Science.gov

Sample records for bayo canyon ta-10

  1. Environmenal analysis of the Bayo Canyon (TA-10) Site, Los Alamos, New Mexico

    SciTech Connect

    Ferenbaugh, R.W.; Buhl, T.E.; Stoker, A.K.; Hansen, W.R.

    1982-05-01

    The radiological survey of the old TA-10 site in Bayo Canyon found low levels of surface contamination in the vicinity of the firing sites and subsurface contamination in the old waste disposal area. The three alternatives proposed for the site are: (1) to take no action; (2) to restrict usage of the area of subsurface contamination to activities that cause no subsurface disturbance (minimal action); and (3) to remove the subsurface conamination to levels below the working criteria. Dose calculations indicate that doses from surface contamination for recreational users of the canyon, permanent residents, and construction workers and doses for workers involved in excavation of contaminated soil under the clean up alternative are only small percentages of applicable guidelines. No environmental impacts are associated with either the no-action or minimal action alternatives. The impact associated with the cleanup alternative is small, especially considering that the area already has been affected by the original TA-10 decommissioning action, but nevertheless, the preferred alternative is the minimal action alternative, where 0.6 hectare of land is restricted to surface activities. This leaves the rest of the canyon available for development with up to 400 homes. The restricted area can be used for a park, tennis courts, etc., and the /sup 90/Sr activity will decay to levels permitting unrestricted usage in about 160 y.

  2. The Bayo Canyon/radioactive lanthanum (RaLa) program

    SciTech Connect

    Dummer, J.E.; Taschner, J.C.; Courtright, C.C.

    1996-04-01

    LANL conducted 254 radioactive lanthanum (RaLa) implosion experiments Sept. 1944-March 1962, in order to test implosion designs for nuclear weapons. High explosives surrounding common metals (surrogates for Pu) and a radioactive source containing up to several thousand curies of La, were involved in each experiment. The resulting cloud was deposited as fallout, often to distances of several miles. This report was prepared to summarize existing records as an aid in evaluating the off-site impact, if any, of this 18-year program. The report provides a historical setting for the program, which was conducted in Technical Area 10, Bayo Canyon about 3 miles east of Los Alamos. A description of the site is followed by a discussion of collateral experiments conducted in 1950 by US Air Force for developing an airborne detector for tracking atmospheric nuclear weapons tests. All known off-site data from the RaLa program are tabulated and discussed. Besides the radiolanthanum, other potential trace radioactive material that may have been present in the fallout is discussed and amounts estimated. Off-site safety considerations are discussed; a preliminary off-site dose assessment is made. Bibliographical data on 33 persons important to the program are presented as footnotes.

  3. Formerly utilized MED/AEC sites Remedial Action Program, Bayo Canyon, New Mexico: Environmental assessment

    SciTech Connect

    Not Available

    1982-07-01

    The DOE has determined that strontium-90 in excess of its proposed remedial action criteria exists in materials underlying an area of about 0.6 ha (1.5 acres) at the Bayo Canyon site. The proposed action is to demarcate this area and restrict its use to activities that will not disturb this subsurface contamination. The proposed action would allow unrestricted use of the balance of the formerly utilized site. The proposed remedial action will be minor and, thus, will cause negligible disruption of the socioeconomic or environmental systems in which the site exists. The action will not threaten any legally protected species of flora or fauna, nor will it threaten any legally protected cultural or historical resources. Because the local community is familiar with radiation and has expressed no concern to date, it is expected that future public concern will be low. The DOE is ensuring that county authorities remain aware of all proposed remedial activities in the area.

  4. Strontium concentrations in chamisa (Chrysothamnus nauseosus) shrub plants growing in a former liquid waste disposal area in Bayo Canyon

    SciTech Connect

    Fresquez, P.R.; Foxx, T.S.; Naranjo, L. Jr.

    1995-11-01

    Chamisa (Chrysothamnus nauseosus) shrub plants growing in a former liquid waste disposal site Solid Waste Management Unit [SWMU] 10-003(c) in Bayo Canyon at Los Alamos National Laboratory (LANL) were collected and analyzed for strontium ({sup 90}Sr) and total uranium. Surface soil samples were also collected from below (understory) and between (interspace) shrub canopies. Both chamisa plants growing over SWMU 10-003(c) contained significantly higher concentrations of {sup 90}Sr than a control plant -- one plant, in particular, contained 90, 500 pCi {sup 90}Sr g{sup {minus}1} ash in top-growth material. Similarly, soil surface samples collected underneath and between plants contained {sup 90}Sr concentrations above background and LANL screening action levels; this probably occurred as a result of chamisa plant leaf fall contaminating the soil understory area followed by water and/or winds moving {sup 90}Sr to the soil interspace area. Although some soil surface migration of {sup 90}Sr from SWMU 10-003(c) has occurred, the level of {sup 90}Sr in sediments collected downstream of SWMU 10-003(c) at the Bayo Canyon/State Road 5 intersection was still within regional (background) concentrations.

  5. Evaluation of TA10 Broth for Recovery of Listeria monocytogenes from Ground Beef.

    PubMed

    Kamisaki-Horikoshi, Naoko; Okada, Yukio; Takeshita, Kazuko; Takada, Makoto; Kawamoto, Shinichi; Kawasaki, Susumu

    2017-03-01

    In 2009, the enrichment broth TA10 was released for simultaneous recovery of Salmonella spp., Listeria monocytogenes, and Escherichia coli O157:H7. This medium was compared with other Salmonella enrichment broths [lactose (LAC) broth, buffered peptone water (BPW), and universal pre-enrichment (UP) broth] for the recovery of heat- and freeze-injured Salmonella spp. in beef by the conventional culture method. There was a significant difference between TA10 and LAC enrichment broths for detecting injured Salmonella spp. In this study, the International Organization for Standardization Listeria pre-enrichment broth (Half-Fraser/Fraser) was compared with TA10 broth for the recovery of L. monocytogenes from ground beef. Ground beef samples were contaminated with single Listeria serovars at levels of 0.096 to 0.001 most probable number/g. Twenty 25 g test portions of the contaminated ground beef were pre-enriched in each broth, and the ISO-11290-1 Listeria official isolation protocol was used thereafter. There was a significant difference between TA10 broth (48 h) and Half-Fraser/Fraser broth (72 h) in the recovery of L. monocytogenes. In addition, the incubation time for TA10 broth was shorter than for Half-Fraser/Fraser broth. The results indicate that TA10 broth should be used instead of Half-Fraser/Fraser broth for analysis of beef that may be contaminated with very low levels of L. monocytogenes.

  6. Evaluation of TA10 Broth for Recovery of Heat- and Freeze-Injured Salmonella from Beef

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Bacteriological Analytical Manual (BAM) Salmonella pre-enrichment broth (lactose [LAC] broth), buffered peptone water (BPW), and universal preenrichment (UP) broth were compared with TA10 broth, developed in our laboratory, for recovery of heat- and freeze-injured Salmonella (55ºC for 2-20 min a...

  7. Evaluation of TA10 broth for recovery of heat- and freeze-injured Salmonella from beef.

    PubMed

    Kamisaki-Horikoshi, Naoko; Okada, Yukio; Takeshita, Kazuko; Sameshima, Takashi; Kawasaki, Susumu; Kawamoto, Shinichi; Fratamico, Pina M

    2011-01-01

    The Bacteriological Analytical Manual (BAM) Salmonella pre-enrichment broth [lactose (LAC) broth], buffered peptone water, and universal pre-enrichment (UP) broth were compared with TA10 broth, developed in our laboratory, for recovery of heat- and freeze-injured Salmonella (55 degrees C for 2-20 min and -20 degrees C for 2 months, respectively) from beef. Beef samples were contaminated with single Salmonella serovars, and contamination levels of 0.44 to <0.001 most probable number (MPN)/g and 0.74 to 0.14 MPN/g were used for heat- and freezing-induced injury studies, respectively. Twenty test portions (25 g) of the contaminated beef were pre-enriched in each broth, and the BAM Salmonella culture method was used thereafter. There was a significant difference (chi2 = 7.73) in recovery of heat-injured Salmonella between TA10 broth and LAC broth, 189 (67.5%) versus 156 (55.7%) positive samples, respectively, determined by plating onto selective agars and identification by biochemical tests. For the recovery of freeze-injured Salmonella, there was a significant difference (chi2 = 24.7) between TA10 and LAC broth, 189 (72.7%) versus 133 (51.2%) positive samples, respectively. TA10 broth was more effective than LAC broth and UP broth for recovery of freeze-injured Salmonella. The results indicate that TA10 broth should be used instead of LAC broth for testing of beef that may be contaminated with heat- and freeze-injured Salmonella spp.

  8. Modified fused silicide coatings for tantalum (Ta-10W) reentry heat shields

    NASA Technical Reports Server (NTRS)

    Packer, C. M.; Perkins, R. A.

    1973-01-01

    Results are presented of a program of research to develop a reliable, high performance, fused slurry silicide coating for the Ta-10W alloy. The effort was directed toward developing new and improved formulations for use at 2600 to 2800 F (1700 to 1811 K) in an atmospheric reentry thermal protection system with a 100-mission capability. Based on a thorough characterization of isothermal and cyclic oxidation behavior, bend transition temperatures, room- and elevated-temperature tensile properties, and creep behavior, a 2.5 Mn-33Ti-64.5Si coating (designated MTS) provides excellent protection for the Ta-10W alloy in simulated reentry environments. An extensive analysis of the oxidation behavior and characteristics of the MTS coating in terms of fundamental mechanisms also is presented.

  9. The high-strain-rate and spallation response of tantalum, Ta-10W, and T-111

    SciTech Connect

    Gray, G.T. III; Rollett, A.D.

    1991-01-01

    The compressive true stress-true response of tantalum, Ta-10W, and T-111 were found to depend on the applied strain rate, in the range 0.001 to 7000 s{sup {minus}1}. The strain-rate sensitivities of the flow stress of tantalum, Ta-10W, and T-111 a 1% strain are 0.062, 0.031, and 0.024, respectively. The rates of strain hardening in Tantalum, Ta-10W, and T-111 are seen to exhibit differing behavior with increasing strain rate. The calculated average strain-hardening rate in tantalum, {Theta}, for the quasi-static (0.001 s{sup {minus}1}) data at 25{degrees}C is 2080 MPa/unit strain. The hardening rate at 3000s{sup {minus}1} at 25{degrees}C decreases to 846 MPa/unit strain. Normalizing the work hardening rate in tantalum with the Taylor Factor for a random polycrystal, ({Theta} / (3.07){sup 2}), yields work hardening rates of {mu}/276 at quasi-static strain rates and {mu}/680 at high-rates, assuming a shear modulus of 61 GPa for tantalum at room temperature. While the work hardening of all the tantalum-based materials are similar at quasi-static rates, alloying results in a small reduction in hardening rate. With increasing strain rate, the work hardening rate in tantalum decreases by approximately a factor of two compared to the alloys. Alloying tantalum with substitutional or interstitial elements is thought to result in increased edge dislocation storage and screw dislocation cross-slip due to interactions with the alloying elements at high strain rates. 28 refs.

  10. Constraining the Paleogene of South America: Magnetostratigraphy and paleoclimate proxy records from Cerro Bayo (Provincia de Salta, Argentina)

    NASA Astrophysics Data System (ADS)

    Hyland, E.; Cotton, J. M.; Sheldon, N. D.

    2012-12-01

    Records of rapid climatic and ecological shifts in the past are crucial for understanding global systems and for predicting future impacts of climate change. Transient and broad scale hyperthermal events during the Paleogene, such as the Paleocene-Eocene Thermal Maximum (PETM) and Early Eocene Climatic Optimum (EECO), have been studied extensively through both marine records and a significant terrestrial record from North America. Despite this, little evidence exists from the climatic and ecological histories of other major landmasses, which limits the effectiveness of global climate response predictions. Here we present an integrated paleoenvironmental reconstruction of the early Paleogene from a site in central South America (Cerro Bayo, Argentina), including a new magnetostratigraphic age model, pedological and sedimentological interpretation, whole rock geochemical climate proxies, isotopic environmental proxies, and microfloral assemblages. Cerro Bayo is a 235-meter terrestrial section that exposes the Tunal, Mealla, and Maiz Gordo Formations, and based on magnetostratigraphic interpolation spans roughly 58—50 Mya, including both the PETM and EECO events. These formations are composed primarily of reddish sandstone and siltstone, much of which exhibits features characteristic of a moderate degree of pedogenesis (i.e., Inceptisols and Alfisols). High-resolution climate proxies derived from paleosol geochemical compositions highlight rapid increases in mean annual temperature (>5°C) and precipitation (>300 mm yr-1) during the PETM, as well as more gradual increasing temperature and precipitation trends leading up to the EECO. Carbon isotope stratigraphy through the section also indicates a sizable negative excursion (~4‰) during the PETM, and generally positive isotopic trends during the early Eocene. Phytolith biostratigraphy also details changes in local vegetation composition during climatic events that corresponds to similar patterns seen in terrestrial

  11. Predicting Texture Evolution in Ta and Ta-10W Alloys Using Polycrystal Plasticity

    NASA Astrophysics Data System (ADS)

    Knezevic, Marko; Zecevic, Miroslav; Beyerlein, Irene J.; Bhattacharyya, Abhishek; McCabe, Rodney J.

    2015-11-01

    We present results of texture characterization and predictions of a multiscale physically based constitutive law developed to predict the mechanical response and texture evolution of body-centered cubic metals. The model is unique in the sense that single crystal deformation results not only from the resolved shear stress along the direction of slip (Schmid law) but also from shear stresses resolved along directions orthogonal to the slip direction as well as the three normal stress components (non-Schmid effects). The single crystal model is implemented into a visco-plastic self-consistent homogenization scheme containing a hardening law for crystallographic slip. The polycrystal model is calibrated using a set of mechanical test data collected on a tantalum-tungsten alloy, Ta-10W, in tension and compression and pure tantalum, Ta, in tension, compression, and cross-rolling. We demonstrate that the model effectively captures the texture evolution in all cases. We show that alloying has the effect of increasing the dislocation friction stress, the trapping rate of dislocations, and activation barrier for recovery.

  12. Hot Canyon

    ScienceCinema

    None

    2016-07-12

    This historical film footage, originally produced in the early 1950s as part of a series by WOI-TV, shows atomic research at Ames Laboratory. The work was conducted in a special area of the Laboratory known as the "Hot Canyon."

  13. Hot Canyon

    SciTech Connect

    2012-01-01

    This historical film footage, originally produced in the early 1950s as part of a series by WOI-TV, shows atomic research at Ames Laboratory. The work was conducted in a special area of the Laboratory known as the "Hot Canyon."

  14. Subinertial canyon resonance

    NASA Astrophysics Data System (ADS)

    Clarke, Allan J.; Van Gorder, Stephen

    2016-04-01

    Near the bottom of a narrow canyon currents that oscillate back and forth along the bottom slope hx in a stratified ocean of buoyancy frequency N do so with a natural internal gravitational frequency Nhx. From May 2012 to May 2013 Acoustic Doppler Current Profiler measurements were made at 715 m depth in the deep narrow part of the DeSoto Canyon south of Pensacola, Florida, in water with 2π/Nhx ≈ 2.5 days. Above the canyon the flow follows the large-scale isobaths, but beneath the canyon rim the current oscillates along the canyon axis with 2-3 day periodicity, and is much stronger than and uncorrelated with the overlying flow. A simple theoretical model explains the resonant response. Published observations from the Hudson and Gully canyons suggest that the strong subinertial current oscillations observed in these canyons occur close to the relevant local frequency Nhx, consistent with the proposed simple model physics.

  15. Oak Canyon Action Memo

    EPA Pesticide Factsheets

    This memorandum requests approval for a time-critical removal action at the 27 residential properties that compose the Oak Canyon Site located in the Village of Paguate, Pueblo of Laguna, near Cibola County, New Mexico.

  16. Flow in bedrock canyons.

    PubMed

    Venditti, Jeremy G; Rennie, Colin D; Bomhof, James; Bradley, Ryan W; Little, Malcolm; Church, Michael

    2014-09-25

    Bedrock erosion in rivers sets the pace of landscape evolution, influences the evolution of orogens and determines the size, shape and relief of mountains. A variety of models link fluid flow and sediment transport processes to bedrock incision in canyons. The model components that represent sediment transport processes are increasingly well developed. In contrast, the model components being used to represent fluid flow are largely untested because there are no observations of the flow structure in bedrock canyons. Here we present a 524-kilometre, continuous centreline, acoustic Doppler current profiler survey of the Fraser Canyon in western Canada, which includes 42 individual bedrock canyons. Our observations of three-dimensional flow structure reveal that, as water enters the canyons, a high-velocity core follows the bed surface, causing a velocity inversion (high velocities near the bed and low velocities at the surface). The plunging water then upwells along the canyon walls, resulting in counter-rotating, along-stream coherent flow structures that diverge near the bed. The resulting flow structure promotes deep scour in the bedrock channel floor and undercutting of the canyon walls. This provides a mechanism for channel widening and ensures that the base of the walls is swept clear of the debris that is often deposited there, keeping the walls nearly vertical. These observations reveal that the flow structure in bedrock canyons is more complex than assumed in the models presently used. Fluid flow models that capture the essence of the three-dimensional flow field, using simple phenomenological rules that are computationally tractable, are required to capture the dynamic coupling between flow, bedrock erosion and solid-Earth dynamics.

  17. 18. VIEW OF A CANYON IN THE CLEANUP PHASE. CANYONS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. VIEW OF A CANYON IN THE CLEANUP PHASE. CANYONS WERE PROCESSING ROOMS USED TO HOUSE PLUTONIUM HANDLING OPERATIONS THAT WERE NOT CONTAINED WITHIN GLOVE BOXES. CANYONS WERE DESIGNED TO BECOME CONTAMINATED. (5/10/88) - Rocky Flats Plant, Plutonium Recovery Facility, Northwest portion of Rocky Flats Plant, Golden, Jefferson County, CO

  18. Flushing submarine canyons.

    PubMed

    Canals, Miquel; Puig, Pere; de Madron, Xavier Durrieu; Heussner, Serge; Palanques, Albert; Fabres, Joan

    2006-11-16

    The continental slope is a steep, narrow fringe separating the coastal zone from the deep ocean. During low sea-level stands, slides and dense, sediment-laden flows erode the outer continental shelf and the continental slope, leading to the formation of submarine canyons that funnel large volumes of sediment and organic matter from shallow regions to the deep ocean(1). During high sea-level stands, such as at present, these canyons still experience occasional sediment gravity flows(2-5), which are usually thought to be triggered by sediment failure or river flooding. Here we present observations from a submarine canyon on the Gulf of Lions margin, in the northwest Mediterranean Sea, that demonstrate that these flows can also be triggered by dense shelf water cascading (DSWC)-a type of current that is driven solely by seawater density contrast. Our results show that DSWC can transport large amounts of water and sediment, reshape submarine canyon floors and rapidly affect the deep-sea environment. This cascading is seasonal, resulting from the formation of dense water by cooling and/or evaporation, and occurs on both high- and low-latitude continental margins(6-8). DSWC may therefore transport large amounts of sediment and organic matter to the deep ocean. Furthermore, changes in the frequency and intensity of DSWC driven by future climate change may have a significant impact on the supply of organic matter to deep-sea ecosystems and on the amount of carbon stored on continental margins and in ocean basins.

  19. The Whittard Canyon - A case study of submarine canyon processes

    NASA Astrophysics Data System (ADS)

    Amaro, T.; Huvenne, V. A. I.; Allcock, A. L.; Aslam, T.; Davies, J. S.; Danovaro, R.; De Stigter, H. C.; Duineveld, G. C. A.; Gambi, C.; Gooday, A. J.; Gunton, L. M.; Hall, R.; Howell, K. L.; Ingels, J.; Kiriakoulakis, K.; Kershaw, C. E.; Lavaleye, M. S. S.; Robert, K.; Stewart, H.; Van Rooij, D.; White, M.; Wilson, A. M.

    2016-08-01

    Submarine canyons are large geomorphological features that incise continental shelves and slopes around the world. They are often suggested to be biodiversity and biomass hotspots, although there is no consensus about this in the literature. Nevertheless, many canyons do host diverse faunal communities but owing to our lack of understanding of the processes shaping and driving this diversity, appropriate management strategies have yet to be developed. Here, we integrate all the current knowledge of one single system, the Whittard Canyon (Celtic Margin, NE Atlantic), including the latest research on its geology, sedimentology, geomorphology, oceanography, ecology, and biodiversity in order to address this issue. The Whittard Canyon is an active system in terms of sediment transport. The net suspended sediment transport is mainly up-canyon causing sedimentary overflow in some upper canyon areas. Occasionally sediment gravity flow events do occur, some possibly the result of anthropogenic activity. However, the role of these intermittent gravity flows in transferring labile organic matter to the deeper regions of the canyon appears to be limited. More likely, any labile organic matter flushed downslope in this way becomes strongly diluted with bulk material and is therefore of little food value for benthic fauna. Instead, the fresh organic matter found in the Whittard Channel mainly arrives through vertical deposition and lateral transport of phytoplankton blooms that occur in the area during spring and summer. The response of the Whittard Canyon fauna to these processes is different in different groups. Foraminiferal abundances are higher in the upper parts of the canyon and on the slope than in the lower canyon. Meiofaunal abundances in the upper and middle part of the canyon are higher than on adjacent slopes, but lower in the deepest part. Mega- and macrofauna abundances are higher in the canyon compared with the adjacent slope and are higher in the eastern than

  20. New York Canyon Stimulation

    SciTech Connect

    Raemy, Bernard

    2012-06-21

    The New York Canyon Stimulation Project was to demonstrate the commercial application of Enhanced Geothermal System techniques in Buena Vista Valley area of Pershing County, Nevada. From October 2009 to early 2012, TGP Development Company aggressively implemented Phase I of Pre-Stimulation and Site/Wellbore readiness. This included: geological studies; water studies and analyses and procurement of initial permits for drilling. Oversubscription of water rights and lack of water needed for implementation of EGS were identified and remained primary obstacles. Despite extended efforts to find alternative solutions, the water supply circumstances could not be overcome and led TGP to determine a "No Go" decision and initiate project termination in April 2012.

  1. Canyon in DCS Color

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    Released July 26, 2004 This image shows two representations of the same infra-red image covering a portion of Ganges Chasma. On the left is a grayscale image showing surface temperature, and on the right is a false-color composite made from 3 individual THEMIS bands. The false-color image is colorized using a technique called decorrelation stretch (DCS), which emphasizes the spectral differences between the bands to highlight compositional variations.

    The northern canyon at the top of this image is dominated by a bright red/magenta area consisting primarly basaltic materials on the floor of the canyon and atmospheric dust. Within that area, there are patches of purple, on the walls and in the landslides, that may be due to an olivine rich mineral layer. In the middle of the image, the green on the mesa between the two canyons is from a layer of dust. The patchy blue areas in the southern canyon are likely due to water ice clouds.

    Image information: IR instrument. Latitude -6.6, Longitude 316 East (44 West). 100 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics

  2. Canyon waste dump case study

    SciTech Connect

    Land, M.D.; Brothers, R.R. ); McGinn, C.W. )

    1991-01-01

    This data packet contains the Canyonville Canyon Waste Dump results of the various physical environmental sampling. Core samples were taken from the on site waste material. Vertical grab samples were made from these borings. The waste samples were screened fro volatile organic compounds (VOC) and logged for lithology. Soil samples were also tested for VOC. Composite sediment samples were taken using a coring device known as a clam gun. No surface water was available for testing from the intermittent Canyon Wash. The hydrogeology of the Canyon Waste Dump was inferred from lithologic logs and hydraulic data from the five monitoring wells located along the canyon floor. Groundwater was monitored through five wells. The soil vapor and air screening techniques used were adaptations of the EPA ERT and NIOSH methodologies. 4 figs., 9 tabs.

  3. Anatomy of La Jolla Canyon

    NASA Astrophysics Data System (ADS)

    Paull, C. K.; Caress, D. W.; Ussler, W.; Lundsten, E.; McGann, M. L.; Conrad, J. E.; Edwards, B. D.; Covault, J. A.

    2010-12-01

    High-resolution multibeam bathymetry (vertical precision of 0.15 m and horizontal resolution of 1.0 m) and chirp sub-bottom profiler data collected with an autonomous underwater vehicle (AUV) reveal the fine-scale morphology of La Jolla Canyon, offshore southern California. The AUV was pre-programmed to fly three missions within the canyon while maintaining an altitude of 50 m above bottom in water depths between 365 and 980 m. Sparker seismic reflection profiles define the overall geometry of the canyon and its host sediments. A remotely operated vehicle (ROV) was used to ground truth the AUV surveys by collecting video observations, 25 vibracores ≤1.5 m long and 38 horizontal push cores from outcrops on the canyon walls. These tools outline the shape and near sub-bottom character of the canyon and thus provide insight into the processes that generated the present canyon geomorphology. La Jolla Canyon is ~1.5 km across and contains a smaller-scale sinuous axial channel that varies in width from <50 m to >300 m. The total relief on the canyon walls is ~90 m and most of the elevation changes occur along a few steep faces that separate intervening terraces. Fine scale features include <1 m high steps on the surface of the major terraces and the existence of crescent shaped bedforms within the axial channel. Also notable are the numerous slide scars on the canyon flanks and within its axial channel. The sharpness of the textures seen in the multibeam images and ROV observations suggest the canyon is active and sediment failures play an important role in generating the canyon’s present morphology. Vibracores show that the floor of the axial channel is typically covered with >1 m of medium- to fine-grained sand. While collecting vibracores within the axial channel, the sand within a radius of ~2 m were observed to flow down slope, apparently after becoming fluidized. The ease with which failure can be induced on the relatively gentle slopes (~1.4°) within the

  4. Mineral resources of the Desolation Canyon, Turtle Canyon, and Floy Canyon Wilderness Study Areas, Carbon Emery, and Grand counties, Utah

    SciTech Connect

    Cashion, W.B.; Kilburn, J.E.; Barton, H.N.; Kelley, K.D.; Kulik, D.M. ); McDonnell, J.R. )

    1990-09-01

    This paper reports on the Desolation Canyon, Turtle Canyon, and Floy Canyon Wilderness Study Areas which include 242,000 acres, 33,690 acres, and 23,140 acres. Coal deposits underlie all three study areas. Coal zones in the Blackhawk and Nelsen formations have identified bituminous coal resources of 22 million short tons in the Desolation Canyon Study Area, 6.3 million short tons in the Turtle Canyon Study Area, and 45 million short tons in the Floy Canyon Study Area. In-place inferred oil shale resources are estimated to contain 60 million barrels in the northern part of the Desolation Canyon area. Minor occurrences of uranium have been found in the southeastern part of the Desolation Canyon area and in the western part of the Floy Canyon area. Mineral resource potential for the study areas is estimated to be for coal, high for all areas, for oil and gas, high for the northern tract of the Desolation Canyon area and moderate for all other tracts, for bituminous sandstone, high for the northern part of the Desolation Canyon area, and low for all other tracts, for oil shale, low in all areas, for uranium, moderate for the Floy Canyon area and the southeastern part of the Desolation Canyon area and low for the remainder of the areas, for metals other than uranium, bentonite, zeolites, and geothermal energy, low in all areas, and for coal-bed methane unknown in all three areas.

  5. Canyon Floor Deposits

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Context image for PIA03598 Canyon Floor Deposits

    The layered and wind eroded deposits seen in this VIS image occur on the floor of Chandor Chasma.

    Image information: VIS instrument. Latitude 5.2S, Longitude 283.4E. 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  6. 65 FR 62750 - Glen Canyon Adaptive Management Work Group and Glen Canyon Technical Work Group

    Federal Register 2010, 2011, 2012, 2013, 2014

    2000-10-19

    ... Bureau of Reclamation Glen Canyon Adaptive Management Work Group and Glen Canyon Technical Work Group... organized and includes a federal advisory committee (the Glen Canyon Adaptive Management Work Group, or AMWG), a technical work group (the Glen Canyon Technical Work Group, or TWG), a monitoring and...

  7. 78 FR 48670 - Boulder Canyon Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-09

    ... Area Power Administration Boulder Canyon Project AGENCY: Western Area Power Administration, DOE. ACTION... Secretary) approves the Fiscal Year (FY) 2014 Base Charge and Rates for Boulder Canyon Project (BCP... Boulder Canyon Project Act (45 Stat. 1057, December 21, 1928), sits on the Colorado River along...

  8. 77 FR 48151 - Boulder Canyon Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-13

    ... Area Power Administration Boulder Canyon Project AGENCY: Western Area Power Administration, DOE. ACTION... Secretary) approves the Fiscal Year (FY) 2013 Base Charge and Rates for Boulder Canyon Project (BCP... Boulder Canyon Project Act (45 Stat. 1057, December 21, 1928), sits on the Colorado River along...

  9. "Internal Waves" Advancing along Submarine Canyons.

    PubMed

    Shepard, F P; Marshall, N F; McLoughlin, P A

    1974-01-18

    Patterns of alternating up- and downcanyon currents have been traced along the axes of submarine canyons off California. The patterns arrive later at stations nearer the heads of coastal canyons. Where a canyon heads between two islands, the patterns advance down the axis. The propagation speeds of these patterns were estimated as 25 to 88 centimeters per second. Internal waves are the probable explanation.

  10. Currents in monterey submarine canyon

    USGS Publications Warehouse

    Xu, J. P.; Noble, M.A.

    2009-01-01

    Flow fields of mean, subtidal, and tidal frequencies between 250 and 3300 m water depths in Monterey Submarine Canyon are examined using current measurements obtained in three yearlong field experiments. Spatial variations in flow fields are mainly controlled by the topography (shape and width) of the canyon. The mean currents flow upcanyon in the offshore reaches (>1000 m) and downcanyon in the shallow reaches (100-m amplitude isotherm oscillations and associated high-speed rectilinear currents. The 15-day spring-neap cycle and a ???3-day??? band are the two prominent frequencies in subtidal flow field. Neither of them seems directly correlated with the spring-neap cycle of the sea level.

  11. Why SRS Matters - H Canyon

    SciTech Connect

    Hunt, Paul; Lewczyk, Mike; Swain, Mike

    2015-02-17

    A video series presenting an overview of the Savannah River Site's (SRS) mission and operations. Each episode features a specific area/operation and how it contributes to help make the world safer. This episode features H Canyon's mission and operations.

  12. Thomas Moran: "The Grand Canyon."

    ERIC Educational Resources Information Center

    Brubaker, Ann

    1986-01-01

    Presents a lesson plan for introducing students in grades four through six to Thomas Moran's painting, "The Grand Canyon." The goal of the lesson is to illustrate the importance of the American West as a subject for artists in the nineteenth century. (JDH)

  13. Why SRS Matters - H Canyon

    ScienceCinema

    Hunt, Paul; Lewczyk, Mike; Swain, Mike

    2016-07-12

    A video series presenting an overview of the Savannah River Site's (SRS) mission and operations. Each episode features a specific area/operation and how it contributes to help make the world safer. This episode features H Canyon's mission and operations.

  14. Geomorphic process fingerprints in submarine canyons

    USGS Publications Warehouse

    Brothers, Daniel S.; ten Brink, Uri S.; Andrews, Brian D.; Chaytor, Jason D.; Twichell, David C.

    2013-01-01

    Submarine canyons are common features of continental margins worldwide. They are conduits that funnel vast quantities of sediment from the continents to the deep sea. Though it is known that submarine canyons form primarily from erosion induced by submarine sediment flows, we currently lack quantitative, empirically based expressions that describe the morphology of submarine canyon networks. Multibeam bathymetry data along the entire passive US Atlantic margin (USAM) and along the active central California margin near Monterey Bay provide an opportunity to examine the fine-scale morphology of 171 slope-sourced canyons. Log–log regression analyses of canyon thalweg gradient (S) versus up-canyon catchment area (A) are used to examine linkages between morphological domains and the generation and evolution of submarine sediment flows. For example, canyon reaches of the upper continental slope are characterized by steep, linear and/or convex longitudinal profiles, whereas reaches farther down canyon have distinctly concave longitudinal profiles. The transition between these geomorphic domains is inferred to represent the downslope transformation of debris flows into erosive, canyon-flushing turbidity flows. Over geologic timescales this process appears to leave behind a predictable geomorphic fingerprint that is dependent on the catchment area of the canyon head. Catchment area, in turn, may be a proxy for the volume of sediment released during geomorphically significant failures along the upper continental slope. Focused studies of slope-sourced submarine canyons may provide new insights into the relationships between fine-scale canyon morphology and down-canyon changes in sediment flow dynamics.

  15. Mineral resources of the Coal Canyon, Spruce Canyon, and Flume Canyon Wilderness Study Areas, Grand county, Utah

    SciTech Connect

    Dickerson, R.P.; Gaccetta, J.D.; Kulik, D.M.; Kreidler, T.J.

    1990-01-01

    This paper reports on the Coal Canyon, Spruce Canyon, and Flume Canyon Wilderness Study Areas in the Book and Roan Cliffs in Grand Country, Utah, approximately 12 miles west of the Colorado state line. The wilderness study areas consist of a series of deep, stair-step-sided canyons and high ridges eroded into the flatlying sedimentary rocks of the Book Cliffs. Demonstrated coal reserves totaling 22,060,800 short tons and demonstrated subeconomic coal resources totaling 39,180,000 short tons are in the Coal Canyon Wilderness Study Area. Also, inferred subeconomic coal resources totaling 143,954,000 short tons are within the Coal Canyon Wilderness Study Area. No known deposits of industrial minerals are in any of the study area. All three of the wilderness study areas have a high resource potential for undiscovered deposits of coal and for undiscovered oil and gas.

  16. Research Furthers Conservation of Grand Canyon Sandbars

    USGS Publications Warehouse

    Melis, Theodore S.; Topping, David J.; Rubin, David M.; Wright, Scott A.

    2007-01-01

    Grand Canyon National Park lies approximately 25 km (15 mi) down-river from Glen Canyon Dam, which was built on the Colorado River just south of the Arizona-Utah border in Glen Canyon National Recreation Area. Before the dam began to regulate the Colorado River in 1963, the river carried such large quantities of red sediment, for which the Southwest is famous, that the Spanish named the river the Rio Colorado, or 'red river'. Today, the Colorado River usually runs clear below Glen Canyon Dam because the dam nearly eliminates the main-channel sand supply. The daily and seasonal flows of the river were also altered by the dam. These changes have disrupted the sedimentary processes that create and maintain Grand Canyon sandbars. Throughout Grand Canyon, sandbars create habitat for native plants and animals, supply camping beaches for river runners and hikers, and provide sediment needed to protect archaeological resources from weathering and erosion. Maintenance of sandbars in the Colorado River ecosystem, the river corridor that stretches from the dam to the western boundary of Grand Canyon National Park, is a goal of the Glen Canyon Dam Adaptive Management Program. The program is a federally authorized initiative to ensure that the mandates of the Grand Canyon Protection Act of 1992 are met through advances in information and resource management. The U.S. Geological Survey's Grand Canyon Monitoring and Research Center has responsibility for scientific monitoring and research efforts for the program. Extensive research and monitoring during the past decade have resulted in the identification of possible alternatives for operating Glen Canyon Dam that hold new potential for the conservation of sand resources.

  17. ACCELERATED PILOT PROJECT FOR U CANYON DEMOLITION

    SciTech Connect

    KEHLER KL

    2011-01-13

    At the U.S. Department of Energy's Hanford Site in southeast Washington State, CH2M HILL Plateau Remediation Company (CH2M HILL) is underway on a first-of-a-kind project with the decommissioning and demolition of the U Canyon. Following the U.S. Environmental Protection Agency's Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) Record of Decision for the final remediation of the canyon, CH2M HILL is combining old and new technology and techniques to prepare U Canyon for demolition. The selected remedial action called first for consolidating and grouting equipment currently in the canyon into lower levels of the plant (openings called cells), after which the cell galleries, hot pipe trench, ventilation tunnel, drains and other voids below the operating deck and crane-way deck levels will be filled with approximately 20,000 cubic yards of grout and the canyon roof and walls demolished down to the approximate level of the canyon deck. The remaining canyon structure will then be buried beneath an engineered barrier designed to control potential contaminant migration for a 500-year life. Methods and lessons learned from this project will set the stage for the future demolition of Hanford's four other canyon-type processing facilities.

  18. 78 FR 7775 - Boulder Canyon Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-04

    ... Area Power Administration Boulder Canyon Project AGENCY: Western Area Power Administration, DOE. ACTION... Boulder Canyon Project (BCP) electric service base charge and rates. The current base charge and rates...) of the Reclamation Project Act of 1939 (43 U.S.C. 485h(c)); and other acts that specifically apply...

  19. 76 FR 56430 - Boulder Canyon Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-13

    ... Area Power Administration Boulder Canyon Project AGENCY: Western Area Power Administration, DOE. ACTION... Fiscal Year (FY) 2012 Base Charge and Rates (Rates) for Boulder Canyon Project (BCP) electric service... Project Act (45 Stat. 1057, December 21, 1928), sits on the Colorado River along the Arizona and...

  20. 77 FR 2533 - Boulder Canyon Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-18

    ... Area Power Administration Boulder Canyon Project AGENCY: Western Area Power Administration, DOE. ACTION... Boulder Canyon Project (BCP) electric service base charge and rates. The current base charge and rates... subsequent laws, particularly section 9(c) of the Reclamation Project Act of 1939 (43 U.S.C. 485h(c));...

  1. Environmental assessment: Davis Canyon site, Utah

    SciTech Connect

    none,

    1986-05-01

    In February 1983, the US Department of Energy (DOE) identified the Davis Canyon site in Utah as one of the nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. To determine their suitability, the Davis Canyon site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE's General Guidelines for the Recommendation of Sites for the Nuclear Waste Repositories. These evaluations were reported in draft environmental assessments (EAs), which were issued for public review and comment. After considering the comments received on the draft EAs, the DOE prepared the final EA. The Davis Canyon site is in the Paradox Basin, which is one of five distinct geohydrologic settings considering for the first repository. This setting contains one other potentially acceptable site -- the Lavender Canyon site. Although the Lavender Canyon site is suitable for site characterization, the DOE has concluded that the Davis Canyon site is the preferred site in the Paradox Basin. On the basis of the evaluations reported in this EA, the DOE has found that the Davis Canyon site is not disqualified under the guidelines. Furthermore, the DOE has found that the site is suitable for site characterization because the evidence does not support a conclusion that the site will not be able to meet each of the qualifying conditions specified in the guidelines. On the basis of these findings, the DOE is nominating the Davis Canyon site as one of five sites suitable for characterization.

  2. Grand Canyon Monitoring and Research Center

    USGS Publications Warehouse

    Hamill, John F.

    2009-01-01

    The Grand Canyon of the Colorado River, one of the world's most spectacular gorges, is a premier U.S. National Park and a World Heritage Site. The canyon supports a diverse array of distinctive plants and animals and contains cultural resources significant to the region's Native Americans. About 15 miles upstream of Grand Canyon National Park sits Glen Canyon Dam, completed in 1963, which created Lake Powell. The dam provides hydroelectric power for 200 wholesale customers in six western States, but it has also altered the Colorado River's flow, temperature, and sediment-carrying capacity. Over time this has resulted in beach erosion, invasion and expansion of nonnative species, and losses of native fish. Public concern about the effects of Glen Canyon Dam operations prompted the passage of the Grand Canyon Protection Act of 1992, which directs the Secretary of the Interior to operate the dam 'to protect, mitigate adverse impacts to, and improve values for which Grand Canyon National Park and Glen Canyon National Recreation Area were established...' This legislation also required the creation of a long-term monitoring and research program to provide information that could inform decisions related to dam operations and protection of downstream resources.

  3. Environmental assessment: Davis Canyon site, Utah

    SciTech Connect

    none,

    1986-05-01

    In February 1983, the US Department of Energy (DOE) identified the Davis Canyon site in Utah as one of the nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high- level radioactive waste. To determine their suitability, the Davis Canyon site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE's General Guidelines for the Recommendation of Sites for the Nuclear Waste Repositories. These evaluations were reported in draft environmental assessments (EAs), which were issued for public review and comment. After considering the comments received on the draft EAs, the DOE prepared the final EA. The Davis Canyon site is in the Paradox Basin, which is one of five distinct geohydrologic settings considered for the first repository. This setting contains one other potentially acceptable site -- the Lavender Canyon site. Although the Lavender Canyon site is suitable for site characterization, the DOE has concluded that the Davis Canyon site is the preferred site in the Paradox Basin. On the basis of the evaluations reported in this EA, the DOE has found that the Davis Canyon site is not disqualified under the guidelines. Furthermore, the DOE has found that the site is suitable for site characterization because the evidence does not support a conclusion that the site will not be able to meet each of the qualifying conditions specified in the guidelines. On the basis of these findings, the DOE is nominating the Davis Canyon site as one of the five sites suitable for characterization.

  4. Urban street canyons: Coupling dynamics, chemistry and within-canyon chemical processing of emissions

    NASA Astrophysics Data System (ADS)

    Bright, Vivien Bianca; Bloss, William James; Cai, Xiaoming

    2013-04-01

    Street canyons, formed by rows of buildings in urban environments, are associated with high levels of atmospheric pollutants emitted primarily from vehicles, and substantial human exposure. The street canyon forms a semi-enclosed environment, within which emissions may be entrained in a re-circulatory system; chemical processing of emitted compounds alters the composition of the air vented to the overlying boundary layer, compared with the primary emissions. As the prevailing atmospheric chemistry is highly non-linear, and the canyon mixing and predominant chemical reaction timescales are comparable, the combined impacts of dynamics and chemistry must be considered to quantify these effects. Here we report a model study of the coupled impacts of dynamical and chemical processing upon the atmospheric composition in a street canyon environment, to assess the impacts upon air pollutant levels within the canyon, and to quantify the extent to which within-canyon chemical processing alters the composition of canyon outflow, in comparison to the primary emissions within the canyon. A new model for the simulation of street canyon atmospheric chemical processing has been developed, by integrating an existing Large-Eddy Simulation (LES) dynamical model of canyon atmospheric motion with a detailed chemical reaction mechanism, a Reduced Chemical Scheme (RCS) comprising 51 chemical species and 136 reactions, based upon a subset of the Master Chemical Mechanism (MCM). The combined LES-RCS model is used to investigate the combined effects of mixing and chemical processing upon air quality within an idealised street canyon. The effect of the combination of dynamical (segregation) and chemical effects is determined by comparing the outputs of the full LES-RCS canyon model with those obtained when representing the canyon as a zero-dimensional box model (i.e. assuming mixing is complete and instantaneous). The LES-RCS approach predicts lower (canyon-averaged) levels of NOx, OH and HO

  5. H-Canyon Recovery Crawler

    SciTech Connect

    Kriikku, E. M.; Hera, K. R.; Marzolf, A. D.; Phillips, M. H.

    2015-08-01

    The Nuclear Material Disposition Project group asked the Savannah River National Lab (SRNL) Research and Development Engineering (R&DE) department to help procure, test, and deploy a remote crawler to recover the 2014 Inspection Crawler (IC) that tipped over in the H-Canyon Air Exhaust Tunnel. R&DE wrote a Procurement Specification for a Recovery Crawler (RC) and SRNS Procurement Department awarded the contract to Power Equipment Manufacturing Inc. (PEM). The PEM RC was based on their standard sewer inspection crawler with custom arms and forks added to the front. The arms and forks would be used to upright the 2014 Inspection Crawler. PEM delivered the RC and associated cable reel, 2014 Inspection Crawler mockup, and manuals in late April 2015. R&DE and the team tested the crawler in May of 2015 and made modifications based on test results and Savannah River Site (SRS) requirements. R&DE delivered the RC to H-Area at the end of May. The team deployed the RC on June 9, 10, and 11, 2015 in the H-Canyon Air Exhaust Tunnel. The RC struggled with some obstacles in the tunnel, but eventually made it to the IC. The team spent approximately five hours working to upright the IC and eventually got it on its wheels. The IC travelled approximately 20 feet and struggled to drive over debris on the air tunnel floor. Unfortunately the IC tripped over trying to pass this obstacle. The team decided to leave the IC in this location and inspect the tunnel with the RC. The RC passed the IC and inspected the tunnel as it travelled toward H-Canyon. The team turned the RC around when it was about 20 feet from the H-Canyon crossover tunnel. From that point, the team drove the RC past the manway towards the new sand filter and stopped approximately 20 feet from the new sand filter. The team removed the RC from the tunnel, decontaminated the RC, and stored it the manway building, 294-2H. The RC deployment confirmed the IC was not in a condition to perform useful tunnel inspections and

  6. Environmental assessment overview, Davis Canyon site, Utah

    SciTech Connect

    none,

    1986-05-01

    In February 1983, the US Department of Energy (DOE) identified the Davis Canyon site in Utah as one of the nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. To determine their suitability, the Davis Canyon site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE's General Guidelines for the Recommendation of Sites for the Nuclear Waste Repositories. The Davis Canyon site is in the Paradox Basin, which is one of five distinct geohydrologic settings considered for the first repository. On the basis of the evaluations reported in this EA, the DOE has found that the Davis Canyon site is not disqualified under the guidelines. On the basis of these findings, the DOE is nominating the Davis Canyon site as one of five sites suitable for characterization. 3 figs.

  7. Geology and biology of Oceanographer submarine canyon.

    USGS Publications Warehouse

    Valentine, P.C.; Uzmann, J.R.; Cooper, R.A.

    1980-01-01

    Santonian beds more than 100 m thick are the oldest rocks collected from the canyon. Quaternary silty clay veneers the canyon walls in many places and is commonly burrowed by benthic organisms that cause extensive erosion of the canyon walls, especially in the depth zone (100-1300 m) inhabited by the crabs Geryon and Cancer. Bioerosion is minimal on high, near-vertical cliffs of sedimentary rock, in areas of continual sediment movement, and where the sea floor is paved by gravel. A thin layer of rippled, unconsolidated silt and sand is commonly present on the canyon walls and in the axis. Shelf sediments are transported from Georges Bank over the E rim and in the Canyon by the SW drift and storm currents; tidal currents and internal waves move the sediment downcanyon along the walls and axis.- from Authors

  8. An experimental approach to submarine canyon evolution

    NASA Astrophysics Data System (ADS)

    Lai, Steven Y. J.; Gerber, Thomas P.; Amblas, David

    2016-03-01

    We present results from a sandbox experiment designed to investigate how sediment gravity flows form and shape submarine canyons. In the experiment, unconfined saline gravity flows were released onto an inclined sand bed bounded on the downstream end by a movable floor that was used to increase relief during the experiment. In areas unaffected by the flows, we observed featureless, angle-of-repose submarine slopes formed by retrogressive breaching processes. In contrast, areas influenced by gravity flows cascading across the shelf break were deeply incised by submarine canyons with well-developed channel networks. Normalized canyon long profiles extracted from successive high-resolution digital elevation models collapse to a single profile when referenced to the migrating shelf-slope break, indicating self-similar growth in the relief defined by the canyon and intercanyon profiles. Although our experimental approach is simple, the resulting canyon morphology and behavior appear similar in several important respects to that observed in the field.

  9. Prehistoric deforestation at Chaco Canyon?

    PubMed

    Wills, W H; Drake, Brandon L; Dorshow, Wetherbee B

    2014-08-12

    Ancient societies are often used to illustrate the potential problems stemming from unsustainable land-use practices because the past seems rife with examples of sociopolitical "collapse" associated with the exhaustion of finite resources. Just as frequently, and typically in response to such presentations, archaeologists and other specialists caution against seeking simple cause-and effect-relationships in the complex data that comprise the archaeological record. In this study we examine the famous case of Chaco Canyon, New Mexico, during the Bonito Phase (ca. AD 860-1140), which has become a prominent popular illustration of ecological and social catastrophe attributed to deforestation. We conclude that there is no substantive evidence for deforestation at Chaco and no obvious indications that the depopulation of the canyon in the 13th century was caused by any specific cultural practices or natural events. Clearly there was a reason why these farming people eventually moved elsewhere, but the archaeological record has not yet produced compelling empirical evidence for what that reason might have been. Until such evidence appears, the legacy of Ancestral Pueblo society in Chaco should not be used as a cautionary story about socioeconomic failures in the modern world.

  10. Prehistoric deforestation at Chaco Canyon?

    PubMed Central

    Wills, W. H.; Drake, Brandon L.; Dorshow, Wetherbee B.

    2014-01-01

    Ancient societies are often used to illustrate the potential problems stemming from unsustainable land-use practices because the past seems rife with examples of sociopolitical “collapse” associated with the exhaustion of finite resources. Just as frequently, and typically in response to such presentations, archaeologists and other specialists caution against seeking simple cause-and effect-relationships in the complex data that comprise the archaeological record. In this study we examine the famous case of Chaco Canyon, New Mexico, during the Bonito Phase (ca. AD 860–1140), which has become a prominent popular illustration of ecological and social catastrophe attributed to deforestation. We conclude that there is no substantive evidence for deforestation at Chaco and no obvious indications that the depopulation of the canyon in the 13th century was caused by any specific cultural practices or natural events. Clearly there was a reason why these farming people eventually moved elsewhere, but the archaeological record has not yet produced compelling empirical evidence for what that reason might have been. Until such evidence appears, the legacy of Ancestral Pueblo society in Chaco should not be used as a cautionary story about socioeconomic failures in the modern world. PMID:25071220

  11. 36 CFR 7.19 - Canyon de Chelly National Monument.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Canyon de Chelly National... INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.19 Canyon de Chelly National Monument. (a) Visitors are prohibited from entering the canyons of Canyon de Chelly National Monument...

  12. 36 CFR 7.19 - Canyon de Chelly National Monument.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 1 2014-07-01 2014-07-01 false Canyon de Chelly National... INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.19 Canyon de Chelly National Monument. (a) Visitors are prohibited from entering the canyons of Canyon de Chelly National Monument...

  13. 36 CFR 7.19 - Canyon de Chelly National Monument.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 1 2013-07-01 2013-07-01 false Canyon de Chelly National... INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.19 Canyon de Chelly National Monument. (a) Visitors are prohibited from entering the canyons of Canyon de Chelly National Monument...

  14. 36 CFR 7.19 - Canyon de Chelly National Monument.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 1 2012-07-01 2012-07-01 false Canyon de Chelly National... INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.19 Canyon de Chelly National Monument. (a) Visitors are prohibited from entering the canyons of Canyon de Chelly National Monument...

  15. 36 CFR 7.19 - Canyon de Chelly National Monument.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Canyon de Chelly National... INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.19 Canyon de Chelly National Monument. (a) Visitors are prohibited from entering the canyons of Canyon de Chelly National Monument...

  16. Flow dynamics around downwelling submarine canyons

    NASA Astrophysics Data System (ADS)

    Spurgin, J. M.; Allen, S. E.

    2014-10-01

    Flow dynamics around a downwelling submarine canyon were analysed with the Massachusetts Institute of Technology general circulation model. Blanes Canyon (northwestern Mediterranean) was used for topographic and initial forcing conditions. Fourteen scenarios were modelled with varying forcing conditions. Rossby and Burger numbers were used to determine the significance of Coriolis acceleration and stratification (respectively) and their impacts on flow dynamics. A new non-dimensional parameter (χ) was introduced to determine the significance of vertical variations in stratification. Some simulations do see brief periods of upwards displacement of water during the 10-day model period; however, the presence of the submarine canyon is found to enhance downwards advection of density in all model scenarios. High Burger numbers lead to negative vorticity and a trapped anticyclonic eddy within the canyon, as well as an increased density anomaly. Low Burger numbers lead to positive vorticity, cyclonic circulation, and weaker density anomalies. Vertical variations in stratification affect zonal jet placement. Under the same forcing conditions, the zonal jet is pushed offshore in more uniformly stratified domains. The offshore jet location generates upwards density advection away from the canyon, while onshore jets generate downwards density advection everywhere within the model domain. Increasing Rossby values across the canyon axis, as well as decreasing Burger values, increase negative vertical flux at shelf break depth (150 m). Increasing Rossby numbers lead to stronger downwards advection of a passive tracer (nitrate), as well as stronger vorticity within the canyon. Results from previous studies are explained within this new dynamic framework.

  17. Flow dynamics around downwelling submarine canyons

    NASA Astrophysics Data System (ADS)

    Spurgin, J. M.; Allen, S. E.

    2014-05-01

    Flow dynamics around a downwelling submarine canyon were analysed with the Massachusetts Institute of Technology general circulation model. Blanes Canyon (Northwest Mediterranean) was used for topographic and initial forcing conditions. Fourteen scenarios were modelled with varying forcing conditions. Rossby number and Burger number were used to determine the significance of Coriolis acceleration and stratification (respectively) and their impacts on flow dynamics. A new non-dimensional parameter (χ) was introduced to determine the significance of vertical variations in stratification. Some simulations do see brief periods of upwards displacement of water during the 10 day model period, however, the presence of the submarine canyon is found to enhance downwards advection of density in all model scenarios. High Burger numbers lead to negative vorticity and a trapped anticyclonic eddy within the canyon, as well as an increased density anomaly. Low Burger numbers lead to positive vorticity, cyclonic circulation and weaker density anomalies. Vertical variations in stratification affect zonal jet placement. Under the same forcing conditions, the zonal jet is pushed offshore in more uniformly stratified domains. Offshore jet location generates upwards density advection away from the canyon, while onshore jets generate downwards density advection everywhere within the model domain. Increasing Rossby values across the canyon axis, as well as decreasing Burger values, increase negative vertical flux at shelf break depth (150 m). Increasing Rossby numbers lead to stronger downwards advection of a passive tracer (nitrate) as well as stronger vorticity within the canyon. Results from previous studies were explained within this new dynamic framework.

  18. 64 FR 25905 - Glen Canyon Dam Adaptive Management Work Group (AMWG) and Glen Canyon Technical Work Group (TWG)

    Federal Register 2010, 2011, 2012, 2013, 2014

    1999-05-13

    ... Bureau of Reclamation Glen Canyon Dam Adaptive Management Work Group (AMWG) and Glen Canyon Technical Work Group (TWG) AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of public meetings. SUMMARY: The Glen Canyon Technical Work Group was formed as an official subcommittee of the Glen Canyon...

  19. 65 FR 9296 - Glen Canyon Adaptive Management Work Group (AMWG) and Glen Canyon Technical Work Group (TWG)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2000-02-24

    ... Bureau of Reclamation Glen Canyon Adaptive Management Work Group (AMWG) and Glen Canyon Technical Work... ``Glen Canyon Dam Adaptive Management Work Group,'' a technical work group, a monitoring and research... meeting. The Glen Canyon Technical Work Group (TWG) will conduct one public meeting as follows: March...

  20. Mars Science Laboratory at Canyon

    NASA Technical Reports Server (NTRS)

    2003-01-01

    December 2, 2003

    NASA's Mars Science Laboratory travels near a canyon on Mars in this artist's concept. The mission is under development for launch in 2009 and a precision landing on Mars in 2010.

    Once on the ground, the Mars Science Laboratory would analyze dozens of samples scooped up from the soil and cored from rocks as it explores with greater range than any previous Mars rover. It would investigate the past or present ability of Mars to support life. NASA is considering nuclear energy for powering the rover to give it a long operating lifespan.

    NASA's Jet Propulsion Laboratory, Pasadena, Calif., is managing development of the Mars Smart Laboratory for the NASA Office of Space Science, Washington, D.C.

  1. Satellites See Smoke from Fourmile Canyon Fire

    NASA Video Gallery

    On the morning of September 6, 2010, a wildfire known as the Fourmile Canyon Fire broke out just west of Boulder, Colorado. The Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA’s Terr...

  2. Wintertime meteorology of the Grand Canyon region

    SciTech Connect

    Whiteman, C.D.

    1992-09-01

    The Grand Canyon region of the American Southwest is an interesting region meteorologically, but because of its isolated location, the lack of major population centers in the region, and the high cost of meteorological field experiments, it has historically received little observational attention. In recent years, however, attention has been directed to episodes of visibility degradation in many of the US National parks, and two recent field studies focused on this visibility problem have greatly increased the meteorological data available for the Grand Canyon region. The most recent and comprehensive of these studies is the Navajo Generating Station Winter Visibility Study of 1989--90. This study investigated the sources of visibility degradation in Grand Canyon National Park and the meteorological mechanisms leading to low visibility episodes. In this paper we present analyses of this rich data set to gain a better understanding of the key wintertime meteorological features of the Grand Canyon region.

  3. Flow Structure in a Bedrock Canyon (Invited)

    NASA Astrophysics Data System (ADS)

    Venditti, J. G.; Rennie, C. D.; Church, M. A.; Bomhof, J.; Lin, M.

    2013-12-01

    Bedrock canyon incision is widely recognized as setting the pace of landscape evolution. A variety of models link flow and sediment transport processes to the bedrock canyon incision rate. The model components that represent sediment transport processes are quite well developed in some models. In contrast, the model components that represent fluid flow remain rudimentary. Part of the reason is that there have been relatively few observations of flow structure in a bedrock canyon. Here, we present observations of flow obtained using an array of three acoustic Doppler current profilers during a 524 km long continuous centerline traverse of the Fraser River, British Columbia, Canada as it passes through a series of bedrock canyons. Through this portion of the river, the channel alternates between gravel-bedded reaches that are deeply incised into semi-consolidated glacial deposits and solid bedrock-bound reaches. We present observations of flow through 41 bedrock bound reaches of the river, derived from our centerline traverses and more detailed three-dimensional mapping of the flow structure in 2 canyons. Our observations suggest that flow in the most well-defined canyons (deep, laterally constrained, completely bedrock bound) is far more complex than that in a simple prismatic channel. As flow enters the canyon, a high velocity core plunges from the surface to the bed, causing a velocity inversion (high velocities at the bed and low velocities at the surface). This plunging flow then upwells along the canyon wall, resulting in a three-dimensional flow with counter-rotating, along-stream eddies that diverge near the bed. We observe centerline ridges along the canyon floors that result from the divergence and large-scale surface boils caused by the upwelling. This flow structure causes deep scour in the bedrock channel floor, and ensures the base of the canyon walls are swept of debris that otherwise may be deposited due to lower shear stresses abutting the walls. The

  4. Gravity currents down canyons: effects of rotation

    NASA Astrophysics Data System (ADS)

    Berntsen, Jarle; Darelius, Elin; Avlesen, Helge

    2016-10-01

    The flow of dense water in a V-shaped laboratory-scale canyon is investigated by using a non-hydrostatic numerical ocean model with focus on the effects of rotation. By using a high-resolution model, a more detailed analysis of plumes investigated in the laboratory (Deep-Sea Res I 55:1021-1034 2008) for laminar flow is facilitated. The inflow rates are also increased to investigate plume structure for higher Reynolds numbers. With rotation, the plumes will lean to the side of the canyon, and there will be cross-canyon geostrophic currents and Ekman transports. In the present study, it is found that the cross-canyon velocities are approximately 5 % of the down-canyon velocities over the main body of the plume for the rotational case. With rotation, the flow of dense water through the body of the plume and into the plume head is reduced. The plume head becomes less developed, and the speed of advance of the head is reduced. Fluid parcels near the top of the plume will to a larger extent be left behind the faster flowing dense core of the plume in a rotating system. Near the top of the plume, the cross-canyon velocities change direction. Inside the plume, the cross-flow is up the side of the canyon, and above the interface to the ambient there is a compensating cross-flow down the side of the canyon. This means that parcels of fluid around the interface become separated. Parcels of fluid around the interface with small down-canyon velocity components and relative large cross-canyon components will follow a long helix-like path down the canyon. It is found that the entrainment coefficients often are larger in the rotational experiments than in corresponding experiments without rotation. The effects of rotation and higher inflow rates on the areal patterns of entrainment velocities are demonstrated. In particular, there are bands of higher entrainment velocities along the lateral edges of the plumes in the rotational cases.

  5. Environmental assessment: Davis Canyon site, Utah

    SciTech Connect

    none,

    1986-05-01

    In February 1983, the US Department of Energy (DOE) identified the Davis Canyon site in Utah as one of the nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. To determine their suitability, the Davis Canyon site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE's General Guidelines for the Recommendation of Sites for the Nuclear Waste Repositories. These evaluations were reported in draft environmental assessments (EAs), which were issued for public review and comment. After considering the comments received on the draft EAs, the DOE prepared the final EA. The Davis Canyon site is in the Paradox Basin, which is one of five distinct geohydrologic settings considered for the first repository. This setting contains one other potentially acceptable site -- the Lavender Canyon site. Although the Lavender Canyon site is suitable for site characterization, the DOE has concluded that the Davis Canyon site is the preferred site in the Paradox Basin. On the basis of the evaluations reported in this EA, the DOE has found that the Davis Canyon site is not disqualified under the guidelines. Furthermore, the DOE has fond that the site is suitable for site characterization because the evidence does not support a conclusion that the site will not be able to meet each of the qualifying conditions specified in the guidelines. On the basis of these findings, the DOE is nominating the Davis Canyon site as one of five sites suitable for characterization. 181 figs., 175 tabs.

  6. Different Views of the Grand Canyon

    NASA Astrophysics Data System (ADS)

    Elders, Wilfred A.

    Each year the spectacular scenery of the Grand Canyon of Arizona awes its more than 4,000,000 visitors. Just as its enormous scale dwarfs our human sense of space, its geology also dwarfs our human sense of time. Perhaps here, more than anywhere else on the planet, we can experience a sense of ``Deep Time.'' The colorful rocks exposed in the vertical walls of the canyon display a span of 1.8 billion years of Earth's history [Beus and Morales, 2003]. But wait! There is a different view! According to Vail [2003], this time span is only 6,000 years and the Grand Canyon and its rocks are a record of the Biblical 6 days of creation and Noah's flood. During a visit to Grand Canyon, in August 2003, I learned that Vail's book, Grand Canyon: A Different View, is being sold within the National Park. The author and compiler of Grand Canyon: A Different View is a Colorado River guide who is well acquainted with the Grand Canyon at river level. He has produced a book with an attractive layout and beautiful photographs. The book is remarkable because it has 23 co-authors, all male, who comprise a veritable ``Who's Who'' in creationism. For example, Henry Morris and John Whitcomb, the authors of the seminal young Earth creationist text, The Genesis Flood [Whitcomb and Morris, 1961], each contribute a brief introduction. Each chapter of Grand Canyon: A Different View begins with an overview by Vail, followed by brief comments by several contributors that ``have been peer reviewed to ensure a consistent and Biblical perspective.'' This perspective is strict Biblical literalism.

  7. Mineral resources of the Fish Creek Canyon, Road Canyon, and Mule Canyon Wilderness Study Areas, San Juan County, Utah

    SciTech Connect

    Bove, D.J.; Shawe, D.R.; Lee, G.K.; Hanna, W.F. ); Jeske, R.E. )

    1989-01-01

    This book reports the Fish Creek Canyon (UT-060-204), Road Canyon(UT-060-201), and Mule Canyon (UT-060-205B) Wilderness Study Areas, which comprise 40,160 acres, 52,420 acres, and 5,990 acres, respectively, studied for their mineral endowment. A search of federal, state, and county records showed no current or previous mining-claim activity. No mineral resources were identified during field examination of the study areas. Sandstone and sand and gravel have no unique qualities but could have limited local use for road metal or other construction purposes. However, similar materials are abundant outside the study areas. The three study areas have moderate resource potential for undiscovered oil and gas and low resource potential for undiscovered metals, including uranium and thorium, coal, and geothermal energy.

  8. Grand Canyon Humpback Chub Population Improving

    USGS Publications Warehouse

    Andersen, Matthew E.

    2007-01-01

    The humpback chub (Gila cypha) is a long-lived, freshwater fish found only in the Colorado River Basin. Physical adaptations-large adult body size, large predorsal hump, and small eyes-appear to have helped humpback chub evolve in the historically turbulent Colorado River. A variety of factors, including habitat alterations and the introduction of nonnative fishes, likely prompted the decline of native Colorado River fishes. Declining numbers propelled the humpback chub onto the Federal list of endangered species in 1967, and the species is today protected under the Endangered Species Act of 1973. Only six populations of humpback chub are currently known to exist, five in the Colorado River Basin above Lees Ferry, Ariz., and one in Grand Canyon, Ariz. The U.S. Geological Survey's Grand Canyon Monitoring and Research Center oversees monitoring and research activities for the Grand Canyon population under the auspices of the Glen Canyon Dam Adaptive Management Program (GCDAMP). Analysis of data collected through 2006 suggests that the number of adult (age 4+ years) humpback chub in Grand Canyon increased to approximately 6,000 fish in 2006, following an approximate 40-50 percent decline between 1989 and 2001. Increasing numbers of adult fish appear to be the result of steadily increasing numbers of juvenile fish reaching adulthood beginning in the mid- to late-1990s and continuing through at least 2002.

  9. Air pollutant transport in a street canyon

    SciTech Connect

    Luke Chen; Hsu-Cheng Chang

    1996-12-31

    An air pollutant (CO) distribution in a typical street canyon is simulated to evaluate pedestrian exposure. In this study, we consider factors those may affect the pollutant distribution in a typical street canyon. The considered factors include aspect ratio of a street canyon, atmospheric stability, traffic load and turbulent buoyancy effect. A two-dimensional domain that includes suburban roughness and urban street canyon is considered. The factors such as atmospheric stability, traffic load and turbulent buoyancy are imposed through the associated boundary conditions. With numerical simulation, the critical aspect ration of a street canyon the includes two vortices and results in pollutant accumulation are found. The buoyant effect is found to raise the same pollutant concentration up to the position higher than the results come out from the case without buoyancy. The pedestrian exposure to the street air pollutant under various traffic loads and atmospheric stability are evaluated. This study conclude that the local building regulations that specify the building height/street width ratio will not cause significant pedestrian exposure to the street air pollution in most of traffic loads and atmospheric stability conditions.

  10. Modelling Aerosol Dispersion in Urban Street Canyons

    NASA Astrophysics Data System (ADS)

    Tay, B. K.; Jones, D. P.; Gallagher, M. W.; McFiggans, G. B.; Watkins, A. P.

    2009-04-01

    Flow patterns within an urban street canyon are influenced by various micrometeorological factors. It also represents an environment where pollutants such as aerosols accumulate to high levels due to high volumes of traffic. As adverse health effects are being attributed to exposure to aerosols, an investigation of the dispersion of aerosols within such environments is of growing importance. In particular, one is concerned with the vertical structure of the aerosol concentration, the ventilation characteristics of the street canyon and the influence of aerosol microphysical processes. Due to the inherent heterogeneity of the aerosol concentrations within the street canyon and the lack of spatial resolution of measurement campaigns, these issues are an on-going debate. Therefore, a modelling tool is required to represent aerosol dispersion patterns to provide insights to results of past measurement campaigns. Computational Fluid Dynamics (CFD) models are able to predict detailed airflow patterns within urban geometries. This capability may be further extended to include aerosol dispersion, by an Euler-Euler multiphase approach. To facilitate the investigation, a two-dimensional, multiphase CFD tool coupled with the k-epsilon turbulence model and with the capability of modelling mixed convection flow regimes arising from both wind driven flows and buoyancy effects from heated walls was developed. Assuming wind blowing perpendicularly to the canyon axis and treating aerosols as a passive scalar, an attempt will be made to assess the sensitivities of aerosol vertical structure and ventilation characteristics to the various flow conditions. Numerical studies were performed using an idealized 10m by 10m canyon to represent a regular canyon and 10m by 5m to represent a deep one. An aerosol emission source was assigned on the centerline of the canyon to represent exhaust emissions. The vertical structure of the aerosols would inform future directives regarding the

  11. Origin of Florida Canyon and the role of spring sapping on the formation of submarine box canyons

    USGS Publications Warehouse

    Paull, Charles K.; Spiess, Fred N.; Curray, Joseph R.; Twichell, David C.

    1990-01-01

    Florida Canyon, one of a series of major submarine canyons on the southwestern edge of the Florida Platform, was surveyed using GLORIA, SeaBeam, and Deep-Tow technologies, and it was directly observed during three DSRV Alvin dives. Florida Canyon exhibits two distinct morphologies: a broad V-shaped upper canyon and a deeply entrenched, flat-floored, U-shaped lower canyon. The flat- floored lower canyon extends 20 km into the Florida Platform from the abyssal Gulf. The lower canyon ends abruptly at an ∼3 km in diameter semicircular headwall that rises 750 m with a >60° slope angle to the foot of the upper canyon. The sides of the lower canyon are less steep than its headwall and are characterized by straight faces that occur along preferred orientations and indicate a strong joint control. The upper canyon is characterized by a gently sloping, straight V-shaped central valley cut into a broad terrace. The flat floor of the upper canyon continues as terraces along the upper walls of the lower canyon. On the flanks of the upper canyon, there are five >50-m-deep, >0.5-km-wide, closed sink-hole-like depressions which indicate subsurface dissolution within the platform. The origin of the lower canyon is difficult to explain with traditional models of submarine canyon formation by external physical processes. The movement of ground water, probably with high salinities and reduced compounds along regional joints, may have focused the corrosive force of submarine spring sapping at the head of the lower canyon to produce the canyon's present shape.

  12. 43. and Design, Grand Canyon National Park, dated August 23, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    43. and Design, Grand Canyon National Park, dated August 23, 1934, and September 17, 1934 (original located at Federal Records Center, Denver, Colorado, #113/3084-set of 2) SEWAGE PLANT ADDITION. - Water Reclamation Plant, Grand Canyon, Coconino County, AZ

  13. Long view from canyon edge, east of the overlook, showing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Long view from canyon edge, east of the overlook, showing guard rails, fencing, stairs and masonry; view to north - Mather Point Overlook, South Entrance Road, Grand Canyon Village, Coconino County, AZ

  14. 10. August, 1971. GV W FROM PROVO CANYON. AT PRESSURE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. August, 1971. GV W FROM PROVO CANYON. AT PRESSURE HOUSE SHOWING POWER STATION AT BOTTOM OF PHOTO. - Telluride Power Company, Olmsted Hydroelectric Plant, mouth of Provo River Canyon West of U.S. Route 189, Orem, Utah County, UT

  15. Contemporary sediment-transport processes in submarine canyons.

    PubMed

    Puig, Pere; Palanques, Albert; Martín, Jacobo

    2014-01-01

    Submarine canyons are morphological incisions into continental margins that act as major conduits of sediment from shallow- to deep-sea regions. However, the exact mechanisms involved in sediment transfer within submarine canyons are still a subject of investigation. Several studies have provided direct information about contemporary sedimentary processes in submarine canyons that suggests different modes of transport and various triggering mechanisms. Storm-induced turbidity currents and enhanced off-shelf advection, hyperpycnal flows and failures of recently deposited fluvial sediments, dense shelf-water cascading, canyon-flank failures, and trawling-induced resuspension largely dominate present-day sediment transfer through canyons. Additionally, internal waves periodically resuspend ephemeral deposits within canyons and contribute to dispersing particles or retaining and accumulating them in specific regions. These transport processes commonly deposit sediments in the upper- and middle-canyon reaches for decades or centuries before being completely or partially flushed farther down-canyon by large sediment failures.

  16. Deciphering Outburst Flood Discharges from the Morphology of Hesperian Canyons

    NASA Astrophysics Data System (ADS)

    Lapotre, M. G. A.; Lamb, M. P.; Williams, R. M.

    2014-07-01

    We model the hydraulics of outburst floods over canyon escarpments. We show that canyons only maintain a constant width under a certain hydraulic regime. We combine the hydraulic model to an erosion law to constrain paleodischarges at Echus Chasma.

  17. Tectonic activity and the evolution of submarine canyons: The Cook Strait Canyon system, New Zealand

    NASA Astrophysics Data System (ADS)

    Micallef, Aaron; Mountjoy, Joshu; Barnes, Philip; Canals, Miquel; Lastras, Galderic

    2016-04-01

    Submarine canyons are Earth's most dramatic erosional features, comprising steep-walled valleys that originate in the continental shelf and slope. They play a key role in the evolution of continental margins by transferring sediments into deep water settings and are considered important biodiversity hotspots, pathways for nutrients and pollutants, and analogues of hydrocarbon reservoirs. Although comprising only one third of continental margins worldwide, active margins host more than half of global submarine canyons. We still lack of thorough understanding of the coupling between active tectonics and submarine canyon processes, which is necessary to improve the modelling of canyon evolution in active margins and derive tectonic information from canyon morphology. The objectives of this study are to: (i) understand how tectonic activity influences submarine canyon morphology, processes, and evolution in an active margin, and (2) formulate a generalised model of canyon development in response to tectonic forcing based on morphometric parameters. We fulfil these objectives by analysing high resolution geophysical data and imagery from Cook Strait Canyon system, offshore New Zealand. Using these data, we demonstrate that tectonic activity, in the form of major faults and structurally-generated tectonic ridges, leaves a clear topographic signature on submarine canyon location and morphology, in particular their dendritic and sinuous planform shapes, steep and linear longitudinal profiles, and cross-sectional asymmetry and width. We also report breaks/changes in canyon longitudinal slope gradient, relief and slope-area regression models at the intersection with faults. Tectonic activity gives rise to two types of knickpoints in the Cook Strait Canyon. The first type consists of low slope gradient, rounded and diffusive knickpoints forming as a result of short wavelength folds or fault break outs and being restored to an equilibrium profile by upstream erosion and

  18. Submarine origin for the Neoproterozoic Wonoka canyons, South Australia

    NASA Astrophysics Data System (ADS)

    Giddings, J. A.; Wallace, M. W.; Haines, P. W.; Mornane, K.

    2010-01-01

    An examination of the deeply incised Ediacaran Wonoka canyons in the Adelaide Geosyncline (most recently interpreted as subaerial valleys) demonstrates their submarine origin, and confirms them as some of the best examples of ancient outcropping submarine canyons in the world. The entire canyon-fill succession is interpreted to be of deep-water (below wave base) origin, consisting of calcareous shale and siltstone together with a variety of mass-flow deposits including turbidites, grain flows and debris flows. The canyon fill lacks definitive shallow-water structures (e.g. mud cracks, fenestral fabrics or wave ripples) at all stratigraphic levels. Canyon-lining carbonate crusts that have previously been interpreted as non-marine calcretes or tufas (and used to suggest a non-marine origin for the canyons) are argued to be of deep-water, marine, microbial origin. Extremely negative carbon isotope values from the canyon-fill and canyon-lining crusts have a primary marine origin. Previously interpreted deepening upward trends in the canyon fill (used as evidence of a subaerial erosion episode followed by drowning) are suggested to be fining upward trends, caused by the transition from canyon cutting to canyon filling, with the majority of the fill being of deep-water slope origin. The basal conglomeratic canyon-fill sediments represent the last vestiges of the high-energy, deep-water, canyon-erosion environment in which the incisions formed. A deep-water origin for the canyons is consistent with all previous stratigraphic observations of the Wonoka canyons, including the conspicuous lack of regional unconformities in the lower Wonoka Formation, and their emanation from the deep-water facies of the Wonoka Formation. A submarine canyon origin also removes the need for extreme (~ 1 km) relative sea level fluctuation and associated problems (i.e. an enclosed basin with Messinian-style evaporative drawdown or thermal uplift above a migrating mantle plume) required by the

  19. 27 CFR 9.152 - Malibu-Newton Canyon.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Malibu-Newton Canyon. 9... Malibu-Newton Canyon. (a) Name. The name of the viticultural area described in this petition is “Malibu-Newton Canyon.” (b) Approved maps. The appropriate map for determining the boundary of the...

  20. 27 CFR 9.152 - Malibu-Newton Canyon.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Malibu-Newton Canyon. 9... Malibu-Newton Canyon. (a) Name. The name of the viticultural area described in this petition is “Malibu-Newton Canyon.” (b) Approved maps. The appropriate map for determining the boundary of the...

  1. 27 CFR 9.152 - Malibu-Newton Canyon.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Malibu-Newton Canyon. 9... Malibu-Newton Canyon. (a) Name. The name of the viticultural area described in this petition is “Malibu-Newton Canyon.” (b) Approved maps. The appropriate map for determining the boundary of the...

  2. 27 CFR 9.152 - Malibu-Newton Canyon.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Malibu-Newton Canyon. 9... Malibu-Newton Canyon. (a) Name. The name of the viticultural area described in this petition is “Malibu-Newton Canyon.” (b) Approved maps. The appropriate map for determining the boundary of the...

  3. 27 CFR 9.152 - Malibu-Newton Canyon.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Malibu-Newton Canyon. 9... Malibu-Newton Canyon. (a) Name. The name of the viticultural area described in this petition is “Malibu-Newton Canyon.” (b) Approved maps. The appropriate map for determining the boundary of the...

  4. 77 FR 9265 - Glen Canyon Dam Adaptive Management Work Group

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-16

    ... Bureau of Reclamation Glen Canyon Dam Adaptive Management Work Group AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of public meeting. SUMMARY: The Glen Canyon Dam Adaptive Management Work Group... Federal advisory committee, the AMWG, a technical work group (TWG), a Grand Canyon Monitoring and...

  5. 78 FR 21415 - Glen Canyon Dam Adaptive Management Work Group

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-10

    ... Bureau of Reclamation Glen Canyon Dam Adaptive Management Work Group AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of public meeting. SUMMARY: The Glen Canyon Dam Adaptive Management Work Group..., the AMWG, a technical work group, a Grand Canyon Monitoring and Research Center, and...

  6. 77 FR 43117 - Glen Canyon Dam Adaptive Management Work Group

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-23

    ... Bureau of Reclamation Glen Canyon Dam Adaptive Management Work Group AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of public meeting. SUMMARY: The Glen Canyon Dam Adaptive Management Work Group... Federal advisory committee, the AMWG, a technical work group (TWG), a Grand Canyon Monitoring and...

  7. 77 FR 22801 - Glen Canyon Dam Adaptive Management Work Group

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-17

    ... Bureau of Reclamation Glen Canyon Dam Adaptive Management Work Group AGENCY: Bureau of Reclamation... Management Work Group (AMWG) makes recommendations to the Secretary of the Interior concerning Glen Canyon... AMP includes a Federal advisory committee, the AMWG, a technical work group, a Grand Canyon...

  8. 63 FR 13071 - Glen Canyon Technical Work Group; Public Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    1998-03-17

    ... Bureau of Reclamation Glen Canyon Technical Work Group; Public Meetings SUMMARY: The Glen Canyon Technical Work Group (TWG) was formed as an official subcommittee of the Glen Canyon Adaptive Management Work Group (AMWG) on September 10, 1997. The TWG members were named by the members of the AMWG and...

  9. 64 FR 10487 - Glen Canyon Technical Work Group

    Federal Register 2010, 2011, 2012, 2013, 2014

    1999-03-04

    ... Bureau of Reclamation Glen Canyon Technical Work Group AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of public meetings. SUMMARY: The Glen Canyon Technical Work Group (TWG) was formed as an official subcommittee of the Glen Canyon Adaptive Management Work Group (AMWG). The TWG members were named by members...

  10. 63 FR 46467 - Glen Canyon Technical Work Group

    Federal Register 2010, 2011, 2012, 2013, 2014

    1998-09-01

    ... Bureau of Reclamation Glen Canyon Technical Work Group AGENCY: Bureau of Reclamation, Interior. ] ACTION: Notice of public meetings. SUMMARY: The Glen Canyon Technical Work Group (TWG) was formed as an official subcommittee of the Glen Canyon Adaptive Management Work Group (AMWG) on September 10, 1997. The TWG...

  11. 62 FR 49526 - Glen Canyon Technical Work Group

    Federal Register 2010, 2011, 2012, 2013, 2014

    1997-09-22

    ... Bureau of Reclamation Glen Canyon Technical Work Group AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of public meetings. SUMMARY: The Glen Canyon Technical Work Group (TWG) was formed as an official subcommittee of the Glen Canyon Adaptive Management Work Group (AMWG) on September 10, 1997. The TWG...

  12. 79 FR 24748 - Glen Canyon Dam Adaptive Management Work Group

    Federal Register 2010, 2011, 2012, 2013, 2014

    2014-05-01

    ... Bureau of Reclamation Glen Canyon Dam Adaptive Management Work Group AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of public meeting. SUMMARY: The Glen Canyon Dam Adaptive Management Work Group..., the AMWG, a technical work group, a Grand Canyon Monitoring and Research Center, and...

  13. 80 FR 21261 - Glen Canyon Dam Adaptive Management Work Group

    Federal Register 2010, 2011, 2012, 2013, 2014

    2015-04-17

    ....05940913.7000000] Glen Canyon Dam Adaptive Management Work Group AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of public meeting. SUMMARY: The Glen Canyon Dam Adaptive Management Work Group (AMWG... committee, the AMWG, a technical work group, a Grand Canyon Monitoring and Research Center, and...

  14. 62 FR 66385 - Glen Canyon Technical Work Group

    Federal Register 2010, 2011, 2012, 2013, 2014

    1997-12-18

    ... Bureau of Reclamation Glen Canyon Technical Work Group AGENCY: Bureau of Reclamation, DOI. ACTION: Notice of public meetings. SUMMARY: The Glen Canyon Technical Work Group (TWG) was formed as an official subcommittee of the Glen Canyon Adaptive Management Work Group (AMWG) on September 10, 1997. The TWG...

  15. 62 FR 63383 - Glen Canyon Technical Work Group

    Federal Register 2010, 2011, 2012, 2013, 2014

    1997-11-28

    ... Bureau of Reclamation Glen Canyon Technical Work Group AGENCY: Bureau of Reclamation, Interior. ACTION: Amended Notice of Public Meeting. SUMMARY: The Glen Canyon Technical Work Group (TWG) was formed as an official subcommittee of the Glen Canyon Adaptive Management Work Group (AMWG) on September 10, 1997....

  16. 62 FR 66385 - Glen Canyon Technical Work Group

    Federal Register 2010, 2011, 2012, 2013, 2014

    1997-12-18

    ... Bureau of Reclamation Glen Canyon Technical Work Group AGENCY: Bureau of Reclamation, DOI. ACTION: Notice of public meeting. SUMMARY: The Glen Canyon Technical Work Group (TWG) was formed as an official subcommittee of the Glen Canyon Adaptive Management Work Group (AMWG) on September 10, 1997. The TWG...

  17. 5. DARK CANYON SIPHON Photographic copy of historic photo, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. DARK CANYON SIPHON - Photographic copy of historic photo, November 11, 1906 (original print located at the Carlsbad Irrigation District offices, Carlsbad, New Mexico) photographer unknown 'LOWER END OF DARK CANYON SIPHON CONSTRUCTION' - Carlsbad Irrigation District, Dark Canyon Siphon, On Main Canal, 1 mile South of Carlsbad, Carlsbad, Eddy County, NM

  18. 27 CFR 9.217 - Happy Canyon of Santa Barbara.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Happy Canyon of Santa... Areas § 9.217 Happy Canyon of Santa Barbara. (a) Name. The name of the viticultural area described in this section is “Happy Canyon of Santa Barbara”. For purposes of part 4 of this chapter, “Happy...

  19. Surface Composition Differences in Martian Canyon

    NASA Technical Reports Server (NTRS)

    2003-01-01

    (Released 29 May 2002) Color differences in this daytime infrared image taken by the camera on NASA's Mars Odyssey spacecraft represent differences in the mineral composition of the rocks, sediments and dust on the surface. The image shows a portion of a canyon named Candor Chasma within the great Valles Marineris system of canyons, at approximately 5 degrees south latitude, 285 degrees east (75 degrees west) longitude. The area shown is approximately 30 by 175 kilometers (19 by 110 miles). The image combines exposures taken by Odyssey's thermal emission imaging system at three different wavelengths of infrared light: 6.3 microns, 7.4 microns and 8.7 microns.

  20. 64 FR 54639 - Glen Canyon Adaptive Management Work Group (AMWG) and Glen Canyon Technical Work Group (TWG)

    Federal Register 2010, 2011, 2012, 2013, 2014

    1999-10-07

    ... Bureau of Reclamation Glen Canyon Adaptive Management Work Group (AMWG) and Glen Canyon Technical Work... Management Work Group, a technical work group, a monitoring and research center, and independent review... to act upon. DATES AND LOCATION: The Glen Canyon Adaptive Management Work Group will conduct two...

  1. 65 FR 70735 - Glen Canyon Adaptive Management Work Group (AMWG) and Glen Canyon; Technical Work Group (TWG)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2000-11-27

    ... Bureau of Reclamation Glen Canyon Adaptive Management Work Group (AMWG) and Glen Canyon; Technical Work... has been organized and includes a federal advisory committee (the AMWG), a technical work group (the... AND LOCATION: The Glen Canyon Technical Work Group will conduct the following public meetings:...

  2. 65 FR 69787 - Glen Canyon Adaptive Management Work Group (AMWG) and Glen Canyon Technical Work Group (TWG...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2000-11-20

    ... Bureau of Reclamation Glen Canyon Adaptive Management Work Group (AMWG) and Glen Canyon Technical Work Group (TWG); Correction AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of Public Meetings... Group (AMWG) and Glen Canyon Technical Work Group (TWG). The document contained incorrect dates....

  3. 65 FR 48731 - Glen Canyon Adaptive Management Work Group (AMWG) and Glen Canyon Technical Work Group (TWG)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2000-08-09

    ... Bureau of Reclamation Glen Canyon Adaptive Management Work Group (AMWG) and Glen Canyon Technical Work... Management Work Group,'' a technical work group, a monitoring and research center, and independent review... Canyon Adaptive Management Work Group will conduct a public meeting: Phoenix, Arizona--January...

  4. 65 FR 15173 - Glen Canyon Adaptive Management Work Group (AMWG) and Glen Canyon Technical Work Group (TWG)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2000-03-21

    ... Bureau of Reclamation Glen Canyon Adaptive Management Work Group (AMWG) and Glen Canyon Technical Work Group (TWG) AGENCY: Bureau of Reclamation, Interior. ACTION: Notice; correction. SUMMARY: The Bureau of... an upcoming public meeting of the Glen Canyon Dam Adaptive Management Work Group. The meeting...

  5. 64 FR 61122 - Glen Canyon Adaptive Management Work Group (AMWG) and Glen Canyon Technical Work Group (TWG...

    Federal Register 2010, 2011, 2012, 2013, 2014

    1999-11-09

    ... Bureau of Reclamation Glen Canyon Adaptive Management Work Group (AMWG) and Glen Canyon Technical Work Group (TWG); Correction AGENCY: Bureau of Reclamation, Interior. ACTION: Notice; correction. SUMMARY..., concerning the announcement of an upcoming public meeting of the Glen Canyon Technical Work Group....

  6. 65 FR 79122 - Glen Canyon Adaptive Management Work Group (AMWG) and Glen Canyon Technical Work Group (TWG)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2000-12-18

    ... Bureau of Reclamation Glen Canyon Adaptive Management Work Group (AMWG) and Glen Canyon Technical Work... has been organized and includes a federal advisory committee (the AMWG), a technical work group (the... and Location: The Glen Canyon Technical Work Group will conduct the following public meetings:...

  7. 63 FR 69304 - Glen Canyon Dam Adaptive Management Work Group (AMWG) and Glen Canyon Technical Work Group (TWG)

    Federal Register 2010, 2011, 2012, 2013, 2014

    1998-12-16

    ... Bureau of Reclamation Glen Canyon Dam Adaptive Management Work Group (AMWG) and Glen Canyon Technical Work Group (TWG) AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of public meetings. SUMMARY: The Glen Canyon Dam Adaptive Management Work Group will conduct an open public meeting to...

  8. Let's Bet on Sediments! Hudson Canyon Cruise--Grades 9-12. Focus: Sediments of Hudson Canyon.

    ERIC Educational Resources Information Center

    National Oceanic and Atmospheric Administration (DOC), Rockville, MD.

    These activities are designed to teach about the sediments of Hudson Canyon. Students investigate and analyze the patterns of sedimentation in the Hudson Canyon, observe how heavier particles sink faster than finer particles, and learn that submarine landslides are avalanches of sediment in deep ocean canyons. The activity provides learning…

  9. Morphology of Neptune Node Sites, Barkley Canyon, Cascadia Margin

    NASA Astrophysics Data System (ADS)

    Lundsten, E. M.; Anderson, K.; Paull, C. K.; Caress, D. W.; Thomas, H. J.; Riedel, M.

    2014-12-01

    High-resolution multibeam bathymetry and chirp seismic reflection profiles collected with MBARI's mapping autonomous underwater vehicle reveal the fine-scale morphology and shallow seafloor structure of the flanks and floor of Barkley Canyon on the Cascadia continental margin off British Columbia. The surveys characterize the environment surrounding three nodes on the Neptune Canada cabled observatory located within the canyon. The canyon floor between 960 and 1020 m water depth lacks channeling and contains ≥ 24 m of acoustically uniform sediment fill, which is ponded between the canyon's steep sidewalls. The fill overlies a strong reflector that outlines an earlier, now buried, canyon floor channel system. Debris flow tongues contain meter scale blocks sticking-up through the fill. Apparently the present geomorphology surrounding the Canyon Axis node in 985 m is attributable to local debris flows, rather than organized down canyon processes. In the survey area the canyon sidewalls extend ~300 m up and in places the slope of the canyons sides exceed 40°. Both the Hydrate node in 870 m water depths and the Mid-Canyon node at 890 m are located on a headland that forms intermediate depth terraces on the canyon's western flank. While the seafloor immediately surrounding the Mid-canyon node is smooth, the Hydrate node is marked by 10 circular mounds up to 2 m high and 10 m in diameter, presumable associated with hydrate formation. Although wedges of sediment drape occur in places on the canyon sides, the chirp profiles show no detectible sediment drape at either node site and suggest these nodes are situated on older, presumably pre-Quaternary strata. The lack of reflectors in the chirp profiles indicates most of the canyon's sidewalls are largely sediment-bare. Lineations in the bathymetry mark the exposed edges of truncated beds. Rough, apparently fresh textures, within slide scarps show the importance of erosion on the development of the canyon flanks.

  10. Geohydrology of White Rock Canyon of the Rio Grande from Otowi to Frijoles Canyon

    SciTech Connect

    Purtymun, W.D.; Peters, R.J.; Owens, J.W.

    1980-12-01

    Twenty-seven springs discharge from the Totavi Lentil and Tesuque Formation in White Rock Canyon. Water generally acquires its chemical characteristics from rock units that comprise the spring aquifer. Twenty-two of the springs are separated into three groups of similar aquifer-related chemical quality. The five remaining springs make up a fourth group with a chemical quality that differs due to localized conditions in the aquifer. Localized conditions may be related to recharge or discharge in or near basalt intrusion or through faults. Streams from Pajarito, Ancho, and Frijoles Canyons discharge into the Rio Grande in White Rock Canyon. The base flow in the streams is from springs. Sanitary effluent in Mortandad Canyon from the treatment plant at White Rock also reaches the Rio Grande.

  11. Grand Canyon, Lake Powell, and Lake Mead

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A snowfall in the American West provides contrast to the landscape's muted earth tones and indicates changes in topography and elevation across (clockwise from top left) Nevada, Utah, Colorado, New Mexico, Arizona, and California. In Utah, the southern ranges of the Wasatch Mountains are covered in snow, and the Colorado River etches a dark ribbon across the red rock of the Colorado Plateau. In the center of the image is the reservoir created by the Glen Canyon Dam. To the east are the gray-colored slopes of Navaho Mountain, and to the southeast, dusted with snow is the region called Black Mesa. Southwest of Glen Canyon, the Colorado enters the Grand Canyon, which cuts westward through Arizona. At a deep bend in the river, the higher elevations of the Keibab Plateau have held onto snow. At the end of the Grand Canyon lies another large reservoir, Lake Mead, which is formed by the Hoover Dam. Credit: Jacques Descloitres, MODIS Land Rapid Response Team, NASA/GSFC

  12. 76 FR 8359 - Boulder Canyon Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-14

    ...) is proposing an adjustment to the Boulder Canyon Project (BCP) electric service base charge and rates. The current base charge and rates expire September 30, 2011, under Rate Schedule BCP-F8. The current... jmurray@wapa.gov . SUPPLEMENTARY INFORMATION: The proposed base charge and rates for BCP electric...

  13. Map Your Way to the Grand Canyon

    ERIC Educational Resources Information Center

    Yoder, Holly

    2005-01-01

    In the introductory assignment, each randomly assigned group spends about 10 to 15 minutes at each station. The author incorporates as much sensory stimulation in the activity as possible. At the first station, students view a PowerPoint show from a geology class the author participated in at the Grand Canyon. At station two, students look at a…

  14. The Colorado River in the Grand Canyon.

    ERIC Educational Resources Information Center

    Speece, Susan

    1991-01-01

    An assessment of the water quality of the Colorado River in the Grand Canyon was made, using the following parameters: dissolved oxygen, water temperature, hydrogen ion concentration, total dissolved solids, turbidity, and ammonium/nitrogen levels. These parameters were used to provide some clue as to the "wellness" and stability of the…

  15. North Atlantic slope and canyon study. Volume 1. Executive summary

    SciTech Connect

    Butman, B.

    1986-12-01

    A field program to investigate the currents and sediment transport along the outershelf and upper slope along the southern flank of Georges Bank was conducted between 1980 and 1984. A major part of the field experiment was conducted in Lydonia Canyon, a large submarine canyon which cuts northward about 20 km into the continental shelf from the shelfbreak. A smaller experiment was conducted in Oceanographer Canyon to compare the currents in these two major canyons. The long-term current observations made in Lydonia and Oceanographer Canyons show that the current regime in these topographic features differs from the adjacent slope, and between canyons. Sediments near the head (depths shallower than about 600 m) in both Lydonia and Oceanographer are frequently resuspended. This frequent resuspension may allow the sediments to strip pollutants from the water column. Currents in Oceanographer Canyon are stronger and the sediments coarser than in Lydonia at comparable depths.

  16. Anatomy of La Jolla submarine canyon system; offshore southern California

    USGS Publications Warehouse

    Paull, C.K.; Caress, D.W.; Lundsten, E.; Gwiazda, R.; Anderson, K.; McGann, M.; Conrad, J.; Edwards, B.; Sumner, E.J.

    2013-01-01

    An autonomous underwater vehicle (AUV) carrying a multibeam sonar and a chirp profiler was used to map sections of the seafloor within the La Jolla Canyon, offshore southern California, at sub-meter scales. Close-up observations and sampling were conducted during remotely operated vehicle (ROV) dives. Minisparker seismic-reflection profiles from a surface ship help to define the overall geometry of the La Jolla Canyon especially with respect to the pre-canyon host sediments. The floor of the axial channel is covered with unconsolidated sand similar to the sand on the shelf near the canyon head, lacks outcrops of the pre-canyon host strata, has an almost constant slope of 1.0° and is covered with trains of crescent shaped bedforms. The presence of modern plant material entombed within these sands confirms that the axial channel is presently active. The sand on the canyon floor liquefied during vibracore collection and flowed downslope, illustrating that the sediment filling the channel can easily fail even on this gentle slope. Data from the canyon walls help constrain the age of the canyon and extent of incision. Horizontal beds of moderately cohesive fine-grained sediments exposed on the steep canyon walls are consistently less than 1.232 million years old. The lateral continuity of seismic reflectors in minisparker profiles indicate that pre-canyon host strata extend uninterrupted from outside the canyon underneath some terraces within the canyon. Evidence of abandoned channels and point bar-like deposits are noticeably absent on the inside bend of channel meanders and in the subsurface of the terraces. While vibracores from the surface of terraces contain thin (< 10 cm) turbidites, they are inferred to be part of a veneer of recent sediment covering pre-canyon host sediments that underpin the terraces. The combined use of state of the art seafloor mapping and exploration tools provides a uniquely detailed view of the morphology within an active submarine canyon.

  17. Creationism in the Grand Canyon, Texas Textbooks

    NASA Astrophysics Data System (ADS)

    Folger, Peter

    2004-01-01

    AGU President Bob Dickinson, together with presidents of six other scientific societies, have written to Joseph Alston, Superintendent of Grand Canyon National Park, pointing out that a creationist book, The Grand Canyon: A Different View, is being sold in bookstores within the borders of the park as a scientific explanation about Grand Canyon geologic history. President Dickinson's 16 December letter urges that Alston clearly separate The Grand Canyon: A Different View from books and materials that discuss the legitimate scientific understanding of the origin of the Grand Canyon. The letter warns the Park Service against giving the impression that it approves of the anti-science movement known as young-Earth creationism, or that it endorses the advancement of religious tenets disguised as science. The text of the letter is on AGU's Web site http://www.agu.org/sci_soc/policy/sci_pol.html. Also, this fall, AGU sent an alert to Texas members about efforts by intelligent design creationists aimed at weakening the teaching of biological evolution in textbooks used in Texas schools. The alert pointed scientists to a letter, drafted by AGU, together with the American Institute of Physics, the American Physical Society, the Optical Society of America, and the American Astronomical Society, that urged the Texas State Board of Education to adopt textbooks that presented only accepted, peer-reviewed science and pedagogical expertise. Over 550 scientists in Texas added their names to the letter (http://www.agu.org/sci_soc/policy/texas_textbooks.pdf ), sent to the Board of Education on 1 November prior to their vote to adopt a slate of new science textbooks. The Board voted 11-5 in favor of keeping the textbooks free of changes advocated by groups supporting intelligent design creationism.

  18. Hydraulics of floods upstream of horseshoe canyons and waterfalls

    NASA Astrophysics Data System (ADS)

    Lapotre, Mathieu G. A.; Lamb, Michael P.

    2015-07-01

    Horseshoe waterfalls are ubiquitous in natural streams, bedrock canyons, and engineering structures. Nevertheless, water flow patterns upstream of horseshoe waterfalls are poorly known and likely differ from the better studied case of a one-dimensional linear step because of flow focusing into the horseshoe. This is a significant knowledge gap because the hydraulics at waterfalls controls sediment transport and bedrock incision, which can compromise the integrity of engineered structures and influence the evolution of river canyons on Earth and Mars. Here we develop new semiempirical theory for the spatial acceleration of water upstream of, and the cumulative discharge into, horseshoe canyons and waterfalls. To this end, we performed 110 numerical experiments by solving the 2-D depth-averaged shallow-water equations for a wide range of flood depths, widths and discharges, and canyon lengths, widths and bed gradients. We show that the upstream, normal flow Froude number is the dominant control on lateral flow focusing and acceleration into the canyon head and that focusing is limited when the flood width is small compared to a cross-stream backwater length scale. In addition, for sheet floods much wider than the canyon, flow focusing into the canyon head leads to reduced discharge (and drying in cases) across the canyon sidewalls, which is especially pronounced for canyons that are much longer than they are wide. Our results provide new expectations for morphodynamic feedbacks between floods and topography, and thus canyon formation.

  19. Lava Flows in the Grand Canyon

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Over vast expanses of time, natural processes like floods and volcanoes deposit layers of rock on the Earth's surface. To delve down through layers of rock is to explore our planet's history. Sometimes rock layers are exposed through human activity, such as drilling or excavation. Other times, rivers carve through the rock. One of the best, and most well-known, examples of a river exposing ancient rocks is Colorado River in Arizona's Grand Canyon. What fewer people know is that the Grand Canyon also has a history of relatively recent (on geologic time scales) volcanism. The evidence--hardened lava--spills down the canyon walls all the way to the river. On June 22, 2003, the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite captured this image of the Grand Canyon, near 36.2 degrees north latitude and 113.2 degrees west longitude. ASTER detects light visible to human eyes as well as 'invisible' infrared light. Because different minerals reflect different portions of the light spectrum, ASTER can see varying mineral compositions of the rocks it observes, as well as detecting vegetation. In this three-dimensional visualization, lava fields appear brownish gray, darker than the layers of limestone, sandstone and other rock in the canyon. Vegetation appears green, and sparsely vegetated areas appear mustard. Water in the Colorado River is blue-purple. Geologists estimate that between 1.8 million and 400,000 years ago, lava flows actually dammed the Colorado River more than a dozen times. Some of the lava dams were as high as 600 meters (about 1,969 feet), forming immense reservoirs. Over time, enough water and sediment built up to push the river flow over the tops of these dams and eventually erode them away. Today, remnants of these lava dams remain throughout the area, along with the much older rock layers they cover. Among the most well known examples of these 'frozen' lava cascades is Lava Falls, which spills down to the

  20. 3D View of Grand Canyon, Arizona

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The Grand Canyon is one of North America's most spectacular geologic features. Carved primarily by the Colorado River over the past six million years, the canyon sports vertical drops of 5,000 feet and spans a 445-kilometer-long stretch of Arizona desert. The strata along the steep walls of the canyon form a record of geologic time from the Paleozoic Era (250 million years ago) to the Precambrian (1.7 billion years ago).

    The above view was acquired by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument aboard the Terra spacecraft. Visible and near infrared data were combined to form an image that simulates the natural colors of water and vegetation. Rock colors, however, are not accurate. The image data were combined with elevation data to produce this perspective view, with no vertical exaggeration, looking from above the South Rim up Bright Angel Canyon towards the North Rim. The light lines on the plateau at lower right are the roads around the Canyon View Information Plaza. The Bright Angel Trail, which reaches the Colorado in 11.3 kilometers, can be seen dropping into the canyon over Plateau Point at bottom center. The blue and black areas on the North Rim indicate a forest fire that was smoldering as the data were acquired on May 12, 2000.

    Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of International Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, Calif., is the U.S. Science team leader; Moshe Pniel of JPL is the project manager. ASTER is the only high resolution imaging sensor on Terra. The primary goal of the ASTER mission is to obtain high-resolution image data in 14 channels over the entire land

  1. Heterogeneity and lithotype distribution in ancient deep-sea canyons: Point Lobos deep-sea canyon as a reservoir analogue

    NASA Astrophysics Data System (ADS)

    Cronin, Bryan T.; Kidd, Robert B.

    1998-01-01

    An evolution and history of filling is proposed for an exceptionally exposed ancient deep-sea canyon on a Paleocene oblique-slip tectonic margin which, on a number of scales, reveals, successive phases of canyon activity. The quantitative methods adopted for this study make it of direct use to modellers as an example of reservoir heterogeneity in an ancient canyon fill, where facies distribution from boreholes can be scaled up to reconstruct the reservoir, using the methods outlined in this paper. The Point Lobos submarine canyon, near Carmel in California, provides a complete cross-section of an ancient canyon, with a fill which displays a whole range of channel morphologies, and laterally extensive coverage of the internal architecture of associated conglomerate packages and related debris flows. This paper presents quantitative documentation of the canyon-fill sediments and canyon-wide fill packages, on scales which vary from bed-to-bed analysis, reflecting processes in operation during individual events, to canyon-wide analysis, reflecting the overall evolution of the canyon. The northern and southern canyon margins are both exposed, and the Paleocene fill onlaps the subvertical canyon wall. The canyon was incised into Cretaceous granodiorite. The fill comprises five thick sequences which correspond to five successive phases of sediment deposition within the canyon. Each sequence typically consists of resedimented conglomerates that are stacked and channelised, with a vertical architecture which resembles that of subaerial braided stream deposits. These are overlain by channelised turbidite sandstones, interbedded with intraformational conglomerates and mud-chip breccias. These in turn are overlain by mudstones and shales, which are commonly slumped and disturbed. Published classification schemes that show the range of deep-water facies were found insufficient to describe the Point Lobos canyon fill. Methods were developed for recording the lithologic

  2. Surprise and opportunity for learning in Grand Canyon: the Glen Canyon Dam Adaptive Management Program

    USGS Publications Warehouse

    Melis, Theodore S.; Walters, Carl; Korman, Josh

    2015-01-01

    With a focus on resources of the Colorado River ecosystem below Glen Canyon Dam, the Glen Canyon Dam Adaptive Management Program has included a variety of experimental policy tests, ranging from manipulation of water releases from the dam to removal of non-native fish within Grand Canyon National Park. None of these field-scale experiments has yet produced unambiguous results in terms of management prescriptions. But there has been adaptive learning, mostly from unanticipated or surprising resource responses relative to predictions from ecosystem modeling. Surprise learning opportunities may often be viewed with dismay by some stakeholders who might not be clear about the purpose of science and modeling in adaptive management. However, the experimental results from the Glen Canyon Dam program actually represent scientific successes in terms of revealing new opportunities for developing better river management policies. A new long-term experimental management planning process for Glen Canyon Dam operations, started in 2011 by the U.S. Department of the Interior, provides an opportunity to refocus management objectives, identify and evaluate key uncertainties about the influence of dam releases, and refine monitoring for learning over the next several decades. Adaptive learning since 1995 is critical input to this long-term planning effort. Embracing uncertainty and surprise outcomes revealed by monitoring and ecosystem modeling will likely continue the advancement of resource objectives below the dam, and may also promote efficient learning in other complex programs.

  3. NO2 photolysis frequencies in street canyons

    NASA Astrophysics Data System (ADS)

    Koepke, P.; Garhammer, M.; Hess, M.; Roeth, E.-P.

    2010-08-01

    Photolysis frequencies for NO2 are modeled for the conditions in urban streets, which are taken into account as canyons with variable height and width. The effect of a street canyon is presented with absolute values and as a ratio RJ of the photolysis frequency within the street compared to that with free horizon. This allows further use of the existing photolysis parameterizations. Values are presented for variable solar elevation and azimuth angles, varying atmospheric conditions and different street properties. The NO2 photolysis frequency in a street depends strongly on the relative width of the street and its orientation towards the sun. Averaged over atmospheric conditions and street orientation, the NO2 photolysis frequency is reduced in comparison with the values for free horizon: to less than 20% for narrow skyscraper streets, to about 40% for typical urban streets, and only to about 80% for garden streets. A parameterization with the global solar irradiance is given for the averaged RJ values.

  4. NO2 photolysis frequencies in street canyons

    NASA Astrophysics Data System (ADS)

    Koepke, P.; Garhammer, M.; Hess, M.; Roeth, E.-P.

    2010-05-01

    Photolysis frequencies for NO2 are modeled for the conditions in urban streets, which are taken into account as canyons with variable height and width. The effect of a street canyon is presented with absolute values and as a ratio RJ of the photolysis frequency within the street against those with free horizon, which allows further use of the existing photolysis parameterizations. Values are presented for variable solar elevation and azimuth angles, varying atmospheric conditions and different street properties. The NO2 photolysis frequency in the street, averaged over atmospheric conditions and street orientation, is reduced to less than 20% for narrow streets, to about 40% for typical urban streets, and only to about 80% for garden streets, each with about ±5% uncertainty. A parameterization of RJ with the global solar irradiance is given for values that are averaged over the meteorological conditions and the street orientation.

  5. The marine soundscape of the Perth Canyon

    NASA Astrophysics Data System (ADS)

    Erbe, Christine; Verma, Arti; McCauley, Robert; Gavrilov, Alexander; Parnum, Iain

    2015-09-01

    The Perth Canyon is a submarine canyon off Rottnest Island in Western Australia. It is rich in biodiversity in general, and important as a feeding and resting ground for great whales on migration. Australia's Integrated Marine Observing System (IMOS) has moorings in the Perth Canyon monitoring its acoustical, physical and biological oceanography. Data from these moorings, as well as weather data from a near-by Bureau of Meteorology weather station on Rottnest Island and ship traffic data from the Australian Maritime Safety Authority were correlated to characterise and quantify the marine soundscape between 5 and 3000 Hz, consisting of its geophony, biophony and anthrophony. Overall, biological sources are a strong contributor to the soundscape at the IMOS site, with whales dominating seasonally at low (15-100 Hz) and mid frequencies (200-400 Hz), and fish or invertebrate choruses dominating at high frequencies (1800-2500 Hz) at night time throughout the year. Ships contribute significantly to the 8-100 Hz band at all times of the day, all year round, albeit for a few hours at a time only. Wind-dependent noise is significant at 200-3000 Hz; winter rains are audible underwater at 2000-3000 Hz. We discuss how passive acoustic data can be used as a proxy for ocean weather. Passive acoustics is an efficient way of monitoring animal visitation times and relative densities, and potential anthropogenic influences.

  6. 4. View to northwest from within Castro Creek Canyon, looking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. View to northwest from within Castro Creek Canyon, looking up at 'Antique' Building (HABS-CA-2611-C) at left and center, 'Champagne' Building (HABS-CA-2611-D) at right behind redwood trees. View gives indication of steepness of canyon, siting of these two buildings at canyon's edge. - Deetjen's Big Sur Inn, East Side of State Highway 1, Big Sur, Monterey County, CA

  7. SW06 Data Analysis and Slope/Canyon Experiment Planning

    DTIC Science & Technology

    2013-09-30

    Abbot, Y.-J. Yang and S. Jan, “Experimental and numerical studies of sound propagation over a submarine canyon northeast of Taiwan,” accepted...1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. SW06 Data Analysis and Slope/ Canyon Experiment Planning...i.e. the slope/ canyon region. (Dates for experiments are approximate.) OBJECTIVES Our primary objectives this year were: 1) to finish

  8. SW06 Data Analysis and Slope/Canyon Experiment Planning

    DTIC Science & Technology

    2012-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. SW06 Data Analysis and Slope/ Canyon Experiment Planning...i.e. the slope/ canyon region. OBJECTIVES Our primary objectives this year were: 1) to finish publishing our SW06 results in a JASA Special...of 2012 to IEEE JOE for a Special Issue, and 3) begin 2014 (bottom acoustics) and 2016 (shelfbreak, slope and canyon ) experimental planning, both on

  9. Greening of the Grand Canyon -- developing a sustainable design for the Grand Canyon National Park

    SciTech Connect

    Gordon, H.T.

    1995-11-01

    The Grand Canyon National Park (GCNP) is faced with increasing visitor demand that is threatening the natural and cultural resources of one of the most popular recreation sites in the United States. The National Park Service (NPS) developed a draft General Management Plan (GMP), which provides management objectives and visions for the entire park, with alternative plans for the park`s developed areas. With the GMP as a starting point, a Grand Canyon Sustainable Design Workshop was conducted to make the Grand Canyon National Park more environmentally and economically sustainable. The workshop, which used the Environmental Design Charrette process, addressed integrated environmental solutions and their implementation in three primary areas: Integrated Information, Visitor Experience, and Resource Efficiency. This paper describes the Environmental Design Charrette process and the efforts of the Resource Efficiency group.

  10. Ventilation Processes in a Three-Dimensional Street Canyon

    NASA Astrophysics Data System (ADS)

    Nosek, Štěpán; Kukačka, Libor; Kellnerová, Radka; Jurčáková, Klára; Jaňour, Zbyněk

    2016-05-01

    The ventilation processes in three different street canyons of variable roof geometry were investigated in a wind tunnel using a ground-level line source. All three street canyons were part of an urban-type array formed by courtyard-type buildings with pitched roofs. A constant roof height was used in the first case, while a variable roof height along the leeward or windward walls was simulated in the two other cases. All street-canyon models were exposed to a neutrally stratified flow with two approaching wind directions, perpendicular and oblique. The complexity of the flow and dispersion within the canyons of variable roof height was demonstrated for both wind directions. The relative pollutant removals and spatially-averaged concentrations within the canyons revealed that the model with constant roof height has higher re-emissions than models with variable roof heights. The nomenclature for the ventilation processes according to quadrant analysis of the pollutant flux was introduced. The venting of polluted air (positive fluctuations of both concentration and velocity) from the canyon increased when the wind direction changed from perpendicular to oblique, irrespective of the studied canyon model. Strong correlations (>0.5) between coherent structures and ventilation processes were found at roof level, irrespective of the canyon model and wind direction. This supports the idea that sweep and ejection events of momentum bring clean air in and detrain the polluted air from the street canyon, respectively.

  11. Internal Wave Scattering in Idealized and Realistic Continental Slope Canyons

    NASA Astrophysics Data System (ADS)

    Nazarian, Robert; Legg, Sonya

    2016-11-01

    When internal waves interact with topography, such as continental slopes, they can deposit their energy to local dissipation and mixing. Submarine canyons comprise about ten percent of global continental slopes, and can enhance the local dissipation of internal wave energy, yet parameterizations of canyon mixing processes are currently missing from ocean models. As a first step in developing such parameterizations, a parameter space study of M2 tidal-frequency, low-mode internal waves interacting with idealized canyon topographies was conducted. A two-pronged approach was employed in which a suite of MITgcm simulations was compared with a novel, analytical ray tracing scheme. The most noticeable result was that, as the ratio of the canyon mouth width to canyon length decreased, there was a marked increase in the relative energy loss. This energy loss also increased as the canyon sidewall steepness increased. Processes leading to this increased energy loss include increased energy focusing, increasing vertical wavenumber via multiple reflections for non-vertical sidewalls and the presence of arrested lee waves for vertical sidewalls. To test the robustness of these results, we model the energy lost from remotely-generated M2 internal tides in three realistic canyons with very different geometries: Veatch, La Jolla and Eel Canyons, comparing results with both idealized simulations and microstructure data taken from these locations. We also discuss how current parameterizations of tidally-driven diapycnal mixing can be extended to include the effects of continental slope canyons. NOAA Award NA08OAR4320752.

  12. Ascension Submarine Canyon, California - Evolution of a multi-head canyon system along a strike-slip continental margin

    USGS Publications Warehouse

    Nagel, D.K.; Mullins, H.T.; Greene, H. Gary

    1986-01-01

    Ascension Submarine Canyon, which lies along the strike-slip (transform) dominated continental margin of central California, consists of two discrete northwestern heads and six less well defined southeastern heads. These eight heads coalesce to form a single submarine canyon near the 2700 m isobath. Detailed seismic stratigraphic data correlated with 19 rock dredge hauls from the walls of the canyon system, suggest that at least one of the two northwestern heads was initially eroded during a Pliocene lowstand of sea level ???3.8 m.y. B.P. Paleogeographic reconstructions indicate that at this time, northwestern Ascension Canyon formed the distal channel of nearby Monterey Canyon and has subsequently been offset by right-lateral, strike-slip faulting along the San Gregorio fault zone. Some of the six southwestern heads of Ascension Canyon may also have been initially eroded as the distal portions of Monterey Canyon during late Pliocene-early Pleistocene sea-level lowstands (???2.8 and 1.75 m.y. B.P.) and subsequently truncated and offset to the northwest. There have also been a minimum of two canyon-cutting episodes within the past 750,000 years, after the entire Ascension Canyon system migrated to the northwest past Monterey Canyon. We attribute these late Pleistocene erosional events to relative lowstands of sea level 750,000 and 18,000 yrs B.P. The late Pleistocene and Holocene evolution of the six southeastern heads also appears to have been controlled by structural uplift of the Ascension-Monterey basement high at the southeastern terminus of the Outer Santa Cruz Basin. We believe that uplift of this basement high sufficiently oversteepened submarine slopes to induce gravitational instability and generate mass movements that resulted in the erosion of the canyon heads. Most significantly, though, our results and interpretations support previous proposals that submarine canyons along strike-slip continental margins can originate by tectonic trunction and lateral

  13. Hydraulic Implications of Different Megaflood Canyon Incision Models

    NASA Astrophysics Data System (ADS)

    Larsen, I. J.; Lamb, M. P.

    2015-12-01

    Deeply incised canyons are some of the most dramatic features of landscapes carved by megafloods. The geometry of these canyons may reveal information regarding flood magnitudes during the last ice age on Earth and the volume of water flowing on early Mars. Canyons on both planets have been alternatively modeled as 'channels', where the modern topography was completely inundated with water to the elevation of the canyon rims, or as 'valleys' that were progressively incised by lesser discharges. Here we combine numerical flood simulations and sediment transport mechanics to explore the hydraulic implications that result from modeling the canyons as 'channels' versus 'valleys'. Over 300 floods were simulated for Moses Coulee, a 60 km-long canyon in the Channeled Scablands of eastern Washington, USA, using a 2D, depth-averaged hydraulic model. We simulated floods with discharges ranging from 0.1 million m3 s-1 to 6 million m3 s-1 using both the modern landscape as a topographic boundary condition and synthetic topographies that restored the canyon floor to different elevations as guided by strath terraces. For each simulation we tracked whether shear stresses on the terrace treads exceeded thresholds for sliding of basalt columns. Simulations using the modern topography indicate shear stresses were sufficiently high to erode the terraces at discharges lower than bankfull, and surprisingly, shear stresses decrease with increasing discharge at some sites due to backwater dynamics, which constrains canyon formation to moderate discharges. Simulations performed on the synthetic topography suggest the canyon could have been incised progressively by floods smaller than those required to fill the canyon to bankfull stage. These results suggest the canyons can be viewed as valleys that incised progressively, as opposed to channels filled with water, which has implications for placing bounds on paleoflood hydraulic reconstruction on Earth and Mars.

  14. 76 FR 24516 - Glen Canyon Dam Adaptive Management Work Group

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-02

    ... Bureau of Reclamation Glen Canyon Dam Adaptive Management Work Group AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of public meeting. SUMMARY: The Glen Canyon Dam Adaptive Management Work Group...-575) of 1992. The AMP includes a Federal advisory committee, the AMWG, a technical work group (TWG),...

  15. 75 FR 34476 - Glen Canyon Dam Adaptive Management Work Group

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-17

    ... Bureau of Reclamation Glen Canyon Dam Adaptive Management Work Group AGENCY: Bureau of Reclamation... Interior (Secretary) is renewing the charter for the Glen Canyon Dam Adaptive Management Work Group. The purpose of the Adaptive Management Work Group is to advise and to provide recommendations to the...

  16. 78 FR 7810 - Glen Canyon Dam Adaptive Management Work Group

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-04

    ... Bureau of Reclamation Glen Canyon Dam Adaptive Management Work Group AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of public meeting. SUMMARY: The Glen Canyon Dam Adaptive Management Work Group.... L. 102-575) of 1992. The AMP includes a Federal advisory committee, the AMWG, a technical work...

  17. 64 FR 6116 - Glen Canyon Technical work Group

    Federal Register 2010, 2011, 2012, 2013, 2014

    1999-02-08

    ... work Group AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of public meeting. SUMMARY: The Glen Canyon Technical Work Group (TWG) was formed as an official subcommittee of the Glen Canyon Adaptive Management Work Group (AMWG) on September 10, 1997. The TWG members were named by the members of the AMWG...

  18. 79 FR 3873 - Glen Canyon Dam Adaptive Management Work Group

    Federal Register 2010, 2011, 2012, 2013, 2014

    2014-01-23

    ... Bureau of Reclamation Glen Canyon Dam Adaptive Management Work Group AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of public meeting. SUMMARY: The Glen Canyon Dam Adaptive Management Work Group...-575) of 1992. The GCDAMP includes a Federal advisory committee, the AMWG, a technical work group...

  19. 71 FR 44042 - Glen Canyon Dam Adaptive Management Work Group

    Federal Register 2010, 2011, 2012, 2013, 2014

    2006-08-03

    ... Bureau of Reclamation Glen Canyon Dam Adaptive Management Work Group AGENCY: Bureau of Reclamation... (Secretary) is renewing the charter for the Glen Canyon Dam Adaptive Management Work Group. The purpose of the Adaptive Management Work Group is to advise and provide recommendations to the Secretary...

  20. 62 FR 66384 - Glen Canyon Adaptive Management Work Group

    Federal Register 2010, 2011, 2012, 2013, 2014

    1997-12-18

    ... Bureau of Reclamation Glen Canyon Adaptive Management Work Group AGENCY: Bureau of Reclamation, DOI. ACTION: Notice of public meeting. ] SUMMARY: The Glen Canyon Adaptive Management Work Group (AMWG) will... Work Group (1999 program, management objectives, approach to beach/habitat building flow...

  1. 73 FR 45070 - Glen Canyon Dam Adaptive Management Work Group

    Federal Register 2010, 2011, 2012, 2013, 2014

    2008-08-01

    ... Bureau of Reclamation Glen Canyon Dam Adaptive Management Work Group AGENCY: Bureau of Reclamation... Interior (Secretary) is renewing the charter for the Glen Canyon Dam Adaptive Management Work Group. The purpose of the Adaptive Management Work Group is to advise and to provide recommendations to the...

  2. 64 FR 47517 - Glen Canyon Technical Work Group

    Federal Register 2010, 2011, 2012, 2013, 2014

    1999-08-31

    ... No: 99-22653] DEPARTMENT OF THE INTERIOR Bureau of Reclamation Glen Canyon Technical Work Group... Technical Work Group (TWG) was formed as an official subcommittee of the Glen Canyon Dam Adaptive Management Work Group (AMWG). The TWG members were named by members of the AMWG and provide advice and...

  3. Bridge 223, view looking east up Rock Creek Canyon at ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Bridge 22-3, view looking east up Rock Creek Canyon at Milepost 22.82. The line passes through tunnel 4 onto Bridge 22-3 and heads eastward up Rock Creek Canyon out onto the Camas Prairie - Camas Prairie Railroad, Second Subdivision, From Spalding in Nez Perce County, through Lewis County, to Grangeville in Idaho County, Spalding, Nez Perce County, ID

  4. Bottom-trawling along submarine canyons impacts deep sedimentary regimes.

    PubMed

    Paradis, Sarah; Puig, Pere; Masqué, Pere; Juan-Díaz, Xènia; Martín, Jacobo; Palanques, Albert

    2017-02-24

    Many studies highlight that fish trawling activities cause seafloor erosion, but the assessment of the remobilization of surface sediments and its relocation is still not well documented. These impacts were examined along the flanks and axes of three headless submarine canyons incised on the Barcelona continental margin, where trawling fleets have been operating for decades. Trawled grounds along canyon flanks presented eroded and highly reworked surface sediments resulting from the passage of heavy trawling gear. Sedimentation rates on the upper canyon axes tripled and quadrupled its natural (i.e. pre-industrialization) values after a substantial increase in total horsepower of the operating trawling fleets between 1960 s and 1970 s. These impacts affected the upper canyon reaches next to fishing grounds, where sediment resuspended by trawling can be transported towards the canyon axes. This study highlights that bottom trawling has the capacity to alter natural sedimentary environments by promoting sediment-starved canyon flanks, and by enhancing sedimentation rates along the contiguous axes, independently of canyons' morphology. Considering the global mechanisation and offshore expansion of bottom trawling fisheries since the mid-20(th) century, these sedimentary alterations may occur in many trawled canyons worldwide, with further ecological impacts on the trophic status of these non-resilient benthic communities.

  5. 36 CFR 7.4 - Grand Canyon National Park.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Grand Canyon National Park. 7.4 Section 7.4 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.4 Grand Canyon National Park. (a)...

  6. 10. VIEW OF BRUSH ALONG KINGS CANYON ROAD WHICH WILL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. VIEW OF BRUSH ALONG KINGS CANYON ROAD WHICH WILL BE REMOVED FOR 10 FEET ON THE RIGHT SIDE OF THE ROADWAY FOR A DISTANCE OF 50 FEET. LOCATED AT MILEPOST 1.45, FACING NORTH 100 EAST (10ø). - Kings Canyon Road, Carson City, Carson City, NV

  7. 36 CFR 7.70 - Glen Canyon National Recreation Area.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... protection of the ecological and environmental values of the area. (i) The Superintendent of Grand Canyon National Park shall issue a permit upon a determination that the person leading, guiding, or conducting a... there is a bona fide sharing of actual expenses. (4) All human waste will be taken out of the Canyon...

  8. 36 CFR 7.70 - Glen Canyon National Recreation Area.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... protection of the ecological and environmental values of the area. (i) The Superintendent of Grand Canyon National Park shall issue a permit upon a determination that the person leading, guiding, or conducting a... there is a bona fide sharing of actual expenses. (4) All human waste will be taken out of the Canyon...

  9. 36 CFR 7.70 - Glen Canyon National Recreation Area.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... protection of the ecological and environmental values of the area. (i) The Superintendent of Grand Canyon National Park shall issue a permit upon a determination that the person leading, guiding, or conducting a... there is a bona fide sharing of actual expenses. (4) All human waste will be taken out of the Canyon...

  10. 36 CFR 7.70 - Glen Canyon National Recreation Area.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... protection of the ecological and environmental values of the area. (i) The Superintendent of Grand Canyon National Park shall issue a permit upon a determination that the person leading, guiding, or conducting a... there is a bona fide sharing of actual expenses. (4) All human waste will be taken out of the Canyon...

  11. Academy of the Canyons Report, Fall 2000-Spring 2002.

    ERIC Educational Resources Information Center

    Meuschke, Daylene M.; Dixon, P. Scott; Gribbons, Barry C.

    Summarizes findings from an evaluation of the Academy of the Canyons, a "middle college high school" which operates on the College of the Canyons (California) campus and is open to 11th and 12th grade students whose needs are not being met by the large comprehensive high schools. This evaluation, prepared as a component of the Academy's…

  12. 4. VISTA POINT AND INTERPRETIVE PLAQUE AT LEE VINING CANYON. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. VISTA POINT AND INTERPRETIVE PLAQUE AT LEE VINING CANYON. NOTE ROAD CUT ON CANYON WALL. LOOKING NNE. GIS: N-37 56 30.3 / 119 13 44.8 - Tioga Road, Between Crane Flat & Tioga Pass, Yosemite Village, Mariposa County, CA

  13. Examination of Samples of Bell Canyon Test 1-FF Grout.

    DTIC Science & Technology

    1981-05-01

    Portland cement grout identified as BCT-1-FF (Bell Canyon Test 1-FF) was used in borehole plugging experiments in the Bell Canyon Tests in Hole AEC-7...BCT-1-FF grout mixture contained added sulfate, it formed more ettringite as judged by X-ray diffraction than comparable portland cement mixtures without added sulfate. (Author)

  14. Perspective view over the Grand Canyon, Arizona

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This simulated true color perspective view over the Grand Canyon was created from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data acquired on May 12, 2000. The Grand Canyon Village is in the lower foreground; the Bright Angel Trail crosses the Tonto Platform, before dropping down to the Colorado Village and then to the Phantom Ranch (green area across the river). Bright Angel Canyon and the North Rim dominate the view. At the top center of the image the dark blue area with light blue haze is an active forest fire.

    ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products.

    The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance.

    The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate.

    Size: 5 km in foreground to 40 km Location: 36.3 degrees north latitude, 112 degrees west longitude Orientation: North-northeast at top Original Data Resolution: ASTER 15 meters Dates Acquired: May 12, 2000

  15. Big Canyon Creek Ecological Restoration Strategy.

    SciTech Connect

    Rasmussen, Lynn; Richardson, Shannon

    2007-10-01

    He-yey, Nez Perce for steelhead or rainbow trout (Oncorhynchus mykiss), are a culturally and ecologically significant resource within the Big Canyon Creek watershed; they are also part of the federally listed Snake River Basin Steelhead DPS. The majority of the Big Canyon Creek drainage is considered critical habitat for that DPS as well as for the federally listed Snake River fall chinook (Oncorhynchus tshawytscha) ESU. The Nez Perce Soil and Water Conservation District (District) and the Nez Perce Tribe Department of Fisheries Resources Management-Watershed (Tribe), in an effort to support the continued existence of these and other aquatic species, have developed this document to direct funding toward priority restoration projects in priority areas for the Big Canyon Creek watershed. In order to achieve this, the District and the Tribe: (1) Developed a working group and technical team composed of managers from a variety of stakeholders within the basin; (2) Established geographically distinct sub-watershed areas called Assessment Units (AUs); (3) Created a prioritization framework for the AUs and prioritized them; and (4) Developed treatment strategies to utilize within the prioritized AUs. Assessment Units were delineated by significant shifts in sampled juvenile O. mykiss (steelhead/rainbow trout) densities, which were found to fall at fish passage barriers. The prioritization framework considered four aspects critical to determining the relative importance of performing restoration in a certain area: density of critical fish species, physical condition of the AU, water quantity, and water quality. It was established, through vigorous data analysis within these four areas, that the geographic priority areas for restoration within the Big Canyon Creek watershed are Big Canyon Creek from stream km 45.5 to the headwaters, Little Canyon from km 15 to 30, the mainstem corridors of Big Canyon (mouth to 7km) and Little Canyon (mouth to 7km). The District and the Tribe

  16. River resource management in the Grand Canyon

    SciTech Connect

    1996-07-01

    The objective of GCES was to identify and predict the effects of variations in operating strategies on the riverine environment below Glen Canyon Dam within the physical and legal constraints under which the dam must operate. Critical elements for the development of GCES and other such projects include a list of resources directly or indirectly affected by management, a list of management options, and an ecosystem framework showing the causal connections among system components, potential management strategies that include humans as integral parts of the environment.

  17. 20130416_Green Machine Florida Canyon Hourly Data

    DOE Data Explorer

    Vanderhoff, Alex

    2013-04-24

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 4/16/13.

  18. Green Machine Florida Canyon Hourly Data 20130731

    DOE Data Explorer

    Vanderhoff, Alex

    2013-08-30

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 7/1/13 to 7/31/13.

  19. 20140430_Green Machine Florida Canyon Hourly Data

    DOE Data Explorer

    Thibedeau, Joe

    2014-05-05

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 April to 30 April 2014.

  20. Green Machine Florida Canyon Hourly Data

    DOE Data Explorer

    Vanderhoff, Alex

    2013-07-15

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 6/1/13 to 6/30/13

  1. North Atlantic slope and canyon study. Volume 2. Final report

    SciTech Connect

    Butman, B.

    1986-12-01

    A field program to investigate the currents and sediment transport along the outershelf and upper slope along the southern flank of Georges Bank was conducted between 1980 and 1984. A major part of the field experiment was conducted in Lydonia Canyon, a large submarine canyon which cuts northward about 20 km into the continental shelf from the shelfbreak. A smaller experiment was conducted in Oceanographer Canyon to compare the currents in these two major canyons. Long-term current observations were made at 20 locations in or adjacent to Lydonia Canyon, and at 9 stations on the continental slope. Detailed semi-synoptic hydrographic observations were made on 9 cruises. The currents associated with Gulf Stream warm core rings (WCR's) strongly affect the flow along the outer shelf and upper slope; eastward currents in excess of 75cm/s were associated with WCR's.

  2. Pleistocene entrenched valley/canyon systems, Gulf of Mexico

    SciTech Connect

    Steffens, G.S.

    1986-09-01

    The Mississippi Submarine Canyon is the seaward extension of the late Wisconsin entrenched alluvial valley. Geophysical and geologic data provide evidence for the continuity of the Mississippi entrenched valley, the Timbalier channel, and the submarine canyon. The Mississippi entrenched valley/canyon system is one of several systems recognized in the Pleistocene section of offshore Louisiana. Most of these systems were produced by the ancestral Mississippi River. They typically exhibit a three-gradient profile with their maximum erosional relief at the preexisting shelf margin. The canyons extend onto the pre-existing shelf for 20 to 50 mi, with erosion commonly exceeding 1000 ft. All of these systems delivered large quantities of sediment to the Pleistocene slope and abyssal plain. The fan deposits are the products of sediment passing through and being removed from the entrenched valley/canyon systems.

  3. Internal tide convergence and mixing in a submarine canyon

    NASA Astrophysics Data System (ADS)

    Waterhouse, Amy

    2016-11-01

    Observations from Eel Canyon, located on the north coast of California, show that elevated turbulence in the full water column arises from the convergence of remotely-generated internal wave energy. The incoming semidiurnal and bottom-trapped diurnal internal tides generate complex interference patterns. The semidiurnal internal tide sets up a partly standing wave within the canyon due to reflection at the canyon head, dissipating all of its energy within the canyon. Dissipation in the near-bottom is associated with the diurnal trapped tide, while midwater isopycnal shear and strain is associated with the semidiurnal tide. Dissipation is elevated up to 600 m off the bottom, in contrast to observations over flat continental shelf where dissipation occurs closer to the topography. Slope canyons are sinks for internal wave energy and may have important influences on the global distribution of tidally-driven mixing.

  4. The Black Canyon of the Gunnison: Today and Yesterday

    USGS Publications Warehouse

    Hansen, Wallace R.

    1965-01-01

    Since the early visit of Captain John William Gunnison in the middle of the last century, the Black Canyon of the Gunnison has stirred mixed apprehension and wonder in the hearts of its viewers. It ranks high among the more awesome gorges of North America. Many great western canyons are as well remembered for their brightly colored walls as for their airy depths. Not so the Black Canyon. Though it is assuredly not black, the dark-gray tones of its walls and the hazy shadows of its gloomy depths join together to make its name well deserved. Its name conveys an impression, not a picture. After the first emotional impact of the canyon, the same questions come to the minds of most reflective viewers and in about the following order: How deep is the Black Canyon, how wide, how does it compare with other canyons, what are the rocks, how did it form, and how long did it take? Several western canyons exceed the Black Canyon in overall size. Some are longer; some are deeper; some are narrower; and a few have walls as steep. But no other canyon in North American combines the depth, narrowness, sheerness, and somber countenance of the Black Canyon. In many places the Black Canyon is as deep as it is wide. Between The Narrows and Chasm View in the Black Canyon of the Gunnison National Monument (fig. 15) it is much deeper than wide. Average depth in the monument is about 2,000 feet, ranging from a maximum of about 2,700 feet, north of Warner Point (which also is the greatest depth anywhere in the canyon), to a minimum of about 1,750 feet at The Narrows. The stretch of canyon between Pulpit Rock and Chasm View, including The Narrows, though the shallowest in the monument, is also the narrowest, has some of the steepest walls, and is, therefore, among the most impressive segments of the canyon (fig. 3). Profiles of several well-known western canyons are shown in figure 1. Deepest of these by far is Hells Canyon of the Snake, on the Idaho-Oregon border. Clearly, it dwarfs the

  5. 66 FR 8980 - Glen Canyon Adaptive Management Work Group (AMWG) and Glen Canyon Technical Work Group (TWG)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2001-02-05

    ... Bureau of Reclamation Glen Canyon Adaptive Management Work Group (AMWG) and Glen Canyon Technical Work... has been organized and includes a federal advisory committee (the AMWG), a technical work group (the...: The Adaptive Management Work Group will conduct the following public meetings: Phoenix,...

  6. 66 FR 34240 - Glen Canyon Dam Adaptive Management Work Group (AMWG), and Glen Canyon Technical Work Group (TWG...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2001-06-27

    ... Bureau of Reclamation Glen Canyon Dam Adaptive Management Work Group (AMWG), and Glen Canyon Technical Work Group (TWG); Cancellation of Meetings AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of... Work Group Meeting Scheduled for July 17-18, 2001, in Phoenix, Arizona, in order to complete work...

  7. 63 FR 70421 - Glen Canyon Dam Adaptive Management Work Group (AMWG) and Glen Canyon Technical Work Group (TWG)

    Federal Register 2010, 2011, 2012, 2013, 2014

    1998-12-21

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF THE INTERIOR Bureau of Reclamation Glen Canyon Dam Adaptive Management Work Group (AMWG) and Glen Canyon Technical Work Group (TWG) AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of Public Meetings;...

  8. Hanging canyons of Haida Gwaii, British Columbia, Canada: Fault-control on submarine canyon geomorphology along active continental margins

    NASA Astrophysics Data System (ADS)

    Harris, Peter T.; Barrie, J. Vaughn; Conway, Kim W.; Greene, H. Gary

    2014-06-01

    Faulting commonly influences the geomorphology of submarine canyons that occur on active continental margins. Here, we examine the geomorphology of canyons located on the continental margin off Haida Gwaii, British Columbia, that are truncated on the mid-slope (1200-1400 m water depth) by the Queen Charlotte Fault Zone (QCFZ). The QCFZ is an oblique strike-slip fault zone that has rates of lateral motion of around 50-60 mm/yr and a small convergent component equal to about 3 mm/yr. Slow subduction along the Cascadia Subduction Zone has accreted a prism of marine sediment against the lower slope (1500-3500 m water depth), forming the Queen Charlotte Terrace, which blocks the mouths of submarine canyons formed on the upper slope (200-1400 m water depth). Consequently, canyons along this margin are short (4-8 km in length), closely spaced (around 800 m), and terminate uniformly along the 1400 m isobath, coinciding with the primary fault trend of the QCFZ. Vertical displacement along the fault has resulted in hanging canyons occurring locally. The Haida Gwaii canyons are compared and contrasted with the Sur Canyon system, located to the south of Monterey Bay, California, on a transform margin, which is not blocked by any accretionary prism, and where canyons thus extend to 4000 m depth, across the full breadth of the slope.

  9. Surface Composition Differences in Martian Canyon

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Color differences in this daytime infrared image taken by the camera on NASA's Mars Odyssey spacecraft represent differences in the mineral composition of the rocks, sediments and dust on the surface.

    The image shows a portion of a canyon named Candor Chasma within the great Valles Marineris system of canyons, at approximately 5 degrees south latitude, 285 degrees east (75 degrees west) longitude. The area shown is approximately 30 by 175 kilometers (19 by 110 miles).

    The image combines exposures taken by Odyssey's thermal emission imaging system at three different wavelengths of infrared light: 6.3 microns, 7.4 microns and 8.7 microns.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The thermal emission imaging system was provided by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. Lockheed Martin Astronautics, Denver, is the prime contractor for the project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and JPL. JPL is a division of the California Institute of Technology in Pasadena.

  10. 78 FR 40381 - Establishment of Class E Airspace; Grand Canyon, AZ

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-05

    ... Canyon VHF Omni-Directional Radio Range/Distance Measuring Equipment (VOR/DME) navigation aid, Grand..., at the Grand Canyon VOR/DME navigation aid, Grand Canyon, AZ, to accommodate IFR aircraft under... within the scope of that authority as it establishes controlled airspace at the Grand Canyon...

  11. 78 FR 25404 - Proposed Establishment of Class E Airspace; Grand Canyon, AZ

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-01

    ... Range/Distance Measuring Equipment (VOR/DME) navigation aid, Grand Canyon, AZ, to facilitate vectoring... route domestic airspace extending upward from 1,200 feet above the surface at the Grand Canyon VOR/DME... airspace at the Grand Canyon VOR/DME, Grand Canyon, AZ. This proposal will be subject to an...

  12. Bottom-trawling along submarine canyons impacts deep sedimentary regimes

    PubMed Central

    Paradis, Sarah; Puig, Pere; Masqué, Pere; Juan-Díaz, Xènia; Martín, Jacobo; Palanques, Albert

    2017-01-01

    Many studies highlight that fish trawling activities cause seafloor erosion, but the assessment of the remobilization of surface sediments and its relocation is still not well documented. These impacts were examined along the flanks and axes of three headless submarine canyons incised on the Barcelona continental margin, where trawling fleets have been operating for decades. Trawled grounds along canyon flanks presented eroded and highly reworked surface sediments resulting from the passage of heavy trawling gear. Sedimentation rates on the upper canyon axes tripled and quadrupled its natural (i.e. pre-industrialization) values after a substantial increase in total horsepower of the operating trawling fleets between 1960 s and 1970 s. These impacts affected the upper canyon reaches next to fishing grounds, where sediment resuspended by trawling can be transported towards the canyon axes. This study highlights that bottom trawling has the capacity to alter natural sedimentary environments by promoting sediment-starved canyon flanks, and by enhancing sedimentation rates along the contiguous axes, independently of canyons’ morphology. Considering the global mechanisation and offshore expansion of bottom trawling fisheries since the mid-20th century, these sedimentary alterations may occur in many trawled canyons worldwide, with further ecological impacts on the trophic status of these non-resilient benthic communities. PMID:28233856

  13. Bottom-trawling along submarine canyons impacts deep sedimentary regimes

    NASA Astrophysics Data System (ADS)

    Paradis, Sarah; Puig, Pere; Masqué, Pere; Juan-Díaz, Xènia; Martín, Jacobo; Palanques, Albert

    2017-02-01

    Many studies highlight that fish trawling activities cause seafloor erosion, but the assessment of the remobilization of surface sediments and its relocation is still not well documented. These impacts were examined along the flanks and axes of three headless submarine canyons incised on the Barcelona continental margin, where trawling fleets have been operating for decades. Trawled grounds along canyon flanks presented eroded and highly reworked surface sediments resulting from the passage of heavy trawling gear. Sedimentation rates on the upper canyon axes tripled and quadrupled its natural (i.e. pre-industrialization) values after a substantial increase in total horsepower of the operating trawling fleets between 1960 s and 1970 s. These impacts affected the upper canyon reaches next to fishing grounds, where sediment resuspended by trawling can be transported towards the canyon axes. This study highlights that bottom trawling has the capacity to alter natural sedimentary environments by promoting sediment-starved canyon flanks, and by enhancing sedimentation rates along the contiguous axes, independently of canyons’ morphology. Considering the global mechanisation and offshore expansion of bottom trawling fisheries since the mid-20th century, these sedimentary alterations may occur in many trawled canyons worldwide, with further ecological impacts on the trophic status of these non-resilient benthic communities.

  14. Inner gorge-slot canyon system produced by repeated stream incision (eastern Alps): Significance for development of bedrock canyons

    NASA Astrophysics Data System (ADS)

    Sanders, Diethard; Wischounig, Lukas; Gruber, Alfred; Ostermann, Marc

    2014-06-01

    Many inner bedrock gorges of the Alps show abrupt downstream changes in gorge width, as well as channel type and gradient, as a result of epigenetic incision of slot canyons. Many slot canyons also are associated with older gorge reaches filled with Quaternary deposits. The age of slot canyons and inner bedrock gorges, however, commonly is difficult to constrain. For the inner-bedrock gorge system of the Steinberger Ache catchment (eastern Alps), active slot canyons as well as older, abandoned gorge reaches filled with upper Würmian proglacial deposits record three phases of gorge development and slot-canyon incision. A 234U/230Th age of cement of 29.7 ± 1.8 ka in fluvial conglomerates onlapping the flank of an inner gorge fits with late Würmian valley-bottom aggradation shortly before pleniglacial conditions; in addition, the age indicates that at least the corresponding canyon reach must be older. During advance of ice streams in the buildup of the Last Glacial Maximum (LGM), the catchment was blocked, and a proglacial lake formed. Bedrock gorges submerged in that lake were filled with fluviolacustrine deposits. During the LGM, the entire catchment was overridden by ice. During post-glacial reincision, streams largely found again their preexisting inner bedrock canyons. In some areas, however, the former stream course was 'missed', and a slot canyon formed. The distribution of Pleistocene deposits, the patterns of canyon incision, and the mentioned U/Th cementation age, however, together record a further discrete phase of base-level rise and stream incision well before the LGM. The present course of Steinberger Ache and its tributaries is a patchwork of (1) slot canyons incised during post-glacial incision; (2) vestiges of slot canyons cut upon an earlier (middle to late Würmian?) cycle of base-level rise and fall; (3) reactivated reaches up to ~ 200 m in width of inner bedrock gorge that are watershed at present, and more than at least ~ 30 ka in age; and (4

  15. Physiographic rim of the Grand Canyon, Arizona: a digital database

    USGS Publications Warehouse

    Billingsley, George H.; Hampton, Haydee M.

    1999-01-01

    This Open-File report is a digital physiographic map database. This pamphlet serves to introduce and describe the digital data. There is no paper map included in the Open-File report. The report does include, however, PostScript and PDF format plot files, each containing an image of the map. For those interested in a paper plot of information contained in the database or in obtaining the PostScript plot files, please see the section entitled "For Those Who Don't Use Digital Geologic Map Databases" below. This physiographic map of the Grand Canyon is modified from previous versions by Billingsley and Hendricks (1989), and Billingsley and others (1997). The boundary is drawn approximately along the topographic rim of the Grand Canyon and its tributary canyons between Lees Ferry and Lake Mead (shown in red). Several isolated small mesas, buttes, and plateaus are within this area, which overall encompasses about 2,600 square miles. The Grand Canyon lies within the southwestern part of the Colorado Plateaus of northern Arizona between Lees Ferry, Colorado River Mile 0, and Lake Mead, Colorado River Mile 277. The Colorado River is the corridor for raft trips through the Grand Canyon. Limestone rocks of the Kaibab Formation form most of the north and south rims of the Grand Canyon, and a few volcanic rocks form the north rim of parts of the Uinkaret and Shivwits Plateaus. Limestones of the Redwall Limestone and lower Supai Group form the rim of the Hualapai Plateau area, and Limestones of Devonian and Cambrian age form the boundary rim near the mouth of Grand Canyon at the Lake Mead. The natural physiographic boundary of the Grand Canyon is roughly the area a visitor would first view any part of the Grand Canyon and its tributaries.

  16. New hexactinellid sponges from deep Mediterranean canyons.

    PubMed

    Boury-Esnault, Nicole; Vacelet, Jean; Dubois, Maude; Goujard, Adrien; Fourt, Maïa; Pérez, Thierry; Chevaldonné, Pierre

    2017-02-21

    During the exploration of the NW Mediterranean deep-sea canyons (MedSeaCan and CorSeaCan cruises), several hexactinellid sponges were observed and collected by ROV and manned submersible. Two of them appeared to be new species of Farrea and Tretodictyum. The genus Farrea had so far been reported with doubt from the Mediterranean and was listed as "taxa inquirenda" for two undescribed species. We here provide a proper description for the specimens encountered and sampled. The genus Tretodictyum had been recorded several times in the Mediterranean and in the near Atlantic as T. tubulosum Schulze, 1866, again with doubt, since the type locality is the Japan Sea. We here confirm that the Mediterranean specimens are a distinct new species which we describe. We also provide18S rDNA sequences of the two new species and include them in a phylogenetic tree of related hexactinellids.

  17. Lynch Canyon combination thermal drive project. [Termination

    SciTech Connect

    Stair, J. R.

    1980-11-01

    The following report provides a summary of the Lynch Canyon Thermal Drive Project. This demonstration project was begun in 1978 and terminated in 1980. The project originally was divided into four phases; Geologic Evaluation, Injectivity Test, Field Development Combined with Air-Water Injection, and a Project Review. Following the First Phase operations, which included drilling of four wells for geologic evaluation, a joint decision to cancel the project was made. The conditions which were thought to exist at the initiation of the project, would have provided an excellent opportunity to conduct a Pilot Combination Thermal Drive. However, potential problems which were discovered in the Phase One Operations significantly altered the economics of the project and removed the favorable conditions under which the project was begun.

  18. Report Summary, Final Hells Canyon Environmental Investigation.

    SciTech Connect

    United States. Bonneville Power Administration.

    1985-01-01

    The Northwest Electric Power Planning and Conservation Act of 1980 provided for the establishment of a Regional Power Planning Council (Regional Council) and mandated the development of a Columbia River Basin Fish and Wildlife Program (F&W Program). The F&W Program was adopted by the Regional Council in November 1982. and is intended to mitigate fish and wildlife losses resulting from the development of hydroelectric dams on the Columbia and Snake Rivers. One element of the FLW Program is the Water Budget. It calls for additional flows in the Columbia and Snake Rivers between April 15 and June 15 to improve the survival of juvenile salmon and steelhead migrating downstream. The Snake River's contribution to the Water Budget is 20,000 cubic feet per second-months (A volume of water equal to a flow of 20.000 cubic feet per second, 24 hours per day, for a period of a month) over and above water that would normally flow for power production. The water for the Water Budget would come out of Idaho Power Company's (IPCo) Hells Canyon Complex and the Corps of Engineers' (Corps) Dvorshak Reservoir. IPCo's Hells Canyon Complex consists of three dams, Brownlee, Oxbow, and Hells Canyon. Brownlee, at the upstream end, contains a large reservoir and controls flow to the lower dams. IPCo's participation in the Water Budget could affect the level of the Brownlee Reservoir and flows downstream of the Hells Canyon Complex on the Snake River. In light of this, Bonneville Power Administration (BPA) and IPCo contracted with the consulting firm of CH2!4 Hill to study the potential changes that could occur to the environment. The Environmental Investigation (EI) takes into account concerns that were expressed by the public at a series of public meetings held in the Snake River area during June 1983 and again during September 1984. Existing information and consultations with agencies which have management responsibilities in the project area formed the basis for the data used in the EI

  19. Liquid-filled Canyons on Titan

    NASA Astrophysics Data System (ADS)

    Poggiali, Valerio; Mastrogiuseppe, Marco; Hayes, Alexander; Seu, Roberto; Birch, Samuel; Lorenz, Ralph; Grima, Cyril; Kargel, Jeffrey; Hofgartner, Jason

    2016-04-01

    During a close flyby, Cassini's RADAR altimeter observed a system of channels pertaining to the Vid Flumina system that drain into Titan's Ligeia Mare. While SAR images have been used to identify fluvial valleys in networks that extend for hundreds of kilometers, they can't directly prove the presence and/or physical extent of liquid channels filling them. Analysis of altimeter echoes shows that the channels are located in deep (~500 m) canyons and have strongly specular surface reflections that indicate they are currently liquid-filled. Liquid elevations in Vid Flumina and its lower tributaries are at the same level of Ligeia Mare to within the altimeter's vertical accuracy of ~15m, which is a function of both the RADAR instrument as well as the precision of Cassini's reconstructed ephemeris. Specular reflections are also observed in higher order tributaries that occur hundred meters above the level of Ligeia Mare, consistent with drainage feeding into the main channel system.

  20. Liquid-filled canyons on Titan

    NASA Astrophysics Data System (ADS)

    Poggiali, V.; Mastrogiuseppe, M.; Hayes, A. G.; Seu, R.; Birch, S. P. D.; Lorenz, R.; Grima, C.; Hofgartner, J. D.

    2016-08-01

    In May 2013 the Cassini RADAR altimeter observed channels in Vid Flumina, a drainage network connected to Titan's second largest hydrocarbon sea, Ligeia Mare. Analysis of these altimeter echoes shows that the channels are located in deep (up to 570 m), steep-sided, canyons and have strong specular surface reflections that indicate they are currently liquid filled. Elevations of the liquid in these channels are at the same level as Ligeia Mare to within a vertical precision of about 0.7 m, consistent with the interpretation of drowned river valleys. Specular reflections are also observed in lower order tributaries elevated above the level of Ligeia Mare, consistent with drainage feeding into the main channel system.

  1. The structure of subtidal currents within and around Lydonia Canyon: evidence for enhanced cross-shelf fluctuations over the mouth of the canyon

    USGS Publications Warehouse

    Noble, M.; Butman, B.

    1989-01-01

    The Coriolis force on the cross-canyon flow, turbulent Reynolds stresses, and acceleration of the along-canyon flow balanced the imposed pressure gradient for flow near the rim of Lydonia Canyon. The Coriolis force was not important in the deeper portions of the canyon, where baroclinic adjustments of the density field began to be an important factor in the momentum balance. -from Authors

  2. Flow Focusing as a Control on the Width of Canyons Formed by Outburst Floods

    NASA Astrophysics Data System (ADS)

    Lapotre, M. G.; Lamb, M. P.; Halliday, C. K.

    2012-12-01

    Spectacular canyons exist on the surfaces of Earth and Mars that were carved by ancient outburst megafloods. These canyons often have steep headwalls and were eroded into jointed rock. This suggests that canyon formation is driven by upstream retreat of waterfalls through toppling failure. Discharge reconstructions remain difficult, however, because we do not understand quantitatively the links between canyon formation and canyon morphology. Here we propose that the width of canyon headwalls is set by the shear stress distribution around the rim of the canyon, which governs the propensity for toppling failure, and that this distribution is controlled by focusing of flood water into the canyon head. To test this hypothesis, we performed a series of numerical simulations of 2-D, depth-averaged, turbulent flow using the hydraulic numerical modeling suite ANUGA Hydro and mapped the shear stresses along the rim of canyons of various geometries. The numerical simulations were designed to explore three dimensionless variables: the aspect ratio of the canyon (length normalized by width), the canyon width relative to the normal flow depth, and the Froude number. Preliminary results show that flow focusing at the head of a canyon can lead to heightened shear stresses there compared to the sides of the canyon. Flow focusing is most efficient for subcritical flows with large canyon aspect ratios, suggesting that canyons grow in all directions until they reach a critical length which depends on the Froude number only. Canyons longer than this critical length maintain a uniform width during canyon formation. Earth-analog canyons, where flood depths were constrained from previous paleo-hydraulic studies, show good agreement with our numerical predictions, suggesting that flow focusing may set the width of canyons during megafloods. Model results allow a link between process and form that will enable us to constrain better flood discharges on Earth and Mars, where other robust

  3. VIEW TO THE SOUTH OVER CAJON CANYON THROUGH BLOOMING YUCCA, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW TO THE SOUTH OVER CAJON CANYON THROUGH BLOOMING YUCCA, TOWARDS THE BNSF RAILROAD TRACKS. 124 - Burlington Northern Santa Fe Railroad, Cajon Subdivision, Between Cajon Summit and Keenbrook, Devore, San Bernardino County, CA

  4. The Shape of Trail Canyon Alluvial Fan, Death Valley

    NASA Technical Reports Server (NTRS)

    Farr, Tom G.; Dohrenwend, John C.

    1993-01-01

    A modified conic equation has been fit to high-resolution digital topographic data for Trail Canyon alluvial fan in Death Valley, California. Fits were accomplished for 3 individual fan units of different age.

  5. 37. PRATER CANYON AND CIVILIAN CONSERVATION CORPS CAMP SITE FROM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    37. PRATER CANYON AND CIVILIAN CONSERVATION CORPS CAMP SITE FROM PRATER GRADE, FACING E. SAME CAMERA LOCATION AS No. 35 AND No. 36. - Mesa Verde National Park Main Entrance Road, Cortez, Montezuma County, CO

  6. A view in Lapwai Canyon at Milepost 18 of the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    A view in Lapwai Canyon at Milepost 18 of the grade cut through basalt - Camas Prairie Railroad, Second Subdivision, From Spalding in Nez Perce County, through Lewis County, to Grangeville in Idaho County, Spalding, Nez Perce County, ID

  7. View of Inverted Siphon crossing Hot Water (or White) Canyon. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of Inverted Siphon crossing Hot Water (or White) Canyon. Looking northeast - Childs-Irving Hydroelectric Project, Irving System, Inverted Siphon, Forest Service Road 708/502, Camp Verde, Yavapai County, AZ

  8. 3. VIEW OF DIABLO CANYON LOOKING DOWNSTREAM FROM THE VALVE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. VIEW OF DIABLO CANYON LOOKING DOWNSTREAM FROM THE VALVE HOUSE AT ELEVATION 1044, 1989. - Skagit Power Development, Diablo Dam, On Skagit River, 6.9 miles upstream from Newhalem, Newhalem, Whatcom County, WA

  9. 24. Mormon Flat reservoir, or Canyon Lake. Photographer Mark Durben, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. Mormon Flat reservoir, or Canyon Lake. Photographer Mark Durben, 1988. Source: Salt River Project. - Mormon Flat Dam, On Salt River, Eastern Maricopa County, east of Phoenix, Phoenix, Maricopa County, AZ

  10. Investigations of Carbon Phases in Canyon Diablo Meteorite

    NASA Astrophysics Data System (ADS)

    Karczemska, A.; Jakubowski, T.; Ouzillou, M.; Batory, D.; Abramczyk, H.; Brozek-Pluska, B.; Kopec, M.; Kozanecki, M.; Wiosna-Salyga, G.

    2016-08-01

    X-ray diffraction, Raman mapping and micro-spectrofluorimetric studies have been used in investigations of carbon in Canyon Diablo meteorite. Results show the presence of defected diamond and not well recognized carbon phases (unclear Raman peaks).

  11. View of the Colorado River Canyon form the Nevada side ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of the Colorado River Canyon form the Nevada side showing the Nevada rim towers and portions of US 93, view south - Hoover Dam, Spanning Colorado River at Route 93, Boulder City, Clark County, NV

  12. H CANYON PROCESSING IN CORRELATION WITH FH ANALYTICAL LABS

    SciTech Connect

    Weinheimer, E.

    2012-08-06

    Management of radioactive chemical waste can be a complicated business. H Canyon and F/H Analytical Labs are two facilities present at the Savannah River Site in Aiken, SC that are at the forefront. In fact H Canyon is the only large-scale radiochemical processing facility in the United States and this processing is only enhanced by the aid given from F/H Analytical Labs. As H Canyon processes incoming materials, F/H Labs provide support through a variety of chemical analyses. Necessary checks of the chemical makeup, processing, and accountability of the samples taken from H Canyon process tanks are performed at the labs along with further checks on waste leaving the canyon after processing. Used nuclear material taken in by the canyon is actually not waste. Only a small portion of the radioactive material itself is actually consumed in nuclear reactors. As a result various radioactive elements such as Uranium, Plutonium and Neptunium are commonly found in waste and may be useful to recover. Specific processing is needed to allow for separation of these products from the waste. This is H Canyon's specialty. Furthermore, H Canyon has the capacity to initiate the process for weapons-grade nuclear material to be converted into nuclear fuel. This is one of the main campaigns being set up for the fall of 2012. Once usable material is separated and purified of impurities such as fission products, it can be converted to an oxide and ultimately turned into commercial fuel. The processing of weapons-grade material for commercial fuel is important in the necessary disposition of plutonium. Another processing campaign to start in the fall in H Canyon involves the reprocessing of used nuclear fuel for disposal in improved containment units. The importance of this campaign involves the proper disposal of nuclear waste in order to ensure the safety and well-being of future generations and the environment. As processing proceeds in the fall, H Canyon will have a substantial

  13. Safety Evaluation for Packaging (onsite) T Plant Canyon Items

    SciTech Connect

    OBRIEN, J.H.

    2000-07-14

    This safety evaluation for packaging (SEP) evaluates and documents the ability to safely ship mostly unique inventories of miscellaneous T Plant canyon waste items (T-P Items) encountered during the canyon deck clean off campaign. In addition, this SEP addresses contaminated items and material that may be shipped in a strong tight package (STP). The shipments meet the criteria for onsite shipments as specified by Fluor Hanford in HNF-PRO-154, Responsibilities and Procedures for all Hazardous Material Shipments.

  14. B-Plant Canyon Ventilation Control System Description

    SciTech Connect

    MCDANIEL, K.S.

    1999-08-31

    Project W-059 installed a new B Plant Canyon Ventilation System. Monitoring and control of the system is implemented by the Canyon Ventilation Control System (CVCS). This document describes the CVCS system components which include a Programmable Logic Controller (PLC) coupled with an Operator Interface Unit (OIU) and application software. This document also includes an Alarm Index specifying the setpoints and technical basis for system analog and digital alarms.

  15. CHAMA RIVER CANYON WILDERNESS AND CONTIGUOUS ROADLESS AREA, NEW MEXICO.

    USGS Publications Warehouse

    Ridgley, Jennie L.; Light, Thomas D.

    1984-01-01

    Results of mineral surveys indicate that the Chama River Canyon Wilderness and contiguous roadless area in new Mexico have a probable mineral-resource potential for copper with associated uranium and silver. Gypsum occurs throughout the area, exposed in the canyon walls. Further study of the wilderness should concentrate on exploratory drilling to test the oil and gas potential of Pennsylvanian strata and evaluate vanadium anomalies in the Todilto as a prospecting guide for locating uranium.

  16. Submarine canyons: multiple causes and long-time persistence

    SciTech Connect

    Shepard, F.P.

    1981-06-01

    Submarine canyons are of composite origin and that many of the hypotheses suggested in the past were partly correct but did not appreciate that coordination of other processes was required. Thus there is growing evidence that, in the history of many canyons, there was a period in which subaerial erosion was an important precursor, but that present features are predominantly the result of marine erosion. Those advocating turbidity currents as the unique cause of canyons failed to appreciate that debris flows down the incipient valleys, as well as other types of landslides, could be an almost equally important factor in marine erosion. The great effect of biologic activity on the rock walls of incipient canyons has been almost completely neglected in explanations, and various types of currents such as those of the tides have been left largely out of the picture. Perhaps the most important feature absent in these various hypotheses has been the realization that canyons may well be the result of a long period of formation, much longer than the short episodes of Pleistocene glacial sea-level lowering usually considered explanation enough of these giant features which commonly cut into hard crystalline rock. New information is showing that the canyons may date back to at least the Cretaceous. (JMT)

  17. Brighty, donkeys and conservation in the Grand Canyon.

    PubMed

    Wills, John

    2006-09-01

    The Grand Canyon is a vast place. It is almost incomprehensible in size. And yet it can also seem strangely crowded. Millions of tourists flock to the Grand Canyon in northern Arizona every year. In 1999, almost 5 million people visited, the highest figure in Canyon history. And each one of them expected to see a wild, free and untrammelled landscape. Despite the obvious natural resources, this expectation has proved anything but easy to satisfy. The US National Park Service (NPS), responsible for the management of most large North American parks (along with several historic sites and museums), has struggled to make or keep the canyon "grand". Park rangers have grappled with a multitude of issues during the past century, including automobile congestion, drying of the Colorado River and uranium mining inside the park. Conservation has posed a unique set of challenges. On a fundamental level, "restoring" the Grand Canyon to its "original" wilderness setting has proved intensely problematic. In the field of wildlife management, restoring the Canyon to its pre-Columbian splendour has entailed some tough decisions--none more so than a 1976 plan to eliminate a sizeable population of feral burros (wild donkeys) roaming the preserve, animals classified as exotics by the NPS.

  18. Is Canyon Width a Diagnostic Indicator of the Discharge of Megafloods on Earth and Mars?

    NASA Astrophysics Data System (ADS)

    Lapotre, M. G.; Lamb, M. P.

    2013-12-01

    On Earth, large floods have carved steep-walled and amphitheater-headed canyons from the Pleistocene (e.g. Box Canyon, ID) through the Holocene (e.g. Asbyrgi Canyon, Iceland), to historic times (e.g. Canyon Lake Gorge, TX). The geologic record on Mars suggests that similar floods have carved canyons by waterfall retreat about 3.5 billion years ago, when the red planet was wetter and possibly warmer. We currently lack robust paleo-hydraulic tools to reconstruct the discharge of ancient floods, especially on Mars where sediment sizes are obscured from observation. To address this issue, we hypothesize that the width of canyon escarpment is controlled by the hydraulics of the canyon-carving flood due to focusing of the flood into the canyon head. We compiled field data from multiple canyons and floods on Earth and Mars and show that there is a correlation between estimated flood discharge and canyon headwall width. To explore what sets this relationship, we identified five important parameters using dimensional analysis: the Froude number, the ratio of backwater length to canyon length, the ratio of backwater length to flood width, the ratio of canyon width to flood width, and the topographic slope upstream of the canyon. We used the hydraulic numerical modeling suite ANUGA to simulate overland flow over different canyon geometries and flood parameters to systematically explore the relative bed shear stresses along the canyon rim as a metric for flow focusing. Results show that canyons that exceed a certain length, scaling with the hydraulic backwater length, have shear stresses at their heads that are significantly higher than near the canyon mouth. Shear stresses along the rim of the canyon sidewalls are limited, in comparison to stresses along the canyon head, when the flood width is of the order of the backwater length. Flow focusing only occurs for subcritical flow. Together, these results suggest that canyons may only grow from a perturbation that is large

  19. 2008 High-Flow Experiment at Glen Canyon Dam Benefits Colorado River Resources in Grand Canyon National Park

    USGS Publications Warehouse

    Melis, Theodore S.; Topping, David J.; Grams, Paul E.; Rubin, David M.; Wright, Scott A.; Draut, Amy E.; Hazel, Joseph E.; Ralston, Barbara E.; Kennedy, Theodore A.; Rosi-Marshall, Emma; Korman, Josh; Hilwig, Kara D.; Schmit, Lara M.

    2010-01-01

    On March 5, 2008, the Department of the Interior began a 60-hour high-flow experiment at Glen Canyon Dam, Arizona, to determine if water releases designed to mimic natural seasonal flooding could be used to improve downstream resources in Glen Canyon National Recreation Area and Grand Canyon National Park. U.S. Geological Survey (USGS) scientists and their cooperators undertook a wide range of physical and biological resource monitoring and research activities before, during, and after the release. Scientists sought to determine whether or not high flows could be used to rebuild Grand Canyon sandbars, create nearshore habitat for the endangered humpback chub, and benefit other resources such as archaeological sites, rainbow trout, aquatic food availability, and riverside vegetation. This fact sheet summarizes research completed by January 2010.

  20. Influence of Glen Canyon Dam on Fine-Sediment Storage in the Colorado River in Marble Canyon, Arizona

    NASA Astrophysics Data System (ADS)

    Hazel, J. E.; Topping, D. J.; Schmidt, J. C.; Kaplinski, M.

    2005-12-01

    Glen Canyon Dam has caused a fundamental change in the distribution of fine-sediment storage in the 99-km reach of the Colorado River in Marble Canyon, Grand Canyon National Park, Arizona. The two major storage sites for fine sediment (i.e., sand and finer material) in this canyon river are lateral recirculation eddies and the main-channel bed. We use a combination of methods, including direct measurement of sediment storage change, measurements of sediment flux, and comparison of the grain size of sediment found in different storage sites relative to the supply and that in transport, in order to evaluate the change in both volume and location of sediment storage. The analysis shows that the bed of the main channel was an important storage environment for fine sediment in the pre-dam era. In years of large seasonal accumulation, ~50% of the fine sediment supplied to the reach from upstream sources was stored on the main-channel bed. In contrast, sediment budgets constructed for two short-duration, experimental releases from Glen Canyon Dam indicate that ~90% of the sediment discharge from the reach during each release was derived from eddy storage, rather than from sandy deposits on the main-channel bed. These results indicate that the majority of the fine sediment in Marble Canyon is now stored in eddies, even though they occupy a small percentage (~17%) of the total river area. Because of a 95% reduction in the supply of fine sediment to Marble Canyon, future high releases not timed with substantial tributary inputs will potentially erode sediment from long-term eddy storage, resulting in continued degradation in Marble Canyon.

  1. Test Excavations at Box Canyon and Three Other Side Canyon Sites in the McNary Reservoir,

    DTIC Science & Technology

    1981-01-01

    Analysis by Eileen Adams-Rasmussen) .. ......... . 106 B. SOIL DESCRIPTIONS (by Kim Simmons) .. ........... . 108 C. PETROGRAPHIC ANALYSIS OF TEPHRAS FROM...Analysis of Five Tephra Samples . ....... .. 117 :4 viii LIST OF ILLUSTRATIONS Figure Page 1-i. The Immediate Vicinity of the Side Canyon Sites. ....... 3 II...even though definite relationship between these sites and the three Northern Side Canyon Sites cannot be established, comparison is warranted. Projectile

  2. SRTM Anaglyph: Pinon Canyon region, Colorado

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Erosional features are prominent in this view of southern Colorado taken by the Shuttle Radar Topography Mission (SRTM). The area covers about 20,000square kilometers and is located about 50 kilometers south of Pueblo, Colorado. The prominent mountains near the left edge of the image are the Spanish Peaks, remnants of a 20 million year old volcano. Rising 2,100 meters (7,000 feet) above the plains to the east, these igneous rock formations with intrusions of eroded sedimentary rock historically served as guiding landmarks for travelers on the Mountain Branch of the Santa Fe Trail.

    Near the center of the image is the Pinon Canyon Maneuver Site, a training area for soldiers of the U.S. Army from nearby Fort Carson. The site supports a diverse ecosystem with large numbers of big and small game, fisheries, non-game wildlife, forest, range land and mineral resources. It is bounded on the east by the dramatic topography of the Purgatoire River Canyon, a 100 meter (328 feet) deep scenic red canyon with flowing streams, sandstone formations and exposed geologic processes.

    This anaglyph was produced by first shading a preliminary SRTM elevation model. The stereoscopic effect was then created by generating two differing perspectives, one for each eye. When viewed through special glasses, the result is a vertically exaggerated view of the Earth's surface in its full three dimensions. Anaglyph glasses cover the left eye with a red filter and cover the right eye with a blue filter.

    Elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR)that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast

  3. Metamorphic signature of the Gneiss Canyon Shear Zone, Lower Granite Gorge, Grand Canyon, Arizona

    SciTech Connect

    Robinson, K.; Williams, M.L. . Dept. of Geology and Geography)

    1992-01-01

    The Proterozoic orogen in Arizona consists of structural blocks separated by NE trending shear zones. The Gneiss Canyon Shear Zone (GCSZ) is important because it appears to define in part the boundary between the amphibolite facies Yavapai Province and the granulite facies Mojave Province. An early NW striking foliation is clearly visible in many samples from the Lower Granite Gorge (LGG). In Travertine Canyon, east of the GCSZ, pelitic schists contain And-Sil-Crd-Bi and Gar-Sil-Sta-Bi. Mafic rocks exhibit complex phase relations between cummingtonite, anthophyllite, gedrite, garnet, and cordierite. The coexistence of cordierite-cummingtonite is indicative of low pressure metamorphism. Microprobe analyses of garnets reveal prograde growth zoning profiles. Temperature and pressure estimates of peak metamorphism are 550--600 C and 3 kb. Just east of the GCSZ, pelitic assemblages contain Gar-Bi [+-] Sil [+-] Mus, and garnet zoning profiles are flat in the cores. In Spencer Canyon, west of the GCSZ, samples commonly contain Gar-Bi-Sil-Crd, and in many samples cordierite is being replaced by sillimanite. Thermobarometric calculations yield temperature and pressure estimates of 650 C and 3.5 kb. Mineral assemblages and quantitative thermobarometry suggest higher peak metamorphic temperature west of the GCSZ but relatively constant pressures across the LGG. On the east side of the GCSZ, temperatures increase toward the Shear Zone, probably due to the presence of extensive dikes, pods, and veins of variably deformed granite. Peak mineral assemblages are syntectonic with respect to the NE-striking GCSZ fabric. If a suture exists in the LGG, the GCSZ fabrics apparently reflect post-accretionary tectonism, with accretion occurring prior to the peak of metamorphism.

  4. An Experimental Study of Submarine Canyon Evolution on Continental Slopes

    NASA Astrophysics Data System (ADS)

    Lai, S. Y.; Gerber, T. P.; Amblas, D.

    2013-12-01

    Submarine canyons define the morphology of many continental slopes and are conduits for the transport of sediment from shallow to deep water. Though the origin and evolution of submarine canyons is still debated, there is general agreement that sediment gravity flows play an important role. Here we present results from a simple, reduced-scale sandbox experiment designed to investigate how sediment gravity flows generate submarine canyons. In the experiments, gravity flows were modeled using either sediment-free or turbid saline currents. Unconfined flows were released onto an inclined bed of sand bounded on the downstream end by a movable floor that was incrementally lowered during the course of an experiment to produce an escarpment. This design was developed to represent the growth of relief across the continental slope. To monitor canyon evolution on the slope, we placed an overhead DSLR camera to record vivid time-lapse videos. At the end of each experimental stage we scanned the topography by imaging a series of submerged laser stripes, each projected from a motor-driven transverse laser sheet, onto a calibrated Cartesian coordinate system to produce high resolution bathymetry without draining the ambient water. In areas unaffected by the flows, we observe featureless, angle-of-repose submarine slopes formed by retrogressive breaching processes. In contrast, areas influenced by gravity flows cascading across the shelf break are deeply incised by submarine canyons with well-developed channel networks. Our results show that downslope gravity flows and submarine falling base level are both required to produce realistic canyon morphologies at laboratory scale. Though our mechanism for generating relief may be a rather crude analogue for the processes driving slope evolution, we hope our novel approach can stimulate new questions about the coevolution of canyons and slopes and motivate further experimental work to address them.

  5. Circulation in Vilkitsky Canyon in the eastern Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Janout, Markus; Hölemann, Jens

    2016-04-01

    The eastern Arctic Ocean is characterized by steep continental slopes and vast shallow shelf seas that receive a large amount of riverine freshwater from some of the largest rivers on earth. The northwestern Laptev Sea is of particular interest, as it is a freshwater transport pathway for a swift surface-intensified current from the Kara Sea toward the Arctic Basin, as was recently highlighted by high-resolution model studies. The region features complex bathymetry including a narrow strait and a large submarine canyon, strong tides, polynyas and severe sea ice conditions throughout much of the year. A year-long mooring record as well as detailed hydrographic shipboard measurements resulted from summer expeditions to the area in 2013 and 2014, and now provide a detailed picture of the region's water properties and circulation. The hydrography is characterized by riverine Kara Sea freshwater near the surface in the southern part of the canyon, while warmer (~0°C) saline Atlantic-derived waters dominate throughout the canyon at depths >150m. Cold shelf-modified waters near the freezing point are found along the canyon edges. The mean flow at the 300 m-deep mooring location near the southern edge of the canyon is swift (30 cm/s) and oriented eastward near the surface as suggested by numerical models, while the deeper flow follows the canyon topography towards the north-east. Wind-driven deviations from the mean flow coincide with sudden changes in temperature and salinity. This study characterizes the general circulation in Vilkitsky Canyon and investigates its potential as a conduit for upwelling of Atlantic-derived waters from the Arctic Basin to the Laptev Sea shelf.

  6. Geology of the Hamm Canyon quadrangle, Colorado

    USGS Publications Warehouse

    Cater, Fred W.

    1953-01-01

    The Hamm Canyon quadrangle is on eof eighteen 7 1/2-minute quadrangles covering the principal carnotite-producing area of southwestern Colorado. The geology of these quadrangles was mapped by the U.S. Geological Survey for the Atomic Energy Commission as part of a comprehensive study of carnotite deposits. The rocks exposed in the eighteen quadrangles consist of crystalline rocks of pre-Cambrian age and sedimentary rocks that range in age from late Paleozoic to Quaternary. Over much of the area the sedimentary rocks are flat lying, but in places the rocks are disrupted by high-angle faults, and northwest-trending folds. Conspicuous among the folds are large anticlines having cores of intrusive salt and gypsum. Most of the carnotite deposits are confined to the Salt Wash sandstone member of the Jurassic Morrison formation. Within this sandstone, most of the deposits are spottily distributed through an arcuate zone known as the "Uravan Mineral Belt". Individual deposits range in size from irregular masses containing only a few tons of ore to large, tabular masses containing many thousands of tons. The ore consists largely of sandstone selectively impregnated and in part replaced by uranium and vanadium minerals. Most of the deposits appear to be related to certain sedimentary structures in sandstones of favorable composition.

  7. Formation of the Grand Canyon 5 to 6 million years ago through integration of older palaeocanyons

    NASA Astrophysics Data System (ADS)

    Karlstrom, Karl E.; Lee, John P.; Kelley, Shari A.; Crow, Ryan S.; Crossey, Laura J.; Young, Richard A.; Lazear, Greg; Beard, L. Sue; Ricketts, Jason W.; Fox, Matthew; Shuster, David L.

    2014-03-01

    The timing of formation of the Grand Canyon, USA, is vigorously debated. In one view, most of the canyon was carved by the Colorado River relatively recently, in the past 5-6 million years. Alternatively, the Grand Canyon could have been cut by precursor rivers in the same location and to within about 200 m of its modern depth as early as 70-55 million years ago. Here we investigate the time of formation of four out of five segments of the Grand Canyon, using apatite fission-track dating, track-length measurements and apatite helium dating: if any segment is young, the old canyon hypothesis is falsified. We reconstruct the thermal histories of samples taken from the modern canyon base and the adjacent canyon rim 1,500 m above, to constrain when the rocks cooled as a result of canyon incision. We find that two of the three middle segments, the Hurricane segment and the Eastern Grand Canyon, formed between 70 and 50 million years ago and between 25 and 15 million years ago, respectively. However, the two end segments, the Marble Canyon and the Westernmost Grand Canyon, are both young and were carved in the past 5-6 million years. Thus, although parts of the canyon are old, we conclude that the integration of the Colorado River through older palaeocanyons carved the Grand Canyon, beginning 5-6 million years ago.

  8. Discovery of two new large submarine canyons in the Bering Sea

    USGS Publications Warehouse

    Carlson, P.R.; Karl, Herman A.

    1984-01-01

    The Beringian continental margin is incised by some of the world's largest submarine canyons. Two newly discovered canyons, St. Matthew and Middle, are hereby added to the roster of Bering Sea canyons. Although these canyons are smaller and not cut back into the Bering shelf like the five very large canyons, they are nonetheless comparable in size to most of the canyons that have been cut into the U.S. eastern continental margin and much larger than the well-known southern California canyons. Both igneous and sedimentary rocks of Eocene to Pliocene age have been dredged from the walls of St. Matthew and Middle Canyons as well as from the walls of several of the other Beringian margin canyons, thus suggesting a late Tertiary to Quaternary genesis of the canyons. We speculate that the ancestral Yukon and possibly Anadyr Rivers were instrumental in initiating the canyon-cutting processes, but that, due to restrictions imposed by island and subsea bedrock barriers, cutting of the two newly discovered canyons may have begun later and been slower than for the other five canyons. ?? 1984.

  9. Initiation and Frequency of Debris Flows in Grand Canyon, Arizona

    USGS Publications Warehouse

    Griffiths, Peter G.; Webb, Robert H.; Melis, Theodore S.

    1996-01-01

    Debris flows occur in 600 tributaries of the Colorado River in Grand Canyon, Arizona when intense precipitation causes slope failures in bedrock or colluvium. These slurries transport poorly sorted sediment, including very large boulders that form rapids at the mouths of tributaries and control the longitudinal profile of the Colorado River. Although the amount of rainfall on the days of historic debris flows typically is not unusual, the storm rainfall on consecutive days before the debris flows typically had recurrence intervals greater than 10 yrs. Four types of failure mechanisms initiate debris flows: bedrock failure (12 percent), failure of colluvial wedges by rainfall (21 percent), failure of colluvial wedges by runoff (the ?firehose effect;? 36 percent), and combinations of these failure mechanisms (30 percent). Failure points are directly or indirectly associated with terrestrial shales, particularly the Permian Hermit Shale, shale units within the Permian Esplanade Sandstone of the Supai Group, and the Cambrian Bright Angel Shale. Shales either directly fail, produce colluvial wedges downslope that contain clay, or form benches that store poorly sorted colluvium in wedge-shaped deposits. Terrestrial shales provide the fine particles and clay minerals?particularly kaolinite and illite?essential to long-distance debris-flow transport, whereas marine shales mostly contain smectites, which inhibit debris-flow initiation. Using repeat photography, we determined whether or not a debris flow occurred in the last century in 164 of 600 tributaries in Grand Canyon. We used logistic regression to model the binomial frequency data using 21 morphometric and lithologic variables. The location of shale units, particularly the Hermit Shale, within the tributary is the most consistent variable related to debris-flow frequency in Grand Canyon. Other statistically significant variables vary with large scale changes in canyon morphology. Standard morphometric measures such

  10. Observations of environmental change in Grand Canyon, Arizona

    USGS Publications Warehouse

    Webb, Robert H.; Melis, Theodore S.; Valdez, Richard A.

    2002-01-01

    Few scientific data have been collected on pre-dam conditions of the Colorado River corridor through Grand Canyon National Park. Using historical diaries, interviews with pre-dam river runners (referred to as the ?Old Timers?), and historical scientific data and observations, we compiled anecdotal information on environmental change in Grand Canyon. The most significant changes are the: lowering of water temperature in the river, near-elimination of heavily sediment-laden flows, erosion of sand bars, invasion of non-native tamarisk trees, reduction in driftwood, development of marshes, increase in non-native fish at the expense of native fishes, and increase in water bird populations. In addition, few debris flows were observed before closure of Glen Canyon Dam, which might suggests that the frequency of debris flows in Grand Canyon has increased. Other possible changes include decreases in bat populations and increases in swallow and bighorn sheep populations, although the evidence is anecdotal and inconclusive. These results provide a perspective on managing the Colorado River that may allow differentiation of the effects of Glen Canyon Dam from other processes of change.

  11. Origin of Hot Creek Canyon, Long Valley caldera, California

    SciTech Connect

    Maloney, N.J. . Dept. of Geological Sciences)

    1993-04-01

    Hot Creek has eroded a canyon some thirty meters deep across the Hot Creek rhyolite flows located in the southeastern moat of Long Valley Caldera. Maloney (1987) showed that the canyon formed by headward erosion resulting from spring sapping along hydrothermally altered fractures in the rhyolite, and the capture of Mammoth Creek. This analysis ignored the continuing uplift of the central resurgent dome. Reid (1992) concluded that the downward erosion of the canyon must have kept pace with the uplift. Long Valley Lake occupied the caldera until 100,000 to 50,000 years before present. The elevation of the shoreline, determined by trigonometric leveling, is 2,166 m where the creek enters the canyon and 2,148 m on the downstream side of the rhyolite. The slope of the strand line is about equal to the stream gradient. The hill was lower and the stream gradient less at the time of stream capture. Rotational uplift increased the stream gradient which increased the rate of downward erosion and formed the V-shaped canyon

  12. Sandwave migration in Monterey Submarine Canyon, Central California

    USGS Publications Warehouse

    Xu, J. P.; Wong, F.L.; Kvitek, R.; Smith, D.P.; Paull, C.K.

    2008-01-01

    Repeated high-resolution multibeam bathymetric surveys from 2002 through 2006 at the head of the Monterey Submarine Canyon reveal a sandwave field along the canyon axis between 20 and 250??m water depth. These sandwaves range in wavelength from 20 to 70??m and 1 to 3??m in height. A quantitative measure was devised to determine the direction of sandwave migration based on the asymmetry of their profiles. Despite appreciable spatial variation the sandwaves were found to migrate in a predominantly down-canyon direction, regardless of season and tidal phases. A yearlong ADCP measurement at 250??m water depth showed that intermittent internal tidal oscillations dominated the high-speed canyon currents (50-80??cm/s), which are not correlated with the spring-neap tidal cycle. Observed currents of 50??cm/s or higher were predominantly down-canyon. Applying a simple empirical model, flows of such magnitudes were shown to be able to generate sandwaves of a size similar to the observed ones. ?? 2007 Elsevier B.V. All rights reserved.

  13. On the escape of pollutants from urban street canyons

    NASA Astrophysics Data System (ADS)

    Baik, Jong-Jin; Kim, Jae-Jin

    Pollutant transport from urban street canyons is numerically investigated using a two-dimensional flow and dispersion model. The ambient wind blows perpendicular to the street and passive pollutants are released at the street level. Results from the control experiment with a street aspect ratio of 1 show that at the roof level of the street canyon, the vertical turbulent flux of pollutants is upward everywhere and the vertical flux of pollutants by mean flow is upward or downward. The horizontally integrated vertical flux of pollutants by mean flow at the roof level of the street canyon is downward and its magnitude is much smaller than that by turbulent process. These results indicate that pollutants escape from the street canyon mainly by turbulent process and that the net effect of mean flow is to make some escaped pollutants reenter the street canyon. Further experiments with different inflow turbulence intensities, inflow wind speeds, and street aspect ratio confirm the findings from the control experiment. In the case of two isolated buildings, the horizontally integrated vertical flux of pollutants by mean flow is upward due to flow separation but the other main results are the same as those from the control experiment.

  14. 76 FR 14802 - Modification of Class E Airspace; Bryce Canyon, UT

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-18

    ...-4537. SUPPLEMENTARY INFORMATION: History On December 9, 2010, the FAA published in the Federal Register... the earth. * * * * * ANM UT E5 Bryce Canyon, UT Bryce Canyon Airport, UT (Lat. 37 42'23'' N.,...

  15. 75 FR 39147 - Establishment of Class E Airspace; Bryce Canyon, UT

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-08

    ...; telephone (425) 203-4537. SUPPLEMENTARY INFORMATION: History On November 18, 2009, the FAA published in the... the earth. * * * * * ANM UT E5 Bryce Canyon, UT Bryce Canyon Airport, UT (Lat. 37 42'23'' N.,...

  16. Software Configuration Management Plan for the B-Plant Canyon Ventilation Control System

    SciTech Connect

    MCDANIEL, K.S.

    1999-08-31

    Project W-059 installed a new B Plant Canyon Ventilation System. Monitoring and control of the system is implemented by the Canyon Ventilation Control System (CVCS). This Software Configuration Management Plan provides instructions for change control of the CVCS.

  17. 76 FR 23623 - Backcountry Management Plan, Environmental Impact Statement, Grand Canyon National Park, Arizona

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-27

    ... National Park Service Backcountry Management Plan, Environmental Impact Statement, Grand Canyon National Park, Arizona AGENCY: National Park Service, Department of the Interior. ACTION: Notice of Intent to prepare an Environmental Impact Statement for the Backcountry Management Plan, Grand Canyon National...

  18. Hudson submarine canyon head offshore New York and New Jersey: A physical and geochemical investigation

    NASA Astrophysics Data System (ADS)

    Rona, Peter; Guida, Vincent; Scranton, Mary; Gong, Donglai; Macelloni, Leonardo; Pierdomenico, Martina; Diercks, Arne-R.; Asper, Vernon; Haag, Scott

    2015-11-01

    Hudson Canyon is the largest shelf-sourced canyon system off the east coast of the United States, and hosts a productive ecosystem that supports key fisheries. Here we report the results of a multi-year interdisciplinary study of the geological, geochemical, and physical oceanographic features and processes in the canyon that underpin that ecosystem. High-resolution multi-beam bathymetric and backscatter data show that the contrasting morphology of the two perpendicularly oriented branches at the head of the Hudson Canyon is indicative of different states of geomorphological activity and sediment transport. Tightly spaced ridges and gullies extend perpendicularly towards the canyon axis from the canyon walls. Numerous depressions are found at the base of the canyon walls or along the canyon axis at depths from 300 m to 600 m. Elevated concentrations of dissolved methane in the water column, where the highest density of depressions occur, suggests that methane is actively venting there. The topography and reflective floors of circular depressions in canyon walls and their association with methane maxima suggest that these represent active methane gas release-collapse pockmarks with carbonate floors. Patterns of irregular, low-relief, reflective depressions on the canyon floor may also represent methane release points, either as gas release or cold-seep features. The presence of methane maxima in a region of strong advective currents suggests continuous and substantial methane supply. Hydrographic observations in the canyon show that multiple layers of distinct inter-leaved shelf (cold, fresh) and slope (warm, salty) water masses occupy the head of the canyon during the summer. Their interactions with the canyon and with each other produce shifting fronts, internal waves, and strong currents that are influenced by canyon topography. Strong tidal currents with along-canyon-axis flow shear help to drive the advection, dispersion and mixing of dissolved materials in the

  19. Directed urban canyons in megacities and its applications in meteorological modeling

    NASA Astrophysics Data System (ADS)

    Samsonov, Timofey; Konstantinov, Pavel; Varentsov, Mikhail

    2015-04-01

    Directed urban canyons study applies object-oriented analysis to extraction of urban canyons and introduces the concept of directed urban canyon which is then experimentally applied in urban meteorological modeling. Observation of current approach to description of urban canyon geometry is provided. Then a new theoretical approach to canyon delineation is presented that allows chaining the spaces between buildings into directed canyons that comprise three-level hierarchy. An original methodology based on triangular irregular network (TIN) is presented that allows extraction of regular and directed urban canyons from cartographic data, estimation of their geometric characteristics, including local and averaged height-width ratio, primary and secondary canyon directions. Obtained geometric properties of canyons are then applied in micro-scale temperature and wind modeling using URB-MOS model and estimation of possible wind accelerations along canyons. Extraction and analysis of directed canyons highly depends on the presence of linear street network. Thus, in the absence of this GIS layer, it should be reconstructed from another data sources. The future studies should give us an answer to the question, where the limits of directed canyons are and how they can be classified further in terms of the street longitudinal shape. For now all computations are performed in separate scripts and programs. We plan to develop comprehensive automation of described methods of urban canyon description in specialized software. The most perspective extension of proposed methodology seemes to be canyon -based analysis which is truely object-oriented. Various geometric properties of micro-, meso- and macro-scale canyons should be investigated and their applicability in urban climate modeling should be assesed. Object-oriented canyon analysis can also be applied in architectural studies, urban morphology, planning and various physical and social aspects that are concerned with human in

  20. Human Jamestown canyon virus infection --- Montana, 2009.

    PubMed

    2011-05-27

    Jamestown Canyon virus (JCV) is a mosquito-borne zoonotic pathogen belonging to the California serogroup of bunyaviruses. Although JCV is widely distributed throughout temperate North America, reports of human JCV infection in the United States are rare. This is the first report of human JCV infection detected in Montana, one of only 15 cases reported in the United States since 2004, when JCV became reportable. On May 26, 2009, a man aged 51 years with no travel history outside of Montana went to a local emergency department immediately following onset of fever, severe frontal headache, dizziness, left-sided numbness, and tingling. His blood pressure was elevated. Stroke was ruled out, oxygen was administered, medication was prescribed for hypertension, and the patient was sent home. One week later, the patient visited his primary-care physician complaining of continued neurologic symptoms consistent with acute febrile encephalitis and recent mosquito bites. Although West Nile virus (WNV) disease was diagnosed based on detection of WNV-immunoglobulin M (IgM) and G (IgG) antibodies, subsequent testing indicated that the WNV antibodies were from a past infection and that his illness was caused by JCV. The final diagnosis of JCV infection was based on positive JCV-specific IgM enzyme-linked immunosorbent assay (ELISA) results and a fourfold rise in paired sample JCV plaque reduction neutralization test (PRNT) titers. This finding represents a previously unrecognized risk for JCV infection in Montana; clinicians should consider JCV infection when assessing patients for suspected arboviral infections.

  1. The State of the Colorado River Ecosystem in Grand Canyon: A Report of the Grand Canyon Monitoring and Research Center 1991-2004

    USGS Publications Warehouse

    Gloss, Steven P.; Lovich, Jeffrey E.; Melis, Theodore S.

    2005-01-01

    This report is an important milestone in the effort by the Secretary of the Interior to implement the Grand Canyon Protection Act of 1992 (GCPA; title XVIII, secs. 1801-1809, of Public Law 102-575), the most recent authorizing legislation for Federal efforts to protect resources downstream from Glen Canyon Dam. The chapters that follow are intended to provide decision makers and the American public with relevant scientific information about the status and recent trends of the natural, cultural, and recreational resources of those portions of Grand Canyon National Park and Glen Canyon National Recreation Area affected by Glen Canyon Dam operations. Glen Canyon Dam is one of the last major dams that was built on the Colorado River and is located just south of the Arizona-Utah border in the lower reaches of Glen Canyon National Recreation Area, approximately 15 mi (24 km) upriver from Grand Canyon National Park (fig. 1). The information presented here is a product of the Glen Canyon Dam Adaptive Management Program (GCDAMP), a federally authorized initiative to ensure that the primary mandate of the GCPA is met through advances in information and resource management. The U.S. Geological Survey`s (USGS) Grand Canyon Monitoring and Research Center (GCMRC) has responsibility for the scientific monitoring and research efforts for the program, including the preparation of reports such as this one.

  2. Standardized methods for Grand Canyon fisheries research 2015

    USGS Publications Warehouse

    Persons, William R.; Ward, David L.; Avery, Luke A.

    2013-01-01

    This document presents protocols and guidelines to persons sampling fishes in the Grand Canyon, to help ensure consistency in fish handling, fish tagging, and data collection among different projects and organizations. Most such research and monitoring projects are conducted under the general umbrella of the Glen Canyon Dam Adaptive Management Program and include studies by the U.S. Geological Survey (USGS), U.S. Fish and Wildlife Service (FWS), National Park Service (NPS), the Arizona Game and Fish Department (AGFD), various universities, and private contractors. This document is intended to provide guidance to fieldworkers regarding protocols that may vary from year to year depending on specific projects and objectives. We also provide herein documentation of standard methods used in the Grand Canyon that can be cited in scientific publications, as well as a summary of changes in protocols since the document was first created in 2002.

  3. Street Canyon Atmospheric Composition: Coupling Dynamics and Chemistry

    NASA Astrophysics Data System (ADS)

    Bright, V.; Bloss, W. J.; Cai, X.

    2010-12-01

    Atmospheric composition within the urban environment, particularly within street canyons (formed by a road running between two rows of buildings), has a direct effect on the air quality of an environment in which a large majority of people live and work. The composition of air within a street canyon is determined by the composition of background air mixed in from above, advection of air into and out of the canyon, vehicle exhaust and other emissions from within the street, together with the mixing and chemical processing of pollutants within the canyon. This occurs on a timescale of a few seconds to minutes and as a result, within-canyon atmospheric processes can have a significant effect on atmospheric composition on such timescales. This paper outlines a modelling study of street canyon atmospheric composition, integrating the combined effects of emissions, dynamics and chemistry. This work builds upon an existing dynamical model of canyon atmospheric motion (Large Eddy Simulation (LES) model) by adding a detailed chemical reaction scheme. Previous studies have considered basic NOx-O3 cycles with only a small number of chemical reactions included. Initially, a zero-dimensional box model was used to develop and assess the accuracy of a suitable reduced chemical scheme to be included within the LES. The reduced chemical scheme, based upon a subset of the Master Chemical Mechanism (MCM), includes 51 chemical species and 136 reactions. Vehicle emissions taken from the UK National Atmospheric Emissions Inventory (NAEI) were subsequently added to the box model. These elements were then combined with the canyon dynamics simulated by the Large Eddy Simulation (LES) model. Results demonstrate that the enhanced model is a suitable tool to be used to further investigate the combined effects of mixing and chemical processing upon air quality within the street canyon. Subsequently, a number of key questions relating to urban atmospheric composition are addressed using the

  4. patterns of dust transport to the Grand Canyon

    NASA Astrophysics Data System (ADS)

    de P. Vasconcelos, Luis A.; Kahl, Jonathan D. W.; Liu, Desong; Macias, Edward S.; White, Warren H.

    Dust particles in the 2.5 µm to 15 µm diameter range contribute to regional haze that sometimes impairs visibility at the Grand Canyon and other National Parks in the southwestern U.S. The proportion of airborne dust that is attributable to land modification is unknown, but can be expected to increase as a consequence of the region's rapid population growth. This note examines the upwind histories of air masses bringing high coarse-particle concentrations to the Grand Canyon over a five-year monitoring period. Although arid and semi-arid lands extend in all directions, and the fastest airflows generally have a northerly component, high dust concentrations are most common in air arriving from the southwest, where development has been concentrated. This empirical association suggests that the expansion of suburban and agricultural lands is raising dust levels at the Grand Canyon.

  5. Grand Canyon, Arizona as seen from STS-66

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Snow covers the Kaibab Plateau on the northern side of the Colorado River in this November, 1994 view of the Grand Canyon. North is to the bottom of this view. The Colorado River has created a canyon which cuts through billions of years of geologic time. The Grand Canyon is 446 kilometers (277 miles) long, averages 16 kilometers (10 miles) wide, and is approximately 1.6 kilometers (1 mile) deep. The Coconino Plateau is located on the upper left side of the view, or to the south of the Colorado River. The direction of the flow of the Colorado River is from the east to the west. Eventually the river turns south and empties into the Gulf of California. The southern portion of Lake Powell in Utah can be seen at the bottom center of the view.

  6. Small-scale turbidity currents in a big submarine canyon

    USGS Publications Warehouse

    Xu, Jingping; Barry, James P.; Paull, Charles K.

    2013-01-01

    Field measurements of oceanic turbidity currents, especially diluted currents, are extremely rare. We present a dilute turbidity current recorded by instrumented moorings 14.5 km apart at 1300 and 1860 m water depth. The sediment concentration within the flow was 0.017%, accounting for 18 cm/s gravity current speed due to density excess. Tidal currents of ∼30 cm/s during the event provided a "tailwind" that assisted the down-canyon movement of the turbidity current and its sediment plume. High-resolution velocity measurements suggested that the turbidity current was likely the result of a local canyon wall slumping near the 1300 m mooring. Frequent occurrences, in both space and time, of such weak sediment transport events could be an important mechanism to cascade sediment and other particles, and to help sustain the vibrant ecosystems in deep-sea canyons.

  7. Diagnosis of Jamestown Canyon encephalitis by polymerase chain reaction.

    PubMed

    Huang, C; Campbell, W; Grady, L; Kirouac, I; LaForce, F M

    1999-06-01

    In recent years, polymerase chain reaction (PCR) has been under study as a potential technique to improve the accuracy of diagnosis of suspected central nervous system viral infections. We describe a case of severe encephalitis in a previously healthy 20-year-old woman from New York who presented with headache, fever, and photophobia. Her illness was characterized by progressive worsening of her neurological status, leading to confusion, delirium, and status epilepticus. The diagnosis of Jamestown Canyon encephalitis was established by positive reverse transcriptase (RT)-PCR and nucleic acid sequencing of the band from both cerebrospinal fluid and brain tissue. The nucleotide sequence and the deduced amino acid sequence of the Jamestown Canyon virus from this patient were very similar to Jamestown Canyon virus isolates from mosquito pools in New York. This report suggests that RT-PCR assays could be important tools in the diagnostic workup of cases of encephalitis.

  8. Origin of Izu-Bonin forearc submarine canyons

    SciTech Connect

    Fujioka, Kantaro ); Yoshida, Haruko )

    1990-06-01

    Submarine canyons on the Izu-Bonin forearc are morphologically divided from north to south into four types based on their morphology, long profiles, and seismic profiles: Mikura, Aogashima, Sofu, and Chichijima types, respectively. These types of canyons are genetically different from each other. Mikura group is formed by the faults related to bending of the subducting Philippine Sea Plate. Aogashima type genetically relates to the activity of large submarine calderas that supply large amounts of volcaniclastic material to the consequent forearc slope. The third, Sofu group, is thought to be formed by the large-scale mega mass wasting in relation to the recent movement of the Sofugan tectonic line. The last, Chichijima group, is formed by collision of the Uyeda Ridge and the Ogasawara Plateau on the subducting Pacific Plate with Bonin Arc. Long profiles of four types of submarine canyons also support this.

  9. 78 FR 54482 - Charter Renewal, Glen Canyon Dam Adaptive Management Work Group

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-04

    ... Bureau of Reclamation Charter Renewal, Glen Canyon Dam Adaptive Management Work Group AGENCY: Bureau of... the Glen Canyon Dam Adaptive Management Work Group. The purpose of the Adaptive Management Work Group... Canyon Dam Adaptive Management Work Group is in the public interest in connection with the performance...

  10. 76 FR 54487 - Charter Renewal, Glen Canyon Dam Adaptive Management Work Group

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-01

    ... Bureau of Reclamation Charter Renewal, Glen Canyon Dam Adaptive Management Work Group AGENCY: Bureau of... the Glen Canyon Dam Adaptive Management Work Group. The purpose of the Adaptive Management Work Group... of the Glen Canyon Dam Adaptive Management Work Group is in the public interest in connection...

  11. 78 FR 3879 - Ochoco National Forest, Paulina Ranger District; Oregon; Fox Canyon Cluster Allotment Management...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-17

    ... Forest Service Ochoco National Forest, Paulina Ranger District; Oregon; Fox Canyon Cluster Allotment... Ranger District. The Fox Canyon Cluster project area is located approximately 35 miles east of Prineville, south of Big Summit Prairie. The four allotments are Antler, Brush Creek, Fox Canyon, and Gray...

  12. Measuring currents in submarine canyons: technological and scientific progress in the past 30 years

    USGS Publications Warehouse

    Xu, J. P.

    2011-01-01

    The development and application of acoustic and optical technologies and of accurate positioning systems in the past 30 years have opened new frontiers in the submarine canyon research communities. This paper reviews several key advancements in both technology and science in the field of currents in submarine canyons since the1979 publication of Currents in Submarine Canyons and Other Sea Valleys by Francis Shepard and colleagues. Precise placements of high-resolution, high-frequency instruments have not only allowed researchers to collect new data that are essential for advancing and generalizing theories governing the canyon currents, but have also revealed new natural phenomena that challenge the understandings of the theorists and experimenters in their predictions of submarine canyon flow fields. Baroclinic motions at tidal frequencies, found to be intensified both up canyon and toward the canyon floor, dominate the flow field and control the sediment transport processes in submarine canyons. Turbidity currents are found to frequently occur in active submarine canyons such as Monterey Canyon. These turbidity currents have maximum speeds of nearly 200 cm/s, much smaller than the speeds of turbidity currents in geological time, but still very destructive. In addition to traditional Eulerian measurements, Lagrangian flow data are essential in quantifying water and sediment transport in submarine canyons. A concerted experiment with multiple monitoring stations along the canyon axis and on nearby shelves is required to characterize the storm-trigger mechanism for turbidity currents.

  13. 76 FR 28766 - Black Canyon Hydro, LLC; Notice of Preliminary Permit Application Accepted for Filing and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-18

    ... Energy Regulatory Commission Black Canyon Hydro, LLC; Notice of Preliminary Permit Application Accepted..., Black Canyon Hydro, LLC filed an application for a preliminary permit, pursuant to section 4(f) of the Federal Power Act (FPA), proposing to study the feasibility of the Black Canyon Hydroelectric...

  14. 75 FR 26098 - Safety Zone; Under Water Clean Up of Copper Canyon, Lake Havasu, AZ

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-11

    ... SECURITY Coast Guard 33 CFR Part 165 RIN 1625-AA00 Safety Zone; Under Water Clean Up of Copper Canyon, Lake... establishing a temporary safety zone on the navigable waters of Lake Havasu in the Copper Canyon in support of the underwater cleanup of Copper Canyon. This temporary safety zone is necessary to provide for...

  15. Regional economic impacts of Grand Canyon river runners.

    PubMed

    Hjerpe, Evan E; Kim, Yeon-Su

    2007-10-01

    Economic impact analysis (EIA) of outdoor recreation can provide critical social information concerning the utilization of natural resources. Outdoor recreation and other non-consumptive uses of resources are viewed as environmentally friendly alternatives to extractive-type industries. While outdoor recreation can be an appropriate use of resources, it generates both beneficial and adverse socioeconomic impacts on rural communities. The authors used EIA to assess the regional economic impacts of rafting in Grand Canyon National Park. The Grand Canyon region of northern Arizona represents a rural US economy that is highly dependent upon tourism and recreational expenditures. The purpose of this research is twofold. The first is to ascertain the previously unknown regional economic impacts of Grand Canyon river runners. The second purpose is to examine attributes of these economic impacts in terms of regional multipliers, leakage, and types of employment created. Most of the literature on economic impacts of outdoor recreation has focused strictly on the positive economic impacts, failing to illuminate the coinciding adverse and constraining economic impacts. Examining the attributes of economic impacts can highlight deficiencies and constraints that limit the economic benefits of recreation and tourism. Regional expenditure information was obtained by surveying non-commercial boaters and commercial outfitters. The authors used IMPLAN input-output modeling to assess direct, indirect, and induced effects of Grand Canyon river runners. Multipliers were calculated for output, employment, and income. Over 22,000 people rafted on the Colorado River through Grand Canyon National Park in 2001, resulting in an estimated $21,100,000 of regional expenditures to the greater Grand Canyon economy. However, over 50% of all rafting-related expenditures were not captured by the regional economy and many of the jobs created by the rafting industry are lower-wage and seasonal. Policy

  16. Paleogene canyons of Tethyan margin and their hydrocarbon potential, Czechoslovakia

    SciTech Connect

    Picha, F.J. )

    1991-03-01

    Two Paleogene canyons buried below the Neogene foredeep and the Carpathian thrust belt in Southern Moravia have been outlined by drilling and seismic profiling. The features, as much as 12 km wide and over 1000 m deep, have been traced for 40 km. They are cut into Mesozoic and Paleozoic carbonate and clastic deposits and underlying Precambrian crystalline rocks. The sedimentary fill is made of late Eocene and early oligocene marine deposits, predominantly silty mudstones and siltstones. Sandstones and conglomerates are distributed mainly in the lower axial part of the valleys. Proximal and distal turbidites, grain-flow and debris-flow deposits have been identified in the fill. The common occurrence of slump folds, pebbly mudstones, and chaotic slump deposits indicate that mass movement played a significant role in sediment transport inside the canyons. The canyons are interpreted as being cut by rivers, then submerged and further developed by submarine processes. The organic rich mudstones of the canyon fill are significant source rocks (1-10% TOC). They reached the generative stage only after being tectonically buried below the Carpathian thrust belt in middle Miocene time. Channelized sandstones and proximal turbidities provide reservoirs of limited extent, although more substantial accumulations of sands are possible further downslope at the mouth of these canyons. Several oil fields have been discovered both within the canyon fill and the surrounding rocks. Similar Paleogene valleys may be present elsewhere along the ancient Tethyan margins buried below the Neogene foredeeps and frontal zones of the Alps and Carpathians. Their recognition could prove fruitful in the search for hydrocarbons.

  17. Geomorphology and sedimentary features in the Central Portuguese submarine canyons, Western Iberian margin

    NASA Astrophysics Data System (ADS)

    Lastras, G.; Arzola, R. G.; Masson, D. G.; Wynn, R. B.; Huvenne, V. A. I.; Hühnerbach, V.; Canals, M.

    2009-02-01

    The Central Portuguese submarine canyons (Nazaré, Cascais and Setúbal-Lisbon canyons) dissect the Western Iberian margin in an east-west direction from the continental shelf, at water depths shallower than 50 m, down to the Tagus and Iberian abyssal plains, at water depths exceeding 5000 m. We present an analysis of the geomorphology of the canyons and of the sedimentary processes that can be inferred from the observed morphology of the three canyons, based on a compilation of swath bathymetry data and TOBI deep-towed side-scan sonar imagery. This first complete detailed mapping of the Central Portuguese canyons reveals substantial differences in their morphologies and downslope evolution. The canyons are divided into three sections: 1) canyon head and upper reach, 2) middle canyon, and 3) canyon mouth and distal part. The canyon heads and upper reaches are severely indented into the continental shelf, and they are characterised, in the Nazaré and Setúbal-Lisbon canyons, by sinuous V-shaped valleys entrenched within high canyon walls occupied by rock outcrops dissected by gullies. The Cascais upper canyon is complex, with multiple branches with high axial gradients and signs of mass wasting. Middle canyon sections, indented in the slope, display axial incisions with perched, stacked terraces, and are affected by debris avalanches originating from the canyon walls. At the base of slope, the distal Cascais and Setúbal-Lisbon canyons show many characteristics of channel-lobe transition zones: erosional features such as isolated to amalgamated chevron scours, and depositional bedforms such as mud to gravel waves. Pervasive scouring occurs up to 95 km beyond the canyon mouths. By contrast, the Nazaré canyon opens into a 27 km wide and 94 km long channel, whose flat-bottomed thalweg is occupied by sediment waves, irregular, comet-shaped and crescentic scours, and a second-order channel. Transverse, kilometre-scale sediment waves occupy the overbank area of the

  18. Experimental evaluation of solids suspension uniformity in canyon process vessels

    SciTech Connect

    Hassan, N.M.

    1996-06-25

    Experimental evaluation of solids suspension in canyon process vessels was performed at several paddle agitator speeds and different volume levels in a geometrically similar vessel. The paddle agitator speeds examined were 280, 370, 528, and 686 rpm and volume levels were 30%, 50%, and 70% fill capacity. Experiments were conducted with simulated solid particles that have particle size range and density similar to plutonium particles and corrosion products typically seen in canyon vessels. Solids suspension took place in baffled cylindrical vessel equipped with two flat-blade agitators and cooling helices.

  19. Are amphitheater headed canyons indicative of a particular formative process?

    NASA Astrophysics Data System (ADS)

    Ryan, A. J.; Whipple, K. X.; Johnson, J. P.

    2012-12-01

    Tributary canyons with amphitheater-shaped heads have previously been interpreted as evidence for groundwater seepage erosion, particularly in environments where fluvial processes are assumed to be negligible. However, some have questioned whether this canyon morphology is truly diagnostic of a particular formative process. We seek to determine the relative roles of fluvial and groundwater-related processes and the strength of stratigraphic control on the Colorado Plateau through a combination of fieldwork and GIS analysis. Amphitheater valleys may have overhanging or steep-sided headwalls with a semicircular plan-view pattern. It is reasonable to assume that this form is a result of focused erosion at the base of the headwall (i.e. sapping). Two frequently cited agents may lead to undermining: plunge-pool scour at the base of waterfalls and seepage induced weathering and erosion where the groundwater table intersects the land surface. Both processes are enhanced where weaker, less permeable layers underlie stronger cap rock. We conducted preliminary fieldwork in two locations on the Colorado Plateau, where there are many classic examples of amphitheater headed canyons. The Escalante River landscape is highly variable with a range of canyon and valley-head forms, many of which cut through the thick Navajo Sandstone into the underlying shale and sand of the Kayenta Formation. Northeast of Escalante National Monument, at the base of the Henry Mountains, is Tarantula Mesa. The canyons there are also considerably variable, with nearly all containing at least one abrupt amphitheater knickpoint at the valley head or farther downstream. Our observations are presented here with an analysis of the canyon profiles, surrounding topography, and potential structural controls. We have found that nearly all amphitheaters in both locales show signs of groundwater seepage weathering and plausibly seepage erosion. However, many also contain plunge pools and evidence of substantial

  20. Reviewing the success of intentional flooding of the Grand Canyon

    SciTech Connect

    Wirth, B.D.

    1997-04-01

    A description and evaluation of the results of an intentional flooding experiment at the Grand Canyon are described. The purpose of the 7-day release of flood waters from the Glen Canyon Dam was to determine if managed floods have the ability to predictably restore the riverine environment. A summary of environmental conditions leading to the experiment is provided and flood results are listed. Initial results showed significant improvement in the size and number of the river`s beaches, creation of backwater habitat for endangered species, and no adverse impact to the trout fishery, Indian cultural sites, and other resources.

  1. Recent sediment studies refute Glen Canyon Dam Hypothesis

    NASA Astrophysics Data System (ADS)

    Rubin, David M.; Topping, David J.; Schmidt, John C.; Hazel, Joe; Kaplinski, Matt; Melis, Theodore S.

    Recent studies of sedimentology hydrology, and geomorphology indicate that releases from Glen Canyon Dam are continuing to erode sandbars and beaches in the Colorado River in Grand Canyon National Park, despite attempts to restore these resources. The current strategy for dam operations is based on the hypothesis that sand supplied by tributaries of the Colorado River downstream from the dam will accumulate in the channel during normal dam operations and remain available for restoration floods. Recent work has shown that this hypothesis is false, and that tributary sand inputs are exported downstream rapidly typically within weeks or months under the current flow regime.

  2. Recent sediment studies refute Glen Canyon Dam hypothesis

    USGS Publications Warehouse

    Rubin, David M.; Topping, David J.; Schmidt, John C.; Hazel, Joe; Kaplinski, Matt; Melis, Theodore S.

    2002-01-01

    Recent studies of sedimentology hydrology, and geomorphology indicate that releases from Glen Canyon Dam are continuing to erode sandbars and beaches in the Colorado River in Grand Canyon National Park, despite attempts to restore these resources. The current strategy for dam operations is based on the hypothesis that sand supplied by tributaries of the Colorado River downstream from the dam will accumulate in the channel during normal dam operations and remain available for restoration floods. Recent work has shown that this hypothesis is false, and that tributary sand inputs are exported downstream rapidly typically within weeks or months under the current flow regime.

  3. Review of the Diablo Canyon probabilistic risk assessment

    SciTech Connect

    Bozoki, G.E.; Fitzpatrick, R.G.; Bohn, M.P.; Sabek, M.G.; Ravindra, M.K.; Johnson, J.J.

    1994-08-01

    This report details the review of the Diablo Canyon Probabilistic Risk Assessment (DCPRA). The study was performed under contract from the Probabilistic Risk Analysis Branch, Office of Nuclear Reactor Research, USNRC by Brookhaven National Laboratory. The DCPRA is a full scope Level I effort and although the review touched on all aspects of the PRA, the internal events and seismic events received the vast majority of the review effort. The report includes a number of independent systems analyses sensitivity studies, importance analyses as well as conclusions on the adequacy of the DCPRA for use in the Diablo Canyon Long Term Seismic Program.

  4. Early Agriculture in the Eastern Grand Canyon of Arizona, USA

    USGS Publications Warehouse

    Davis, S.W.; Davis, M.E.; Lucchitta, I.; Finkel, R.; Caffee, M.

    2000-01-01

    Abandoned fields in Colorado River alluvium in the eastern Grand Canyon show signs of primitive agriculture. Presence of maize pollen in association with buried soils near Comanche Creek suggests that farming began prior to 3130 yr B.P. Cotton pollen, identified in buried soils near Nankoweap Creek, dates to 1310 yr B.P., approximately 500 years earlier than previously reported anywhere on the Colorado Plateau. Farming spanned three millennia in this reach of the canyon. Entrenchment, starting approximately 700 yr B.P., making water diversion to fields infeasible, was likely responsible for field abandonment. ?? 2000 John Wiley & Sons, Inc.

  5. Scale Modelling of Sound Propagation in a City Street Canyon

    NASA Astrophysics Data System (ADS)

    Horoshenkov, V. K.; Hothersall, C. D.; Mercy, E. S.

    1999-06-01

    coustic scale modelling is used to study sound propagation in a city street canyon. The acoustic performance of several noise abatement schemes is investigated at various receiver heights for noise fields produced by different categories of vehicles travelling in the two lanes. The results are discussed in terms of the attenuation rate predicted along the canyon and the insertion loss. It is shown that although the effects produced by complex noise abatement schemes are significant they cannot be predicted by simple addition of the effects from the individual components of the schemes.

  6. Surprise and Opportunity for Learning in Grand Canyon: the Glen Canyon Dam Adaptive Management Program

    NASA Astrophysics Data System (ADS)

    Melis, T. S.; Walters, C. J.; Korman, J.

    2013-12-01

    With a focus on resources of the Colorado River ecosystem downstream of Glen Canyon Dam in Glen Canyon National Recreation Area (GCNRA) and Grand Canyon National Park (GCNP) of northern Arizona, the Glen Canyon Dam Adaptive Management Program has evaluated experimental flow and nonflow policy tests since 1990. Flow experiments have consisted of a variety of water releases from the dam within pre-existing annual downstream delivery agreements. The daily experimental dam operation, termed the Modified Low Fluctuating Flow (MLFF), implemented in 1996 to increase daily low flows and decrease daily peaks were intended to limit daily flow range to conserve tributary sand inputs and improve navigation among other objectives, including hydropower energy. Other flow tests have included controlled floods with some larger releases bypassing the dam's hydropower plant to rebuild and maintain eroded sandbars in GCNP. Experimental daily hydropeaking tests beyond MLFF have also been evaluated for managing the exotic recreational rainbow trout fishery in the dam's GCNRA tailwater. Experimental nonflow policies, such as physical removal of exotic fish below the tailwater, and experimental translocation of endangered native humpback chub from spawning habitats in the Little Colorado River (the largest natal origin site for chub in the basin) to other tributaries within GCNP have also been monitored. None of these large-scale field experiments has yet produced unambiguous results in terms of management prescriptions, owing to inadequate monitoring programs and confounding of treatment effects with effects of ongoing natural changes; most notably, a persistent warming of the river resulting from reduced storage in the dam's reservoir after 2003. But there have been several surprising results relative to predictions from models developed to identify monitoring needs and evaluate experimental design options at the start of the adaptive ecosystem assessment and management program in 1997

  7. Multi-stage uplift of the Colorado Plateau and the age of Grand Canyon and precursor canyons

    NASA Astrophysics Data System (ADS)

    Karlstrom, K. E.; Lee, J. P.; Kelley, S. A.; Crow, R.

    2012-12-01

    Debates about the age of Grand Canyon link to debates about the timing of surface uplift(s) of the Colorado Plateau- Rocky Mountain (CP-RM) region. One "old Grand Canyon" model proposes that a paleocanyon of almost the same depth and location as today's Grand Canyon was carved by a NE-flowing "California" paleoriver 80-70 Ma, then was re-used at ~55 Ma by a SW-flowing "Arizona" paleoriver. This model postulates the CP-RM region was uplifted to near modern elevations during the Laramide orogeny. A second model postulates a 17 Ma Grand Canyon; this time corresponds to Basin and Range extension and postulated mantle-driven surface uplift. The "young Grand Canyon" model postulates that >2/3 of modern Grand Canyon was carved by W-flowing Colorado River that became integrated to the Gulf of California at 5-6 Ma during Neogene mantle-driven uplift of the CP/RM region. Thermochronologic data are poised to substantially resolve these debates. Our thermochronology dataset combines published and new apatite fission-track and helium analyses, and joint thermal history modeling using both systems. This dataset reveals three major cooling episodes: 1) a multi-stage Sevier-Laramide contraction episode from about 90 Ma to 50 Ma with structural relief on upwarps on the order 0.5-1 km, compatible with a similar magnitude of surface uplift; 2) 30-20 Ma cooling that was associated with denudation and northward cliff retreat of most of the Mesozoic section from Grand Canyon region; 3) <10 Ma cooling that is best documented in eastern Grand Canyon as part of a general pattern of decreasing age of cooling/denudation to the NE. Combined geologic and thermochronologic data define the age and 3-D geometry of Cenozoic paleotopography that led to Grand Canyon carving. Combined AHe and AFT data indicate 2-4 km of sedimentary rocks covered the Grand Canyon region until about 40 Ma, negating the California River model. These strata were not removed from the Marble Canyon area until after about

  8. Submarine canyons as important habitat for cetaceans, with special reference to the Gully: A review

    NASA Astrophysics Data System (ADS)

    Moors-Murphy, Hilary B.

    2014-06-01

    There has been much research interest in the use of submarine canyons by cetaceans, particularly beaked whales (family Ziphiidae), which appear to be especially attracted to canyon habitats in some areas. However, not all submarine canyons are associated with large numbers of cetaceans and the mechanisms through which submarine canyons may attract cetaceans are not clearly understood. This paper reviews some of the cetacean associations with submarine canyons that have been anecdotally described or presented in scientific literature and discusses the physical, oceanographic and biological mechanisms that may lead to enhanced cetacean abundance around these canyons. Particular attention is paid to the Gully, a large submarine canyon and Marine Protected Area off eastern Canada for which there exists some of the strongest evidence available for submarine canyons as important cetacean habitat. Studies demonstrating increased cetacean abundance in the Gully and the processes that are likely to attract cetaceans to this relatively well-studied canyon are discussed. This review provides some limited evidence that cetaceans are more likely to associate with larger canyons; however, further studies are needed to fully understand the relationship between the physical characteristics of canyons and enhanced cetacean abundance. In general, toothed whales (especially beaked whales and sperm whales) appear to exhibit the strongest associations with submarine canyons, occurring in these features throughout the year and likely attracted by concentrating and aggregating processes. By contrast, baleen whales tend to occur in canyons seasonally and are most likely attracted to canyons by enrichment and concentrating processes. Existing evidence thus suggests that at least some submarine canyons are important foraging areas for cetaceans, and should be given special consideration for cetacean conservation and protection.

  9. Geology of the head of Lydonia Canyon, U.S. Atlantic outer continental shelf

    USGS Publications Warehouse

    Twichell, D.C.

    1983-01-01

    The geology of the part of Lydonia Canyon shoreward of the continental shelf edge on the southern side of Georges Bank was mapped using high-resolution seismic-reflection and side-scan sonar techniques and surface sediment grab samples. The head of the canyon incises Pleistocene deltaic deposits and Miocene shallow marine strata. Medium sand containing some coarse sand and gravel covers the shelf except for a belt of very fine sand containing no gravel on either side of the canyon in water depths of 125-140 m. Gravel and boulders, presumably ice-rafted debris, cover the rim of the canyon. The canyon floor and canyon wall gullies are covered by coarse silt of Holocene age which is as much as 25 m thick, and Miocene and Pleistocene strata are exposed on the spurs between gullies. The Holocene sediment is restricted to the canyon shoreward of the shelf edge and has been winnowed from the shelf. Furrows cut in the shelf sands and ripples on the shelf and in the canyon suggest that sediment continues to be moved in this area. Sediment distribution, however, is inconsistent with that expected from the inferred westward sediment transport on the shelf. Either the fine-grained deposits on the shelf to either side of the canyon head are relict or there is a significant component of offshore transport around the canyon head. In the head of Oceanographer Canyon, only 40 km west of Lydonia Canyon, present conditions are strikingly different. The floor of Oceanographer Canyon is covered by sand waves, and their presence indicates active reworking of the bottom sediments by strong currents. The close proximity of the two canyons suggests that the relative importance of processes acting in canyons can be variable over short distances. ?? 1983.

  10. Giant submarine canyons: is size any clue to their importance in the rock record?

    USGS Publications Warehouse

    Normark, William R.; Carlson, Paul R.

    2003-01-01

    Submarine canyons are the most important conduits for funneling sediment from continents to oceans. Submarine canyons, however, are zones of sediment bypassing, and little sediment accumulates in the canyon until it ceases to be an active conduit. To understand the potential importance in the rock record of any given submarine canyon, it is necessary to understand sediment-transport processes in, as well as knowledge of, deep-sea turbidite and related deposits that moved through the canyons. There is no straightforward correlation between the final volume of the sedimentary deposits and size o fthe associated submarine canyons. Comparison of selected modern submarine canyons together with their deposits emphasizes the wide range of scale differences between canyons and their impact on the rock record. Three of the largest submarine canyons in the world are incised into the Beringian (North American) margin of the Bering Sea. Zhemchug Canyon has the largest cross-section at the shelf break and greatest volume of incision of slope and shelf. The Bering Canyon, which is farther south in the Bering Sea, is first in length and total area. In contrast, the largest submarine fans-e.g., Bengal, Indus, and Amazon-have substantially smaller, delta-front submarine canyons that feed them; their submarine drainage areas are one-third to less than one-tenth the area of Bering Canyon. some very large deep-sea channells and tubidite deposits are not even associated with a significant submarine canyon; examples include Horizon Channel in the northeast Pacific and Laurentian Fan Valley in the North Atlantic. Available data suggest that the size of turbidity currents (as determined by volume of sediment transported to the basins) is also not a reliable indicator of submarine canyon size.

  11. The Wide Bay Canyon system: A case study of canyon morphology on the east Australian continental margin

    NASA Astrophysics Data System (ADS)

    Yu, P. W.; Hubble, T.; Airey, D.; Gallagher, S. J.; Clarke, S. L.

    2014-12-01

    A voyage was conducted aboard the RV Southern Surveyor in early 2013 to investigate the east Australian continental margin. From the continental slope of the Wide Bay region offshore Fraser Island, Queensland, Australia, remote sensing data and sediment samples were collected. Bathymetric data reveals that the continental slope of the region presents a mature canyon system. Eight dredge samples were recovered from the walls of Wide Bay Canyon and the adjacent, relatively intact continental slope along the entire length of the slope, from the start of the shelf break to the toe, in water depths ranging from 1100-2500 m. For these samples, sediment composition, biostratigraphic age, and bulk mineralogy data are reported. These slope-forming sediments are primarily comprised of calcareous sandy-silts. Occasional terrestrial plant fossils and minerals can be found in a mostly marine-fossiliferous composition, suggesting minor but significant riverine and aeolian input. Biostratigraphic dates extracted from the foraminiferal contents of these samples indicate that the intra-canyon and slope material was deposited between Middle Miocene to Pliocene, implying that the incision of this section of the margin and formation of the erosional features took place no earlier than the Pliocene. In conjunction with bathymetric data of the local continental slope, the depositional origins of this section of the east Australian continental margin, and the timing of major morphological events such as slope failure and canyon incision can be interpreted. The Wide Bay Canyon system can serve as a representative case study of local canyon formation, allowing a better understanding of the past or ongoing processes that are shaping the margin and giving way to similar morphologies.

  12. An analysis of the potential for Glen Canyon Dam releases to inundate archaeological sites in the Grand Canyon, Arizona

    USGS Publications Warehouse

    Sondossi, Hoda A.; Fairley, Helen C.

    2014-01-01

    The development of a one-dimensional flow-routing model for the Colorado River between Lees Ferry and Diamond Creek, Arizona in 2008 provided a potentially useful tool for assessing the degree to which varying discharges from Glen Canyon Dam may inundate terrestrial environments and potentially affect resources located within the zone of inundation. Using outputs from the model, a geographic information system analysis was completed to evaluate the degree to which flows from Glen Canyon Dam might inundate archaeological sites located along the Colorado River in the Grand Canyon. The analysis indicates that between 4 and 19 sites could be partially inundated by flows released from Glen Canyon Dam under current (2014) operating guidelines, and as many as 82 archaeological sites may have been inundated to varying degrees by uncontrolled high flows released in June 1983. Additionally, the analysis indicates that more of the sites currently (2014) proposed for active management by the National Park Service are located at low elevations and, therefore, tend to be more susceptible to potential inundation effects than sites not currently (2014) targeted for management actions, although the potential for inundation occurs in both groups of sites. Because of several potential sources of error and uncertainty associated with the model and with limitations of the archaeological data used in this analysis, the results are not unequivocal. These caveats, along with the fact that dam-related impacts can involve more than surface-inundation effects, suggest that the results of this analysis should be used with caution to infer potential effects of Glen Canyon Dam on archaeological sites in the Grand Canyon.

  13. Titanite petrochronology in the Fish Canyon Tuff

    NASA Astrophysics Data System (ADS)

    Schmitz, M. D.; Crowley, J. L.

    2014-12-01

    The petrologic complexity of the archtypical 'monotonous intermediate' Fish Canyon Tuff (FCT) has been previously established by a variety of mineralogical and geochemical proxies [1-2], and the unusual storage and eruptive dynamics of the FCT have been delineated by several geochronological studies [3-5]. Titanite is an apparent equilibrium phase in the penultimate FCT magma, and can be linked petrographically to hornblende crystals that preserve up-temperature core-to-rim zoning profiles. As a reactive, trace element-rich phase, we hypothesized that titanite may record an intracrystalline record of magma chamber dynamics. Titanite crystals from the same separate analyzed in [4] were oriented and doubly-polished to yield characteristic wedge-shaped cross-sectional wafers approximately 300 µm in thickness. BSE imaging guided LA-ICPMS analyses of a full suite of trace elements using a 25 µm beam diameter and crater depth on multiple locations across both sides of the wafer. Most titanite crystals are characterized by large variations in trace elements, including at least two generations of REE-enriched, actinide-poor, low Sr, large Eu anomaly cores overgrown by REE-depleted, actinide-rich, high Sr domains with small Eu anomalies and distinctive concave-up middle to heavy REE patterns. Trace element contents and patterns correlate strongly with Eu anomaly; intermediate compositions are abundant and spatially correlated to reaction zones between core and rim domains. Within the context of the batholithic rejuvenation model for the FCT magma [1-2], these trace element variations are interpreted to record the partial melting of a differentiated crystalline FCT precursor and its hybridization with a more 'mafic' flux. ID-TIMS dating of end-member titanites confirm older ages (ca 28.4 to 29.0 Ma) for cores and define a younger age for rejuvenation of ca 28.2 Ma, consistent with recent U-Pb zircon and 40Ar/39Ar studies [5-7]. [1] Bachmann & Dungan (2002) Am Mineral 87

  14. Habitat characterization of deep-water coral reefs in La Gaviera Canyon (Avilés Canyon System, Cantabrian Sea)

    NASA Astrophysics Data System (ADS)

    Sánchez, Francisco; González-Pola, Cesar; Druet, María; García-Alegre, Ana; Acosta, Juan; Cristobo, Javier; Parra, Santiago; Ríos, Pilar; Altuna, Álvaro; Gómez-Ballesteros, María; Muñoz-Recio, Araceli; Rivera, Jesus; del Río, Guillermo Díaz

    2014-08-01

    Surveys conducted at the complex Avilés Canyon System (southern Bay of Biscay) in order to identify vulnerable habitats and biological communities revealed the presence of noteworthy deep-water coral reefs in one of the tributaries of the system (La Gaviera Canyon). The aim of the present study is to determine why this deep-sea canyon provides suitable environmental conditions for corals to grow. This hanging canyon is characterized by an irregular U-shaped floor with two narrow differentiated flanks. Sand ripples and rocky outcrops structured in diverse W-E directed steps are observed on the canyon floor, suggesting intense hydrodynamic activity. Accordingly, high-frequency near-bottom current and thermal structure profiles showed that there occur strong shifts in currents/hydrography behaving as front-like features at each tidal cycle. These involve the sudden increase of along-axis velocities to over 50 cm/s and vertical velocities of over 5 cm/s in each tidal cycle associated with the passage of sharp thermal fronts and thermal inversions suggesting overturning. A year-long near-bottom current record showed events with near-bottom velocities well over 1 m/s lasting for several days. Three cold-water coral settings were distinguished: a dense coral reef located on stepped rocky bottoms of the eastern and western flanks, carbonate mounds (20-30 m high) located on the canyon floor, and a cluster of shallower water dead coral framework at the head sector of the canyon. Video and still images from a towed sled and ROV verified the presence of dropstones and rippled sand sheets surrounding the mounds and revealed changes in the coral population (alive or dead; total or patchy coverage) in coral reef and carbonate mound areas. The dominant species of the reef are Lophelia pertusa and Madrepora oculata, which considerably increase the habitat‧s complexity and biodiversity in relation to other facies described in the canyon. The presence of living cold-water reefs is

  15. Cetacean biomass densities near submarine canyons compared to adjacent shelf/slope areas

    NASA Astrophysics Data System (ADS)

    Kenney, Robert D.; Winn, Howard E.

    1987-02-01

    Estimated cetacean biomass densities in areas of the northeastern U.S. continental shelf edge encompassing major submarine canyons were compared to those in neighboring shelf/slope areas. It was hypothesized that biomass-densities would prove to be higher in the canyon areas: however, the analysis demonstrated significantly lower total cetacean biomass in the canyon areas. When species were analyzed individually, only spotted dolphins ( Stenella spp.) showed a significant difference, with higher densities near the canyons. The canyons are apparently not more important as a cetacean habitat than the shelf break region generally.

  16. 9. COULTERVILLE ROAD VIEW AND MERCED RIVER CANYON. NOTE CUT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. COULTERVILLE ROAD VIEW AND MERCED RIVER CANYON. NOTE CUT FACE OF STANDING ROCK AT RIGHT. LOOKING N. GIS: N-37 42 52.1 / W-119 43 17.5 - Coulterville Road, Between Foresta & All-Weather Highway, Yosemite Village, Mariposa County, CA

  17. 62 FR 42818 - Glen Canyon Adaptive Management Work Group

    Federal Register 2010, 2011, 2012, 2013, 2014

    1997-08-08

    ... Bureau of Reclamation Glen Canyon Adaptive Management Work Group AGENCY: Bureau of Reclamation, Interior... Work Group (AMWG) will be an open public meeting to discuss administrative and program related issues. This meeting will discuss the following agenda items: Work Group organization, technical work...

  18. 63 FR 63329 - Glen Canyon Technical Work Group

    Federal Register 2010, 2011, 2012, 2013, 2014

    1998-11-12

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF THE INTERIOR Bureau of Reclamation Glen Canyon Technical Work Group AGENCY: Bureau of Reclamation. ACTION: Notice of... Technical Work Group public meetings to be held in Phoenix, Arizona. The document contained incorrect...

  19. Phytophthora ramorum causes cryptic bole cankers in Canyon line Oak

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Unusual mortality of large canyon live oaks was observed in natural stands in San Mateo, California starting in 2007. A survey of affected stands showed that symptomatic trees were spatially associated with California bay, the primary source of Phytophthora ramorum spores in this forest type. Trunk ...

  20. Grand Canyon Trekkers: School-Based Lunchtime Walking Program

    ERIC Educational Resources Information Center

    Hawthorne, Alisa; Shaibi, Gabriel; Gance-Cleveland, Bonnie; McFall, Sarah

    2011-01-01

    The incidence of childhood overweight is especially troubling among low income Latino youth. Grand Canyon Trekkers (GCT) was implemented as a quasi-experimental study in 10 Title 1 elementary schools with a large Latino population to examine the effects of a 16-week structured walking program on components of health-related physical fitness: Body…

  1. Late quaternary zonation of vegetation in the eastern grand canyon.

    PubMed

    Cole, K

    1982-09-17

    Fossil assemblages from 53 packrat middens indicate which plant species were dominant during the last 24,000 years in the eastern Grand Canyon. Past vegetational patterns show associations that cannot be attributed to simple elevational displacement of the modern zones. A model emphasizing a latitudinal shift of climatic values is proposed.

  2. National Uranium Resource Evaluation, Grand Canyon Quadrangle, Arizona

    SciTech Connect

    Baillieul, T.A.; Zollinger, R.C.

    1982-06-01

    The Grand Canyon Quadrangle (2/sup 0/), northwestern Arizona, was evaluated to identify environments and delineate areas favorable for the occurrence of uranium deposits. This was done using criteria developed for the National Uranium Resource Evaluation. General surface reconnaissance and geochemical sampling were carried out in all geologic environments within the quadrangle. Aerial radiometric and hydrochemical and stream-sediment reconnaissance surveys were performed, although results were not available in time for field checking. The results of this investigation indicate environments favorable for: channel-controlled, peneconcordant sandstone deposits in the Petrified Forest Member of the Chinle Formation in the north-central part of the quadrangle, vein-type deposits in collapse breccias in all areas underlain by the Redwall Limestone, and unconformity-related deposits in the metasediments of the Vishnu Group within the Grand Canyon. All other rock units examined are considered unfavorable for hosting uranium deposits. Younger Precambrian rocks of the Grand Canyon Supergroup, exposed only within the Grand Canyon National Park, remain unevaluated.

  3. Crisscrossing "Grand Canyon": Bridging the Gaps with Computer Conferencing.

    ERIC Educational Resources Information Center

    Minock, Mary; Shor, Francis

    1995-01-01

    Notes that Interdisciplinary Studies Program faculty at Wayne State University devised courses and assignments using computer conferencing to create a collaborative, democratic, and nonauthoritarian learning community. Discusses an assignment based on the film "Grand Canyon" that encouraged students to take on roles of their racial and…

  4. 56. ASSEMBLY OF THE VAL BRIDGE STRUCTURE AT ISLIP CANYON, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    56. ASSEMBLY OF THE VAL BRIDGE STRUCTURE AT ISLIP CANYON, July 31, 1947. (Original photograph in possession of Dave Willis, San Diego, California.) - Variable Angle Launcher Complex, Variable Angle Launcher, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA

  5. Thirty-five years at Pajarito Canyon Site

    SciTech Connect

    Paxton, H.C.

    1981-05-01

    A history of the research activities performed at the Pajarito Canyon Site from 1946 to 1981 is presented. Critical assemblies described include: the Topsy assembly; Lady Godiva; Godiva 2; Jezebel; Flattop; the Honeycomb assembly for Rover studies; Kiwi-TNT; PARKA reactor; Big Ten; and Plasma Cavity Assembly.

  6. College of the Canyons Nursing Alumni Surveys, Spring 2001. Report.

    ERIC Educational Resources Information Center

    Meuschke, Daylene M; Dixon, P. Scott; Gribbons, Barry C.

    In the summer of 2001, College of the Canyons (California) conducted of study of registered nursing (RN) and licensed vocational nursing (LVN) alumni, as well as their employers, to assess satisfaction with the preparation and training they received through the College's nursing programs. Out of the 89 invited nursing alumni, 33 surveys were…

  7. Microorganisms from the late precambrian of the grand canyon, Arizona.

    PubMed

    Schopf, J W; Ford, T D; Breed, W J

    1973-03-30

    An assemblage of cellularly well-preserved, filamentous and spheroidal plant microfossils has been detected in a cherty pisolite bed of the late Precambrian Chuar Group from the eastern Grand Canyon of the Colorado River. This newly discovered microflora, probably among the youngest Precambrian biological communities now known, appears to be of both evolutionary and biostratigraphic significance.

  8. Anomalous topography on the continental shelf around Hudson Canyon

    USGS Publications Warehouse

    Knebel, H. J.

    1979-01-01

    Recent seismic-reflection data show that the topography on the Continental Shelf around Hudson Canyon is composed of a series of depressions having variable spacings (< 100 m to 2 km), depths (1-10 m), outlines, and bottom configurations that give the sea floor an anomalous "jagged" appearance in profile. The acoustic and sedimentary characteristics, the proximity to relict shores, and the areal distribution indicate that this rough topography is an erosional surface formed on Upper Pleistocene silty sands about 13,000 to 15,000 years ago by processes related to Hudson Canyon. The pronounced southward extension of the surface, in particular, may reflect a former increase in the longshore-current erosion capacity caused by the loss of sediments over the canyon. Modern erosion or nondeposition of sediments has prevented the ubiquitous sand sheet on the Middle Atlantic shelf from covering the surface. The "anomalous" topography may, in fact, be characteristic of areas near other submarine canyons that interrupt or have interrupted the longshore drift of sediments. ?? 1979.

  9. 36 CFR 7.4 - Grand Canyon National Park.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... administered by the National Park Service, along the Colorado River within Grand Canyon National Park, upstream... Colorado River. (8) Swimming and bathing are permitted except in locations immediately above rapids, eddies... trip also authorizes camping along the Colorado River by persons in the river trip party, except...

  10. Carbonaceous aerosol particles from common vegetation in the Grand Canyon

    SciTech Connect

    Hallock, K.A.; Mazurek, M.A. ); Cass, G.R. . Dept. of Environmental Engineering Science)

    1992-05-01

    The problem of visibility reduction in the Grand Canyon due to fine organic aerosol particles in the atmosphere has become an area of increased environmental concern. Aerosol particles can be derived from many emission sources. In this report, we focus on identifying organic aerosols derived from common vegetation in the Grand Canyon. These aerosols are expected to be significant contributors to the total atmospheric organic aerosol content. Aerosol samples from living vegetation were collected by resuspension of surface wax and resin components liberated from the leaves of vegetation common to areas of the Grand Canyon. The samples were analyzed using high-resolution gas chromatography/mass spectrometry (GC/MS). Probable identification of compounds was made by comparison of sample spectra with National Institute of Standards and Technology (NIST) mass spectral references and positive identification of compounds was made when possible by comparison with authentic standards as well as NIST references. Using these references, we have been able to positively identify the presence of n-alkane and n-alkanoic acid homolog series in the surface waxes of the vegetation sampled. Several monoterpenes, sesquiterpenes, and diterpenes were identified also as possible biogenic aerosols which may contribute to the total organic aerosol abundance leading to visibility reduction in the Grand Canyon.

  11. 33. VIEW OF TIOGA ROAD DESCENDING LEE VINING CANYON. SAME ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    33. VIEW OF TIOGA ROAD DESCENDING LEE VINING CANYON. SAME VIEW AS CA-149-3. LOOKING ESE. GIS: N-37 56 58.2 / W-119 13 28.1 - Tioga Road, Between Crane Flat & Tioga Pass, Yosemite Village, Mariposa County, CA

  12. Small Mammal Sampling in Mortandad and Los Alamos Canyons, 2005

    SciTech Connect

    Bennett, Kathy; Sherwood, Sherri; Robinson, Rhonda

    2006-08-15

    As part of an ongoing ecological field investigation at Los Alamos National Laboratory, a study was conducted that compared measured contaminant concentrations in sediment to population parameters for small mammals in the Mortandad Canyon watershed. Mortandad Canyon and its tributary canyons have received contaminants from multiple solid waste management units and areas of concern since establishment of the Laboratory in the 1940s. The study included three reaches within Effluent and Mortandad canyons (E-1W, M-2W, and M-3) that had a spread in the concentrations of metals and radionuclides and included locations where polychlorinated biphenyls and perchlorate had been detected. A reference location, reach LA-BKG in upper Los Alamos Canyon, was also included in the study for comparison purposes. A small mammal study was initiated to assess whether potential adverse effects were evident in Mortandad Canyon due to the presence of contaminants, designated as contaminants of potential ecological concern, in the terrestrial media. Study sites, including the reference site, were sampled in late July/early August. Species diversity and the mean daily capture rate were the highest for E-1W reach and the lowest for the reference site. Species composition among the three reaches in Mortandad was similar with very little overlap with the reference canyon. Differences in species composition and diversity were most likely due to differences in habitat. Sex ratios, body weights, and reproductive status of small mammals were also evaluated. However, small sample sizes of some species within some sites affected the analysis. Ratios of males to females by species of each site (n = 5) were tested using a Chi-square analysis. No differences were detected. Where there was sufficient sample size, body weights of adult small mammals were compared between sites. No differences in body weights were found. Reproductive status of species appears to be similar across sites. However, sample

  13. Measuring Longwave Radiative Flux Divergence in an Urban Canyon

    NASA Astrophysics Data System (ADS)

    Soux, A.; Oke, T. R.; Nunez, M.; Wilson, M.

    2003-12-01

    There has been very little measurement of longwave radiation divergence since the urban studies of Fuggle, Oke and Nunez in the mid 1970's or the rural work of Funk in the early 1960's. Although radiative divergence has been widely ignored for sometime there is the belief that it may play an important role in balancing nocturnal energy budgets in a range of environments. For example, in urban environments surface temperature relates well to the energy balance whereas air temperature does not, even in non-turbulent conditions. This is probably due at least in part to the effects of longwave divergence. To help answer issues related to longwave divergence a new dual-channel infrared radiometer (DCIR) has been developed. The DCIR, as the name implies, measures the directional infrared radiation in two wavebands and can, through differencing of the signals and further signal processing, give a direct measurement of longwave radiative flux divergence. The DCIR was deployed for the first time as part of a larger study (BUBBLE) of the urban boundary layer of Basel, Switzerland. The objective is to further study the thermal regime of a city at the canyon scale. To this end, a street canyon was carefully selected, in the city of Basel. The canyon surface and air volume were instrumented, including turbulent and conductive fluxes, and standard meteorological variables in addition to radiation. A unique data set was obtained to allow the complete energy balance of the canyon system to be evaluated without the need to resort to using residuals to quantify the magnitude of the longwave radiative flux divergence. Measured values of longwave flux-divergence are converted to cooling rates to compare with measured air temperature cooling. Preliminary results show that at the onset of canyon air-volume cooling, measured cooling rates are slightly lower than radiative cooling rates. The differences are less than 0.5° C. This contrasts sharply with previously measured above roof

  14. Geologic framework of thermal springs, Black Canyon, Nevada and Arizona

    USGS Publications Warehouse

    Beard, L. Sue; Anderson, Zachary W.; Felger, Tracey J.; Seixas, Gustav B.

    2014-01-01

    Thermal springs in Black Canyon of the Colorado River, downstream of Hoover Dam, are important recreational, ecological, and scenic features of the Lake Mead National Recreation Area. This report presents the results from a U.S. Geological Survey study of the geologic framework of the springs. The study was conducted in cooperation with the National Park Service and funded by both the National Park Service and National Cooperative Geologic Mapping Program of the U.S. Geological Survey. The report has two parts: A, a 1:48,000-scale geologic map created from existing geologic maps and augmented by new geologic mapping and geochronology; and B, an interpretive report that presents results based on a collection of fault kinematic data near springs within Black Canyon and construction of 1:100,000-scale geologic cross sections that extend across the western Lake Mead region. Exposures in Black Canyon are mostly of Miocene volcanic rocks, underlain by crystalline basement composed of Miocene plutonic rocks or Proterozoic metamorphic rocks. The rocks are variably tilted and highly faulted. Faults strike northwest to northeast and include normal and strike-slip faults. Spring discharge occurs along faults intruded by dacite dikes and plugs; weeping walls and seeps extend away from the faults in highly fractured rock or relatively porous volcanic breccias, or both. Results of kinematic analysis of fault data collected along tributaries to the Colorado River indicate two episodes of deformation, consistent with earlier studies. The earlier episode formed during east-northeast-directed extension, and the later during east-southeast-directed extension. At the northern end of the study area, pre-existing fault blocks that formed during the first episode were rotated counterclockwise along the left-lateral Lake Mead Fault System. The resulting fault pattern forms a complex arrangement that provides both barriers and pathways for groundwater movement within and around Black

  15. Thermal bioclimate in idealized urban street canyons in Campinas, Brazil

    NASA Astrophysics Data System (ADS)

    Abreu-Harbich, Loyde V.; Labaki, Lucila C.; Matzarakis, Andreas

    2014-01-01

    Among several urban design parameters, the height-to-width ratio (H/W) and orientation are important parameters strongly affecting thermal conditions in cities. This paper quantifies changes in thermal comfort due to typical urban canyon configurations in Campinas, Brazil, and presents urban guidelines concerning H/W ratios and green spaces to adapt urban climate change. The study focuses on thermal comfort issues of humans in urban areas and performs evaluation in terms of physiologically equivalent temperature (PET), based on long-term data. Meteorological data of air temperature, relative humidity, wind speed and solar radiation over a 7-year period (2003-2010) were used. A 3D street canyon model was designed with RayMan Pro software to simulate the influence of urban configuration on urban thermal climate. The following configurations and setups were used. The model canyon was 500 m in length, with widths 9, 21, and 44 m. Its height varied in steps of 2.5 m, from 5 to 40 m. The canyon could be rotated in steps of 15°. The results show that urban design parameters such as width, height, and orientation modify thermal conditions within street canyons. A northeast-southwest orientation can reduce PET during daytime more than other scenarios. Forestry management and green areas are recommended to promote shade on pedestrian areas and on façades, and to improve bioclimate thermal stress, in particular for H/W ratio less than 0.5. The method and results can be applied by architects and urban planners interested in developing responsive guidelines for urban climate issues.

  16. Submarine canyon-head morphologies and inferred sediment transport processes in the Almanzora-Alías-Garrucha canyon system (SW Mediterranean)

    NASA Astrophysics Data System (ADS)

    Durán, R.; Puig, P.; Muñoz, A.; Elvira, E.; Guillén, J.

    2015-12-01

    Submarine canyons are morphological incisions into continental margins that act as major conduits of sediment from shallow- to deep-sea regions. Different transport processes and triggering mechanisms involving various time-scales can operate through them. Canyon heads are key areas for understanding the shelf-to-canyon sedimentary dynamics and assessing the predominant hydrodynamic and sedimentary processes shaping their morphology. High-resolution multibeam bathymetries were conducted at the various heads from the Almanzora-Alías-Garrucha canyon system to recognize their specific morphological features. A direct connection from the Almanzora River was evidenced by the coalescence of cyclic steps on the prodelta deposits and their continuation towards various canyon heads. This suggests the occurrence of flood events causing hyperpycnal flows that progress directly into the canyon. A second type of canyon head results from the formation and merging of linear gullies at the southern limit of the prodelta, being interpreted as the morphological expression of the distal off-shelf transport of flood-related hyperycnal flows potentially transformed into wave-supported sediment gravity flows. These two canyon head occur at 80-90 m water depth, incising only the outer shelf. A third canyon head morphological type was found at much shallower water depths (10-20 m), being disconnected from any major river source. They cut into the infralittoral prograding wedge and some tributaries show crescent shaped bedforms (CSB) along their axis. These CSB have been observed until a water depth of 90 m and have been interpreted as the result of storm-induced sediment gravity flows. An instrumented mooring was deployed from October 2014 to April 2015 to monitor the contemporary sediment transport processes through a canyon axis with CSB. The sedimentary dynamics was governed by storms, with several down-canyon transport events, but none of the storms triggered a sediment gravity flow.

  17. Submarine canyon development in the Izu-Bonin forearc: A SeaMARC II and seismic survey of Aoga Shima Canyon

    NASA Astrophysics Data System (ADS)

    Klaus, Adam; Taylor, Brian

    1991-05-01

    SeaMARC II sidescan (imagery and bathymetry) and seismic data reveal the morphology, sedimentary processes, and structural controls on submarine canyon development in the central Izu-Bonin forearc, south of Japan. Canyons extend up to 150 km across the forearc from the trench-slope break to the active volcanic arc. The canyons are most deeply incised (1200 1700 m) into the gentle gradients (1 2°) upslope on the outer arc high (OAH) and lose bathymetric expression on the steep (6 18°) inner trench-slope. The drainage patterns indicate that canyons are formed by both headward erosion and downcutting. Headward erosion proceeds on two scales. Initially, pervasive small-scale mass wasting creates curvilinear channels and pinnate drainage patterns. Large-scale slumping, evidenced by abundant crescent-shaped scarps along the walls and tributaries of Aoga Shima Canyon, occurs only after a channel is present, and provides a mechanism for canyon branching. The largest slump has removed >16 km3 of sediment from an ˜85 km2 area of seafloor bounded by scarps more than 200 m high and may be in the initial stages of forming a new canyon branch. The northern branch of Aoga Shima Canyon has eroded upslope to the flanks of the arc volcanoes allowing direct tapping of this volcaniclastic sediment source. Headward erosion of the southern branch is not as advanced but the canyon may capture sediments supplied by unconfined (non-channelized) mass flows. Oligocene forearc sedimentary processes were dominated by unconfined mass flows that created sub-parallel and continuous sedimentary sequences. Pervasive channel cut-and-fill is limited to the Neogene forearc sedimentary sequences which are characterized by migrating and unconformable seismic sequences. Extensive canyon formation permitting sediment bypassing of the forearc by canyon-confined mass flows began in the early Miocene after the basin was filled to the spill points of the OAH. Structural lows in the OAH determined the

  18. Tidal motions and tidally induced fluxes through La Línea submarine canyon, western Alboran Sea

    NASA Astrophysics Data System (ADS)

    Lafuente, Jesús GarcíA.; Sarhan, Tarek; Vargas, Manuel; Vargas, Juan M.; Plaza, Francisco

    1999-02-01

    Detailed observations from two mooring lines deployed in La Línea submarine canyon, western Alboran Sea, are presented. This is a narrow canyon in the sense that its width is always less than the internal radius of deformation. Tidal currents within the canyon are polarized in the along-canyon direction according to its narrow nature. They have considerable amplitude (values of around 0.5 m/s are often observed) and are forced by the internal pressure gradients associated with the baroclinic tide that is generated in the surroundings. Subsequent amplification of onshore baroclinic currents within the canyon accounts for the large amplitude observed. Cross-shelf exchange through the canyon due to tidal motions is different from zero despite the close to zero mean of tidal currents. The explanation is based on the asymmetry of water properties flowing up-canyon and down-canyon (some sort of tidal rectification). Regarding the energy flux, the canyon seems to be an adequate conduit to carry energy to the shore. Estimations made from our observations indicate that energy input onto the shelf per unit length parallel to the shore at the canyon head is enough to maintain mixing on the shelf at intermediate depths.

  19. Environmental analysis of Lower Pueblo/Lower Los Alamos Canyon, Los Alamos, New Mexico

    SciTech Connect

    Ferenbaugh, R.W.; Buhl, T.E.; Stoker, A.K.; Becker, N.M.; Rodgers, J.C.; Hansen, W.R.

    1994-12-01

    The radiological survey of the former radioactive waste treatment plant site (TA-45), Acid Canyon, Pueblo Canyon, and Los Alamos Canyon found residual contamination at the site itself and in the channel and banks of Acid, Pueblo, and lower Los Alamos Canyons all the way to the Rio Grande. The largest reservoir of residual radioactivity is in lower Pueblo Canyon, which is on DOE property. However, residual radioactivity does not exceed proposed cleanup criteria in either lower Pueblo or lower Los Alamos Canyons. The three alternatives proposed are (1) to take no action, (2) to construct a sediment trap in lower Pueblo Canyon to prevent further transport of residual radioactivity onto San Ildefonso Indian Pueblo land, and (3) to clean the residual radioactivity from the canyon system. Alternative 2, to cleanup the canyon system, is rejected as a viable alternative. Thousands of truckloads of sediment would have to be removed and disposed of, and this effort is unwarranted by the low levels of contamination present. Residual radioactivity levels, under either present conditions or projected future conditions, will not result in significant radiation doses to persons exposed. Modeling efforts show that future transport activity will not result in any residual radioactivity concentrations higher than those already existing. Thus, although construction of a sediment trap in lower Pueblo Canyon is a viable alternative, this effort also is unwarranted, and the no-action alternative is the preferred alternative.

  20. Depositional framework and genesis of Wilcox Submarine Canyon systems, Northwest Gulf Coast

    SciTech Connect

    Galloway, W.F.; Dinqus, W.F.; Paige, R.E.

    1988-01-01

    Wilcox (late Paleocene-early Eocene) slope systems of the Texas coastal plain contain two families of paleosubmarine canyons that exhibit distinctly different characteristics and stratigraphic settings: Yoakum and Lavaca type canyons occur as widely separated features within the generally retrogradational middle Wilcox interval. Four such canyons exhibit high length to width ratios, extend far updip of the contemporaneous shelf edge, were excavated deeply into paralic and coastal-plain deposits, and were filled primarily by mud. Fills consist of a lower onlapping unit and capping progradational deposits that are genetically related to deposition of the upper Wilcox fluvial-deltaic sequence. Significantly, the canyon fills correlate with widespread transgressive marine mudstones (the Yoakum shale-Sabinetown Formation and ''Big Shale''). In contrast, Lavaca-type canyons form a system of erosional features created along the rapidly prograding, unstable lower Wilcox continental margin. Comparative analysis of the two canyon system suggests a general process model for submarine canyon formation on prograding basin margins. Key elements are depositional loading of the continental margin creating instability, initiation of a large-scale slump, family of slumps, or listric bedding-plane fault creating a depression or indentation in the margin, and headward and lateral expansion of the depression by slumping and density-underflow erosion. Extent of canyon evolution varies according to time and submerged space available for maturation; short, broad canyons form on narrow shelves of actively prograding margins, and elongate mature canyons form in retrogradational or transgressive settings.

  1. Headless submarine canyons and fluid flow on the toe of the Cascadia accretionary complex

    USGS Publications Warehouse

    Orange, D.L.; McAdoo, B.G.; Moore, J.C.; Tobin, H.; Screaton, E.; Chezar, H.; Lee, H.; Reid, M.; Vail, R.

    1997-01-01

    Headless submarine canyons with steep headwalls and shallowly sloping floors occur on both the second and third landward vergent anticlines on the toe of the Cascadia accretionary complex off central Oregon (45 ??N, 125?? 30??W). In September 1993, we carried out a series of nine deep tow camera sled runs and nine ALVIN dives to examine the relationship between fluid venting, structure and canyon formation. We studied four canyons on the second and third landward vergent anticlines, as well as the apparently unfailed intercanyon regions along strike. All evidence of fluid expulsion is associated with the canyons; we found no evidence of fluid flow between canyons. Even though all fluid seeps are related to canyons, we did not find seeps in all canyons, and the location of the seeps within the canyons differed. On the landward facing limb of the second landward vergent anticline a robust cold seep community occurs at the canyon's inflection point. This seep is characterized by chemosynthetic vent clams, tube worms and extensive authigenic carbonate. Fluids for this seep may utilize high-permeability flow paths either parallel to bedding within the second thrust ridge or along the underlying thrust fault before leaking into the overriding section. Two seaward facing canyons on the third anticlinal ridge have vent clam communities near the canyon mouths at approximately the intersection between the anticlinal ridge and the adjacent forearc basin. No seeps were found along strike at the intersection of the slope basin and anticlinal ridge. We infer that the lack of seepage along strike and the presence of seeps in canyons may be related to fluid flow below the forearc basin/slope unconformity (overpressured by the impinging thrust fault to the west?) directed toward canyons at the surface.

  2. Canyon formation constraints on the discharge of catastrophic outburst floods of Earth and Mars

    NASA Astrophysics Data System (ADS)

    Lapotre, Mathieu G. A.; Lamb, Michael P.; Williams, Rebecca M. E.

    2016-07-01

    Catastrophic outburst floods carved amphitheater-headed canyons on Earth and Mars, and the steep headwalls of these canyons suggest that some formed by upstream headwall propagation through waterfall erosion processes. Because topography evolves in concert with water flow during canyon erosion, we suggest that bedrock canyon morphology preserves hydraulic information about canyon-forming floods. In particular, we propose that for a canyon to form with a roughly uniform width by upstream headwall retreat, erosion must occur around the canyon head, but not along the sidewalls, such that canyon width is related to flood discharge. We develop a new theory for bedrock canyon formation by megafloods based on flow convergence of large outburst floods toward a horseshoe-shaped waterfall. The model is developed for waterfall erosion by rock toppling, a candidate erosion mechanism in well fractured rock, like columnar basalt. We apply the model to 14 terrestrial (Channeled Scablands, Washington; Snake River Plain, Idaho; and Ásbyrgi canyon, Iceland) and nine Martian (near Ares Vallis and Echus Chasma) bedrock canyons and show that predicted flood discharges are nearly 3 orders of magnitude less than previously estimated, and predicted flood durations are longer than previously estimated, from less than a day to a few months. Results also show a positive correlation between flood discharge per unit width and canyon width, which supports our hypothesis that canyon width is set in part by flood discharge. Despite lower discharges than previously estimated, the flood volumes remain large enough for individual outburst floods to have perturbed the global hydrology of Mars.

  3. Sedimentary processes in the middle Nazaré Canyon

    NASA Astrophysics Data System (ADS)

    Masson, D. G.; Huvenne, V. A. I.; de Stigter, H. C.; Arzola, R. G.; LeBas, T. P.

    2011-12-01

    Nazaré Canyon extends from a water depth of 50 m near the Portuguese coast to 5000 m at the edge of the Iberian Abyssal Plain. The system is not connected to a modern river and instead obtains its present day sediment input by capture of along-shelf sediment transport. Much of this sediment is deposited in the middle canyon between about 2700 and 3800 m. However, the middle canyon is a highly heterogeneous environment, with areas of both high and low sedimentation rates, exposed rock outcrop, erosion and stable and unstable slopes in close juxtaposition. This paper explores how the various sedimentary processes interact to create the observed heterogeneous canyon environment, which will influence benthic biodiversity in the canyon. Seafloor heterogeneity is investigated using a nested approach to data interpretation, using local high-resolution data to calibrate regional lower resolution data. Six different data types, ship and ROV-mounted swath bathymetry, 30 kHz sidescan sonar images, sediment cores, seafloor video/photographs and current metre/acoustic backscatter data, were incorporated into the analysis. The main morphological characteristic of the middle canyon is a narrow, steep-sided, axial channel flanked by gently sloping terraces. Small-scale landsliding, active at the present day, is the main process that exposes a variety of substrates, ranging from semi-consolidated Holocene sediments to rock of probable Mesozoic age, on the steep axial channel walls. The axial channel floor is characterised in part by large-scale sediment bedforms and in part by landslide debris, suggesting some reworking of landslide debris by currents within the channel. The terraces are interpreted as inner levees with high sedimentation rates. Cores show a dominantly muddy sequence interrupted by thin turbidite sands emplaced on decadal to centennial timescales. The fine-grained sedimentation is the product of continuous settling from fine-grained flows that range from gravity

  4. Internal tidal currents in the Gaoping (Kaoping) Submarine Canyon

    USGS Publications Warehouse

    Lee, I.-H.; Wang, Y.-H.; Liu, J.T.; Chuang, W.-S.; Xu, Jie

    2009-01-01

    Data from five separate field experiments during 2000-2006 were used to study the internal tidal flow patterns in the Gaoping (formerly spelled Kaoping) Submarine Canyon. The internal tides are large with maximum interface displacements of about 200??m and maximum velocities of over 100cm/s. They are characterized by a first-mode velocity and density structure with zero crossing at about 100??m depth. In the lower layer, the currents increase with increasing depth. The density interface and the along-channel velocity are approximately 90?? out-of-phase, suggesting a predominant standing wave pattern. However, partial reflection is indicated as there is a consistent phase advance between sea level and density interface along the canyon axis. ?? 2008 Elsevier B.V. All rights reserved.

  5. Origin of the Colorado River experimental flood in Grand Canyon

    USGS Publications Warehouse

    Andrews, E.D.; Pizzi, L.A.

    2000-01-01

    The Colorado River is one of the most highly regulated and extensively utilized rivers in the world. Total reservoir storage is approximately four times the mean annual runoff of ~17 x 109 m3 year -1. Reservoir storage and regulation have decreased annual peak discharges and hydroelectric power generation has increased daily flow variability. In recent years, the incidental impacts of this development have become apparent especially along the Colorado River through Grand Canyon National Park downstream from Glen Canyon Dam and caused widespread concern. Since the completion of Glen Canyon Dam, the number and size of sand bars, which are used by recreational river runners and form the habitat for native fishes, have decreased substantially. Following an extensive hydrological and geomorphic investigation, an experimental flood release from the Glen Canyon Dam was proposed to determine whether sand bars would be rebuilt by a relatively brief period of flow substantially greater than the normal operating regime. This proposed release, however, was constrained by the Law of the River, the body of law developed over 70 years to control and distribute Colorado River water, the needs of hydropower users and those dependent upon hydropower revenues, and the physical constraints of the dam itself. A compromise was reached following often difficult negotiations and an experimental flood to rebuild sand bars was released in 1996. This flood, and the process by which it came about, gives hope to resolving the difficult and pervasive problem of allocation of water resources among competing interests.The Colorado River is one of the most highly regulated and extensively utilized rivers in the world. Total reservoir storage is approximately four times the mean annual runoff of approximately 17??109 m3 year-1. Reservoir storage and regulation have decreased annual peak discharges and hydroelectric power generation has increased daily flow variability. In recent years, the

  6. Hydrodynamical Approach to Vehicular Flow in the Urban Street Canyon

    NASA Astrophysics Data System (ADS)

    Duras, Maciej M.

    2001-06-01

    The vehicular flow in the urban street canyon is considered. The classical field description is used in the modelling of the vehicular movement and of gaseous mixture in generic urban street canyon. The dynamical variables include vehicular densities, velocities, and emissivities: of pollutants, heat and exhaust gases, as well as standard mixture components' variables: densities, velocities, temperature, pressures. The local balances' equations predict the dynamics of the complex system. The automatic control of the vehicular flow is attained by the sets of coordinated traffic lights. The automatic control is aimed at minimization of traffic ecological costs by the application of variational calculus (Lagrange's and Bolz's problems). The theoretical description is accompanied by numerical examples of computer fluid dynamics based on real traffic data.

  7. Vegetation and substrate on aeolian landscapes in the Colorado River corridor, Cataract Canyon, Utah

    USGS Publications Warehouse

    Draut, Amy E.; Gillette, Elizabeth R.

    2010-01-01

    Vegetation and substrate data presented in this report characterize ground cover on aeolian landscapes of the Colorado River corridor through Cataract Canyon, Utah, in Canyonlands National Park. The 27-km-long Cataract Canyon reach has undergone less anthropogenic alteration than other reaches of the mainstem Colorado River. Characterizing ecosystem parameters there provides a basis against which to evaluate future changes, such as those that could result from the further spread of nonnative plant species or increased visitor use. Upstream dams have less effect on the hydrology and sediment supply in Cataract Canyon compared with downstream reaches in Grand Canyon National Park. For this reason, comparison of these vegetation and substrate measurements with similar data from aeolian landscapes of Grand Canyon will help to resolve the effects of Glen Canyon Dam operations on the Colorado River corridor ecosystem.

  8. Influence of San Gabriel submarine canyon on narrow-shelf sediment dynamics, southern California

    USGS Publications Warehouse

    Karl, Herman A.

    1980-01-01

    A conceptual model attributes the PTC to modification of shelf circulation patterns by San Gabriel Canyon. Surface waves diverge over the canyon head resulting in differential wave set up at the shore face. This forces back turbid nearshore water for a distance of a few kilometers toward the canyon. At some point on the shelf, seaward nearshore flow overlaps offshore currents generated or modified by internal waves focused onto the shelf by the canyon and/or turbulent eddies produced by flow separation in currents moving across the canyon axis. At times, these subtle processes overprint tidal and wind-driven currents and thereby create the PTC. The model suggests that canyons heading several kilometers from shore can have a regulatory effect on narrow-shelf sediment dynamics.

  9. Apatite 4He/3He and (U-Th)/He evidence for an ancient Grand Canyon.

    PubMed

    Flowers, R M; Farley, K A

    2012-12-21

    The Grand Canyon is one of the most dramatic features on Earth, yet when and why it was carved have been controversial topics for more than 150 years. Here, we present apatite (4)He/(3)He thermochronometry data from the Grand Canyon basement that tightly constrain the near-surface cooling history associated with canyon incision. (4)He/(3)He spectra for eastern Grand Canyon apatites of differing He date, radiation damage, and U-Th zonation yield a self-consistent cooling history that substantially validates the He diffusion kinetic model applied here. Similar data for the western Grand Canyon provide evidence that it was excavated to within a few hundred meters of modern depths by ~70 million years ago (Ma), in contrast to the conventional model in which the entire canyon was carved since 5 to 6 Ma.

  10. Does littoral sand bypass the head of Mugu Submarine Canyon? - a modeling study

    USGS Publications Warehouse

    Xu, Jingping; Elias, Edwin; Kinsman, Nicole; Wang, Ping; Rosati, Julie D.; Roberts, Tiffany M.

    2011-01-01

    A newly developed sand-tracer code for the process-based model Delft3D (Deltares, The Netherlands) was used to simulate the littoral transport near the head of the Mugu Submarine Canyon in California, USA. For westerly swells, which account for more than 90% of the wave conditions in the region, the sand tracers in the downcoast littoral drift were unable to bypass the canyon head. A flow convergence near the upcoast rim of the canyon intercepts the tracers and moves them either offshore onto the shelf just west of the canyon rim (low wave height conditions) or into the canyon head (storm wave conditions). This finding supports the notion that Mugu Canyon is the true terminus of the Santa Barbara Littoral Cell.

  11. A review of proposed Glen Canyon Dam interim operating criteria

    SciTech Connect

    LaGory, K.; Hlohowskyj, I.; Tomasko, D.; Hayse, J.; Durham, L.

    1992-04-01

    Three sets of interim operating criteria for Glen Canyon Dam on the Colorado River have been proposed for the period of November 1991, to the completion of the record of decision for the Glen Canyon Dam environmental impact statement (about 1993). These criteria set specific limits on dam releases, including maximum and minimum flows, up-ramp and down-ramp rates, and maximum daily fluctuation. Under the proposed interim criteria, all of these parameters would be reduced relative to historical operating criteria to protect downstream natural resources, including sediment deposits, threatened and endangered fishes, trout, the aquatic food base, and riparian plant communities. The scientific bases of the three sets of proposed operating criteria are evaluated in the present report:(1) criteria proposed by the Research/Scientific Group, associated with the Glen Canyon Environmental Studies (GCES); (2) criteria proposed state and federal officials charged with managing downstream resources; and (3) test criteria imposed from July 1991, to November 1991. Data from Phase 1 of the GCES and other sources established that the targeted natural resources are affected by dam operations, but the specific interim criteria chosen were not supported by any existing studies. It is unlikely that irreversible changes to any of the resources would occur over the interim period if historical operating criteria remained in place. It is likely that adoption of any of the sets of proposed interim operating criteria would reduce the levels of sediment transport and erosion below Glen Canyon Dam; however, these interim criteria could result in some adverse effects, including the accumulation of debris at tributary mouths, a shift of new high-water-zone vegetation into more flood-prone areas, and further declines in vegetation in the old high water zone.

  12. Box Canyon Model Watershed Project : Annual Report 1997/1998.

    SciTech Connect

    Kalispel Natural Resource Department

    1998-01-01

    In 1997, the Kalispel Natural Resource Department (KNRD) initiated the Box Canyon Watershed Project. This project will concentrate on watershed protection and enhancement from an upland perspective and will complement current instream restoration efforts implemented through the Kalispel Resident Fish Project. Primary focus of this project is the Cee Cee Ah Creek watershed due to its proximity to the Reservation, importance as a traditional fishery, and potential for bull trout and west-slope cutthroat trout recovery.

  13. Canyon Creek: A late Pleistocene vertebrate locality in interior Alaska

    NASA Astrophysics Data System (ADS)

    Weber, Florence R.; Hamilton, Thomas D.; Hopkins, David M.; Repenning, Charles A.; Haas, Herbert

    1981-09-01

    The Canyon Creek vertebrate-fossil locality is an extensive road cut near Fairbanks that exposes sediments that range in age from early Wisconsin to late Holocene. Tanana River gravel at the base of the section evidently formed during the Delta Glaciation of the north-central Alaska Range. Younger layers and lenses of fluvial sand are interbedded with arkosic gravel from Canyon Creek that contains tephra as well as fossil bones of an interstadial fauna about 40,000 years old. Solifluction deposits containing ventifacts, wedge casts, and rodent burrows formed during a subsequent period of periglacial activity that took place during the maximum phase of Donnelly Glaciation about 25,000-17,000 years ago. Overlying sheets of eolian sand are separated by a 9500-year-old paleosol that may correlate with a phase of early Holocene spruce expansion through central Alaska. The Pleistocene fauna from Canyon Creek consists of rodents (indicated by burrows), Mammuthus primigenius (woolly mammoth), Equus lambei (Yukon wild ass), Camelops hesternus (western camel), Bison sp. cf. B. crassicornis (large-horned bison), Ovis sp. cf. O. dalli (mountain sheep), Canis sp. cf. C. lupus (wolf), Lepus sp. cf. L. othus or L. arcticus (tundra hare), and Rangifer sp. (caribou). This assemblage suggests an open landscape in which trees and tall shrubs were either absent or confined to sheltered and moist sites. Camelops evidently was present in eastern Beringia during the middle Wisconsin interstadial interval but may have disappeared during the following glacial episode. The stratigraphic section at Canyon Creek appears to demonstrate that the Delta Glaciation of the north-central Alaska Range is at least in part of early Wisconsin age and was separated from the succeeding Donnelly Glaciation by an interstadial rather than interglacial episode.

  14. Restoring fire to wilderness: Sequoia and Kings Canyon National Parks

    USGS Publications Warehouse

    Manley, Jeffrey; Keifer, MaryBeth; Stephenson, Nathan L.; Kaage, William

    2001-01-01

    Sequoia and Kings Canyon National Parks, established in 1890, consist of 863,741 acres (349,551 ha) of Sierra Nevada foothills, mid-elevation conifer forest, and high-elevation alpine environment. The parks contain 36 giant sequoia (Sequoiadendron giganteum) groves, including the largest known tree, the General Sherman. Ninety-four percent of the parklands is in designated or proposed wilderness (fig. 1), with conditions resembling roadless areas in national forests.

  15. Assessing GPS Constellation Resiliency in an Urban Canyon Environment

    DTIC Science & Technology

    2015-03-26

    Membership: Dr. J. O. Miller, PhD Chair Dr. Raymond R. Hill, PhD Member AFIT-ENS-MS-15-M-138 Abstract Satellite constellation resiliency is an... satellite systems is challenging the capabilities provided by space assets. More specifically, the global positioning system (GPS) satellite ...observed in an urban canyon environment or due to the loss of a GPS satellite may hinder the overall mission. We use the System Effectiveness Analysis

  16. Initiation and Frequency of Debris Flows in Grand Canyon, Arizona

    DTIC Science & Technology

    1996-01-01

    fig. 1). This type of flash flood contains up to 80 percent sediment by weight and deposits poorly sorted sediment that ranges from fine clays to...Robert B. Stanton. Lack of sand in the canyon mouth, and fresh- looking gravels all the way to the river, indicates a flash flood had recently occurred in...suggest that stream magnitude may also be a good predictor of flash - flood potential for small drainage basins. They argue that transient controls

  17. Los Alamos Canyon Ice Rink Parking Flood Plain Assessment

    SciTech Connect

    Hathcock, Charles Dean

    2015-02-10

    The project location is in Los Alamos Canyon east of the ice rink facility at the intersection of West and Omega roads (Figure 1). Forty eight parking spaces will be constructed on the north and south side of Omega Road, and a lighted walking path will be constructed to the ice rink. Some trees will be removed during this action. A guardrail of approximately 400 feet will be constructed along the north side of West Road to prevent unsafe parking in that area.

  18. Basic repository source term and data sheet report: Lavender Canyon

    SciTech Connect

    Not Available

    1988-01-01

    This report is one of a series describing studies undertaken in support of the US Department of Energy Civilian Radioactive Waste Management (CRWM) Program. This study contains the derivation of values for environmental source terms and resources consumed for a CRWM repository. Estimates include heavy construction equipment; support equipment; shaft-sinking equipment; transportation equipment; and consumption of fuel, water, electricity, and natural gas. Data are presented for construction and operation at an assumed site in Lavender Canyon, Utah. 3 refs; 6 tabs.

  19. On subsurface cooling associated with the Biobio River Canyon (Chile)

    NASA Astrophysics Data System (ADS)

    Sobarzo, Marcus; Saldías, Gonzalo S.; Tapia, Fabian J.; Bravo, Luis; Moffat, Carlos; Largier, John L.

    2016-07-01

    Submarine canyons cutting across the continental shelf can modulate the cross-shelf circulation being effective pathways to bring water from the deep ocean onto the shelf. Here, we use 69 days of moored array observations of temperature and ocean currents collected during the spring of 2013 and winter-spring 2014, as well as shipboard hydrographic surveys and sea-level observations to characterize cold, oxygen poor, and nutrient-rich upwelling events along the Biobio Submarine Canyon (BbC). The BbC is located within the Gulf of Arauco at 36° 50'S in the Central Chilean Coast. The majority of subtidal temperature at 150 m depth is explained by subtidal variability in alongshore currents on the canyon with a lag of less than a day (r2 = 0.65). Using the vertical displacement of the 10° and 10.5°C isotherms, we identified nine upwelling events, lasting between 20 h to 4.5 days, that resulted in vertical isothermal displacements ranging from 29 to 137 m. The upwelled water likely originated below 200 m. Majority of the cooling events were related with strong northward (opposite Kelvin wave propagation) flow and low pressure at the coast. Most of these low pressure events occur during relatively weak local wind forcing conditions, and were instead related with Coastal Trapped Waves (CTWs) propagating southwards from lower latitudes. These cold, high-nutrient, low-oxygen waters may be further upwelled and advected into the Gulf of Arauco by wind forcing. Thus, canyon upwelling may be a key driver of biological productivity and oxygen conditions in this Gulf.

  20. A simple model for calculating air pollution within street canyons

    NASA Astrophysics Data System (ADS)

    Venegas, Laura E.; Mazzeo, Nicolás A.; Dezzutti, Mariana C.

    2014-04-01

    This paper introduces the Semi-Empirical Urban Street (SEUS) model. SEUS is a simple mathematical model based on the scaling of air pollution concentration inside street canyons employing the emission rate, the width of the canyon, the dispersive velocity scale and the background concentration. Dispersive velocity scale depends on turbulent motions related to wind and traffic. The parameterisations of these turbulent motions include two dimensionless empirical parameters. Functional forms of these parameters have been obtained from full scale data measured in street canyons at four European cities. The sensitivity of SEUS model is studied analytically. Results show that relative errors in the evaluation of the two dimensionless empirical parameters have less influence on model uncertainties than uncertainties in other input variables. The model estimates NO2 concentrations using a simple photochemistry scheme. SEUS is applied to estimate NOx and NO2 hourly concentrations in an irregular and busy street canyon in the city of Buenos Aires. The statistical evaluation of results shows that there is a good agreement between estimated and observed hourly concentrations (e.g. fractional bias are -10.3% for NOx and +7.8% for NO2). The agreement between the estimated and observed values has also been analysed in terms of its dependence on wind speed and direction. The model shows a better performance for wind speeds >2 m s-1 than for lower wind speeds and for leeward situations than for others. No significant discrepancies have been found between the results of the proposed model and that of a widely used operational dispersion model (OSPM), both using the same input information.

  1. Landslides and debris flows in Ephraim Canyon, central Utah

    SciTech Connect

    Baum, R.L.; Fleming, R.W.

    1989-01-01

    The geology of 36 km{sup 2} in Ephraim Canyon, on the west side of the Wasatch Plateau, central Utah, was mapped at a scale of 1:12,000 following the occurrence of numerous landslides in 1983. The geologic map shows the distribution of the landslides and debris flows of 1983-86, as well as older landslide deposits, other surficial deposits, and bedrock. Several of the recent landslides are described and illustrated by means of maps or photographs.

  2. Canyon Creek: A late Pleistocene vertebrate locality in interior Alaska

    USGS Publications Warehouse

    Weber, F.R.; Hamilton, T.D.; Hopkins, D.M.; Repenning, C.A.; Haas, H.

    1981-01-01

    The Canyon Creek vertebrate-fossil locality is an extensive road cut near Fairbanks that exposes sediments that range in age from early Wisconsin to late Holocene. Tanana River gravel at the base of the section evidently formed during the Delta Glaciation of the north-central Alaska Range. Younger layers and lenses of fluvial sand are interbedded with arkosic gravel from Canyon Creek that contains tephra as well as fossil bones of an interstadial fauna about 40,000 years old. Solifluction deposits containing ventifacts, wedge casts, and rodent burrows formed during a subsequent period of periglacial activity that took place during the maximum phase of Donnelly Glaciation about 25,000-17,000 years ago. Overlying sheets of eolian sand are separated by a 9500-year-old paleosol that may correlate with a phase of early Holocene spruce expansion through central Alaska. The Pleistocene fauna from Canyon Creek consists of rodents (indicated by burrows), Mammuthus primigenius (woolly mammoth), Equus lambei (Yukon wild ass), Camelops hesternus (western camel), Bison sp. cf. B. crassicornis (large-horned bison), Ovis sp. cf. O. dalli (mountain sheep), Canis sp. cf. C. lupus (wolf), Lepus sp. cf. L. othus or L. arcticus (tundra hare), and Rangifer sp. (caribou). This assemblage suggests an open landscape in which trees and tall shrubs were either absent or confined to sheltered and moist sites. Camelops evidently was present in eastern Beringia during the middle Wisconsin interstadial interval but may have disappeared during the following glacial episode. The stratigraphic section at Canyon Creek appears to demonstrate that the Delta Glaciation of the north-central Alaska Range is at least in part of early Wisconsin age and was separated from the succeeding Donnelly Glaciation by an interstadial rather than interglacial episode. ?? 1981.

  3. Currents in la jolla and scripps submarine canyons.

    PubMed

    Shepard, F P; Marshall, N F

    1969-07-11

    Velocities up to 34 centimeters per second have been recorded near the floors of submarine canyons off La Jolla, California. Currents move alternately down- and upcanyon with variable periods. All 3- to 6-day measurements show net current transport downcanyon. Many of the downcanyon currents of higher velocity correlate with ebbing tides, as measured at the nearby pier. Other factors producing the currents probably include internal waves. Velocities are sufficient to transport large quantities of fine sand.

  4. Geomorphic characterization of four shelf-sourced submarine canyons along the U.S. Mid-Atlantic continental margin

    NASA Astrophysics Data System (ADS)

    Obelcz, Jeffrey; Brothers, Daniel; Chaytor, Jason; Brink, Uri ten; Ross, Steve W.; Brooke, Sandra

    2014-06-01

    Shelf-sourced submarine canyons are common features of continental margins and are fundamental to deep-sea sedimentary systems. Despite their geomorphic and geologic significance, relatively few passive margin shelf-breaching canyons worldwide have been mapped using modern geophysical methods. Between 2007 and 2012 a series of geophysical surveys was conducted across four major canyons of the US Mid-Atlantic margin: Wilmington, Baltimore, Washington, and Norfolk canyons. More than 5700 km2 of high-resolution multibeam bathymetry and 890 line-km of sub-bottom CHIRP profiles were collected along the outer shelf and uppermost slope (depths of 80-1200 m). The data allowed us to compare and contrast the fine-scale morphology of each canyon system. The canyons have marked differences in the morphology and orientation of canyon heads, steepness and density of sidewall gullies, and the character of the continental shelf surrounding canyon rims. Down-canyon axial profiles for Washington, Baltimore and Wilmington canyons have linear shapes, and each canyon thalweg exhibits morphological evidence for recent, relatively small-scale sediment transport. For example, Washington Canyon displays extremely steep wall gradients and contains ~100 m wide, 5-10 m deep, v-shaped incisions down the canyon axis, suggesting modern or recent sediment transport. In contrast, the convex axial thalweg profile, the absence of thalweg incision, and evidence for sediment infilling at the canyon head, suggest that depositional processes strongly influence Norfolk Canyon during the current sea-level high-stand. The north walls of Wilmington, Washington and Norfolk canyons are steeper than the south walls due to differential erosion, though the underlying cause for this asymmetry is not clear. Furthermore, we speculate that most of the geomorphic features observed within the canyons (e.g., terraces, tributary canyons, gullies, and hanging valleys) were formed during the Pleistocene, and show only

  5. Hydraulics of outburst floods spilling over a steep-walled canyon: Implications for paleo-discharges on Mars

    NASA Astrophysics Data System (ADS)

    Lapotre, Mathieu; Lamb, Michael

    2013-04-01

    Canyons carved by outburst floods are common landforms on Earth and Mars. These canyons are generally found in fractured basalts and jointed sedimentary rocks. Flood-carved canyons commonly have steep headwalls and a roughly constant width, and are often thought to have formed from upstream headwall propagation due to waterfall erosion. Because morphology is readily available from satellite imagery, these canyons offer a unique opportunity to quantify the discharge of rare, catastrophic paleo-floods on Earth and Mars. However, mechanistic relationships that relate canyon size to flood discharge have yet to be developed. We propose that the width of a canyon headwall in fractured rock is set by the spatial distribution of erosion around the rim of the canyon, which is controlled by the distribution of shear stresses induced by the overflowing water as it is focused into the canyon head. We test this hypothesis by performing a series of numerical simulations of flood-water focusing using ANUGA Hydro, a 2D-depth averaged, fully turbulent, hydraulic numerical modeling suite allowing for Froude-number transitions. The numerical simulations were designed to explore five dimensionless variables: the aspect ratio of the canyon (length normalized by width), the canyon width to flood-water width ratio, the canyon width to normal-flow depth ratio, the Froude number, and the topographic gradient upstream of the canyon. Preliminary results show that flow focusing leads to increased shear stresses at the canyon head compared to the sides of the canyon for subcritical floods and higher canyon aspect ratios. This suggests that proto-canyons start growing from a topographic defect in all directions until they reach a critical length for the side walls to dry. Once this critical length is attained, canyons focus most of the flood waters into their heads, and propagate upstream only, maintaining roughly constant widths. Preliminary results suggest that canyon width may be used to

  6. Geomorphic characterization of four shelf-sourced submarine canyons along the U.S. Mid-Atlantic continental margin

    USGS Publications Warehouse

    Obelcz, Jeffrey; Brothers, Daniel S.; Chaytor, Jason D.; ten Brink, Uri S.; Ross, Steve W.; Brooke, Sandra

    2013-01-01

    Shelf-sourced submarine canyons are common features of continental margins and are fundamental to deep-sea sedimentary systems. Despite their geomorphic and geologic significance, relatively few passive margin shelf-breaching canyons worldwide have been mapped using modern geophysical methods. Between 2007 and 2012 a series of geophysical surveys was conducted across four major canyons of the US Mid-Atlantic margin: Wilmington, Baltimore, Washington, and Norfolk canyons. More than 5700 km2 of high-resolution multibeam bathymetry and 890 line-km of sub-bottom CHIRP profiles were collected along the outer shelf and uppermost slope (depths of 80-1200 m). The data allowed us to compare and contrast the fine-scale morphology of each canyon system. The canyons have marked differences in the morphology and orientation of canyon heads, steepness and density of sidewall gullies, and the character of the continental shelf surrounding canyon rims. Down-canyon axial profiles for Washington, Baltimore and Wilmington canyons have linear shapes, and each canyon thalweg exhibits morphological evidence for recent, relatively small-scale sediment transport. For example, Washington Canyon displays extremely steep wall gradients and contains ~100 m wide, 5–10 m deep, v-shaped incisions down the canyon axis, suggesting modern or recent sediment transport. In contrast, the convex axial thalweg profile, the absence of thalweg incision, and evidence for sediment infilling at the canyon head, suggest that depositional processes strongly influence Norfolk Canyon during the current sea-level high-stand. The north walls of Wilmington, Washington and Norfolk canyons are steeper than the south walls due to differential erosion, though the underlying cause for this asymmetry is not clear. Furthermore, we speculate that most of the geomorphic features observed within the canyons (e.g., terraces, tributary canyons, gullies, and hanging valleys) were formed during the Pleistocene, and show only

  7. Do urban canyons influence street level grass pollen concentrations?

    PubMed

    Peel, Robert George; Kennedy, Roy; Smith, Matt; Hertel, Ole

    2014-08-01

    In epidemiological studies, outdoor exposure to pollen is typically estimated using rooftop monitoring station data, whilst exposure overwhelmingly occurs at street level. In this study the relationship between street level and roof level grass pollen concentrations was investigated for city centre street canyon environments in Aarhus, Denmark, and London, UK, during the grass pollen seasons of 2010 and 2011 respectively. For the period mid-day to late evening, street level concentrations in both cities tended to be lower than roof-level concentrations, though this difference was found to be statistically significant only in London. The ratio of street/roof level concentrations was compared with temperature, relative humidity, wind speed and direction, and solar radiation. Results indicated that the concentration ratio responds to wind direction with respect to relative canyon orientation and local source distribution. In the London study, an increase in relative humidity was linked to a significant decrease in street/roof level concentration ratio, and a possible causative mechanism involving moisture mediated pollen grain buoyancy is proposed. Relationships with the other weather variables were not found to be significant in either location. These results suggest a tendency for monitoring station data to overestimate exposure in the canyon environment.

  8. Pollution Sources Over the Grand Canyon and Canyonlands National Parks

    NASA Astrophysics Data System (ADS)

    Huang, S.; Popp, C. J.; Arimoto, R.; Martin, R. S.

    2003-12-01

    To investigate pollution sources that are degrading the visibility of two national parks, Grand Canyon National Park, AZ, and Canyonlands National Park, UT, daily samples of total suspended particulates (TSP), PM2.5, trace gases, and organic compounds were collected in the two parks in the summer (July) of 2001 and winter (December-January) of 2001-2002. Factor analysis results show a number of anthropogenic signals (e.g., smelters) in the summer air over the Grand Canyon. In winter, the Grand Canyon samples revealed an aged pollution signal, which was probably transported from long distance, and a local source. In contrast, Canyonlands has less distinctive pollution signals in summer compared with winter. Summer air there shows an aged pollution source, evidence for smelter impacts on the concentrations of rare-earth elements and other metals, and a titanium source. More individual pollution signals were identified from the winter samples at Canyonlands (e.g., coal combustion and smelters). Our chemical and meteorological data clearly indicate that the main long-range transport pathway for pollution in summer is via southwesterly winds at both national parks; this implicates western Arizona as a likely source region. In winter pollution comes from the Salt Lake area via northerlies or northwesterlies.

  9. Electrical resistance sensors record spring flow timing, Grand Canyon, Arizona

    USGS Publications Warehouse

    Adams, E.A.; Monroe, S.A.; Springer, A.E.; Blasch, K.W.; Bills, D.J.

    2006-01-01

    Springs along the south rim of the Grand Canyon, Arizona, are important ecological and cultural resources in Grand Canyon National Park and are discharge points for regional and local aquifers of the Coconino Plateau. This study evaluated the applicability of electrical resistance (ER) sensors for measuring diffuse, low-stage (<1.0 cm) intermittent and ephemeral flow in the steep, rocky spring-fed tributaries of the south rim. ER sensors were used to conduct a baseline survey of spring flow timing at eight sites in three spring-fed tributaries in Grand Canyon. Sensors were attached to a nearly vertical rock wall at a spring outlet and were installed in alluvial and bedrock channels. Spring flow timing data inferred by the ER sensors were consistent with observations during site visits, with flow events recorded with collocated streamflow gauging stations and with local precipitation gauges. ER sensors were able to distinguish the presence of flow along nearly vertical rock surfaces with flow depths between 0.3 and 1.0 cm. Laboratory experiments confirmed the ability of the sensors to monitor the timing of diffuse flow on impervious surfaces. A comparison of flow patterns along the stream reaches and at springs identified the timing and location of perennial and intermittent flow, and periods of increased evapotranspiration.

  10. Aquatic macroinvertebrates and water quality in Sandia Canyon

    SciTech Connect

    Bennett, K.

    1994-05-01

    In 1990, field studies of water quality and stream macroinvertebrate communities were initiated in Sandia Canyon at Los Alamos National Laboratory. The studies were designed to establish baseline data and to determine the effects of routine discharges of industrial and sanitary waste. Water quality measurements were taken and aquatic macroinvertebrates sampled at three permanent stations within the canyon. Two of the three sample stations are located where the stream regularly receives industrial and sanitary waste effluents. These stations exhibited a low diversity of macroinvertebrates and slightly degraded water quality. The last sample station, located approximately 0.4 km (0.25 mi) downstream from the nearest wastewater outfall, appears to be in a zone of recovery where water quality parameters more closely resemble those found in natural streams in the Los Alamos area. A large increase in macroinvertebrate diversity was also observed at the third station. These results indicate that effluents discharged into Sandia Canyon have a marked effect on water quality and aquatic macroinvertebrate communities.

  11. Electrical resistance sensors record spring flow timing, Grand Canyon, Arizona.

    PubMed

    Adams, Eric A; Monroe, Stephen A; Springer, Abraham E; Blasch, Kyle W; Bills, Donald J

    2006-01-01

    Springs along the south rim of the Grand Canyon, Arizona, are important ecological and cultural resources in Grand Canyon National Park and are discharge points for regional and local aquifers of the Coconino Plateau. This study evaluated the applicability of electrical resistance (ER) sensors for measuring diffuse, low-stage (<1.0 cm) intermittent and ephemeral flow in the steep, rocky spring-fed tributaries of the south rim. ER sensors were used to conduct a baseline survey of spring flow timing at eight sites in three spring-fed tributaries in Grand Canyon. Sensors were attached to a nearly vertical rock wall at a spring outlet and were installed in alluvial and bedrock channels. Spring flow timing data inferred by the ER sensors were consistent with observations during site visits, with flow events recorded with collocated streamflow gauging stations and with local precipitation gauges. ER sensors were able to distinguish the presence of flow along nearly vertical rock surfaces with flow depths between 0.3 and 1.0 cm. Laboratory experiments confirmed the ability of the sensors to monitor the timing of diffuse flow on impervious surfaces. A comparison of flow patterns along the stream reaches and at springs identified the timing and location of perennial and intermittent flow, and periods of increased evapotranspiration.

  12. Measurements of velocity and discharge, Grand Canyon, Arizona, May 1994

    USGS Publications Warehouse

    Oberg, Kevin A.; Fisk, Gregory G.; ,

    1995-01-01

    The U.S. Geological Survey (USGS) evaluated the feasibility of utilizing an acoustic Doppler current profiler (ADCP) to collect velocity and discharge data in the Colorado River in Grand Canyon, Arizona, in May 1994. An ADCP is an instrument that can be used to measure water velocity and discharge from a moving boat. Measurements of velocity and discharge were made with an ADCP at 54 cross sections along the Colorado River between the Little Colorado River and Diamond Creek. Concurrent measurements of discharge with an ADCP and a Price-AA current meter were made at three U.S. Geological Survey streamflow-gaging stations: Colorado River above the Little Colorado River near Desert View, Colorado River near Grand Canyon, and Colorado River above Diamond Creek near Peach Springs. Discharges measured with an ADCP were within 3 percent of the rated discharge at each streamflow-gaging station. Discharges measured with the ADCP were within 4 percent of discharges measured with a Price-AA meter, except at the Colorado River above Diamond Creek. Vertical velocity profiles were measured with the ADCP from a stationary position at four cross sections along the Colorado River. Graphs of selected vertical velocity profiles collected in a cross section near National Canyon show considerable temporal variation among profile.

  13. Litter in submarine canyons off the west coast of Portugal

    NASA Astrophysics Data System (ADS)

    Mordecai, Gideon; Tyler, Paul A.; Masson, Douglas G.; Huvenne, Veerle A. I.

    2011-12-01

    Marine litter is of global concern and is present in all the world's oceans, including deep benthic habitats where the extent of the problem is still largely unknown. Litter abundance and composition were investigated using video footage and still images from 16 Remotely Operated Vehicle (ROV) dives in Lisbon, Setúbal, Cascais and Nazaré Canyons located west of Portugal. Litter was most abundant at sites closest to the coastline and population centres, suggesting the majority of the litter was land sourced. Plastic was the dominant type of debris, followed by fishing gear. Standardised mean abundance was 1100 litter items km -2, but was as high as 6600 litter items km -2 in canyons close to Lisbon. Although all anthropogenic material may be harmful to biota, debris was also used as a habitat by some macro-invertebrates. Litter composition and abundance observed in the canyons of the Portuguese margin were comparable to those seen in other deep sea areas around the world. Accumulation of litter in the deep sea is a consequence of human activities both on land and at sea. This needs to be taken into account in future policy decisions regarding marine pollution.

  14. Landslide assessment of Newell Creek Canyon, Oregon City, Oregon

    SciTech Connect

    Growney, L.; Burris, L.; Garletts, D.; Walsh, K. . Dept. of Geology)

    1993-04-01

    A study has been conducted in Newell Creek Canyon near Oregon City, Oregon, T3S, T2S, R2E. A landslide inventory has located 53 landslides in the 2.8 km[sup 2] area. The landslides range in area from approximately 15,000m[sup 2] to 10m[sup 2]. Past slides cover an approximate 7% of the canyon area. Landslide processes include: slump, slump-translational, slump-earthflow and earthflow. Hard, impermeable clay-rich layers in the Troutdale Formation form the failure planes for most of the slides. Slopes composed of Troutdale material may seem to be stable, but when cuts and fills are produced, slope failure is common because of the perched water tables and impermeable failure planes. Good examples of cut and fill failures are present on Highway 213 which passes through Newell Creek Canyon. Almost every cut and fill has failed since the road construction began. The latest failure is in the fill located at mile-post 2.1. From data gathered, a slope stability risk map was generated. Stability risk ratings are divided into three groups: high, moderate and low. High risk of slope instability is designated to all landslides mapped in the slide inventory. Moderate risk is designated to slopes in the Troutdale Formation greater than 8[degree]. Low risk is designated to slopes in the Troutdale Formation less than 8[degree].

  15. Large eddy simulation of turbulent flow and of pollutant transport in a street canyon

    NASA Astrophysics Data System (ADS)

    Starchenko, Alexander V.; Danilkin, Evgeniy A.

    2015-11-01

    The work presents a non-steady three-dimensional eddy resolving model intended for the simulation of non-isothermal turbulent separation flows in street canyons. For a subgrid-scale turbulence parameterization, the Smagorinsky gradient model is used. The calculation results demonstrate the effects of pollutant source location, street canyon size, basic stream rate and wall temperature difference on air pollution in the canyon.

  16. Evolution of Paleogene submarine Canyon-Fan systems, southern Sacramento basin, California

    SciTech Connect

    Fischer, P.J.; Cherven, V.B.; Almgren, A.A.

    1986-04-01

    The evolutionary development of the Paleogene Martinez and Meganos Submarine Canyon and Fan systems of the southern Sacramento basin was controlled by a complex interplay of eustatic sea level change and tectonism. In this brief synthesis, the authors postulated that eustatic sea level changes were the dominant or controlling factor, and tectonism, although significant, was of secondary importance. The development of the Paleogene canyon and fan systems is correlated with low sea level stands or regressions at 60 Ma and 56 Ma. Intermittent tectonism, beginning at least 5-10 m.y. earlier, particularly along the western and southwestern margins of the Sacramento basin, controlled the location of the canyon and fan systems. The controlling tectonic elements of the southern basin were north-trending, high-angle faults related to the Kirby Hills and Midland fault zones and the Diablo-Kirby Hills(.) uplift. Both canyons were probably active (that is, channeling coarse sediment to their fans) during most of the late Paleocene. The authors suggest that canyon activity was maintained by south-flowing longshore drift or feeder systems, down-canyon gravity flows (turbidites, etc) and up-down canyon current systems, all of which are typical of modern, active submarine canyon and fan systems. The canyons filled with fine-grained sediments when the canyons were beheaded or separated from the longshore drift system by rising sea level, or when tectonism(.) shifted the major river drainage that supplied the canyon with sediment. Truncation and erosion of the canyon-fill and fan facies of the late Paleocene-early Eocene Meganos Formation along the Diablo outcrop belt was primarily due to the major early middle Eocene lowstand (49.5 Ma).

  17. Late Holocene earthquake history of the Brigham City segment of the Wasatch fault zone at the Hansen Canyon, Kotter Canyon, and Pearsons Canyon trench sites, Box Elder County, Utah

    USGS Publications Warehouse

    DuRoss, Christopher B.; Personius, Stephen F.; Crone, Anthony J.; McDonald, Greg N.; Briggs, Richard W.

    2012-01-01

    Of the five central segments of the Wasatch fault zone (WFZ) having evidence of recurrent Holocene surface-faulting earthquakes, the Brigham City segment (BCS) has the longest elapsed time since its most recent surface-faulting event (~2.1 kyr) compared to its mean recurrence time between events (~1.3 kyr). Thus, the BCS has the highest time-dependent earthquake probability of the central WFZ. We excavated trenches at three sites––the Kotter Canyon and Hansen Canyon sites on the north-central BCS and Pearsons Canyon site on the southern BCS––to determine whether a surface-faulting earthquake younger than 2.1 ka occurred on the BCS. Paleoseismic data for Hansen Canyon and Kotter Canyon confirm that the youngest earthquake on the north-central BCS occurred before 2 ka, consistent with previous north-central BCS investigations at Bowden Canyon and Box Elder Canyon. At Hansen Canyon, the most recent earthquake is constrained to 2.1–4.2 ka and had 0.6–2.5 m of vertical displacement. At Kotter Canyon, we found evidence for two events at 2.5 ± 0.3 ka and 3.5 ± 0.3 ka, with an average displacement per event of 1.9–2.3 m. Paleoseismic data from Pearsons Canyon, on the previously unstudied southern BCS, indicate that a post-2 ka earthquake ruptured this part of the segment. The Pearsons Canyon earthquake occurred at 1.2 ± 0.04 ka and had 0.1–0.8 m of vertical displacement, consistent with our observation of continuous, youthful scarps on the southern 9 km of the BCS having 1–2 m of late Holocene(?) surface offset. The 1.2-ka earthquake on the southern BCS likely represents rupture across the Weber–Brigham City segment boundary from the penultimate Weber-segment earthquake at about 1.1 ka. The Pearsons Canyon data result in a revised length of the BCS that has not ruptured since 2 ka (with time-dependent probability implications), and provide compelling evidence of at least one segment-boundary failure and multi-segment rupture on the central WFZ. Our

  18. Deep-sea scavenging amphipod assemblages from the submarine canyons of the Western Iberian Peninsula

    NASA Astrophysics Data System (ADS)

    Duffy, G. A.; Horton, T.; Billett, D. S. M.

    2012-11-01

    Submarine canyons have often been identified as hotspots of secondary production with the potential to house distinct faunal assemblages and idiosyncratic ecosystems. Within these deep-sea habitats, assemblages of scavenging fauna play a vital role in reintroducing organic matter from large food falls into the wider deep-sea food chain. Free-fall baited traps were set at different depths within three submarine canyons on the Iberian Margin. Amphipods from the traps were identified to species level and counted. Scavenging amphipod assemblages were compared at different depths within each canyon and between individual canyon systems. Using data from literature, abyssal plain assemblages were compared to submarine canyon assemblages. Samples from canyons were found to contain common abyssal plain species but in greater than expected abundances. It is proposed that this is a result of the high organic carbon input into canyon systems owing to their interception of sediment from the continental shelf and input from associated estuarine systems. Community composition differed significantly between the submarine canyons and abyssal plains. The cause of this difference cannot be attributed to one environmental variable due to the numerous inherent differences between canyons and abyssal plains.

  19. Recent sea beam mapping of Ascension-Monterey Submarine Canyon System

    SciTech Connect

    Greene, H.G. )

    1990-06-01

    Extensive Sea Beam and Bathymetric Swatch Survey System (BS{sup 3}) data covering the Ascension-Monterey Submarine Canyon system and adjoining areas and canyons were collected offshore central California. Many discovered geomorphological features lead to significant new geologic conclusions about the formation and processes of submarine canyons in general and disclose unique sedimentary and tectonic features of the Ascension-Monterey Canyon system. The highly detailed bathymetric maps constructed from the Sea Beam data indicate that the seafloor topographic pattern is influenced by sedimentary and tectonic processes; both remain active along the central California margin. Interpretations of MOAA composite maps, final raw Sea Beam bathymetric maps, and three-dimensional physiographic renditions from bathymetric data indicate a diverse and complex geomorphology for the Ascension-Monterey Submarine Canyon system and adjoining region. Five distinct geomorphologic provinces and four well-defined geographic areas are mapped. Canyons cut by faults and canyon walls actively undergoing mass wasting are prominently displayed in the Sea Beam data. Sedimentary processes illustrating canyon channel capture and the formation of extensive mega-sedimentary wave fields where the canyons debouch onto the abyssal plain are spectacularly well defined. This new tool of seafloor mapping is contributing significant data for the geological interpretation of continental margins and seafloor in the world's oceans.

  20. Jamestown Canyon virus (California serogroup) is the etiologic agent of widespread infection in Michigan humans.

    PubMed

    Grimstad, P R; Calisher, C H; Harroff, R N; Wentworth, B B

    1986-03-01

    In a sample population of 780 Michigan residents tested for neutralizing antibodies to California serogroup viruses, 216 (27.7%) had specific neutralizing antibody to Jamestown Canyon virus. An additional eight (1.0%) had specific neutralizing to trivittatus virus; none had specific neutralizing antibody to La Crosse virus. Significantly more male residents than female residents of the Lower Peninsula had antibody to Jamestown Canyon virus. The frequency of neutralizing antibody titers fits the Poisson distribution, suggesting that Jamestown Canyon virus infections occur endemically in residents of Michigan. Among 128 sera with specific neutralizing antibody to Jamestown Canyon virus, only two (1.6%) were found to have significant hemagglutination-inhibiting antibody titers with La Crosse virus, while 23 of 44 (52%) had significant titers with Jamestown Canyon virus; a single serum had significant antibody by complement fixation tests with both La Crosse and Jamestown Canyon viruses. This study confirms earlier speculation that complement fixation and hemagglutination-inhibition tests with La Crosse virus (the only tests for California serogroup virus infections performed by most state diagnostic laboratories) fail to detect antibody to Jamestown Canyon virus. ASPEX computer-drawn maps demonstrated that the distribution of persons with antibody to Jamestown Canyon virus and residing in Michigan's Lower Peninsula is closely correlated with the estimated distribution of white-tailed deer in that part of the state, further supporting the hypothesis that white-tailed deer are the primary vertebrate host for Jamestown Canyon virus.

  1. 75 FR 76650 - Proposed Modification of Class E Airspace; Bryce Canyon, UT

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-09

    ... (RNAV) Global Positioning System (GPS) Standard Instrument Approach Procedures at Bryce Canyon Airport.... Controlled airspace is necessary to accommodate aircraft using the RNAV (GPS) Standard Instrument...

  2. Seismic expression of Late Quaternary Banda submarine canyon and fan offshore northern Baja California

    SciTech Connect

    Legg, M.R.

    1987-05-01

    High-resolution seismic reflection profiles obtained throughout the inner California continental borderland offshore northwestern Baja California, Mexico, show the presence of numerous modern submarine canyons and associated fans. One set of these, the Banda submarine canyon/fan, is of relatively recent origin, as demonstrated by onlap of the basal fan sediments against an acoustically transparent, presumably hemipelagic deposit. Late Quaternary sedimentation rates inferred from isotopically dated piston core samples place the age of the postulated hemipelagic unit at approximately 650,000 years ago. The Banda submarine canyon heads within the Bahia Todos Santo and passes through a narrow gorge between Punta Banda and Islas Todos Santos. It is proposed that this submarine canyon and fan system formed entirely during late Quaternary time, following the breach of the Punta Banda ridge during a late Pleistocene high sea level stand. The presence of an ancient, buried channel exiting to the north out of Bahia Todos Santos probably marks the head of an earlier submarine canyon which acted as the conduit of clastic sediments from Valle Maneadero to the deep borderland basins. The now active Banda submarine canyon pirated the supply of terrigenous clastics from this older canyon. The active Agua Blanca fault zone cuts across the head of Banda submarine canyon, suggesting that tectonic movements may have played a role in the development of the Banda submarine canyon and fan system.

  3. Variability of CO2 concentrations and fluxes in and above an urban street canyon

    NASA Astrophysics Data System (ADS)

    Lietzke, Björn; Vogt, Roland

    2013-08-01

    The variability of CO2 concentrations and fluxes in dense urban environments is high due to the inherent heterogeneity of these complex areas and their spatio-temporally variable anthropogenic sources. With a focus on micro- to local-scale CO2-exchange processes, measurements were conducted in a street canyon in the city of Basel, Switzerland in 2010. CO2 fluxes were sampled at the top of the canyon (19 m) and at 39 m while vertical CO2 concentration profiles were measured in the center and at a wall of the canyon. CO2 concentration distributions in the street canyon and exchange processes with the layers above show, apart from expected general diurnal patterns due mixing layer heights, a strong dependence on wind direction relative to the canyon. As a consequence of the resulting corkscrew-like canyon vortex, accumulation of CO2 inside the canyon is modulated with distinct distribution patterns. The evaluation of diurnal traffic data provides good explanations for the vertical and horizontal differences in CO2-distribution inside the canyon. Diurnal flux characteristics at the top of the canyon can almost solely be explained with traffic density expressed by the strong linear dependence. Even the diurnal course of the flux at 39 m shows a remarkable relationship to traffic density for east wind conditions while, for west wind situations, a change toward source areas with lower emissions leads to a reduced flux.

  4. Geologic Map of the Upper Parashant Canyon and Vicinity, Mohave County, Northwestern Arizona

    USGS Publications Warehouse

    Billingsley, George H.; Harr, Michelle L.; Wellmeyer, Jessica L.

    2000-01-01

    Introduction The geologic map of the upper Parashant Canyon area covers part of the Colorado Plateau and several large tributary canyons that make up the western part of Arizona's Grand Canyon. The map is part of a cooperative U.S. Geological Survey and National Park Service project to provide geologic information for areas within the newly established Grand Canyon/Parashant Canyon National Monument. Most of the Grand Canyon and parts of the adjacent plateaus have been geologically mapped; this map fills in one of the remaining areas where uniform quality geologic mapping was needed. The geologic information presented may be useful in future related studies as to land use management, range management, and flood control programs for federal and state agencies, and private concerns. The map area is in a remote region of the Arizona Strip, northwestern Arizona about 88 km south of the nearest settlement of St. George, Utah. Elevations range from about 1,097 m (3,600 ft) in Parashant Canyon (south edge of map area) to 2,145 m (7,037 ft) near the east-central edge of the map area. Primary vehicle access is by dirt road locally known as the Mount Trumbull road; unimproved dirt roads and jeep trails traverse various parts of the map area. Travel on the Mount Trumbull road is possible with 2-wheel-drive vehicles except during wet conditions. Extra fuel, two spare tires and extra food and water are highly recommended when traveling in this remote area. The map area includes about 26 sections of land belonging to the State of Arizona, about 40 sections of private land, and a small strip of the Lake Mead National Recreation Area (southeast edge of the map area). The private land is mainly clustered around the abandoned settlement of Mt. Trumbull, locally known as Bundyville, and a few sections are scattered in the upper Whitmore Canyon area just south of Bundyville. Lower elevations within the canyons support a sparse growth of sagebrush, cactus, grass, creosote bush, and a

  5. Evaluative Testing of the Bent Canyon Stage Station on the Pinon Canyon Maneuver Site, Las Animas County, Colorado

    DTIC Science & Technology

    2005-01-01

    Boulder. Chapman, J. A., J. G. Hockman and W. R. Edwards 1982 Cottontails: Sylvilagus floridanus and Allies. In Wild Mammals of North America: Biology ...Smith, R. L. 1980 Ecology and Field Biology . Harper and Row, New York. South, S. 1978 Exploring Analytical Technique. In Historical Archaeology: A...page 1 of • ACC# " EXCAVATON LEVEL FORM Fort Carson-Pifion Canyon Maneuver Site Proj ect . Stage 7 Site ,L-131 75 Unit Z X•o ALevel Screen size 4

  6. UV Radiation in an Urban Canyon in Southeast Queensland

    NASA Astrophysics Data System (ADS)

    McKinley, A. R.; Moore, M. R.; Kimlin, M. G.

    2006-12-01

    Ultraviolet radiation (UV) has the possibility to both harm and to benefit human beings when unprotected exposure occurs. After receiving small amounts of UV our bodies begin to synthesise vitamin D, which is essential for maintaining healthy bones, however excessive UV exposure can result in a variety of damaging outcomes ranging from sunburn to skin cancer and cataracts. For this reason it is very important to understand the different environments in which people encounter UV so as to better prepare the public to make smart and healthy sun exposure decisions. Each day more and more people are moving into large cities around the world and spending their time inside the urban canyon, however UV measurements are generally taken at scientific stations in open areas or on top of tall buildings, meaning that at times the environmental characteristics measured may not accurately represent those found at street-level in these highly urbanized areas. Urban canyons are home to both very tall buildings and tropospheric air pollution, each of which reduces the amount of UV reaching street-level. This study measured the varying difference between UV measurements taken at street-level and at a standard UV monitoring site on top of a building outside of the urban canyon. Investigation was conducted in the central business district (CBD) of Brisbane, Australia, which models the CBDs of large cities around the world in that it boasts a great number of tall buildings, including many skyscrapers. Data was collected under clear sky conditions at five different street-level sites in the CBD (on either side of two streets running perpendicular to one another (four sites) and in a public square) and then compared to that obtained on the same day at the Queensland University of Technology's Australian Sun and Health Research Laboratory (ASHRL), which is located 2.5 kilometres outside Brisbane's CBD. Minimum erythemal dose (MED) data was collected at each location and it was found that

  7. Sand Wave Migrations Within Monterey Submarine Canyon, California

    NASA Astrophysics Data System (ADS)

    Xu, J.; Wong, F. L.

    2006-12-01

    Repeated high-resolution multi-beam surveys revealed the existence of a sand wave field along the axis of the Monterey submarine canyon between 20 and 300 m water depth. These sand waves range in wave length from 20 to 70 m and 2 to 5 m in height. Comparison of sequential multi-beam grid data (months apart) indicates that the sand waves apparently migrate upcanyon at some places while the same data clearly show that the sand waves migrate downcanyon at other locations. One hypothesis is that strong internal tidal flows, whose upcanyon component is intensified by the narrow canyon, are responsible for forming the sand wave field and for migrating the sand waves upcanyon. Another hypothesis is that the sand wave field is formed by creeping (analogous to the movement within glaciers), and in general they move in the downcanyon direction. A field experiment was conducted in 2005-06 to measure the driving forces (in hypothesis #1) that form and move the sand waves, and to collect the internal sedimentological structure within the sand waves that could reveal information on hypothesis #2. A mooring designed to measure near-floor velocity profiles, temperature, salinity, and sediment concentration in the water column was deployed for one year (June 2005 -July 2006) at 250 m water depth, slightly downcanyon of the sand wave field. In addition, a mapping survey was conducted in February, 2006 for collecting multi-beam and chirp profiles in the canyon head area of the sand wave field. Preliminary examination of the ADCP (downward looking) showed some very interesting features - the near- floor current dramatically changes with the spring-neap cycle of the surface tide. The time variation of the along-canyon current during neap tides - a sudden jump of upcanyon velocity before gradually tapering down, is typical of internal tides (internal bores). The time variation during spring tides when along canyon velocities reverse directions from upcanyon to downcanyon and gradually

  8. Compilation of PRF Canyon Floor Pan Sample Analysis Results

    SciTech Connect

    Pool, Karl N.; Minette, Michael J.; Wahl, Jon H.; Greenwood, Lawrence R.; Coffey, Deborah S.; McNamara, Bruce K.; Bryan, Samuel A.; Scheele, Randall D.; Delegard, Calvin H.; Sinkov, Sergey I.; Soderquist, Chuck Z.; Fiskum, Sandra K.; Brown, Garrett N.; Clark, Richard A.

    2016-06-30

    On September 28, 2015, debris collected from the PRF (236-Z) canyon floor, Pan J, was observed to exhibit chemical reaction. The material had been transferred from the floor pan to a collection tray inside the canyon the previous Friday. Work in the canyon was stopped to allow Industrial Hygiene to perform monitoring of the material reaction. Canyon floor debris that had been sealed out was sequestered at the facility, a recovery plan was developed, and drum inspections were initiated to verify no additional reactions had occurred. On October 13, in-process drums containing other Pan J material were inspected and showed some indication of chemical reaction, limited to discoloration and degradation of inner plastic bags. All Pan J material was sealed back into the canyon and returned to collection trays. Based on the high airborne levels in the canyon during physical debris removal, ETGS (Encapsulation Technology Glycerin Solution) was used as a fogging/lock-down agent. On October 15, subject matter experts confirmed a reaction had occurred between nitrates (both Plutonium Nitrate and Aluminum Nitrate Nonahydrate (ANN) are present) in the Pan J material and the ETGS fixative used to lower airborne radioactivity levels during debris removal. Management stopped the use of fogging/lock-down agents containing glycerin on bulk materials, declared a Management Concern, and initiated the Potential Inadequacy in the Safety Analysis determination process. Additional drum inspections and laboratory analysis of both reacted and unreacted material are planned. This report compiles the results of many different sample analyses conducted by the Pacific Northwest National Laboratory on samples collected from the Plutonium Reclamation Facility (PRF) floor pans by the CH2MHill’s Plateau Remediation Company (CHPRC). Revision 1 added Appendix G that reports the results of the Gas Generation Rate and methodology. The scope of analyses requested by CHPRC includes the determination of

  9. Distinct Benthic Community Trends Driven by Particle Transport and Deposition in Mid-Atlantic Bight Canyons, NW Atlantic

    NASA Astrophysics Data System (ADS)

    Demopoulos, A. W.; Robertson, C. M.; Bourque, J. R.; Mienis, F.; Duineveld, G.; Ross, S.; Brooke, S.; Davies, A. J.

    2014-12-01

    The Mid-Atlantic Bight (MAB) is a well-studied region of the U.S. East coast continental margin, rich in submarine canyons. Baltimore and Norfolk canyons were studied during the multidisciplinary Atlantic Deepwater Canyons project through funding from BOEM, NOAA, and USGS. Sediment and water column properties were assessed in the context of canyon physical dynamics and ecosystem ecology. Sediment samples were collected by NIOZ box corer in 2012 and 2013 along canyon axes and comparative adjacent slopes at standardized depths. Sediments were analyzed for grain size, organic content, stable carbon and nitrogen isotopes, chlorophyll a, and benthic infauna. Water column properties were sampled using CTD transects, and benthic landers and moorings positioned along canyon axes. Significant differences in sediment transport regimes were found for each canyon where observed nepheloid layers corresponded to shifts in infaunal community structure. Significant community shifts were observed in stations at depths > 900m in Baltimore Canyon, coinciding with higher organic matter concentrations at depths below the nepheloid layer. In contrast, adjacent slope communities exhibited a more uniform infaunal assemblage where distinct zonation patterns by depth were observed. Preliminary data for Norfolk Canyon suggest very different sediment deposition rates in the canyon and also show clear differences between canyon and slope benthic communities. Geological processes and canyon topography coupled with organic inputs and disturbance events are clear factors in determining benthic infaunal diversity and standing stock dynamics in and around these canyons.

  10. Use of Composite Fingerprinting Technique to Determine Contribution of Paria River Sediments to Dam-Release Flood Deposits in Marble Canyon, Grand Canyon, Az

    NASA Astrophysics Data System (ADS)

    Chapman, K.; Parnell, R. A.; Smith, M. E.; Grams, P. E.; Mueller, E. R.

    2015-12-01

    The 1963 closure of Glen Canyon Dam drastically reduced the downstream sediment supply and altered daily flow regimes of the Colorado River through Grand Canyon, resulting in significant sandbar erosion downstream of the dam. Dam-release floods, known as High Flow Experiments (HFEs), have occurred six times since 1996 and are intended to rebuild Grand Canyon sandbars using tributary-supplied sediment. In Marble Canyon (first 100 km of Grand Canyon) the targeted tributary is the Paria River which supplies approximately 90% of the annual suspended sediment flux through Marble Canyon; the same input contributed less than 6% prior to the dam. Annual topographic surveys have established that HFEs are effective at rebuilding sandbars. However, the long-term viability of using HFEs for sandbar maintenance is dependent on a sustainable source of sediments comprising HFE deposits. Significant use of non-tributary, main-stem sediments (i.e. pre-dam sand stored in eddies or the channel bed) in HFE deposits would indicate reliance on a limited resource, and diminishing returns in the ability of HFEs to rebuild sandbars. In this study, we sampled vertically throughout 12 bars in Marble Canyon to document temporal and downstream changes in the proportion of sediment sourced from the Paria River during the 2013 and 2014 HFEs. Preliminary data suggest that heavy mineral compositions and concentrations of Ti, S, Cr and Rb, all of which are influenced by grainsize, could be sufficiently capable of differentiating Paria-derived and main-stem sediments when combined into a composite fingerprint (CF). A multivariate mixing model using these CFs quantitatively determines the contribution of Paria-derived sediment in each HFE deposit sample. Mixing model endmembers for non-Paria sand include pre-dam flood deposits in Glen and Marble Canyons, and Marble Canyon dredge samples. These results elucidate the role of contemporary versus legacy sediment in long-term sandbar maintenance.

  11. The influence of the San Gregorio fault on the morphology of Monterey Canyon

    USGS Publications Warehouse

    McHugh, C.M.G.; Ryan, William B. F.; Eittreim, S.; Donald, Reed

    1998-01-01

    A side-scan sonar survey was conducted of Monterey Canyon and the San Gregorio fault zone, off shore of Monterey Bay. The acoustic character and morphology of the sonar images, enhanced by SeaBeam bathymetry, show the path of the San Gregorio fault zone across the shelf, upper slope, and Monterey Canyon. High backscatter linear features a few kilometers long and 100 to 200 m wide delineate the sea-floor expression of the fault zone on the shelf. Previous studies have shown that brachiopod pavements and carbonate crusts are the source of the lineations backscatter. In Monterey Canyon, the fault zone occurs where the path of the canyon makes a sharp bend from WNW to SSW (1800 m). Here, the fault is marked by NW-SE-trending, high reflectivity lineations that cross the canyon floor between 1850 m and 1900 m. The lineations can be traced to ridges on the northwestern canyon wall where they have ~ 15 m of relief. Above the low-relief ridges, bowl-shaped features have been excavated on the canyon wall contributing to the widening of the canyon. We suggest that shear along the San Gregorio fault has led to the formation of the low-relief ridges near the canyon wall and that carbonate crusts, as along the shelf, may be the source of the high backscatter features on the canyon floor. The path of the fault zone across the upper slope is marked by elongated tributary canyons with high backscatter floors and 'U'-shaped cross-sectional profiles. Linear features and stepped scarps suggestive of recent crustal movement and mass-wasting, occur on the walls and floors of these canyons. Three magnitude-4 earthquakes have occurred within the last 30 years in the vicinity of the canyons that may have contributed to the observed features. As shown by others, motion along the fault zone has juxtaposed diverse lithologies that outcrop on the canyon walls. Gully morphology and the canyon's drainage patterns have been influenced by the substrate into which the gullies have formed.

  12. Submarine canyons: hotspots of benthic biomass and productivity in the deep sea.

    PubMed

    De Leo, Fabio C; Smith, Craig R; Rowden, Ashley A; Bowden, David A; Clark, Malcolm R

    2010-09-22

    Submarine canyons are dramatic and widespread topographic features crossing continental and island margins in all oceans. Canyons can be sites of enhanced organic-matter flux and deposition through entrainment of coastal detrital export, dense shelf-water cascade, channelling of resuspended particulate material and focusing of sediment deposition. Despite their unusual ecological characteristics and global distribution along oceanic continental margins, only scattered information is available about the influence of submarine canyons on deep-sea ecosystem structure and productivity. Here, we show that deep-sea canyons such as the Kaikoura Canyon on the eastern New Zealand margin (42 degrees 01' S, 173 degrees 03' E) can sustain enormous biomasses of infaunal megabenthic invertebrates over large areas. Our reported biomass values are 100-fold higher than those previously reported for deep-sea (non-chemosynthetic) habitats below 500 m in the ocean. We also present evidence from deep-sea-towed camera images that areas in the canyon that have the extraordinary benthic biomass also harbour high abundances of macrourid (rattail) fishes likely to be feeding on the macro- and megabenthos. Bottom-trawl catch data also indicate that the Kaikoura Canyon has dramatically higher abundances of benthic-feeding fishes than adjacent slopes. Our results demonstrate that the Kaikoura Canyon is one of the most productive habitats described so far in the deep sea. A new global inventory suggests there are at least 660 submarine canyons worldwide, approximately 100 of which could be biomass hotspots similar to the Kaikoura Canyon. The importance of such deep-sea canyons as potential hotspots of production and commercial fisheries yields merits substantial further study.

  13. Submarine canyons: hotspots of benthic biomass and productivity in the deep sea

    PubMed Central

    De Leo, Fabio C.; Smith, Craig R.; Rowden, Ashley A.; Bowden, David A.; Clark, Malcolm R.

    2010-01-01

    Submarine canyons are dramatic and widespread topographic features crossing continental and island margins in all oceans. Canyons can be sites of enhanced organic-matter flux and deposition through entrainment of coastal detrital export, dense shelf-water cascade, channelling of resuspended particulate material and focusing of sediment deposition. Despite their unusual ecological characteristics and global distribution along oceanic continental margins, only scattered information is available about the influence of submarine canyons on deep-sea ecosystem structure and productivity. Here, we show that deep-sea canyons such as the Kaikoura Canyon on the eastern New Zealand margin (42°01′ S, 173°03′ E) can sustain enormous biomasses of infaunal megabenthic invertebrates over large areas. Our reported biomass values are 100-fold higher than those previously reported for deep-sea (non-chemosynthetic) habitats below 500 m in the ocean. We also present evidence from deep-sea-towed camera images that areas in the canyon that have the extraordinary benthic biomass also harbour high abundances of macrourid (rattail) fishes likely to be feeding on the macro- and megabenthos. Bottom-trawl catch data also indicate that the Kaikoura Canyon has dramatically higher abundances of benthic-feeding fishes than adjacent slopes. Our results demonstrate that the Kaikoura Canyon is one of the most productive habitats described so far in the deep sea. A new global inventory suggests there are at least 660 submarine canyons worldwide, approximately 100 of which could be biomass hotspots similar to the Kaikoura Canyon. The importance of such deep-sea canyons as potential hotspots of production and commercial fisheries yields merits substantial further study. PMID:20444722

  14. Biological and physical processes in and around Astoria submarine Canyon, Oregon, USA

    NASA Astrophysics Data System (ADS)

    Bosley, Keith L.; Lavelle, J. William; Brodeur, Richard D.; Wakefield, W. Waldo; Emmett, Robert L.; Baker, Edward T.; Rehmke, Kara M.

    2004-09-01

    Astoria Canyon represents the westernmost portion of the Columbia River drainage system, with the head of the canyon beginning just 16 km west of the mouth of the Columbia River along the northern Oregon and southern Washington coasts. During the summer of 2001, physical, chemical, and biological measurements in the canyon were taken to better understand the hydrodynamic setting of, and the feeding relationships among, the pelagic and benthic communities. Results show that currents were strongly tidal, and transport, where measured, was primarily up and into the canyon below shelf depth as previous studies in the canyon have shown. Temperature time series suggests that the largest diurnal oscillations occurred at, or were trapped near, the bottom of the canyon. Within the upper canyon, subtidal temperature was correlated with upper-level shelf-edge currents, linking subtidal upwelling events in the canyon with near-surface subtidal along-shore flow. Invertebrates, such as shrimp, euphausiids, and squid, as well as mesopelagic fishes, dominated the Isaacs-Kidd midwater trawl catches along the canyon walls. Large trawl catches were comprised mainly of hake and rockfishes (shallow trawls) and macrourids, scorpaenids, stomiids, and zoarcids (bottom trawls). Gut-content analysis of rockfishes and lanternfishes revealed substantial use of midwater prey such as euphausiids and mesopelagic fishes. The δ13C values of fishes and invertebrates reflected local primary production, as indicated by particulate organic matter (POM) δ13C values from samples collected at various depths along the axis of the canyon, as well as across the canyon at several sites. The δ15N values of fishes and invertebrates indicated lanternfishes, along with euphausiids, amphipods, shrimp and squid, may be important dietary components of higher-trophic-level fishes in both the benthic and benthopelagic food webs. The δ13C and δ15N values of Sebastes species showed significant enrichment in the

  15. Unusually high food availability in Kaikoura Canyon linked to distinct deep-sea nematode community

    NASA Astrophysics Data System (ADS)

    Leduc, D.; Rowden, A. A.; Nodder, S. D.; Berkenbusch, K.; Probert, P. K.; Hadfield, M. G.

    2014-06-01

    Kaikoura Canyon, on the eastern New Zealand continental margin, is the most productive, non-chemosynthetic deep-sea habitat described to date, with megafaunal biomass 100-fold higher than those of other deep-sea habitats. The present study, which focused on free-living nematodes, provides the first comparison of faunal community structure and diversity between Kaikoura Canyon and nearby open slope habitats. Results show substantially higher food availability in the canyon relative to open slope sediments, which probably reflects greater levels of primary productivity above the canyon, coupled with downwelling and/or topographically-induced channelling, which serves to concentrate surface-derived organic matter along the canyon axis. This high food availability appears to be responsible for the elevated nematode biomass in Kaikoura Canyon, with values exceeding all published nematode biomass data from canyons elsewhere. There was also markedly lower local species diversity of nematodes inside the canyon relative to the open slope habitat, as well as a distinct community structure. The canyon community was dominated by species, such as Sabateria pulchra, which were absent from the open slope and are typically associated with highly eutrophic and/or disturbed environments. The presence of these taxa, as well as the low observed diversity, is likely to reflect the high food availability, and potentially the high levels of physically and biologically induced disturbance within the canyon. Kaikoura Canyon is a relatively small habitat characterised by different environmental conditions that makes a disproportionate contribution to deep-sea diversity in the region, despite its low species richness.

  16. Downward and suspended sediment fluxes in the Palamós submarine canyon (North-Western Mediterranean)

    NASA Astrophysics Data System (ADS)

    Palanques, A.; Martín, J.; Puig, P.; Guillén, J.

    2003-04-01

    The Palamós canyon is deeply incised in the Northern Catatonia continental shelf (North-western Mediterranean) which favour an active shelf-slope sediment transfer. To study particle dynamics in this canyon, seven moorings arrays equipped with current meters, turbidimeters and sediment traps were deployed near the bottom along the main canyon axis (400, 1200 and 1700 m depth), on both canyon walls (1200 m depth) and on the adjacent slope (1200 m depth). One set of these instruments was also deployed at intermediate waters (400 m water depth) in the canyon axis. At surface and mid-depths, suspended sediment fluxes were oriented along the mean flow direction (NE-SW), whereas near-bottom sediment fluxes were more constrained by the local bathymetry. The higher near-bottom downward and suspended particle fluxes were not recorded in the canyon head but in the mid-canyon axis, suggesting additional sediment supplies through or over the canyon walls and/or sediment resuspension in the mid canyon region. Several events of sharp sediment flux increases took place in the mid-canyon axis site during the water stratification season. These events could be related to the action of internal waves and even to fishing activities. In the canyon walls, downward and suspended particle fluxes were higher in the southern wall, where currents were lower than in the northern wall, evidencing an asymmetrical pattern. In the adjacent slope sediment fluxes were significantly lower than in the canyon. An important increase of downward particle fluxes in the canyon axis and both walls occurred by mid-November when a severe storm took place. The pattern of the sediment fluxes in the Palamós Canyon has some differences in relation to those observed in other Mediterranean submarine canyons and has downward particle fluxes from 2 to10 times higher than other studied canyons of this region.

  17. 33 CFR 165.1155 - Security Zone; Diablo Canyon Nuclear Power Plant, Avila Beach, California.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Nuclear Power Plant, Avila Beach, California. 165.1155 Section 165.1155 Navigation and Navigable Waters... Coast Guard District § 165.1155 Security Zone; Diablo Canyon Nuclear Power Plant, Avila Beach... surface to bottom, within a 2,000 yard radius of Diablo Canyon Nuclear Power Plant centered at position...

  18. 78 FR 42799 - Glen Canyon Dam Adaptive Management Work Group Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-17

    ... Bureau of Reclamation Glen Canyon Dam Adaptive Management Work Group Meetings AGENCY: Bureau of... AMWG, a technical work group (TWG), a Grand Canyon Monitoring and Research Center, and independent.... Dated: July 11, 2013. Glen Knowles, Chief, Adaptive Management Work Group, Upper Colorado...

  19. 75 FR 44809 - Glen Canyon Dam Adaptive Management Work Group (AMWG)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-29

    ... Bureau of Reclamation Glen Canyon Dam Adaptive Management Work Group (AMWG) AGENCY: Bureau of Reclamation.... L. 102-575) of 1992. The AMP includes a Federal advisory committee, the Adaptive Management Work Group (AMWG), a technical work group (TWG), a Grand Canyon Monitoring and Research Center,...

  20. 74 FR 36505 - Glen Canyon Dam Adaptive Management Work Group (AMWG)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2009-07-23

    ... Bureau of Reclamation Glen Canyon Dam Adaptive Management Work Group (AMWG) AGENCY: Bureau of Reclamation.... L. 102-575) of 1992. The AMP includes a federal advisory committee, the Adaptive Management Work Group (AMWG), a technical work group (TWG), a Grand Canyon Monitoring and Research Center,...

  1. 69 FR 41278 - Glen Canyon Dam Adaptive Management Work Group; Notice of Renewal

    Federal Register 2010, 2011, 2012, 2013, 2014

    2004-07-08

    ... Office of the Secretary Glen Canyon Dam Adaptive Management Work Group; Notice of Renewal This notice is... of the Interior (Secretary) is renewing the Glen Canyon Dam Adaptive Management Work Group. The purpose of the Adaptive Management Work Group is to advise and provide recommendations to the...

  2. 64 FR 173 - Glen Canyon Dam Adaptive Management Work Group; Notice of Renewal

    Federal Register 2010, 2011, 2012, 2013, 2014

    1999-01-04

    ... Office of the Secretary Glen Canyon Dam Adaptive Management Work Group; Notice of Renewal This notice is... of the Interior (Secretary) is renewing the Glen Canyon Dam adaptive Management Work Group. The purpose of the Adaptive Management Work Group is to advise and provide recommendations to the...

  3. The Grand Canyon and Other Holes in the Ground. Natural Wonder Notebook.

    ERIC Educational Resources Information Center

    Markle, Sandra

    1983-01-01

    The Grand Canyon, the natural wonder visited most often in the United States, is explored on foot, on burro, and by boat in this article. Learn about the canyon's different rock layers as well as its erosion, plant life, animal life, and water flow. (JM)

  4. 33 CFR 165.1155 - Security Zone; Diablo Canyon Nuclear Power Plant, Avila Beach, California.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Nuclear Power Plant, Avila Beach, California. 165.1155 Section 165.1155 Navigation and Navigable Waters... Coast Guard District § 165.1155 Security Zone; Diablo Canyon Nuclear Power Plant, Avila Beach... surface to bottom, within a 2,000 yard radius of Diablo Canyon Nuclear Power Plant centered at position...

  5. 33 CFR 165.1155 - Security Zone; Diablo Canyon Nuclear Power Plant, Avila Beach, California.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Nuclear Power Plant, Avila Beach, California. 165.1155 Section 165.1155 Navigation and Navigable Waters... Coast Guard District § 165.1155 Security Zone; Diablo Canyon Nuclear Power Plant, Avila Beach... surface to bottom, within a 2,000 yard radius of Diablo Canyon Nuclear Power Plant centered at position...

  6. 33 CFR 165.1155 - Security Zone; Diablo Canyon Nuclear Power Plant, Avila Beach, California.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Nuclear Power Plant, Avila Beach, California. 165.1155 Section 165.1155 Navigation and Navigable Waters... Coast Guard District § 165.1155 Security Zone; Diablo Canyon Nuclear Power Plant, Avila Beach... surface to bottom, within a 2,000 yard radius of Diablo Canyon Nuclear Power Plant centered at position...

  7. Deep-sea scavenging amphipod assemblages from the submarine canyons of the Iberian Peninsula

    NASA Astrophysics Data System (ADS)

    Duffy, G. A.; Horton, T.; Billett, D. S. M.

    2012-06-01

    Submarine canyons have often been identified as hotspots of secondary production with the potential to house distinct faunal assemblages and idiosyncratic ecosystems. Within these deep-sea habitats, assemblages of scavenging fauna play a vital role in reintroducing organic matter from large food falls into the wider deep-sea food chain. Free-fall baited traps were set at different depths within three submarine canyons on the Iberian Margin. Amphipods from the traps were identified to species level and counted. Scavenging amphipod assemblages were compared at different depths within each canyon, between individual canyon systems, and between the abyssal plain and submarine canyon sites. Samples from canyons were found to contain common abyssal plain species but in greater than expected abundances. Community composition differed significantly between the submarine canyons and abyssal plains. It is proposed that this is a result of the high organic carbon input into canyon systems owing to their interception of sediment from the continental shelf and input from associated estuarine systems.

  8. Amphitheater-headed canyons formed by megaflooding at Malad Gorge, Idaho.

    PubMed

    Lamb, Michael P; Mackey, Benjamin H; Farley, Kenneth A

    2014-01-07

    Many bedrock canyons on Earth and Mars were eroded by upstream propagating headwalls, and a prominent goal in geomorphology and planetary science is to determine formation processes from canyon morphology. A diagnostic link between process and form remains highly controversial, however, and field investigations that isolate controls on canyon morphology are needed. Here we investigate the origin of Malad Gorge, Idaho, a canyon system cut into basalt with three remarkably distinct heads: two with amphitheater headwalls and the third housing the active Wood River and ending in a 7% grade knickzone. Scoured rims of the headwalls, relict plunge pools, sediment-transport constraints, and cosmogenic ((3)He) exposure ages indicate formation of the amphitheater-headed canyons by large-scale flooding ∼46 ka, coeval with formation of Box Canyon 18 km to the south as well as the eruption of McKinney Butte Basalt, suggesting widespread canyon formation following lava-flow diversion of the paleo-Wood River. Exposure ages within the knickzone-headed canyon indicate progressive upstream younging of strath terraces and a knickzone propagation rate of 2.5 cm/y over at least the past 33 ka. Results point to a potential diagnostic link between vertical amphitheater headwalls in basalt and rapid erosion during megaflooding due to the onset of block toppling, rather than previous interpretations of seepage erosion, with implications for quantifying the early hydrosphere of Mars.

  9. Amphitheater-headed canyons formed by megaflooding at Malad Gorge, Idaho

    PubMed Central

    Lamb, Michael P.; Mackey, Benjamin H.; Farley, Kenneth A.

    2014-01-01

    Many bedrock canyons on Earth and Mars were eroded by upstream propagating headwalls, and a prominent goal in geomorphology and planetary science is to determine formation processes from canyon morphology. A diagnostic link between process and form remains highly controversial, however, and field investigations that isolate controls on canyon morphology are needed. Here we investigate the origin of Malad Gorge, Idaho, a canyon system cut into basalt with three remarkably distinct heads: two with amphitheater headwalls and the third housing the active Wood River and ending in a 7% grade knickzone. Scoured rims of the headwalls, relict plunge pools, sediment-transport constraints, and cosmogenic (3He) exposure ages indicate formation of the amphitheater-headed canyons by large-scale flooding ∼46 ka, coeval with formation of Box Canyon 18 km to the south as well as the eruption of McKinney Butte Basalt, suggesting widespread canyon formation following lava-flow diversion of the paleo-Wood River. Exposure ages within the knickzone-headed canyon indicate progressive upstream younging of strath terraces and a knickzone propagation rate of 2.5 cm/y over at least the past 33 ka. Results point to a potential diagnostic link between vertical amphitheater headwalls in basalt and rapid erosion during megaflooding due to the onset of block toppling, rather than previous interpretations of seepage erosion, with implications for quantifying the early hydrosphere of Mars. PMID:24344293

  10. 77 FR 5790 - Mississippi Canyon Gas Pipeline, LLC; Notice of Request Under Blanket Authorization

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-06

    ... Energy Regulatory Commission Mississippi Canyon Gas Pipeline, LLC; Notice of Request Under Blanket Authorization Take notice that on January 17, 2012, Mississippi Canyon Gas Pipeline, LLC (MCGP), 1100 Louisiana... waters offshore Louisiana in West Delta Block 143, all as more fully set forth in the application,...

  11. Operation of Glen Canyon Dam. Final environmental impact statement, summary, comments and responses

    SciTech Connect

    1995-03-01

    The Federal action considered in this environmental impact statement (EIS) is the operation of Glen Canyon Dam, Colorado River Storage Project (CRSP), Arizona. The purpose of the reevaluation is to determine specific options that could be implemented to minimize--consistent with law-adverse impacts on the downstream environmental and cultural resources, as well as Native American interests in Glen and Grand Canyons.

  12. College of the Canyons Partnership for Excellence, Academic Year 2001-2002. Report.

    ERIC Educational Resources Information Center

    Meuschke, Daylene M.; Dixon, P. Scott; Gribbons, Barry C.

    This report, compiled by the College of the Canyons Office of Institutional Development and Technology, assesses the programs and projects of College of the Canyons as part of the Partnership for Excellence (PFE) Program. The report explains that the PFE Program is a mutual commitment by the State of California and the California Community College…

  13. 76 FR 42654 - Endangered and Threatened Wildlife and Plants; Petition To List Grand Canyon Cave Pseudoscorpion

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-19

    ... Grand Canyon cave scorpion) was in that group of 67 species. Based on the evaluation of the information..., or stinger, that true scorpions possess. The specimen of Grand Canyon cave pseudoscorpion, when... Cave, Middle Cave, Scorpion Cave, Tse An Cho Cave, Tuning Fork Cave, and Cave of the Domes. All...

  14. 75 FR 27550 - Electrical Interconnection of the Juniper Canyon I Wind Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-17

    ... Bonneville Power Administration Electrical Interconnection of the Juniper Canyon I Wind Project AGENCY... proposed Juniper Canyon I Wind Energy Project (Wind Project) in Klickitat County, Washington. To interconnect the Wind Project, BPA will expand an existing substation (Rock Creek Substation) by...

  15. Draft environmental assessment: Lavender Canyon site, Utah. Nuclear Waste Policy Act (Section 112). [Contains glossary

    SciTech Connect

    Not Available

    1984-12-01

    In February 1983, the US Department of Energy (DOE) identified the Lavender Canyon site in Utah, as one of nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. To determine their suitability, the Lavender Canyon site and the eight other potentially acceptable sites h

  16. Geomorphic and hydrologic implications of the rapid incision of Afton Canyon, Mojave Desert, California

    NASA Astrophysics Data System (ADS)

    Meek, Norman

    1989-01-01

    Afton Canyon is a >150-m-deep canyon that formed as a result of overflow and drainage of Lake Manix, an ˜215 km2 late Wisconsin pluvial lake in the central Mojave Desert. Because the canyon age is within the range of conventional radiocarbon dating, it is possible to provide a time-based chronology of events and resultant landscape changes due to a >120 m base-level drop. Analysis of erosion volumes upstream of Afton Canyon and a review of public and private well logs downstream of the canyon mouth indicate that late Wisconsin surfaces are deeply buried downstream of Afton Canyon. Burial depths are ˜55 m at the mouth of Afton Canyon, 27 m in the Cronese basin, and 18 m at Crucero. The well logs also indicate that Soda Lake was far more areally extensive prior to late Wisconsin time. Stratigraphic and geomorphic evidence suggests that Afton Canyon was cut rapidly sometime after 14,230 ±1325 yr B.P. The rapid draining of Lake Manix and subsequent basin dissection have important implications for late Quaternary lake fluctuations in Death Valley, base-level changes and resultant alluvial-fan adjustments in the Cronese basin, the sand source for the Kelso Dunes, and the absence of old artifacts in the Cronese basin and the Mojave River wash region.

  17. 33 CFR 165.1171 - Copper Canyon, Lake Havasu, Colorado River-Regulated Navigation Area.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., Colorado River-Regulated Navigation Area. 165.1171 Section 165.1171 Navigation and Navigable Waters COAST... Guard District § 165.1171 Copper Canyon, Lake Havasu, Colorado River—Regulated Navigation Area. (a..., Colorado River, beginning at the approximate center of the mouth of Copper Canyon and drawing a line...

  18. 33 CFR 165.1171 - Copper Canyon, Lake Havasu, Colorado River-Regulated Navigation Area.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., Colorado River-Regulated Navigation Area. 165.1171 Section 165.1171 Navigation and Navigable Waters COAST... Guard District § 165.1171 Copper Canyon, Lake Havasu, Colorado River—Regulated Navigation Area. (a..., Colorado River, beginning at the approximate center of the mouth of Copper Canyon and drawing a line...

  19. 33 CFR 165.1171 - Copper Canyon, Lake Havasu, Colorado River-Regulated Navigation Area.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., Colorado River-Regulated Navigation Area. 165.1171 Section 165.1171 Navigation and Navigable Waters COAST... Guard District § 165.1171 Copper Canyon, Lake Havasu, Colorado River—Regulated Navigation Area. (a..., Colorado River, beginning at the approximate center of the mouth of Copper Canyon and drawing a line...

  20. 33 CFR 165.1171 - Copper Canyon, Lake Havasu, Colorado River-Regulated Navigation Area.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., Colorado River-Regulated Navigation Area. 165.1171 Section 165.1171 Navigation and Navigable Waters COAST... Guard District § 165.1171 Copper Canyon, Lake Havasu, Colorado River—Regulated Navigation Area. (a..., Colorado River, beginning at the approximate center of the mouth of Copper Canyon and drawing a line...

  1. 33 CFR 165.1171 - Copper Canyon, Lake Havasu, Colorado River-Regulated Navigation Area.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., Colorado River-Regulated Navigation Area. 165.1171 Section 165.1171 Navigation and Navigable Waters COAST... Guard District § 165.1171 Copper Canyon, Lake Havasu, Colorado River—Regulated Navigation Area. (a..., Colorado River, beginning at the approximate center of the mouth of Copper Canyon and drawing a line...

  2. 76 FR 23335 - Wilderness Stewardship Plan/Environmental Impact Statement, Sequoia and Kings Canyon National...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-26

    ... National Park Service Wilderness Stewardship Plan/Environmental Impact Statement, Sequoia and Kings Canyon... Intent to Prepare Environmental Impact Statement for Wilderness Stewardship Plan, Sequoia and Kings Canyon National Parks. SUMMARY: In accordance with Sec. 102(2)(C) of the National Environmental...

  3. 75 FR 10308 - Fire Management Plan, Final Environmental Impact Statement, Record of Decision, Grand Canyon...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-05

    ... Doc No: 2010-4414] DEPARTMENT OF THE INTERIOR National Park Service Fire Management Plan, Final... Impact Statement for the Fire Management Plan, Grand Canyon National Park. SUMMARY: Pursuant to the... availability of the Record of Decision for the Fire Management Plan, Grand Canyon National Park, Arizona....

  4. Biological Resources Survey of Mountain Springs Canyon on the Naval Weapons Center.

    DTIC Science & Technology

    1983-03-01

    Coleo - gyne association (Beatley, 1976) further up the canyon where the aspect of the north- facing slope changes from northwest to north near Mountain...argusensis) was collected in the upper half of the canyon. Although common in Coleo - j ne habitat, it is considered sensitive by BLM (1980) due to its endemic

  5. Potential particulate impacts at the Grand Canyon from northwestern Mexico.

    PubMed

    Eatough, D J; Green, M; Moran, W; Farber, R

    2001-08-10

    Project MOHAVE was a major air quality and visibility research program conducted from 1990 to 1999 to investigate the causes of visibility impairment in the Grand Canyon National Park region. At Meadview, a remote monitoring site just west of the Grand Canyon National Park, on September 1 and 2, 1992, the concentrations of sulfate (3.1 and 4.3 microg sulfate/m3) were the highest seen in 6 years of monitoring at this site. During this period, the concentrations of SO2 at Meadview were also abnormally high and approximately three times the sulfate concentrations, on a nmol/m3 basis. High concentrations of sulfate and SO2 extended south into southern Arizona and northwestern Mexico. Based on ambient atmospheric conditions, emissions from the Mohave Power Project (MPP) 110 km upwind of Meadview could not have been responsible for the majority of the regionally observed sulfur oxides. The geographical distribution of SO2 and sulfate, and available source information suggest that northwestern Mexico was a significant source of the unusually high observed sulfur oxides. A CMB model developed during Project MOHAVE was used to apportion sulfur oxides at Meadview and other sampling sites throughout the study region for August 31-September 2, 1992. The results indicate that the contribution of MPP to sulfate at Meadview was typical. However, the transport of SOx from northwestern Mexico was elevated throughout much of the region during this time period. This led to the large increase in sulfate concentrations at Meadview on September 1 and 2. These results indicate that emissions from Mexico can be a significant source of particulate material in the Grand Canyon.

  6. Small mammal study of Sandia Canyon, 1994 and 1995

    SciTech Connect

    Bennett, K.; Biggs, J.

    1996-11-01

    A wide range of plant and wildlife species utilize water discharged from facilities at Los Alamos National Laboratory (LANL). The purpose of this study was to gather baseline data of small mammal populations and compare small mammal characteristics within three areas of Sandia Canyon, which receives outfall effluents from multiple sources. Three small mammal trapping webs were placed in the upper portion of Sandia Canyon, the first two were centered in a cattail-dominated marsh with a ponderosa pine overstory and the third web was placed in a much drier transition area with a ponderosa pine overstory. Webs 1 and 2 had the highest species diversity indices with deer mice the most commonly captured species in all webs. However, at Web 1, voles, shrews, and harvest mice, species more commonly found in moist habitats, made up a much greater overall percentage (65.6%) than did deer mice and brush mice (34.5%). The highest densities and biomass of animals were found in Web 1 with a continual decrease in density estimates in each web downstream. There is no statistical difference between the mean body weights of deer mice and brush mice between sites. Mean body length was also determined not to be statistically different between the webs (GLM [deer mouse], F = 0.89, p = 0.4117; GLM [brush mouse], F = 2.49, p = 0.0999). Furthermore, no statistical difference between webs was found for the mean lean body masses of deer and brush mice (GLM [deer mouse], F = 2.54, p = 0.0838; GLM [brush mouse], F = 1.60, p = 0.2229). Additional monitoring studies should be conducted in Sandia Canyon so comparisons over time can be made. In addition, rodent tissues should be sampled for contaminants and then compared to background or control populations elsewhere at the Laboratory or at an off-site location.

  7. Aerodynamic effects of trees on pollutant concentration in street canyons.

    PubMed

    Buccolieri, Riccardo; Gromke, Christof; Di Sabatino, Silvana; Ruck, Bodo

    2009-09-15

    This paper deals with aerodynamic effects of avenue-like tree planting on flow and traffic-originated pollutant dispersion in urban street canyons by means of wind tunnel experiments and numerical simulations. Several parameters affecting pedestrian level concentration are investigated, namely plant morphology, positioning and arrangement. We extend our previous work in this novel aspect of research to new configurations which comprise tree planting of different crown porosity and stand density, planted in two rows within a canyon of street width to building height ratio W/H=2 with perpendicular approaching wind. Sulfur hexafluoride was used as tracer gas to model the traffic emissions. Complementary to wind tunnel experiments, 3D numerical simulations were performed with the Computational Fluid Dynamics (CFD) code FLUENT using a Reynolds Stress turbulence closure for flow and the advection-diffusion method for concentration calculations. In the presence of trees, both measurements and simulations showed considerable larger pollutant concentrations near the leeward wall and slightly lower concentrations near the windward wall in comparison with the tree-less case. Tree stand density and crown porosity were found to be of minor importance in affecting pollutant concentration. On the other hand, the analysis indicated that W/H is a more crucial parameter. The larger the value of W/H the smaller is the effect of trees on pedestrian level concentration regardless of tree morphology and arrangement. A preliminary analysis of approaching flow velocities showed that at low wind speed the effect of trees on concentrations is worst than at higher speed. The investigations carried out in this work allowed us to set up an appropriate CFD modelling methodology for the study of the aerodynamic effects of tree planting in street canyons. The results obtained can be used by city planners for the design of tree planting in the urban environment with regard to air quality issues.

  8. An exhumed Late Paleozoic canyon in the rocky mountains

    USGS Publications Warehouse

    Soreghan, G.S.; Sweet, D.E.; Marra, K.R.; Eble, C.F.; Soreghan, M.J.; Elmore, R.D.; Kaplan, S.A.; Blum, M.D.

    2007-01-01

    Landscapes are thought to be youthful, particularly those of active orogenic belts. Unaweep Canyon in the Colorado Rocky Mountains, a large gorge drained by two opposite-flowing creeks, is an exception. Its origin has long been enigmatic, but new data indicate that it is an exhumed late Paleozoic landform. Its survival within a region of profound late Paleozoic orogenesis demands a reassessment of tectonic models for the Ancestral Rocky Mountains, and its form and genesis have significant implications for understanding late Paleozoic equatorial climate. This discovery highlights the utility of paleogeomorphology as a tectonic and climatic indicator. ?? 2007 by The University of Chicago. All rights reserved.

  9. Large sand waves in Navarinsky Canyon head, Bering Sea

    USGS Publications Warehouse

    Karl, Herman A.; Carlson, P.R.

    1982-01-01

    Sand waves are present in the heads of large submarine canyons in the northwestern Bering Sea. They vary in height between 2 to 15 m and have wavelengths of 600 m. They are not only expressed on the seafloor, but are also well defined in the subsurface and resemble enormous climbing bed forms. We conjecture that the sand waves originated during lower stands of sea level in the Pleistocene. Although we cannot explain the mechanics of formation of the sand waves, internal-wave generated currents are among four types of current that could account for these large structures. ?? 1982 A. M. Dowden, Inc.

  10. Incision History of the Black Canyon of the Gunnison

    NASA Astrophysics Data System (ADS)

    Sandoval, M.; Karlstrom, K. E.; Aslan, A.; Kirby, E.; Granger, D.

    2006-12-01

    The Gunnison River is the major tributary of the Colorado River that drains some of the highest topography of the Colorado Rocky Mountains. Paleo river profiles at 640ka, 10Ma, and ~35Ma provide benchmarks to understand the long-term incision history of the Black Canyon. Reconstruction of these paleo profiles is based on elevated bedrock straths and alluvial deposits that can be dated using the Lava Creek B ash (640 ka), Grand Mesa and associated basalts (10 Ma), and Oligocene ash flow tuffs (~35 Ma). Comparison of these to the modern profile offers insight into incision history. The modern long profile displays a distinct knickpoint located near the Painted Wall in the Black Canyon of the Gunnison National Park. This high-gradient reach (10-km-long) is partly explained by the Vernal Mesa Granite, but it traverses basement lithologies present above and below the knickpoint, suggesting that increased river gradient is not explained entirely by hard bedrock. Incision rates downstream of the knickpoint are higher (250-300 m/Ma over 640 ka and ~ 150 m/Ma over 10 Ma) in comparison to upstream rates (140 m/Ma over 640 ka and ~ 150 m/Ma over 10 Ma). The difference in incision rates across the knickpoint argue that this feature reflects transient adjustment of the fluvial system to baselevel lowering associated with downstream drainage reorganization. Incision rates in the nearby reaches of the Colorado River since 1-3 Ma are distinctly higher than those in the time periods of ~30 Ma- present and 10 Ma-present. This leads us to infer that rapid incision was not established in the Gunnison region until post ca. 3 Ma. A knickpoint similar to that seen in the modern profile is present in the reconstructed 640ka profile, reinforcing the transient character and implying upstream migration of the knickpoint of 25km in the past 640 ka. Projection of the ~ 640 ka river gravels in the abandoned Shinn- Bostwick tributary to its intersection with the Gunnison at Red Canyon is

  11. Seasonal Transport of Fine Particles to the Grand Canyon.

    PubMed

    de P Vasconcelos, Luis A

    1999-03-01

    Potential sources of pollutants can be identified by analyzing back trajectories associated with extreme ambient concentrations. Conditional frequency analysis (CFA) was used to identify statistically significant associations of geographical regions and ambient air quality observed at sites near the Grand Canyon. Stratification by season reveals a pattern of association during the fall quarter that is not observed during other seasons. Application of CFA to different source tracers provides additional information on the nature of the associations. Tracer species that were often below detection limits can be studied because the method requires only that the highest concentrations be identified.

  12. Bathymetry and Canyons of the western Solomon Sea

    NASA Astrophysics Data System (ADS)

    Davies, H. L.; Keene, J. B.; Hashimoto, K.; Joshima, M.; Stuart, J. E.; Tiffin, D. L.

    1986-12-01

    The floor of the western Solomon Sea (for new bathymetric map see inside back cover of this issue) is dominated by the arched and ridged basement of the Solomon Sea Basin, the partly-sediment-filled New Britain Trench, and a more completely filled trench, the Trobriand Trough. There is a deep basin where the trenches join (149° Embayment), and a silled basin west of the New Britain Trench (Finsch Deep). Submarine canyons descend from the west and south to the 149° Embayment. Abyssal fans and plains are structurally defined and locally disturbed by young faults. Probable submerged pinnacle reefs stand in water depths as great as 1,200 m.

  13. 20131101-1130_Green Machine Florida Canyon Hourly Data

    DOE Data Explorer

    Thibedeau, Joe

    2013-12-02

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 Nov to 30 Nov 2013.

  14. 20140101-0131_Green Machine Florida Canyon Hourly Data

    DOE Data Explorer

    Thibedeau, Joe

    2014-02-03

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 Jan to 31 Jan 2014.

  15. 20140501-0531_Green Machine Florida Canyon Hourly Data

    DOE Data Explorer

    Thibedeau, Joe

    2014-06-02

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 May to 31 May 2014.

  16. 20140201-0228_Green Machine Florida Canyon Hourly Data

    DOE Data Explorer

    Thibedeau, Joe

    2014-03-03

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 Feb to 28 Feb 2014.

  17. 20140301-0331_Green Machine Florida Canyon Hourly Data

    DOE Data Explorer

    Thibedeau, Joe

    2014-04-07

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 Mar to 31 Mar 2014.

  18. 20131201-1231_Green Machine Florida Canyon Hourly Data

    DOE Data Explorer

    Thibedeau, Joe

    2014-01-08

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 Dec to 31 Dec 2013.

  19. 20131001-1031_Green Machine Florida Canyon Hourly Data

    DOE Data Explorer

    Thibedeau, Joe

    2013-11-05

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 1 Oct 2013 to 31 Oct 2013.

  20. 20140701-0731_Green Machine Florida Canyon Hourly Data

    DOE Data Explorer

    Thibedeau, Joe

    2014-07-31

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 July to 31 July 2014.

  1. 20140601-0630_Green Machine Florida Canyon Hourly Data

    DOE Data Explorer

    Thibedeau, Joe

    2014-06-30

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 June to 30 June 2014.

  2. 20130501-20130531_Green Machine Florida Canyon Hourly Data

    DOE Data Explorer

    Vanderhoff, Alex

    2013-06-18

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from May 2013

  3. 20130901-0930_Green Machine Florida Canyon Hourly Data

    DOE Data Explorer

    Thibedeau, Joe

    2013-10-25

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 1 September 2013 to 30 September 2013.

  4. 20130801-0831_Green Machine Florida Canyon Hourly Data

    DOE Data Explorer

    Vanderhoff, Alex

    2013-09-10

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 8/1/13 to 8/31/13.

  5. 76 FR 47237 - Notice of Public Meeting for the Glen Canyon Dam Adaptive Management Work Group Federal Advisory...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-04

    ... Bureau of Reclamation Notice of Public Meeting for the Glen Canyon Dam Adaptive Management Work Group... Canyon Dam Adaptive Management Work Group (AMWG) makes recommendations to the Secretary of the Interior..., the AMWG, a technical work group (TWG), a Grand Canyon Monitoring and Research Center, and...

  6. Response to Comments on "Apatite 4He/3He and (U-Th)/He Evidence for an Ancient Grand Canyon".

    PubMed

    Flowers, R M; Farley, K A

    2013-04-12

    We reiterate that geological observations do not require Grand Canyon carving coeval with Colorado River integration. (U-Th)/He data from the western canyon, totaling 29 reproducible analyses from six samples and two labs, compellingly support an ancient canyon. Three dispersed analyses from one anomalous sample do not refute this conclusion, nor do the claimed shortcomings of our modeling have validity.

  7. 14 CFR Appendix to Subpart U of... - Special Flight Rules in the Vicinity of the Grand Canyon National Park, AZ

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Grand Canyon National Park, AZ Appendix to Subpart U of Part 93 Aeronautics and Space FEDERAL AVIATION... TRAFFIC RULES Special Flight Rules in the Vicinity of Grand Canyon National Park, AZ Pt. 93, Subpt. U, App. Appendix to Subpart U of Part 93—Special Flight Rules in the Vicinity of the Grand Canyon National Park,...

  8. 14 CFR Appendix to Subpart U of... - Special Flight Rules in the Vicinity of the Grand Canyon National Park, AZ

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Grand Canyon National Park, AZ Appendix to Subpart U of Part 93 Aeronautics and Space FEDERAL AVIATION... TRAFFIC RULES Special Flight Rules in the Vicinity of Grand Canyon National Park, AZ Pt. 93, Subpt. U, App. Appendix to Subpart U of Part 93—Special Flight Rules in the Vicinity of the Grand Canyon National Park,...

  9. 14 CFR Appendix to Subpart U of... - Special Flight Rules in the Vicinity of the Grand Canyon National Park, AZ

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Grand Canyon National Park, AZ Appendix to Subpart U of Part 93 Aeronautics and Space FEDERAL AVIATION... TRAFFIC RULES Special Flight Rules in the Vicinity of Grand Canyon National Park, AZ Pt. 93, Subpt. U, App. Appendix to Subpart U of Part 93—Special Flight Rules in the Vicinity of the Grand Canyon National Park,...

  10. 14 CFR Appendix to Subpart U of... - Special Flight Rules in the Vicinity of the Grand Canyon National Park, AZ

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Grand Canyon National Park, AZ Appendix to Subpart U of Part 93 Aeronautics and Space FEDERAL AVIATION... TRAFFIC RULES Special Flight Rules in the Vicinity of Grand Canyon National Park, AZ Pt. 93, Subpt. U, App. Appendix to Subpart U of Part 93—Special Flight Rules in the Vicinity of the Grand Canyon National Park,...

  11. 14 CFR Appendix to Subpart U of... - Special Flight Rules in the Vicinity of the Grand Canyon National Park, AZ

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Grand Canyon National Park, AZ Appendix to Subpart U of Part 93 Aeronautics and Space FEDERAL AVIATION... TRAFFIC RULES Special Flight Rules in the Vicinity of Grand Canyon National Park, AZ Pt. 93, Subpt. U, App. Appendix to Subpart U of Part 93—Special Flight Rules in the Vicinity of the Grand Canyon National Park,...

  12. Variability in turbidity current frequency within a central Portuguese margin canyon

    NASA Astrophysics Data System (ADS)

    Allin, Joshua R.; Talling, Peter J.; Hunt, James E.; Clare, Michael E.; Pope, Ed

    2015-04-01

    Submarine canyons constitute one of the most important pathways for sediment transport into ocean basins. For this reason, understanding canyon architecture and sedimentary processes has significance for oil and gas reservoir characterisation, carbon budgets and geohazard assessment. Canyon sedimentation in the form of turbidity-currents is known to operate on a variety of scales and result from a number of different processes, including landslides, river-derived hyperpycnal flows and tidal or storm resuspension. Despite the expanding knowledge of turbidity current triggers, the spatial variability in turbidity current frequency within most canyon systems is not well defined. Here, new chronologies from cores in the lower reaches of Nazaré Canyon illustrate changes in turbidity current frequency and their relationship to sea level. These flows were relatively frequent during the last glacial maximum and the last deglaciation, with an average recurrence interval of ~70 years. Mid to early Holocene slowdown in activity (avg. recurrence of 1625 years) appears to occur later than other systems along the Iberian margin. Cores from the Iberian Abyssal Plain also provide the first recurrence interval estimates for large run-out turbidity currents from the central Portuguese margin. These large turbidity currents have an average recurrence interval of 2750 years, broadly comparable to modern turbidity flow events in the lower Nazaré Canyon. This indicates that Nazaré Canyon acted as a depocentre, capturing large volumes of sediment during glacial periods prior to large scale canyon flushing events. However, this sediment capture has largely been restricted to the middle and upper canyon since stabilisation of Holocene sea level. Recurrence intervals suggest that large turbidity flows which flush the canyon operate on a timescale independent of the sea level forcing evident in the lower canyon. While instability-triggered landsliding and tidal/storm resuspension are

  13. Applications of Physical Modeling to the Evolution of Slot Canyon Morphology

    NASA Astrophysics Data System (ADS)

    Carter, C. L.; Anderson, R. S.

    2003-12-01

    Abrasion-dominated fluvial erosion generates slot canyons with intricately undulating wall morphology. Flows in slot canyons are unique in that the walls comprise a significant portion of the wetted perimeter of the flow. Wire Pass, UT incises through massive cross-bedded Navajo Sandstone. The canyon ranges in width from <1 m to ˜5 m in the slotted sections, and in depth from ˜5 m to ˜25 m. Incision in Wire Pass and related slots is limited to ephemeral flash floods; paleoflood debris indicates that the depth-to-width ratios of these flows are at least 1:1. Sub-meter resolution field mapping of a 20 m length of Wire Pass shows that the wall morphology is a complicated combination of both in-phase (meander-like), and out-of-phase (pinch and swell) type undulations. In order to understand the evolution of slot canyon wallforms, and the influence of these shapes on flow dynamics, we recorded the evolution of four distinct canyon wall morphologies in a 2.4 m flume box at the St. Anthony Falls Laboratory. In a substrate consisting of approximately 3:2 mixtures of F110 sand and plaster of Paris, we molded in-phase and out-of-phase undulations, and wide (6.5 cm) and narrow (4 cm) straight initial wall profiles. Sediment-laden water flowed through each canyon at discharges ranging from 2.6 L/s to 4.2 L/s. We made velocity measurements in three dimensions in sections of each canyon. At 5 hr intervals we documented wall and bed morphology at 0.5 cm resolution using a Keyance LK-500 laser mounted on a moving cart. Initial results show that wall faces in both undulating canyons evolve at different rates, and their flow fields are strongly asymmetric. Upstream-facing walls in undulating canyons eroded most rapidly. In the straight-walled canyons, small perturbations developed in the walls. Each canyon incised downward and headward from a knickpoint generated by a consistent lower boundary. Incision depths averaged ˜6 cm. Incision generally propagated around small cracks in

  14. Populating a Control Point Database: A cooperative effort between the USGS, Grand Canyon Monitoring and Research Center and the Grand Canyon Youth Organization

    NASA Astrophysics Data System (ADS)

    Brown, K. M.; Fritzinger, C.; Wharton, E.

    2004-12-01

    The Grand Canyon Monitoring and Research Center measures the effects of Glen Canyon Dam operations on the resources along the Colorado River from Glen Canyon Dam to Lake Mead in support of the Grand Canyon Adaptive Management Program. Control points are integral for geo-referencing the myriad of data collected in the Grand Canyon including aerial photography, topographic and bathymetric data used for classification and change-detection analysis of physical, biologic and cultural resources. The survey department has compiled a list of 870 control points installed by various organizations needing to establish a consistent reference for data collected at field sites along the 240 mile stretch of Colorado River in the Grand Canyon. This list is the foundation for the Control Point Database established primarily for researchers, to locate control points and independently geo-reference collected field data. The database has the potential to be a valuable mapping tool for assisting researchers to easily locate a control point and reduce the occurrance of unknowingly installing new control points within close proximity of an existing control point. The database is missing photographs and accurate site description information. Current site descriptions do not accurately define the location of the point but refer to the project that used the point, or some other interesting fact associated with the point. The Grand Canyon Monitoring and Research Center (GCMRC) resolved this problem by turning the data collection effort into an educational exercise for the participants of the Grand Canyon Youth organization. Grand Canyon Youth is a non-profit organization providing experiential education for middle and high school aged youth. GCMRC and the Grand Canyon Youth formed a partnership where GCMRC provided the logistical support, equipment, and training to conduct the field work, and the Grand Canyon Youth provided the time and personnel to complete the field work. Two data

  15. Comparing the Grand Canyon of the East to the Western one

    NASA Astrophysics Data System (ADS)

    Gorom, J.; Martinez-Hackert, B.

    2007-12-01

    The Grand Canyon of the West (GCW) is an internationally well-known geological world wonder of the South Western United States' Colorado Plateau. The Grand Canyon of the East is a similarly beautiful, less well-known, smaller canyon in the Devonian/Silurian sedimentary rocks of the western part of New York State in the Eastern United States. For the purpose of creating a comparative database to be used in the field, classroom and public education settings, features of New York's canyon, better known as Letchworth State Park (LSP) to Arizona's canyon, were collected, obtained, and recorded. We compared various numbers on rock formations, ages of the units, stream volume, and depth and age of canyon formation, erosion processes and other interesting geological features between the two canyons. The sedimentary rocks of both canyons tell the story of the conditions under which the rocks were laid onto the Earth's surface at the time. This study includes an evaluation of how the two canyons have formed including features we see in the strata. Literature research revealed that LSP is on the order of 10 times smaller than the Grand Canyon in various aspects. Genesee river is up to only 4 m deep while the Colorado River reaches depths of up to 30 m. The Genesee extends 25.3 km within its canyon, paling at the majestic 445.79km of the Colorado within its canyon. The depths of the two canyons also show how small LSP is in comparison to the GCW Letchworth canyon's depth is 0.17 km while GCW is 1.61 km. The width of LSP's canyon is 0.1 km while the Grand Canyons' is 28.97 km at their widest locations. Fieldwork in both canyons allowed for some comparison of the natural waterfall features within the canyons. With help from a laser range finder measurements were taken from the most prominent waterfalls of LSP and the Havasu creek. Rock formations were compared. While the periods of Precambrian to the middle Permian time are found in the GCW, the Silurian/Devonian formations are

  16. A look at Bacon Flat, Grant Canyon oil fields of Railroad Valley, Nevada

    SciTech Connect

    Johnson, E.H. )

    1993-05-17

    The prolific wells at Grant Canyon, and the puzzling geology, have intrigued explorationists and promoters. Many a Nevada prospect has been touted as 'another Grand Canyon.' But what processes formed Grant Canyon, and can others be found Last August, Equitable Resources Energy Co,'s Balcron Oil Division spudded a well at Bacon Flat, a mile west of Grant Canyon. A one well field, Bacon Flat had been abandoned in 1988. But just 900 ft north of the field opener, Balcron's well tested oil at a rate or 5,400 b/d. It turns out that Bacon Flat and Grant Canyon fields have a common geological history and, in fact, share the same faulted horst. However, they formed by an unusual combination of events that may be unique to those fields. This paper describes the geologic history, well logging interpretations, structures, the Jebco C seismic line, a geologic cross section, and the author's conclusions.

  17. Morphology, origin and evolution of Pleistocene submarine canyons, New Jersey continental slope

    NASA Astrophysics Data System (ADS)

    Bhatnagar, T.; Mountain, G. S.

    2015-12-01

    Submarine canyons serve as important conduits for transport of detrital sediments from nearshore and shelf environments to adjacent deep marine basins. However, the processes controlling the formation, maintenance, and fill of these sediment pathways are complex. This study presents an investigation of these systems at the New Jersey continental margin using a grid of high-resolution, 48-channel seismic reflection data collected in 1995 on the R/V Oceanus cruise Oc270 as a part of the STRATAFORM initiative. The aim is to shed new light on the origin and role of submarine canyons in Pleistocene sedimentation beneath the outer shelf and upper continental slope. Preliminary investigation of the Pleistocene interval reveals prominent unconformities tied to and dated with published studies at 7 sites drilled by ODP Legs 150 and 174A. The profiles of the continental slope unveil a series of abandoned and now buried submarine canyons that have influenced the development of modern canyons. Mapping these systems has revealed a range of canyon geometries, including U, V-shaped and flat-bottomed cross sections, each suggesting different histories. At least three types of seismic facies constitute the canyon fills: parallel onlap, interpreted as infilling by alternating coarser turbidites and finer hemipelagic sediments, chaotic infill, signifying structureless, massive debris flow deposition, and lateral accretion infill by both turbidity and bottom currents. Canyon formation and development appear to be strongly influenced by variations in sediment supply, grain size, and currents on the continental slope. One goal of our research is to establish if the canyons were initiated by failures at the base of the slope followed by upslope erosion, or by erosion at the shelf slope transition, and then downslope extension by erosive events. No single model accounts for all canyons. The history of these canyons may elucidate the extent to which the shelf was exposed during sea

  18. Apatite 4He/3He thermochronometry evidence for an ancient Grand Canyon, Colorado Plateau, USA

    NASA Astrophysics Data System (ADS)

    Flowers, R. M.; Farley, K. A.

    2012-12-01

    The very existence of Grand Canyon inspires questions about why canyons are carved, how drainage systems and landscapes evolve, and how these processes relate to the elevation gain of plateaus. Yet when and why Grand Canyon was carved have been extraordinarily controversial for more than 150 years. Over the last several decades, the dominant view for the origin of the canyon is one of rapid incision at 5-6 Ma, when detritus derived from the upstream reaches of the Colorado River system appeared in Grand Wash Trough at the Colorado River's western exit from the Colorado Plateau. The absence of such diagnostic deposits prior to 6 Ma has been used to argue that Grand Canyon was not yet excavated (e.g., Karlstrom et al., 2008). However, a variety of data hint at a more ancient age for part or all of the canyon, and it has been proposed that a smaller drainage basin in largely carbonate lithologies could explain the absence of pre-6 Ma Colorado River clastics in Grand Wash Trough even if a significant Grand Canyon were present. Most recently, apatite (U-Th)/He (AHe) thermochronometry data from western Grand Canyon were used to infer excavation of this area to within several hundred meters of its modern depth by ca. 70 Ma (Wernicke, 2011), an interpretation in direct conflict with the young canyon model. The unexpected implications of the initial Grand Canyon AHe work motivated the apatite 4He/3He and U-Th zonation study presented here. Apatite 4He/3He thermochronometry provides information about the spatial distribution of radiogenic 4He in an apatite crystal that can better constrain a sample's cooling history. A key premise of AHe and 4He/3He spectra interpretation is that the He kinetic model used is accurate. We first investigate whether differing 4He/3He spectra for apatites of variable AHe date, radiation damage, and U-Th zonation from eastern Grand Canyon yield mutually consistent thermal history results using the RDAAM kinetic model, which must be true if the

  19. Evaluation of the RIO-IFDM-street canyon model chain

    NASA Astrophysics Data System (ADS)

    Lefebvre, W.; Van Poppel, M.; Maiheu, B.; Janssen, S.; Dons, E.

    2013-10-01

    Integration of all relevant spatial scales in concentration modeling is important for assessing the European limit values for NO2. The local NO2-concentrations are influenced by the regional background, the local emissions and the street canyon effects. Therefore, it is important to consistently combine all these contributions in the model setup which is used for such an assessment. In this paper, we present the results of an integrated model chain, consisting of an advanced measurement interpolation model, a bi-Gaussian plume model and a canyon model to simulate the street-level concentrations over the city of Antwerp, Belgium. The results of this model chain are evaluated against independent weekly averaged NO2 measurements at 49 locations in the city of Antwerp, during both a late autumn and a late spring week. It is shown that the model performed well, explaining between 62% and 87% of the spatial variance, with a RMSE between 5 and 6 μg m-1 and small biases. In addition to this overall validation, the performance of different components in the model chain is shown, in order to provide information on the importance of the different constituents.

  20. Geologic map of the Paintbrush Canyon Area, Yucca Mountain, Nevada

    SciTech Connect

    Dickerson, R.P.; Drake, R.M. II

    1998-11-01

    This geologic map is produced to support site characterization studies of Yucca Mountain, Nevada, site of a potential nuclear waste storage facility. The area encompassed by this map lies between Yucca Wash and Fortymile Canyon, northeast of Yucca Mountain. It is on the southern flank of the Timber Mountain caldera complex within the southwest Nevada volcanic field. Miocene tuffs and lavas of the Calico Hills Formation, the Paintbrush Group, and the Timber Mountain Group crop out in the area of this map. The source vents of the tuff cones and lava domes commonly are located beneath the thickest deposits of pyroclastic ejecta and lava flows. The rocks within the mapped area have been deformed by north- and northwest-striking, dominantly west-dipping normal faults and a few east-dipping normal faults. Faults commonly are characterized by well developed fault scarps, thick breccia zones, and hanging-wall grabens. Latest movement as preserved by slickensides on west-dipping fault scarps is oblique down towards the southwest. Two of these faults, the Paintbrush Canyon fault and the Bow Ridge fault, are major block-bounding faults here and to the south at Yucca Mountain. Offset of stratigraphic units across faults indicates that faulting occurred throughout the time these volcanic units were deposited.

  1. Mollusk Survey in the Snake River, Hells Canyon, USA

    NASA Astrophysics Data System (ADS)

    Lester, G. T.; Falter, C. M.; Myers, R.; Richards, D. C.

    2005-05-01

    We conducted surveys and several experiments on mollusks, focusing on listed, rare, or sensitive species, in reservoirs, tributaries and main stem of the Snake River in Hells Canyon Idaho and Oregon, USA. The most important result of this study was documentation of the undescribed Taylorconcha sp. throughout the Snake River in Hells Canyon, although we did not find Taylorconcha sp. within 12 miles downstream of HCD, most likely due to river armoring. Additional results include: 1) the mollusk community was similar throughout the Snake River, except where the Salmon River entered the Snake River; 2) Taylorconcha sp. abundance was directly related to the abundance of Potamopyrgus antipodarum, a highly invasive snail, and with moderate abundance of detritus; 3) hand picking cobbles was more efficient than suction dredging for snails and limpets but not for bivalves, 4) the most abundant mollusks were two invasive species, P. antipodarum and Corbicula fluminea and; 5) only one live small colony of native Gonidea angulata (Unionidae) and no live Anodonta californiensis (Unionidae) were found in the survey.

  2. Hiker Fatality From Severe Hyponatremia in Grand Canyon National Park.

    PubMed

    Myers, Thomas M; Hoffman, Martin D

    2015-09-01

    We present the case of a hiker who died of severe hyponatremia at Grand Canyon National Park. The woman collapsed on the rim shortly after finishing a 5-hour hike into the Canyon during which she was reported to have consumed large quantities of water. First responders transported her to the nearest hospital. En route, she became unresponsive, and subsequent treatment included intravenous normal saline. Imaging and laboratory data at the hospital confirmed hypervolemic hyponatremia with encephalopathy. She never regained consciousness and died of severe cerebral edema less than 24 hours later. We believe this is the first report of a fatality due to acute hyponatremia associated with hiking in a wilderness setting. This case demonstrates the typical pathophysiology, which includes overconsumption of fluids, and demonstrates the challenges of diagnosis and the importance of appropriate acute management. Current treatment guidelines indicate that symptomatic exercise-associated hyponatremia should be acutely managed with hypertonic saline and can be done so without concern over central pontine myelinolysis, whereas treatment with high volumes of isotonic fluids may delay recovery and has even resulted in deaths.

  3. Computed tomography of air pollutants in street canyons

    NASA Astrophysics Data System (ADS)

    O'Driscoll, Stephen; Murphy, John G.; Smith, Niall J.

    2003-03-01

    We present the results of preliminary research investigating the generation of two-dimensional pollutant gas concentration maps of street canyons. This research uses computed tomography (CT) to reconstruct the spatial distribution of gas concentrations from path-integral data obtained using differential optical absorption spectroscopy (DOAS). This work represents a novel application of these two techniques and is aimed at the validation of theoretical gas distribution models in selected urban settings. The derived results are based on model data and investigate the viability of constrained geometry sensing networks and the accuracy of current computed tomography algorithms. We also present results on the use of an evolutionary algorithm applied to pollutant reconstruction in an open area as part of initial investigations into its applicability to street canyon pollutant reconstruction. Future work will include the reconstruction of gas distributions in a real urban setting with the long-term goal of a system that is capable of performing this task in near real-time allowing the visualisation of short to medium time scale spatial dynamics.

  4. Thermally Driven Flow in a Mock Street Canyon

    NASA Astrophysics Data System (ADS)

    Dallman, Ann; Magnusson, Sigurdur; Norford, Leslie; Fernando, Harindra J. S.; Entekhabi, Dara; Britter, Rex; Pan, Shanshan

    2012-11-01

    Under conditions of low synoptic winds and high solar radiation, non-uniform heating of building walls and the ground in an urban street canyon induces thermally-driven airflow. These effects have mainly been studied using wind-tunnel experiments and numerical models, but only a few field-scale experiments have been performed. However, this is an important topic of interest because of its implications for air quality and emergency response planning. A field experiment was carried out in collaboration between the Singapore-MIT Alliance for Research and Technology (SMART) and the University of Notre Dame. The study was conducted on the campus of Nanyang Technical University in Singapore, and consisted of an `idealized' building canyon constructed with two rows of shipping containers aligned in the North-South direction. The site was carefully instrumented with sonic anemometers (for wind speed and direction and virtual temperature), weather stations (wind speed and direction, temperature, relative humidity, pressure, and rain fall), and thermocouples (surface temperature of buildings). Measurements were recorded for 9 days, which included periods of sunshine and high convective activity that created thermal circulation between the buildings. Using a fog machine, flow visualization was carried out to observe circulation patterns. An overview of the experiment and the results will be presented.

  5. Predictive Temperature Equations for Three Sites at the Grand Canyon

    NASA Astrophysics Data System (ADS)

    McLaughlin, Katrina Marie Neitzel

    Climate data collected at a number of automated weather stations were used to create a series of predictive equations spanning from December 2009 to May 2010 in order to better predict the temperatures along hiking trails within the Grand Canyon. The central focus of this project is how atmospheric variables interact and can be combined to predict the weather in the Grand Canyon at the Indian Gardens, Phantom Ranch, and Bright Angel sites. Through the use of statistical analysis software and data regression, predictive equations were determined. The predictive equations are simple or multivariable best fits that reflect the curvilinear nature of the data. With data analysis software curves resulting from the predictive equations were plotted along with the observed data. Each equation's reduced chi2 was determined to aid the visual examination of the predictive equations' ability to reproduce the observed data. From this information an equation or pair of equations was determined to be the best of the predictive equations. Although a best predictive equation for each month and season was determined for each site, future work may refine equations to result in a more accurate predictive equation.

  6. Examinations of samples of Bell Canyon Test 1-FF grout

    SciTech Connect

    Rhoderick, J. E.; Wong, G. S.; Buck, A. D.

    1981-05-01

    Portland cement grout identified as BCT-1-FF (Bell Canyon Test 1-FF) was used in borehole plugging experiments of the Bell Canyon Tests in Holl AEC-7 at the Waste Isolation Pilot Plant site in New Mexico during September 1979 and February 1980. This grout was made with fresh water. A study of this grout was begun in August 1979 in the laboratory to evauate the possible effects of temperature, pressure, and storage in fresh water or simulated groundwater (brine) on its phase composition and compressive strength at early ages. Phase composition was determined by X-ray diffraction. Temperatures ranged up to about 150/sup 0/F and included elevation at a few hours age after mixing; pressure was as high as 1500 psi; specimens were stored in simulated groundwater (brine) or in fresh water. Data from 1 to 90 days showed: (a) Higher temperature accelerated early strength gain. These differences essentially vanished by 90 days age. (b) Hydration products as identified by X-ray diffraction were normal; this indicated that a temperature range of 78 to 153/sup 0/F was not significant. (c) Pressure did not affect composition. (d) Storage in simulated groundwater (brine) or fresh water had no detectable effect. (e) Since the BCT-1-FF grout mixture contained added sulfate, it formed more ettringite as judged by X-ray diffraction than comparable portland cement mixtures without added sulfate.

  7. Megafauna of vulnerable marine ecosystems in French mediterranean submarine canyons: Spatial distribution and anthropogenic impacts

    NASA Astrophysics Data System (ADS)

    Fabri, M.-C.; Pedel, L.; Beuck, L.; Galgani, F.; Hebbeln, D.; Freiwald, A.

    2014-06-01

    Vulnerable Marine Ecosystems (VME) in the deep Mediterranean Sea have been identified by the General Fisheries Commission for the Mediterranean as consisting of communities of Scleractinia (Lophelia pertusa and Madrepora oculata), Pennatulacea (Funiculina quadrangularis) and Alcyonacea (Isidella elongata). This paper deals with video data recorded in the heads of French Mediterranean canyons. Quantitative observations were extracted from 101 video films recorded during the MEDSEACAN cruise in 2009 (Aamp/Comex). Qualitative information was extracted from four other cruises (two Marum/Comex cruises in 2009 and 2011 and two Ifremer cruises in 1995 and 2010) to support the previous observations in the Cassidaigne and Lacaze-Duthiers canyons. All the species, fishing impacts and litter recognized in the video films recorded from 180 to 700 m depth were mapped using GIS. The abundances and distributions of benthic fishing resources (marketable fishes, Aristeidae, Octopodidae), Vulnerable Marine Species, trawling scars and litter of 17 canyons were calculated and compared, as was the open slope between the Stoechades and Toulon canyons. Funiculina quadrangularis was rarely observed, being confined for the most part to the Marti canyon and, I. elongata was abundant in three canyons (Bourcart, Marti, Petit-Rhône). These two cnidarians were encountered in relatively low abundances, and it may be that they have been swept away by repeated trawling. The Lacaze-Duthiers and Cassidaigne canyons comprised the highest densities and largest colony sizes of scleractinian cold-water corals, whose distribution was mapped in detail. These colonies were often seen to be entangled in fishing lines. The alcyonacean Callogorgia verticillata was observed to be highly abundant in the Bourcart canyon and less abundant in several other canyons. This alcyonacean was also severely affected by bottom fishing gears and is proposed as a Vulnerable Marine Species. Our studies on anthropogenic

  8. Dispersal of natural and anthropogenic lead through submarine canyons at the Portuguese margin

    NASA Astrophysics Data System (ADS)

    Richter, T. O.; de Stigter, H. C.; Boer, W.; Jesus, C. C.; van Weering, T. C. E.

    2009-02-01

    Submarine canyons represent natural conduits for preferential transport of particulate material, including anthropogenic contaminants, from coastal zones directly to the deep sea. To assess related dispersal of natural and anthropogenic lead (Pb), we analyzed Pb concentrations and stable isotope ratios in surface sediments and sediment trap particulate material from the Portuguese margin Nazaré and Setúbal/Lisbon canyons. Geochemical data are integrated with previously obtained data on near-bottom hydrodynamics and processes and pathways of sediment transport. The two canyon systems are located in close geographic proximity to each other, but represent contrasting settings in terms of sediment input and down-canyon sediment transport processes. Concentration-isotope diagrams and three-isotope plots ( 206Pb/ 207Pb vs. 208Pb/ 206Pb) suggest binary mixing between natural and anthropogenic end members. The inferred isotopic signature of pollutant Pb ( 206Pb/ 207Pb=1.143 [1.134-1.149, 95% confidence interval]) is most consistent with industrial Pb; ongoing influence from gasoline Pb additives is at most of minor importance. Two proposed natural end members most likely bracket the isotopic signature of natural Pb. Accordingly, binary mixing calculations indicate that on average 20-45% vs. 35-55% of total Pb is derived from anthropogenic sources in the Nazaré and Setúbal-Lisbon canyon systems, respectively. Enhanced anthropogenic influence in the latter area is consistent with its proximity to heavily populated and industrialized areas and with sediment input from the Tagus and Sado rivers, potential major carriers of pollutant particles. In both canyon systems, the anthropogenic component generally decreases with increasing water depth. Isotopic signatures of sediment trap particulate material are generally consistent with surface sediment data at similar water depth, but show large variability in the upper Nazaré canyon and major deviations from surface sediments

  9. The flow across a street canyon of variable width—Part 1: Kinematic description

    NASA Astrophysics Data System (ADS)

    Simoëns, Serge; Ayrault, Michel; Wallace, James M.

    Measurements have been made of the scalar dispersion of smoke released from a two-dimensional slot in the wall perpendicular to a boundary layer flow and located parallel to and midway between two square obstacles placed on the wall. The Reynolds number of the boundary layer at the slot location without the obstacles in place is Rθ≈980. Two optical systems with CCD cameras facing each other have been used to measure simultaneously the velocity and scalar concentration fields, respectively, with PIV and Mie scattering diffusion. In Part B of this paper the data will ultimately provide detailed information about the scalar fluxes for this environmentally relevant geometry. Here in Part A the results of the velocity field measurements in the streamwise plane will be reported for spacings between the obstacles of 1-10 obstacle heights. The mean flow measurements reveal the increasing complexity of the canyon flow with increasing obstacle spacing. A primary vortex, with negative spanwise vorticity, occurs within the canyon for all spacings and is driven by the flow above. The circulation region of this vortex extends above the level of the tops of the obstacles. For spacings of 2h and greater, a secondary vortex with positive vorticity appears in the upstream corner of the canyon, and a tertiary vortex with negative spanwise vorticity first appears in the downstream corner of the canyon for an opening of 6h. The spatial distribution of the level of turbulence within and around the canyon is indicated by the contours of two-dimensional turbulent kinetic energy, {1}/{2}(u2¯+v2¯). The region of elevated turbulence in the shear layer created by the upstream obstacle penetrates deeper into the canyon with increasing canyon opening. For all openings, the Reynolds shear stress is negative above the canyon. The vertical extent of the high negative stress region increases as the canyon opening increases, and it also penetrates well within the canyon. This region of negative

  10. Comment on "Apatite 4He/3He and (U-Th)/He evidence for an ancient Grand Canyon".

    PubMed

    Karlstrom, Karl E; Lee, John; Kelley, Shari; Crow, Ryan; Young, Richard A; Lucchitta, Ivo; Beard, L Sue; Dorsey, Rebecca; Ricketts, Jason W; Dickinson, William R; Crossey, Laura

    2013-04-12

    Flowers and Farley (Reports, 21 December 2012, p. 1616; published online 29 November 2012) propose that the Grand Canyon is 70 million years old. Starkly contrasting models for the age of the Grand Canyon-70 versus 6 million years-can be reconciled by a shallow paleocanyon that was carved in the eastern Grand Canyon 25 to 15 million years ago (Ma), negating the proposed 70 Ma and 55 Ma paleocanyons. Cooling models and geologic data are most consistent with a 5 to 6 Ma age for western Grand Canyon and Marble Canyon.

  11. A sand budget for Marble Canyon, Arizona: implications for long-term monitoring of sand storage change

    USGS Publications Warehouse

    Grams, Paul E.

    2013-01-01

    Recent U.S. Geological Survey research is providing important insights into how best to monitor changes in the amount of tributary-derived sand stored on the bed of the Colorado River and in eddies in Marble Canyon, Arizona. Before the construction of Glen Canyon Dam and other dams upstream, sandbars in Glen, Marble, and Grand Canyons were replenished each year by sediment-rich floods. Sand input into the Colorado River is crucial to protecting endangered native fish, animals, and plants and cultural and recreational resources along the river in Glen Canyon National Recreation Area and Grand Canyon National Park.

  12. Pollutant Concentrations in Street Canyons of Different Aspect Ratio with Avenues of Trees for Various Wind Directions

    NASA Astrophysics Data System (ADS)

    Gromke, Christof; Ruck, Bodo

    2012-07-01

    This study summarizes the effects of avenues of trees in urban street canyons on traffic pollutant dispersion. We describe various wind-tunnel experiments with different tree-avenue models in combination with variations in street-canyon aspect ratio W/ H (with W the street-canyon width and H the building height) and approaching wind direction. Compared to tree-free street canyons, in general, higher pollutant concentrations are found. Avenues of trees do not suppress canyon vortices, although the air ventilation in canyons is hindered significantly. For a perpendicular wind direction, increases in wall-average and wall-maximum concentrations at the leeward canyon wall and decreases in wall-average concentrations at the windward wall are found. For oblique and perpendicular wind directions, increases at both canyon walls are obtained. The strongest effects of avenues of trees on traffic pollutant dispersion are observed for oblique wind directions for which also the largest concentrations at the canyon walls are found. Thus, the prevailing assumption that attributes the most harmful dispersion conditions to a perpendicular wind direction does not hold for street canyons with avenues of trees. Furthermore, following dimensional analysis, an estimate of the normalized wall-maximum traffic pollutant concentration in street canyons with avenues of trees is derived.

  13. Rapid formation of a modern bedrock canyon by a single flood event

    NASA Astrophysics Data System (ADS)

    Lamb, Michael P.; Fonstad, Mark A.

    2010-07-01

    Deep river canyons are thought to form slowly over geological time (see, for example, ref. 1), cut by moderate flows that reoccur every few years. In contrast, some of the most spectacular canyons on Earth and Mars were probably carved rapidly during ancient megaflood events. Quantification of the flood discharge, duration and erosion mechanics that operated during such events is hampered because we lack modern analogues. Canyon Lake Gorge, Texas, was carved in 2002 during a single catastrophic flood. The event offers a rare opportunity to analyse canyon formation and test palaeo-hydraulic-reconstruction techniques under known topographic and hydraulic conditions. Here we use digital topographic models and visible/near-infrared aerial images from before and after the flood, discharge measured during the event, field measurements and sediment-transport modelling to show that the flood moved metre-sized boulders, excavated ~7m of limestone and transformed a soil-mantled valley into a bedrock canyon in just ~3days. We find that canyon morphology is strongly dependent on rock type: plucking of limestone blocks produced waterfalls, inner channels and bedrock strath terraces, whereas abrasion of cemented alluvium sculpted walls, plunge pools and streamlined islands. Canyon formation was so rapid that erosion might have been limited by the ability of the flow to transport sediment. We suggest that our results might improve hydraulic reconstructions of similar megafloods on Earth and Mars.

  14. Scattering and diffraction of plane SH-waves by periodically distributed canyons

    NASA Astrophysics Data System (ADS)

    Ba, Zhenning; Liang, Jianwen; Zhang, Yanju

    2016-06-01

    A new method is presented to study the scattering and diffraction of plane SH-waves by periodically distributed canyons in a layered half-space. This method uses the indirect boundary element method combined with Green's functions of uniformly distributed loads acting on periodically distributed inclined lines. The periodicity feature of the canyons is exploited to limit the discretization effort to a single canyon, which avoids errors induced by the truncation of the infinite boundary, and the computational complexity and the demand on memory can be significantly reduced. Furthermore, the total wave fields are decomposed into the free field and scattered field in the process of calculation, which means that the method has definite physical meaning. The implementation of the method is described in detail and its accuracy is verified. Parametric studies are performed in the frequency domain by taking periodically distributed canyons of semi-circular and semi-elliptic cross-sections as examples. Numerical results show that the dynamic responses of periodically distributed canyons can be quite different from those for a single canyon and significant dynamic interactions exist between the canyons.

  15. The World's Largest Submarine Canyon—Kroenke Canyon in the Western Equatorial Pacific

    NASA Astrophysics Data System (ADS)

    Coffin, M. F.; Adams, N.; Whittaker, J. M.; Lucieer, V.; Heckman, M.; Ketter, T.; Neale, J. F.; Reyes, A.; Travers, A.

    2015-12-01

    Kroenke Canyon lies on the Ontong Java Plateau (OJP) in the western Equatorial Pacific, between the Solomon Islands and the Federated States of Micronesia. In late 2014 aboard the Schmidt Ocean Institute's RV Falkor, we mapped, albeit incompletely, the Canyon for the first time, revealing that it is both the longest (>700 km) and the most voluminous (>6800 km3) submarine canyon yet discovered on Earth. Kroenke Canyon appears to originate in the vicinity of Ontong Java (Solomon Islands) and Nukumanu (Papua New Guinea) atolls, and presumably began to develop when the atolls were high-standing volcanic islands surmounting the ~120 Ma igneous basement of the OJP. The Canyon is characterised by numerous tributaries and significant mass wasting. Kroenke Canyon incises the layer-cake stratigraphy of OJP sediment and sedimentary rock, mostly carbonate with some interbedded chert, which has provided numerous slip surfaces for submarine landslides. The carbonate compensation depth (CCD) roughly coincides with the depth of the transition between the OJP and the neighbouring Nauru Basin. As a result, despite the large volume of sediment eroded and transported by canyon-forming processes, only a minor fan is evident in the Nauru Basin because most of the carbonate has dissolved.

  16. Modelled transport of benthic marine microplastic pollution in the Nazaré Canyon

    NASA Astrophysics Data System (ADS)

    Ballent, A.; Pando, S.; Purser, A.; Juliano, M. F.; Thomsen, L.

    2013-12-01

    With knowledge of typical hydrodynamic behavior of waste plastic material, models predicting the dispersal of benthic plastics from land sources within the ocean are possible. Here we investigated the hydrodynamic behavior (density, settling velocity and resuspension characteristics) of non-buoyant preproduction plastic pellets in the laboratory. From these results we used the MOHID modelling system to predict what would be the likely transport and deposition pathways of such material in the Nazaré Canyon (Portugal) during the spring/summer months of 2009 and the autumn/winter months of 2011. Model outputs indicated that non-buoyant plastic pellets would likely be transported up and down canyon as a function of tidal forces, with only a minor net down canyon movement resulting from tidal action. The model indicated that transport down canyon was likely greater during the autumn/winter, primarily as a result of occasional mass transport events related to storm activity and internal wave action. Transport rates within the canyon were not predicted to be regular throughout the canyon system, with stretches of the upper canyon acting more as locations of pellet deposition than conduits of pellet transport. Topography and the depths of internal wave action are hypothesized to contribute to this lack of homogeneity in predicted transport.

  17. Science Activities Associated with Proposed 2008 High-Flow Experiment at Glen Canyon Dam

    USGS Publications Warehouse

    Hamill, John

    2008-01-01

    Grand Canyon National Park lies approximately 15 miles downriver from Glen Canyon Dam, which was built on the Colorado River just south of the Arizona-Utah border. Because the dam stops most sediment moving downstream, its presence has resulted in erosion and shrinkage of river sandbars in Grand Canyon. Fewer and smaller sandbars mean smaller camping beaches for visitors to use, continued erosion of cultural sites, and possibly less habitat for native fish, including the endangered humpback chub. In an effort to restore sandbars and related habitat and to comply with its responsibilities under the Grand Canyon Protection Act, the Department of the Interior has proposed a high-flow release of water from Glen Canyon Dam in March 2008. The U.S. Geological Survey?s (USGS) Grand Canyon Monitoring and Research Center is responsible for coordinating research associated with the proposed experiment. The proposed studies are designed to evaluate the feasibility of using such high flows to improve a range of Grand Canyon resources.

  18. On the pollutant removal, dispersion, and entrainment over two-dimensional idealized street canyons

    NASA Astrophysics Data System (ADS)

    Liu, Chun-Ho; Wong, Colman C. C.

    2014-01-01

    Pollutant dispersion over urban areas is not that well understood, in particular at the street canyon scale. This study is therefore conceived to examine how urban morphology modifies the pollutant removal, dispersion, and entrainment over urban areas. An idealized computational domain consisting of 12 two-dimensional (2D) identical street canyons of unity aspect ratio is employed. The large-eddy simulation (LES) is used to calculate the turbulent flows and pollutant transport in the urban boundary layer (UBL). An area source of uniform pollutant concentration is applied on the ground of the first street canyon. A close examination on the roof-level turbulence reveals patches of low-speed air masses in the streamwise flows and narrow high-speed downdrafts in the shear layer. Different from the flows over a smooth surface, the turbulence intensities are peaked near the top of the building roughness. The pollutant is rather uniformly distributed inside a street canyon but disperses quickly in the UBL over the buildings. Partitioning the vertical pollutant flux into its mean and turbulent components demystifies that the pollutant removal is mainly governed by turbulence. Whereas, mean wind carries pollutant into and out of a street canyon simultaneously. In addition to wind speed promotion, turbulent mixing is thus required to dilute the ground-level pollutants, which are then removed from the street canyon to the UBL. Atmospheric flows slow down rapidly after the leeward buildings, leading to updrafts carrying pollutants away from the street canyons (the basic pollutant removal mechanism).

  19. Submarine canyons as the preferred habitat for wood-boring species of Xylophaga (Mollusca, Bivalvia)

    NASA Astrophysics Data System (ADS)

    Romano, C.; Voight, J. R.; Company, J. B.; Plyuscheva, M.; Martin, D.

    2013-11-01

    Submarine canyons are often viewed as natural “debris concentrators” on the seafloor. Organic substrates may be more abundant inside than outside canyon walls. To determine the effects of the presence these substrates in the Blanes submarine canyon (NW Mediterranean) and its adjacent western open slope, we deployed wood to study colonizing organisms. Three replicate pine and oak cubes (i.e. most common trees inland) were moored at 900, 1200, 1500 and 1800 m depth and collected after 3, 9 and 12 months. Wood from inside the canyon was significantly more heavily colonized by the five morphotypes of wood-boring bivalves than was wood on the adjacent open slope. Xylophaga sp. A dominated all wood types and locations, with peak abundance at 900 and 1200 m depth. Its growth rate was highest (0.070 mm d-1) during the first three months and was faster (or it recruits earlier) in pine than in oak. Size distribution showed that several recruitment events may have occurred from summer to winter. Xylophaga sp. B, appeared first after 9 months and clearly preferred pine over oak. As the immersion time was the same, this strongly supported a specific association between recruiters and type of substrate. Three morphotypes, pooled as Xylophaga spp. C, were rare and seemed to colonize preferentially oak inside the canyon and pine in the adjacent open slope. Individuals of Xylophaga were more abundant inside the canyon than in nearby off-canyon locations. Blanes Canyon may serve as a long-term concentrator of land-derived vegetal fragments and as a consequence sustain more animals. Are the species richness and abundance of wood-boring bivalves higher inside the canyon than on the adjacent open slope? Do the composition and density of the wood-boring bivalves change with deployment time and depth, as well as on the type of the sunken wood? What is the growth rate of the dominant wood-boring species?

  20. Draft environmental assessment: Davis Canyon site, Utah. Nuclear Waste Policy Act (Section 112). [Contains glossary

    SciTech Connect

    Not Available

    1984-12-01

    In February 1983, the US Department of Energy (DOE) identified the Davis Canyon site in Utah, as one of nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. To determine their suitability, the Davis Canyon site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE's General Guidelines for the Recommendation of Sites for Nuclear Waste Repositories. These evaluations are reported in this draft environmental assessment (EA), which is being issued for public review and comment. The DOE findings and determinations that are based on these evaluations are preliminary and subject to public review and comment. A final EA will be prepared after considering the comments received. On the basis of the evaluations reported in this draft EA, the DOE has found that the Davis Canyon site is not disqualified under the guidelines. The site is in the Paradox Basin, which is one of five distinct geohydrologic settings considered for the first repository. This setting contains one other potentially acceptable site - the Lavender Canyon site. Although the Lavender Canyon site appears to be suitable for site characterization, the DOE has concluded that the Davis Canyon site is the preferred site in the Paradox Basin. Furthermore, the DOE finds that the site is suitable for site characterization because the evidence does not support a conclusion that the site will not be able to meet each of the qualifying conditions specified in the guidelines. On the basis of these findings, the DOE is proposing to nominate the Davis Canyon site as one of five sites suitable for characterization. Having compared the Davis Canyon site with the other four sites proposed for nomination, the DOE has determined that the Davis Canyon site is not one of the three preferred sites for recommendation to the President as candidates for characterization.

  1. Water-quality data for Walnut Canyon and Wupatki National Monuments, Arizona, 2001-02

    USGS Publications Warehouse

    Thomas, Blakemore E.

    2003-01-01

    Water-quality data are provided for four sites in Walnut Canyon and Wupatki National Monuments in north-central Arizona. These data describe the current water quality and provide baseline water-quality information for monitoring future trends. Water samples were collected from a ground-water seep and well in Walnut Canyon and from a spring and a river in Wupatki during September 2001 to September 2002. Water from the four sites is from four different sources. In Walnut Canyon, Cherry Canyon seep is in a shallow local aquifer, and the Little Colorado River contains ground-water discharge from several aquifers and runoff from a 22,000 square-mile drainage area. Concentrations of dissolved solids were similar within the two monuments; the range for water samples from Walnut Canyon was 203 to 248 milligrams per liter, and the range for water samples from Wupatki was 503 to 614 milligrams per liter. Concentrations of trace elements were generally low in water samples from the three ground-water sites--Cherry Canyon seep, Walnut Canyon headquarters well, and Heiser Spring. The water sample collected from the Little Colorado River, however, had high concentrations of aluminum (4,020 micrograms per liter), antimony (54 micrograms per liter), arsenic (14.3 micrograms per liter), and iron (749 micrograms per liter) relative to U.S. Environmental Protection Agency Primary and Secondary Maximum Contaminant Levels. Concentrations of nitrate (as nitrogen) in water samples from the four sites were generally low (0.11 to 1.8 milligrams per liter) and are within the upper 25 percent of nitrate concentrations measured in the regional aquifer near Flagstaff in 1996 and 1997. Water samples from Cherry Canyon seep, Heiser Spring, and the Little Colorado River contained total coliform bacteria. Fecal coliform and Escherichia coli bacteria were found in water samples from Cherry Canyon seep and the Little Colorado River.

  2. Fish Passage Assessment: Big Canyon Creek Watershed, Technical Report 2004.

    SciTech Connect

    Christian, Richard

    2004-02-01

    This report presents the results of the fish passage assessment as outlined as part of the Protect and Restore the Big Canyon Creek Watershed project as detailed in the CY2003 Statement of Work (SOW). As part of the Northwest Power Planning Council's Columbia Basin Fish and Wildlife Program (FWP), this project is one of Bonneville Power Administration's (BPA) many efforts at off-site mitigation for damage to salmon and steelhead runs, their migration, and wildlife habitat caused by the construction and operation of federal hydroelectric dams on the Columbia River and its tributaries. The proposed restoration activities within the Big Canyon Creek watershed follow the watershed restoration approach mandated by the Fisheries and Watershed Program. Nez Perce Tribal Fisheries/Watershed Program vision focuses on protecting, restoring, and enhancing watersheds and treaty resources within the ceded territory of the Nez Perce Tribe under the Treaty of 1855 with the United States Federal Government. The program uses a holistic approach, which encompasses entire watersheds, ridge top to ridge top, emphasizing all cultural aspects. We strive toward maximizing historic ecosystem productive health, for the restoration of anadromous and resident fish populations. The Nez Perce Tribal Fisheries/Watershed Program (NPTFWP) sponsors the Protect and Restore the Big Canyon Creek Watershed project. The NPTFWP has the authority to allocate funds under the provisions set forth in their contract with BPA. In the state of Idaho vast numbers of relatively small obstructions, such as road culverts, block thousands of miles of habitat suitable for a variety of fish species. To date, most agencies and land managers have not had sufficient, quantifiable data to adequately address these barrier sites. The ultimate objective of this comprehensive inventory and assessment was to identify all barrier crossings within the watershed. The barriers were then prioritized according to the amount of

  3. Uranium potential of the Burro Canyon Formation in western Colorado

    USGS Publications Warehouse

    Craig, L.C.

    1982-01-01

    The Burro Canyon Formation of Early Cretaceous age overlies the Morrison Formation (Late Jurassic) and underlies the Dakota Sandstone (Late Cretaceous) over most of southeastern Utah and southwestern Colorado. It consists mainly of alternating beds of fluvial sandstone and overbank mudstone with sandstone dominating in the lower part of the formation and mudstone in the upper part. At the outcrop, the sandstones in the formation exhibit almost all the characteristics that are considered favorable for the occurrence of sandstone-type uranium deposits, but only a few small deposits have been discovered in the Colorado-Utah area. The major deficiency of the Burro Canyon in these outcrop areas is the absence of a reductant such as carbonaceous debris, humic or humate materials, or pyrite. Reductants were probably removed during a period of extensive oxidation at the time of deposition and during a subsequent erosional episode prior to deposition of the Dakota Sandstone. The formation reaches a lobate, inexactly located eastern margin that extends from near Meeker, Colorado, southward through the Piceance basin to near Aztec, New Mexico, in the northwestern part of the San Juan Basin. Along much of this distance, the formation is in the subsurface and has been penetrated by only a few drill holes. Along this eastern margin, the lobes project eastward where fluvial distributary streams built minor alluvial fans of relatively high-energy deposits out from the main axis of Burro Canyon stream deposition. The lower and distal reaches of these lobes may have survived the period of post depositional erosion and oxidation in a reduced condition because of low relief and the protection of a high water table. If so, the peripheral and distal parts of these lobes may have retained the precipitants necessary to form a uranium deposit. Two of the lobes extend into the southwest margin of the Piceance Basin and are considered the possible location of uranium deposits. Two additional

  4. Long-term surveillance plan for the Burro Canyon disposal cell, Slick Rock, Colorado

    SciTech Connect

    1996-11-01

    This long-term surveillance plant (LTSP) describes the US Department of energy`s (DOE) long-term care program for the Uranium Mill Tailings Remediation Action (UMTRA) Project`s burro Canyon disposal cell in San Miguel County, Colorado. This LTSP describes the long-term surveillance program the DOE will implement to ensure that the Burro Canyon disposal cell performs as designed. The program is based on site inspections to identify threats to disposal cell integrity. No ground water monitoring will be required at the Burro Canyon disposal cell because the ground water protection strategy is supplemental standards based on low-yield from the upper-most aquifer.

  5. Nearshore temperature findings for the Colorado River in Grand Canyon, Arizona: possible implications for native fish

    USGS Publications Warehouse

    Ross, Robert P.; Vernieu, William S.

    2013-01-01

    Since the completion of Glen Canyon Dam, Arizona, in 1963, downstream water temperatures in the main channel of the Colorado River in Glen, Marble, and Grand Canyons are much colder in summer. This has negatively affected humpback chub (Gila cypha) and other native fish adapted to seasonally warm water, reducing main-channel spawning activity and impeding the growth and development of larval and juvenile fish. Recently published studies by U.S. Geological Survey scientists found that under certain conditions some isolated nearshore environments in Grand Canyon allow water to become separated from the main-channel current and to warm, providing refuge areas for the development of larval and juvenile fish.

  6. Long-term change along the Colorado River in Grand Canyon National Park (1889-2011)

    USGS Publications Warehouse

    Webb, R.H.; Belnap, J.; Scott, M. L.; Friedman, J. M.; Esque, T. C.

    2013-01-01

    The Colorado River and its riverine resources have undergone profound changes since completion of Glen Canyon Dam in 1963, as every river runner with any history in Grand Canyon will attest. Long-term monitoring data are difficult to obtain for high-value resource areas (Webb et al. 2009), particularly in remote parts of national parks, yet these data are important to determining appropriate actions for restoration of resources and (or) potential modifications of flow releases on regulated rivers. The river corridor through the bottom of Grand Canyon creates a challenging environment for change-detection monitoring techniques (Belnap et al. 2008).

  7. Re-collection of Fish Canyon Tuff for fission-track standardization

    USGS Publications Warehouse

    Naeser, C.W.; Cebula, G.T.

    1984-01-01

    The PURPOSE of this note is to announce the availability of apatite and zircon from a third collection of the Oligocene Fish Canyon Tuff (FC-3). Apatite and zircon separated from the Fish Canyon Tuff have prove to be a useful standard for fission-track dating, both for interlaboratory comparisons and for checking procedures within a laboratory. In May 1981, about 540 kg of Fish Canyon Tuff were collected for mineral separation. Approximately 7. 5 g of apatite, 6. 5 g of zircon, and 89 g of sphene were recovered from this collection. This new material is now ready for distribution.

  8. Critical Climate Controls and Information Needs for the Glen Canyon Adaptive Management Program and Environmental Assessment in the Grand Canyon Region

    NASA Astrophysics Data System (ADS)

    Melis, T. S.; Jain, S.; Topping, D. J.; Pulwarty, R. S.; Eischeid, J. K.

    2005-12-01

    Climatic drivers of episodic to interdecadal variations to the observed changes in the flood magnitude, timing and spatial scales affect the sediment inputs to the Colorado River ecosystem. Since the 1963 closure of Glen Canyon Dam, the dominant sole major supplier of sand to the Colorado River in the upper portion of Grand Canyon is the Paria River, which supplies about 6% of the pre-dam supply of sand at the upstream boundary of Grand Canyon National Park. Sand is delivered by the Paria River during short-duration (< 24 hours), large magnitude (up to 300 cubic meters/second) floods that occur primarily during the warm season (July-October). The planning and decision processes in the Glen Canyon Dam Adaptive Management Program (GCD-AMP) strive to balance numerous, often competing, objectives, such as,water supply, hydropower generation, low flow maintenance, maximizing conservation of the tributary supplied sediment, endangered species recovery, and cultural resources. In this work, we focus on a key concern identified by the AMP, related to the timing and volume of sediment input into Grand Canyon. Adequate sediment inputs into the river ecosystem Canyon combined with active flow management, of the timed in the form of strategically timed bypass releases from Glen Canyon Dam, support the restoration and maintenance of sand bar habitats and instream ecology. Variability in regional precipitation distribution on multiple time scales is diagnosed with emphasis on understanding the relative role of East Pacific tropical storms, North Pacific sea surface temperatures, and subtropical moisture sources. On longer time scales, structured variations in the sediment supply imply a changing baseline for mean ecological and geomorphological conditions in the Canyon, counter to the static view taken in the current environmental impact assessments. Better understanding of the coupled climate-hydrologic variations on multiple time scales is increasingly recognized as critical

  9. Visual Observations of Mixing Quality in a Prototype Canyon Tank

    SciTech Connect

    Hassan, N.M.

    1995-03-07

    A series of mixing tests were performed to identify the range of liquid levels and overall dispersed (organic) concentrations where a constant agitator speed representative of plant operations could eliminate a separate organic layer on the liquid surface. The test runs were made in a transparent, baffled, paddle-agitated, Plexiglas vessel which was fitted with three concentric cooling coils. A visual observation method was used without taking any samples to determine the quality of mixing in the agitated vessel as a function of the total liquid level in the vessel at a given dispersed phase concentration (8 vol %) and various organic phase concentrations at a constant water content. The observations have determined that gross uniform dispersion throughout a canyon tank can be achieved with the current plant impeller speed when the total liquid level is near the vicinity of the second (top) impeller. These observations were recorded in a video tape.

  10. Grand Canyon Trekkers: school-based lunchtime walking program.

    PubMed

    Hawthorne, Alisa; Shaibi, Gabriel; Gance-Cleveland, Bonnie; McFall, Sarah

    2011-02-01

    The incidence of childhood overweight is especially troubling among low income Latino youth. Grand Canyon Trekkers (GCT) was implemented as a quasi-experimental study in 10 Title 1 elementary schools with a large Latino population to examine the effects of a 16-week structured walking program on components of health-related physical fitness: Body Mass Index (BMI), waist circumference, and cardio-respiratory. Data on 1,074 research participants revealed no significance changes in BMI or waist circumference (p > .05); however, cardio-respiratory fitness increased by 37.1% over baseline. Cardiovascular fitness is an independent determinant of long-term health; therefore, the GCT program may have significantly improved the future health profile of the participants and decreased their risk of metabolic diseases.

  11. The Relief Canyon gold deposit, Nevada: a mineralized solution breccia

    USGS Publications Warehouse

    Wallace, A.R.

    1989-01-01

    The Relief Canyon gold deposit in the Humboldt Range of western Nevada is a low-grade, high-tonnage orebody of Tertiary or younger age. The host rocks include limestones of the Triassic Cane Spring Formation, which are overlain by shales of the Triassic Grass Valley Formation. Gold, fluorite, pyrite, silver, calcite, and fine-grained silica are the principal hydrothermal minerals in the deposit. The deposit formed at a relatively shallow depth. On the basis of fluid inclusion data, late-stage hydrothermal fluids related to gold and fluorite deposition were extremely dilute and had temperatures near 200??C. The fluid inclusions in fluorite show no evidence for boiling, but porous crackle breccias in the jasperoids suggest that hydrobrecciation took place. -from Author

  12. Public response to the Diablo Canyon Nuclear Generating Station

    SciTech Connect

    Pijawka, K.D.

    1982-08-01

    The authors examine the nature of the public response to the Diablo Canyon Nuclear Generating Station located in San Luis Obispo, California, from the early 1960s to the present. Four distinct phases of public intervention were discerned, based on change in both plant-related issues and in the nature of the antinuclear constituencies in the region. The level of public concern varied both geographically and temporally and is related to the area's social structure, environmental predispositions, and distribution of plant-related economic benefits. External events, such as the prolonged debate over the risk assessment of the seismic hazard and the Three Mile Island accident were found to be important factors in explaining variation in public concern and political response.

  13. Results from the Bell Canyon borehole plugging test

    SciTech Connect

    Christensen, C. L.

    1980-01-01

    The BHP is an integrated program involving consequence assessment and plug performance calculations, materials evaluation, instrumentation development and field testing, and interfaces directly with other WIPP-related activities. This paper describes an in situ test conducted under the BHP Field Test Task. The Bell Canyon Test was conducted to evaluate candidate grout plugging mixes and plug emplacement techniques, and to assess plug performance under in-situ cure conditions. Laboratory testing of the brine-grout/rock combination revealed an adverse reaction between the brine-grout and the anhydrite. This discovery permitted a timely change to an additional laboratory compatibility testing program with an alternate fresh-water mix to permit maintenance of the test schedule with little delay. While cement emplacement technology is generally adequate to satisfy repository plugging requirements, plug compatibility with the host rock must be carefully assessed for each repository site. Generally accepted laboratory cement-testing techniques need to include flow characteristics and geochemical stability.

  14. Microbial ecology of deep-water mid-Atlantic canyons

    USGS Publications Warehouse

    Kellogg, Christina A.

    2011-01-01

    The research described in this fact sheet will be conducted from 2012 to 2014 as part of the U.S. Geological Survey's DISCOVRE (DIversity, Systematics, and COnnectivity of Vulnerable Reef Ecosystems) Program. This integrated, multidisciplinary effort will be investigating a variety of topics related to unique and fragile deep-sea ecosystems from the microscopic level to the ecosystem level. One goal is to improve understanding, at the microbiological scale, of the benthic communities (including corals) that reside in and around mid-Atlantic canyon habitats and their associated environments. Specific objectives include identifying and characterizing the microbial associates of deep-sea corals, characterizing the microbial biofilms on hard substrates to better determine their role in engineering the ecosystem, and adding a microbial dimension to benthic community structure and function assessments by characterizing micro-eukaryotes, bacteria, and archaea in deep-sea sediments.

  15. Web-based Interactive Landform Simulation Model - Grand Canyon

    NASA Astrophysics Data System (ADS)

    Luo, W.; Pelletier, J. D.; Duffin, K.; Ormand, C. J.; Hung, W.; Iverson, E. A.; Shernoff, D.; Zhai, X.; Chowdary, A.

    2013-12-01

    Earth science educators need interactive tools to engage and enable students to better understand how Earth systems work over geologic time scales. The evolution of landforms is ripe for interactive, inquiry-based learning exercises because landforms exist all around us. The Web-based Interactive Landform Simulation Model - Grand Canyon (WILSIM-GC, http://serc.carleton.edu/landform/) is a continuation and upgrade of the simple cellular automata (CA) rule-based model (WILSIM-CA, http://www.niu.edu/landform/) that can be accessed from anywhere with an Internet connection. Major improvements in WILSIM-GC include adopting a physically based model and the latest Java technology. The physically based model is incorporated to illustrate the fluvial processes involved in land-sculpting pertaining to the development and evolution of one of the most famous landforms on Earth: the Grand Canyon. It is hoped that this focus on a famous and specific landscape will attract greater student interest and provide opportunities for students to learn not only how different processes interact to form the landform we observe today, but also how models and data are used together to enhance our understanding of the processes involved. The latest development in Java technology (such as Java OpenGL for access to ubiquitous fast graphics hardware, Trusted Applet for file input and output, and multithreaded ability to take advantage of modern multi-core CPUs) are incorporated into building WILSIM-GC and active, standards-aligned curricula materials guided by educational psychology theory on science learning will be developed to accompany the model. This project is funded NSF-TUES program.

  16. Brittle deformation and hoodoo development in Bryce Canyon National Park

    NASA Astrophysics Data System (ADS)

    Haddon, E. K.; Webb, C.; McNitt, J.; Pollock, G. L.; Davis, L.; MacLean, J. S.

    2015-12-01

    Bryce Canyon is a dramatic southeast-facing escarpment located in the transition zone between the Basin and Range Province and the Colorado Plateau. Stream erosion of the Paleocene-to-Eocene Claron Formation generates vast amphitheaters and alcoves replete with elaborate fins, windowed walls, and hoodoos from Fairyland to Bryce Point. Geomorphic models of hoodoo development describe the influence of differential weathering and ice wedging along systematic vertical fractures formed during uplift of the Colorado Plateau. Conjugate shear fractures in the footwall of the south-vergent Rubys Inn thrust fault may provide additional preexisting weaknesses intersecting the predominantly flat-lying strata. During a summer 2015 GeoCorpsTM America internship, we investigated the contribution of joint sets to focused erosion of exposed fins and hoodoo development in Bryce Canyon National Park. Our field mapping documents the nature and spatial distribution of known fractures as well as a previously undocumented third generation characterized by steeply-dipping conjugates and zones of distributed deformation. Evidence for normal reactivation of contractional structures in the Sevier River drainage (MacLean, 2014) suggests that distributed deformation evolved during Basin and Range extension, possibly associated with the nearby Paunsaugunt fault. Cross-cutting relations among fracture sets suggest modest uplift and vertical jointing prior to collapse of the Marysvale volcanic complex (~22-20 Ma) and more recent Basin and Range extension. Spatial trends in fracture density illustrate a systematic increase in vertical, shear fractures, and reactivated zones to the north, proximal to thrust faulting. The increase in fracture density leads to accelerated weathering and erosion, with a corresponding increase in windows, hoodoos, and gentle slopes. While erosional windows commonly develop along vertical fractures intersecting relatively weak lithologies, approximately 60% of the 130

  17. Submarine canyon and fan systems of the California Continental Borderland

    USGS Publications Warehouse

    Normark, W.R.; Piper, D.J.W.; Romans, B.W.; Covault, J.A.; Dartnell, P.; Sliter, R.W.

    2009-01-01

    Late Quaternary turbidite and related gravity-flow deposits have accumulated in basins of the California Borderland under a variety of conditions of sediment supply and sea-level stand. The northern basins (Santa Barbara, Santa Monica, and San Pedro) are closed and thus trap virtually all sediment supplied through submarine canyons and smaller gulley systems along the basin margins. The southern basins (Gulf of Santa Catalina and San Diego Trough) are open, and, under some conditions, turbidity currents flow from one basin to another. Seismic-reflection profiles at a variety of resolutions are used to determine the distribution of late Quaternary turbidites. Patterns of turbidite-dominated deposition during lowstand conditions of oxygen isotope stages 2 and 6 are similar within each of the basins. Chronology is provided by radiocarbon dating of sediment from two Ocean Drilling Program sites, the Mohole test-drill site, and large numbers of piston cores. High-resolution, seismic-stratigraphic frameworks developed for Santa Monica Basin and the open southern basins show rapid lateral shifts in sediment accumulation on scales that range from individual lobe elements to entire fan complexes. More than half of the submarine fans in the Borderland remain active at any given position of relative sea level. Where the continental shelf is narrow, canyons are able to cut headward during sea-level transgression and maintain sediment supply to the basins from rivers and longshore currents during highstands. Rivers with high bedload discharge transfer sediment to submarine fans during both highstand and lowstand conditions. ?? 2009 The Geological Society of America.

  18. Lightning protection for the process canyons at the Savannah River site

    SciTech Connect

    McAfee, D.E.

    1995-12-31

    Westinghouse Savannah River Company (WSRC) has performed Lightning Studies for the existing Process Canyons at the Savannah River Site (SRS). These studies were initiated to verify the lightning protection systems for the facilities and to compare the installations to the National Fire Protection (NFPA) Standard 780, Lighting Protection Code, 1992. The original study of the F-Canyon was initiated to develop answers to concerns raised by the Defense Nuclear Facility Safety Board (DNFSB). Once this study was completed it was determined that a similar study for H-Canyon would be prudent; followed by an evaluation of the Defense Waste Processing Facility (DWPF) Vitrification Building (S-Canyon). This paper will provide an overview of the nature of lightning and the principals of lightning protection. This will provide the reader with a basic understanding of the phenomena of lighting and its potential for damaging structures, components, and injuring personnel in or near the structure.

  19. Formation of Box Canyon, Idaho, by megaflood: implications for seepage erosion on Earth and Mars.

    PubMed

    Lamb, Michael P; Dietrich, William E; Aciego, Sarah M; Depaolo, Donald J; Manga, Michael

    2008-05-23

    Amphitheater-headed canyons have been used as diagnostic indicators of erosion by groundwater seepage, which has important implications for landscape evolution on Earth and astrobiology on Mars. Of perhaps any canyon studied, Box Canyon, Idaho, most strongly meets the proposed morphologic criteria for groundwater sapping because it is incised into a basaltic plain with no drainage network upstream, and approximately 10 cubic meters per second of seepage emanates from its vertical headwall. However, sediment transport constraints, 4He and 14C dates, plunge pools, and scoured rock indicate that a megaflood (greater than 220 cubic meters per second) carved the canyon about 45,000 years ago. These results add to a growing recognition of Quaternary catastrophic flooding in the American northwest, and may imply that similar features on Mars also formed by floods rather than seepage erosion.

  20. Collembolan species diversity of calcareous canyons in the Republic of Moldova

    PubMed Central

    Buşmachiu, Galina; Bedos, Anne; Deharveng, Louis

    2015-01-01

    Abstract The study of collembolan communities from the Vîşcăuți canyon in Moldova revealed 63 species belonging to 41 genera and 12 families, including four species new for the fauna of the Republic of Moldova. A checklist of collembolan species identified in the five calcareous canyons sampled so far in Moldova is included, with data on habitats, life form, occurrence and comments of distribution of most remarkable species. Of the 98 recognized species of these calcareous canyons, only 38 were shared by Vîşcăuți and the other canyons. The richness of calcareous habitats together with the high heterogeneity in faunal composition suggests that further significant increase in the species richness of the region may be expected. PMID:26085796

  1. Seismic evidence of conjugate normal faulting: The 1994 Devil Canyon earthquake sequence near Challis, Idaho

    SciTech Connect

    Jackson, Suzette M.

    1994-08-01

    Aftershock hypocenters of the 1984 Devil Canyon, Idaho earthquake indicate the sequence was associated with conjugate normal faulting on two northwest-striking normal faults that bound the Warm Spring Creek graben.

  2. A benchmark for numerical scheme validation of airborne particle exposure in street canyons.

    PubMed

    Marini, S; Buonanno, G; Stabile, L; Avino, P

    2015-02-01

    Measurements of particle concentrations and distributions in terms of number, surface area, and mass were performed simultaneously at eight sampling points within a symmetric street canyon of an Italian city. The aim was to obtain a useful benchmark for validation of wind tunnel experiments and numerical schemes: to this purpose, the influence of wind directions and speeds was considered. Particle number concentrations (PNCs) were higher on the leeward side than the windward side of the street canyon due to the wind vortex effect. Different vertical PNC profiles were observed between the two canyon sides depending on the wind direction and speed at roof level. A decrease in particle concentrations was observed with increasing rooftop wind speed, except for the coarse fraction indicating a possible particle resuspension due to the traffic and wind motion. This study confirms that particle concentration fields in urban street canyons are strongly influenced by traffic emissions and meteorological parameters, especially wind direction and speed.

  3. Status and Trends of the Grand Canyon Population of Humpback Chub

    USGS Publications Warehouse

    Andersen, Matthew E.

    2009-01-01

    The Colorado River Basin supports one of the most distinctive fish communities in North America, including the federally endangered humpback chub (Gila cypha). One of only six remaining populations of this fish is found in Grand Canyon, Arizona. U.S. Geological Survey scientists and their cooperators are responsible for monitoring the Grand Canyon population. Analysis of recently collected data indicates that the number of Grand Canyon adult humpback chub - fish 4 years old and older and capable of reproduction - increased approximately 50 percent between 2001 and 2008. When possible model error is considered, the estimated number of adult chub in the Grand Canyon population is between 6,000 and 10,000. The most likely number is estimated at 7,650 individuals.

  4. On Line Spectrophotometric Measurement of Uranium and Nitrate in H Canyon

    SciTech Connect

    Lascola, R.J.

    2002-10-15

    This report describes the on-line instrumentation developed by the Analytical Development Section of Savannah River Technology Center in support of Highly Enriched Uranium Blend Down processing in H Canyon.

  5. 33. SAR1, LOOKING DOWN CANYON OVER TAILRACE CONSTRUCTION. EEC print ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    33. SAR-1, LOOKING DOWN CANYON OVER TAILRACE CONSTRUCTION. EEC print no. G-C-01-00269, no date. Photograph by Benjamin F. Pearson. - Santa Ana River Hydroelectric System, SAR-1 Powerhouse, Redlands, San Bernardino County, CA

  6. Origin of Theater-headed Tributaries to Escalante and Glen Canyons, Utah

    NASA Astrophysics Data System (ADS)

    Irwin, R. P.; Fortezzo, C. M.; Tooth, S. E.; Howard, A. D.; Zimbelman, J. R.; Barnhart, C. J.; Benthem, A. J.; Brown, C. C.; Parsons, R. A.

    2009-03-01

    Theater-headed tributaries to Glen Canyon, Utah, are important analogs to martian valley networks. Our field study suggests a hybrid model involving seepage weathering of Navajo sandstone, sheet fracturing, and transport of debris by flash floods.

  7. 80 FR 9279 - Deer Flat National Wildlife Refuge, Canyon, Payette, Owyhee, and Washington Counties, ID, and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2015-02-20

    ...-2013-N279; 1265-0000-10137-S3] Deer Flat National Wildlife Refuge, Canyon, Payette, Owyhee, and..., 1010 Dearborn St, Caldwell, ID 83605. [ssquf] Homedale Public Library, 125 W Owyhee Ave, Homedale,...

  8. Fire modeling for Building 221-T - T Plant Canyon Deck and Railroad Tunnel

    SciTech Connect

    Oar, D.L.

    1994-09-29

    This report was prepared by Hughes Associates, Inc. to document the results of fire models for building 221-T Canyon Deck and Railroad Tunnel. Backup data is contained in document No. WHC-SD-CP-ANAL-010, Rev. 0.

  9. Integrated Project Management Planning for the Deactivation of the Savannah River Site F-Canyon Complex

    SciTech Connect

    Clark, T.G.

    2000-12-01

    This paper explains the planning process that is being utilized by the Westinghouse Savannah River Company to take the F-Canyon Complex facilities from operations to a deactivated condition awaiting final decommissioning.

  10. An Improved Three-Dimensional Simulation of the Diurnally Varying Street-Canyon Flow

    NASA Astrophysics Data System (ADS)

    Yaghoobian, Neda; Kleissl, Jan; Paw U, Kyaw Tha

    2014-07-01

    The impact of diurnal variations of the heat fluxes from building and ground surfaces on the fluid flow and air temperature distribution in street canyons is numerically investigated using the PArallelized Large-eddy Simulation Model (PALM). Simulations are performed for a 3 by 5 array of buildings with canyon aspect ratio of one for two clear summer days that differ in atmospheric instability. A detailed building energy model with a three-dimensional raster-type geometry—Temperature of Urban Facets Indoor-Outdoor Building Energy Simulator (TUF-IOBES)—provides urban surface heat fluxes as thermal boundary conditions for PALM. In vertical cross-sections at the centre of the spanwise canyon the mechanical forcing and the horizontal streamwise thermal forcing at roof level outweigh the thermal forces from the heated surfaces inside the canyon in defining the general flow pattern throughout the day. This results in a dominant canyon vortex with a persistent speed, centered at a constant height. Compared to neutral simulations, non-uniform heating of the urban canyon surfaces significantly modifies the pressure field and turbulence statistics in street canyons. Strong horizontal pressure gradients were detected in streamwise and spanwise canyons throughout the day, and which motivate larger turbulent velocity fluctuations in the horizontal directions rather than in the vertical direction. Canyon-averaged turbulent kinetic energy in all non-neutral simulations exhibits a diurnal cycle following the insolation on the ground in both spanwise and streamwise canyons, and it is larger when the canopy bottom surface is paved with darker materials and the ground surface temperature is higher as a result. Compared to uniformly distributed thermal forcing on urban surfaces, the present analysis shows that realistic non-uniform thermal forcing can result in complex local airflow patterns, as evident, for example, from the location of the vortices in horizontal planes in the

  11. Lava Falls Rapid in Grand Canyon; effects of late Holocene debris flows on the Colorado River

    USGS Publications Warehouse

    Webb, Robert H.; Melis, Theodore S.; Griffiths, Peter G.; Elliott, John G.; Cerling, Thure E.; Poreda, Robert J.; Wise, Thomas W.; Pizzuto, James E.

    1999-01-01

    Lava Falls Rapid is the most formidable reach of whitewater on the Colorado River in Grand Canyon and is one of the most famous rapids in the world. Debris flows in 1939, 1954, 1955, 1966, and 1995, as well as prehistoric events, completely changed flow through the rapid. Floods cleared out much of the increased constrictions, but releases from Glen Canyon Dam, including the 1996 controlled flood, are now required to remove the boulders deposited by the debris flows.

  12. Colorado River sediment transport 1. Natural sediment supply limitation and the influence of Glen Canyon Dam

    USGS Publications Warehouse

    Topping, D.J.; Rubin, D.M.; Vierra, L.E.

    2000-01-01

    Analyses of flow, sediment-transport, bed-topographic, and sedimentologic data suggest that before the closure of Glen Canyon Dam in 1963, the Colorado River in Marble and Grand Canyons was annually supply-limited with respect to fine sediment (i.e., sand and finer material). Furthermore, these analyses suggest that the predam river in Glen Canyon was not supply-limited to the same degree and that the degree of annual supply limitation increased near the head of Marble Canyon. The predam Colorado River in Grand Canyon displays evidence of four effects of supply limitation: (1) seasonal hysteresis in sediment concentration, (2) seasonal hysteresis in sediment grain size coupled to the seasonal hysteresis in sediment concentration, (3) production of inversely graded flood deposits, and (4) development or modification of a lag between the time of a flood peak and the time of either maximum or minimum (depending on reach geometry) bed elevation. Analyses of sediment budgets provide additional support for the interpretation that the predam river was annually supply-limited with respect to fine sediment, but it was not supply-limited with respect to fine sediment during all seasons. In the average predam year, sand would accumulate and be stored in Marble Canyon and upper Grand Canyon for 9 months of the year (from July through March) when flows were dominantly below 200-300 m3/s; this stored sand was then eroded during April through June when flows were typically higher. After closure of Glen Canyon Dam, because of the large magnitudes of the uncertainties in the sediment budget, no season of substantial sand accumulation is evident. Because most flows in the postdam river exceed 200-300 m3/s, substantial sand accumulation in the postdam river is unlikely.

  13. Influence of a dam on fine-sediment storage in a canyon river

    NASA Astrophysics Data System (ADS)

    Hazel, Joseph E.; Topping, David J.; Schmidt, John C.; Kaplinski, Matt

    2006-03-01

    Glen Canyon Dam has caused a fundamental change in the distribution of fine sediment storage in the 99-km reach of the Colorado River in Marble Canyon, Grand Canyon National Park, Arizona. The two major storage sites for fine sediment (i.e., sand and finer material) in this canyon river are lateral recirculation eddies and the main-channel bed. We use a combination of methods, including direct measurement of sediment storage change, measurements of sediment flux, and comparison of the grain size of sediment found in different storage sites relative to the supply and that in transport, in order to evaluate the change in both the volume and location of sediment storage. The analysis shows that the bed of the main channel was an important storage environment for fine sediment in the predam era. In years of large seasonal accumulation, approximately 50% of the fine sediment supplied to the reach from upstream sources was stored on the main-channel bed. In contrast, sediment budgets constructed for two short-duration, high experimental releases from Glen Canyon Dam indicate that approximately 90% of the sediment discharge from the reach during each release was derived from eddy storage, rather than from sandy deposits on the main-channel bed. These results indicate that the majority of the fine sediment in Marble Canyon is now stored in eddies, even though they occupy a small percentage (˜17%) of the total river area. Because of a 95% reduction in the supply of fine sediment to Marble Canyon, future high releases without significant input of tributary sediment will potentially erode sediment from long-term eddy storage, resulting in continued degradation in Marble Canyon.

  14. A comprehensive review of visual air quality at the Grand Canyon.

    PubMed

    Archer, S F; Molenar, J V; Dietrich, D L

    1989-04-01

    The Grand Canyon, located in Northern Arizona, is one of the seven natural wonders of the world, and has been set aside as a National Park to preserve its unique character. Several million visitors from all over the world travel to the Grand Canyon each year to witness its awesome beauty, As a natural preserve, the area protects numerous values such as genetic diversity, solitude, non-mechanized recreation, etc, but the majority of visitors travel to the Grand Canyon for one reason: to view the scenery.There have been reports in the general press (and even in the United States Congressional Hearings) that visual conditions at the Grand Canyon have been seriously degraded by air pollution. Over the past nine years, a vast array of visibility-related research and monitoring has been conducted to determine the extent and probable cause of this visible degradation. Studies have included optical measurements, pollution characterization, source-receptor relationship analysis, and human perception of visual air quality. The resulting data document the visual air quality of the Grand Canyon and provide a basis to qualitatively and quantitatively evaluate significant events and trends.This poster comprehensively assembles, updates, analyzes and summarizes these various studies to report what has happened to air clarity at the Grand Canyon. The authors examine: - the extent and variation of optical conditions through an examination of reported standard visual range data and a qualitative review of standard photographic monitoring record; - the scientific basis and measurement techniques used to quantify optical conditions; - the probable causes of visual degradation by analyzing the chemical properties of collected aerosols, and through investigation of air mass trajectories; - how visitors to the Grand Canyon perceive and value visual air quality; - the implications study results have for control of air pollutants outside protected natural areas. By examining the situation

  15. Temperature-gradient and heat-flow data, Panther Canyon, Nevada

    SciTech Connect

    Fisher, Marci A.; Gardner, Murray C.

    1981-07-01

    A series of six shallow temperature-gradient holes were drilled for Sunoco Energy Development Company in Panther Canyon, Pershing County, Nevada during the period March 24 through June 15, 1981. A proposed intermediate-depth gradient hole was spud but abandoned after encountering unresolvable drilling problems. The locations of these holes are shown on figure 1. This report summarizes the results of the Panther Canyon project.

  16. Side-scan sonar imaging of the Colorado River, Grand Canyon

    USGS Publications Warehouse

    Anima, Roberto; Wong, Florence L.; Hogg, David; Galanis, Peter

    2007-01-01

    This paper presents data collection methods and side-scan sonar data collected along the Colorado River in Grand Canyon in August and September of 2000. The purpose of the data collection effort was to image the distribution of sand between Glen Canyon Dam and river mile 87.4 before and after the 31,600 cfs flow of September 6-8. The side-scan sonar imaging focused on pools between rapids but included smaller rapids where possible.

  17. Diurnal variation of NOx and ozone exchange between a street canyon and the overlying air

    NASA Astrophysics Data System (ADS)

    Kwak, Kyung-Hwan; Baik, Jong-Jin

    2014-04-01

    The diurnal variation of NOx and O3 exchange between a street canyon and the overlying air in two dimensions is investigated to understand reactive pollutant removal and entrainment across the roof level of the street canyon. The computational fluid dynamics (CFD) model used in this study is a Reynolds-averaged Navier-Stokes equations (RANS) model and includes the urban surface and radiation processes and the comprehensive chemical processes. The CFD model is used for the one-day simulation in which the easterly ambient wind blows perpendicular to the north-south oriented street canyon with a canyon aspect ratio of 1. In the morning when the surface temperature of the downwind building wall is higher than that of the upwind building wall, two counter-rotating vortices appear in the street canyon (flow regime II). In the afternoon when the surface temperature of the upwind building wall is higher than that of the downwind building wall, an intensified primary vortex appears in the street canyon (flow regime I). The NOx and O3 exchange is generally active in the region close to the building wall with the higher temperature regardless of flow regime. The NOx and O3 exchange by turbulent flow is dominant in flow regime II, whereas the NOx and O3 exchange by mean flow becomes comparable to that by turbulent flow in a certain period of flow regime I. The NOx and O3 exchange velocities are similar to each other in the early morning, whereas these are significantly different from each other around noon and in the afternoon. This behavior indicates that the exchange velocity is dependent on flow regime. In addition, the diurnal variability of O3 exchange velocity is found to be dependent on photochemistry rather than dry deposition in the street canyon. This study suggests that photochemistry as well as flow in a street canyon is needed to be taken into account when exchange velocities for reactive pollutants are estimated.

  18. Influence of a dam on fine-sediment storage in a canyon river

    USGS Publications Warehouse

    Hazel, J.E.; Topping, D.J.; Schmidt, J.C.; Kaplinski, M.

    2006-01-01

    Glen Canyon Dam has caused a fundamental change in the distribution of fine sediment storage in the 99-km reach of the Colorado River in Marble Canyon, Grand Canyon National Park, Arizona. The two major storage sites for fine sediment (i.e., sand and finer material) in this canyon river are lateral recirculation eddies and the main-channel bed. We use a combination of methods, including direct measurement of sediment storage change, measurements of sediment flux, and comparison of the grain size of sediment found in different storage sites relative to the supply and that in transport, in order to evaluate the change in both the volume and location of sediment storage. The analysis shows that the bed of the main channel was an important storage environment for fine sediment in the predam era. In years of large seasonal accumulation, approximately 50% of the fine sediment supplied to the reach from upstream sources was stored on the main-channel bed. In contrast, sediment budgets constructed for two short-duration, high experimental releases from Glen Canyon Dam indicate that approximately 90% of the sediment discharge from the reach during each release was derived from eddy storage, rather than from sandy deposits on the main-channel bed. These results indicate that the majority of the fine sediment in Marble Canyon is now stored in eddies, even though they occupy a small percentage (???17%) of the total river area. Because of a 95% reduction in the supply of fine sediment to Marble Canyon, future high releases without significant input of tributary sediment will potentially erode sediment from long-term eddy storage, resulting in continued degradation in Marble Canyon. Copyright 2006 by the American Geophysical Union.

  19. Amphibian acoustic data from the Arizona 1, Pinenut, and Canyon breccia pipe uranium mines in Arizona

    USGS Publications Warehouse

    Hinck, Jo E.; Hossack, Blake R.; Honeycutt, Richard

    2017-01-01

    The data consists of a summary of amphibian acoustic recordings at Canyon, Arizona 1, and Pinenut mines near the Grand Canyon. USGS is currently conducting biological surveys associated with uranium mines on federal lands in Arizona. These surveys include determining the composition of the local amphibian community. Original raw acoustic recordings used to create this summary data table are archived at Columbia Environmental Research Center.

  20. Canyon and channel networks of Peru-Chile fore arc at Arica Bight

    SciTech Connect

    Coulbourn, W.T. )

    1990-05-01

    Canyons and channels of the Peru-Chile fore arc between 17{degree}30'S to 19{degree}30'S form a complex, integrated network revealed in SeaMARC II side-scan mosaics. The largest canyon, incised 200-600 m, is bordered by a series of sidewall slumps, producing a sinuosity that mimics subaerial meanders. The canyon courses across the Arequipa fore-arc basin floor, across a structural high and onto the middle trench slope to about 4,000 m where it disappears into a background of complex small-scale structures, From 500-2,500 m depth the canyon strikes north-south oblique to the regional slope. At 2,500 m, it abruptly turns to the southwest toward the trench axis. At this elbow, a second canyon heads on the midslope and also trends north-south until 3,500 m, where it too abruptly changes to a southwest course. A history of stream piracy analogous to subaerial systems is implied in this geometry. Tributaries join this main canyon from the landward side, forming a dendritic pattern. These channels have levees which are linked by submarine crevasse splays to sediment waves on the Arequipa basin floor. The orientation of the waves is reminiscent of bow waves from a passing ship, oblique to channel and pointing downslope, and may provide an indication of the vertical extent of passing turbidity currents. Sediments are dominantly olive gray, hemipelagic silts with sands present only immediately adjacent to the canyons. Boulders of mudstone line portions of the canyon floor. Sands are absent from the lowermost slope and trench axis, as are any indications of submarine fans. Sands may be rare in this system, with those that are present kneaded into the active margin system along the lower trench slope.

  1. Near-inertial motions in the DeSoto Canyon during Hurricane Georges

    NASA Astrophysics Data System (ADS)

    Jordi, Antoni; Wang, Dong-Ping; Hamilton, Peter

    2016-09-01

    Hurricane Georges passed directly over an array of 13 moorings deployed in the DeSoto Canyon in the northern Gulf of Mexico on 27-28 September 1998. Current velocity data from the mooring array were analyzed together with a primitive-equation model simulation with realistic hurricane forcing, to characterize the generation and propagation of the hurricane-generated near-inertial waves. The model successfully reproduces the observed mean (sub-inertial) and near-inertial motions. The upper ocean response is strongly impacted by the canyon 'wall': a strong jet is formed along the slope, and the near-inertial motions on the shelf are rapidly suppressed. The model results moreover suggest that strong near-inertial waves in the mixed layer are mostly trapped in an energy flux recirculating gyre around the canyon. This gyre retains the near-inertial energy in the canyon region and enhances the transfer of near-inertial energy below the mixed layer. Additional simulations with idealized topographies show that the presence of a steep slope rather than the canyon is fundamental for the generation of this recirculating gyre. The near-inertial wave energy budget shows that during the study period the wind generated an input of 6.79 × 10-2 Wm-2 of which about 1/3, or 2.43 × 10-2 Wm-2, was transferred below the mixed layer. The horizontal energy flux into and out of the canyon region, in contrast, was relatively weak.

  2. Rapid Formation of a Modern Bedrock Canyon by a Single Flood Event (Invited)

    NASA Astrophysics Data System (ADS)

    Lamb, M. P.; Fonstad, M. A.

    2010-12-01

    Although ancient megafloods have carved some of the most spectacular canyons on Earth and Mars, quantifying flood discharge, duration and erosion mechanics is hampered because we lack modern analogs. Canyon Lake Gorge, Texas, was carved in 2002 during a single catastrophic flood event and offers a rare opportunity to analyze canyon formation and test paleo-hydraulic-reconstruction techniques under known topographic and hydraulic conditions. Here we use topography and imagery from before and after the flood, discharge measured during the event, field measurements, and sediment-transport modeling to show that the flood moved meter-sized boulders, excavated ~7 m of rock, and transformed a soil-mantled valley into a bedrock canyon in ~ 3 days. Canyon morphology is strongly dependent on rock type where plucking of limestone blocks produced waterfalls, inner channels and strath terraces, and abrasion of cemented alluvium sculpted walls, plunge pools and streamlined islands. Canyon formation was so rapid that erosion might have been limited by the ability of the flow to transport sediment, which greatly simplifies modeling and may improve hydraulic reconstructions of other megafloods on Earth and Mars.

  3. Event-driven sediment flux in Hueneme and Mugu submarine canyons, southern California

    USGS Publications Warehouse

    Xu, J. P.; Swarzenski, P.W.; Noble, M.; Li, A.-C.

    2010-01-01

    Vertical sediment fluxes and their dominant controlling processes in Hueneme and Mugu submarine canyons off south-central California were assessed using data from sediment traps and current meters on two moorings that were deployed for 6 months during the winter of 2007. The maxima of total particulate flux, which reached as high as 300+ g/m2/day in Hueneme Canyon, were recorded during winter storm events when high waves and river floods often coincided. During these winter storms, wave-induced resuspension of shelf sediment was a major source for the elevated sediment fluxes. Canyon rim morphology, rather than physical proximity to an adjacent river mouth, appeared to control the magnitude of sediment fluxes in these two submarine canyon systems. Episodic turbidity currents and internal bores enhanced sediment fluxes, particularly in the lower sediment traps positioned 30 m above the canyon floor. Lower excess 210Pb activities measured in the sediment samples collected during periods of peak total particulate flux further substantiate that reworked shelf-, rather than newly introduced river-borne, sediments supply most of the material entering these canyons during storms.

  4. Hydropower and the environment: A case study at Glen Canyon Dam

    SciTech Connect

    Wegner, D.L.

    1995-12-31

    The management of hydroelectric resources in the Colorado River requires a balancing of hydrologic, social, natural and cultural resources. The resulting management often has to deal with inherently conflicting objectives, short and long-term goals, time frames and operational flexibility. Glen Canyon Dam, AZ, on the Colorado River, controls the release of water into the Grand Canyon. The dam has been under intense public scrutiny since it was completed in 1963. An Environmental Impact Statement evaluating the future operations and options for Glen Canyon Dam was initiated by the Department of the Interior in 1989 and completed in 1995. An Adaptive Management approach to future operational management has been developed as part of the Glen Canyon Dam Environmental Impact Statement process. Future operations at Glen Canyon Dam will take into consideration the need to balance water movement and hydroelectricity development with natural, recreation, Native American and cultural needs. Future management of rivers requires acknowledgement of the dynamic nature of ecosystems and the need to link scientific information into the decision-making process. Lessons learned and programs developed at Glen Canyon Dam may be applied to other river systems.

  5. Mixing and phytoplankton dynamics in a submarine canyon in the West Antarctic Peninsula

    NASA Astrophysics Data System (ADS)

    Carvalho, Filipa; Kohut, Josh; Oliver, Matthew J.; Sherrell, Robert M.; Schofield, Oscar

    2016-07-01

    Bathymetric depressions (canyons) exist along the West Antarctic Peninsula shelf and have been linked with increased phytoplankton biomass and sustained penguin colonies. However, the physical mechanisms driving this enhanced biomass are not well understood. Using a Slocum glider data set with over 25,000 water column profiles, we evaluate the relationship between mixed layer depth (MLD, estimated using the depth of maximum buoyancy frequency) and phytoplankton vertical distribution. We use the glider deployments in the Palmer Deep region to examine seasonal and across canyon variability. Throughout the season, the ML becomes warmer and saltier, as a result of vertical mixing and advection. Shallow ML and increased stratification due to sea ice melt are linked to higher chlorophyll concentrations. Deeper mixed layers, resulting from increased wind forcing, show decreased chlorophyll, suggesting the importance of light in regulating phytoplankton productivity. Spatial variations were found in the canyon head region where local physical water column properties were associated with different biological responses, reinforcing the importance of local canyon circulation in regulating phytoplankton distribution in the region. While the mechanism initially hypothesized to produce the observed increases in phytoplankton over the canyons was the intrusion of warm, nutrient enriched modified Upper Circumpolar Deep Water (mUCDW), our analysis suggests that ML dynamics are key to increased primary production over submarine canyons in the WAP.

  6. Potential hazards from floodflows in Grapevine Canyon, Death Valley National Monument, California and Nevada

    USGS Publications Warehouse

    Bowers, J.C.

    1990-01-01

    Grapevine Canyon is on the western slope of the Grapevine Mountains in the northern part of Death Valley National Monument , California and Nevada. Grapevine Canyon Road covers the entire width of the canyon floor in places and is a frequently traveled route to Scotty 's Castle in the canyon. The region is arid and subject to flash flooding because of infrequent but intense convective storms. When these storms occur, normally in the summer, the resulting floods may create a hazard to visitor safety and property. Historical data on rainfall and floodflow in Grapevine Canyon are sparse. Data from studies made for similar areas in the desert mountains of southern California provide the basis for estimating discharges and the corresponding frequency of floods in the study area. Results of this study indicate that high-velocity flows of water and debris , even at shallow depths, may scour and damage Grapevine Canyon Road. When discharge exceeds 4,900 cu ft/sec, expected at a recurrence interval of between 25 and 50 years, the Scotty 's Castle access road and bridge may be damaged and the parking lot partly inundated. A flood having a 100-year or greater recurrence interval probably would wash out the bridge and present a hazard to the stable and garage buildings but not to the castle buildings, whose foundations are higher than the predicted maximum flood level. (USGS)

  7. Effect of stable stratification on dispersion within urban street canyons: A large-eddy simulation

    NASA Astrophysics Data System (ADS)

    Li, Xian-Xiang; Britter, Rex; Norford, Leslie K.

    2016-11-01

    This study employs a validated large-eddy simulation (LES) code with high tempo-spatial resolution to investigate the effect of a stably stratified roughness sublayer (RSL) on scalar transport within an urban street canyon. The major effect of stable stratification on the flow and turbulence inside the street canyon is that the flow slows down in both streamwise and vertical directions, a stagnant area near the street level emerges, and the vertical transport of momentum is weakened. Consequently, the transfer of heat between the street canyon and overlying atmosphere also gets weaker. The pollutant emitted from the street level 'pools' within the lower street canyon, and more pollutant accumulates within the street canyon with increasing stability. Under stable stratification, the dominant mechanism for pollutant transport within the street canyon has changed from ejections (flow carries high-concentration pollutant upward) to unorganized motions (flow carries high-concentration pollutant downward), which is responsible for the much lower dispersion efficiency under stable stratifications.

  8. Geologic map and upper Paleozoic stratigraphy of the Marble Canyon area, Cottonwood Canyon quadrangle, Death Valley National Park, Inyo County, California

    USGS Publications Warehouse

    Stone, Paul; Stevens, Calvin H.; Belasky, Paul; Montañez, Isabel P.; Martin, Lauren G.; Wardlaw, Bruce R.; Sandberg, Charles A.; Wan, Elmira; Olson, Holly A.; Priest, Susan S.

    2014-01-01

    This geologic map and pamphlet focus on the stratigraphy, depositional history, and paleogeographic significance of upper Paleozoic rocks exposed in the Marble Canyon area in Death Valley National Park, California. Bedrock exposed in this area is composed of Mississippian to lower Permian (Cisuralian) marine sedimentary rocks and the Jurassic Hunter Mountain Quartz Monzonite. These units are overlain by Tertiary and Quaternary nonmarine sedimentary deposits that include a previously unrecognized tuff to which we tentatively assign an age of late middle Miocene (~12 Ma) based on tephrochronologic analysis, in addition to the previously recognized Pliocene tuff of Mesquite Spring. Mississippian and Pennsylvanian rocks in the Marble Canyon area represent deposition on the western continental shelf of North America. Mississippian limestone units in the area (Tin Mountain, Stone Canyon, and Santa Rosa Hills Limestones) accumulated on the outer part of a broad carbonate platform that extended southwest across Nevada into east-central California. Carbonate sedimentation was interrupted by a major eustatic sea-level fall that has been interpreted to record the onset of late Paleozoic glaciation in southern Gondwana. Following a brief period of Late Mississippian clastic sedimentation (Indian Springs Formation), a rise in eustatic sea level led to establishment of a new carbonate platform that covered most of the area previously occupied by the Mississippian platform. The Pennsylvanian Bird Spring Formation at Marble Canyon makes up the outer platform component of ten third-order (1 to 5 m.y. duration) stratigraphic sequences recently defined for the regional platform succession. The regional paleogeography was fundamentally changed by major tectonic activity along the continental margin beginning in middle early Permian time. As a result, the Pennsylvanian carbonate shelf at Marble Canyon subsided and was disconformably overlain by lower Permian units (Osborne Canyon and

  9. Age and evolution of the Grand Canyon revealed by U-Pb dating of water table-type speleothems.

    PubMed

    Polyak, Victor; Hill, Carol; Asmerom, Yemane

    2008-03-07

    The age and evolution of the Grand Canyon have been subjects of great interest and debate since its discovery. We found that cave mammillaries (water table indicator speleothems) from nine sites in the Grand Canyon showed uranium-lead dating evidence for an old western Grand Canyon on the assumption that groundwater table decline rates are equivalent to incision rates. Samples in the western Grand Canyon yielded apparent water table decline rates of 55 to 123 meters per million years over the past 17 million years, in contrast to eastern Grand Canyon samples that yielded much faster rates (166 to 411 meters per million years). Chronology and inferred incision data indicate that the Grand Canyon evolved via headward erosion from west to east, together with late-stage ( approximately 3.7 million years ago) accelerated incision in the eastern block.

  10. California State Waters Map Series—Monterey Canyon and vicinity, California

    USGS Publications Warehouse

    Dartnell, Peter; Maier, Katherine L.; Erdey, Mercedes D.; Dieter, Bryan E.; Golden, Nadine E.; Johnson, Samuel Y.; Hartwell, Stephen R.; Cochrane, Guy R.; Ritchie, Andrew C.; Finlayson, David P.; Kvitek, Rikk G.; Sliter, Ray W.; Greene, H. Gary; Davenport, Clifton W.; Endris, Charles A.; Krigsman, Lisa M.; Dartnell, Peter; Cochran, Susan A.

    2016-06-10

    IntroductionIn 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within the 3-nautical-mile limit of California’s State Waters. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath bathymetry data, acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow subsurface geology.The Monterey Canyon and Vicinity map area lies within Monterey Bay in central California. Monterey Bay is one of the largest embayments along the west coast of the United States, spanning 36 km from its northern to southern tips (in Santa Cruz and Monterey, respectively) and 20 km along its central axis. Not only does it contain one of the broadest sections of continental shelf along California’s coast, it also contains Monterey Canyon, one of the largest and deepest submarine canyons in the world. Note that the California’s State Waters limit extends farther offshore between Santa Cruz and Monterey so that it encompasses all of Monterey Bay.The coastal area within the map area is lightly populated. The community of Moss Landing (population, 204) hosts the largest commercial fishing fleet in Monterey Bay in its harbor. The map area also includes parts of the cities of Marina (population, about 20,000) and Castroville (population, about 6,500). Fertile lowlands of the Salinas River and Pajaro River valleys largely occupy the inland part of the map area, and land use is primarily agricultural.The offshore part of the map area lies completely within the Monterey Bay National Marine Sanctuary. The

  11. SRTM Colored Height and Shaded Relief: Pinon Canyon region, Colorado

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Erosional features are prominent in this view of southern Colorado taken by the Shuttle Radar Topography Mission (SRTM). The area covers about 20,000 square kilometers and is located about 50 kilometers south of Pueblo, Colorado. The prominent mountains near the left edge of the image are the Spanish Peaks, remnants of a 20 million year old volcano. Rising 2,100 meters (7,000 ft) above the plains to the east, these igneous rock formations with intrusions of eroded sedimentary rock historically served as guiding landmarks for travelers on the Mountain Branch of the Santa Fe Trail.

    Near the center of the image is the Pinon Canyon Maneuver Site, a training area for soldiers of the U.S. Army from nearby Fort Carson. The site supports a diverse ecosystem with large numbers of big and small game, fisheries, non-game wildlife, forest, range land and mineral resources. It is bounded on the east by the dramatic topography of the Purgatoire River Canyon, a 100 meter (328 foot) deep scenic red canyon with flowing streams, sandstone formations, and exposed geologic processes.

    Two visualization methods were combined to produce this image: shading and color coding of topographic height. The shade image was derived by computing topographic slope in the northwest-southeast direction. Southern slopes appear bright and northern slopes appear dark. Color coding is directly related to topographic height, with blue and green at the lower elevations, rising through yellow and brown to white at the highest elevations.

    Elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on February 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR)that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added

  12. Sedimentary regime of deep submarine canyons around Fylla Banke, northeastern Labrador Sea

    NASA Astrophysics Data System (ADS)

    Paulsen, Dorthe; Kuijpers, Antoon; Seidenkrantz, Marit-Solveig; Nielsen, Tove

    2014-05-01

    Sedimentary regime of deep submarine canyons around the Fylla Banke, northeastern Labrador Sea Dorthe Paulsen (1), Antoon Kuijpers (2), Marit-Solveig Seidenkrantz (3) and Tove Nielsen (2) 1) Department of Geosciences and Natural Resource Management, University of Copenhagen, Øster Voldgade 10, DK-1350 Copenhagen K 2) Geological Survey of Denmark and Greenland (GEUS), Øster Voldgde 10, DK-1350 Copenhagen K. 3) Centre for Past Climate Studies, Department of Geoscience, Aarhus University. Hoegh-Guldbergs Gade 2, DK-8000 Aarhus C The southern end of the Davis Strait, the comparatively shallow-water area separating the Labrador Sea from the Baffin Bay, is cut by two deep submarine canyons of west Greenland, on the western and eastern side of the Fylla Banke, respectively. The purpose of this study is to investigate Late Pleistocene sedimentary processes governing the area of the two canyons in order to test if gravity flows or ocean currents are the most important factors governing canyon sedimentary processes in this region. Furthermore, an account is given on the formation of the two canyons in order to explain the significant difference between them. The study was carried out based on seismic profiles combined with bathymetric information, and a single sidescan sonar profile from one of the canyons (western canyon). Sedimentary information and an age model are derived from of a 5-m long gravity core (TTR13-AT-479G) collected from the mouth of the western canyon (southern end). The data indicates that the sedimentary regime is today highly affected by northward transport of the ocean currents and that gravity flows (southward from shallower to deep waters) are only of limited significance today. The deep southern end of the canyons are influenced by the upper parts of the deep North Atlantic Deep Water, but the majority of the sediment transport is linked to the strong northward flow of the lower parts of the West Greenland Current. For comparison the sediment

  13. Combining Wind-Tunnel and Field Measurements of Street-Canyon Flow via Stochastic Estimation

    NASA Astrophysics Data System (ADS)

    Perret, Laurent; Blackman, Karin; Savory, Eric

    2016-12-01

    We demonstrate how application of the stochastic estimation method can be employed to combine spatially well-resolved wind-tunnel particle image velocimetry measurements with instantaneous velocity signals from a limited number of sensors (six sonic anemometers located within the canyon in the present case) to predict full-scale flow dynamics in an entire street-canyon cross-section. The investigated configuration corresponds to a street-canyon flow in a neutrally stratified atmospheric boundary layer with the oncoming flow being perpendicular to the main canyon axis. Data were obtained during both full-scale and 1:200-scale wind-tunnel experiments. The performance of the proposed method is investigated using both wind-tunnel data and signals from five sonic anemometers to predict the velocity from the sixth one. In particular, based on analysis of the influence of the high-frequency velocity fluctuations on the quality of the reconstruction, it is shown that stochastic estimation is able to correctly reproduce the large-scale temporal features of the flow with the present set-up. The full dataset is then used to spatially extrapolate the instantaneous flow measured by the six sonic anemometers and perform detailed analysis of instantaneous flow features. The main features of the flow, such as the presence of the shear layer that develops over the canyon and the intermittent ejection and penetration events across the canyon opening, are well predicted by stochastic estimation. In addition, thanks to the high spatial resolution made possible by the technique, the intermittency of the main vortical structure existing within the canyon is demonstrated, as well as its meandering motion in the canyon cross-section. It is also shown that the canyon flow, particularly its spanwise component, is affected by large-scale fluctuations of low temporal frequency along the canyon axis. Finally, the proposed techniques based on wind-tunnel data can prove useful for a priori

  14. Macrofaunal Patterns in and around du Couedic and Bonney Submarine Canyons, South Australia

    PubMed Central

    Dittmann, Sabine; Sorokin, Shirley J.; Hendrycks, Ed

    2015-01-01

    Two South Australian canyons, one shelf-incising (du Couedic) and one slope-limited (Bonney) were compared for macrofaunal patterns on the shelf and slope that spanned three water masses. It was hypothesized that community structure would (H1) significantly differ by water mass, (H2) show significant regional differences and (H3) differ significantly between interior and exterior of each canyon. Five hundred and thirty-one species of macrofauna ≥1 mm were captured at 27 stations situated in depth stratified transects inside and outside the canyons from 100 to1500 m depth. The macrofauna showed a positive relationship to depth in abundance, biomass, species richness and community composition while taxonomic distinctness and evenness remained high at all depths. Biotic variation on the shelf was best defined by variation in bottom water primary production while sediment characteristics and bottom water oxygen, temperature and nutrients defined biotic variation at greater depth. Community structure differed significantly (p<0.01) among the three water masses (shelf-flowing South Australian current, upper slope Flinders current and lower slope Antarctic Intermediate Water) (H1). Although community differences between the du Couedic and Bonney regions were marginally above significance at p = 0.05 (H2), over half of the species captured were unique to each region. This supports the evidence from fish and megafaunal distributions that the du Couedic and Bonney areas are in different bioregions. Overall, the canyon interiors were not significantly different in community composition from the exterior (H3). However, both canyons had higher abundance and/or biomass, increased species dominance, different species composition and coarser sediments near the canyon heads compared to outside the canyons at the same depth (500 m), suggestive of heightened currents within the canyons that influence community composition there. At 1000–1500 m, the canyon interiors were

  15. Macrofaunal Patterns in and around du Couedic and Bonney Submarine Canyons, South Australia.

    PubMed

    Conlan, Kathleen E; Currie, David R; Dittmann, Sabine; Sorokin, Shirley J; Hendrycks, Ed

    2015-01-01

    Two South Australian canyons, one shelf-incising (du Couedic) and one slope-limited (Bonney) were compared for macrofaunal patterns on the shelf and slope that spanned three water masses. It was hypothesized that community structure would (H1) significantly differ by water mass, (H2) show significant regional differences and (H3) differ significantly between interior and exterior of each canyon. Five hundred and thirty-one species of macrofauna ≥ 1 mm were captured at 27 stations situated in depth stratified transects inside and outside the canyons from 100 to 1500 m depth. The macrofauna showed a positive relationship to depth in abundance, biomass, species richness and community composition while taxonomic distinctness and evenness remained high at all depths. Biotic variation on the shelf was best defined by variation in bottom water primary production while sediment characteristics and bottom water oxygen, temperature and nutrients defined biotic variation at greater depth. Community structure differed significantly (p<0.01) among the three water masses (shelf-flowing South Australian current, upper slope Flinders current and lower slope Antarctic Intermediate Water) (H1). Although community differences between the du Couedic and Bonney regions were marginally above significance at p = 0.05 (H2), over half of the species captured were unique to each region. This supports the evidence from fish and megafaunal distributions that the du Couedic and Bonney areas are in different bioregions. Overall, the canyon interiors were not significantly different in community composition from the exterior (H3). However, both canyons had higher abundance and/or biomass, increased species dominance, different species composition and coarser sediments near the canyon heads compared to outside the canyons at the same depth (500 m), suggestive of heightened currents within the canyons that influence community composition there. At 1000-1500 m, the canyon interiors were

  16. Submarine canyon morphologies and evolution on a modern carbonate system: the Northern Slope of Little Bahama Bank (Bahamas).

    NASA Astrophysics Data System (ADS)

    Tournadour, Elsa; Mulder, Thierry; Borgomano, Jean; Hanquiez, Vincent; Ducassou, Emmanuelle; Gillet, Hervé; Sorriaux, Patrick

    2013-04-01

    The recent CARAMBAR cruise (Nov. 2010) on the northern slope of Little Bahama Bank (LBB, Bahamas) provided new seafloor and subsurface data, that improve our knowledge on carbonate slope systems. The new high-resolution multibeam bathymetry data (Kongsberg EM302 echosounder) and very high resolution (3.5 kHz/Chirp subbotom profiler) seismic data show that the upper LBB slope is dissected by 18 canyons. These canyons evolve sharply into short channels opening to depositional fan-shaped lobes. These architectural elements form a narrow carbonate gravity system extending over 40 km along the LBB slope. The features previously described as small linear canyons have a more complex morphology than originally supposed. The several architectural elements that can be distinguished share similar characteristics with siliciclastic canyons. The average morphological features of the canyons are: minimum and maximum water depths of 460 and 970 m resp., mean length = 16.3 km and sinuosity = 1.14. Canyons are floored with flat elongated morphologies interpreted as terraces. Some of these terraces are located at the toe of slide scars on canyon heads and canyon sides which suggest that they result from sediment failures. On the Chirp seismic data, wedge-shape aggrading terraces interpreted as "internal levees" can be observed. These terraces would then be formed by overbanking of the upper part of turbidity currents. Between 530 and 630 m water depth, some canyons exhibit an amphitheater-shaped head with a head wall height ranging from 80 to 100 m. The wall edges of these canyon heads consist of coalescing arcuate slump scars, which suggests that the canyons formed by retrogressive erosion. Other canyons show an amphitheater-shaped head that evolves upslope into linear valleys incising the upper slope between 460 m and 530 m water depth. The onset and the spatial distribution of these linear valleys seem to be influenced by sediments transported from oolitic shoals of Walker Cay

  17. The effects of wildfire on the peak streamflow magnitude and frequency, Frijoles and Capulin Canyons, Bandelier National Monument, New Mexico

    USGS Publications Warehouse

    Veenhuis, J.E.

    2004-01-01

    In June of 1977, the La Mesa fire burned 15,270 acres in and around Frijoles Canyon, Bandelier National Monument and the adjacent Santa Fe National Forest, New Mexico. The Dome fire occurred in April of 1996 in Bandelier National Monument, burned 16,516 acres in Capulin Canyon and the surrounding Dome Wilderness area. Both canyons are characterized by extensive archeological artifacts, which could be threatened by increased runoff and accelerated rates of erosion after a wildfire. The U.S. Geological Survey (USGS) in cooperation with the National Park Service monitored the fires' effects on streamflow in both canyons. Copyright 2004 ASCE.

  18. Environmental and human impact on the sedimentary dynamic in the Rhone Delta subaquatic canyons (France-Switzerland)

    NASA Astrophysics Data System (ADS)

    Arantegui, A.; Corella, J. P.; Loizeau, J. L.; Anselmetti, F. S.; Girardclos, S.

    2012-04-01

    Deltas are very sensitive environments and highly vulnerable to variations in water discharge and the amount of suspended sediment load provided by the delta-forming currents. Human activities in the watershed, such as building of dams and irrigation ditches, or river bed deviations, may affect the discharge regime and sediment input, thus affecting delta growth. Underwater currents create deeply incised canyons cutting into the delta lobes. Understanding the sedimentary processes in these subaquatic canyons is crucial to reconstruct the fluvial evolution and human impact on deltaic environments and to carry out a geological risk assessment related to mass movements, which may affect underwater structures and civil infractructure. Recently acquired high-resolution multibeam bathymetry on the Rhone Delta in Lake Geneva (Sastre et al. 2010) revealed the complexity of the underwater morphology formed by active and inactive canyons first described by Forel (1892). In order to unravel the sedimentary processes and sedimentary evolution in these canyons, 27 sediment cores were retrieved in the distal part of each canyon and in the canyon floor/levee complex of the active canyon. Geophysical, sedimentological, geochemical and radiometric dating techniques were applied to analyse these cores. Preliminary data show that only the canyon originating at the current river mouth is active nowadays, while the others remain inactive since engineering works in the watershed occurred, confirming Sastre et al. (2010). However, alternating hemipelagic and turbiditic deposits on the easternmost canyons, evidence underflow processes during the last decades as well. Two canyons, which are located close to the Rhone river mouth, correspond to particularly interesting deeply incised crevasse channels formed when the underwater current broke through the outer bend of a meander in the proximal northern levee. In these canyons, turbidites occur in the sediment record indicating ongoing

  19. Sediment Dating With Short-Lived Radioisotopes In Monterey Canyon, California Imply Episodes Of Rapid Deposition And Erosion

    NASA Astrophysics Data System (ADS)

    Lorenson, T. D.; Swarzenski, P. W.; Maier, K. L.; Gwiazda, R.; Paull, C. K.; Sumner, E.; Symons, W. O.

    2015-12-01

    Submarine canyons are a major conduit for terrestrial material to the deep sea. To better constrain the timing and rates in which sediment is transported down-canyon, we collected a series of sediment cores along the axis of Monterey Canyon, and quantified mass accumulation rates using short-lived radio-isotopes. A suite of sediment cores were carefully collected perpendicular to the canyon thalweg in water depths of approximately 300m, 500m, 800m, and 1500m using a remotely operated vehicle (ROV). We choose cores that were between 60m and 75m above the canyon thalweg on canyon side bench features for correlation with moored instrument deployments. The sediment cores reveal a complex stratigraphy that includes copious bioturbation features, sand lenses, subtle erosional surfaces, subtle graded bedding, and abrupt changes sediment texture and color. Downcore excess 210Pb and 137Cs profiles imply episodic deposition and remobilization cycles on the canyon benches. Excess 210Pb activities in cores reach depths of up to 1m, implying very rapid sedimentation. Sedimentation rates vary with water depth, generally with the highest sedimentation rate in closest to land, but vary substantially on adjacent canyon benches. Preliminary results demonstrate that sediment movement within Monterey Canyon is both dynamic and episodic on human time-scales and can be reconstructed used short-lived radio-isotopes.

  20. Seafloor characterization and benthic megafaunal distribution of an active submarine canyon and surrounding sectors: The case of Gioia Canyon (Southern Tyrrhenian Sea)

    NASA Astrophysics Data System (ADS)

    Pierdomenico, Martina; Martorelli, Eleonora; Dominguez-Carrió, Carlos; Gili, Josep Maria; Chiocci, Francesco Latino

    2016-05-01

    In this paper, we used multibeam bathymetry and backscatter, high-resolution seismic profiles, ROV video images and sediment samples to identify the principal morpho-sedimentary features and related megabenthic communities along the upper reach of the Gioia Canyon (depth < 600 m) and the surrounding shelf and slope areas. Interpretation of the multidisciplinary dataset was undertaken to evaluate the relationships between seafloor characteristics and faunal distribution along a submarine canyon in an active tectonic setting. The results from this study indicate that physical disturbance on the seafloor at the canyon head and surrounding shelf, related to high sedimentation rates and occasional turbidite flows, may limit the variability of megabenthic communities. Evidence of diffuse trawl marks over soft sedimentary bottoms indicates anthropogenic impact due to fishing activities, which could explain low abundances of megabenthic species observed locally. The canyon margins and flanks along the continental slope host octocorals Funiculina quadrangularis and Isidella elongata, species that are indicative of vulnerable marine ecosystems (VMEs) and relevant in terms of sustainable management priorities. At the Palmi Ridge, the occurrence of outcropping rocks and bottom currents related to the presence of Levantine Intermediate Waters, provide conditions for the development of hard-bottom assemblages, including the black coral Antipathella subpinnata and deep-sea sponges fields.

  1. Reconstruction of submarine canyon systems associated with proto-Stockton arch during Late Cretaceous

    SciTech Connect

    Rider, J.

    1986-04-01

    A hypothetical depositional model of the middle Great Valley gas fields of California includes the area from the Southwest Vernalis gas field in the south (T3S) to the Nicolaus gas field in the north (T12N). The model assumes that (1) the early Campanian Dobbins Shale Member was deposited at or near the shelf/slope break, and (2) the absence of the Dobbins Shale Member indicates scouring processes of active submarine canyon systems. A striking correlation exists between the proposed distribution of the Dobbins Shale Member scour channels and the position of river systems operating today in the valley. The model distinguishes six submarine canyon systems: (1) Feather River/Nicolaus, (2) American River/Florin, (3) Cosumnes River/Poppy Ridge, (4) Mokelumne River/Lodi, (5) Calaveras delta/Mulligan Hill, and (6) Stanislaus River/East Collegeville. The model implies that an extensive delta system was associated with the Calaveras River during deposition of the Dobbins Shale Member, before its erosive exit southwest of the Mulligan Hill gas field, just east of the Los Medanos, Concord, and Willow Pass fields. The presence of possible equivalents of the Dobbins Shale Member of this latter area suggests an early Campanian highland, the proto-Stockton arch. Subsequent Forbes Formation deposition appears to involve apronlike drapes or overlaps of the early Campanian canyons. However, during deposition of the Kione Formation, the canyon systems were reactivated, and canyon scour predominated, matching the scour patterns of the Dobbins Shale Member. From these ancestral canyons, younger canyons could have evolved easily.

  2. How Well Do Submarine Canyon Deposits Represent the Sediment-transport Events That Created Them?

    NASA Astrophysics Data System (ADS)

    Symons, W. O.; Sumner, E.; Paull, C. K.; Xu, J.; Cartigny, M.; Maier, K. L.; Lorenson, T. D.

    2015-12-01

    Submarine canyons act as major conduits of sediment from shallow- to deep-sea regions, yet the sedimentary processes operating within them are poorly understood. This stems from the relative inaccessibility of such complex environments and therefore the difficulty of making direct observations. As a result, much of our understanding of the dynamics of sediment-laden flows in submarine canyons results from making inferences from the deposits that they leave behind in the geological record. This study tests how well geological deposits in the canyon can be used to reconstruct the flows that created them by comparing the sedimentary record on the floor, benches and walls of Monterey canyon, offshore California, with the sediments collected in sediment traps during flow events. The project makes use of systematic transects of precisely located push cores and vibracores that were collected using a remotely operated vehicle (ROV). The cores were collected by the Monterey Bay Aquarium Research Institute (MBARI) at approximately 300 m, 500 m, 800 m, 1000 m, 1200, and 1500 m water depth, with three of these in the vicinity of sediment traps deployed in 2002 by the US Geological Survey. Laser particle-size analysis of the grain sizes present in the push cores was directly compared to the grain size of deposits from the sediment traps, previously analysed using the same technique. A key result suggests that using deposits to reconstruct flows may not be as straightforward as previous studies have assumed. For example the size of sediment found draping the canyon walls can be very different from that collected in sediment traps at the same heights and locations. Two hypotheses are outlined to explain reasons for this unexpected sediment distribution: (1) The vertical sediment distribution is not uniform along the canyon transect, corresponding to differences in turbulence intensity as a result of variations in flow depth and distance from the canyon wall, and (2) flows or not

  3. The Hydrothermal System at the Grand Canyon of the Yellowstone River: Exposed and Hidden

    NASA Astrophysics Data System (ADS)

    Jaworowski, C.; Heasler, H. P.; Susong, D. D.; Neale, C. M.; Sivarajan, S.; Masih, A.

    2012-12-01

    Combining calibrated and corrected night-time, airborne thermal infrared imaging with field information from the 2008 drilling of the Canyon borehole strainmeter (B206) in Yellowstone National Park emphasizes the extensive nature of Yellowstone's hydrothermal system. Both studies contributed to an understanding of the vertical and horizontal flow of heat and fluids through the bedrock in this area. Night-time, airborne thermal infrared imagery, corrected for emissivity and atmosphere clearly shows north-trending faults and fractures transmitting heat and fluids through the rhyolitic bedrock and into the overlying glacial sediments near the Canyon borehole. Along the Grand Canyon of the Yellowstone, the Clear Lake hydrothermal area is an example of hydrothermal alteration at the ground surface. The numerous hydrothermal features exposed in the nearby Grand Canyon of the Yellowstone River and its hydrothermally altered walls are clear evidence of the exposed hydrothermal system. The bedrock geology, geologic processes, and hydrothermal activity combined to form the dramatic Grand Canyon of the Yellowstone. The night-time thermal infrared imagery provides a new view of this exposed hydrothermal system for scientists and visitors. Scientists and Yellowstone Park managers carefully sited the Canyon borehole strainmeter in a green, grassy meadow to insure successful completion of the borehole in a non-hydrothermal area. The closest hydrothermal feature to the drilling site was about 2.5 km to the east. Although excellent exposures of hydrothermal altered bedrock are present about 1.5 km east at the Lower Falls and the Grand Canyon of the Yellowstone River, the connection between exposed hydrothermal areas and the borehole site was not obvious. After drilling through 9 m of brown-gray muds and 113 m of rock, a bottom hole temperature of 81.2 degrees Celsius precluded drilling the hole any deeper than 122 m. The post-drilling data collected from B206 and the airborne

  4. Analyzing sediment impacts for the Glen Canyon Long-term Experimental and Management Plan EIS

    NASA Astrophysics Data System (ADS)

    Russell, K.; Huang, V.; Varyu, D.; Greimann, B. P.; O'Connor, B. L.

    2013-12-01

    The Department of the Interior is currently evaluating alternatives in the Glen Canyon Dam Long-term Experimental and Management Plan (LTEMP) Environmental Impact Statement (EIS). The purpose of the EIS to evaluate dam operations and identify management actions and experimental options that will provide a framework for adaptively managing operations of Glen Canyon Dam over the next 15 to 20 years. Sediment and sandbars along the Colorado River are important downstream resources in Grand Canyon National Park. Sediment is one of the resources being analyzed for impacts in Marble and Grand Canyon. Since 1963, Glen Canyon Dam has regulated the flow in the Colorado River by decreasing the magnitude of annual flood flows and increasing the magnitude of base flows, and has nearly eliminated main-channel sand supply from the upper Colorado River Basin. These changes disrupted the natural ability of the river to build and maintain sandbars. Grand Canyon sandbars provide camping beaches for river runners and hikers, generate habitat for native fish and vegetation, and supply sediment to protect archaeological resources. In order to measure the impacts of the different alternatives on the sediment resource, several different models are being utilized. A sand budget numerical model that tracks the storage and transport of sand in the Colorado River below Glen Canyon Dam developed by the USGS is utilized. The model uses empirically based rating curves for specific particle sizes. The decision criteria for the high flow experiment environmental assessment is applied to the sand budget model as well as other flow changes incorporated in the alternatives. An empirically based sandbar volume model was also developed for the LTEMP EIS process to address the sandbar resource impacts. Based on the model results, performance criteria have been established to allow for comparisons between the alternatives. The criteria include the changes in the sand mass balance of the system, the

  5. Large-eddy simulation of street canyons and urban microclimate using Uintah:MPMICE

    NASA Astrophysics Data System (ADS)

    Nemati Hayati, A.; Stoll, R., II; Harman, T.; Pardyjak, E.

    2014-12-01

    Urban microclimate plays an important role in urban water use, energy use, pollutant transport, and the general comfort and well-being of urban inhabitants. The microclimate interacts locally with urban morphology, water levels, properties of urban surfaces, and vegetation cover all of which contribute significantly to the strong spatial variability observed in urban areas. Considerable parts of urban open spaces take the form of street canyons. These urban street canyons play a remarkable role in creating urban microclimates. Within street canyons themselves, a wide variety of phenomena contribute to complex flow patterns. These include various flow structures such as wake fields, circulation zones, isolated roughness flow, wake interference and skimming flows. In addition, heat fluxes from the buildings and the surrounding area enhance the complexity of the flow field inside the canyon. Here, we introduce Uintah:MPMICE for the simulation of fluid structure interactions in urban flows. Uintah:MPMICE has been developed in a massively parallel computational infrastructure, uses material points to represent buildings, and the large-eddy simulation (LES) technique to represent momentum and scalar transport. To validate Uintah:MPMICE, simulations of typical street canyons are compared against published wind tunnel particle imaging velocimetry (PIV) data for the cases of step-up and step-down street canyons. Our findings show promising results in capturing major flow features, namely wake fields, recirculation zones, wake interference, vortex structures, and flow separation in street canyons. LES results demonstrate the ability of the simulations to predict flow topology details such as secondary circulation zones and wall-originating elevated shear layers in step-up and step-down cases, respectively. Furthermore, mean flow and variance statistics indicate sensitivity to inlet boundary conditions; upstream turbulence generation method, in particular, has a significant

  6. H-CANYON AIR EXHAUST TUNNEL INSPECTION VEHICLE DEVELOPMENT

    SciTech Connect

    Minichan, R.; Fogle, R.; Marzolf, A.

    2011-05-24

    The H-Canyon at Savannah River Site is a large concrete structure designed for chemical separation processes of radioactive material. The facility requires a large ventilation system to maintain negative pressure in process areas for radioactive contamination control and personnel protection. The ventilation exhaust is directed through a concrete tunnel under the facility which is approximately five feet wide and 8 feet tall that leads to a sand filter and stack. Acidic vapors in the exhaust have had a degrading effect on the surface of the concrete tunnels. Some areas have been inspected; however, the condition of other areas is unknown. Experience from historical inspections with remote controlled vehicles will be discussed along with the current challenge of inspecting levels below available access points. The area of interest in the exhaust tunnel must be accessed through a 14 X 14 inch concrete plug in the floor of the hot gang valve corridor. The purpose for the inspection is to determine the condition of the inside of the air tunnel and establish if there are any structural concerns. Various landmarks, pipe hangers and exposed rebar are used as reference points for the structural engineers when evaluating the current integrity of the air tunnel.

  7. Canyon drainage induced mixing over a large basin

    SciTech Connect

    Stalker, J.

    2000-05-01

    Complex terrain surrounding urbanized basins around the world has long been recognized to strongly affect the characteristics of vertical transport and mixing of pollutants. The Department of Energy's Vertical Transport and Mixing (VTMX) program will investigate mixing processes within night-time boundary layers over large urban basins. The program will launch several field experiments within the Salt Lake City basin in the coming years. This modeling study, like many other studies being undertaken by the participants of the VTMX programs, is intended to complement the proposed field experiments by numerically examining some of the flow interactions known to occur in large basins. Using idealized simulations, we particularly investigate drainage flows from deep canyons similar to those along the Wasatch Front into the Salt Lake City basin. Literature shows that under favorable conditions, drainage flows can generate bore waves that may propagate ahead of the density current (e.g., Simpson 1969; Simpson 1982; Crook and Miller 1985). Existence and frequency of such bore waves can profoundly influence the spatial and temporal variability of vertical transport and mixing within large basins. If bore waves do occur on a regular basis within the Salt Lake City basin (a task for the upcoming experiments to determine), then understanding the basin-scale conditions under which these waves are produced and how they may propagate and interact with the city's buildings will be of great importance in characterizing transport and mixing processes within the basin.

  8. Shelf break exchange events near the De Soto Canyon

    NASA Astrophysics Data System (ADS)

    Hamilton, Peter; Speer, Kevin; Snyder, Richard; Wienders, Nicolas; Leben, Robert R.

    2015-11-01

    Observations of currents, temperature, sea-surface height, sea-surface temperature and ocean color, derived from moorings, surface and deep drifters, hydrographic surveys, and satellites, are used to characterize shelf-slope exchange events near the apex of the De Soto Canyon in the northeast Gulf of Mexico. During the winter of 2012-2013, shelf-break time series showed a number of events where cold shelf water extruded over the slope. These events were largely consistent with slope eddies of both signs influencing shelf break currents. Larger-scale circulations, derived from the Loop Current and a separating Loop Current eddy, strongly influenced circulation over the De Soto slope during summer 2012, with flow patterns consistent with potential vorticity conservation over shoaling topography. Statistical investigation into shelf-slope exchange using large numbers of surface drifters indicated that export from the shelf is larger than vice-versa, and is more uniformly distributed along the shelf break. Import onto the shelf appears to favor a region just east of the Mississippi Delta, which is also consistent with the observed onshore transport of surface oil from the Deepwater Horizon disaster.

  9. The Grand Canyon midair collision. A stimulus for change.

    PubMed

    Murphy, G K

    1990-06-01

    Commercial aviation in the United States developed rapidly from a nucleus of pilots who returned from World War I, barnstormed and flew primitive airmail routes, and were hired by the new commerical airlines of the 1930s. The death of U.S. Senator Bronson Cutting in a 1935 crash was an important stimulus to improved governmental regulation of civil aviation. The air traffic control system, primitive until and throughout World War II, was soon proven to be inadequate for postwar demands. The midair collision of two large airliners over the Grand Canyon in June 1956 that killed the 128 persons on board was itself a strong stimulus for serious efforts, particularly in improving air traffic control systems. This and many other difficult problems in aviation safety have been addressed in the subsequent 33 years, some with success, although it has not always been immediate, and with major accidents still occurring. Commercial air travel is safe and widely accepted, however, and there is promise for additional important advances here.

  10. RNA binding domain of Jamestown Canyon virus S segment RNAs.

    PubMed

    Ogg, Monica M; Patterson, Jean L

    2007-12-01

    Jamestown Canyon virus (JCV) is a member of the Bunyaviridae family, Orthobunyavirus genus, California serogroup. Replication and, ultimately, assembly and packaging rely on the process of encapsidation. Therefore, the ability of viral RNAs (vRNAs) (genomic and antigenomic) to interact with the nucleocapsid protein (N protein) and the location of this binding domain on the RNAs are of interest. The questions to be addressed are the following. Where is the binding domain located on both the vRNA and cRNA strands, is this RNA bound when double or single stranded, and does this identified region have the ability to transform the binding potential of nonviral RNA? Full-length viral and complementary S segment RNA, as well as 3' deletion mutants of both vRNA and cRNA, nonviral RNA, and hybrid viral/nonviral RNA, were analyzed for their ability to interact with bacterially expressed JCV N protein. RNA-nucleocapsid interactions were examined by UV cross-linking, filter binding assays, and the generation of hybrid RNA to help define the area responsible for RNA-protein binding. The assays identified the region responsible for binding to the nucleocapsid as being contained within the 5' half of both the genomic and antigenomic RNAs. This region, if placed within nonviral RNA, is capable of altering the binding potential of nonviral RNA to levels seen with wild-type vRNAs.

  11. Variability of modal parameters measured on the Alamosa Canyon Bridge

    SciTech Connect

    Farrar, C.R.; Doebling, S.W.; Cornwell, P.J.; Straser, E.G.

    1996-12-31

    A significant amount of work has been reported in technical literature regarding the use of changes in modal parameters to identify the location and extent of damage in structures. Curiously absent, and critically important to the practical implementation of this work, is an accurate characterization of the natural variability of these modal parameters caused by effects other than damage. To examine this issue, a two-lane, seven-span, composite slab-on-girder bridge near the town of Truth or Consequences in southern New Mexico was tested several times over a period of nine months. Environmental effects common to this location that could potentially produce changes in the measured modal properties include changes in temperature, high winds, and changes to the supporting soil medium. In addition to environmental effects, variabilities in modal testing procedures and data reduction can also cause changes in the identified dynamic properties of the structure. In this paper the natural variability of the frequencies and mode shapes of the Alamosa Canyon bridge that result from changes in time of day when the test was performed, amount of traffic, and environmental conditions will be discussed. Because this bridge has not been in active use throughout the testing period, it is assumed that any change in the observed modal properties are the result of the factors listed above rather than deterioration of the structure itself.

  12. Al-26 production profile and model comparisons in Canyon Diablo

    NASA Technical Reports Server (NTRS)

    Michlovich, E.; Elmore, D.; Vogt, S.; Lipschutz, M.; Masarik, J.; Reedy, R. C.

    1993-01-01

    The large preatmospheric size of the Canyon Diablo meteorite, a radius of about 15 m, makes it especially suitable for systematic studies of cosmogenic nuclide production rates of iron objects in a 2 pi geometry. To reconstruct the exposure history of the meteoroid, Heymann et al. investigated several fragments recovered from known geographic locations around the crater for their shock features and cosmogenic nobel gases. They applied the Signer-Nier noble gas production rate model to establish the preatmospheric depth of the specimens in the meteoroid. Cosmic ray exposure ages suggested a multi-episodic irradiation, with 170 or 540 Ma being inferred for most of the samples studied while two anomalous specimens indicated a possible third exposure age at 940 Ma. Be-10 and Cl-36 have been measured in a number of these same samples by accelerator mass spectrometry (AMS), with use being made of the preatmospheric depths determined in Heymann et al. to construct production profiles. The present study extends the cosmogenic radionuclide data to Al-26 and compares the results with both the production rate model of Reedy and Arnold and production rates determined from the cross sections used by the Reedy-Arnold model (for the major nuclear reactions making Al-26) in combination with differential fluxes calculated using the Los Alamos High Energy Transport (LAHET) Code System. Model calculations for Be-10 and Cl-36 have also been obtained.

  13. Basic repository environmental assessment design basis, Lavender Canyon site

    SciTech Connect

    Not Available

    1988-01-01

    This study examines the engineering factors and costs associated with the construction, operation, and decommissioning of a high-level nuclear waste repository in salt in the Paradox Basin in Lavender Canyon, Utah. The study assumes a repository capacity of 36,000 metric tons of heavy metal (MTHM) of unreprocessed spent fuel and 36,000 MTHM of commercial high-level reprocessing waste, along with 7020 canisters of defense high-level reprocessing waste and associated quantities of remote- and contact-handled transuranic waste (TRU). With the exception of TRU, all the waste forms are placed in 300- to 1000-year-life carbon-steel waste packages in a collocated waste handling and packaging facility (WHPF), which is also described. The construction, operation, and decommissioning of the proposed repository is estimated to cost approximately $5.51 billion. Costs include those for the collocated WHPP, engineering, and contingency, but exclude waste form assembly and shipment to the site and waste package fabrication and shipment to the site. These costs reflect the relative average wage rates of the region and the relatively sound nature of the salt at this site. Construction would require an estimated 7.75 years. Engineering factors and costs are not strongly influenced by environmental considerations. 51 refs., 24 figs., 20 tabs.

  14. Geology of the Red Canyon quadrangle, Montrose county, Colorado

    USGS Publications Warehouse

    McKay, E.J.; Jobin, D.A.

    1953-01-01

    The Red Canyon quadrangle is one of eighteen 7 1/2-minute quadrangles covering the principal carnotite-producing area of southwestern Colorado. The geology of these quadrangles was mapped by the U.S. Geological Survey for the Atomic Energy Commission as part of a comprehensive study of carnotite deposits. The rocks exposed in the eighteen quadrangles consist of crystalline rocks of pre-Cambrian age and sedimentary rocks that range in age from late Paleozoic to Quaternary. Over much of the area the sedimentary rocks are flat lying, but in places the rocks are disrupted by high-angle faults, and northwest-trending folds. Conspicuous among the folds are large anticlines having cores of intrusive salt and gypsum. Most of the carnotite deposits are confined to the Salt Wash sandstone member of the Jurassic Morrison formation. Within this sandstone, most of the deposits are spottily distributed through an arcuate zone known as the "Uruvan Mineral Belt". Individual deposits range in size from irregular masses containing only a few tons of ore to large, tabular masses containing many thousands of tons. The ore consists largely of sandstone selectively impregnated and in part replaced by uranium and vanadium, minerals. Most of the deposits appear to be related to certain sedimentary structures in sandstones of favorable composition.

  15. Late Pleistocene vegetation of Kings Canyon, Sierra Nevada, California

    NASA Astrophysics Data System (ADS)

    Cole, Kenneth

    1983-01-01

    Seven packrat midden samples make possible a comparison between the modern and late Pleistocene vegetation in Kings Canyon on the western side of the southern Sierra Nevada. One modern sample contains macrofossils and pollen derived from the present-day oak-chaparral vegetation. Macrofossils from the six late Pleistocene samples record a mixed coniferous forest dominated by the xerophytic conifers Juniperus occidentalis, Pinus cf. ponderosa, and P. monophylla. The pollen spectra of these Pleistocene middens are dominated by Pinus sp., Taxodiaceae-Cupressaceae-Taxaceae (TCT), and Artemisia sp. Mesophytic conifers are represented by low macrofossil concentrations. Sequoiadendron giganteum is represented by a few pollen grains in the full glacial. Edaphic control and snow dispersal are the most likely causes of these mixed assemblages. The dominant macrofossils record a more xeric plant community than those that now occur on similar substrates at higher elevations or latitudes in the Sierra Nevada. These assemblages suggest that late Wisconsin climates were cold with mean annual precipitation not necessarily greater than modern values. This conclusion supports a model of low summer ablation allowing for the persistence of the glaciers at higher elevations during the late Wisconsin. The records in these middens also suggest that S. giganteum grew at lower elevations along the western side of the range and that P. monophylla was more widely distributed in cismontane California during the Pleistocene.

  16. Great Houses and the Sun - Astronomy of Chaco Canyon

    NASA Astrophysics Data System (ADS)

    McKim Malville, J.; Munro, Andrew

    The primary axes of Basketmaker III pit structures at Shabik'eschee in Chaco Canyon have two orientations, one to the south and the other to the south-south-east. This architectural tradition continued with remarkable continuity throughout the San Juan Basin to the end of Pueblo III. Many of the Great Houses in Chaco, which appear to be massively enlarged front-facing unit pueblos typical of the Northern San Juan, continued this tradition. Orientations of the back walls of Great Houses to the solstice sun or standstill moon may never have been intended by the builders. Claimed inter-site alignments of Great Houses to minor or major standstill limits appear to be the results of local topography and not intended by the builders. Late Bonito phase (AD 1100-1140) Great Houses are distinguished by their planned designs, relatively short construction period, and negligible middens. Solstice sunrise or sunset horizon foresights are present at the majority of these Great Houses, which may have been designed in part to provide demonstrations of the astronomical knowledge of the Chacoan leadership.

  17. Outbreak of leptospirosis among canyoning participants, Martinique, 2011.

    PubMed

    Hochedez, P; Escher, M; Decoussy, H; Pasgrimaud, L; Martinez, R; Rosine, J; Théodose, R; Bourhy, P; Picardeau, M; Olive, C; Ledrans, M; Cabie, A

    2013-05-02

    Two gendarmes who participated in canyoning activities on 27 June 2011 on the Caribbean island of Martinique were diagnosed with leptospirosis using quantitative real-time polymerase chain reaction (qPCR), 9 and 12 days after the event. Among the 45 participants who were contacted, 41 returned a completed questionnaire, of whom eight met the outbreak case definition. The eight cases sought medical attention and were given antibiotics within the first week after fever onset. No severe manifestations of leptospirosis were reported. In seven of the eight cases, the infection was confirmed by qPCR. Three pathogenic Leptospira species, including L. kmetyi, were identified in four of the cases. None of the evaluated risk factors were statistically associated with having developed leptospirosis. Rapid diagnostic assays, such as qPCR, are particularly appropriate in this setting – sporting events with prolonged fresh-water exposure – for early diagnosis and to help formulate public health recommendations. Participants in such events should be made specifically aware of the risk of leptospirosis, particularly during periods of heavy rainfall and flooding.

  18. Effects of River Regulation on Aeolian Landscapes, Grand Canyon National Park, USA

    NASA Astrophysics Data System (ADS)

    Draut, A. E.

    2010-12-01

    Sediment deposits in the Colorado River corridor include fluvial sandbars and aeolian dune fields, and the fluvial deposits are the primary sediment source for sand in the aeolian dunes. This 7-year study examined the effects of river regulation at Glen Canyon Dam (alteration of flow regime, sediment-supply reduction, and consequent loss of fluvial sandbars) on aeolian landscapes downstream in Grand Canyon National Park. A comparative study was developed between aeolian landscapes in Grand Canyon, Arizona, and Cataract Canyon, Utah, upstream of Glen Canyon Dam and its reservoir (Lake Powell), where hydrology and sediment supply of the Colorado River are affected substantially less by artificial river regulation than occurs in Grand Canyon. Before closure of Glen Canyon Dam in 1963, sediment-rich floods (mean annual peak 2400 m3/s) formed sandbars from which wind moved sand inland to form aeolian dunes. After dam operations reduced the amplitude and frequency of high flows, and eliminated the mainstream fluvial sediment supply, Grand Canyon’s fluvial sandbars lost open sand area owing to erosion by river flows and the spread of riparian vegetation. Two types of aeolian landscapes now occur in Grand Canyon: (1) modern fluvial sourced, those downwind of post-dam sandbars; and (2) relict fluvial sourced, whose primary sediment source was deposits from pre-dam floods that were larger than any post-dam flows have been. Sediment supply has been reduced to type (1) dune fields because post-dam sandbars are smaller than in the pre-dam era; new sediment supply to type (2) dune fields essentially has been eliminated. Type 1 aeolian landscapes can receive new windblown sand from sandbars formed by controlled floods (1160 m3/s), which occurred in 1996, 2004, and 2008. Type 1 dune fields, being downwind and within 100 m of controlled-flood sandbars, have significantly higher aeolian sand-transport rates, more open sand, and less biologic soil crust than relict type 2 dune

  19. The timing of sediment transport down Monterey Submarine Canyon, offshore California

    USGS Publications Warehouse

    Stevens, Thomas; Paull, Charles K.; Ussler, William III; McGann, Mary; Buylaert, Jan-Pieter; Lundsten, Eve M

    2013-01-01

    While submarine canyons are the major conduits through which sediments are transported from the continents out into the deep sea, the time it takes for sediment to pass down through a submarine canyon system is poorly constrained. Here we report on the first study to couple optically stimulated luminescence (OSL) ages of quartz sand deposits and accelerator mass spectrometry 14C ages measured on benthic foraminifera to examine the timing of sediment transport through the axial channel of Monterey Submarine Canyon and Fan, offshore California. The OSL ages date the timing of sediment entry into the canyon head while the 14C ages of benthic foraminifera record the deposition of hemipelagic sediments that bound the sand horizons. We use both single-grain and small (∼2 mm area) single-aliquot regeneration approaches on vibracore samples from fining-upward sequences at various water depths to demonstrate relatively rapid, decadal-scale sand transport to at least 1.1 km depth and more variable decadal- to millennial-scale transport to a least 3.5 km depth on the fan. Significant differences between the time sand was last exposed at the canyon head (OSL age) and the timing of deposition of the sand (from 14C ages of benthic foraminifera in bracketing hemipelagic sediments) are interpreted as indicating that the sand does not pass through the entire canyon instantly in large individual events, but rather moves multiple times before emerging onto the fan. The increased spread in single-grain OSL dates with water depth provides evidence of mixing and temporary storage of sediment as it moves through the canyon system. The ages also indicate that the frequency of sediment transport events decreases with distance down the canyon channel system. The amalgamated sands near the canyon head yield OSL ages that are consistent with a sub-decadal recurrence frequency while the fining-upward sand sequences on the fan indicate that the channel is still experiencing events with a 150

  20. Methane ebullition and fate in the Rhone River delta (Lake Geneva) and its subaquatic canyons

    NASA Astrophysics Data System (ADS)

    DelSontro, T.; Sollberger, S.; Corella, J. P.; Wehrli, B.; Girardclos, S.; Anselmetti, F. S.; Senn, D. B.

    2012-04-01

    There is increasing knowledge of the importance of inland waters as sources of atmospheric methane, but widespread variability of total and individual emission pathway estimates remain in the literature. Ebullition (bubbling) is potentially the most efficient transport mechanism from water bodies, particularly shallow water bodies or regions thereof where bubbles have the greatest chance of reaching the atmosphere. However, ebullition is one of the least monitored of the pathways, mostly due to its stochastic nature making it difficult to constrain spatially and temporally. Recent studies on a large tropical reservoir and a large European lake have shown that river deltas (i.e., localized regions of high allochthonous organic matter sedimentation) can be methane ebullition hot spots emitting disproportionate amounts of methane. Therefore, in this study the Rhone River delta (one Europe's most important rivers) of the Alp's largest lake, Lake Geneva, was surveyed for methane ebullition using a bubble size-calibrated 120 kHz split-beam echosounder (Simrad EK60, Kongsberg Maritime). Extensive ebullition was found in the current river delta complex in proximity to the river inflow, which is the major source of atmospheric methane emission in the entire 100 km2 deltaic region. As water depths approach 100 m, ebullition is constrained to only the top levees of the 10 - 40 m high walls of the subaquatic canyon formed by the plunging Rhone River. Ebullition occurs to depths over 200 m on the levee of the active canyon, where CTD profiles suggest that Rhone River water does extend that far along the canyon. As bubble dissolution depends on release depth and bubble size, which was estimated from the rise velocity of deep bubbles, it was discovered that bubbles emitted from 100 m or deeper would not reach the surface; thus the proximal delta remains the prominent methane source. Eight other canyons exist in the delta complex, of which two non-active canyons formed by previous