suitable framework to coherently encode both epistemic uncertainty and aleatory variability. Moreover, it provides a robust and consistent short-term seismic forecasting model suitable for online risk quantification and mitigation.
Huang, Jen-Pan; Knowles, L Lacey
2016-07-01
With the recent attention and focus on quantitative methods for species delimitation, an overlooked but equally important issue regards what has actually been delimited. This study investigates the apparent arbitrariness of some taxonomic distinctions, and in particular how species and subspecies are assigned. Specifically, we use a recently developed Bayesian model-based approach to show that in the Hercules beetles (genus Dynastes) there is no statistical difference in the probability that putative taxa represent different species, irrespective of whether they were given species or subspecies designations. By considering multiple data types, as opposed to relying exclusively on genetic data alone, we also show that both previously recognized species and subspecies represent a variety of points along the speciation spectrum (i.e., previously recognized species are not systematically further along the continuum than subspecies). For example, based on evolutionary models of divergence, some taxa are statistically distinguishable on more than one axis of differentiation (e.g., along both phenotypic and genetic dimensions), whereas other taxa can only be delimited statistically from a single data type. Because both phenotypic and genetic data are analyzed in a common Bayesian framework, our study provides a framework for investigating whether disagreements in species boundaries among data types reflect (i) actual discordance with the actual history of lineage splitting, or instead (ii) differences among data types in the amount of time required for differentiation to become apparent among the delimited taxa. We discuss what the answers to these questions imply about what characters are used to delimit species, as well as the diverse processes involved in the origin and maintenance of species boundaries. With this in mind, we then reflect more generally on how quantitative methods for species delimitation are used to assign taxonomic status. © The Author(s) 2015. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
A Bayesian framework for extracting human gait using strong prior knowledge.
Zhou, Ziheng; Prügel-Bennett, Adam; Damper, Robert I
2006-11-01
Extracting full-body motion of walking people from monocular video sequences in complex, real-world environments is an important and difficult problem, going beyond simple tracking, whose satisfactory solution demands an appropriate balance between use of prior knowledge and learning from data. We propose a consistent Bayesian framework for introducing strong prior knowledge into a system for extracting human gait. In this work, the strong prior is built from a simple articulated model having both time-invariant (static) and time-variant (dynamic) parameters. The model is easily modified to cater to situations such as walkers wearing clothing that obscures the limbs. The statistics of the parameters are learned from high-quality (indoor laboratory) data and the Bayesian framework then allows us to "bootstrap" to accurate gait extraction on the noisy images typical of cluttered, outdoor scenes. To achieve automatic fitting, we use a hidden Markov model to detect the phases of images in a walking cycle. We demonstrate our approach on silhouettes extracted from fronto-parallel ("sideways on") sequences of walkers under both high-quality indoor and noisy outdoor conditions. As well as high-quality data with synthetic noise and occlusions added, we also test walkers with rucksacks, skirts, and trench coats. Results are quantified in terms of chamfer distance and average pixel error between automatically extracted body points and corresponding hand-labeled points. No one part of the system is novel in itself, but the overall framework makes it feasible to extract gait from very much poorer quality image sequences than hitherto. This is confirmed by comparing person identification by gait using our method and a well-established baseline recognition algorithm.
Estimation and Application of Ecological Memory Functions in Time and Space
NASA Astrophysics Data System (ADS)
Itter, M.; Finley, A. O.; Dawson, A.
2017-12-01
A common goal in quantitative ecology is the estimation or prediction of ecological processes as a function of explanatory variables (or covariates). Frequently, the ecological process of interest and associated covariates vary in time, space, or both. Theory indicates many ecological processes exhibit memory to local, past conditions. Despite such theoretical understanding, few methods exist to integrate observations from the recent past or within a local neighborhood as drivers of these processes. We build upon recent methodological advances in ecology and spatial statistics to develop a Bayesian hierarchical framework to estimate so-called ecological memory functions; that is, weight-generating functions that specify the relative importance of local, past covariate observations to ecological processes. Memory functions are estimated using a set of basis functions in time and/or space, allowing for flexible ecological memory based on a reduced set of parameters. Ecological memory functions are entirely data driven under the Bayesian hierarchical framework—no a priori assumptions are made regarding functional forms. Memory function uncertainty follows directly from posterior distributions for model parameters allowing for tractable propagation of error to predictions of ecological processes. We apply the model framework to simulated spatio-temporal datasets generated using memory functions of varying complexity. The framework is also applied to estimate the ecological memory of annual boreal forest growth to local, past water availability. Consistent with ecological understanding of boreal forest growth dynamics, memory to past water availability peaks in the year previous to growth and slowly decays to zero in five to eight years. The Bayesian hierarchical framework has applicability to a broad range of ecosystems and processes allowing for increased understanding of ecosystem responses to local and past conditions and improved prediction of ecological processes.
Gerber, Brian D.; Kendall, William L.; Hooten, Mevin B.; Dubovsky, James A.; Drewien, Roderick C.
2015-01-01
Prediction is fundamental to scientific enquiry and application; however, ecologists tend to favour explanatory modelling. We discuss a predictive modelling framework to evaluate ecological hypotheses and to explore novel/unobserved environmental scenarios to assist conservation and management decision-makers. We apply this framework to develop an optimal predictive model for juvenile (<1 year old) sandhill crane Grus canadensis recruitment of the Rocky Mountain Population (RMP). We consider spatial climate predictors motivated by hypotheses of how drought across multiple time-scales and spring/summer weather affects recruitment.Our predictive modelling framework focuses on developing a single model that includes all relevant predictor variables, regardless of collinearity. This model is then optimized for prediction by controlling model complexity using a data-driven approach that marginalizes or removes irrelevant predictors from the model. Specifically, we highlight two approaches of statistical regularization, Bayesian least absolute shrinkage and selection operator (LASSO) and ridge regression.Our optimal predictive Bayesian LASSO and ridge regression models were similar and on average 37% superior in predictive accuracy to an explanatory modelling approach. Our predictive models confirmed a priori hypotheses that drought and cold summers negatively affect juvenile recruitment in the RMP. The effects of long-term drought can be alleviated by short-term wet spring–summer months; however, the alleviation of long-term drought has a much greater positive effect on juvenile recruitment. The number of freezing days and snowpack during the summer months can also negatively affect recruitment, while spring snowpack has a positive effect.Breeding habitat, mediated through climate, is a limiting factor on population growth of sandhill cranes in the RMP, which could become more limiting with a changing climate (i.e. increased drought). These effects are likely not unique to cranes. The alteration of hydrological patterns and water levels by drought may impact many migratory, wetland nesting birds in the Rocky Mountains and beyond.Generalizable predictive models (trained by out-of-sample fit and based on ecological hypotheses) are needed by conservation and management decision-makers. Statistical regularization improves predictions and provides a general framework for fitting models with a large number of predictors, even those with collinearity, to simultaneously identify an optimal predictive model while conducting rigorous Bayesian model selection. Our framework is important for understanding population dynamics under a changing climate and has direct applications for making harvest and habitat management decisions.
An introduction to Bayesian statistics in health psychology.
Depaoli, Sarah; Rus, Holly M; Clifton, James P; van de Schoot, Rens; Tiemensma, Jitske
2017-09-01
The aim of the current article is to provide a brief introduction to Bayesian statistics within the field of health psychology. Bayesian methods are increasing in prevalence in applied fields, and they have been shown in simulation research to improve the estimation accuracy of structural equation models, latent growth curve (and mixture) models, and hierarchical linear models. Likewise, Bayesian methods can be used with small sample sizes since they do not rely on large sample theory. In this article, we discuss several important components of Bayesian statistics as they relate to health-based inquiries. We discuss the incorporation and impact of prior knowledge into the estimation process and the different components of the analysis that should be reported in an article. We present an example implementing Bayesian estimation in the context of blood pressure changes after participants experienced an acute stressor. We conclude with final thoughts on the implementation of Bayesian statistics in health psychology, including suggestions for reviewing Bayesian manuscripts and grant proposals. We have also included an extensive amount of online supplementary material to complement the content presented here, including Bayesian examples using many different software programmes and an extensive sensitivity analysis examining the impact of priors.
Model selection and assessment for multi-species occupancy models
Broms, Kristin M.; Hooten, Mevin B.; Fitzpatrick, Ryan M.
2016-01-01
While multi-species occupancy models (MSOMs) are emerging as a popular method for analyzing biodiversity data, formal checking and validation approaches for this class of models have lagged behind. Concurrent with the rise in application of MSOMs among ecologists, a quiet regime shift is occurring in Bayesian statistics where predictive model comparison approaches are experiencing a resurgence. Unlike single-species occupancy models that use integrated likelihoods, MSOMs are usually couched in a Bayesian framework and contain multiple levels. Standard model checking and selection methods are often unreliable in this setting and there is only limited guidance in the ecological literature for this class of models. We examined several different contemporary Bayesian hierarchical approaches for checking and validating MSOMs and applied these methods to a freshwater aquatic study system in Colorado, USA, to better understand the diversity and distributions of plains fishes. Our findings indicated distinct differences among model selection approaches, with cross-validation techniques performing the best in terms of prediction.
McDonnell, J. D.; Schunck, N.; Higdon, D.; ...
2015-03-24
Statistical tools of uncertainty quantification can be used to assess the information content of measured observables with respect to present-day theoretical models, to estimate model errors and thereby improve predictive capability, to extrapolate beyond the regions reached by experiment, and to provide meaningful input to applications and planned measurements. To showcase new opportunities offered by such tools, we make a rigorous analysis of theoretical statistical uncertainties in nuclear density functional theory using Bayesian inference methods. By considering the recent mass measurements from the Canadian Penning Trap at Argonne National Laboratory, we demonstrate how the Bayesian analysis and a direct least-squaresmore » optimization, combined with high-performance computing, can be used to assess the information content of the new data with respect to a model based on the Skyrme energy density functional approach. Employing the posterior probability distribution computed with a Gaussian process emulator, we apply the Bayesian framework to propagate theoretical statistical uncertainties in predictions of nuclear masses, two-neutron dripline, and fission barriers. Overall, we find that the new mass measurements do not impose a constraint that is strong enough to lead to significant changes in the model parameters. In addition, the example discussed in this study sets the stage for quantifying and maximizing the impact of new measurements with respect to current modeling and guiding future experimental efforts, thus enhancing the experiment-theory cycle in the scientific method.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
McDonnell, J. D.; Schunck, N.; Higdon, D.
2015-03-24
Statistical tools of uncertainty quantification can be used to assess the information content of measured observables with respect to present-day theoretical models, to estimate model errors and thereby improve predictive capability, to extrapolate beyond the regions reached by experiment, and to provide meaningful input to applications and planned measurements. To showcase new opportunities offered by such tools, we make a rigorous analysis of theoretical statistical uncertainties in nuclear density functional theory using Bayesian inference methods. By considering the recent mass measurements from the Canadian Penning Trap at Argonne National Laboratory, we demonstrate how the Bayesian analysis and a direct least-squaresmore » optimization, combined with high-performance computing, can be used to assess the information content of the new data with respect to a model based on the Skyrme energy density functional approach. Employing the posterior probability distribution computed with a Gaussian process emulator, we apply the Bayesian framework to propagate theoretical statistical uncertainties in predictions of nuclear masses, two-neutron dripline, and fission barriers. Overall, we find that the new mass measurements do not impose a constraint that is strong enough to lead to significant changes in the model parameters. As a result, the example discussed in this study sets the stage for quantifying and maximizing the impact of new measurements with respect to current modeling and guiding future experimental efforts, thus enhancing the experiment-theory cycle in the scientific method.« less
Daniel Goodman’s empirical approach to Bayesian statistics
Gerrodette, Tim; Ward, Eric; Taylor, Rebecca L.; Schwarz, Lisa K.; Eguchi, Tomoharu; Wade, Paul; Himes Boor, Gina
2016-01-01
Bayesian statistics, in contrast to classical statistics, uses probability to represent uncertainty about the state of knowledge. Bayesian statistics has often been associated with the idea that knowledge is subjective and that a probability distribution represents a personal degree of belief. Dr. Daniel Goodman considered this viewpoint problematic for issues of public policy. He sought to ground his Bayesian approach in data, and advocated the construction of a prior as an empirical histogram of “similar” cases. In this way, the posterior distribution that results from a Bayesian analysis combined comparable previous data with case-specific current data, using Bayes’ formula. Goodman championed such a data-based approach, but he acknowledged that it was difficult in practice. If based on a true representation of our knowledge and uncertainty, Goodman argued that risk assessment and decision-making could be an exact science, despite the uncertainties. In his view, Bayesian statistics is a critical component of this science because a Bayesian analysis produces the probabilities of future outcomes. Indeed, Goodman maintained that the Bayesian machinery, following the rules of conditional probability, offered the best legitimate inference from available data. We give an example of an informative prior in a recent study of Steller sea lion spatial use patterns in Alaska.
A Primer on Bayesian Analysis for Experimental Psychopathologists
Krypotos, Angelos-Miltiadis; Blanken, Tessa F.; Arnaudova, Inna; Matzke, Dora; Beckers, Tom
2016-01-01
The principal goals of experimental psychopathology (EPP) research are to offer insights into the pathogenic mechanisms of mental disorders and to provide a stable ground for the development of clinical interventions. The main message of the present article is that those goals are better served by the adoption of Bayesian statistics than by the continued use of null-hypothesis significance testing (NHST). In the first part of the article we list the main disadvantages of NHST and explain why those disadvantages limit the conclusions that can be drawn from EPP research. Next, we highlight the advantages of Bayesian statistics. To illustrate, we then pit NHST and Bayesian analysis against each other using an experimental data set from our lab. Finally, we discuss some challenges when adopting Bayesian statistics. We hope that the present article will encourage experimental psychopathologists to embrace Bayesian statistics, which could strengthen the conclusions drawn from EPP research. PMID:28748068
Uncertainty estimation of Intensity-Duration-Frequency relationships: A regional analysis
NASA Astrophysics Data System (ADS)
Mélèse, Victor; Blanchet, Juliette; Molinié, Gilles
2018-03-01
We propose in this article a regional study of uncertainties in IDF curves derived from point-rainfall maxima. We develop two generalized extreme value models based on the simple scaling assumption, first in the frequentist framework and second in the Bayesian framework. Within the frequentist framework, uncertainties are obtained i) from the Gaussian density stemming from the asymptotic normality theorem of the maximum likelihood and ii) with a bootstrap procedure. Within the Bayesian framework, uncertainties are obtained from the posterior densities. We confront these two frameworks on the same database covering a large region of 100, 000 km2 in southern France with contrasted rainfall regime, in order to be able to draw conclusion that are not specific to the data. The two frameworks are applied to 405 hourly stations with data back to the 1980's, accumulated in the range 3 h-120 h. We show that i) the Bayesian framework is more robust than the frequentist one to the starting point of the estimation procedure, ii) the posterior and the bootstrap densities are able to better adjust uncertainty estimation to the data than the Gaussian density, and iii) the bootstrap density give unreasonable confidence intervals, in particular for return levels associated to large return period. Therefore our recommendation goes towards the use of the Bayesian framework to compute uncertainty.
Kruschke, John K; Liddell, Torrin M
2018-02-01
In the practice of data analysis, there is a conceptual distinction between hypothesis testing, on the one hand, and estimation with quantified uncertainty on the other. Among frequentists in psychology, a shift of emphasis from hypothesis testing to estimation has been dubbed "the New Statistics" (Cumming 2014). A second conceptual distinction is between frequentist methods and Bayesian methods. Our main goal in this article is to explain how Bayesian methods achieve the goals of the New Statistics better than frequentist methods. The article reviews frequentist and Bayesian approaches to hypothesis testing and to estimation with confidence or credible intervals. The article also describes Bayesian approaches to meta-analysis, randomized controlled trials, and power analysis.
Multilevel modeling of single-case data: A comparison of maximum likelihood and Bayesian estimation.
Moeyaert, Mariola; Rindskopf, David; Onghena, Patrick; Van den Noortgate, Wim
2017-12-01
The focus of this article is to describe Bayesian estimation, including construction of prior distributions, and to compare parameter recovery under the Bayesian framework (using weakly informative priors) and the maximum likelihood (ML) framework in the context of multilevel modeling of single-case experimental data. Bayesian estimation results were found similar to ML estimation results in terms of the treatment effect estimates, regardless of the functional form and degree of information included in the prior specification in the Bayesian framework. In terms of the variance component estimates, both the ML and Bayesian estimation procedures result in biased and less precise variance estimates when the number of participants is small (i.e., 3). By increasing the number of participants to 5 or 7, the relative bias is close to 5% and more precise estimates are obtained for all approaches, except for the inverse-Wishart prior using the identity matrix. When a more informative prior was added, more precise estimates for the fixed effects and random effects were obtained, even when only 3 participants were included. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
The image recognition based on neural network and Bayesian decision
NASA Astrophysics Data System (ADS)
Wang, Chugege
2018-04-01
The artificial neural network began in 1940, which is an important part of artificial intelligence. At present, it has become a hot topic in the fields of neuroscience, computer science, brain science, mathematics, and psychology. Thomas Bayes firstly reported the Bayesian theory in 1763. After the development in the twentieth century, it has been widespread in all areas of statistics. In recent years, due to the solution of the problem of high-dimensional integral calculation, Bayesian Statistics has been improved theoretically, which solved many problems that cannot be solved by classical statistics and is also applied to the interdisciplinary fields. In this paper, the related concepts and principles of the artificial neural network are introduced. It also summarizes the basic content and principle of Bayesian Statistics, and combines the artificial neural network technology and Bayesian decision theory and implement them in all aspects of image recognition, such as enhanced face detection method based on neural network and Bayesian decision, as well as the image classification based on the Bayesian decision. It can be seen that the combination of artificial intelligence and statistical algorithms has always been the hot research topic.
Henschel, Volkmar; Engel, Jutta; Hölzel, Dieter; Mansmann, Ulrich
2009-02-10
Multivariate analysis of interval censored event data based on classical likelihood methods is notoriously cumbersome. Likelihood inference for models which additionally include random effects are not available at all. Developed algorithms bear problems for practical users like: matrix inversion, slow convergence, no assessment of statistical uncertainty. MCMC procedures combined with imputation are used to implement hierarchical models for interval censored data within a Bayesian framework. Two examples from clinical practice demonstrate the handling of clustered interval censored event times as well as multilayer random effects for inter-institutional quality assessment. The software developed is called survBayes and is freely available at CRAN. The proposed software supports the solution of complex analyses in many fields of clinical epidemiology as well as health services research.
The visual system’s internal model of the world
Lee, Tai Sing
2015-01-01
The Bayesian paradigm has provided a useful conceptual theory for understanding perceptual computation in the brain. While the detailed neural mechanisms of Bayesian inference are not fully understood, recent computational and neurophysiological works have illuminated the underlying computational principles and representational architecture. The fundamental insights are that the visual system is organized as a modular hierarchy to encode an internal model of the world, and that perception is realized by statistical inference based on such internal model. In this paper, I will discuss and analyze the varieties of representational schemes of these internal models and how they might be used to perform learning and inference. I will argue for a unified theoretical framework for relating the internal models to the observed neural phenomena and mechanisms in the visual cortex. PMID:26566294
Characterizing reliability in a product/process design-assurance program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kerscher, W.J. III; Booker, J.M.; Bement, T.R.
1997-10-01
Over the years many advancing techniques in the area of reliability engineering have surfaced in the military sphere of influence, and one of these techniques is Reliability Growth Testing (RGT). Private industry has reviewed RGT as part of the solution to their reliability concerns, but many practical considerations have slowed its implementation. It`s objective is to demonstrate the reliability requirement of a new product with a specified confidence. This paper speaks directly to that objective but discusses a somewhat different approach to achieving it. Rather than conducting testing as a continuum and developing statistical confidence bands around the results, thismore » Bayesian updating approach starts with a reliability estimate characterized by large uncertainty and then proceeds to reduce the uncertainty by folding in fresh information in a Bayesian framework.« less
A flexible, interpretable framework for assessing sensitivity to unmeasured confounding.
Dorie, Vincent; Harada, Masataka; Carnegie, Nicole Bohme; Hill, Jennifer
2016-09-10
When estimating causal effects, unmeasured confounding and model misspecification are both potential sources of bias. We propose a method to simultaneously address both issues in the form of a semi-parametric sensitivity analysis. In particular, our approach incorporates Bayesian Additive Regression Trees into a two-parameter sensitivity analysis strategy that assesses sensitivity of posterior distributions of treatment effects to choices of sensitivity parameters. This results in an easily interpretable framework for testing for the impact of an unmeasured confounder that also limits the number of modeling assumptions. We evaluate our approach in a large-scale simulation setting and with high blood pressure data taken from the Third National Health and Nutrition Examination Survey. The model is implemented as open-source software, integrated into the treatSens package for the R statistical programming language. © 2016 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. © 2016 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd.
Incorporating Resilience into Dynamic Social Models
2016-07-20
solved by simply using the information provided by the scenario. Instead, additional knowledge is required from relevant fields that study these...resilience function by leveraging Bayesian Knowledge Bases (BKBs), a probabilistic reasoning network framework[5],[6]. BKBs allow for inferencing...reasoning network framework based on Bayesian Knowledge Bases (BKBs). BKBs are central to our social resilience framework as they are used to
2017-09-01
efficacy of statistical post-processing methods downstream of these dynamical model components with a hierarchical multivariate Bayesian approach to...Bayesian hierarchical modeling, Markov chain Monte Carlo methods , Metropolis algorithm, machine learning, atmospheric prediction 15. NUMBER OF PAGES...scale processes. However, this dissertation explores the efficacy of statistical post-processing methods downstream of these dynamical model components
NASA Astrophysics Data System (ADS)
Sun, Weiwei; Ma, Jun; Yang, Gang; Du, Bo; Zhang, Liangpei
2017-06-01
A new Bayesian method named Poisson Nonnegative Matrix Factorization with Parameter Subspace Clustering Constraint (PNMF-PSCC) has been presented to extract endmembers from Hyperspectral Imagery (HSI). First, the method integrates the liner spectral mixture model with the Bayesian framework and it formulates endmember extraction into a Bayesian inference problem. Second, the Parameter Subspace Clustering Constraint (PSCC) is incorporated into the statistical program to consider the clustering of all pixels in the parameter subspace. The PSCC could enlarge differences among ground objects and helps finding endmembers with smaller spectrum divergences. Meanwhile, the PNMF-PSCC method utilizes the Poisson distribution as the prior knowledge of spectral signals to better explain the quantum nature of light in imaging spectrometer. Third, the optimization problem of PNMF-PSCC is formulated into maximizing the joint density via the Maximum A Posterior (MAP) estimator. The program is finally solved by iteratively optimizing two sub-problems via the Alternating Direction Method of Multipliers (ADMM) framework and the FURTHESTSUM initialization scheme. Five state-of-the art methods are implemented to make comparisons with the performance of PNMF-PSCC on both the synthetic and real HSI datasets. Experimental results show that the PNMF-PSCC outperforms all the five methods in Spectral Angle Distance (SAD) and Root-Mean-Square-Error (RMSE), and especially it could identify good endmembers for ground objects with smaller spectrum divergences.
Universal Darwinism As a Process of Bayesian Inference.
Campbell, John O
2016-01-01
Many of the mathematical frameworks describing natural selection are equivalent to Bayes' Theorem, also known as Bayesian updating. By definition, a process of Bayesian Inference is one which involves a Bayesian update, so we may conclude that these frameworks describe natural selection as a process of Bayesian inference. Thus, natural selection serves as a counter example to a widely-held interpretation that restricts Bayesian Inference to human mental processes (including the endeavors of statisticians). As Bayesian inference can always be cast in terms of (variational) free energy minimization, natural selection can be viewed as comprising two components: a generative model of an "experiment" in the external world environment, and the results of that "experiment" or the "surprise" entailed by predicted and actual outcomes of the "experiment." Minimization of free energy implies that the implicit measure of "surprise" experienced serves to update the generative model in a Bayesian manner. This description closely accords with the mechanisms of generalized Darwinian process proposed both by Dawkins, in terms of replicators and vehicles, and Campbell, in terms of inferential systems. Bayesian inference is an algorithm for the accumulation of evidence-based knowledge. This algorithm is now seen to operate over a wide range of evolutionary processes, including natural selection, the evolution of mental models and cultural evolutionary processes, notably including science itself. The variational principle of free energy minimization may thus serve as a unifying mathematical framework for universal Darwinism, the study of evolutionary processes operating throughout nature.
Universal Darwinism As a Process of Bayesian Inference
Campbell, John O.
2016-01-01
Many of the mathematical frameworks describing natural selection are equivalent to Bayes' Theorem, also known as Bayesian updating. By definition, a process of Bayesian Inference is one which involves a Bayesian update, so we may conclude that these frameworks describe natural selection as a process of Bayesian inference. Thus, natural selection serves as a counter example to a widely-held interpretation that restricts Bayesian Inference to human mental processes (including the endeavors of statisticians). As Bayesian inference can always be cast in terms of (variational) free energy minimization, natural selection can be viewed as comprising two components: a generative model of an “experiment” in the external world environment, and the results of that “experiment” or the “surprise” entailed by predicted and actual outcomes of the “experiment.” Minimization of free energy implies that the implicit measure of “surprise” experienced serves to update the generative model in a Bayesian manner. This description closely accords with the mechanisms of generalized Darwinian process proposed both by Dawkins, in terms of replicators and vehicles, and Campbell, in terms of inferential systems. Bayesian inference is an algorithm for the accumulation of evidence-based knowledge. This algorithm is now seen to operate over a wide range of evolutionary processes, including natural selection, the evolution of mental models and cultural evolutionary processes, notably including science itself. The variational principle of free energy minimization may thus serve as a unifying mathematical framework for universal Darwinism, the study of evolutionary processes operating throughout nature. PMID:27375438
Algorithmic procedures for Bayesian MEG/EEG source reconstruction in SPM☆
López, J.D.; Litvak, V.; Espinosa, J.J.; Friston, K.; Barnes, G.R.
2014-01-01
The MEG/EEG inverse problem is ill-posed, giving different source reconstructions depending on the initial assumption sets. Parametric Empirical Bayes allows one to implement most popular MEG/EEG inversion schemes (Minimum Norm, LORETA, etc.) within the same generic Bayesian framework. It also provides a cost-function in terms of the variational Free energy—an approximation to the marginal likelihood or evidence of the solution. In this manuscript, we revisit the algorithm for MEG/EEG source reconstruction with a view to providing a didactic and practical guide. The aim is to promote and help standardise the development and consolidation of other schemes within the same framework. We describe the implementation in the Statistical Parametric Mapping (SPM) software package, carefully explaining each of its stages with the help of a simple simulated data example. We focus on the Multiple Sparse Priors (MSP) model, which we compare with the well-known Minimum Norm and LORETA models, using the negative variational Free energy for model comparison. The manuscript is accompanied by Matlab scripts to allow the reader to test and explore the underlying algorithm. PMID:24041874
Bayesian model calibration of ramp compression experiments on Z
NASA Astrophysics Data System (ADS)
Brown, Justin; Hund, Lauren
2017-06-01
Bayesian model calibration (BMC) is a statistical framework to estimate inputs for a computational model in the presence of multiple uncertainties, making it well suited to dynamic experiments which must be coupled with numerical simulations to interpret the results. Often, dynamic experiments are diagnosed using velocimetry and this output can be modeled using a hydrocode. Several calibration issues unique to this type of scenario including the functional nature of the output, uncertainty of nuisance parameters within the simulation, and model discrepancy identifiability are addressed, and a novel BMC process is proposed. As a proof of concept, we examine experiments conducted on Sandia National Laboratories' Z-machine which ramp compressed tantalum to peak stresses of 250 GPa. The proposed BMC framework is used to calibrate the cold curve of Ta (with uncertainty), and we conclude that the procedure results in simple, fast, and valid inferences. Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Advances in Bayesian Modeling in Educational Research
ERIC Educational Resources Information Center
Levy, Roy
2016-01-01
In this article, I provide a conceptually oriented overview of Bayesian approaches to statistical inference and contrast them with frequentist approaches that currently dominate conventional practice in educational research. The features and advantages of Bayesian approaches are illustrated with examples spanning several statistical modeling…
2016-05-31
and included explosives such as TATP, HMTD, RDX, RDX, ammonium nitrate , potassium perchlorate, potassium nitrate , sugar, and TNT. The approach...Distribution Unlimited UU UU UU UU 31-05-2016 15-Apr-2014 14-Jan-2015 Final Report: Technical Topic 3.2.2. d Bayesian and Non- parametric Statistics...of Papers published in non peer-reviewed journals: Final Report: Technical Topic 3.2.2. d Bayesian and Non-parametric Statistics: Integration of Neural
Emerging Concepts of Data Integration in Pathogen Phylodynamics.
Baele, Guy; Suchard, Marc A; Rambaut, Andrew; Lemey, Philippe
2017-01-01
Phylodynamics has become an increasingly popular statistical framework to extract evolutionary and epidemiological information from pathogen genomes. By harnessing such information, epidemiologists aim to shed light on the spatio-temporal patterns of spread and to test hypotheses about the underlying interaction of evolutionary and ecological dynamics in pathogen populations. Although the field has witnessed a rich development of statistical inference tools with increasing levels of sophistication, these tools initially focused on sequences as their sole primary data source. Integrating various sources of information, however, promises to deliver more precise insights in infectious diseases and to increase opportunities for statistical hypothesis testing. Here, we review how the emerging concept of data integration is stimulating new advances in Bayesian evolutionary inference methodology which formalize a marriage of statistical thinking and evolutionary biology. These approaches include connecting sequence to trait evolution, such as for host, phenotypic and geographic sampling information, but also the incorporation of covariates of evolutionary and epidemic processes in the reconstruction procedures. We highlight how a full Bayesian approach to covariate modeling and testing can generate further insights into sequence evolution, trait evolution, and population dynamics in pathogen populations. Specific examples demonstrate how such approaches can be used to test the impact of host on rabies and HIV evolutionary rates, to identify the drivers of influenza dispersal as well as the determinants of rabies cross-species transmissions, and to quantify the evolutionary dynamics of influenza antigenicity. Finally, we briefly discuss how data integration is now also permeating through the inference of transmission dynamics, leading to novel insights into tree-generative processes and detailed reconstructions of transmission trees. [Bayesian inference; birth–death models; coalescent models; continuous trait evolution; covariates; data integration; discrete trait evolution; pathogen phylodynamics.
Emerging Concepts of Data Integration in Pathogen Phylodynamics
Baele, Guy; Suchard, Marc A.; Rambaut, Andrew; Lemey, Philippe
2017-01-01
Phylodynamics has become an increasingly popular statistical framework to extract evolutionary and epidemiological information from pathogen genomes. By harnessing such information, epidemiologists aim to shed light on the spatio-temporal patterns of spread and to test hypotheses about the underlying interaction of evolutionary and ecological dynamics in pathogen populations. Although the field has witnessed a rich development of statistical inference tools with increasing levels of sophistication, these tools initially focused on sequences as their sole primary data source. Integrating various sources of information, however, promises to deliver more precise insights in infectious diseases and to increase opportunities for statistical hypothesis testing. Here, we review how the emerging concept of data integration is stimulating new advances in Bayesian evolutionary inference methodology which formalize a marriage of statistical thinking and evolutionary biology. These approaches include connecting sequence to trait evolution, such as for host, phenotypic and geographic sampling information, but also the incorporation of covariates of evolutionary and epidemic processes in the reconstruction procedures. We highlight how a full Bayesian approach to covariate modeling and testing can generate further insights into sequence evolution, trait evolution, and population dynamics in pathogen populations. Specific examples demonstrate how such approaches can be used to test the impact of host on rabies and HIV evolutionary rates, to identify the drivers of influenza dispersal as well as the determinants of rabies cross-species transmissions, and to quantify the evolutionary dynamics of influenza antigenicity. Finally, we briefly discuss how data integration is now also permeating through the inference of transmission dynamics, leading to novel insights into tree-generative processes and detailed reconstructions of transmission trees. [Bayesian inference; birth–death models; coalescent models; continuous trait evolution; covariates; data integration; discrete trait evolution; pathogen phylodynamics. PMID:28173504
Bayesian Model Averaging for Propensity Score Analysis
ERIC Educational Resources Information Center
Kaplan, David; Chen, Jianshen
2013-01-01
The purpose of this study is to explore Bayesian model averaging in the propensity score context. Previous research on Bayesian propensity score analysis does not take into account model uncertainty. In this regard, an internally consistent Bayesian framework for model building and estimation must also account for model uncertainty. The…
Bayesian Statistics for Biological Data: Pedigree Analysis
ERIC Educational Resources Information Center
Stanfield, William D.; Carlton, Matthew A.
2004-01-01
The use of Bayes' formula is applied to the biological problem of pedigree analysis to show that the Bayes' formula and non-Bayesian or "classical" methods of probability calculation give different answers. First year college students of biology can be introduced to the Bayesian statistics.
Vrancken, Bram; Lemey, Philippe; Rambaut, Andrew; Bedford, Trevor; Longdon, Ben; Günthard, Huldrych F.; Suchard, Marc A.
2014-01-01
Phylogenetic signal quantifies the degree to which resemblance in continuously-valued traits reflects phylogenetic relatedness. Measures of phylogenetic signal are widely used in ecological and evolutionary research, and are recently gaining traction in viral evolutionary studies. Standard estimators of phylogenetic signal frequently condition on data summary statistics of the repeated trait observations and fixed phylogenetics trees, resulting in information loss and potential bias. To incorporate the observation process and phylogenetic uncertainty in a model-based approach, we develop a novel Bayesian inference method to simultaneously estimate the evolutionary history and phylogenetic signal from molecular sequence data and repeated multivariate traits. Our approach builds upon a phylogenetic diffusion framework that model continuous trait evolution as a Brownian motion process and incorporates Pagel’s λ transformation parameter to estimate dependence among traits. We provide a computationally efficient inference implementation in the BEAST software package. We evaluate the synthetic performance of the Bayesian estimator of phylogenetic signal against standard estimators, and demonstrate the use of our coherent framework to address several virus-host evolutionary questions, including virulence heritability for HIV, antigenic evolution in influenza and HIV, and Drosophila sensitivity to sigma virus infection. Finally, we discuss model extensions that will make useful contributions to our flexible framework for simultaneously studying sequence and trait evolution. PMID:25780554
Bayesian-MCMC-based parameter estimation of stealth aircraft RCS models
NASA Astrophysics Data System (ADS)
Xia, Wei; Dai, Xiao-Xia; Feng, Yuan
2015-12-01
When modeling a stealth aircraft with low RCS (Radar Cross Section), conventional parameter estimation methods may cause a deviation from the actual distribution, owing to the fact that the characteristic parameters are estimated via directly calculating the statistics of RCS. The Bayesian-Markov Chain Monte Carlo (Bayesian-MCMC) method is introduced herein to estimate the parameters so as to improve the fitting accuracies of fluctuation models. The parameter estimations of the lognormal and the Legendre polynomial models are reformulated in the Bayesian framework. The MCMC algorithm is then adopted to calculate the parameter estimates. Numerical results show that the distribution curves obtained by the proposed method exhibit improved consistence with the actual ones, compared with those fitted by the conventional method. The fitting accuracy could be improved by no less than 25% for both fluctuation models, which implies that the Bayesian-MCMC method might be a good candidate among the optimal parameter estimation methods for stealth aircraft RCS models. Project supported by the National Natural Science Foundation of China (Grant No. 61101173), the National Basic Research Program of China (Grant No. 613206), the National High Technology Research and Development Program of China (Grant No. 2012AA01A308), the State Scholarship Fund by the China Scholarship Council (CSC), and the Oversea Academic Training Funds, and University of Electronic Science and Technology of China (UESTC).
What Is the Probability You Are a Bayesian?
ERIC Educational Resources Information Center
Wulff, Shaun S.; Robinson, Timothy J.
2014-01-01
Bayesian methodology continues to be widely used in statistical applications. As a result, it is increasingly important to introduce students to Bayesian thinking at early stages in their mathematics and statistics education. While many students in upper level probability courses can recite the differences in the Frequentist and Bayesian…
Bayesian Posterior Odds Ratios: Statistical Tools for Collaborative Evaluations
ERIC Educational Resources Information Center
Hicks, Tyler; Rodríguez-Campos, Liliana; Choi, Jeong Hoon
2018-01-01
To begin statistical analysis, Bayesians quantify their confidence in modeling hypotheses with priors. A prior describes the probability of a certain modeling hypothesis apart from the data. Bayesians should be able to defend their choice of prior to a skeptical audience. Collaboration between evaluators and stakeholders could make their choices…
NASA Astrophysics Data System (ADS)
Alsing, Justin; Wandelt, Benjamin; Feeney, Stephen
2018-07-01
Many statistical models in cosmology can be simulated forwards but have intractable likelihood functions. Likelihood-free inference methods allow us to perform Bayesian inference from these models using only forward simulations, free from any likelihood assumptions or approximations. Likelihood-free inference generically involves simulating mock data and comparing to the observed data; this comparison in data space suffers from the curse of dimensionality and requires compression of the data to a small number of summary statistics to be tractable. In this paper, we use massive asymptotically optimal data compression to reduce the dimensionality of the data space to just one number per parameter, providing a natural and optimal framework for summary statistic choice for likelihood-free inference. Secondly, we present the first cosmological application of Density Estimation Likelihood-Free Inference (DELFI), which learns a parametrized model for joint distribution of data and parameters, yielding both the parameter posterior and the model evidence. This approach is conceptually simple, requires less tuning than traditional Approximate Bayesian Computation approaches to likelihood-free inference and can give high-fidelity posteriors from orders of magnitude fewer forward simulations. As an additional bonus, it enables parameter inference and Bayesian model comparison simultaneously. We demonstrate DELFI with massive data compression on an analysis of the joint light-curve analysis supernova data, as a simple validation case study. We show that high-fidelity posterior inference is possible for full-scale cosmological data analyses with as few as ˜104 simulations, with substantial scope for further improvement, demonstrating the scalability of likelihood-free inference to large and complex cosmological data sets.
[Bayesian statistics in medicine -- part II: main applications and inference].
Montomoli, C; Nichelatti, M
2008-01-01
Bayesian statistics is not only used when one is dealing with 2-way tables, but it can be used for inferential purposes. Using the basic concepts presented in the first part, this paper aims to give a simple overview of Bayesian methods by introducing its foundation (Bayes' theorem) and then applying this rule to a very simple practical example; whenever possible, the elementary processes at the basis of analysis are compared to those of frequentist (classical) statistical analysis. The Bayesian reasoning is naturally connected to medical activity, since it appears to be quite similar to a diagnostic process.
Gerber, Brian D; Kendall, William L; Hooten, Mevin B; Dubovsky, James A; Drewien, Roderick C
2015-09-01
1. Prediction is fundamental to scientific enquiry and application; however, ecologists tend to favour explanatory modelling. We discuss a predictive modelling framework to evaluate ecological hypotheses and to explore novel/unobserved environmental scenarios to assist conservation and management decision-makers. We apply this framework to develop an optimal predictive model for juvenile (<1 year old) sandhill crane Grus canadensis recruitment of the Rocky Mountain Population (RMP). We consider spatial climate predictors motivated by hypotheses of how drought across multiple time-scales and spring/summer weather affects recruitment. 2. Our predictive modelling framework focuses on developing a single model that includes all relevant predictor variables, regardless of collinearity. This model is then optimized for prediction by controlling model complexity using a data-driven approach that marginalizes or removes irrelevant predictors from the model. Specifically, we highlight two approaches of statistical regularization, Bayesian least absolute shrinkage and selection operator (LASSO) and ridge regression. 3. Our optimal predictive Bayesian LASSO and ridge regression models were similar and on average 37% superior in predictive accuracy to an explanatory modelling approach. Our predictive models confirmed a priori hypotheses that drought and cold summers negatively affect juvenile recruitment in the RMP. The effects of long-term drought can be alleviated by short-term wet spring-summer months; however, the alleviation of long-term drought has a much greater positive effect on juvenile recruitment. The number of freezing days and snowpack during the summer months can also negatively affect recruitment, while spring snowpack has a positive effect. 4. Breeding habitat, mediated through climate, is a limiting factor on population growth of sandhill cranes in the RMP, which could become more limiting with a changing climate (i.e. increased drought). These effects are likely not unique to cranes. The alteration of hydrological patterns and water levels by drought may impact many migratory, wetland nesting birds in the Rocky Mountains and beyond. 5. Generalizable predictive models (trained by out-of-sample fit and based on ecological hypotheses) are needed by conservation and management decision-makers. Statistical regularization improves predictions and provides a general framework for fitting models with a large number of predictors, even those with collinearity, to simultaneously identify an optimal predictive model while conducting rigorous Bayesian model selection. Our framework is important for understanding population dynamics under a changing climate and has direct applications for making harvest and habitat management decisions. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.
A program for the Bayesian Neural Network in the ROOT framework
NASA Astrophysics Data System (ADS)
Zhong, Jiahang; Huang, Run-Sheng; Lee, Shih-Chang
2011-12-01
We present a Bayesian Neural Network algorithm implemented in the TMVA package (Hoecker et al., 2007 [1]), within the ROOT framework (Brun and Rademakers, 1997 [2]). Comparing to the conventional utilization of Neural Network as discriminator, this new implementation has more advantages as a non-parametric regression tool, particularly for fitting probabilities. It provides functionalities including cost function selection, complexity control and uncertainty estimation. An example of such application in High Energy Physics is shown. The algorithm is available with ROOT release later than 5.29. Program summaryProgram title: TMVA-BNN Catalogue identifier: AEJX_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEJX_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: BSD license No. of lines in distributed program, including test data, etc.: 5094 No. of bytes in distributed program, including test data, etc.: 1,320,987 Distribution format: tar.gz Programming language: C++ Computer: Any computer system or cluster with C++ compiler and UNIX-like operating system Operating system: Most UNIX/Linux systems. The application programs were thoroughly tested under Fedora and Scientific Linux CERN. Classification: 11.9 External routines: ROOT package version 5.29 or higher ( http://root.cern.ch) Nature of problem: Non-parametric fitting of multivariate distributions Solution method: An implementation of Neural Network following the Bayesian statistical interpretation. Uses Laplace approximation for the Bayesian marginalizations. Provides the functionalities of automatic complexity control and uncertainty estimation. Running time: Time consumption for the training depends substantially on the size of input sample, the NN topology, the number of training iterations, etc. For the example in this manuscript, about 7 min was used on a PC/Linux with 2.0 GHz processors.
Bayesian inference based on dual generalized order statistics from the exponentiated Weibull model
NASA Astrophysics Data System (ADS)
Al Sobhi, Mashail M.
2015-02-01
Bayesian estimation for the two parameters and the reliability function of the exponentiated Weibull model are obtained based on dual generalized order statistics (DGOS). Also, Bayesian prediction bounds for future DGOS from exponentiated Weibull model are obtained. The symmetric and asymmetric loss functions are considered for Bayesian computations. The Markov chain Monte Carlo (MCMC) methods are used for computing the Bayes estimates and prediction bounds. The results have been specialized to the lower record values. Comparisons are made between Bayesian and maximum likelihood estimators via Monte Carlo simulation.
When decision heuristics and science collide.
Yu, Erica C; Sprenger, Amber M; Thomas, Rick P; Dougherty, Michael R
2014-04-01
The ongoing discussion among scientists about null-hypothesis significance testing and Bayesian data analysis has led to speculation about the practices and consequences of "researcher degrees of freedom." This article advances this debate by asking the broader questions that we, as scientists, should be asking: How do scientists make decisions in the course of doing research, and what is the impact of these decisions on scientific conclusions? We asked practicing scientists to collect data in a simulated research environment, and our findings show that some scientists use data collection heuristics that deviate from prescribed methodology. Monte Carlo simulations show that data collection heuristics based on p values lead to biases in estimated effect sizes and Bayes factors and to increases in both false-positive and false-negative rates, depending on the specific heuristic. We also show that using Bayesian data collection methods does not eliminate these biases. Thus, our study highlights the little appreciated fact that the process of doing science is a behavioral endeavor that can bias statistical description and inference in a manner that transcends adherence to any particular statistical framework.
NASA Technical Reports Server (NTRS)
Jewell, Jeffrey B.; Raymond, C.; Smrekar, S.; Millbury, C.
2004-01-01
This viewgraph presentation reviews a Bayesian approach to the inversion of gravity and magnetic data with specific application to the Ismenius Area of Mars. Many inverse problems encountered in geophysics and planetary science are well known to be non-unique (i.e. inversion of gravity the density structure of a body). In hopes of reducing the non-uniqueness of solutions, there has been interest in the joint analysis of data. An example is the joint inversion of gravity and magnetic data, with the assumption that the same physical anomalies generate both the observed magnetic and gravitational anomalies. In this talk, we formulate the joint analysis of different types of data in a Bayesian framework and apply the formalism to the inference of the density and remanent magnetization structure for a local region in the Ismenius area of Mars. The Bayesian approach allows prior information or constraints in the solutions to be incorporated in the inversion, with the "best" solutions those whose forward predictions most closely match the data while remaining consistent with assumed constraints. The application of this framework to the inversion of gravity and magnetic data on Mars reveals two typical challenges - the forward predictions of the data have a linear dependence on some of the quantities of interest, and non-linear dependence on others (termed the "linear" and "non-linear" variables, respectively). For observations with Gaussian noise, a Bayesian approach to inversion for "linear" variables reduces to a linear filtering problem, with an explicitly computable "error" matrix. However, for models whose forward predictions have non-linear dependencies, inference is no longer given by such a simple linear problem, and moreover, the uncertainty in the solution is no longer completely specified by a computable "error matrix". It is therefore important to develop methods for sampling from the full Bayesian posterior to provide a complete and statistically consistent picture of model uncertainty, and what has been learned from observations. We will discuss advanced numerical techniques, including Monte Carlo Markov
NASA Astrophysics Data System (ADS)
Thelen, Brian T.; Xique, Ismael J.; Burns, Joseph W.; Goley, G. Steven; Nolan, Adam R.; Benson, Jonathan W.
2017-04-01
With all of the new remote sensing modalities available, and with ever increasing capabilities and frequency of collection, there is a desire to fundamentally understand/quantify the information content in the collected image data relative to various exploitation goals, such as detection/classification. A fundamental approach for this is the framework of Bayesian decision theory, but a daunting challenge is to have significantly flexible and accurate multivariate models for the features and/or pixels that capture a wide assortment of distributions and dependen- cies. In addition, data can come in the form of both continuous and discrete representations, where the latter is often generated based on considerations of robustness to imaging conditions and occlusions/degradations. In this paper we propose a novel suite of "latent" models fundamentally based on multivariate Gaussian copula models that can be used for quantized data from SAR imagery. For this Latent Gaussian Copula (LGC) model, we derive an approximate, maximum-likelihood estimation algorithm and demonstrate very reasonable estimation performance even for the larger images with many pixels. However applying these LGC models to large dimen- sions/images within a Bayesian decision/classification theory is infeasible due to the computational/numerical issues in evaluating the true full likelihood, and we propose an alternative class of novel pseudo-likelihoood detection statistics that are computationally feasible. We show in a few simple examples that these statistics have the potential to provide very good and robust detection/classification performance. All of this framework is demonstrated on a simulated SLICY data set, and the results show the importance of modeling the dependencies, and of utilizing the pseudo-likelihood methods.
NASA Astrophysics Data System (ADS)
Sahai, Swupnil
This thesis includes three parts. The overarching theme is how to analyze structured hierarchical data, with applications to astronomy and sociology. The first part discusses how expectation propagation can be used to parallelize the computation when fitting big hierarchical bayesian models. This methodology is then used to fit a novel, nonlinear mixture model to ultraviolet radiation from various regions of the observable universe. The second part discusses how the Stan probabilistic programming language can be used to numerically integrate terms in a hierarchical bayesian model. This technique is demonstrated on supernovae data to significantly speed up convergence to the posterior distribution compared to a previous study that used a Gibbs-type sampler. The third part builds a formal latent kernel representation for aggregate relational data as a way to more robustly estimate the mixing characteristics of agents in a network. In particular, the framework is applied to sociology surveys to estimate, as a function of ego age, the age and sex composition of the personal networks of individuals in the United States.
BiomeNet: A Bayesian Model for Inference of Metabolic Divergence among Microbial Communities
Chipman, Hugh; Gu, Hong; Bielawski, Joseph P.
2014-01-01
Metagenomics yields enormous numbers of microbial sequences that can be assigned a metabolic function. Using such data to infer community-level metabolic divergence is hindered by the lack of a suitable statistical framework. Here, we describe a novel hierarchical Bayesian model, called BiomeNet (Bayesian inference of metabolic networks), for inferring differential prevalence of metabolic subnetworks among microbial communities. To infer the structure of community-level metabolic interactions, BiomeNet applies a mixed-membership modelling framework to enzyme abundance information. The basic idea is that the mixture components of the model (metabolic reactions, subnetworks, and networks) are shared across all groups (microbiome samples), but the mixture proportions vary from group to group. Through this framework, the model can capture nested structures within the data. BiomeNet is unique in modeling each metagenome sample as a mixture of complex metabolic systems (metabosystems). The metabosystems are composed of mixtures of tightly connected metabolic subnetworks. BiomeNet differs from other unsupervised methods by allowing researchers to discriminate groups of samples through the metabolic patterns it discovers in the data, and by providing a framework for interpreting them. We describe a collapsed Gibbs sampler for inference of the mixture weights under BiomeNet, and we use simulation to validate the inference algorithm. Application of BiomeNet to human gut metagenomes revealed a metabosystem with greater prevalence among inflammatory bowel disease (IBD) patients. Based on the discriminatory subnetworks for this metabosystem, we inferred that the community is likely to be closely associated with the human gut epithelium, resistant to dietary interventions, and interfere with human uptake of an antioxidant connected to IBD. Because this metabosystem has a greater capacity to exploit host-associated glycans, we speculate that IBD-associated communities might arise from opportunist growth of bacteria that can circumvent the host's nutrient-based mechanism for bacterial partner selection. PMID:25412107
Teaching Bayesian Statistics to Undergraduate Students through Debates
ERIC Educational Resources Information Center
Stewart, Sepideh; Stewart, Wayne
2014-01-01
This paper describes a lecturer's approach to teaching Bayesian statistics to students who were only exposed to the classical paradigm. The study shows how the lecturer extended himself by making use of ventriloquist dolls to grab hold of students' attention and embed important ideas in revealing the differences between the Bayesian and classical…
Specificity and timescales of cortical adaptation as inferences about natural movie statistics.
Snow, Michoel; Coen-Cagli, Ruben; Schwartz, Odelia
2016-10-01
Adaptation is a phenomenological umbrella term under which a variety of temporal contextual effects are grouped. Previous models have shown that some aspects of visual adaptation reflect optimal processing of dynamic visual inputs, suggesting that adaptation should be tuned to the properties of natural visual inputs. However, the link between natural dynamic inputs and adaptation is poorly understood. Here, we extend a previously developed Bayesian modeling framework for spatial contextual effects to the temporal domain. The model learns temporal statistical regularities of natural movies and links these statistics to adaptation in primary visual cortex via divisive normalization, a ubiquitous neural computation. In particular, the model divisively normalizes the present visual input by the past visual inputs only to the degree that these are inferred to be statistically dependent. We show that this flexible form of normalization reproduces classical findings on how brief adaptation affects neuronal selectivity. Furthermore, prior knowledge acquired by the Bayesian model from natural movies can be modified by prolonged exposure to novel visual stimuli. We show that this updating can explain classical results on contrast adaptation. We also simulate the recent finding that adaptation maintains population homeostasis, namely, a balanced level of activity across a population of neurons with different orientation preferences. Consistent with previous disparate observations, our work further clarifies the influence of stimulus-specific and neuronal-specific normalization signals in adaptation.
Specificity and timescales of cortical adaptation as inferences about natural movie statistics
Snow, Michoel; Coen-Cagli, Ruben; Schwartz, Odelia
2016-01-01
Adaptation is a phenomenological umbrella term under which a variety of temporal contextual effects are grouped. Previous models have shown that some aspects of visual adaptation reflect optimal processing of dynamic visual inputs, suggesting that adaptation should be tuned to the properties of natural visual inputs. However, the link between natural dynamic inputs and adaptation is poorly understood. Here, we extend a previously developed Bayesian modeling framework for spatial contextual effects to the temporal domain. The model learns temporal statistical regularities of natural movies and links these statistics to adaptation in primary visual cortex via divisive normalization, a ubiquitous neural computation. In particular, the model divisively normalizes the present visual input by the past visual inputs only to the degree that these are inferred to be statistically dependent. We show that this flexible form of normalization reproduces classical findings on how brief adaptation affects neuronal selectivity. Furthermore, prior knowledge acquired by the Bayesian model from natural movies can be modified by prolonged exposure to novel visual stimuli. We show that this updating can explain classical results on contrast adaptation. We also simulate the recent finding that adaptation maintains population homeostasis, namely, a balanced level of activity across a population of neurons with different orientation preferences. Consistent with previous disparate observations, our work further clarifies the influence of stimulus-specific and neuronal-specific normalization signals in adaptation. PMID:27699416
Model-based Bayesian inference for ROC data analysis
NASA Astrophysics Data System (ADS)
Lei, Tianhu; Bae, K. Ty
2013-03-01
This paper presents a study of model-based Bayesian inference to Receiver Operating Characteristics (ROC) data. The model is a simple version of general non-linear regression model. Different from Dorfman model, it uses a probit link function with a covariate variable having zero-one two values to express binormal distributions in a single formula. Model also includes a scale parameter. Bayesian inference is implemented by Markov Chain Monte Carlo (MCMC) method carried out by Bayesian analysis Using Gibbs Sampling (BUGS). Contrast to the classical statistical theory, Bayesian approach considers model parameters as random variables characterized by prior distributions. With substantial amount of simulated samples generated by sampling algorithm, posterior distributions of parameters as well as parameters themselves can be accurately estimated. MCMC-based BUGS adopts Adaptive Rejection Sampling (ARS) protocol which requires the probability density function (pdf) which samples are drawing from be log concave with respect to the targeted parameters. Our study corrects a common misconception and proves that pdf of this regression model is log concave with respect to its scale parameter. Therefore, ARS's requirement is satisfied and a Gaussian prior which is conjugate and possesses many analytic and computational advantages is assigned to the scale parameter. A cohort of 20 simulated data sets and 20 simulations from each data set are used in our study. Output analysis and convergence diagnostics for MCMC method are assessed by CODA package. Models and methods by using continuous Gaussian prior and discrete categorical prior are compared. Intensive simulations and performance measures are given to illustrate our practice in the framework of model-based Bayesian inference using MCMC method.
NASA Astrophysics Data System (ADS)
Khawaja, Taimoor Saleem
A high-belief low-overhead Prognostics and Health Management (PHM) system is desired for online real-time monitoring of complex non-linear systems operating in a complex (possibly non-Gaussian) noise environment. This thesis presents a Bayesian Least Squares Support Vector Machine (LS-SVM) based framework for fault diagnosis and failure prognosis in nonlinear non-Gaussian systems. The methodology assumes the availability of real-time process measurements, definition of a set of fault indicators and the existence of empirical knowledge (or historical data) to characterize both nominal and abnormal operating conditions. An efficient yet powerful Least Squares Support Vector Machine (LS-SVM) algorithm, set within a Bayesian Inference framework, not only allows for the development of real-time algorithms for diagnosis and prognosis but also provides a solid theoretical framework to address key concepts related to classification for diagnosis and regression modeling for prognosis. SVM machines are founded on the principle of Structural Risk Minimization (SRM) which tends to find a good trade-off between low empirical risk and small capacity. The key features in SVM are the use of non-linear kernels, the absence of local minima, the sparseness of the solution and the capacity control obtained by optimizing the margin. The Bayesian Inference framework linked with LS-SVMs allows a probabilistic interpretation of the results for diagnosis and prognosis. Additional levels of inference provide the much coveted features of adaptability and tunability of the modeling parameters. The two main modules considered in this research are fault diagnosis and failure prognosis. With the goal of designing an efficient and reliable fault diagnosis scheme, a novel Anomaly Detector is suggested based on the LS-SVM machines. The proposed scheme uses only baseline data to construct a 1-class LS-SVM machine which, when presented with online data is able to distinguish between normal behavior and any abnormal or novel data during real-time operation. The results of the scheme are interpreted as a posterior probability of health (1 - probability of fault). As shown through two case studies in Chapter 3, the scheme is well suited for diagnosing imminent faults in dynamical non-linear systems. Finally, the failure prognosis scheme is based on an incremental weighted Bayesian LS-SVR machine. It is particularly suited for online deployment given the incremental nature of the algorithm and the quick optimization problem solved in the LS-SVR algorithm. By way of kernelization and a Gaussian Mixture Modeling (GMM) scheme, the algorithm can estimate "possibly" non-Gaussian posterior distributions for complex non-linear systems. An efficient regression scheme associated with the more rigorous core algorithm allows for long-term predictions, fault growth estimation with confidence bounds and remaining useful life (RUL) estimation after a fault is detected. The leading contributions of this thesis are (a) the development of a novel Bayesian Anomaly Detector for efficient and reliable Fault Detection and Identification (FDI) based on Least Squares Support Vector Machines, (b) the development of a data-driven real-time architecture for long-term Failure Prognosis using Least Squares Support Vector Machines, (c) Uncertainty representation and management using Bayesian Inference for posterior distribution estimation and hyper-parameter tuning, and finally (d) the statistical characterization of the performance of diagnosis and prognosis algorithms in order to relate the efficiency and reliability of the proposed schemes.
Bayesian Framework for Water Quality Model Uncertainty Estimation and Risk Management
A formal Bayesian methodology is presented for integrated model calibration and risk-based water quality management using Bayesian Monte Carlo simulation and maximum likelihood estimation (BMCML). The primary focus is on lucid integration of model calibration with risk-based wat...
Cyber-T web server: differential analysis of high-throughput data.
Kayala, Matthew A; Baldi, Pierre
2012-07-01
The Bayesian regularization method for high-throughput differential analysis, described in Baldi and Long (A Bayesian framework for the analysis of microarray expression data: regularized t-test and statistical inferences of gene changes. Bioinformatics 2001: 17: 509-519) and implemented in the Cyber-T web server, is one of the most widely validated. Cyber-T implements a t-test using a Bayesian framework to compute a regularized variance of the measurements associated with each probe under each condition. This regularized estimate is derived by flexibly combining the empirical measurements with a prior, or background, derived from pooling measurements associated with probes in the same neighborhood. This approach flexibly addresses problems associated with low replication levels and technology biases, not only for DNA microarrays, but also for other technologies, such as protein arrays, quantitative mass spectrometry and next-generation sequencing (RNA-seq). Here we present an update to the Cyber-T web server, incorporating several useful new additions and improvements. Several preprocessing data normalization options including logarithmic and (Variance Stabilizing Normalization) VSN transforms are included. To augment two-sample t-tests, a one-way analysis of variance is implemented. Several methods for multiple tests correction, including standard frequentist methods and a probabilistic mixture model treatment, are available. Diagnostic plots allow visual assessment of the results. The web server provides comprehensive documentation and example data sets. The Cyber-T web server, with R source code and data sets, is publicly available at http://cybert.ics.uci.edu/.
NASA Astrophysics Data System (ADS)
Olson, R.; Evans, J. P.; Fan, Y.
2015-12-01
NARCliM (NSW/ACT Regional Climate Modelling Project) is a regional climate project for Australia and the surrounding region. It dynamically downscales 4 General Circulation Models (GCMs) using three Regional Climate Models (RCMs) to provide climate projections for the CORDEX-AustralAsia region at 50 km resolution, and for south-east Australia at 10 km resolution. The project differs from previous work in the level of sophistication of model selection. Specifically, the selection process for GCMs included (i) conducting literature review to evaluate model performance, (ii) analysing model independence, and (iii) selecting models that span future temperature and precipitation change space. RCMs for downscaling the GCMs were chosen based on their performance for several precipitation events over South-East Australia, and on model independence.Bayesian Model Averaging (BMA) provides a statistically consistent framework for weighing the models based on their likelihood given the available observations. These weights are used to provide probability distribution functions (pdfs) for model projections. We develop a BMA framework for constructing probabilistic climate projections for spatially-averaged variables from the NARCliM project. The first step in the procedure is smoothing model output in order to exclude the influence of internal climate variability. Our statistical model for model-observations residuals is a homoskedastic iid process. Comparing RCMs with Australian Water Availability Project (AWAP) observations is used to determine model weights through Monte Carlo integration. Posterior pdfs of statistical parameters of model-data residuals are obtained using Markov Chain Monte Carlo. The uncertainty in the properties of the model-data residuals is fully accounted for when constructing the projections. We present the preliminary results of the BMA analysis for yearly maximum temperature for New South Wales state planning regions for the period 2060-2079.
Analysis of nasopharyngeal carcinoma risk factors with Bayesian networks.
Aussem, Alex; de Morais, Sérgio Rodrigues; Corbex, Marilys
2012-01-01
We propose a new graphical framework for extracting the relevant dietary, social and environmental risk factors that are associated with an increased risk of nasopharyngeal carcinoma (NPC) on a case-control epidemiologic study that consists of 1289 subjects and 150 risk factors. This framework builds on the use of Bayesian networks (BNs) for representing statistical dependencies between the random variables. We discuss a novel constraint-based procedure, called Hybrid Parents and Children (HPC), that builds recursively a local graph that includes all the relevant features statistically associated to the NPC, without having to find the whole BN first. The local graph is afterwards directed by the domain expert according to his knowledge. It provides a statistical profile of the recruited population, and meanwhile helps identify the risk factors associated to NPC. Extensive experiments on synthetic data sampled from known BNs show that the HPC outperforms state-of-the-art algorithms that appeared in the recent literature. From a biological perspective, the present study confirms that chemical products, pesticides and domestic fume intake from incomplete combustion of coal and wood are significantly associated with NPC risk. These results suggest that industrial workers are often exposed to noxious chemicals and poisonous substances that are used in the course of manufacturing. This study also supports previous findings that the consumption of a number of preserved food items, like house made proteins and sheep fat, are a major risk factor for NPC. BNs are valuable data mining tools for the analysis of epidemiologic data. They can explicitly combine both expert knowledge from the field and information inferred from the data. These techniques therefore merit consideration as valuable alternatives to traditional multivariate regression techniques in epidemiologic studies. Copyright © 2011 Elsevier B.V. All rights reserved.
Das, Dev Kumar; Ghosh, Madhumala; Pal, Mallika; Maiti, Asok K; Chakraborty, Chandan
2013-02-01
The aim of this paper is to address the development of computer assisted malaria parasite characterization and classification using machine learning approach based on light microscopic images of peripheral blood smears. In doing this, microscopic image acquisition from stained slides, illumination correction and noise reduction, erythrocyte segmentation, feature extraction, feature selection and finally classification of different stages of malaria (Plasmodium vivax and Plasmodium falciparum) have been investigated. The erythrocytes are segmented using marker controlled watershed transformation and subsequently total ninety six features describing shape-size and texture of erythrocytes are extracted in respect to the parasitemia infected versus non-infected cells. Ninety four features are found to be statistically significant in discriminating six classes. Here a feature selection-cum-classification scheme has been devised by combining F-statistic, statistical learning techniques i.e., Bayesian learning and support vector machine (SVM) in order to provide the higher classification accuracy using best set of discriminating features. Results show that Bayesian approach provides the highest accuracy i.e., 84% for malaria classification by selecting 19 most significant features while SVM provides highest accuracy i.e., 83.5% with 9 most significant features. Finally, the performance of these two classifiers under feature selection framework has been compared toward malaria parasite classification. Copyright © 2012 Elsevier Ltd. All rights reserved.
Bayesian phylogenetic estimation of fossil ages.
Drummond, Alexei J; Stadler, Tanja
2016-07-19
Recent advances have allowed for both morphological fossil evidence and molecular sequences to be integrated into a single combined inference of divergence dates under the rule of Bayesian probability. In particular, the fossilized birth-death tree prior and the Lewis-Mk model of discrete morphological evolution allow for the estimation of both divergence times and phylogenetic relationships between fossil and extant taxa. We exploit this statistical framework to investigate the internal consistency of these models by producing phylogenetic estimates of the age of each fossil in turn, within two rich and well-characterized datasets of fossil and extant species (penguins and canids). We find that the estimation accuracy of fossil ages is generally high with credible intervals seldom excluding the true age and median relative error in the two datasets of 5.7% and 13.2%, respectively. The median relative standard error (RSD) was 9.2% and 7.2%, respectively, suggesting good precision, although with some outliers. In fact, in the two datasets we analyse, the phylogenetic estimate of fossil age is on average less than 2 Myr from the mid-point age of the geological strata from which it was excavated. The high level of internal consistency found in our analyses suggests that the Bayesian statistical model employed is an adequate fit for both the geological and morphological data, and provides evidence from real data that the framework used can accurately model the evolution of discrete morphological traits coded from fossil and extant taxa. We anticipate that this approach will have diverse applications beyond divergence time dating, including dating fossils that are temporally unconstrained, testing of the 'morphological clock', and for uncovering potential model misspecification and/or data errors when controversial phylogenetic hypotheses are obtained based on combined divergence dating analyses.This article is part of the themed issue 'Dating species divergences using rocks and clocks'. © 2016 The Authors.
Bayesian phylogenetic estimation of fossil ages
Drummond, Alexei J.; Stadler, Tanja
2016-01-01
Recent advances have allowed for both morphological fossil evidence and molecular sequences to be integrated into a single combined inference of divergence dates under the rule of Bayesian probability. In particular, the fossilized birth–death tree prior and the Lewis-Mk model of discrete morphological evolution allow for the estimation of both divergence times and phylogenetic relationships between fossil and extant taxa. We exploit this statistical framework to investigate the internal consistency of these models by producing phylogenetic estimates of the age of each fossil in turn, within two rich and well-characterized datasets of fossil and extant species (penguins and canids). We find that the estimation accuracy of fossil ages is generally high with credible intervals seldom excluding the true age and median relative error in the two datasets of 5.7% and 13.2%, respectively. The median relative standard error (RSD) was 9.2% and 7.2%, respectively, suggesting good precision, although with some outliers. In fact, in the two datasets we analyse, the phylogenetic estimate of fossil age is on average less than 2 Myr from the mid-point age of the geological strata from which it was excavated. The high level of internal consistency found in our analyses suggests that the Bayesian statistical model employed is an adequate fit for both the geological and morphological data, and provides evidence from real data that the framework used can accurately model the evolution of discrete morphological traits coded from fossil and extant taxa. We anticipate that this approach will have diverse applications beyond divergence time dating, including dating fossils that are temporally unconstrained, testing of the ‘morphological clock', and for uncovering potential model misspecification and/or data errors when controversial phylogenetic hypotheses are obtained based on combined divergence dating analyses. This article is part of the themed issue ‘Dating species divergences using rocks and clocks’. PMID:27325827
ERIC Educational Resources Information Center
Griffiths, Thomas L.; Chater, Nick; Norris, Dennis; Pouget, Alexandre
2012-01-01
Bowers and Davis (2012) criticize Bayesian modelers for telling "just so" stories about cognition and neuroscience. Their criticisms are weakened by not giving an accurate characterization of the motivation behind Bayesian modeling or the ways in which Bayesian models are used and by not evaluating this theoretical framework against specific…
Skelly, Daniel A.; Johansson, Marnie; Madeoy, Jennifer; Wakefield, Jon; Akey, Joshua M.
2011-01-01
Variation in gene expression is thought to make a significant contribution to phenotypic diversity among individuals within populations. Although high-throughput cDNA sequencing offers a unique opportunity to delineate the genome-wide architecture of regulatory variation, new statistical methods need to be developed to capitalize on the wealth of information contained in RNA-seq data sets. To this end, we developed a powerful and flexible hierarchical Bayesian model that combines information across loci to allow both global and locus-specific inferences about allele-specific expression (ASE). We applied our methodology to a large RNA-seq data set obtained in a diploid hybrid of two diverse Saccharomyces cerevisiae strains, as well as to RNA-seq data from an individual human genome. Our statistical framework accurately quantifies levels of ASE with specified false-discovery rates, achieving high reproducibility between independent sequencing platforms. We pinpoint loci that show unusual and biologically interesting patterns of ASE, including allele-specific alternative splicing and transcription termination sites. Our methodology provides a rigorous, quantitative, and high-resolution tool for profiling ASE across whole genomes. PMID:21873452
XID+: Next generation XID development
NASA Astrophysics Data System (ADS)
Hurley, Peter
2017-04-01
XID+ is a prior-based source extraction tool which carries out photometry in the Herschel SPIRE (Spectral and Photometric Imaging Receiver) maps at the positions of known sources. It uses a probabilistic Bayesian framework that provides a natural framework in which to include prior information, and uses the Bayesian inference tool Stan to obtain the full posterior probability distribution on flux estimates.
Bayes in biological anthropology.
Konigsberg, Lyle W; Frankenberg, Susan R
2013-12-01
In this article, we both contend and illustrate that biological anthropologists, particularly in the Americas, often think like Bayesians but act like frequentists when it comes to analyzing a wide variety of data. In other words, while our research goals and perspectives are rooted in probabilistic thinking and rest on prior knowledge, we often proceed to use statistical hypothesis tests and confidence interval methods unrelated (or tenuously related) to the research questions of interest. We advocate for applying Bayesian analyses to a number of different bioanthropological questions, especially since many of the programming and computational challenges to doing so have been overcome in the past two decades. To facilitate such applications, this article explains Bayesian principles and concepts, and provides concrete examples of Bayesian computer simulations and statistics that address questions relevant to biological anthropology, focusing particularly on bioarchaeology and forensic anthropology. It also simultaneously reviews the use of Bayesian methods and inference within the discipline to date. This article is intended to act as primer to Bayesian methods and inference in biological anthropology, explaining the relationships of various methods to likelihoods or probabilities and to classical statistical models. Our contention is not that traditional frequentist statistics should be rejected outright, but that there are many situations where biological anthropology is better served by taking a Bayesian approach. To this end it is hoped that the examples provided in this article will assist researchers in choosing from among the broad array of statistical methods currently available. Copyright © 2013 Wiley Periodicals, Inc.
Bayesian statistics in radionuclide metrology: measurement of a decaying source
NASA Astrophysics Data System (ADS)
Bochud, François O.; Bailat, Claude J.; Laedermann, Jean-Pascal
2007-08-01
The most intuitive way of defining a probability is perhaps through the frequency at which it appears when a large number of trials are realized in identical conditions. The probability derived from the obtained histogram characterizes the so-called frequentist or conventional statistical approach. In this sense, probability is defined as a physical property of the observed system. By contrast, in Bayesian statistics, a probability is not a physical property or a directly observable quantity, but a degree of belief or an element of inference. The goal of this paper is to show how Bayesian statistics can be used in radionuclide metrology and what its advantages and disadvantages are compared with conventional statistics. This is performed through the example of an yttrium-90 source typically encountered in environmental surveillance measurement. Because of the very low activity of this kind of source and the small half-life of the radionuclide, this measurement takes several days, during which the source decays significantly. Several methods are proposed to compute simultaneously the number of unstable nuclei at a given reference time, the decay constant and the background. Asymptotically, all approaches give the same result. However, Bayesian statistics produces coherent estimates and confidence intervals in a much smaller number of measurements. Apart from the conceptual understanding of statistics, the main difficulty that could deter radionuclide metrologists from using Bayesian statistics is the complexity of the computation.
Periodic benefit-risk assessment using Bayesian stochastic multi-criteria acceptability analysis
Li, Kan; Yuan, Shuai Sammy; Wang, William; Wan, Shuyan Sabrina; Ceesay, Paulette; Heyse, Joseph F.; Mt-Isa, Shahrul; Luo, Sheng
2018-01-01
Benefit-risk (BR) assessment is essential to ensure the best decisions are made for a medical product in the clinical development process, regulatory marketing authorization, post-market surveillance, and coverage and reimbursement decisions. One challenge of BR assessment in practice is that the benefit and risk profile may keep evolving while new evidence is accumulating. Regulators and the International Conference on Harmonization (ICH) recommend performing periodic benefit-risk evaluation report (PBRER) through the product's lifecycle. In this paper, we propose a general statistical framework for periodic benefit-risk assessment, in which Bayesian meta-analysis and stochastic multi-criteria acceptability analysis (SMAA) will be combined to synthesize the accumulating evidence. The proposed approach allows us to compare the acceptability of different drugs dynamically and effectively and accounts for the uncertainty of clinical measurements and imprecise or incomplete preference information of decision makers. We apply our approaches to two real examples in a post-hoc way for illustration purpose. The proposed method may easily be modified for other pre and post market settings, and thus be an important complement to the current structured benefit-risk assessment (sBRA) framework to improve the transparent and consistency of the decision-making process. PMID:29505866
Testolin, Alberto; Zorzi, Marco
2016-01-01
Connectionist models can be characterized within the more general framework of probabilistic graphical models, which allow to efficiently describe complex statistical distributions involving a large number of interacting variables. This integration allows building more realistic computational models of cognitive functions, which more faithfully reflect the underlying neural mechanisms at the same time providing a useful bridge to higher-level descriptions in terms of Bayesian computations. Here we discuss a powerful class of graphical models that can be implemented as stochastic, generative neural networks. These models overcome many limitations associated with classic connectionist models, for example by exploiting unsupervised learning in hierarchical architectures (deep networks) and by taking into account top-down, predictive processing supported by feedback loops. We review some recent cognitive models based on generative networks, and we point out promising research directions to investigate neuropsychological disorders within this approach. Though further efforts are required in order to fill the gap between structured Bayesian models and more realistic, biophysical models of neuronal dynamics, we argue that generative neural networks have the potential to bridge these levels of analysis, thereby improving our understanding of the neural bases of cognition and of pathologies caused by brain damage. PMID:27468262
Structural and parameteric uncertainty quantification in cloud microphysics parameterization schemes
NASA Astrophysics Data System (ADS)
van Lier-Walqui, M.; Morrison, H.; Kumjian, M. R.; Prat, O. P.; Martinkus, C.
2017-12-01
Atmospheric model parameterization schemes employ approximations to represent the effects of unresolved processes. These approximations are a source of error in forecasts, caused in part by considerable uncertainty about the optimal value of parameters within each scheme -- parameteric uncertainty. Furthermore, there is uncertainty regarding the best choice of the overarching structure of the parameterization scheme -- structrual uncertainty. Parameter estimation can constrain the first, but may struggle with the second because structural choices are typically discrete. We address this problem in the context of cloud microphysics parameterization schemes by creating a flexible framework wherein structural and parametric uncertainties can be simultaneously constrained. Our scheme makes no assuptions about drop size distribution shape or the functional form of parametrized process rate terms. Instead, these uncertainties are constrained by observations using a Markov Chain Monte Carlo sampler within a Bayesian inference framework. Our scheme, the Bayesian Observationally-constrained Statistical-physical Scheme (BOSS), has flexibility to predict various sets of prognostic drop size distribution moments as well as varying complexity of process rate formulations. We compare idealized probabilistic forecasts from versions of BOSS with varying levels of structural complexity. This work has applications in ensemble forecasts with model physics uncertainty, data assimilation, and cloud microphysics process studies.
Algorithmic procedures for Bayesian MEG/EEG source reconstruction in SPM.
López, J D; Litvak, V; Espinosa, J J; Friston, K; Barnes, G R
2014-01-01
The MEG/EEG inverse problem is ill-posed, giving different source reconstructions depending on the initial assumption sets. Parametric Empirical Bayes allows one to implement most popular MEG/EEG inversion schemes (Minimum Norm, LORETA, etc.) within the same generic Bayesian framework. It also provides a cost-function in terms of the variational Free energy-an approximation to the marginal likelihood or evidence of the solution. In this manuscript, we revisit the algorithm for MEG/EEG source reconstruction with a view to providing a didactic and practical guide. The aim is to promote and help standardise the development and consolidation of other schemes within the same framework. We describe the implementation in the Statistical Parametric Mapping (SPM) software package, carefully explaining each of its stages with the help of a simple simulated data example. We focus on the Multiple Sparse Priors (MSP) model, which we compare with the well-known Minimum Norm and LORETA models, using the negative variational Free energy for model comparison. The manuscript is accompanied by Matlab scripts to allow the reader to test and explore the underlying algorithm. © 2013. Published by Elsevier Inc. All rights reserved.
Error-in-variables models in calibration
NASA Astrophysics Data System (ADS)
Lira, I.; Grientschnig, D.
2017-12-01
In many calibration operations, the stimuli applied to the measuring system or instrument under test are derived from measurement standards whose values may be considered to be perfectly known. In that case, it is assumed that calibration uncertainty arises solely from inexact measurement of the responses, from imperfect control of the calibration process and from the possible inaccuracy of the calibration model. However, the premise that the stimuli are completely known is never strictly fulfilled and in some instances it may be grossly inadequate. Then, error-in-variables (EIV) regression models have to be employed. In metrology, these models have been approached mostly from the frequentist perspective. In contrast, not much guidance is available on their Bayesian analysis. In this paper, we first present a brief summary of the conventional statistical techniques that have been developed to deal with EIV models in calibration. We then proceed to discuss the alternative Bayesian framework under some simplifying assumptions. Through a detailed example about the calibration of an instrument for measuring flow rates, we provide advice on how the user of the calibration function should employ the latter framework for inferring the stimulus acting on the calibrated device when, in use, a certain response is measured.
Testolin, Alberto; Zorzi, Marco
2016-01-01
Connectionist models can be characterized within the more general framework of probabilistic graphical models, which allow to efficiently describe complex statistical distributions involving a large number of interacting variables. This integration allows building more realistic computational models of cognitive functions, which more faithfully reflect the underlying neural mechanisms at the same time providing a useful bridge to higher-level descriptions in terms of Bayesian computations. Here we discuss a powerful class of graphical models that can be implemented as stochastic, generative neural networks. These models overcome many limitations associated with classic connectionist models, for example by exploiting unsupervised learning in hierarchical architectures (deep networks) and by taking into account top-down, predictive processing supported by feedback loops. We review some recent cognitive models based on generative networks, and we point out promising research directions to investigate neuropsychological disorders within this approach. Though further efforts are required in order to fill the gap between structured Bayesian models and more realistic, biophysical models of neuronal dynamics, we argue that generative neural networks have the potential to bridge these levels of analysis, thereby improving our understanding of the neural bases of cognition and of pathologies caused by brain damage.
Bayesian analysis of rare events
NASA Astrophysics Data System (ADS)
Straub, Daniel; Papaioannou, Iason; Betz, Wolfgang
2016-06-01
In many areas of engineering and science there is an interest in predicting the probability of rare events, in particular in applications related to safety and security. Increasingly, such predictions are made through computer models of physical systems in an uncertainty quantification framework. Additionally, with advances in IT, monitoring and sensor technology, an increasing amount of data on the performance of the systems is collected. This data can be used to reduce uncertainty, improve the probability estimates and consequently enhance the management of rare events and associated risks. Bayesian analysis is the ideal method to include the data into the probabilistic model. It ensures a consistent probabilistic treatment of uncertainty, which is central in the prediction of rare events, where extrapolation from the domain of observation is common. We present a framework for performing Bayesian updating of rare event probabilities, termed BUS. It is based on a reinterpretation of the classical rejection-sampling approach to Bayesian analysis, which enables the use of established methods for estimating probabilities of rare events. By drawing upon these methods, the framework makes use of their computational efficiency. These methods include the First-Order Reliability Method (FORM), tailored importance sampling (IS) methods and Subset Simulation (SuS). In this contribution, we briefly review these methods in the context of the BUS framework and investigate their applicability to Bayesian analysis of rare events in different settings. We find that, for some applications, FORM can be highly efficient and is surprisingly accurate, enabling Bayesian analysis of rare events with just a few model evaluations. In a general setting, BUS implemented through IS and SuS is more robust and flexible.
NASA Astrophysics Data System (ADS)
Hadjidoukas, P. E.; Angelikopoulos, P.; Papadimitriou, C.; Koumoutsakos, P.
2015-03-01
We present Π4U, an extensible framework, for non-intrusive Bayesian Uncertainty Quantification and Propagation (UQ+P) of complex and computationally demanding physical models, that can exploit massively parallel computer architectures. The framework incorporates Laplace asymptotic approximations as well as stochastic algorithms, along with distributed numerical differentiation and task-based parallelism for heterogeneous clusters. Sampling is based on the Transitional Markov Chain Monte Carlo (TMCMC) algorithm and its variants. The optimization tasks associated with the asymptotic approximations are treated via the Covariance Matrix Adaptation Evolution Strategy (CMA-ES). A modified subset simulation method is used for posterior reliability measurements of rare events. The framework accommodates scheduling of multiple physical model evaluations based on an adaptive load balancing library and shows excellent scalability. In addition to the software framework, we also provide guidelines as to the applicability and efficiency of Bayesian tools when applied to computationally demanding physical models. Theoretical and computational developments are demonstrated with applications drawn from molecular dynamics, structural dynamics and granular flow.
Bayesian methods for characterizing unknown parameters of material models
Emery, J. M.; Grigoriu, M. D.; Field Jr., R. V.
2016-02-04
A Bayesian framework is developed for characterizing the unknown parameters of probabilistic models for material properties. In this framework, the unknown parameters are viewed as random and described by their posterior distributions obtained from prior information and measurements of quantities of interest that are observable and depend on the unknown parameters. The proposed Bayesian method is applied to characterize an unknown spatial correlation of the conductivity field in the definition of a stochastic transport equation and to solve this equation by Monte Carlo simulation and stochastic reduced order models (SROMs). As a result, the Bayesian method is also employed tomore » characterize unknown parameters of material properties for laser welds from measurements of peak forces sustained by these welds.« less
Bayesian methods for characterizing unknown parameters of material models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Emery, J. M.; Grigoriu, M. D.; Field Jr., R. V.
A Bayesian framework is developed for characterizing the unknown parameters of probabilistic models for material properties. In this framework, the unknown parameters are viewed as random and described by their posterior distributions obtained from prior information and measurements of quantities of interest that are observable and depend on the unknown parameters. The proposed Bayesian method is applied to characterize an unknown spatial correlation of the conductivity field in the definition of a stochastic transport equation and to solve this equation by Monte Carlo simulation and stochastic reduced order models (SROMs). As a result, the Bayesian method is also employed tomore » characterize unknown parameters of material properties for laser welds from measurements of peak forces sustained by these welds.« less
A Bayesian test for Hardy–Weinberg equilibrium of biallelic X-chromosomal markers
Puig, X; Ginebra, J; Graffelman, J
2017-01-01
The X chromosome is a relatively large chromosome, harboring a lot of genetic information. Much of the statistical analysis of X-chromosomal information is complicated by the fact that males only have one copy. Recently, frequentist statistical tests for Hardy–Weinberg equilibrium have been proposed specifically for dealing with markers on the X chromosome. Bayesian test procedures for Hardy–Weinberg equilibrium for the autosomes have been described, but Bayesian work on the X chromosome in this context is lacking. This paper gives the first Bayesian approach for testing Hardy–Weinberg equilibrium with biallelic markers at the X chromosome. Marginal and joint posterior distributions for the inbreeding coefficient in females and the male to female allele frequency ratio are computed, and used for statistical inference. The paper gives a detailed account of the proposed Bayesian test, and illustrates it with data from the 1000 Genomes project. In that implementation, a novel approach to tackle multiple testing from a Bayesian perspective through posterior predictive checks is used. PMID:28900292
The Bayesian boom: good thing or bad?
Hahn, Ulrike
2014-01-01
A series of high-profile critiques of Bayesian models of cognition have recently sparked controversy. These critiques question the contribution of rational, normative considerations in the study of cognition. The present article takes central claims from these critiques and evaluates them in light of specific models. Closer consideration of actual examples of Bayesian treatments of different cognitive phenomena allows one to defuse these critiques showing that they cannot be sustained across the diversity of applications of the Bayesian framework for cognitive modeling. More generally, there is nothing in the Bayesian framework that would inherently give rise to the deficits that these critiques perceive, suggesting they have been framed at the wrong level of generality. At the same time, the examples are used to demonstrate the different ways in which consideration of rationality uniquely benefits both theory and practice in the study of cognition. PMID:25152738
A Bayesian paradigm for decision-making in proof-of-concept trials.
Pulkstenis, Erik; Patra, Kaushik; Zhang, Jianliang
2017-01-01
Decision-making is central to every phase of drug development, and especially at the proof of concept stage where risk and evidence must be weighed carefully, often in the presence of significant uncertainty. The decision to proceed or not to large expensive Phase 3 trials has significant implications to both patients and sponsors alike. Recent experience has shown that Phase 3 failure rates remain high. We present a flexible Bayesian quantitative decision-making paradigm that evaluates evidence relative to achieving a multilevel target product profile. A framework for operating characteristics is provided that allows the drug developer to design a proof-of-concept trial in light of its ability to support decision-making rather than merely achieve statistical significance. Operating characteristics are shown to be superior to traditional p-value-based methods. In addition, discussion related to sample size considerations, application to interim futility analysis and incorporation of prior historical information is evaluated.
Modeling error distributions of growth curve models through Bayesian methods.
Zhang, Zhiyong
2016-06-01
Growth curve models are widely used in social and behavioral sciences. However, typical growth curve models often assume that the errors are normally distributed although non-normal data may be even more common than normal data. In order to avoid possible statistical inference problems in blindly assuming normality, a general Bayesian framework is proposed to flexibly model normal and non-normal data through the explicit specification of the error distributions. A simulation study shows when the distribution of the error is correctly specified, one can avoid the loss in the efficiency of standard error estimates. A real example on the analysis of mathematical ability growth data from the Early Childhood Longitudinal Study, Kindergarten Class of 1998-99 is used to show the application of the proposed methods. Instructions and code on how to conduct growth curve analysis with both normal and non-normal error distributions using the the MCMC procedure of SAS are provided.
Douali, Nassim; Csaba, Huszka; De Roo, Jos; Papageorgiou, Elpiniki I; Jaulent, Marie-Christine
2014-01-01
Several studies have described the prevalence and severity of diagnostic errors. Diagnostic errors can arise from cognitive, training, educational and other issues. Examples of cognitive issues include flawed reasoning, incomplete knowledge, faulty information gathering or interpretation, and inappropriate use of decision-making heuristics. We describe a new approach, case-based fuzzy cognitive maps, for medical diagnosis and evaluate it by comparison with Bayesian belief networks. We created a semantic web framework that supports the two reasoning methods. We used database of 174 anonymous patients from several European hospitals: 80 of the patients were female and 94 male with an average age 45±16 (average±stdev). Thirty of the 80 female patients were pregnant. For each patient, signs/symptoms/observables/age/sex were taken into account by the system. We used a statistical approach to compare the two methods. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
PGT: A Statistical Approach to Prediction and Mechanism Design
NASA Astrophysics Data System (ADS)
Wolpert, David H.; Bono, James W.
One of the biggest challenges facing behavioral economics is the lack of a single theoretical framework that is capable of directly utilizing all types of behavioral data. One of the biggest challenges of game theory is the lack of a framework for making predictions and designing markets in a manner that is consistent with the axioms of decision theory. An approach in which solution concepts are distribution-valued rather than set-valued (i.e. equilibrium theory) has both capabilities. We call this approach Predictive Game Theory (or PGT). This paper outlines a general Bayesian approach to PGT. It also presents one simple example to illustrate the way in which this approach differs from equilibrium approaches in both prediction and mechanism design settings.
Probabilistic Graphical Model Representation in Phylogenetics
Höhna, Sebastian; Heath, Tracy A.; Boussau, Bastien; Landis, Michael J.; Ronquist, Fredrik; Huelsenbeck, John P.
2014-01-01
Recent years have seen a rapid expansion of the model space explored in statistical phylogenetics, emphasizing the need for new approaches to statistical model representation and software development. Clear communication and representation of the chosen model is crucial for: (i) reproducibility of an analysis, (ii) model development, and (iii) software design. Moreover, a unified, clear and understandable framework for model representation lowers the barrier for beginners and nonspecialists to grasp complex phylogenetic models, including their assumptions and parameter/variable dependencies. Graphical modeling is a unifying framework that has gained in popularity in the statistical literature in recent years. The core idea is to break complex models into conditionally independent distributions. The strength lies in the comprehensibility, flexibility, and adaptability of this formalism, and the large body of computational work based on it. Graphical models are well-suited to teach statistical models, to facilitate communication among phylogeneticists and in the development of generic software for simulation and statistical inference. Here, we provide an introduction to graphical models for phylogeneticists and extend the standard graphical model representation to the realm of phylogenetics. We introduce a new graphical model component, tree plates, to capture the changing structure of the subgraph corresponding to a phylogenetic tree. We describe a range of phylogenetic models using the graphical model framework and introduce modules to simplify the representation of standard components in large and complex models. Phylogenetic model graphs can be readily used in simulation, maximum likelihood inference, and Bayesian inference using, for example, Metropolis–Hastings or Gibbs sampling of the posterior distribution. [Computation; graphical models; inference; modularization; statistical phylogenetics; tree plate.] PMID:24951559
NASA Astrophysics Data System (ADS)
Gong, Maozhen
Selecting an appropriate prior distribution is a fundamental issue in Bayesian Statistics. In this dissertation, under the framework provided by Berger and Bernardo, I derive the reference priors for several models which include: Analysis of Variance (ANOVA)/Analysis of Covariance (ANCOVA) models with a categorical variable under common ordering constraints, the conditionally autoregressive (CAR) models and the simultaneous autoregressive (SAR) models with a spatial autoregression parameter rho considered. The performances of reference priors for ANOVA/ANCOVA models are evaluated by simulation studies with comparisons to Jeffreys' prior and Least Squares Estimation (LSE). The priors are then illustrated in a Bayesian model of the "Risk of Type 2 Diabetes in New Mexico" data, where the relationship between the type 2 diabetes risk (through Hemoglobin A1c) and different smoking levels is investigated. In both simulation studies and real data set modeling, the reference priors that incorporate internal order information show good performances and can be used as default priors. The reference priors for the CAR and SAR models are also illustrated in the "1999 SAT State Average Verbal Scores" data with a comparison to a Uniform prior distribution. Due to the complexity of the reference priors for both CAR and SAR models, only a portion (12 states in the Midwest) of the original data set is considered. The reference priors can give a different marginal posterior distribution compared to a Uniform prior, which provides an alternative for prior specifications for areal data in Spatial statistics.
A Gentle Introduction to Bayesian Analysis: Applications to Developmental Research
ERIC Educational Resources Information Center
van de Schoot, Rens; Kaplan, David; Denissen, Jaap; Asendorpf, Jens B.; Neyer, Franz J.; van Aken, Marcel A. G.
2014-01-01
Bayesian statistical methods are becoming ever more popular in applied and fundamental research. In this study a gentle introduction to Bayesian analysis is provided. It is shown under what circumstances it is attractive to use Bayesian estimation, and how to interpret properly the results. First, the ingredients underlying Bayesian methods are…
Bartlett, Jonathan W; Keogh, Ruth H
2018-06-01
Bayesian approaches for handling covariate measurement error are well established and yet arguably are still relatively little used by researchers. For some this is likely due to unfamiliarity or disagreement with the Bayesian inferential paradigm. For others a contributory factor is the inability of standard statistical packages to perform such Bayesian analyses. In this paper, we first give an overview of the Bayesian approach to handling covariate measurement error, and contrast it with regression calibration, arguably the most commonly adopted approach. We then argue why the Bayesian approach has a number of statistical advantages compared to regression calibration and demonstrate that implementing the Bayesian approach is usually quite feasible for the analyst. Next, we describe the closely related maximum likelihood and multiple imputation approaches and explain why we believe the Bayesian approach to generally be preferable. We then empirically compare the frequentist properties of regression calibration and the Bayesian approach through simulation studies. The flexibility of the Bayesian approach to handle both measurement error and missing data is then illustrated through an analysis of data from the Third National Health and Nutrition Examination Survey.
A general framework for updating belief distributions.
Bissiri, P G; Holmes, C C; Walker, S G
2016-11-01
We propose a framework for general Bayesian inference. We argue that a valid update of a prior belief distribution to a posterior can be made for parameters which are connected to observations through a loss function rather than the traditional likelihood function, which is recovered as a special case. Modern application areas make it increasingly challenging for Bayesians to attempt to model the true data-generating mechanism. For instance, when the object of interest is low dimensional, such as a mean or median, it is cumbersome to have to achieve this via a complete model for the whole data distribution. More importantly, there are settings where the parameter of interest does not directly index a family of density functions and thus the Bayesian approach to learning about such parameters is currently regarded as problematic. Our framework uses loss functions to connect information in the data to functionals of interest. The updating of beliefs then follows from a decision theoretic approach involving cumulative loss functions. Importantly, the procedure coincides with Bayesian updating when a true likelihood is known yet provides coherent subjective inference in much more general settings. Connections to other inference frameworks are highlighted.
Interactive classification and content-based retrieval of tissue images
NASA Astrophysics Data System (ADS)
Aksoy, Selim; Marchisio, Giovanni B.; Tusk, Carsten; Koperski, Krzysztof
2002-11-01
We describe a system for interactive classification and retrieval of microscopic tissue images. Our system models tissues in pixel, region and image levels. Pixel level features are generated using unsupervised clustering of color and texture values. Region level features include shape information and statistics of pixel level feature values. Image level features include statistics and spatial relationships of regions. To reduce the gap between low-level features and high-level expert knowledge, we define the concept of prototype regions. The system learns the prototype regions in an image collection using model-based clustering and density estimation. Different tissue types are modeled using spatial relationships of these regions. Spatial relationships are represented by fuzzy membership functions. The system automatically selects significant relationships from training data and builds models which can also be updated using user relevance feedback. A Bayesian framework is used to classify tissues based on these models. Preliminary experiments show that the spatial relationship models we developed provide a flexible and powerful framework for classification and retrieval of tissue images.
Rodgers, Joseph Lee
2016-01-01
The Bayesian-frequentist debate typically portrays these statistical perspectives as opposing views. However, both Bayesian and frequentist statisticians have expanded their epistemological basis away from a singular focus on the null hypothesis, to a broader perspective involving the development and comparison of competing statistical/mathematical models. For frequentists, statistical developments such as structural equation modeling and multilevel modeling have facilitated this transition. For Bayesians, the Bayes factor has facilitated this transition. The Bayes factor is treated in articles within this issue of Multivariate Behavioral Research. The current presentation provides brief commentary on those articles and more extended discussion of the transition toward a modern modeling epistemology. In certain respects, Bayesians and frequentists share common goals.
A Bayesian Approach for Image Segmentation with Shape Priors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Hang; Yang, Qing; Parvin, Bahram
2008-06-20
Color and texture have been widely used in image segmentation; however, their performance is often hindered by scene ambiguities, overlapping objects, or missingparts. In this paper, we propose an interactive image segmentation approach with shape prior models within a Bayesian framework. Interactive features, through mouse strokes, reduce ambiguities, and the incorporation of shape priors enhances quality of the segmentation where color and/or texture are not solely adequate. The novelties of our approach are in (i) formulating the segmentation problem in a well-de?ned Bayesian framework with multiple shape priors, (ii) ef?ciently estimating parameters of the Bayesian model, and (iii) multi-object segmentationmore » through user-speci?ed priors. We demonstrate the effectiveness of our method on a set of natural and synthetic images.« less
Bayesian analysis of rare events
DOE Office of Scientific and Technical Information (OSTI.GOV)
Straub, Daniel, E-mail: straub@tum.de; Papaioannou, Iason; Betz, Wolfgang
2016-06-01
In many areas of engineering and science there is an interest in predicting the probability of rare events, in particular in applications related to safety and security. Increasingly, such predictions are made through computer models of physical systems in an uncertainty quantification framework. Additionally, with advances in IT, monitoring and sensor technology, an increasing amount of data on the performance of the systems is collected. This data can be used to reduce uncertainty, improve the probability estimates and consequently enhance the management of rare events and associated risks. Bayesian analysis is the ideal method to include the data into themore » probabilistic model. It ensures a consistent probabilistic treatment of uncertainty, which is central in the prediction of rare events, where extrapolation from the domain of observation is common. We present a framework for performing Bayesian updating of rare event probabilities, termed BUS. It is based on a reinterpretation of the classical rejection-sampling approach to Bayesian analysis, which enables the use of established methods for estimating probabilities of rare events. By drawing upon these methods, the framework makes use of their computational efficiency. These methods include the First-Order Reliability Method (FORM), tailored importance sampling (IS) methods and Subset Simulation (SuS). In this contribution, we briefly review these methods in the context of the BUS framework and investigate their applicability to Bayesian analysis of rare events in different settings. We find that, for some applications, FORM can be highly efficient and is surprisingly accurate, enabling Bayesian analysis of rare events with just a few model evaluations. In a general setting, BUS implemented through IS and SuS is more robust and flexible.« less
Bayesian analysis of the astrobiological implications of life’s early emergence on Earth
Spiegel, David S.; Turner, Edwin L.
2012-01-01
Life arose on Earth sometime in the first few hundred million years after the young planet had cooled to the point that it could support water-based organisms on its surface. The early emergence of life on Earth has been taken as evidence that the probability of abiogenesis is high, if starting from young Earth-like conditions. We revisit this argument quantitatively in a Bayesian statistical framework. By constructing a simple model of the probability of abiogenesis, we calculate a Bayesian estimate of its posterior probability, given the data that life emerged fairly early in Earth’s history and that, billions of years later, curious creatures noted this fact and considered its implications. We find that, given only this very limited empirical information, the choice of Bayesian prior for the abiogenesis probability parameter has a dominant influence on the computed posterior probability. Although terrestrial life's early emergence provides evidence that life might be abundant in the universe if early-Earth-like conditions are common, the evidence is inconclusive and indeed is consistent with an arbitrarily low intrinsic probability of abiogenesis for plausible uninformative priors. Finding a single case of life arising independently of our lineage (on Earth, elsewhere in the solar system, or on an extrasolar planet) would provide much stronger evidence that abiogenesis is not extremely rare in the universe. PMID:22198766
Bayesian analysis of the astrobiological implications of life's early emergence on Earth.
Spiegel, David S; Turner, Edwin L
2012-01-10
Life arose on Earth sometime in the first few hundred million years after the young planet had cooled to the point that it could support water-based organisms on its surface. The early emergence of life on Earth has been taken as evidence that the probability of abiogenesis is high, if starting from young Earth-like conditions. We revisit this argument quantitatively in a bayesian statistical framework. By constructing a simple model of the probability of abiogenesis, we calculate a bayesian estimate of its posterior probability, given the data that life emerged fairly early in Earth's history and that, billions of years later, curious creatures noted this fact and considered its implications. We find that, given only this very limited empirical information, the choice of bayesian prior for the abiogenesis probability parameter has a dominant influence on the computed posterior probability. Although terrestrial life's early emergence provides evidence that life might be abundant in the universe if early-Earth-like conditions are common, the evidence is inconclusive and indeed is consistent with an arbitrarily low intrinsic probability of abiogenesis for plausible uninformative priors. Finding a single case of life arising independently of our lineage (on Earth, elsewhere in the solar system, or on an extrasolar planet) would provide much stronger evidence that abiogenesis is not extremely rare in the universe.
GO-Bayes: Gene Ontology-based overrepresentation analysis using a Bayesian approach.
Zhang, Song; Cao, Jing; Kong, Y Megan; Scheuermann, Richard H
2010-04-01
A typical approach for the interpretation of high-throughput experiments, such as gene expression microarrays, is to produce groups of genes based on certain criteria (e.g. genes that are differentially expressed). To gain more mechanistic insights into the underlying biology, overrepresentation analysis (ORA) is often conducted to investigate whether gene sets associated with particular biological functions, for example, as represented by Gene Ontology (GO) annotations, are statistically overrepresented in the identified gene groups. However, the standard ORA, which is based on the hypergeometric test, analyzes each GO term in isolation and does not take into account the dependence structure of the GO-term hierarchy. We have developed a Bayesian approach (GO-Bayes) to measure overrepresentation of GO terms that incorporates the GO dependence structure by taking into account evidence not only from individual GO terms, but also from their related terms (i.e. parents, children, siblings, etc.). The Bayesian framework borrows information across related GO terms to strengthen the detection of overrepresentation signals. As a result, this method tends to identify sets of closely related GO terms rather than individual isolated GO terms. The advantage of the GO-Bayes approach is demonstrated with a simulation study and an application example.
Prior approval: the growth of Bayesian methods in psychology.
Andrews, Mark; Baguley, Thom
2013-02-01
Within the last few years, Bayesian methods of data analysis in psychology have proliferated. In this paper, we briefly review the history or the Bayesian approach to statistics, and consider the implications that Bayesian methods have for the theory and practice of data analysis in psychology.
Improving the Accuracy of Planet Occurrence Rates from Kepler Using Approximate Bayesian Computation
NASA Astrophysics Data System (ADS)
Hsu, Danley C.; Ford, Eric B.; Ragozzine, Darin; Morehead, Robert C.
2018-05-01
We present a new framework to characterize the occurrence rates of planet candidates identified by Kepler based on hierarchical Bayesian modeling, approximate Bayesian computing (ABC), and sequential importance sampling. For this study, we adopt a simple 2D grid in planet radius and orbital period as our model and apply our algorithm to estimate occurrence rates for Q1–Q16 planet candidates orbiting solar-type stars. We arrive at significantly increased planet occurrence rates for small planet candidates (R p < 1.25 R ⊕) at larger orbital periods (P > 80 day) compared to the rates estimated by the more common inverse detection efficiency method (IDEM). Our improved methodology estimates that the occurrence rate density of small planet candidates in the habitable zone of solar-type stars is {1.6}-0.5+1.2 per factor of 2 in planet radius and orbital period. Additionally, we observe a local minimum in the occurrence rate for strong planet candidates marginalized over orbital period between 1.5 and 2 R ⊕ that is consistent with previous studies. For future improvements, the forward modeling approach of ABC is ideally suited to incorporating multiple populations, such as planets, astrophysical false positives, and pipeline false alarms, to provide accurate planet occurrence rates and uncertainties. Furthermore, ABC provides a practical statistical framework for answering complex questions (e.g., frequency of different planetary architectures) and providing sound uncertainties, even in the face of complex selection effects, observational biases, and follow-up strategies. In summary, ABC offers a powerful tool for accurately characterizing a wide variety of astrophysical populations.
NASA Astrophysics Data System (ADS)
Cucchi, K.; Kawa, N.; Hesse, F.; Rubin, Y.
2017-12-01
In order to reduce uncertainty in the prediction of subsurface flow and transport processes, practitioners should use all data available. However, classic inverse modeling frameworks typically only make use of information contained in in-situ field measurements to provide estimates of hydrogeological parameters. Such hydrogeological information about an aquifer is difficult and costly to acquire. In this data-scarce context, the transfer of ex-situ information coming from previously investigated sites can be critical for improving predictions by better constraining the estimation procedure. Bayesian inverse modeling provides a coherent framework to represent such ex-situ information by virtue of the prior distribution and combine them with in-situ information from the target site. In this study, we present an innovative data-driven approach for defining such informative priors for hydrogeological parameters at the target site. Our approach consists in two steps, both relying on statistical and machine learning methods. The first step is data selection; it consists in selecting sites similar to the target site. We use clustering methods for selecting similar sites based on observable hydrogeological features. The second step is data assimilation; it consists in assimilating data from the selected similar sites into the informative prior. We use a Bayesian hierarchical model to account for inter-site variability and to allow for the assimilation of multiple types of site-specific data. We present the application and validation of the presented methods on an established database of hydrogeological parameters. Data and methods are implemented in the form of an open-source R-package and therefore facilitate easy use by other practitioners.
ERIC Educational Resources Information Center
Page, Robert; Satake, Eiki
2017-01-01
While interest in Bayesian statistics has been growing in statistics education, the treatment of the topic is still inadequate in both textbooks and the classroom. Because so many fields of study lead to careers that involve a decision-making process requiring an understanding of Bayesian methods, it is becoming increasingly clear that Bayesian…
Varughese, Eunice A.; Brinkman, Nichole E; Anneken, Emily M; Cashdollar, Jennifer S; Fout, G. Shay; Furlong, Edward T.; Kolpin, Dana W.; Glassmeyer, Susan T.; Keely, Scott P
2017-01-01
incorporated into a Bayesian model to more accurately determine viral load in both source and treated water. Results of the Bayesian model indicated that viruses are present in source water and treated water. By using a Bayesian framework that incorporates inhibition, as well as many other parameters that affect viral detection, this study offers an approach for more accurately estimating the occurrence of viral pathogens in environmental waters.
A Comparison of the β-Substitution Method and a Bayesian Method for Analyzing Left-Censored Data
Huynh, Tran; Quick, Harrison; Ramachandran, Gurumurthy; Banerjee, Sudipto; Stenzel, Mark; Sandler, Dale P.; Engel, Lawrence S.; Kwok, Richard K.; Blair, Aaron; Stewart, Patricia A.
2016-01-01
Classical statistical methods for analyzing exposure data with values below the detection limits are well described in the occupational hygiene literature, but an evaluation of a Bayesian approach for handling such data is currently lacking. Here, we first describe a Bayesian framework for analyzing censored data. We then present the results of a simulation study conducted to compare the β-substitution method with a Bayesian method for exposure datasets drawn from lognormal distributions and mixed lognormal distributions with varying sample sizes, geometric standard deviations (GSDs), and censoring for single and multiple limits of detection. For each set of factors, estimates for the arithmetic mean (AM), geometric mean, GSD, and the 95th percentile (X0.95) of the exposure distribution were obtained. We evaluated the performance of each method using relative bias, the root mean squared error (rMSE), and coverage (the proportion of the computed 95% uncertainty intervals containing the true value). The Bayesian method using non-informative priors and the β-substitution method were generally comparable in bias and rMSE when estimating the AM and GM. For the GSD and the 95th percentile, the Bayesian method with non-informative priors was more biased and had a higher rMSE than the β-substitution method, but use of more informative priors generally improved the Bayesian method’s performance, making both the bias and the rMSE more comparable to the β-substitution method. An advantage of the Bayesian method is that it provided estimates of uncertainty for these parameters of interest and good coverage, whereas the β-substitution method only provided estimates of uncertainty for the AM, and coverage was not as consistent. Selection of one or the other method depends on the needs of the practitioner, the availability of prior information, and the distribution characteristics of the measurement data. We suggest the use of Bayesian methods if the practitioner has the computational resources and prior information, as the method would generally provide accurate estimates and also provides the distributions of all of the parameters, which could be useful for making decisions in some applications. PMID:26209598
Fenton, Norman; Neil, Martin; Berger, Daniel
2016-01-01
Although the last forty years has seen considerable growth in the use of statistics in legal proceedings, it is primarily classical statistical methods rather than Bayesian methods that have been used. Yet the Bayesian approach avoids many of the problems of classical statistics and is also well suited to a broader range of problems. This paper reviews the potential and actual use of Bayes in the law and explains the main reasons for its lack of impact on legal practice. These include misconceptions by the legal community about Bayes’ theorem, over-reliance on the use of the likelihood ratio and the lack of adoption of modern computational methods. We argue that Bayesian Networks (BNs), which automatically produce the necessary Bayesian calculations, provide an opportunity to address most concerns about using Bayes in the law. PMID:27398389
Fenton, Norman; Neil, Martin; Berger, Daniel
2016-06-01
Although the last forty years has seen considerable growth in the use of statistics in legal proceedings, it is primarily classical statistical methods rather than Bayesian methods that have been used. Yet the Bayesian approach avoids many of the problems of classical statistics and is also well suited to a broader range of problems. This paper reviews the potential and actual use of Bayes in the law and explains the main reasons for its lack of impact on legal practice. These include misconceptions by the legal community about Bayes' theorem, over-reliance on the use of the likelihood ratio and the lack of adoption of modern computational methods. We argue that Bayesian Networks (BNs), which automatically produce the necessary Bayesian calculations, provide an opportunity to address most concerns about using Bayes in the law.
A Bayesian framework to estimate diversification rates and their variation through time and space
2011-01-01
Background Patterns of species diversity are the result of speciation and extinction processes, and molecular phylogenetic data can provide valuable information to derive their variability through time and across clades. Bayesian Markov chain Monte Carlo methods offer a promising framework to incorporate phylogenetic uncertainty when estimating rates of diversification. Results We introduce a new approach to estimate diversification rates in a Bayesian framework over a distribution of trees under various constant and variable rate birth-death and pure-birth models, and test it on simulated phylogenies. Furthermore, speciation and extinction rates and their posterior credibility intervals can be estimated while accounting for non-random taxon sampling. The framework is particularly suitable for hypothesis testing using Bayes factors, as we demonstrate analyzing dated phylogenies of Chondrostoma (Cyprinidae) and Lupinus (Fabaceae). In addition, we develop a model that extends the rate estimation to a meta-analysis framework in which different data sets are combined in a single analysis to detect general temporal and spatial trends in diversification. Conclusions Our approach provides a flexible framework for the estimation of diversification parameters and hypothesis testing while simultaneously accounting for uncertainties in the divergence times and incomplete taxon sampling. PMID:22013891
Fisher, Neyman, and Bayes at FDA.
Rubin, Donald B
2016-01-01
The wise use of statistical ideas in practice essentially requires some Bayesian thinking, in contrast to the classical rigid frequentist dogma. This dogma too often has seemed to influence the applications of statistics, even at agencies like the FDA. Greg Campbell was one of the most important advocates there for more nuanced modes of thought, especially Bayesian statistics. Because two brilliant statisticians, Ronald Fisher and Jerzy Neyman, are often credited with instilling the traditional frequentist approach in current practice, I argue that both men were actually seeking very Bayesian answers, and neither would have endorsed the rigid application of their ideas.
New applications of maximum likelihood and Bayesian statistics in macromolecular crystallography.
McCoy, Airlie J
2002-10-01
Maximum likelihood methods are well known to macromolecular crystallographers as the methods of choice for isomorphous phasing and structure refinement. Recently, the use of maximum likelihood and Bayesian statistics has extended to the areas of molecular replacement and density modification, placing these methods on a stronger statistical foundation and making them more accurate and effective.
ERIC Educational Resources Information Center
Wu, Haiyan
2013-01-01
General diagnostic models (GDMs) and Bayesian networks are mathematical frameworks that cover a wide variety of psychometric models. Both extend latent class models, and while GDMs also extend item response theory (IRT) models, Bayesian networks can be parameterized using discretized IRT. The purpose of this study is to examine similarities and…
Kimberley K. Ayre; Wayne G. Landis
2012-01-01
We present a Bayesian network model based on the ecological risk assessment framework to evaluate potential impacts to habitats and resources resulting from wildfire, grazing, forest management activities, and insect outbreaks in a forested landscape in northeastern Oregon. The Bayesian network structure consisted of three tiers of nodes: landscape disturbances,...
A Bayesian framework for knowledge attribution: evidence from semantic integration.
Powell, Derek; Horne, Zachary; Pinillos, N Ángel; Holyoak, Keith J
2015-06-01
We propose a Bayesian framework for the attribution of knowledge, and apply this framework to generate novel predictions about knowledge attribution for different types of "Gettier cases", in which an agent is led to a justified true belief yet has made erroneous assumptions. We tested these predictions using a paradigm based on semantic integration. We coded the frequencies with which participants falsely recalled the word "thought" as "knew" (or a near synonym), yielding an implicit measure of conceptual activation. Our experiments confirmed the predictions of our Bayesian account of knowledge attribution across three experiments. We found that Gettier cases due to counterfeit objects were not treated as knowledge (Experiment 1), but those due to intentionally-replaced evidence were (Experiment 2). Our findings are not well explained by an alternative account focused only on luck, because accidentally-replaced evidence activated the knowledge concept more strongly than did similar false belief cases (Experiment 3). We observed a consistent pattern of results across a number of different vignettes that varied the quality and type of evidence available to agents, the relative stakes involved, and surface details of content. Accordingly, the present findings establish basic phenomena surrounding people's knowledge attributions in Gettier cases, and provide explanations of these phenomena within a Bayesian framework. Copyright © 2015 Elsevier B.V. All rights reserved.
Kernel-imbedded Gaussian processes for disease classification using microarray gene expression data
Zhao, Xin; Cheung, Leo Wang-Kit
2007-01-01
Background Designing appropriate machine learning methods for identifying genes that have a significant discriminating power for disease outcomes has become more and more important for our understanding of diseases at genomic level. Although many machine learning methods have been developed and applied to the area of microarray gene expression data analysis, the majority of them are based on linear models, which however are not necessarily appropriate for the underlying connection between the target disease and its associated explanatory genes. Linear model based methods usually also bring in false positive significant features more easily. Furthermore, linear model based algorithms often involve calculating the inverse of a matrix that is possibly singular when the number of potentially important genes is relatively large. This leads to problems of numerical instability. To overcome these limitations, a few non-linear methods have recently been introduced to the area. Many of the existing non-linear methods have a couple of critical problems, the model selection problem and the model parameter tuning problem, that remain unsolved or even untouched. In general, a unified framework that allows model parameters of both linear and non-linear models to be easily tuned is always preferred in real-world applications. Kernel-induced learning methods form a class of approaches that show promising potentials to achieve this goal. Results A hierarchical statistical model named kernel-imbedded Gaussian process (KIGP) is developed under a unified Bayesian framework for binary disease classification problems using microarray gene expression data. In particular, based on a probit regression setting, an adaptive algorithm with a cascading structure is designed to find the appropriate kernel, to discover the potentially significant genes, and to make the optimal class prediction accordingly. A Gibbs sampler is built as the core of the algorithm to make Bayesian inferences. Simulation studies showed that, even without any knowledge of the underlying generative model, the KIGP performed very close to the theoretical Bayesian bound not only in the case with a linear Bayesian classifier but also in the case with a very non-linear Bayesian classifier. This sheds light on its broader usability to microarray data analysis problems, especially to those that linear methods work awkwardly. The KIGP was also applied to four published microarray datasets, and the results showed that the KIGP performed better than or at least as well as any of the referred state-of-the-art methods did in all of these cases. Conclusion Mathematically built on the kernel-induced feature space concept under a Bayesian framework, the KIGP method presented in this paper provides a unified machine learning approach to explore both the linear and the possibly non-linear underlying relationship between the target features of a given binary disease classification problem and the related explanatory gene expression data. More importantly, it incorporates the model parameter tuning into the framework. The model selection problem is addressed in the form of selecting a proper kernel type. The KIGP method also gives Bayesian probabilistic predictions for disease classification. These properties and features are beneficial to most real-world applications. The algorithm is naturally robust in numerical computation. The simulation studies and the published data studies demonstrated that the proposed KIGP performs satisfactorily and consistently. PMID:17328811
Applications of Bayesian Statistics to Problems in Gamma-Ray Bursts
NASA Technical Reports Server (NTRS)
Meegan, Charles A.
1997-01-01
This presentation will describe two applications of Bayesian statistics to Gamma Ray Bursts (GRBS). The first attempts to quantify the evidence for a cosmological versus galactic origin of GRBs using only the observations of the dipole and quadrupole moments of the angular distribution of bursts. The cosmological hypothesis predicts isotropy, while the galactic hypothesis is assumed to produce a uniform probability distribution over positive values for these moments. The observed isotropic distribution indicates that the Bayes factor for the cosmological hypothesis over the galactic hypothesis is about 300. Another application of Bayesian statistics is in the estimation of chance associations of optical counterparts with galaxies. The Bayesian approach is preferred to frequentist techniques here because the Bayesian approach easily accounts for galaxy mass distributions and because one can incorporate three disjoint hypotheses: (1) bursts come from galactic centers, (2) bursts come from galaxies in proportion to luminosity, and (3) bursts do not come from external galaxies. This technique was used in the analysis of the optical counterpart to GRB970228.
Bayesian Modeling of Exposure and Airflow Using Two-Zone Models
Zhang, Yufen; Banerjee, Sudipto; Yang, Rui; Lungu, Claudiu; Ramachandran, Gurumurthy
2009-01-01
Mathematical modeling is being increasingly used as a means for assessing occupational exposures. However, predicting exposure in real settings is constrained by lack of quantitative knowledge of exposure determinants. Validation of models in occupational settings is, therefore, a challenge. Not only do the model parameters need to be known, the models also need to predict the output with some degree of accuracy. In this paper, a Bayesian statistical framework is used for estimating model parameters and exposure concentrations for a two-zone model. The model predicts concentrations in a zone near the source and far away from the source as functions of the toluene generation rate, air ventilation rate through the chamber, and the airflow between near and far fields. The framework combines prior or expert information on the physical model along with the observed data. The framework is applied to simulated data as well as data obtained from the experiments conducted in a chamber. Toluene vapors are generated from a source under different conditions of airflow direction, the presence of a mannequin, and simulated body heat of the mannequin. The Bayesian framework accounts for uncertainty in measurement as well as in the unknown rate of airflow between the near and far fields. The results show that estimates of the interzonal airflow are always close to the estimated equilibrium solutions, which implies that the method works efficiently. The predictions of near-field concentration for both the simulated and real data show nice concordance with the true values, indicating that the two-zone model assumptions agree with the reality to a large extent and the model is suitable for predicting the contaminant concentration. Comparison of the estimated model and its margin of error with the experimental data thus enables validation of the physical model assumptions. The approach illustrates how exposure models and information on model parameters together with the knowledge of uncertainty and variability in these quantities can be used to not only provide better estimates of model outputs but also model parameters. PMID:19403840
A study of finite mixture model: Bayesian approach on financial time series data
NASA Astrophysics Data System (ADS)
Phoong, Seuk-Yen; Ismail, Mohd Tahir
2014-07-01
Recently, statistician have emphasized on the fitting finite mixture model by using Bayesian method. Finite mixture model is a mixture of distributions in modeling a statistical distribution meanwhile Bayesian method is a statistical method that use to fit the mixture model. Bayesian method is being used widely because it has asymptotic properties which provide remarkable result. In addition, Bayesian method also shows consistency characteristic which means the parameter estimates are close to the predictive distributions. In the present paper, the number of components for mixture model is studied by using Bayesian Information Criterion. Identify the number of component is important because it may lead to an invalid result. Later, the Bayesian method is utilized to fit the k-component mixture model in order to explore the relationship between rubber price and stock market price for Malaysia, Thailand, Philippines and Indonesia. Lastly, the results showed that there is a negative effect among rubber price and stock market price for all selected countries.
Scale Mixture Models with Applications to Bayesian Inference
NASA Astrophysics Data System (ADS)
Qin, Zhaohui S.; Damien, Paul; Walker, Stephen
2003-11-01
Scale mixtures of uniform distributions are used to model non-normal data in time series and econometrics in a Bayesian framework. Heteroscedastic and skewed data models are also tackled using scale mixture of uniform distributions.
Bayesian inference for psychology. Part II: Example applications with JASP.
Wagenmakers, Eric-Jan; Love, Jonathon; Marsman, Maarten; Jamil, Tahira; Ly, Alexander; Verhagen, Josine; Selker, Ravi; Gronau, Quentin F; Dropmann, Damian; Boutin, Bruno; Meerhoff, Frans; Knight, Patrick; Raj, Akash; van Kesteren, Erik-Jan; van Doorn, Johnny; Šmíra, Martin; Epskamp, Sacha; Etz, Alexander; Matzke, Dora; de Jong, Tim; van den Bergh, Don; Sarafoglou, Alexandra; Steingroever, Helen; Derks, Koen; Rouder, Jeffrey N; Morey, Richard D
2018-02-01
Bayesian hypothesis testing presents an attractive alternative to p value hypothesis testing. Part I of this series outlined several advantages of Bayesian hypothesis testing, including the ability to quantify evidence and the ability to monitor and update this evidence as data come in, without the need to know the intention with which the data were collected. Despite these and other practical advantages, Bayesian hypothesis tests are still reported relatively rarely. An important impediment to the widespread adoption of Bayesian tests is arguably the lack of user-friendly software for the run-of-the-mill statistical problems that confront psychologists for the analysis of almost every experiment: the t-test, ANOVA, correlation, regression, and contingency tables. In Part II of this series we introduce JASP ( http://www.jasp-stats.org ), an open-source, cross-platform, user-friendly graphical software package that allows users to carry out Bayesian hypothesis tests for standard statistical problems. JASP is based in part on the Bayesian analyses implemented in Morey and Rouder's BayesFactor package for R. Armed with JASP, the practical advantages of Bayesian hypothesis testing are only a mouse click away.
Modeling two strains of disease via aggregate-level infectivity curves.
Romanescu, Razvan; Deardon, Rob
2016-04-01
Well formulated models of disease spread, and efficient methods to fit them to observed data, are powerful tools for aiding the surveillance and control of infectious diseases. Our project considers the problem of the simultaneous spread of two related strains of disease in a context where spatial location is the key driver of disease spread. We start our modeling work with the individual level models (ILMs) of disease transmission, and extend these models to accommodate the competing spread of the pathogens in a two-tier hierarchical population (whose levels we refer to as 'farm' and 'animal'). The postulated interference mechanism between the two strains is a period of cross-immunity following infection. We also present a framework for speeding up the computationally intensive process of fitting the ILM to data, typically done using Markov chain Monte Carlo (MCMC) in a Bayesian framework, by turning the inference into a two-stage process. First, we approximate the number of animals infected on a farm over time by infectivity curves. These curves are fit to data sampled from farms, using maximum likelihood estimation, then, conditional on the fitted curves, Bayesian MCMC inference proceeds for the remaining parameters. Finally, we use posterior predictive distributions of salient epidemic summary statistics, in order to assess the model fitted.
Periodic benefit-risk assessment using Bayesian stochastic multi-criteria acceptability analysis.
Li, Kan; Yuan, Shuai Sammy; Wang, William; Wan, Shuyan Sabrina; Ceesay, Paulette; Heyse, Joseph F; Mt-Isa, Shahrul; Luo, Sheng
2018-04-01
Benefit-risk (BR) assessment is essential to ensure the best decisions are made for a medical product in the clinical development process, regulatory marketing authorization, post-market surveillance, and coverage and reimbursement decisions. One challenge of BR assessment in practice is that the benefit and risk profile may keep evolving while new evidence is accumulating. Regulators and the International Conference on Harmonization (ICH) recommend performing periodic benefit-risk evaluation report (PBRER) through the product's lifecycle. In this paper, we propose a general statistical framework for periodic benefit-risk assessment, in which Bayesian meta-analysis and stochastic multi-criteria acceptability analysis (SMAA) will be combined to synthesize the accumulating evidence. The proposed approach allows us to compare the acceptability of different drugs dynamically and effectively and accounts for the uncertainty of clinical measurements and imprecise or incomplete preference information of decision makers. We apply our approaches to two real examples in a post-hoc way for illustration purpose. The proposed method may easily be modified for other pre and post market settings, and thus be an important complement to the current structured benefit-risk assessment (sBRA) framework to improve the transparent and consistency of the decision-making process. Copyright © 2018 Elsevier Inc. All rights reserved.
Hazard Screening Methods for Nanomaterials: A Comparative Study
Murphy, Finbarr; Mullins, Martin; Furxhi, Irini; Costa, Anna L.; Simeone, Felice C.
2018-01-01
Hazard identification is the key step in risk assessment and management of manufactured nanomaterials (NM). However, the rapid commercialisation of nano-enabled products continues to out-pace the development of a prudent risk management mechanism that is widely accepted by the scientific community and enforced by regulators. However, a growing body of academic literature is developing promising quantitative methods. Two approaches have gained significant currency. Bayesian networks (BN) are a probabilistic, machine learning approach while the weight of evidence (WoE) statistical framework is based on expert elicitation. This comparative study investigates the efficacy of quantitative WoE and Bayesian methodologies in ranking the potential hazard of metal and metal-oxide NMs—TiO2, Ag, and ZnO. This research finds that hazard ranking is consistent for both risk assessment approaches. The BN and WoE models both utilize physico-chemical, toxicological, and study type data to infer the hazard potential. The BN exhibits more stability when the models are perturbed with new data. The BN has the significant advantage of self-learning with new data; however, this assumes all input data is equally valid. This research finds that a combination of WoE that would rank input data along with the BN is the optimal hazard assessment framework. PMID:29495342
Disaster Response on September 11, 2001 Through the Lens of Statistical Network Analysis.
Schweinberger, Michael; Petrescu-Prahova, Miruna; Vu, Duy Quang
2014-05-01
The rescue and relief operations triggered by the September 11, 2001 attacks on the World Trade Center in New York City demanded collaboration among hundreds of organisations. To shed light on the response to the September 11, 2001 attacks and help to plan and prepare the response to future disasters, we study the inter-organisational network that emerged in response to the attacks. Studying the inter-organisational network can help to shed light on (1) whether some organisations dominated the inter-organisational network and facilitated communication and coordination of the disaster response; (2) whether the dominating organisations were supposed to coordinate disaster response or emerged as coordinators in the wake of the disaster; and (3) the degree of network redundancy and sensitivity of the inter-organisational network to disturbances following the initial disaster. We introduce a Bayesian framework which can answer the substantive questions of interest while being as simple and parsimonious as possible. The framework allows organisations to have varying propensities to collaborate, while taking covariates into account, and allows to assess whether the inter-organisational network had network redundancy-in the form of transitivity-by using a test which may be regarded as a Bayesian score test. We discuss implications in terms of disaster management.
A Bayesian Approach to Person Fit Analysis in Item Response Theory Models. Research Report.
ERIC Educational Resources Information Center
Glas, Cees A. W.; Meijer, Rob R.
A Bayesian approach to the evaluation of person fit in item response theory (IRT) models is presented. In a posterior predictive check, the observed value on a discrepancy variable is positioned in its posterior distribution. In a Bayesian framework, a Markov Chain Monte Carlo procedure can be used to generate samples of the posterior distribution…
A Tutorial Introduction to Bayesian Models of Cognitive Development
ERIC Educational Resources Information Center
Perfors, Amy; Tenenbaum, Joshua B.; Griffiths, Thomas L.; Xu, Fei
2011-01-01
We present an introduction to Bayesian inference as it is used in probabilistic models of cognitive development. Our goal is to provide an intuitive and accessible guide to the "what", the "how", and the "why" of the Bayesian approach: what sorts of problems and data the framework is most relevant for, and how and why it may be useful for…
Gopnik, Alison
2012-09-28
New theoretical ideas and empirical research show that very young children's learning and thinking are strikingly similar to much learning and thinking in science. Preschoolers test hypotheses against data and make causal inferences; they learn from statistics and informal experimentation, and from watching and listening to others. The mathematical framework of probabilistic models and Bayesian inference can describe this learning in precise ways. These discoveries have implications for early childhood education and policy. In particular, they suggest both that early childhood experience is extremely important and that the trend toward more structured and academic early childhood programs is misguided.
Editorial: Bayesian benefits for child psychology and psychiatry researchers.
Oldehinkel, Albertine J
2016-09-01
For many scientists, performing statistical tests has become an almost automated routine. However, p-values are frequently used and interpreted incorrectly; and even when used appropriately, p-values tend to provide answers that do not match researchers' questions and hypotheses well. Bayesian statistics present an elegant and often more suitable alternative. The Bayesian approach has rarely been applied in child psychology and psychiatry research so far, but the development of user-friendly software packages and tutorials has placed it well within reach now. Because Bayesian analyses require a more refined definition of hypothesized probabilities of possible outcomes than the classical approach, going Bayesian may offer the additional benefit of sparkling the development and refinement of theoretical models in our field. © 2016 Association for Child and Adolescent Mental Health.
Bayesian parameter estimation for chiral effective field theory
NASA Astrophysics Data System (ADS)
Wesolowski, Sarah; Furnstahl, Richard; Phillips, Daniel; Klco, Natalie
2016-09-01
The low-energy constants (LECs) of a chiral effective field theory (EFT) interaction in the two-body sector are fit to observable data using a Bayesian parameter estimation framework. By using Bayesian prior probability distributions (pdfs), we quantify relevant physical expectations such as LEC naturalness and include them in the parameter estimation procedure. The final result is a posterior pdf for the LECs, which can be used to propagate uncertainty resulting from the fit to data to the final observable predictions. The posterior pdf also allows an empirical test of operator redundancy and other features of the potential. We compare results of our framework with other fitting procedures, interpreting the underlying assumptions in Bayesian probabilistic language. We also compare results from fitting all partial waves of the interaction simultaneously to cross section data compared to fitting to extracted phase shifts, appropriately accounting for correlations in the data. Supported in part by the NSF and DOE.
Onisko, Agnieszka; Druzdzel, Marek J; Austin, R Marshall
2016-01-01
Classical statistics is a well-established approach in the analysis of medical data. While the medical community seems to be familiar with the concept of a statistical analysis and its interpretation, the Bayesian approach, argued by many of its proponents to be superior to the classical frequentist approach, is still not well-recognized in the analysis of medical data. The goal of this study is to encourage data analysts to use the Bayesian approach, such as modeling with graphical probabilistic networks, as an insightful alternative to classical statistical analysis of medical data. This paper offers a comparison of two approaches to analysis of medical time series data: (1) classical statistical approach, such as the Kaplan-Meier estimator and the Cox proportional hazards regression model, and (2) dynamic Bayesian network modeling. Our comparison is based on time series cervical cancer screening data collected at Magee-Womens Hospital, University of Pittsburgh Medical Center over 10 years. The main outcomes of our comparison are cervical cancer risk assessments produced by the three approaches. However, our analysis discusses also several aspects of the comparison, such as modeling assumptions, model building, dealing with incomplete data, individualized risk assessment, results interpretation, and model validation. Our study shows that the Bayesian approach is (1) much more flexible in terms of modeling effort, and (2) it offers an individualized risk assessment, which is more cumbersome for classical statistical approaches.
A BAYESIAN STATISTICAL APPROACH FOR THE EVALUATION OF CMAQ
Bayesian statistical methods are used to evaluate Community Multiscale Air Quality (CMAQ) model simulations of sulfate aerosol over a section of the eastern US for 4-week periods in summer and winter 2001. The observed data come from two U.S. Environmental Protection Agency data ...
Teaching Bayesian Statistics in a Health Research Methodology Program
ERIC Educational Resources Information Center
Pullenayegum, Eleanor M.; Thabane, Lehana
2009-01-01
Despite the appeal of Bayesian methods in health research, they are not widely used. This is partly due to a lack of courses in Bayesian methods at an appropriate level for non-statisticians in health research. Teaching such a course can be challenging because most statisticians have been taught Bayesian methods using a mathematical approach, and…
Excoffier, Laurent; Lischer, Heidi E L
2010-05-01
We present here a new version of the Arlequin program available under three different forms: a Windows graphical version (Winarl35), a console version of Arlequin (arlecore), and a specific console version to compute summary statistics (arlsumstat). The command-line versions run under both Linux and Windows. The main innovations of the new version include enhanced outputs in XML format, the possibility to embed graphics displaying computation results directly into output files, and the implementation of a new method to detect loci under selection from genome scans. Command-line versions are designed to handle large series of files, and arlsumstat can be used to generate summary statistics from simulated data sets within an Approximate Bayesian Computation framework. © 2010 Blackwell Publishing Ltd.
Kling, Daniel; Egeland, Thore; Mostad, Petter
2012-01-01
In a number of applications there is a need to determine the most likely pedigree for a group of persons based on genetic markers. Adequate models are needed to reach this goal. The markers used to perform the statistical calculations can be linked and there may also be linkage disequilibrium (LD) in the population. The purpose of this paper is to present a graphical Bayesian Network framework to deal with such data. Potential LD is normally ignored and it is important to verify that the resulting calculations are not biased. Even if linkage does not influence results for regular paternity cases, it may have substantial impact on likelihood ratios involving other, more extended pedigrees. Models for LD influence likelihoods for all pedigrees to some degree and an initial estimate of the impact of ignoring LD and/or linkage is desirable, going beyond mere rules of thumb based on marker distance. Furthermore, we show how one can readily include a mutation model in the Bayesian Network; extending other programs or formulas to include such models may require considerable amounts of work and will in many case not be practical. As an example, we consider the two STR markers vWa and D12S391. We estimate probabilities for population haplotypes to account for LD using a method based on data from trios, while an estimate for the degree of linkage is taken from the literature. The results show that accounting for haplotype frequencies is unnecessary in most cases for this specific pair of markers. When doing calculations on regular paternity cases, the markers can be considered statistically independent. In more complex cases of disputed relatedness, for instance cases involving siblings or so-called deficient cases, or when small differences in the LR matter, independence should not be assumed. (The networks are freely available at http://arken.umb.no/~dakl/BayesianNetworks.) PMID:22984448
Nowcasting Cloud Fields for U.S. Air Force Special Operations
2017-03-01
application of Bayes’ Rule offers many advantages over Kernel Density Estimation (KDE) and other commonly used statistical post-processing methods...reflectance and probability of cloud. A statistical post-processing technique is applied using Bayesian estimation to train the system from a set of past...nowcasting, low cloud forecasting, cloud reflectance, ISR, Bayesian estimation, statistical post-processing, machine learning 15. NUMBER OF PAGES
A 3-Component Mixture of Rayleigh Distributions: Properties and Estimation in Bayesian Framework
Aslam, Muhammad; Tahir, Muhammad; Hussain, Zawar; Al-Zahrani, Bander
2015-01-01
To study lifetimes of certain engineering processes, a lifetime model which can accommodate the nature of such processes is desired. The mixture models of underlying lifetime distributions are intuitively more appropriate and appealing to model the heterogeneous nature of process as compared to simple models. This paper is about studying a 3-component mixture of the Rayleigh distributionsin Bayesian perspective. The censored sampling environment is considered due to its popularity in reliability theory and survival analysis. The expressions for the Bayes estimators and their posterior risks are derived under different scenarios. In case the case that no or little prior information is available, elicitation of hyperparameters is given. To examine, numerically, the performance of the Bayes estimators using non-informative and informative priors under different loss functions, we have simulated their statistical properties for different sample sizes and test termination times. In addition, to highlight the practical significance, an illustrative example based on a real-life engineering data is also given. PMID:25993475
Bayesian inversion analysis of nonlinear dynamics in surface heterogeneous reactions.
Omori, Toshiaki; Kuwatani, Tatsu; Okamoto, Atsushi; Hukushima, Koji
2016-09-01
It is essential to extract nonlinear dynamics from time-series data as an inverse problem in natural sciences. We propose a Bayesian statistical framework for extracting nonlinear dynamics of surface heterogeneous reactions from sparse and noisy observable data. Surface heterogeneous reactions are chemical reactions with conjugation of multiple phases, and they have the intrinsic nonlinearity of their dynamics caused by the effect of surface-area between different phases. We adapt a belief propagation method and an expectation-maximization (EM) algorithm to partial observation problem, in order to simultaneously estimate the time course of hidden variables and the kinetic parameters underlying dynamics. The proposed belief propagation method is performed by using sequential Monte Carlo algorithm in order to estimate nonlinear dynamical system. Using our proposed method, we show that the rate constants of dissolution and precipitation reactions, which are typical examples of surface heterogeneous reactions, as well as the temporal changes of solid reactants and products, were successfully estimated only from the observable temporal changes in the concentration of the dissolved intermediate product.
Planck intermediate results. XVI. Profile likelihoods for cosmological parameters
NASA Astrophysics Data System (ADS)
Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Battaner, E.; Benabed, K.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bonaldi, A.; Bond, J. R.; Bouchet, F. R.; Burigana, C.; Cardoso, J.-F.; Catalano, A.; Chamballu, A.; Chiang, H. C.; Christensen, P. R.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Couchot, F.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Dupac, X.; Enßlin, T. A.; Eriksen, H. K.; Finelli, F.; Forni, O.; Frailis, M.; Franceschi, E.; Galeotta, S.; Galli, S.; Ganga, K.; Giard, M.; Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K. M.; Gregorio, A.; Gruppuso, A.; Hansen, F. K.; Harrison, D. L.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Lawrence, C. R.; Leonardi, R.; Liddle, A.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maffei, B.; Maino, D.; Mandolesi, N.; Maris, M.; Martin, P. G.; Martínez-González, E.; Masi, S.; Massardi, M.; Matarrese, S.; Mazzotta, P.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Noviello, F.; Novikov, D.; Novikov, I.; Oxborrow, C. A.; Pagano, L.; Pajot, F.; Paoletti, D.; Pasian, F.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski∗, S.; Pointecouteau, E.; Polenta, G.; Popa, L.; Pratt, G. W.; Puget, J.-L.; Rachen, J. P.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Roudier, G.; Rouillé d'Orfeuil, B.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Savelainen, M.; Savini, G.; Spencer, L. D.; Spinelli, M.; Starck, J.-L.; Sureau, F.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; White, M.; Yvon, D.; Zacchei, A.; Zonca, A.
2014-06-01
We explore the 2013 Planck likelihood function with a high-precision multi-dimensional minimizer (Minuit). This allows a refinement of the ΛCDM best-fit solution with respect to previously-released results, and the construction of frequentist confidence intervals using profile likelihoods. The agreement with the cosmological results from the Bayesian framework is excellent, demonstrating the robustness of the Planck results to the statistical methodology. We investigate the inclusion of neutrino masses, where more significant differences may appear due to the non-Gaussian nature of the posterior mass distribution. By applying the Feldman-Cousins prescription, we again obtain results very similar to those of the Bayesian methodology. However, the profile-likelihood analysis of the cosmic microwave background (CMB) combination (Planck+WP+highL) reveals a minimum well within the unphysical negative-mass region. We show that inclusion of the Planck CMB-lensing information regularizes this issue, and provide a robust frequentist upper limit ∑ mν ≤ 0.26 eV (95% confidence) from the CMB+lensing+BAO data combination.
Probabilistic Approaches for Multi-Hazard Risk Assessment of Structures and Systems
NASA Astrophysics Data System (ADS)
Kwag, Shinyoung
Performance assessment of structures, systems, and components for multi-hazard scenarios has received significant attention in recent years. However, the concept of multi-hazard analysis is quite broad in nature and the focus of existing literature varies across a wide range of problems. In some cases, such studies focus on hazards that either occur simultaneously or are closely correlated with each other. For example, seismically induced flooding or seismically induced fires. In other cases, multi-hazard studies relate to hazards that are not dependent or correlated but have strong likelihood of occurrence at different times during the lifetime of a structure. The current approaches for risk assessment need enhancement to account for multi-hazard risks. It must be able to account for uncertainty propagation in a systems-level analysis, consider correlation among events or failure modes, and allow integration of newly available information from continually evolving simulation models, experimental observations, and field measurements. This dissertation presents a detailed study that proposes enhancements by incorporating Bayesian networks and Bayesian updating within a performance-based probabilistic framework. The performance-based framework allows propagation of risk as well as uncertainties in the risk estimates within a systems analysis. Unlike conventional risk assessment techniques such as a fault-tree analysis, a Bayesian network can account for statistical dependencies and correlations among events/hazards. The proposed approach is extended to develop a risk-informed framework for quantitative validation and verification of high fidelity system-level simulation tools. Validation of such simulations can be quite formidable within the context of a multi-hazard risk assessment in nuclear power plants. The efficiency of this approach lies in identification of critical events, components, and systems that contribute to the overall risk. Validation of any event or component on the critical path is relatively more important in a risk-informed environment. Significance of multi-hazard risk is also illustrated for uncorrelated hazards of earthquakes and high winds which may result in competing design objectives. It is also illustrated that the number of computationally intensive nonlinear simulations needed in performance-based risk assessment for external hazards can be significantly reduced by using the power of Bayesian updating in conjunction with the concept of equivalent limit-state.
Bayesian Analysis of Biogeography when the Number of Areas is Large
Landis, Michael J.; Matzke, Nicholas J.; Moore, Brian R.; Huelsenbeck, John P.
2013-01-01
Historical biogeography is increasingly studied from an explicitly statistical perspective, using stochastic models to describe the evolution of species range as a continuous-time Markov process of dispersal between and extinction within a set of discrete geographic areas. The main constraint of these methods is the computational limit on the number of areas that can be specified. We propose a Bayesian approach for inferring biogeographic history that extends the application of biogeographic models to the analysis of more realistic problems that involve a large number of areas. Our solution is based on a “data-augmentation” approach, in which we first populate the tree with a history of biogeographic events that is consistent with the observed species ranges at the tips of the tree. We then calculate the likelihood of a given history by adopting a mechanistic interpretation of the instantaneous-rate matrix, which specifies both the exponential waiting times between biogeographic events and the relative probabilities of each biogeographic change. We develop this approach in a Bayesian framework, marginalizing over all possible biogeographic histories using Markov chain Monte Carlo (MCMC). Besides dramatically increasing the number of areas that can be accommodated in a biogeographic analysis, our method allows the parameters of a given biogeographic model to be estimated and different biogeographic models to be objectively compared. Our approach is implemented in the program, BayArea. [ancestral area analysis; Bayesian biogeographic inference; data augmentation; historical biogeography; Markov chain Monte Carlo.] PMID:23736102
An efficient Bayesian meta-analysis approach for studying cross-phenotype genetic associations
Majumdar, Arunabha; Haldar, Tanushree; Bhattacharya, Sourabh; Witte, John S.
2018-01-01
Simultaneous analysis of genetic associations with multiple phenotypes may reveal shared genetic susceptibility across traits (pleiotropy). For a locus exhibiting overall pleiotropy, it is important to identify which specific traits underlie this association. We propose a Bayesian meta-analysis approach (termed CPBayes) that uses summary-level data across multiple phenotypes to simultaneously measure the evidence of aggregate-level pleiotropic association and estimate an optimal subset of traits associated with the risk locus. This method uses a unified Bayesian statistical framework based on a spike and slab prior. CPBayes performs a fully Bayesian analysis by employing the Markov Chain Monte Carlo (MCMC) technique Gibbs sampling. It takes into account heterogeneity in the size and direction of the genetic effects across traits. It can be applied to both cohort data and separate studies of multiple traits having overlapping or non-overlapping subjects. Simulations show that CPBayes can produce higher accuracy in the selection of associated traits underlying a pleiotropic signal than the subset-based meta-analysis ASSET. We used CPBayes to undertake a genome-wide pleiotropic association study of 22 traits in the large Kaiser GERA cohort and detected six independent pleiotropic loci associated with at least two phenotypes. This includes a locus at chromosomal region 1q24.2 which exhibits an association simultaneously with the risk of five different diseases: Dermatophytosis, Hemorrhoids, Iron Deficiency, Osteoporosis and Peripheral Vascular Disease. We provide an R-package ‘CPBayes’ implementing the proposed method. PMID:29432419
Bayesian randomized clinical trials: From fixed to adaptive design.
Yin, Guosheng; Lam, Chi Kin; Shi, Haolun
2017-08-01
Randomized controlled studies are the gold standard for phase III clinical trials. Using α-spending functions to control the overall type I error rate, group sequential methods are well established and have been dominating phase III studies. Bayesian randomized design, on the other hand, can be viewed as a complement instead of competitive approach to the frequentist methods. For the fixed Bayesian design, the hypothesis testing can be cast in the posterior probability or Bayes factor framework, which has a direct link to the frequentist type I error rate. Bayesian group sequential design relies upon Bayesian decision-theoretic approaches based on backward induction, which is often computationally intensive. Compared with the frequentist approaches, Bayesian methods have several advantages. The posterior predictive probability serves as a useful and convenient tool for trial monitoring, and can be updated at any time as the data accrue during the trial. The Bayesian decision-theoretic framework possesses a direct link to the decision making in the practical setting, and can be modeled more realistically to reflect the actual cost-benefit analysis during the drug development process. Other merits include the possibility of hierarchical modeling and the use of informative priors, which would lead to a more comprehensive utilization of information from both historical and longitudinal data. From fixed to adaptive design, we focus on Bayesian randomized controlled clinical trials and make extensive comparisons with frequentist counterparts through numerical studies. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Bowman, C.; Gibson, K. J.; La Haye, R. J.; Groebner, R. J.; Taylor, N. Z.; Grierson, B. A.
2014-10-01
A Bayesian inference framework has been developed for the DIII-D charge-exchange recombination (CER) system, capable of computing probability distribution functions (PDFs) for desired parameters. CER is a key diagnostic system at DIII-D, measuring important physics parameters such as plasma rotation and impurity ion temperature. This work is motivated by a case in which the CER system was used to probe the plasma rotation radial profile around an m/n = 2/1 tearing mode island rotating at ~ 1 kHz. Due to limited resolution in the tearing mode phase and short integration time, it has proven challenging to observe the structure of the rotation profile across the island. We seek to solve this problem by using the Bayesian framework to improve the estimation accuracy of the plasma rotation, helping to reveal details of how it is perturbed in the magnetic island vicinity. Examples of the PDFs obtained through the Bayesian framework will be presented, and compared with results from a conventional least-squares analysis of the CER data. Work supported by the US DOE under DE-FC02-04ER54698 and DE-AC02-09CH11466.
Comparison of statistical sampling methods with ScannerBit, the GAMBIT scanning module
NASA Astrophysics Data System (ADS)
Martinez, Gregory D.; McKay, James; Farmer, Ben; Scott, Pat; Roebber, Elinore; Putze, Antje; Conrad, Jan
2017-11-01
We introduce ScannerBit, the statistics and sampling module of the public, open-source global fitting framework GAMBIT. ScannerBit provides a standardised interface to different sampling algorithms, enabling the use and comparison of multiple computational methods for inferring profile likelihoods, Bayesian posteriors, and other statistical quantities. The current version offers random, grid, raster, nested sampling, differential evolution, Markov Chain Monte Carlo (MCMC) and ensemble Monte Carlo samplers. We also announce the release of a new standalone differential evolution sampler, Diver, and describe its design, usage and interface to ScannerBit. We subject Diver and three other samplers (the nested sampler MultiNest, the MCMC GreAT, and the native ScannerBit implementation of the ensemble Monte Carlo algorithm T-Walk) to a battery of statistical tests. For this we use a realistic physical likelihood function, based on the scalar singlet model of dark matter. We examine the performance of each sampler as a function of its adjustable settings, and the dimensionality of the sampling problem. We evaluate performance on four metrics: optimality of the best fit found, completeness in exploring the best-fit region, number of likelihood evaluations, and total runtime. For Bayesian posterior estimation at high resolution, T-Walk provides the most accurate and timely mapping of the full parameter space. For profile likelihood analysis in less than about ten dimensions, we find that Diver and MultiNest score similarly in terms of best fit and speed, outperforming GreAT and T-Walk; in ten or more dimensions, Diver substantially outperforms the other three samplers on all metrics.
NASA Astrophysics Data System (ADS)
Liu, L.; Du, L.; Liao, Y.
2017-12-01
Based on the ensemble hindcast dataset of CSM1.1m by NCC, CMA, Bayesian merging models and a two-step statistical model are developed and employed to predict monthly grid/station precipitation in the Huaihe River China during summer at the lead-time of 1 to 3 months. The hindcast datasets span a period of 1991 to 2014. The skill of the two models is evaluated using area under the ROC curve (AUC) in a leave-one-out cross-validation framework, and is compared to the skill of CSM1.1m. CSM1.1m has highest skill for summer precipitation from April while lowest from May, and has highest skill for precipitation in June but lowest for precipitation in July. Compared with raw outputs of climate models, some schemes of the two approaches have higher skill for the prediction from March and May, but almost schemes have lower skill for prediction from April. Compared to two-step approach, one sampling scheme of Bayesian merging approach has higher skill for the prediction from March, but has lower skill from May. The results suggest that there is potential to apply the two statistical models for monthly precipitation forecast in summer from March and from May over Huaihe River basin, but is potential to apply CSM1.1m forecast from April. Finally, the summer runoff during 1991 to 2014 is simulated based on one hydrological model using the climate hindcast of CSM1.1m and the two statistical models.
Bayesian assessment of the expected data impact on prediction confidence in optimal sampling design
NASA Astrophysics Data System (ADS)
Leube, P. C.; Geiges, A.; Nowak, W.
2012-02-01
Incorporating hydro(geo)logical data, such as head and tracer data, into stochastic models of (subsurface) flow and transport helps to reduce prediction uncertainty. Because of financial limitations for investigation campaigns, information needs toward modeling or prediction goals should be satisfied efficiently and rationally. Optimal design techniques find the best one among a set of investigation strategies. They optimize the expected impact of data on prediction confidence or related objectives prior to data collection. We introduce a new optimal design method, called PreDIA(gnosis) (Preposterior Data Impact Assessor). PreDIA derives the relevant probability distributions and measures of data utility within a fully Bayesian, generalized, flexible, and accurate framework. It extends the bootstrap filter (BF) and related frameworks to optimal design by marginalizing utility measures over the yet unknown data values. PreDIA is a strictly formal information-processing scheme free of linearizations. It works with arbitrary simulation tools, provides full flexibility concerning measurement types (linear, nonlinear, direct, indirect), allows for any desired task-driven formulations, and can account for various sources of uncertainty (e.g., heterogeneity, geostatistical assumptions, boundary conditions, measurement values, model structure uncertainty, a large class of model errors) via Bayesian geostatistics and model averaging. Existing methods fail to simultaneously provide these crucial advantages, which our method buys at relatively higher-computational costs. We demonstrate the applicability and advantages of PreDIA over conventional linearized methods in a synthetic example of subsurface transport. In the example, we show that informative data is often invisible for linearized methods that confuse zero correlation with statistical independence. Hence, PreDIA will often lead to substantially better sampling designs. Finally, we extend our example to specifically highlight the consideration of conceptual model uncertainty.
Carvalho, Pedro; Marques, Rui Cunha
2016-02-15
This study aims to search for economies of size and scope in the Portuguese water sector applying Bayesian and classical statistics to make inference in stochastic frontier analysis (SFA). This study proves the usefulness and advantages of the application of Bayesian statistics for making inference in SFA over traditional SFA which just uses classical statistics. The resulting Bayesian methods allow overcoming some problems that arise in the application of the traditional SFA, such as the bias in small samples and skewness of residuals. In the present case study of the water sector in Portugal, these Bayesian methods provide more plausible and acceptable results. Based on the results obtained we found that there are important economies of output density, economies of size, economies of vertical integration and economies of scope in the Portuguese water sector, pointing out to the huge advantages in undertaking mergers by joining the retail and wholesale components and by joining the drinking water and wastewater services. Copyright © 2015 Elsevier B.V. All rights reserved.
BCM: toolkit for Bayesian analysis of Computational Models using samplers.
Thijssen, Bram; Dijkstra, Tjeerd M H; Heskes, Tom; Wessels, Lodewyk F A
2016-10-21
Computational models in biology are characterized by a large degree of uncertainty. This uncertainty can be analyzed with Bayesian statistics, however, the sampling algorithms that are frequently used for calculating Bayesian statistical estimates are computationally demanding, and each algorithm has unique advantages and disadvantages. It is typically unclear, before starting an analysis, which algorithm will perform well on a given computational model. We present BCM, a toolkit for the Bayesian analysis of Computational Models using samplers. It provides efficient, multithreaded implementations of eleven algorithms for sampling from posterior probability distributions and for calculating marginal likelihoods. BCM includes tools to simplify the process of model specification and scripts for visualizing the results. The flexible architecture allows it to be used on diverse types of biological computational models. In an example inference task using a model of the cell cycle based on ordinary differential equations, BCM is significantly more efficient than existing software packages, allowing more challenging inference problems to be solved. BCM represents an efficient one-stop-shop for computational modelers wishing to use sampler-based Bayesian statistics.
Hierarchical Bayesian spatial models for multispecies conservation planning and monitoring.
Carroll, Carlos; Johnson, Devin S; Dunk, Jeffrey R; Zielinski, William J
2010-12-01
Biologists who develop and apply habitat models are often familiar with the statistical challenges posed by their data's spatial structure but are unsure of whether the use of complex spatial models will increase the utility of model results in planning. We compared the relative performance of nonspatial and hierarchical Bayesian spatial models for three vertebrate and invertebrate taxa of conservation concern (Church's sideband snails [Monadenia churchi], red tree voles [Arborimus longicaudus], and Pacific fishers [Martes pennanti pacifica]) that provide examples of a range of distributional extents and dispersal abilities. We used presence-absence data derived from regional monitoring programs to develop models with both landscape and site-level environmental covariates. We used Markov chain Monte Carlo algorithms and a conditional autoregressive or intrinsic conditional autoregressive model framework to fit spatial models. The fit of Bayesian spatial models was between 35 and 55% better than the fit of nonspatial analogue models. Bayesian spatial models outperformed analogous models developed with maximum entropy (Maxent) methods. Although the best spatial and nonspatial models included similar environmental variables, spatial models provided estimates of residual spatial effects that suggested how ecological processes might structure distribution patterns. Spatial models built from presence-absence data improved fit most for localized endemic species with ranges constrained by poorly known biogeographic factors and for widely distributed species suspected to be strongly affected by unmeasured environmental variables or population processes. By treating spatial effects as a variable of interest rather than a nuisance, hierarchical Bayesian spatial models, especially when they are based on a common broad-scale spatial lattice (here the national Forest Inventory and Analysis grid of 24 km(2) hexagons), can increase the relevance of habitat models to multispecies conservation planning. Journal compilation © 2010 Society for Conservation Biology. No claim to original US government works.
Astrocytic tracer dynamics estimated from [1-¹¹C]-acetate PET measurements.
Arnold, Andrea; Calvetti, Daniela; Gjedde, Albert; Iversen, Peter; Somersalo, Erkki
2015-12-01
We address the problem of estimating the unknown parameters of a model of tracer kinetics from sequences of positron emission tomography (PET) scan data using a statistical sequential algorithm for the inference of magnitudes of dynamic parameters. The method, based on Bayesian statistical inference, is a modification of a recently proposed particle filtering and sequential Monte Carlo algorithm, where instead of preassigning the accuracy in the propagation of each particle, we fix the time step and account for the numerical errors in the innovation term. We apply the algorithm to PET images of [1-¹¹C]-acetate-derived tracer accumulation, estimating the transport rates in a three-compartment model of astrocytic uptake and metabolism of the tracer for a cohort of 18 volunteers from 3 groups, corresponding to healthy control individuals, cirrhotic liver and hepatic encephalopathy patients. The distribution of the parameters for the individuals and for the groups presented within the Bayesian framework support the hypothesis that the parameters for the hepatic encephalopathy group follow a significantly different distribution than the other two groups. The biological implications of the findings are also discussed. © The Authors 2014. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.
Does History Repeat Itself? Wavelets and the Phylodynamics of Influenza A
Tom, Jennifer A.; Sinsheimer, Janet S.; Suchard, Marc A.
2012-01-01
Unprecedented global surveillance of viruses will result in massive sequence data sets that require new statistical methods. These data sets press the limits of Bayesian phylogenetics as the high-dimensional parameters that comprise a phylogenetic tree increase the already sizable computational burden of these techniques. This burden often results in partitioning the data set, for example, by gene, and inferring the evolutionary dynamics of each partition independently, a compromise that results in stratified analyses that depend only on data within a given partition. However, parameter estimates inferred from these stratified models are likely strongly correlated, considering they rely on data from a single data set. To overcome this shortfall, we exploit the existing Monte Carlo realizations from stratified Bayesian analyses to efficiently estimate a nonparametric hierarchical wavelet-based model and learn about the time-varying parameters of effective population size that reflect levels of genetic diversity across all partitions simultaneously. Our methods are applied to complete genome influenza A sequences that span 13 years. We find that broad peaks and trends, as opposed to seasonal spikes, in the effective population size history distinguish individual segments from the complete genome. We also address hypotheses regarding intersegment dynamics within a formal statistical framework that accounts for correlation between segment-specific parameters. PMID:22160768
Schmidt, Paul; Schmid, Volker J; Gaser, Christian; Buck, Dorothea; Bührlen, Susanne; Förschler, Annette; Mühlau, Mark
2013-01-01
Aiming at iron-related T2-hypointensity, which is related to normal aging and neurodegenerative processes, we here present two practicable approaches, based on Bayesian inference, for preprocessing and statistical analysis of a complex set of structural MRI data. In particular, Markov Chain Monte Carlo methods were used to simulate posterior distributions. First, we rendered a segmentation algorithm that uses outlier detection based on model checking techniques within a Bayesian mixture model. Second, we rendered an analytical tool comprising a Bayesian regression model with smoothness priors (in the form of Gaussian Markov random fields) mitigating the necessity to smooth data prior to statistical analysis. For validation, we used simulated data and MRI data of 27 healthy controls (age: [Formula: see text]; range, [Formula: see text]). We first observed robust segmentation of both simulated T2-hypointensities and gray-matter regions known to be T2-hypointense. Second, simulated data and images of segmented T2-hypointensity were analyzed. We found not only robust identification of simulated effects but also a biologically plausible age-related increase of T2-hypointensity primarily within the dentate nucleus but also within the globus pallidus, substantia nigra, and red nucleus. Our results indicate that fully Bayesian inference can successfully be applied for preprocessing and statistical analysis of structural MRI data.
Bayesian analyses of time-interval data for environmental radiation monitoring.
Luo, Peng; Sharp, Julia L; DeVol, Timothy A
2013-01-01
Time-interval (time difference between two consecutive pulses) analysis based on the principles of Bayesian inference was investigated for online radiation monitoring. Using experimental and simulated data, Bayesian analysis of time-interval data [Bayesian (ti)] was compared with Bayesian and a conventional frequentist analysis of counts in a fixed count time [Bayesian (cnt) and single interval test (SIT), respectively]. The performances of the three methods were compared in terms of average run length (ARL) and detection probability for several simulated detection scenarios. Experimental data were acquired with a DGF-4C system in list mode. Simulated data were obtained using Monte Carlo techniques to obtain a random sampling of the Poisson distribution. All statistical algorithms were developed using the R Project for statistical computing. Bayesian analysis of time-interval information provided a similar detection probability as Bayesian analysis of count information, but the authors were able to make a decision with fewer pulses at relatively higher radiation levels. In addition, for the cases with very short presence of the source (< count time), time-interval information is more sensitive to detect a change than count information since the source data is averaged by the background data over the entire count time. The relationships of the source time, change points, and modifications to the Bayesian approach for increasing detection probability are presented.
Semiparametric Thurstonian Models for Recurrent Choices: A Bayesian Analysis
ERIC Educational Resources Information Center
Ansari, Asim; Iyengar, Raghuram
2006-01-01
We develop semiparametric Bayesian Thurstonian models for analyzing repeated choice decisions involving multinomial, multivariate binary or multivariate ordinal data. Our modeling framework has multiple components that together yield considerable flexibility in modeling preference utilities, cross-sectional heterogeneity and parameter-driven…
Chan, Yvonne L; Schanzenbach, David; Hickerson, Michael J
2014-09-01
Methods that integrate population-level sampling from multiple taxa into a single community-level analysis are an essential addition to the comparative phylogeographic toolkit. Detecting how species within communities have demographically tracked each other in space and time is important for understanding the effects of future climate and landscape changes and the resulting acceleration of extinctions, biological invasions, and potential surges in adaptive evolution. Here, we present a statistical framework for such an analysis based on hierarchical approximate Bayesian computation (hABC) with the goal of detecting concerted demographic histories across an ecological assemblage. Our method combines population genetic data sets from multiple taxa into a single analysis to estimate: 1) the proportion of a community sample that demographically expanded in a temporally clustered pulse and 2) when the pulse occurred. To validate the accuracy and utility of this new approach, we use simulation cross-validation experiments and subsequently analyze an empirical data set of 32 avian populations from Australia that are hypothesized to have expanded from smaller refugia populations in the late Pleistocene. The method can accommodate data set heterogeneity such as variability in effective population size, mutation rates, and sample sizes across species and exploits the statistical strength from the simultaneous analysis of multiple species. This hABC framework used in a multitaxa demographic context can increase our understanding of the impact of historical climate change by determining what proportion of the community responded in concert or independently and can be used with a wide variety of comparative phylogeographic data sets as biota-wide DNA barcoding data sets accumulate. © The Author 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Daee, Pedram; Mirian, Maryam S; Ahmadabadi, Majid Nili
2014-01-01
In a multisensory task, human adults integrate information from different sensory modalities--behaviorally in an optimal Bayesian fashion--while children mostly rely on a single sensor modality for decision making. The reason behind this change of behavior over age and the process behind learning the required statistics for optimal integration are still unclear and have not been justified by the conventional Bayesian modeling. We propose an interactive multisensory learning framework without making any prior assumptions about the sensory models. In this framework, learning in every modality and in their joint space is done in parallel using a single-step reinforcement learning method. A simple statistical test on confidence intervals on the mean of reward distributions is used to select the most informative source of information among the individual modalities and the joint space. Analyses of the method and the simulation results on a multimodal localization task show that the learning system autonomously starts with sensory selection and gradually switches to sensory integration. This is because, relying more on modalities--i.e. selection--at early learning steps (childhood) is more rewarding than favoring decisions learned in the joint space since, smaller state-space in modalities results in faster learning in every individual modality. In contrast, after gaining sufficient experiences (adulthood), the quality of learning in the joint space matures while learning in modalities suffers from insufficient accuracy due to perceptual aliasing. It results in tighter confidence interval for the joint space and consequently causes a smooth shift from selection to integration. It suggests that sensory selection and integration are emergent behavior and both are outputs of a single reward maximization process; i.e. the transition is not a preprogrammed phenomenon.
Nested Sampling for Bayesian Model Comparison in the Context of Salmonella Disease Dynamics
Dybowski, Richard; McKinley, Trevelyan J.; Mastroeni, Pietro; Restif, Olivier
2013-01-01
Understanding the mechanisms underlying the observed dynamics of complex biological systems requires the statistical assessment and comparison of multiple alternative models. Although this has traditionally been done using maximum likelihood-based methods such as Akaike's Information Criterion (AIC), Bayesian methods have gained in popularity because they provide more informative output in the form of posterior probability distributions. However, comparison between multiple models in a Bayesian framework is made difficult by the computational cost of numerical integration over large parameter spaces. A new, efficient method for the computation of posterior probabilities has recently been proposed and applied to complex problems from the physical sciences. Here we demonstrate how nested sampling can be used for inference and model comparison in biological sciences. We present a reanalysis of data from experimental infection of mice with Salmonella enterica showing the distribution of bacteria in liver cells. In addition to confirming the main finding of the original analysis, which relied on AIC, our approach provides: (a) integration across the parameter space, (b) estimation of the posterior parameter distributions (with visualisations of parameter correlations), and (c) estimation of the posterior predictive distributions for goodness-of-fit assessments of the models. The goodness-of-fit results suggest that alternative mechanistic models and a relaxation of the quasi-stationary assumption should be considered. PMID:24376528
Bayesian selective response-adaptive design using the historical control.
Kim, Mi-Ok; Harun, Nusrat; Liu, Chunyan; Khoury, Jane C; Broderick, Joseph P
2018-06-13
High quality historical control data, if incorporated, may reduce sample size, trial cost, and duration. A too optimistic use of the data, however, may result in bias under prior-data conflict. Motivated by well-publicized two-arm comparative trials in stroke, we propose a Bayesian design that both adaptively incorporates historical control data and selectively adapt the treatment allocation ratios within an ongoing trial responsively to the relative treatment effects. The proposed design differs from existing designs that borrow from historical controls. As opposed to reducing the number of subjects assigned to the control arm blindly, this design does so adaptively to the relative treatment effects only if evaluation of cumulated current trial data combined with the historical control suggests the superiority of the intervention arm. We used the effective historical sample size approach to quantify borrowed information on the control arm and modified the treatment allocation rules of the doubly adaptive biased coin design to incorporate the quantity. The modified allocation rules were then implemented under the Bayesian framework with commensurate priors addressing prior-data conflict. Trials were also more frequently concluded earlier in line with the underlying truth, reducing trial cost, and duration and yielded parameter estimates with smaller standard errors. © 2018 The Authors. Statistics in Medicine Published by John Wiley & Sons, Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Justin; Hund, Lauren
2017-02-01
Dynamic compression experiments are being performed on complicated materials using increasingly complex drivers. The data produced in these experiments are beginning to reach a regime where traditional analysis techniques break down; requiring the solution of an inverse problem. A common measurement in dynamic experiments is an interface velocity as a function of time, and often this functional output can be simulated using a hydrodynamics code. Bayesian model calibration is a statistical framework to estimate inputs into a computational model in the presence of multiple uncertainties, making it well suited to measurements of this type. In this article, we apply Bayesianmore » model calibration to high pressure (250 GPa) ramp compression measurements in tantalum. We address several issues speci c to this calibration including the functional nature of the output as well as parameter and model discrepancy identi ability. Speci cally, we propose scaling the likelihood function by an e ective sample size rather than modeling the autocorrelation function to accommodate the functional output and propose sensitivity analyses using the notion of `modularization' to assess the impact of experiment-speci c nuisance input parameters on estimates of material properties. We conclude that the proposed Bayesian model calibration procedure results in simple, fast, and valid inferences on the equation of state parameters for tantalum.« less
A Bayesian approach to estimate the biomass of anchovies off the coast of Perú.
Quiroz, Zaida C; Prates, Marcos O; Rue, Håvard
2015-03-01
The Northern Humboldt Current System (NHCS) is the world's most productive ecosystem in terms of fish. In particular, the Peruvian anchovy (Engraulis ringens) is the major prey of the main top predators, like seabirds, fish, humans, and other mammals. In this context, it is important to understand the dynamics of the anchovy distribution to preserve it as well as to exploit its economic capacities. Using the data collected by the "Instituto del Mar del Perú" (IMARPE) during a scientific survey in 2005, we present a statistical analysis that has as main goals: (i) to adapt to the characteristics of the sampled data, such as spatial dependence, high proportions of zeros and big size of samples; (ii) to provide important insights on the dynamics of the anchovy population; and (iii) to propose a model for estimation and prediction of anchovy biomass in the NHCS offshore from Perú. These data were analyzed in a Bayesian framework using the integrated nested Laplace approximation (INLA) method. Further, to select the best model and to study the predictive power of each model, we performed model comparisons and predictive checks, respectively. Finally, we carried out a Bayesian spatial influence diagnostic for the preferred model. © 2014, The International Biometric Society.
Uncertainty quantification in capacitive RF MEMS switches
NASA Astrophysics Data System (ADS)
Pax, Benjamin J.
Development of radio frequency micro electrical-mechanical systems (RF MEMS) has led to novel approaches to implement electrical circuitry. The introduction of capacitive MEMS switches, in particular, has shown promise in low-loss, low-power devices. However, the promise of MEMS switches has not yet been completely realized. RF-MEMS switches are known to fail after only a few months of operation, and nominally similar designs show wide variability in lifetime. Modeling switch operation using nominal or as-designed parameters cannot predict the statistical spread in the number of cycles to failure, and probabilistic methods are necessary. A Bayesian framework for calibration, validation and prediction offers an integrated approach to quantifying the uncertainty in predictions of MEMS switch performance. The objective of this thesis is to use the Bayesian framework to predict the creep-related deflection of the PRISM RF-MEMS switch over several thousand hours of operation. The PRISM switch used in this thesis is the focus of research at Purdue's PRISM center, and is a capacitive contacting RF-MEMS switch. It employs a fixed-fixed nickel membrane which is electrostatically actuated by applying voltage between the membrane and a pull-down electrode. Creep plays a central role in the reliability of this switch. The focus of this thesis is on the creep model, which is calibrated against experimental data measured for a frog-leg varactor fabricated and characterized at Purdue University. Creep plasticity is modeled using plate element theory with electrostatic forces being generated using either parallel plate approximations where appropriate, or solving for the full 3D potential field. For the latter, structure-electrostatics interaction is determined through immersed boundary method. A probabilistic framework using generalized polynomial chaos (gPC) is used to create surrogate models to mitigate the costly full physics simulations, and Bayesian calibration and forward propagation of uncertainty are performed using this surrogate model. The first step in the analysis is Bayesian calibration of the creep related parameters. A computational model of the frog-leg varactor is created, and the computed creep deflection of the device over 800 hours is used to generate a surrogate model using a polynomial chaos expansion in Hermite polynomials. Parameters related to the creep phenomenon are calibrated using Bayesian calibration with experimental deflection data from the frog-leg device. The calibrated input distributions are subsequently propagated through a surrogate gPC model for the PRISM MEMS switch to produce probability density functions of the maximum membrane deflection of the membrane over several thousand hours. The assumptions related to the Bayesian calibration and forward propagation are analyzed to determine the sensitivity to these assumptions of the calibrated input distributions and propagated output distributions of the PRISM device. The work is an early step in understanding the role of geometric variability, model uncertainty, numerical errors and experimental uncertainties in the long-term performance of RF-MEMS.
NASA Astrophysics Data System (ADS)
Alexandridis, Konstantinos T.
This dissertation adopts a holistic and detailed approach to modeling spatially explicit agent-based artificial intelligent systems, using the Multi Agent-based Behavioral Economic Landscape (MABEL) model. The research questions that addresses stem from the need to understand and analyze the real-world patterns and dynamics of land use change from a coupled human-environmental systems perspective. Describes the systemic, mathematical, statistical, socio-economic and spatial dynamics of the MABEL modeling framework, and provides a wide array of cross-disciplinary modeling applications within the research, decision-making and policy domains. Establishes the symbolic properties of the MABEL model as a Markov decision process, analyzes the decision-theoretic utility and optimization attributes of agents towards comprising statistically and spatially optimal policies and actions, and explores the probabilogic character of the agents' decision-making and inference mechanisms via the use of Bayesian belief and decision networks. Develops and describes a Monte Carlo methodology for experimental replications of agent's decisions regarding complex spatial parcel acquisition and learning. Recognizes the gap on spatially-explicit accuracy assessment techniques for complex spatial models, and proposes an ensemble of statistical tools designed to address this problem. Advanced information assessment techniques such as the Receiver-Operator Characteristic curve, the impurity entropy and Gini functions, and the Bayesian classification functions are proposed. The theoretical foundation for modular Bayesian inference in spatially-explicit multi-agent artificial intelligent systems, and the ensembles of cognitive and scenario assessment modular tools build for the MABEL model are provided. Emphasizes the modularity and robustness as valuable qualitative modeling attributes, and examines the role of robust intelligent modeling as a tool for improving policy-decisions related to land use change. Finally, the major contributions to the science are presented along with valuable directions for future research.
A Bayesian pick-the-winner design in a randomized phase II clinical trial.
Chen, Dung-Tsa; Huang, Po-Yu; Lin, Hui-Yi; Chiappori, Alberto A; Gabrilovich, Dmitry I; Haura, Eric B; Antonia, Scott J; Gray, Jhanelle E
2017-10-24
Many phase II clinical trials evaluate unique experimental drugs/combinations through multi-arm design to expedite the screening process (early termination of ineffective drugs) and to identify the most effective drug (pick the winner) to warrant a phase III trial. Various statistical approaches have been developed for the pick-the-winner design but have been criticized for lack of objective comparison among the drug agents. We developed a Bayesian pick-the-winner design by integrating a Bayesian posterior probability with Simon two-stage design in a randomized two-arm clinical trial. The Bayesian posterior probability, as the rule to pick the winner, is defined as probability of the response rate in one arm higher than in the other arm. The posterior probability aims to determine the winner when both arms pass the second stage of the Simon two-stage design. When both arms are competitive (i.e., both passing the second stage), the Bayesian posterior probability performs better to correctly identify the winner compared with the Fisher exact test in the simulation study. In comparison to a standard two-arm randomized design, the Bayesian pick-the-winner design has a higher power to determine a clear winner. In application to two studies, the approach is able to perform statistical comparison of two treatment arms and provides a winner probability (Bayesian posterior probability) to statistically justify the winning arm. We developed an integrated design that utilizes Bayesian posterior probability, Simon two-stage design, and randomization into a unique setting. It gives objective comparisons between the arms to determine the winner.
Objectified quantification of uncertainties in Bayesian atmospheric inversions
NASA Astrophysics Data System (ADS)
Berchet, A.; Pison, I.; Chevallier, F.; Bousquet, P.; Bonne, J.-L.; Paris, J.-D.
2015-05-01
Classical Bayesian atmospheric inversions process atmospheric observations and prior emissions, the two being connected by an observation operator picturing mainly the atmospheric transport. These inversions rely on prescribed errors in the observations, the prior emissions and the observation operator. When data pieces are sparse, inversion results are very sensitive to the prescribed error distributions, which are not accurately known. The classical Bayesian framework experiences difficulties in quantifying the impact of mis-specified error distributions on the optimized fluxes. In order to cope with this issue, we rely on recent research results to enhance the classical Bayesian inversion framework through a marginalization on a large set of plausible errors that can be prescribed in the system. The marginalization consists in computing inversions for all possible error distributions weighted by the probability of occurrence of the error distributions. The posterior distribution of the fluxes calculated by the marginalization is not explicitly describable. As a consequence, we carry out a Monte Carlo sampling based on an approximation of the probability of occurrence of the error distributions. This approximation is deduced from the well-tested method of the maximum likelihood estimation. Thus, the marginalized inversion relies on an automatic objectified diagnosis of the error statistics, without any prior knowledge about the matrices. It robustly accounts for the uncertainties on the error distributions, contrary to what is classically done with frozen expert-knowledge error statistics. Some expert knowledge is still used in the method for the choice of an emission aggregation pattern and of a sampling protocol in order to reduce the computation cost. The relevance and the robustness of the method is tested on a case study: the inversion of methane surface fluxes at the mesoscale with virtual observations on a realistic network in Eurasia. Observing system simulation experiments are carried out with different transport patterns, flux distributions and total prior amounts of emitted methane. The method proves to consistently reproduce the known "truth" in most cases, with satisfactory tolerance intervals. Additionally, the method explicitly provides influence scores and posterior correlation matrices. An in-depth interpretation of the inversion results is then possible. The more objective quantification of the influence of the observations on the fluxes proposed here allows us to evaluate the impact of the observation network on the characterization of the surface fluxes. The explicit correlations between emission aggregates reveal the mis-separated regions, hence the typical temporal and spatial scales the inversion can analyse. These scales are consistent with the chosen aggregation patterns.
Bayesian Statistics in Educational Research: A Look at the Current State of Affairs
ERIC Educational Resources Information Center
König, Christoph; van de Schoot, Rens
2018-01-01
The ability of a scientific discipline to build cumulative knowledge depends on its predominant method of data analysis. A steady accumulation of knowledge requires approaches which allow researchers to consider results from comparable prior research. Bayesian statistics is especially relevant for establishing a cumulative scientific discipline,…
Nonparametric Bayesian predictive distributions for future order statistics
Richard A. Johnson; James W. Evans; David W. Green
1999-01-01
We derive the predictive distribution for a specified order statistic, determined from a future random sample, under a Dirichlet process prior. Two variants of the approach are treated and some limiting cases studied. A practical application to monitoring the strength of lumber is discussed including choices of prior expectation and comparisons made to a Bayesian...
Non-Bayesian Optical Inference Machines
NASA Astrophysics Data System (ADS)
Kadar, Ivan; Eichmann, George
1987-01-01
In a recent paper, Eichmann and Caulfield) presented a preliminary exposition of optical learning machines suited for use in expert systems. In this paper, we extend the previous ideas by introducing learning as a means of reinforcement by information gathering and reasoning with uncertainty in a non-Bayesian framework2. More specifically, the non-Bayesian approach allows the representation of total ignorance (not knowing) as opposed to assuming equally likely prior distributions.
Bayesian Inference for Time Trends in Parameter Values using Weighted Evidence Sets
DOE Office of Scientific and Technical Information (OSTI.GOV)
D. L. Kelly; A. Malkhasyan
2010-09-01
There is a nearly ubiquitous assumption in PSA that parameter values are at least piecewise-constant in time. As a result, Bayesian inference tends to incorporate many years of plant operation, over which there have been significant changes in plant operational and maintenance practices, plant management, etc. These changes can cause significant changes in parameter values over time; however, failure to perform Bayesian inference in the proper time-dependent framework can mask these changes. Failure to question the assumption of constant parameter values, and failure to perform Bayesian inference in the proper time-dependent framework were noted as important issues in NUREG/CR-6813, performedmore » for the U. S. Nuclear Regulatory Commission’s Advisory Committee on Reactor Safeguards in 2003. That report noted that “in-dustry lacks tools to perform time-trend analysis with Bayesian updating.” This paper describes an applica-tion of time-dependent Bayesian inference methods developed for the European Commission Ageing PSA Network. These methods utilize open-source software, implementing Markov chain Monte Carlo sampling. The paper also illustrates an approach to incorporating multiple sources of data via applicability weighting factors that address differences in key influences, such as vendor, component boundaries, conditions of the operating environment, etc.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dana L. Kelly; Albert Malkhasyan
2010-06-01
There is a nearly ubiquitous assumption in PSA that parameter values are at least piecewise-constant in time. As a result, Bayesian inference tends to incorporate many years of plant operation, over which there have been significant changes in plant operational and maintenance practices, plant management, etc. These changes can cause significant changes in parameter values over time; however, failure to perform Bayesian inference in the proper time-dependent framework can mask these changes. Failure to question the assumption of constant parameter values, and failure to perform Bayesian inference in the proper time-dependent framework were noted as important issues in NUREG/CR-6813, performedmore » for the U. S. Nuclear Regulatory Commission’s Advisory Committee on Reactor Safeguards in 2003. That report noted that “industry lacks tools to perform time-trend analysis with Bayesian updating.” This paper describes an application of time-dependent Bayesian inference methods developed for the European Commission Ageing PSA Network. These methods utilize open-source software, implementing Markov chain Monte Carlo sampling. The paper also illustrates the development of a generic prior distribution, which incorporates multiple sources of generic data via weighting factors that address differences in key influences, such as vendor, component boundaries, conditions of the operating environment, etc.« less
Bayesian truthing and experimental validation in homeland security and defense
NASA Astrophysics Data System (ADS)
Jannson, Tomasz; Forrester, Thomas; Wang, Wenjian; Kostrzewski, Andrew; Pradhan, Ranjit
2014-05-01
In this paper we discuss relations between Bayesian Truthing (experimental validation), Bayesian statistics, and Binary Sensing in the context of selected Homeland Security and Intelligence, Surveillance, Reconnaissance (ISR) optical and nonoptical application scenarios. The basic Figure of Merit (FoM) is Positive Predictive Value (PPV), as well as false positives and false negatives. By using these simple binary statistics, we can analyze, classify, and evaluate a broad variety of events including: ISR; natural disasters; QC; and terrorism-related, GIS-related, law enforcement-related, and other C3I events.
A Comparison of the β-Substitution Method and a Bayesian Method for Analyzing Left-Censored Data.
Huynh, Tran; Quick, Harrison; Ramachandran, Gurumurthy; Banerjee, Sudipto; Stenzel, Mark; Sandler, Dale P; Engel, Lawrence S; Kwok, Richard K; Blair, Aaron; Stewart, Patricia A
2016-01-01
Classical statistical methods for analyzing exposure data with values below the detection limits are well described in the occupational hygiene literature, but an evaluation of a Bayesian approach for handling such data is currently lacking. Here, we first describe a Bayesian framework for analyzing censored data. We then present the results of a simulation study conducted to compare the β-substitution method with a Bayesian method for exposure datasets drawn from lognormal distributions and mixed lognormal distributions with varying sample sizes, geometric standard deviations (GSDs), and censoring for single and multiple limits of detection. For each set of factors, estimates for the arithmetic mean (AM), geometric mean, GSD, and the 95th percentile (X0.95) of the exposure distribution were obtained. We evaluated the performance of each method using relative bias, the root mean squared error (rMSE), and coverage (the proportion of the computed 95% uncertainty intervals containing the true value). The Bayesian method using non-informative priors and the β-substitution method were generally comparable in bias and rMSE when estimating the AM and GM. For the GSD and the 95th percentile, the Bayesian method with non-informative priors was more biased and had a higher rMSE than the β-substitution method, but use of more informative priors generally improved the Bayesian method's performance, making both the bias and the rMSE more comparable to the β-substitution method. An advantage of the Bayesian method is that it provided estimates of uncertainty for these parameters of interest and good coverage, whereas the β-substitution method only provided estimates of uncertainty for the AM, and coverage was not as consistent. Selection of one or the other method depends on the needs of the practitioner, the availability of prior information, and the distribution characteristics of the measurement data. We suggest the use of Bayesian methods if the practitioner has the computational resources and prior information, as the method would generally provide accurate estimates and also provides the distributions of all of the parameters, which could be useful for making decisions in some applications. © The Author 2015. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.
Modeling Soot Oxidation and Gasification with Bayesian Statistics
Josephson, Alexander J.; Gaffin, Neal D.; Smith, Sean T.; ...
2017-08-22
This paper presents a statistical method for model calibration using data collected from literature. The method is used to calibrate parameters for global models of soot consumption in combustion systems. This consumption is broken into two different submodels: first for oxidation where soot particles are attacked by certain oxidizing agents; second for gasification where soot particles are attacked by H 2O or CO 2 molecules. Rate data were collected from 19 studies in the literature and evaluated using Bayesian statistics to calibrate the model parameters. Bayesian statistics are valued in their ability to quantify uncertainty in modeling. The calibrated consumptionmore » model with quantified uncertainty is presented here along with a discussion of associated implications. The oxidation results are found to be consistent with previous studies. Significant variation is found in the CO 2 gasification rates.« less
Modeling Soot Oxidation and Gasification with Bayesian Statistics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Josephson, Alexander J.; Gaffin, Neal D.; Smith, Sean T.
This paper presents a statistical method for model calibration using data collected from literature. The method is used to calibrate parameters for global models of soot consumption in combustion systems. This consumption is broken into two different submodels: first for oxidation where soot particles are attacked by certain oxidizing agents; second for gasification where soot particles are attacked by H 2O or CO 2 molecules. Rate data were collected from 19 studies in the literature and evaluated using Bayesian statistics to calibrate the model parameters. Bayesian statistics are valued in their ability to quantify uncertainty in modeling. The calibrated consumptionmore » model with quantified uncertainty is presented here along with a discussion of associated implications. The oxidation results are found to be consistent with previous studies. Significant variation is found in the CO 2 gasification rates.« less
Fukaya, Keiichi; Kawamori, Ai; Osada, Yutaka; Kitazawa, Masumi; Ishiguro, Makio
2017-09-20
Women's basal body temperature (BBT) shows a periodic pattern that associates with menstrual cycle. Although this fact suggests a possibility that daily BBT time series can be useful for estimating the underlying phase state as well as for predicting the length of current menstrual cycle, little attention has been paid to model BBT time series. In this study, we propose a state-space model that involves the menstrual phase as a latent state variable to explain the daily fluctuation of BBT and the menstruation cycle length. Conditional distributions of the phase are obtained by using sequential Bayesian filtering techniques. A predictive distribution of the next menstruation day can be derived based on this conditional distribution and the model, leading to a novel statistical framework that provides a sequentially updated prediction for upcoming menstruation day. We applied this framework to a real data set of women's BBT and menstruation days and compared prediction accuracy of the proposed method with that of previous methods, showing that the proposed method generally provides a better prediction. Because BBT can be obtained with relatively small cost and effort, the proposed method can be useful for women's health management. Potential extensions of this framework as the basis of modeling and predicting events that are associated with the menstrual cycles are discussed. © 2017 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. © 2017 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd.
Bayesian methods in reliability
NASA Astrophysics Data System (ADS)
Sander, P.; Badoux, R.
1991-11-01
The present proceedings from a course on Bayesian methods in reliability encompasses Bayesian statistical methods and their computational implementation, models for analyzing censored data from nonrepairable systems, the traits of repairable systems and growth models, the use of expert judgment, and a review of the problem of forecasting software reliability. Specific issues addressed include the use of Bayesian methods to estimate the leak rate of a gas pipeline, approximate analyses under great prior uncertainty, reliability estimation techniques, and a nonhomogeneous Poisson process. Also addressed are the calibration sets and seed variables of expert judgment systems for risk assessment, experimental illustrations of the use of expert judgment for reliability testing, and analyses of the predictive quality of software-reliability growth models such as the Weibull order statistics.
NASA Astrophysics Data System (ADS)
Sadegh, Mojtaba; Ragno, Elisa; AghaKouchak, Amir
2017-06-01
We present a newly developed Multivariate Copula Analysis Toolbox (MvCAT) which includes a wide range of copula families with different levels of complexity. MvCAT employs a Bayesian framework with a residual-based Gaussian likelihood function for inferring copula parameters and estimating the underlying uncertainties. The contribution of this paper is threefold: (a) providing a Bayesian framework to approximate the predictive uncertainties of fitted copulas, (b) introducing a hybrid-evolution Markov Chain Monte Carlo (MCMC) approach designed for numerical estimation of the posterior distribution of copula parameters, and (c) enabling the community to explore a wide range of copulas and evaluate them relative to the fitting uncertainties. We show that the commonly used local optimization methods for copula parameter estimation often get trapped in local minima. The proposed method, however, addresses this limitation and improves describing the dependence structure. MvCAT also enables evaluation of uncertainties relative to the length of record, which is fundamental to a wide range of applications such as multivariate frequency analysis.
Höhna, Sebastian; Landis, Michael J.
2016-01-01
Programs for Bayesian inference of phylogeny currently implement a unique and fixed suite of models. Consequently, users of these software packages are simultaneously forced to use a number of programs for a given study, while also lacking the freedom to explore models that have not been implemented by the developers of those programs. We developed a new open-source software package, RevBayes, to address these problems. RevBayes is entirely based on probabilistic graphical models, a powerful generic framework for specifying and analyzing statistical models. Phylogenetic-graphical models can be specified interactively in RevBayes, piece by piece, using a new succinct and intuitive language called Rev. Rev is similar to the R language and the BUGS model-specification language, and should be easy to learn for most users. The strength of RevBayes is the simplicity with which one can design, specify, and implement new and complex models. Fortunately, this tremendous flexibility does not come at the cost of slower computation; as we demonstrate, RevBayes outperforms competing software for several standard analyses. Compared with other programs, RevBayes has fewer black-box elements. Users need to explicitly specify each part of the model and analysis. Although this explicitness may initially be unfamiliar, we are convinced that this transparency will improve understanding of phylogenetic models in our field. Moreover, it will motivate the search for improvements to existing methods by brazenly exposing the model choices that we make to critical scrutiny. RevBayes is freely available at http://www.RevBayes.com. [Bayesian inference; Graphical models; MCMC; statistical phylogenetics.] PMID:27235697
Höhna, Sebastian; Landis, Michael J; Heath, Tracy A; Boussau, Bastien; Lartillot, Nicolas; Moore, Brian R; Huelsenbeck, John P; Ronquist, Fredrik
2016-07-01
Programs for Bayesian inference of phylogeny currently implement a unique and fixed suite of models. Consequently, users of these software packages are simultaneously forced to use a number of programs for a given study, while also lacking the freedom to explore models that have not been implemented by the developers of those programs. We developed a new open-source software package, RevBayes, to address these problems. RevBayes is entirely based on probabilistic graphical models, a powerful generic framework for specifying and analyzing statistical models. Phylogenetic-graphical models can be specified interactively in RevBayes, piece by piece, using a new succinct and intuitive language called Rev. Rev is similar to the R language and the BUGS model-specification language, and should be easy to learn for most users. The strength of RevBayes is the simplicity with which one can design, specify, and implement new and complex models. Fortunately, this tremendous flexibility does not come at the cost of slower computation; as we demonstrate, RevBayes outperforms competing software for several standard analyses. Compared with other programs, RevBayes has fewer black-box elements. Users need to explicitly specify each part of the model and analysis. Although this explicitness may initially be unfamiliar, we are convinced that this transparency will improve understanding of phylogenetic models in our field. Moreover, it will motivate the search for improvements to existing methods by brazenly exposing the model choices that we make to critical scrutiny. RevBayes is freely available at http://www.RevBayes.com [Bayesian inference; Graphical models; MCMC; statistical phylogenetics.]. © The Author(s) 2016. Published by Oxford University Press, on behalf of the Society of Systematic Biologists.
Using Alien Coins to Test Whether Simple Inference Is Bayesian
ERIC Educational Resources Information Center
Cassey, Peter; Hawkins, Guy E.; Donkin, Chris; Brown, Scott D.
2016-01-01
Reasoning and inference are well-studied aspects of basic cognition that have been explained as statistically optimal Bayesian inference. Using a simplified experimental design, we conducted quantitative comparisons between Bayesian inference and human inference at the level of individuals. In 3 experiments, with more than 13,000 participants, we…
The Application of Bayesian Analysis to Issues in Developmental Research
ERIC Educational Resources Information Center
Walker, Lawrence J.; Gustafson, Paul; Frimer, Jeremy A.
2007-01-01
This article reviews the concepts and methods of Bayesian statistical analysis, which can offer innovative and powerful solutions to some challenging analytical problems that characterize developmental research. In this article, we demonstrate the utility of Bayesian analysis, explain its unique adeptness in some circumstances, address some…
Posterior Predictive Model Checking in Bayesian Networks
ERIC Educational Resources Information Center
Crawford, Aaron
2014-01-01
This simulation study compared the utility of various discrepancy measures within a posterior predictive model checking (PPMC) framework for detecting different types of data-model misfit in multidimensional Bayesian network (BN) models. The investigated conditions were motivated by an applied research program utilizing an operational complex…
Jiang, Zhehan; Skorupski, William
2017-12-12
In many behavioral research areas, multivariate generalizability theory (mG theory) has been typically used to investigate the reliability of certain multidimensional assessments. However, traditional mG-theory estimation-namely, using frequentist approaches-has limits, leading researchers to fail to take full advantage of the information that mG theory can offer regarding the reliability of measurements. Alternatively, Bayesian methods provide more information than frequentist approaches can offer. This article presents instructional guidelines on how to implement mG-theory analyses in a Bayesian framework; in particular, BUGS code is presented to fit commonly seen designs from mG theory, including single-facet designs, two-facet crossed designs, and two-facet nested designs. In addition to concrete examples that are closely related to the selected designs and the corresponding BUGS code, a simulated dataset is provided to demonstrate the utility and advantages of the Bayesian approach. This article is intended to serve as a tutorial reference for applied researchers and methodologists conducting mG-theory studies.
Bayesian sample size calculations in phase II clinical trials using a mixture of informative priors.
Gajewski, Byron J; Mayo, Matthew S
2006-08-15
A number of researchers have discussed phase II clinical trials from a Bayesian perspective. A recent article by Mayo and Gajewski focuses on sample size calculations, which they determine by specifying an informative prior distribution and then calculating a posterior probability that the true response will exceed a prespecified target. In this article, we extend these sample size calculations to include a mixture of informative prior distributions. The mixture comes from several sources of information. For example consider information from two (or more) clinicians. The first clinician is pessimistic about the drug and the second clinician is optimistic. We tabulate the results for sample size design using the fact that the simple mixture of Betas is a conjugate family for the Beta- Binomial model. We discuss the theoretical framework for these types of Bayesian designs and show that the Bayesian designs in this paper approximate this theoretical framework. Copyright 2006 John Wiley & Sons, Ltd.
MAFsnp: A Multi-Sample Accurate and Flexible SNP Caller Using Next-Generation Sequencing Data
Hu, Jiyuan; Li, Tengfei; Xiu, Zidi; Zhang, Hong
2015-01-01
Most existing statistical methods developed for calling single nucleotide polymorphisms (SNPs) using next-generation sequencing (NGS) data are based on Bayesian frameworks, and there does not exist any SNP caller that produces p-values for calling SNPs in a frequentist framework. To fill in this gap, we develop a new method MAFsnp, a Multiple-sample based Accurate and Flexible algorithm for calling SNPs with NGS data. MAFsnp is based on an estimated likelihood ratio test (eLRT) statistic. In practical situation, the involved parameter is very close to the boundary of the parametric space, so the standard large sample property is not suitable to evaluate the finite-sample distribution of the eLRT statistic. Observing that the distribution of the test statistic is a mixture of zero and a continuous part, we propose to model the test statistic with a novel two-parameter mixture distribution. Once the parameters in the mixture distribution are estimated, p-values can be easily calculated for detecting SNPs, and the multiple-testing corrected p-values can be used to control false discovery rate (FDR) at any pre-specified level. With simulated data, MAFsnp is shown to have much better control of FDR than the existing SNP callers. Through the application to two real datasets, MAFsnp is also shown to outperform the existing SNP callers in terms of calling accuracy. An R package “MAFsnp” implementing the new SNP caller is freely available at http://homepage.fudan.edu.cn/zhangh/softwares/. PMID:26309201
New Stopping Criteria for Segmenting DNA Sequences
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Wentian
2001-06-18
We propose a solution on the stopping criterion in segmenting inhomogeneous DNA sequences with complex statistical patterns. This new stopping criterion is based on Bayesian information criterion in the model selection framework. When this criterion is applied to telomere of S.cerevisiae and the complete sequence of E.coli, borders of biologically meaningful units were identified, and a more reasonable number of domains was obtained. We also introduce a measure called segmentation strength which can be used to control the delineation of large domains. The relationship between the average domain size and the threshold of segmentation strength is determined for several genomemore » sequences.« less
Rapid recipe formulation for plasma etching of new materials
NASA Astrophysics Data System (ADS)
Chopra, Meghali; Zhang, Zizhuo; Ekerdt, John; Bonnecaze, Roger T.
2016-03-01
A fast and inexpensive scheme for etch rate prediction using flexible continuum models and Bayesian statistics is demonstrated. Bulk etch rates of MgO are predicted using a steady-state model with volume-averaged plasma parameters and classical Langmuir surface kinetics. Plasma particle and surface kinetics are modeled within a global plasma framework using single component Metropolis Hastings methods and limited data. The accuracy of these predictions is evaluated with synthetic and experimental etch rate data for magnesium oxide in an ICP-RIE system. This approach is compared and superior to factorial models generated from JMP, a software package frequently employed for recipe creation and optimization.
Bayesian theories of conditioning in a changing world.
Courville, Aaron C; Daw, Nathaniel D; Touretzky, David S
2006-07-01
The recent flowering of Bayesian approaches invites the re-examination of classic issues in behavior, even in areas as venerable as Pavlovian conditioning. A statistical account can offer a new, principled interpretation of behavior, and previous experiments and theories can inform many unexplored aspects of the Bayesian enterprise. Here we consider one such issue: the finding that surprising events provoke animals to learn faster. We suggest that, in a statistical account of conditioning, surprise signals change and therefore uncertainty and the need for new learning. We discuss inference in a world that changes and show how experimental results involving surprise can be interpreted from this perspective, and also how, thus understood, these phenomena help constrain statistical theories of animal and human learning.
Fundamentals and Recent Developments in Approximate Bayesian Computation
Lintusaari, Jarno; Gutmann, Michael U.; Dutta, Ritabrata; Kaski, Samuel; Corander, Jukka
2017-01-01
Abstract Bayesian inference plays an important role in phylogenetics, evolutionary biology, and in many other branches of science. It provides a principled framework for dealing with uncertainty and quantifying how it changes in the light of new evidence. For many complex models and inference problems, however, only approximate quantitative answers are obtainable. Approximate Bayesian computation (ABC) refers to a family of algorithms for approximate inference that makes a minimal set of assumptions by only requiring that sampling from a model is possible. We explain here the fundamentals of ABC, review the classical algorithms, and highlight recent developments. [ABC; approximate Bayesian computation; Bayesian inference; likelihood-free inference; phylogenetics; simulator-based models; stochastic simulation models; tree-based models.] PMID:28175922
Development of uncertainty-based work injury model using Bayesian structural equation modelling.
Chatterjee, Snehamoy
2014-01-01
This paper proposed a Bayesian method-based structural equation model (SEM) of miners' work injury for an underground coal mine in India. The environmental and behavioural variables for work injury were identified and causal relationships were developed. For Bayesian modelling, prior distributions of SEM parameters are necessary to develop the model. In this paper, two approaches were adopted to obtain prior distribution for factor loading parameters and structural parameters of SEM. In the first approach, the prior distributions were considered as a fixed distribution function with specific parameter values, whereas, in the second approach, prior distributions of the parameters were generated from experts' opinions. The posterior distributions of these parameters were obtained by applying Bayesian rule. The Markov Chain Monte Carlo sampling in the form Gibbs sampling was applied for sampling from the posterior distribution. The results revealed that all coefficients of structural and measurement model parameters are statistically significant in experts' opinion-based priors, whereas, two coefficients are not statistically significant when fixed prior-based distributions are applied. The error statistics reveals that Bayesian structural model provides reasonably good fit of work injury with high coefficient of determination (0.91) and less mean squared error as compared to traditional SEM.
Modelling Trial-by-Trial Changes in the Mismatch Negativity
Lieder, Falk; Daunizeau, Jean; Garrido, Marta I.; Friston, Karl J.; Stephan, Klaas E.
2013-01-01
The mismatch negativity (MMN) is a differential brain response to violations of learned regularities. It has been used to demonstrate that the brain learns the statistical structure of its environment and predicts future sensory inputs. However, the algorithmic nature of these computations and the underlying neurobiological implementation remain controversial. This article introduces a mathematical framework with which competing ideas about the computational quantities indexed by MMN responses can be formalized and tested against single-trial EEG data. This framework was applied to five major theories of the MMN, comparing their ability to explain trial-by-trial changes in MMN amplitude. Three of these theories (predictive coding, model adjustment, and novelty detection) were formalized by linking the MMN to different manifestations of the same computational mechanism: approximate Bayesian inference according to the free-energy principle. We thereby propose a unifying view on three distinct theories of the MMN. The relative plausibility of each theory was assessed against empirical single-trial MMN amplitudes acquired from eight healthy volunteers in a roving oddball experiment. Models based on the free-energy principle provided more plausible explanations of trial-by-trial changes in MMN amplitude than models representing the two more traditional theories (change detection and adaptation). Our results suggest that the MMN reflects approximate Bayesian learning of sensory regularities, and that the MMN-generating process adjusts a probabilistic model of the environment according to prediction errors. PMID:23436989
Characterizing the Nash equilibria of three-player Bayesian quantum games
NASA Astrophysics Data System (ADS)
Solmeyer, Neal; Balu, Radhakrishnan
2017-05-01
Quantum games with incomplete information can be studied within a Bayesian framework. We analyze games quantized within the EWL framework [Eisert, Wilkens, and Lewenstein, Phys Rev. Lett. 83, 3077 (1999)]. We solve for the Nash equilibria of a variety of two-player quantum games and compare the results to the solutions of the corresponding classical games. We then analyze Bayesian games where there is uncertainty about the player types in two-player conflicting interest games. The solutions to the Bayesian games are found to have a phase diagram-like structure where different equilibria exist in different parameter regions, depending both on the amount of uncertainty and the degree of entanglement. We find that in games where a Pareto-optimal solution is not a Nash equilibrium, it is possible for the quantized game to have an advantage over the classical version. In addition, we analyze the behavior of the solutions as the strategy choices approach an unrestricted operation. We find that some games have a continuum of solutions, bounded by the solutions of a simpler restricted game. A deeper understanding of Bayesian quantum game theory could lead to novel quantum applications in a multi-agent setting.
Testing adaptive toolbox models: a Bayesian hierarchical approach.
Scheibehenne, Benjamin; Rieskamp, Jörg; Wagenmakers, Eric-Jan
2013-01-01
Many theories of human cognition postulate that people are equipped with a repertoire of strategies to solve the tasks they face. This theoretical framework of a cognitive toolbox provides a plausible account of intra- and interindividual differences in human behavior. Unfortunately, it is often unclear how to rigorously test the toolbox framework. How can a toolbox model be quantitatively specified? How can the number of toolbox strategies be limited to prevent uncontrolled strategy sprawl? How can a toolbox model be formally tested against alternative theories? The authors show how these challenges can be met by using Bayesian inference techniques. By means of parameter recovery simulations and the analysis of empirical data across a variety of domains (i.e., judgment and decision making, children's cognitive development, function learning, and perceptual categorization), the authors illustrate how Bayesian inference techniques allow toolbox models to be quantitatively specified, strategy sprawl to be contained, and toolbox models to be rigorously tested against competing theories. The authors demonstrate that their approach applies at the individual level but can also be generalized to the group level with hierarchical Bayesian procedures. The suggested Bayesian inference techniques represent a theoretical and methodological advancement for toolbox theories of cognition and behavior.
With or without you: predictive coding and Bayesian inference in the brain
Aitchison, Laurence; Lengyel, Máté
2018-01-01
Two theoretical ideas have emerged recently with the ambition to provide a unifying functional explanation of neural population coding and dynamics: predictive coding and Bayesian inference. Here, we describe the two theories and their combination into a single framework: Bayesian predictive coding. We clarify how the two theories can be distinguished, despite sharing core computational concepts and addressing an overlapping set of empirical phenomena. We argue that predictive coding is an algorithmic / representational motif that can serve several different computational goals of which Bayesian inference is but one. Conversely, while Bayesian inference can utilize predictive coding, it can also be realized by a variety of other representations. We critically evaluate the experimental evidence supporting Bayesian predictive coding and discuss how to test it more directly. PMID:28942084
Bayesian analyses of seasonal runoff forecasts
NASA Astrophysics Data System (ADS)
Krzysztofowicz, R.; Reese, S.
1991-12-01
Forecasts of seasonal snowmelt runoff volume provide indispensable information for rational decision making by water project operators, irrigation district managers, and farmers in the western United States. Bayesian statistical models and communication frames have been researched in order to enhance the forecast information disseminated to the users, and to characterize forecast skill from the decision maker's point of view. Four products are presented: (i) a Bayesian Processor of Forecasts, which provides a statistical filter for calibrating the forecasts, and a procedure for estimating the posterior probability distribution of the seasonal runoff; (ii) the Bayesian Correlation Score, a new measure of forecast skill, which is related monotonically to the ex ante economic value of forecasts for decision making; (iii) a statistical predictor of monthly cumulative runoffs within the snowmelt season, conditional on the total seasonal runoff forecast; and (iv) a framing of the forecast message that conveys the uncertainty associated with the forecast estimates to the users. All analyses are illustrated with numerical examples of forecasts for six gauging stations from the period 1971 1988.
NASA Astrophysics Data System (ADS)
Han, Feng; Zheng, Yi
2018-06-01
Significant Input uncertainty is a major source of error in watershed water quality (WWQ) modeling. It remains challenging to address the input uncertainty in a rigorous Bayesian framework. This study develops the Bayesian Analysis of Input and Parametric Uncertainties (BAIPU), an approach for the joint analysis of input and parametric uncertainties through a tight coupling of Markov Chain Monte Carlo (MCMC) analysis and Bayesian Model Averaging (BMA). The formal likelihood function for this approach is derived considering a lag-1 autocorrelated, heteroscedastic, and Skew Exponential Power (SEP) distributed error model. A series of numerical experiments were performed based on a synthetic nitrate pollution case and on a real study case in the Newport Bay Watershed, California. The Soil and Water Assessment Tool (SWAT) and Differential Evolution Adaptive Metropolis (DREAM(ZS)) were used as the representative WWQ model and MCMC algorithm, respectively. The major findings include the following: (1) the BAIPU can be implemented and used to appropriately identify the uncertain parameters and characterize the predictive uncertainty; (2) the compensation effect between the input and parametric uncertainties can seriously mislead the modeling based management decisions, if the input uncertainty is not explicitly accounted for; (3) the BAIPU accounts for the interaction between the input and parametric uncertainties and therefore provides more accurate calibration and uncertainty results than a sequential analysis of the uncertainties; and (4) the BAIPU quantifies the credibility of different input assumptions on a statistical basis and can be implemented as an effective inverse modeling approach to the joint inference of parameters and inputs.
Evidence cross-validation and Bayesian inference of MAST plasma equilibria
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nessi, G. T. von; Hole, M. J.; Svensson, J.
2012-01-15
In this paper, current profiles for plasma discharges on the mega-ampere spherical tokamak are directly calculated from pickup coil, flux loop, and motional-Stark effect observations via methods based in the statistical theory of Bayesian analysis. By representing toroidal plasma current as a series of axisymmetric current beams with rectangular cross-section and inferring the current for each one of these beams, flux-surface geometry and q-profiles are subsequently calculated by elementary application of Biot-Savart's law. The use of this plasma model in the context of Bayesian analysis was pioneered by Svensson and Werner on the joint-European tokamak [Svensson and Werner,Plasma Phys. Controlledmore » Fusion 50(8), 085002 (2008)]. In this framework, linear forward models are used to generate diagnostic predictions, and the probability distribution for the currents in the collection of plasma beams was subsequently calculated directly via application of Bayes' formula. In this work, we introduce a new diagnostic technique to identify and remove outlier observations associated with diagnostics falling out of calibration or suffering from an unidentified malfunction. These modifications enable a good agreement between Bayesian inference of the last-closed flux-surface with other corroborating data, such as that from force balance considerations using EFIT++[Appel et al., ''A unified approach to equilibrium reconstruction'' Proceedings of the 33rd EPS Conference on Plasma Physics (Rome, Italy, 2006)]. In addition, this analysis also yields errors on the plasma current profile and flux-surface geometry as well as directly predicting the Shafranov shift of the plasma core.« less
Meta-analysis of the effect of natural frequencies on Bayesian reasoning.
McDowell, Michelle; Jacobs, Perke
2017-12-01
The natural frequency facilitation effect describes the finding that people are better able to solve descriptive Bayesian inference tasks when represented as joint frequencies obtained through natural sampling, known as natural frequencies, than as conditional probabilities. The present meta-analysis reviews 20 years of research seeking to address when, why, and for whom natural frequency formats are most effective. We review contributions from research associated with the 2 dominant theoretical perspectives, the ecological rationality framework and nested-sets theory, and test potential moderators of the effect. A systematic review of relevant literature yielded 35 articles representing 226 performance estimates. These estimates were statistically integrated using a bivariate mixed-effects model that yields summary estimates of average performances across the 2 formats and estimates of the effects of different study characteristics on performance. These study characteristics range from moderators representing individual characteristics (e.g., numeracy, expertise), to methodological differences (e.g., use of incentives, scoring criteria) and features of problem representation (e.g., short menu format, visual aid). Short menu formats (less computationally complex representations showing joint-events) and visual aids demonstrated some of the strongest moderation effects, improving performance for both conditional probability and natural frequency formats. A number of methodological factors (e.g., exposure to both problem formats) were also found to affect performance rates, emphasizing the importance of a systematic approach. We suggest how research on Bayesian reasoning can be strengthened by broadening the definition of successful Bayesian reasoning to incorporate choice and process and by applying different research methodologies. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Predicting coastal cliff erosion using a Bayesian probabilistic model
Hapke, Cheryl J.; Plant, Nathaniel G.
2010-01-01
Regional coastal cliff retreat is difficult to model due to the episodic nature of failures and the along-shore variability of retreat events. There is a growing demand, however, for predictive models that can be used to forecast areas vulnerable to coastal erosion hazards. Increasingly, probabilistic models are being employed that require data sets of high temporal density to define the joint probability density function that relates forcing variables (e.g. wave conditions) and initial conditions (e.g. cliff geometry) to erosion events. In this study we use a multi-parameter Bayesian network to investigate correlations between key variables that control and influence variations in cliff retreat processes. The network uses Bayesian statistical methods to estimate event probabilities using existing observations. Within this framework, we forecast the spatial distribution of cliff retreat along two stretches of cliffed coast in Southern California. The input parameters are the height and slope of the cliff, a descriptor of material strength based on the dominant cliff-forming lithology, and the long-term cliff erosion rate that represents prior behavior. The model is forced using predicted wave impact hours. Results demonstrate that the Bayesian approach is well-suited to the forward modeling of coastal cliff retreat, with the correct outcomes forecast in 70–90% of the modeled transects. The model also performs well in identifying specific locations of high cliff erosion, thus providing a foundation for hazard mapping. This approach can be employed to predict cliff erosion at time-scales ranging from storm events to the impacts of sea-level rise at the century-scale.
Applying dynamic Bayesian networks to perturbed gene expression data.
Dojer, Norbert; Gambin, Anna; Mizera, Andrzej; Wilczyński, Bartek; Tiuryn, Jerzy
2006-05-08
A central goal of molecular biology is to understand the regulatory mechanisms of gene transcription and protein synthesis. Because of their solid basis in statistics, allowing to deal with the stochastic aspects of gene expressions and noisy measurements in a natural way, Bayesian networks appear attractive in the field of inferring gene interactions structure from microarray experiments data. However, the basic formalism has some disadvantages, e.g. it is sometimes hard to distinguish between the origin and the target of an interaction. Two kinds of microarray experiments yield data particularly rich in information regarding the direction of interactions: time series and perturbation experiments. In order to correctly handle them, the basic formalism must be modified. For example, dynamic Bayesian networks (DBN) apply to time series microarray data. To our knowledge the DBN technique has not been applied in the context of perturbation experiments. We extend the framework of dynamic Bayesian networks in order to incorporate perturbations. Moreover, an exact algorithm for inferring an optimal network is proposed and a discretization method specialized for time series data from perturbation experiments is introduced. We apply our procedure to realistic simulations data. The results are compared with those obtained by standard DBN learning techniques. Moreover, the advantages of using exact learning algorithm instead of heuristic methods are analyzed. We show that the quality of inferred networks dramatically improves when using data from perturbation experiments. We also conclude that the exact algorithm should be used when it is possible, i.e. when considered set of genes is small enough.
Bayesian models based on test statistics for multiple hypothesis testing problems.
Ji, Yuan; Lu, Yiling; Mills, Gordon B
2008-04-01
We propose a Bayesian method for the problem of multiple hypothesis testing that is routinely encountered in bioinformatics research, such as the differential gene expression analysis. Our algorithm is based on modeling the distributions of test statistics under both null and alternative hypotheses. We substantially reduce the complexity of the process of defining posterior model probabilities by modeling the test statistics directly instead of modeling the full data. Computationally, we apply a Bayesian FDR approach to control the number of rejections of null hypotheses. To check if our model assumptions for the test statistics are valid for various bioinformatics experiments, we also propose a simple graphical model-assessment tool. Using extensive simulations, we demonstrate the performance of our models and the utility of the model-assessment tool. In the end, we apply the proposed methodology to an siRNA screening and a gene expression experiment.
Intrinsic Bayesian Active Contours for Extraction of Object Boundaries in Images
Srivastava, Anuj
2010-01-01
We present a framework for incorporating prior information about high-probability shapes in the process of contour extraction and object recognition in images. Here one studies shapes as elements of an infinite-dimensional, non-linear quotient space, and statistics of shapes are defined and computed intrinsically using differential geometry of this shape space. Prior models on shapes are constructed using probability distributions on tangent bundles of shape spaces. Similar to the past work on active contours, where curves are driven by vector fields based on image gradients and roughness penalties, we incorporate the prior shape knowledge in the form of vector fields on curves. Through experimental results, we demonstrate the use of prior shape models in the estimation of object boundaries, and their success in handling partial obscuration and missing data. Furthermore, we describe the use of this framework in shape-based object recognition or classification. PMID:21076692
Knowledge Extraction from Atomically Resolved Images.
Vlcek, Lukas; Maksov, Artem; Pan, Minghu; Vasudevan, Rama K; Kalinin, Sergei V
2017-10-24
Tremendous strides in experimental capabilities of scanning transmission electron microscopy and scanning tunneling microscopy (STM) over the past 30 years made atomically resolved imaging routine. However, consistent integration and use of atomically resolved data with generative models is unavailable, so information on local thermodynamics and other microscopic driving forces encoded in the observed atomic configurations remains hidden. Here, we present a framework based on statistical distance minimization to consistently utilize the information available from atomic configurations obtained from an atomically resolved image and extract meaningful physical interaction parameters. We illustrate the applicability of the framework on an STM image of a FeSe x Te 1-x superconductor, with the segregation of the chalcogen atoms investigated using a nonideal interacting solid solution model. This universal method makes full use of the microscopic degrees of freedom sampled in an atomically resolved image and can be extended via Bayesian inference toward unbiased model selection with uncertainty quantification.
On the use of Bayesian Monte-Carlo in evaluation of nuclear data
NASA Astrophysics Data System (ADS)
De Saint Jean, Cyrille; Archier, Pascal; Privas, Edwin; Noguere, Gilles
2017-09-01
As model parameters, necessary ingredients of theoretical models, are not always predicted by theory, a formal mathematical framework associated to the evaluation work is needed to obtain the best set of parameters (resonance parameters, optical models, fission barrier, average width, multigroup cross sections) with Bayesian statistical inference by comparing theory to experiment. The formal rule related to this methodology is to estimate the posterior density probability function of a set of parameters by solving an equation of the following type: pdf(posterior) ˜ pdf(prior) × a likelihood function. A fitting procedure can be seen as an estimation of the posterior density probability of a set of parameters (referred as x→?) knowing a prior information on these parameters and a likelihood which gives the probability density function of observing a data set knowing x→?. To solve this problem, two major paths could be taken: add approximations and hypothesis and obtain an equation to be solved numerically (minimum of a cost function or Generalized least Square method, referred as GLS) or use Monte-Carlo sampling of all prior distributions and estimate the final posterior distribution. Monte Carlo methods are natural solution for Bayesian inference problems. They avoid approximations (existing in traditional adjustment procedure based on chi-square minimization) and propose alternative in the choice of probability density distribution for priors and likelihoods. This paper will propose the use of what we are calling Bayesian Monte Carlo (referred as BMC in the rest of the manuscript) in the whole energy range from thermal, resonance and continuum range for all nuclear reaction models at these energies. Algorithms will be presented based on Monte-Carlo sampling and Markov chain. The objectives of BMC are to propose a reference calculation for validating the GLS calculations and approximations, to test probability density distributions effects and to provide the framework of finding global minimum if several local minimums exist. Application to resolved resonance, unresolved resonance and continuum evaluation as well as multigroup cross section data assimilation will be presented.
Harrison, Jay M; Breeze, Matthew L; Harrigan, George G
2011-08-01
Statistical comparisons of compositional data generated on genetically modified (GM) crops and their near-isogenic conventional (non-GM) counterparts typically rely on classical significance testing. This manuscript presents an introduction to Bayesian methods for compositional analysis along with recommendations for model validation. The approach is illustrated using protein and fat data from two herbicide tolerant GM soybeans (MON87708 and MON87708×MON89788) and a conventional comparator grown in the US in 2008 and 2009. Guidelines recommended by the US Food and Drug Administration (FDA) in conducting Bayesian analyses of clinical studies on medical devices were followed. This study is the first Bayesian approach to GM and non-GM compositional comparisons. The evaluation presented here supports a conclusion that a Bayesian approach to analyzing compositional data can provide meaningful and interpretable results. We further describe the importance of method validation and approaches to model checking if Bayesian approaches to compositional data analysis are to be considered viable by scientists involved in GM research and regulation. Copyright © 2011 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Farrell, Kathryn; Oden, J. Tinsley; Faghihi, Danial
2015-08-01
A general adaptive modeling algorithm for selection and validation of coarse-grained models of atomistic systems is presented. A Bayesian framework is developed to address uncertainties in parameters, data, and model selection. Algorithms for computing output sensitivities to parameter variances, model evidence and posterior model plausibilities for given data, and for computing what are referred to as Occam Categories in reference to a rough measure of model simplicity, make up components of the overall approach. Computational results are provided for representative applications.
Model-based Bayesian filtering of cardiac contaminants from biomedical recordings.
Sameni, R; Shamsollahi, M B; Jutten, C
2008-05-01
Electrocardiogram (ECG) and magnetocardiogram (MCG) signals are among the most considerable sources of noise for other biomedical signals. In some recent works, a Bayesian filtering framework has been proposed for denoising the ECG signals. In this paper, it is shown that this framework may be effectively used for removing cardiac contaminants such as the ECG, MCG and ballistocardiographic artifacts from different biomedical recordings such as the electroencephalogram, electromyogram and also for canceling maternal cardiac signals from fetal ECG/MCG. The proposed method is evaluated on simulated and real signals.
Sirota, Miroslav; Kostovičová, Lenka; Juanchich, Marie
2014-08-01
Knowing which properties of visual displays facilitate statistical reasoning bears practical and theoretical implications. Therefore, we studied the effect of one property of visual diplays - iconicity (i.e., the resemblance of a visual sign to its referent) - on Bayesian reasoning. Two main accounts of statistical reasoning predict different effect of iconicity on Bayesian reasoning. The ecological-rationality account predicts a positive iconicity effect, because more highly iconic signs resemble more individuated objects, which tap better into an evolutionary-designed frequency-coding mechanism that, in turn, facilitates Bayesian reasoning. The nested-sets account predicts a null iconicity effect, because iconicity does not affect the salience of a nested-sets structure-the factor facilitating Bayesian reasoning processed by a general reasoning mechanism. In two well-powered experiments (N = 577), we found no support for a positive iconicity effect across different iconicity levels that were manipulated in different visual displays (meta-analytical overall effect: log OR = -0.13, 95% CI [-0.53, 0.28]). A Bayes factor analysis provided strong evidence in favor of the null hypothesis-the null iconicity effect. Thus, these findings corroborate the nested-sets rather than the ecological-rationality account of statistical reasoning.
Word Learning as Bayesian Inference
ERIC Educational Resources Information Center
Xu, Fei; Tenenbaum, Joshua B.
2007-01-01
The authors present a Bayesian framework for understanding how adults and children learn the meanings of words. The theory explains how learners can generalize meaningfully from just one or a few positive examples of a novel word's referents, by making rational inductive inferences that integrate prior knowledge about plausible word meanings with…
Bayesian Optimization for Neuroimaging Pre-processing in Brain Age Classification and Prediction
Lancaster, Jenessa; Lorenz, Romy; Leech, Rob; Cole, James H.
2018-01-01
Neuroimaging-based age prediction using machine learning is proposed as a biomarker of brain aging, relating to cognitive performance, health outcomes and progression of neurodegenerative disease. However, even leading age-prediction algorithms contain measurement error, motivating efforts to improve experimental pipelines. T1-weighted MRI is commonly used for age prediction, and the pre-processing of these scans involves normalization to a common template and resampling to a common voxel size, followed by spatial smoothing. Resampling parameters are often selected arbitrarily. Here, we sought to improve brain-age prediction accuracy by optimizing resampling parameters using Bayesian optimization. Using data on N = 2003 healthy individuals (aged 16–90 years) we trained support vector machines to (i) distinguish between young (<22 years) and old (>50 years) brains (classification) and (ii) predict chronological age (regression). We also evaluated generalisability of the age-regression model to an independent dataset (CamCAN, N = 648, aged 18–88 years). Bayesian optimization was used to identify optimal voxel size and smoothing kernel size for each task. This procedure adaptively samples the parameter space to evaluate accuracy across a range of possible parameters, using independent sub-samples to iteratively assess different parameter combinations to arrive at optimal values. When distinguishing between young and old brains a classification accuracy of 88.1% was achieved, (optimal voxel size = 11.5 mm3, smoothing kernel = 2.3 mm). For predicting chronological age, a mean absolute error (MAE) of 5.08 years was achieved, (optimal voxel size = 3.73 mm3, smoothing kernel = 3.68 mm). This was compared to performance using default values of 1.5 mm3 and 4mm respectively, resulting in MAE = 5.48 years, though this 7.3% improvement was not statistically significant. When assessing generalisability, best performance was achieved when applying the entire Bayesian optimization framework to the new dataset, out-performing the parameters optimized for the initial training dataset. Our study outlines the proof-of-principle that neuroimaging models for brain-age prediction can use Bayesian optimization to derive case-specific pre-processing parameters. Our results suggest that different pre-processing parameters are selected when optimization is conducted in specific contexts. This potentially motivates use of optimization techniques at many different points during the experimental process, which may improve statistical sensitivity and reduce opportunities for experimenter-led bias. PMID:29483870
Evaluation of Historical and Projected Agricultural Climate Risk Over the Continental US
NASA Astrophysics Data System (ADS)
Zhu, X.; Troy, T. J.; Devineni, N.
2016-12-01
Food demands are rising due to an increasing population with changing food preferences, which places pressure on agricultural systems. In addition, in the past decade climate extremes have highlighted the vulnerability of our agricultural production to climate variability. Quantitative analyses in the climate-agriculture research field have been performed in many studies. However, climate risk still remains difficult to evaluate at large scales yet shows great potential of help us better understand historical climate change impacts and evaluate the future risk given climate projections. In this study, we developed a framework to evaluate climate risk quantitatively by applying statistical methods such as Bayesian regression, distribution fitting, and Monte Carlo simulation. We applied the framework over different climate regions in the continental US both historically and for modeled climate projections. The relative importance of any major growing season climate index, such as maximum dry period or heavy precipitation, was evaluated to determine what climate indices play a role in affecting crop yields. The statistical modeling framework was applied using county yields, with irrigated and rainfed yields separated to evaluate the different risk. This framework provides estimates of the climate risk facing agricultural production in the near-term that account for the full uncertainty of climate occurrences, range of crop response, and spatial correlation in climate. In particular, the method provides robust estimates of importance of irrigation in mitigating agricultural climate risk. The results of this study can contribute to decision making about crop choice and water use in an uncertain climate.
Robust approaches to quantification of margin and uncertainty for sparse data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hund, Lauren; Schroeder, Benjamin B.; Rumsey, Kelin
Characterizing the tails of probability distributions plays a key role in quantification of margins and uncertainties (QMU), where the goal is characterization of low probability, high consequence events based on continuous measures of performance. When data are collected using physical experimentation, probability distributions are typically fit using statistical methods based on the collected data, and these parametric distributional assumptions are often used to extrapolate about the extreme tail behavior of the underlying probability distribution. In this project, we character- ize the risk associated with such tail extrapolation. Specifically, we conducted a scaling study to demonstrate the large magnitude of themore » risk; then, we developed new methods for communicat- ing risk associated with tail extrapolation from unvalidated statistical models; lastly, we proposed a Bayesian data-integration framework to mitigate tail extrapolation risk through integrating ad- ditional information. We conclude that decision-making using QMU is a complex process that cannot be achieved using statistical analyses alone.« less
Virtual Model Validation of Complex Multiscale Systems: Applications to Nonlinear Elastostatics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oden, John Tinsley; Prudencio, Ernest E.; Bauman, Paul T.
We propose a virtual statistical validation process as an aid to the design of experiments for the validation of phenomenological models of the behavior of material bodies, with focus on those cases in which knowledge of the fabrication process used to manufacture the body can provide information on the micro-molecular-scale properties underlying macroscale behavior. One example is given by models of elastomeric solids fabricated using polymerization processes. We describe a framework for model validation that involves Bayesian updates of parameters in statistical calibration and validation phases. The process enables the quanti cation of uncertainty in quantities of interest (QoIs) andmore » the determination of model consistency using tools of statistical information theory. We assert that microscale information drawn from molecular models of the fabrication of the body provides a valuable source of prior information on parameters as well as a means for estimating model bias and designing virtual validation experiments to provide information gain over calibration posteriors.« less
Bayesian networks and statistical analysis application to analyze the diagnostic test accuracy
NASA Astrophysics Data System (ADS)
Orzechowski, P.; Makal, Jaroslaw; Onisko, A.
2005-02-01
The computer aided BPH diagnosis system based on Bayesian network is described in the paper. First result are compared to a given statistical method. Different statistical methods are used successfully in medicine for years. However, the undoubted advantages of probabilistic methods make them useful in application in newly created systems which are frequent in medicine, but do not have full and competent knowledge. The article presents advantages of the computer aided BPH diagnosis system in clinical practice for urologists.
Additive Genetic Variability and the Bayesian Alphabet
Gianola, Daniel; de los Campos, Gustavo; Hill, William G.; Manfredi, Eduardo; Fernando, Rohan
2009-01-01
The use of all available molecular markers in statistical models for prediction of quantitative traits has led to what could be termed a genomic-assisted selection paradigm in animal and plant breeding. This article provides a critical review of some theoretical and statistical concepts in the context of genomic-assisted genetic evaluation of animals and crops. First, relationships between the (Bayesian) variance of marker effects in some regression models and additive genetic variance are examined under standard assumptions. Second, the connection between marker genotypes and resemblance between relatives is explored, and linkages between a marker-based model and the infinitesimal model are reviewed. Third, issues associated with the use of Bayesian models for marker-assisted selection, with a focus on the role of the priors, are examined from a theoretical angle. The sensitivity of a Bayesian specification that has been proposed (called “Bayes A”) with respect to priors is illustrated with a simulation. Methods that can solve potential shortcomings of some of these Bayesian regression procedures are discussed briefly. PMID:19620397
Why Bayesian Psychologists Should Change the Way They Use the Bayes Factor.
Hoijtink, Herbert; van Kooten, Pascal; Hulsker, Koenraad
2016-01-01
The discussion following Bem's ( 2011 ) psi research highlights that applications of the Bayes factor in psychological research are not without problems. The first problem is the omission to translate subjective prior knowledge into subjective prior distributions. In the words of Savage ( 1961 ): "they make the Bayesian omelet without breaking the Bayesian egg." The second problem occurs if the Bayesian egg is not broken: the omission to choose default prior distributions such that the ensuing inferences are well calibrated. The third problem is the adherence to inadequate rules for the interpretation of the size of the Bayes factor. The current paper will elaborate these problems and show how to avoid them using the basic hypotheses and statistical model used in the first experiment described in Bem ( 2011 ). It will be argued that a thorough investigation of these problems in the context of more encompassing hypotheses and statistical models is called for if Bayesian psychologists want to add a well-founded Bayes factor to the tool kit of psychological researchers.
An Uncertainty Quantification Framework for Prognostics and Condition-Based Monitoring
NASA Technical Reports Server (NTRS)
Sankararaman, Shankar; Goebel, Kai
2014-01-01
This paper presents a computational framework for uncertainty quantification in prognostics in the context of condition-based monitoring of aerospace systems. The different sources of uncertainty and the various uncertainty quantification activities in condition-based prognostics are outlined in detail, and it is demonstrated that the Bayesian subjective approach is suitable for interpreting uncertainty in online monitoring. A state-space model-based framework for prognostics, that can rigorously account for the various sources of uncertainty, is presented. Prognostics consists of two important steps. First, the state of the system is estimated using Bayesian tracking, and then, the future states of the system are predicted until failure, thereby computing the remaining useful life of the system. The proposed framework is illustrated using the power system of a planetary rover test-bed, which is being developed and studied at NASA Ames Research Center.
Louzoun, Yoram; Alter, Idan; Gragert, Loren; Albrecht, Mark; Maiers, Martin
2018-05-01
Regardless of sampling depth, accurate genotype imputation is limited in regions of high polymorphism which often have a heavy-tailed haplotype frequency distribution. Many rare haplotypes are thus unobserved. Statistical methods to improve imputation by extending reference haplotype distributions using linkage disequilibrium patterns that relate allele and haplotype frequencies have not yet been explored. In the field of unrelated stem cell transplantation, imputation of highly polymorphic human leukocyte antigen (HLA) genes has an important application in identifying the best-matched stem cell donor when searching large registries totaling over 28,000,000 donors worldwide. Despite these large registry sizes, a significant proportion of searched patients present novel HLA haplotypes. Supporting this observation, HLA population genetic models have indicated that many extant HLA haplotypes remain unobserved. The absent haplotypes are a significant cause of error in haplotype matching. We have applied a Bayesian inference methodology for extending haplotype frequency distributions, using a model where new haplotypes are created by recombination of observed alleles. Applications of this joint probability model offer significant improvement in frequency distribution estimates over the best existing alternative methods, as we illustrate using five-locus HLA frequency data from the National Marrow Donor Program registry. Transplant matching algorithms and disease association studies involving phasing and imputation of rare variants may benefit from this statistical inference framework.
Conesa, D; Martínez-Beneito, M A; Amorós, R; López-Quílez, A
2015-04-01
Considerable effort has been devoted to the development of statistical algorithms for the automated monitoring of influenza surveillance data. In this article, we introduce a framework of models for the early detection of the onset of an influenza epidemic which is applicable to different kinds of surveillance data. In particular, the process of the observed cases is modelled via a Bayesian Hierarchical Poisson model in which the intensity parameter is a function of the incidence rate. The key point is to consider this incidence rate as a normal distribution in which both parameters (mean and variance) are modelled differently, depending on whether the system is in an epidemic or non-epidemic phase. To do so, we propose a hidden Markov model in which the transition between both phases is modelled as a function of the epidemic state of the previous week. Different options for modelling the rates are described, including the option of modelling the mean at each phase as autoregressive processes of order 0, 1 or 2. Bayesian inference is carried out to provide the probability of being in an epidemic state at any given moment. The methodology is applied to various influenza data sets. The results indicate that our methods outperform previous approaches in terms of sensitivity, specificity and timeliness. © The Author(s) 2011 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
Bayesian analysis of biogeography when the number of areas is large.
Landis, Michael J; Matzke, Nicholas J; Moore, Brian R; Huelsenbeck, John P
2013-11-01
Historical biogeography is increasingly studied from an explicitly statistical perspective, using stochastic models to describe the evolution of species range as a continuous-time Markov process of dispersal between and extinction within a set of discrete geographic areas. The main constraint of these methods is the computational limit on the number of areas that can be specified. We propose a Bayesian approach for inferring biogeographic history that extends the application of biogeographic models to the analysis of more realistic problems that involve a large number of areas. Our solution is based on a "data-augmentation" approach, in which we first populate the tree with a history of biogeographic events that is consistent with the observed species ranges at the tips of the tree. We then calculate the likelihood of a given history by adopting a mechanistic interpretation of the instantaneous-rate matrix, which specifies both the exponential waiting times between biogeographic events and the relative probabilities of each biogeographic change. We develop this approach in a Bayesian framework, marginalizing over all possible biogeographic histories using Markov chain Monte Carlo (MCMC). Besides dramatically increasing the number of areas that can be accommodated in a biogeographic analysis, our method allows the parameters of a given biogeographic model to be estimated and different biogeographic models to be objectively compared. Our approach is implemented in the program, BayArea.
NASA Astrophysics Data System (ADS)
Penman, Trent; Bradstock, Ross; Collins, Luke; Fotheringham, Cj; Keeley, Jon; Labiosa, Bill; Price, Owen; Syphard, Alex
2013-04-01
Wildfire can result in significant losses to people and property. Management agencies undertake a range of actions in the landscape and at the interface to reduce this risk. Data relating to the success of individual treatments varies, with some approaches well understood and others less so. Research has rarely attempted to consider the interactive effects of treatments in order to determine optimal management strategies that reduce the risk of loss. Bayesian Networks provide a statistical framework for undertaking such an analysis. Here we apply Bayesian Networks to examine the trade-offs in investment in preventative actions (e.g., fuel treatment, community education, development controls) and suppressive actions (e.g., initial attack, landscape suppression, property protection) in two fire prone regions -Sydney, Australia and California, USA. Investment in management actions at the interface resulted in the greatest reduction in the risk of house loss for both of the study regions. Landscape treatments had a limited ability to change the risk of house loss.
A functional model for characterizing long-distance movement behaviour
Buderman, Frances E.; Hooten, Mevin B.; Ivan, Jacob S.; Shenk, Tanya M.
2016-01-01
Advancements in wildlife telemetry techniques have made it possible to collect large data sets of highly accurate animal locations at a fine temporal resolution. These data sets have prompted the development of a number of statistical methodologies for modelling animal movement.Telemetry data sets are often collected for purposes other than fine-scale movement analysis. These data sets may differ substantially from those that are collected with technologies suitable for fine-scale movement modelling and may consist of locations that are irregular in time, are temporally coarse or have large measurement error. These data sets are time-consuming and costly to collect but may still provide valuable information about movement behaviour.We developed a Bayesian movement model that accounts for error from multiple data sources as well as movement behaviour at different temporal scales. The Bayesian framework allows us to calculate derived quantities that describe temporally varying movement behaviour, such as residence time, speed and persistence in direction. The model is flexible, easy to implement and computationally efficient.We apply this model to data from Colorado Canada lynx (Lynx canadensis) and use derived quantities to identify changes in movement behaviour.
Asakura, Nobuhiko; Inui, Toshio
2016-01-01
Two apparently contrasting theories have been proposed to account for the development of children's theory of mind (ToM): theory-theory and simulation theory. We present a Bayesian framework that rationally integrates both theories for false belief reasoning. This framework exploits two internal models for predicting the belief states of others: one of self and one of others. These internal models are responsible for simulation-based and theory-based reasoning, respectively. The framework further takes into account empirical studies of a developmental ToM scale (e.g., Wellman and Liu, 2004): developmental progressions of various mental state understandings leading up to false belief understanding. By representing the internal models and their interactions as a causal Bayesian network, we formalize the model of children's false belief reasoning as probabilistic computations on the Bayesian network. This model probabilistically weighs and combines the two internal models and predicts children's false belief ability as a multiplicative effect of their early-developed abilities to understand the mental concepts of diverse beliefs and knowledge access. Specifically, the model predicts that children's proportion of correct responses on a false belief task can be closely approximated as the product of their proportions correct on the diverse belief and knowledge access tasks. To validate this prediction, we illustrate that our model provides good fits to a variety of ToM scale data for preschool children. We discuss the implications and extensions of our model for a deeper understanding of developmental progressions of children's ToM abilities. PMID:28082941
Asakura, Nobuhiko; Inui, Toshio
2016-01-01
Two apparently contrasting theories have been proposed to account for the development of children's theory of mind (ToM): theory-theory and simulation theory. We present a Bayesian framework that rationally integrates both theories for false belief reasoning. This framework exploits two internal models for predicting the belief states of others: one of self and one of others. These internal models are responsible for simulation-based and theory-based reasoning, respectively. The framework further takes into account empirical studies of a developmental ToM scale (e.g., Wellman and Liu, 2004): developmental progressions of various mental state understandings leading up to false belief understanding. By representing the internal models and their interactions as a causal Bayesian network, we formalize the model of children's false belief reasoning as probabilistic computations on the Bayesian network. This model probabilistically weighs and combines the two internal models and predicts children's false belief ability as a multiplicative effect of their early-developed abilities to understand the mental concepts of diverse beliefs and knowledge access. Specifically, the model predicts that children's proportion of correct responses on a false belief task can be closely approximated as the product of their proportions correct on the diverse belief and knowledge access tasks. To validate this prediction, we illustrate that our model provides good fits to a variety of ToM scale data for preschool children. We discuss the implications and extensions of our model for a deeper understanding of developmental progressions of children's ToM abilities.
Nonparametric Bayesian Modeling for Automated Database Schema Matching
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferragut, Erik M; Laska, Jason A
2015-01-01
The problem of merging databases arises in many government and commercial applications. Schema matching, a common first step, identifies equivalent fields between databases. We introduce a schema matching framework that builds nonparametric Bayesian models for each field and compares them by computing the probability that a single model could have generated both fields. Our experiments show that our method is more accurate and faster than the existing instance-based matching algorithms in part because of the use of nonparametric Bayesian models.
Relative importance of climatic, geographic and socio-economic determinants of malaria in Malawi
2013-01-01
Background Malaria transmission is influenced by variations in meteorological conditions, which impact the biology of the parasite and its vector, but also socio-economic conditions, such as levels of urbanization, poverty and education, which impact human vulnerability and vector habitat. The many potential drivers of malaria, both extrinsic, such as climate, and intrinsic, such as population immunity are often difficult to disentangle. This presents a challenge for the modelling of malaria risk in space and time. Methods A statistical mixed model framework is proposed to model malaria risk at the district level in Malawi, using an age-stratified spatio-temporal dataset of malaria cases from July 2004 to June 2011. Several climatic, geographic and socio-economic factors thought to influence malaria incidence were tested in an exploratory model. In order to account for the unobserved confounding factors that influence malaria, which are not accounted for using measured covariates, a generalized linear mixed model was adopted, which included structured and unstructured spatial and temporal random effects. A hierarchical Bayesian framework using Markov chain Monte Carlo simulation was used for model fitting and prediction. Results Using a stepwise model selection procedure, several explanatory variables were identified to have significant associations with malaria including climatic, cartographic and socio-economic data. Once intervention variations, unobserved confounding factors and spatial correlation were considered in a Bayesian framework, a final model emerged with statistically significant predictor variables limited to average precipitation (quadratic relation) and average temperature during the three months previous to the month of interest. Conclusions When modelling malaria risk in Malawi it is important to account for spatial and temporal heterogeneity and correlation between districts. Once observed and unobserved confounding factors are allowed for, precipitation and temperature in the months prior to the malaria season of interest are found to significantly determine spatial and temporal variations of malaria incidence. Climate information was found to improve the estimation of malaria relative risk in 41% of the districts in Malawi, particularly at higher altitudes where transmission is irregular. This highlights the potential value of climate-driven seasonal malaria forecasts. PMID:24228784
Gamalo-Siebers, Margaret; Savic, Jasmina; Basu, Cynthia; Zhao, Xin; Gopalakrishnan, Mathangi; Gao, Aijun; Song, Guochen; Baygani, Simin; Thompson, Laura; Xia, H Amy; Price, Karen; Tiwari, Ram; Carlin, Bradley P
2017-07-01
Children represent a large underserved population of "therapeutic orphans," as an estimated 80% of children are treated off-label. However, pediatric drug development often faces substantial challenges, including economic, logistical, technical, and ethical barriers, among others. Among many efforts trying to remove these barriers, increased recent attention has been paid to extrapolation; that is, the leveraging of available data from adults or older age groups to draw conclusions for the pediatric population. The Bayesian statistical paradigm is natural in this setting, as it permits the combining (or "borrowing") of information across disparate sources, such as the adult and pediatric data. In this paper, authored by the pediatric subteam of the Drug Information Association Bayesian Scientific Working Group and Adaptive Design Working Group, we develop, illustrate, and provide suggestions on Bayesian statistical methods that could be used to design improved pediatric development programs that use all available information in the most efficient manner. A variety of relevant Bayesian approaches are described, several of which are illustrated through 2 case studies: extrapolating adult efficacy data to expand the labeling for Remicade to include pediatric ulcerative colitis and extrapolating adult exposure-response information for antiepileptic drugs to pediatrics. Copyright © 2017 John Wiley & Sons, Ltd.
Ye, Qing; Pan, Hao; Liu, Changhua
2015-01-01
This research proposes a novel framework of final drive simultaneous failure diagnosis containing feature extraction, training paired diagnostic models, generating decision threshold, and recognizing simultaneous failure modes. In feature extraction module, adopt wavelet package transform and fuzzy entropy to reduce noise interference and extract representative features of failure mode. Use single failure sample to construct probability classifiers based on paired sparse Bayesian extreme learning machine which is trained only by single failure modes and have high generalization and sparsity of sparse Bayesian learning approach. To generate optimal decision threshold which can convert probability output obtained from classifiers into final simultaneous failure modes, this research proposes using samples containing both single and simultaneous failure modes and Grid search method which is superior to traditional techniques in global optimization. Compared with other frequently used diagnostic approaches based on support vector machine and probability neural networks, experiment results based on F 1-measure value verify that the diagnostic accuracy and efficiency of the proposed framework which are crucial for simultaneous failure diagnosis are superior to the existing approach. PMID:25722717
A Community Assessmet of Biosignatures and their Frameworks
NASA Astrophysics Data System (ADS)
Domagal-Goldman, Shawn David; Nexus for Exoplanet Systems Science (NExSS)
2018-01-01
The Nexus for Exoplanet Systems Science (NExSS) organized a workshop to assess the current state of exoplanet biosignature research. Here, we review the products from that workshop. This includes: 1) a review of previously-proposed biosignatures in both the atmosphere and on the sruface of an exoplanet; 2) the need for context in assessing those biosignatures; 3) the potential for a Bayesian framework to formalize and quantify the need for context; 4) the interdisciplinary research required to advance that Bayesian framework; and 5) the missions that would search for biosignatures, including required contextual observations. Here we will revie those findings, the future path for research they suggest, and the implications they have for future missions, including both ground- and space-based missions.
A model-based approach to wildland fire reconstruction using sediment charcoal records
Itter, Malcolm S.; Finley, Andrew O.; Hooten, Mevin B.; Higuera, Philip E.; Marlon, Jennifer R.; Kelly, Ryan; McLachlan, Jason S.
2017-01-01
Lake sediment charcoal records are used in paleoecological analyses to reconstruct fire history, including the identification of past wildland fires. One challenge of applying sediment charcoal records to infer fire history is the separation of charcoal associated with local fire occurrence and charcoal originating from regional fire activity. Despite a variety of methods to identify local fires from sediment charcoal records, an integrated statistical framework for fire reconstruction is lacking. We develop a Bayesian point process model to estimate the probability of fire associated with charcoal counts from individual-lake sediments and estimate mean fire return intervals. A multivariate extension of the model combines records from multiple lakes to reduce uncertainty in local fire identification and estimate a regional mean fire return interval. The univariate and multivariate models are applied to 13 lakes in the Yukon Flats region of Alaska. Both models resulted in similar mean fire return intervals (100–350 years) with reduced uncertainty under the multivariate model due to improved estimation of regional charcoal deposition. The point process model offers an integrated statistical framework for paleofire reconstruction and extends existing methods to infer regional fire history from multiple lake records with uncertainty following directly from posterior distributions.
Reconstructing Constructivism: Causal Models, Bayesian Learning Mechanisms, and the Theory Theory
ERIC Educational Resources Information Center
Gopnik, Alison; Wellman, Henry M.
2012-01-01
We propose a new version of the "theory theory" grounded in the computational framework of probabilistic causal models and Bayesian learning. Probabilistic models allow a constructivist but rigorous and detailed approach to cognitive development. They also explain the learning of both more specific causal hypotheses and more abstract framework…
Pretense, Counterfactuals, and Bayesian Causal Models: Why What Is Not Real Really Matters
ERIC Educational Resources Information Center
Weisberg, Deena S.; Gopnik, Alison
2013-01-01
Young children spend a large portion of their time pretending about non-real situations. Why? We answer this question by using the framework of Bayesian causal models to argue that pretending and counterfactual reasoning engage the same component cognitive abilities: disengaging with current reality, making inferences about an alternative…
ERIC Educational Resources Information Center
Tchumtchoua, Sylvie; Dey, Dipak K.
2012-01-01
This paper proposes a semiparametric Bayesian framework for the analysis of associations among multivariate longitudinal categorical variables in high-dimensional data settings. This type of data is frequent, especially in the social and behavioral sciences. A semiparametric hierarchical factor analysis model is developed in which the…
ERIC Educational Resources Information Center
Stewart, G. B.; Mengersen, K.; Meader, N.
2014-01-01
Bayesian networks (BNs) are tools for representing expert knowledge or evidence. They are especially useful for synthesising evidence or belief concerning a complex intervention, assessing the sensitivity of outcomes to different situations or contextual frameworks and framing decision problems that involve alternative types of intervention.…
A Bayesian Multi-Level Factor Analytic Model of Consumer Price Sensitivities across Categories
ERIC Educational Resources Information Center
Duvvuri, Sri Devi; Gruca, Thomas S.
2010-01-01
Identifying price sensitive consumers is an important problem in marketing. We develop a Bayesian multi-level factor analytic model of the covariation among household-level price sensitivities across product categories that are substitutes. Based on a multivariate probit model of category incidence, this framework also allows the researcher to…
ERIC Educational Resources Information Center
Abayomi, Kobi; Pizarro, Gonzalo
2013-01-01
We offer a straightforward framework for measurement of progress, across many dimensions, using cross-national social indices, which we classify as linear combinations of multivariate country level data onto a univariate score. We suggest a Bayesian approach which yields probabilistic (confidence type) intervals for the point estimates of country…
Distinguishing dark matter from unresolved point sources in the Inner Galaxy with photon statistics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Samuel K.; Lisanti, Mariangela; Safdi, Benjamin R., E-mail: samuelkl@princeton.edu, E-mail: mlisanti@princeton.edu, E-mail: bsafdi@princeton.edu
2015-05-01
Data from the Fermi Large Area Telescope suggests that there is an extended excess of GeV gamma-ray photons in the Inner Galaxy. Identifying potential astrophysical sources that contribute to this excess is an important step in verifying whether the signal originates from annihilating dark matter. In this paper, we focus on the potential contribution of unresolved point sources, such as millisecond pulsars (MSPs). We propose that the statistics of the photons—in particular, the flux probability density function (PDF) of the photon counts below the point-source detection threshold—can potentially distinguish between the dark-matter and point-source interpretations. We calculate the flux PDFmore » via the method of generating functions for these two models of the excess. Working in the framework of Bayesian model comparison, we then demonstrate that the flux PDF can potentially provide evidence for an unresolved MSP-like point-source population.« less
Sensorimotor abilities predict on-field performance in professional baseball.
Burris, Kyle; Vittetoe, Kelly; Ramger, Benjamin; Suresh, Sunith; Tokdar, Surya T; Reiter, Jerome P; Appelbaum, L Gregory
2018-01-08
Baseball players must be able to see and react in an instant, yet it is hotly debated whether superior performance is associated with superior sensorimotor abilities. In this study, we compare sensorimotor abilities, measured through 8 psychomotor tasks comprising the Nike Sensory Station assessment battery, and game statistics in a sample of 252 professional baseball players to evaluate the links between sensorimotor skills and on-field performance. For this purpose, we develop a series of Bayesian hierarchical latent variable models enabling us to compare statistics across professional baseball leagues. Within this framework, we find that sensorimotor abilities are significant predictors of on-base percentage, walk rate and strikeout rate, accounting for age, position, and league. We find no such relationship for either slugging percentage or fielder-independent pitching. The pattern of results suggests performance contributions from both visual-sensory and visual-motor abilities and indicates that sensorimotor screenings may be useful for player scouting.
Quantitative three-dimensional ice roughness from scanning electron microscopy
NASA Astrophysics Data System (ADS)
Butterfield, Nicholas; Rowe, Penny M.; Stewart, Emily; Roesel, David; Neshyba, Steven
2017-03-01
We present a method for inferring surface morphology of ice from scanning electron microscope images. We first develop a novel functional form for the backscattered electron intensity as a function of ice facet orientation; this form is parameterized using smooth ice facets of known orientation. Three-dimensional representations of rough surfaces are retrieved at approximately micrometer resolution using Gauss-Newton inversion within a Bayesian framework. Statistical analysis of the resulting data sets permits characterization of ice surface roughness with a much higher statistical confidence than previously possible. A survey of results in the range -39°C to -29°C shows that characteristics of the roughness (e.g., Weibull parameters) are sensitive not only to the degree of roughening but also to the symmetry of the roughening. These results suggest that roughening characteristics obtained by remote sensing and in situ measurements of atmospheric ice clouds can potentially provide more facet-specific information than has previously been appreciated.
Risk Assessment for Mobile Systems Through a Multilayered Hierarchical Bayesian Network.
Li, Shancang; Tryfonas, Theo; Russell, Gordon; Andriotis, Panagiotis
2016-08-01
Mobile systems are facing a number of application vulnerabilities that can be combined together and utilized to penetrate systems with devastating impact. When assessing the overall security of a mobile system, it is important to assess the security risks posed by each mobile applications (apps), thus gaining a stronger understanding of any vulnerabilities present. This paper aims at developing a three-layer framework that assesses the potential risks which apps introduce within the Android mobile systems. A Bayesian risk graphical model is proposed to evaluate risk propagation in a layered risk architecture. By integrating static analysis, dynamic analysis, and behavior analysis in a hierarchical framework, the risks and their propagation through each layer are well modeled by the Bayesian risk graph, which can quantitatively analyze risks faced to both apps and mobile systems. The proposed hierarchical Bayesian risk graph model offers a novel way to investigate the security risks in mobile environment and enables users and administrators to evaluate the potential risks. This strategy allows to strengthen both app security as well as the security of the entire system.
A New Computational Framework for Atmospheric and Surface Remote Sensing
NASA Technical Reports Server (NTRS)
Timucin, Dogan A.
2004-01-01
A Bayesian data-analysis framework is described for atmospheric and surface retrievals from remotely-sensed hyper-spectral data. Some computational techniques are high- lighted for improved accuracy in the forward physics model.
Statistical Surrogate Models for Estimating Probability of High-Consequence Climate Change
NASA Astrophysics Data System (ADS)
Field, R.; Constantine, P.; Boslough, M.
2011-12-01
We have posed the climate change problem in a framework similar to that used in safety engineering, by acknowledging that probabilistic risk assessments focused on low-probability, high-consequence climate events are perhaps more appropriate than studies focused simply on best estimates. To properly explore the tails of the distribution requires extensive sampling, which is not possible with existing coupled atmospheric models due to the high computational cost of each simulation. We have developed specialized statistical surrogate models (SSMs) that can be used to make predictions about the tails of the associated probability distributions. A SSM is different than a deterministic surrogate model in that it represents each climate variable of interest as a space/time random field, that is, a random variable for every fixed location in the atmosphere at all times. The SSM can be calibrated to available spatial and temporal data from existing climate databases, or to a collection of outputs from general circulation models. Because of its reduced size and complexity, the realization of a large number of independent model outputs from a SSM becomes computationally straightforward, so that quantifying the risk associated with low-probability, high-consequence climate events becomes feasible. A Bayesian framework was also developed to provide quantitative measures of confidence, via Bayesian credible intervals, to assess these risks. To illustrate the use of the SSM, we considered two collections of NCAR CCSM 3.0 output data. The first collection corresponds to average December surface temperature for years 1990-1999 based on a collection of 8 different model runs obtained from the Program for Climate Model Diagnosis and Intercomparison (PCMDI). We calibrated the surrogate model to the available model data and make various point predictions. We also analyzed average precipitation rate in June, July, and August over a 54-year period assuming a cyclic Y2K ocean model. We applied the calibrated surrogate model to study the probability that the precipitation rate falls below certain thresholds and utilized the Bayesian approach to quantify our confidence in these predictions. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.
NASA Astrophysics Data System (ADS)
Zha, Yuanyuan; Yeh, Tian-Chyi J.; Illman, Walter A.; Onoe, Hironori; Mok, Chin Man W.; Wen, Jet-Chau; Huang, Shao-Yang; Wang, Wenke
2017-04-01
Hydraulic tomography (HT) has become a mature aquifer test technology over the last two decades. It collects nonredundant information of aquifer heterogeneity by sequentially stressing the aquifer at different wells and collecting aquifer responses at other wells during each stress. The collected information is then interpreted by inverse models. Among these models, the geostatistical approaches, built upon the Bayesian framework, first conceptualize hydraulic properties to be estimated as random fields, which are characterized by means and covariance functions. They then use the spatial statistics as prior information with the aquifer response data to estimate the spatial distribution of the hydraulic properties at a site. Since the spatial statistics describe the generic spatial structures of the geologic media at the site rather than site-specific ones (e.g., known spatial distributions of facies, faults, or paleochannels), the estimates are often not optimal. To improve the estimates, we introduce a general statistical framework, which allows the inclusion of site-specific spatial patterns of geologic features. Subsequently, we test this approach with synthetic numerical experiments. Results show that this approach, using conditional mean and covariance that reflect site-specific large-scale geologic features, indeed improves the HT estimates. Afterward, this approach is applied to HT surveys at a kilometer-scale-fractured granite field site with a distinct fault zone. We find that by including fault information from outcrops and boreholes for HT analysis, the estimated hydraulic properties are improved. The improved estimates subsequently lead to better prediction of flow during a different pumping test at the site.
A Bayesian approach to the statistical analysis of device preference studies.
Fu, Haoda; Qu, Yongming; Zhu, Baojin; Huster, William
2012-01-01
Drug delivery devices are required to have excellent technical specifications to deliver drugs accurately, and in addition, the devices should provide a satisfactory experience to patients because this can have a direct effect on drug compliance. To compare patients' experience with two devices, cross-over studies with patient-reported outcomes (PRO) as response variables are often used. Because of the strength of cross-over designs, each subject can directly compare the two devices by using the PRO variables, and variables indicating preference (preferring A, preferring B, or no preference) can be easily derived. Traditionally, methods based on frequentist statistics can be used to analyze such preference data, but there are some limitations for the frequentist methods. Recently, Bayesian methods are considered an acceptable method by the US Food and Drug Administration to design and analyze device studies. In this paper, we propose a Bayesian statistical method to analyze the data from preference trials. We demonstrate that the new Bayesian estimator enjoys some optimal properties versus the frequentist estimator. Copyright © 2012 John Wiley & Sons, Ltd.
Bayesian Inference: with ecological applications
Link, William A.; Barker, Richard J.
2010-01-01
This text provides a mathematically rigorous yet accessible and engaging introduction to Bayesian inference with relevant examples that will be of interest to biologists working in the fields of ecology, wildlife management and environmental studies as well as students in advanced undergraduate statistics.. This text opens the door to Bayesian inference, taking advantage of modern computational efficiencies and easily accessible software to evaluate complex hierarchical models.
NASA Astrophysics Data System (ADS)
Tien Bui, Dieu; Hoang, Nhat-Duc
2017-09-01
In this study, a probabilistic model, named as BayGmmKda, is proposed for flood susceptibility assessment in a study area in central Vietnam. The new model is a Bayesian framework constructed by a combination of a Gaussian mixture model (GMM), radial-basis-function Fisher discriminant analysis (RBFDA), and a geographic information system (GIS) database. In the Bayesian framework, GMM is used for modeling the data distribution of flood-influencing factors in the GIS database, whereas RBFDA is utilized to construct a latent variable that aims at enhancing the model performance. As a result, the posterior probabilistic output of the BayGmmKda model is used as flood susceptibility index. Experiment results showed that the proposed hybrid framework is superior to other benchmark models, including the adaptive neuro-fuzzy inference system and the support vector machine. To facilitate the model implementation, a software program of BayGmmKda has been developed in MATLAB. The BayGmmKda program can accurately establish a flood susceptibility map for the study region. Accordingly, local authorities can overlay this susceptibility map onto various land-use maps for the purpose of land-use planning or management.
Johnson, Eric D; Tubau, Elisabet
2017-06-01
Presenting natural frequencies facilitates Bayesian inferences relative to using percentages. Nevertheless, many people, including highly educated and skilled reasoners, still fail to provide Bayesian responses to these computationally simple problems. We show that the complexity of relational reasoning (e.g., the structural mapping between the presented and requested relations) can help explain the remaining difficulties. With a non-Bayesian inference that required identical arithmetic but afforded a more direct structural mapping, performance was universally high. Furthermore, reducing the relational demands of the task through questions that directed reasoners to use the presented statistics, as compared with questions that prompted the representation of a second, similar sample, also significantly improved reasoning. Distinct error patterns were also observed between these presented- and similar-sample scenarios, which suggested differences in relational-reasoning strategies. On the other hand, while higher numeracy was associated with better Bayesian reasoning, higher-numerate reasoners were not immune to the relational complexity of the task. Together, these findings validate the relational-reasoning view of Bayesian problem solving and highlight the importance of considering not only the presented task structure, but also the complexity of the structural alignment between the presented and requested relations.
Is probabilistic bias analysis approximately Bayesian?
MacLehose, Richard F.; Gustafson, Paul
2011-01-01
Case-control studies are particularly susceptible to differential exposure misclassification when exposure status is determined following incident case status. Probabilistic bias analysis methods have been developed as ways to adjust standard effect estimates based on the sensitivity and specificity of exposure misclassification. The iterative sampling method advocated in probabilistic bias analysis bears a distinct resemblance to a Bayesian adjustment; however, it is not identical. Furthermore, without a formal theoretical framework (Bayesian or frequentist), the results of a probabilistic bias analysis remain somewhat difficult to interpret. We describe, both theoretically and empirically, the extent to which probabilistic bias analysis can be viewed as approximately Bayesian. While the differences between probabilistic bias analysis and Bayesian approaches to misclassification can be substantial, these situations often involve unrealistic prior specifications and are relatively easy to detect. Outside of these special cases, probabilistic bias analysis and Bayesian approaches to exposure misclassification in case-control studies appear to perform equally well. PMID:22157311
Analytic continuation of quantum Monte Carlo data by stochastic analytical inference.
Fuchs, Sebastian; Pruschke, Thomas; Jarrell, Mark
2010-05-01
We present an algorithm for the analytic continuation of imaginary-time quantum Monte Carlo data which is strictly based on principles of Bayesian statistical inference. Within this framework we are able to obtain an explicit expression for the calculation of a weighted average over possible energy spectra, which can be evaluated by standard Monte Carlo simulations, yielding as by-product also the distribution function as function of the regularization parameter. Our algorithm thus avoids the usual ad hoc assumptions introduced in similar algorithms to fix the regularization parameter. We apply the algorithm to imaginary-time quantum Monte Carlo data and compare the resulting energy spectra with those from a standard maximum-entropy calculation.
A general science-based framework for dynamical spatio-temporal models
Wikle, C.K.; Hooten, M.B.
2010-01-01
Spatio-temporal statistical models are increasingly being used across a wide variety of scientific disciplines to describe and predict spatially-explicit processes that evolve over time. Correspondingly, in recent years there has been a significant amount of research on new statistical methodology for such models. Although descriptive models that approach the problem from the second-order (covariance) perspective are important, and innovative work is being done in this regard, many real-world processes are dynamic, and it can be more efficient in some cases to characterize the associated spatio-temporal dependence by the use of dynamical models. The chief challenge with the specification of such dynamical models has been related to the curse of dimensionality. Even in fairly simple linear, first-order Markovian, Gaussian error settings, statistical models are often over parameterized. Hierarchical models have proven invaluable in their ability to deal to some extent with this issue by allowing dependency among groups of parameters. In addition, this framework has allowed for the specification of science based parameterizations (and associated prior distributions) in which classes of deterministic dynamical models (e. g., partial differential equations (PDEs), integro-difference equations (IDEs), matrix models, and agent-based models) are used to guide specific parameterizations. Most of the focus for the application of such models in statistics has been in the linear case. The problems mentioned above with linear dynamic models are compounded in the case of nonlinear models. In this sense, the need for coherent and sensible model parameterizations is not only helpful, it is essential. Here, we present an overview of a framework for incorporating scientific information to motivate dynamical spatio-temporal models. First, we illustrate the methodology with the linear case. We then develop a general nonlinear spatio-temporal framework that we call general quadratic nonlinearity and demonstrate that it accommodates many different classes of scientific-based parameterizations as special cases. The model is presented in a hierarchical Bayesian framework and is illustrated with examples from ecology and oceanography. ?? 2010 Sociedad de Estad??stica e Investigaci??n Operativa.
Bayesian approach to inverse statistical mechanics.
Habeck, Michael
2014-05-01
Inverse statistical mechanics aims to determine particle interactions from ensemble properties. This article looks at this inverse problem from a Bayesian perspective and discusses several statistical estimators to solve it. In addition, a sequential Monte Carlo algorithm is proposed that draws the interaction parameters from their posterior probability distribution. The posterior probability involves an intractable partition function that is estimated along with the interactions. The method is illustrated for inverse problems of varying complexity, including the estimation of a temperature, the inverse Ising problem, maximum entropy fitting, and the reconstruction of molecular interaction potentials.
Bayesian approach to inverse statistical mechanics
NASA Astrophysics Data System (ADS)
Habeck, Michael
2014-05-01
Inverse statistical mechanics aims to determine particle interactions from ensemble properties. This article looks at this inverse problem from a Bayesian perspective and discusses several statistical estimators to solve it. In addition, a sequential Monte Carlo algorithm is proposed that draws the interaction parameters from their posterior probability distribution. The posterior probability involves an intractable partition function that is estimated along with the interactions. The method is illustrated for inverse problems of varying complexity, including the estimation of a temperature, the inverse Ising problem, maximum entropy fitting, and the reconstruction of molecular interaction potentials.
Novick, Steven; Shen, Yan; Yang, Harry; Peterson, John; LeBlond, Dave; Altan, Stan
2015-01-01
Dissolution (or in vitro release) studies constitute an important aspect of pharmaceutical drug development. One important use of such studies is for justifying a biowaiver for post-approval changes which requires establishing equivalence between the new and old product. We propose a statistically rigorous modeling approach for this purpose based on the estimation of what we refer to as the F2 parameter, an extension of the commonly used f2 statistic. A Bayesian test procedure is proposed in relation to a set of composite hypotheses that capture the similarity requirement on the absolute mean differences between test and reference dissolution profiles. Several examples are provided to illustrate the application. Results of our simulation study comparing the performance of f2 and the proposed method show that our Bayesian approach is comparable to or in many cases superior to the f2 statistic as a decision rule. Further useful extensions of the method, such as the use of continuous-time dissolution modeling, are considered.
Bucci, Melanie E.; Callahan, Peggy; Koprowski, John L.; Polfus, Jean L.; Krausman, Paul R.
2015-01-01
Stable isotope analysis of diet has become a common tool in conservation research. However, the multiple sources of uncertainty inherent in this analysis framework involve consequences that have not been thoroughly addressed. Uncertainty arises from the choice of trophic discrimination factors, and for Bayesian stable isotope mixing models (SIMMs), the specification of prior information; the combined effect of these aspects has not been explicitly tested. We used a captive feeding study of gray wolves (Canis lupus) to determine the first experimentally-derived trophic discrimination factors of C and N for this large carnivore of broad conservation interest. Using the estimated diet in our controlled system and data from a published study on wild wolves and their prey in Montana, USA, we then investigated the simultaneous effect of discrimination factors and prior information on diet reconstruction with Bayesian SIMMs. Discrimination factors for gray wolves and their prey were 1.97‰ for δ13C and 3.04‰ for δ15N. Specifying wolf discrimination factors, as opposed to the commonly used red fox (Vulpes vulpes) factors, made little practical difference to estimates of wolf diet, but prior information had a strong effect on bias, precision, and accuracy of posterior estimates. Without specifying prior information in our Bayesian SIMM, it was not possible to produce SIMM posteriors statistically similar to the estimated diet in our controlled study or the diet of wild wolves. Our study demonstrates the critical effect of prior information on estimates of animal diets using Bayesian SIMMs, and suggests species-specific trophic discrimination factors are of secondary importance. When using stable isotope analysis to inform conservation decisions researchers should understand the limits of their data. It may be difficult to obtain useful information from SIMMs if informative priors are omitted and species-specific discrimination factors are unavailable. PMID:25803664
Derbridge, Jonathan J; Merkle, Jerod A; Bucci, Melanie E; Callahan, Peggy; Koprowski, John L; Polfus, Jean L; Krausman, Paul R
2015-01-01
Stable isotope analysis of diet has become a common tool in conservation research. However, the multiple sources of uncertainty inherent in this analysis framework involve consequences that have not been thoroughly addressed. Uncertainty arises from the choice of trophic discrimination factors, and for Bayesian stable isotope mixing models (SIMMs), the specification of prior information; the combined effect of these aspects has not been explicitly tested. We used a captive feeding study of gray wolves (Canis lupus) to determine the first experimentally-derived trophic discrimination factors of C and N for this large carnivore of broad conservation interest. Using the estimated diet in our controlled system and data from a published study on wild wolves and their prey in Montana, USA, we then investigated the simultaneous effect of discrimination factors and prior information on diet reconstruction with Bayesian SIMMs. Discrimination factors for gray wolves and their prey were 1.97‰ for δ13C and 3.04‰ for δ15N. Specifying wolf discrimination factors, as opposed to the commonly used red fox (Vulpes vulpes) factors, made little practical difference to estimates of wolf diet, but prior information had a strong effect on bias, precision, and accuracy of posterior estimates. Without specifying prior information in our Bayesian SIMM, it was not possible to produce SIMM posteriors statistically similar to the estimated diet in our controlled study or the diet of wild wolves. Our study demonstrates the critical effect of prior information on estimates of animal diets using Bayesian SIMMs, and suggests species-specific trophic discrimination factors are of secondary importance. When using stable isotope analysis to inform conservation decisions researchers should understand the limits of their data. It may be difficult to obtain useful information from SIMMs if informative priors are omitted and species-specific discrimination factors are unavailable.
Deng, Michelle; Zollanvari, Amin; Alterovitz, Gil
2012-01-01
The immense corpus of biomedical literature existing today poses challenges in information search and integration. Many links between pieces of knowledge occur or are significant only under certain contexts-rather than under the entire corpus. This study proposes using networks of ontology concepts, linked based on their co-occurrences in annotations of abstracts of biomedical literature and descriptions of experiments, to draw conclusions based on context-specific queries and to better integrate existing knowledge. In particular, a Bayesian network framework is constructed to allow for the linking of related terms from two biomedical ontologies under the queried context concept. Edges in such a Bayesian network allow associations between biomedical concepts to be quantified and inference to be made about the existence of some concepts given prior information about others. This approach could potentially be a powerful inferential tool for context-specific queries, applicable to ontologies in other fields as well.
Ducrot, Virginie; Billoir, Elise; Péry, Alexandre R R; Garric, Jeanne; Charles, Sandrine
2010-05-01
Effects of zinc were studied in the freshwater worm Branchiura sowerbyi using partial and full life-cycle tests. Only newborn and juveniles were sensitive to zinc, displaying effects on survival, growth, and age at first brood at environmentally relevant concentrations. Threshold effect models were proposed to assess toxic effects on individuals. They were fitted to life-cycle test data using Bayesian inference and adequately described life-history trait data in exposed organisms. The daily asymptotic growth rate of theoretical populations was then simulated with a matrix population model, based upon individual-level outputs. Population-level outputs were in accordance with existing literature for controls. Working in a Bayesian framework allowed incorporating parameter uncertainty in the simulation of the population-level response to zinc exposure, thus increasing the relevance of test results in the context of ecological risk assessment.
Deng, Michelle; Zollanvari, Amin; Alterovitz, Gil
2012-01-01
The immense corpus of biomedical literature existing today poses challenges in information search and integration. Many links between pieces of knowledge occur or are significant only under certain contexts—rather than under the entire corpus. This study proposes using networks of ontology concepts, linked based on their co-occurrences in annotations of abstracts of biomedical literature and descriptions of experiments, to draw conclusions based on context-specific queries and to better integrate existing knowledge. In particular, a Bayesian network framework is constructed to allow for the linking of related terms from two biomedical ontologies under the queried context concept. Edges in such a Bayesian network allow associations between biomedical concepts to be quantified and inference to be made about the existence of some concepts given prior information about others. This approach could potentially be a powerful inferential tool for context-specific queries, applicable to ontologies in other fields as well. PMID:22779044
True versus Apparent Malaria Infection Prevalence: The Contribution of a Bayesian Approach
Claes, Filip; Van Hong, Nguyen; Torres, Kathy; Mao, Sokny; Van den Eede, Peter; Thi Thinh, Ta; Gamboa, Dioni; Sochantha, Tho; Thang, Ngo Duc; Coosemans, Marc; Büscher, Philippe; D'Alessandro, Umberto; Berkvens, Dirk; Erhart, Annette
2011-01-01
Aims To present a new approach for estimating the “true prevalence” of malaria and apply it to datasets from Peru, Vietnam, and Cambodia. Methods Bayesian models were developed for estimating both the malaria prevalence using different diagnostic tests (microscopy, PCR & ELISA), without the need of a gold standard, and the tests' characteristics. Several sources of information, i.e. data, expert opinions and other sources of knowledge can be integrated into the model. This approach resulting in an optimal and harmonized estimate of malaria infection prevalence, with no conflict between the different sources of information, was tested on data from Peru, Vietnam and Cambodia. Results Malaria sero-prevalence was relatively low in all sites, with ELISA showing the highest estimates. The sensitivity of microscopy and ELISA were statistically lower in Vietnam than in the other sites. Similarly, the specificities of microscopy, ELISA and PCR were significantly lower in Vietnam than in the other sites. In Vietnam and Peru, microscopy was closer to the “true” estimate than the other 2 tests while as expected ELISA, with its lower specificity, usually overestimated the prevalence. Conclusions Bayesian methods are useful for analyzing prevalence results when no gold standard diagnostic test is available. Though some results are expected, e.g. PCR more sensitive than microscopy, a standardized and context-independent quantification of the diagnostic tests' characteristics (sensitivity and specificity) and the underlying malaria prevalence may be useful for comparing different sites. Indeed, the use of a single diagnostic technique could strongly bias the prevalence estimation. This limitation can be circumvented by using a Bayesian framework taking into account the imperfect characteristics of the currently available diagnostic tests. As discussed in the paper, this approach may further support global malaria burden estimation initiatives. PMID:21364745
Theory-based Bayesian Models of Inductive Inference
2010-07-19
Subjective randomness and natural scene statistics. Psychonomic Bulletin & Review . http://cocosci.berkeley.edu/tom/papers/randscenes.pdf Page 1...in press). Exemplar models as a mechanism for performing Bayesian inference. Psychonomic Bulletin & Review . http://cocosci.berkeley.edu/tom
NASA Astrophysics Data System (ADS)
Melendez, Jordan; Wesolowski, Sarah; Furnstahl, Dick
2017-09-01
Chiral effective field theory (EFT) predictions are necessarily truncated at some order in the EFT expansion, which induces an error that must be quantified for robust statistical comparisons to experiment. A Bayesian model yields posterior probability distribution functions for these errors based on expectations of naturalness encoded in Bayesian priors and the observed order-by-order convergence pattern of the EFT. As a general example of a statistical approach to truncation errors, the model was applied to chiral EFT for neutron-proton scattering using various semi-local potentials of Epelbaum, Krebs, and Meißner (EKM). Here we discuss how our model can learn correlation information from the data and how to perform Bayesian model checking to validate that the EFT is working as advertised. Supported in part by NSF PHY-1614460 and DOE NUCLEI SciDAC DE-SC0008533.
Asteroid orbital error analysis: Theory and application
NASA Technical Reports Server (NTRS)
Muinonen, K.; Bowell, Edward
1992-01-01
We present a rigorous Bayesian theory for asteroid orbital error estimation in which the probability density of the orbital elements is derived from the noise statistics of the observations. For Gaussian noise in a linearized approximation the probability density is also Gaussian, and the errors of the orbital elements at a given epoch are fully described by the covariance matrix. The law of error propagation can then be applied to calculate past and future positional uncertainty ellipsoids (Cappellari et al. 1976, Yeomans et al. 1987, Whipple et al. 1991). To our knowledge, this is the first time a Bayesian approach has been formulated for orbital element estimation. In contrast to the classical Fisherian school of statistics, the Bayesian school allows a priori information to be formally present in the final estimation. However, Bayesian estimation does give the same results as Fisherian estimation when no priori information is assumed (Lehtinen 1988, and reference therein).
Wu, Hao; Noé, Frank
2011-03-01
Diffusion processes are relevant for a variety of phenomena in the natural sciences, including diffusion of cells or biomolecules within cells, diffusion of molecules on a membrane or surface, and diffusion of a molecular conformation within a complex energy landscape. Many experimental tools exist now to track such diffusive motions in single cells or molecules, including high-resolution light microscopy, optical tweezers, fluorescence quenching, and Förster resonance energy transfer (FRET). Experimental observations are most often indirect and incomplete: (1) They do not directly reveal the potential or diffusion constants that govern the diffusion process, (2) they have limited time and space resolution, and (3) the highest-resolution experiments do not track the motion directly but rather probe it stochastically by recording single events, such as photons, whose properties depend on the state of the system under investigation. Here, we propose a general Bayesian framework to model diffusion processes with nonlinear drift based on incomplete observations as generated by various types of experiments. A maximum penalized likelihood estimator is given as well as a Gibbs sampling method that allows to estimate the trajectories that have caused the measurement, the nonlinear drift or potential function and the noise or diffusion matrices, as well as uncertainty estimates of these properties. The approach is illustrated on numerical simulations of FRET experiments where it is shown that trajectories, potentials, and diffusion constants can be efficiently and reliably estimated even in cases with little statistics or nonequilibrium measurement conditions.
Resonant structure, formation and stability of the planetary system HD155358
NASA Astrophysics Data System (ADS)
Silburt, Ari; Rein, Hanno
2017-08-01
Two Jovian-sized planets are orbiting the star HD155358 near exact mean motion resonance (MMR) commensurability. In this work, we re-analyse the radial velocity (RV) data previously collected by Robertson et al. Using a Bayesian framework, we construct two models - one that includes and the other that excludes gravitational planet-planet interactions (PPIs). We find that the orbital parameters from our PPI and no planet-planet interaction (noPPI) models differ by up to 2σ, with our noPPI model being statistically consistent with previous results. In addition, our new PPI model strongly favours the planets being in MMR, while our noPPI model strongly disfavours MMR. We conduct a stability analysis by drawing samples from our PPI model's posterior distribution and simulating them for 109 yr, finding that our best-fitting values land firmly in a stable region of parameter space. We explore a series of formation models that migrate the planets into their observed MMR. We then use these models to directly fit to the observed RV data, where each model is uniquely parametrized by only three constants describing its migration history. Using a Bayesian framework, we find that a number of migration models fit the RV data surprisingly well, with some migration parameters being ruled out. Our analysis shows that PPIs are important to take into account when modelling observations of multiplanetary systems. The additional information that one can gain from interacting models can help constrain planet migration parameters.
NASA Astrophysics Data System (ADS)
Freni, Gabriele; Mannina, Giorgio
In urban drainage modelling, uncertainty analysis is of undoubted necessity. However, uncertainty analysis in urban water-quality modelling is still in its infancy and only few studies have been carried out. Therefore, several methodological aspects still need to be experienced and clarified especially regarding water quality modelling. The use of the Bayesian approach for uncertainty analysis has been stimulated by its rigorous theoretical framework and by the possibility of evaluating the impact of new knowledge on the modelling predictions. Nevertheless, the Bayesian approach relies on some restrictive hypotheses that are not present in less formal methods like the Generalised Likelihood Uncertainty Estimation (GLUE). One crucial point in the application of Bayesian method is the formulation of a likelihood function that is conditioned by the hypotheses made regarding model residuals. Statistical transformations, such as the use of Box-Cox equation, are generally used to ensure the homoscedasticity of residuals. However, this practice may affect the reliability of the analysis leading to a wrong uncertainty estimation. The present paper aims to explore the influence of the Box-Cox equation for environmental water quality models. To this end, five cases were considered one of which was the “real” residuals distributions (i.e. drawn from available data). The analysis was applied to the Nocella experimental catchment (Italy) which is an agricultural and semi-urbanised basin where two sewer systems, two wastewater treatment plants and a river reach were monitored during both dry and wet weather periods. The results show that the uncertainty estimation is greatly affected by residual transformation and a wrong assumption may also affect the evaluation of model uncertainty. The use of less formal methods always provide an overestimation of modelling uncertainty with respect to Bayesian method but such effect is reduced if a wrong assumption is made regarding the residuals distribution. If residuals are not normally distributed, the uncertainty is over-estimated if Box-Cox transformation is not applied or non-calibrated parameter is used.
Integrated survival analysis using an event-time approach in a Bayesian framework
Walsh, Daniel P.; Dreitz, VJ; Heisey, Dennis M.
2015-01-01
Event-time or continuous-time statistical approaches have been applied throughout the biostatistical literature and have led to numerous scientific advances. However, these techniques have traditionally relied on knowing failure times. This has limited application of these analyses, particularly, within the ecological field where fates of marked animals may be unknown. To address these limitations, we developed an integrated approach within a Bayesian framework to estimate hazard rates in the face of unknown fates. We combine failure/survival times from individuals whose fates are known and times of which are interval-censored with information from those whose fates are unknown, and model the process of detecting animals with unknown fates. This provides the foundation for our integrated model and permits necessary parameter estimation. We provide the Bayesian model, its derivation, and use simulation techniques to investigate the properties and performance of our approach under several scenarios. Lastly, we apply our estimation technique using a piece-wise constant hazard function to investigate the effects of year, age, chick size and sex, sex of the tending adult, and nesting habitat on mortality hazard rates of the endangered mountain plover (Charadrius montanus) chicks. Traditional models were inappropriate for this analysis because fates of some individual chicks were unknown due to failed radio transmitters. Simulations revealed biases of posterior mean estimates were minimal (≤ 4.95%), and posterior distributions behaved as expected with RMSE of the estimates decreasing as sample sizes, detection probability, and survival increased. We determined mortality hazard rates for plover chicks were highest at <5 days old and were lower for chicks with larger birth weights and/or whose nest was within agricultural habitats. Based on its performance, our approach greatly expands the range of problems for which event-time analyses can be used by eliminating the need for having completely known fate data.
Integrated survival analysis using an event-time approach in a Bayesian framework.
Walsh, Daniel P; Dreitz, Victoria J; Heisey, Dennis M
2015-02-01
Event-time or continuous-time statistical approaches have been applied throughout the biostatistical literature and have led to numerous scientific advances. However, these techniques have traditionally relied on knowing failure times. This has limited application of these analyses, particularly, within the ecological field where fates of marked animals may be unknown. To address these limitations, we developed an integrated approach within a Bayesian framework to estimate hazard rates in the face of unknown fates. We combine failure/survival times from individuals whose fates are known and times of which are interval-censored with information from those whose fates are unknown, and model the process of detecting animals with unknown fates. This provides the foundation for our integrated model and permits necessary parameter estimation. We provide the Bayesian model, its derivation, and use simulation techniques to investigate the properties and performance of our approach under several scenarios. Lastly, we apply our estimation technique using a piece-wise constant hazard function to investigate the effects of year, age, chick size and sex, sex of the tending adult, and nesting habitat on mortality hazard rates of the endangered mountain plover (Charadrius montanus) chicks. Traditional models were inappropriate for this analysis because fates of some individual chicks were unknown due to failed radio transmitters. Simulations revealed biases of posterior mean estimates were minimal (≤ 4.95%), and posterior distributions behaved as expected with RMSE of the estimates decreasing as sample sizes, detection probability, and survival increased. We determined mortality hazard rates for plover chicks were highest at <5 days old and were lower for chicks with larger birth weights and/or whose nest was within agricultural habitats. Based on its performance, our approach greatly expands the range of problems for which event-time analyses can be used by eliminating the need for having completely known fate data.
Bayesian structural equation modeling in sport and exercise psychology.
Stenling, Andreas; Ivarsson, Andreas; Johnson, Urban; Lindwall, Magnus
2015-08-01
Bayesian statistics is on the rise in mainstream psychology, but applications in sport and exercise psychology research are scarce. In this article, the foundations of Bayesian analysis are introduced, and we will illustrate how to apply Bayesian structural equation modeling in a sport and exercise psychology setting. More specifically, we contrasted a confirmatory factor analysis on the Sport Motivation Scale II estimated with the most commonly used estimator, maximum likelihood, and a Bayesian approach with weakly informative priors for cross-loadings and correlated residuals. The results indicated that the model with Bayesian estimation and weakly informative priors provided a good fit to the data, whereas the model estimated with a maximum likelihood estimator did not produce a well-fitting model. The reasons for this discrepancy between maximum likelihood and Bayesian estimation are discussed as well as potential advantages and caveats with the Bayesian approach.
A Bayesian alternative for multi-objective ecohydrological model specification
NASA Astrophysics Data System (ADS)
Tang, Yating; Marshall, Lucy; Sharma, Ashish; Ajami, Hoori
2018-01-01
Recent studies have identified the importance of vegetation processes in terrestrial hydrologic systems. Process-based ecohydrological models combine hydrological, physical, biochemical and ecological processes of the catchments, and as such are generally more complex and parametric than conceptual hydrological models. Thus, appropriate calibration objectives and model uncertainty analysis are essential for ecohydrological modeling. In recent years, Bayesian inference has become one of the most popular tools for quantifying the uncertainties in hydrological modeling with the development of Markov chain Monte Carlo (MCMC) techniques. The Bayesian approach offers an appealing alternative to traditional multi-objective hydrologic model calibrations by defining proper prior distributions that can be considered analogous to the ad-hoc weighting often prescribed in multi-objective calibration. Our study aims to develop appropriate prior distributions and likelihood functions that minimize the model uncertainties and bias within a Bayesian ecohydrological modeling framework based on a traditional Pareto-based model calibration technique. In our study, a Pareto-based multi-objective optimization and a formal Bayesian framework are implemented in a conceptual ecohydrological model that combines a hydrological model (HYMOD) and a modified Bucket Grassland Model (BGM). Simulations focused on one objective (streamflow/LAI) and multiple objectives (streamflow and LAI) with different emphasis defined via the prior distribution of the model error parameters. Results show more reliable outputs for both predicted streamflow and LAI using Bayesian multi-objective calibration with specified prior distributions for error parameters based on results from the Pareto front in the ecohydrological modeling. The methodology implemented here provides insight into the usefulness of multiobjective Bayesian calibration for ecohydrologic systems and the importance of appropriate prior distributions in such approaches.
Variations on Bayesian Prediction and Inference
2016-05-09
inference 2.2.1 Background There are a number of statistical inference problems that are not generally formulated via a full probability model...problem of inference about an unknown parameter, the Bayesian approach requires a full probability 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND...the problem of inference about an unknown parameter, the Bayesian approach requires a full probability model/likelihood which can be an obstacle
ERIC Educational Resources Information Center
Hsieh, Chueh-An; Maier, Kimberly S.
2009-01-01
The capacity of Bayesian methods in estimating complex statistical models is undeniable. Bayesian data analysis is seen as having a range of advantages, such as an intuitive probabilistic interpretation of the parameters of interest, the efficient incorporation of prior information to empirical data analysis, model averaging and model selection.…
Risk assessment of vector-borne diseases for public health governance.
Sedda, L; Morley, D W; Braks, M A H; De Simone, L; Benz, D; Rogers, D J
2014-12-01
In the context of public health, risk governance (or risk analysis) is a framework for the assessment and subsequent management and/or control of the danger posed by an identified disease threat. Generic frameworks in which to carry out risk assessment have been developed by various agencies. These include monitoring, data collection, statistical analysis and dissemination. Due to the inherent complexity of disease systems, however, the generic approach must be modified for individual, disease-specific risk assessment frameworks. The analysis was based on the review of the current risk assessments of vector-borne diseases adopted by the main Public Health organisations (OIE, WHO, ECDC, FAO, CDC etc…). Literature, legislation and statistical assessment of the risk analysis frameworks. This review outlines the need for the development of a general public health risk assessment method for vector-borne diseases, in order to guarantee that sufficient information is gathered to apply robust models of risk assessment. Stochastic (especially spatial) methods, often in Bayesian frameworks are now gaining prominence in standard risk assessment procedures because of their ability to assess accurately model uncertainties. Risk assessment needs to be addressed quantitatively wherever possible, and submitted with its quality assessment in order to enable successful public health measures to be adopted. In terms of current practice, often a series of different models and analyses are applied to the same problem, with results and outcomes that are difficult to compare because of the unknown model and data uncertainties. Therefore, the risk assessment areas in need of further research are identified in this article. Copyright © 2014 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.
Bayesian Exploratory Factor Analysis
Conti, Gabriella; Frühwirth-Schnatter, Sylvia; Heckman, James J.; Piatek, Rémi
2014-01-01
This paper develops and applies a Bayesian approach to Exploratory Factor Analysis that improves on ad hoc classical approaches. Our framework relies on dedicated factor models and simultaneously determines the number of factors, the allocation of each measurement to a unique factor, and the corresponding factor loadings. Classical identification criteria are applied and integrated into our Bayesian procedure to generate models that are stable and clearly interpretable. A Monte Carlo study confirms the validity of the approach. The method is used to produce interpretable low dimensional aggregates from a high dimensional set of psychological measurements. PMID:25431517
BATSE gamma-ray burst line search. 2: Bayesian consistency methodology
NASA Technical Reports Server (NTRS)
Band, D. L.; Ford, L. A.; Matteson, J. L.; Briggs, M.; Paciesas, W.; Pendleton, G.; Preece, R.; Palmer, D.; Teegarden, B.; Schaefer, B.
1994-01-01
We describe a Bayesian methodology to evaluate the consistency between the reported Ginga and Burst and Transient Source Experiment (BATSE) detections of absorption features in gamma-ray burst spectra. Currently no features have been detected by BATSE, but this methodology will still be applicable if and when such features are discovered. The Bayesian methodology permits the comparison of hypotheses regarding the two detectors' observations and makes explicit the subjective aspects of our analysis (e.g., the quantification of our confidence in detector performance). We also present non-Bayesian consistency statistics. Based on preliminary calculations of line detectability, we find that both the Bayesian and non-Bayesian techniques show that the BATSE and Ginga observations are consistent given our understanding of these detectors.
Bayesian population receptive field modelling.
Zeidman, Peter; Silson, Edward Harry; Schwarzkopf, Dietrich Samuel; Baker, Chris Ian; Penny, Will
2017-09-08
We introduce a probabilistic (Bayesian) framework and associated software toolbox for mapping population receptive fields (pRFs) based on fMRI data. This generic approach is intended to work with stimuli of any dimension and is demonstrated and validated in the context of 2D retinotopic mapping. The framework enables the experimenter to specify generative (encoding) models of fMRI timeseries, in which experimental stimuli enter a pRF model of neural activity, which in turns drives a nonlinear model of neurovascular coupling and Blood Oxygenation Level Dependent (BOLD) response. The neuronal and haemodynamic parameters are estimated together on a voxel-by-voxel or region-of-interest basis using a Bayesian estimation algorithm (variational Laplace). This offers several novel contributions to receptive field modelling. The variance/covariance of parameters are estimated, enabling receptive fields to be plotted while properly representing uncertainty about pRF size and location. Variability in the haemodynamic response across the brain is accounted for. Furthermore, the framework introduces formal hypothesis testing to pRF analysis, enabling competing models to be evaluated based on their log model evidence (approximated by the variational free energy), which represents the optimal tradeoff between accuracy and complexity. Using simulations and empirical data, we found that parameters typically used to represent pRF size and neuronal scaling are strongly correlated, which is taken into account by the Bayesian methods we describe when making inferences. We used the framework to compare the evidence for six variants of pRF model using 7 T functional MRI data and we found a circular Difference of Gaussians (DoG) model to be the best explanation for our data overall. We hope this framework will prove useful for mapping stimulus spaces with any number of dimensions onto the anatomy of the brain. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
To P or Not to P: Backing Bayesian Statistics.
Buchinsky, Farrel J; Chadha, Neil K
2017-12-01
In biomedical research, it is imperative to differentiate chance variation from truth before we generalize what we see in a sample of subjects to the wider population. For decades, we have relied on null hypothesis significance testing, where we calculate P values for our data to decide whether to reject a null hypothesis. This methodology is subject to substantial misinterpretation and errant conclusions. Instead of working backward by calculating the probability of our data if the null hypothesis were true, Bayesian statistics allow us instead to work forward, calculating the probability of our hypothesis given the available data. This methodology gives us a mathematical means of incorporating our "prior probabilities" from previous study data (if any) to produce new "posterior probabilities." Bayesian statistics tell us how confidently we should believe what we believe. It is time to embrace and encourage their use in our otolaryngology research.
A patient-specific segmentation framework for longitudinal MR images of traumatic brain injury
NASA Astrophysics Data System (ADS)
Wang, Bo; Prastawa, Marcel; Irimia, Andrei; Chambers, Micah C.; Vespa, Paul M.; Van Horn, John D.; Gerig, Guido
2012-02-01
Traumatic brain injury (TBI) is a major cause of death and disability worldwide. Robust, reproducible segmentations of MR images with TBI are crucial for quantitative analysis of recovery and treatment efficacy. However, this is a significant challenge due to severe anatomy changes caused by edema (swelling), bleeding, tissue deformation, skull fracture, and other effects related to head injury. In this paper, we introduce a multi-modal image segmentation framework for longitudinal TBI images. The framework is initialized through manual input of primary lesion sites at each time point, which are then refined by a joint approach composed of Bayesian segmentation and construction of a personalized atlas. The personalized atlas construction estimates the average of the posteriors of the Bayesian segmentation at each time point and warps the average back to each time point to provide the updated priors for Bayesian segmentation. The difference between our approach and segmenting longitudinal images independently is that we use the information from all time points to improve the segmentations. Given a manual initialization, our framework automatically segments healthy structures (white matter, grey matter, cerebrospinal fluid) as well as different lesions such as hemorrhagic lesions and edema. Our framework can handle different sets of modalities at each time point, which provides flexibility in analyzing clinical scans. We show results on three subjects with acute baseline scans and chronic follow-up scans. The results demonstrate that joint analysis of all the points yields improved segmentation compared to independent analysis of the two time points.
NASA Astrophysics Data System (ADS)
Oladyshkin, S.; Schroeder, P.; Class, H.; Nowak, W.
2013-12-01
Predicting underground carbon dioxide (CO2) storage represents a challenging problem in a complex dynamic system. Due to lacking information about reservoir parameters, quantification of uncertainties may become the dominant question in risk assessment. Calibration on past observed data from pilot-scale test injection can improve the predictive power of the involved geological, flow, and transport models. The current work performs history matching to pressure time series from a pilot storage site operated in Europe, maintained during an injection period. Simulation of compressible two-phase flow and transport (CO2/brine) in the considered site is computationally very demanding, requiring about 12 days of CPU time for an individual model run. For that reason, brute-force approaches for calibration are not feasible. In the current work, we explore an advanced framework for history matching based on the arbitrary polynomial chaos expansion (aPC) and strict Bayesian principles. The aPC [1] offers a drastic but accurate stochastic model reduction. Unlike many previous chaos expansions, it can handle arbitrary probability distribution shapes of uncertain parameters, and can therefore handle directly the statistical information appearing during the matching procedure. We capture the dependence of model output on these multipliers with the expansion-based reduced model. In our study we keep the spatial heterogeneity suggested by geophysical methods, but consider uncertainty in the magnitude of permeability trough zone-wise permeability multipliers. Next combined the aPC with Bootstrap filtering (a brute-force but fully accurate Bayesian updating mechanism) in order to perform the matching. In comparison to (Ensemble) Kalman Filters, our method accounts for higher-order statistical moments and for the non-linearity of both the forward model and the inversion, and thus allows a rigorous quantification of calibrated model uncertainty. The usually high computational costs of accurate filtering become very feasible for our suggested aPC-based calibration framework. However, the power of aPC-based Bayesian updating strongly depends on the accuracy of prior information. In the current study, the prior assumptions on the model parameters were not satisfactory and strongly underestimate the reservoir pressure. Thus, the aPC-based response surface used in Bootstrap filtering is fitted to a distant and poorly chosen region within the parameter space. Thanks to the iterative procedure suggested in [2] we overcome this drawback with small computational costs. The iteration successively improves the accuracy of the expansion around the current estimation of the posterior distribution. The final result is a calibrated model of the site that can be used for further studies, with an excellent match to the data. References [1] Oladyshkin S. and Nowak W. Data-driven uncertainty quantification using the arbitrary polynomial chaos expansion. Reliability Engineering and System Safety, 106:179-190, 2012. [2] Oladyshkin S., Class H., Nowak W. Bayesian updating via Bootstrap filtering combined with data-driven polynomial chaos expansions: methodology and application to history matching for carbon dioxide storage in geological formations. Computational Geosciences, 17 (4), 671-687, 2013.
Ockham's razor and Bayesian analysis. [statistical theory for systems evaluation
NASA Technical Reports Server (NTRS)
Jefferys, William H.; Berger, James O.
1992-01-01
'Ockham's razor', the ad hoc principle enjoining the greatest possible simplicity in theoretical explanations, is presently shown to be justifiable as a consequence of Bayesian inference; Bayesian analysis can, moreover, clarify the nature of the 'simplest' hypothesis consistent with the given data. By choosing the prior probabilities of hypotheses, it becomes possible to quantify the scientific judgment that simpler hypotheses are more likely to be correct. Bayesian analysis also shows that a hypothesis with fewer adjustable parameters intrinsically possesses an enhanced posterior probability, due to the clarity of its predictions.
The Probabilistic Admissible Region with Additional Constraints
NASA Astrophysics Data System (ADS)
Roscoe, C.; Hussein, I.; Wilkins, M.; Schumacher, P.
The admissible region, in the space surveillance field, is defined as the set of physically acceptable orbits (e.g., orbits with negative energies) consistent with one or more observations of a space object. Given additional constraints on orbital semimajor axis, eccentricity, etc., the admissible region can be constrained, resulting in the constrained admissible region (CAR). Based on known statistics of the measurement process, one can replace hard constraints with a probabilistic representation of the admissible region. This results in the probabilistic admissible region (PAR), which can be used for orbit initiation in Bayesian tracking and prioritization of tracks in a multiple hypothesis tracking framework. The PAR concept was introduced by the authors at the 2014 AMOS conference. In that paper, a Monte Carlo approach was used to show how to construct the PAR in the range/range-rate space based on known statistics of the measurement, semimajor axis, and eccentricity. An expectation-maximization algorithm was proposed to convert the particle cloud into a Gaussian Mixture Model (GMM) representation of the PAR. This GMM can be used to initialize a Bayesian filter. The PAR was found to be significantly non-uniform, invalidating an assumption frequently made in CAR-based filtering approaches. Using the GMM or particle cloud representations of the PAR, orbits can be prioritized for propagation in a multiple hypothesis tracking (MHT) framework. In this paper, the authors focus on expanding the PAR methodology to allow additional constraints, such as a constraint on perigee altitude, to be modeled in the PAR. This requires re-expressing the joint probability density function for the attributable vector as well as the (constrained) orbital parameters and range and range-rate. The final PAR is derived by accounting for any interdependencies between the parameters. Noting that the concepts presented are general and can be applied to any measurement scenario, the idea will be illustrated using a short-arc, angles-only observation scenario.
A fuzzy Bayesian approach to flood frequency estimation with imprecise historical information
Kiss, Andrea; Viglione, Alberto; Viertl, Reinhard; Blöschl, Günter
2016-01-01
Abstract This paper presents a novel framework that links imprecision (through a fuzzy approach) and stochastic uncertainty (through a Bayesian approach) in estimating flood probabilities from historical flood information and systematic flood discharge data. The method exploits the linguistic characteristics of historical source material to construct membership functions, which may be wider or narrower, depending on the vagueness of the statements. The membership functions are either included in the prior distribution or the likelihood function to obtain a fuzzy version of the flood frequency curve. The viability of the approach is demonstrated by three case studies that differ in terms of their hydromorphological conditions (from an Alpine river with bedrock profile to a flat lowland river with extensive flood plains) and historical source material (including narratives, town and county meeting protocols, flood marks and damage accounts). The case studies are presented in order of increasing fuzziness (the Rhine at Basel, Switzerland; the Werra at Meiningen, Germany; and the Tisza at Szeged, Hungary). Incorporating imprecise historical information is found to reduce the range between the 5% and 95% Bayesian credibility bounds of the 100 year floods by 45% and 61% for the Rhine and Werra case studies, respectively. The strengths and limitations of the framework are discussed relative to alternative (non‐fuzzy) methods. The fuzzy Bayesian inference framework provides a flexible methodology that fits the imprecise nature of linguistic information on historical floods as available in historical written documentation. PMID:27840456
A fuzzy Bayesian approach to flood frequency estimation with imprecise historical information
NASA Astrophysics Data System (ADS)
Salinas, José Luis; Kiss, Andrea; Viglione, Alberto; Viertl, Reinhard; Blöschl, Günter
2016-09-01
This paper presents a novel framework that links imprecision (through a fuzzy approach) and stochastic uncertainty (through a Bayesian approach) in estimating flood probabilities from historical flood information and systematic flood discharge data. The method exploits the linguistic characteristics of historical source material to construct membership functions, which may be wider or narrower, depending on the vagueness of the statements. The membership functions are either included in the prior distribution or the likelihood function to obtain a fuzzy version of the flood frequency curve. The viability of the approach is demonstrated by three case studies that differ in terms of their hydromorphological conditions (from an Alpine river with bedrock profile to a flat lowland river with extensive flood plains) and historical source material (including narratives, town and county meeting protocols, flood marks and damage accounts). The case studies are presented in order of increasing fuzziness (the Rhine at Basel, Switzerland; the Werra at Meiningen, Germany; and the Tisza at Szeged, Hungary). Incorporating imprecise historical information is found to reduce the range between the 5% and 95% Bayesian credibility bounds of the 100 year floods by 45% and 61% for the Rhine and Werra case studies, respectively. The strengths and limitations of the framework are discussed relative to alternative (non-fuzzy) methods. The fuzzy Bayesian inference framework provides a flexible methodology that fits the imprecise nature of linguistic information on historical floods as available in historical written documentation.
A fuzzy Bayesian approach to flood frequency estimation with imprecise historical information.
Salinas, José Luis; Kiss, Andrea; Viglione, Alberto; Viertl, Reinhard; Blöschl, Günter
2016-09-01
This paper presents a novel framework that links imprecision (through a fuzzy approach) and stochastic uncertainty (through a Bayesian approach) in estimating flood probabilities from historical flood information and systematic flood discharge data. The method exploits the linguistic characteristics of historical source material to construct membership functions, which may be wider or narrower, depending on the vagueness of the statements. The membership functions are either included in the prior distribution or the likelihood function to obtain a fuzzy version of the flood frequency curve. The viability of the approach is demonstrated by three case studies that differ in terms of their hydromorphological conditions (from an Alpine river with bedrock profile to a flat lowland river with extensive flood plains) and historical source material (including narratives, town and county meeting protocols, flood marks and damage accounts). The case studies are presented in order of increasing fuzziness (the Rhine at Basel, Switzerland; the Werra at Meiningen, Germany; and the Tisza at Szeged, Hungary). Incorporating imprecise historical information is found to reduce the range between the 5% and 95% Bayesian credibility bounds of the 100 year floods by 45% and 61% for the Rhine and Werra case studies, respectively. The strengths and limitations of the framework are discussed relative to alternative (non-fuzzy) methods. The fuzzy Bayesian inference framework provides a flexible methodology that fits the imprecise nature of linguistic information on historical floods as available in historical written documentation.
Finite‐fault Bayesian inversion of teleseismic body waves
Clayton, Brandon; Hartzell, Stephen; Moschetti, Morgan P.; Minson, Sarah E.
2017-01-01
Inverting geophysical data has provided fundamental information about the behavior of earthquake rupture. However, inferring kinematic source model parameters for finite‐fault ruptures is an intrinsically underdetermined problem (the problem of nonuniqueness), because we are restricted to finite noisy observations. Although many studies use least‐squares techniques to make the finite‐fault problem tractable, these methods generally lack the ability to apply non‐Gaussian error analysis and the imposition of nonlinear constraints. However, the Bayesian approach can be employed to find a Gaussian or non‐Gaussian distribution of all probable model parameters, while utilizing nonlinear constraints. We present case studies to quantify the resolving power and associated uncertainties using only teleseismic body waves in a Bayesian framework to infer the slip history for a synthetic case and two earthquakes: the 2011 Mw 7.1 Van, east Turkey, earthquake and the 2010 Mw 7.2 El Mayor–Cucapah, Baja California, earthquake. In implementing the Bayesian method, we further present two distinct solutions to investigate the uncertainties by performing the inversion with and without velocity structure perturbations. We find that the posterior ensemble becomes broader when including velocity structure variability and introduces a spatial smearing of slip. Using the Bayesian framework solely on teleseismic body waves, we find rake is poorly constrained by the observations and rise time is poorly resolved when slip amplitude is low.
NASA Astrophysics Data System (ADS)
Figueira, P.; Faria, J. P.; Adibekyan, V. Zh.; Oshagh, M.; Santos, N. C.
2016-11-01
We apply the Bayesian framework to assess the presence of a correlation between two quantities. To do so, we estimate the probability distribution of the parameter of interest, ρ, characterizing the strength of the correlation. We provide an implementation of these ideas and concepts using python programming language and the pyMC module in a very short (˜ 130 lines of code, heavily commented) and user-friendly program. We used this tool to assess the presence and properties of the correlation between planetary surface gravity and stellar activity level as measured by the log(R^' }_{ {HK}}) indicator. The results of the Bayesian analysis are qualitatively similar to those obtained via p-value analysis, and support the presence of a correlation in the data. The results are more robust in their derivation and more informative, revealing interesting features such as asymmetric posterior distributions or markedly different credible intervals, and allowing for a deeper exploration. We encourage the reader interested in this kind of problem to apply our code to his/her own scientific problems. The full understanding of what the Bayesian framework is can only be gained through the insight that comes by handling priors, assessing the convergence of Monte Carlo runs, and a multitude of other practical problems. We hope to contribute so that Bayesian analysis becomes a tool in the toolkit of researchers, and they understand by experience its advantages and limitations.
Feng, Dai; Baumgartner, Richard; Svetnik, Vladimir
2018-04-05
The concordance correlation coefficient (CCC) is a widely used scaled index in the study of agreement. In this article, we propose estimating the CCC by a unified Bayesian framework that can (1) accommodate symmetric or asymmetric and light- or heavy-tailed data; (2) select model from several candidates; and (3) address other issues frequently encountered in practice such as confounding covariates and missing data. The performance of the proposal was studied and demonstrated using simulated as well as real-life biomarker data from a clinical study of an insomnia drug. The implementation of the proposal is accessible through a package in the Comprehensive R Archive Network.
2011-01-01
Background Genome-scale metabolic network models have contributed to elucidating biological phenomena, and predicting gene targets to engineer for biotechnological applications. With their increasing importance, their precise network characterization has also been crucial for better understanding of the cellular physiology. Results We herein introduce a framework for network modularization and Bayesian network analysis (FMB) to investigate organism’s metabolism under perturbation. FMB reveals direction of influences among metabolic modules, in which reactions with similar or positively correlated flux variation patterns are clustered, in response to specific perturbation using metabolic flux data. With metabolic flux data calculated by constraints-based flux analysis under both control and perturbation conditions, FMB, in essence, reveals the effects of specific perturbations on the biological system through network modularization and Bayesian network analysis at metabolic modular level. As a demonstration, this framework was applied to the genetically perturbed Escherichia coli metabolism, which is a lpdA gene knockout mutant, using its genome-scale metabolic network model. Conclusions After all, it provides alternative scenarios of metabolic flux distributions in response to the perturbation, which are complementary to the data obtained from conventionally available genome-wide high-throughput techniques or metabolic flux analysis. PMID:22784571
Kim, Hyun Uk; Kim, Tae Yong; Lee, Sang Yup
2011-01-01
Genome-scale metabolic network models have contributed to elucidating biological phenomena, and predicting gene targets to engineer for biotechnological applications. With their increasing importance, their precise network characterization has also been crucial for better understanding of the cellular physiology. We herein introduce a framework for network modularization and Bayesian network analysis (FMB) to investigate organism's metabolism under perturbation. FMB reveals direction of influences among metabolic modules, in which reactions with similar or positively correlated flux variation patterns are clustered, in response to specific perturbation using metabolic flux data. With metabolic flux data calculated by constraints-based flux analysis under both control and perturbation conditions, FMB, in essence, reveals the effects of specific perturbations on the biological system through network modularization and Bayesian network analysis at metabolic modular level. As a demonstration, this framework was applied to the genetically perturbed Escherichia coli metabolism, which is a lpdA gene knockout mutant, using its genome-scale metabolic network model. After all, it provides alternative scenarios of metabolic flux distributions in response to the perturbation, which are complementary to the data obtained from conventionally available genome-wide high-throughput techniques or metabolic flux analysis.
Probability, statistics, and computational science.
Beerenwinkel, Niko; Siebourg, Juliane
2012-01-01
In this chapter, we review basic concepts from probability theory and computational statistics that are fundamental to evolutionary genomics. We provide a very basic introduction to statistical modeling and discuss general principles, including maximum likelihood and Bayesian inference. Markov chains, hidden Markov models, and Bayesian network models are introduced in more detail as they occur frequently and in many variations in genomics applications. In particular, we discuss efficient inference algorithms and methods for learning these models from partially observed data. Several simple examples are given throughout the text, some of which point to models that are discussed in more detail in subsequent chapters.
A Bayesian estimation of a stochastic predator-prey model of economic fluctuations
NASA Astrophysics Data System (ADS)
Dibeh, Ghassan; Luchinsky, Dmitry G.; Luchinskaya, Daria D.; Smelyanskiy, Vadim N.
2007-06-01
In this paper, we develop a Bayesian framework for the empirical estimation of the parameters of one of the best known nonlinear models of the business cycle: The Marx-inspired model of a growth cycle introduced by R. M. Goodwin. The model predicts a series of closed cycles representing the dynamics of labor's share and the employment rate in the capitalist economy. The Bayesian framework is used to empirically estimate a modified Goodwin model. The original model is extended in two ways. First, we allow for exogenous periodic variations of the otherwise steady growth rates of the labor force and productivity per worker. Second, we allow for stochastic variations of those parameters. The resultant modified Goodwin model is a stochastic predator-prey model with periodic forcing. The model is then estimated using a newly developed Bayesian estimation method on data sets representing growth cycles in France and Italy during the years 1960-2005. Results show that inference of the parameters of the stochastic Goodwin model can be achieved. The comparison of the dynamics of the Goodwin model with the inferred values of parameters demonstrates quantitative agreement with the growth cycle empirical data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stewart, Robert N; White, Devin A; Urban, Marie L
2013-01-01
The Population Density Tables (PDT) project at the Oak Ridge National Laboratory (www.ornl.gov) is developing population density estimates for specific human activities under normal patterns of life based largely on information available in open source. Currently, activity based density estimates are based on simple summary data statistics such as range and mean. Researchers are interested in improving activity estimation and uncertainty quantification by adopting a Bayesian framework that considers both data and sociocultural knowledge. Under a Bayesian approach knowledge about population density may be encoded through the process of expert elicitation. Due to the scale of the PDT effort whichmore » considers over 250 countries, spans 40 human activity categories, and includes numerous contributors, an elicitation tool is required that can be operationalized within an enterprise data collection and reporting system. Such a method would ideally require that the contributor have minimal statistical knowledge, require minimal input by a statistician or facilitator, consider human difficulties in expressing qualitative knowledge in a quantitative setting, and provide methods by which the contributor can appraise whether their understanding and associated uncertainty was well captured. This paper introduces an algorithm that transforms answers to simple, non-statistical questions into a bivariate Gaussian distribution as the prior for the Beta distribution. Based on geometric properties of the Beta distribution parameter feasibility space and the bivariate Gaussian distribution, an automated method for encoding is developed that responds to these challenging enterprise requirements. Though created within the context of population density, this approach may be applicable to a wide array of problem domains requiring informative priors for the Beta distribution.« less
scoringRules - A software package for probabilistic model evaluation
NASA Astrophysics Data System (ADS)
Lerch, Sebastian; Jordan, Alexander; Krüger, Fabian
2016-04-01
Models in the geosciences are generally surrounded by uncertainty, and being able to quantify this uncertainty is key to good decision making. Accordingly, probabilistic forecasts in the form of predictive distributions have become popular over the last decades. With the proliferation of probabilistic models arises the need for decision theoretically principled tools to evaluate the appropriateness of models and forecasts in a generalized way. Various scoring rules have been developed over the past decades to address this demand. Proper scoring rules are functions S(F,y) which evaluate the accuracy of a forecast distribution F , given that an outcome y was observed. As such, they allow to compare alternative models, a crucial ability given the variety of theories, data sources and statistical specifications that is available in many situations. This poster presents the software package scoringRules for the statistical programming language R, which contains functions to compute popular scoring rules such as the continuous ranked probability score for a variety of distributions F that come up in applied work. Two main classes are parametric distributions like normal, t, or gamma distributions, and distributions that are not known analytically, but are indirectly described through a sample of simulation draws. For example, Bayesian forecasts produced via Markov Chain Monte Carlo take this form. Thereby, the scoringRules package provides a framework for generalized model evaluation that both includes Bayesian as well as classical parametric models. The scoringRules package aims to be a convenient dictionary-like reference for computing scoring rules. We offer state of the art implementations of several known (but not routinely applied) formulas, and implement closed-form expressions that were previously unavailable. Whenever more than one implementation variant exists, we offer statistically principled default choices.
Bayesian analysis of multiple direct detection experiments
NASA Astrophysics Data System (ADS)
Arina, Chiara
2014-12-01
Bayesian methods offer a coherent and efficient framework for implementing uncertainties into induction problems. In this article, we review how this approach applies to the analysis of dark matter direct detection experiments. In particular we discuss the exclusion limit of XENON100 and the debated hints of detection under the hypothesis of a WIMP signal. Within parameter inference, marginalizing consistently over uncertainties to extract robust posterior probability distributions, we find that the claimed tension between XENON100 and the other experiments can be partially alleviated in isospin violating scenario, while elastic scattering model appears to be compatible with the frequentist statistical approach. We then move to model comparison, for which Bayesian methods are particularly well suited. Firstly, we investigate the annual modulation seen in CoGeNT data, finding that there is weak evidence for a modulation. Modulation models due to other physics compare unfavorably with the WIMP models, paying the price for their excessive complexity. Secondly, we confront several coherent scattering models to determine the current best physical scenario compatible with the experimental hints. We find that exothermic and inelastic dark matter are moderatly disfavored against the elastic scenario, while the isospin violating model has a similar evidence. Lastly the Bayes' factor gives inconclusive evidence for an incompatibility between the data sets of XENON100 and the hints of detection. The same question assessed with goodness of fit would indicate a 2 σ discrepancy. This suggests that more data are therefore needed to settle this question.
NASA Astrophysics Data System (ADS)
Wen, Fang-Qing; Zhang, Gong; Ben, De
2015-11-01
This paper addresses the direction of arrival (DOA) estimation problem for the co-located multiple-input multiple-output (MIMO) radar with random arrays. The spatially distributed sparsity of the targets in the background makes compressive sensing (CS) desirable for DOA estimation. A spatial CS framework is presented, which links the DOA estimation problem to support recovery from a known over-complete dictionary. A modified statistical model is developed to accurately represent the intra-block correlation of the received signal. A structural sparsity Bayesian learning algorithm is proposed for the sparse recovery problem. The proposed algorithm, which exploits intra-signal correlation, is capable being applied to limited data support and low signal-to-noise ratio (SNR) scene. Furthermore, the proposed algorithm has less computation load compared to the classical Bayesian algorithm. Simulation results show that the proposed algorithm has a more accurate DOA estimation than the traditional multiple signal classification (MUSIC) algorithm and other CS recovery algorithms. Project supported by the National Natural Science Foundation of China (Grant Nos. 61071163, 61271327, and 61471191), the Funding for Outstanding Doctoral Dissertation in Nanjing University of Aeronautics and Astronautics, China (Grant No. BCXJ14-08), the Funding of Innovation Program for Graduate Education of Jiangsu Province, China (Grant No. KYLX 0277), the Fundamental Research Funds for the Central Universities, China (Grant No. 3082015NP2015504), and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PADA), China.
Zhu, Xiang; Stephens, Matthew
2017-01-01
Bayesian methods for large-scale multiple regression provide attractive approaches to the analysis of genome-wide association studies (GWAS). For example, they can estimate heritability of complex traits, allowing for both polygenic and sparse models; and by incorporating external genomic data into the priors, they can increase power and yield new biological insights. However, these methods require access to individual genotypes and phenotypes, which are often not easily available. Here we provide a framework for performing these analyses without individual-level data. Specifically, we introduce a “Regression with Summary Statistics” (RSS) likelihood, which relates the multiple regression coefficients to univariate regression results that are often easily available. The RSS likelihood requires estimates of correlations among covariates (SNPs), which also can be obtained from public databases. We perform Bayesian multiple regression analysis by combining the RSS likelihood with previously proposed prior distributions, sampling posteriors by Markov chain Monte Carlo. In a wide range of simulations RSS performs similarly to analyses using the individual data, both for estimating heritability and detecting associations. We apply RSS to a GWAS of human height that contains 253,288 individuals typed at 1.06 million SNPs, for which analyses of individual-level data are practically impossible. Estimates of heritability (52%) are consistent with, but more precise, than previous results using subsets of these data. We also identify many previously unreported loci that show evidence for association with height in our analyses. Software is available at https://github.com/stephenslab/rss. PMID:29399241
GLASS 2.0: An Operational, Multimodal, Bayesian Earthquake Data Association Engine
NASA Astrophysics Data System (ADS)
Benz, H.; Johnson, C. E.; Patton, J. M.; McMahon, N. D.; Earle, P. S.
2015-12-01
The legacy approach to automated detection and determination of hypocenters is arrival time stacking algorithms. Examples of such algorithms are the associator, Binder, which has been in continuous use in many USGS-supported regional seismic networks since the 1980s and the spherical earth successor, GLASS 1.0, currently in service at the USGS National Earthquake Information Center for over 10 years. The principle short-comings of the legacy approach are 1) it can only use phase arrival times, 2) it does not adequately address the problems of extreme variations in station density worldwide, 3) it cannot incorporate multiple phase models or statistical attributes of phases with distance, and 4) it cannot incorporate noise model attributes of individual stations. Previously we introduced a theoretical framework of a new associator using a Bayesian kernel stacking approach to approximate a joint probability density function for hypocenter localization. More recently we added station- and phase-specific Bayesian constraints to the association process. GLASS 2.0 incorporates a multiplicity of earthquake related data including phase arrival times, back-azimuth and slowness information from array beamforming, arrival times from waveform cross correlation processing, and geographic constraints from real-time social media reports of ground shaking. We demonstrate its application by modeling an aftershock sequence using dozens of stations that recorded tens of thousands of earthquakes over a period of one month. We also demonstrate Glass 2.0 performance regionally and teleseismically using the globally distributed real-time monitoring system at NEIC.
Statistical surrogate models for prediction of high-consequence climate change.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Constantine, Paul; Field, Richard V., Jr.; Boslough, Mark Bruce Elrick
2011-09-01
In safety engineering, performance metrics are defined using probabilistic risk assessments focused on the low-probability, high-consequence tail of the distribution of possible events, as opposed to best estimates based on central tendencies. We frame the climate change problem and its associated risks in a similar manner. To properly explore the tails of the distribution requires extensive sampling, which is not possible with existing coupled atmospheric models due to the high computational cost of each simulation. We therefore propose the use of specialized statistical surrogate models (SSMs) for the purpose of exploring the probability law of various climate variables of interest.more » A SSM is different than a deterministic surrogate model in that it represents each climate variable of interest as a space/time random field. The SSM can be calibrated to available spatial and temporal data from existing climate databases, e.g., the Program for Climate Model Diagnosis and Intercomparison (PCMDI), or to a collection of outputs from a General Circulation Model (GCM), e.g., the Community Earth System Model (CESM) and its predecessors. Because of its reduced size and complexity, the realization of a large number of independent model outputs from a SSM becomes computationally straightforward, so that quantifying the risk associated with low-probability, high-consequence climate events becomes feasible. A Bayesian framework is developed to provide quantitative measures of confidence, via Bayesian credible intervals, in the use of the proposed approach to assess these risks.« less
Albert, Carlo; Ulzega, Simone; Stoop, Ruedi
2016-04-01
Parameter inference is a fundamental problem in data-driven modeling. Given observed data that is believed to be a realization of some parameterized model, the aim is to find parameter values that are able to explain the observed data. In many situations, the dominant sources of uncertainty must be included into the model for making reliable predictions. This naturally leads to stochastic models. Stochastic models render parameter inference much harder, as the aim then is to find a distribution of likely parameter values. In Bayesian statistics, which is a consistent framework for data-driven learning, this so-called posterior distribution can be used to make probabilistic predictions. We propose a novel, exact, and very efficient approach for generating posterior parameter distributions for stochastic differential equation models calibrated to measured time series. The algorithm is inspired by reinterpreting the posterior distribution as a statistical mechanics partition function of an object akin to a polymer, where the measurements are mapped on heavier beads compared to those of the simulated data. To arrive at distribution samples, we employ a Hamiltonian Monte Carlo approach combined with a multiple time-scale integration. A separation of time scales naturally arises if either the number of measurement points or the number of simulation points becomes large. Furthermore, at least for one-dimensional problems, we can decouple the harmonic modes between measurement points and solve the fastest part of their dynamics analytically. Our approach is applicable to a wide range of inference problems and is highly parallelizable.
NASA Astrophysics Data System (ADS)
Zaidi, W. H.; Faber, W. R.; Hussein, I. I.; Mercurio, M.; Roscoe, C. W. T.; Wilkins, M. P.
One of the most challenging problems in treating space debris is the characterization of the orbit of a newly detected and uncorrelated measurement. The admissible region is defined as the set of physically acceptable orbits (i.e. orbits with negative energies) consistent with one or more measurements of a Resident Space Object (RSO). Given additional constraints on the orbital semi-major axis, eccentricity, etc., the admissible region can be constrained, resulting in the constrained admissible region (CAR). Based on known statistics of the measurement process, one can replace hard constraints with a Probabilistic Admissible Region (PAR), a concept introduced in 2014 as a Monte Carlo uncertainty representation approach using topocentric spherical coordinates. Ultimately, a PAR can be used to initialize a sequential Bayesian estimator and to prioritize orbital propagations in a multiple hypothesis tracking framework such as Finite Set Statistics (FISST). To date, measurements used to build the PAR have been collected concurrently and by the same sensor. In this paper, we allow measurements to have different time stamps. We also allow for non-collocated sensor collections; optical data can be collected by one sensor at a given time and radar data collected by another sensor located elsewhere. We then revisit first principles to link asynchronous optical and radar measurements using both the conservation of specific orbital energy and specific orbital angular momentum. The result from the proposed algorithm is an implicit-Bayesian and non-Gaussian representation of orbital state uncertainty.
Bayesian Model Selection under Time Constraints
NASA Astrophysics Data System (ADS)
Hoege, M.; Nowak, W.; Illman, W. A.
2017-12-01
Bayesian model selection (BMS) provides a consistent framework for rating and comparing models in multi-model inference. In cases where models of vastly different complexity compete with each other, we also face vastly different computational runtimes of such models. For instance, time series of a quantity of interest can be simulated by an autoregressive process model that takes even less than a second for one run, or by a partial differential equations-based model with runtimes up to several hours or even days. The classical BMS is based on a quantity called Bayesian model evidence (BME). It determines the model weights in the selection process and resembles a trade-off between bias of a model and its complexity. However, in practice, the runtime of models is another weight relevant factor for model selection. Hence, we believe that it should be included, leading to an overall trade-off problem between bias, variance and computing effort. We approach this triple trade-off from the viewpoint of our ability to generate realizations of the models under a given computational budget. One way to obtain BME values is through sampling-based integration techniques. We argue with the fact that more expensive models can be sampled much less under time constraints than faster models (in straight proportion to their runtime). The computed evidence in favor of a more expensive model is statistically less significant than the evidence computed in favor of a faster model, since sampling-based strategies are always subject to statistical sampling error. We present a straightforward way to include this misbalance into the model weights that are the basis for model selection. Our approach follows directly from the idea of insufficient significance. It is based on a computationally cheap bootstrapping error estimate of model evidence and is easy to implement. The approach is illustrated in a small synthetic modeling study.
Bayesian estimation inherent in a Mexican-hat-type neural network
NASA Astrophysics Data System (ADS)
Takiyama, Ken
2016-05-01
Brain functions, such as perception, motor control and learning, and decision making, have been explained based on a Bayesian framework, i.e., to decrease the effects of noise inherent in the human nervous system or external environment, our brain integrates sensory and a priori information in a Bayesian optimal manner. However, it remains unclear how Bayesian computations are implemented in the brain. Herein, I address this issue by analyzing a Mexican-hat-type neural network, which was used as a model of the visual cortex, motor cortex, and prefrontal cortex. I analytically demonstrate that the dynamics of an order parameter in the model corresponds exactly to a variational inference of a linear Gaussian state-space model, a Bayesian estimation, when the strength of recurrent synaptic connectivity is appropriately stronger than that of an external stimulus, a plausible condition in the brain. This exact correspondence can reveal the relationship between the parameters in the Bayesian estimation and those in the neural network, providing insight for understanding brain functions.
The researcher and the consultant: from testing to probability statements.
Hamra, Ghassan B; Stang, Andreas; Poole, Charles
2015-09-01
In the first instalment of this series, Stang and Poole provided an overview of Fisher significance testing (ST), Neyman-Pearson null hypothesis testing (NHT), and their unfortunate and unintended offspring, null hypothesis significance testing. In addition to elucidating the distinction between the first two and the evolution of the third, the authors alluded to alternative models of statistical inference; namely, Bayesian statistics. Bayesian inference has experienced a revival in recent decades, with many researchers advocating for its use as both a complement and an alternative to NHT and ST. This article will continue in the direction of the first instalment, providing practicing researchers with an introduction to Bayesian inference. Our work will draw on the examples and discussion of the previous dialogue.
Spectral likelihood expansions for Bayesian inference
NASA Astrophysics Data System (ADS)
Nagel, Joseph B.; Sudret, Bruno
2016-03-01
A spectral approach to Bayesian inference is presented. It pursues the emulation of the posterior probability density. The starting point is a series expansion of the likelihood function in terms of orthogonal polynomials. From this spectral likelihood expansion all statistical quantities of interest can be calculated semi-analytically. The posterior is formally represented as the product of a reference density and a linear combination of polynomial basis functions. Both the model evidence and the posterior moments are related to the expansion coefficients. This formulation avoids Markov chain Monte Carlo simulation and allows one to make use of linear least squares instead. The pros and cons of spectral Bayesian inference are discussed and demonstrated on the basis of simple applications from classical statistics and inverse modeling.
Lakatos, Eszter; Salehi-Reyhani, Ali; Barclay, Michael; Stumpf, Michael P H; Klug, David R
2017-01-01
We determine p53 protein abundances and cell to cell variation in two human cancer cell lines with single cell resolution, and show that the fractional width of the distributions is the same in both cases despite a large difference in average protein copy number. We developed a computational framework to identify dominant mechanisms controlling the variation of protein abundance in a simple model of gene expression from the summary statistics of single cell steady state protein expression distributions. Our results, based on single cell data analysed in a Bayesian framework, lends strong support to a model in which variation in the basal p53 protein abundance may be best explained by variations in the rate of p53 protein degradation. This is supported by measurements of the relative average levels of mRNA which are very similar despite large variation in the level of protein.
The Misidentified Identifiability Problem of Bayesian Knowledge Tracing
ERIC Educational Resources Information Center
Doroudi, Shayan; Brunskill, Emma
2017-01-01
In this paper, we investigate two purported problems with Bayesian Knowledge Tracing (BKT), a popular statistical model of student learning: "identifiability" and "semantic model degeneracy." In 2007, Beck and Chang stated that BKT is susceptible to an "identifiability problem"--various models with different…
MacLean, Adam L; Harrington, Heather A; Stumpf, Michael P H; Byrne, Helen M
2016-01-01
The last decade has seen an explosion in models that describe phenomena in systems medicine. Such models are especially useful for studying signaling pathways, such as the Wnt pathway. In this chapter we use the Wnt pathway to showcase current mathematical and statistical techniques that enable modelers to gain insight into (models of) gene regulation and generate testable predictions. We introduce a range of modeling frameworks, but focus on ordinary differential equation (ODE) models since they remain the most widely used approach in systems biology and medicine and continue to offer great potential. We present methods for the analysis of a single model, comprising applications of standard dynamical systems approaches such as nondimensionalization, steady state, asymptotic and sensitivity analysis, and more recent statistical and algebraic approaches to compare models with data. We present parameter estimation and model comparison techniques, focusing on Bayesian analysis and coplanarity via algebraic geometry. Our intention is that this (non-exhaustive) review may serve as a useful starting point for the analysis of models in systems medicine.
NASA Astrophysics Data System (ADS)
Rodriguez, Delphy; Valari, Myrto; Markakis, Konstantinos; Payan, Sébastien
2016-04-01
Currently, ambient pollutant concentrations at monitoring sites are routinely measured by local networks, such as AIRPARIF in Paris, France. Pollutant concentration fields are also simulated with regional-scale chemistry transport models such as CHIMERE (http://www.lmd.polytechnique.fr/chimere) under air-quality forecasting platforms (e.g. Prev'Air http://www.prevair.org) or research projects. These data may be combined with more or less sophisticated techniques to provide a fairly good representation of pollutant concentration spatial gradients over urban areas. Here we focus on human exposure to atmospheric contaminants. Based on census data on population dynamics and demographics, modeled outdoor concentrations and infiltration of outdoor air-pollution indoors we have developed a population exposure model for ozone and PM2.5. A critical challenge in the field of population exposure modeling is model validation since personal exposure data are expensive and therefore, rare. However, recent research has made low cost mobile sensors fairly common and therefore personal exposure data should become more and more accessible. In view of planned cohort field-campaigns where such data will be available over the Paris region, we propose in the present study a statistical framework that makes the comparison between modeled and measured exposures meaningful. Our ultimate goal is to evaluate the exposure model by comparing modeled exposures to monitor data. The scientific question we address here is how to downscale modeled data that are estimated on the county population scale at the individual scale which is appropriate to the available measurements. To assess this question we developed a Bayesian hierarchical framework that assimilates actual individual data into population statistics and updates the probability estimate.
Jones, Hayley E; Hickman, Matthew; Kasprzyk-Hordern, Barbara; Welton, Nicky J; Baker, David R; Ades, A E
2014-07-15
Concentrations of metabolites of illicit drugs in sewage water can be measured with great accuracy and precision, thanks to the development of sensitive and robust analytical methods. Based on assumptions about factors including the excretion profile of the parent drug, routes of administration and the number of individuals using the wastewater system, the level of consumption of a drug can be estimated from such measured concentrations. When presenting results from these 'back-calculations', the multiple sources of uncertainty are often discussed, but are not usually explicitly taken into account in the estimation process. In this paper we demonstrate how these calculations can be placed in a more formal statistical framework by assuming a distribution for each parameter involved, based on a review of the evidence underpinning it. Using a Monte Carlo simulations approach, it is then straightforward to propagate uncertainty in each parameter through the back-calculations, producing a distribution for instead of a single estimate of daily or average consumption. This can be summarised for example by a median and credible interval. To demonstrate this approach, we estimate cocaine consumption in a large urban UK population, using measured concentrations of two of its metabolites, benzoylecgonine and norbenzoylecgonine. We also demonstrate a more sophisticated analysis, implemented within a Bayesian statistical framework using Markov chain Monte Carlo simulation. Our model allows the two metabolites to simultaneously inform estimates of daily cocaine consumption and explicitly allows for variability between days. After accounting for this variability, the resulting credible interval for average daily consumption is appropriately wider, representing additional uncertainty. We discuss possibilities for extensions to the model, and whether analysis of wastewater samples has potential to contribute to a prevalence model for illicit drug use. Copyright © 2014. Published by Elsevier B.V.
Jones, Hayley E.; Hickman, Matthew; Kasprzyk-Hordern, Barbara; Welton, Nicky J.; Baker, David R.; Ades, A.E.
2014-01-01
Concentrations of metabolites of illicit drugs in sewage water can be measured with great accuracy and precision, thanks to the development of sensitive and robust analytical methods. Based on assumptions about factors including the excretion profile of the parent drug, routes of administration and the number of individuals using the wastewater system, the level of consumption of a drug can be estimated from such measured concentrations. When presenting results from these ‘back-calculations’, the multiple sources of uncertainty are often discussed, but are not usually explicitly taken into account in the estimation process. In this paper we demonstrate how these calculations can be placed in a more formal statistical framework by assuming a distribution for each parameter involved, based on a review of the evidence underpinning it. Using a Monte Carlo simulations approach, it is then straightforward to propagate uncertainty in each parameter through the back-calculations, producing a distribution for instead of a single estimate of daily or average consumption. This can be summarised for example by a median and credible interval. To demonstrate this approach, we estimate cocaine consumption in a large urban UK population, using measured concentrations of two of its metabolites, benzoylecgonine and norbenzoylecgonine. We also demonstrate a more sophisticated analysis, implemented within a Bayesian statistical framework using Markov chain Monte Carlo simulation. Our model allows the two metabolites to simultaneously inform estimates of daily cocaine consumption and explicitly allows for variability between days. After accounting for this variability, the resulting credible interval for average daily consumption is appropriately wider, representing additional uncertainty. We discuss possibilities for extensions to the model, and whether analysis of wastewater samples has potential to contribute to a prevalence model for illicit drug use. PMID:24636801
A Bayesian approach for calibrating probability judgments
NASA Astrophysics Data System (ADS)
Firmino, Paulo Renato A.; Santana, Nielson A.
2012-10-01
Eliciting experts' opinions has been one of the main alternatives for addressing paucity of data. In the vanguard of this area is the development of calibration models (CMs). CMs are models dedicated to overcome miscalibration, i.e. judgment biases reflecting deficient strategies of reasoning adopted by the expert when inferring about an unknown. One of the main challenges of CMs is to determine how and when to intervene against miscalibration, in order to enhance the tradeoff between costs (time spent with calibration processes) and accuracy of the resulting models. The current paper dedicates special attention to this issue by presenting a dynamic Bayesian framework for monitoring, diagnosing, and handling miscalibration patterns. The framework is based on Beta-, Uniform, or Triangular-Bernoulli models and classes of judgmental calibration theories. Issues regarding the usefulness of the proposed framework are discussed and illustrated via simulation studies.
Observers Exploit Stochastic Models of Sensory Change to Help Judge the Passage of Time
Ahrens, Misha B.; Sahani, Maneesh
2011-01-01
Summary Sensory stimulation can systematically bias the perceived passage of time [1–5], but why and how this happens is mysterious. In this report, we provide evidence that such biases may ultimately derive from an innate and adaptive use of stochastically evolving dynamic stimuli to help refine estimates derived from internal timekeeping mechanisms [6–15]. A simplified statistical model based on probabilistic expectations of stimulus change derived from the second-order temporal statistics of the natural environment [16, 17] makes three predictions. First, random noise-like stimuli whose statistics violate natural expectations should induce timing bias. Second, a previously unexplored obverse of this effect is that similar noise stimuli with natural statistics should reduce the variability of timing estimates. Finally, this reduction in variability should scale with the interval being timed, so as to preserve the overall Weber law of interval timing. All three predictions are borne out experimentally. Thus, in the context of our novel theoretical framework, these results suggest that observers routinely rely on sensory input to augment their sense of the passage of time, through a process of Bayesian inference based on expectations of change in the natural environment. PMID:21256018
Phylogeography Takes a Relaxed Random Walk in Continuous Space and Time
Lemey, Philippe; Rambaut, Andrew; Welch, John J.; Suchard, Marc A.
2010-01-01
Research aimed at understanding the geographic context of evolutionary histories is burgeoning across biological disciplines. Recent endeavors attempt to interpret contemporaneous genetic variation in the light of increasingly detailed geographical and environmental observations. Such interest has promoted the development of phylogeographic inference techniques that explicitly aim to integrate such heterogeneous data. One promising development involves reconstructing phylogeographic history on a continuous landscape. Here, we present a Bayesian statistical approach to infer continuous phylogeographic diffusion using random walk models while simultaneously reconstructing the evolutionary history in time from molecular sequence data. Moreover, by accommodating branch-specific variation in dispersal rates, we relax the most restrictive assumption of the standard Brownian diffusion process and demonstrate increased statistical efficiency in spatial reconstructions of overdispersed random walks by analyzing both simulated and real viral genetic data. We further illustrate how drawing inference about summary statistics from a fully specified stochastic process over both sequence evolution and spatial movement reveals important characteristics of a rabies epidemic. Together with recent advances in discrete phylogeographic inference, the continuous model developments furnish a flexible statistical framework for biogeographical reconstructions that is easily expanded upon to accommodate various landscape genetic features. PMID:20203288
Rhodes, Kirsty M; Turner, Rebecca M; White, Ian R; Jackson, Dan; Spiegelhalter, David J; Higgins, Julian P T
2016-12-20
Many meta-analyses combine results from only a small number of studies, a situation in which the between-study variance is imprecisely estimated when standard methods are applied. Bayesian meta-analysis allows incorporation of external evidence on heterogeneity, providing the potential for more robust inference on the effect size of interest. We present a method for performing Bayesian meta-analysis using data augmentation, in which we represent an informative conjugate prior for between-study variance by pseudo data and use meta-regression for estimation. To assist in this, we derive predictive inverse-gamma distributions for the between-study variance expected in future meta-analyses. These may serve as priors for heterogeneity in new meta-analyses. In a simulation study, we compare approximate Bayesian methods using meta-regression and pseudo data against fully Bayesian approaches based on importance sampling techniques and Markov chain Monte Carlo (MCMC). We compare the frequentist properties of these Bayesian methods with those of the commonly used frequentist DerSimonian and Laird procedure. The method is implemented in standard statistical software and provides a less complex alternative to standard MCMC approaches. An importance sampling approach produces almost identical results to standard MCMC approaches, and results obtained through meta-regression and pseudo data are very similar. On average, data augmentation provides closer results to MCMC, if implemented using restricted maximum likelihood estimation rather than DerSimonian and Laird or maximum likelihood estimation. The methods are applied to real datasets, and an extension to network meta-analysis is described. The proposed method facilitates Bayesian meta-analysis in a way that is accessible to applied researchers. © 2016 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. © 2016 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd.
How alive is constrained SUSY really?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bechtle, Philip; Desch, Klaus; Dreiner, Herbert K.
2016-05-31
Constrained supersymmetric models like the CMSSM might look less attractive nowadays because of fine tuning arguments. They also might look less probable in terms of Bayesian statistics. The question how well the model under study describes the data, however, is answered by frequentist p-values. Thus, for the first time, we calculate a p-value for a supersymmetric model by performing dedicated global toy fits. We combine constraints from low-energy and astrophysical observables, Higgs boson mass and rate measurements as well as the non-observation of new physics in searches for supersymmetry at the LHC. Furthermore, using the framework Fittino, we perform globalmore » fits of the CMSSM to the toy data and find that this model is excluded at the 90% confidence level.« less
Autoclass: An automatic classification system
NASA Technical Reports Server (NTRS)
Stutz, John; Cheeseman, Peter; Hanson, Robin
1991-01-01
The task of inferring a set of classes and class descriptions most likely to explain a given data set can be placed on a firm theoretical foundation using Bayesian statistics. Within this framework, and using various mathematical and algorithmic approximations, the AutoClass System searches for the most probable classifications, automatically choosing the number of classes and complexity of class descriptions. A simpler version of AutoClass has been applied to many large real data sets, has discovered new independently-verified phenomena, and has been released as a robust software package. Recent extensions allow attributes to be selectively correlated within particular classes, and allow classes to inherit, or share, model parameters through a class hierarchy. The mathematical foundations of AutoClass are summarized.
Hybrid Gibbs Sampling and MCMC for CMB Analysis at Small Angular Scales
NASA Technical Reports Server (NTRS)
Jewell, Jeffrey B.; Eriksen, H. K.; Wandelt, B. D.; Gorski, K. M.; Huey, G.; O'Dwyer, I. J.; Dickinson, C.; Banday, A. J.; Lawrence, C. R.
2008-01-01
A) Gibbs Sampling has now been validated as an efficient, statistically exact, and practically useful method for "low-L" (as demonstrated on WMAP temperature polarization data). B) We are extending Gibbs sampling to directly propagate uncertainties in both foreground and instrument models to total uncertainty in cosmological parameters for the entire range of angular scales relevant for Planck. C) Made possible by inclusion of foreground model parameters in Gibbs sampling and hybrid MCMC and Gibbs sampling for the low signal to noise (high-L) regime. D) Future items to be included in the Bayesian framework include: 1) Integration with Hybrid Likelihood (or posterior) code for cosmological parameters; 2) Include other uncertainties in instrumental systematics? (I.e. beam uncertainties, noise estimation, calibration errors, other).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiao, H., E-mail: hengxiao@vt.edu; Wu, J.-L.; Wang, J.-X.
Despite their well-known limitations, Reynolds-Averaged Navier–Stokes (RANS) models are still the workhorse tools for turbulent flow simulations in today's engineering analysis, design and optimization. While the predictive capability of RANS models depends on many factors, for many practical flows the turbulence models are by far the largest source of uncertainty. As RANS models are used in the design and safety evaluation of many mission-critical systems such as airplanes and nuclear power plants, quantifying their model-form uncertainties has significant implications in enabling risk-informed decision-making. In this work we develop a data-driven, physics-informed Bayesian framework for quantifying model-form uncertainties in RANS simulations.more » Uncertainties are introduced directly to the Reynolds stresses and are represented with compact parameterization accounting for empirical prior knowledge and physical constraints (e.g., realizability, smoothness, and symmetry). An iterative ensemble Kalman method is used to assimilate the prior knowledge and observation data in a Bayesian framework, and to propagate them to posterior distributions of velocities and other Quantities of Interest (QoIs). We use two representative cases, the flow over periodic hills and the flow in a square duct, to evaluate the performance of the proposed framework. Both cases are challenging for standard RANS turbulence models. Simulation results suggest that, even with very sparse observations, the obtained posterior mean velocities and other QoIs have significantly better agreement with the benchmark data compared to the baseline results. At most locations the posterior distribution adequately captures the true model error within the developed model form uncertainty bounds. The framework is a major improvement over existing black-box, physics-neutral methods for model-form uncertainty quantification, where prior knowledge and details of the models are not exploited. This approach has potential implications in many fields in which the governing equations are well understood but the model uncertainty comes from unresolved physical processes. - Highlights: • Proposed a physics–informed framework to quantify uncertainty in RANS simulations. • Framework incorporates physical prior knowledge and observation data. • Based on a rigorous Bayesian framework yet fully utilizes physical model. • Applicable for many complex physical systems beyond turbulent flows.« less
Bayesian estimation of the discrete coefficient of determination.
Chen, Ting; Braga-Neto, Ulisses M
2016-12-01
The discrete coefficient of determination (CoD) measures the nonlinear interaction between discrete predictor and target variables and has had far-reaching applications in Genomic Signal Processing. Previous work has addressed the inference of the discrete CoD using classical parametric and nonparametric approaches. In this paper, we introduce a Bayesian framework for the inference of the discrete CoD. We derive analytically the optimal minimum mean-square error (MMSE) CoD estimator, as well as a CoD estimator based on the Optimal Bayesian Predictor (OBP). For the latter estimator, exact expressions for its bias, variance, and root-mean-square (RMS) are given. The accuracy of both Bayesian CoD estimators with non-informative and informative priors, under fixed or random parameters, is studied via analytical and numerical approaches. We also demonstrate the application of the proposed Bayesian approach in the inference of gene regulatory networks, using gene-expression data from a previously published study on metastatic melanoma.
Markov Chain Monte Carlo Methods for Bayesian Data Analysis in Astronomy
NASA Astrophysics Data System (ADS)
Sharma, Sanjib
2017-08-01
Markov Chain Monte Carlo based Bayesian data analysis has now become the method of choice for analyzing and interpreting data in almost all disciplines of science. In astronomy, over the last decade, we have also seen a steady increase in the number of papers that employ Monte Carlo based Bayesian analysis. New, efficient Monte Carlo based methods are continuously being developed and explored. In this review, we first explain the basics of Bayesian theory and discuss how to set up data analysis problems within this framework. Next, we provide an overview of various Monte Carlo based methods for performing Bayesian data analysis. Finally, we discuss advanced ideas that enable us to tackle complex problems and thus hold great promise for the future. We also distribute downloadable computer software (available at https://github.com/sanjibs/bmcmc/ ) that implements some of the algorithms and examples discussed here.
Bayesian Analysis of Hot Jupiter Radius Anomalies Points to Ohmic Dissipation
NASA Astrophysics Data System (ADS)
Thorngren, Daniel; Fortney, Jonathan
2018-01-01
The cause of the unexpectedly large radii of hot Jupiters has been the subject of many hypotheses over the past 15 years and is one of the long-standing open issues in exoplanetary physics. In our work, we seek to examine the population of 300 hot Jupiters to identify a model that best explains their radii. Using a hierarchical Bayesian framework, we match structure evolution models to the observed giant planets’ masses, radii, and ages, with a prior for bulk composition based on the mass from Thorngren et al. (2016). We consider various models for the relationship between heating efficiency (the fraction of flux absorbed into the interior) and incident flux. For the first time, we are able to derive this heating efficiency as a function of planetary T_eq. Models in which the heating efficiency decreases at the higher temperatures (above ~1600 K) are strongly and statistically significantly preferred. Of the published models for the radius anomaly, only the Ohmic dissipation model predicts this feature, which it explains as being the result of magnetic drag reducing atmospheric wind speeds. We interpret our results as evidence in favor of the Ohmic dissipation model.
Model-based Clustering of Categorical Time Series with Multinomial Logit Classification
NASA Astrophysics Data System (ADS)
Frühwirth-Schnatter, Sylvia; Pamminger, Christoph; Winter-Ebmer, Rudolf; Weber, Andrea
2010-09-01
A common problem in many areas of applied statistics is to identify groups of similar time series in a panel of time series. However, distance-based clustering methods cannot easily be extended to time series data, where an appropriate distance-measure is rather difficult to define, particularly for discrete-valued time series. Markov chain clustering, proposed by Pamminger and Frühwirth-Schnatter [6], is an approach for clustering discrete-valued time series obtained by observing a categorical variable with several states. This model-based clustering method is based on finite mixtures of first-order time-homogeneous Markov chain models. In order to further explain group membership we present an extension to the approach of Pamminger and Frühwirth-Schnatter [6] by formulating a probabilistic model for the latent group indicators within the Bayesian classification rule by using a multinomial logit model. The parameters are estimated for a fixed number of clusters within a Bayesian framework using an Markov chain Monte Carlo (MCMC) sampling scheme representing a (full) Gibbs-type sampler which involves only draws from standard distributions. Finally, an application to a panel of Austrian wage mobility data is presented which leads to an interesting segmentation of the Austrian labour market.
Bayesian Face Recognition and Perceptual Narrowing in Face-Space
Balas, Benjamin
2012-01-01
During the first year of life, infants’ face recognition abilities are subject to “perceptual narrowing,” the end result of which is that observers lose the ability to distinguish previously discriminable faces (e.g. other-race faces) from one another. Perceptual narrowing has been reported for faces of different species and different races, in developing humans and primates. Though the phenomenon is highly robust and replicable, there have been few efforts to model the emergence of perceptual narrowing as a function of the accumulation of experience with faces during infancy. The goal of the current study is to examine how perceptual narrowing might manifest as statistical estimation in “face space,” a geometric framework for describing face recognition that has been successfully applied to adult face perception. Here, I use a computer vision algorithm for Bayesian face recognition to study how the acquisition of experience in face space and the presence of race categories affect performance for own and other-race faces. Perceptual narrowing follows from the establishment of distinct race categories, suggesting that the acquisition of category boundaries for race is a key computational mechanism in developing face expertise. PMID:22709406
Combining information from multiple flood projections in a hierarchical Bayesian framework
NASA Astrophysics Data System (ADS)
Le Vine, Nataliya
2016-04-01
This study demonstrates, in the context of flood frequency analysis, the potential of a recently proposed hierarchical Bayesian approach to combine information from multiple models. The approach explicitly accommodates shared multimodel discrepancy as well as the probabilistic nature of the flood estimates, and treats the available models as a sample from a hypothetical complete (but unobserved) set of models. The methodology is applied to flood estimates from multiple hydrological projections (the Future Flows Hydrology data set) for 135 catchments in the UK. The advantages of the approach are shown to be: (1) to ensure adequate "baseline" with which to compare future changes; (2) to reduce flood estimate uncertainty; (3) to maximize use of statistical information in circumstances where multiple weak predictions individually lack power, but collectively provide meaningful information; (4) to diminish the importance of model consistency when model biases are large; and (5) to explicitly consider the influence of the (model performance) stationarity assumption. Moreover, the analysis indicates that reducing shared model discrepancy is the key to further reduction of uncertainty in the flood frequency analysis. The findings are of value regarding how conclusions about changing exposure to flooding are drawn, and to flood frequency change attribution studies.
Bayesian approach to non-Gaussian field statistics for diffusive broadband terahertz pulses.
Pearce, Jeremy; Jian, Zhongping; Mittleman, Daniel M
2005-11-01
We develop a closed-form expression for the probability distribution function for the field components of a diffusive broadband wave propagating through a random medium. We consider each spectral component to provide an individual observation of a random variable, the configurationally averaged spectral intensity. Since the intensity determines the variance of the field distribution at each frequency, this random variable serves as the Bayesian prior that determines the form of the non-Gaussian field statistics. This model agrees well with experimental results.
Bayesian hierarchical model for large-scale covariance matrix estimation.
Zhu, Dongxiao; Hero, Alfred O
2007-12-01
Many bioinformatics problems implicitly depend on estimating large-scale covariance matrix. The traditional approaches tend to give rise to high variance and low accuracy due to "overfitting." We cast the large-scale covariance matrix estimation problem into the Bayesian hierarchical model framework, and introduce dependency between covariance parameters. We demonstrate the advantages of our approaches over the traditional approaches using simulations and OMICS data analysis.
Probabilistic Model for Untargeted Peak Detection in LC-MS Using Bayesian Statistics.
Woldegebriel, Michael; Vivó-Truyols, Gabriel
2015-07-21
We introduce a novel Bayesian probabilistic peak detection algorithm for liquid chromatography-mass spectroscopy (LC-MS). The final probabilistic result allows the user to make a final decision about which points in a chromatogram are affected by a chromatographic peak and which ones are only affected by noise. The use of probabilities contrasts with the traditional method in which a binary answer is given, relying on a threshold. By contrast, with the Bayesian peak detection presented here, the values of probability can be further propagated into other preprocessing steps, which will increase (or decrease) the importance of chromatographic regions into the final results. The present work is based on the use of the statistical overlap theory of component overlap from Davis and Giddings (Davis, J. M.; Giddings, J. Anal. Chem. 1983, 55, 418-424) as prior probability in the Bayesian formulation. The algorithm was tested on LC-MS Orbitrap data and was able to successfully distinguish chemical noise from actual peaks without any data preprocessing.
Mishra-Kalyani, Pallavi S.; Johnson, Brent A.; Glass, Jonathan D.; Long, Qi
2016-01-01
Clinical disease registries offer a rich collection of valuable patient information but also pose challenges that require special care and attention in statistical analyses. The goal of this paper is to propose a statistical framework that allows for estimating the effect of surgical insertion of a percutaneous endogastrostomy (PEG) tube for patients living with amyotrophic lateral sclerosis (ALS) using data from a clinical registry. Although all ALS patients are informed about PEG, only some patients agree to the procedure which, leads to the potential for selection bias. Assessing the effect of PEG is further complicated by the aggressively fatal disease, such that time to death competes directly with both the opportunity to receive PEG and clinical outcome measurements. Our proposed methodology handles the “censoring by death” phenomenon through principal stratification and selection bias for PEG treatment through generalized propensity scores. We develop a fully Bayesian modeling approach to estimate the survivor average causal effect (SACE) of PEG on BMI, a surrogate outcome measure of nutrition and quality of life. The use of propensity score methods within the principal stratification framework demonstrates a significant and positive effect of PEG treatment, particularly when time of treatment is included in the treatment definition. PMID:27640365
NASA Astrophysics Data System (ADS)
Mishra-Kalyani, Pallavi S.; Johnson, Brent A.; Glass, Jonathan D.; Long, Qi
2016-09-01
Clinical disease registries offer a rich collection of valuable patient information but also pose challenges that require special care and attention in statistical analyses. The goal of this paper is to propose a statistical framework that allows for estimating the effect of surgical insertion of a percutaneous endogastrostomy (PEG) tube for patients living with amyotrophic lateral sclerosis (ALS) using data from a clinical registry. Although all ALS patients are informed about PEG, only some patients agree to the procedure which, leads to the potential for selection bias. Assessing the effect of PEG is further complicated by the aggressively fatal disease, such that time to death competes directly with both the opportunity to receive PEG and clinical outcome measurements. Our proposed methodology handles the “censoring by death” phenomenon through principal stratification and selection bias for PEG treatment through generalized propensity scores. We develop a fully Bayesian modeling approach to estimate the survivor average causal effect (SACE) of PEG on BMI, a surrogate outcome measure of nutrition and quality of life. The use of propensity score methods within the principal stratification framework demonstrates a significant and positive effect of PEG treatment, particularly when time of treatment is included in the treatment definition.
Wijeysundera, Duminda N; Austin, Peter C; Hux, Janet E; Beattie, W Scott; Laupacis, Andreas
2009-01-01
Randomized trials generally use "frequentist" statistics based on P-values and 95% confidence intervals. Frequentist methods have limitations that might be overcome, in part, by Bayesian inference. To illustrate these advantages, we re-analyzed randomized trials published in four general medical journals during 2004. We used Medline to identify randomized superiority trials with two parallel arms, individual-level randomization and dichotomous or time-to-event primary outcomes. Studies with P<0.05 in favor of the intervention were deemed "positive"; otherwise, they were "negative." We used several prior distributions and exact conjugate analyses to calculate Bayesian posterior probabilities for clinically relevant effects. Of 88 included studies, 39 were positive using a frequentist analysis. Although the Bayesian posterior probabilities of any benefit (relative risk or hazard ratio<1) were high in positive studies, these probabilities were lower and variable for larger benefits. The positive studies had only moderate probabilities for exceeding the effects that were assumed for calculating the sample size. By comparison, there were moderate probabilities of any benefit in negative studies. Bayesian and frequentist analyses complement each other when interpreting the results of randomized trials. Future reports of randomized trials should include both.
Rediscovery of Good-Turing estimators via Bayesian nonparametrics.
Favaro, Stefano; Nipoti, Bernardo; Teh, Yee Whye
2016-03-01
The problem of estimating discovery probabilities originated in the context of statistical ecology, and in recent years it has become popular due to its frequent appearance in challenging applications arising in genetics, bioinformatics, linguistics, designs of experiments, machine learning, etc. A full range of statistical approaches, parametric and nonparametric as well as frequentist and Bayesian, has been proposed for estimating discovery probabilities. In this article, we investigate the relationships between the celebrated Good-Turing approach, which is a frequentist nonparametric approach developed in the 1940s, and a Bayesian nonparametric approach recently introduced in the literature. Specifically, under the assumption of a two parameter Poisson-Dirichlet prior, we show that Bayesian nonparametric estimators of discovery probabilities are asymptotically equivalent, for a large sample size, to suitably smoothed Good-Turing estimators. As a by-product of this result, we introduce and investigate a methodology for deriving exact and asymptotic credible intervals to be associated with the Bayesian nonparametric estimators of discovery probabilities. The proposed methodology is illustrated through a comprehensive simulation study and the analysis of Expressed Sequence Tags data generated by sequencing a benchmark complementary DNA library. © 2015, The International Biometric Society.
Application of a data-mining method based on Bayesian networks to lesion-deficit analysis
NASA Technical Reports Server (NTRS)
Herskovits, Edward H.; Gerring, Joan P.
2003-01-01
Although lesion-deficit analysis (LDA) has provided extensive information about structure-function associations in the human brain, LDA has suffered from the difficulties inherent to the analysis of spatial data, i.e., there are many more variables than subjects, and data may be difficult to model using standard distributions, such as the normal distribution. We herein describe a Bayesian method for LDA; this method is based on data-mining techniques that employ Bayesian networks to represent structure-function associations. These methods are computationally tractable, and can represent complex, nonlinear structure-function associations. When applied to the evaluation of data obtained from a study of the psychiatric sequelae of traumatic brain injury in children, this method generates a Bayesian network that demonstrates complex, nonlinear associations among lesions in the left caudate, right globus pallidus, right side of the corpus callosum, right caudate, and left thalamus, and subsequent development of attention-deficit hyperactivity disorder, confirming and extending our previous statistical analysis of these data. Furthermore, analysis of simulated data indicates that methods based on Bayesian networks may be more sensitive and specific for detecting associations among categorical variables than methods based on chi-square and Fisher exact statistics.
Bayesian Knowledge Fusion in Prognostics and Health Management—A Case Study
NASA Astrophysics Data System (ADS)
Rabiei, Masoud; Modarres, Mohammad; Mohammad-Djafari, Ali
2011-03-01
In the past few years, a research effort has been in progress at University of Maryland to develop a Bayesian framework based on Physics of Failure (PoF) for risk assessment and fleet management of aging airframes. Despite significant achievements in modelling of crack growth behavior using fracture mechanics, it is still of great interest to find practical techniques for monitoring the crack growth instances using nondestructive inspection and to integrate such inspection results with the fracture mechanics models to improve the predictions. The ultimate goal of this effort is to develop an integrated probabilistic framework for utilizing all of the available information to come up with enhanced (less uncertain) predictions for structural health of the aircraft in future missions. Such information includes material level fatigue models and test data, health monitoring measurements and inspection field data. In this paper, a case study of using Bayesian fusion technique for integrating information from multiple sources in a structural health management problem is presented.
NASA Astrophysics Data System (ADS)
Wilting, Jens; Lehnertz, Klaus
2015-08-01
We investigate a recently published analysis framework based on Bayesian inference for the time-resolved characterization of interaction properties of noisy, coupled dynamical systems. It promises wide applicability and a better time resolution than well-established methods. At the example of representative model systems, we show that the analysis framework has the same weaknesses as previous methods, particularly when investigating interacting, structurally different non-linear oscillators. We also inspect the tracking of time-varying interaction properties and propose a further modification of the algorithm, which improves the reliability of obtained results. We exemplarily investigate the suitability of this algorithm to infer strength and direction of interactions between various regions of the human brain during an epileptic seizure. Within the limitations of the applicability of this analysis tool, we show that the modified algorithm indeed allows a better time resolution through Bayesian inference when compared to previous methods based on least square fits.
Bayesian Inference for Functional Dynamics Exploring in fMRI Data.
Guo, Xuan; Liu, Bing; Chen, Le; Chen, Guantao; Pan, Yi; Zhang, Jing
2016-01-01
This paper aims to review state-of-the-art Bayesian-inference-based methods applied to functional magnetic resonance imaging (fMRI) data. Particularly, we focus on one specific long-standing challenge in the computational modeling of fMRI datasets: how to effectively explore typical functional interactions from fMRI time series and the corresponding boundaries of temporal segments. Bayesian inference is a method of statistical inference which has been shown to be a powerful tool to encode dependence relationships among the variables with uncertainty. Here we provide an introduction to a group of Bayesian-inference-based methods for fMRI data analysis, which were designed to detect magnitude or functional connectivity change points and to infer their functional interaction patterns based on corresponding temporal boundaries. We also provide a comparison of three popular Bayesian models, that is, Bayesian Magnitude Change Point Model (BMCPM), Bayesian Connectivity Change Point Model (BCCPM), and Dynamic Bayesian Variable Partition Model (DBVPM), and give a summary of their applications. We envision that more delicate Bayesian inference models will be emerging and play increasingly important roles in modeling brain functions in the years to come.
Zeng, Irene Sui Lan; Lumley, Thomas
2018-01-01
Integrated omics is becoming a new channel for investigating the complex molecular system in modern biological science and sets a foundation for systematic learning for precision medicine. The statistical/machine learning methods that have emerged in the past decade for integrated omics are not only innovative but also multidisciplinary with integrated knowledge in biology, medicine, statistics, machine learning, and artificial intelligence. Here, we review the nontrivial classes of learning methods from the statistical aspects and streamline these learning methods within the statistical learning framework. The intriguing findings from the review are that the methods used are generalizable to other disciplines with complex systematic structure, and the integrated omics is part of an integrated information science which has collated and integrated different types of information for inferences and decision making. We review the statistical learning methods of exploratory and supervised learning from 42 publications. We also discuss the strengths and limitations of the extended principal component analysis, cluster analysis, network analysis, and regression methods. Statistical techniques such as penalization for sparsity induction when there are fewer observations than the number of features and using Bayesian approach when there are prior knowledge to be integrated are also included in the commentary. For the completeness of the review, a table of currently available software and packages from 23 publications for omics are summarized in the appendix.
Conditional maximum-entropy method for selecting prior distributions in Bayesian statistics
NASA Astrophysics Data System (ADS)
Abe, Sumiyoshi
2014-11-01
The conditional maximum-entropy method (abbreviated here as C-MaxEnt) is formulated for selecting prior probability distributions in Bayesian statistics for parameter estimation. This method is inspired by a statistical-mechanical approach to systems governed by dynamics with largely separated time scales and is based on three key concepts: conjugate pairs of variables, dimensionless integration measures with coarse-graining factors and partial maximization of the joint entropy. The method enables one to calculate a prior purely from a likelihood in a simple way. It is shown, in particular, how it not only yields Jeffreys's rules but also reveals new structures hidden behind them.
Walsh, Daniel P.; Norton, Andrew S.; Storm, Daniel J.; Van Deelen, Timothy R.; Heisy, Dennis M.
2018-01-01
Implicit and explicit use of expert knowledge to inform ecological analyses is becoming increasingly common because it often represents the sole source of information in many circumstances. Thus, there is a need to develop statistical methods that explicitly incorporate expert knowledge, and can successfully leverage this information while properly accounting for associated uncertainty during analysis. Studies of cause-specific mortality provide an example of implicit use of expert knowledge when causes-of-death are uncertain and assigned based on the observer's knowledge of the most likely cause. To explicitly incorporate this use of expert knowledge and the associated uncertainty, we developed a statistical model for estimating cause-specific mortality using a data augmentation approach within a Bayesian hierarchical framework. Specifically, for each mortality event, we elicited the observer's belief of cause-of-death by having them specify the probability that the death was due to each potential cause. These probabilities were then used as prior predictive values within our framework. This hierarchical framework permitted a simple and rigorous estimation method that was easily modified to include covariate effects and regularizing terms. Although applied to survival analysis, this method can be extended to any event-time analysis with multiple event types, for which there is uncertainty regarding the true outcome. We conducted simulations to determine how our framework compared to traditional approaches that use expert knowledge implicitly and assume that cause-of-death is specified accurately. Simulation results supported the inclusion of observer uncertainty in cause-of-death assignment in modeling of cause-specific mortality to improve model performance and inference. Finally, we applied the statistical model we developed and a traditional method to cause-specific survival data for white-tailed deer, and compared results. We demonstrate that model selection results changed between the two approaches, and incorporating observer knowledge in cause-of-death increased the variability associated with parameter estimates when compared to the traditional approach. These differences between the two approaches can impact reported results, and therefore, it is critical to explicitly incorporate expert knowledge in statistical methods to ensure rigorous inference.
Bayesian statistical techniques have proven useful in clinical and environmental epidemiological applications to evaluate and integrate available information, and in regulatory applications such as the National Ambient Air Quality Assessment for Nitrogen Oxides. A recent special...
A Bayesian Approach to Interactive Retrieval
ERIC Educational Resources Information Center
Tague, Jean M.
1973-01-01
A probabilistic model for interactive retrieval is presented. Bayesian statistical decision theory principles are applied: use of prior and sample information about the relationship of document descriptions to query relevance; maximization of expected value of a utility function, to the problem of optimally restructuring search strategies in an…
Personalized Multi-Student Improvement Based on Bayesian Cybernetics
ERIC Educational Resources Information Center
Kaburlasos, Vassilis G.; Marinagi, Catherine C.; Tsoukalas, Vassilis Th.
2008-01-01
This work presents innovative cybernetics (feedback) techniques based on Bayesian statistics for drawing questions from an Item Bank towards personalized multi-student improvement. A novel software tool, namely "Module for Adaptive Assessment of Students" (or, "MAAS" for short), implements the proposed (feedback) techniques. In conclusion, a pilot…
Bayesian approach for three-dimensional aquifer characterization at the Hanford 300 Area
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murakami, Haruko; Chen, X.; Hahn, Melanie S.
2010-10-21
This study presents a stochastic, three-dimensional characterization of a heterogeneous hydraulic conductivity field within DOE's Hanford 300 Area site, Washington, by assimilating large-scale, constant-rate injection test data with small-scale, three-dimensional electromagnetic borehole flowmeter (EBF) measurement data. We first inverted the injection test data to estimate the transmissivity field, using zeroth-order temporal moments of pressure buildup curves. We applied a newly developed Bayesian geostatistical inversion framework, the method of anchored distributions (MAD), to obtain a joint posterior distribution of geostatistical parameters and local log-transmissivities at multiple locations. The unique aspects of MAD that make it suitable for this purpose are itsmore » ability to integrate multi-scale, multi-type data within a Bayesian framework and to compute a nonparametric posterior distribution. After we combined the distribution of transmissivities with depth-discrete relative-conductivity profile from EBF data, we inferred the three-dimensional geostatistical parameters of the log-conductivity field, using the Bayesian model-based geostatistics. Such consistent use of the Bayesian approach throughout the procedure enabled us to systematically incorporate data uncertainty into the final posterior distribution. The method was tested in a synthetic study and validated using the actual data that was not part of the estimation. Results showed broader and skewed posterior distributions of geostatistical parameters except for the mean, which suggests the importance of inferring the entire distribution to quantify the parameter uncertainty.« less
[Bayesian approach for the cost-effectiveness evaluation of healthcare technologies].
Berchialla, Paola; Gregori, Dario; Brunello, Franco; Veltri, Andrea; Petrinco, Michele; Pagano, Eva
2009-01-01
The development of Bayesian statistical methods for the assessment of the cost-effectiveness of health care technologies is reviewed. Although many studies adopt a frequentist approach, several authors have advocated the use of Bayesian methods in health economics. Emphasis has been placed on the advantages of the Bayesian approach, which include: (i) the ability to make more intuitive and meaningful inferences; (ii) the ability to tackle complex problems, such as allowing for the inclusion of patients who generate no cost, thanks to the availability of powerful computational algorithms; (iii) the importance of a full use of quantitative and structural prior information to produce realistic inferences. Much literature comparing the cost-effectiveness of two treatments is based on the incremental cost-effectiveness ratio. However, new methods are arising with the purpose of decision making. These methods are based on a net benefits approach. In the present context, the cost-effectiveness acceptability curves have been pointed out to be intrinsically Bayesian in their formulation. They plot the probability of a positive net benefit against the threshold cost of a unit increase in efficacy.A case study is presented in order to illustrate the Bayesian statistics in the cost-effectiveness analysis. Emphasis is placed on the cost-effectiveness acceptability curves. Advantages and disadvantages of the method described in this paper have been compared to frequentist methods and discussed.
Nagasaki, Masao; Yamaguchi, Rui; Yoshida, Ryo; Imoto, Seiya; Doi, Atsushi; Tamada, Yoshinori; Matsuno, Hiroshi; Miyano, Satoru; Higuchi, Tomoyuki
2006-01-01
We propose an automatic construction method of the hybrid functional Petri net as a simulation model of biological pathways. The problems we consider are how we choose the values of parameters and how we set the network structure. Usually, we tune these unknown factors empirically so that the simulation results are consistent with biological knowledge. Obviously, this approach has the limitation in the size of network of interest. To extend the capability of the simulation model, we propose the use of data assimilation approach that was originally established in the field of geophysical simulation science. We provide genomic data assimilation framework that establishes a link between our simulation model and observed data like microarray gene expression data by using a nonlinear state space model. A key idea of our genomic data assimilation is that the unknown parameters in simulation model are converted as the parameter of the state space model and the estimates are obtained as the maximum a posteriori estimators. In the parameter estimation process, the simulation model is used to generate the system model in the state space model. Such a formulation enables us to handle both the model construction and the parameter tuning within a framework of the Bayesian statistical inferences. In particular, the Bayesian approach provides us a way of controlling overfitting during the parameter estimations that is essential for constructing a reliable biological pathway. We demonstrate the effectiveness of our approach using synthetic data. As a result, parameter estimation using genomic data assimilation works very well and the network structure is suitably selected.
Action Understanding as Inverse Planning
ERIC Educational Resources Information Center
Baker, Chris L.; Saxe, Rebecca; Tenenbaum, Joshua B.
2009-01-01
Humans are adept at inferring the mental states underlying other agents' actions, such as goals, beliefs, desires, emotions and other thoughts. We propose a computational framework based on Bayesian inverse planning for modeling human action understanding. The framework represents an intuitive theory of intentional agents' behavior based on the…
Compromise decision support problems for hierarchical design involving uncertainty
NASA Astrophysics Data System (ADS)
Vadde, S.; Allen, J. K.; Mistree, F.
1994-08-01
In this paper an extension to the traditional compromise Decision Support Problem (DSP) formulation is presented. Bayesian statistics is used in the formulation to model uncertainties associated with the information being used. In an earlier paper a compromise DSP that accounts for uncertainty using fuzzy set theory was introduced. The Bayesian Decision Support Problem is described in this paper. The method for hierarchical design is demonstrated by using this formulation to design a portal frame. The results are discussed and comparisons are made with those obtained using the fuzzy DSP. Finally, the efficacy of incorporating Bayesian statistics into the traditional compromise DSP formulation is discussed and some pending research issues are described. Our emphasis in this paper is on the method rather than the results per se.
Bayesian hierarchical models for regional climate reconstructions of the last glacial maximum
NASA Astrophysics Data System (ADS)
Weitzel, Nils; Hense, Andreas; Ohlwein, Christian
2017-04-01
Spatio-temporal reconstructions of past climate are important for the understanding of the long term behavior of the climate system and the sensitivity to forcing changes. Unfortunately, they are subject to large uncertainties, have to deal with a complex proxy-climate structure, and a physically reasonable interpolation between the sparse proxy observations is difficult. Bayesian Hierarchical Models (BHMs) are a class of statistical models that is well suited for spatio-temporal reconstructions of past climate because they permit the inclusion of multiple sources of information (e.g. records from different proxy types, uncertain age information, output from climate simulations) and quantify uncertainties in a statistically rigorous way. BHMs in paleoclimatology typically consist of three stages which are modeled individually and are combined using Bayesian inference techniques. The data stage models the proxy-climate relation (often named transfer function), the process stage models the spatio-temporal distribution of the climate variables of interest, and the prior stage consists of prior distributions of the model parameters. For our BHMs, we translate well-known proxy-climate transfer functions for pollen to a Bayesian framework. In addition, we can include Gaussian distributed local climate information from preprocessed proxy records. The process stage combines physically reasonable spatial structures from prior distributions with proxy records which leads to a multivariate posterior probability distribution for the reconstructed climate variables. The prior distributions that constrain the possible spatial structure of the climate variables are calculated from climate simulation output. We present results from pseudoproxy tests as well as new regional reconstructions of temperatures for the last glacial maximum (LGM, ˜ 21,000 years BP). These reconstructions combine proxy data syntheses with information from climate simulations for the LGM that were performed in the PMIP3 project. The proxy data syntheses consist either of raw pollen data or of normally distributed climate data from preprocessed proxy records. Future extensions of our method contain the inclusion of other proxy types (transfer functions), the implementation of other spatial interpolation techniques, the use of age uncertainties, and the extension to spatio-temporal reconstructions of the last deglaciation. Our work is part of the PalMod project funded by the German Federal Ministry of Education and Science (BMBF).
NASA Astrophysics Data System (ADS)
Schöniger, Anneli; Wöhling, Thomas; Nowak, Wolfgang
2014-05-01
Bayesian model averaging ranks the predictive capabilities of alternative conceptual models based on Bayes' theorem. The individual models are weighted with their posterior probability to be the best one in the considered set of models. Finally, their predictions are combined into a robust weighted average and the predictive uncertainty can be quantified. This rigorous procedure does, however, not yet account for possible instabilities due to measurement noise in the calibration data set. This is a major drawback, since posterior model weights may suffer a lack of robustness related to the uncertainty in noisy data, which may compromise the reliability of model ranking. We present a new statistical concept to account for measurement noise as source of uncertainty for the weights in Bayesian model averaging. Our suggested upgrade reflects the limited information content of data for the purpose of model selection. It allows us to assess the significance of the determined posterior model weights, the confidence in model selection, and the accuracy of the quantified predictive uncertainty. Our approach rests on a brute-force Monte Carlo framework. We determine the robustness of model weights against measurement noise by repeatedly perturbing the observed data with random realizations of measurement error. Then, we analyze the induced variability in posterior model weights and introduce this "weighting variance" as an additional term into the overall prediction uncertainty analysis scheme. We further determine the theoretical upper limit in performance of the model set which is imposed by measurement noise. As an extension to the merely relative model ranking, this analysis provides a measure of absolute model performance. To finally decide, whether better data or longer time series are needed to ensure a robust basis for model selection, we resample the measurement time series and assess the convergence of model weights for increasing time series length. We illustrate our suggested approach with an application to model selection between different soil-plant models following up on a study by Wöhling et al. (2013). Results show that measurement noise compromises the reliability of model ranking and causes a significant amount of weighting uncertainty, if the calibration data time series is not long enough to compensate for its noisiness. This additional contribution to the overall predictive uncertainty is neglected without our approach. Thus, we strongly advertise to include our suggested upgrade in the Bayesian model averaging routine.
Zhang, Qin; Yao, Quanying
2018-05-01
The dynamic uncertain causality graph (DUCG) is a newly presented framework for uncertain causality representation and probabilistic reasoning. It has been successfully applied to online fault diagnoses of large, complex industrial systems, and decease diagnoses. This paper extends the DUCG to model more complex cases than what could be previously modeled, e.g., the case in which statistical data are in different groups with or without overlap, and some domain knowledge and actions (new variables with uncertain causalities) are introduced. In other words, this paper proposes to use -mode, -mode, and -mode of the DUCG to model such complex cases and then transform them into either the standard -mode or the standard -mode. In the former situation, if no directed cyclic graph is involved, the transformed result is simply a Bayesian network (BN), and existing inference methods for BNs can be applied. In the latter situation, an inference method based on the DUCG is proposed. Examples are provided to illustrate the methodology.
Identification of genetic loci shared between schizophrenia and the Big Five personality traits.
Smeland, Olav B; Wang, Yunpeng; Lo, Min-Tzu; Li, Wen; Frei, Oleksandr; Witoelar, Aree; Tesli, Martin; Hinds, David A; Tung, Joyce Y; Djurovic, Srdjan; Chen, Chi-Hua; Dale, Anders M; Andreassen, Ole A
2017-05-22
Schizophrenia is associated with differences in personality traits, and recent studies suggest that personality traits and schizophrenia share a genetic basis. Here we aimed to identify specific genetic loci shared between schizophrenia and the Big Five personality traits using a Bayesian statistical framework. Using summary statistics from genome-wide association studies (GWAS) on personality traits in the 23andMe cohort (n = 59,225) and schizophrenia in the Psychiatric Genomics Consortium cohort (n = 82,315), we evaluated overlap in common genetic variants. The Big Five personality traits neuroticism, extraversion, openness, agreeableness and conscientiousness were measured using a web implementation of the Big Five Inventory. Applying the conditional false discovery rate approach, we increased discovery of genetic loci and identified two loci shared between neuroticism and schizophrenia and six loci shared between openness and schizophrenia. The study provides new insights into the relationship between personality traits and schizophrenia by highlighting genetic loci involved in their common genetic etiology.
Adjusting Beliefs via Transformed Fuzzy Priors
NASA Astrophysics Data System (ADS)
Rattanadamrongaksorn, T.; Sirikanchanarak, D.; Sirisrisakulchai, J.; Sriboonchitta, S.
2018-02-01
Instead of leaving a decision to a pure data-driven system, intervention and collaboration by human would be preferred to fill the gap that machine cannot perform well. In financial applications, for instance, the inference and prediction during structural changes by critical factors; such as market conditions, administrative styles, political policies, etc.; have significant influences to investment strategies. With the conditions differing from the past, we believe that the decision should not be made by only the historical data but also with human estimation. In this study, the updating process by data fusion between expert opinions and statistical observations is thus proposed. The expert’s linguistic terms can be translated into mathematical expressions by the predefined fuzzy numbers and utilized as the initial knowledge for Bayesian statistical framework via the possibility-to-probability transformation. The artificial samples on five scenarios were tested in the univariate problem to demonstrate the methodology. The results showed the shifts and variations appeared on the parameters of the distributions and, as a consequence, adjust the degrees of belief accordingly.
NASA Astrophysics Data System (ADS)
Khrennikova, Polina; Haven, Emmanuel
2017-10-01
Politics is regarded as a vital area of public choice theory, and it is strongly relying on the assumptions of voters' rationality and as such, stability of preferences. However, recent opinion polls and real election outcomes in the USA have shown that voters often engage in `ticket splitting', by exhibiting contrasting party support in Congressional and Presidential elections (cf. Khrennikova 2014 Phys. Scripta T163, 014010 (doi:10.1088/0031-8949/2014/T163/014010); Khrennikova & Haven 2016 Phil. Trans. R. Soc. A 374, 20150106 (doi:10.1098/rsta.2015.0106); Smith et al. 1999 Am. J. Polit. Sci. 43, 737-764 (doi:10.2307/2991833)). Such types of preference reversals cannot be mathematically captured via the formula of total probability, thus showing that voters' decision making is at variance with the classical probabilistic information processing framework. In recent work, we have shown that quantum probability describes well the violation of Bayesian rationality in statistical data of voting in US elections, through the so-called interference effects of probability amplitudes. This paper is proposing a novel generalized observables framework of voting behaviour, by using the statistical data collected and analysed in previous studies by Khrennikova (Khrennikova 2015 Lect. Notes Comput. Sci. 8951, 196-209) and Khrennikova & Haven (Khrennikova & Haven 2016 Phil. Trans. R. Soc. A 374, 20150106 (doi:10.1098/rsta.2015.0106)). This framework aims to overcome the main problems associated with the quantum probabilistic representation of psychological data, namely the non-double stochasticity of transition probability matrices. We develop a simplified construction of generalized positive operator valued measures by formulating special non-orthonormal bases with respect to these operators. This article is part of the themed issue `Second quantum revolution: foundational questions'.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ren, Huiying; Ray, Jaideep; Hou, Zhangshuan
In this study we developed an efficient Bayesian inversion framework for interpreting marine seismic amplitude versus angle (AVA) and controlled source electromagnetic (CSEM) data for marine reservoir characterization. The framework uses a multi-chain Markov-chain Monte Carlo (MCMC) sampler, which is a hybrid of DiffeRential Evolution Adaptive Metropolis (DREAM) and Adaptive Metropolis (AM) samplers. The inversion framework is tested by estimating reservoir-fluid saturations and porosity based on marine seismic and CSEM data. The multi-chain MCMC is scalable in terms of the number of chains, and is useful for computationally demanding Bayesian model calibration in scientific and engineering problems. As a demonstration,more » the approach is used to efficiently and accurately estimate the porosity and saturations in a representative layered synthetic reservoir. The results indicate that the seismic AVA and CSEM joint inversion provides better estimation of reservoir saturations than the seismic AVA-only inversion, especially for the parameters in deep layers. The performance of the inversion approach for various levels of noise in observational data was evaluated – reasonable estimates can be obtained with noise levels up to 25%. Sampling efficiency due to the use of multiple chains was also checked and was found to have almost linear scalability.« less
EEG-fMRI Bayesian framework for neural activity estimation: a simulation study
NASA Astrophysics Data System (ADS)
Croce, Pierpaolo; Basti, Alessio; Marzetti, Laura; Zappasodi, Filippo; Del Gratta, Cosimo
2016-12-01
Objective. Due to the complementary nature of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI), and given the possibility of simultaneous acquisition, the joint data analysis can afford a better understanding of the underlying neural activity estimation. In this simulation study we want to show the benefit of the joint EEG-fMRI neural activity estimation in a Bayesian framework. Approach. We built a dynamic Bayesian framework in order to perform joint EEG-fMRI neural activity time course estimation. The neural activity is originated by a given brain area and detected by means of both measurement techniques. We have chosen a resting state neural activity situation to address the worst case in terms of the signal-to-noise ratio. To infer information by EEG and fMRI concurrently we used a tool belonging to the sequential Monte Carlo (SMC) methods: the particle filter (PF). Main results. First, despite a high computational cost, we showed the feasibility of such an approach. Second, we obtained an improvement in neural activity reconstruction when using both EEG and fMRI measurements. Significance. The proposed simulation shows the improvements in neural activity reconstruction with EEG-fMRI simultaneous data. The application of such an approach to real data allows a better comprehension of the neural dynamics.
NASA Astrophysics Data System (ADS)
Ren, Huiying; Ray, Jaideep; Hou, Zhangshuan; Huang, Maoyi; Bao, Jie; Swiler, Laura
2017-12-01
In this study we developed an efficient Bayesian inversion framework for interpreting marine seismic Amplitude Versus Angle and Controlled-Source Electromagnetic data for marine reservoir characterization. The framework uses a multi-chain Markov-chain Monte Carlo sampler, which is a hybrid of DiffeRential Evolution Adaptive Metropolis and Adaptive Metropolis samplers. The inversion framework is tested by estimating reservoir-fluid saturations and porosity based on marine seismic and Controlled-Source Electromagnetic data. The multi-chain Markov-chain Monte Carlo is scalable in terms of the number of chains, and is useful for computationally demanding Bayesian model calibration in scientific and engineering problems. As a demonstration, the approach is used to efficiently and accurately estimate the porosity and saturations in a representative layered synthetic reservoir. The results indicate that the seismic Amplitude Versus Angle and Controlled-Source Electromagnetic joint inversion provides better estimation of reservoir saturations than the seismic Amplitude Versus Angle only inversion, especially for the parameters in deep layers. The performance of the inversion approach for various levels of noise in observational data was evaluated - reasonable estimates can be obtained with noise levels up to 25%. Sampling efficiency due to the use of multiple chains was also checked and was found to have almost linear scalability.
EEG-fMRI Bayesian framework for neural activity estimation: a simulation study.
Croce, Pierpaolo; Basti, Alessio; Marzetti, Laura; Zappasodi, Filippo; Gratta, Cosimo Del
2016-12-01
Due to the complementary nature of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI), and given the possibility of simultaneous acquisition, the joint data analysis can afford a better understanding of the underlying neural activity estimation. In this simulation study we want to show the benefit of the joint EEG-fMRI neural activity estimation in a Bayesian framework. We built a dynamic Bayesian framework in order to perform joint EEG-fMRI neural activity time course estimation. The neural activity is originated by a given brain area and detected by means of both measurement techniques. We have chosen a resting state neural activity situation to address the worst case in terms of the signal-to-noise ratio. To infer information by EEG and fMRI concurrently we used a tool belonging to the sequential Monte Carlo (SMC) methods: the particle filter (PF). First, despite a high computational cost, we showed the feasibility of such an approach. Second, we obtained an improvement in neural activity reconstruction when using both EEG and fMRI measurements. The proposed simulation shows the improvements in neural activity reconstruction with EEG-fMRI simultaneous data. The application of such an approach to real data allows a better comprehension of the neural dynamics.
A Bayesian Framework for Reliability Analysis of Spacecraft Deployments
NASA Technical Reports Server (NTRS)
Evans, John W.; Gallo, Luis; Kaminsky, Mark
2012-01-01
Deployable subsystems are essential to mission success of most spacecraft. These subsystems enable critical functions including power, communications and thermal control. The loss of any of these functions will generally result in loss of the mission. These subsystems and their components often consist of unique designs and applications for which various standardized data sources are not applicable for estimating reliability and for assessing risks. In this study, a two stage sequential Bayesian framework for reliability estimation of spacecraft deployment was developed for this purpose. This process was then applied to the James Webb Space Telescope (JWST) Sunshield subsystem, a unique design intended for thermal control of the Optical Telescope Element. Initially, detailed studies of NASA deployment history, "heritage information", were conducted, extending over 45 years of spacecraft launches. This information was then coupled to a non-informative prior and a binomial likelihood function to create a posterior distribution for deployments of various subsystems uSing Monte Carlo Markov Chain sampling. Select distributions were then coupled to a subsequent analysis, using test data and anomaly occurrences on successive ground test deployments of scale model test articles of JWST hardware, to update the NASA heritage data. This allowed for a realistic prediction for the reliability of the complex Sunshield deployment, with credibility limits, within this two stage Bayesian framework.
Baldacchino, Tara; Jacobs, William R; Anderson, Sean R; Worden, Keith; Rowson, Jennifer
2018-01-01
This contribution presents a novel methodology for myolectric-based control using surface electromyographic (sEMG) signals recorded during finger movements. A multivariate Bayesian mixture of experts (MoE) model is introduced which provides a powerful method for modeling force regression at the fingertips, while also performing finger movement classification as a by-product of the modeling algorithm. Bayesian inference of the model allows uncertainties to be naturally incorporated into the model structure. This method is tested using data from the publicly released NinaPro database which consists of sEMG recordings for 6 degree-of-freedom force activations for 40 intact subjects. The results demonstrate that the MoE model achieves similar performance compared to the benchmark set by the authors of NinaPro for finger force regression. Additionally, inherent to the Bayesian framework is the inclusion of uncertainty in the model parameters, naturally providing confidence bounds on the force regression predictions. Furthermore, the integrated clustering step allows a detailed investigation into classification of the finger movements, without incurring any extra computational effort. Subsequently, a systematic approach to assessing the importance of the number of electrodes needed for accurate control is performed via sensitivity analysis techniques. A slight degradation in regression performance is observed for a reduced number of electrodes, while classification performance is unaffected.
Planetary micro-rover operations on Mars using a Bayesian framework for inference and control
NASA Astrophysics Data System (ADS)
Post, Mark A.; Li, Junquan; Quine, Brendan M.
2016-03-01
With the recent progress toward the application of commercially-available hardware to small-scale space missions, it is now becoming feasible for groups of small, efficient robots based on low-power embedded hardware to perform simple tasks on other planets in the place of large-scale, heavy and expensive robots. In this paper, we describe design and programming of the Beaver micro-rover developed for Northern Light, a Canadian initiative to send a small lander and rover to Mars to study the Martian surface and subsurface. For a small, hardware-limited rover to handle an uncertain and mostly unknown environment without constant management by human operators, we use a Bayesian network of discrete random variables as an abstraction of expert knowledge about the rover and its environment, and inference operations for control. A framework for efficient construction and inference into a Bayesian network using only the C language and fixed-point mathematics on embedded hardware has been developed for the Beaver to make intelligent decisions with minimal sensor data. We study the performance of the Beaver as it probabilistically maps a simple outdoor environment with sensor models that include uncertainty. Results indicate that the Beaver and other small and simple robotic platforms can make use of a Bayesian network to make intelligent decisions in uncertain planetary environments.
Struchen, R; Vial, F; Andersson, M G
2017-04-26
Delayed reporting of health data may hamper the early detection of infectious diseases in surveillance systems. Furthermore, combining multiple data streams, e.g. aiming at improving a system's sensitivity, can be challenging. In this study, we used a Bayesian framework where the result is presented as the value of evidence, i.e. the likelihood ratio for the evidence under outbreak versus baseline conditions. Based on a historical data set of routinely collected cattle mortality events, we evaluated outbreak detection performance (sensitivity, time to detection, in-control run length) under the Bayesian approach among three scenarios: presence of delayed data reporting, but not accounting for it; presence of delayed data reporting accounted for; and absence of delayed data reporting (i.e. an ideal system). Performance on larger and smaller outbreaks was compared with a classical approach, considering syndromes separately or combined. We found that the Bayesian approach performed better than the classical approach, especially for the smaller outbreaks. Furthermore, the Bayesian approach performed similarly well in the scenario where delayed reporting was accounted for to the scenario where it was absent. We argue that the value of evidence framework may be suitable for surveillance systems with multiple syndromes and delayed reporting of data.
Model Comparison of Bayesian Semiparametric and Parametric Structural Equation Models
ERIC Educational Resources Information Center
Song, Xin-Yuan; Xia, Ye-Mao; Pan, Jun-Hao; Lee, Sik-Yum
2011-01-01
Structural equation models have wide applications. One of the most important issues in analyzing structural equation models is model comparison. This article proposes a Bayesian model comparison statistic, namely the "L[subscript nu]"-measure for both semiparametric and parametric structural equation models. For illustration purposes, we consider…
The Importance of Proving the Null
ERIC Educational Resources Information Center
Gallistel, C. R.
2009-01-01
Null hypotheses are simple, precise, and theoretically important. Conventional statistical analysis cannot support them; Bayesian analysis can. The challenge in a Bayesian analysis is to formulate a suitably vague alternative, because the vaguer the alternative is (the more it spreads out the unit mass of prior probability), the more the null is…
A Bayesian Framework of Uncertainties Integration in 3D Geological Model
NASA Astrophysics Data System (ADS)
Liang, D.; Liu, X.
2017-12-01
3D geological model can describe complicated geological phenomena in an intuitive way while its application may be limited by uncertain factors. Great progress has been made over the years, lots of studies decompose the uncertainties of geological model to analyze separately, while ignored the comprehensive impacts of multi-source uncertainties. Great progress has been made over the years, while lots of studies ignored the comprehensive impacts of multi-source uncertainties when analyzed them item by item from each source. To evaluate the synthetical uncertainty, we choose probability distribution to quantify uncertainty, and propose a bayesian framework of uncertainties integration. With this framework, we integrated data errors, spatial randomness, and cognitive information into posterior distribution to evaluate synthetical uncertainty of geological model. Uncertainties propagate and cumulate in modeling process, the gradual integration of multi-source uncertainty is a kind of simulation of the uncertainty propagation. Bayesian inference accomplishes uncertainty updating in modeling process. Maximum entropy principle makes a good effect on estimating prior probability distribution, which ensures the prior probability distribution subjecting to constraints supplied by the given information with minimum prejudice. In the end, we obtained a posterior distribution to evaluate synthetical uncertainty of geological model. This posterior distribution represents the synthetical impact of all the uncertain factors on the spatial structure of geological model. The framework provides a solution to evaluate synthetical impact on geological model of multi-source uncertainties and a thought to study uncertainty propagation mechanism in geological modeling.
A formal model of interpersonal inference
Moutoussis, Michael; Trujillo-Barreto, Nelson J.; El-Deredy, Wael; Dolan, Raymond J.; Friston, Karl J.
2014-01-01
Introduction: We propose that active Bayesian inference—a general framework for decision-making—can equally be applied to interpersonal exchanges. Social cognition, however, entails special challenges. We address these challenges through a novel formulation of a formal model and demonstrate its psychological significance. Method: We review relevant literature, especially with regards to interpersonal representations, formulate a mathematical model and present a simulation study. The model accommodates normative models from utility theory and places them within the broader setting of Bayesian inference. Crucially, we endow people's prior beliefs, into which utilities are absorbed, with preferences of self and others. The simulation illustrates the model's dynamics and furnishes elementary predictions of the theory. Results: (1) Because beliefs about self and others inform both the desirability and plausibility of outcomes, in this framework interpersonal representations become beliefs that have to be actively inferred. This inference, akin to “mentalizing” in the psychological literature, is based upon the outcomes of interpersonal exchanges. (2) We show how some well-known social-psychological phenomena (e.g., self-serving biases) can be explained in terms of active interpersonal inference. (3) Mentalizing naturally entails Bayesian updating of how people value social outcomes. Crucially this includes inference about one's own qualities and preferences. Conclusion: We inaugurate a Bayes optimal framework for modeling intersubject variability in mentalizing during interpersonal exchanges. Here, interpersonal representations are endowed with explicit functional and affective properties. We suggest the active inference framework lends itself to the study of psychiatric conditions where mentalizing is distorted. PMID:24723872
Uncertainty aggregation and reduction in structure-material performance prediction
NASA Astrophysics Data System (ADS)
Hu, Zhen; Mahadevan, Sankaran; Ao, Dan
2018-02-01
An uncertainty aggregation and reduction framework is presented for structure-material performance prediction. Different types of uncertainty sources, structural analysis model, and material performance prediction model are connected through a Bayesian network for systematic uncertainty aggregation analysis. To reduce the uncertainty in the computational structure-material performance prediction model, Bayesian updating using experimental observation data is investigated based on the Bayesian network. It is observed that the Bayesian updating results will have large error if the model cannot accurately represent the actual physics, and that this error will be propagated to the predicted performance distribution. To address this issue, this paper proposes a novel uncertainty reduction method by integrating Bayesian calibration with model validation adaptively. The observation domain of the quantity of interest is first discretized into multiple segments. An adaptive algorithm is then developed to perform model validation and Bayesian updating over these observation segments sequentially. Only information from observation segments where the model prediction is highly reliable is used for Bayesian updating; this is found to increase the effectiveness and efficiency of uncertainty reduction. A composite rotorcraft hub component fatigue life prediction model, which combines a finite element structural analysis model and a material damage model, is used to demonstrate the proposed method.
Hohwy, Jakob
2017-01-01
I discuss top-down modulation of perception in terms of a variable Bayesian learning rate, revealing a wide range of prior hierarchical expectations that can modulate perception. I then switch to the prediction error minimization framework and seek to conceive cognitive penetration specifically as prediction error minimization deviations from a variable Bayesian learning rate. This approach retains cognitive penetration as a category somewhat distinct from other top-down effects, and carves a reasonable route between penetrability and impenetrability. It prevents rampant, relativistic cognitive penetration of perception and yet is consistent with the continuity of cognition and perception. Copyright © 2016 Elsevier Inc. All rights reserved.
TOWARDS A BAYESIAN PERSPECTIVE ON STATISTICAL DISCLOSURE LIMITATION
National statistical offices and other organizations collect data on individual subjects (person, businesses, organizations), typically while assuring the subject that data pertaining to them will be held confidential. These data provide the raw material for statistical data pro...
Buddhavarapu, Prasad; Smit, Andre F; Prozzi, Jorge A
2015-07-01
Permeable friction course (PFC), a porous hot-mix asphalt, is typically applied to improve wet weather safety on high-speed roadways in Texas. In order to warrant expensive PFC construction, a statistical evaluation of its safety benefits is essential. Generally, the literature on the effectiveness of porous mixes in reducing wet-weather crashes is limited and often inconclusive. In this study, the safety effectiveness of PFC was evaluated using a fully Bayesian before-after safety analysis. First, two groups of road segments overlaid with PFC and non-PFC material were identified across Texas; the non-PFC or reference road segments selected were similar to their PFC counterparts in terms of site specific features. Second, a negative binomial data generating process was assumed to model the underlying distribution of crash counts of PFC and reference road segments to perform Bayesian inference on the safety effectiveness. A data-augmentation based computationally efficient algorithm was employed for a fully Bayesian estimation. The statistical analysis shows that PFC is not effective in reducing wet weather crashes. It should be noted that the findings of this study are in agreement with the existing literature, although these studies were not based on a fully Bayesian statistical analysis. Our study suggests that the safety effectiveness of PFC road surfaces, or any other safety infrastructure, largely relies on its interrelationship with the road user. The results suggest that the safety infrastructure must be properly used to reap the benefits of the substantial investments. Copyright © 2015 Elsevier Ltd. All rights reserved.
A critique of statistical hypothesis testing in clinical research
Raha, Somik
2011-01-01
Many have documented the difficulty of using the current paradigm of Randomized Controlled Trials (RCTs) to test and validate the effectiveness of alternative medical systems such as Ayurveda. This paper critiques the applicability of RCTs for all clinical knowledge-seeking endeavors, of which Ayurveda research is a part. This is done by examining statistical hypothesis testing, the underlying foundation of RCTs, from a practical and philosophical perspective. In the philosophical critique, the two main worldviews of probability are that of the Bayesian and the frequentist. The frequentist worldview is a special case of the Bayesian worldview requiring the unrealistic assumptions of knowing nothing about the universe and believing that all observations are unrelated to each other. Many have claimed that the first belief is necessary for science, and this claim is debunked by comparing variations in learning with different prior beliefs. Moving beyond the Bayesian and frequentist worldviews, the notion of hypothesis testing itself is challenged on the grounds that a hypothesis is an unclear distinction, and assigning a probability on an unclear distinction is an exercise that does not lead to clarity of action. This critique is of the theory itself and not any particular application of statistical hypothesis testing. A decision-making frame is proposed as a way of both addressing this critique and transcending ideological debates on probability. An example of a Bayesian decision-making approach is shown as an alternative to statistical hypothesis testing, utilizing data from a past clinical trial that studied the effect of Aspirin on heart attacks in a sample population of doctors. As a big reason for the prevalence of RCTs in academia is legislation requiring it, the ethics of legislating the use of statistical methods for clinical research is also examined. PMID:22022152
Depaoli, Sarah; van de Schoot, Rens; van Loey, Nancy; Sijbrandij, Marit
2015-01-01
After traumatic events, such as disaster, war trauma, and injuries including burns (which is the focus here), the risk to develop posttraumatic stress disorder (PTSD) is approximately 10% (Breslau & Davis, 1992). Latent Growth Mixture Modeling can be used to classify individuals into distinct groups exhibiting different patterns of PTSD (Galatzer-Levy, 2015). Currently, empirical evidence points to four distinct trajectories of PTSD patterns in those who have experienced burn trauma. These trajectories are labeled as: resilient, recovery, chronic, and delayed onset trajectories (e.g., Bonanno, 2004; Bonanno, Brewin, Kaniasty, & Greca, 2010; Maercker, Gäbler, O'Neil, Schützwohl, & Müller, 2013; Pietrzak et al., 2013). The delayed onset trajectory affects only a small group of individuals, that is, about 4-5% (O'Donnell, Elliott, Lau, & Creamer, 2007). In addition to its low frequency, the later onset of this trajectory may contribute to the fact that these individuals can be easily overlooked by professionals. In this special symposium on Estimating PTSD trajectories (Van de Schoot, 2015a), we illustrate how to properly identify this small group of individuals through the Bayesian estimation framework using previous knowledge through priors (see, e.g., Depaoli & Boyajian, 2014; Van de Schoot, Broere, Perryck, Zondervan-Zwijnenburg, & Van Loey, 2015). We used latent growth mixture modeling (LGMM) (Van de Schoot, 2015b) to estimate PTSD trajectories across 4 years that followed a traumatic burn. We demonstrate and compare results from traditional (maximum likelihood) and Bayesian estimation using priors (see, Depaoli, 2012, 2013). Further, we discuss where priors come from and how to define them in the estimation process. We demonstrate that only the Bayesian approach results in the desired theory-driven solution of PTSD trajectories. Since the priors are chosen subjectively, we also present a sensitivity analysis of the Bayesian results to illustrate how to check the impact of the prior knowledge integrated into the model. We conclude with recommendations and guidelines for researchers looking to implement theory-driven LGMM, and we tailor this discussion to the context of PTSD research.
Wright, David K.; MacEachern, Scott; Lee, Jaeyong
2014-01-01
The locations of diy-geδ-bay (DGB) sites in the Mandara Mountains, northern Cameroon are hypothesized to occur as a function of their ability to see and be seen from points on the surrounding landscape. A series of geostatistical, two-way and Bayesian logistic regression analyses were performed to test two hypotheses related to the intervisibility of the sites to one another and their visual prominence on the landscape. We determine that the intervisibility of the sites to one another is highly statistically significant when compared to 10 stratified-random permutations of DGB sites. Bayesian logistic regression additionally demonstrates that the visibility of the sites to points on the surrounding landscape is statistically significant. The location of sites appears to have also been selected on the basis of lower slope than random permutations of sites. Using statistical measures, many of which are not commonly employed in archaeological research, to evaluate aspects of visibility on the landscape, we conclude that the placement of DGB sites improved their conspicuousness for enhanced ritual, social cooperation and/or competition purposes. PMID:25383883
Enhancing pediatric clinical trial feasibility through the use of Bayesian statistics.
Huff, Robin A; Maca, Jeff D; Puri, Mala; Seltzer, Earl W
2017-11-01
BackgroundPediatric clinical trials commonly experience recruitment challenges including limited number of patients and investigators, inclusion/exclusion criteria that further reduce the patient pool, and a competitive research landscape created by pediatric regulatory commitments. To overcome these challenges, innovative approaches are needed.MethodsThis article explores the use of Bayesian statistics to improve pediatric trial feasibility, using pediatric Type-2 diabetes as an example. Data for six therapies approved for adults were used to perform simulations to determine the impact on pediatric trial size.ResultsWhen the number of adult patients contributing to the simulation was assumed to be the same as the number of patients to be enrolled in the pediatric trial, the pediatric trial size was reduced by 75-78% when compared with a frequentist statistical approach, but was associated with a 34-45% false-positive rate. In subsequent simulations, greater control was exerted over the false-positive rate by decreasing the contribution of the adult data. A 30-33% reduction in trial size was achieved when false-positives were held to less than 10%.ConclusionReducing the trial size through the use of Bayesian statistics would facilitate completion of pediatric trials, enabling drugs to be labeled appropriately for children.
Quantum-Like Representation of Non-Bayesian Inference
NASA Astrophysics Data System (ADS)
Asano, M.; Basieva, I.; Khrennikov, A.; Ohya, M.; Tanaka, Y.
2013-01-01
This research is related to the problem of "irrational decision making or inference" that have been discussed in cognitive psychology. There are some experimental studies, and these statistical data cannot be described by classical probability theory. The process of decision making generating these data cannot be reduced to the classical Bayesian inference. For this problem, a number of quantum-like coginitive models of decision making was proposed. Our previous work represented in a natural way the classical Bayesian inference in the frame work of quantum mechanics. By using this representation, in this paper, we try to discuss the non-Bayesian (irrational) inference that is biased by effects like the quantum interference. Further, we describe "psychological factor" disturbing "rationality" as an "environment" correlating with the "main system" of usual Bayesian inference.
Mitchell, Jonathan S.; Chang, Jonathan
2017-01-01
Bayesian analysis of macroevolutionary mixtures (BAMM) is a statistical framework that uses reversible jump Markov chain Monte Carlo to infer complex macroevolutionary dynamics of diversification and phenotypic evolution on phylogenetic trees. A recent article by Moore et al. (MEA) reported a number of theoretical and practical concerns with BAMM. Major claims from MEA are that (i) BAMM’s likelihood function is incorrect, because it does not account for unobserved rate shifts; (ii) the posterior distribution on the number of rate shifts is overly sensitive to the prior; and (iii) diversification rate estimates from BAMM are unreliable. Here, we show that these and other conclusions from MEA are generally incorrect or unjustified. We first demonstrate that MEA’s numerical assessment of the BAMM likelihood is compromised by their use of an invalid likelihood function. We then show that “unobserved rate shifts” appear to be irrelevant for biologically plausible parameterizations of the diversification process. We find that the purportedly extreme prior sensitivity reported by MEA cannot be replicated with standard usage of BAMM v2.5, or with any other version when conventional Bayesian model selection is performed. Finally, we demonstrate that BAMM performs very well at estimating diversification rate variation across the \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}${\\sim}$\\end{document}20% of simulated trees in MEA’s data set for which it is theoretically possible to infer rate shifts with confidence. Due to ascertainment bias, the remaining 80% of their purportedly variable-rate phylogenies are statistically indistinguishable from those produced by a constant-rate birth–death process and were thus poorly suited for the summary statistics used in their performance assessment. We demonstrate that inferences about diversification rates have been accurate and consistent across all major previous releases of the BAMM software. We recognize an acute need to address the theoretical foundations of rate-shift models for phylogenetic trees, and we expect BAMM and other modeling frameworks to improve in response to mathematical and computational innovations. However, we remain optimistic that that the imperfect tools currently available to comparative biologists have provided and will continue to provide important insights into the diversification of life on Earth. PMID:28334223
Rabosky, Daniel L; Mitchell, Jonathan S; Chang, Jonathan
2017-07-01
Bayesian analysis of macroevolutionary mixtures (BAMM) is a statistical framework that uses reversible jump Markov chain Monte Carlo to infer complex macroevolutionary dynamics of diversification and phenotypic evolution on phylogenetic trees. A recent article by Moore et al. (MEA) reported a number of theoretical and practical concerns with BAMM. Major claims from MEA are that (i) BAMM's likelihood function is incorrect, because it does not account for unobserved rate shifts; (ii) the posterior distribution on the number of rate shifts is overly sensitive to the prior; and (iii) diversification rate estimates from BAMM are unreliable. Here, we show that these and other conclusions from MEA are generally incorrect or unjustified. We first demonstrate that MEA's numerical assessment of the BAMM likelihood is compromised by their use of an invalid likelihood function. We then show that "unobserved rate shifts" appear to be irrelevant for biologically plausible parameterizations of the diversification process. We find that the purportedly extreme prior sensitivity reported by MEA cannot be replicated with standard usage of BAMM v2.5, or with any other version when conventional Bayesian model selection is performed. Finally, we demonstrate that BAMM performs very well at estimating diversification rate variation across the ${\\sim}$20% of simulated trees in MEA's data set for which it is theoretically possible to infer rate shifts with confidence. Due to ascertainment bias, the remaining 80% of their purportedly variable-rate phylogenies are statistically indistinguishable from those produced by a constant-rate birth-death process and were thus poorly suited for the summary statistics used in their performance assessment. We demonstrate that inferences about diversification rates have been accurate and consistent across all major previous releases of the BAMM software. We recognize an acute need to address the theoretical foundations of rate-shift models for phylogenetic trees, and we expect BAMM and other modeling frameworks to improve in response to mathematical and computational innovations. However, we remain optimistic that that the imperfect tools currently available to comparative biologists have provided and will continue to provide important insights into the diversification of life on Earth. © The Author(s) 2017. Published by Oxford University Press, on behalf of the Society of Systematic Biologists.
BaTMAn: Bayesian Technique for Multi-image Analysis
NASA Astrophysics Data System (ADS)
Casado, J.; Ascasibar, Y.; García-Benito, R.; Guidi, G.; Choudhury, O. S.; Bellocchi, E.; Sánchez, S. F.; Díaz, A. I.
2016-12-01
Bayesian Technique for Multi-image Analysis (BaTMAn) characterizes any astronomical dataset containing spatial information and performs a tessellation based on the measurements and errors provided as input. The algorithm iteratively merges spatial elements as long as they are statistically consistent with carrying the same information (i.e. identical signal within the errors). The output segmentations successfully adapt to the underlying spatial structure, regardless of its morphology and/or the statistical properties of the noise. BaTMAn identifies (and keeps) all the statistically-significant information contained in the input multi-image (e.g. an IFS datacube). The main aim of the algorithm is to characterize spatially-resolved data prior to their analysis.
Li, Ben; Sun, Zhaonan; He, Qing; Zhu, Yu; Qin, Zhaohui S.
2016-01-01
Motivation: Modern high-throughput biotechnologies such as microarray are capable of producing a massive amount of information for each sample. However, in a typical high-throughput experiment, only limited number of samples were assayed, thus the classical ‘large p, small n’ problem. On the other hand, rapid propagation of these high-throughput technologies has resulted in a substantial collection of data, often carried out on the same platform and using the same protocol. It is highly desirable to utilize the existing data when performing analysis and inference on a new dataset. Results: Utilizing existing data can be carried out in a straightforward fashion under the Bayesian framework in which the repository of historical data can be exploited to build informative priors and used in new data analysis. In this work, using microarray data, we investigate the feasibility and effectiveness of deriving informative priors from historical data and using them in the problem of detecting differentially expressed genes. Through simulation and real data analysis, we show that the proposed strategy significantly outperforms existing methods including the popular and state-of-the-art Bayesian hierarchical model-based approaches. Our work illustrates the feasibility and benefits of exploiting the increasingly available genomics big data in statistical inference and presents a promising practical strategy for dealing with the ‘large p, small n’ problem. Availability and implementation: Our method is implemented in R package IPBT, which is freely available from https://github.com/benliemory/IPBT. Contact: yuzhu@purdue.edu; zhaohui.qin@emory.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:26519502
A Bayesian approach to estimate evoked potentials.
Sparacino, Giovanni; Milani, Stefano; Arslan, Edoardo; Cobelli, Claudio
2002-06-01
Several approaches, based on different assumptions and with various degree of theoretical sophistication and implementation complexity, have been developed for improving the measurement of evoked potentials (EP) performed by conventional averaging (CA). In many of these methods, one of the major challenges is the exploitation of a priori knowledge. In this paper, we present a new method where the 2nd-order statistical information on the background EEG and on the unknown EP, necessary for the optimal filtering of each sweep in a Bayesian estimation framework, is, respectively, estimated from pre-stimulus data and obtained through a multiple integration of a white noise process model. The latter model is flexible (i.e. it can be employed for a large class of EP) and simple enough to be easily identifiable from the post-stimulus data thanks to a smoothing criterion. The mean EP is determined as the weighted average of the filtered sweeps, where each weight is inversely proportional to the expected value of the norm of the correspondent filter error, a quantity determinable thanks to the employment of the Bayesian approach. The performance of the new approach is shown on both simulated and real auditory EP. A signal-to-noise ratio enhancement is obtained that can allow the (possibly automatic) identification of peak latencies and amplitudes with less sweeps than those required by CA. For cochlear EP, the method also allows the audiology investigator to gather new and clinically important information. The possibility of handling single-sweep analysis with further development of the method is also addressed.
Bayesian inference of Calibration curves: application to archaeomagnetism
NASA Astrophysics Data System (ADS)
Lanos, P.
2003-04-01
The range of errors that occur at different stages of the archaeomagnetic calibration process are modelled using a Bayesian hierarchical model. The archaeomagnetic data obtained from archaeological structures such as hearths, kilns or sets of bricks and tiles, exhibit considerable experimental errors and are typically more or less well dated by archaeological context, history or chronometric methods (14C, TL, dendrochronology, etc.). They can also be associated with stratigraphic observations which provide prior relative chronological information. The modelling we describe in this paper allows all these observations, on materials from a given period, to be linked together, and the use of penalized maximum likelihood for smoothing univariate, spherical or three-dimensional time series data allows representation of the secular variation of the geomagnetic field over time. The smooth curve we obtain (which takes the form of a penalized natural cubic spline) provides an adaptation to the effects of variability in the density of reference points over time. Since our model takes account of all the known errors in the archaeomagnetic calibration process, we are able to obtain a functional highest-posterior-density envelope on the new curve. With this new posterior estimate of the curve available to us, the Bayesian statistical framework then allows us to estimate the calendar dates of undated archaeological features (such as kilns) based on one, two or three geomagnetic parameters (inclination, declination and/or intensity). Date estimates are presented in much the same way as those that arise from radiocarbon dating. In order to illustrate the model and inference methods used, we will present results based on German archaeomagnetic data recently published by a German team.
NASA Astrophysics Data System (ADS)
Dittes, Beatrice; Špačková, Olga; Ebrahimian, Negin; Kaiser, Maria; Rieger, Wolfgang; Disse, Markus; Straub, Daniel
2017-04-01
Flood risk estimates are subject to significant uncertainties, e.g. due to limited records of historic flood events, uncertainty in flood modeling, uncertain impact of climate change or uncertainty in the exposure and loss estimates. In traditional design of flood protection systems, these uncertainties are typically just accounted for implicitly, based on engineering judgment. In the AdaptRisk project, we develop a fully quantitative framework for planning of flood protection systems under current and future uncertainties using quantitative pre-posterior Bayesian decision analysis. In this contribution, we focus on the quantification of the uncertainties and study their relative influence on the flood risk estimate and on the planning of flood protection systems. The following uncertainty components are included using a Bayesian approach: 1) inherent and statistical (i.e. limited record length) uncertainty; 2) climate uncertainty that can be learned from an ensemble of GCM-RCM models; 3) estimates of climate uncertainty components not covered in 2), such as bias correction, incomplete ensemble, local specifics not captured by the GCM-RCM models; 4) uncertainty in the inundation modelling; 5) uncertainty in damage estimation. We also investigate how these uncertainties are possibly reduced in the future when new evidence - such as new climate models, observed extreme events, and socio-economic data - becomes available. Finally, we look into how this new evidence influences the risk assessment and effectivity of flood protection systems. We demonstrate our methodology for a pre-alpine catchment in southern Germany: the Mangfall catchment in Bavaria that includes the city of Rosenheim, which suffered significant losses during the 2013 flood event.
NASA Astrophysics Data System (ADS)
Wang, L.; Davis, J. L.; Tamisiea, M. E.
2017-12-01
The Antarctic ice sheet (AIS) holds about 60% of all fresh water on the Earth, an amount equivalent to about 58 m of sea-level rise. Observation of AIS mass change is thus essential in determining and predicting its contribution to sea level. While the ice mass loss estimates for West Antarctica (WA) and the Antarctic Peninsula (AP) are in good agreement, what the mass balance over East Antarctica (EA) is, and whether or not it compensates for the mass loss is under debate. Besides the different error sources and sensitivities of different measurement types, complex spatial and temporal variabilities would be another factor complicating the accurate estimation of the AIS mass balance. Therefore, a model that allows for variabilities in both melting rate and seasonal signals would seem appropriate in the estimation of present-day AIS melting. We present a stochastic filter technique, which enables the Bayesian separation of the systematic stripe noise and mass signal in decade-length GRACE monthly gravity series, and allows the estimation of time-variable seasonal and inter-annual components in the signals. One of the primary advantages of this Bayesian method is that it yields statistically rigorous uncertainty estimates reflecting the inherent spatial resolution of the data. By applying the stochastic filter to the decade-long GRACE observations, we present the temporal variabilities of the AIS mass balance at basin scale, particularly over East Antarctica, and decipher the EA mass variations in the past decade, and their role in affecting overall AIS mass balance and sea level.
Use of limited data to construct Bayesian networks for probabilistic risk assessment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Groth, Katrina M.; Swiler, Laura Painton
2013-03-01
Probabilistic Risk Assessment (PRA) is a fundamental part of safety/quality assurance for nuclear power and nuclear weapons. Traditional PRA very effectively models complex hardware system risks using binary probabilistic models. However, traditional PRA models are not flexible enough to accommodate non-binary soft-causal factors, such as digital instrumentation&control, passive components, aging, common cause failure, and human errors. Bayesian Networks offer the opportunity to incorporate these risks into the PRA framework. This report describes the results of an early career LDRD project titled %E2%80%9CUse of Limited Data to Construct Bayesian Networks for Probabilistic Risk Assessment%E2%80%9D. The goal of the work was tomore » establish the capability to develop Bayesian Networks from sparse data, and to demonstrate this capability by producing a data-informed Bayesian Network for use in Human Reliability Analysis (HRA) as part of nuclear power plant Probabilistic Risk Assessment (PRA). This report summarizes the research goal and major products of the research.« less
Safta, C.; Ricciuto, Daniel M.; Sargsyan, Khachik; ...
2015-07-01
In this paper we propose a probabilistic framework for an uncertainty quantification (UQ) study of a carbon cycle model and focus on the comparison between steady-state and transient simulation setups. A global sensitivity analysis (GSA) study indicates the parameters and parameter couplings that are important at different times of the year for quantities of interest (QoIs) obtained with the data assimilation linked ecosystem carbon (DALEC) model. We then employ a Bayesian approach and a statistical model error term to calibrate the parameters of DALEC using net ecosystem exchange (NEE) observations at the Harvard Forest site. The calibration results are employedmore » in the second part of the paper to assess the predictive skill of the model via posterior predictive checks.« less
Continuous-time discrete-space models for animal movement
Hanks, Ephraim M.; Hooten, Mevin B.; Alldredge, Mat W.
2015-01-01
The processes influencing animal movement and resource selection are complex and varied. Past efforts to model behavioral changes over time used Bayesian statistical models with variable parameter space, such as reversible-jump Markov chain Monte Carlo approaches, which are computationally demanding and inaccessible to many practitioners. We present a continuous-time discrete-space (CTDS) model of animal movement that can be fit using standard generalized linear modeling (GLM) methods. This CTDS approach allows for the joint modeling of location-based as well as directional drivers of movement. Changing behavior over time is modeled using a varying-coefficient framework which maintains the computational simplicity of a GLM approach, and variable selection is accomplished using a group lasso penalty. We apply our approach to a study of two mountain lions (Puma concolor) in Colorado, USA.
Hippert, Henrique S; Taylor, James W
2010-04-01
Artificial neural networks have frequently been proposed for electricity load forecasting because of their capabilities for the nonlinear modelling of large multivariate data sets. Modelling with neural networks is not an easy task though; two of the main challenges are defining the appropriate level of model complexity, and choosing the input variables. This paper evaluates techniques for automatic neural network modelling within a Bayesian framework, as applied to six samples containing daily load and weather data for four different countries. We analyse input selection as carried out by the Bayesian 'automatic relevance determination', and the usefulness of the Bayesian 'evidence' for the selection of the best structure (in terms of number of neurones), as compared to methods based on cross-validation. Copyright 2009 Elsevier Ltd. All rights reserved.
A flexible bayesian model for testing for transmission ratio distortion.
Casellas, Joaquim; Manunza, Arianna; Mercader, Anna; Quintanilla, Raquel; Amills, Marcel
2014-12-01
Current statistical approaches to investigate the nature and magnitude of transmission ratio distortion (TRD) are scarce and restricted to the most common experimental designs such as F2 populations and backcrosses. In this article, we describe a new Bayesian approach to check TRD within a given biallelic genetic marker in a diploid species, providing a highly flexible framework that can accommodate any kind of population structure. This model relies on the genotype of each offspring and thus integrates all available information from either the parents' genotypes or population-specific allele frequencies and yields TRD estimates that can be corroborated by the calculation of a Bayes factor (BF). This approach has been evaluated on simulated data sets with appealing statistical performance. As a proof of concept, we have also tested TRD in a porcine population with five half-sib families and 352 offspring. All boars and piglets were genotyped with the Porcine SNP60 BeadChip, whereas genotypes from the sows were not available. The SNP-by-SNP screening of the pig genome revealed 84 SNPs with decisive evidences of TRD (BF > 100) after accounting for multiple testing. Many of these regions contained genes related to biological processes (e.g., nucleosome assembly and co-organization, DNA conformation and packaging, and DNA complex assembly) that are critically associated with embryonic viability. The implementation of this method, which overcomes many of the limitations of previous approaches, should contribute to fostering research on TRD in both model and nonmodel organisms. Copyright © 2014 by the Genetics Society of America.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hou, Z; Terry, N; Hubbard, S S
2013-02-12
In this study, we evaluate the possibility of monitoring soil moisture variation using tomographic ground penetrating radar travel time data through Bayesian inversion, which is integrated with entropy memory function and pilot point concepts, as well as efficient sampling approaches. It is critical to accurately estimate soil moisture content and variations in vadose zone studies. Many studies have illustrated the promise and value of GPR tomographic data for estimating soil moisture and associated changes, however, challenges still exist in the inversion of GPR tomographic data in a manner that quantifies input and predictive uncertainty, incorporates multiple data types, handles non-uniquenessmore » and nonlinearity, and honors time-lapse tomograms collected in a series. To address these challenges, we develop a minimum relative entropy (MRE)-Bayesian based inverse modeling framework that non-subjectively defines prior probabilities, incorporates information from multiple sources, and quantifies uncertainty. The framework enables us to estimate dielectric permittivity at pilot point locations distributed within the tomogram, as well as the spatial correlation range. In the inversion framework, MRE is first used to derive prior probability distribution functions (pdfs) of dielectric permittivity based on prior information obtained from a straight-ray GPR inversion. The probability distributions are then sampled using a Quasi-Monte Carlo (QMC) approach, and the sample sets provide inputs to a sequential Gaussian simulation (SGSim) algorithm that constructs a highly resolved permittivity/velocity field for evaluation with a curved-ray GPR forward model. The likelihood functions are computed as a function of misfits, and posterior pdfs are constructed using a Gaussian kernel. Inversion of subsequent time-lapse datasets combines the Bayesian estimates from the previous inversion (as a memory function) with new data. The memory function and pilot point design takes advantage of the spatial-temporal correlation of the state variables. We first apply the inversion framework to a static synthetic example and then to a time-lapse GPR tomographic dataset collected during a dynamic experiment conducted at the Hanford Site in Richland, WA. We demonstrate that the MRE-Bayesian inversion enables us to merge various data types, quantify uncertainty, evaluate nonlinear models, and produce more detailed and better resolved estimates than straight-ray based inversion; therefore, it has the potential to improve estimates of inter-wellbore dielectric permittivity and soil moisture content and to monitor their temporal dynamics more accurately.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hou, Zhangshuan; Terry, Neil C.; Hubbard, Susan S.
2013-02-22
In this study, we evaluate the possibility of monitoring soil moisture variation using tomographic ground penetrating radar travel time data through Bayesian inversion, which is integrated with entropy memory function and pilot point concepts, as well as efficient sampling approaches. It is critical to accurately estimate soil moisture content and variations in vadose zone studies. Many studies have illustrated the promise and value of GPR tomographic data for estimating soil moisture and associated changes, however, challenges still exist in the inversion of GPR tomographic data in a manner that quantifies input and predictive uncertainty, incorporates multiple data types, handles non-uniquenessmore » and nonlinearity, and honors time-lapse tomograms collected in a series. To address these challenges, we develop a minimum relative entropy (MRE)-Bayesian based inverse modeling framework that non-subjectively defines prior probabilities, incorporates information from multiple sources, and quantifies uncertainty. The framework enables us to estimate dielectric permittivity at pilot point locations distributed within the tomogram, as well as the spatial correlation range. In the inversion framework, MRE is first used to derive prior probability density functions (pdfs) of dielectric permittivity based on prior information obtained from a straight-ray GPR inversion. The probability distributions are then sampled using a Quasi-Monte Carlo (QMC) approach, and the sample sets provide inputs to a sequential Gaussian simulation (SGSIM) algorithm that constructs a highly resolved permittivity/velocity field for evaluation with a curved-ray GPR forward model. The likelihood functions are computed as a function of misfits, and posterior pdfs are constructed using a Gaussian kernel. Inversion of subsequent time-lapse datasets combines the Bayesian estimates from the previous inversion (as a memory function) with new data. The memory function and pilot point design takes advantage of the spatial-temporal correlation of the state variables. We first apply the inversion framework to a static synthetic example and then to a time-lapse GPR tomographic dataset collected during a dynamic experiment conducted at the Hanford Site in Richland, WA. We demonstrate that the MRE-Bayesian inversion enables us to merge various data types, quantify uncertainty, evaluate nonlinear models, and produce more detailed and better resolved estimates than straight-ray based inversion; therefore, it has the potential to improve estimates of inter-wellbore dielectric permittivity and soil moisture content and to monitor their temporal dynamics more accurately.« less
Single-Case Time Series with Bayesian Analysis: A Practitioner's Guide.
ERIC Educational Resources Information Center
Jones, W. Paul
2003-01-01
This article illustrates a simplified time series analysis for use by the counseling researcher practitioner in single-case baseline plus intervention studies with a Bayesian probability analysis to integrate findings from replications. The C statistic is recommended as a primary analysis tool with particular relevance in the context of actual…
A Comparison of Imputation Methods for Bayesian Factor Analysis Models
ERIC Educational Resources Information Center
Merkle, Edgar C.
2011-01-01
Imputation methods are popular for the handling of missing data in psychology. The methods generally consist of predicting missing data based on observed data, yielding a complete data set that is amiable to standard statistical analyses. In the context of Bayesian factor analysis, this article compares imputation under an unrestricted…