Sample records for bc surface concentrations

  1. Near-Surface Refractory Black Carbon Observations in the Atmosphere and Snow in the McMurdo Dry Valleys, Antarctica, and Potential Impacts of Foehn Winds

    NASA Astrophysics Data System (ADS)

    Khan, Alia L.; McMeeking, Gavin R.; Schwarz, Joshua P.; Xian, Peng; Welch, Kathleen A.; Berry Lyons, W.; McKnight, Diane M.

    2018-03-01

    Measurements of light-absorbing particles in the boundary layer of the high southern latitudes are scarce, particularly in the McMurdo Dry Valleys (MDV), Antarctica. During the 2013-2014 austral summer near-surface boundary layer refractory black carbon (rBC) aerosols were measured in air by a single-particle soot photometer (SP2) at multiple locations in the MDV. Near-continuous rBC atmospheric measurements were collected at Lake Hoare Camp (LH) over 2 months and for several hours at more remote locations away from established field camps. We investigated periods dominated by both upvalley and downvalley winds to explore the causes of differences in rBC concentrations and size distributions. Snow samples were also collected in a 1 m pit on a glacier near the camp. The range of concentrations rBC in snow was 0.3-1.2 ± 0.3 μg-rBC/L-H2O, and total organic carbon was 0.3-1.4 ± 0.3 mg/L. The rBC concentrations measured in this snow pit are not sufficient to reduce surface albedo; however, there is potential for accumulation of rBC on snow and ice surfaces at low elevation throughout the MDV, which were not measured as part of this study. At LH, the average background rBC mass aerosol concentrations were 1.3 ng/m3. rBC aerosol mass concentrations were slightly lower, 0.09-1.3 ng/m3, at the most remote sites in the MDV. Concentration spikes as high as 200 ng/m3 were observed at LH, associated with local activities. During a foehn wind event, the average rBC mass concentration increased to 30-50 ng/m3. Here we show that the rBC increase could be due to resuspension of locally produced BC from generators, rocket toilets, and helicopters, which may remain on the soil surface until redistributed during high wind events. Quantification of local production and long-range atmospheric transport of rBC to the MDV is necessary for understanding the impacts of this species on regional climate.

  2. Evaluation of black carbon estimations in global aerosol models

    NASA Astrophysics Data System (ADS)

    Koch, D.; Schulz, M.; Kinne, S.; McNaughton, C.; Spackman, J. R.; Balkanski, Y.; Bauer, S.; Berntsen, T.; Bond, T. C.; Boucher, O.; Chin, M.; Clarke, A.; de Luca, N.; Dentener, F.; Diehl, T.; Dubovik, O.; Easter, R.; Fahey, D. W.; Feichter, J.; Fillmore, D.; Freitag, S.; Ghan, S.; Ginoux, P.; Gong, S.; Horowitz, L.; Iversen, T.; Kirkevåg, A.; Klimont, Z.; Kondo, Y.; Krol, M.; Liu, X.; Miller, R.; Montanaro, V.; Moteki, N.; Myhre, G.; Penner, J. E.; Perlwitz, J.; Pitari, G.; Reddy, S.; Sahu, L.; Sakamoto, H.; Schuster, G.; Schwarz, J. P.; Seland, Ø.; Stier, P.; Takegawa, N.; Takemura, T.; Textor, C.; van Aardenne, J. A.; Zhao, Y.

    2009-11-01

    We evaluate black carbon (BC) model predictions from the AeroCom model intercomparison project by considering the diversity among year 2000 model simulations and comparing model predictions with available measurements. These model-measurement intercomparisons include BC surface and aircraft concentrations, aerosol absorption optical depth (AAOD) retrievals from AERONET and Ozone Monitoring Instrument (OMI) and BC column estimations based on AERONET. In regions other than Asia, most models are biased high compared to surface concentration measurements. However compared with (column) AAOD or BC burden retreivals, the models are generally biased low. The average ratio of model to retrieved AAOD is less than 0.7 in South American and 0.6 in African biomass burning regions; both of these regions lack surface concentration measurements. In Asia the average model to observed ratio is 0.7 for AAOD and 0.5 for BC surface concentrations. Compared with aircraft measurements over the Americas at latitudes between 0 and 50N, the average model is a factor of 8 larger than observed, and most models exceed the measured BC standard deviation in the mid to upper troposphere. At higher latitudes the average model to aircraft BC ratio is 0.4 and models underestimate the observed BC loading in the lower and middle troposphere associated with springtime Arctic haze. Low model bias for AAOD but overestimation of surface and upper atmospheric BC concentrations at lower latitudes suggests that most models are underestimating BC absorption and should improve estimates for refractive index, particle size, and optical effects of BC coating. Retrieval uncertainties and/or differences with model diagnostic treatment may also contribute to the model-measurement disparity. Largest AeroCom model diversity occurred in northern Eurasia and the remote Arctic, regions influenced by anthropogenic sources. Changing emissions, aging, removal, or optical properties within a single model generated a smaller change in model predictions than the range represented by the full set of AeroCom models. Upper tropospheric concentrations of BC mass from the aircraft measurements are suggested to provide a unique new benchmark to test scavenging and vertical dispersion of BC in global models.

  3. Impact of Wet Deposition of Black Carbon on Particle Dynamics in Surface Waters of Halong Bay, North Vietnam

    NASA Astrophysics Data System (ADS)

    Mari, X.; Guinot, B. P.; Thuoc, C. V.; Brune, J.; Lefebvre, J. P.; Raimbault, P.; Niggemann, J.; Dittmar, T.

    2016-02-01

    Black Carbon (BC) is an aerosol emitted during biomass burning and fossil fuel combustion. The atmospheric lifetime of Black Carbon (BC) ranges from a few days in rainy climates up to one month in dry regions, and on a global scale wet deposition of atmospheric BC accounts for about 80% of the BC input to the ocean. The rain-mediated input of BC to the ocean was studied in a coastal site located in a regional hotspot of atmospheric BC concentration, North Vietnam. We monitored changes in atmospheric and marine BC during a 24-h cycle impacted by a short and heavy rainfall event. During the rainfall event, atmospheric BC concentration decreased by a factor of 8 (i.e. from 5230 to 660 µg BC m-3). This cleaning of the air column was immediately followed by a significant increase (by a factor of 2 to 4) of particulate BC (PBC) and POC concentrations in the surface microlayer (SML) and at 1.5 m depth. In the SML, this event was also followed by a significant increase of DOC and dissolved BC (DBC) concentrations. Interestingly, the concentration of DOC decreased by >10% after the rainfall at 1.5 m depth, suggesting an adsorption of DOC onto sinking PBC. Concomitantly with the increase in particulate BC, nutrient concentrations increased by a factor of 2 in the SML, while no change was observed in the underlying water column. After the rainfall, the particle size spectra, measured along the water column with a LISST (Laser In-Situ Scattering and Transmissometry probe), changed in that the concentration of small particles (<5 µm) decreased and the concentration of large particles (>100 µm) increased. This alteration of the particle size spectra was restricted to a thin layer of about 20 cm thickness, probably corresponding to a BC-enriched layer adsorbing DOC and small particles, and stimulating aggregation during sinking from the surface to deeper water layers. The concentrations of POC, DOC, PBC, DBC and nutrients reached pre-rainfall levels 4 hours after the event.

  4. Modeling the Origin of Anthropogenic Black Carbon and Its Climatic Effect Over the Tibetan Plateau and Surrounding Regions

    NASA Astrophysics Data System (ADS)

    Yang, Junhua; Kang, Shichang; Ji, Zhenming; Chen, Deliang

    2018-01-01

    Black carbon (BC) in snow/ice induces enhanced snow and glacier melting. As over 60% of atmospheric BC is emitted from anthropogenic sources, which directly impacts the distribution and concentration of BC in snow/ice, it is essential to assess the origin of anthropogenic BC transported to the Tibetan Plateau (TP) where there are few direct emissions attributable to local human activities. In this study, we used a regional climate-atmospheric chemistry model and a set of BC scenarios for quantitative evaluation of the impact of anthropogenic BC from various sources and its climate effects over the TP in 2013. The results showed that the model performed well in terms of climatology, aerosol optical properties, and near-surface concentrations, which indicates that this modeling framework is appropriate to characterize anthropogenic BC source-receptor relationships over the TP. The simulated surface concentration associated with the anthropogenic sources showed seasonal differences. In the monsoon season, the contribution of anthropogenic BC was less than in the nonmonsoon season. In the nonmonsoon season, westerly winds prevailed and transported BC from central Asia and north India to the western TP. In the monsoon season, BC aerosol was transported to the middle-upper troposphere over the Indo-Gangetic Plain and crossed the Himalayas via southwesterly winds. The majority of anthropogenic BC over the TP was transported from South Asia, which contributed to 40%-80% (mean of 61.3%) of surface BC in the nonmonsoon season, and 10%-50% (mean of 19.4%) in the monsoon season. For the northeastern TP, anthropogenic BC from eastern China accounted for less than 10% of the total in the nonmonsoon season but can be up to 50% in the monsoon season. Averaged over the TP, the eastern China anthropogenic sources accounted for 6.2% and 8.4% of surface BC in the nonmonsoon and monsoon seasons, respectively. The anthropogenic BC induced negative radiative forcing and cooling effects at the near surface over the TP.

  5. Retention and radiative forcing of black carbon in Eastern Sierra Nevada snow

    NASA Astrophysics Data System (ADS)

    Sterle, K. M.; McConnell, J. R.; Dozier, J.; Edwards, R.; Flanner, M. G.

    2012-06-01

    Snow and glacier melt water contribute water resources to a fifth of Earth's population. Snow melt processes are sensitive not only to temperature changes, but also changes in albedo caused by deposition of particles such as refractory black carbon (rBC) and continental dust. The concentrations, sources, and fate of rBC particles in seasonal snow and its surface layers are uncertain, and thus an understanding of rBC's effect on snow albedo, melt processes, and radiation balance is critical for water management in a changing climate. Measurements of rBC in a sequence of snow pits and surface snow samples in the Eastern Sierra Nevada of California during the snow accumulation and melt seasons of 2009 show that concentrations of rBC were enhanced seven fold in surface snow (~25 ng g-1) compared to bulk values in the snow pack (~3 ng g-1). Unlike major ions which are preferentially released during initial melt, rBC and continental dust are retained in the snow, enhancing concentrations late into spring, until a final flush well into the melt period. We estimate a combined rBC and continental dust surface radiative forcing of 20 to 40 W m-2 during April and May, with dust likely contributing a greater share of the forcing than rBC.

  6. Statistical optimization of culture conditions for bacterial cellulose production using Box-Behnken design.

    PubMed

    Bae, Sangok; Shoda, Makoto

    2005-04-05

    Culture conditions in a jar fermentor for bacterial cellulose (BC) production from A. xylinum BPR2001 were optimized by statistical analysis using Box-Behnken design. Response surface methodology was used to predict the levels of the factors, fructose (X1), corn steep liquor (CSL) (X2), dissolved oxygen (DO) (X3), and agar concentration (X4). Total 27 experimental runs by combination of each factor were carried out in a 10-L jar fermentor, and a three-dimensional response surface was generated to determine the effect of the factors and to find out the optimum concentration of each factor for maximum BC production and BC yield. The fructose and agar concentration highly influenced the BC production and BC yield. However, the optimum conditions according to changes in CSL and DO concentrations were predicted at almost central values of tested ranges. The predicted results showed that BC production was 14.3 g/L under the condition of 4.99% fructose, 2.85% CSL, 28.33% DO, and 0.38% agar concentration. On the other hand, BC yield was predicted in 0.34 g/g under the condition of 3.63% fructose, 2.90% CSL, 31.14% DO, and 0.42% agar concentration. Under optimized culture conditions, improvement of BC production and BC yield were experimentally confirmed, which increased 76% and 57%, respectively, compared to BC production and BC yield before optimizing the culture conditions. Copyright (c) 2005 Wiley Periodicals, Inc.

  7. Why models struggle to capture Arctic Haze: the underestimated role of gas flaring and domestic combustion emissions

    NASA Astrophysics Data System (ADS)

    Stohl, A.; Klimont, Z.; Eckhardt, S.; Kupiainen, K.

    2013-04-01

    Arctic Haze is a seasonal phenomenon with high concentrations of accumulation-mode aerosols occurring in the Arctic in winter and early spring. Chemistry transport models and climate chemistry models struggle to reproduce this phenomenon, and this has recently prompted changes in aerosol removal schemes to remedy the modeling problems. In this paper, we show that shortcomings in current emission data sets are at least as important. We perform a 3 yr model simulation of black carbon (BC) with the Lagrangian particle dispersion model FLEXPART. The model is driven with a new emission data set which includes emissions from gas flaring. While gas flaring is estimated to contribute less than 3% of global BC emissions in this data set, flaring dominates the estimated BC emissions in the Arctic (north of 66° N). Putting these emissions into our model, we find that flaring contributes 42% to the annual mean BC surface concentrations in the Arctic. In March, flaring even accounts for 52% of all Arctic BC near the surface. Most of the flaring BC remains close to the surface in the Arctic, so that the flaring contribution to BC in the middle and upper troposphere is small. Another important factor determining simulated BC concentrations is the seasonal variation of BC emissions from domestic combustion. We have calculated daily domestic combustion emissions using the heating degree day (HDD) concept based on ambient air temperature and compare results from model simulations using emissions with daily, monthly and annual time resolution. In January, the Arctic-mean surface concentrations of BC due to domestic combustion emissions are 150% higher when using daily emissions than when using annually constant emissions. While there are concentration reductions in summer, they are smaller than the winter increases, leading to a systematic increase of annual mean Arctic BC surface concentrations due to domestic combustion by 68% when using daily emissions. A large part (93%) of this systematic increase can be captured also when using monthly emissions; the increase is compensated by a decreased BC burden at lower latitudes. In a comparison with BC measurements at six Arctic stations, we find that using daily-varying domestic combustion emissions and introducing gas flaring emissions leads to large improvements of the simulated Arctic BC, both in terms of mean concentration levels and simulated seasonality. Case studies based on BC and carbon monoxide (CO) measurements from the Zeppelin observatory appear to confirm flaring as an important BC source that can produce pollution plumes in the Arctic with a high BC/CO enhancement ratio, as expected for this source type. Our results suggest that it may not be "vertical transport that is too strong or scavenging rates that are too low" and "opposite biases in these processes" in the Arctic and elsewhere in current aerosol models, as suggested in a recent review article (Bond et al., 2013), but missing emission sources and lacking time resolution of the emission data that are causing opposite model biases in simulated BC concentrations in the Arctic and in the mid-latitudes.

  8. Stabilization of nanoscale zero-valent iron (nZVI) with modified biochar for Cr(VI) removal from aqueous solution.

    PubMed

    Dong, Haoran; Deng, Junmin; Xie, Yankai; Zhang, Cong; Jiang, Zhao; Cheng, Yujun; Hou, Kunjie; Zeng, Guangming

    2017-06-15

    Three types of modified biochar (BC) were produced respectively with acid (HCl) treatment (HCl-BC), base (KOH) treatment (KOH-BC) and oxidation (H 2 O 2 ) treatment (H 2 O 2 -BC) of raw biochar. Both the raw biochar and modified biochars supported zero valent iron nanopartilces (nZVI) (i.e. nZVI@BC, nZVI@HCl-BC, nZVI@KOH-BC and nZVI@H 2 O 2 -BC) were synthesized and their capacities for Cr(VI) removal were compared. The results showed that the nZVI@HCl-BC exhibited the best performance and the underlying mechanisms were discussed. The surface elemental distribution maps of the nZVI@HCl-BC after reaction with Cr(VI) showed that Fe, Cr and O elements were deposited on the surface of HCl-BC evenly, indicating that the formed Cr(III)/Fe(III) could settle on the surface of HCl-BC uniformly rather than coated only on the nZVI surface. This reveals that the supporter HCl-BC could also play a role in alleviating the passivation of nZVI. Besides, the effects of mass ratio (nZVI/HCl-BC), pH, and initial Cr(VI) concentration on Cr(VI) removal were examined. At lower mass of HCl-BC, nZVI aggregation cannot be fully inhibited on the surface of HCl-BC, whereas excessive biochar can block the active sites of nZVI. Additionally, it was found that Cr(VI) removal by nZVI@HCl-BC was dependent on both pH and initial Cr(VI) concentration. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Development of ion-exchange properties of bamboo charcoal modified with concentrated nitric acid

    NASA Astrophysics Data System (ADS)

    Khandaker, S.; Kuba, T.; Toyohara, Y.; Kamida, S.; Uchikawa, Y.

    2017-08-01

    The surface chemistry and the structural properties of activated carbon can be altered by the acidic modification. The objective of this study is to investigate the changes occurring in bamboo charcoal (BC) during activation with concentrated nitric acid. Low temperature (500°C) carbonized BC has been prepared and oxidized with 70% concentrated boiling nitric acid (BC-AC). The porous properties of the BC are analyzed with nitrogen adsorption isotherm at 77 K. The surface structure is observed by Field emission scanning electronic microscope (FESEM) and the surface functional groups are examined by Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS) and the pH of the point of zero charge (pHPZC). The results reveal that severe oxidation with HNO3 considerably decreases the surface area of BC with enhanced pore widening and FESEM observation demonstrates the erosive effect of oxidation. The FTIR analysis detects that some absorption bands are assigned for carboxyl, aldehyde and ketone groups on BC-AC. The XPS analysis also clearly shows that the ratio of oxygen and acidic functional groups has been enriched significantly on the BC-AC. The low pHPZC value of BC-AC confirms that the surface is highly acidic for the fixation of acidic functional groups on surface. In general, the existence of the abundant amount of acidic functional groups on adsorbents enhances the sorption of heavy metals ions in aqueous solution. Therefore, it is strongly expected that the modified BC, activated under the proposed conditions would be a promising ion exchanger in aqueous solution and can be applied for the adsorption of different heavy metal ions and radioactive materials from effluent.

  10. Source sector and region contributions to concentration and direct radiative forcing of black carbon in China

    NASA Astrophysics Data System (ADS)

    Li, Ke; Liao, Hong; Mao, Yuhao; Ridley, David A.

    2016-01-01

    We quantify the contributions from five domestic emission sectors (residential, industry, transportation, energy, and biomass burning) and emissions outside of China (non-China) to concentration and direct radiative forcing (DRF) of black carbon (BC) in China for year 2010 using a nested-grid version of the global chemical transport model (GEOS-Chem) coupled with a radiative transfer model. The Hemispheric Transport of Air Pollution (HTAP) anthropogenic emissions of BC for year 2010 are used in this study. Simulated surface-layer BC concentrations in China have strong seasonal variations, which exceed 9 μg m-3 in winter and are about 1-5 μg m-3 in summer in the North China Plain and the Sichuan Basin. Residential sector is simulated to have the largest contribution to surface BC concentrations, by 5-7 μg m-3 in winter and by 1-3 μg m-3 in summer, reflecting the large emissions from winter heating and the enhanced wet deposition during summer monsoon. The contribution from industry sector is the second largest and shows relatively small seasonal variations; the emissions from industry sector contribute 1-3 μg m-3 to BC concentrations in the North China Plain and the Sichuan Basin. The contribution from transportation sector is the third largest, followed by that from biomass burning and energy sectors. The non-China emissions mainly influence the surface-layer concentrations of BC in western China; about 70% of surface-layer BC concentration in the Tibet Plateau is attributed to transboundary transport. Averaged over all of China, the all-sky DRF of BC at the top of the atmosphere (TOA) is simulated to be 1.22 W m-2. Sensitivity simulations show that the TOA BC direct radiative forcings from the five domestic emission sectors of residential, industry, energy, transportation, biomass burning, and non-China emissions are 0.44, 0.27, 0.01, 0.12, 0.04, and 0.30 W m-2, respectively. The domestic and non-China emissions contribute 75% and 25% to BC DRF in China, respectively. These results have important implications for taking measures to reduce BC emissions to mitigate near-term climate warming and to improve air quality in China.

  11. Black carbon in the Arctic: the underestimated role of gas flaring and residential combustion emissions

    NASA Astrophysics Data System (ADS)

    Stohl, A.; Klimont, Z.; Eckhardt, S.; Kupiainen, K.; Shevchenko, V. P.; Kopeikin, V. M.; Novigatsky, A. N.

    2013-09-01

    Arctic haze is a seasonal phenomenon with high concentrations of accumulation-mode aerosols occurring in the Arctic in winter and early spring. Chemistry transport models and climate chemistry models struggle to reproduce this phenomenon, and this has recently prompted changes in aerosol removal schemes to remedy the modeling problems. In this paper, we show that shortcomings in current emission data sets are at least as important. We perform a 3 yr model simulation of black carbon (BC) with the Lagrangian particle dispersion model FLEXPART. The model is driven with a new emission data set ("ECLIPSE emissions") which includes emissions from gas flaring. While gas flaring is estimated to contribute less than 3% of global BC emissions in this data set, flaring dominates the estimated BC emissions in the Arctic (north of 66° N). Putting these emissions into our model, we find that flaring contributes 42% to the annual mean BC surface concentrations in the Arctic. In March, flaring even accounts for 52% of all Arctic BC near the surface. Most of the flaring BC remains close to the surface in the Arctic, so that the flaring contribution to BC in the middle and upper troposphere is small. Another important factor determining simulated BC concentrations is the seasonal variation of BC emissions from residential combustion (often also called domestic combustion, which is used synonymously in this paper). We have calculated daily residential combustion emissions using the heating degree day (HDD) concept based on ambient air temperature and compare results from model simulations using emissions with daily, monthly and annual time resolution. In January, the Arctic-mean surface concentrations of BC due to residential combustion emissions are 150% higher when using daily emissions than when using annually constant emissions. While there are concentration reductions in summer, they are smaller than the winter increases, leading to a systematic increase of annual mean Arctic BC surface concentrations due to residential combustion by 68% when using daily emissions. A large part (93%) of this systematic increase can be captured also when using monthly emissions; the increase is compensated by a decreased BC burden at lower latitudes. In a comparison with BC measurements at six Arctic stations, we find that using daily-varying residential combustion emissions and introducing gas flaring emissions leads to large improvements of the simulated Arctic BC, both in terms of mean concentration levels and simulated seasonality. Case studies based on BC and carbon monoxide (CO) measurements from the Zeppelin observatory appear to confirm flaring as an important BC source that can produce pollution plumes in the Arctic with a high BC / CO enhancement ratio, as expected for this source type. BC measurements taken during a research ship cruise in the White, Barents and Kara seas north of the region with strong flaring emissions reveal very high concentrations of the order of 200-400 ng m-3. The model underestimates these concentrations substantially, which indicates that the flaring emissions (and probably also other emissions in northern Siberia) are rather under- than overestimated in our emission data set. Our results suggest that it may not be "vertical transport that is too strong or scavenging rates that are too low" and "opposite biases in these processes" in the Arctic and elsewhere in current aerosol models, as suggested in a recent review article (Bond et al., Bounding the role of black carbon in the climate system: a scientific assessment, J. Geophys. Res., 2013), but missing emission sources and lacking time resolution of the emission data that are causing opposite model biases in simulated BC concentrations in the Arctic and in the mid-latitudes.

  12. Evaluation of preindustrial to present-day black carbon and its albedo forcing from Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP)

    NASA Technical Reports Server (NTRS)

    Lee, Y. H.; Lamarque, J.-F.; Flanner, M. G.; Jiao, C.; Shindell, D. T.; Bernsten, T.; Bisiaux, M. M.; Cao, J.; Collins, W. J.; Curran, M.; hide

    2013-01-01

    As part of the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP), we evaluate the historical black carbon (BC) aerosols simulated by 8 ACCMIP models against observations including 12 ice core records, long-term surface mass concentrations, and recent Arctic BC snowpack measurements. We also estimate BC albedo forcing by performing additional simulations using offline models with prescribed meteorology from 1996-2000. We evaluate the vertical profile of BC snow concentrations from these offline simulations using the recent BC snowpack measurements. Despite using the same BC emissions, the global BC burden differs by approximately a factor of 3 among models due to differences in aerosol removal parameterizations and simulated meteorology: 34 Gg to 103 Gg in 1850 and 82 Gg to 315 Gg in 2000. However, the global BC burden from preindustrial to present-day increases by 2.5-3 times with little variation among models, roughly matching the 2.5-fold increase in total BC emissions during the same period.We find a large divergence among models at both Northern Hemisphere (NH) and Southern Hemisphere (SH) high latitude regions for BC burden and at SH high latitude regions for deposition fluxes. The ACCMIP simulations match the observed BC surface mass concentrations well in Europe and North America except at Ispra. However, the models fail to predict the Arctic BC seasonality due to severe underestimations during winter and spring. The simulated vertically resolved BC snow concentrations are, on average, within a factor of 2-3 of the BC snowpack measurements except for Greenland and the Arctic Ocean. For the ice core evaluation, models tend to adequately capture both the observed temporal trends and the magnitudes at Greenland sites. However, models fail to predict the decreasing trend of BC depositions/ice core concentrations from the 1950s to the 1970s in most Tibetan Plateau ice cores. The distinct temporal trend at the Tibetan Plateau ice cores indicates a strong influence from Western Europe, but the modeled BC increases in that period are consistent with the emission changes in Eastern Europe, the Middle East, South and East Asia. At the Alps site, the simulated BC suggests a strong influence from Europe, which agrees with the Alps ice core observations. At Zuoqiupu on the Tibetan Plateau, models successfully simulate the higher BC concentrations observed during the non-monsoon season compared to the monsoon season but overpredict BC in both seasons. Despite a large divergence in BC deposition at two Antarctic ice core sites, some models with a BC lifetime of less than 7 days are able to capture the observed concentrations. In 2000 relative to 1850, globally and annually averaged BC surface albedo forcing from the offline simulations ranges from 0.014 to 0.019Wm-2 among the ACCMIP models. Comparing offline and online BC albedo forcings computed by some of the same models, we find that the global annual mean can vary by up to a factor of two because of different aerosol models or different BC-snow parameterizations and snow cover. The spatial distributions of the offline BC albedo forcing in 2000 show especially high BC forcing (i.e., over 0.1W/sq. m) over Manchuria, Karakoram, and most of the Former USSR. Models predict the highest global annual mean BC forcing in 1980 rather than 2000, mostly driven by the high fossil fuel and biofuel emissions in the Former USSR in 1980.

  13. Reduced toxicity of diuron to the freshwater green alga Pseudokirchneriella subcapitata in the presence of black carbon.

    PubMed

    Knauer, Katja; Sobek, Anna; Bucheli, Thomas D

    2007-06-15

    Black carbon (BC) is known to act as supersorbent for many organic contaminants. Its presence in surface waters at a level of a few mg/L, which may occur, e.g., after storm events in urban areas, might result in a reduced bioavailability of many contaminants and thus greatly impact their potential toxicity. Photosynthesis-inhibiting phenyl urea derivatives, such as diuron, are widely used as herbicides and diuron is regularly measured in European freshwater systems. In this study, the toxicity of diuron to the freshwater green alga Pseudokirchneriella subcapitata was investigated in the presence of BC in its native and combusted form. As a toxicity endpoint, the in vivo chlorophyll fluorescence was determined and used to indicate the bioavailability of diuron. Fifty milligrams native BC/L reduced effects of 5mugdiuron/L on photosynthesis by 10+/-2%, whereas photosynthesis was completely restored in the presence of the same concentration of combusted BC, suggesting a significantly enhanced adsorption of diuron to the BC fraction compared to the organic carbon fraction. Assuming an environmentally realistic concentration of approximately 1.5mg of combusted BC/L, diuron toxicity would be reduced by approximately 20% in surface waters due to the presence of BC. Higher BC concentrations after storm events might reduce the toxicity even further. A calculation of the Freundlich sorption coefficient K(F,BC,tox) via the toxicity endpoint, resulted in a log K(F,BC,tox) of the combusted BC of 5.7, which is comparable to values obtained by classical sorption experiments. This study contributes to a refined risk assessment of micropollutants in surface waters taking into account the presence of potentially relevant sorbents and, consequently, reduced bioavailability.

  14. Multi-Mode Binding of Cellobiohydrolase Cel7A from Trichoderma reesei to Cellulose

    PubMed Central

    Jalak, Jürgen; Väljamäe, Priit

    2014-01-01

    Enzymatic hydrolysis of recalcitrant polysaccharides like cellulose takes place on the solid-liquid interface. Therefore the adsorption of enzymes to the solid surface is a pre-requisite for catalysis. Here we used enzymatic activity measurements with fluorescent model-substrate 4-methyl-umbelliferyl-β-D-lactoside for sensitive monitoring of the binding of cellobiohydrolase TrCel7A from Trichoderma reesei to bacterial cellulose (BC). The binding at low nanomolar free TrCel7A concentrations was exclusively active site mediated and was consistent with Langmuir's one binding site model with K d and A max values of 2.9 nM and 126 nmol/g BC, respectively. This is the strongest binding observed with non-complexed cellulases and apparently represents the productive binding of TrCel7A to cellulose chain ends on the hydrophobic face of BC microfibril. With increasing free TrCel7A concentrations the isotherm gradually deviated from the Langmuir's one binding site model. This was caused by the increasing contribution of lower affinity binding modes that included both active site mediated binding and non-productive binding with active site free from cellulose chain. The binding of TrCel7A to BC was found to be only partially reversible. Furthermore, the isotherm was dependent on the concentration of BC with more efficient binding observed at lower BC concentrations. The phenomenon can be ascribed to the BC concentration dependent aggregation of BC microfibrils with concomitant reduction of specific surface area. PMID:25265511

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, R.; Barth, M. C.; Nair, V. S.

    This study examines differences in the surface black carbon (BC) aerosol loading between the Bay of Bengal (BoB) and the Arabian Sea (AS) and identifies dominant sources of BC in South Asia and surrounding regions during March-May 2006 (Integrated Campaign for Aerosols, Gases and Radiation Budget, ICARB) period. A total of 13 BC tracers are introduced in the Weather Research and Forecasting Model coupled with Chemistry to address these objectives. The model reproduced the temporal and spatial variability of BC distribution observed over the AS and the BoB during the ICARB ship cruise and captured spatial variability at the inlandmore » sites. In general, the model underestimates the observed BC mass concentrations. However, the model-observation discrepancy in this study is smaller compared to previous studies. Model results show that ICARB measurements were fairly well representative of the AS and the BoB during the pre-monsoon season. Elevated BC mass concentrations in the BoB are due to 5 times stronger influence of anthropogenic emissions on the BoB compared to the AS. Biomass burning in Burma also affects the BoB much more strongly than the AS. Results show that anthropogenic and biomass burning emissions, respectively, accounted for 60 and 37% of the average +/- standard deviation (representing spatial and temporal variability) BC mass concentration (1341 +/- 2353 ng m(-3)) in South Asia. BC emissions from residential (61 %) and industrial (23 %) sectors are the major anthropogenic sources, except in the Himalayas where vehicular emissions dominate. We find that regional-scale transport of anthropogenic emissions contributes up to 25% of BC mass concentrations in western and eastern India, suggesting that surface BC mass concentrations cannot be linked directly to the local emissions in different regions of South Asia.« less

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, R.; Barth, M. C.; Nair, V. S.

    This study examines differences in the surface black carbon (BC) aerosol loading between the Bay of Bengal (BoB) and the Arabian Sea (AS) and identifies dominant sources of BC in South Asia and surrounding regions during March–May 2006 (Integrated Campaign for Aerosols, Gases and Radiation Budget, ICARB) period. A total of 13 BC tracers are introduced in the Weather Research and Forecasting Model coupled with Chemistry to address these objectives. The model reproduced the temporal and spatial variability of BC distribution observed over the AS and the BoB during the ICARB ship cruise and captured spatial variability at the inlandmore » sites. In general, the model underestimates the observed BC mass concentrations. However, the model–observation discrepancy in this study is smaller compared to previous studies. Model results show that ICARB measurements were fairly well representative of the AS and the BoB during the pre-monsoon season. Elevated BC mass concentrations in the BoB are due to 5 times stronger influence of anthropogenic emissions on the BoB compared to the AS. Biomass burning in Burma also affects the BoB much more strongly than the AS. Results show that anthropogenic and biomass burning emissions, respectively, accounted for 60 and 37% of the average ± standard deviation (representing spatial and temporal variability) BC mass concentration (1341 ± 2353 ng m -3) in South Asia. BC emissions from residential (61%) and industrial (23%) sectors are the major anthropogenic sources, except in the Himalayas where vehicular emissions dominate. We find that regional-scale transport of anthropogenic emissions contributes up to 25% of BC mass concentrations in western and eastern India, suggesting that surface BC mass concentrations cannot be linked directly to the local emissions in different regions of South Asia.« less

  17. Retention and radiative forcing of black carbon in eastern Sierra Nevada snow

    NASA Astrophysics Data System (ADS)

    Sterle, K. M.; McConnell, J. R.; Dozier, J.; Edwards, R.; Flanner, M. G.

    2013-02-01

    When contaminated by absorbing particles, such as refractory black carbon (rBC) and continental dust, snow's albedo decreases and thus its absorption of solar radiation increases, thereby hastening snowmelt. For this reason, an understanding of rBC's affect on snow albedo, melt processes, and radiation balance is critical for water management, especially in a changing climate. Measurements of rBC in a sequence of snow pits and surface snow samples in the eastern Sierra Nevada of California during the snow accumulation and ablation seasons of 2009 show that concentrations of rBC were enhanced sevenfold in surface snow (~25 ng g-1) compared to bulk values in the snowpack (~3 ng g-1). Unlike major ions, which were preferentially released during the initial melt, rBC and continental dust were retained in the snow, enhancing concentrations well into late spring, until a final flush occurred during the ablation period. We estimate a combined rBC and continental dust surface radiative forcing of 20 to 40 W m-2 during April and May, with dust likely contributing a greater share of the forcing.

  18. Seasonal Variations of Atmospheric Black Carbon Concentrations and Implications for Nutrient Inputs and Organic Carbon Partitioning in the Marine Coastal Ecosystem of Halong Bay, North Vietnam

    NASA Astrophysics Data System (ADS)

    Mari, X.; Thuoc, C. V.; Guinot, B. P.; Brune, J.; Lefebvre, J. P.; Raimbault, P.; Niggemann, J.; Dittmar, T.

    2016-02-01

    Black Carbon (BC) is an aerosol emitted during biomass burning and fossil fuel combustion. On a global scale, BC deposits on the ocean at a rate of 12-45 Tg per year, with higher fluxes in the northern hemisphere and in inter-tropical regions, following the occurrence of hotspots of atmospheric BC concentration. In the present study conducted in a coastal site located in a regional hotspot of atmospheric BC concentration, North Vietnam, we monitored the seasonal variations of atmospheric and marine BC during an annual cycle. Atmospheric BC followed a seasonal pattern characterized by high concentrations during the dry season, i.e. from October to April, and low concentrations during the wet season, i.e. from May to September. This trend is linked to a change in wind regime, with air masses originating from the North during the dry season and from the South during the wet season. On average, the contribution of BC to the particulate and the dissolved organic carbon pools was 43% and 3%, respectively. The concentration of particulate BC (PBC) was on average 50 times higher in the surface microlayer (SML) than in the water column. In the water column, the concentration of PBC was higher during the dry season than the wet season, which is consistent with variations of atmospheric BC concentrations. On the contrary, the concentration of dissolved BC (DBC) was lower during the dry season than the wet season. This seasonal pattern suggests that PBC concentration in coastal marine systems depends upon atmospheric BC concentration, while increased DBC concentration is linked to rainy conditions. The deposition of BC during the dry season was concomitant with a strong enrichment of organic phosphorus in the SML. During the annual cycle, the POC:DOC ratio was positively correlated with the concentration of PBC, suggesting adsorption of DOC onto BC particles and formation of POC via stimulation of aggregation processes.

  19. 20th-century industrial black carbon emissions altered Arctic climate forcing.

    PubMed

    McConnell, Joseph R; Edwards, Ross; Kok, Gregory L; Flanner, Mark G; Zender, Charles S; Saltzman, Eric S; Banta, J Ryan; Pasteris, Daniel R; Carter, Megan M; Kahl, Jonathan D W

    2007-09-07

    Black carbon (BC) from biomass and fossil fuel combustion alters chemical and physical properties of the atmosphere and snow albedo, yet little is known about its emission or deposition histories. Measurements of BC, vanillic acid, and non-sea-salt sulfur in ice cores indicate that sources and concentrations of BC in Greenland precipitation varied greatly since 1788 as a result of boreal forest fires and industrial activities. Beginning about 1850, industrial emissions resulted in a sevenfold increase in ice-core BC concentrations, with most change occurring in winter. BC concentrations after about 1951 were lower but increasing. At its maximum from 1906 to 1910, estimated surface climate forcing in early summer from BC in Arctic snow was about 3 watts per square meter, which is eight times the typical preindustrial forcing value.

  20. Magnetic sorbents added to soil slurries lower Cr aqueous concentration

    NASA Astrophysics Data System (ADS)

    Aravantinos, Konstantinos; Isari, Ekavi; Karapanagioti, Hrissi K.; Manariotis, Ioannis D.; Werner, David

    2016-04-01

    Activated carbon (AC) acts as a strong binding agent that lowers the pollutant concentration and, thus its toxicity. Another promising sorbent material in environmental applications is biochar (BC) which is obtained from the incomplete combustion of carbon-rich biomass under oxygen-limited conditions. Both of these materials could be used as soil or sediment amendments that would lower the toxicity in the aqueous phase. A draw back of this technique is that although the pollutant will remain non- bioavailable for many years being sorbed into these sorbents, it actually stays into the system. The objective of this study was (a) to synthesize a magnetic powdered activated carbon (AC/Fe) and magnetic powdered biochar (BC/Fe) produced from a commercial AC sample and BC, respectively and (b) to evaluate the potential use of AC/Fe and BC/Fe to lower Cr concentration that desorb from two soils in their soil slurries. The two soil samples originate from the vicinity of a local metal shop. The BC was produced from olive pomace. The surface area, the pore volume, and the average pore size of each sorbent were determined using gas (N2) adsorption-desorption cycles and the Brunauer, Emmett, and Teller (BET) equation. Isotherms with 30 adsorption and 20 desorption points were conducted at liquid nitrogen temperature (77K). Open surface area and micropore volume were determined using t-plot method and Harkins & Jura equation. For both AC/Fe, surface area measurements resulted in 66% those of corresponding AC. For BC/Fe, the surface area was 82% that of BC. Our previous studies have shown that both AC/Fe and BC/Fe are effective sorbents for mercury in aqueous solutions but with lower sorption capacity compared to the initial materials (50-75% lower). Batch experiments with all sorbent samples and each soil were conducted at room temperature (25oC) in order to compare the sorption properties of the materials. The soil slurries demonstrated low Cr concentrations (10.9 and 14.6 μg/L, respectively). One month after the addition of amendments AC, AC/Fe, and BC/Fe, Cr concentration in the slurry was lower than the detection limit which was 0.5 μg/L (except of one of the soils with the AC that was 2.1 μg/L). The slurries with BC demonstrated Cr concentrations equal to 4.2 and 7.1 μg/L, respectively. All these properties point to promising materials that can effectively be used for in-situ environmental remediation and also be recovered.

  1. Seasonal and Elevational Variations of Black Carbon and Dust in Snow and Ice in the Solu-Khumbu, Nepal and Estimated Radiative Forcings

    NASA Astrophysics Data System (ADS)

    Kaspari, S.; Painter, T. H.; Gysel, M.; Skiles, M.; Schwikowski, M.

    2014-12-01

    Black carbon (BC) and dust deposited on snow and glacier surfaces can reduce the surface albedo, accelerate melt, and trigger albedo feedback. Assessing BC and dust concentrations in snow and ice in the Himalaya is of interest because this region borders large BC and dust sources, and seasonal snow and glacier ice in this region are an important source of water resources. Snow and ice samples were collected from crevasse profiles and snowpits at elevations between 5400 and 6400 m asl from Mera glacier located in the Solu-Khumbu region of Nepal. The samples were measured for Fe concentrations (used as a dust proxy) via ICP-MS, total impurity content gravimetrically, and BC concentrations using a Single Particle Soot Photometer (SP2). BC and Fe concentrations are substantially higher at elevations < 6000 m due to post-depositional processes including melt and sublimation and greater loading in the lower troposphere. Because the largest areal extent of snow and ice resides at elevations < 6000 m, the higher BC and dust concentrations at these elevations can reduce the snow and glacier albedo over large areas, accelerating melt, affecting glacier mass-balance and water resources, and contributing to a positive climate forcing. Radiative transfer modeling constrained by measurements at 5400 m at Mera La indicates that BC concentrations in the winter-spring snow/ice horizons are sufficient to reduce albedo by 6-10% relative to clean snow, corresponding to localized instantaneous radiative forcings of 75-120 W m-2. The other bulk impurity concentrations, when treated separately as dust, reduce albedo by 40-42% relative to clean snow and give localized instantaneous radiative forcings of 488 to 525 W m-2. Adding the BC absorption to the other impurities results in additional radiative forcings of 3 W m-2. While these results suggest that the snow albedo and radiative forcing effect of dust is considerably greater than BC, there are several sources of uncertainty.

  2. Light-absorbing impurities accelerate glacier melt in the Central Tibetan Plateau.

    PubMed

    Li, Xiaofei; Kang, Shichang; He, Xiaobo; Qu, Bin; Tripathee, Lekhendra; Jing, Zhefan; Paudyal, Rukumesh; Li, Yang; Zhang, Yulan; Yan, Fangping; Li, Gang; Li, Chaoliu

    2017-06-01

    Light-absorbing impurities (LAIs), such as organic carbon (OC), black carbon (BC), and mineral dust (MD) deposited on the glacier surface can reduce albedo, thus accelerating the glacier melt. Surface fresh snow, aged snow, granular ice, and snowpits samples were collected between August 2014 and October 2015 on the Xiao Dongkemadi (XDKMD) glacier (33°04'N, 92°04'E) in the central Tibetan Plateau (TP). The spatiotemporal variations of LAIs concentrations in the surface snow/ice were observed to be consistent, differing mainly in magnitudes. LAIs concentrations were found to be in the order: granular ice>snowpit>aged snow>fresh snow, which must be because of post-depositional effects and enrichment. In addition, more intense melting led to higher LAIs concentrations exposed to the surface at a lower elevation, suggesting a strong negative relationship between LAIs concentrations and elevation. The scavenging efficiencies of OC and BC were same (0.07±0.02 for OC, 0.07±0.01 for BC), and the highest enrichments was observed in late September and August for surface snow and granular ice, respectively. Meanwhile, as revealed by the changes in the OC/BC ratios, intense glacier melt mainly occurred between August and October. Based on the SNow ICe Aerosol Radiative (SNICAR) model simulations, BC and MD in the surface snow/ice were responsible for about 52%±19% and 25%±14% of the albedo reduction, while the radiative forcing (RF) were estimated to be 42.74±40.96Wm -2 and 21.23±22.08Wm -2 , respectively. Meanwhile, the highest RF was observed in the granular ice, suggesting that the exposed glaciers melt and retreat more easily than the snow distributed glaciers. Furthermore, our results suggest that BC was the main forcing factor compared with MD in accelerating glacier melt during the melt season in the Central TP. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Concentrations and Sources of Soot in Greenland Precipitation from 1788 to 2002: Implications for Radiative Forcing

    NASA Astrophysics Data System (ADS)

    McConnell, J. R.; Edwards, R.; Kok, G. L.; Flanner, M. G.; Zender, C. S.; Saltzman, E. S.; Banta, J. R.; Pasteris, D. R.; Carter, M. M.; Kahl, J. D.

    2007-12-01

    Black carbon (BC) in the atmosphere results from biomass and fossil fuel combustion. It alters chemical and physical properties of the atmosphere and snow albedo, yet little is known about BC emission or deposition histories. Monthly resolved measurements of BC in an ice core indicate that concentrations in central Greenland precipitation varied greatly during the period of record from 1788 to 2002. Parallel measurements of vanillic acid and non-sea-salt sulfur in the same ice core suggest that BC in Greenland came from wildfires and industrial activities. Prior to 1850, BC concentrations were highest in late summer to autumn and resulted primarily from boreal forest fires. Beginning about 1850, industrial emissions resulted in a seven-fold increase in ice core BC concentrations, with most change occurring in winter. BC concentrations after about 1951 were lower, probably as a result of wildfire suppression policies and the shift from coal burning to oil and gas in North America. Late 20th century increases in BC, however, may be linked to coal combustion in the rapidly expanding economies of Asia. At its maximum from 1906 to 1910, estimated surface climate forcing in early summer from BC in Arctic snow was about 3 W per square meter, more than eight times typical pre-industrial forcing.

  4. Sources of black carbon aerosols in South Asia and surrounding regions during the Integrated Campaign for Aerosols, Gases and Radiation Budget (ICARB)

    DOE PAGES

    Kumar, R.; Barth, M. C.; Nair, V. S.; ...

    2015-05-19

    This study examines differences in the surface black carbon (BC) aerosol loading between the Bay of Bengal (BoB) and the Arabian Sea (AS) and identifies dominant sources of BC in South Asia and surrounding regions during March–May 2006 (Integrated Campaign for Aerosols, Gases and Radiation Budget, ICARB) period. A total of 13 BC tracers are introduced in the Weather Research and Forecasting Model coupled with Chemistry to address these objectives. The model reproduced the temporal and spatial variability of BC distribution observed over the AS and the BoB during the ICARB ship cruise and captured spatial variability at the inlandmore » sites. In general, the model underestimates the observed BC mass concentrations. However, the model–observation discrepancy in this study is smaller compared to previous studies. Model results show that ICARB measurements were fairly well representative of the AS and the BoB during the pre-monsoon season. Elevated BC mass concentrations in the BoB are due to 5 times stronger influence of anthropogenic emissions on the BoB compared to the AS. Biomass burning in Burma also affects the BoB much more strongly than the AS. Results show that anthropogenic and biomass burning emissions, respectively, accounted for 60 and 37% of the average ± standard deviation (representing spatial and temporal variability) BC mass concentration (1341 ± 2353 ng m -3) in South Asia. BC emissions from residential (61%) and industrial (23%) sectors are the major anthropogenic sources, except in the Himalayas where vehicular emissions dominate. We find that regional-scale transport of anthropogenic emissions contributes up to 25% of BC mass concentrations in western and eastern India, suggesting that surface BC mass concentrations cannot be linked directly to the local emissions in different regions of South Asia.« less

  5. Top-down Estimates of Biomass Burning Emissions of Black Carbon in the Western United States

    NASA Astrophysics Data System (ADS)

    Mao, Y.; Li, Q.; Randerson, J. T.; Liou, K.

    2011-12-01

    We apply a Bayesian linear inversion to derive top-down estimates of biomass burning emissions of black carbon (BC) in the western United States (WUS) for May-November 2006 by inverting surface BC concentrations from the IMPROVE network using the GEOS-Chem chemical transport model. Model simulations are conducted at both 2°×2.5° (globally) and 0.55°×0.66° (nested over North America) horizontal resolutions. We first improve the spatial distributions and seasonal and interannual variations of the BC emissions from the Global Fire Emissions Database (GFEDv2) using MODIS 8-day active fire counts from 2005-2007. The GFEDv2 emissions in N. America are adjusted for three zones: boreal N. America, temperate N. America, and Mexico plus Central America. The resulting emissions are then used as a priori for the inversion. The a posteriori emissions are 2-5 times higher than the a priori in California and the Rockies. Model surface BC concentrations using the a posteriori estimate provide better agreement with IMPROVE observations (~20% increase in the Taylor skill score), including improved ability to capture the observed variability especially during June-July. However, model surface BC concentrations are still biased low by ~30%. Comparisons with the Fire Locating and Modeling of Burning Emissions (FLAMBE) are included.

  6. Top-down Estimates of Biomass Burning Emissions of Black Carbon in the Western United States

    NASA Astrophysics Data System (ADS)

    Mao, Y.; Li, Q.; Randerson, J. T.; CHEN, D.; Zhang, L.; Liou, K.

    2012-12-01

    We apply a Bayesian linear inversion to derive top-down estimates of biomass burning emissions of black carbon (BC) in the western United States (WUS) for May-November 2006 by inverting surface BC concentrations from the IMPROVE network using the GEOS-Chem chemical transport model. Model simulations are conducted at both 2°×2.5° (globally) and 0.5°×0.667° (nested over North America) horizontal resolutions. We first improve the spatial distributions and seasonal and interannual variations of the BC emissions from the Global Fire Emissions Database (GFEDv2) using MODIS 8-day active fire counts from 2005-2007. The GFEDv2 emissions in N. America are adjusted for three zones: boreal N. America, temperate N. America, and Mexico plus Central America. The resulting emissions are then used as a priori for the inversion. The a posteriori emissions are 2-5 times higher than the a priori in California and the Rockies. Model surface BC concentrations using the a posteriori estimate provide better agreement with IMPROVE observations (~50% increase in the Taylor skill score), including improved ability to capture the observed variability especially during June-September. However, model surface BC concentrations are still biased low by ~30%. Comparisons with the Fire Locating and Modeling of Burning Emissions (FLAMBE) are included.

  7. Impacts of global, regional, and sectoral black carbon emission reductions on surface air quality and human mortality

    NASA Astrophysics Data System (ADS)

    Anenberg, S. C.; Talgo, K.; Arunachalam, S.; Dolwick, P.; Jang, C.; West, J. J.

    2011-07-01

    As a component of fine particulate matter (PM2.5), black carbon (BC) is associated with premature human mortality. BC also affects climate by absorbing solar radiation and reducing planetary albedo. Several studies have examined the climate impacts of BC emissions, but the associated health impacts have been studied less extensively. Here, we examine the surface PM2.5 and premature mortality impacts of halving anthropogenic BC emissions globally and individually from eight world regions and three major economic sectors. We use a global chemical transport model, MOZART-4, to simulate PM2.5 concentrations and a health impact function to calculate premature cardiopulmonary and lung cancer deaths. We estimate that halving global anthropogenic BC emissions reduces outdoor population-weighted average PM2.5 by 542 ng m-3 (1.8 %) and avoids 157 000 (95 % confidence interval, 120 000-194 000) annual premature deaths globally, with the vast majority occurring within the source region. Most of these avoided deaths can be achieved by halving emissions in East Asia (China; 54 %), followed by South Asia (India; 31 %), however South Asian emissions have 50 % greater mortality impacts per unit BC emitted than East Asian emissions. Globally, halving residential, industrial, and transportation emissions contributes 47 %, 35 %, and 15 % to the avoided deaths from halving all anthropogenic BC emissions. These contributions are 1.2, 1.2, and 0.6 times each sector's portion of global BC emissions, owing to the degree of co-location with population globally. We find that reducing BC emissions increases regional SO4 concentrations by up to 28 % of the magnitude of the regional BC concentration reductions, due to reduced absorption of radiation that drives photochemistry. Impacts of residential BC emissions are likely underestimated since indoor PM2.5 exposure is excluded. We estimate ∼8 times more avoided deaths when BC and organic carbon (OC) emissions are halved together, suggesting that these results greatly underestimate the full air pollution-related mortality benefits of BC mitigation strategies which generally decrease both BC and OC. The choice of concentration-response factor and health effect thresholds affects estimated global avoided deaths by as much as 56 % but does not strongly affect the regional distribution. Confidence in our results would be strengthened by reducing uncertainties in emissions, model parameterization of aerosol processes, grid resolution, and PM2.5 concentration-mortality relationships globally.

  8. Flux, Budget and Sources of Black Carbon (BC) in the Continental Shelf of the Bohai and Yellow Seas, China

    NASA Astrophysics Data System (ADS)

    Fang, Y.; Chen, Y.; Tian, C.

    2015-12-01

    Black carbon (BC) derived from incomplete combustion of fossil fuels and biomass has received increasing attention due to their potential importance in a wide range of biogeochemical processes. China has been generally considered as the world's largest BC emitter. Due to a combination of the prevailing East Asia monsoon and large amounts of riverine outflow, BC released from China can be transported to the adjacent continental shelf seas, the Bohai Sea (BS) and Yellow Sea (YS). Based on measurements of BC in 191 surface sediments, 36 riverine water, and 2 seawater samples, as well as the reported BC data set of the aerosol samples in the Bohai Rim, the concentration, flux, and budget of BC in the BS and YS were investigated. The spatial distribution of the BC concentration in surface sediments was largely influenced by the regional hydrodynamic conditions, with high values mainly occurring in the central mud areas. The BC burial flux in the BS and YS ranged from 4 to 1100 μg/cm2/yr, and averaged 166 ± 200 μg/cm2/yr. The area-integrated sedimentary BC sink flux in the entire BS and YS was ~325 Gg/yr. The BC budget calculated in the BS showed that atmospheric deposition and riverine discharge played comparable importance in delivering BC to the BS, and sequestration to bottom sediments was the major BC output pattern, accounting for ~88% of the total input BC. Besides, we attempted to apportion the BC sources in the BS and YS surface sediments using PAHs (organic molecular proxies cogenerated with BC) and BC as an input data to the Positive Matrix Factorization (PMF) receptor model. Results showed that ~83% of the sediment BC was attributed to the combustion of fossil fuels, and the remaining ~17% was from biomass burning. Due to the differences in their production mechanisms and therefore physicochemical properties, the above distinction and quantification would help us better understand their different environmental behaviors in the complex continental shelf regimes.

  9. Enhanced light absorptivity of black carbon with air pollution development in urban Beijing, China

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Zhang, Q.; Cheng, Y.; Su, H.; He, K.

    2017-12-01

    The impacts of black carbon (BC) aerosols on air quality and climate are dependent on BC light absorptivity. However, the light absorptivity of ambient BC-containing particles remains conflicting. In this work, we investigated the evolution of BC light absorptivity with pollution development in urban Beijing, China. We found that the mass absorption cross-section (MAC) of ambient BC-containing particles measured during the campaign increased with BC mass concentration, which can be attributed to more coating materials on BC surface with pollution development. A single-particle soot photometer (SP2) measurement showed that the coating thickness (CT) of BC-containing particles increased by 48% with PM1 and BC mass concentration increasing from 10 μg m-3 and 0.3 μg m-3 to 230 μg m-3 and 12 μg m-3. Based on Mie calculation, the CT increase could led to light absorption enhancement (Eab) of BC-containing particles increasing by 22%, consistent with the increase of measured MAC. The relationship between growth rate of BC light absorptivity (kEab) and that of PM1 or rBC concentration (kPM1 or krBC) showed that kEab ≈ 4.8% kPM1 or kEab ≈ 2.5% krBC. The analysis of effective emission intensity (EEI) for BC revealed that the enhancement of BC light absorptivity with increasing pollution levels was dominated by regional transport. During the pollution period, 63% of BC over Beijing originated from regional sources. The aging of these regional BC during atmospheric transport controlled the increase of coating materials for BC-containing particles observed in Beijing. As a result of enhanced light absorptivity with pollution development, BC forcing efficiency could increase by 20% during polluted period. Our work identified the importance of BC on radiative forcing under polluted environment, which is determined by not only the increase of BC mass concentration, but also the enhancement of BC forcing efficiency due to more coating materials.

  10. Preliminary Estimation of Black Carbon Deposition from Nepal Climate Observatory-Pyramid Data and Its Possible Impact on Snow Albedo Changes Over Himalayan Glaciers During the Pre-Monsoon Season

    NASA Technical Reports Server (NTRS)

    Yasunari, T. J.; Bonasoni, P.; Laj, P.; Fujita, K.; Vuillermoz, E.; Marinoni, A.; Cristofanelli, P.; Duchi, R.; Tartari, G.; Lau, K.-M.

    2010-01-01

    The possible minimal range of reduction in snow surface albedo due to dry deposition of black carbon (BC) in the pre-monsoon period (March-May) was estimated as a lower bound together with the estimation of its accuracy, based on atmospheric observations at the Nepal Climate Observatory-Pyramid (NCO-P) sited at 5079 m a.s.l. in the Himalayan region. We estimated a total BC deposition rate of 2.89 g m-2 day-1 providing a total deposition of 266 micrograms/ square m for March-May at the site, based on a calculation with a minimal deposition velocity of 1.0 10(exp -4) m/s with atmospheric data of equivalent BC concentration. Main BC size at NCO-P site was determined as 103.1-669.8 nm by correlation analysis between equivalent BC concentration and particulate size distribution in the atmosphere. We also estimated BC deposition from the size distribution data and found that 8.7% of the estimated dry deposition corresponds to the estimated BC deposition from equivalent BC concentration data. If all the BC is deposited uniformly on the top 2-cm pure snow, the corresponding BC concentration is 26.0-68.2 microgram/kg assuming snow density variations of 195-512 kg/ cubic m of Yala Glacier close to NCO-P site. Such a concentration of BC in snow could result in 2.0-5.2% albedo reductions. From a simple numerical calculations and if assuming these albedo reductions continue throughout the year, this would lead to a runoff increases of 70-204 mm of water drainage equivalent of 11.6-33.9% of the annual discharge of a typical Tibetan glacier. Our estimates of BC concentration in snow surface for pre-monsoon season can be considered comparable to those at similar altitude in the Himalayan region, where glaciers and perpetual snow region starts in the vicinity of NCO-P. Our estimates from only BC are likely to represent a lower bound for snow albedo reductions, since a fixed slower deposition velocity was used and atmospheric wind and turbulence effects, snow aging, dust deposition, and snow albedo feedbacks were not considered. This study represents the first investigation about BC deposition on snow from atmospheric aerosol data in Himalayas and related albedo effect is especially the first track at the southern slope of Himalayas.

  11. Major fraction of black carbon is flushed from the melting New Hampshire snowpack nearly as quickly as soluble impurities

    NASA Astrophysics Data System (ADS)

    Lazarcik, James; Dibb, Jack E.; Adolph, Alden C.; Amante, Jacqueline M.; Wake, Cameron P.; Scheuer, Eric; Mineau, Madeleine M.; Albert, Mary R.

    2017-01-01

    Seasonal snowpacks accumulate impurities derived from atmospheric aerosols and trace gases throughout the winter and release them during snowmelt. Previous field and laboratory studies have shown that a snowpack can lose up to 80% of the soluble ion burden in the first 20% of the melt, an event commonly known as an ionic pulse. Other studies have concluded that particulate impurities (e.g., black carbon (BC)) concentrate in surface layers during melt which can have important implications for snowpack albedo. However, model and field studies have indicated that meltwater scavenging efficiency of BC in melting snowpacks is still an area of uncertainty. To quantify BC melt dynamics and the release of soluble impurities, we collected and analyzed near-daily chemical profiles in the snowpack at three sites during two winters in New Hampshire, United States of America. We observe an ionic pulse and a pulse of BC from the snowpack at the onset of melt; up to 62% of BC leaves within the first 24% of the melt. Surface concentrations of BC are higher than seasonal medians at the end of the winter season, but surface enhancements do not appear to be closely linked to decreases in snow-water equivalence caused by melting.

  12. The Spectral and Chemical Measurement of Pollutants on Snow Near South Pole, Antarctica

    NASA Technical Reports Server (NTRS)

    Casey, K. A.; Kaspari, S. D.; Skiles, S. M.; Kreutz, K.; Handley, M. J.

    2017-01-01

    Remote sensing of light-absorbing particles (LAPs), or dark colored impurities, such as black carbon (BC) and dust on snow, is a key remaining challenge in cryospheric surface characterization and application to snow, ice, and climate models. We present a quantitative data set of in situ snow reflectance, measured and modeled albedo, and BC and trace element concentrations from clean to heavily fossil fuel emission contaminated snow near South Pole, Antarctica. Over 380 snow reflectance spectra (350-2500 nm) and 28 surface snow samples were collected at seven distinct sites in the austral summer season of 2014-2015. Snow samples were analyzed for BC concentration via a single particle soot photometer and for trace element concentration via an inductively coupled plasma mass spectrometer. Snow impurity concentrations ranged from 0.14 to 7000 part per billion (ppb) BC, 9.5 to 1200 ppb sulfur, 0.19 to 660 ppb iron, 0.013 to 1.9 ppb chromium, 0.13 to 120 ppb copper, 0.63 to 6.3 ppb zinc, 0.45 to 82 parts per trillion (ppt) arsenic, 0.0028 to 6.1 ppb cadmium, 0.062 to 22 ppb barium, and 0.0044 to 6.2 ppb lead. Broadband visible to shortwave infrared albedo ranged from 0.85 in pristine snow to 0.62 in contaminated snow. LAP radiative forcing, the enhanced surface absorption due to BC and trace elements, spanned from less than 1 W m(exp. -2) for clean snow to approximately 70 W m(exp. -2) for snow with high BC and trace element content. Measured snow reflectance differed from modeled snow albedo due to specific impurity-dependent absorption features, which we recommend be further studied and improved in snow albedo models.

  13. The spectral and chemical measurement of pollutants on snow near South Pole, Antarctica

    NASA Astrophysics Data System (ADS)

    Casey, K. A.; Kaspari, S. D.; Skiles, S. M.; Kreutz, K.; Handley, M. J.

    2017-06-01

    Remote sensing of light-absorbing particles (LAPs), or dark colored impurities, such as black carbon (BC) and dust on snow, is a key remaining challenge in cryospheric surface characterization and application to snow, ice, and climate models. We present a quantitative data set of in situ snow reflectance, measured and modeled albedo, and BC and trace element concentrations from clean to heavily fossil fuel emission contaminated snow near South Pole, Antarctica. Over 380 snow reflectance spectra (350-2500 nm) and 28 surface snow samples were collected at seven distinct sites in the austral summer season of 2014-2015. Snow samples were analyzed for BC concentration via a single particle soot photometer and for trace element concentration via an inductively coupled plasma mass spectrometer. Snow impurity concentrations ranged from 0.14 to 7000 part per billion (ppb) BC, 9.5 to 1200 ppb sulfur, 0.19 to 660 ppb iron, 0.013 to 1.9 ppb chromium, 0.13 to 120 ppb copper, 0.63 to 6.3 ppb zinc, 0.45 to 82 parts per trillion (ppt) arsenic, 0.0028 to 6.1 ppb cadmium, 0.062 to 22 ppb barium, and 0.0044 to 6.2 ppb lead. Broadband visible to shortwave infrared albedo ranged from 0.85 in pristine snow to 0.62 in contaminated snow. LAP radiative forcing, the enhanced surface absorption due to BC and trace elements, spanned from <1 W m-2 for clean snow to 70 W m-2 for snow with high BC and trace element content. Measured snow reflectance differed from modeled snow albedo due to specific impurity-dependent absorption features, which we recommend be further studied and improved in snow albedo models.

  14. Light-absorbing Aerosol Properties in the Kathmandu Valley during SusKat-ABC Field Campaign

    NASA Astrophysics Data System (ADS)

    Kim, S.; Yoon, S.; Kim, J.; Cho, C.; Jung, J.

    2013-12-01

    Light-absorbing aerosols, such as black carbon (BC), are major contributors to the atmospheric heating and the reduction of solar radiation reaching at the earth's surface. In this study, we investigate light-absorption and scattering properties of aerosols (i.e., BC mass concentration, aerosol solar-absorption/scattering efficiency) in the Kathmandu valley during Sustainable atmosphere for the Kathmandu valley (SusKat)-ABC campaign, from December 2012 to February 2013. Kathmandu City is among the most polluted cities in the world. However, there are only few past studies that provide basic understanding of air pollution in the Kathmandu Valley, which is not sufficient for designing effective mitigation measures (e.g., technological, financial, regulatory, legal and political measures, planning strategies). A distinct diurnal variation of BC mass concentration with two high peaks observed during wintertime dry monsoon period. BC mass concentration was found to be maximum around 09:00 and 20:00 local standard time (LST). Increased cars and cooking activities including substantial burning of wood and other biomass in the morning and in the evening contributed to high BC concentration. Low BC concentrations during the daytime can be explain by reduced vehicular movement and cooking activities. Also, the developmements of the boundary layer height and mountain-valley winds in the Kathmandu Valley paly a crucial role in the temproal variation of BC mass concentrations. Detailed radiative effects of light-absorbing aerosols will be presented.

  15. Temporal variation and source identification of black carbon at Lin'an and Longfengshan regional background stations in China

    NASA Astrophysics Data System (ADS)

    Cheng, Siyang; Wang, Yaqiang; An, Xingqin

    2017-12-01

    Black carbon (BC) is a component of fine particulate matter (PM2.5), associated with climate, weather, air quality, and people's health. However, studies on temporal variation of atmospheric BC concentration at background stations in China and its source area identification are lacking. In this paper, we use 2-yr BC observations from two background stations, Lin'an (LAN) and Longfengshan (LFS), to perform the investigation. The results show that the mean diurnal variation of BC has two significant peaks at LAN while different characteristics are found in the BC variation at LFS, which are probably caused by the difference in emission source contributions. Seasonal variation of monthly BC shows double peaks at LAN but a single peak at LFS. The annual mean concentrations of BC at LAN and LFS decrease by 1.63 and 0.26 μg m-3 from 2009 to 2010, respectively. The annual background concentration of BC at LAN is twice higher than that at LFS. The major source of the LAN BC is industrial emission while the source of the LFS BC is residential emission. Based on transport climatology on a 7-day timescale, LAN and LFS stations are sensitive to surface emissions respectively in belt or approximately circular area, which are dominated by summer monsoon or colder land air flows in Northwest China. In addition, we statistically analyze the BC source regions by using BC observation and FLEXible PARTicle dispersion model (FLEXPART) simulation. In summer, the source regions of BC are distributed in the northwest and south of LAN and the southwest of LFS. Low BC concentration is closely related to air mass from the sea. In winter, the source regions of BC are concentrated in the west and south of LAN and the northeast of the threshold area of s tot at LFS. The cold air mass in the northwest plays an important role in the purification of atmospheric BC. On a yearly scale, sources of BC are approximately from five provinces in the northwest/southeast of LAN and the west of LFS. These findings are helpful in reducing BC emission and controlling air pollution.

  16. Radiative effect of black carbon aerosol on a squall line case in North China

    NASA Astrophysics Data System (ADS)

    Fu, Shizuo; Deng, Xin; Li, Zhe; Xue, Huiwen

    2017-11-01

    The radiative effect of black carbon aerosol (BC) on a squall line case in north China is studied with the Weather Research and Forecasting model. Before the initiation of the squall line, the surface-emitted BC is mixed only in the boundary layer (BL). BC is then transported from the BL into the free troposphere by the updrafts in the squall line system. Once distributed in the atmosphere, BC absorbs solar radiation and heats the surrounding air. The maximum increase of temperature is 0.05 K for the moderately polluted case bc2 and 0.37 K for the heavily polluted case bc20. In case bc2, where the BC concentration is not very high, the solar flux reaching the surface, the sensible heat flux, and the latent heat flux are not significantly affected by BC. In case bc20, the solar flux reaching the surface, the sensible heat flux, and the latent heat flux are reduced by up to 80, 30, and 21 W m- 2, respectively. The reduced surface evaporation leads to a reduced vapor amount at the early stage. After some time, the heating effect causes a large-scale convergence and brings slightly more vapor into the domain. The effect of BC on the cold pool strength and low-level wind shear is small and hence does not significantly affect the triggering of new convections. In addition, our results show that the effect of BC is negligible on the strength and rain rate of the squall line case.

  17. Light-absorbing impurities in a southern Tibetan Plateau glacier: Variations and potential impact on snow albedo and radiative forcing

    NASA Astrophysics Data System (ADS)

    Li, Xiaofei; Kang, Shichang; Zhang, Guoshuai; Qu, Bin; Tripathee, Lekhendra; Paudyal, Rukumesh; Jing, Zhefan; Zhang, Yulan; Yan, Fangping; Li, Gang; Cui, Xiaoqing; Xu, Rui; Hu, Zhaofu; Li, Chaoliu

    2018-02-01

    Light-absorbing impurities (LAIs), such as organic carbon (OC), black carbon (BC), and mineral dust (MD), deposited on the surface snow of glacier can reduce the surface albedo. As there exists insufficient knowledge to completely characterize LAIs variations and difference in LAIs distributions, it is essential to investigate the behaviors of LAIs and their influence on the glaciers across the Tibetan Plateau (TP). Therefore, surface snow and snowpit samples were collected during September 2014 to September 2015 from Zhadang (ZD) glacier in the southern TP to investigate the role of LAIs in the glacier. LAIs concentrations were observed to be higher in surface aged snow than in the fresh snow possibly due to post-depositional processes such as melting or sublimation. The LAIs concentrations showed a significant spatial distribution and marked negative relationship with elevation. Impurity concentrations varied significantly with depth in the vertical profile of the snowpit, with maximum LAIs concentrations frequently occurred in the distinct dust layers which were deposited in non-monsoon, and the bottom of snowpit due to the eluviation in monsoon. Major ions in snowpit and backward trajectory analysis indicated that regional activities and South Asian emissions were the major sources. According to the SNow ICe Aerosol Radiative (SNICAR) model, the average simulated albedo caused by MD and BC in aged snow collected on 31 May 2015 accounts for about 13% ± 3% and 46% ± 2% of the albedo reduction. Furthermore, we also found that instantaneous RF caused by MD and BC in aged snow collected on 31 May 2015 varied between 4-16 W m- 2 and 7-64 W m- 2, respectively. The effect of BC exceeds that of MD on albedo reduction and instantaneous RF in the study area, indicating that BC played a major role on the surface of the ZD glacier.

  18. Tethered balloon-born and ground-based measurements of black carbon and particulate profiles within the lower troposphere during the foggy period in Delhi, India.

    PubMed

    Bisht, D S; Tiwari, S; Dumka, U C; Srivastava, A K; Safai, P D; Ghude, S D; Chate, D M; Rao, P S P; Ali, K; Prabhakaran, T; Panickar, A S; Soni, V K; Attri, S D; Tunved, P; Chakrabarty, R K; Hopke, P K

    2016-12-15

    The ground and vertical profiles of particulate matter (PM) were mapped as part of a pilot study using a Tethered balloon within the lower troposphere (1000m) during the foggy episodes in the winter season of 2015-16 in New Delhi, India. Measurements of black carbon (BC) aerosol and PM <2.5 and 10μm (PM 2.5 & PM 10 respectively) concentrations and their associated particulate optical properties along with meteorological parameters were made. The mean concentrations of PM 2.5 , PM 10 , BC 370 nm, and BC 880 nm were observed to be 146.8±42.1, 245.4±65.4, 30.3±12.2, and 24.1±10.3μgm -3 , respectively. The mean value of PM 2.5 was ~12 times higher than the annual US-EPA air quality standard. The fraction of BC in PM 2.5 that contributed to absorption in the shorter visible wavelengths (BC 370 nm ) was ~21%. Compared to clear days, the ground level mass concentrations of PM 2.5 and BC 370 nm particles were substantially increased (59% and 24%, respectively) during the foggy episode. The aerosol light extinction coefficient (σ ext ) value was much higher (mean: 610Mm -1 ) during the lower visibility (foggy) condition. Higher concentrations of PM 2.5 (89μgm -3 ) and longer visible wavelength absorbing BC 880 nm (25.7μgm -3 ) particles were observed up to 200m. The BC 880 nm and PM 2.5 aerosol concentrations near boundary layer (1km) were significantly higher (~1.9 and 12μgm -3 ), respectively. The BC (i.e BC tot ) aerosol direct radiative forcing (DRF) values were estimated at the top of the atmosphere (TOA), surface (SFC), and atmosphere (ATM) and its resultant forcing were - 75.5Wm -2 at SFC indicating the cooling effect at the surface. A positive value (20.9Wm -2 ) of BC aerosol DRF at TOA indicated the warming effect at the top of the atmosphere over the study region. The net DRF value due to BC aerosol was positive (96.4Wm -2 ) indicating a net warming effect in the atmosphere. The contribution of fossil and biomass fuels to the observed BC aerosol DRF values was ~78% and ~22%, respectively. The higher mean atmospheric heating rate (2.71Kday -1 ) by BC aerosol in the winter season would probably strengthen the temperature inversion leading to poor dispersion and affecting the formation of clouds. Serious detrimental impacts on regional climate due to the high concentrations of BC and PM (especially PM 2.5 ) aerosol are likely based on this study and suggest the need for immediate, stringent measures to improve the regional air quality in the northern India. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Sensitivity of black carbon concentrations and climate impact to aging and scavenging in OsloCTM2-M7

    NASA Astrophysics Data System (ADS)

    Lund, Marianne T.; Berntsen, Terje K.; Samset, Bjørn H.

    2017-05-01

    Accurate representation of black carbon (BC) concentrations in climate models is a key prerequisite for understanding its net climate impact. BC aging and scavenging are treated very differently in current models. Here, we examine the sensitivity of three-dimensional (3-D), temporally resolved BC concentrations to perturbations to individual model processes in the chemistry transport model OsloCTM2-M7. The main goals are to identify processes related to aerosol aging and scavenging where additional observational constraints may most effectively improve model performance, in particular for BC vertical profiles, and to give an indication of how model uncertainties in the BC life cycle propagate into uncertainties in climate impacts. Coupling OsloCTM2 with the microphysical aerosol module M7 allows us to investigate aging processes in more detail than possible with a simpler bulk parameterization. Here we include, for the first time in this model, a treatment of condensation of nitric acid on BC. Using kernels, we also estimate the range of radiative forcing and global surface temperature responses that may result from perturbations to key tunable parameters in the model. We find that BC concentrations in OsloCTM2-M7 are particularly sensitive to convective scavenging and the inclusion of condensation by nitric acid. The largest changes are found at higher altitudes around the Equator and at low altitudes over the Arctic. Convective scavenging of hydrophobic BC, and the amount of sulfate required for BC aging, are found to be key parameters, potentially reducing bias against HIAPER Pole-to-Pole Observations (HIPPO) flight-based measurements by 60 to 90 %. Even for extensive tuning, however, the total impact on global-mean surface temperature is estimated to less than 0.04 K. Similar results are found when nitric acid is allowed to condense on the BC aerosols. We conclude, in line with previous studies, that a shorter atmospheric BC lifetime broadly improves the comparison with measurements over the Pacific. However, we also find that the model-measurement discrepancies can not be uniquely attributed to uncertainties in a single process or parameter. Model development therefore needs to be focused on improvements to individual processes, supported by a broad range of observational and experimental data, rather than tuning of individual, effective parameters such as the global BC lifetime.

  20. Measurements of Refractory Black Carbon (rBC) Aerosols in the McMurdo Dry Valleys, Antarctica

    NASA Astrophysics Data System (ADS)

    Khan, A. L.; McMeeking, G. R.; Lyons, W. B.; Schwarz, J. P.; Welch, K. A.; McKnight, D. M.

    2015-12-01

    Measurements of light absorbing particles in the boundary layer of the high southern latitudes are scarce. During the 2013-2014 austral summer field season refractory black carbon (rBC) aerosols were quantified by a single particle soot photometer (SP2) in the McMurdo Dry Valleys, Antarctica. The dark rBC particles absorb more radiation thereby increasing atmospheric heating, as well as reducing surface albedo and enhancing hydrologic melt when deposited on highly reflective surfaces such as snow and ice. Quantifying both local and long-range atmospheric transport of rBC to this region of a remote continent mostly covered by ice and snow would be useful in understanding meltwater generation as climate changes. Although the Dry Valleys are the largest ice-free region of Antarctica, they contain many alpine glaciers, some of which are fed from the East Antarctic Ice Sheet (EAIS). Continuous rBC measurements were collected at Lake Hoare Camp in the Taylor Valley for two months, along with shorter periods at more remote locations within the Dry Valleys. Conditions at the Lake Hoare Camp were dominated by up-valley winds from McMurdo Sound, however, winds also brought air down-valley from the EAIS polar plateau. Here we investigated periods dominated by both up and down-valley winds to explore differences in rBC concentrations, size distributions, and scattering properties. The average background rBC mass concentration was 1ng/m3, though concentrations as high as 50 ng/m3 were observed at times, likely due to local sources.

  1. Changes in Fire-Derived Soil Black Carbon Storage in a Sub-humid Woodland

    NASA Astrophysics Data System (ADS)

    White, J. D.; Yao, J.; Murray, D. B.; Hockaday, W. C.

    2014-12-01

    Fire-derived black carbon (BC) in soil, including charcoal, represents a potentially important fraction of terrestrial carbon cycling due to its presumed long persistence in soil. Interpretation of site BC retention is important for assessing feedbacks to ecosystem processes including nutrient and water cycling. However, interaction between vegetation disturbance, BC formation, and off site transport may exist that complicate interpretation of BC addition to soils from wildfire or prescribed burns directly. To investigate the relationship between disturbance and site retention on soil BC, we determined BC concentrations for a woodland in central Texas, USA, from study plots in hilly terrain with a fire scar dendrochronology spanning 100 years. BC values were determined from 13C nuclear magnetic resonance (NMR) spectroscopy. Estimated values showed mean BC concentration of 2.73 ± 3.06 g BC kg-1 (0.91 ± 0.51 kg BC m-2) for sites with fire occurrence within the last 40 years compared with BC values of1.21 ± 1.70 g BC kg-1 soil (0.18 ± 0.14 kg BC m-2) for sites with fire 40 - 100 years ago. Sites with no tree ring evidence of fire during the last 100 years had the lowest mean soil BC concentration of 0.05 ± 0.11 g BC kg-1 (0.02 ± 0.03 kg BC m-2). Molecular proxies of stability (lignin/N) and decomposition (Alkyl C/O-Alky C) showed no differences across the sites, indicating that low potential for BC mineralization. Modeled soil erosion and time since fire from fire scar data showed that soil BC concentrations were inversely correlated. A modified the ecosystem process model, Biome-BGC, was also used simulate the effects of fire disturbance with different severities and seasonality on C cycling related to the BC production, effect on soil water availability, and off-site transport. Results showed that BC impacts on ecosystem processes, including net ecosystem exchange and leaf area development, were predominantly related to fire frequency. Site BC loss rates were affected by initial slope-affected erosion, fire severity, vegetation type, and rate of vegetation recovery. The simulation results showed that fire types, such as high severity, was generally associated with low site BC retention related to low vertical transfer of BC into soils, buoyancy of BC particles, and surface runoff from unvegetated soils.

  2. Confronting the “Indian summer monsoon response to black carbon aerosol” with the uncertainty in its radiative forcing and beyond

    DOE PAGES

    Kovilakam, Mahesh; Mahajan, Salil

    2016-06-28

    While black carbon aerosols (BC) are believed to modulate the Indian monsoons, the radiative forcing estimate of BC suffers from large uncertainties globally. In this paper, we analyze a suite of idealized experiments forced with a range of BC concentrations that span a large swath of the latest estimates of its global radiative forcing. Within those bounds of uncertainty, summer precipitation over the Indian region increases nearly linearly with the increase in BC burden. The linearity holds even as the BC concentration is increased to levels resembling those hypothesized in nuclear winter scenarios, despite large surface cooling over India andmore » adjoining regions. The enhanced monsoonal circulation is associated with a linear increase in the large-scale meridional tropospheric temperature gradient. The precipitable water over the region also increases linearly with an increase in BC burden, due to increased moisture transport from the Arabian sea to the land areas. The wide range of Indian monsoon response elicited in these experiments emphasizes the need to reduce the uncertainty in BC estimates to accurately quantify their role in modulating the Indian monsoons. Finally, the increase in monsoonal circulation in response to large BC concentrations contrasts earlier findings that the Indian summer monsoon may break down following a nuclear war.« less

  3. Confronting the “Indian summer monsoon response to black carbon aerosol” with the uncertainty in its radiative forcing and beyond

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kovilakam, Mahesh; Mahajan, Salil

    While black carbon aerosols (BC) are believed to modulate the Indian monsoons, the radiative forcing estimate of BC suffers from large uncertainties globally. In this paper, we analyze a suite of idealized experiments forced with a range of BC concentrations that span a large swath of the latest estimates of its global radiative forcing. Within those bounds of uncertainty, summer precipitation over the Indian region increases nearly linearly with the increase in BC burden. The linearity holds even as the BC concentration is increased to levels resembling those hypothesized in nuclear winter scenarios, despite large surface cooling over India andmore » adjoining regions. The enhanced monsoonal circulation is associated with a linear increase in the large-scale meridional tropospheric temperature gradient. The precipitable water over the region also increases linearly with an increase in BC burden, due to increased moisture transport from the Arabian sea to the land areas. The wide range of Indian monsoon response elicited in these experiments emphasizes the need to reduce the uncertainty in BC estimates to accurately quantify their role in modulating the Indian monsoons. Finally, the increase in monsoonal circulation in response to large BC concentrations contrasts earlier findings that the Indian summer monsoon may break down following a nuclear war.« less

  4. Dependency of black-carbon-induced atmospheric warming on the concentration of sulphate and organic aerosols

    NASA Astrophysics Data System (ADS)

    Kim, S.; Yoon, S.; in-Jin, C.; Ramanathan, V.; Ramana, M.

    2010-12-01

    Previous modeling studies have showed that the net radiative effect of black carbon (BC) and organic aerosols generated by fossil-fuel combustion and biomass-fuel cooking contribute to a warming by absorbing solar radiation, and the warming effect of fossil-fuel BC is larger than that of biomass-fuel cooking [Ramana et al., Nature Geoscience, 2010]. However, the extent of BC warming is regulated by the ambient concentrations of sulphate and organic carbon (OC) aerosols, which reflect the solar radiation and cool the surface, thus enhancing the net warming caused by BC and GHGs. This is because the major sources of BC also emit CO2 and other greenhouse gases (GHGs) (that warm the climate), and sulfates, nitrates, organics and other particles (that cool the climate). In this study, we present the impact of BC-to-sulphate and BC-to-OC ratios on atmospheric warming on the basis of surface-based filter and in-situ measurements at Gosan climate observatory in Jeju, South Korea and radiative transfer calculations with AERONET Cimel sun/sky radiometer and micro-pulse lidar measurements as a model input. We investigate (1) BC-to-sulphate and BC-to-OC ratios, (2) aerosol solar-absorption efficiency (i.e., co-single scattering albedo) and (3) corresponding atmospheric direct radiative forcing and heating rate of aerosol plumes from N. China (Beijing), S. China (Shanghai) and clean marine sources during ACE-Asia (April-May 2001), ABC-EAREX2005 (March-April 2005) and CAMPEX (August-September 2008), and discuss their relationships.

  5. Source attribution of black carbon and its direct radiative forcing in China

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Yang; Wang, Hailong; Smith, Steven J.

    The source attributions for mass concentration, haze formation, transport and direct radiative forcing of black carbon (BC) in various regions of China are quantified in this study using the Community Earth System Model (CESM) with a source-tagging technique. Anthropogenic emissions are from the Community Emissions Data System that is newly developed for the Coupled Model Intercomparison Project Phase 6 (CMIP6). Over north China where the air quality is often poor, about 90 % of near-surface BC concentration is contributed by local emissions. Overall, 35 % of BC concentration over south China in winter can be attributed to emissions from north China, andmore » 19 % comes from sources outside China in spring. For other regions in China, BC is largely contributed from nonlocal sources. We further investigated potential factors that contribute to the poor air quality in China. During polluted days, a net inflow of BC transported from nonlocal source regions associated with anomalous winds plays an important role in increasing local BC concentrations. BC-containing particles emitted from East Asia can also be transported across the Pacific. Our model results show that emissions from inside and outside China are equally important for the BC outflow from East Asia, while emissions from China account for 8 % of BC concentration and 29 % in column burden in the western United States in spring. Radiative forcing estimates show that 65 % of the annual mean BC direct radiative forcing (2.2 W m −2) in China results from local emissions, and the remaining 35 % is contributed by emissions outside of China. Efficiency analysis shows that a reduction in BC emissions over eastern China could have a greater benefit for the regional air quality in China, especially in the winter haze season.« less

  6. Source attribution of black carbon and its direct radiative forcing in China

    DOE PAGES

    Yang, Yang; Wang, Hailong; Smith, Steven J.; ...

    2017-03-30

    The source attributions for mass concentration, haze formation, transport and direct radiative forcing of black carbon (BC) in various regions of China are quantified in this study using the Community Earth System Model (CESM) with a source-tagging technique. Anthropogenic emissions are from the Community Emissions Data System that is newly developed for the Coupled Model Intercomparison Project Phase 6 (CMIP6). Over north China where the air quality is often poor, about 90 % of near-surface BC concentration is contributed by local emissions. Overall, 35 % of BC concentration over south China in winter can be attributed to emissions from north China, andmore » 19 % comes from sources outside China in spring. For other regions in China, BC is largely contributed from nonlocal sources. We further investigated potential factors that contribute to the poor air quality in China. During polluted days, a net inflow of BC transported from nonlocal source regions associated with anomalous winds plays an important role in increasing local BC concentrations. BC-containing particles emitted from East Asia can also be transported across the Pacific. Our model results show that emissions from inside and outside China are equally important for the BC outflow from East Asia, while emissions from China account for 8 % of BC concentration and 29 % in column burden in the western United States in spring. Radiative forcing estimates show that 65 % of the annual mean BC direct radiative forcing (2.2 W m −2) in China results from local emissions, and the remaining 35 % is contributed by emissions outside of China. Efficiency analysis shows that a reduction in BC emissions over eastern China could have a greater benefit for the regional air quality in China, especially in the winter haze season.« less

  7. Emission inventories for ships in the arctic based on satellite sampled AIS data

    NASA Astrophysics Data System (ADS)

    Winther, Morten; Christensen, Jesper H.; Plejdrup, Marlene S.; Ravn, Erik S.; Eriksson, Ómar F.; Kristensen, Hans Otto

    2014-07-01

    This paper presents a detailed BC, NOx and SO2 emission inventory for ships in the Arctic in 2012 based on satellite AIS data, ship engine power functions and technology stratified emission factors. Emission projections are presented for the years 2020, 2030 and 2050. Furthermore, the BC, SO2 and O3 concentrations and the deposition of BC are calculated for 2012 and for two arctic shipping scenarios - with or without arctic diversion routes due to a possible polar sea ice extent in the future. In 2012, the largest shares of Arctic ships emissions are calculated for fishing ships (45% for BC, 38% for NOx, 23% for SO2) followed by passenger ships (20%, 17%, 25%), tankers (9%, 13%, 15%), general cargo (8%, 11%, 12%) and container ships (5%, 7%, 8%). In 2050, without arctic diversion routes, the total emissions of BC, NOx and SO2 are expected to change by +16%, -32% and -63%, respectively, compared to 2012. The results for fishing ships are the least certain, caused by a less precise engine power - sailing speed relation. The calculated BC, SO2, and O3 surface concentrations and BC deposition contributions from ships are low as a mean for the whole Arctic in 2012, but locally BC additional contributions reach up to 20% around Iceland, and high additional contributions (100-300%) are calculated in some sea areas for SO2. In 2050, the arctic diversion routes highly influence the calculated surface concentrations and the deposition of BC in the Arctic. During summertime navigation contributions become very visible for BC (>80%) and SO2 (>1000%) along the arctic diversion routes, while the O3 (>10%) and BC deposition (>5%) additional contributions, respectively, get highest over the ocean east of Greenland and in the High Arctic. The geospatial ship type specific emission results presented in this paper have increased the accuracy of the emission inventories for ships in the Arctic. The methodology can be used to estimate shipping emissions in other regions of the world, and hence may serve as an input for other researchers and policy makers working in this field.

  8. Biochar composites with nano zerovalent iron and eggshell powder for nitrate removal from aqueous solution with coexisting chloride ions.

    PubMed

    Ahmad, Munir; Ahmad, Mahtab; Usman, Adel R A; Al-Faraj, Abdullah S; Abduljabbar, Adel S; Al-Wabel, Mohammad I

    2017-09-18

    Biochar (BC) was produced from date palm tree leaves and its composites were prepared with nano zerovalent iron (nZVI-BC) and hen eggshell powder (EP-BC). The produced BC and its composites were characterized by SEM, XRD, BET, and FTIR for surface structural, mineralogical, and chemical groups and tested for their efficiency for nitrate removal from aqueous solutions in the presence and absence of chloride ions. The incidence of graphene and nano zerovalent iron (Fe 0 ) in the nZVI-BC composite was confirmed by XRD. The nZVI-BC composite possessed highest surface area (220.92 m 2  g -1 ), carbon (80.55%), nitrogen (3.78%), and hydrogen (11.09%) contents compared to other materials. Nitrate sorption data was fitted well to the Langmuir (R 2  = 0.93-0.98) and Freundlich (R 2  = 0.90-0.99) isotherms. The sorption kinetics was adequately explained by the pseudo-second-order, power function, and Elovich models. The nZVI-BC composite showed highest Langmuir predicted sorption capacity (148.10 mg g -1 ) followed by EP-BC composite (72.77 mg g -1 ). In addition to the high surface area, the higher nitrate removal capacity of nZVI-BC composite could be attributed to the combination of two processes, i.e., chemisorption (outer-sphere complexation) and reduction of nitrate to ammonia or nitrogen by Fe 0 . The appearance of Fe-O stretching and N-H bonds in post-sorption FTIR spectra of nZVI-BC composite suggested the occurrence of redox reaction and formation of Fe compound with N, such as ferric nitrate (Fe(NO 3 ) 3 ·9H 2 O). Coexistence of chloride ions negatively influenced the nitrate sorption. The decrease in nitrate sorption with increasing chloride ion concentration was observed, which could be due to the competition of free active sites on the sorbents between nitrate and chloride ions. The nZVI-BC composite exhibited higher nitrate removal efficiency compared to other materials even in the presence of highest concentration (100 mg L -1 ) of coexisting chloride ion.

  9. Quantifying sources of black carbon in western North America using observationally based analysis and an emission tagging technique in the Community Atmosphere Model

    DOE PAGES

    Zhang, Rudong; Wang, Hailong; Hegg, D. A.; ...

    2015-11-18

    The Community Atmosphere Model (CAM5), equipped with a technique to tag black carbon (BC) emissions by source regions and types, has been employed to establish source–receptor relationships for atmospheric BC and its deposition to snow over western North America. The CAM5 simulation was conducted with meteorological fields constrained by reanalysis for year 2013 when measurements of BC in both near-surface air and snow are available for model evaluation. We find that CAM5 has a significant low bias in predicted mixing ratios of BC in snow but only a small low bias in predicted atmospheric concentrations over northwestern USA and westernmore » Canada. Even with a strong low bias in snow mixing ratios, radiative transfer calculations show that the BC-in-snow darkening effect is substantially larger than the BC dimming effect at the surface by atmospheric BC. Local sources contribute more to near-surface atmospheric BC and to deposition than distant sources, while the latter are more important in the middle and upper troposphere where wet removal is relatively weak. Fossil fuel (FF) is the dominant source type for total column BC burden over the two regions. FF is also the dominant local source type for BC column burden, deposition, and near-surface BC, while for all distant source regions combined the contribution of biomass/biofuel (BB) is larger than FF. An observationally based positive matrix factorization (PMF) analysis of the snow-impurity chemistry is conducted to quantitatively evaluate the CAM5 BC source-type attribution. Furthermore, while CAM5 is qualitatively consistent with the PMF analysis with respect to partitioning of BC originating from BB and FF emissions, it significantly underestimates the relative contribution of BB. In addition to a possible low bias in BB emissions used in the simulation, the model is likely missing a significant source of snow darkening from local soil found in the observations.« less

  10. Impacts of global, regional, and sectoral black carbon emission reductions on surface air quality and human mortality

    NASA Astrophysics Data System (ADS)

    Anenberg, S. C.; Talgo, K.; Arunachalam, S.; Dolwick, P.; Jang, C.; West, J. J.

    2011-04-01

    As a component of fine particulate matter (PM2.5), black carbon (BC) is associated with premature human mortality. BC also affects climate by absorbing solar radiation and reducing planetary albedo. Several studies have examined the climate impacts of BC emissions, but the associated health impacts have been studied less extensively. Here, we examine the surface PM2.5 and premature mortality impacts of halving anthropogenic BC emissions globally, from eight world regions, and from three major economic sectors. We use a global chemical transport model, MOZART-4, to simulate PM2.5 concentrations and a health impact function to calculate premature cardiopulmonary and lung cancer deaths. We estimate that halving global anthropogenic BC emissions reduces outdoor population-weighted average PM2.5 by 542 ng m-3 (1.8%) and avoids 157 000 (95% confidence interval, 120 000-194 000) annual premature deaths globally, with the vast majority occurring within the source region. While most of these avoided deaths can be achieved by halving East Asian emissions (54%), followed by South Asian emissions (31%), South Asian emissions have 50% greater mortality impacts per unit BC emitted than East Asian emissions. Globally, the contribution of residential, industrial, and transportation BC emissions to PM2.5-related mortality is 1.3, 1.2, and 0.6 times each sector's contribution to anthropogenic BC emissions, owing to the degree of co-location with population. Impacts of residential BC emissions are underestimated since indoor PM2.5 exposure is excluded. We estimate ~8 times more avoided deaths when BC and organic carbon (OC) emissions are halved together, suggesting that these results greatly underestimate the full air pollution-related mortality benefits of BC mitigation strategies which generally decrease both BC and OC. Confidence in our results would be strengthened by reducing uncertainties in emissions, model parameterization of aerosol processes, grid resolution, and PM2.5 concentration-mortality relationships globally.

  11. Change in diurnal variations of meteorological variables induced by anthropogenic aerosols over the North China Plain in summer 2008

    NASA Astrophysics Data System (ADS)

    Gao, Yi; Zhang, Meigen; Liu, Xiaohong; Wang, Lili

    2016-04-01

    This study investigates the impacts of all anthropogenic aerosols and anthropogenic black carbon (BC) on the diurnal variations of meteorological variables in the atmospheric boundary layer over the North China Plain (NCP) during June to August 2008, using a coupled meteorology and chemistry model (WRF-Chem). The results of the ensemble numerical experiments show that surface air temperature decreases by about 0.6 to 1.2 K with the maximum decrease over the Beijing urban area and the southern part of Hebei province, and the surface relative humidity (RH) increases by 2-4 % owing to all anthropogenic aerosols. On the contrary, anthropogenic BC induces a small change of temperature and RH at surface. Averaged for Beijing, Tianjin, and Hebei province (BTH region) and High Particle Concentration (HPC) periods when PM2.5 surface concentration is more than 60 μg m-3 and daily AOD is more than 0.9, all anthropogenic aerosols decrease air temperature under 850 hPa and increase it between 500 and 850 hPa, while anthropogenic BC increases it for whole atmosphere. The maximum changes occur at 08:00-20:00 (local time). Aerosol-induced surface energy and diabatic heating change leads to a cooling at the surface and in the lower atmosphere and a warming in the middle troposphere at 08:00-17:00, with reversed effects at 20:00-05:00. BC cools the atmosphere at the surface and warms the atmosphere above for the whole day. As a result, the equivalent potential temperature profile change shows that the lower atmosphere is more stable at 08:00 and 14:00. All anthropogenic aerosols decrease the surface wind speed by 20-60 %, while anthropogenic BC decreases the wind speed by 10-40 % over the NCP with the maximum decrease at 08:00. The aerosol-induced stabilization of the lower atmosphere favors the accumulation of air pollutants and thus contributes to deterioration of visibility and fog-haze events.

  12. An insight into the adsorption of diclofenac on different biochars: Mechanisms, surface chemistry, and thermodynamics.

    PubMed

    Lonappan, Linson; Rouissi, Tarek; Kaur Brar, Satinder; Verma, Mausam; Surampalli, Rao Y

    2018-02-01

    Biochars were prepared from feedstocks pinewood and pig manure. Biochar microparticles obtained through grinding were evaluated for the removal of emerging contaminant diclofenac (DCF) and the underlying mechanism were thoroughly studied. Characterization of biochar was carried out using particle size analyzer, SEM, BET, FT-IR, XRD, XPS and zeta potential instrument. Pig manure biochar (BC-PM) exhibited excellent removal efficiency (99.6%) over pine wood biochar (BC-PW) at 500 µg L -1 of DCF (environmentally significant concentration). Intraparticle diffusion was found to be the major process facilitated the adsorption. BC-PW followed pseudo first-order kinetics whereas BC-PM followed pseudo second-order kinetics. Pine wood biochar was largely affected by pH variations whereas for pig manure biochar, pH effects were minimal owing to its surface functional groups and DCF hydrophobicity. Thermodynamics, presence of co-existing ions, initial adsorbate concentration and particles size played substantial role in adsorption. Various isotherms models were also studied and results are presented. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. In-situ measurements of light-absorbing impurities in snow of glacier on Mt. Yulong and implications for radiative forcing estimates.

    PubMed

    Niu, Hewen; Kang, Shichang; Shi, Xiaofei; Paudyal, Rukumesh; He, Yuanqing; Li, Gang; Wang, Shijin; Pu, Tao; Shi, Xiaoyi

    2017-03-01

    The Tibetan Plateau (TP) or the third polar cryosphere borders geographical hotspots for discharges of black carbon (BC). BC and dust play important roles in climate system and Earth's energy budget, particularly after they are deposited on snow and glacial surfaces. BC and dust are two kinds of main light-absorbing impurities (LAIs) in snow and glaciers. Estimating concentrations and distribution of LAIs in snow and glacier ice in the TP is of great interest because this region is a global hotspot in geophysical research. Various snow samples, including surface aged-snow, superimposed ice and snow meltwater samples were collected from a typical temperate glacier on Mt. Yulong in the snow melt season in 2015. The samples were determined for BC, Organic Carbon (OC) concentrations using an improved thermal/optical reflectance (DRI Model 2001) method and gravimetric method for dust concentrations. Results indicated that the LAIs concentrations were highly elevation-dependent in the study area. Higher contents and probably greater deposition at relative lower elevations (generally <5000masl) of the glacier was observed. Temporal difference of LAIs contents demonstrated that LAIs in snow of glacier gradually increased as snow melting progressed. Evaluations of the relative absorption of BC and dust displayed that the impact of dust on snow albedo and radiative forcing (RF) is substantially larger than BC, particularly when dust contents are higher. This was verified by the absorption factor, which was <1.0. In addition, we found the BC-induced albedo reduction to be in the range of 2% to nearly 10% during the snow melting season, and the mean snow albedo reduction was 4.63%, hence for BC contents ranging from 281 to 894ngg -1 in snow of a typical temperate glacier on Mt. Yulong, the associated instantaneous RF will be 76.38-146.96Wm -2 . Further research is needed to partition LAIs induced glacial melt, modeling researches in combination with long-term in-situ observations of LAIs in glaciers is also urgent needed in the future work. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Tethered balloon-based black carbon profiles within the lower troposphere of Shanghai in the 2013 East China smog

    NASA Astrophysics Data System (ADS)

    Li, Juan; Fu, Qingyan; Huo, Juntao; Wang, Dongfang; Yang, Wen; Bian, Qinggen; Duan, Yusen; Zhang, Yihua; Pan, Jun; Lin, Yanfen; Huang, Kan; Bai, Zhipeng; Wang, Sheng-Hsiang; Fu, Joshua S.; Louie, Peter K. K.

    2015-12-01

    A Tethered balloon-based field campaign was launched for the vertical observation of air pollutants within the lower troposphere of 1000 m for the first time over a Chinese megacity, Shanghai in December of 2013. A custom-designed instrumentation platform for tethered balloon observation and ground-based observation synchronously operated for the measurement of same meteorological parameters and typical air pollutants. One episodic event (December 13) was selected with specific focus on particulate black carbon, a short-lived climate forcer with strong warming effect. Diurnal variation of the mixing layer height showed very shallow boundary of less than 300 m in early morning and night due to nocturnal inversion while extended boundary of more than 1000 m from noon to afternoon. Wind profiles showed relatively stagnant synoptic condition in the morning, frequent shifts between upward and downward motion at noon and in the afternoon, and dominant downward motion with sea breeze in the evening. Characteristics of black carbon vertical profiles during four different periods of a day were analyzed and compared. In the morning, surface BC concentration averaged as high as 20 μg/m3 due to intense traffic emissions from the morning rush hours and unfavorable meteorological conditions. A strong gradient of BC concentrations with altitude was observed from the ground to the top of boundary layer at around 250-370 m. BC gradients turned much smaller above the boundary layer. BC profiles measured during noon and afternoon were the least dependent on heights. The largely extended boundary layer with strong vertical convection was responsible for a well mixing of BC particles in the whole measured column. BC profiles were similar between the early-evening and late-evening phases. The lower troposphere was divided into two stratified air layers with contrasted BC vertical distributions. Profiles at night showed strong gradients from the relatively high surface concentrations to low concentrations near the top of the boundary layer around 200 m. Above the boundary layer, BC increased with altitudes and reached a maximum at the top of 1000 m. Prevailing sea breeze within the boundary layer was mainly responsible for the quick cleanup of BC in the lower altitudes. In contrast, continental outflow via regional transport was the major cause of the enhanced BC aloft. This study provides a first insight of the black carbon vertical profiles over Eastern China, which will have significant implications for narrowing the gaps between the source emissions and observations as well as improving estimations of BC radiative forcing and regional climate.

  15. CCN concentrations and BC warming influenced by maritime ship emitted aerosol plumes over southern Bay of Bengal.

    PubMed

    Ramana, M V; Devi, Archana

    2016-08-02

    Significant quantities of carbon soot aerosols are emitted into pristine parts of the atmosphere by marine shipping. Soot impacts the radiative balance of the Earth-atmosphere system by absorbing solar-terrestrial radiation and modifies the microphysical properties of clouds. Here we examined the impact of black carbon (BC) on net warming during monsoon season over southern Bay-of-Bengal, using surface and satellite measurements of aerosol plumes from shipping. Shipping plumes had enhanced the BC concentrations by a factor of four around the shipping lane and exerted a strong positive influence on net warming. Compiling all the data, we show that BC atmospheric heating rates for relatively-clean and polluted-shipping corridor locations to be 0.06 and 0.16 K/day respectively within the surface layer. Emissions from maritime ships had directly heated the lower troposphere by two-and-half times and created a gradient of around 0.1 K/day on either side of the shipping corridor. Furthermore, we show that ship emitted aerosol plumes were responsible for increase in the concentration of cloud condensation nuclei (CCN) by an order of magnitude that of clean air. The effects seen here may have significant impact on the monsoonal activity over Bay-of-Bengal and implications for climate change mitigation strategies.

  16. Source sector and region contributions to BC and PM 2.5 in Central Asia

    DOE PAGES

    Kulkarni, S.; Sobhani, N.; Miller-Schulze, J. P.; ...

    2015-02-18

    Particulate matter (PM) mass concentrations, seasonal cycles, source sector, and source region contributions in Central Asia (CA) are analyzed for the period April 2008–July 2009 using the Sulfur Transport and dEposition Model (STEM) chemical transport model and modeled meteorology from the Weather Research and Forecasting (WRF) model. Predicted aerosol optical depth (AOD) values (annual mean value ~0.2) in CA vary seasonally, with lowest values in the winter. Surface PM 2.5 concentrations (annual mean value ~10 μg m −3) also exhibit a seasonal cycle, with peak values and largest variability in the spring/summer, and lowest values and variability in the wintermore » (hourly values from 2 to 90 μg m −3). Surface concentrations of black carbon (BC) (mean value ~0.1 μg m −3) show peak values in the winter. The simulated values are compared to surface measurements of AOD as well as PM 2.5, PM 10, BC, and organic carbon (OC) mass concentrations at two regional sites in Kyrgyzstan (Lidar Station Teplokluchenka (LST) and Bishkek). The predicted values of AOD and PM mass concentrations and their seasonal cycles are fairly well captured. The carbonaceous aerosols are underpredicted in winter, and analysis suggests that the winter heating emissions are underestimated in the current inventory. Dust, from sources within and outside CA, is a significant component of the PM mass and drives the seasonal cycles of PM and AOD. On an annual basis, the power and industrial sectors are found to be the most important contributors to the anthropogenic portion of PM 2.5. Residential combustion and transportation are shown to be the most important sectors for BC. Biomass burning within and outside the region also contributes to elevated PM and BC concentrations. The analysis of the transport pathways and the variations in particulate matter mass and composition in CA demonstrates that this region is strategically located to characterize regional and intercontinental transport of pollutants. Aerosols at these sites are shown to reflect dust, biomass burning, and anthropogenic sources from Europe; South, East, and Central Asia; and Russia depending on the time period. Simulations for a reference 2030 emission scenario based on pollution abatement measures already committed to in current legislation show that PM 2.5 and BC concentrations in the region increase, with BC growing more than PM 2.5 on a relative basis. This indicates that both the health impacts and the climate warming associated with these particles may increase over the next decades unless additional control measures are taken. The importance of observations in CA to help characterize the changes that are rapidly taking place in the region are discussed.« less

  17. Source Estimation of Wintertime Soot Particles for an Urban Site Varanasi (25.30 N, 83.00 E) in Central Indo-Gangetic Plain Region

    NASA Astrophysics Data System (ADS)

    Singh, A. K.; Srivastava, M. K.; Dumka, U. C.; Singh, R. K.; Singh, R. S.; Tiwari, S.; Mehrotra, B. J.; Srivastava, A. K.

    2017-12-01

    Black carbon particles (BC: also called Soot) are formed by incomplete combustion of hydrocarbon based fuels (fossil fuel: coal, diesel, petrol, etc.) as well as due to burning of biomass and bio-fuels (wood, shrubs, dry leaves, etc.). Soot particles are warming agent to the atmosphere that gained wide attention in recent years due to their direct and indirect impacts on local, regional as well as global climate. The climatic effects due to soot are not well understood as indicated by large uncertainties in their climate forcing estimation, particularly in South and East Asian region, possibly due to unavailability of adequate database and information about the source. Measurement of wintertime BC mass concentrations for urban site in central IGP, `Varanasi' (25.30 N, 83.00 E), using a seven wavelength Aethalometer is reported in this work. Delta-C (=BC370 - BC880), which is an indicator of biomass/bio-fuels or residential coal burning is used to understand the source. Aethalometer based source apportionment model "Aethalometer model" was used to apportion the fossil fuel/traffic and wood/biomass burning mass concentration to the total BC mass. The preliminary results for representative month (January-2015) show that daily-average BC mass ranged from 4.47 to 20.70 μg m-3 (Average: 9.45 ± 4.15 μg m-3). The daily Absorption Ångström Exponent (AAE) and the ratio of BCff/BC and BCff/BCwb varied between 1.09 - 1.32, 0.67 - 0.92 and 2 - 40, respectively, due to the changes in BC emissions rates. The total BC, BC from fossil fuel (BCff) and BC from wood/biomass burning (BCwb) behaved in the remarkable diurnal pattern, behaving opposite to the mixing layer heights (MLHs). During daytime, MLHs are higher due to surface based solar warming and causes more volume of atmosphere for the BC dispersion. This phenomenon causes the surface measurement of lower BC mass during the daytime. The data is, however, still being processed for multi-year wintertime observations and the detailed discussions will be shown during the presentation.

  18. Enhanced Sorption of PAHs in Natural-Fire-Impacted Sediments from Oriole Lake, California

    EPA Science Inventory

    Surface sediment cores from Oriole Lake (CA) were analyzed for organic carbon (OC), black carbon (BC), and their δ13C isotope ratios. Sediments displayed high OC(20-25%) and increasing BC concentrations from ∼0.40% (in 1800 C.E.) to ∼0.60% dry weight (in 2000 C.E.). Petrographic...

  19. Rapid Adjustments Cause Weak Surface Temperature Response to Increased Black Carbon Concentrations

    NASA Astrophysics Data System (ADS)

    Stjern, Camilla Weum; Samset, Bjørn Hallvard; Myhre, Gunnar; Forster, Piers M.; Hodnebrog, Øivind; Andrews, Timothy; Boucher, Olivier; Faluvegi, Gregory; Iversen, Trond; Kasoar, Matthew; Kharin, Viatcheslav; Kirkevâg, Alf; Lamarque, Jean-François; Olivié, Dirk; Richardson, Thomas; Shawki, Dilshad; Shindell, Drew; Smith, Christopher J.; Takemura, Toshihiko; Voulgarakis, Apostolos

    2017-11-01

    We investigate the climate response to increased concentrations of black carbon (BC), as part of the Precipitation Driver Response Model Intercomparison Project (PDRMIP). A tenfold increase in BC is simulated by nine global coupled-climate models, producing a model median effective radiative forcing of 0.82 (ranging from 0.41 to 2.91) W m-2, and a warming of 0.67 (0.16 to 1.66) K globally and 1.24 (0.26 to 4.31) K in the Arctic. A strong positive instantaneous radiative forcing (median of 2.10 W m-2 based on five of the models) is countered by negative rapid adjustments (-0.64 W m-2 for the same five models), which dampen the total surface temperature signal. Unlike other drivers of climate change, the response of temperature and cloud profiles to the BC forcing is dominated by rapid adjustments. Low-level cloud amounts increase for all models, while higher-level clouds are diminished. The rapid temperature response is particularly strong above 400 hPa, where increased atmospheric stabilization and reduced cloud cover contrast the response pattern of the other drivers. In conclusion, we find that this substantial increase in BC concentrations does have considerable impacts on important aspects of the climate system. However, some of these effects tend to offset one another, leaving a relatively small median global warming of 0.47 K per W m-2—about 20% lower than the response to a doubling of CO2. Translating the tenfold increase in BC to the present-day impact of anthropogenic BC (given the emissions used in this work) would leave a warming of merely 0.07 K.

  20. Higher Atmosphere Heating due to black carbon Over the Northern Part of India

    NASA Astrophysics Data System (ADS)

    Tiwari, S.; Singh, S., , Dr

    2017-12-01

    Light-absorbing, atmospheric particles have gained greater attention in recent years because of their direct and indirect impacts on regional and global climate. Atmospheric black carbon (BC) aerosol (also called soot particle) is a leading climate warming agent, yet uncertainties in the global direct aerosol radiative forcing remain large. Based on a year of aerosol absorption measurements at seven wavelengths, BC concentrations were investigated in Dhanbad, the coal capital of India. Coal is routinely burned for cooking and residential heat as well as in small industries. The mean daily concentrations of ultraviolet-absorbing black carbon measured at 370 nm (UVBC) and black carbon measured at 880 nm (BC) were 9.8 ± 5.7 and 6.5 ± 3.8 μg m-3, respectively. The difference between UVBC and BC, Delta-C, is an indicator of biomass or residential coal burning and averaged 3.29 ± 4.61 μg m-3. An alternative approach uses the calculation of the Angstrom Exponent (AE) to estimate the amounts of biomass/coal and traffic BC. Biomass/coal burning contributed 87% and fossil fuel combustion contributed 13% to the annual average BC concentration. In the post-monsoon season, potential source contribution function analysis showed that air masses came from the central and northwestern Indo-Gangetic Plains resulting in mean UVBC values of 10.9 μg m-3 and BC of 7.2 μg m-3. The mean winter UVBC and BC concentrations were 15.0 and 10.1 μg m-3, respectively. These highest values were largely driven by local sources under conditions of poor dispersion. The direct radiative forcing (DRF) due to UVBC and BC at the surface (SFC) and the top of the atmosphere (TOA) were calculated. The mean atmospheric heating rates due to UVBC and BC were estimated to be 1.40°K day-1 and 1.18°K day-1, respectively. This high heating rate may affect the monsoon circulation in this region.

  1. Source region and sector contributions of atmospheric soot particle in a coalfield region of Dhanbad, eastern part of India

    NASA Astrophysics Data System (ADS)

    Singh, S.; Tiwari, S.; Dumka, U. C.; Kumar, R.; Singh, P. K.

    2017-11-01

    Black carbon (BC) aerosols affect the Earth's climate directly by interacting with the solar radiation and indirectly by modifying the lifetime and optical properties of clouds. However, our understanding of BC aerosols and their impacts on the climate are limited by lack of in situ measurements of BC, especially in the developing world. This study reports measurements of BC from Dhanbad, a coalfields area of eastern India, we analyze BC data at 370 and 880 nm during 2013 to gain insight into the emission sources affecting the study area. Our analysis indicates significantly higher absorption at the lower wavelength (ultraviolet). We estimate that 33% of BC at Dhanbad comes from biomass/biofuel combustion and the remaining 67% from the fossil fuel combustion. Higher concentrations of BC370 nm (> 12 μg m- 3) were observed when the air masses affecting Dhanbad originated far away in countries like Iran, Afghanistan, Pakistan, Oman, United Arab Emirates and passed over the Indo-Gangetic Plains (IGP) prior to arriving at the observation site. The source regions affecting BC880 nm were localized over the IGP but BC880 nm concentrations are 33% lower ( 8 μg m- 3) than BC370 nm. The cluster analysis showed that the largest fraction (35 and 29%) of the air masses arriving at Dhanbad passed through the boundary layer of the central IGP and north-west IGP region during the post-monsoon season. Average values of BC370 nm (16.0 and 20.0 μg m- 3) and BC880 nm (9.5 and 10.0 μg m- 3) in the IGP influenced air masses were significantly higher than those arriving from other source regions. The Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) model were applied to understand the relative importance of different sources affecting Dhanbad. The variability of observed BC mass concentrations was captured fairly well by WRF-Chem with minor deviations from the measured values. Model results indicate that anthropogenic emissions account for more than 75% of the surface BC at Dhanbad. Biomass burning contribution peaks in March-April and October-November but remains less than 25%. Long-range transport estimated in terms of inflow from domain boundaries does not affect BC concentrations at Dhanbad significantly.

  2. Exposure to ultrafine particles and black carbon in diesel-powered commuter trains

    NASA Astrophysics Data System (ADS)

    Jeong, Cheol-Heon; Traub, Alison; Evans, Greg J.

    2017-04-01

    Ultrafine particle (UFP), black carbon (BC) and lung deposited surface area (LDSA) concentrations measured during 43 trips on diesel-powered commuter trains revealed elevated exposures under some conditions. When the passenger coaches were pulled by a locomotive, the geometric mean concentrations of UFP, LDSA, and BC were 18, 10, and 6 times higher than the exposure levels when the locomotive pushed the coaches, respectively. In addition, UFP, LDSA, and BC concentrations in pull-trains were 5, 3, and 4 times higher than concentrations measured while walking on city sidewalks, respectively. Exposure to these pollutants was most elevated in the coach located closest to the locomotive: geometric means were 126,000 # cm-3 for UFP, 249 μm2 cm-3 for LDSA, and 17,800 ng m-3 of BC; these concentrations are much higher than those previously reported for other modes of public transportation. Markedly high levels of diesel exhaust are present in passenger trains powered by diesel locomotives operated in pull-mode. Thus, it is recommended that immediate steps be taken to evaluate, and where needed, mitigate exposure in diesel-powered passenger trains, both commuter and inter-city.

  3. Wintertime vertical variations in particulate matter (PM) and precursor concentrations in the San Joaquin Valley during the California Regional Coarse PM/Fine PM Air Quality Study.

    PubMed

    Brown, Steven G; Roberts, Paul T; McCarthy, Michael C; Lurmann, Frederick W; Hyslop, Nicole P

    2006-09-01

    Air quality monitoring was conducted at a rural site with a tower in the middle of California's San Joaquin Valley (SJV) and at elevated sites in the foothills and mountains surrounding the SJV for the California Regional PM10/ PM2.5 Air Quality Study. Measurements at the surface and n a tower at 90 m were collected in Angiola, CA, from December 2000 through February 2001 and included hourly black carbon (BC), particle counts from optical particle counters, nitric oxide, ozone, temperature, relative humidity, wind speed, and direction. Boundary site measurements were made primarily using 24-hr integrated particulate matter (PM) samples. These measurements were used to understand the vertical variations of PM and PM precursors, the effect of stratification in the winter on concentrations and chemistry aloft and at the surface, and the impact of aloft-versus-surface transport on PM concentrations. Vertical variations of concentrations differed among individual species. The stratification may be important to atmospheric chemistry processes, particularly nighttime nitrate formation aloft, because NO2 appeared to be oxidized by ozone in the stratified aloft layer. Additionally, increases in accumulation-mode particle concentrations in the aloft layer during a fine PM (PM2.5) episode corresponded with increases in aloft nitrate, demonstrating the likelihood of an aloft nighttime nitrate formation mechanism. Evidence of local transport at the surface and regional transport aloft was found; transport processes also varied among the species. The distribution of BC appeared to be regional, and BC was often uniformly mixed vertically. Overall, the combination of time-resolved tower and surface measurements provided important insight into PM stratification, formation, and transport.

  4. Description and evaluation of a new four-mode version of the Modal Aerosol Module (MAM4) within version 5.3 of the Community Atmosphere Model

    NASA Astrophysics Data System (ADS)

    Liu, X.; Ma, P.-L.; Wang, H.; Tilmes, S.; Singh, B.; Easter, R. C.; Ghan, S. J.; Rasch, P. J.

    2016-02-01

    Atmospheric carbonaceous aerosols play an important role in the climate system by influencing the Earth's radiation budgets and modifying the cloud properties. Despite the importance, their representations in large-scale atmospheric models are still crude, which can influence model simulated burden, lifetime, physical, chemical and optical properties, and the climate forcing of carbonaceous aerosols. In this study, we improve the current three-mode version of the Modal Aerosol Module (MAM3) in the Community Atmosphere Model version 5 (CAM5) by introducing an additional primary carbon mode to explicitly account for the microphysical ageing of primary carbonaceous aerosols in the atmosphere. Compared to MAM3, the four-mode version of MAM (MAM4) significantly increases the column burdens of primary particulate organic matter (POM) and black carbon (BC) by up to 40 % in many remote regions, where in-cloud scavenging plays an important role in determining the aerosol concentrations. Differences in the column burdens for other types of aerosol (e.g., sulfate, secondary organic aerosols, mineral dust, sea salt) are less than 1 %. Evaluating the MAM4 simulation against in situ surface and aircraft observations, we find that MAM4 significantly improves the simulation of seasonal variation of near-surface BC concentrations in the polar regions, by increasing the BC concentrations in all seasons and particularly in cold seasons. However, it exacerbates the overestimation of modeled BC concentrations in the upper troposphere in the Pacific regions. The comparisons suggest that, to address the remaining model POM and BC biases, future improvements are required related to (1) in-cloud scavenging and vertical transport in convective clouds and (2) emissions of anthropogenic and biomass burning aerosols.

  5. Description and evaluation of a new four-mode version of the Modal Aerosol Module (MAM4) within version 5.3 of the Community Atmosphere Model

    DOE PAGES

    Liu, X.; Ma, P. -L.; Wang, H.; ...

    2016-02-08

    Atmospheric carbonaceous aerosols play an important role in the climate system by influencing the Earth's radiation budgets and modifying the cloud properties. Despite the importance, their representations in large-scale atmospheric models are still crude, which can influence model simulated burden, lifetime, physical, chemical and optical properties, and the climate forcing of carbonaceous aerosols. In this study, we improve the current three-mode version of the Modal Aerosol Module (MAM3) in the Community Atmosphere Model version 5 (CAM5) by introducing an additional primary carbon mode to explicitly account for the microphysical ageing of primary carbonaceous aerosols in the atmosphere. Compared to MAM3,more » the four-mode version of MAM (MAM4) significantly increases the column burdens of primary particulate organic matter (POM) and black carbon (BC) by up to 40 % in many remote regions, where in-cloud scavenging plays an important role in determining the aerosol concentrations. Differences in the column burdens for other types of aerosol (e.g., sulfate, secondary organic aerosols, mineral dust, sea salt) are less than 1 %. Evaluating the MAM4 simulation against in situ surface and aircraft observations, we find that MAM4 significantly improves the simulation of seasonal variation of near-surface BC concentrations in the polar regions, by increasing the BC concentrations in all seasons and particularly in cold seasons. However, it exacerbates the overestimation of modeled BC concentrations in the upper troposphere in the Pacific regions. As a result, the comparisons suggest that, to address the remaining model POM and BC biases, future improvements are required related to (1) in-cloud scavenging and vertical transport in convective clouds and (2) emissions of anthropogenic and biomass burning aerosols.« less

  6. An AeroCom Assessment of Black Carbon in Arctic Snow and Sea Ice

    NASA Technical Reports Server (NTRS)

    Jiao, C.; Flanner, M. G.; Balkanski, Y.; Bauer, S. E.; Bellouin, N.; Bernsten, T. K.; Bian, H.; Carslaw, K. S.; Chin, M.; DeLuca, N.; hide

    2014-01-01

    Though many global aerosols models prognose surface deposition, only a few models have been used to directly simulate the radiative effect from black carbon (BC) deposition to snow and sea ice. Here, we apply aerosol deposition fields from 25 models contributing to two phases of the Aerosol Comparisons between Observations and Models (AeroCom) project to simulate and evaluate within-snow BC concentrations and radiative effect in the Arctic. We accomplish this by driving the offline land and sea ice components of the Community Earth System Model with different deposition fields and meteorological conditions from 2004 to 2009, during which an extensive field campaign of BC measurements in Arctic snow occurred. We find that models generally underestimate BC concentrations in snow in northern Russia and Norway, while overestimating BC amounts elsewhere in the Arctic. Although simulated BC distributions in snow are poorly correlated with measurements, mean values are reasonable. The multi-model mean (range) bias in BC concentrations, sampled over the same grid cells, snow depths, and months of measurements, are -4.4 (-13.2 to +10.7) ng/g for an earlier phase of AeroCom models (phase I), and +4.1 (-13.0 to +21.4) ng/g for a more recent phase of AeroCom models (phase II), compared to the observational mean of 19.2 ng/g. Factors determining model BC concentrations in Arctic snow include Arctic BC emissions, transport of extra-Arctic aerosols, precipitation, deposition efficiency of aerosols within the Arctic, and meltwater removal of particles in snow. Sensitivity studies show that the model-measurement evaluation is only weakly affected by meltwater scavenging efficiency because most measurements were conducted in non-melting snow. The Arctic (60-90degN) atmospheric residence time for BC in phase II models ranges from 3.7 to 23.2 days, implying large inter-model variation in local BC deposition efficiency. Combined with the fact that most Arctic BC deposition originates from extra-Arctic emissions, these results suggest that aerosol removal processes are a leading source of variation in model performance. The multi-model mean (full range) of Arctic radiative effect from BC in snow is 0.15 (0.07-0.25) W/sq m and 0.18 (0.06-0.28) W/sq m in phase I and phase II models, respectively. After correcting for model biases relative to observed BC concentrations in different regions of the Arctic, we obtain a multi-model mean Arctic radiative effect of 0.17 W/sq m for the combined AeroCom ensembles. Finally, there is a high correlation between modeled BC concentrations sampled over the observational sites and the Arctic as a whole, indicating that the field campaign provided a reasonable sample of the Arctic.

  7. Ambient black carbon particulate matter in the coal region of Dhanbad, India.

    PubMed

    Singh, S; Tiwari, S; Hopke, P K; Zhou, C; Turner, J R; Panicker, A S; Singh, P K

    2018-02-15

    Light-absorbing, atmospheric particles have gained greater attention in recent years because of their direct and indirect impacts on regional and global climate. Atmospheric black carbon (BC) aerosol is a leading climate warming agent, yet uncertainties in the global direct aerosol radiative forcing remain large. Based on a year of aerosol absorption measurements at seven wavelengths, BC concentrations were investigated in Dhanbad, the coal capital of India. Coal is routinely burned for cooking and residential heat as well as in small industries. The mean daily concentrations of ultraviolet-absorbing black carbon measured at 370nm (UVBC) and black carbon measured at 880nm (BC) were 9.8±5.7 and 6.5±3.8μgm -3 , respectively. The difference between UVBC and BC, Delta-C, is an indicator of biomass or residential coal burning and averaged 3.29±4.61μgm -3 . An alternative approach uses the Ǻngstrom Exponent (AE) to estimate the biomass/coal and traffic BC concentrations. Biomass/coal burning contributed ~87% and high temperature, fossil-fuel combustion contributed ~13% to the annual average BC concentration. The post-monsoon seasonal mean UVBC values were 10.9μgm -3 and BC of 7.2μgm -3 . Potential source contribution function analysis showed that in the post-monsoon season, air masses came from the central and northwestern Indo-Gangetic Plains where there is extensive agricultural burning. The mean winter UVBC and BC concentrations were 15.0 and 10.1μgm -3 , respectively. These higher values were largely produced by local sources under poor dispersion conditions. The direct radiative forcing (DRF) due to UVBC and BC at the surface (SUR) and the top of the atmosphere (TOA) were calculated. The mean atmospheric heating rates due to UVBC and BC were estimated to be 1.40°Kday -1 and 1.18°Kday -1 , respectively. This high heating rate may affect the monsoon circulation in this region. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Sources of springtime surface black carbon in the Arctic: an adjoint analysis for April 2008

    NASA Astrophysics Data System (ADS)

    Qi, Ling; Li, Qinbin; Henze, Daven K.; Tseng, Hsien-Liang; He, Cenlin

    2017-08-01

    We quantify source contributions to springtime (April 2008) surface black carbon (BC) in the Arctic by interpreting surface observations of BC at five receptor sites (Denali, Barrow, Alert, Zeppelin, and Summit) using a global chemical transport model (GEOS-Chem) and its adjoint. Contributions to BC at Barrow, Alert, and Zeppelin are dominated by Asian anthropogenic sources (40-43 %) before 18 April and by Siberian open biomass burning emissions (29-41 %) afterward. In contrast, Summit, a mostly free tropospheric site, has predominantly an Asian anthropogenic source contribution (24-68 %, with an average of 45 %). We compute the adjoint sensitivity of BC concentrations at the five sites during a pollution episode (20-25 April) to global emissions from 1 March to 25 April. The associated contributions are the combined results of these sensitivities and BC emissions. Local and regional anthropogenic sources in Alaska are the largest anthropogenic sources of BC at Denali (63 % of total anthropogenic contributions), and natural gas flaring emissions in the western extreme north of Russia (WENR) are the largest anthropogenic sources of BC at Zeppelin (26 %) and Alert (13 %). We find that long-range transport of emissions from Beijing-Tianjin-Hebei (also known as Jing-Jin-Ji), the biggest urbanized region in northern China, contribute significantly (˜ 10 %) to surface BC across the Arctic. On average, it takes ˜ 12 days for Asian anthropogenic emissions and Siberian biomass burning emissions to reach the Arctic lower troposphere, supporting earlier studies. Natural gas flaring emissions from the WENR reach Zeppelin in about a week. We find that episodic transport events dominate BC at Denali (87 %), a site outside the Arctic front, which is a strong transport barrier. The relative contribution of these events to surface BC within the polar dome is much smaller (˜ 50 % at Barrow and Zeppelin and ˜ 10 % at Alert). The large contributions from Asian anthropogenic sources are predominately in the form of chronic pollution (˜ 40 % at Barrow, 65 % at Alert, and 57 % at Zeppelin) on about a 1-month timescale. As such, it is likely that previous studies using 5- or 10-day trajectory analyses strongly underestimated the contribution from Asia to surface BC in the Arctic.

  9. Enhanced Solar Energy Absorption by Internally-mixed Black Carbon in Snow Grains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flanner, M. G.; Liu, Xiaohong; Zhou, Cheng

    2012-05-30

    Here we explore light absorption by snowpack containing black carbon (BC) particles residing within ice grains. Basic considerations of particle volumes and BC/snow mass concentrations show that there are generally 0:05-109 BC particles for each ice grain. This suggests that internal BC is likely distributed as multiple inclusions within ice grains, and thus the dynamic effective medium approximation (DEMA) (Chylek and Srivastava, 1983) is a more appropriate optical representation for BC/ice composites than coated-sphere or standard mixing approximations. DEMA calculations show that the 460 nm absorption cross-section of BC/ice composites, normalized to the mass of BC, is typically enhanced bymore » factors of 1.8-2.1 relative to interstitial BC. BC effective radius is the dominant cause of variation in this enhancement, compared with ice grain size and BC volume fraction. We apply two atmospheric aerosol models that simulate interstitial and within-hydrometeor BC lifecycles. Although only {approx}2% of the atmospheric BC burden is cloud-borne, 71-83% of the BC deposited to global snow and sea-ice surfaces occurs within hydrometeors. Key processes responsible for within-snow BC deposition are development of hydrophilic coatings on BC, activation of liquid droplets, and subsequent snow formation through riming or ice nucleation by other species and aggregation/accretion of ice particles. Applying deposition fields from these aerosol models in offline snow and sea-ice simulations, we calculate that 32-73% of BC in global surface snow resides within ice grains. This fraction is smaller than the within-hydrometeor deposition fraction because meltwater flux preferentially removes internal BC, while sublimation and freezing within snowpack expose internal BC. Incorporating the DEMA into a global climate model, we simulate increases in BC/snow radiative forcing of 43-86%, relative to scenarios that apply external optical properties to all BC. We show that snow metamorphism driven by diffusive vapor transfer likely proceeds too slowly to alter the mass of internal BC while it is radiatively active, but neglected processes like wind pumping and convection may play much larger roles. These results suggest that a large portion of BC in surface snowpack may reside within ice grains and increase BC/snow radiative forcing, although measurements to evaluate this are lacking. Finally, previous studies of BC/snow forcing that neglected this absorption enhancement are not necessarily biased low, because of application of absorption-enhancing sulfate coatings to hydrophilic BC, neglect of coincident absorption by dust in snow, and implicit treatment of cloud-borne BC resulting in longer-range transport.« less

  10. Evaluations of the Method to Measure Black Carbon Particles Suspended in Rainwater and Snow Samples

    NASA Astrophysics Data System (ADS)

    Ohata, S.; Moteki, N.; Schwarz, J. P.; Fahey, D. W.; Kondo, Y.

    2012-12-01

    The mass concentrations and size distributions of black carbon (BC) particles in rainwater and snow are important parameters for improved understanding of the wet deposition of BC, is a key process in quantifying the impacts of BC on climate. In this study, we have evaluated a new method to measure these parameters. The approach consists of an ultrasonic nebulizer (USN) used in conjunction with a Single Particle Soot Photometer (SP2). The USN converts sample water into micron-size droplets at a constant rate and then extracts airborne BC particles by dehydrating the water droplets. The mass of individual BC particles is measured by the SP2, based on the laser-induced incandescence technique. The combination of the USN and SP2 enabled the measurement of BC particles using only small amount of sample water, typically 10 ml (Ohata et al., 2011). However, the loss of BC during the extraction process depends on their size. We determined the size-dependent extraction efficiency using polystyrene latex spheres (PSLs) with twelve different diameters between 100-1050 nm. The PSL concentrations in water were determined by the light extinction of at 532nm. The extraction efficiency of the USN showed broad maximum in the diameter range of 200-500nm, and decreased substantially at larger sizes. The extraction efficiency determined using the PSL standards agreed to within ±40% with that determined using laboratory-generated BC concentration standards. We applied this method to the analysis of rainwater collected in Tokyo and Okinawa over the East China Sea. Measured BC size distributions in all rainwater samples showed negligible contribution of the BC particles larger than 600nm to the total BC amounts. However, for BC particles in surface snow collected in Greenland and Antarctica, size distributions were sometimes shifted to much larger size ranges.

  11. Estimation of columnar concentrations of absorbing and scattering fine mode aerosol components using AERONET data

    NASA Astrophysics Data System (ADS)

    Choi, Yongjoo; Ghim, Young Sung

    2016-11-01

    Columnar concentrations of absorbing and scattering components of fine mode aerosols were estimated using Aerosol Robotic Network (AERONET) data for a site downwind of Seoul. The study period was between March 2012 and April 2013 including the period of the Distributed Regional Aerosol Gridded Observation Networks (DRAGON)-Asia campaign in March to May 2012. The Maxwell Garnett mixing rule was assumed for insoluble components embedded in a host solution, while the volume average mixing rule was assumed for the aqueous solution of soluble components. During the DRAGON-Asia campaign the surface concentrations of major components of fine particles were measured. The columnar mass fractions of black carbon (BC), organic carbon (OC), mineral dust (MD), and ammonium sulfate (AS) were 1.5, 5.9, 6.6, and 52%, respectively, which were comparable to the mass fractions measured at the surface for BC, OC, and secondary inorganic aerosols at 2.3, 18, and 55%. The vertical distributions of BC and AS were investigated by employing the concept of a column height. While the column height for BC was similar to the planetary boundary layer (PBL) height, that for AS was 4.4 times higher than the PBL height and increased with air temperature from March to May. The monthly variations of the columnar mass concentrations during the study period were generally well explained in term of meteorology and emission characteristics. However, certain variations of MD were different from those typically observed primarily because only fine mode aerosols were considered.

  12. Transport of particle pollution into the Maipo Valley: winter 2015 campaign results

    NASA Astrophysics Data System (ADS)

    Huneeus, Nicolás; Mazzeo, Andrea; Ordóñez, César; Donoso, Nicolás; Gallardo, Laura; Molina, Luisa; Moreno, Valeria; Muñoz, Ricardo; Orfanoz, Andrea; Vizcarra, Aldo

    2016-04-01

    Each winter, Santiago (33° 27'S, 70° 40'W) the capital of Chile with a population of about 7 million people, experiences episodes with particulate matter (PM) concentrations larger than allowed by Chilean environmental regulations. Transport and residential heating largely dominate emissions prior to and during these episodes. Important impact of black carbon (BC) on the cryosphere has been documented in other parts of the world associated with urban pollution. In order to explore if BC from Santiago has the potential to reach the Andean cryosphere during the aforementioned episodes, a one week-long campaign was conducted in Santiago and the Maipo Valley between 18th and 25th of July 2015 when the air quality conditions of the city reached twice the critical levels (pre-emergency in Chilean regulations). Measurements were carried out at three sites: downtown Santiago, the entrance of the valley (and outskirts of Santiago) and 12 km inside the Maipo Valley. At each of these sites both surface and vertically distributed measurements were conducted. A meteorological station measuring standard meteorological parameters and an E-Sampler measuring PM10 concentrations were installed at each site. In addition, a tethered balloon equipped with a sonde and a mini-aethalometer was used in each site to measure vertical profiles of standard meteorological parameters and BC concentrations, respectively. The tethered balloon was raised every three hours up to a maximum of 1000 meters above ground level, whenever meteorological conditions allowed. In general, the BC concentrations inside the valley, both at the surface and in the vertical, were dominated by emissions within the valley and BC was limited to shallow layers above the ground. However, on both days with critical air quality levels, winds blowing from the city and deeper BC layers were observed inside the valley. Furthermore, during these days observations at the entrance of the valley and those taken inside were coupled, contrary to the other days when they were decoupled. This deeper BC layer and the coupling of observations at the entrance and inside the valley suggest that pollutants are transported into the Maipo Valley and thus could potentially reach the snow and ice covered areas in the Andes.

  13. Using an Explicit Emission Tagging Method in Global Modeling of Source-Receptor Relationships for Black Carbon in the Arctic: Variations, Sources and Transport Pathways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Hailong; Rasch, Philip J.; Easter, Richard C.

    2014-11-27

    We introduce an explicit emission tagging technique in the Community Atmosphere Model to quantify source-region-resolved characteristics of black carbon (BC), focusing on the Arctic. Explicit tagging of BC source regions without perturbing the emissions makes it straightforward to establish source-receptor relationships and transport pathways, providing a physically consistent and computationally efficient approach to produce a detailed characterization of the destiny of regional BC emissions and the potential for mitigation actions. Our analysis shows that the contributions of major source regions to the global BC burden are not proportional to the respective emissions due to strong region-dependent removal rates and lifetimes,more » while the contributions to BC direct radiative forcing show a near-linear dependence on their respective contributions to the burden. Distant sources contribute to BC in remote regions mostly in the mid- and upper troposphere, having much less impact on lower-level concentrations (and deposition) than on burden. Arctic BC concentrations, deposition and source contributions all have strong seasonal variations. Eastern Asia contributes the most to the wintertime Arctic burden. Northern Europe emissions are more important to both surface concentration and deposition in winter than in summer. The largest contribution to Arctic BC in the summer is from Northern Asia. Although local emissions contribute less than 10% to the annual mean BC burden and deposition within the Arctic, the per-emission efficiency is much higher than for major non-Arctic sources. The interannual variability (1996-2005) due to meteorology is small in annual mean BC burden and radiative forcing but is significant in yearly seasonal means over the Arctic. When a slow aging treatment of BC is introduced, the increase of BC lifetime and burden is source-dependent. Global BC forcing-per-burden efficiency also increases primarily due to changes in BC vertical distributions. The relative contribution from major non-Arctic sources to the Arctic BC burden increases only slightly, although the contribution of Arctic local sources is reduced by a factor of 2 due to the slow aging treatment.« less

  14. Top-down estimates of biomass burning emissions of black carbon in the western United States

    Treesearch

    Y. H. Mao; Q. B. Li; D. Chen; L. Zhang; W. -M. Hao; K.-N. Liou

    2014-01-01

    We estimate biomass burning and anthropogenic emissions of black carbon (BC) in the western US for May-October 2006 by inverting surface BC concentrations from the Interagency Monitoring of PROtected Visual Environment (IMPROVE) network using a global chemical transport model. We first use active fire counts from the Moderate Resolution Imaging Spectroradiometer (MODIS...

  15. Constraining Black Carbon Aerosol over Asia using OMI Aerosol Absorption Optical Depth and the Adjoint of GEOS-Chem

    NASA Technical Reports Server (NTRS)

    Zhang, Li; Henze, David K.; Grell, Georg A.; Carmichael. Gregory R.; Bousserez, Nicolas; Zhang, Qiang; Torres, Omar; Ahn, Changwoo; Lu, Zifeng; Cao, Junji; hide

    2015-01-01

    Accurate estimates of the emissions and distribution of black carbon (BC) in the region referred to here as Southeastern Asia (70degE-l50degE, 11degS-55degN) are critical to studies of the atmospheric environment and climate change. Analysis of modeled BC concentrations compared to in situ observations indicates levels are underestimated over most of Southeast Asia when using any of four different emission inventories. We thus attempt to reduce uncertainties in BC emissions and improve BC model simulations by developing top-down, spatially resolved, estimates of BC emissions through assimilation of OMI observations of aerosol absorption optical depth (AAOD) with the GEOS-Chem model and its adjoint for April and October of 2006. Overwhelming enhancements, up to 500%, in anthropogenic BC emissions are shown after optimization over broad areas of Southeast Asia in April. In October, the optimization of anthropogenic emissions yields a slight reduction (1-5%) over India and parts of southern China, while emissions increase by 10-50% over eastern China. Observational data from in situ measurements and AERONET observations are used to evaluate the BC inversions and assess the bias between OMI and AERONET AAOD. Low biases in BC concentrations are improved or corrected in most eastern and central sites over China after optimization, while the constrained model still underestimates concentrations in Indian sites in both April and October, possibly as a. consequence of low prior emissions. Model resolution errors may contribute up to a factor of 2.5 to the underestimate of surface BC concentrations over northern India. We also compare the optimized results using different anthropogenic emission inventories and discuss the sensitivity of top-down constraints on anthropogenic emissions with respect to biomass burning emissions. In addition, the impacts of brown carbon, the formulation of the observation operator, and different a priori constraints on the optimization are investigated. Overall, despite these limitations and uncertainties, using OMI AAOD to constrain BC sources improves model representation of BC distributions, particularly over China.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zinin, Pavel V.; Burgess, Katherine; Jia, Ruth

    Dense BC{sub x} phases with high boron concentration are predicted to be metastable, superhard, and conductors or superconductors depending on boron concentration. However, up to this point, diamond-like boron rich carbides BC{sub x} (dl-BC{sub x}) phases have been thought obtainable only through high pressure and high temperature treatment, necessitating small specimen volume. Here, we use electron energy loss spectroscopy combined with transmission electron microscopy, Raman spectroscopy, surface Brillouin scattering, laser ultrasonics (LU) technique, and analysis of elastic properties to demonstrate that low pressure synthesis (chemical vapor deposition) of BC{sub x} phases may also lead to the creation of diamond-like boronmore » rich carbides. The elastic properties of the dl-BC{sub x} phases depend on the carbon sp²versus sp³ content, which decreases with increasing boron concentration, while the boron bonds determine the shape of the Raman spectra of the dl-BC{sub x} after high pressure-high temperature treatment. Using the estimation of the density value based on the sp³ fraction, the shear modulus μ of dl-BC₄, containing 10% carbon atoms with sp³ bonds, and dl-B₃C₂, containing 38% carbon atoms with sp³ bonds, were found to be μ = 19.3 GPa and μ = 170 GPa, respectively. The presented experimental data also imply that boron atoms lead to a creation of sp³ bonds during the deposition processes.« less

  17. Plackett-Burman experimental design for bacterial cellulose-silica composites synthesis.

    PubMed

    Guzun, Anicuta Stoica; Stroescu, Marta; Jinga, Sorin Ion; Voicu, Georgeta; Grumezescu, Alexandru Mihai; Holban, Alina Maria

    2014-09-01

    Bacterial cellulose-silica hybrid composites were prepared starting from wet bacterial cellulose (BC) membranes using Stöber reaction. The structure and surface morphology of hybrid composites were examined by FTIR and SEM. The SEM pictures revealed that the silica particles are attached to BC fibrils and are well dispersed in the BC matrix. The influence of silica particles upon BC crystallinity was studied using XRD analysis. Thermogravimetric (TG) analysis showed that the composites are stable up to 300°C. A Plackett-Burman design was applied in order to investigate the influence of process parameters upon silica particle sizes and silica content of BC-silica composites. The statistical model predicted that it is possible for silica particles size to vary the synthesis parameters in order to obtain silica particles deposed on BC membranes in the range from 34.5 to 500 nm, the significant parameters being ammonia concentration, reaction time and temperature. The silica content also varies depending on process parameters, the statistical model predicting that the most influential parameters are water-tetraethoxysilane (TEOS) ratio and reaction temperature. The antimicrobial behavior on Staphylococcus aureus of BC-silica composites functionalized with usnic acid (UA) was also studied, in order to create improved surfaces with antiadherence and anti-biofilm properties. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. An AeroCom assessment of black carbon in Arctic snow and sea ice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiao, C.; Flanner, M. G.; Balkanski, Y.

    2014-01-01

    Though many global aerosols models prognose surface deposition, only a few models have been used to directly simulate the radiative effect from black carbon (BC) deposition to snow and sea ice. In this paper, we apply aerosol deposition fields from 25 models contributing to two phases of the Aerosol Comparisons between Observations and Models (AeroCom) project to simulate and evaluate within-snow BC concentrations and radiative effect in the Arctic. We accomplish this by driving the offline land and sea ice components of the Community Earth System Model with different deposition fields and meteorological conditions from 2004 to 2009, during whichmore » an extensive field campaign of BC measurements in Arctic snow occurred. We find that models generally underestimate BC concentrations in snow in northern Russia and Norway, while overestimating BC amounts elsewhere in the Arctic. Although simulated BC distributions in snow are poorly correlated with measurements, mean values are reasonable. The multi-model mean (range) bias in BC concentrations, sampled over the same grid cells, snow depths, and months of measurements, are -4.4 (-13.2 to +10.7) ng g -1 for an earlier phase of AeroCom models (phase I), and +4.1 (-13.0 to +21.4) ng g -1 for a more recent phase of AeroCom models (phase II), compared to the observational mean of 19.2 ng g -1. Factors determining model BC concentrations in Arctic snow include Arctic BC emissions, transport of extra-Arctic aerosols, precipitation, deposition efficiency of aerosols within the Arctic, and meltwater removal of particles in snow. Sensitivity studies show that the model–measurement evaluation is only weakly affected by meltwater scavenging efficiency because most measurements were conducted in non-melting snow. The Arctic (60–90° N) atmospheric residence time for BC in phase II models ranges from 3.7 to 23.2 days, implying large inter-model variation in local BC deposition efficiency. Combined with the fact that most Arctic BC deposition originates from extra-Arctic emissions, these results suggest that aerosol removal processes are a leading source of variation in model performance. The multi-model mean (full range) of Arctic radiative effect from BC in snow is 0.15 (0.07–0.25) W m -2 and 0.18 (0.06–0.28) W m -2 in phase I and phase II models, respectively. After correcting for model biases relative to observed BC concentrations in different regions of the Arctic, we obtain a multi-model mean Arctic radiative effect of 0.17 W m -2 for the combined AeroCom ensembles. Finally, there is a high correlation between modeled BC concentrations sampled over the observational sites and the Arctic as a whole, indicating that the field campaign provided a reasonable sample of the Arctic.« less

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kulkarni, S.; Sobhani, N.; Miller-Schulze, J. P.

    Particulate matter (PM) mass concentrations, seasonal cycles, source sector, and source region contributions in Central Asia (CA) are analyzed for the period April 2008–July 2009 using the Sulfur Transport and dEposition Model (STEM) chemical transport model and modeled meteorology from the Weather Research and Forecasting (WRF) model. Predicted aerosol optical depth (AOD) values (annual mean value ~0.2) in CA vary seasonally, with lowest values in the winter. Surface PM 2.5 concentrations (annual mean value ~10 μg m −3) also exhibit a seasonal cycle, with peak values and largest variability in the spring/summer, and lowest values and variability in the wintermore » (hourly values from 2 to 90 μg m −3). Surface concentrations of black carbon (BC) (mean value ~0.1 μg m −3) show peak values in the winter. The simulated values are compared to surface measurements of AOD as well as PM 2.5, PM 10, BC, and organic carbon (OC) mass concentrations at two regional sites in Kyrgyzstan (Lidar Station Teplokluchenka (LST) and Bishkek). The predicted values of AOD and PM mass concentrations and their seasonal cycles are fairly well captured. The carbonaceous aerosols are underpredicted in winter, and analysis suggests that the winter heating emissions are underestimated in the current inventory. Dust, from sources within and outside CA, is a significant component of the PM mass and drives the seasonal cycles of PM and AOD. On an annual basis, the power and industrial sectors are found to be the most important contributors to the anthropogenic portion of PM 2.5. Residential combustion and transportation are shown to be the most important sectors for BC. Biomass burning within and outside the region also contributes to elevated PM and BC concentrations. The analysis of the transport pathways and the variations in particulate matter mass and composition in CA demonstrates that this region is strategically located to characterize regional and intercontinental transport of pollutants. Aerosols at these sites are shown to reflect dust, biomass burning, and anthropogenic sources from Europe; South, East, and Central Asia; and Russia depending on the time period. Simulations for a reference 2030 emission scenario based on pollution abatement measures already committed to in current legislation show that PM 2.5 and BC concentrations in the region increase, with BC growing more than PM 2.5 on a relative basis. This indicates that both the health impacts and the climate warming associated with these particles may increase over the next decades unless additional control measures are taken. The importance of observations in CA to help characterize the changes that are rapidly taking place in the region are discussed.« less

  20. Simulation of Arctic Black Carbon using Hemispheric CMAQ: Role of Russia's BC Emissions, Transport, and Deposition

    NASA Astrophysics Data System (ADS)

    Huang, K.; Fu, J. S.

    2015-12-01

    Black carbon plays a unique role in the Arctic climate system due to its multiple effects. It causes Arctic warming by directly absorbing sunlight from space and by darkening the surface albedo of snow and ice, which indirectly leads to further warming and melting, thus inducing an Arctic amplification effect. BC depositions over the Arctic are more sensitive to regions in close proximity. In this study, we reconstruct BC emissions for Russian Federation, which is the country that occupies the largest area in the Arctic Circle. Local Russia information such as activity data, emission factors and other emission source data are used. In 2010, total anthropogenic BC emission of Russia is estimated to be around 254 Gg. Gas flaring, a commonly ignored black carbon source, contributes a dominant 43.9% of Russia's total anthropogenic BC emissions. Other sectors, i.e., residential, transportation, industry, and power plants, contribute 22.0%, 17.8%, 11.5%, and 4.8%, respectively. BC simulations were conducted using the hemispheric version of CMAQ with polar projection. Emission inputs are from a global emissions database EDGAR (Emissions Database for Global Atmospheric Research)-HTAPv2 (Hemispheric Transport of Air Pollution) and EDGAR-HTAPv2 with its Russian part replaced by the newly developed Russian BC emissions, respectively. The simulations using the new Russian BC emission inventory could improve 46 - 61% of the Absorption Aerosol Optical Depth (AAOD) measured at the AERONET sites in Russia throughout the whole year as compared to that using the default HTAPv2 emissions. At the four air monitoring sites (Zeppelin, Barrow, Alert, and Tiksi) in the Arctic Circle, surface BC simulations are improved the most during the Arctic haze periods (October - March). Emission perturbation studies show that Russia's BC emissions contribute over 50% of the surface BC concentrations over the Arctic during the cold seasons. This study demonstrates the good capability of H-CMAQ in simulating the transport of BC particles to the Arctic and suggests that the impact of Russian emissions on the Arctic haze has likely been underestimated, which is one of the causes that previous modeling works struggled in reproducing the BC levels in the Arctic region.

  1. Ship-based Observations of Atmospheric Black Carbon Particles over the Arctic Ocean, Bering Sea, and North Western Pacific Ocean on 2016: Comparisons with Regional Chemical Transport Model simulations

    NASA Astrophysics Data System (ADS)

    Taketani, F.; Miyakawa, T.; Takigawa, M.; Yamaguchi, M.; Kanaya, Y.; Komazaki, Y.; Takashima, H.; Mordovskoi, P.; Tohjima, Y.

    2017-12-01

    Black carbon (BC), formed through the incomplete combustion of fossil fuels, biofuels, and biomass, is a major component of light-absorbing particulate matter in the atmosphere, causing positive radiative forcing. Also, BC deposition on the surface reduces the Earth's albedo and accelerates snow/ice melting by absorbing the sunlight. Therefore, the impact of BC on the Arctic climate needs to be assessed; however, observational information has been still insufficient. Over the Arctic Ocean, we have been conducting ship-based BC observations using a single particle soot photometer (SP2) on R/V Mirai every summer since 2014. To estimate the transport pathways of BC, we have also conducted model simulations during the period of cruise using a regional transport model (WRF-Chem 3.8.1). Here we focus on observations conducted on-board the R/V Mirai from 22 August to 5 October 2016 in a round trip to the Arctic Ocean through the Bering Strait from a port of Hachinohe (40.52N, 141.51E), Japan. We captured relatively high BC mass concentration events in this observation. The observed average BC mass concentration during 2016 was 0.8 ± 1.4 ng/m3 in >70N, similar to the levels ( 1.0ng/m3) recorded during our previous observations in the Arctic during 2014 and 2015. The variations in the observed concentrations in 2016 were qualitatively well reproduced by the regional chemical transport model. Quantitatively, however, the model tended to overestimate the BC levels, suggesting the possibilities that the emission rates were overestimated and/or the removal rates were underestimated. We will present further analysis on the size distribution, coating, and possible sources.

  2. Climate Impacts of CALIPSO-Guided Corrections to Black Carbon Aerosol Vertical Distributions in a Global Climate Model

    NASA Astrophysics Data System (ADS)

    Kovilakam, Mahesh; Mahajan, Salil; Saravanan, R.; Chang, Ping

    2017-10-01

    We alleviate the bias in the tropospheric vertical distribution of black carbon aerosols (BC) in the Community Atmosphere Model (CAM4) using the Cloud-Aerosol and Infrared Pathfinder Satellite Observations (CALIPSO)-derived vertical profiles. A suite of sensitivity experiments are conducted with 1x, 5x, and 10x the present-day model estimated BC concentration climatology, with (corrected, CC) and without (uncorrected, UC) CALIPSO-corrected BC vertical distribution. The globally averaged top of the atmosphere radiative flux perturbation of CC experiments is ˜8-50% smaller compared to uncorrected (UC) BC experiments largely due to an increase in low-level clouds. The global average surface temperature increases, the global average precipitation decreases, and the ITCZ moves northward with the increase in BC radiative forcing, irrespective of the vertical distribution of BC. Further, tropical expansion metrics for the poleward extent of the Northern Hemisphere Hadley cell (HC) indicate that simulated HC expansion is not sensitive to existing model biases in BC vertical distribution.

  3. Observed high-altitude warming and snow cover retreat over Tibet and the Himalayas enhanced by black carbon aerosols

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Y.; Ramanathan, V.; Washington, W. M.

    Himalayan mountain glaciers and the snowpack over the Tibetan Plateau provide the headwater of several major rivers in Asia. In situ observations of snow cover extent since the 1960s suggest that the snowpack in the region have retreated significantly, accompanied by a surface warming of 2–2.5°C observed over the peak altitudes (5000 m). Using a high-resolution ocean–atmosphere global climate model and an observationally constrained black carbon (BC) aerosol forcing, we attribute the observed altitude dependence of the warming trends as well as the spatial pattern of reductions in snow depths and snow cover extent to various anthropogenic factors. At themore » Tibetan Plateau altitudes, the increase in atmospheric CO 2 concentration exerted a warming of 1.7°C, BC 1.3°C where as cooling aerosols cause about 0.7°C cooling, bringing the net simulated warming consistent with the anomalously large observed warming. We therefore conclude that BC together with CO 2 has contributed to the snow retreat trends. In particular, BC increase is the major factor in the strong elevation dependence of the observed surface warming. The atmospheric warming by BC as well as its surface darkening of snow is coupled with the positive snow albedo feedbacks to account for the disproportionately large role of BC in high-elevation regions. Here, these findings reveal that BC impact needs to be properly accounted for in future regional climate projections, in particular on high-altitude cryosphere.« less

  4. Observed high-altitude warming and snow cover retreat over Tibet and the Himalayas enhanced by black carbon aerosols

    DOE PAGES

    Xu, Y.; Ramanathan, V.; Washington, W. M.

    2016-02-05

    Himalayan mountain glaciers and the snowpack over the Tibetan Plateau provide the headwater of several major rivers in Asia. In situ observations of snow cover extent since the 1960s suggest that the snowpack in the region have retreated significantly, accompanied by a surface warming of 2–2.5°C observed over the peak altitudes (5000 m). Using a high-resolution ocean–atmosphere global climate model and an observationally constrained black carbon (BC) aerosol forcing, we attribute the observed altitude dependence of the warming trends as well as the spatial pattern of reductions in snow depths and snow cover extent to various anthropogenic factors. At themore » Tibetan Plateau altitudes, the increase in atmospheric CO 2 concentration exerted a warming of 1.7°C, BC 1.3°C where as cooling aerosols cause about 0.7°C cooling, bringing the net simulated warming consistent with the anomalously large observed warming. We therefore conclude that BC together with CO 2 has contributed to the snow retreat trends. In particular, BC increase is the major factor in the strong elevation dependence of the observed surface warming. The atmospheric warming by BC as well as its surface darkening of snow is coupled with the positive snow albedo feedbacks to account for the disproportionately large role of BC in high-elevation regions. Here, these findings reveal that BC impact needs to be properly accounted for in future regional climate projections, in particular on high-altitude cryosphere.« less

  5. Distribution and sources of dissolved black carbon in surface waters of the Chukchi Sea, Bering Sea, and the North Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Nakane, Motohiro; Ajioka, Taku; Yamashita, Youhei

    2017-05-01

    Pyrogenic carbon, also called black carbon (BC), is an important component in the global carbon cycle. BC produced by biomass burning or fossil fuel combustion is transported to oceans by the atmosphere or rivers. However, environmental dynamics (i.e., major sources and sinks) of BC in marine environments have not been well documented. In this study, dissolved BC (DBC) collected from surface waters of the Chukchi Sea, the Bering Sea, and the subarctic and subtropical North Pacific were analyzed using the benzene polycarboxylic acid (BPCA) method. The DBC concentration and the ratio of B5CA and B6CA to all BPCAs (an index of the DBC condensation degree) ranged from 4.8 to 15.5 µg-C L-1 and from 0.20 to 0.43, respectively, in surface waters of the Chukchi/Bering Seas and the North Pacific Ocean. The concentration and condensation degree of DBC in the Chukchi/Bering Seas were higher and more variable than those in the subarctic and subtropical North Pacific, which implies that the major factors controlling DBC distribution were different in these marine provinces. In the Chukchi/Bering Seas, the DBC concentration was negatively correlated to salinity but positively correlated to chromophoric dissolved organic matter (CDOM) quantity and total dissolved lignin phenol concentration estimated by CDOM parameters. These correlations indicated that the possible major source of DBC in the Chukchi/Bering Seas was Arctic rivers. However, in the North Pacific, where riverine inputs are negligible for most sampling sites, DBC was possibly derived from the atmosphere. Although spectral slopes of CDOM at 275-295 nm (an index of the photodegradation degree of CDOM) differed widely between the subarctic and subtropical North Pacific, the concentration and condensation degrees of DBC were similar between the subarctic and subtropical North Pacific, which suggests that photodegradation was not the only major factor controlling DBC distribution. Therefore, DBC distributions of the North Pacific Ocean were considered to be mainly controlled by atmospheric deposition of BC and subsequent losses by photodegradation and adsorption onto sinking particles. This study implies that the main influence on DBC distribution in the open ocean and the coastal ocean are atmospheric deposition and fluvial inputs, respectively.

  6. Temporal characteristics of black carbon concentrations and its potential emission sources in a southern Taiwan industrial urban area.

    PubMed

    Cheng, Yu-Hsiang; Lin, Chi-Chi; Liu, Jyh-Jian; Hsieh, Cheng-Ju

    2014-03-01

    This study investigates the temporal characteristics of black carbon and its potential emission sources, as well as the fractions of BC in PM2.5 levels in Kaohsiung urban area, which is an industrial city in southern Taiwan. Concentrations of BC and PM2.5 are monitored continuously from March 2006 to February 2010, using an aethalometer and a tapered element oscillating microbalance monitor. Additionally, the presence of organic compounds (or UV enhanced species) in particles at the sampling site is determined using the Delta-C (UVBC-BC) value. According to long-term measurement results, BC and PM2.5 concentrations are 3.33 and 34.0 μg m(-3), respectively, in the Kaohsiung urban area. The ratio of BC/PM2.5 is approximately 11 %. Low concentration of BC and PM2.5 in the summer of this study period is mostly likely owing to meteorological conditions that favored dispersion of local air pollutants. Nevertheless, BC concentrations peaked markedly during morning hours (7:00-11:00), likely owing to local traffic congestion. Measurement results suggest that BC is released from local traffic activities and emitted from industrial activities at this sampling site. Additionally, Delta-C values are significantly higher than zero during January-March and November-December periods in this industrial urban area, implying that UV enhanced species can be observed. At this sampling site, these UV enhanced species do not only originate from household activity and solid waste burning but also release from industrial activities. The elevated Delta-C values during nighttime (18:00-6:00) in the autumn and winter seasons are likely related to those UV enhanced species in the atmosphere, which can be condensed on particle surface under low temperature conditions. According to long-term measurement results, significantly positive Delta-C values can be observed under temperatures <20 °C and relative humidity of 60-75 % in this study. Despite the household activity and solid waste burning, the major sources of particles that are bound with UV enhanced species in this sampling site are industrial parks and a coal-fired power plant.

  7. Vertical profiles and ground-based measurements of Black Carbon, Particulate matter and Optical properties over New Delhi during the foggy winters of 2015-16

    NASA Astrophysics Data System (ADS)

    Tiwari, S.; Bisht, D. S.; Srivastava, A. K.; Hopke, P. K.; Chakrabarty, R. K.

    2016-12-01

    Ground level and vertical observations of particulate matter were made as part of a pilot experiment using an air-quality monitory tethered balloon flown in the lower troposphere (1000 m) during the foggy winters of New Delhi, India. Measurements of black carbon (BC), the dominant absorber of visible light, particulate matter (PM), and the particulate optical properties along with meteorological parameters were conducted during the winter of 2015-16 in Delhi. During the study period, the mean concentrations of PM2.5, BC370nm, and BC880nm were observed to be 144.0 ± 39.7, 25.3 ± 8.5, and 19.4 ± 6.9 μg/m3, respectively. The mean value of PM2.5 is 12 times higher than the daily US-EPA air quality standard. The contribution of BC370nm in PM2.5 is 18 %. During the foggy period, the ground level concentrations of fine (PM2.5) and soot (BC370nm) particles increased substantially (59% and 26%, respectively) in comparison to clear days. Also, the aerosol light extinction coefficient (σext) was much higher (mean: 610 Mm-1) indicating that atmosphere was not transparent resulting in lower visibility. High concentrations of PM2.5 (89 µg/m3) and BC880nm (25.7 µg/m3) were observed up to 200 m (fog persists in this layer) in January. The BC880nm and PM2.5 concentrations near 1 km were significantly higher ( 1.9 and 12 µg/m3), respectively. Direct radiative forcing (DRF) due to BC was estimated at the top of the atmosphere (TOA), surface (SFC), and atmospheric (ATM) and its resultant forcing were - 46.2 Wm-2 at SFC indicates the cooling effect. However, a positive value ( 20.8 Wm-2) of BC DRF at TOA indicates the warming effect over the study region. The resultant ATM DRF due to BC was positive (67.0 Wm-2) indicating a net warming effect in the atmosphere. The contribution of fossil fuel climate forcing due to BC was 79% and 21% was due to burning of biomass/biofuels. The higher mean atmospheric heating rate (2.05 K day-1) by BC in the winter season would probably strengthen the temperature inversion leading to poor dispersion and affecting the formation of clouds. Based on this study, serious detrimental impacts of high concentrations of BC and PM (especially PM2.5) on regional climate are likely, thereby highlighting the need for immediate, stringent measures to improve the regional air quality in northern India.

  8. Black Carbon and Sulfate Aerosols in the Arctic: Long-term Trends, Radiative Impacts, and Source Attributions

    NASA Astrophysics Data System (ADS)

    Wang, H.; Zhang, R.; Yang, Y.; Smith, S.; Rasch, P. J.

    2017-12-01

    The Arctic has warmed dramatically in recent decades. As one of the important short-lived climate forcers, aerosols affect the Arctic radiative budget directly by interfering radiation and indirectly by modifying clouds. Light-absorbing particles (e.g., black carbon) in snow/ice can reduce the surface albedo. The direct radiative impact of aerosols on the Arctic climate can be either warming or cooling, depending on their composition and location, which can further alter the poleward heat transport. Anthropogenic emissions, especially, BC and SO2, have changed drastically in low/mid-latitude source regions in the past few decades. Arctic surface observations at some locations show that BC and sulfate aerosols had a decreasing trend in the recent decades. In order to understand the impact of long-term emission changes on aerosols and their radiative effects, we use the Community Earth System Model (CESM) equipped with an explicit BC and sulfur source-tagging technique to quantify the source-receptor relationships and decadal trends of Arctic sulfate and BC and to identify variations in their atmospheric transport pathways from lower latitudes. The simulation was conducted for 36 years (1979-2014) with prescribed sea surface temperatures and sea ice concentrations. To minimize potential biases in modeled large-scale circulations, wind fields in the simulation are nudged toward an atmospheric reanalysis dataset, while atmospheric constituents including water vapor, clouds, and aerosols are allowed to evolve according to the model physics. Both anthropogenic and open fire emissions came from the newly released CMIP6 datasets, which show strong regional trends in BC and SO2 emissions during the simulation time period. Results show that emissions from East Asia and South Asia together have the largest contributions to Arctic sulfate and BC concentrations in the upper troposphere, which have an increasing trend. The strong decrease in emissions from Europe, Russia and North America contributed significantly to the overall decreasing trend in Arctic BC and sulfate, especially, in the lower troposphere. The long-term changes in the spatial distributions of aerosols, their radiative impacts and source attributions, along with implications for the Arctic warming trend, will be discussed.

  9. Enhanced sorption of PAHs in natural-fire-impacted sediments from Oriole Lake, California.

    PubMed

    Sullivan, Julia; Bollinger, Kevyn; Caprio, Anthony; Cantwell, Mark; Appleby, Peter; King, John; Ligouis, Bertrand; Lohmann, Rainer

    2011-04-01

    Surface sediment cores from Oriole Lake (CA) were analyzed for organic carbon (OC), black carbon (BC), and their δ(13)C isotope ratios. Sediments displayed high OC (20-25%) and increasing BC concentrations from ∼0.40% (in 1800 C.E.) to ∼0.60% dry weight (in 2000 C.E.). Petrographic analysis confirmed the presence of fire-derived carbonaceous particles/BC at ∼2% of total OC. Natural fires were the most likely cause of both elevated polycyclic aromatic hydrocarbon (PAH) concentrations and enhanced sorption in Oriole Lake sediments prior to 1850, consistent with their tree-ring-based fire history. In contrast to other PAHs, retene and perylene displayed decreasing concentrations during periods with natural fires, questioning their use as fire tracers. The occurrence of natural fires, however, did not result in elevated concentrations of black carbon or chars in the sediments. Only the 1912-2007 sediment layer contained anthropogenic particles, such as soot BC. In this layer, combining OC absorption with adsorption to soot BC (using a Freundlich coefficient n = 0.7) explained the observed sorption well. In the older layers, n needed to be 0.3 and 0.5 to explain the enhanced sorption to the sediments, indicating the importance of natural chars/inertinites in sorbing PAHs. For phenanthrene, values of n differed significantly between sorption to natural chars (0.1-0.4) and sorption to anthropogenic black carbon (>0.5), suggesting it could serve as an in situ probe of sorbents.

  10. Salivary carbonic anhydrase VI and its relation to salivary flow rate and buffer capacity in pregnant and non-pregnant women.

    PubMed

    Kivelä, Jyrki; Laine, Merja; Parkkila, Seppo; Rajaniemi, Hannu

    2003-08-01

    Previous studies have shown that pregnancy may have unfavourable effects on oral health. The pH and buffer capacity (BC) of paraffin-stimulated saliva, for example, have been found to decrease towards late pregnancy. Salivary carbonic anhydrase VI (CA VI) probably protects the teeth by accelerating the neutralization of hydrogen ions in the enamel pellicle on dental surfaces. Since estrogens and androgens are known to regulate CA expression in some tissues, we studied here whether salivary CA VI concentration shows pregnancy-related changes. Paraffin-stimulated salivary samples were collected from nine pregnant women 1 month before delivery and about 2 months afterwards and assayed for salivary CA VI concentration, BC and flow rate. The enzyme concentration was determined using a specific time-resolved immunofluorometric assay. The control group consisted of 17 healthy non-pregnant women. The results indicated that salivary CA VI levels varied markedly among individuals, but no significant differences in mean concentrations were seen between the samples collected during late pregnancy and postpartum. BC values were lower during pregnancy, however. Our findings suggest that CA VI secretion is not significantly affected by the hormonal alterations associated with pregnancy, and confirm the earlier reports that CA VI is not involved in the regulation of actual salivary BC.

  11. Abiotic reduction of trifluralin and pendimethalin by sulfides in black-carbon-amended coastal sediments.

    PubMed

    Gong, Wenwen; Liu, Xinhui; Xia, Shuhua; Liang, Baocui; Zhang, Wei

    2016-06-05

    Dinitroaniline herbicides such as trifluralin and pendimethalin are persistent bioaccumulative toxins to aquatic organisms. Thus, in-situ remediation of contaminated sediments is desired. This study investigated whether black carbons (BCs), including apple wood charcoal (BC1), rice straw biochar (BC2), and activated carbon (BC3), could facilitate abiotic reduction of trifluralin and pendimethalin by sulfides of environmentally-relevant concentrations in anoxic coastal sediments. The reduction rates of trifluralin and pendimethalin increased substantially with increasing BC dosages in the sediments. This enhancing effect was dependent on BC type with the greatest for BC3 followed by BC1 and BC2, which well correlated with their specific surface area. The pseudo-first order reduction rate constants (kobs) for BC3-amended sediment (2%) were 13- and 14 times the rate constants in the BC-free sediment. The reduction rates increased with increasing temperature from 8 to 25°C in the BC-amended sediment, following the Arrhenius relationship. Finally, through molecular modeling by density functional theory and reaction species identification from mass spectra, molecular pathways of trifluralin and pendimethalin reduction were elucidated. In contrary to the separate sequential reduction of each nitro group to amine group, both nitro groups, first reduced to nitroso, then eventually to amine groups. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Benzalkonium Chloride Provides Remarkable Stability to Liquid Protein Lures for Trapping Anastrepha obliqua (Diptera: Tephritidae).

    PubMed

    Lasa, R; Williams, T

    2017-12-05

    Hydrolyzed protein lures are widely used to monitor fruit fly pests but are rapidly degraded by microbial activity and must be replaced frequently. To improve the stability of lures, the quaternary ammonium biocide, benzalkonium chloride (BC), was evaluated in mixtures with two hydrolyzed proteins commonly used to monitor Anastrepha spp. The mean number of Anastrepha obliqua adults captured during six consecutive weeks using Captor + borax with the addition of 240 mg BC/liter, not renewed during the test, was similar to Captor + borax that was replaced at weekly intervals and was more effective than Captor + borax without BC. Numbers of A. obliqua flies captured in 30% CeraTrap diluted in water containing 240 mg BC/liter were similar to those caught in traps baited with Captor + borax or 30% CeraTrap without BC in the first 9 d of evaluation but was significantly more effective than both lures after 56 d. After >2 mo of use, 30% CeraTrap containing 240 mg BC/liter remained as effective as newly prepared 30% CeraTrap. The addition of BC to lures reduced surface tension of liquid lures by ~40-50%. However, when BC was increased to 720 mg BC/liter, only a small additional reduction in surface tension was observed and higher concentrations of BC did not increase capture rates. These findings could contribute to reduced costs for trapping networks and the development of long-lasting formulations of liquid protein lures for bait stations and mass-trapping targeted at major tephritid pests. © The Author(s) 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. Chemical, mechanical and biological properties of contemporary composite surface sealers.

    PubMed

    Anagnostou, Maria; Mountouris, George; Silikas, Nick; Kletsas, Dimitris; Eliades, George

    2015-12-01

    To evaluate the chemical, mechanical, and biological properties of modern composite surface sealers (CSS) having different compositions. The CSS products tested were Biscover LV (BC), Durafinish (DF), G-Coat Plus (GC), and Permaseal (PS). The tests performed were: (A): degree of conversion (DC%) by ATR-FTIR spectroscopy; (B): thickness of O2-inhibition layer by transmission optical microscopy; (C): surface hardness, 10 min after irradiation and following 1 week water storage, employing a Vickers indenter (VHN); (D): color (ΔE*) and gloss changes (ΔGU) after toothbrush abrasion, using L*a*b* colorimetry and glossimetry; (E): accelerated wear (GC,PS only) by an OHSU wear simulator plus 3D profilometric analysis, and (F): cytotoxicity testing of aqueous CSS eluents on human gingival fibroblast cultures employing the methyl-(3)H thymidine DNA labeling method. Statistical analyses included 1-way (A, B, ΔE*, ΔGU) and 2-way (C, F) ANOVAs, plus Tukey post hoc tests. Student's t-test was used to evaluate the results of the accelerated wear test (α=0.05 for all). The rankings of the statistical significant differences were: (A) PS (64.9)>DF,BC,GC (56.1-53.9) DC%; (B) DF,PS (12.3,9.8)>GC,BC (5.2,4.8) μm; (C): GC (37.6)>BC,DF (32.6,31.1)>PS (26.6) VHN (10 min/dry) and BC,DF (29.3,28.7)>GC(26.5)>PS(21.6) VHN (1w/water), with no significant material/storage condition interaction; (D): no differences were found among GC,DF,BC,PS (0.67-1.11) ΔE*, with all values within the visually acceptable range and PS,BC (32.8,29.4)>GC,DF (19.4,12.9) ΔGU; (E): no differences were found between GC and PS in volume loss (0.10,0.11 mm(3)), maximum (113.9,130.5 μm) and mean wear depths (30.3,27.5 μm); (F): at 1% v/v concentration, DF showed toxicity (23% vital cells vs 95-102% for others). However, at 5% v/v concentration DF (0%) and BC (9%) were the most toxic, whereas GC (58%) and PS (56%) showed moderate toxicity. Important chemical, mechanical, and biological properties exist among the CSS tested, which may affect their clinical performance. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  14. Do contemporary (1980-2015) emissions determine the elemental carbon deposition trend at Holtedahlfonna glacier, Svalbard?

    NASA Astrophysics Data System (ADS)

    Ruppel, Meri M.; Soares, Joana; Gallet, Jean-Charles; Isaksson, Elisabeth; Martma, Tõnu; Svensson, Jonas; Kohler, Jack; Pedersen, Christina A.; Manninen, Sirkku; Korhola, Atte; Ström, Johan

    2017-10-01

    The climate impact of black carbon (BC) is notably amplified in the Arctic by its deposition, which causes albedo decrease and subsequent earlier snow and ice spring melt. To comprehensively assess the climate impact of BC in the Arctic, information on both atmospheric BC concentrations and deposition is essential. Currently, Arctic BC deposition data are very scarce, while atmospheric BC concentrations have been shown to generally decrease since the 1990s. However, a 300-year Svalbard ice core showed a distinct increase in EC (elemental carbon, proxy for BC) deposition from 1970 to 2004 contradicting atmospheric measurements and modelling studies. Here, our objective was to decipher whether this increase has continued in the 21st century and to investigate the drivers of the observed EC deposition trends. For this, a shallow firn core was collected from the same Svalbard glacier, and a regional-to-meso-scale chemical transport model (SILAM) was run from 1980 to 2015. The ice and firn core data indicate peaking EC deposition values at the end of the 1990s and lower values thereafter. The modelled BC deposition results generally support the observed glacier EC variations. However, the ice and firn core results clearly deviate from both measured and modelled atmospheric BC concentration trends, and the modelled BC deposition trend shows variations seemingly independent from BC emission or atmospheric BC concentration trends. Furthermore, according to the model ca. 99 % BC mass is wet-deposited at this Svalbard glacier, indicating that meteorological processes such as precipitation and scavenging efficiency have most likely a stronger influence on the BC deposition trend than BC emission or atmospheric concentration trends. BC emission source sectors contribute differently to the modelled atmospheric BC concentrations and BC deposition, which further supports our conclusion that different processes affect atmospheric BC concentration and deposition trends. Consequently, Arctic BC deposition trends should not directly be inferred based on atmospheric BC measurements, and more observational BC deposition data are required to assess the climate impact of BC in Arctic snow.

  15. Characterization of Particulate Matter Profiling and Alveolar Deposition from Biomass Burning in Northern Thailand: The 7-SEAS Study

    NASA Technical Reports Server (NTRS)

    Chuang, Hsiao-Chi; Hsiao, Ta-Chih; Wang, Sheng-Hsiang; Tsay, Si-Chee; Lin, Neng-Huei

    2016-01-01

    Biomass burning (BB) frequently occurs in SouthEast Asia (SEA), which significantly affects the air quality and could consequently lead to adverse health effects. The aim of this study was to characterize particulate matter (PM) and black carbon (BC) emitted from BB source regions in SEA and their potential of deposition in the alveolar region of human lungs. A 31-day characterization of PM profiling was conducted at the Doi Ang Khang (DAK) meteorology station in northern Thailand in March 2013. Substantial numbers of PM (10147 +/- 5800 # per cubic centimeter) with a geometric mean diameter (GMD) of 114.4 +/- 9.2 nm were found at the study site. The PM of less than 2.5 micron in aerodynamic diameter (PM sub 2.5) hourly-average mass concentration was 78.0 +/- 34.5 per cubic microgram whereas the black carbon (BC) mass concentration was 4.4 +/- 2.6 micrograms per cubic meter. Notably, high concentrations of nanoparticle surface area (100.5 +/- 54.6 square micrometers per cubic centimeter) emitted from biomass burning can be inhaled into the human alveolar region. Significant correlations with fire counts within different ranges around DAK were found for particle number, the surface area concentration of alveolar deposition, and BC. In conclusion, biomass burning is an important PM source in SEA, particularly nanoparticles, which has high potency to be inhaled into the lung environment and interact with alveolar cells, leading to adverse respiratory effects. The fire counts within 100 to 150 km shows the highest Pearson's r for particle number and surface area concentration. It suggests 12 to 24 hr could be a fair time scale for initial aging process of BB aerosols. Importantly, the people lives in this region could have higher risk for PM exposure.

  16. Sources and physicochemical characteristics of black carbon aerosol from the southeastern Tibetan Plateau: internal mixing enhances light absorption

    NASA Astrophysics Data System (ADS)

    Wang, Qiyuan; Cao, Junji; Han, Yongming; Tian, Jie; Zhu, Chongshu; Zhang, Yonggang; Zhang, Ningning; Shen, Zhenxing; Ni, Haiyan; Zhao, Shuyu; Wu, Jiarui

    2018-04-01

    Black carbon (BC) aerosol has important effects on the climate and hydrology of the Tibetan Plateau (TP). An intensive measurement campaign was conducted at Lulang (˜ 3300 m a.s.l. - above sea level), southeastern TP, from September to October 2015, to investigate the sources and physicochemical characteristics of refractory BC (rBC) aerosol. The average rBC mass concentration was 0.31 ± 0.55 µg m-3, which is higher than most prior results for BC on the TP. A clear diurnal cycle in rBC showed high values in the morning and low values in the afternoon. A bivariate polar plot showed that rBC loadings varied with wind speed and direction, which also reflected the dominant transport direction. The estimated net surface rBC transport intensity was +0.05 ± 0.29 µg s-1 m-2, indicating stronger transport from outside the TP compared with its interior. Cluster analysis and a concentration-weighted trajectory model connected emissions from north India to the high rBC loadings, but the effects of internal TP sources should not be overlooked. The average mass median diameter (MMD) of rBC was 160 ± 23 nm, with smaller MMDs on rainy days (145 nm) compared with non-rainy days (164 nm). The average number fraction of thickly coated rBC (FrBC) was 39 ± 8 %, and it increased with the O3 mixing ratios from 10:00 to 14:00 LT, indicating that photochemical oxidation played a role in forming rBC coatings. The average rBC absorption enhancement (Eabs) was estimated to be 1.9, suggesting that light absorption by coated rBC particles was greater than for uncoated ones. The Eabs was strongly positively correlated with the FrBC, indicating an amplification of light absorption for internally mixed rBC. For rBC cores < 170 nm, Eabs was negatively correlated with MMD, but it was nearly constant for rBC cores > 170 nm. Our study provides insight into the sources and evolution of rBC aerosol on the TP, and the results should be useful for improving models of the radiative effects of carbonaceous aerosols in this area.

  17. Airborne black carbon concentrations over an urban region in western India-temporal variability, effects of meteorology, and source regions.

    PubMed

    Bapna, Mukund; Sunder Raman, Ramya; Ramachandran, S; Rajesh, T A

    2013-03-01

    This study characterizes over 5 years of high time resolution (5 min), airborne black carbon (BC) concentrations (July 2003 to December 2008) measured over Ahmedabad, an urban region in western India. The data were used to obtain different time averages of BC concentrations, and these averages were then used to assess the diurnal, seasonal, and annual variability of BC over the study region. Assessment of diurnal variations revealed a strong association between BC concentrations and vehicular traffic. Peaks in BC concentration were co-incident with the morning (0730 to 0830, LST) and late evening (1930 to 2030, LST) rush hour traffic. Additionally, diurnal variability in BC concentrations during major festivals (Diwali and Dushera during the months of October/November) revealed an increase in BC concentrations due to fireworks displays. Maximum half hourly BC concentrations during the festival days were as high as 79.8 μg m(-3). However, the high concentrations rapidly decayed suggesting that local meteorology during the festive season was favorable for aerosol dispersion. A multiple linear regression (MLR) model with BC as the dependent variable and meteorological parameters as independent variables was fitted. The variability in temperature, humidity, wind speed, and wind direction accounted for about 49% of the variability in measured BC concentrations. Conditional probability function (CPF) analysis was used to identify the geographical location of local source regions contributing to the effective BC measured (at 880 nm) at the receptor site. The east north-east (ENE) direction to the receptor was identified as a major source region. National highway (NH8) and two coal-fired thermal power stations (at Gandhinagar and Sabarmati) were located in the identified direction, suggesting that local traffic and power plant emissions were likely contributors to the measured BC.

  18. Catchment-scale redistribution of lithogenic solutes and black carbon over three years following wildfire in the Jemez Mountains, New Mexico, USA

    NASA Astrophysics Data System (ADS)

    Pohlmann, M. A.; Root, R.; Abrell, L.; Schwartz, C. J.; Chorover, J.

    2017-12-01

    Wildfire represents a disturbance that is becoming more prevalent as climate shifts to hotter and drier conditions in the southwestern US. It has profound and potentially long-term effects on the physical, chemical and microbiological properties of soil, including immediate surface deposition of lithogenic elements and incompletely combusted organic matter (i.e., black carbon or BC) previously held in biomass. The long residence time of BC mitigates oxidative release of carbon to the atmosphere and thus has implications for long-term climate forcing. Immediately following the 2013 Thompson Ridge wildfire in the Jemez River Basin Critical Zone Observatory, we sampled 22 soil profiles across a zero order basin at finely resolved depth intervals to 40 cm. Samples were collected again 12 and 24 months following the fire to assess redistribution of solutes and BC in the two years following fire. Water extractable anions, cations and carbon were measured for each sample and maps were generated by geostatistical interpolation. Additionally, the benzene polycarboxylic acid (BPCA) molecular marker method was employed for a selection of samples to quantify and characterize the BC content of the existing soil organic carbon pool as a function of landscape position and time. The `pulsed' deposition of water-soluble ions and BC followed pre-fire vegetation structure as indicated by solution chemistry data for years one and two displaying elevated solute concentrations in surface depths proximal to dense vegetation. Vertical and lateral redistribution of the water extractable elements and BC were consistent with wetting front propagation and topographic trends (driven by erosion, overland flow and lateral subsurface flow). BC depth profiles indicate vertical infiltration and lateral transport with burial, the latter associated with surface erosion of sediment, as mechanisms for redistribution.

  19. Insights into the binding behavior of bovine serum albumin to black carbon nanoparticles and induced cytotoxicity

    NASA Astrophysics Data System (ADS)

    Wu, Hai; Chen, Miaomiao; Shang, Mengting; Li, Xiang; Mu, Kui; Fan, Suhua; Jiang, Shuanglin; Li, Wenyong

    2018-07-01

    Black carbon (BC) is a main component of particulate matter (PM2.5). Due to their small size (<100 nm), inhaled ultrafine BC nanoparticles may penetrate the lung alveoli, where they interact with surfactant proteins and lipids, causing more serious damage to human health. Here, BC was analyzed to investigate the binding mechanism of its interaction with protein and induction of cytotoxicity changes. The binding process and protein conformation between BC and a serum protein (bovine serum albumin, BSA) were monitored by using a fluorescence quenching technique and UV-vis absorption, Fourier transform infrared (FTIR) and circular dichroism (CD) spectroscopies. The experimental results revealed that the fluorescence quenching of BSA induced by BC was a static quenching process and the hydrophobic force played the critical role in the interaction. The native conformation of BSA on the BC surface was slightly disturbed but obvious structural unfolding of the secondary structure did not occur. In the cytotoxicity study, BC nanoparticles with low concentrations exhibited strong toxicity towards BEAS-2B cells. However, the toxicity of BC nanoparticles could be mitigated by the presence of BSA. Therefore, proteins in biological fluids likely reduce the toxic effect of BC on human health. These findings delineated the binding mechanism and the toxicity between BC and the BSA-BC system, contributing to the understanding of the biological effects of BC exposure on human health in polluted atmospheres.

  20. Climate Impacts of CALIPSO-Guided Corrections to Black Carbon Aerosol Vertical Distributions in a Global Climate Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kovilakam, Mahesh; Mahajan, Salil; Saravanan, R.

    Here, we alleviate the bias in the tropospheric vertical distribution of black carbon aerosols (BC) in the Community Atmosphere Model (CAM4) using the Cloud-Aerosol and Infrared Pathfinder Satellite Observations (CALIPSO)-derived vertical profiles. A suite of sensitivity experiments are conducted with 1x, 5x, and 10x the present-day model estimated BC concentration climatology, with (corrected, CC) and without (uncorrected, UC) CALIPSO-corrected BC vertical distribution. The globally averaged top of the atmosphere radiative flux perturbation of CC experiments is ~8–50% smaller compared to uncorrected (UC) BC experiments largely due to an increase in low-level clouds. The global average surface temperature increases, the globalmore » average precipitation decreases, and the ITCZ moves northward with the increase in BC radiative forcing, irrespective of the vertical distribution of BC. Further, tropical expansion metrics for the poleward extent of the Northern Hemisphere Hadley cell (HC) indicate that simulated HC expansion is not sensitive to existing model biases in BC vertical distribution.« less

  1. Climate Impacts of CALIPSO-Guided Corrections to Black Carbon Aerosol Vertical Distributions in a Global Climate Model

    DOE PAGES

    Kovilakam, Mahesh; Mahajan, Salil; Saravanan, R.; ...

    2017-09-13

    Here, we alleviate the bias in the tropospheric vertical distribution of black carbon aerosols (BC) in the Community Atmosphere Model (CAM4) using the Cloud-Aerosol and Infrared Pathfinder Satellite Observations (CALIPSO)-derived vertical profiles. A suite of sensitivity experiments are conducted with 1x, 5x, and 10x the present-day model estimated BC concentration climatology, with (corrected, CC) and without (uncorrected, UC) CALIPSO-corrected BC vertical distribution. The globally averaged top of the atmosphere radiative flux perturbation of CC experiments is ~8–50% smaller compared to uncorrected (UC) BC experiments largely due to an increase in low-level clouds. The global average surface temperature increases, the globalmore » average precipitation decreases, and the ITCZ moves northward with the increase in BC radiative forcing, irrespective of the vertical distribution of BC. Further, tropical expansion metrics for the poleward extent of the Northern Hemisphere Hadley cell (HC) indicate that simulated HC expansion is not sensitive to existing model biases in BC vertical distribution.« less

  2. Effect of Wegener-Bergeron-Findeisen Process to Black Carbon Simulation

    NASA Astrophysics Data System (ADS)

    Qi, Ling; Li, Qinbin; He, Cenlin; Wang, Xin; Huang, Jianping

    2016-04-01

    We systematically investigated the effect of Wegener-Bergeron-Findeisen (WBF) process to black carbon (BC) simulation by a global 3D chemical transport model GEOS-Chem constrained by measurements of BC scavenging efficiencies, concentration in air, deposition fluxes, concentration in snow and washout ratios. Including effect of WBF process reduces the annual mean BC scavenging efficiencies (the ratio of BC in cloud droplets to total BC) at all altitudes by 43-76% in the Arctic. For mid latitude BC scavenging efficiencies decrease by 8-22%, 23-39%, and 41-50% in lower (0-2 km), middle (2-5 km) and upper troposphere (5-10 km), respectively. Simulated BC in air in the Arctic and at mid altitude (˜4 km) in mid latitude increases by ˜40%, and the discrepancy reduces from -65% to -30%. Simulated median BC in snow decreases from 25.7 to 22.4 ng g-1, by 15% in mid latitude and increases from 8.7 to 11.0 ng g-1, by 26% in the Arctic and the comparison with observations improves. The model overestimates washout ratios (ratio of BC in fresh snow/rain to BC in surface air) at most of the sites by up to a factor of 165. With effect of WBF process included, the discrepancy decreases to a factor of 72. The simulated BC burden increases from 0.22 to 0.35 mg m-2 yr-1 when effect of WBF process is included, partly explains the scaled up of BC burden in Bond et al., 2013. Moreover, burden above 5 km increases from 22% to 27% when WBF process is included, indicating a higher forcing efficiency. We also found that BC simulation is insensitive to the temperature criteria between mixed phase clouds and ice clouds. The simulated BC burden is the same when the temperature is set as -15° C and -25° C. This study also suggests that more observations are needed to better distinguish riming dominated and WBF dominated conditions and better parameterize BC scavenging efficiency under the two conditions.

  3. Chemical Composition and Sources of Aerosols in Finnish Arctic: 1964 - 2008

    NASA Astrophysics Data System (ADS)

    Husain, L.; Dutkiewicz, V. A.; Dejulio, A.; Ahmed, T.; Laing, J.; Hopke, P. K.; Paatero, J.; Viisanen, Y.

    2013-12-01

    BC particles strongly absorb solar radiation and impact the Earth's climate. In fact, BC may be the second largest contributor to global warming after greenhouses gases. However, the magnitude of the climate forcing by BC is quite uncertain, with a global average value estimated up to + 1.1W m-2 [Bond et al., 2013]. Direct long-term atmospheric measurements in the Arctic are required to evaluate the BC trends, variability and contributions from local as well as distant regional sources. Such information will permit the development of a strategy to minimize its impact on the climate. In this paper we report the measurements of concentrations of black carbon, [BC], SO4, methane sulfonic acid (MSA) and trace elements in filters collected weekly for 47 consecutive years at Kevo, Finland (69o 45' N and 27o 02' E) from 1964-2010. The data provides the longest record of direct measurement of these particulate species, and should be invaluable in assessing the impact of changes in emissions from nearby as well as distant sources. BC concentrations were determined in individual filters using thermal-optical and optical methods. The mean winter, spring, summer, and autumn [BC] were, 339, 199, 127, and 213 ngm-3, respectively. Annual [BC] decreased from 645 in 1965 to 82 ngm-3 in 2010, a nearly 8-fold decrease. There was a sharp decrease in concentrations after 1988, around the time of the collapse of the USSR. An overall decreasing trend was observed for all anthropogenic elements except lead where there was a decline that reflects the shift to unleaded gasoline. The 47-year complete data set will be analyzed by Positive Matrix Factorization (PMF). The receptor modeling results will be connected with back trajectory data in a Potential Source Contribution Function (PSCF) analysis to determine possible source areas. The combination of PMF and PSCF will identify sources and their geographic locations. Initial PSCF results with MSA show the Barents Sea and related areas as the source region while BC and sulfate come largely from Russia and Eastern Europe. The sulfate concentrations parallel the changes in estimated emission rates in Europe and Russia, but the BC concentration/emissions relationships are less clear. MSA has a weak but statistically significant correlation with the sea surface temperature anomaly within the areas identified by the PSCF analysis suggesting responses to temperature changes by the phytoplankton dimethyl sulfide emissions.

  4. Characteristics and source apportionment of black carbon aerosols over an urban site.

    PubMed

    Rajesh, T A; Ramachandran, S

    2017-03-01

    Aethalometer based source apportionment model using the measured aerosol absorption coefficients at different wavelengths is used to apportion the contribution of fossil fuel and wood burning sources to the total black carbon (BC) mass concentration. Temporal and seasonal variabilities in BC mass concentrations, equivalent BC from fossil fuel (BC f f ), and wood burning (BC w b ) are investigated over an urban location in western India during January 2014 to December 2015. BC, BC f f , and BC w b mass concentrations exhibit strong diurnal variation and are mainly influenced by atmospheric dynamics. BC f f was higher by a factor of 2-4 than BC w b and contributes maximum to BC mass throughout the day, confirming consistent anthropogenic activities. Diurnal contribution of BC f f and BC w b exhibits opposite variation due to differences in emission sources over Ahmedabad. Night time BC values are about a factor of 1.4 higher than day time BC values. The annual mean percentage contributions of day time and night time are 42 and 58 %, respectively. BC, BC f f , and BC w b mass concentrations exhibit large and significant variations during morning, afternoon, evening, and night time. During afternoon, mass concentration values are minimum throughout the year because of the fully evolved boundary layer and reduced anthropogenic activities. BC exhibits a strong seasonal variability with postmonsoon high (8.3 μg m -3 ) and monsoon low (1.9 μg m -3 ). Annual mean BC f f and BC w b contributions are 80 and 20 %, respectively, to total BC, which suggests that major contribution of BC in Ahmedabad comes from fossil fuel emissions. The results show that the study location is dominated by fossil fuel combustion as compared to the emissions from wood burning. The results obtained represent a regional value over an urban regime which can be used as inputs on source apportionment to model BC emissions in regional and global climate models.

  5. The Distribution of Snow Black Carbon observed in the Arctic and Compared to the GISS-PUCCINI Model

    NASA Technical Reports Server (NTRS)

    Dou, T.; Xiao, C.; Shindell, D. T.; Liu, J.; Eleftheriadis, K.; Ming, J.; Qin, D.

    2012-01-01

    In this study, we evaluate the ability of the latest NASA GISS composition-climate model, GISS-E2- PUCCINI, to simulate the spatial distribution of snow BC (sBC) in the Arctic relative to present-day observations. Radiative forcing due to BC deposition onto Arctic snow and sea ice is also estimated. Two sets of model simulations are analyzed, where meteorology is linearly relaxed towards National Centers for Environmental Prediction (NCEP) and towards NASA Modern Era Reanalysis for Research and Applications (MERRA) reanalyses. Results indicate that the modeled concentrations of sBC are comparable with presentday observations in and around the Arctic Ocean, except for apparent underestimation at a few sites in the Russian Arctic. That said, the model has some biases in its simulated spatial distribution of BC deposition to the Arctic. The simulations from the two model runs are roughly equal, indicating that discrepancies between model and observations come from other sources. Underestimation of biomass burning emissions in Northern Eurasia may be the main cause of the low biases in the Russian Arctic. Comparisons of modeled aerosol BC (aBC) with long-term surface observations at Barrow, Alert, Zeppelin and Nord stations show significant underestimation in winter and spring concentrations in the Arctic (most significant in Alaska), although the simulated seasonality of aBC has been greatly improved relative to earlier model versions. This is consistent with simulated biases in vertical profiles of aBC, with underestimation in the lower and middle troposphere but overestimation in the upper troposphere and lower stratosphere, suggesting that the wet removal processes in the current model may be too weak or that vertical transport is too rapid, although the simulated BC lifetime seems reasonable. The combination of observations and modeling provides a comprehensive distribution of sBC over the Arctic. On the basis of this distribution, we estimate the decrease in snow and sea ice albedo and the resulting radiative forcing. We suggest that the albedo reduction due to BC deposition presents significant space-time variations, with highest mean reductions of 1.25% in the Russian Arctic, which are much larger than those in other Arctic regions (0.39% to 0.64 %). The averaged value over the Arctic north of 66degN is 0.4-0.6% during spring, leading to regional surface radiative forcings of 0.7, 1.1 and 1.0Wm(exp-2) in spring 2007, 2008 and 2009, respectively.

  6. Impacts of absorbing aerosol deposition on snowpack and hydrologic cycle in the Rocky Mountain region using variable-resolution CESM (VR-CESM)

    NASA Astrophysics Data System (ADS)

    Wu, C.; Liu, X.; Lin, Z.; Rahimi-Esfarjani, S. R.; Lu, Z.

    2017-12-01

    Deposition of light-absorbing aerosols (LAAs) including black carbon (BC) and dust onto snow surface has been suggested to reduce the snow albedo, and modulate the snowpack and consequent hydrologic cycle. In this study we use the variable-resolution Community Earth System Model (VR-CESM) to quantify the impacts of LAAs deposition onto snow in the Rocky Mountain region (RMR) during the period of 1981-2005. We first evaluate the model simulation of LAA concentrations both in the atmosphere and in snow, and then investigate the snowpack and runoff changes induced by LAAs-in-snow. The model simulates similar magnitudes of surface atmospheric dust concentrations as observations, but underestimates surface atmospheric BC concentrations by about a factor of two. Despite of this, the magnitude of BC-in-snow concentrations is overall comparable to observations. Regional mean surface radiative effect (SRE) due to LAAs-in-snow reaches up to 0.6-1.7 W m-2 in spring, and dust contributes to about 21-43% of total SRE. Maximum surface air temperature increase due to the LLA's SRE is around 0.9-1.1oC. Snow water equivalent and snow cover fraction reduce by around 2-50 mm and 0.05-0.2, respectively in the two regions around the mountains (Eastern Snake River Plain and Southwestern Wyoming) due to positive snow-albedo feedbacks. During the snow melting period, LAAs accelerate the hydrologic cycle with runoff increased by 7%-42% in April-May and reduced by 2-23% in June-July in the mountainous regions. Under the influence of LAAs-in-snow, Southern Rockies experience the most significant reduction of runoff by about 15% in the later stage of snow melt (i.e., June-July). Our results highlight the potentially important role of LAAs-in-snow in the historical and future changes of snowpack in the RMR.

  7. Effects of black carbon and boundary layer interaction on surface ozone in Nanjing, China

    NASA Astrophysics Data System (ADS)

    Gao, Jinhui; Zhu, Bin; Xiao, Hui; Kang, Hanqing; Pan, Chen; Wang, Dongdong; Wang, Honglei

    2018-05-01

    As an important solar radiation absorbing aerosol, the effect of black carbon (BC) on surface ozone, via reducing photolysis rate, has been widely discussed by offline model studies. However, BC-boundary layer (BL) interactions also influence surface ozone. Using the online model simulations and process analysis, we demonstrate the significant impact of BC-BL interaction on surface ozone in Nanjing. The absorbing effect of BC heats the air above the BL and suppresses and delays the development of the BL, which eventually leads to a change in surface ozone via a change in the contributions from chemical and physical processes (photochemistry, vertical mixing and advection). For chemical processes, the suppression of the BL leads to large amounts of ozone precursors being confined below the BL which has an increased effect on ozone chemical production and offsets the decrease caused by the reduction of the photolysis rate, thus enhancing ozone chemical formation from 10:00 to 12:00 LT. Furthermore, changes in physical processes, especially the vertical mixing process, show a more significant influence on surface ozone. The weakened turbulence, caused by the suppressed BL, entrains much less ozone aloft down to the surface. Finally, summing-up the changes in the processes, surface ozone reduces before noon and the maximum reduction reaches 16.4 ppb at 12:00 LT. In the afternoon, the changes in chemical process are small which inconspicuously influence surface ozone. However, change in the vertical mixing process still influences surface ozone significantly. Due to the delayed development of the BL, there are obvious ozone gradients around the top of BL. Therefore, high concentrations of ozone aloft can still be entrained down to the surface which offsets the reduction of surface ozone. Comparing the changes in the processes, the change in vertical mixing plays the most important role in impacting surface ozone. Our results highlight the great impacts BC-BL interactions have on surface ozone by influencing the ozone contribution from physical process. This suggests that more attention should be paid to the mechanism of aerosol-BL interactions when controlling ozone pollution.

  8. Black Carbon, Dust and Organic Matter at South Cascade Glacier in Washington State, USA: A Comprehensive Characterization of Temporal (1865-2014) and Spatial Variability

    NASA Astrophysics Data System (ADS)

    Kaspari, S.; Pittenger, D.; Swick, M.; Skiles, M.; Perez, A.; Sethi, H.; Sevier, E.

    2017-12-01

    Rising temperatures are a widely recognized cause of glacial retreat in Washington, however light absorbing aerosols (LAA, including black carbon (BC), dust and organic matter) can also contribute to increased melt by reducing snow albedo. We present updated results of BC and dust variability at South Cascade (SOCAS) glacier spanning 1865-1994 using a 158 m ice core. Peak BC deposition occurred between 1940-1958, when median BC concentrations were 25 times higher than background levels. Post 1958 BC concentrations decrease, followed by an increase post 1980 associated with melt consolidation and/or trans-Pacific aerosol transport. Dust deposition at SOCAS is dominated by local sources. Albedo reductions from LAA are dominated by dust deposition, except during high BC deposition events from wildfires, and during the 1940-1958 period when BC contributes equally to albedo reductions. Results from a 2014 field campaign that included collection of 3 shallow ice cores, surface snow, and snow albedo measurements allow the 1865-1994 ice core record to be extended toward present, and spatial variability in LAA to be characterized. Snow albedo transects were measured using a spectrometer. BC concentrations were measured using a Single Particle Soot Photometer (SP2). Gravimetric filtration was used to determine the total LAA, and a thermal gravimetric technique was used to partition the LAA between dust and organic matter. The organic matter was partitioned into organic and elemental carbon using a thermal optical method. These methods allow LAA abundances be measured, but to partition the contribution of the LAA to albedo reductions requires characterization of LAA optical properties. This was accomplished using a Hyperspectral Imaging Microscope Spectrometer method that allows particle reflectance to be measured at 138 nm2 pixel resolution. By combining these methods, we provide a comprehensive characterization of spatial and temporal LAA variability at SOCAS.

  9. Association of marine viral and bacterial communities with reference black carbon particles under experimental conditions: an analysis with scanning electron, epifluorescence and confocal laser scanning microscopy.

    PubMed

    Cattaneo, Raffaela; Rouviere, Christian; Rassoulzadegan, Fereidoun; Weinbauer, Markus G

    2010-11-01

    Black carbon (BC), the product of incomplete combustion of fossil fuels and biomass, constitutes a significant fraction of the marine organic carbon pool. However, little is known about the possible interactions of BC and marine microorganisms. Here, we report the results of experiments using a standard reference BC material in high concentrations to investigate basic principles of the dynamics of natural bacterial and viral communities with BC particles. We assessed the attachment of viral and bacterial communities using scanning electron, epifluorescence and confocal laser scanning microscopy and shifts in bacterial community composition using 16S rRNA gene denaturing gradient gel electrophoresis (DGGE). In 24-h time-course experiments, BC particles showed a strong potential for absorbing viruses and bacteria. Total viral abundance was reduced, whereas total bacterial abundance was stimulated in the BC treatments. Viral and bacterial abundance on BC particles increased with particle size, whereas the abundances of BC-associated viruses and bacteria per square micrometer surface area decreased significantly with BC particle size. DGGE results suggested that BC has the potential to change bacterial community structure and favour phylotypes related to Glaciecola sp. Our study indicates that BC could influence processes mediated by bacteria and viruses in marine ecosystems. © 2010 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  10. Historical record of black carbon in urban soils and its environmental implications.

    PubMed

    He, Yue; Zhang, Gan-Lin

    2009-10-01

    Energy use in urbanization has fundamentally changed the pattern and fluxes of carbon cycling, which has global and local environmental impacts. Here we have investigated organic carbon (OC) and black carbon (BC) in six soil profiles from two contrast zones in an ancient city (Nanjing) in China. BC in soils was widely variable, from 0.22 to 32.19 g kg(-1). Its average concentration in an ancient residential area (Zone 1) was, 0.91 g kg(-1), whereas in Zone 2, an industrial and commercial area, the figure was 8.62 g kg(-1). The ratio of BC/OC ranged from 0.06 to 1.29 in soil profiles, with an average of 0.29. The vertical distribution of BC in soil is suggested to reflect the history of BC formation from burning of biomass and/or fossil fuel. BC in the surface layer of soils was mainly from traffic emission (especially from diesel vehicles). In contrast, in cultural layers BC was formed from historical coal use. The contents of BC and the ratio of BC/OC may reflect different human activities and pollution sources in the contrasting urban zones. In addition, the significant correlation of heavy metals (Cu, Pb, and Zn) with BC contents in some culture layers suggests the sorption of the metals by BC or their coexistence resulted from the coal-involved smelting.

  11. Global Air Quality and Health Co-benefits of Mitigating Near-term Climate Change Through Methane and Black Carbon Emission Controls

    NASA Technical Reports Server (NTRS)

    Anenberg, Susan C.; Schwartz, Joel; Shindell, Drew Todd; Amann, Markus; Faluvegi, Gregory S.; Klimont, Zbigniew; Janssens-Maenhout, Greet; Pozzoli, Luca; Dingenen, Rita Van; Vignati, Elisabetta; hide

    2012-01-01

    Tropospheric ozone and black carbon (BC), a component of fine particulate matter (PM < or = 2.5 microns in aerodynamic diameter; PM2.5), are associated with premature mortality and they disrupt global and regional climate. Objectives: We examined the air quality and health benefits of 14 specific emission control measures targeting BC and methane, an ozone precursor, that were selected because of their potential to reduce the rate of climate change over the next 20-40 years. Methods: We simulated the impacts of mitigation measures on outdoor concentrations of PM2.5 and ozone using two composition-climate models, and calculated associated changes in premature PM2.5- and ozone-related deaths using epidemiologically derived concentration-response functions. Results: We estimated that, for PM2.5 and ozone, respectively, fully implementing these measures could reduce global population-weighted average surface concentrations by 23-34% and 7-17% and avoid 0.6-4.4 and 0.04-0.52 million annual premature deaths globally in 2030. More than 80% of the health benefits are estimated to occur in Asia. We estimated that BC mitigation measures would achieve approximately 98% of the deaths that would be avoided if all BC and methane mitigation measures were implemented, due to reduced BC and associated reductions of nonmethane ozone precursor and organic carbon emissions as well as stronger mortality relationships for PM2.5 relative to ozone. Although subject to large uncertainty, these estimates and conclusions are not strongly dependent on assumptions for the concentration-response function. Conclusions: In addition to climate benefits, our findings indicate that the methane and BC emission control measures would have substantial co-benefits for air quality and public health worldwide, potentially reversing trends of increasing air pollution concentrations and mortality in Africa and South, West, and Central Asia. These projected benefits are independent of carbon dioxide mitigation measures. Benefits of BC measures are underestimated because we did not account for benefits from reduced indoor exposures and because outdoor exposure estimates were limited by model spatial resolution.

  12. Comprehensive Adsorption Studies of Doxycycline and Ciprofloxacin Antibiotics by Biochars Prepared at Different Temperatures

    PubMed Central

    Zeng, Zhi-wei; Tan, Xiao-fei; Liu, Yun-guo; Tian, Si-rong; Zeng, Guang-ming; Jiang, Lu-hua; Liu, Shao-bo; Li, Jiang; Liu, Ni; Yin, Zhi-hong

    2018-01-01

    This paper comparatively investigated the removal efficiency and mechanisms of rice straw biochars prepared under three pyrolytic temperatures for two kinds of tetracycline and quinolone antibiotics (doxycycline and ciprofloxacin). The influencing factors of antibiotic adsorption (including biochar dosage, pH, background electrolytes, humic acid, initial antibiotics concentration, contact time, and temperature) were comprehensively studied. The results suggest that biochars produced at high-temperature [i.e., 700°C (BC700)], have higher adsorption capacity for the two antibiotics than low-temperature (i.e., 300–500°C) biochars (BC300 and BC500). Higher surface area gives rise to greater volume of micropores and mesopores, and higher graphitic surfaces of the BC700 contributed to its higher functionality. The maximum adsorption capacity was found to be in the following order: DOX > CIP. The π-π EDA interaction and hydrogen bonding might be the predominant adsorption mechanisms. Findings in this study highlight the important roles of high-temperature biochars in controlling the contamination of tetracycline and quinolone antibiotics in the environment. PMID:29637067

  13. Comprehensive adsorption studies of doxycycline and ciprofloxacin antibiotics by biochars prepared at different temperatures

    NASA Astrophysics Data System (ADS)

    Zeng, Zhi-wei; Tan, Xiao-fei; Liu, Yun-guo; Tian, Si-rong; Zeng, Guang-ming; Jiang, Lu-hua; Liu, Shao-bo; Li, Jiang; Liu, Ni; Yin, Zhi-hong

    2018-03-01

    This paper comparatively investigated the removal efficiency and mechanisms of rice straw biochars prepared under three pyrolytic temperatures for two kinds of tetracycline and quinolone antibiotics (doxycycline and ciprofloxacin). The influencing factors of antibiotic adsorption (including biochar dosage, pH, background electrolytes, humic acid, initial antibiotics concentration, contact time, and temperature) were comprehensively studied. The results suggest that biochars produced at high-temperature (i.e., 700°C (BC700)), have higher adsorption capacity for the two antibiotics than low-temperature (i.e., 300-500°C) biochars (BC300 and BC500). Higher surface area gives rise to greater volume of micropores and mesopores, and higher graphitic surfaces of the BC700 contributed to its higher functionality. The maximum adsorption capacity was found to be in the following order: DOX > CIP. The π-π EDA interaction and hydrogen bonding might be the predominant adsorption mechanisms. Findings in this study highlight the important roles of high-temperature biochars in controlling the contamination of tetracycline and quinolone antibiotics in the environment.

  14. Diurnal cycling of urban aerosols under different weather regimes

    NASA Astrophysics Data System (ADS)

    Gregorič, Asta; Drinovec, Luka; Močnik, Griša; Remškar, Maja; Vaupotič, Janja; Stanič, Samo

    2016-04-01

    A one month measurement campaign was performed in summer 2014 in Ljubljana, the capital of Slovenia (population 280,000), aiming to study temporal and spatial distribution of urban aerosols and the mixing state of primary and secondary aerosols. Two background locations were chosen for this purpose, the first one in the city center (urban background - KIS) and the second one in the suburban background (Brezovica). Simultaneous measurements of black carbon (BC) and particle number size distribution of submicron aerosols (PM1) were conducted at both locations. In the summer season emission from traffic related sources is expected to be the main local contribution to BC concentration. Concentrations of aerosol species and gaseous pollutants within the planetary boundary layer are controlled by the balance between emission sources of primary aerosols and gases, production of secondary aerosols, chemical reactions of precursor gases under solar radiation and the rate of dilution by mixing within the planetary boundary layer (PBL) as well as with tropospheric air. Only local emission sources contribute to BC concentration during the stable PBL with low mixing layer height, whereas during the time of fully mixed PBL, regionally transported BC and other aerosols can contribute to the surface measurements. The study describes the diurnal behaviour of the submicron aerosol at the urban and suburban background location under different weather regimes. Particles in three size modes - nucleation (< 25 nm, NUM), Aitken (25 - 90 nm, AIM) and accumulation mode (90 - 800 nm, ACM), as well as BC mass concentration were evaluated separately for sunny, cloudy and rainy days, taking into account modelled values of PBL height. Higher particle number and black carbon concentrations were observed at the urban background (KIS) than at the suburban background location (Brezovica). Significant diurnal pattern of total particle concentration and black carbon concentration was observed at both locations, with a distinct morning and late afternoon peak. As a consequence of different PBL dynamics and atmospheric processes (photochemical effects, humidity, wind speed and direction), diurnal profile differs for sunny, cloudy and rainy days. Nucleation mode particles were found to be subjected to lower daily variation and only slightly influenced by weather, as opposed to Aitken and accumulation mode particles. The highest correlation between BC and particle number concentration is observed during stable atmospheric conditions in the night and morning hours and is attributed to different particle size modes, depending on the distance to local BC emission sources. In sunny weather conditions, correlation between BC and particle number concentration decreases during the day due to mixing in the atmosphere and formation of secondary aerosols. Black carbon aging and mixing with secondary aerosols was additionally studied on the aerosol samples taken from the morning to the evening of a sunny day using SEM-EDX technique.

  15. Distribution and Sources of Black Carbon in the Arctic

    NASA Astrophysics Data System (ADS)

    Qi, Ling

    The Arctic is warming at twice the global rate over recent decades. To slow down this warming trend, there is growing interest in reducing the impact from short-lived climate forcers, such as black carbon (BC), because the benefits of mitigation are seen more quickly relative to CO2 reduction. To propose efficient mitigation policies, it is imperative to improve our understanding of BC distribution in the Arctic and to identify the sources. In this dissertation, we investigate the sensitivity of BC in the Arctic, including BC concentrations in snow (BCsnow) and BC concentrations in air (BCair), to emissions, dry deposition and wet scavenging using a global 3-D chemical transport model (CTM) GEOS-Chem. By including flaring emissions, estimating dry deposition velocity using resistance-in-series method, and including Wegener-Bergeron-Findeisen (WBF) in wet scavenging, simulated BCsnow in the eight Arctic sub-regions agree with the observations within a factor of two, and simulated BCair fall within the uncertainty range of observations. Specifically, we find that natural gas flaring emissions in Western Extreme North of Russia (WENR) strongly enhance BCsnow (by up to ?50%) and BCair (by 20-32%) during snow season in the so-called 'Arctic front', but has negligible impact on BC in the free troposphere. The updated dry deposition velocity over snow and ice is much larger than those used in most of global CTMs and agrees better with observation. The resulting BCsnow changes marginally because of the offsetting of higher dry and lower wet deposition fluxes. In contrast, surface BCair decreases strongly due to the faster dry deposition (by 27-68%). WBF occurs when the environmental vapor pressure is in between the saturation vapor pressure of ice crystals and water drops in mixed-phase clouds. As a result, water drops evaporate and releases BC particles in them back into the interstitial air. In most CTMs, WBF is either missing or represented by a uniform and low BC scavenging efficiency. In this dissertation, we relate WBF with temperature and ice mass fraction based on long-term observations in mixed-phase clouds. We find that WBF reduces BC scavenging efficiency globally, with larger decrease at higher latitude and altitude (from 8% in the tropics to 76% in the Arctic). WBF slows down and reduces wet deposition of BC and leave more BC in the atmosphere. Higher BC air results in larger dry deposition. The resulting total deposition is lower in mid-latitudes (by 12-34%) and higher in the Arctic (2-29%). Globally, including WBF significantly reduces the discrepancy of BCsnow (by 50%), BCair (by 50%), and washout ratios (by a factor of two to four). The remaining discrepancies in these variables suggest that in-cloud removal is likely still excessive over land. In the last part, we identify sources of surface atmospheric BC in the Arctic in springtime, when radiative forcing is the largest due to the high insolation and surface albedo. We find a large contribution from Asian anthropogenic sources (40-43%) and open biomass burning emissions from forest fires in South Siberia (29-41%). Outside the Arctic front, BC is strongly enhanced by episodic, direct transport events from Asia and Siberia after 12 days of transport. In contrast, in the Arctic front, a large fraction of the Asian contribution is in the form of 'chronic' pollution on 1-2 month timescale. As such, it is likely that previous studies using 5- or 10-day trajectory analyses strongly underestimated the contribution from Asia to surface BC in the Arctic. Our results point toward an urgent need for better characterization of flaring emissions of BC (e.g. the emission factors, temporal and spatial distribution), extensive measurements of both the dry deposition of BC over snow and ice, and the scavenging efficiency of BC in mixed-phase clouds, particularly over Ocean. More measurements of 14C are needed to better understand sources of BC (fossil fuel combustion versus biomass burning) and to provide additional constrain on BC simulations.

  16. Significant cooling effect on the surface due to soot particles over Brahmaputra River Valley region, India: An impact on regional climate.

    PubMed

    Tiwari, S; Kumar, R; Tunved, P; Singh, S; Panicker, A S

    2016-08-15

    Black carbon (BC) is an important atmospheric aerosol constituent that affects the climate by absorbing (directly) the sunlight and modifying cloud characteristics (indirectly). Here, we present first time yearlong measurements of BC and carbon monoxide (CO) from an urban location of Guwahati located in the Brahmaputra River valley (BRV) in the northeast region of India from 1st July 2013 to 30th June 2014. Daily BC concentrations varied within the range of 2.86 to 11.56μgm(-3) with an annual average of 7.17±1.89μgm(-3), while, CO varied from 0.19 to 1.20ppm with a mean value of 0.51±0.19ppm during the study period. The concentrations of BC (8.37μgm(-3)) and CO (0.67ppm) were ~39% and ~55% higher during the dry months (October to March) than the wet months (April to September) suggesting that seasonal changes in meteorology and emission sources play an important role in controlling these species. The seasonal ΔBC/ΔCO ratios were highest (lowest) in the pre-monsoon (winter) 18.1±1.4μgm(-3)ppmv(-1) (12.6±2.2μgm(-3)ppmv(-1)) which indicate the combustion of biofuel/biomass as well as direct emissions from fossil fuel during the pre-monsoon season. The annual BC emission was estimated to be 2.72Gg in and around Guwahati which is about 44% lower than the mega city 'Delhi' (4.86Gg). During the study period, the annual mean radiative forcing (RF) at the top of the atmosphere (TOA) for clear skies of BC was +9.5Wm(-2), however, the RF value at the surface (SFC) was -21.1Wm(-2) which indicates the net warming and cooling effects, respectively. The highest RF at SFC was in the month of April (-30Wm(-2)) which is coincident with the highest BC mass level. The BC atmospheric radiative forcing (ARF) was +30.16 (annual mean) Wm(-2) varying from +23.1 to +43.8Wm(-2). The annual mean atmospheric heating rate (AHR) due to the BC aerosols was 0.86Kday(-1) indicates the enhancement in radiation effect over the study region. The Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) captured the seasonal cycle of observed BC fairly well but underestimated the observed BC during the month of May-August. Model results show that BC at Guwahati is controlled mainly by anthropogenic emissions except during the pre-monsoon season when open biomass burning also makes a similar contribution. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Insights into the binding behavior of bovine serum albumin to black carbon nanoparticles and induced cytotoxicity.

    PubMed

    Wu, Hai; Chen, Miaomiao; Shang, Mengting; Li, Xiang; Mu, Kui; Fan, Suhua; Jiang, Shuanglin; Li, Wenyong

    2018-07-05

    Black carbon (BC) is a main component of particulate matter (PM 2.5 ). Due to their small size (<100nm), inhaled ultrafine BC nanoparticles may penetrate the lung alveoli, where they interact with surfactant proteins and lipids, causing more serious damage to human health. Here, BC was analyzed to investigate the binding mechanism of its interaction with protein and induction of cytotoxicity changes. The binding process and protein conformation between BC and a serum protein (bovine serum albumin, BSA) were monitored by using a fluorescence quenching technique and UV-vis absorption, Fourier transform infrared (FTIR) and circular dichroism (CD) spectroscopies. The experimental results revealed that the fluorescence quenching of BSA induced by BC was a static quenching process and the hydrophobic force played the critical role in the interaction. The native conformation of BSA on the BC surface was slightly disturbed but obvious structural unfolding of the secondary structure did not occur. In the cytotoxicity study, BC nanoparticles with low concentrations exhibited strong toxicity towards BEAS-2B cells. However, the toxicity of BC nanoparticles could be mitigated by the presence of BSA. Therefore, proteins in biological fluids likely reduce the toxic effect of BC on human health. These findings delineated the binding mechanism and the toxicity between BC and the BSA-BC system, contributing to the understanding of the biological effects of BC exposure on human health in polluted atmospheres. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Variation of the radiative properties during black carbon aging: theoretical and experimental intercomparison

    DOE PAGES

    He, C.; Liou, K.-N.; Takano, Y.; ...

    2015-07-20

    A theoretical black carbon (BC) aging model is developed to account for three typical evolution stages, namely, freshly emitted aggregates, coated BC by soluble material, and BC particles undergoing further hygroscopic growth. The geometric-optics surface-wave (GOS) approach is employed to compute the BC single-scattering properties at each aging stage, which are subsequently compared with laboratory measurements. Theoretical calculations are consistent with measurements in extinction and absorption cross sections for fresh BC aggregates, but overestimate the scattering cross sections for BC mobility diameters of 155, 245, and 320 nm, because of uncertainties associated with theoretical calculations for small particles as wellmore » as laboratory scattering measurements. The measured optical cross sections for coated BC by sulfuric acid and for those undergoing further hygroscopic growth are captured by theoretical calculations using a concentric core-shell structure, with differences of less than 20 %. This suggests that the core-shell shape represents the realistic BC coating morphology reasonably well in this case, which is consistent with the observed strong structure compaction during aging. We find that the absorption and scattering properties of fresh BC aggregates vary by up to 60 % due to uncertainty in the BC refractive index, which, however, is a factor of two smaller in the case of coated BC particles. Sensitivity analyses on the BC morphology show that the optical properties of fresh BC aggregates are more sensitive to fractal dimension than primary spherule size. The absorption and scattering cross sections of coated BC particles vary by more than a factor of two due to different coating structures. We find an increase of 20–250 % in absorption and a factor of 3–15 in scattering during aging, significantly depending on coating morphology and aging stages. Applying the aging model to CalNex 2010 field measurements, we show that the resulting BC direct radiative forcing (DRF) first increases from 1.5 to 1.7 W m -2 and subsequently decreases to 1.0 W m -2 during the transport from the Los Angeles Basin to downwind regions, as a result of the competition between absorption enhancement due to coating and dilution of BC concentration. The BC DRF can vary by up to a factor of two due to differences in BC coating morphology. Thus, an accurate estimate of BC DRF requires the incorporation of a dynamic BC aging process that accounts for realistic morphology in climate models, particularly for the regional analysis with high atmospheric heterogeneity.« less

  19. Variation of the radiative properties during black carbon aging: theoretical and experimental intercomparison

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, C.; Liou, K.-N.; Takano, Y.

    A theoretical black carbon (BC) aging model is developed to account for three typical evolution stages, namely, freshly emitted aggregates, coated BC by soluble material, and BC particles undergoing further hygroscopic growth. The geometric-optics surface-wave (GOS) approach is employed to compute the BC single-scattering properties at each aging stage, which are subsequently compared with laboratory measurements. Theoretical calculations are consistent with measurements in extinction and absorption cross sections for fresh BC aggregates, but overestimate the scattering cross sections for BC mobility diameters of 155, 245, and 320 nm, because of uncertainties associated with theoretical calculations for small particles as wellmore » as laboratory scattering measurements. The measured optical cross sections for coated BC by sulfuric acid and for those undergoing further hygroscopic growth are captured by theoretical calculations using a concentric core-shell structure, with differences of less than 20 %. This suggests that the core-shell shape represents the realistic BC coating morphology reasonably well in this case, which is consistent with the observed strong structure compaction during aging. We find that the absorption and scattering properties of fresh BC aggregates vary by up to 60 % due to uncertainty in the BC refractive index, which, however, is a factor of two smaller in the case of coated BC particles. Sensitivity analyses on the BC morphology show that the optical properties of fresh BC aggregates are more sensitive to fractal dimension than primary spherule size. The absorption and scattering cross sections of coated BC particles vary by more than a factor of two due to different coating structures. We find an increase of 20–250 % in absorption and a factor of 3–15 in scattering during aging, significantly depending on coating morphology and aging stages. Applying the aging model to CalNex 2010 field measurements, we show that the resulting BC direct radiative forcing (DRF) first increases from 1.5 to 1.7 W m -2 and subsequently decreases to 1.0 W m -2 during the transport from the Los Angeles Basin to downwind regions, as a result of the competition between absorption enhancement due to coating and dilution of BC concentration. The BC DRF can vary by up to a factor of two due to differences in BC coating morphology. Thus, an accurate estimate of BC DRF requires the incorporation of a dynamic BC aging process that accounts for realistic morphology in climate models, particularly for the regional analysis with high atmospheric heterogeneity.« less

  20. Sediment Transport from Urban, Urbanizing, and Rural Areas in Johnson County, Kansas, 2006-08

    USGS Publications Warehouse

    Lee, Casey J.

    2013-01-01

    1. Studies have commonly illustrated that erosion and sediment transport from construction sites is extensive, typically 10-100X that of background levels. 2. However, to our knowledge, the affects of construction and urbanization have rarely been assessed (1) since erosion and sediment controls have been required at construction sites, and (2) at watershed (5-65 mi2) scales. This is primarily because of difficulty characterizing sediment loads in small basins. Studies (such as that illustrated from Timble, 1999) illustrated how large changes in surface erosion may not result in substantive changes in downstream sediment loads (b/c of sediment deposition on land-surfaces, floodplains, and in stream channels). 3. Improved technology (in-situ turbidity) sensors provide a good application b/c they provide an independent surrogate of sediment concentration that is more accurate at estimating sediment concentrations and loads that instantaneous streamflow.

  1. Modelling Black Carbon concentrations in two busy street canyons in Brussels using CANSBC

    NASA Astrophysics Data System (ADS)

    Brasseur, O.; Declerck, P.; Heene, B.; Vanderstraeten, P.

    2015-01-01

    This paper focused on modelling Black Carbon (BC) concentrations in two busy street canyons, the Crown and Belliard Street in Brussels. The used original Operational Street Pollution Model was adapted to BC by eliminating the chemical module and is noted here as CANSBC. Model validations were performed using temporal BC data from the fixed measurement network in Brussels. Subsequently, BC emissions were adjusted so that simulated BC concentrations equalled the observed ones, averaged over the whole period of simulation. Direct validations were performed for the Crown Street, while BC model calculations for the Belliard Street were validated indirectly using the linear relationship between BC and NOx. Concerning the Crown Street, simulated and observed half-hourly BC concentrations correlated well (r = 0.74) for the period from July 1st, 2011 till June 30th, 2013. In particular, CANSBC performed very well to simulate the monthly and diurnal evolutions of averaged BC concentrations, as well as the difference between weekdays and weekends. This means that the model correctly handled the meteorological conditions as well as the variation in traffic emissions. Considering dispersion, it should however be noted that BC concentrations are better simulated under stable than under unstable conditions. Even if the correlation on half-hourly NOx concentrations was slightly lower (r = 0.60) than the one of BC, indirect validations of CANSBC for the Belliard Street yielded comparable results and conclusions as described above for the Crown Street. Based on our results, it can be stated that CANSBC is suitable to accurately simulate BC concentrations in the street canyons of Brussels, under the following conditions: (i) accurate vehicle counting data is available to correctly estimate traffic emissions, and (ii) vehicle speeds are measured in order to improve emission estimates and to take into account the impact of the turbulence generated by moving vehicles on the local dispersion of BC.

  2. Biochar reduces copper toxicity in Chenopodium quinoa Willd. In a sandy soil.

    PubMed

    Buss, Wolfram; Kammann, Claudia; Koyro, Hans-Werner

    2012-01-01

    Mining, smelting, land applications of sewage sludge, the use of fungicides containing copper (Cu), and other human activities have led to widespread soil enrichment and contamination with Cu and potentially toxic conditions. Biochar (BC) can adsorb several substances, ranging from herbicides to plant-inhibiting allelochemicals. However, the range of potential beneficial effects on early-stage plant growth with regard to heavy metal toxicity is largely unexplored. We investigated the ameliorating properties of a forestry-residue BC under Cu toxicity conditions on early plant growth. Young quinoa plants () were grown in the greenhouse in the presence of 0, 2, and 4% BC application (w/w) added to a sandy soil with 0, 50, or 200 μg g Cu supplied. The plants without BC showed severe stress symptoms and reduced growth shortly after Cu application of 50 μg g and died at 200 μg Cu g. Increasing BC concentrations in the growth medium significantly increased the plant performance without Cu toxicity or under Cu stress. At the 4% BC application rate, the plants with 200 μg g Cu almost reached the same biomass as in the control treatment. In the presence of BC, less Cu entered the plant tissues, which had reduced Cu concentrations in the order roots, shoots, leaves. The amelioration effect also was reflected in the plant-soil system CO gas exchange, which showed clear signs of improvement with BC presence. The most likely ameliorating mechanisms were adsorption of Cu to negatively charged BC surfaces and an improvement of the water supply. Overall, BC seems to be a beneficial amendment with the potential to ameliorate Cu toxicity in sandy soils. Further research with a broad spectrum of different soil types, BCs, and crop plants is required. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  3. Effects of humic acid and heavy metals on the sorption of polar and apolar organic pollutants onto biochars.

    PubMed

    Wang, Fei; Sun, Hongwen; Ren, Xinhao; Liu, Yarui; Zhu, Hongkai; Zhang, Peng; Ren, Chao

    2017-12-01

    The effects of humic acid (HA) and heavy metals (Cu 2+ and Ag + ) on the sorption of polar and apolar organic pollutants onto biochars that were produced at temperatures of 200 °C (BC200) and 700 °C (BC700) were studied. Due to the plentiful polar functional groups on BC200, cationic propranolol exhibited higher levels of sorption than naphthalene on BC200 while naphthalene and propranolol showed similar sorption capacities on BC700. HA changed the characteristics of biochars and generally inhibited the sorption of target organic pollutants on biochars; however, enhancement occurred in some cases depending on the pollutants involved and their concentrations, biochars used and the addition sequences and concentrations of HA. On BC200, HA modifications mainly influenced sorption by decreasing its polarity and increasing its aromaticity, while on BC700, the surface area and pore volume greatly decreased due to the pore-blocking effects of HA. Residue dissolved HA in solution may also contribute to sorption inhibition. Complexation between polar functional groups on BC200 and heavy metals slightly enhanced the sorption of neutral naphthalene and significantly enhanced that of anionic 4-nitro-1-naphtol, while limited the sorption of cationic propranolol. Heavy metals together with their associated water molecules decreased the sorption of target chemicals on BC700 via pore-filling or pore-mouth-covering. Inhibition of heavy metals for 4-nitro-1-naphthol was found to be the weakest due to the bridge effects of heavy metals between 4-nitro-1-naphtol and BC700. The higher polarizability of Ag + led to the increase of its sorption on biochars in the presence of organic aromatic pollutants. The results of the present study shed light on the sorption mechanisms of bi-solute systems and enable us to select suitable biochar sorbents when chemicals co-exist. Copyright © 2017. Published by Elsevier Ltd.

  4. Quantifying sources, transport, deposition, and radiative forcing of black carbon over the Himalayas and Tibetan Plateau

    DOE PAGES

    Zhang, Rudong; Wang, Hailong; Qian, Yun; ...

    2015-06-08

    Black carbon (BC) particles over the Himalayas and Tibetan Plateau (HTP), both airborne and those deposited on snow, have been shown to affect snowmelt and glacier retreat. Since BC over the HTP may originate from a variety of geographical regions and emission sectors, it is essential to quantify the source–receptor relationships of BC in order to understand the contributions of natural and anthropogenic emissions and provide guidance for potential mitigation actions. In this study, we use the Community Atmosphere Model version 5 (CAM5) with a newly developed source-tagging technique, nudged towards the MERRA meteorological reanalysis, to characterize the fate ofmore » BC particles emitted from various geographical regions and sectors. Evaluated against observations over the HTP and surrounding regions, the model simulation shows a good agreement in the seasonal variation in the near-surface airborne BC concentrations, providing confidence to use this modeling framework for characterizing BC source–receptor relationships. Our analysis shows that the relative contributions from different geographical regions and source sectors depend on season and location in the HTP. The largest contribution to annual mean BC burden and surface deposition in the entire HTP region is from biofuel and biomass (BB) emissions in South Asia, followed by fossil fuel (FF) emissions from South Asia, then FF from East Asia. The same roles hold for all the seasonal means except for the summer, when East Asia FF becomes more important. For finer receptor regions of interest, South Asia BB and FF have the largest impact on BC in the Himalayas and central Tibetan Plateau, while East Asia FF and BB contribute the most to the northeast plateau in all seasons and southeast plateau in the summer. Central Asia and Middle East FF emissions have relatively more important contributions to BC reaching the northwest plateau, especially in the summer. Although local emissions only contribute about 10% of BC in the HTP, this contribution is extremely sensitive to local emission changes. Lastly, we show that the annual mean radiative forcing (0.42 W m -2) due to BC in snow outweighs the BC dimming effect (-0.3 W m -2) at the surface over the HTP. We also find strong seasonal and spatial variation with a peak value of 5 W m -2 in the spring over the northwest plateau. Such a large forcing of BC in snow is sufficient to cause earlier snow melting and potentially contribute to the acceleration of glacier retreat.« less

  5. Quantifying sources, transport, deposition, and radiative forcing of black carbon over the Himalayas and Tibetan Plateau

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Rudong; Wang, Hailong; Qian, Yun

    Black carbon (BC) particles over the Himalayas and Tibetan Plateau (HTP), both airborne and those deposited on snow, have been shown to affect snowmelt and glacier retreat. Since BC over the HTP may originate from a variety of geographical regions and emission sectors, it is essential to quantify the source–receptor relationships of BC in order to understand the contributions of natural and anthropogenic emissions and provide guidance for potential mitigation actions. In this study, we use the Community Atmosphere Model version 5 (CAM5) with a newly developed source-tagging technique, nudged towards the MERRA meteorological reanalysis, to characterize the fate ofmore » BC particles emitted from various geographical regions and sectors. Evaluated against observations over the HTP and surrounding regions, the model simulation shows a good agreement in the seasonal variation in the near-surface airborne BC concentrations, providing confidence to use this modeling framework for characterizing BC source–receptor relationships. Our analysis shows that the relative contributions from different geographical regions and source sectors depend on season and location in the HTP. The largest contribution to annual mean BC burden and surface deposition in the entire HTP region is from biofuel and biomass (BB) emissions in South Asia, followed by fossil fuel (FF) emissions from South Asia, then FF from East Asia. The same roles hold for all the seasonal means except for the summer, when East Asia FF becomes more important. For finer receptor regions of interest, South Asia BB and FF have the largest impact on BC in the Himalayas and central Tibetan Plateau, while East Asia FF and BB contribute the most to the northeast plateau in all seasons and southeast plateau in the summer. Central Asia and Middle East FF emissions have relatively more important contributions to BC reaching the northwest plateau, especially in the summer. Although local emissions only contribute about 10% of BC in the HTP, this contribution is extremely sensitive to local emission changes. Lastly, we show that the annual mean radiative forcing (0.42 W m -2) due to BC in snow outweighs the BC dimming effect (-0.3 W m -2) at the surface over the HTP. We also find strong seasonal and spatial variation with a peak value of 5 W m -2 in the spring over the northwest plateau. Such a large forcing of BC in snow is sufficient to cause earlier snow melting and potentially contribute to the acceleration of glacier retreat.« less

  6. The Importance of Asia as a Source of Black Carbon to the Arctic Constrained by Aircraft and Surface Measurements.

    NASA Astrophysics Data System (ADS)

    Xu, J.; Martin, R.; Morrow, A.; Sharma, S.; Huang, L.; Leaitch, W. R.; Burkart, J.; Schulz, H.; Zanatta, M.; Willis, M. D.; Henze, D. K.; Lee, C. J.; Herber, A. B.; Abbatt, J.

    2017-12-01

    The contribution of Asian sources to Arctic black carbon (BC) remains uncertain. We interpret a series of recent airborne (NETCARE 2015, PAMARCMiP 2009 and 2011 campaigns) and ground-based measurements (at Alert, Barrow and Ny-Ålesund) from multiple methods (thermal, laser incandescence and light absorption) with the GEOS-Chem global chemical transport model and its adjoint to attribute the sources of Arctic BC. Our simulations with the addition of seasonally varying domestic heating and of gas flaring emissions are consistent with ground-based measurements of BC concentrations at Alert and Barrow to within 13% in winter and spring, and with airborne measurements to within 17 % except for an underestimation in the middle troposphere (500-700 hPa). Sensitivity simulations suggest that anthropogenic emissions from eastern and southern Asia have the largest impact on the Arctic BC column burden both in spring (56 %) and annually (37 %), with the largest contribution in the middle troposphere (400-700 hPa). Anthropogenic emissions from northern Asia are the primary source of the Arctic surface BC ( 40% annually). Our adjoint simulations indicate noteworthy contributions from emissions in eastern China (15 %) and western Siberia (6.5 %) to the Arctic BC loadings on an annual average. Emissions from as south as the Indo-Gangetic Plain have a substantial impact (6.3 % annually) on Arctic BC as well. The Tarim oilfield in western China stands out as the second most influential grid cell with an annual contribution of 2.6 %. Gas flaring emissions from oilfields in western Siberia have a striking impact (13 %) on Arctic BC loadings in January, comparable to the total influence of continental Europe and North America (6.5 % each in January).

  7. The Role of Trans Tensional Structures and Lake Mead Reservoir in Groundwater Flow in Black Canyon, Lake Mead National Recreation Area, NV-AZ

    NASA Astrophysics Data System (ADS)

    Justet, L.; Beard, S.

    2010-12-01

    Hot springs and seeps discharging into Black Canyon (BC) along the Colorado River in north Colorado River Valley (CRV) support endemic riparian ecosystems in the Lake Mead National Recreation Area. Increases in groundwater development in southern NV and northwestern AZ may impact spring discharge. Sources of spring discharge in BC were evaluated using geochemical methods. Kinematic analysis and geologic mapping of structures associated with BC springs were used to evaluate structural controls on groundwater flow in BC. Geochemical analysis indicates groundwater discharge near Hoover Dam (HD) and along the faulted edge of the Boulder City Pluton is derived from Lake Mead, high δ87Sr Proterozoic or Tertiary crystalline rock and, possibly, Tertiary sedimentary rock. Reducing conditions indicated by 234U/238U and δ34S concentrations suggest the groundwater is confined and/or derived from greater depths while carbon isotopes indicate the groundwater is old. Lighter δD and δO-18, modern tritium concentrations, post-Dam U disequilibrium ages, and occurrence of anthropogenic perchlorate support the presence of a young Lake Mead component. South of the pluton, the Lake Mead component is absent. More oxidizing conditions in this part of BC, indicated by the U and S isotope concentrations, suggest the groundwater is less confined and/or derived from shallower depths compared to groundwater discharging near HD. Older apparent groundwater ages and heavier δD and δO-18 values south of the pluton indicate slower flow paths from a lower elevation or latitude source. Clarifying the nature of groundwater flow in eastern NV, the analyses indicate that hydraulic connection between the regional carbonate aquifer and BC is unlikely. Instead, the data indicate sources of BC springs are derived relatively locally in CRV and, possibly, south Lake Mead Valley. Results of the geologic and kinematic analyses indicate faults that formed from the interaction of E-W extension related to the AZ extensional corridor and NW-SE trans tension related to the Lake Mead shear zone are the main controls on groundwater flow in the vicinity of HD and Boulder City Pluton. Most groundwater in BC appears to discharge along the NW-striking Palm Tree fault that parallels the northern edge of the pluton. Supported by trends in chemistry, an alignment of similar-elevation springs along a N-S striking fault that extends the length of west BC may be a flow path for groundwater from north BC to south of the pluton. South of the pluton, dikes intrude many of the faults and appear to act as flow barriers. Groundwater in this part of BC may flow through stacked layers of brecciated volcanic rock prevalent in the area. Flow from laterally adjacent valleys into BC would have to cross a N-S structural fabric that is not favored kinematically. Existing information implies an overall absence of significant surface discharge in BC prior to construction of HD. This indicates that the head created by impoundment of the Colorado River has likely pushed old, slow moving groundwater through CRV and, possibly, south Lake Mead Valley, to the surface in BC where it discharges as springs and seeps.

  8. The Ascension Island boundary layer in the remote southeast Atlantic is often smoky

    DOE PAGES

    Zuidema, Paquita; Sedlacek III, Arthur J.; Flynn, Connor; ...

    2018-03-31

    Observations from June through October, 2016, from a surface-based ARM Mobile Facility deployment on Ascension Island (8°S, 14.5°W) indicate that refractory black carbon (rBC) is almost always present within the boundary layer. rBC mass concentrations, light absorption coefficients, and cloud condensation nuclei concentrations vary in concert and synoptically, peaking in August. Light absorption coefficients at three visible wavelengths as a function of rBC mass indirectly indicate the presence of other light-absorbing aerosols (e.g., brown carbon), most pronounced in June. The single-scattering-albedo increases systematically from August to October in both 2016 and 2017, with monthly-means of 0.78±0.02 (August), 0.81±0.03 (September) andmore » 0.83±0.03 (October) at the green wavelength. Boundary-layer aerosol loadings are only loosely correlated with total aerosol optical depth, with smoke more likely to be present in the boundary layer earlier in the biomass-burning season, evolving to smoke predominantly present above the cloud layers in September-October, typically resting upon the cloud-top inversion. The time period with the campaign-maximum near-surface light absorption and column aerosol optical depth, on 13-16 August of 2016, is investigated further. Also, backtrajectories indicate more direct boundary layer transport westward from the African continent is central to explaining the elevated surface aerosol loadings.« less

  9. The Ascension Island boundary layer in the remote southeast Atlantic is often smoky

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zuidema, Paquita; Sedlacek III, Arthur J.; Flynn, Connor

    Observations from June through October, 2016, from a surface-based ARM Mobile Facility deployment on Ascension Island (8°S, 14.5°W) indicate that refractory black carbon (rBC) is almost always present within the boundary layer. rBC mass concentrations, light absorption coefficients, and cloud condensation nuclei concentrations vary in concert and synoptically, peaking in August. Light absorption coefficients at three visible wavelengths as a function of rBC mass indirectly indicate the presence of other light-absorbing aerosols (e.g., brown carbon), most pronounced in June. The single-scattering-albedo increases systematically from August to October in both 2016 and 2017, with monthly-means of 0.78±0.02 (August), 0.81±0.03 (September) andmore » 0.83±0.03 (October) at the green wavelength. Boundary-layer aerosol loadings are only loosely correlated with total aerosol optical depth, with smoke more likely to be present in the boundary layer earlier in the biomass-burning season, evolving to smoke predominantly present above the cloud layers in September-October, typically resting upon the cloud-top inversion. The time period with the campaign-maximum near-surface light absorption and column aerosol optical depth, on 13-16 August of 2016, is investigated further. Also, backtrajectories indicate more direct boundary layer transport westward from the African continent is central to explaining the elevated surface aerosol loadings.« less

  10. In vitro cytotoxicity of calcium silicate-containing endodontic sealers.

    PubMed

    Zhou, Hui-min; Du, Tian-feng; Shen, Ya; Wang, Zhe-jun; Zheng, Yu-feng; Haapasalo, Markus

    2015-01-01

    The cytotoxicity of 2 novel calcium silicate-containing endodontic sealers to human gingival fibroblasts was studied. EndoSequence BC (Brasseler, Savannah, GA), MTA Fillapex (Angelus Indústria de Produtos Odontológicos S/A, Londrina, PR, Brazil) and a control sealer (AH Plus; Dentsply DeTrey GmbH, Konstanz, Germany) were evaluated. Human gingival fibroblasts were incubated for 3 days both with the extracts from fresh and set materials in culture medium and cultured on the surface of the set materials in Dulbecco-modified Eagle medium. Fibroblasts cultured in Dulbecco-modified Eagle medium were used as a control group. Cytotoxicity was evaluated by flow cytometry, and the adhesion of the fibroblasts to the surface of the set materials was assessed using scanning electron microscopy. The data of cell cytotoxicity were analyzed statistically using a 1-way analysis of variance test at a significance level of P < .05. Cells incubated with extracts from BC Sealer showed higher viabilities at all extract concentrations than cells incubated with extracts from freshly mixed AH Plus and fresh and set MTA Fillapex, esspecially for the high extract concentrations (1:2 and 1:8 dilutions). Extracts from set MTA Fillapex of 2 weeks and older were more cytotoxic than extracts from freshly mixed and 1-week-old cement. With extract concentrations of 1:32 and lower, MTA Fillapex was no longer cytotoxic. After setting, AH Plus was no longer cytotoxic, and the fibroblast cells grew on set AH Plus equally as well as on BC Sealer. BC Sealer and MTA Fillapex, the 2 calcium silicate-containing endodontic sealers, exhibited different cytotoxicity to human gingival fibroblasts. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  11. Impact of pollutant emission reductions on summertime aerosol feedbacks: A case study over the PO valley

    NASA Astrophysics Data System (ADS)

    Carnevale, C.; Finzi, G.; Pederzoli, A.; Turrini, E.; Volta, M.; Ferrari, F.; Gianfreda, R.; Maffeis, G.

    2015-12-01

    This study presents an evaluation of the impact by future pollutant anthropogenic emission reductions on summertime aerosol feedbacks over the Po valley. The fully coupled on line model Wrf/Chem has been used to examine the air quality and meteorology response over the region to 2020 emission reductions with respect to a simulation base case (2013). Future changes in net short wave radiation flux (SW) are also analyzed. The model domain is a 6 × 6 km2 resolution grid over Northern Italy; the simulation period covers two summer months (July-August). The work is divided into two parts. In the first, model results for the Base Case simulation (BC) are evaluated by comparing Wrf/Chem output to surface observations provided by two monitoring networks. Approximately 25 sites belonging to the regional ARPA Lombardia Network are used for both chemistry (NO2, O3 and PM10 concentrations) and meteorology (wind speed and 2-meters temperature) evaluation; 4 stations part of the global AEROsol Robotic Network (AERONET) are used for the evaluation of Aerosol Optical Depth (AOD). In the second part, a Maximum Feasible Reduction (MFR) scenario at 2020 have been simulated for the same months; monthly direct, indirect and overall aerosols feedbacks for both BC and MFR have been computed and analyzed. The emission reductions in the MFR 2020 lead to a sensible change in the aerosol overall feedbacks for all variables; a drop of SW over the valley (cooling effect) is visible in both BC and MFR, but it is less significant in the MFR (-5 W m-2) compared to the BC (-45 W m-2). This difference is mainly due to the abatement of SO2 primary emissions, which leads to lower sulfates concentrations scattering radiation, thus mitigates the cooling effect and favors the warming. As SW is higher in the MFR, T2 also increases over land with respect to the BC (the cooling of -0.5 °C estimated in the Base Case almost disappears). The overall effects lead to an enhancement of PM10 concentration in the BC; they are less efficient in the MFR because of lower secondary aerosol concentrations (associated to the reduction of primary PM10 emissions by approximately 20%). Concerning NO2, some localized areas with high reductions in the BC are not visible in the MFR. This is consistent with the increase of T2, which leads to higher photolytic rates compared to the BC. Higher concentrations of NO2 in the MFR with respect to the BC lead to lower O3 concentrations (maximum O3 values drop from +6 ppb to +3 ppb).

  12. Seasonal variations of sulfate, carbonaceous species (black carbon and polycyclic aromatic hydrocarbons), and trace elements in fine atmospheric aerosols collected at subtropical islands in the East China Sea

    NASA Astrophysics Data System (ADS)

    Kaneyasu, Naoki; Takada, Hideshige

    2004-03-01

    In order to characterize the outflow of pollution derived aerosols from the Asian Pacific rim to the North Pacific Ocean, seasonal variations of fine aerosol components (aerodynamic diameter <2 μm) were collected at two islands (Amami Island and Miyako Island) that surround the East China Sea. Monthly averaged concentrations of non-sea-salt SO42- (nss.SO42-) and black carbon (BC) at Amami and Miyako showed relatively high values in winter to spring and low values in summer. The observed seasonal variation is basically determined by the northwesterly monsoon in winter to spring and southeasterly wind from the stationary North Pacific anticyclone in summer. The minimum concentration levels of nss.SO42- and BC in summer were almost 2-3 times that of the North Pacific background level. Trace metals in aerosols showed similar seasonal variations observed for nss.SO42- and BC. The concentrations of nss.SO42- and Sb were highly correlated; this is in contradiction with the results at stations established in Pacific Exploratory Mission-West ground monitoring sites. Polycyclic aromatic hydrocarbons (PAHs) also showed a pronounced maximum in winter and/or spring, with maximum concentrations comparable in magnitude to those in spring at Barrow, Alaska. Many of the low molecular weight species of PAHs had high correlation with BC, suggesting that they were either transported independently in a similar way or were transported attached to BC. Furthermore, the relative abundance of some PAH species in the present study and those found in deep-ocean surface sediments sampled in the middle Pacific Ocean are compared and discussed.

  13. Measurement of Atmospheric Black Carbon Concentrations, [BC]atm, in the Arctic Region from ~1700 to 2013

    NASA Astrophysics Data System (ADS)

    Husain, L.; Sarkar, S.; Jyethi, D. S.; Ruppel, M.; Dutkiewicz, V. A.

    2015-12-01

    Atmospheric black carbon (BC) aerosols play a key role in Earth's climate through direct and indirect effects. Due to a lack of long-term BC data, climate models are used to estimate BC based on fuel inventories, which have large uncertainties. Hence, long term BC data is needed to verify global models. We report here the first measurements of atmospheric BC concentrations, [BC]atm, from ~1700 to 2013 using sediments from Finnish lakes, Saanajarvi (SJ)(690 44' N, 200 52' E), and Vuoskojarvi (VJ)(69044'N, 26057'E). The cores were collected from the deepest parts of the lakes using a HTH gravity corer, sliced in 0.25 cm sections; freeze dried, and ages determined using 210Pb dating method. The BC was chemically separated, and [BC] determined by the thermal optical method. The [BC] varied from 50 to 1140µg/gdry weight in SJ; and 20 to 130µg/gdry weight in VJ. Husain et al.,(JGR, vol 113, D13102,doi:10.1029/2007JD009398, 2008) showed that the atmospheric deposition of BC into lake sediments depends on the characteristic of individual lakes, BC washout ratios, precipitation intensity, and sedimentation rates. The deposition rate, K, for a lake is defined by, [BC]sed = K[BC]atm where [BC]sed, is the concentration of BC in the sediment. We have measured [BC]atm from 1970 to 2010 in Kevo, Finland, where VJ and SJ are located. The [BC]atm from Kevo, and [BC]sed from VJ, and SJ were used to determine K for each of the lake. Owing to the availability of the long term atmospheric BC data from 1970 to 2010 multiple measurements of K were made, and provided a high measure of precision. The mean values of K for VJ, and SJ were 226 ± 60, and 830 ± 290 (m3air/ gdry weight). The K values were used to determine [BC]atm for the years before 1970. The [BC]atm from 2013 to 2006 was 82ng/m3. It increased slowly reaching a peak value of about 947 ± 322 ng/m3.The concentrations decreased subsequently to 244 ± 83ng/m3 in 1920, and changed little ~ 1774.The lowest concentration, 77 ± 26 ng/m3, was observed ~ 1700. The high atmospheric concentrations beyond 1850, perhaps, suggest a proportionally larger component from wood burning for heating. We plan to estimate [BC]atm using OsloCTM3 model, and inventory of fossil fuel, and biomass burning, and compare it with our measurements.

  14. Temporal variations of black carbon during haze and non-haze days in Beijing

    PubMed Central

    Liu, Qingyang; Ma, Tangming; Olson, Michael R; Liu, Yanju; Zhang, Tingting; Wu, Yu; Schauer, James J.

    2016-01-01

    Black carbon (BC) aerosol has been identified as one of key factors responsible for air quality in Beijing. BC emissions abatement could help slow regional climate change while providing benefits for public health. In order to quantify its variations and contribution to air pollution, we systematically studied real-time measurements of equivalent black carbon (eBC) in PM2.5 aerosols at an urban site in Beijing from 2010 to 2014. Equivalent black carbon (eBC) is used instead of black carbon (BC) for data derived from Aethalometer-31 measurement. Equivalent BC concentrations showed significant temporal variations with seasonal mean concentration varying between 2.13 and 5.97 μg m−3. The highest concentrations of eBC were found during autumn and winter, and the lowest concentrations occurred in spring. We assessed the temporal variations of eBC concentration during haze days versus non-haze days and found significantly lower eBC fractions in PM2.5 on haze days compared to those on non-haze days. Finally, we observed a clear inverse relationship between eBC and wind speed. Our results show that wind disperses PM2.5 more efficiently than eBC; so, secondary aerosols are not formed to the same degree as primary aerosols over the same transport distance during windy conditions. PMID:27634102

  15. Effect of the Agricultural Biomass Burning on the Ambient Air Quality of Lumbini

    NASA Astrophysics Data System (ADS)

    Mehra, M.; Panday, A. K.; Praveen, P. S.; Bhujel, A.; Pokhrel, S.; Ram, K.

    2017-12-01

    The emissions from increasing anthropogenic activities has led to degradation in ambient air quality of Lumbini (UNESCO world heritage site) and its surrounding environments. The presence of high concentrations of air pollutants is of concern because of its implications for public health, atmospheric visibility, chemistry, crop yield, weather and climate on a local to regional scale. The study region experiences wide-spread on-field agricultural residue burning, particularly in the months of November (paddy residue burning) and April (wheat residue burning). In an attempt to study the impact of emissions from post-harvest burning of paddy and wheat residue in Nepal, the International Centre for Integrated Mountain Development, in collaboration with the Government of Nepal's Department of Environment and the Lumbini International Research Institute, established the Lumbini Air Quality Observatory (LAQO) in May 2016 for continuous measurement of Black carbon (BC), particulate matter (PM10, PM2.5 & PM1), as well as concentration of gaseous pollutant and meteorological parameters. Here we present results of the surface observations from LAQO for the months with intensified paddy and wheat open biomass burning during November 2016 and April 2017, respectively. The average concentrations of BC, PM2.5 and PM10 were 11.3±6.2 µg m-3, 96.7±48.9 µg m-3 and 132.3±59.1 µg m-3 respectively during the month of November 2016. On the other hand, the surface concentrations of BC, PM2.5 and PM10 were found to be 11.0±8.3 µg m-3, 45.0±35.0 µg m-3 and 114.0±96.1 µg m-3 during April 2017. A significant increase in the primary pollutant concentration was observed during both types of open agricultural burning periods. However, BC/PM2.5 ratio was almost higher by factor of two during paddy burning as compared to wheat residue burning. Source characteristics and the relative contribution of agricultural burning to PM concentrations at Lumbini are being computed based on measurements of chemical tracers in ambient aerosol samples and these results will be discussed during the conference.

  16. Re-evaluating black carbon in the Himalayas and the Tibetan Plateau: concentrations and deposition

    NASA Astrophysics Data System (ADS)

    Li, Chaoliu; Yan, Fangping; Kang, Shichang; Chen, Pengfei; Han, Xiaowen; Hu, Zhaofu; Zhang, Guoshuai; Hong, Ye; Gao, Shaopeng; Qu, Bin; Zhu, Zhejing; Li, Jiwei; Chen, Bing; Sillanpää, Mika

    2017-10-01

    Black carbon (BC) is the second most important warming component in the atmosphere after CO2. The BC in the Himalayas and the Tibetan Plateau (HTP) has influenced the Indian monsoon and accelerated the retreat of glaciers, resulting in serious consequences for billions of Asian residents. Although a number of related studies have been conducted in this region, the BC concentrations and deposition rates remain poorly constrained. Because of the presence of arid environments and the potential influence of carbonates in mineral dust (MD), the reported BC concentrations in the HTP are overestimated. In addition, large discrepancies have been reported among the BC deposition derived from lake cores, ice cores, snow pits and models. Therefore, the actual BC concentration and deposition values in this sensitive region must be determined. A comparison between the BC concentrations in acid (HCl)-treated and untreated total suspected particle samples from the HTP showed that the BC concentrations previously reported for the Nam Co station (central part of the HTP) and the Everest station (northern slope of the central Himalayas) were overestimated by approximately 52 ± 35 and 39 ± 24 %, respectively, because of the influence of carbonates in MD. Additionally, the organic carbon (OC) levels were overestimated by approximately 22 ± 10 and 22 ± 12 % for the same reason. Based on previously reported values from the study region, we propose that the actual BC concentrations at the Nam Co and Everest stations are 61 and 154 ng m-3, respectively. Furthermore, a comprehensive comparison of the BC deposition rates obtained via different methods indicated that the deposition of BC in HTP lake cores was mainly related to river sediment transport from the lake basin as a result of climate change (e.g., increases in temperature and precipitation) and that relatively little BC deposition occurred via atmospheric deposition. Therefore, previously reported BC deposition rates from lake cores overestimated the atmospheric deposition of BC in the HTP. Correspondingly, BC deposition derived from snow pits and ice cores agreed well with that derived from models, implying that the BC depositions of these two methods reflect the actual values in the HTP. Therefore, based on reported values from snow pits and ice cores, we propose that the BC deposition in the HTP is 17. 9 ± 5. 3 mg m-2 a-1, with higher and lower values appearing along the fringes and central areas of the HTP, respectively. These adjusted BC concentrations and deposition values in the HTP are critical for performing accurate evaluations of other BC factors, such as atmospheric distribution, radiative forcing and chemical transport in the HTP.

  17. Effects of wet deposition on the abundance and size distribution of black carbon in East Asia

    NASA Astrophysics Data System (ADS)

    Kondo, Y.; Moteki, N.; Oshima, N.; Ohata, S.; Koike, M.; Shibano, Y.; Takegawa, N.; Kita, K.

    2016-05-01

    An improved understanding of the variations in the mass concentration and size distribution of black carbon (BC) in the free troposphere (FT) over East Asia, where BC emissions are very high, is needed to reliably estimate the radiative forcing of BC in climate models. We measured these parameters and the carbon monoxide (CO) concentration by conducting the Aerosol Radiative Forcing in East Asia (A-FORCE) 2013W aircraft campaign in East Asia in winter 2013 and compared these data with measurements made in the same region in spring 2009. The median BC concentrations in the FT originating from North China (NC) and South China (SC) showed different seasonal variations, which were primarily caused by variations in meteorological conditions. CO concentrations above the background were much higher in SC than in NC in both seasons, suggesting a more active upward transport of CO. In SC, precipitation greatly increased from winter to spring, leading to an increased wet deposition of BC. As a result, the median BC concentration in the FT was highest in SC air in winter. This season and region were optimal for the effective transport of BC from the planetary boundary layer to the FT. The count median diameters of the BC size distributions generally decreased with altitude via wet removal during upward transport. The altitude dependence of the BC size distributions was similar in winter and spring, in accord with the similarity in the BC mixing state. The observed BC concentrations and microphysical properties will be useful for evaluating the performance of climate models.

  18. Arginine functionalized bacterial cellulose nanofibers containing gel as an effective wound dressing; in vitro and in vivo evaluation.

    PubMed

    Feizabadi, Farideh; Minaiyan, Mohsan; Taheri, Azade

    2018-02-19

    Nanofibers such as bacterial cellulose nanofibers (BC-NFs) have gained increasing attention for use in wound dressings. Topical application of arginine can stimulate wound healing significantly. In order to promote the wound healing process, arginine functionalized BC-NFs containing gel (Arg-BC-NFs gel) was prepared by the electrostatic attachment of arginine on the surface of BC-NFs. The effect of pH was evaluated on the amount of the attached arginine on the BC-NFs surface. The attachment of arginine on BC-NFs surface was investigated by FTIR spectroscopy. The morphology of Arg-BC-NFs was evaluated using FESEM. The viscosity and spreadability of Arg-BC-NFs and the release of arginine from Arg-BC-NFs were evaluated. The effectiveness of Arg-BC-NFs gel was assessed in a full thickness wound model in rats. Re-epithelization, collagen deposition and neovascularization were investigated in the wound tissues using histological and immunohistochemical analysis. FTIR spectra and the zeta potential of BC-NFs confirmed the surface modification of BC-NFs by arginine. FESEM images showed the nanofibrous structure of Arg-BC-NFs. The release of arginine from Arg-BC-NFs gel was in a sustained release manner for 24 h. The appropriate viscosity and spreadability of Arg-BC-NFs gel confirmed its easy topical application. In vivo studies revealed that Arg-BC-NFs gel promoted wound closure at a faster rate than BC-NFs gel and arginine solution. Moreover, faster and more organized re-epithelialization, angiogenesis and collagen deposition were achieved in Arg-BC-NFs gel treated group in comparison to other groups. Arg-BC-NFs gel can be introduced as an effective wound dressing for acute wounds. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  19. In Situ Observations of Snow Metamorphosis Acceleration Induced by Dust and Black Carbon

    NASA Astrophysics Data System (ADS)

    Schneider, A. M.; Flanner, M.

    2017-12-01

    Previous studies demonstrate the dependence of shortwave infrared (SWIR) reflectance on snow specific surface area (SSA) and others examine the direct darkening effect dust and black carbon (BC) deposition has on snow and ice-covered surfaces. The extent to which these light absorbing aerosols (LAAs) accelerate snow metamorphosis, however, is challenging to assess in situ as measurement techniques easily disturb snowpack. Here, we use two Near-Infrared Emitting Reflectance Domes (NERDs) to measure 1300 and 1550nm bidirectional reflectance factors (BRFs) of natural snow and experimental plots with added dust and BC. We obtain NERD measurements and subsequently collect and transport snow samples to the nearby U.S. Army Corps of Engineers' Cold Regions Research and Engineering Lab for micro computed tomography (micro-CT) analysis. Snow 1300 (1550) nm BRFs evolve from 0.6 (0.15) in fresh snow to 0.2 (0.03) after metamorphosis. Hourly-scale time evolving snow surface BRFs and SSA estimates from micro-CT reveal more rapid SWIR darkening and snow metamorphosis in contaminated versus natural plots. Cloudiness and high wind speeds can completely obscure these results if LAAs mobilize before absorbing enough radiant energy. These findings verify experimentally that dust and BC deposition can accelerate snow metamorphosis and enhance snow albedo feedback in sunny, calm weather conditions. Although quantifying the enhancement of snow albedo feedback induced by LAAs requires further surface temperature, solar irradiance, and impurity concentration measurements, this study provides experimental verification of positive feedback occurring where dust and BC accelerate snow metamorphosis.

  20. The Ascension Island Boundary Layer in the Remote Southeast Atlantic is Often Smoky

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zuidema, Paquita; Sedlacek, Arthur J.; Flynn, Connor

    Observations from June through October, 2016, from a surface-based ARM Mobile Facility deployment on Ascension Island (8°S, 14.5°W) indicate that refractory black carbon (rBC) is almost always present within the boundary layer. rBC mass concentrations, light absorption coefficients, and cloud condensation nuclei concentrations vary in concert and synoptically, peaking in August. Derived mass absorption cross-sections using light absorptioin coefficients at three wavelengths as a function of rBC mass indirectly indicate the presence of other light-absorbing organic aerosols (e.g., brown carbon), most pronounced in June. A filter-based estimate of single-scattering-albedo increases systematically from August to October, also apparent in 2017. Boundary-layermore » aerosol loadings are only loosely correlated with total aerosol optical depth, with smoke more likely to be present in the boundary layer earlier in the biomass-burning season, evolving to smoke predominantly present in the free-troposphere in September-October, typically resting upon the cloud-top inversion. The time period with the campaign-maximum near-surface light absorption and column aerosol optical depth, on 13-16 August of 2016, is investigated further. Back trajectories indicate the boundary layer transport was directly westward from the African continent, which is unusual in August.« less

  1. Variation of the radiative properties during black carbon aging: theoretical and experimental intercomparison

    DOE PAGES

    He, C.; Liou, K.-N.; Takano, Y.; ...

    2015-10-28

    A theoretical black carbon (BC) aging model is developed to account for three typical evolution stages, namely, freshly emitted aggregates, BC coated by soluble material, and BC particles undergoing further hygroscopic growth. The geometric-optics surface-wave (GOS) approach is employed to compute the BC single-scattering properties at each aging stage, which are subsequently compared with laboratory measurements. Theoretical calculations are consistent with measurements in extinction and absorption cross sections for fresh BC aggregates with different BC sizes (i.e., mobility diameters of 155, 245, and 320 nm), with differences of ≤ 25 %. The measured optical cross sections for BC coated bymore » sulfuric acid and for that undergoing further hygroscopic growth are generally captured (differences < 30 %) by theoretical calculations using a concentric core-shell structure, with an overestimate in extinction and absorption of the smallest BC size and an underestimate in scattering of the largest BC size. We find that the absorption and scattering cross sections of fresh BC aggregates vary by 20–40 and 50–65 %, respectively, due to the use of upper (1.95–0.79 i) and lower (1.75–0.63 i) bounds of BC refractive index, while the variations are < 20 % in absorption and < 50 % in scattering in the case of coated BC particles. Sensitivity analyses of the BC morphology show that the optical properties of fresh BC aggregates are more sensitive to fractal dimension than primary spherule size. The absorption and scattering cross sections of coated BC particles vary by more than a factor of 2 due to different coating structures. We find an increase of 20–250 % in absorption and a factor of 3–15 in scattering during aging, significantly depending on coating morphology and aging stages. This study suggests that an accurate estimate of BC radiative effects requires the incorporation of a dynamic BC aging process that accounts for realistic coating structures in climate models.« less

  2. Variation of the radiative properties during black carbon aging: theoretical and experimental intercomparison

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, C.; Liou, K.-N.; Takano, Y.

    A theoretical black carbon (BC) aging model is developed to account for three typical evolution stages, namely, freshly emitted aggregates, BC coated by soluble material, and BC particles undergoing further hygroscopic growth. The geometric-optics surface-wave (GOS) approach is employed to compute the BC single-scattering properties at each aging stage, which are subsequently compared with laboratory measurements. Theoretical calculations are consistent with measurements in extinction and absorption cross sections for fresh BC aggregates with different BC sizes (i.e., mobility diameters of 155, 245, and 320 nm), with differences of ≤ 25 %. The measured optical cross sections for BC coated bymore » sulfuric acid and for that undergoing further hygroscopic growth are generally captured (differences < 30 %) by theoretical calculations using a concentric core-shell structure, with an overestimate in extinction and absorption of the smallest BC size and an underestimate in scattering of the largest BC size. We find that the absorption and scattering cross sections of fresh BC aggregates vary by 20–40 and 50–65 %, respectively, due to the use of upper (1.95–0.79 i) and lower (1.75–0.63 i) bounds of BC refractive index, while the variations are < 20 % in absorption and < 50 % in scattering in the case of coated BC particles. Sensitivity analyses of the BC morphology show that the optical properties of fresh BC aggregates are more sensitive to fractal dimension than primary spherule size. The absorption and scattering cross sections of coated BC particles vary by more than a factor of 2 due to different coating structures. We find an increase of 20–250 % in absorption and a factor of 3–15 in scattering during aging, significantly depending on coating morphology and aging stages. This study suggests that an accurate estimate of BC radiative effects requires the incorporation of a dynamic BC aging process that accounts for realistic coating structures in climate models.« less

  3. Distribution, input pathway and mass inventory of black carbon in sediments of the Gulf of Thailand, SE Asia

    NASA Astrophysics Data System (ADS)

    Hu, Limin; Shi, Xuefa; Bai, Yazhi; Fang, Yin; Chen, Yingjun; Qiao, Shuqing; Liu, Shengfa; Yang, Gang; Kornkanitnan, Narumol; Khokiattiwong, Somkiat

    2016-03-01

    The coastal margins around Southeast Asia (SE Asia) may serve as an ideal location to study the source-sink process of sedimentary black carbon (BC) because SE Asia has been identified as one of the major BC emission source regions in the world. This study provides an extensive picture of recent regional-scale sedimentary BC sequestration in the Gulf of Thailand (GOT), a tropical marine system in SE Asia. Generally, the sedimentary BC concentrations (0.07-3.99 mg/g) were in the low to moderate ranges of those obtained in other coastal sediments around the world. Regional variability of the BC and its correlation with the sediment grain size and total organic carbon (TOC) content indicated a general hydrodynamic constraint on BC occurrence in the lower Gulf in contrast to the upper Gulf with a more source dependence due to the direct land-based input. BC/TOC% values and the varied BC components (char and soot), as well as their correlations suggested that char was the predominant constituents of sedimentary BC both in the upper and lower Gulf, which could be mainly derived from biomass burning and entered into the nearshore region through direct fluvial transport and surface run-off. The estimated BC burial flux (∼212 μg/cm2/y) and mass inventory (∼200 Gg/y) in the GOT on the hundred-year timescale were of the same order of magnitude compared with other oceanic margins, and thus the tropical shelf sediments from SE Asia could serve as an important sink of land-emitted BC.

  4. The online measured black carbon aerosol and source orientations in the Nam Co region, Tibet.

    PubMed

    Zhang, Xin; Ming, Jing; Li, Zhongqin; Wang, Feiteng; Zhang, Guoshuai

    2017-11-01

    Equivalent black carbon (eBC) mass concentrations were measured by an aethalometer (AE-31) in the Nam Co, central Tibet from 2010 to 2014. Different from previous filter-sampling studies (Ming et al., J Environ Sci 22(11):1748-1756, 2010; Zhao et al., Environ Sci Pollut Res 20:5827-5838, 2013), the first high-resolution online eBC measurement conducted in central Tibet is reported here, allowing to discuss the diurnal variations as well as seasonal variabilities of eBC. Average daily eBC concentration was 74 ± 50 ng/m 3 , reflecting a global background level. Meteorological conditions influenced eBC concentrations largely at seasonal scale, which are higher in February-May but lower in June-January. The highest eBC concentrations (greater than 210 ng/m 3 ) were more associated with the W and WSW winds smaller than 6 m/s. The diurnal variations of eBC showed plateaus from 10:00 to 15:00 with seasonal variations, associated with local anthropogenic activities, such as indigenous Tibetan burning animal waste and tourism traffic. The PBLHs showed a co-variance with eBC concentrations, implicating close sources. The aerosol optical depths derived from the MODIS data over the Nam Co Observatory Station (NCOS)-included sub-area (30° N-40° N, 90° E-100° E) showed significant relationship with eBC concentrations. This suggests that nearby or short-distance sources other than long-distance transported pollutants could be important contributors to eBC concentrations at the NCOS, different from the conclusions suggested by previous studies.

  5. Impact of Snow Grain Shape and Internal Mixing with Black Carbon Aerosol on Snow Optical Properties for use in Climate Models

    NASA Astrophysics Data System (ADS)

    He, C.; Liou, K. N.; Takano, Y.; Yang, P.; Li, Q.; Chen, F.

    2017-12-01

    A set of parameterizations is developed for spectral single-scattering properties of clean and black carbon (BC)-contaminated snow based on geometric-optic surface-wave (GOS) computations, which explicitly resolves BC-snow internal mixing and various snow grain shapes. GOS calculations show that, compared with nonspherical grains, volume-equivalent snow spheres show up to 20% larger asymmetry factors and hence stronger forward scattering, particularly at wavelengths <1 mm. In contrast, snow grain sizes have a rather small impact on the asymmetry factor at wavelengths <1 mm, whereas size effects are important at longer wavelengths. The snow asymmetry factor is parameterized as a function of effective size, aspect ratio, and shape factor, and shows excellent agreement with GOS calculations. According to GOS calculations, the single-scattering coalbedo of pure snow is predominantly affected by grain sizes, rather than grain shapes, with higher values for larger grains. The snow single-scattering coalbedo is parameterized in terms of the effective size that combines shape and size effects, with an accuracy of >99%. Based on GOS calculations, BC-snow internal mixing enhances the snow single-scattering coalbedo at wavelengths <1 mm, but it does not alter the snow asymmetry factor. The BC-induced enhancement ratio of snow single-scattering coalbedo, independent of snow grain size and shape, is parameterized as a function of BC concentration with an accuracy of >99%. Overall, in addition to snow grain size, both BC-snow internal mixing and snow grain shape play critical roles in quantifying BC effects on snow optical properties. The present parameterizations can be conveniently applied to snow, land surface, and climate models including snowpack radiative transfer processes.

  6. Radiative effects of light-absorbing particles deposited in snow over Himalayas using WRF-Chem simulations

    NASA Astrophysics Data System (ADS)

    Sarangi, C.; Qian, Y.; Painter, T. H.; Liu, Y.; Lin, G.; Wang, H.

    2017-12-01

    Radiative forcing induced by light-absorbing particles (LAP) deposited on snow is an important surface forcing. It has been debated that an aerosol-induced increase in atmospheric and surface warming over Tibetan Plateau (TP) prior to the South Asian summer monsoon can have a significant effect on the regional thermodynamics and South Asian monsoon circulation. However, knowledge about the radiative effects due to deposition of LAP in snow over TP is limited. In this study we have used a high-resolution WRF-Chem (coupled with online chemistry and snow-LAP-radiation model) simulations during 2013-2014 to estimate the spatio-temporal variation in LAP deposition on snow, specifically black carbon (BC) and dust particles, in Himalayas. Simulated distributions in meteorology, aerosol concentrations, snow albedo, snow grain size and snow depth are evaluated against satellite and in-situ measurements. The spatio-temporal change in snow albedo and snow grain size with variation in LAP deposition is investigated and the resulting shortwave LAP radiative forcing at surface is calculated. The LAP-radiative forcing due to aerosol deposition, both BC and dust, is higher in magnitude over Himalayan slopes (terrain height below 4 km) compared to that over TP (terrain height above 4 km). We found that the shortwave aerosol radiative forcing efficiency at surface due to increase in deposited mass of BC particles in snow layer ( 25 (W/m2)/ (mg/m2)) is manifold higher than the efficiency of dust particles ( 0.1 (W/m2)/ (mg/m2)) over TP. However, the radiative forcing of dust deposited in snow is similar in magnitude (maximum 20-30 W/m2) to that of BC deposited in snow over TP. This is mainly because the amount of dust deposited in snow over TP can be about 100 times greater than the amount of BC deposited in snow during polluted conditions. The impact of LAP on surface energy balance, snow melting and atmospheric thermodynamics is also examined.

  7. The Ascension Island Boundary Layer in the Remote Southeast Atlantic is Often Smoky

    NASA Astrophysics Data System (ADS)

    Zuidema, Paquita; Sedlacek, Arthur J.; Flynn, Connor; Springston, Stephen; Delgadillo, Rodrigo; Zhang, Jianhao; Aiken, Allison C.; Koontz, Annette; Muradyan, Paytsar

    2018-05-01

    Observations from June to October 2016, from a surface-based ARM Mobile Facility deployment on Ascension Island (8°S, 14.5°W) indicate that refractory black carbon (rBC) is almost always present within the boundary layer. The rBC mass concentrations, light absorption coefficients, and cloud condensation nuclei concentrations vary in concert and synoptically, peaking in August. Light absorption coefficients at three visible wavelengths as a function of rBC mass are approximately double that calculated from black carbon in lab studies. A spectrally-flat absorption angstrom exponent suggests most of the light absorption is from lens-coated black carbon. The single-scattering-albedo increases systematically from August to October in both 2016 and 2017, with monthly means of 0.78 ± 0.02 (August), 0.81 ± 0.03 (September), and 0.83 ± 0.03 (October) at the green wavelength. Boundary layer aerosol loadings are only loosely correlated with total aerosol optical depth, with smoke more likely to be present in the boundary layer earlier in the biomass burning season, evolving to smoke predominantly present above the cloud layers in September-October, typically resting upon the cloud top inversion. The time period with the campaign-maximum near-surface light absorption and column aerosol optical depth, on 13-16 August 2016, is investigated further. Backtrajectories that indicate more direct boundary layer transport westward from the African continent is central to explaining the elevated surface aerosol loadings.

  8. Distribution and Fate of Black Carbon Nanoparticles from Regional Urban Pollution and Wildfire at a Large Subalpine Lake in the Western United States

    NASA Astrophysics Data System (ADS)

    Bisiaux, M. M.; Heyvaert, A. C.; Edwards, R.

    2012-04-01

    Emitted to the atmosphere through fire and fossil fuel combustion, refractory black carbon nanoparticles (rBC) impact human health, climate, atmospheric chemistry, and the carbon cycle. Eventually these particles enter aquatic environments, where their distribution, fate and association with other pollutants are still poorly characterized. This study presents results from an evaluation of rBC in the waters of oligotrophic Lake Tahoe and its watershed in the western United States. The study period included a large wildfire within the Tahoe basin, seasonal snowmelt, and a number of storm events that resulted in pulsed urban runoff into the lake with rBC concentrations up to four orders of magnitude higher than mid-lake concentrations. The results show that elevated rBC concentrations from wildfire and urban runoff were rapidly attenuated in the lake, suggesting unexpected aggregation or degradation of the particles that prevent rBC concentrations from building up in the water of this lake, renowned for its clarity. The rBC concentrations were also measured in sediment cores from Lake Tahoe to evaluate the sediment archive as a potential combustion record. The evidence suggests that rBC is efficiently transferred to these sediments, which preserve a local-to-regional scale history of rBC emissions, as revealed by comparison with other pollutant records in the sediment. Rapid removal of rBC soon after entry into the lake has implications for transport of rBC in the global aquatic environment and flux of rBC from continents to the global ocean.

  9. Investigating the Vertical Distribution and Source Attribution of Black Carbon over the Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Liu, J.; Ban-Weiss, G. A.; Tao, S.

    2014-12-01

    Long-range transport of black carbon (BC) aerosols to the Pacific Ocean can potentially play a significant role in changing the marine climate through influences on temperature and cloud profiles and the top-of-atmosphere and surface energy balance. Therefore, quantitatively understanding sources of BC over the Pacific, particularly at different altitudes, is of great importance. In this study, we simulate the transport of thirteen continental BC tracers with a variety of e-folding aging times (few hours to 1 month) using the global chemical transport model MOZART-4. We then optimize BC aging rate according to different source regions by constraining the vertical profile of BC concentrations to the HAIPER Polo-to-Pole Observations (HIPPO). We find that for all HIPPO deployments, a shorter BC aging timescale (less than half day) for tropical and mid-latitude tracers and a longer aging timescale (2-10 days) for high-latitude tracers (except summer) in most cases significantly reduces model biases. By comparing the source-receptor relationship between the optimized BC tracers over the Pacific, we find that during 2009-2011, East Asia contributes most to the BC loading over the Northern Pacific in all seasons except summer, while South American, African and Australian tracers dominate the BC loadings over the Southern Pacific. In addition, unlike other tracers, African BC is a dominant contributor over a larger area in the free troposphere versus the boundary layer. Our findings indicate that the aging rate of BC strongly depends on source location and season, which may significantly influence the contribution of different source regions to BC forcing over the Pacific Ocean.

  10. Black carbon radiative forcing derived from AERONET measurements and models over an urban location in the southeastern Iberian Peninsula

    NASA Astrophysics Data System (ADS)

    Valenzuela, A.; Arola, A.; Antón, M.; Quirantes, A.; Alados-Arboledas, L.

    2017-07-01

    This paper provides an account of observed variations in Black carbon (BC) aerosol concentrations and their induced radiative forcing for the first time over Granada a measurement site in Southeastern Iberian Peninsula. Column-integrated BC concentrations were retrieved for the period 2005-2012. Monthly averages of BC concentrations (± one standard deviation) ranged from higher values in January and December with 4.0 ± 2.5 and 4 ± 3 mg/m2, respectively, to lower values in July and August with 1.6 ± 1.2 and 2.0 ± 0.5 mg/m2, respectively. This reduction is not only observed in the average values, but also in the median, third and first quartiles. The average BC concentration in winter (3.8 ± 0.6 mg/m2) was substantially higher than in summer (1.9 ± 0.3 mg/m2), being the eight-year average of 2.9 ± 0.9 mg/m2. The reduction in the use of fossil fuels during the economic crisis contributed significantly to reduced atmospheric loadings of BC. According to our analysis this situation persisted until 2010. BC concentration values were analyzed in terms of air mass influence using cluster analysis. BC concentrations for cluster 1 (local and regional areas) showed high correlations with air masses frequency in winter and autumn. In these seasons BC sources were related to the intense road traffic and increased BC emissions from domestic heating. High BC concentrations were found in autumn just when air mass frequencies for cluster 3 (Mediterranean region) were more elevated, suggesting that air masses coming from that area transport biomass burning particles towards Granada. BC aerosol optical properties were retrieved from BC fraction using aerosol AERONET size volume distribution and Mie theory. A radiative transfer model (SBDART) was used to estimate the aerosol radiative forcing separately for composite aerosol (total aerosols) and exclusively for BC aerosols. The mean radiative forcing for composite aerosol was + 23 ± 6 W/m2 (heating rate of + 0.21 ± 0.06 K/day) and + 15 ± 6 W/m2 for BC aerosol (heating rate of + 0.15 ± 0.06 K/day). These values of radiative forcing and heating rate for BC aerosol represent about 70% of their values for composite aerosol, which highlights the crucial role that BC aerosols play in modifying the radiation budget and climate.

  11. Different patterns of nuclear and mitochondrial penetration by the G3 PAMAM dendrimer and its biotin–pyridoxal bioconjugate BC-PAMAM in normal and cancer cells in vitro

    PubMed Central

    Uram, Łukasz; Szuster, Magdalena; Filipowicz, Aleksandra; Gargasz, Krzysztof; Wołowiec, Stanisław; Wałajtys-Rode, Elżbieta

    2015-01-01

    The intracellular localization and colocalization of a fluorescently labeled G3 amine-terminated cationic polyamidoamine (PAMAM) dendrimer and its biotin–pyridoxal (BC-PAMAM) bioconjugate were investigated in a concentration-dependent manner in normal human fibroblast (BJ) and squamous epithelial carcinoma (SCC-15) cell lines. After 24 hours treatment, both cell lines revealed different patterns of intracellular dendrimer accumulation depending on their cytotoxic effects. Cancer cells exhibited much higher (20-fold) tolerance for native PAMAM treatment than fibroblasts, whereas BC-PAMAM was significantly toxic only for fibroblasts at 50 µM concentration. Fibroblasts accumulated the native and bioconjugated dendrimers in a concentration-dependent manner at nontoxic range of concentration, with significantly lower bioconjugate loading. After reaching the cytotoxicity level, fluorescein isothiocyanate-PAMAM accumulation remains at high, comparable level. In cancer cells, native PAMAM loading at higher, but not cytotoxic concentrations, was kept at constant level with a sharp increase at toxic concentration. Mander’s coefficient calculated for fibroblasts and cancer cells confirmed more efficient native PAMAM penetration as compared to BC-PAMAM. Significant differences in nuclear dendrimer penetration were observed for both cell lines. In cancer cells, PAMAM signals amounted to ~25%–35% of the total nuclei area at all investigated concentrations, with lower level (15%–25%) observed for BC-PAMAM. In fibroblasts, the dendrimer nuclear signal amounted to 15% at nontoxic and up to 70% at toxic concentrations, whereas BC-PAMAM remained at a lower concentration-dependent level (0.3%–20%). Mitochondrial localization of PAMAM and BC-PAMAM revealed similar patterns in both cell lines, depending on the extracellular dendrimer concentration, and presented significantly lower signals from BC-PAMAM, which correlated well with the cytotoxicity. PMID:26379435

  12. Cellulose Nanofibrils and Mechanism of their Mineralization in Biomimetic Synthesis of Hydroxyapatite/Native Bacterial Cellulose Nanocomposites: Molecular Dynamics Simulations.

    PubMed

    Lukasheva, N V; Tolmachev, D A

    2016-01-12

    Molecular dynamics (MD) simulation of a nanofibril of native bacterial cellulose (BC) in solutions of mineral ions is presented. The supersaturated calcium-phosphate (CP) solution with the ionic composition of hydroxyapatite and CaCl2 solutions with the concentrations below, equal to, and above the solubility limits are simulated. The influence of solvation models (TIP3P and TIP4P-ew water models) on structural characteristics of the simulated nanofibril and on the crystal nucleation process is assessed. The structural characteristics of cellulose nanofibrils (in particular, of the surface layer) are found to be nearly independent of the solvation models used in the simulation and on the presence of ions in the solutions. It is shown that ionic clusters are formed in the solution rather than on the fibril surface. The cluster sizes are slightly different for the two water models. The effect of the ion-ion interaction parameters on the results is discussed. The main conclusion is that the activity of hydroxyl groups on the BC fibril surface is not high enough to cause adsorption of Ca(2+) ions from the solution. Therefore, the nucleation of CP crystals takes place initially in solution, and then the crystallites formed can be adsorbed on BC nanofibril surfaces.

  13. Black Carbon in Sedimentary Organic Carbon in the Northeast Pacific using the Benzene Polycarboxylic Acid Method

    NASA Astrophysics Data System (ADS)

    Coppola, A. I.; Ziolkowski, L. A.; Druffel, E. R.

    2010-12-01

    Black carbon (BC) in the Northeast Pacific ultrafiltered dissolved organic matter (UDOM) was found to be surprisingly old with a 14C age of 18,000 +/-3,000 14C years (Ziolkowski and Druffel, 2010) using the Benzene Polycarboxylic Acid (BPCA) method, while BC in sedimentary organic carbon (SOC) was found to be 2,400-12,900 14C years older than non-BC SOC (Masiello and Druffel, 1998) with a different method. Using the dichromate-sulfuric acid oxidation method (Wolbach and Anders, 1989), Masiello and Druffel (1998) estimated that 12-31% of SOC in the Northeast Pacific and the Southern Ocean surface sediments was black carbon (BC). However, the dichromate-sulfuric acid oxidation may over-estimate the concentration of BC, because this method is more biased toward modern (char) material (Currie et al., 2002). Alternatively, the BPCA method isolates aromatic components of BC as benzene rings substituted with carboxylic acid groups, and provides structural information about the BC. Recent modifications to the BPCA method by Ziolkowski and Druffel (2009) involve few biases in quantifying BC in the continuum between char and soot in UDOM. Here we use the BPCA method to determine the concentrations and 14C values of BC in sediments from three sites in the Northeast Pacific Ocean. Constraining the difference between non-BC SOC and BC-SOC using the BPCA method allows for a more precise estimate of how much BC is present in the sediments and its 14C age. Presumably, the intermediate reservoir of BC is oceanic dissolved organic carbon (DOC) and is, in part, responsible for DOC’s great 14C age. These results can be utilized to better constrain the oceanic carbon budget as a possible sink of BC. References: Currie, L. A., Benner Jr., B. A., Kessler, J.D., et al (2002), A critical evaluation of interlaboratory data on total, elemental, and isotopic carbon in the carbonaceous particle reference material, nist srm 1649a, J. Res. Natl. Inst. Stand. Technol., 107, 279-298. Masiello, C., and E. R. Druffel (1988), Black carbon in deep-sea sediments, Science, 280, 1911-1913. Wolbach, W., and E. Anders (1989), Elemental carbon in sediments: Determination and isotopic analysis in presence of kerogen, Geochim. Cosmochim. Acta, 53, 1637-1647. Ziolkowski, L. A., and E. R. Druffel (2010), Aged black carbon identified in marine dissolved organic carbon, J. Geophys. Res., 37, L16601, doi: 10.1029/2010GL043963.

  14. Black carbon in the atmosphere and deposition on snow, last 130 years

    NASA Astrophysics Data System (ADS)

    Skeie, R. B.; Berntsen, T.; Myhre, G.; Pedersen, C.; Gerland, S.; Ström, J.; Forsström, S.

    2009-04-01

    The transport of Black Carbon (BC) in the atmosphere and the deposition of BC on snow surfaces for the last 130 years, with special emphasis on the last 8 years, are modeled with the Oslo CTM2 model. In addition regional contribution to BC deposition on snow in the polar region is evaluated for some years. The model results are compared with observations including our own recent measurement of BC in snow. Radiative forcing due to the direct effect as well as the snow-albedo effect is also calculated. Oslo CTM2 is an offline chemical transport model with T42 horizontal resolution using meteorological data from the IFS model at ECMWF. The scheme for BC includes hydrophilic and hydrophobic particles, as well as emissions from fossil fuel, biofuel and open biomass burning. Data on snow fall, melt and evaporation from ECMWF are used to generate and remove snow layers in each grid box. In these snow layers the amounts of deposited BC are stored, and concentration of BC in each snow layer is calculated. For the period 1870-2000 time slice simulations are done every 10th year. The period is simulated with constant meteorological data for the year 2000-2001 and vertical resolution of 40 levels. The emission data used is from Bond [1] for fossil fuel and biofuel, and data from Ito and Penner [2] for open biomass burning. The period 2000 until present are modeled with real time meteorological data and vertical resolution of 60 levels. Fossil fuel emission data used are the year 2000 data from Bond [1] except for the Asian region where REAS emissions [3] are used. For biomass burning BC emission the GFED data set are used [4]. The results are compared with available BC measurements from ice cores, air and snow. The observed time history of the BC concentration in snow over Greenland, US, and Himalaya is compared to the model results. During the years 2006-2008 several measurements of BC concentrations in snow in the Arctic region have been done, showing significant spatial variability. Within the large spread in the observations of BC concentration in snow, the model gives results that are consistent with the observations. In addition to evaluating total effect of BC in snow and its radiative effects, regional contribution to BC deposition on snow in the Arctic region are calculated. Today China is the region with largest BC fossil fuel emissions. Our results using the Olso CTM2 model show however that it is the 4th region in contribution to BC deposition on snow north of 65 degrees. The largest contributor is Russia, followed by Western Europe and North America. In the historical period, the share of emissions between these regions differs from the present situation. The BC emissions from fossil fuel in North America and Western Europe were respectively 3 and 2 times larger in 1920-30 than the present emissions from these regions. Therefore those regions had a higher contribution to BC in snow in the Arctic region 80 years ago than they have today. References: 1. Bond, T.C., et al., Historical emissions of black and organic carbon aerosol from energy-related combustion, 1850-2000. Global Biogeochemical Cycles, 2007. 21(2): p. 16. 2. Ito, A. and J.E. Penner, Historical emissions of carbonaceous aerosols from biomass and fossil fuel burning for the period 1870-2000. Global Biogeochemical Cycles, 2005. 19(2): p. 14. 3. Ohara, T., et al., An Asian emission inventory of anthropogenic emission sources for the period 1980-2020. Atmospheric Chemistry and Physics, 2007. 7(16): p. 4419-4444. 4. van der Werf, G.R., et al., Interannual variability in global biomass burning emissions from 1997 to 2004. Atmos. Chem. Phys., 2006. 6(11): p. 3423-3441.

  15. Cloning, monoclonal antibody production, and bodily distribution pattern of a bovine lipocalin.

    PubMed

    Japaridze, Tamar; Senda, Akitsugu; Nozaki, Hirofumi; Yanagida, Mayumi; Suzuki, Takumi; Ganzorig, Khuukhenbaatar; Kushi, Yasunori; Kida, Katsuya; Urashima, Tadasu; Bruckmaier, Rupert M; Fukuda, Kenji

    2012-01-01

    A bovine lipocalin, previously identified as a putative odorant-binding protein in bovine colostrum (bcOBP), was cloned and expressed, and its monoclonal antibody was established. bcOBP was constantly secreted into milk on day of parturition until at least 10 d postpartum at a concentration of 181±39 µg/L. Besides milk, bcOBP occurred in the nasal mucus, saliva, amniotic fluid, vaginal discharge, and blood plasma. Despite its low concentration, the distribution pattern and the finding that bcOBP harbored a characteristic sequence motif, CxxxC, which is conserved among insect and mammal pheromone binding proteins, suggest that bcOBP functions as a pheromone carrier. The presence of bcOBP in the plasma at varied concentrations depending on the lactation period does not exclude the possibility that bcOBP is secreted into milk from the blood. Cross-reactivity of the monoclonal antibody indicated presence of proteins homologous to bcOBP in the colostrum of farm animals of Cetartiodactyla.

  16. Components of Particle Emissions from Light-Duty Spark-Ignition Vehicles with Varying Aromatic Content and Octane Rating in Gasoline.

    PubMed

    Short, Daniel Z; Vu, Diep; Durbin, Thomas D; Karavalakis, Georgios; Asa-Awuku, Akua

    2015-09-01

    Typical gasoline consists of varying concentrations of aromatic hydrocarbons and octane ratings. However, their impacts on particulate matter (PM) such as black carbon (BC) and water-soluble and insoluble particle compositions are not well-defined. This study tests seven 2012 model year vehicles, which include one port fuel injection (PFI) configured hybrid vehicle, one PFI vehicle, and six gasoline direct injection (GDI) vehicles. Each vehicle was driven on the Unified transient testing cycle (UC) using four different fuels. Three fuels had a constant octane rating of 87 with varied aromatic concentrations at 15%, 25%, and 35%. A fourth fuel with higher octane rating, 91, contained 35% aromatics. BC, PM mass, surface tension, and water-soluble organic mass (WSOM) fractions were measured. The water-insoluble mass (WIM) fraction of the vehicle emissions was estimated. Increasing fuel aromatic content increases BC emission factors (EFs) of transient cycles. BC concentrations were higher for the GDI vehicles than the PFI and hybrid vehicles, suggesting a potential climate impact for increased GDI vehicle production. Vehicle steady-state testing showed that the hygroscopicity of PM emissions at high speeds (70 mph; κ > 1) are much larger than emissions at low speeds (30 mph; κ < 0.1). Iso-paraffin content in the fuels was correlated to the decrease in WSOM emissions. Both aromatic content and vehicle speed increase the amount of hygroscopic material found in particle emissions.

  17. Black carbon at a roadside site in Beijing: Temporal variations and relationships with carbon monoxide and particle number size distribution

    NASA Astrophysics Data System (ADS)

    Song, Shaojie; Wu, Ye; Xu, Jiayu; Ohara, Toshimasa; Hasegawa, Shuichi; Li, Jiaqi; Yang, Liu; Hao, Jiming

    2013-10-01

    Black carbon (BC), carbon monoxide (CO), and particle number size distribution were measured near a major urban expressway of Beijing during summer and winter field campaigns in 2009. BC was also observed at urban and rural sites. The temporal variations of BC and its relationships with CO and particle number size distribution were analyzed. The average BC concentrations at the roadside site were 12.3 and 17.9 μg m-3 during the summer and winter campaigns, respectively. BC concentrations ranked in the order of roadside > urban > rural. A general diurnal pattern at all sites showed that the higher BC levels were observed at night. The diurnal pattern of summertime BC at the roadside site followed the variations of heavy-duty diesel vehicles (HDDVs). The increased proportion of HDDVs at night contributed to high ΔBC/ΔCO ratios. This study suggests that HDDVs are an important contributor to nighttime BC and particle number concentrations of both Aitken and accumulation modes near major roadways in Beijing, especially in summer.

  18. A cellphone based system for large-scale monitoring of black carbon

    NASA Astrophysics Data System (ADS)

    Ramanathan, N.; Lukac, M.; Ahmed, T.; Kar, A.; Praveen, P. S.; Honles, T.; Leong, I.; Rehman, I. H.; Schauer, J. J.; Ramanathan, V.

    2011-08-01

    Black carbon aerosols are a major component of soot and are also a major contributor to global and regional climate change. Reliable and cost-effective systems to measure near-surface black carbon (BC) mass concentrations (hereafter denoted as [BC]) globally are necessary to validate air pollution and climate models and to evaluate the effectiveness of BC mitigation actions. Toward this goal we describe a new wireless, low-cost, ultra low-power, BC cellphone based monitoring system (BC_CBM). BC_CBM integrates a Miniaturized Aerosol filter Sampler (MAS) with a cellphone for filter image collection, transmission and image analysis for determining [BC] in real time. The BC aerosols in the air accumulate on the MAS quartz filter, resulting in a coloration of the filter. A photograph of the filter is captured by the cellphone camera and transmitted by the cellphone to the analytics component of BC_CBM. The analytics component compares the image with a calibrated reference scale (also included in the photograph) to estimate [BC]. We demonstrate with field data collected from vastly differing environments, ranging from southern California to rural regions in the Indo-Gangetic plains of Northern India, that the total BC deposited on the filter is directly and uniquely related to the reflectance of the filter in the red wavelength, irrespective of its source or how the particles were deposited. [BC] varied from 0.1 to 1 μg m -3 in Southern California and from 10 to 200 μg m -3 in rural India in our field studies. In spite of the 3 orders of magnitude variation in [BC], the BC_CBM system was able to determine the [BC] well within the experimental error of two independent reference instruments for both indoor air and outdoor ambient air. Accurate, global-scale measurements of [BC] in urban and remote rural locations, enabled by the wireless, low-cost, ultra low-power operation of BC_CBM, will make it possible to better capture the large spatial and temporal variations in [BC], informing climate science, health, and policy.

  19. Global Air Quality and Health Co-benefits of Mitigating Near-Term Climate Change through Methane and Black Carbon Emission Controls

    PubMed Central

    Schwartz, Joel; Shindell, Drew; Amann, Markus; Faluvegi, Greg; Klimont, Zbigniew; Janssens-Maenhout, Greet; Pozzoli, Luca; Van Dingenen, Rita; Vignati, Elisabetta; Emberson, Lisa; Muller, Nicholas Z.; West, J. Jason; Williams, Martin; Demkine, Volodymyr; Hicks, W. Kevin; Kuylenstierna, Johan; Raes, Frank; Ramanathan, Veerabhadran

    2012-01-01

    Background: Tropospheric ozone and black carbon (BC), a component of fine particulate matter (PM ≤ 2.5 µm in aerodynamic diameter; PM2.5), are associated with premature mortality and they disrupt global and regional climate. Objectives: We examined the air quality and health benefits of 14 specific emission control measures targeting BC and methane, an ozone precursor, that were selected because of their potential to reduce the rate of climate change over the next 20–40 years. Methods: We simulated the impacts of mitigation measures on outdoor concentrations of PM2.5 and ozone using two composition-climate models, and calculated associated changes in premature PM2.5- and ozone-related deaths using epidemiologically derived concentration–response functions. Results: We estimated that, for PM2.5 and ozone, respectively, fully implementing these measures could reduce global population-weighted average surface concentrations by 23–34% and 7–17% and avoid 0.6–4.4 and 0.04–0.52 million annual premature deaths globally in 2030. More than 80% of the health benefits are estimated to occur in Asia. We estimated that BC mitigation measures would achieve approximately 98% of the deaths that would be avoided if all BC and methane mitigation measures were implemented, due to reduced BC and associated reductions of nonmethane ozone precursor and organic carbon emissions as well as stronger mortality relationships for PM2.5 relative to ozone. Although subject to large uncertainty, these estimates and conclusions are not strongly dependent on assumptions for the concentration–response function. Conclusions: In addition to climate benefits, our findings indicate that the methane and BC emission control measures would have substantial co-benefits for air quality and public health worldwide, potentially reversing trends of increasing air pollution concentrations and mortality in Africa and South, West, and Central Asia. These projected benefits are independent of carbon dioxide mitigation measures. Benefits of BC measures are underestimated because we did not account for benefits from reduced indoor exposures and because outdoor exposure estimates were limited by model spatial resolution. PMID:22418651

  20. Effect of vitamin supplementation on breast milk concentrations of retinol, carotenoids, and tocopherols in HIV-infected Tanzanian women

    PubMed Central

    Webb, Aimee L.; Aboud, Said; Furtado, Jeremy; Murrin, Clare; Campos, Hannia; Fawzi, Wafaie W.; Villamor, Eduardo

    2011-01-01

    Background The effect of daily prenatal and postnatal vitamin supplementation on concentrations of breast milk nutrients is not well characterized in HIV-infected women. Objective We examined the impact of vitamin supplementation during pregnancy and lactation on breast milk concentrations of retinol, carotenoids, and tocopherols during the first year post-partum among 626 HIV-infected Tanzanian women. Design We conducted a randomized, double-blind, placebo controlled trial. Women were assigned to one of four daily oral supplements: vitamin A + β-carotene (VA+BC); multivitamins (B, C, E (MV)); MV+VA+BC; or placebo. Concentrations of breast milk nutrients were determined by HPLC at birth and every 3 mo thereafter. Results Supplementation with VA+BC increased concentrations of retinol, β-carotene, and α-carotene at delivery by 4799, 1791, and 84 nmol/L, respectively, compared to no VA+BC (all p<0.0001). MV supplementation did not increase concentrations of α-tocopherol or δ-tocopherol at delivery but significantly decreased concentrations of breast milk γ-tocopherol and retinol. Although concentrations of all nutrients decreased significantly by 3 months postpartum, retinol, α-carotene, and β-carotene concentrations were significantly higher among those receiving VA+BC at 3, 6, and 12 mo compared to no VA+BC. Alpha tocopherol was significantly higher, while γ-tocopherol concentrations were significantly lower, among women receiving MV compared to no MV at 3, 6, and 12 mo post-partum. Conclusions Sustained supplementation of HIV-infected breastfeeding mothers with MV could be a safe and effective intervention to improve vitamin E concentrations in breast milk. VA+BC supplementation increases concentrations of breast milk retinol but it is not recommended in HIV-infected mothers due to the elevated risk of vertical transmission. PMID:17940544

  1. Effect of vitamin supplementation on breast milk concentrations of retinol, carotenoids and tocopherols in HIV-infected Tanzanian women.

    PubMed

    Webb, A L; Aboud, S; Furtado, J; Murrin, C; Campos, H; Fawzi, W W; Villamor, E

    2009-03-01

    The effect of daily prenatal and postnatal vitamin supplementation on concentrations of breast milk nutrients is not well characterized in HIV-infected women. We examined the impact of vitamin supplementation during pregnancy and lactation on breast milk concentrations of retinol, carotenoids and tocopherols during the first year postpartum among 626 HIV-infected Tanzanian women. We conducted a randomized, double-blind, placebo-controlled trial. Women were assigned to one of four daily oral supplements: vitamin A+beta-carotene (VA+BC); multivitamins (MV; B, C and E); MV+VA+BC or placebo. Concentrations of breast milk nutrients were determined by high-performance liquid chromatography at birth and every 3 months thereafter. Supplementation with VA+BC increased concentrations of retinol, beta-carotene and alpha-carotene at delivery by 4799, 1791 and 84 nmol l(-1), respectively, compared to no VA+BC (all P<0.0001). MV supplementation did not increase concentrations of alpha-tocopherol or delta-tocopherol at delivery but significantly decreased concentrations of breast milk gamma-tocopherol and retinol. Although concentrations of all nutrients decreased significantly by 3 months postpartum, retinol, alpha-carotene and beta-carotene concentrations were significantly higher among those receiving VA+BC at 3, 6 and 12 months compared to no VA+BC. alpha-Tocopherol was significantly higher, while gamma-tocopherol concentrations were significantly lower, among women receiving MV compared to no MV at 3, 6 and 12 months postpartum. Sustained supplementation of HIV-infected breastfeeding mothers with MV could be a safe and effective intervention to improve vitamin E concentrations in breast milk. VA+BC supplementation increases concentrations of breast milk retinol but it is not recommended in HIV-infected mothers due to the elevated risk of vertical transmission.

  2. Magnetic adsorbents for the removal of Hg (II) and phenanthrene from aqueous solutions

    NASA Astrophysics Data System (ADS)

    Isari, Ekavi; Karapanagioti, Hrissi K.; Manariotis, Ioannis D.; Werner, David

    2015-04-01

    Activated carbon (AC) acts as a strong binding agent that lowers the pollutant concentration and, thus its toxicity. Another promising sorbent material in environmental applications is biochar (BC) which is obtained from the incomplete combustion of carbon-rich biomass under oxygen-limited conditions. Both of these materials could be used as soil or sediment amendments that would lower the toxicity in the aqueous phase. A draw back of this technique is that although the pollutant will remain non- bioavailable for many years being sorbed into these sorbents, it actually stays into the system. The objective of this study was (a) to synthesize a magnetic powdered activated carbon (AC/Fe) and magnetic powdered biochar (BC/Fe) produced from commercial AC1 and AC2 samples and biochar respectively and (b) to evaluate the potential use of AC/Fe and BIO/Fe to remove aqueous Hg (II) or phenanthrene while being magnetically recoverable. The BC was produced from olive pomace. The surface area, the pore volume, and the average pore size of each sorbent were determined using gas (N2) adsorption-desorption cycles and the Brunauer, Emmett, and Teller (BET) equation. Isotherms with 30 adsorption and 20 desorption points were conducted at liquid nitrogen temperature (77K). Open surface area and micropore volume were determined using t-plot method and Harkins & Jura equation. For both AC/Fe, surface area measurements resulted in 66% those of corresponding AC. For BC/Fe, the surface area was 82% that of BC. Batch experiments with all sorbent samples and mercury solutions were conducted at room temperature (25oC) and at pH 5 in order to compare the sorption properties of the materials. Similar tests were performed with phenanthrene solutions. Based on mercury isotherm data, AC/Fe and BC/Fe are effective sorbents but with lower sorption capacity compared to the initial materials (50-75% lower). All these properties point to promising materials that can effectively be used for in-situ environmental remediation and also be recovered.

  3. Effects of Lipids on in Vitro Release and Cellular Uptake of β-Carotene in Nanoemulsion-Based Delivery Systems.

    PubMed

    Yi, Jiang; Zhong, Fang; Zhang, Yuzhu; Yokoyama, Wallace; Zhao, Liqing

    2015-12-23

    β-Carotene (BC) nanoemulsions were successfully prepared by microfluidization. BC micellarization was significantly affected by bile salts and pancreatin concentration. Positive and linear correlation was observed between BC release and bile salts concentration. Pancreatin facilitated BC's release in simulated digestion. Compared to the control (bulk oil) (4.6%), nanoemulsion delivery systems significantly improved the micellarization of BC (70.9%). The amount of BC partitioned into micelles was positively proportional to the length of carrier oils. Unsaturated fatty acid (UFA)-rich oils were better than saturated fatty acid (SFA)-rich oils in transferring BC (p < 0.05). No significant difference was observed between monounsaturated fatty acid (MUFA)-rich oils and polyunsaturated fatty acid (PUFA)-rich oils (p > 0.05). A positive and linear relationship between the degree of lipolysis and the release of BC in vitro digestion was observed. Bile salts showed cytotoxicity to Caco-2 cells below 20 times dilution. BC uptake by Caco-2 cells was not affected by fatty acid (FA) compositions in micelles, but BC uptake was proportional to its concentration in the diluted micelle fraction. The results obtained are beneficial to encapsulate and deliver BC or other bioactive lipophilic carotenoids in a wide range of commercial products.

  4. On the rumpling instability in thermal barrier systems

    NASA Astrophysics Data System (ADS)

    Panat, Rahul Padmakar

    Thermal barrier coatings (TBCs) are protective multi-layered metal-ceramic coatings used in hot sections of jet engines and gas turbines. The TBCs are composed of a superalloy substrate, an intermediate metallic bond coat (BC) and a ceramic topcoat. The TBCs are beset by reliability problems arising from delamination of the ceramic topcoat due to various instabilities in the system. The present work examines one such instability of "rumpling", or progressive roughening of the BC surface in the BC-superalloy systems upon high temperature exposure. A combined experimental and analytical approach is taken to study the rumpling phenomenon. Thermal cycling and isothermal experiments are carried out in air and in vacuum to identify the driving force and the kinetics governing rumpling. The experiments show that a nominally flat BC surface rumples to a wavelength of about 60--100 mum, and an amplitude of about 4--8 mum. The rumpling is seen to be relatively insensitive to the initial BC surface morphology. Significant initial flaws are not necessary for rumpling to occur. Further, rumpling occurs even in absence of thermal cycling. To explain BC rumpling, we develop a linear stability model for surface evolution of BCs under a remote stress. The driving force for this process is the in-plane stress in the BC due to its thermal mismatch with the substrate as indicated by the experimental results. The BC volume and BC surface diffusion governs the deformation kinetics. A governing equation is derived that gives the amplitude evolution of BC surface perturbations as a function of time. The analysis establishes a range of wavelengths for which the perturbation amplitude increases at a significantly higher rate as compared with other wavelengths. At the dominant instability wavelength, under low-stress and high-temperature conditions, the model shows that the roughening is caused only by volume diffusion, while smoothing is caused only by surface diffusion. The results from this thermodynamic model agree with the experimental observations quite well. Particular BC material properties and testing conditions are identified that control the BC rumpling and hence an important TBC failure mode. Guidelines to improve TBC performance are presented.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Mo; Xu, B.; Kaspari, Susan D.

    We analyzed refractory black carbon (rBC) in an ice core spanning 1875-2000 AD from Mt. Muztagh Ata, the Eastern Pamirs, using a Single Particle Soot Photometer (SP2). Additionally a pre-existing levoglucosan record from the same ice core was used to differentiate rBC that originated from open fires, energy-related combustion of biomass, and fossil fuel combustion. Mean rBC concentrations increased four-fold since the mid-1970s and reached maximum values at the end of 1980s. The observed decrease of the rBC concentrations during the 1990s was likely driven by the economic recession of former USSR countries in Central Asia. Levoglucosan concentrations showed amore » similar temporal trend to rBC concentrations, exhibiting a large increase around 1980 AD followed by a decrease in the 1990s that was likely due to a decrease in energy-related biomass combustion. The time evolution of levoglucosan/rBC ratios indicated stronger emissions from open fires during the 1940s-1950s, while the increase in rBC during the 1980s-1990s was caused from an increase in energy-related combustion of biomass and fossil fuels.« less

  6. Grey Tienshan Urumqi Glacier No.1 and light-absorbing impurities.

    PubMed

    Ming, Jing; Xiao, Cunde; Wang, Feiteng; Li, Zhongqin; Li, Yamin

    2016-05-01

    The Tienshan Urumqi Glacier No.1 (TUG1) usually shows "grey" surfaces in summers. Besides known regional warming, what should be responsible for largely reducing its surface albedo and making it look "grey"? A field campaign was conducted on the TUG1 on a selected cloud-free day of 2013 after a snow fall at night. Fresh and aged snow samples were collected in the field, and snow densities, grain sizes, and spectral reflectances were measured. Light-absorbing impurities (LAIs) including black carbon (BC) and dust, and number concentrations and sizes of the insoluble particles (IPs) in the samples were measured in the laboratory. High temperatures in summer probably enhanced the snow ageing. During the snow ageing process, the snow density varied from 243 to 458 kg m(-3), associated with the snow grain size varying from 290 to 2500 μm. The concentrations of LAIs in aged snow were significantly higher than those in fresh snow. Dust and BC varied from 16 ppm and 25 ppb in fresh snow to 1507 ppm and 1738 ppb in aged snow, respectively. Large albedo difference between the fresh and aged snow suggests a consequent forcing of 180 W m(-2). Simulations under scenarios show that snow ageing, BC, and dust were responsible for 44, 25, and 7 % of the albedo reduction in the accumulation zone, respectively.

  7. Complement activation on the surface of cell-derived microparticles during cardiac surgery with cardiopulmonary bypass - is retransfusion of pericardial blood harmful?

    PubMed

    Biró, E; van den Goor, J M; de Mol, B A; Schaap, M C; Ko, L-Y; Sturk, A; Hack, C E; Nieuwland, R

    2011-01-01

    To investigate whether cell-derived microparticles play a role in complement activation in pericardial blood of patients undergoing cardiac surgery with cardiopulmonary bypass (CPB) and whether microparticles in pericardial blood contribute to systemic complement activation upon retransfusion. Pericardial blood of 13 patients was retransfused in 9 and discarded in 4 cases. Microparticles were isolated from systemic blood collected before anesthesia (T1) and at the end of CPB (T2), and from pericardial blood. The microparticles were analyzed by flow cytometry for bound complement components C1q, C4 and C3, and bound complement activator molecules C-reactive protein (CRP), serum amyloid P-component (SAP), immunoglobulin (Ig)M and IgG. Fluid-phase complement activation products (C4b/c, C3b/c) and activator molecules were determined by ELISA. Compared with systemic T1 blood, pericardial blood contained increased C4b/c and C3b/c, and increased levels of microparticles with bound complement components. In systemic T1 samples, microparticle-bound CRP, whereas in pericardial blood, microparticle-bound SAP and IgM were associated with complement activation. At the end of CPB, increased C3b/c (but not C4b/c) was present in systemic T2 blood compared with T1, while concentrations of microparticles binding complement components and of those binding complement activator molecules were similar. Concentrations of fluid-phase complement activation products and microparticles were similar in patients whether or not retransfused with pericardial blood. In pericardial blood of patients undergoing cardiac surgery with CPB, microparticles contribute to activation of the complement system via bound SAP and IgM. Retransfusion of pericardial blood, however, does not contribute to systemic complement activation.

  8. Large reductions in urban black carbon concentrations in the United States between 1965 and 2000

    NASA Astrophysics Data System (ADS)

    Kirchstetter, Thomas W.; Preble, Chelsea V.; Hadley, Odelle L.; Bond, Tami C.; Apte, Joshua S.

    2017-02-01

    Long-term pollutant concentration trends can be useful for evaluating air quality effects of emission controls and historical transitions in energy sources. We employed archival records of coefficient of haze (COH), a now-retired measure of light-absorbing particulate matter, to re-construct historical black carbon (BC) concentrations at urban locations in the United States (U.S.). The following relationship between COH and BC was determined by reinstating into service COH monitors beside aethalometers for two years in Vallejo and one year in San Jose, California: BC (μg m-3) = 6.7COH + 0.1, R2 = 0.9. Estimated BC concentrations in ten states stretching from the East to West Coast decreased markedly between 1965 and 1980: 5-fold in Illinois, Ohio, and Virginia, 4-fold in Missouri, and 2.5-fold in Pennsylvania. Over the period from the mid-1960s to the early 2000s, annual average BC concentrations in New Jersey and California decreased from 13 to 2 μg m-3 and 4 to 1 μg m-3, respectively, despite concurrent increases in fossil fuel consumption from 1.6 to 2.1 EJ (EJ = 1018 J) in New Jersey and 4.2 to 6.4 EJ in California. New Jersey's greater reliance on BC-producing heavy fuel oils and coal in the 1960s and early 1970s and subsequent transition to cleaner fuels explains why the decrease was larger in New Jersey than California. Patterns in seasonal and weekly BC concentrations and energy consumption trends together indicate that reducing wintertime emissions - namely substituting natural gas and electricity for heavy fuel oil in the residential sector - and decreasing emissions from diesel vehicles contributed to lower ambient BC concentrations. Over the period of study, declining concentrations of BC, a potent and short-lived climate warming pollutant, contrast increasing fossil fuel carbon dioxide (CO2) emissions in the U.S. Declining BC emissions may have had the benefit of mitigating some atmospheric warming driven by increased CO2 emissions with complementary health benefits.

  9. Size distribution and coating thickness of black carbon from the Canadian oil sands operations

    NASA Astrophysics Data System (ADS)

    Cheng, Yuan; Li, Shao-Meng; Gordon, Mark; Liu, Peter

    2018-02-01

    Black carbon (BC) plays an important role in the Earth's climate system. However, parameterizations of BC size and mixing state have not been well addressed in aerosol-climate models, introducing substantial uncertainties into the estimation of radiative forcing by BC. In this study, we focused on BC emissions from the oil sands (OS) surface mining activities in northern Alberta, based on an aircraft campaign conducted over the Athabasca OS region in 2013. A total of 14 flights were made over the OS source area, in which the aircraft was typically flown in a four- or five-sided polygon pattern along flight tracks encircling an OS facility. Another 3 flights were performed downwind of the OS source area, each of which involved at least three intercepting locations where the well-mixed OS plume was measured along flight tracks perpendicular to the wind direction. Comparable size distributions were observed for refractory black carbon (rBC) over and downwind of the OS facilities, with rBC mass median diameters (MMDs) between ˜ 135 and 145 nm that were characteristic of fresh urban emissions. This MMD range corresponded to rBC number median diameters (NMDs) of ˜ 60-70 nm, approximately 100 % higher than the NMD settings in some aerosol-climate models. The typical in- and out-of-plume segments of a flight, which had different rBC concentrations and photochemical ages, showed consistent rBC size distributions in terms of MMD, NMD and the corresponding distribution widths. Moreover, rBC size distributions remained unchanged at different downwind distances from the source area, suggesting that atmospheric aging would not necessarily change rBC size distribution. However, aging indeed influenced rBC mixing state. Coating thickness for rBC cores in the diameter range of 130-160 nm was nearly doubled (from ˜ 20 to 40 nm) within 3 h when the OS plume was transported over a distance of 90 km from the source area.

  10. Towards Soil and Sediment Inventories of Black Carbon

    NASA Astrophysics Data System (ADS)

    Masiello, C. A.

    2008-12-01

    A body of literature on black carbon (BC) concentrations in soils and sediments is rapidly accumulating, but as of yet, there are no global or regional inventories of BC in either reservoir. Soil and sediment BC inventories are badly needed for a range of fields. For example, in oceanography a global sediment BC inventory is crucial in understanding the role of biomass burning in the development of stable marine carbon reservoirs, including dissolved organic carbon and sedimentary organic carbon. Again in the marine environment, BC likely strongly impacts the fate and transport of anthropogenic pollutants: regional inventories of BC in sediments will help develop better environmental remediation strategies. In terrestrial systems well-constrained natural BC soil inventories would help refine ecological, agricultural, and soil biogeochemical studies. BC is highly sorptive of nutrients including nitrogen and phosphorous. The presence of BC in ecosystems almost certainly alters N and P cycling; however, without soil BC inventories, we cannot know where BC has a significant impact. BC's nutrient sorptivity and water-holding capacity make it an important component of agricultural soils, and some researchers have proposed artificially increasing soil BC inventories to improve soil fertility. Natural soil BC concentrations in some regions are quite high, but without a baseline inventory, it is challenging to predict when agricultural amendment will significantly exceed natural conditions. And finally, because BC is one of the most stable fractions of organic carbon in soils, understanding its concentration and regional distribution will help us track the dynamics of soil organic matter response to changing environmental conditions. Developing effective regional and global BC inventories is challenging both because of data sparsity and methodological intercomparison issues. In this presentation I will describe a roadmap to generating these valuable inventories.

  11. Multidecadal trends in aerosol radiative forcing over the Arctic: Contribution of changes in anthropogenic aerosol to Arctic warming since 1980

    NASA Astrophysics Data System (ADS)

    Breider, Thomas J.; Mickley, Loretta J.; Jacob, Daniel J.; Ge, Cui; Wang, Jun; Payer Sulprizio, Melissa; Croft, Betty; Ridley, David A.; McConnell, Joseph R.; Sharma, Sangeeta; Husain, Liaquat; Dutkiewicz, Vincent A.; Eleftheriadis, Konstantinos; Skov, Henrik; Hopke, Phillip K.

    2017-03-01

    Arctic observations show large decreases in the concentrations of sulfate and black carbon (BC) aerosols since the early 1980s. These near-term climate-forcing pollutants perturb the radiative balance of the atmosphere and may have played an important role in recent Arctic warming. We use the GEOS-Chem global chemical transport model to construct a 3-D representation of Arctic aerosols that is generally consistent with observations and their trends from 1980 to 2010. Observations at Arctic surface sites show significant decreases in sulfate and BC mass concentrations of 2-3% per year. We find that anthropogenic aerosols yield a negative forcing over the Arctic, with an average 2005-2010 Arctic shortwave radiative forcing (RF) of -0.19 ± 0.05 W m-2 at the top of atmosphere (TOA). Anthropogenic sulfate in our study yields more strongly negative forcings over the Arctic troposphere in spring (-1.17 ± 0.10 W m-2) than previously reported. From 1980 to 2010, TOA negative RF by Arctic aerosol declined, from -0.67 ± 0.06 W m-2 to -0.19 ± 0.05 W m-2, yielding a net TOA RF of +0.48 ± 0.06 W m-2. The net positive RF is due almost entirely to decreases in anthropogenic sulfate loading over the Arctic. We estimate that 1980-2010 trends in aerosol-radiation interactions over the Arctic and Northern Hemisphere midlatitudes have contributed a net warming at the Arctic surface of +0.27 ± 0.04 K, roughly one quarter of the observed warming. Our study does not consider BC emissions from gas flaring nor the regional climate response to aerosol-cloud interactions or BC deposition on snow.

  12. Impact of Canadian wildfire smoke on air quality at two rural sites in NY State

    NASA Astrophysics Data System (ADS)

    Dutkiewicz, Vincent A.; Husain, Liaquat; Roychowdhury, Utpal K.; Demerjian, Kenneth L.

    2011-04-01

    We report high concentrations of black carbon aerosols (BC), present at two rural sites in New York during the last week in May 2010, that are linked to wildfire activity. At Mayville BC from wood smoke was recorded for a total of 20 h from three separate episodes, mean concentration was 1400 ng m -3. These three short events contributed 13% of the BC burden during the month of May. At Whiteface Mountain high concentrations of BC, carbon monoxide gas (CO), and fine particulate matter mass (PM 2.5) are reported from a heavy smoke event that impacted the Adirondack region of the State on May 31, 2010. PM 2.5 mass recorded at the Lodge site (600 m above mean sea level) was 150 μg m -3 at 8:30 am EST and the 24-h mean was almost twice the USEPA limits while CO concentration exceeded 1000 ppb and BC concentration reached 9600 ng m -3. The event was delayed several hours at the Summit site (1500 m above mean sea level) but at 5:45 pm BC concentration reached 1600 ng m -3 and CO was 317 ppbv. Detailed temporal profiles and correlations are presented.

  13. Latitudinal distribution of aerosol black carbon and its mass fraction to composite aerosols over peninsular India during winter season

    NASA Astrophysics Data System (ADS)

    Moorthy, K. Krishna; Babu, S. Suresh; Badarinath, K. V. S.; Sunilkumar, S. V.; Kiranchand, T. R.; Ahmed, Y. Nazeer

    2007-04-01

    During a land campaign to characterise the spatial distribution of aerosols over peninsular India during the winter season, extensive, collocated, and spatially resolved measurements of mass concentration of the composite aerosols (MT) as well as that (MB) of aerosol Black Carbon (BC) were made over different environments (coastal, industrial, urban, village, remote, semiarid) of the western peninsular India. High concentrations of BC, >2.5 μg m-3, were observed along the west coast, from ~8°N up to 14.5°N, and moderate values (1.0 to 2.5 μg m-3) over inland regions from 15 to 18°N. Latitudinally, BC concentration decreased from south to north, @~160 ng m-3 for every degree increase in latitude. The spatial pattern of BC mass fraction differed from that of MB, with regions of high (8 to 16%) ratios spreading more interior, implying higher fractional load of BC at locations where the BC concentrations remain lower.

  14. Cadmium, lead, and zinc mobility and plant uptake in a mine soil amended with sugarcane straw biochar.

    PubMed

    Puga, A P; Abreu, C A; Melo, L C A; Paz-Ferreiro, J; Beesley, L

    2015-11-01

    Accumulation of heavy metals in unconsolidated soils can prove toxic to proximal environments, if measures are not taken to stabilize soils. One way to minimize the toxicity of metals in soils is the use of materials capable of immobilizing these contaminants by sorption. Biochar (BC) can retain large amounts of heavy metals due to, among other characteristics, its large surface area. In the current experiment, sugarcane-straw-derived biochar, produced at 700 °C, was applied to a heavy-metal-contaminated mine soil at 1.5, 3.0, and 5.0% (w/w). Jack bean and Mucuna aterrima were grown in pots containing a mine contaminated soil and soil mixed with BC. Pore water was sampled to assess the effects of biochar on zinc solubility, while soils were analyzed by DTPA extraction to confirm available metal concentrations. The application of BC decreased the available concentrations of Cd, Pb, and Zn in the mine contaminated soil leading to a consistent reduction in the concentration of Zn in the pore water. Amendment with BC reduced plant uptake of Cd, Pb, and Zn with the jack bean uptaking higher amounts of Cd and Pb than M. aterrima. This study indicates that biochar application during mine soil remediation could reduce plant concentrations of heavy metals. Coupled with this, symptoms of heavy metal toxicity were absent only in plants growing in pots amended with biochar. The reduction in metal bioavailability and other modifications to the substrate induced by the application of biochar may be beneficial to the establishment of a green cover on top of mine soil to aid remediation and reduce risks.

  15. Trichodesmium slicks associated with environmental conditions of continental shelf-break at the southwestern of the Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Detoni, A. M. S.; Yunes, J. S., Sr.; Ciotti, Á. M.; Calil, P. H. R.; Tavano, V. M.

    2016-02-01

    Trichodesmium can accumulate high biomass, particularly in the oligotrophic regions of North and Tropical Atlantic, and North Pacific. Large Trichodesmium slicks have been reported in the South Atlantic as well, associated with the Brazil Currrent (BC) that flows southwards over the continental shelf-break. Regional variations of the width of the Brazilian continental shelf, as well as changes in the bottom topography, generate cyclonic and anti-cyclonic eddies as BC crosses the southeastern Brazil. Thus, the general conditions of the BC - characterized as a warm, saline and oligotrophic current - are expected to change not only with latitude but also by the influence of mesoscale instabilities. In this study, three oceanographic cruises were carried out to characterize the distribution of Trichodesmium along the southeastern Brazilian continental shelf-break and their relationship with temperature and upper layer nutrients concentrations. As in other oceanic regions, high concentrations of Trichodesmium (maximum 212.6 × 105 trichomes L-1) were observed in waters with temperatures between 22° C to 25° C, low nitrogen (< 2.4 μM), and moderate phosphate concentrations (> 0.08 μM), where wind speeds were low (< 11 m s-1). Generally, slicks were present where phosphate concentration in the upper 25 m was slightly higher than that of adjacent waters. Wind and hydrographic observations suggested that wind divergence at micro-regions (approximately 625 km2), as well as shelf-break dynamics can drive sporadic shelf-break upwelling, favouring Trichodesmium growth between 23° S to 28° S. Although shelf-break upwelling may occur along the entire domain of the BC flow, Trichodesmium densities were low at latitudes between 28° S to 33° S likely a result of the lower sea surface temperature.

  16. Characterization of Ambient Black Carbon Aerosols

    NASA Astrophysics Data System (ADS)

    Zhang, R.; Levy, M. E.; Zheng, J.; Molina, L. T.

    2013-12-01

    Because of the strong absorption over a broad range of the electromagnetic spectra, black carbon (BC) is a key short-lived climate forcer, which contributes significantly to climate change by direct radiative forcing and is the second most important component causing global warming after carbon dioxide. The impact of BC on the radiative forcing of the Earth-Atmosphere system is highly dependent of the particle properties. In this presentation, emphasis will be placed on characterizing BC containing aerosols in at the California-Mexico border to obtain a greater understanding of the atmospheric aging and properties of ambient BC aerosols. A comprehensive set of directly measured aerosol properties, including the particle size distribution, effective density, hygroscopicity, volatility, and several optical properties, will be discussed to quantify the mixing state and composition of ambient particles. In Tijuana, Mexico, submicron aerosols are strongly influenced by vehicle emissions; subsequently, the BC concentration in Tijuana is considerably higher than most US cities with an average BC concentration of 2.71 × 2.65 g cm-3. BC accounts for 24.75 % × 9.44 of the total submicron concentration on average, but periodically accounts for over 50%. This high concentration of BC strongly influences many observed aerosol properties such as single scattering albedo, hygroscopicity, effective density, and volatility.

  17. Black carbon aerosol characterization in a remote area of Qinghai-Tibetan Plateau, western China.

    PubMed

    Wang, Qiyuan; Schwarz, J P; Cao, Junji; Gao, Rushan; Fahey, D W; Hu, Tafeng; Huang, R-J; Han, Yongming; Shen, Zhenxing

    2014-05-01

    The concentrations, size distributions, and mixing states of refractory black carbon (rBC) aerosols were measured with a ground-based Single Particle Soot Photometer (SP2), and aerosol absorption was measured with an Aethalometer at Qinghai Lake (QHL), a rural area in the Northeastern Tibetan Plateau of China in October 2011. The area was not pristine, with an average rBC mass concentration of 0.36 μg STP-m(-3) during the two-week campaign period. The rBC concentration peaked at night and reached the minimal in the afternoon. This diurnal cycle of concentration is negatively correlated with the mixed layer depth and ventilation. When air masses from the west of QHL were sampled in late afternoon to early evening, the average rBC concentration of 0.21 μg STP-m(-3) was observed, representing the rBC level in a larger Tibetan Plateau region because of the highest mixed layer depth. A lognormal primary mode with mass median diameter (MMD) of ~175 nm, and a small secondary lognormal mode with MMD of 470-500 nm of rBC were observed. Relative reduction in the secondary mode during a snow event supports recent work that suggested size dependent removal of rBC by precipitation. About 50% of the observed rBC cores were identified as thickly coated by non-BC material. A comparison of the Aethalometer and SP2 measurements suggests that non-BC species significantly affect the Aethalometer measurements in this region. A scaling factor for the Aethalometer data at a wavelength of 880 nm is therefore calculated based on the measurements, which may be used to correct other Aethalometer datasets collected in this region for a more accurate estimate of the rBC loading. The results present here significantly improve our understanding of the characteristics of rBC aerosol in the less studied Tibetan Plateau region and further highlight the size dependent removal of BC via precipitation. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. 20 years of Black Carbon measurements in Germany

    NASA Astrophysics Data System (ADS)

    Kutzner, Rebecca; Quedenau, Jörn; Kuik, Friderike; von Schneidemesser, Erika; Schmale, Julia

    2016-04-01

    Black Carbon (BC) is an important short-lived climate-forcing pollutant contributing to global warming through absorption of sunlight. At the same time, BC, as a component of particulate matter (PM) exerts adverse health effects, like decreased lung function and exacerbated asthma. Globally, anthropogenic emission sources of BC include residential heating, transport, and agricultural fires, while the dominant natural emission sources are wildfires. Despite the various adverse effects of BC, legislation that requires mandatory monitoring of BC concentrations does not currently exist in the European Union. Instead, BC is only indirectly monitored as component of PM10 and PM2.5 (particulate matter with a diameter smaller 10 μm and 2.5 μm). Before the introduction of mandatory PM10 and PM2.5 monitoring in the European Union in 2005 and 2015, respectively, 'black smoke', a surrogate for BC, was a required measurement in Germany from the early 1990s. The annual mean limit value was 14 μg m-3 from 1995 and 8 μg m-3 from 1998 onwards. Many 'black smoke' measurements were stopped in 2004, with the repeal of the regulations obtaining at the time. However, in most German federal states a limited number BC monitoring stations continued to operate. Here we present a synthesis of BC data from 213 stations across Germany covering the period between 1994 and 2014. Due to the lack of a standardized method and respective legislation, the data set is very heterogeneous relying on twelve different measurement methods including chemical, optical, and thermal-optical methods. Stations include locations classified as background, urban-background, industrial and traffic among other types. Raw data in many different formats has been modelled and integrated in a relational database, allowing various options for further data analysis. We highlight results from the year 2009, as it is the year with the largest measurement coverage based on the same measurement method, with 30 stations. In 2009 daily average concentrations at 12 background stations ranged from 0.20 to 9.10 μg m-3 BC, while at traffic sites (15 stations) concentrations ranged from 0.30 to 30.60 μg m-3 BC, and industrial sites (3 stations) showed concentrations ranging between 0.30 and 9.4 μg m-3. The seasonal cycle for the year 2009 shows a similar pattern for industrial and background stations with a tendency of higher concentrations in winter. The concentrations at traffic stations are not as clearly coupled to seasons but have a strong weekly cycle with lower concentrations during weekends. Investigating the trends in BC concentration over at least 10 years was possible for 13 stations. Preliminary results suggest that concentrations have declined at traffic and background stations between 2005 and 2014. This implies that a general reduction of BC has already been achieved. However, preliminary results also show that elevated concentrations still occur during the colder months, most likely linked to residential heating.

  19. Global radiative effects of solid fuel cookstove aerosol emissions

    NASA Astrophysics Data System (ADS)

    Huang, Yaoxian; Unger, Nadine; Storelvmo, Trude; Harper, Kandice; Zheng, Yiqi; Heyes, Chris

    2018-04-01

    We apply the NCAR CAM5-Chem global aerosol-climate model to quantify the net global radiative effects of black and organic carbon aerosols from global and Indian solid fuel cookstove emissions for the year 2010. Our assessment accounts for the direct radiative effects, changes to cloud albedo and lifetime (aerosol indirect effect, AIE), impacts on clouds via the vertical temperature profile (semi-direct effect, SDE) and changes in the surface albedo of snow and ice (surface albedo effect). In addition, we provide the first estimate of household solid fuel black carbon emission effects on ice clouds. Anthropogenic emissions are from the IIASA GAINS ECLIPSE V5a inventory. A global dataset of black carbon (BC) and organic aerosol (OA) measurements from surface sites and aerosol optical depth (AOD) from AERONET is used to evaluate the model skill. Compared with observations, the model successfully reproduces the spatial patterns of atmospheric BC and OA concentrations, and agrees with measurements to within a factor of 2. Globally, the simulated AOD agrees well with observations, with a normalized mean bias close to zero. However, the model tends to underestimate AOD over India and China by ˜ 19 ± 4 % but overestimate it over Africa by ˜ 25 ± 11 % (± represents modeled temporal standard deviations for n = 5 run years). Without BC serving as ice nuclei (IN), global and Indian solid fuel cookstove aerosol emissions have net global cooling radiative effects of -141 ± 4 mW m-2 and -12 ± 4 mW m-2, respectively (± represents modeled temporal standard deviations for n = 5 run years). The net radiative impacts are dominated by the AIE and SDE mechanisms, which originate from enhanced cloud condensation nuclei concentrations for the formation of liquid and mixed-phase clouds, and a suppression of convective transport of water vapor from the lower troposphere to the upper troposphere/lower stratosphere that in turn leads to reduced ice cloud formation. When BC is allowed to behave as a source of IN, the net global radiative impacts of the global and Indian solid fuel cookstove emissions range from -275 to +154 mW m-2 and -33 to +24 mW m-2, with globally averaged values of -59 ± 215 and 0.3 ± 29 mW m-2, respectively. Here, the uncertainty range is based on sensitivity simulations that alter the maximum freezing efficiency of BC across a plausible range: 0.01, 0.05 and 0.1. BC-ice cloud interactions lead to substantial increases in high cloud (< 500 hPa) fractions. Thus, the net sign of the impacts of carbonaceous aerosols from solid fuel cookstoves on global climate (warming or cooling) remains ambiguous until improved constraints on BC interactions with mixed-phase and ice clouds are available.

  20. Land use regression modelling of air pollution in high density high rise cities: A case study in Hong Kong.

    PubMed

    Lee, Martha; Brauer, Michael; Wong, Paulina; Tang, Robert; Tsui, Tsz Him; Choi, Crystal; Cheng, Wei; Lai, Poh-Chin; Tian, Linwei; Thach, Thuan-Quoc; Allen, Ryan; Barratt, Benjamin

    2017-08-15

    Land use regression (LUR) is a common method of predicting spatial variability of air pollution to estimate exposure. Nitrogen dioxide (NO 2 ), nitric oxide (NO), fine particulate matter (PM 2.5 ), and black carbon (BC) concentrations were measured during two sampling campaigns (April-May and November-January) in Hong Kong (a prototypical high-density high-rise city). Along with 365 potential geospatial predictor variables, these concentrations were used to build two-dimensional land use regression (LUR) models for the territory. Summary statistics for combined measurements over both campaigns were: a) NO 2 (Mean=106μg/m 3 , SD=38.5, N=95), b) NO (M=147μg/m 3 , SD=88.9, N=40), c) PM 2.5 (M=35μg/m 3 , SD=6.3, N=64), and BC (M=10.6μg/m 3 , SD=5.3, N=76). Final LUR models had the following statistics: a) NO 2 (R 2 =0.46, RMSE=28μg/m 3 ) b) NO (R 2 =0.50, RMSE=62μg/m 3 ), c) PM 2.5 (R 2 =0.59; RMSE=4μg/m 3 ), and d) BC (R 2 =0.50, RMSE=4μg/m 3 ). Traditional LUR predictors such as road length, car park density, and land use types were included in most models. The NO 2 prediction surface values were highest in Kowloon and the northern region of Hong Kong Island (downtown Hong Kong). NO showed a similar pattern in the built-up region. Both PM 2.5 and BC predictions exhibited a northwest-southeast gradient, with higher concentrations in the north (close to mainland China). For BC, the port was also an area of elevated predicted concentrations. The results matched with existing literature on spatial variation in concentrations of air pollutants and in relation to important emission sources in Hong Kong. The success of these models suggests LUR is appropriate in high-density, high-rise cities. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Preparation and evaluation of nanocellulose-gold nanoparticle nanocomposites for SERS applications.

    PubMed

    Wei, Haoran; Rodriguez, Katia; Renneckar, Scott; Leng, Weinan; Vikesland, Peter J

    2015-08-21

    Nanocellulose is of research interest due to its extraordinary optical, thermal, and mechanical properties. The incorporation of guest nanoparticles into nanocellulose substrates enables production of novel nanocomposites with a broad range of applications. In this study, gold nanoparticle/bacterial cellulose (AuNP/BC) nanocomposites were prepared and evaluated for their applicability as surface-enhanced Raman scattering (SERS) substrates. The nanocomposites were prepared by citrate mediated in situ reduction of Au(3+) in the presence of a BC hydrogel at 303 K. Both the size and morphology of the AuNPs were functions of the HAuCl4 and citrate concentrations. At high HAuCl4 concentrations, Au nanoplates form within the nanocomposites and are responsible for high SERS enhancements. At lower HAuCl4 concentrations, uniform nanospheres form and the SERS enhancement is dependent on the nanosphere size. The time-resolved increase in the SERS signal was probed as a function of drying time with SERS 'hot-spots' primarily forming in the final minutes of nanocomposite drying. The application of the AuNP/BC nanocomposites for detection of the SERS active dyes MGITC and R6G as well as the environmental contaminant atrazine is illustrated as is its use under low and high pH conditions. The results indicate the broad applicability of this nanocomposite for analyte detection.

  2. Origin of elemental carbon in snow from western Siberia and northwestern European Russia during winter-spring 2014, 2015 and 2016

    NASA Astrophysics Data System (ADS)

    Evangeliou, Nikolaos; Shevchenko, Vladimir P.; Espen Yttri, Karl; Eckhardt, Sabine; Sollum, Espen; Pokrovsky, Oleg S.; Kobelev, Vasily O.; Korobov, Vladimir B.; Lobanov, Andrey A.; Starodymova, Dina P.; Vorobiev, Sergey N.; Thompson, Rona L.; Stohl, Andreas

    2018-01-01

    Short-lived climate forcers have been proven important both for the climate and human health. In particular, black carbon (BC) is an important climate forcer both as an aerosol and when deposited on snow and ice surface because of its strong light absorption. This paper presents measurements of elemental carbon (EC; a measurement-based definition of BC) in snow collected from western Siberia and northwestern European Russia during 2014, 2015 and 2016. The Russian Arctic is of great interest to the scientific community due to the large uncertainty of emission sources there. We have determined the major contributing sources of BC in snow in western Siberia and northwestern European Russia using a Lagrangian atmospheric transport model. For the first time, we use a recently developed feature that calculates deposition in backward (so-called retroplume) simulations allowing estimation of the specific locations of sources that contribute to the deposited mass. EC concentrations in snow from western Siberia and northwestern European Russia were highly variable depending on the sampling location. Modelled BC and measured EC were moderately correlated (R = 0.53-0.83) and a systematic region-specific model underestimation was found. The model underestimated observations by 42 % (RMSE = 49 ng g-1) in 2014, 48 % (RMSE = 37 ng g-1) in 2015 and 27 % (RMSE = 43 ng g-1) in 2016. For EC sampled in northwestern European Russia the underestimation by the model was smaller (fractional bias, FB > -100 %). In this region, the major sources were transportation activities and domestic combustion in Finland. When sampling shifted to western Siberia, the model underestimation was more significant (FB < -100 %). There, the sources included emissions from gas flaring as a major contributor to snow BC. The accuracy of the model calculations was also evaluated using two independent datasets of BC measurements in snow covering the entire Arctic. The model underestimated BC concentrations in snow especially for samples collected in springtime.

  3. Acute Respiratory Inflammation in Children and Black Carbon in Ambient Air before and during the 2008 Beijing Olympics

    PubMed Central

    Lin, Weiwei; Huang, Wei; Hu, Min; Brunekreef, Bert; Zhang, Yuanhang; Liu, Xingang; Cheng, Hong; Gehring, Ulrike; Li, Chengcai; Tang, Xiaoyan

    2011-01-01

    Background: Epidemiologic evidence for a causative association between black carbon (BC) and health outcomes is limited. Objectives: We estimated associations and exposure–response relationships between acute respiratory inflammation in schoolchildren and concentrations of BC and particulate matter with an aerodynamic diameter of ≤ 2.5 μm (PM2.5) in ambient air before and during the air pollution intervention for the 2008 Beijing Olympics. Methods: We measured exhaled nitric oxide (eNO) as an acute respiratory inflammation biomarker and hourly mean air pollutant concentrations to estimate BC and PM2.5 exposure. We used 1,581 valid observations of 36 subjects over five visits in 2 years to estimate associations of eNO with BC and PM2.5 according to generalized estimating equations with polynomial distributed-lag models, controlling for body mass index, asthma, temperature, and relative humidity. We also assessed the relative importance of BC and PM2.5 with two-pollutant models. Results: Air pollution concentrations and eNO were clearly lower during the 2008 Olympics. BC and PM2.5 concentrations averaged over 0–24 hr were strongly associated with eNO, which increased by 16.6% [95% confidence interval (CI), 14.1–19.2%] and 18.7% (95% CI, 15.0–22.5%) per interquartile range (IQR) increase in BC (4.0 μg/m3) and PM2.5 (149 μg/m3), respectively. In the two-pollutant model, estimated effects of BC were robust, but associations between PM2.5 and eNO decreased with adjustment for BC. We found that eNO was associated with IQR increases in hourly BC concentrations up to 10 hr after exposure, consistent with effects primarily in the first hours after exposure. Conclusions: Recent exposure to BC was associated with acute respiratory inflammation in schoolchildren in Beijing. Lower air pollution levels during the 2008 Olympics also were associated with reduced eNO. PMID:21642045

  4. Two distinct patterns of seasonal variation of airborne black carbon over Tibetan Plateau

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Mo; Xu, Baiqing; Wang, Ninglian

    Airborne black carbon (BC) mass concentrations were measured from November 2012 to June 2013 at Ranwu and Beiluhe, located in the southeastern and central Tibetan Plateau, respectively. Monthly mean BC concentrations showawinter (November–February) high (413.2 ng m $-$3) and spring (March–June) low(139.1 ng m $-$3) at Ranwu, but in contrast awinter lowand spring high at Beiluhe (204.8 and 621.6 ng m $-$3, respectively). By examining the meteorological conditions at various scales, we found that themonthly variation of airborne BC over the southeastern Tibetan Plateau (TP) was highly influenced by regional precipitation and over the hinterland by winds. Local precipitation atmore » both sites showed little impact on the seasonal variation of airborne BC concentrations. Potential BC source regions are identified using air mass backward trajectory analysis. At Ranwu, BC was dominated by the air masses from the northeastern India and Bangladesh in both winter and spring, whereas at Beiluhe it was largely contributed by air masses from the south slope of Himalayas in winter, and from the arid region in the north of the TP in spring. Thewinter and spring seasonal peak of BC in the southern TP is largely contributed by emissions from South Asia, and this seasonal variation is heavily influenced by the regional monsoon. In the northern TP, BC had high concentrations during spring and summer seasons, which is very likely associated with more efficient transport of BC over the arid regions on the north of Tibetan Plateau and in Central Asia. Airborne BC concentrations at the Ranwusampling site showed a significant diurnal cyclewith a peak shortly after sunrise followed by a decrease before noon in both winter and spring, likely shaped by local human activities and the diurnal variation of wind speed. At the Beiluhe sampling site, the diurnal variation of BC is different and less distinct.« less

  5. Modified thermal-optical analysis using spectral absorption selectivity to distinguish black carbon from pyrolized organic carbon.

    PubMed

    Hadley, Odelle L; Corrigan, Craig E; Kirchstetter, Thomas W

    2008-11-15

    This study presents a method for analyzing the black carbon (BC) mass loading on a quartz fiber filter using a modified thermal-optical analysis method, wherein light transmitted through the sample is measured over a spectral region instead of at a single wavelength. Evolution of the spectral light transmission signal depends on the relative amounts of light-absorbing BC and char, the latter of which forms when organic carbon in the sample pyrolyzes during heating. Absorption selectivities of BC and char are found to be distinct and are used to apportion the amount of light attenuated by each component in the sample. Light attenuation is converted to mass concentration on the basis of derived mass attenuation efficiencies (MAEs) of BC and char. The fractions of attenuation due to each component are scaled by their individual MAE values and added together as the total mass of light absorbing carbon (LAC). An iterative algorithm is used to find the MAE values for both BC and char that provide the best fit to the carbon mass remaining on the filter (derived from direct measurements of thermally evolved CO2) at temperatures higher than 480 degrees C. This method was applied to measure the BC concentration in precipitation samples collected in northern California. The uncertainty in the measured BC concentration of samples that contained a high concentration of organics susceptible to char ranged from 12% to 100%, depending on the mass loading of BC on the filter. The lower detection limit for this method was approximately 0.35 microg of BC, and the uncertainty approached 20% for BC mass loading greater than 1.0 microg of BC.

  6. Diesel vehicle and urban burning contributions to black carbon concentrations and size distributions in Tijuana, Mexico, during the Cal-Mex 2010 campaign

    NASA Astrophysics Data System (ADS)

    Takahama, S.; Russell, L. M.; Shores, C. A.; Marr, L. C.; Zheng, J.; Levy, M.; Zhang, R.; Castillo, E.; Rodriguez-Ventura, J. G.; Quintana, P. J. E.; Subramanian, R.; Zavala, M.; Molina, L. T.

    2014-05-01

    Black carbon (BC) was characterized by three complementary techniques - incandescence (single particle soot photometer, SP2, at Parque Morelos), light absorption (cavity ringdown spectrometer with integrating nephelometer, CRDS-Neph, at Parque Morelos and Aethalometers at seven locations), and volatility (volatility tandem differential mobility analyzer, V-TDMA) during the Cal-Mex 2010 campaign. SP2, CRDS-Neph, and Aethalometer measurements characterized the BC mass, and SP2 and V-TDMA measurements also quantified BC-containing particle number, from which mass-mean BC diameters were calculated. On average, the mass concentrations measured in Tijuana (1.8 ± 2.6 μg m-3 at Parque Morelos and 2.6 μg m-3 in other regions of Tijuana) were higher than in San Diego or the international border crossing (0.5 ± 0.6 μg m-3). The observed BC mass concentrations were attributable to nighttime urban burning activities and diesel vehicles, both from the local (Baja California) and transported (Southern California) diesel vehicle fleets. Comparisons of the SP2 and co-located Aethalometers indicated that the two methods measured similar variations in BC mass concentrations (correlation coefficients greater than 0.85), and the mass concentrations were similar for the BC particles identified from nighttime urban burning sources. When the BC source changed to diesel vehicle emissions, the SP2 mass concentrations were lower than the Aethalometer mass concentrations by about 50%, likely indicating a change in the mass absorption efficiency and quantification by the Aethalometers. At Parque Morelos there were up to three different-sized modes of BC mass in particles: one mode below 100 nm, one near 100 nm, and another between 200 and 300 nm. The mode between 200 and 300 nm was associated with urban burning activities that influenced the site during evening hours. When backtrajectories indicated that airmasses came from the south to the Parque Morelos site, BC mass in particles was also larger (mass median diameter of 170 nm rather than 155 nm), consistent with the higher fraction of older diesel vehicles in the Tijuana fleet compared to the vehicles found in southern California.

  7. Light-absorbing impurities enhance glacier albedo reduction in the southeastern Tibetan plateau

    NASA Astrophysics Data System (ADS)

    Zhang, Yulan; Kang, Shichang; Cong, Zhiyuan; Schmale, Julia; Sprenger, Michael; Li, Chaoliu; Yang, Wei; Gao, Tanguang; Sillanpää, Mika; Li, Xiaofei; Liu, Yajun; Chen, Pengfei; Zhang, Xuelei

    2017-07-01

    Light-absorbing impurities (LAIs) in snow of the southeastern Tibetan Plateau (TP) and their climatic impacts are of interest not only because this region borders areas affected by the South Asian atmospheric brown clouds but also because the seasonal snow and glacier melt from this region form important headwaters of large rivers. In this study, we collected surface snow and snowpit samples from four glaciers in the southeastern TP in June 2015 to investigate the comprehensive observational data set of LAIs. Results showed that the LAI concentrations were much higher in the aged snow and granular ice than in the fresh snow and snowpits due to postdepositional processes. Impurity concentrations fluctuated across snowpits, with maximum LAI concentrations frequently occurring toward the bottom of snowpits. Based on the SNow ICe Aerosol Radiative model, the albedo simulation indicated that black carbon and dust account for approximately 20% of the albedo reduction relative to clean snow. The radiative forcing caused by black carbon and dust deposition on the glaciers were between 1.0-141 W m-2 and 1.5-120 W m-2, respectively. Black carbon (BC) played a larger role in albedo reduction and radiative forcing than dust in the study area, enhancing approximately 15% of glacier melt. Analysis based on the Fire INventory from NCAR indicated that nonbiomass-burning sources of BC played an important role in the total BC deposition, especially during the monsoon season. This study suggests that eliminating anthropogenic BC could mitigate glacier melt in the future of the southeastern TP.

  8. Nutrient leaching in a Colombian savanna Oxisol amended with biochar.

    PubMed

    Major, Julie; Rondon, Marco; Molina, Diego; Riha, Susan J; Lehmann, Johannes

    2012-01-01

    Nutrient leaching in highly weathered tropical soils often poses a challenge for crop production. We investigated the effects of applying 20 t ha biochar (BC) to a Colombian savanna Oxisol on soil hydrology and nutrient leaching in field experiments. Measurements were made over the third and fourth years after a single BC application. Nutrient contents in the soil solution were measured under one maize and one soybean crop each year that were routinely fertilized with mineral fertilizers. Leaching by unsaturated water flux was calculated using soil solution sampled with suction cup lysimeters and water flux estimates generated by the model HYDRUS 1-D. No significant difference ( > 0.05) was observed in surface-saturated hydraulic conductivity or soil water retention curves, resulting in no relevant changes in water percolation after BC additions in the studied soils. However, due to differences in soil solution concentrations, leaching of inorganic N, Ca, Mg, and K measured up to a depth of 0.6 m increased ( < 0.05), whereas P leaching decreased, and leaching of all nutrients (except P) at a depth of 1.2 m was significantly reduced with BC application. Changes in leaching at 2.0 m depth with BC additions were about one order of magnitude lower than at other depths, except for P. Biochar applications increased soil solution concentrations and downward movement of nutrients in the root zone and decreased leaching of Ca, Mg, and Sr at 1.2 m, possibly by a combination of retention and crop nutrient uptake. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  9. Trends of atmospheric black carbon concentration over the United Kingdom

    NASA Astrophysics Data System (ADS)

    Singh, Vikas; Ravindra, Khaiwal; Sahu, Lokesh; Sokhi, Ranjeet

    2018-04-01

    The continuous observations over a period of 7 years (2009-2016) available at 7 locations show declining trend of atmospheric BC in the UK. Among all the locations, the highest decrease of 8 ± 3 percent per year was observed at the Marylebone road in London. The detailed analysis performed at 21 locations during 2009-2011 shows that average annual mean atmospheric BC concentration were 0.45 ± 0.10, 1.47 ± 0.58, 1.34 ± 0.31, 1.83 ± 0.46 and 9.72 ± 0.78 μgm-3 at rural, suburban, urban background, urban centre and kerbside sites respectively. Around 1 μgm-3 of atmospheric BC could be attributed to urban emission, whereas traffic contributed up to 8 μg m-3 of atmospheric BC near busy roads. Seasonal pattern was also observed at all locations except rural and kerbside location, with maximum concentrations (1.2-4 μgm-3) in winter. Further, minimum concentrations (0.3-1.2 μgm-3) were observed in summer and similar concentrations in spring and fall. At suburban and urban background locations, similar diurnal pattern were observed with atmospheric BC concentration peaks (≈1.8 μg m-3) in the morning (around 9 a.m.) and evening (7-9 p.m.) rush hours, whereas minimum concentrations were during late night hours (peak at 5 a.m.) and the afternoon hours (peak at 2 p.m.). The urban centre values show a similar morning pattern (peak at 9 a.m.; concentration - 2.5 μgm-3) in relation to background locations but only a slight decrease in concentration in the afternoon which remained above 2 μgm-3 till midnight. It is concluded that the higher flow of traffic at urban centre locations results in higher atmospheric BC concentrations throughout the day. Comparison of weekday and weekend daily averaged atmospheric BC showed maximum concentrations on Friday, having minimum levels on Sunday. This study will help to refine the atmospheric BC emission inventories and provide data for air pollution and climate change models evaluation, which are used to formulate air pollution mitigation policies.

  10. Reductions in indoor black carbon concentrations from improved biomass stoves in rural India.

    PubMed

    Patange, Omkar S; Ramanathan, Nithya; Rehman, I H; Tripathi, Sachi Nand; Misra, Amit; Kar, Abhishek; Graham, Eric; Singh, Lokendra; Bahadur, Ranjit; Ramanathan, V

    2015-04-07

    Deployment of improved biomass burning cookstoves is recognized as a black carbon (BC) mitigation measure that has the potential to achieve health benefits and climate cobenefits. Yet, few field based studies document BC concentration reductions (and resulting human exposure) resulting from improved stove usage. In this paper, data are presented from 277 real-world cooking sessions collected during two field studies to document the impacts on indoor BC concentrations inside village kitchens as a result of switching from traditional stoves to improved forced draft (FD) stoves. Data collection utilized new low-cost cellphone methods to monitor BC, cooking duration, and fuel consumption. A cross sectional study recorded a reduction of 36% in BC during cooking sessions. An independent paired sample study demonstrated a statistically significant reduction of 40% in 24 h BC concentrations when traditional stoves were replaced with FD stoves. Reductions observed in these field studies differ from emission factor reductions (up to 99%) observed under controlled conditions in laboratory studies. Other nonstove sources (e.g., kerosene lamps, ambient concentrations) likely offset the reductions. Health exposure studies should utilize reductions determined by field measurements inside village kitchens, in conjunction with laboratory data, to assess the health impacts of new cooking technologies.

  11. Atmospheric black carbon in the Russian Arctic: anthropogenic inputs in comparison with average or extremal wood fires' ones

    NASA Astrophysics Data System (ADS)

    Vinogradova, Anna A.; Smirnov, Nikolay S.; Korotkov, Vladimir N.

    2016-04-01

    Model estimates of atmospheric black carbon concentrations were made for different points of the Russian Arctic. Anthropogenic BC emissions and wood fires' ones were calculated from Russian official statistics for the 2000s. We used the data of Ministry of Natural Resources and Environment of RF on anthropogenic air emissions of pollution in Russian cities and regions [1], as well as the data of Federal Forestry Agency of RF (Rosleshoz) [2] on wood fires. We considered the area within (50-72)N and (20-180)E, which covers about 94% of the Russian territory, where both anthropogenic and fire BC emissions have been arranged through grid cells (1×1) deg. Anthropogenic BC emissions are estimated as annual values based on the data for 54 regions and more than 100 cities. Total emission is estimated as (220 ± 30) Gg BC in 2010 [3], including emissions from open flares associated with gas/oil extractive industry which are about (25 ± 8) Gg/yr. We analyzed the data on wood fires (detailing crown, ground and underground fires in forests and fires on non-forest lands) with their spatial and seasonal variations during 15 years (2000-2014). Different combustion factors [4] and BC emission coefficients [5] were used in calculations for different types of burning. Russian total average annual BC emission from fires, occurring mainly in summertime, was estimated as 30 Gg with large variations (4-100 Gg/yr) from year to year. Asian territory emits about 90% of this value. We estimated anthropogenic (BC_A) and fires' (BC_F) contributions to BC air concentrations at different Russian Arctic points using the approach [6] - decadal back-trajectory analysis combined with spatial distribution of sensitivity pollution emission function (SPEF). Extraordinary atmospheric circulation causing, to a great extent, abnormally intensive fires in the middle latitudes often leads to a decrease in SPEF values for these territories. As a result, fires are not so dangerous for the whole Arctic, as it is believed. But there are distinctions at various points: Kola Peninsula - annually BC concentrations in air are not sizable and BCA prevails, but BCF prevails in summer. SE of Arkhangelsk region - annually BCA prevails, but in summer BCA is equal to BC_F, and in summer 2010 BCF was 2 times higher. Nenetsky Nature Reserve - BCF always prevails. Gydansky Nature Reserve - BCA prevails through a year, previously from oil/gas flares. Ust'-Lensky Nature Reserve - annually BC concentrations in air are not sizable, but in summer 2012 BCF prevails and is near the same as at Nenetsky Nature Reserve. The work was supported by RFBR, grants: 14-05-00059, 14-05-93089. _____________________ 1. Yearbook 2010 on Atmospheric Emissions of Pollution in Towns and Regions of Russian Federation. St.Petersburg, SRI Atmosphere, 2011. - 560 pp. [in Russian]. 2. http://www.rosleshoz.gov.ru/; http://www.aviales.ru/ 3. Vinogradova A.A. Anthropogenic Black Carbon Emissions to the Atmosphere: Surface Distribution through Russian Territory // DOI: 10.1134/S1024856015020141 4. http://www.ipcc-nggip.iges.or.jp/public/2006gl/vol4.html 5. Akagi S.K. et al. Emission factors for open and domestic biomass burning for use in atmospheric models // DOI: 10.5194/acp-11-4039-2011 6. Vinogradova A.A. Distant evaluation of atmospheric pollution influence on the remote territories // DOI:10.1134/S0001433815070099

  12. Black Carbon Particle Number Distribution Measurements during the ATHENS-2013 Winter Campaign

    NASA Astrophysics Data System (ADS)

    Gkatzelis, Georgios; Papanastasiou, Dimitris; Florou, Kalliopi; Kaltsonoudis, Christos; Louvaris, Eyaggelos; Bezentakos, Spiridon; Biskos, Georgios; Pandis, Spuros

    2014-05-01

    Black Carbon (BC) particles emitted by anthropogenic sources play an important role both in climate change and in air quality degradation. Open burning in forests and savannas, combustion of diesel and solid fuels for cooking and heating in homes represent the majority of BC emissions. Earlier work has focused on the BC atmospheric direct radiative forcing that is mostly related to its mass concentration and optical properties of the corresponding particles. A variety of measurement techniques are used to measure the mass concentration of BC by taking advantage of its optical or physical properties. Moreover, the carbonaceous particles containing BC are also important for the indirect forcing of climate. This effect is mostly related to the number concentration of BC particles. The number distribution of BC particles especially below 100 nm is quite uncertain due to limitations of the existing measurement techniques. In this work we employed a thermodenuder-based method as an approach for the measurement of the BC number distribution. More specifically, we combined a thermodenuder (TD) operating at temperatures up to 300 ° C, with a Scanning Mobility Particle Sizer (SMPS) and a High Resolution Time of Flight Aerosol Mass Spectrometer (HR-ToF AMS). Aerosol size and composition measurements were carried out both at ambient and at elevated TD temperatures in Athens field campaign during January and February of 2013. In parallel, a Multi-Angle Absorption Photometer (MAAP) provided information about the BC mass concentration while a Hygroscopic Tandem Differential Mobility Analyzer (HTDMA) measured the mixing state and the hygroscopicity of the particles as a function of their size. These measurements were then combined to estimate the number concentration of BC particles. Our analysis focused on different periods during the study. During some of them one source dominated the carbonaceous aerosol concentration. Such periods included rush hour traffic, nighttime wood burning, clean air transported from other areas, mixed sources, etc. The number fraction remaining after heating at 300 ° C for approximately 15 s during wood burning events was 80-90%, suggesting that practically all particles contained nonvolatile material. Combining the SMPS, MAAP, AMS, and HTDMA measurements we show that most of the sampled material was BC. On the contrary, during rush hour traffic the number fraction remaining was only 50-60% suggesting that more than half of the particles did not contain BC.

  13. Impact of Aerosols on Shortwave and Photosynthetically Active Radiation Balance over Sub-tropical Region in South Asia: Observational and Modeling Approach

    NASA Astrophysics Data System (ADS)

    Subba, T.; Pathak, B.

    2016-12-01

    The North-East Indian Region (NER) (22-30ºN, 89-98ºE) in south Asia sandwiched between two global biodiversity hotspots namely, Himalaya and Indo-Burma, assumes significance owing to its unique topography with mountains in the north, east and south and densely populated Indo Gangetic plains (IGP) towards the west resulting in complex aerosol system. Multi-year (2010-2014) concurrent measurements of aerosol properties and the shortwave radiation budget are examined over four geographically distinct stations of NER operational under Indian Space Research organization's ARFINET (Aerosol Radiative Forcing over India NETwork). An attempt has been made to lessen the ambiguity of forcing estimation by validating the radiative transfer modelled ARF with the CNR4 net radiometer measured values (r2 0.98). The Normalized Difference Vegetation Index and its dependence on the extinction of the photosynthetically active radiation (PAR) due to aerosol are assessed. The spring time enhancement of aerosols in the column has shown significant surface cooling (ARF = -48 ± 5 Wm-2) over the region, while the very high Black Carbon (BC) mass concentrations near the surface (SSA > 0.8) leads to significant atmospheric warming (ARF = +41 ± 7 Wm-2) in the shortwave range. Radiative forcing estimates reveal that the atmospheric forcing by BC could be as high as +30Wm-2 over the western part, which are significantly higher than the eastern part with a consequent heating rate of 1.5 K day-1 revealing an east-west asymmetry over NER. The impact of BC aerosols on the photosynthetic rate varies among different locations ranging from -5±2 Wm-2 to -25±3 Wm-2. Almost 70% of the total atmospheric shortwave radiative absorption is attributed to just 10% contribution of Black Carbon (BC) to total mass concentration and causes a reduction of more than 30% of PAR reaching the surface over Brahmaputra valley due to direct radiative effect. Comparison of previous and the present study shows highest surface dimming is observed in west-Asia followed by IGP and west-India. Surface radiative reduction over NER is comparable to south-India standing on the third place which is still higher than that of the Himalayan and Oceanic regions.

  14. Impact of Plasma Surface Treatment on Bamboo Charcoal/silver Nanocomposite

    NASA Astrophysics Data System (ADS)

    Vignesh, K.; Vijayalakshmi, K. A.; Karthikeyan, N.

    2016-10-01

    Bamboo charcoal (BC) accompanied silver (Ag) nanocomposite is synthesized through sol-gel method. The produced BC/Ag nanocomposite was surface modified by air and oxygen plasma treatments. Silver ions (Ag+) will serve to improve the antibacterial activity as well as the surface area of BC. Plasma treatment has improved the surface functional groups, crystalline intensity and antibacterial activity of the prepared nanocomposite. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) studies show that Ag nanoparticles have good agreement with BC and the particle size has a mean diameter of 20-40nm. We observe the carboxyl functional groups in Fourier transform infrared spectroscopy (FTIR) after the oxygen plasma treatment. Moreover surface area and adsorption were analyzed by using the Brunauer, Emmett and Teller (BET) surface area (SBET) and UV-Vis spectroscopy.

  15. Transport of regional pollutants through a remote trans-Himalayan valley in Nepal

    NASA Astrophysics Data System (ADS)

    Dhungel, Shradda; Kathayat, Bhogendra; Mahata, Khadak; Panday, Arnico

    2018-01-01

    Anthropogenic emissions from the combustion of fossil fuels and biomass in Asia have increased in recent years. High concentrations of reactive trace gases and light-absorbing and light-scattering particles from these sources form persistent haze layers, also known as atmospheric brown clouds, over the Indo-Gangetic plains (IGP) from December through early June. Models and satellite imagery suggest that strong wind systems within deep Himalayan valleys are major pathways by which pollutants from the IGP are transported to the higher Himalaya. However, observational evidence of the transport of polluted air masses through Himalayan valleys has been lacking to date. To evaluate this pathway, we measured black carbon (BC), ozone (O3), and associated meteorological conditions within the Kali Gandaki Valley (KGV), Nepal, from January 2013 to July 2015. BC and O3 varied over both diurnal and seasonal cycles. Relative to nighttime, mean BC and O3 concentrations within the valley were higher during daytime when the up-valley flow (average velocity of 17 m s-1) dominated. BC and O3 concentrations also varied seasonally with minima during the monsoon season (July to September). Concentrations of both species subsequently increased post-monsoon and peaked during March to May. Average concentrations for O3 during the seasonally representative months of April, August, and November were 41.7, 24.5, and 29.4 ppbv, respectively, while the corresponding BC concentrations were 1.17, 0.24, and 1.01 µg m-3, respectively. Up-valley fluxes of BC were significantly greater than down-valley fluxes during all seasons. In addition, frequent episodes of BC concentrations 2-3 times higher than average persisted from several days to a week during non-monsoon months. Our observations of increases in BC concentration and fluxes in the valley, particularly during pre-monsoon, provide evidence that trans-Himalayan valleys are important conduits for transport of pollutants from the IGP to the higher Himalaya.

  16. Impacts of Canadian and global black carbon shipping emissions on Arctic climate

    NASA Astrophysics Data System (ADS)

    Shrestha, R.; von Salzen, K.

    2017-12-01

    Shipping activities have increased across the Arctic and are projected to continue to increase in the future. In this study we compare the climate impacts of Canadian and global shipping black carbon (BC) emissions on the Arctic using the Canadian Center for Climate Modelling and Analysis Earth System Model (CanESM4.1). The model simulations are performed with and without shipping emissions at T63 (128 x 64) spectral resolution. Results indicate that shipping activities enhance BC concentrations across the area close to the shipping emissions, which causes increased absorption of solar radiation (direct effect). An impact of shipping on temperatures is simulated across the entire Arctic, with maximum warming in fall and winter seasons. Although global mean temperature changes are very similar between the two simulations, increase in Canadian BC shipping emissions cause warmer Arctic land surface temperature in summer due to the direct radiative effects of aerosol.

  17. Progress in the preparation and application of modified biochar for improved contaminant removal from water and wastewater.

    PubMed

    Ahmed, Mohammad Boshir; Zhou, John L; Ngo, Huu H; Guo, Wenshan; Chen, Mengfang

    2016-08-01

    Modified biochar (BC) is reviewed in its preparation, functionality, applications and regeneration. The nature of precursor materials, preparatory conditions and modification methods are key factors influencing BC properties. Steam activation is unsuitable for improving BC surface functionality compared with chemical modifications. Alkali-treated BC possesses the highest surface functionality. Both alkali modified BC and nanomaterial impregnated BC composites are highly favorable for enhancing the adsorption of different contaminants from wastewater. Acidic treatment provides more oxygenated functional groups on BC surfaces. The Langmuir isotherm model provides the best fit for sorption equilibria of heavy metals and anionic contaminants, while the Freundlich isotherm model is the best fit for emerging contaminants. The pseudo 2(nd) order is the most appropriate model of sorption kinetics for all contaminants. Future research should focus on industry-scale applications and hybrid systems for contaminant removal due to scarcity of data. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Enhanced capture of elemental mercury by bamboo-based sorbents.

    PubMed

    Tan, Zengqiang; Xiang, Jun; Su, Sheng; Zeng, Hancai; Zhou, Changsong; Sun, Lushi; Hu, Song; Qiu, Jianrong

    2012-11-15

    To develop cost-effective sorbent for gas-phase elemental mercury removal, the bamboo charcoal (BC) produced from renewable bamboo and KI modified BC (BC-I) were used for elemental mercury removal. The effect of NO, SO2 on gas-phase Hg0 adsorption by KI modified BC was evaluated on a fixed bed reactor using an online mercury analyzer. BET surface area analysis, temperature programmed desorption (TPD) and X-ray photoelectron spectroscopy (XPS) were used to determine the pore structure and surface chemistry of the sorbents. The results show that KI impregnation reduced the sorbents' BET surface area and total pore volume compared with that of the original BC. But the BC-I has excellent adsorption capacity for elemental mercury at a relatively higher temperature of 140 °C and 180 °C. The presence of NO or SO2 could inhibit Hg0 capture, but BC-I has strong anti-poisoning ability. The specific reaction mechanism has been further analyzed. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Influence of soil biochar aging on sorption of the herbicides MCPA, nicosulfuron, terbuthylazine, indaziflam, and fluoroethyldiaminotriazine.

    PubMed

    Trigo, Carmen; Spokas, Kurt A; Cox, Lucia; Koskinen, William C

    2014-11-12

    Sorption of four herbicides and a metabolite of indaziflam on a fresh macadamia nut biochar and biochars aged one or two years in soil was characterized. On fresh biochar, the sorption was terbuthylazine (Kd = 595) > indaziflam (Kd = 162) > MCPA (Kd = 7.5) > fluoroethyldiaminotriazine (Kd = 0.26) and nicosulfuron (Kd = 0). Biochar surface area increased with aging attributed to the loss of a surface film. This was also manifested in a decline in water extractable organic carbon with aging. Correspondingly, an increase in the aromaticity was observed. The higher surface area and porosity in aged biochar increased sorption of indaziflam (KdBC-2yr = 237) and fluoroethyldiaminotriazine (KdBC-1yr = 1.2 and KdBC-2yr = 3.0), but interestingly decreased sorption of terbuthylazine (KdBC-1yr = 312 and KdBC-2yr = 221) and MCPA (KdBC-1yr = 2 and KdBC-2yr = 2). These results will facilitate development of biochars for specific remediation purposes.

  20. Spatiotemporal Association of Real-Time Concentrations of Black Carbon (BC) with Fine Particulate Matters (PM2.5) in Urban Hotspots of South Korea.

    PubMed

    Kim, Sungroul; Yu, Sol; Yun, Dongmin

    2017-11-06

    We evaluated the spatiotemporal distributions of black carbon (BC) and particulate matters with aerodynamic diameters of less than 2.5 m (PM 2.5 ) concentrations at urban diesel engine emission (DEE) hotspots of South Korea. Concentrations of BC and PM 2.5 were measured at the entrance gate of two diesel bus terminals and a train station, in 2014. Measurements were conducted simultaneously at the hotspot (Site 1) and at its adjacent, randomly selected, residential areas, apartment complex near major roadways, located with the same direction of 300 m (Site 2) and 500 m (Site 3) away from Site 1 on 4 different days over the season, thrice per day; morning ( n = 120 measurements for each day and site), evening ( n = 120), and noon ( n = 120). The median (interquartile range) PM 2.5 ranged from 12.6 (11.3-14.3) to 60.1 (47.0-76.0) μg/m³ while those of BC concentrations ranged from 2.6 (1.9-3.7) to 6.3 (4.2-10.3) μg/m³. We observed a strong relationship of PM 2.5 concentrations between sites (slopes 0.89-0.9, the coefficient of determination 0.89-0.96) while the relationship for BC concentrations between sites was relatively weak (slopes 0.76-0.85, the coefficient of determination 0.54-0.72). PM 2.5 concentrations were changed from 4% to 140% by unit increase of BC concentration, depending on site and time while likely supporting the necessity of monitoring of BC as well as PM 2.5 , especially at urban DEE related hotspot areas.

  1. Granular biochar compared with activated carbon for wastewater treatment and resource recovery.

    PubMed

    Huggins, Tyler M; Haeger, Alexander; Biffinger, Justin C; Ren, Zhiyong Jason

    2016-05-01

    Granular wood-derived biochar (BC) was compared to granular activated carbon (GAC) for the treatment and nutrient recovery of real wastewater in both batch and column studies. Batch adsorption studies showed that BC material had a greater adsorption capacity at the high initial concentrations of total chemical oxygen demand (COD-T) (1200 mg L(-1)), PO4 (18 mg L(-1)), and NH4 (50 mg L(-1)) compared to GAC. Conversely the BC material showed a lower adsorption capacity for all concentrations of dissolved chemical oxygen demand (COD-D) and the lower concentrations of PO4 (5 mg L(-1)) and NH4 (10 mg L(-1)). Packed bed column studies showed similar average COD-T removal rate for BC with 0.27 ± 0.01 kg m(-3) d(-1) and GAC with 0.24 ± 0.01 kg m(-3) d(-1), but BC had nearly twice the average removal rate (0.41 ± 0.08 kg m(-3) d(-3)) compared to GAC during high COD-T concentrations (>500 mg L(-1)). Elemental analysis showed that both materials accumulated phosphorous during wastewater treatment (2.6 ± 0.4 g kg(-1) and 1.9 ± 0.1 g kg(-1) for BC and GAC respectively). They also contained high concentrations of other macronutrients (K, Ca, and Mg) and low concentrations of metals (As, Cd, Cr, Pb, Zn, and Cu). The good performance of BC is attributed to its macroporous structure compared with the microporous GAC. These favorable treatment data for high strength wastewater, coupled with additional life-cycle benefits, helps support the use of BC in packed bed column filters for enhanced wastewater treatment and nutrient recovery. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Measured Black Carbon Deposition on the Sierra Nevada Snow Pack and Implication for Snow Pack Retreat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hadley, O.L.; Corrigan, C.E.; Kirchstetter, T.W.

    2010-01-12

    Modeling studies show that the darkening of snow and ice by black carbon deposition is a major factor for the rapid disappearance of arctic sea ice, mountain glaciers and snow packs. This study provides one of the first direct measurements for the efficient removal of black carbon from the atmosphere by snow and its subsequent deposition to the snow packs of California. The early melting of the snow packs in the Sierras is one of the contributing factors to the severe water problems in California. BC concentrations in falling snow were measured at two mountain locations and in rain atmore » a coastal site. All three stations reveal large BC concentrations in precipitation, ranging from 1.7 ng/g to 12.9 ng/g. The BC concentrations in the air after the snow fall were negligible suggesting an extremely efficient removal of BC by snow. The data suggest that below cloud scavenging, rather than ice nuclei, was the dominant source of BC in the snow. A five-year comparison of BC, dust, and total fine aerosol mass concentrations at multiple sites reveals that the measurements made at the sampling sites were representative of large scale deposition in the Sierra Nevada. The relative concentration of iron and calcium in the mountain aerosol indicates that one-quarter to one-third of the BC may have been transported from Asia.« less

  3. Stormwater and fire as sources of black carbon nanoparticles to Lake Tahoe.

    PubMed

    Bisiaux, Marion M; Edwards, Ross; Heyvaert, Alan C; Thomas, James M; Fitzgerald, Brian; Susfalk, Richard B; Schladow, S Geoffrey; Thaw, Melissa

    2011-03-15

    Emitted to the atmosphere through fire and fossil fuel combustion, refractory black carbon nanoparticles (rBC) impact human health, climate, and the carbon cycle. Eventually these particles enter aquatic environments, where they may affect the fate of other pollutants. While ubiquitous, the particles are still poorly characterized in freshwater systems. Here we present the results of a study determining rBC in waters of the Lake Tahoe watershed in the western United States from 2007 to 2009. The study period spanned a large fire within the Tahoe basin, seasonal snowmelt, and a number of storm events, which resulted in pulses of urban runoff into the lake with rBC concentrations up to 4 orders of magnitude higher than midlake concentrations. The results show that rBC pulses from both the fire and urban runoff were rapidly attenuated suggesting unexpected aggregation or degradation of the particles. We find that those processes prevent rBC concentrations from building up in the clear and oligotrophic Lake Tahoe. This rapid removal of rBC soon after entry into the lake has implications for the transport of rBC in the global aquatic environment and the flux of rBC from continents to the global ocean.

  4. Scavenging of black carbon in mixed phase clouds at the high alpine site Jungfraujoch

    NASA Astrophysics Data System (ADS)

    Cozic, J.; Verheggen, B.; Mertes, S.; Connolly, P.; Bower, K.; Petzold, A.; Baltensperger, U.; Weingartner, E.

    2007-04-01

    The scavenging of black carbon (BC) in liquid and mixed phase clouds was investigated during intensive experiments in winter 2004, summer 2004 and winter 2005 at the high alpine research station Jungfraujoch (3580 m a.s.l., Switzerland). Aerosol residuals were sampled behind two well characterized inlets; a total inlet which collected cloud particles (droplets and ice particles) as well as interstitial (unactivated) aerosol particles; an interstitial inlet which collected only interstitial aerosol particles. BC concentrations were measured behind each of these inlets along with the submicrometer aerosol number size distribution, from which a volume concentration was derived. These measurements were complemented by in-situ measurements of cloud microphysical parameters. BC was found to be scavenged into the condensed phase to the same extent as the bulk aerosol, which suggests that BC was covered with soluble material through aging processes, rendering it more hygroscopic. The scavenged fraction of BC (FScav,BC), defined as the fraction of BC that is incorporated into cloud droplets and ice crystals, decreases with increasing cloud ice mass fraction (IMF) from FScav,BC=60% in liquid phase clouds to FScav,BC~5-10% in mixed-phase clouds with IMF>0.2. This can be explained by the evaporation of liquid droplets in the presence of ice crystals (Wegener-Bergeron-Findeisen process), releasing BC containing cloud condensation nuclei back into the interstitial phase. In liquid clouds, the scavenged BC fraction is found to decrease with decreasing cloud liquid water content. The scavenged BC fraction is also found to decrease with increasing BC mass concentration since there is an increased competition for the available water vapour.

  5. Scavenging of black carbon in mixed phase clouds at the high alpine site Jungfraujoch

    NASA Astrophysics Data System (ADS)

    Cozic, J.; Verheggen, B.; Mertes, S.; Connolly, P.; Bower, K.; Petzold, A.; Baltensperger, U.; Weingartner, E.

    2006-11-01

    The scavenging of black carbon (BC) in liquid and mixed phase clouds was investigated during intensive experiments in winter 2004, summer 2004 and winter 2005 at the high alpine research station Jungfraujoch (3580 m a.s.l., Switzerland). Aerosol residuals were sampled behind two well characterized inlets; a total inlet which collected cloud particles (drops and ice particles) as well as interstitial aerosol particles; an interstitial inlet which collected only interstitial (unactivated) aerosol particles. BC concentrations were measured behind each of these inlets along with the submicrometer aerosol number size distribution, from which a volume concentration was derived. These measurements were complemented by in-situ measurements of cloud microphysical parameters. BC was found to be scavenged into the cloud phase to the same extent as the bulk aerosol, which suggests that BC was covered with soluble material through aging processes, rendering it more hygroscopic. The scavenged fraction of BC (FScav,BC), defined as the fraction of BC that is incorporated into cloud droplets and ice crystals, decreases with increasing cloud ice mass fraction (IMF) from FScav,BC=60% in liquid phase clouds to FScav,BC~10% in mixed-phase clouds with IMF>0.2. This is explained by the evaporation of liquid droplets in the presence of ice crystals (Wegener-Bergeron-Findeisen process), releasing BC containing cloud condensation nuclei back into the interstitial phase. In liquid clouds, the scavenged BC fraction is found to decrease with decreasing cloud liquid water content. The scavenged BC fraction is also found to decrease with increasing BC mass concentration since there is an increased competition for the available water vapour.

  6. Aerosol black carbon at an urban site-Srinagar, Northwestern Himalaya, India: Seasonality, sources, meteorology and radiative forcing

    NASA Astrophysics Data System (ADS)

    Bhat, Mudasir Ahmad; Romshoo, Shakil Ahmad; Beig, Gufran

    2017-09-01

    Black carbon (BC) mass concentration was measured first-time at a high altitude urban site-Srinagar (1600 m asl), in northwestern Himalaya, India using an Aethalometer during 2013 to study temporal variations (monthly, diurnal and seasonal), meteorological influences, source and its radiative forcing. Diurnal variations with two peaks (at 8-10 h and 20-23 h) and two dips (at 13-17 h and 0-3 h) were observed throughout the year with varying magnitude. November and April showed the highest (13.6 μg/m3) and the lowest (3.4 μg/m3) mean monthly BC concentration respectively. Seasonally, autumn displayed the highest (9.2 μg/m3) and spring the lowest (3.5 μg/m3) mean BC concentration. Annual average BC concentration was quite higher (6 μg/m3) than those reported for other high altitude stations. Wind speed, Minimum temperature and total precipitation showed a clear negative correlation with BC (r = -0.63, -0.51 and -0.55 respectively), while as, the evening relative humidity showed positive correlation (r = 0.56). During autumn, spring and winter seasons, the main source of BC at Srinagar is the biomass burning, while during summer season, equal contribution of BC is from fossil fuel and biomass burning. Back trajectory simulations revealed that, except summer, westerly air masses are the dominant winds, transporting BC from central Asia, west Asia, south Asia, Africa and some parts of Europe to Srinagar adding to its local sources. Clear-sky short wave radiative forcing of atmosphere due to BC was highest (58.2 W m-2) during autumn which leads to the increase in lower atmospheric heating rate by 1.6 K/d. The high concentration of BC observed over the high-altitude Himalayan Kashmir region has serious implications for the regional climate, hydrology and cryosphere which needs to be investigated.

  7. Development of a portable wireless system for bipolar concentric ECG recording

    NASA Astrophysics Data System (ADS)

    Prats-Boluda, G.; Ye-Lin, Y.; Bueno Barrachina, J. M.; Senent, E.; Rodriguez de Sanabria, R.; Garcia-Casado, J.

    2015-07-01

    Cardiovascular diseases (CVDs) remain the biggest cause of deaths worldwide. ECG monitoring is a key tool for early diagnosis of CVDs. Conventional monitors use monopolar electrodes resulting in poor spatial resolution surface recordings and requiring extensive wiring. High-spatial resolution surface electrocardiographic recordings provide valuable information for the diagnosis of a wide range of cardiac abnormalities, including infarction and arrhythmia. The aim of this work was to develop and test a wireless recording system for acquiring high spatial resolution ECG signals, based on a flexible tripolar concentric electrode (TCE) without cable wiring or external reference electrode which would make more comnfortable its use in clinical practice. For this, a portable, wireless sensor node for analogue conditioning, digitalization and transmission of a bipolar concentric ECG signal (BC-ECG) using a TCE and a Mason-likar Lead-I ECG (ML-Lead-I ECG) signal was developed. Experimental results from a total of 32 healthy volunteers showed that the ECG fiducial points in the BC-ECG signals, recorded with external and internal reference electrode, are consistent with those of simultaneous ML-Lead-I ECG. No statistically significant difference was found in either signal amplitude or morphology, regardless of the reference electrode used, being the signal-to-noise similar to that of ML-Lead-I ECG. Furthermore, it has been observed that BC-ECG signals contain information that could not available in conventional records, specially related to atria activity. The proposed wireless sensor node provides non-invasive high-local resolution ECG signals using only a TCE without additional wiring, which would have great potential in medical diagnosis of diseases such as atrial or ventricular fibrillations or arrhythmias that currently require invasive diagnostic procedures (catheterization).

  8. Dissolved black carbon in the global cryosphere: concentrations and chemical signatures

    NASA Astrophysics Data System (ADS)

    Khan, A. L.; Wagner, S.; Jaffe, R.; Xian, P.; Williams, M. W.; Armstrong, R. L.; McKnight, D. M.

    2017-12-01

    Black carbon (BC) is derived from the incomplete combustion of biomass and fossil fuels and can enhance glacial recession when deposited on snow and ice surfaces. Here we explore the influence of environmental conditions and the proximity to anthropogenic sources on the concentration and composition of dissolved black carbon (DBC), as measured by benzenepolycaroxylic acid (BPCA) markers, across snow, lakes, and streams from the global cryosphere. Data are presented from Antarctica, the Arctic, and high alpine regions of the Himalayas, Rockies, Andes, and Alps. DBC concentrations spanned from 0.62 μg/L to 170 μg/L. The median and (2.5, 97.5) quantiles in the pristine samples were 1.8 μg/L (0.62, 12), and non-pristine samples were 21 μg/L (1.6, 170). DBC is susceptible to photodegradation when exposed to solar radiation. This process leads to a less condensed BPCA signature. In general, DBC across the dataset was comprised of less-polycondensed DBC. However, DBC from the Greenland Ice Sheet (GRIS) had a highly-condensed BPCA molecular signature. This could be due to recent deposition of BC from Canadian wildfires. Variation in DBC appears to be driven by a combination of photochemical processing and the source combustion conditions under which the DBC was formed. Overall, DBC was found to persist across the global cryosphere in both pristine and non-pristine snow and surface waters. The high concentration of DBC measured in supra-glacial melt on the GRIS suggests DBC can be mobilized across ice surfaces. This is significant because these processes may jointly exacerbate surface albedo reduction in the cryosphere.

  9. Optimization of ultrasonic-assisted extraction of bioactive alkaloid compounds from rhizoma coptidis (Coptis chinensis Franch.) using response surface methodology.

    PubMed

    Teng, Hui; Choi, Yong Hee

    2014-01-01

    The optimum extraction conditions for the maximum recovery of total alkaloid content (TAC), berberine content (BC), palmatine content (PC), and the highest antioxidant capacity (AC) from rhizoma coptidis subjected to ultrasonic-assisted extraction (UAE) were determined using response surface methodology (RSM). Central composite design (CCD) with three variables and five levels was employed, and response surface plots were constructed in accordance with a second order polynomial model. Analysis of variance (ANOVA) showed that the quadratic model was well fitted and significant for responses of TAC, BC, PC, and AA. The optimum conditions obtained through the overlapped contour plot were as follows: ethanol concentration of 59%, extraction time of 46.57min, and temperature of 66.22°C. Verification experiment was carried out, and no significant difference was found between observed and estimated values for each response, suggesting that the estimated models were reliable and valid for UAE of alkaloids. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  10. Simulations of aerosol constituents and their sources of origin over Indo-Gangetic plain (IGP) to Himalayan foothills: a new perspective of GCM estimates

    NASA Astrophysics Data System (ADS)

    Kumar, B. D.; Verma, S.; Wang, R.; Boucher, O.

    2016-12-01

    In the present study, we evaluated aerosol constituents of the model using the measurements during premonsoon over Indo-Gangetic plain (IGP) to Himalayan foothills. Aerosol transport simulations were carried out in general circulation model (GCM) of Laboratoire de M ´et ´eorologie Dynamique (LMD-GCM) with three set of emissions including Indian emissions in GCM-Indemiss, global emissions in GCM coupled with aerosol interactive chemistry (GCM-INCA-I), and the global emissions with updated BC emission inventory over Asia in GCM-INCA-II. Among three models, GCM-indemiss reproduced measured single scattering albedo (SSA) at 670 nm with a relative bias of 5%. However, the estimated 30-50% of the measured aerosol optical depth (AOD) at 550 nm and 20-60% of the measured surface concentration of aerosol constituents (e.g. black carbon (BC), organic carbon (OC), and sulfate) at most of the times over the study period. Inability of model to reproduce observed AOD changes was attributed to the paucity of emissions represented in the model. Design of retrieval simulations using existing GCM-indemiss estimates was further carried out. Retrieval simulations have produced better results, which showed constituent surface concentration in the vicinity of the measurements with normalized mean bias (NMB) of <30%. Scatter analysis between surface and elevated contribution of region's emissions showed anthropogenic emissions from the IGP on anthropogenic days and the north west India (NWI) on anthropogenic with dust days influence aerosols over northern India (NI). Our analysis showed BC emissions from base inventory for the corresponding grids of source region influencing NI were lower by 200% compared to that of modified scenario. These emissions will further be implemented in an atmospheric GCM to evaluate their performance validating with measurements data.

  11. Spatial and temporal variations in traffic-related particulate matter at New York City high schools

    NASA Astrophysics Data System (ADS)

    Patel, Molini M.; Chillrud, Steven N.; Correa, Juan C.; Feinberg, Marian; Hazi, Yair; Deepti, K. C.; Prakash, Swati; Ross, James M.; Levy, Diane; Kinney, Patrick L.

    Relatively little is known about exposures to traffic-related particulate matter at schools located in dense urban areas. The purpose of this study was to examine the influences of diesel traffic proximity and intensity on ambient concentrations of fine particulate matter (PM 2.5) and black carbon (BC), an indicator of diesel exhaust particles, at New York City (NYC) high schools. Outdoor PM 2.5 and BC were monitored continuously for 4-6 weeks at each of 3 NYC schools and 1 suburban school located 40 km upwind of the city. Traffic count data were obtained using an automated traffic counter or video camera. BC concentrations were 2-3 fold higher at urban schools compared with the suburban school, and among the 3 urban schools, BC concentrations were higher at schools located adjacent to highways. PM 2.5 concentrations were significantly higher at urban schools than at the suburban school, but concentrations did not vary significantly among urban schools. Both hourly average counts of trucks and buses and meteorological factors such as wind direction, wind speed, and humidity were significantly associated with hourly average ambient BC and PM 2.5 concentrations in multivariate regression models. An increase of 443 trucks/buses per hour was associated with a 0.62 μg/m 3 increase in hourly average BC at an NYC school located adjacent to a major interstate highway. Car traffic counts were not associated with BC. The results suggest that local diesel vehicle traffic may be important sources of airborne fine particles in dense urban areas and consequently may contribute to local variations in PM 2.5 concentrations. In urban areas with higher levels of diesel traffic, local, neighborhood-scale monitoring of pollutants such as BC, which compared to PM 2.5, is a more specific indicator of diesel exhaust particles, may more accurately represent population exposures.

  12. Diurnal and seasonal variations of black carbon and PM2.5 over New Delhi, India: Influence of meteorology

    NASA Astrophysics Data System (ADS)

    Tiwari, S.; Srivastava, A. K.; Bisht, D. S.; Parmita, P.; Srivastava, Manoj K.; Attri, S. D.

    2013-05-01

    Black carbon (BC), which is one of the highly absorbing capacities of solar radiation, reduces albedo of atmospheric aerosol. BC along with fine particulate matters (PM2.5), which play crucial role in climate and health, was monitored online for an entire year of 2011 at an urban megacity of Delhi, situated in the northern part of India. Daily mass concentration of BC varies from 0.9 to 25.5 μg m- 3, with an annual mean of 6.7 ± 5.7 μg m- 3 displayed clear monsoon minima and winter maxima; however, PM2.5 concentration was ranging from 54.3 to 338.7 μg m- 3, with an annual mean of 122.3 ± 90.7 μg m- 3. BC typically peaked between 0800 and 1000 LST and again between 2100 and 2300 LST, corresponding to the morning and evening traffic combined with the ambient meteorological effect. During summer and monsoon, the BC concentrations were found less than 5 μg m- 3; however, the highest concentrations occurred during winter in segments from < 5 to > 10 μg m- 3. In over all study, the BC mass concentration was accounted for ~ 6% of the total PM2.5 mass, with a range from 1.0% to 14.3%. The relationship between meteorological parameters and BC mass concentrations was studied and a clear inverse relationship (r = - 0.53) between BC and wind speed was observed. Relation between visibility and BC mass concentrations was also significantly negative (- 0.81), having relatively higher correlation during post-monsoon (- 0.85) and winter (- 0.78) periods and lower during summer (- 0.45) and monsoon (- 0.54) periods. The mixed layer depths (MLDs) were found to be shallower during post monsoon (379 m) and winter (335 m) as compared during summer (1023 m) and monsoon (603 m). The study indicated that during post-monsoon season, the impact of biomass burning is higher as compared to combustion of fossil fuels. Results are well associated with the rapid growth of anthropogenic emissions and ambient meteorological conditions over the station.

  13. Ambient measurements and source apportionment of fossil fuel and biomass burning black carbon in Ontario

    NASA Astrophysics Data System (ADS)

    Healy, R. M.; Sofowote, U.; Su, Y.; Debosz, J.; Noble, M.; Jeong, C.-H.; Wang, J. M.; Hilker, N.; Evans, G. J.; Doerksen, G.; Jones, K.; Munoz, A.

    2017-07-01

    Black carbon (BC) is of significant interest from a human exposure perspective but also due to its impacts as a short-lived climate pollutant. In this study, sources of BC influencing air quality in Ontario, Canada were investigated using nine concurrent Aethalometer datasets collected between June 2015 and May 2016. The sampling sites represent a mix of background and near-road locations. An optical model was used to estimate the relative contributions of fossil fuel combustion and biomass burning to ambient concentrations of BC at every site. The highest annual mean BC concentration was observed at a Toronto highway site, where vehicular traffic was found to be the dominant source. Fossil fuel combustion was the dominant contributor to ambient BC at all sites in every season, while the highest seasonal biomass burning mass contribution (35%) was observed in the winter at a background site with minimal traffic contributions. The mass absorption cross-section of BC was also investigated at two sites, where concurrent thermal/optical elemental carbon data were available, and was found to be similar at both locations. These results are expected to be useful for comparing the optical properties of BC at other near-road environments globally. A strong seasonal dependence was observed for fossil fuel BC at every Ontario site, with mean summer mass concentrations higher than their respective mean winter mass concentrations by up to a factor of two. An increased influence from transboundary fossil fuel BC emissions originating in Michigan, Ohio, Pennsylvania and New York was identified for the summer months. The findings reported here indicate that BC should not be considered as an exclusively local pollutant in future air quality policy decisions. The highest seasonal difference was observed at the highway site, however, suggesting that changes in fuel composition may also play an important role in the seasonality of BC mass concentrations in the near-road environment. This finding has implications for future policies aiming to improve air quality in urban environments where fuel composition changes as a function of season.

  14. N-doping effectively enhances the adsorption capacity of biochar for heavy metal ions from aqueous solution.

    PubMed

    Yu, Wenchao; Lian, Fei; Cui, Guannan; Liu, Zhongqi

    2018-02-01

    N-doping was successfully employed to improve the adsorption capacity of biochar (BC) for Cu 2+ and Cd 2+ by direct annealing of crop straws in NH 3 . The surface N content of BC increased more than 20 times by N-doping; meanwhile the content of oxidized-N was gradually diminished but graphitic-N was formed and increased with increasing annealing temperature and duration time. After N-doping, a high graphitic-N percentage (46.4%) and S BET (418.7 m 2 /g) can be achieved for BC. As a result, the N-doped BC exhibited an excellent adsorption capacity for Cu 2+ (1.63 mmol g -1 ) and Cd 2+ (1.76 mmol g -1 ), which was up to 4.0 times higher than that of the original BC. Furthermore, the adsorption performance of the N-doped BC remained stable even at acidic conditions. A positive correlation can be found between adsorption capacity with the graphitic N content on BC surface. The surface chemistry of N-doped BC before and after the heavy metal ions adsorption was carefully examined by XPS and FTIR techniques, which indicated that the adsorption mechanisms mainly included cation-π bonding and complexation with graphitic-N and hydroxyl groups of carbon surfaces. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Light Absorption in Arctic Sea Ice - Black Carbon vs Chlorophyll

    NASA Astrophysics Data System (ADS)

    Ogunro, O. O.; Wingenter, O. W.; Elliott, S.; Hunke, E. C.; Flanner, M.; Wang, H.; Dubey, M. K.; Jeffery, N.

    2015-12-01

    The fingerprint of climate change is more obvious in the Arctic than any other place on Earth. This is not only because the surface temperature there has increased at twice the rate of global mean temperature but also because Arctic sea ice extent has reached a record low of 49% reduction relative to the 1979-2000 climatology. Radiation absorption through black carbon (BC) deposited on Arctic snow and sea ice surface is one of the major hypothesized contributors to the decline. However, we note that chlorophyll-a absorption owing to increasing biology activity in this region could be a major competitor during boreal spring. Modeling of sea-ice physical and biological processes together with experiments and field observations promise rapid progress in the quality of Arctic ice predictions. Here we develop a dynamic ice system module to investigate discrete absorption of both BC and chlorophyll in the Arctic, using BC deposition fields from version 5 of Community Atmosphere Model (CAM5) and vertically distributed layers of chlorophyll concentrations from Sea Ice Model (CICE). To this point, our black carbon mixing ratios compare well with available in situ data. Both results are in the same order of magnitude. Estimates from our calculations show that sea ice and snow around the Canadian Arctic Archipelago and Baffin Bay has the least black carbon absorption while values at the ice-ocean perimeter in the region of the Barents Sea peak significantly. With regard to pigment concentrations, high amounts of chlorophyll are produced in Arctic sea ice by the bottom microbial community, and also within the columnar pack wherever substantial biological activity takes place in the presence of moderate light. We show that the percentage of photons absorbed by chlorophyll in the spring is comparable to the amount attributed to BC, especially in areas where the total deposition rates are decreasing with time on interannual timescale. We expect a continuous increase in chlorophyll absorption as the biological activity becomes stronger in thin ice toward the center of the Arctic basin. Alternatively, a shift in relative importance could occur as total BC mixing ratios are reduced because of environmental advocacy.

  16. Black Carbon Trends over Several Decades at Multiple Locations

    NASA Astrophysics Data System (ADS)

    Preble, C. V.; Hadley, O. L.; Bond, T. C.; Kirchstetter, T.

    2012-12-01

    Archived air quality data in the U.S. and Europe can be used to reconstruct past trends in black carbon (BC), an indicator of fossil fuel combustion and biomass burning. Here, we consider coefficient of haze (COH) data that was extensively measured in California, New Jersey, and other North American locations from the mid-1960s to the turn of the century. We reinstated COH monitors alongside aethalometers in Vallejo and San Jose, California, and after two years of air monitoring determined that COH is proportional to and, thus, can be used to infer past concentrations of BC. Analyzing COH data sets, we found that BC concentrations markedly decreased from 1965 to 2000 in both California and New Jersey. The opposing trend of increasing energy consumption over the same period indicates successful regulatory control of sources and a shift from dirtier to cleaner fuels. As air quality improved over four decades, a seasonal trend of maximum BC concentrations in winter persisted in California but, somewhat surprisingly, disappeared in New Jersey. A strong weekly cycle of lowest BC concentrations on weekends was evident in California and New Jersey, suggesting that diesel traffic, which exhibits a similar weekly cycle, has been a major source of BC in both states. Our extended analysis will include BC trends in other regions of North America and Europe and will be applied to understand BC radiative forcing in California and deposition of pollutants in the Arctic.

  17. Assessing the chemical and biological accessibility of the herbicide isoproturon in soil amended with biochar.

    PubMed

    Sopeña, Fatima; Semple, Kirk; Sohi, Saran; Bending, Gary

    2012-06-01

    There is considerable current interest in using biochar (BC) as a soil amendment to sequester carbon to mitigate climate change. However, the implications of adding BC to agricultural soil for the environmental fate of pesticides remain unclear. In particular, the effect of biochars on desorption behavior of compounds is poorly understood. This study examined the influence of BC on pesticide chemical and biological accessibility using the herbicide isoproturon (IPU). Soils amended with 1% and 2% BC showed enhanced sorption, slower desorption, and reduced biodegradation of IPU. Addition of 0.1% BC had no effect on sorption, desorption or biodegradation of IPU. However, the mineralization of (14)C-IPU was reduced by all BC concentrations, reducing by 13.6%, 40.1% and 49.8% at BC concentrations of 0.1%, 1% and 2% respectively. Further, the ratio of the toxic metabolite 4-isopropyl-aniline to intact IPU was substantially reduced by higher BC concentrations. Hydroxypropyl-β-cyclodextrin (HPCD) extractions were used to estimate the IPU bioaccessibility in the BC-amended soil. Significant correlations were found between HPCD-extracted (14)C-IPU and the IPU desorbed (%) (r(2)=0.8518, p<0.01), and also the (14)C-IPU mineralized (%) (r(2)=0.733; p<0.01) for all BC-amended soils. This study clearly demonstrates how desorption in the presence of BC is intimately related to pesticide biodegradation by the indigenous soil microbiota. BC application to agricultural soils can affect the persistence of pesticides as well as the fate of their degradation products. This has important implications for the effectiveness of pesticides as well as the sequestration of contaminants in soils. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Impacts of Himalayas on black carbon over the Tibetan Plateau during summer monsoon.

    PubMed

    Zhao, Shuyu; Tie, Xuexi; Long, Xin; Cao, Junji

    2017-11-15

    The Tibetan Plateau (TP) plays important roles in global climate and environment. This study combines in-situ BC measurements in the Himalayas and the Indo-Gangetic Plain (IGP) with a regional dynamical and chemical model (WRF-Chem model) to investigate the effect of the trans-Himalayas on black carbon (BC) from the IGP to the TP during Indian summer monsoon. To determine topographic effects of the trans-Himalayas on BC concentrations over the TP, sensitive experiments were conducted by applying the WRF-Chem model. The results showed that the reduction of the altitude of the Himalayas had an important effect on the trans-Himalayas transport of BC. There was an obvious increase in BC concentration over the trans-Himalayas region, but no significant increase over the TP because the TP (a.m.s.l ~4km) always acted as a wall to prevent BC transport from the IGP to the TP. The trans-Himalayas transport of BC was strongly dependent upon meteorological conditions over the IGP. During summer monsoon, there were three types of cyclones at different locations and one kind of convergent circulation in the IGP. Under the condition of convergent airflows, a strong northeastward wind produced the trans-Himalayas transport of BC. As a result, BC concentrations in the southeastern TP significantly increased to 0.6-0.8μgm -3 . When the cyclone located in the eastern IGP, high BC concentrations over the IGP were transported along the foothill of the Himalayas, resulting in a significant reduction of the trans-Himalayas transport. When the cyclone moved to the west, the dynamical perturbations for the trans-Himalayas transport were weaker than the eastern cyclone, and the trans-Himalayas transport were enhanced in the middle and eastern Himalayas. This study will be helpful to assess the impacts of BC particles emitted from South Asia on regional climate change and ecological environment over the TP in the future. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Resistance to quaternary ammonium compounds in food-related bacteria.

    PubMed

    Sidhu, Maan Singh; Sørum, Henning; Holck, Askild

    2002-01-01

    Microbial resistance to antimicrobial agents continues to be a major problem. The frequent use and misuse of disinfectants based on quaternary ammonium compounds (QACs) in food-processing industries have imposed a selective pressure and may contribute to the emergence of disinfectant-resistant microorganisms. A total number of 1,325 Gram-negative isolates (Escherichia coli, other coliforms Vibrio spp., and Aeromonas spp.) and 500 Enterococcus spp. from food and food-processing industries and fish farming were screened for natural resistance to the QAC-based disinfectant benzalkonium chloride (BC). Of the 1,825 isolates, 16 strains, mainly from meat retail shops, showed low-level resistance to BC. None of the Enterococcus spp. from broiler, cattle, and pigs, the antibiotic-resistant E. coli from pig intestine and fish pathogens Vibrio spp. and Aeromonas spp. from the Norwegian fish farming industry were resistant to BC. The BC-resistant strains were examined for susceptibility to 15 different antibiotics, disinfectants, and dyes. No systematic cross-resistance between BC and any of the other antimicrobial agents tested was detected. Stable enhanced resistance in Enterobacter cloacae isolates was demonstrated by step-wise adaptation in increasing concentrations of BC. In conclusion, BC resistance among food-associated Gram-negative bacteria and Enterococcus spp. is not frequent, but resistance may develop to user concentrations after exposure to sublethal concentrations of BC.

  20. Wet Removal of Organic and Black Carbon Aerosols

    NASA Astrophysics Data System (ADS)

    Torres, A.; Bond, T. C.; Lehmann, C.

    2012-12-01

    Organic carbon (OC) and black carbon (BC) aerosols derived from the combustion of fossil fuels and biomass are significant atmospheric pollutants that alter the Earth's radiation balance and affect human health. Carbonaceous aerosol lifetime and extent of its effects are mainly controlled by its wet removal, especially by rain. Limited work has been done to measure both BC and OC from rain events even though these aerosols are co-emitted and exist together in the atmosphere. The choices of analytical techniques for measuring OC and BC in water are limited, and researchers often employ the same techniques used for measuring atmospheric carbon particles. There is no agreement in the methods employed for monitoring carbon concentration in precipitation. As part of the method development, the Single Particle Soot Photometer (SP2), Thermal-Optical Analysis (TOA), Ultraviolet/Visible (UV/VIS) Spectrophotometer, and the Total Organic Carbon (TOC) Analyzer were evaluated for measuring BC suspended in water, water insoluble OC (WIOC) and dissolved OC (DOC). The study also monitored the concentration of BC, WIOC, and DOC in rainwater collected at Bondville (Illinois) for 18 months. Results indicated that 34% (±3%) of the BC mass was lost in the SP2 analysis, most probably during the nebulization process. Filtration required for TOA also had large losses (>75%) because quartz fiber filters were ineffective for capturing BC particles from water. Addition of NH4H2PO4 as a coagulant improved (>95%) the capture efficiency of the filters. UV/VIS spectrophotometry had good linearity, but the sensitivity for detecting BC particles (±20 μg/L) suspended in water was inadequate. TOC analysis was a robust technique for measuring both DOC and total carbon (BC + OC). The chosen techniques were TOC analysis for DOC, and TOA with an optimized filtration procedure for BC and WIOC. The mean concentrations in rainwater were 8.72 (±9.84) μg/L of BC, 88.97 (±62.64) μg/L of WIOC, and 1,320 (1,380) μg/L of DOC. DOC contributed, mostly with anions, to the ion balance of rain samples. The total carbon concentration (BC+WIOC+DOC) decreased with increasing precipitation volume and directly correlated with the concentrations of SO42-, NO3-, Ca2+, NH4+, Mg2+, and K+ in rainwater.

  1. Linking Atmospheric Pollution to Cryospheric Changes over the Third Pole

    NASA Astrophysics Data System (ADS)

    Kang, S.; Zhang, Q.; Ji, Z.; Li, Y.; Chen, J.; Zhang, G.; Li, C.; Cong, Z.; Chen, P.; Guo, J.; Huang, J.; Tripathee, L.; Rupakheti, D.; Li, X.; Zhang, Y.; Panday, A. K.; Rupakheti, M.

    2016-12-01

    Known as "the Third Pole" (TP), the Tibetan Plateau and surrounding mountains hold the largest aggregate of glaciers outside the pole regions. Recent monitoring and projection indicated an accelerated glacier decline and increasing glacier runoff. The long-range transport of South Asian atmospheric pollutants, including light absorbing impurities (LAIs) such as black carbon (BC) and mineral dust (MD), can absorb the solar radiation in the atmosphere and reduce albedo after being deposited onto the cryosphere, thereby promoting glacier and snow melt. A coordinated atmospheric pollution monitoring network has been launched covering the TP with emphasis on trans-Himalayan transects since 2013. TSP were collected for 24h at an interval of 3-6 days. BC/OC, polycyclic aromatic hydrocarbons (PAHs) and heavy metals were measured. Results reveal a consistent decrease in almost all analyzed parameters from south to north across the Himalayas. Geochemical signatures of carbonaceous aerosols indicate dominant sources of biomass burning and vehicle exhaust, in line with results of PAHs. Integrated analysis of satellite images and air mass trajectories suggest that the trans-boundary air pollution occurred episodically and concentrated in pre-monsoon seasons via upper air circulation, through-valley wind, and local convection. Simulation results showed that carbonaceous aerosols produced positive/negative shortwave radiative forcing in the atmosphere/ground surface. Aerosols increased surface air temperatures by 0.1-0.5° over the TP and decreased temperatures in South Asia during the monsoon season. Surface snow/ice samples were collected from benchmark glaciers to estimate the impacts of LAIs on glacier melt with model assistance. BC (37%) and MD (32%) contribute to the summer melting of Laohugou Glacier in the northern TP. MD (38%) contributed more glacier melt than BC (11%) on Zhadang Glacier in the southern TP. In the southeastern TP, BC and MD contribute to 30% of the total glacier melt, up to 350 mm w.e. yr-1. The monitoring network and ongoing studies point to trans-boundary pollution as an increasing stressor for the TP environment, and highlighted the link between atmospheric pollution and cryospheric changes as well as other surface ecosystems over high mountain regions.

  2. Emissions of Black Carbon Particles in Anthropogenic and Biomass Plumes over California during CARB 2008

    NASA Astrophysics Data System (ADS)

    Sahu, L. K.; Kondo, Y.; Moteki, N.; Takegawa, N.; Zhao, Y.; Vay, S. A.; Diskin, G. S.; Wisthaler, A.; Huey, L. G.

    2009-12-01

    Measurements of black carbon (BC) and other chemical species were made from the NASA DC-8 aircraft during the CARB campaign conducted over California in June 2008. We operated an SP2 system that measured BC and scattering particles. The vertical profiles of BC and scattering particles show enhancements in the lower troposphere. We have used relations of CO-CH3CN-SO2 to identify the sources of major plumes. The plumes originating from anthropogenic activities, mainly due to the use of fossil fuels (FF), were observed near the surface. However, the influence of smoke plumes from wild fire or biomass-burning (BB) sources was observed up to 3 km. Overall, the 1-minute average BC mass concentrations were in the ranges of about 90-500 ng/m3 and 300-700 ng/m3 in FF and BB plumes, respectively. The shell/core diameter ratios were much lagerer in BB plumes than those in FF plumes. Namely, the median shell/core ratios were 1.2-1.4 for FF plumes, while they were 1.4-1.7 for BB plumes. In both FF and BB plumes, the mass-size distributions of BC were single mode lognormal. However, the mass median diameters FF plumes were considerably smaller. The BC-CO2 regression slopes were 19±9 ng m-3/ppmv and 270±90 ng m-3/ppmv for FF and BB plumes, respectively. On the other hand the regression slopes of BC-CO were about 3.3 ng m-3/ppbv in both the plumes. Conversely, the regression slopes of BC with other co-emitted combustions products can be used to estimate the contributions of emissions from different sources.

  3. Using Combustion Tracers to Estimate Surface Black Carbon Distributions in WRF-Chem

    NASA Astrophysics Data System (ADS)

    Raman, A.; Arellano, A. F.

    2015-12-01

    Black Carbon (BC) emissions significantly affect the global and regional climate, air quality, and human health. However, BC observations are currently limited in space and time; leading to considerable uncertainties in the estimates of BC distribution from regional and global models. Here, we investigate the usefulness of carbon monoxide (CO) in quantifying BC across continental United States (CONUS). We use high resolution EPA AQS observations of CO and IMPROVE BC to estimate BC/CO ratios. We model the BC and CO distribution using the community Weather Research and Forecasting model with Chemistry (WRF-Chem). We configured WRF-Chem using MOZART chemistry, NEI 2005, MEGAN, and FINNv1.5 for anthropogenic, biogenic and fire emissions, respectively. In this work, we address the following three key questions: 1) What are the discrepancies in the estimates of BC and CO distributions across CONUS during summer and winter periods?, 2) How do BC/CO ratios change for different spatial and temporal regimes?, 3) Can we get better estimates of BC from WRF-Chem if we use BC/CO ratios along with optimizing CO concentrations? We compare ratios derived from the model and observations and develop characteristic ratios for several geographical and temporal regimes. We use an independent set of measurements of BC and CO to evaluate these ratios. Finally, we use a Bayesian synthesis inversion to optimize CO from WRF-Chem using regionally tagged CO tracers. We multiply the characteristic ratios we derived with the optimized CO to obtain BC distributions. Our initial results suggest that the maximum ratios of BC versus CO occur in the western US during the summer (average: 4 ng/m3/ppbv) and in the southeast during the winter (average: 5 ng/m3/ppbv). However, we find that these relationships vary in space and time and are highly dependent on fuel usage and meteorology. We find that optimizing CO using EPA-AQS provides improvements in BC but only over areas where BC/CO ratios are close to observed values.Black Carbon (BC) emissions significantly affect the global and regional climate, air quality, and human health. However, BC observations are currently limited in space and time; leading to considerable uncertainties in the estimates of BC distribution from regional and global models. Here, we investigate the usefulness of carbon monoxide (CO) in quantifying BC across continental United States (CONUS). We use high resolution EPA AQS observations of CO and IMPROVE BC to estimate BC/CO ratios. We model the BC and CO distribution using the community Weather Research and Forecasting model with Chemistry (WRF-Chem). We configured WRF-Chem using MOZART chemistry, NEI 2005, MEGAN, and FINNv1.5 for anthropogenic, biogenic and fire emissions, respectively. In this work, we address the following three key questions: 1) What are the discrepancies in the estimates of BC and CO distributions across CONUS during summer and winter periods?, 2) How do BC/CO ratios change for different spatial and temporal regimes?, 3) Can we get better estimates of BC from WRF-Chem if we use BC/CO ratios along with optimizing CO concentrations? We compare ratios derived from the model and observations and develop characteristic ratios for several geographical and temporal regimes. We use an independent set of measurements of BC and CO to evaluate these ratios. Finally, we use a Bayesian synthesis inversion to optimize CO from WRF-Chem using regionally tagged CO tracers. We multiply the characteristic ratios we derived with the optimized CO to obtain BC distributions. Our initial results suggest that the maximum ratios of BC versus CO occur in the western US during the summer (average: 4 ng/m3/ppbv) and in the southeast during the winter (average: 5 ng/m3/ppbv). However, we find that these relationships vary in space and time and are highly dependent on fuel usage and meteorology. We find that optimizing CO using EPA-AQS provides improvements in BC but only over areas where BC/CO ratios are close to observed values.

  4. Analysis of air pollution over Hanoi, Vietnam using multi-satellite and MERRA reanalysis datasets.

    PubMed

    Lasko, Kristofer; Vadrevu, Krishna Prasad; Nguyen, Thanh Thi Nhat

    2018-01-01

    Air pollution is one of the major environmental concerns in Vietnam. In this study, we assess the current status of air pollution over Hanoi, Vietnam using multiple different satellite datasets and weather information, and assess the potential to capture rice residue burning emissions with satellite data in a cloud-covered region. We used a timeseries of Ozone Monitoring Instrument (OMI) Ultraviolet Aerosol Index (UVAI) satellite data to characterize absorbing aerosols related to biomass burning. We also tested a timeseries of 3-hourly MERRA-2 reanalysis Black Carbon (BC) concentration data for 5 years from 2012-2016 and explored pollution trends over time. We then used MODIS active fires, and synoptic wind patterns to attribute variability in Hanoi pollution to different sources. Because Hanoi is within the Red River Delta where rice residue burning is prominent, we explored trends to see if the residue burning signal is evident in the UVAI or BC data. Further, as the region experiences monsoon-influenced rainfall patterns, we adjusted the BC data based on daily rainfall amounts. Results indicated forest biomass burning from Northwest Vietnam and Laos impacts Hanoi air quality during the peak UVAI months of March and April. Whereas, during local rice residue burning months of June and October, no increase in UVAI is observed, with slight BC increase in October only. During the peak BC months of December and January, wind patterns indicated pollutant transport from southern China megacity areas. Results also indicated severe pollution episodes during December 2013 and January 2014. We observed significantly higher BC concentrations during nighttime than daytime with peaks generally between 2130 and 0030 local time. Our results highlight the need for better air pollution monitoring systems to capture episodic pollution events and their surface-level impacts, such as rice residue burning in cloud-prone regions in general and Hanoi, Vietnam in particular.

  5. Analysis of air pollution over Hanoi, Vietnam using multi-satellite and MERRA reanalysis datasets

    PubMed Central

    Vadrevu, Krishna Prasad; Nguyen, Thanh Thi Nhat

    2018-01-01

    Air pollution is one of the major environmental concerns in Vietnam. In this study, we assess the current status of air pollution over Hanoi, Vietnam using multiple different satellite datasets and weather information, and assess the potential to capture rice residue burning emissions with satellite data in a cloud-covered region. We used a timeseries of Ozone Monitoring Instrument (OMI) Ultraviolet Aerosol Index (UVAI) satellite data to characterize absorbing aerosols related to biomass burning. We also tested a timeseries of 3-hourly MERRA-2 reanalysis Black Carbon (BC) concentration data for 5 years from 2012–2016 and explored pollution trends over time. We then used MODIS active fires, and synoptic wind patterns to attribute variability in Hanoi pollution to different sources. Because Hanoi is within the Red River Delta where rice residue burning is prominent, we explored trends to see if the residue burning signal is evident in the UVAI or BC data. Further, as the region experiences monsoon-influenced rainfall patterns, we adjusted the BC data based on daily rainfall amounts. Results indicated forest biomass burning from Northwest Vietnam and Laos impacts Hanoi air quality during the peak UVAI months of March and April. Whereas, during local rice residue burning months of June and October, no increase in UVAI is observed, with slight BC increase in October only. During the peak BC months of December and January, wind patterns indicated pollutant transport from southern China megacity areas. Results also indicated severe pollution episodes during December 2013 and January 2014. We observed significantly higher BC concentrations during nighttime than daytime with peaks generally between 2130 and 0030 local time. Our results highlight the need for better air pollution monitoring systems to capture episodic pollution events and their surface-level impacts, such as rice residue burning in cloud-prone regions in general and Hanoi, Vietnam in particular. PMID:29738543

  6. Evaluating the air quality impacts of the 2008 Beijing Olympic Games: On-road emission factors and black carbon profiles

    NASA Astrophysics Data System (ADS)

    Wang, Xing; Westerdahl, Dane; Chen, Lung Chi; Wu, Ye; Hao, Jiming; Pan, Xiaochuan; Guo, Xinbiao; Zhang, K. Max

    The aggressive traffic interventions and emission control measures implemented to improve air quality during the 2008 Beijing Olympic Games created a valuable case study to evaluate the effectiveness of these measures on mitigating air pollution and protecting public health. In this paper, we report the results from our field campaign in summer 2008 on the on-road emission factors of carbon monoxide, black carbon (BC) and ultrafine particles (UFP) as well as the ambient BC concentrations. The fleet average emission factors for light-duty gasoline vehicles (LDGV) showed considerable reduction in the Olympic year (2008) compared to the pre-Olympic year (2007). Our measurement of Black Carbon (BC), a primary pollutant, at different elevations at the ambient site suggests consistent decrease in BC concentrations as the height increased near the ground level, which indicates that the nearby ground level sources, probably dominated by traffic, contributed to a large portion of BC concentrations in the lower atmospheric layer in Beijing during summertime. These observations indicate that people living in near ground levels experience higher exposures than those living in higher floors in Beijing. The BC diurnal patterns on days when traffic control were in place during the Olympic Games were compared to those on non-traffic-control days in both 2007 and in 2008. These patterns strongly suggest that diesel trucks are a major source of summertime BC in Beijing. The median BC concentration on Olympic days was 3.7 μg m -3, which was dramatically lower than the value on non-traffic-control days, indicating the effectiveness of traffic control regulations in BC reduction in Beijing.

  7. Enhancement of chromate reduction in soils by surface modified biochar.

    PubMed

    Mandal, Sanchita; Sarkar, Binoy; Bolan, Nanthi; Ok, Yong Sik; Naidu, Ravi

    2017-01-15

    Chromium (Cr) is one of the common metals present in the soils and may have an extremely deleterious environmental impact depending on its redox state. Among two common forms, trivalent Cr(III) is less toxic than hexavalent Cr(VI) in soils. Carbon (C) based materials including biochar could be used to alleviate Cr toxicity through converting Cr(VI) to Cr(III). Incubation experiments were conducted to examine Cr(VI) reduction in different soils (Soil 1: pH 7.5 and Soil 2: pH 5.5) with three manures from poultry (PM), cow (CM) and sheep (SM), three respective manure-derived biochars (PM biochar (PM-BC), CM biochar (CM-BC) and SM biochar (SM-BC)) and two modified biochars (modified PM-BC (PM-BC-M) and modified SM-BC (SM-BC-M)). Modified biochar was synthesized by incorporating chitosan and zerovalent iron (ZVI) during pyrolysis. Among biochars, highest Cr(VI) reduction was observed with PM-BC application (5%; w/w) (up to 88.12 mg kg -1 ; 45% reduction) in Soil 2 (pH 5.5). The modified biochars enhanced Cr(VI) reduction by 55% (SM-BC-M) compared to manure (29%, SM) and manure-derived biochars (40% reduction, SM-BC). Among the modified biochars, SM-BC-M showed a higher Cr(VI) reduction rate (55%) than PM-BC-M (48%) in Soil 2. Various oxygen-containing surface functional groups such as phenolic, carboxyl, carbonyl, etc. on biochar surface might act as a proton donor for Cr(VI) reduction and subsequent Cr(III) adsorption. This study underpins the immense potential of modified biochar in remediation of Cr(VI) contaminated soils. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Dirty Snow, Atmospheric Warming, and Climate Feedbacks from Boreal Black Carbon Emissions

    NASA Astrophysics Data System (ADS)

    Flanner, M. G.; Zender, C. S.; Randerson, J. T.; Jin, Y.

    2005-12-01

    Black carbon (BC) emitted from boreal fires darkens snow and sea-ice surfaces, increases solar absorption in the atmosphere, and decreases the incident flux at the surface. Although global surface forcing of darkened snow/ice is small relative to atmospheric forcing, the former directly triggers ice-albedo feedback, whereas the latter directly alters the atmospheric lapse rate. This highlights the importance of examining climate feedback strength as well as instantaneous forcings. We used a coupled land-atmosphere GCM (NCAR CAM3) to compare the relative forcings and climate feedbacks of BC emitted from a suite of boreal forest fires over the last decade, accounting for both enhanced snow/ice and atmospheric absorption by BC. The net change in absorbed energy at the surface was about three times greater than the instantaneous surface forcing when BC interactively heated the snow. Timing and location of fires determined the magnitude of darkened snow/ice feedback potential. We also assessed climate feedback strength from BC emitted globally during extreme high and low fire years, including the 1998 fire season.

  9. Analyzing 20 years of Black Carbon measurements in Germany

    NASA Astrophysics Data System (ADS)

    Kutzner, R. D.; Quedenau, J.; Kuik, F.; von Schneidemesser, E.; Schmale, J.

    2016-12-01

    Black Carbon (BC) is an important short-lived climate-forcing pollutant contributing to global warming through absorption of sunlight. In addition, BC, as a component of particulate matter (PM) exerts adverse health effects. Anthropogenic emission sources of BC include residential heating, transport, and agricultural fires, and the dominant natural emission source is wildfires. Despite the adverse effects of BC, legislation that requires mandatory monitoring of BC concentrations does not currently exist in the European Union (EU). Instead, BC is only indirectly monitored as component of PM10 and PM2.5 (PM with a diameter smaller 10 µm and 2.5 µm, respectively). Before the introduction of mandatory PM10 and PM2.5 monitoring in the EU in 2005 and 2015, respectively, `black smoke' (BS), a surrogate for BC, was a required measurement in Germany from the early 1990s. The annual mean limit value was 14 µg/m3 from 1995 and 8 µg/m³ from 1998. In 2004, many measurements were stopped, with the repeal of the regulations. In most German federal states a limited number BC monitoring stations continued to operate. We present a synthesis of BC data from 213 stations across Germany covering the period between 1994 and 2014. Due to the lack of a standardized method and respective legislation, the data set is very heterogeneous relying on twelve different measurement methods including chemical, optical, and thermal-optical methods. Stations include, among others, urban background, traffic and rural. We highlight results from the year 2009, as it is the year with the largest measurement coverage based on the same measurement method, with 28 stations. Further, we calculated trends in BC concentrations for 13 stations with at least 10 years of data, for median concentrations, as well as 5th percentile (background) and 95th percentile (peak episodes). Preliminary results suggest that concentrations have generally declined, with a larger trend at traffic stations compared to urban background stations between 2005 and 2014. However, preliminary results also show that concentrations are highest during the colder months, likely linked to residential heating.

  10. Impacts of absorbing aerosol deposition on snowpack and hydrologic cycle in the Rocky Mountain region based on variable-resolution CESM (VR-CESM) simulations

    NASA Astrophysics Data System (ADS)

    Wu, Chenglai; Liu, Xiaohong; Lin, Zhaohui; Rahimi-Esfarjani, Stefan R.; Lu, Zheng

    2018-01-01

    The deposition of light-absorbing aerosols (LAAs), such as black carbon (BC) and dust, onto snow cover has been suggested to reduce the snow albedo and modulate the snowpack and consequent hydrologic cycle. In this study we use the variable-resolution Community Earth System Model (VR-CESM) with a regionally refined high-resolution (0.125°) grid to quantify the impacts of LAAs in snow in the Rocky Mountain region during the period 1981-2005. We first evaluate the model simulation of LAA concentrations both near the surface and in snow and then investigate the snowpack and runoff changes induced by LAAs in snow. The model simulates similar magnitudes of near-surface atmospheric dust concentrations as observations in the Rocky Mountain region. Although the model underestimates near-surface atmospheric BC concentrations, the model overestimates BC-in-snow concentrations by 35 % on average. The regional mean surface radiative effect (SRE) due to LAAs in snow reaches up to 0.6-1.7 W m-2 in spring, and dust contributes to about 21-42 % of total SRE. Due to positive snow albedo feedbacks induced by the LAA SRE, snow water equivalent is reduced by 2-50 mm and snow cover fraction by 5-20 % in the two regions around the mountains (eastern Snake River Plain and southwestern Wyoming), corresponding to an increase in surface air temperature by 0.9-1.1 °C. During the snow melting period, LAAs accelerate the hydrologic cycle with monthly runoff increases of 0.15-1.00 mm day-1 in April-May and reductions of 0.04-0.18 mm day-1 in June-July in the mountainous regions. Of all the mountainous regions, the Southern Rockies experience the largest reduction of total runoff by 15 % during the later stage of snowmelt (i.e., June and July). Compared to previous studies based on field observations, our estimation of dust-induced SRE is generally 1 order of magnitude smaller in the Southern Rockies, which is ascribed to the omission of larger dust particles (with the diameter > 10 µm) in the model. This calls for the inclusion of larger dust particles in the model to reduce the discrepancies. Overall these results highlight the potentially important role of LAA interactions with snowpack and the subsequent impacts on the hydrologic cycles across the Rocky Mountains.

  11. Factors Controlling Black Carbon Deposition in Snow in the Arctic

    NASA Astrophysics Data System (ADS)

    Qi, L.; Li, Q.; He, C.; Li, Y.

    2015-12-01

    This study evaluates the sensitivity of black carbon (BC) concentration in snow in the Arctic to BC emissions, dry deposition and wet scavenging efficiency using a 3D global chemical transport model GEOS-Chem driven by meteorological field GEOS-5. With all improvements, simulated median BC concentration in snow agrees with observation (19.2 ng g-1) within 10%, down from -40% in the default GEOS-Chem. When the previously missed gas flaring emissions (mainly located in Russia) are included, the total BC emission in the Arctic increases by 70%. The simulated BC in snow increases by 1-7 ng g-1, with the largest improvement in Russia. The discrepancy of median BC in snow in the whole Arctic reduces from -40% to -20%. In addition, recent measurements of BC dry deposition velocity suggest that the constant deposition velocity of 0.03 cm s-1 over snow and ice used in the GEOS-Chem is too low. So we apply resistance-in-series method to calculate the dry deposition velocity over snow and ice and the resulted dry deposition velocity ranges from 0.03 to 0.24 cm s-1. However, the simulated total BC deposition flux in the Arctic and BC in snow does not change, because the increased dry deposition flux has been compensated by decreased wet deposition flux. However, the fraction of dry deposition to total deposition increases from 16% to 25%. This may affect the mixing of BC and snow particles and further affect the radative forcing of BC deposited in snow. Finally, we reduced the scavenging efficiency of BC in mixed-phase clouds to account for the effect of Wegener-Bergeron-Findeisen (WBF) process based on recent observations. The simulated BC concentration in snow increases by 10-100%, with the largest increase in Greenland (100%), Tromsø (50%), Alaska (40%), and Canadian Arctic (30%). Annual BC loading in the Arctic increases from 0.25 to 0.43 mg m-2 and the lifetime of BC increases from 9.2 to 16.3 days. This indicates that BC simulation in the Arctic is really sensitive to the representation of BC scavenging efficiency. More measurements are needed to better understand the BC-cloud interaction and to constrain the model.

  12. Roosevelt Island Climate Evolution Project (RICE): A 65 Kyr ice core record of black carbon aerosol deposition to the Ross Ice Shelf, West Antarctica.

    NASA Astrophysics Data System (ADS)

    Edwards, Ross; Bertler, Nancy; Tuohy, Andrea; Neff, Peter; Proemse, Bernedette; Feiteng, Wang; Goodwin, Ian; Hogan, Chad

    2015-04-01

    Emitted by fires, black carbon aerosols (rBC) perturb the atmosphere's physical and chemical properties and are climatically active. Sedimentary charcoal and other paleo-fire records suggest that rBC emissions have varied significantly in the past due to human activity and climate variability. However, few paleo rBC records exist to constrain reconstructions of the past rBC atmospheric distribution and its climate interaction. As part of the international Roosevelt Island Climate Evolution (RICE) project, we have developed an Antarctic rBC ice core record spanning the past ~65 Kyr. The RICE deep ice core was drilled from the Roosevelt Island ice dome in West Antarctica from 2011 to 2013. The high depth resolution (~ 1 cm) record was developed using a single particle intracavity laser-induced incandescence soot photometer (SP2) coupled to an ice core melter system. The rBC record displays sub-annual variability consistent with both austral dry-season and summer biomass burning. The record exhibits significant decadal to millennial-scale variability consistent with known changes in climate. Glacial rBC concentrations were much lower than Holocene concentrations with the exception of several periods of abrupt increases in rBC. The transition from glacial to interglacial rBC concentrations occurred over a much longer time relative to other ice core climate proxies such as water isotopes and suggests . The protracted increase in rBC during the transition may reflected Southern hemisphere ecosystem / fire regime changes in response to hydroclimate and human activity.

  13. The atmospheric lifetime of black carbon

    NASA Astrophysics Data System (ADS)

    Cape, J. N.; Coyle, M.; Dumitrean, P.

    2012-11-01

    Black carbon (BC) in the atmosphere contributes to the human health effects of particulate matter and contributes to radiative forcing of climate. The lifetime of BC, particularly the smaller particle sizes (PM2.5) which can be transported over long distances, is therefore an important factor in determining the range of such effects, and the spatial footprint of emission controls. Theory and models suggest that the typical lifetime of BC is around one week. The frequency distributions of measurements of a range of hydrocarbons at a remote rural site in southern Scotland (Auchencorth Moss) between 2007 and 2010 have been used to quantify the relationship between atmospheric lifetime and the geometric standard deviation of observed concentration. The analysis relies on an assumed common major emission source for hydrocarbons and BC, namely diesel-engined vehicles. The logarithm of the standard deviation of the log-transformed concentration data is linearly related to hydrocarbon lifetime, and the same statistic for BC can be used to assess the lifetime of BC relative to the hydrocarbons. Annual average data show BC lifetimes in the range 4-12 days, for an assumed OH concentration of 7 × 105 cm-3. At this site there is little difference in BC lifetime between winter and summer, despite a 3-fold difference in relative hydrocarbon lifetimes. This observation confirms the role of wet deposition as an important removal process for BC, as there is no difference in precipitation between winter and summer at this site. BC lifetime was significantly greater in 2010, which had 23% less rainfall than the preceding 3 years.

  14. PM2.5 and Black carbon enhancement at Socheongcho Ocean Research Station in the Yellow Sea

    NASA Astrophysics Data System (ADS)

    Jeon, H.; Rhee, H.; Lee, M.; JinYong, J.; Min, I.; Shim, J.

    2017-12-01

    Socheongcho Ocean Research Station (SORS) has been established in northern Yellow Sea by the Korea Institute of Ocean Science and Technology (KIOST). At SORS, PM2.5 and Black carbon (BC) were measured every 10 minutes during October 2014 June 2017 using beta-ray absorption method (FH62C14, Thermo. Inc, USA) and Multi Angle Absorption Photometer (MAAP; Model 5012, Thermo. Inc, USA), respectively. In addition, CO, CO2 and CH4 were determined by Cavity Ring Down Spectroscopy (CRDS; Model G2401, Picarro. Inc, USA). Measurements were intermittently interrupted for SORS maintenance reasons. For BC and PM2.5, the mean, 90th %tile and maximum concentrations were 1.16, 2.29, and 20.07 ug/m3 and 25, 48, and 177 ug/m3, respectively. There was no clear diurnal variation observed for both species. PM2.5 and BC concentrations were higher in cold seasons than in warm seasons. The highest PM2.5 and BC concentrations (>99th %tile) were more frequently observed in winter. Particularly, the extremely high BC were sporadically observed and lasted for no longer than 1 hour. The possible sources of PM2.5 and BC were examined using Conditional Probability Function (CPF), Potential Source Contribution (PSCF), and Concentration Weighted Trajectory (CWT) analysis. The results suggest the dominant influence from China, particularly for high concentrations.

  15. The ``Micro'' Aethalometer - an enabling technology for new applications in the measurement of Aerosol Black Carbon

    NASA Astrophysics Data System (ADS)

    Hansen, A. D.; Močnik, G.

    2010-12-01

    Aerosol Black Carbon (BC) is a tracer for combustion emissions; a primary indicator of adverse health effects; and the second leading contributor to Global Climate Change. The “Micro” Aethalometer is a recently-developed miniature instrument that makes a real-time measurement of BC on a very short timebase in a self-contained, battery-powered package that is lightweight and pocket sized. This technological development critically enables new areas of research: Measurements of the vertical profile of BC, by carrying the sampler aloft on a balloon (tethered or released) or aircraft (piloted or UAV); Estimates of the concentration of BC in the troposphere and lower stratosphere in the 8 - 12 km. altitude range, by measurements in the passenger cabin during commercial air travel; Epidemiological studies of personal exposure to BC, by carrying the sampler on a subject person in health studies; Measurements of the concentration of BC in rural and remote regions, by means of a small, battery-powered instrument that is convenient to deploy; measurements of high concentrations of “smoke” in indoor and outdoor environments in developing countries; Unobtrusive monitoring of BC infiltration into indoor environments, by means of a small, quiet instrument that can be placed in publicly-used spaces, school classrooms, museums, and other potentially-impacted locations; Adaptation of the technology to the direct source measurement of BC concentrations in emissions from diesel exhausts, combustion plumes, and other sources. We will show examples of data from various recent projects to illustrate the capabilities and applications of this new instrument.

  16. Near-road sampling of PM2. 5, BC, and fine-particle chemical components in Kathmandu Valley, Nepal

    NASA Astrophysics Data System (ADS)

    Shakya, Kabindra M.; Rupakheti, Maheswar; Shahi, Anima; Maskey, Rejina; Pradhan, Bidya; Panday, Arnico; Puppala, Siva P.; Lawrence, Mark; Peltier, Richard E.

    2017-06-01

    Semicontinuous PM2. 5 and black carbon (BC) concentrations, and 24 h integrated PM2. 5 filter samples were collected near roadways in the Kathmandu Valley, Nepal. Instruments were carried by a group of volunteer traffic police officers in the vicinity of six major roadway intersections in the Kathmandu Valley across two sampling periods in 2014. Daily PM2. 5 filter samples were analyzed for water-soluble inorganic ions, elemental carbon (EC) and organic carbon (OC), and 24 elements. Mean PM2. 5 and BC concentrations were 124.76 µg m-3 and 16.74 µgC m-3 during the drier spring sampling period, and 45.92 µg m-3 and 13.46 µgC m-3 during monsoonal sampling. Despite the lower monsoonal PM2. 5 concentrations, BC and several elements were not significantly lower during the monsoon, which indicates an important contribution of vehicle-related emissions throughout both seasons in this region. During the monsoon, there was an enhanced contribution of chemical species (elements and water-soluble inorganic ions), except secondary inorganic ions, and BC to PM2. 5 (crustal elements: 19 %; heavy metals: 5 %; and BC: 39 %) compared to those in spring (crustal elements: 9 %; heavy metals: 1 %; and BC: 18 %). Silica, calcium, aluminum, and iron were the most abundant elements during both spring and the monsoon, with total concentrations of 12.13 and 8.85 µg m-3, respectively. PM2. 5 and BC showed less spatial variation compared to that for individual chemical species.

  17. Efficiency and mechanisms of Cd removal from aqueous solution by biochar derived from water hyacinth (Eichornia crassipes).

    PubMed

    Zhang, Feng; Wang, Xin; Yin, Daixia; Peng, Bo; Tan, Changyin; Liu, Yunguo; Tan, Xiaofei; Wu, Shixue

    2015-04-15

    This study investigated the efficiency and mechanisms of Cd removal by biochar pyrolyzed from water hyacinth (BC) at 250-550 °C. BC450 out-performed the other BCs at varying Cd concentrations and can remove nearly 100% Cd from aqueous solution within 1 h at initial Cd ≤ 50 mg l(-1). The process of Cd sorption by BC450 followed the pseudo-second order kinetics with the equilibrium being achieved after 24 h with initial Cd ranging from 100 to 500 mg l(-1). The maximum Cd sorption capacity of BC450 was estimated to be 70.3 mg g(-1) based on Langmuir model, which is prominent among a range of low-cost sorbents. Based on the balance analysis between cations released and Cd sorbed onto BC450 in combination with SEM-EDX and XPS data, ion-exchange followed by surface complexation is proposed as the dominant mechanism responsible for Cd immobilization by BC450. In parallel, XRD analysis also suggested the formation of insoluble Cd minerals (CdCO3, Cd3P2, Cd3(PO4)2 and K4CdCl6) from either (co)-precipitation or ion exchange. Results from this study highlighted that the conversion of water hyacinth into biochar is a promising method to achieve effective Cd immobilization and improved management of this highly problematic invasive species. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Black carbon surface oxidation and organic composition of beech-wood soot aerosols

    NASA Astrophysics Data System (ADS)

    Corbin, J. C.; Lohmann, U.; Sierau, B.; Keller, A.; Burtscher, H.; Mensah, A. A.

    2015-10-01

    Soot particles are the most strongly light-absorbing particles commonly found in the atmosphere. They are major contributors to the radiative budget of the Earth and to the toxicity of atmospheric pollution. Atmospheric aging of soot may change its health- and climate-relevant properties by oxidizing the primary black carbon (BC) or organic particulate matter (OM) which, together with ash, comprise soot. This atmospheric aging, which entails the condensation of secondary particulate matter as well as the oxidation of the primary OM and BC emissions, is currently poorly understood. In this study, atmospheric aging of wood-stove soot aerosols was simulated in a continuous-flow reactor. The composition of fresh and aged soot particles was measured in real time by a dual-vaporizer aerosol-particle mass spectrometer (SP-AMS). The dual-vaporizer SP-AMS provided information on the OM and BC components of the soot as well as on refractory components internally mixed with BC. By switching the SP-AMS laser vaporizer off and using only the AMS thermal vaporizer (at 600 °C), information on the OM component only was obtained. In both modes, OM appeared to be generated largely by cellulose and/or hemicellulose pyrolysis and was only present in large amounts when new wood was added to the stove. In SP-AMS mode, BC signals otherwise dominated the mass spectrum. These signals consisted of ions related to refractory BC (rBC, C1-5+), oxygenated carbonaceous ions (CO1-2+), potassium (K+), and water (H2O+ and related fragments). The C4+ : C3+ ratio, but not the C1+ : C3+ ratio, was consistent with the BC-structure trends of Corbin et al. (2015c). The CO1-2+ signals likely originated from BC surface groups: upon aging, both CO+ and CO2+ increased relative to C1-3+ while CO2+ simultaneously increased relative to CO+. Factor analysis (positive matrix factorization) of SP-AMS and AMS data, using a modified error model to address peak-integration uncertainties, indicated that the surface composition of the BC was approximately constant across all stages of combustion for both fresh and aged samples. These results represent the first time-resolved measurements of in situ BC surface aging and suggest that the surface of beech-wood BC may be modelled as a single chemical species.

  19. Global Civil Aviation Black Carbon Particle Mass and Number Emissions

    NASA Astrophysics Data System (ADS)

    Stettler, M. E. J.

    2015-12-01

    Black carbon (BC) is a product of incomplete combustion emitted by aircraft engines. In the atmosphere, BC particles strongly absorb incoming solar radiation and influence cloud formation processes leading to highly uncertain, but likely net positive warming of the earth's atmosphere. At cruise altitude, BC particle number emissions can influence the concentration of ice nuclei that can lead to contrail formation, with significant and highly uncertainty climate impacts. BC particles emitted by aircraft engines also degrade air quality in the vicinity of airports and globally. A significant contribution to the uncertainty in environmental impacts of aviation BC emissions is the uncertainty in emissions inventories. Previous work has shown that global aviation BC mass emissions are likely to have been underestimated by a factor of three. In this study, we present an updated global BC particle number inventory and evaluate parameters that contribute to uncertainty using global sensitivity analysis techniques. The method of calculating particle number from mass utilises a description of the mobility of fractal aggregates and uses the geometric mean diameter, geometric standard deviation, mass-mobility exponent, primary particle diameter and material density to relate the particle number concentration to the total mass concentration. Model results show good agreement with existing measurements of aircraft BC emissions at ground level and at cruise altitude. It is hoped that the results of this study can be applied to estimate direct and indirect climate impacts of aviation BC emissions in future studies.

  20. Sources and transport of black carbon at the California-Mexico border

    NASA Astrophysics Data System (ADS)

    Shores, Christopher A.; Klapmeyer, Michael E.; Quadros, Marina E.; Marr, Linsey C.

    2013-05-01

    At international border areas that suffer from poor air quality, assessment of pollutant sources and transport across the border is important for designing effective air quality management strategies. As part of the Cal-Mex 2010 field campaign at the US-Mexico border in San Diego and Tijuana, we measured black carbon (BC) concentrations at three locations in Mexico and one in the United States. The measurements were intended to support the following objectives: to characterize the spatial and temporal variability in BC, to estimate the BC emission inventory, to identify potential source areas of BC emissions, and to assess the cross-border transport of BC. Concentrations at Parque Morelos, the campaign's supersite, averaged 2.2 μg m-3 and reached a maximum value of 55.9 μg m-3 (1-min average). Sharp, regularly occurring peaks around midnight were suggestive of clandestine industrial activity. BC concentrations were more than two times higher, on average, in Tijuana compared to San Diego. BC and carbon monoxide (CO) were strongly correlated at the three sites in Mexico. The ΔBC/ΔCO ratio of 5.6 ± 0.5 μg m-3 ppm-1 in Tijuana, or 4.7 ± 0.5 μg m-3 ppm-1 when adjusted for seasonal temperature effects to represent an annual average, was comparable to that in other urban areas. Tijuana's emissions of BC were estimated to be 230-890 metric tons per year, 6-23% of those estimated for San Diego. Large uncertainties in this estimate stem mainly from uncertainties in the CO emission inventory, and the lower end of the estimate is more likely to be accurate. Patterns in concentrations and winds suggest that BC in Tijuana was usually of local origin. Under typical summertime conditions such as those observed during the study, transport from Tijuana into the US was common, crossing the border in a northeasterly direction, sometimes as far east as Imperial County at the eastern edge of California.

  1. Dissolved black carbon in the global cryosphere: Concentrations and chemical signatures

    NASA Astrophysics Data System (ADS)

    Khan, Alia L.; Wagner, Sasha; Jaffe, Rudolf; Xian, Peng; Williams, Mark; Armstrong, Richard; McKnight, Diane

    2017-06-01

    Black carbon (BC) is derived from the incomplete combustion of biomass and fossil fuels and can enhance glacial recession when deposited on snow and ice surfaces. Here we explore the influence of environmental conditions and the proximity to anthropogenic sources on the concentration and composition of dissolved black carbon (DBC), as measured by benzenepolycaroxylic acid (BPCA) markers, across snow, lakes, and streams from the global cryosphere. Data are presented from Antarctica, the Arctic, and high alpine regions of the Himalayas, Rockies, Andes, and Alps. DBC concentrations spanned from 0.62 μg/L to 170 μg/L. The median and (2.5, 97.5) quantiles in the pristine samples were 1.8 μg/L (0.62, 12), and nonpristine samples were 21 μg/L (1.6, 170). DBC is susceptible to photodegradation when exposed to solar radiation. This process leads to a less condensed BPCA signature. In general, DBC across the data set was composed of less polycondensed DBC. However, DBC from the Greenland Ice Sheet (GRIS) had a highly condensed BPCA molecular signature. This could be due to recent deposition of BC from Canadian wildfires. Variation in DBC appears to be driven by a combination of photochemical processing and the source combustion conditions under which the DBC was formed. Overall, DBC was found to persist across the global cryosphere in both pristine and nonpristine snow and surface waters. The high concentration of DBC measured in supraglacial melt on the GRIS suggests that DBC can be mobilized across ice surfaces. This is significant because these processes may jointly exacerbate surface albedo reduction in the cryosphere.Plain Language SummaryHere we present dissolved black carbon (DBC) results for snow and glacial melt systems in Antarctica, the Arctic, and high alpine regions of the Himalayas, Rockies, Andes, and Alps. Across the global cryosphere, DBC composition appears to be a result of photochemical processes occurring en route in the atmosphere or in situ on the snow or ice surface, as well as the combustion conditions under which the DBC was formed. We show that samples from the Greenland Ice Sheet (GRIS) have a distinct molecular chemical signature, consistent with deposition of BC from Canadian wildfires occurring the week before sampling. The concentration range observed in this global cryosphere study indicates significant amounts of DBC persist in both pristine and human-impacted snow and glacial meltwater. Our results are significant for understanding the controls on meltwater production from glaciers worldwide and the feedbacks between combustion sources, wildfires, and the global cryosphere. Wildfires are predicted to increase due to climate change, and albedo cannibalism is already influencing meltwater generation on the GRIS. Anticipated longer summer melt seasons as a result of climate change may result in longer durations between snowfalls, enhancing exposure of recalcitrant DBC on snow/ice surfaces, which could further exacerbate surface albedo reduction in the cryosphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29692127','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29692127"><span>[Black carbon content and distribution in different particle size fractions of forest soils in the middle part of Great Xing'an Mountains, China.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Xu, Jia Hui; Gao, Lei; Cui, Xiao Yang</p> <p>2017-10-01</p> <p>Soil black carbon (BC) is considered to be the main component of passive C pool because of its inherent biochemical recalcitrance. In this paper, soil BC in the middle part of Great Xing'an Mountains was quantified, the distribution of BC in different particle size fractions was analyzed, and BC stabilization mechanism and its important role in soil C pool were discussed. The results showed that BC expressed obvious accumulation in surface soil, accounting for about 68.7% in the whole horizon (64 cm), and then decreased with the increasing soil depth, however, BC/OC showed an opposite pattern. Climate conditions redistributed BC in study area, and the soil under cooler and moister conditions would sequester more BC. BC proportion in different particle size fractions was in the order of clay>silt>fine sand>coarse sand. Although BC content in clay was the highest and was enhanced with increasing soil depth, BC/OC in clay did not show a marked change. Thus, the rise of BC/OC was attributed to the preservation of BC particles in the fine sand and silt fractions. Biochemical recalcitrance was the main stabilization mechanism for surface BC, and with the increasing soil depth, the chemical protection from clay mineral gradually played a predominant role. BC not only was the essential component of soil stable carbon pool, but also took up a sizable proportion in particulate organic carbon pool. Therefore, the storage of soil stable carbon and the potential of soil carbon sequestration would be enhanced owing to the existence of BC.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ACP....17.1037Q','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ACP....17.1037Q"><span>Factors controlling black carbon distribution in the Arctic</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Qi, Ling; Li, Qinbin; Li, Yinrui; He, Cenlin</p> <p>2017-01-01</p> <p>We investigate the sensitivity of black carbon (BC) in the Arctic, including BC concentration in snow (BCsnow, ng g-1) and surface air (BCair, ng m-3), as well as emissions, dry deposition, and wet scavenging using the global three-dimensional (3-D) chemical transport model (CTM) GEOS-Chem. We find that the model underestimates BCsnow in the Arctic by 40 % on average (median = 11.8 ng g-1). Natural gas flaring substantially increases total BC emissions in the Arctic (by ˜ 70 %). The flaring emissions lead to up to 49 % increases (0.1-8.5 ng g-1) in Arctic BCsnow, dramatically improving model comparison with observations (50 % reduction in discrepancy) near flaring source regions (the western side of the extreme north of Russia). Ample observations suggest that BC dry deposition velocities over snow and ice in current CTMs (0.03 cm s-1 in the GEOS-Chem) are too small. We apply the resistance-in-series method to compute a dry deposition velocity (vd) that varies with local meteorological and surface conditions. The resulting velocity is significantly larger and varies by a factor of 8 in the Arctic (0.03-0.24 cm s-1), which increases the fraction of dry to total BC deposition (16 to 25 %) yet leaves the total BC deposition and BCsnow in the Arctic unchanged. This is largely explained by the offsetting higher dry and lower wet deposition fluxes. Additionally, we account for the effect of the Wegener-Bergeron-Findeisen (WBF) process in mixed-phase clouds, which releases BC particles from condensed phases (water drops and ice crystals) back to the interstitial air and thereby substantially reduces the scavenging efficiency of clouds for BC (by 43-76 % in the Arctic). The resulting BCsnow is up to 80 % higher, BC loading is considerably larger (from 0.25 to 0.43 mg m-2), and BC lifetime is markedly prolonged (from 9 to 16 days) in the Arctic. Overall, flaring emissions increase BCair in the Arctic (by ˜ 20 ng m-3), the updated vd more than halves BCair (by ˜ 20 ng m-3), and the WBF effect increases BCair by 25-70 % during winter and early spring. The resulting model simulation of BCsnow is substantially improved (within 10 % of the observations) and the discrepancies of BCair are much smaller during the snow season at Barrow, Alert, and Summit (from -67-47 % to -46-3 %). Our results point toward an urgent need for better characterization of flaring emissions of BC (e.g., the emission factors, temporal, and spatial distribution), extensive measurements of both the dry deposition of BC over snow and ice, and the scavenging efficiency of BC in mixed-phase clouds. In addition, we find that the poorly constrained precipitation in the Arctic may introduce large uncertainties in estimating BCsnow. Doubling precipitation introduces a positive bias approximately as large as the overall effects of flaring emissions and the WBF effect; halving precipitation produces a similarly large negative bias.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17111406','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17111406"><span>Surface functional group dependent apatite formation on bacterial cellulose microfibrils network in a simulated body fluid.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Nge, Thi Thi; Sugiyama, Junji</p> <p>2007-04-01</p> <p>The apatite forming ability of biopolymer bacterial cellulose (BC) has been investigated by soaking different BC specimens in a simulated body fluid (1.5 SBF) under physiological conditions, at 37 degrees C and pH 7.4, mimicking the natural process of apatite formation. From ATR-FTIR spectra and ICP-AES analysis, the crystalline phase nucleated on the BC microfibrils surface was calcium deficient carbonated apatite through initial formation of octacalcium phosphate (OCP) or OCP like calcium phosphate phase regardless of the substrates. Morphology of the deposits from SEM, FE-SEM, and TEM observations revealed the fine structure of thin film plates uniting together to form apatite globules of various size (from <1 mum to 3 mum) with respect to the substrates. Surface modification by TEMPO (2,2,6,6-tetramethylpyperidine-1-oxyl)-mediated oxidation, which can readily form active carboxyl functional groups upon selective oxidation of primary hydroxyl groups on the surface of BC microfibrils, enhanced the rate of apatite nucleation. Ion exchanged treatment with calcium chloride solution after TEMPO-mediated oxidation was found to be remarkably different from other BC substrates with the highest deposit weight and the smallest apatite globules size. The role of BC substrates to induce mineralization rate differs according to the nature of the BC substrates, which strongly influences the growth behavior of the apatite crystals. (c) 2006 Wiley Periodicals, Inc.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26799329','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26799329"><span>Are emissions of black carbon from gasoline vehicles overestimated? Real-time, in situ measurement of black carbon emission factors.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wang, Yang; Xing, Zhenyu; Zhao, Shuhui; Zheng, Mei; Mu, Chao; Du, Ke</p> <p>2016-03-15</p> <p>Accurately quantifying black carbon (BC) emission factors (EFs) is a prerequisite for estimation of BC emission inventory. BC EFs determined by measuring BC at the roadside or chasing a vehicle on-road may introduce large uncertainty for low emission vehicles. In this study, BC concentrations were measured inside the tailpipe of gasoline vehicles with different engine sizes under different driving modes to determine the respective EFs. BC EFs ranged from 0.005-7.14 mg/kg-fuel under the speeds of 20-70 km/h, 0.05-28.95 mg/kg-fuel under the accelerations of 0.5-1.5m/s(2). Although the water vapor in the sampling stream could result in an average of 12% negative bias, the BC EFs are significantly lower than the published results obtained with roadside or chasing vehicle measurement. It is suggested to conduct measurement at the tailpipe of gasoline vehicles instead of in the atmosphere behind the vehicles to reduce the uncertainty from fluctuation in ambient BC concentration. Copyright © 2015 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016NatCo...712776W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016NatCo...712776W"><span>The sources of atmospheric black carbon at a European gateway to the Arctic</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Winiger, P.; Andersson, A.; Eckhardt, S.; Stohl, A.; Gustafsson, Ö.</p> <p>2016-09-01</p> <p>Black carbon (BC) aerosols from incomplete combustion of biomass and fossil fuel contribute to Arctic climate warming. Models--seeking to advise mitigation policy--are challenged in reproducing observations of seasonally varying BC concentrations in the Arctic air. Here we compare year-round observations of BC and its δ13C/Δ14C-diagnosed sources in Arctic Scandinavia, with tailored simulations from an atmospheric transport model. The model predictions for this European gateway to the Arctic are greatly improved when the emission inventory of anthropogenic sources is amended by satellite-derived estimates of BC emissions from fires. Both BC concentrations (R2=0.89, P<0.05) and source contributions (R2=0.77, P<0.05) are accurately mimicked and linked to predominantly European emissions. This improved model skill allows for more accurate assessment of sources and effects of BC in the Arctic, and a more credible scientific underpinning of policy efforts aimed at efficiently reducing BC emissions reaching the European Arctic.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5027618','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5027618"><span>The sources of atmospheric black carbon at a European gateway to the Arctic</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Winiger, P; Andersson, A; Eckhardt, S; Stohl, A; Gustafsson, Ö.</p> <p>2016-01-01</p> <p>Black carbon (BC) aerosols from incomplete combustion of biomass and fossil fuel contribute to Arctic climate warming. Models—seeking to advise mitigation policy—are challenged in reproducing observations of seasonally varying BC concentrations in the Arctic air. Here we compare year-round observations of BC and its δ13C/Δ14C-diagnosed sources in Arctic Scandinavia, with tailored simulations from an atmospheric transport model. The model predictions for this European gateway to the Arctic are greatly improved when the emission inventory of anthropogenic sources is amended by satellite-derived estimates of BC emissions from fires. Both BC concentrations (R2=0.89, P<0.05) and source contributions (R2=0.77, P<0.05) are accurately mimicked and linked to predominantly European emissions. This improved model skill allows for more accurate assessment of sources and effects of BC in the Arctic, and a more credible scientific underpinning of policy efforts aimed at efficiently reducing BC emissions reaching the European Arctic. PMID:27627859</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19216871','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19216871"><span>Factorial-based response-surface modeling with confidence intervals for optimizing thermal-optical transmission analysis of atmospheric black carbon.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Conny, J M; Norris, G A; Gould, T R</p> <p>2009-03-09</p> <p>Thermal-optical transmission (TOT) analysis measures black carbon (BC) in atmospheric aerosol on a fibrous filter. The method pyrolyzes organic carbon (OC) and employs laser light absorption to distinguish BC from the pyrolyzed OC; however, the instrument does not necessarily separate the two physically. In addition, a comprehensive temperature protocol for the analysis based on the Beer-Lambert Law remains elusive. Here, empirical response-surface modeling was used to show how the temperature protocol in TOT analysis can be modified to distinguish pyrolyzed OC from BC based on the Beer-Lambert Law. We determined the apparent specific absorption cross sections for pyrolyzed OC (sigma(Char)) and BC (sigma(BC)), which accounted for individual absorption enhancement effects within the filter. Response-surface models of these cross sections were derived from a three-factor central-composite factorial experimental design: temperature and duration of the high-temperature step in the helium phase, and the heating increase in the helium-oxygen phase. The response surface for sigma(BC), which varied with instrument conditions, revealed a ridge indicating the correct conditions for OC pyrolysis in helium. The intersection of the sigma(BC) and sigma(Char) surfaces indicated the conditions where the cross sections were equivalent, satisfying an important assumption upon which the method relies. 95% confidence interval surfaces defined a confidence region for a range of pyrolysis conditions. Analyses of wintertime samples from Seattle, WA revealed a temperature between 830 degrees C and 850 degrees C as most suitable for the helium high-temperature step lasting 150s. However, a temperature as low as 750 degrees C could not be rejected statistically.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A13A2053S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A13A2053S"><span>The Contribution of Black Carbon to Ice Nucleating Particle Concentrations from Prescribed Burns and Wildfires</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schill, G. P.; DeMott, P. J.; Suski, K. J.; Emerson, E. W.; Rauker, A. M.; Kodros, J.; Levin, E. J.; Hill, T. C. J.; Farmer, D.; Pierce, J. R.; Kreidenweis, S. M.</p> <p>2017-12-01</p> <p>Black carbon (BC) has been implicated as a potential immersion-mode ice nucleating particle (INP) because of its relative abundance in the upper troposphere. Furthermore, several field and aircraft measurements have observed positive correlations between BC and INP concentrations. Despite this, the efficiency of BC to act as an immersion-mode INP is poorly constrained. Indeed, previous results from laboratory studies are in conflict, with estimates of BC's impact on INP ranging from no impact to being efficient enough to rival the well-known INP mineral dust. It is, however, becoming clear that the ice nucleation activity of BC may depend on both its fuel type and combustion conditions. For example, previous work has shown that diesel exhaust BC is an extremely poor immersion-mode INP, but laboratory burns of biomass fuels indicate that BC can contribute up to 70% of all INP for some fuel types. Given these dependencies, we propose that sampling from real-world biomass burning sources would provide the most useful new information on the contribution of BC to atmospheric INP. In this work, we will present recent results looking at the sources of INP from prescribed burns and wildfires. To determine the specific contribution of refractory black carbon (rBC) to INP concentrations, we utilized a new technique that couples the Single Particle Soot Photometer (SP2) to the Colorado State University Continuous Flow Diffusion Chamber (CFDC). The SP2 utilizes laser-induced incandescence to quantify rBC mass on a particle-by-particle basis; in doing so, it also selectively destroys rBC particles by heating them to their vaporization temperature. Thus, the SP2 can be used as a selective pre-filter for rBC into the CFDC. Furthermore, we have also used a filter-based technique for measuring INP, the Ice Spectrometer, which can employ pretreatments such as heating and digestion by H2O2 to determine the contribution of heat-labile and organic particles, respectively.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AtmEn..57....1Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AtmEn..57....1Z"><span>Cluster analysis of particulate matter (PM10) and black carbon (BC) concentrations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Žibert, Janez; Pražnikar, Jure</p> <p>2012-09-01</p> <p>The monitoring of air-pollution constituents like particulate matter (PM10) and black carbon (BC) can provide information about air quality and the dynamics of emissions. Air quality depends on natural and anthropogenic sources of emissions as well as the weather conditions. For a one-year period the diurnal concentrations of PM10 and BC in the Port of Koper were analysed by clustering days into similar groups according to the similarity of the BC and PM10 hourly derived day-profiles without any prior assumptions about working and non-working days, weather conditions or hot and cold seasons. The analysis was performed by using k-means clustering with the squared Euclidean distance as the similarity measure. The analysis showed that 10 clusters in the BC case produced 3 clusters with just one member day and 7 clusters that encompasses more than one day with similar BC profiles. Similar results were found in the PM10 case, where one cluster has a single-member day, while 7 clusters contain several member days. The clustering analysis revealed that the clusters with less pronounced bimodal patterns and low hourly and average daily concentrations for both types of measurements include the most days in the one-year analysis. A typical day profile of the BC measurements includes a bimodal pattern with morning and evening peaks, while the PM10 measurements reveal a less pronounced bimodality. There are also clusters with single-peak day-profiles. The BC data in such cases exhibit morning peaks, while the PM10 data consist of noon or afternoon single peaks. Single pronounced peaks can be explained by appropriate cluster wind speed profiles. The analysis also revealed some special day-profiles. The BC cluster with a high midnight peak at 30/04/2010 and the PM10 cluster with the highest observed concentration of PM10 at 01/05/2010 (208.0 μg m-3) coincide with 1 May, which is a national holiday in Slovenia and has very strong tradition of bonfire parties. The clustering of the diurnal concentration showed that various different day-profiles are presented in a cold period, while this is not the case for the hot season. Additional analysis of ship traffic and rain fall data showed that there is no statistically significant difference between the ship gross (bruto) registered tonnage (BRT) values in the case of BC and PM10 clusters, but that there is statistically significant differences between the rain fall in the BC and PM10 clusters. The wind-rose for clusters which included most days in the sampling period indicating that emitted PM10 and BC from Port of Koper were manly transported in the west direction over the sea and in the east direction, where there is in no populated area. Presented analysis showed that both BC and PM10 concentrations were driven by rain intensity and wind speed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006AGUFM.H23B1513W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006AGUFM.H23B1513W"><span>Atrazine and Diuron partitioning within a soil-water-surfactant system</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, P.; Keller, A.</p> <p>2006-12-01</p> <p>The interaction between pesticide and soil and water is even more complex in the presence of surfactants. In this study, batch equilibrium was employed to study the sorption of surfactants and the partitioning behaviors of Atrazine and Diuron within a soil-water-surfactant system. Five soils and four surfactants (nonionic Triton- 100, cationic Benzalkonium Chloride (BC), anionic Linear Alkylbenzenesulfonate (LAS), and anionic Sodium Dodecyl Sulfate (SDS)) were used. All surfactant sorption isotherms exhibited an initial linear increase at low surfactant concentrations but reached an asymptotic value as the surfactant concentrations increased. Among the surfactants, BC had the highest sorption onto all soils, followed by Triton-100 and then by LAS and SDS, implying that the nature of the charge significantly influences surfactant sorption. Sorption of either Triton-100 or BC was highly correlated with soil Cation Exchange Capacity (CEC) while that of LAS and SDS was complicated by the presence of Ca2+ and Mg2+ in the aqueous phase and the CEC sites. Both LAS and SDS formed complexes with Ca2+ and Mg2+, resulting in a significant decrease in the detergency of the surfactants. At high surfactant concentrations and with micelles present in the aqueous phase, the micelles formed a more competitive partitioning site for the pesticides, resulting in less pesticide sorbed to the soil. At low Triton-100 and BC concentration, the sorption of the surfactants first resulted in less Atrazine sorption but more Diuron sorption, implying competition between the surfactants and Atrazine, which serves as an indirect evidence that there is a different sorption mechanism for Atrazine. Atrazine is a weak base and it protonates and becomes positively charged near particle surfaces where the pH is much lower than in the bulk solution. The protonated Atrazine may then be held on the CEC sites via electrostatic attraction. Triton-100, LAS and SDS sorbed on the soil showed similar sequestration efficiency for Atrazine and Diuron while BC sorbed on the soils with lower CECs showed much higher Atrazine and Diuron sequestration efficiency than the other surfactants, suggesting that the sorbed BC on these soils with less CEC forms bulk-like partitioning media more easily than the soils with higher CECs. These results significantly improve our understanding of partitioning of pesticides within soil-water-surfactant systems. These findings can serve to improve the pesticide removal efficiency of soil washing systems. Also, our results show that by studying the effect of surfactants on pesticide sorption can serve as a new method to study pesticide sorption mechanisms.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.B41F0492L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.B41F0492L"><span>Short-Range-Order Mineral Physical Protection On Black Carbon Stabilization</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liang, B.; Weng, Y. T.; Wang, C. C.; Song, Y. F.; Lehmann, J.; Wang, C. H.</p> <p>2015-12-01</p> <p>Soil organic matter is one of the largest reservoirs in global carbon cycle, and black carbon (BC) represents a chemical resistant component. Black C plays an important role in global climate change. Generally considered recalcitrant due to high aromaticity, the reactive surface and functional groups of BC are crucial for carbon sequestration in soils. Mineral sorption and physical protection is an important mechanism for BC long term stabilization and sequestration in environments. Previous studies on mineral protection of BC were limited to analysis techniques in two-dimensions, for example, by SEM, TEM, and NanoSIMS. Little is known about the scope of organo-mineral association, the in-situ distribution and forms of minerals, and the ultimate interplay of BC and minerals. The aim of this study is to investigate the three-dimensional interaction of organic C and minerals in submicron scale using synchrotron-based Transmission X-ray Microcopy (TXM) and Fourier-Transform Infrared Spectroscopy (FTIR). Abundant poorly-crystallined nano-minerals particles were observed. These short-range-order (SRO) minerals also aggregate into clusters and sheets, and form envelops-like structures on the surface of BC. On top of large surface contact area, the intimate interplay between BC and minerals reinforces the stability of both organic C and minerals, resulting from chemical bonding through cation bridging and ligand exchange. The mineral protection enhances BC stabilization and sequestration and lowers its bioavailability in environment. The results suggest that mineral physical protection for BC sequestration may be more important than previous understanding.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1430725-improvements-wrf-chem-model-quasi-hemispheric-simulations-aerosols-ozone-arctic','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1430725-improvements-wrf-chem-model-quasi-hemispheric-simulations-aerosols-ozone-arctic"><span>Improvements to the WRF-Chem 3.5.1 model for quasi-hemispheric simulations of aerosols and ozone in the Arctic</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Marelle, Louis; Raut, Jean-Christophe; Law, Kathy S.; ...</p> <p>2017-01-01</p> <p>In this study, the WRF-Chem regional model is updated to improve simulated short-lived pollutants (e.g., aerosols, ozone) in the Arctic. Specifically, we include in WRF-Chem 3.5.1 (with SAPRC-99 gas-phase chemistry and MOSAIC aerosols) (1) a correction to the sedimentation of aerosols, (2) dimethyl sulfide (DMS) oceanic emissions and gas-phase chemistry, (3) an improved representation of the dry deposition of trace gases over seasonal snow, and (4) an UV-albedo dependence on snow and ice cover for photolysis calculations. We also (5) correct the representation of surface temperatures over melting ice in the Noah Land Surface Model and (6) couple and further test the recent KF-CuP (Kain–Fritsch +more » Cumulus Potential) cumulus parameterization that includes the effect of cumulus clouds on aerosols and trace gases. The updated model is used to perform quasi-hemispheric simulations of aerosols and ozone, which are evaluated against surface measurements of black carbon (BC), sulfate, and ozone as well as airborne measurements of BC in the Arctic. The updated model shows significant improvements in terms of seasonal aerosol cycles at the surface and root mean square errors (RMSEs) for surface ozone, aerosols, and BC aloft, compared to the base version of the model and to previous large-scale evaluations of WRF-Chem in the Arctic. These improvements are mostly due to the inclusion of cumulus effects on aerosols and trace gases in KF-CuP (improved RMSE for surface BC and BC profiles, surface sulfate, and surface ozone), the improved surface temperatures over sea ice (surface ozone, BC, and sulfate), and the updated trace gas deposition and UV albedo over snow and ice (improved RMSE and correlation for surface ozone). DMS emissions and chemistry improve surface sulfate at all Arctic sites except Zeppelin, and correcting aerosol sedimentation has little influence on aerosols except in the upper troposphere.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1430725','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1430725"><span>Improvements to the WRF-Chem 3.5.1 model for quasi-hemispheric simulations of aerosols and ozone in the Arctic</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Marelle, Louis; Raut, Jean-Christophe; Law, Kathy S.</p> <p></p> <p>In this study, the WRF-Chem regional model is updated to improve simulated short-lived pollutants (e.g., aerosols, ozone) in the Arctic. Specifically, we include in WRF-Chem 3.5.1 (with SAPRC-99 gas-phase chemistry and MOSAIC aerosols) (1) a correction to the sedimentation of aerosols, (2) dimethyl sulfide (DMS) oceanic emissions and gas-phase chemistry, (3) an improved representation of the dry deposition of trace gases over seasonal snow, and (4) an UV-albedo dependence on snow and ice cover for photolysis calculations. We also (5) correct the representation of surface temperatures over melting ice in the Noah Land Surface Model and (6) couple and further test the recent KF-CuP (Kain–Fritsch +more » Cumulus Potential) cumulus parameterization that includes the effect of cumulus clouds on aerosols and trace gases. The updated model is used to perform quasi-hemispheric simulations of aerosols and ozone, which are evaluated against surface measurements of black carbon (BC), sulfate, and ozone as well as airborne measurements of BC in the Arctic. The updated model shows significant improvements in terms of seasonal aerosol cycles at the surface and root mean square errors (RMSEs) for surface ozone, aerosols, and BC aloft, compared to the base version of the model and to previous large-scale evaluations of WRF-Chem in the Arctic. These improvements are mostly due to the inclusion of cumulus effects on aerosols and trace gases in KF-CuP (improved RMSE for surface BC and BC profiles, surface sulfate, and surface ozone), the improved surface temperatures over sea ice (surface ozone, BC, and sulfate), and the updated trace gas deposition and UV albedo over snow and ice (improved RMSE and correlation for surface ozone). DMS emissions and chemistry improve surface sulfate at all Arctic sites except Zeppelin, and correcting aerosol sedimentation has little influence on aerosols except in the upper troposphere.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GMD....10.3661M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GMD....10.3661M"><span>Improvements to the WRF-Chem 3.5.1 model for quasi-hemispheric simulations of aerosols and ozone in the Arctic</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Marelle, Louis; Raut, Jean-Christophe; Law, Kathy S.; Berg, Larry K.; Fast, Jerome D.; Easter, Richard C.; Shrivastava, Manish; Thomas, Jennie L.</p> <p>2017-10-01</p> <p>In this study, the WRF-Chem regional model is updated to improve simulated short-lived pollutants (e.g., aerosols, ozone) in the Arctic. Specifically, we include in WRF-Chem 3.5.1 (with SAPRC-99 gas-phase chemistry and MOSAIC aerosols) (1) a correction to the sedimentation of aerosols, (2) dimethyl sulfide (DMS) oceanic emissions and gas-phase chemistry, (3) an improved representation of the dry deposition of trace gases over seasonal snow, and (4) an UV-albedo dependence on snow and ice cover for photolysis calculations. We also (5) correct the representation of surface temperatures over melting ice in the Noah Land Surface Model and (6) couple and further test the recent KF-CuP (Kain-Fritsch + Cumulus Potential) cumulus parameterization that includes the effect of cumulus clouds on aerosols and trace gases. The updated model is used to perform quasi-hemispheric simulations of aerosols and ozone, which are evaluated against surface measurements of black carbon (BC), sulfate, and ozone as well as airborne measurements of BC in the Arctic. The updated model shows significant improvements in terms of seasonal aerosol cycles at the surface and root mean square errors (RMSEs) for surface ozone, aerosols, and BC aloft, compared to the base version of the model and to previous large-scale evaluations of WRF-Chem in the Arctic. These improvements are mostly due to the inclusion of cumulus effects on aerosols and trace gases in KF-CuP (improved RMSE for surface BC and BC profiles, surface sulfate, and surface ozone), the improved surface temperatures over sea ice (surface ozone, BC, and sulfate), and the updated trace gas deposition and UV albedo over snow and ice (improved RMSE and correlation for surface ozone). DMS emissions and chemistry improve surface sulfate at all Arctic sites except Zeppelin, and correcting aerosol sedimentation has little influence on aerosols except in the upper troposphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21406309','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21406309"><span>A multi-site analysis of the association between black carbon concentrations and vehicular idling, traffic, background pollution, and meteorology during school dismissals.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Richmond-Bryant, J; Bukiewicz, L; Kalin, R; Galarraga, C; Mirer, F</p> <p>2011-05-01</p> <p>A study was performed to assess the relationship between black carbon (BC), passing traffic, and vehicular idling outside New York City (NYC) schools during student dismissal. Monitoring was performed at three school sites in East Harlem, the Bronx, and Brooklyn for 1month per year over a two-year period from November 2006-October 2008. Monitoring at each site was conducted before and after the Asthma Free School Zone (AFSZ) asthma reduction education program was administered. Real-time equipment with a one-minute averaging interval was used to obtain the BC data, while volume counts of idling and passing school busses, trucks, and automobiles were collected each minute by study staff. These data were matched to ambient PM(2.5) and meteorology data obtained from the New York State Department of Environmental Conservation. A generalized additive model (GAM) model was run to examine the relationship between BC concentration and each variable while accounting for site-to-site differences. F-tests were employed to assess the significance of each of the predictor variables. The model results suggested that variability in ambient PM(2.5) concentration contributed 24% of the variability in transformed BC concentration, while variability in the number of idling busses and trucks on the street during dismissal contributed 20% of the variability in transformed BC concentration. The results of this study suggest that a combination of urban scale and local traffic control approaches in combination with cessation of school bus idling will produce improved local BC concentration outside schools. Published by Elsevier B.V.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1324902-seasonality-global-arctic-black-carbon-processes-arctic-monitoring-assessment-programme-models-global-arctic-black-carbon-processes','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1324902-seasonality-global-arctic-black-carbon-processes-arctic-monitoring-assessment-programme-models-global-arctic-black-carbon-processes"><span>Seasonality of global and Arctic black carbon processes in the Arctic Monitoring and Assessment Programme models: Global and Arctic Black Carbon Processes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Mahmood, Rashed; von Salzen, Knut; Flanner, Mark</p> <p>2016-06-22</p> <p>This study quantifies black carbon (BC) processes in three global climate models and one chemistry transport model, with focus on the seasonality of BC transport, emissions, wet and dry deposition in the Arctic. In the models, transport of BC to the Arctic from lower latitudes is the major BC source for this region while Arctic emissions are very small. All models simulated a similar annual cycle of BC transport from lower latitudes to the Arctic, with maximum transport occurring in July. Substantial differences were found in simulated BC burdens and vertical distributions, with CanAM (NorESM) producing the strongest (weakest) seasonalmore » cycle. CanAM also has the shortest annual mean residence time for BC in the Arctic followed by SMHI-MATCH, CESM and NorESM. The relative contribution of wet and dry deposition rates in removing BC varies seasonally and is one of the major factors causing seasonal variations in BC burdens in the Arctic. Overall, considerable differences in wet deposition efficiencies in the models exist and are a leading cause of differences in simulated BC burdens. Results from model sensitivity experiments indicate that scavenging of BC in convective clouds acts to substantially increase the overall efficiency of BC wet deposition in the Arctic, which leads to low BC burdens and a more pronounced seasonal cycle compared to simulations without convective BC scavenging. In contrast, the simulated seasonality of BC concentrations in the upper troposphere is only weakly influenced by wet deposition in stratiform (layer) clouds whereas lower tropospheric concentrations are highly sensitive.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ACP....18.2035M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ACP....18.2035M"><span>Predicting decadal trends in cloud droplet number concentration using reanalysis and satellite data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>McCoy, Daniel T.; Bender, Frida A.-M.; Grosvenor, Daniel P.; Mohrmann, Johannes K.; Hartmann, Dennis L.; Wood, Robert; Field, Paul R.</p> <p>2018-02-01</p> <p>Cloud droplet number concentration (CDNC) is the key state variable that moderates the relationship between aerosol and the radiative forcing arising from aerosol-cloud interactions. Uncertainty related to the effect of anthropogenic aerosol on cloud properties represents the largest uncertainty in total anthropogenic radiative forcing. Here we show that regionally averaged time series of the Moderate-Resolution Imaging Spectroradiometer (MODIS) observed CDNC of low, liquid-topped clouds is well predicted by the MERRA2 reanalysis near-surface sulfate mass concentration over decadal timescales. A multiple linear regression between MERRA2 reanalyses masses of sulfate (SO4), black carbon (BC), organic carbon (OC), sea salt (SS), and dust (DU) shows that CDNC across many different regimes can be reproduced by a simple power-law fit to near-surface SO4, with smaller contributions from BC, OC, SS, and DU. This confirms previous work using a less sophisticated retrieval of CDNC on monthly timescales. The analysis is supported by an examination of remotely sensed sulfur dioxide (SO2) over maritime volcanoes and the east coasts of North America and Asia, revealing that maritime CDNC responds to changes in SO2 as observed by the ozone monitoring instrument (OMI). This investigation of aerosol reanalysis and top-down remote-sensing observations reveals that emission controls in Asia and North America have decreased CDNC in their maritime outflow on a decadal timescale.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27889086','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27889086"><span>Impacts of regional transport on black carbon in Huairou, Beijing, China.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wang, Yuqin; de Foy, Benjamin; Schauer, James J; Olson, Michael R; Zhang, Yang; Li, Zhengqiang; Zhang, Yuanxun</p> <p>2017-02-01</p> <p>The 22 nd Asia-Pacific Economic Cooperation (APEC) Conference was held near Yanqi Lake, Huairou, in Beijing, China during November 10-11, 2014. To guarantee haze-free days during the APEC Conference, the Beijing government and the governments of the surrounding provinces implemented a series of controls. Three months of Aethalometer 880 nm black carbon (BC) measurements were examined to understand the hourly fluctuations in BC concentrations that resulted from emission controls and meteorology changes. Measurements were collected at the University of Chinese Academy of Sciences near the APEC Conference site and in Central Beijing at the Institute of Remote Sensing and Digital Earth of the Chinese Academy of Sciences. Synoptic conditions are successfully represented through analysis of backward trajectories in six cluster groups. The clusters are identified based on air mass transport from various areas such as Inner Mongolia, Russia, three northeastern provinces, and Hebei industrial areas, to the measurement sites. Air pollution control measures during the APEC Conference significantly reduced BC at the conference site (Huairou) and in Central Beijing, with greater reductions in BC concentrations at the conference site than in Central Beijing. The highest BC concentrations in Huairou were associated with air masses originating from Central Beijing rather than from the Hebei industrial region. The success of the control measures implemented in Beijing and the surrounding regions demonstrates that BC concentrations can be effectively reduced to protect human health and mitigate regional climate forcing. This study also demonstrates the need for regional strategies to reduce BC concentrations, since urban areas like Beijing are sources as well as downwind receptors of emissions. Copyright © 2016 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1917631H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1917631H"><span>Properties of refractory BC containing particles during the ACRIDICON-CHUVA aircraft campaign in the Amazon basin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Holanda, Bruna; Pöhlker, Mira; Klimach, Thomas; Saturno, Jorge; Ditas, Florian; Ditas, Jeannine; Ma, Nan; Zhang, Yuxuan; Cheng, Yafang; Wendisch, Manfred; Machado, Luiz; Barbosa, Henrique; Pöhlker, Christopher; Artaxo, Paulo; Pöschl, Ulrich; Andreae, Meinrat</p> <p>2017-04-01</p> <p>Black carbon (BC) particles are emitted directly into the atmosphere by processes of incomplete combustion and therefore can be used as a tracer of atmospheric pollution. BC is considered one of the drivers of global warming due to its efficient absorption of solar and infra-red radiation (Bond et al., 2013). Depending on abundance and size, aerosols can also modify the characteristics of clouds and enhance or suppress precipitation (Pöschl et al., 2010). The BC particles can gain surface coatings by condensation of low and semi-volatile compounds, coagulation, and cloud processing. The inclusion of a non-absorbing coating influences the way that BC particles act as cloud nuclei and may increase their absorption through the lensing effect (Fuller et al., 1999). These aging processes change significantly the optical, chemical and physical properties of the particles, as well as their atmospheric lifetime, making BC a source of large uncertainties in current atmospheric models. Taking into account the complex dynamics of BC particles in the atmosphere, we are analyzing data from the ACRIDICON-CHUVA aircraft campaign, which took place in the Amazon basin, Brazil, during the dry season of 2014 (Wendisch et al., 2016). A detailed characterization of BC particles was done using the Single Particle Soot Photometer (SP2) instrument, which directly measures the mass of individual refractory BC particles (rBC). Additionally, the SP2 provides information about the size distribution of rBC cores and their associated coatings. These properties were measured covering a wide geographic area with different pollution conditions and at several levels of the atmosphere at high time resolution. The rBC concentrations change significantly with altitude and with the source of pollution, being a few nanograms per cubic meter for altitudes higher that 5 km. In the surroundings of Manaus city, the mean BC concentration was 0.7 μg/m3, with core sizes peaking at 180 nm. The highest BC mass values were observed over fresh biomass burning plumes (6 μg/m3) with smaller core sizes ( 150 nm). Moreover, in a specific flight (AC19) we identified an extended layer of pollution at 4 km altitude. Backward trajectories calculated using FLEXPART suggest that this pollution layer originated in Africa and has aged few days during its travel over the Atlantic. Similarities in the properties of rBC particles within the pollution and boundary layers suggest that the long range transport of pollution from Africa can be an important source of BC to the Amazonian atmosphere. Here we present first results from our analyses that characterize the various pollution aerosols and their properties in the Amazon basin. References Bond, T.C. et al., 2013. Bounding the role of black carbon in the climate system: A scientific assessment. Journal of Geophysical Research: Atmospheres, 118(11), pp.5380-5552. Fuller, K. A. et al., 1999. Effects of mixing on extinction by carbonaceous particles. Journal of Geophysical Research: Atmospheres, 104(D13), 15941-15954. Pöschl, U. et al., 2010. Rainforest aerosols as biogenic nuclei of clouds and precipitation in the Amazon. Science 329, 1513. Wendisch, M. et al., 2016. The ACRIDICON-CHUVA campaign: Studying tropical deep convective clouds and precipitation over Amazonia using the new German research aircraft HALO. Bull. Amer. Meteor. Soc.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_13 --> <div id="page_14" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="261"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014ACP....1410619M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014ACP....1410619M"><span>Air quality in Delhi during the Commonwealth Games</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Marrapu, P.; Cheng, Y.; Beig, G.; Sahu, S.; Srinivas, R.; Carmichael, G. R.</p> <p>2014-10-01</p> <p>Air quality during the Commonwealth Games (CWG, held in Delhi in October 2010) is analyzed using a new air quality forecasting system established for the games. The CWG stimulated enhanced efforts to monitor and model air quality in the region. The air quality of Delhi during the CWG had high levels of particles with mean values of PM2.5 and PM10 at the venues of 111 and 238 μg m-3, respectively. Black carbon (BC) accounted for ~ 10% of the PM2.5 mass. It is shown that BC, PM2.5 and PM10 concentrations are well predicted, but with positive biases of ~ 25%. The diurnal variations are also well captured, with both the observations and the modeled values showing nighttime maxima and daytime minima. A new emissions inventory, developed as part of this air quality forecasting initiative, is evaluated by comparing the observed and predicted species-species correlations (i.e., BC : CO; BC : PM2.5; PM2.5 : PM10). Assuming that the observations at these sites are representative and that all the model errors are associated with the emissions, then the modeled concentrations and slopes can be made consistent by scaling the emissions by 0.6 for NOx, 2 for CO, and 0.7 for BC, PM2.5, and PM10. The emission estimates for particles are remarkably good considering the uncertainty in the estimates due to the diverse spread of activities and technologies that take place in Delhi and the rapid rates of change. The contribution of various emission sectors including transportation, power, domestic and industry to surface concentrations are also estimated. Transport, domestic and industrial sectors all make significant contributions to PM levels in Delhi, and the sectoral contributions vary spatially within the city. Ozone levels in Delhi are elevated, with hourly values sometimes exceeding 100 ppb. The continued growth of the transport sector is expected to make ozone pollution a more pressing air pollution problem in Delhi. The sector analysis provides useful inputs into the design of strategies to reduce air pollution levels in Delhi. The contribution for sources outside of Delhi on Delhi air quality range from ~ 25% for BC and PM to ~ 60% for day time ozone. The significant contributions from non-Delhi sources indicates that in Delhi (as has been show elsewhere) these strategies will also need a more regional perspective.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JGRD..123..997S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JGRD..123..997S"><span>Seasonal Progression of the Deposition of Black Carbon by Snowfall at Ny-Ålesund, Spitsbergen</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sinha, P. R.; Kondo, Y.; Goto-Azuma, K.; Tsukagawa, Y.; Fukuda, K.; Koike, M.; Ohata, S.; Moteki, N.; Mori, T.; Oshima, N.; Førland, E. J.; Irwin, M.; Gallet, J.-C.; Pedersen, C. A.</p> <p>2018-01-01</p> <p>Deposition of black carbon (BC) aerosol in the Arctic lowers snow albedo, thus contributing to warming in the region. However, the processes and impacts associated with BC deposition are poorly understood because of the scarcity and uncertainties of measurements of BC in snow with adequate spatiotemporal resolution. We sampled snowpack at two sites (11 m and 300 m above sea level) at Ny-Ålesund, Spitsbergen, in April 2013. We also collected falling snow near the surface with a windsock from September 2012 to April 2013. The size distribution of BC in snowpack and falling snow was measured using a single-particle soot photometer combined with a characterized nebulizer. The BC size distributions did not show significant variations with depth in the snowpack, suggesting stable size distributions in falling snow. The BC number and mass concentrations (<fi>C</fi>NBC and <fi>C</fi>MBC) at the two sites agreed to within 19% and 10%, respectively, despite the sites' different snow water equivalent (SWE) loadings. This indicates the small influence of the amount of SWE (or precipitation) on these quantities. Average <fi>C</fi>NBC and <fi>C</fi>MBC in snowpack and falling snow at nearly the same locations agreed to within 5% and 16%, after small corrections for artifacts associated with the sampling of the falling snow. This comparison shows that the dry deposition was a small contributor to the total BC deposition. <fi>C</fi>MBC were highest (2.4 ± 3.0 μg L-1) in December-February and lowest (1.2 ± 1.2 μg L-1) in September-November.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1326134-black-carbon-mixing-state-impacts-cloud-microphysical-properties-effects-aerosol-plume-environmental-conditions','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1326134-black-carbon-mixing-state-impacts-cloud-microphysical-properties-effects-aerosol-plume-environmental-conditions"><span>Black carbon mixing state impacts on cloud microphysical properties: effects of aerosol plume and environmental conditions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Ching, Ping Pui; Riemer, Nicole; West, Matthew</p> <p>2016-05-27</p> <p>Black carbon (BC) is usually mixed with other aerosol species within individual aerosol particles. This mixture, along with the particles' size and morphology, determines the particles' optical and cloud condensation nuclei properties, and hence black carbon's climate impacts. In this study the particle-resolved aerosol model PartMC-MOSAIC was used to quantify the importance of black carbon mixing state for predicting cloud microphysical quantities. Based on a set of about 100 cloud parcel simulations a process level analysis framework was developed to attribute the response in cloud microphysical properties to changes in the underlying aerosol population ("plume effect") and the cloud parcelmore » cooling rate ("parcel effect"). It shows that the response of cloud droplet number concentration to changes in BC emissions depends on the BC mixing state. When the aerosol population contains mainly aged BC particles an increase in BC emission results in increasing cloud droplet number concentrations ("additive effect"). In contrast, when the aerosol population contains mainly fresh BC particles they act as sinks for condensable gaseous species, resulting in a decrease in cloud droplet number concentration as BC emissions are increased ("competition effect"). Additionally, we quantified the error in cloud microphysical quantities when neglecting the information on BC mixing state, which is often done in aerosol models. The errors ranged from -12% to +45% for the cloud droplet number fraction, from 0% to +1022% for the nucleation-scavenged black carbon (BC) mass fraction, from -12% to +4% for the effective radius, and from -30% to +60% for the relative dispersion.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ACP....17.7605G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ACP....17.7605G"><span>Four-dimensional variational inversion of black carbon emissions during ARCTAS-CARB with WRFDA-Chem</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Guerrette, Jonathan J.; Henze, Daven K.</p> <p>2017-06-01</p> <p>Biomass burning emissions of atmospheric aerosols, including black carbon, are growing due to increased global drought, and comprise a large source of uncertainty in regional climate and air quality studies. We develop and apply new incremental four-dimensional variational (4D-Var) capabilities in WRFDA-Chem to find optimal spatially and temporally distributed biomass burning (BB) and anthropogenic black carbon (BC) aerosol emissions. The constraints are provided by aircraft BC concentrations from the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites in collaboration with the California Air Resources Board (ARCTAS-CARB) field campaign and surface BC concentrations from the Interagency Monitoring of PROtected Visual Environment (IMPROVE) network on 22, 23, and 24 June 2008. We consider three BB inventories, including Fire INventory from NCAR (FINN) v1.0 and v1.5 and Quick Fire Emissions Database (QFED) v2.4r8. On 22 June, aircraft observations are able to reduce the spread between a customized QFED inventory and FINNv1.0 from a factor of 3. 5 ( × 3. 5) to only × 2. 1. On 23 and 24 June, the spread is reduced from × 3. 4 to × 1. 4. The posterior corrections to emissions are heterogeneous in time and space, and exhibit similar spatial patterns of sign for both inventories. The posterior diurnal BB patterns indicate that multiple daily emission peaks might be warranted in specific regions of California. The US EPA's 2005 National Emissions Inventory (NEI05) is used as the anthropogenic prior. On 23 and 24 June, the coastal California posterior is reduced by × 2, where highway sources dominate, while inland sources are increased near Barstow by × 5. Relative BB emission variances are reduced from the prior by up to 35 % in grid cells close to aircraft flight paths and by up to 60 % for fires near surface measurements. Anthropogenic variance reduction is as high as 40 % and is similarly limited to sources close to observations. We find that the 22 June aircraft observations are able to constrain approximately 14 degrees of freedom of signal (DOF), while surface and aircraft observations together on 23/24 June constrain 23 DOF. Improving hourly- to daily-scale concentration predictions of BC and other aerosols during BB events will require more comprehensive and/or targeted measurements and a more complete accounting of sources of error besides the emissions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3755476','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3755476"><span>Observation of Elevated Air Pollutant Concentrations in a Residential Neighborhood of Los Angeles California Using a Mobile Platform</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Hu, Shishan; Fruin, Scott; Kozawa, Kathleen; Mara, Steve; Winer, Arthur M.</p> <p>2013-01-01</p> <p>We observed elevated air pollutant concentrations, especially of ultrafine particles (UFP), black carbon (BC) and NO, across the residential neighborhood of the Boyle Heights Community (BH) of Los Angeles, California. Using an electric vehicle mobile platform equipped with fast response instruments, real-time air pollutant concentrations were measured in BH in spring and summer of 2008. Pollutant concentrations varied significantly in the two seasons, on different days, and by time of day, with an overall average UFP concentration in the residential areas of ~33 000 cm−3. The averaged UFP, BC, and NO concentrations measured on Soto St, a major surface street in BH, were 57 000 cm−3, 5.1 µg m−3, and 67 ppb, respectively. Concentrations of UFP across the residential areas in BH were nearly uniform spatially, in contrast to other areas in the greater metropolitan area of Los Angeles where UFP concentrations exhibit strong gradients downwind of roadways. We attribute this “UFP cloud” to high traffic volumes, including heavy duty diesel trucks on the freeways which surround and traverse BH, and substantial numbers of high-emitting vehicles (HEVs) on the surface streets traversing BH. Additionally, the high density of stop signs and lights and short block lengths, requiring frequent accelerations of vehicles, may contribute. The data also support a role for photochemical production of UFP in the afternoon. UFP concentration peaks (5 s average) of up to 9 million particles cm−3 were also observed immediately behind HEVs when they accelerated from stop lights in the BH neighborhood and areas immediately adjacent. Although encounters with HEV during mornings accounted for only about 6% and 17% of time spent monitoring residential areas and major surface streets, HEV contributed to about 28% and 53% of total ultrafine particles measured on the route, respectively. The observation of elevated pollutant number concentrations across the Boyle Heights community highlights how multiple factors combine to create high pollutant levels, and has important human exposure assessment implications, including the potential utility of our data as inputs to epidemiological studies. PMID:23997642</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AtmEn..51..311H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AtmEn..51..311H"><span>Observation of elevated air pollutant concentrations in a residential neighborhood of Los Angeles California using a mobile platform</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hu, Shishan; Paulson, Suzanne E.; Fruin, Scott; Kozawa, Kathleen; Mara, Steve; Winer, Arthur M.</p> <p>2012-05-01</p> <p>We observed elevated air pollutant concentrations, especially of ultrafine particles (UFP), black carbon (BC) and NO, across the residential neighborhood of the Boyle Heights Community (BH) of Los Angeles, California. Using an electric vehicle mobile platform equipped with fast response instruments, real-time air pollutant concentrations were measured in BH in spring and summer of 2008. Pollutant concentrations varied significantly in the two seasons, on different days, and by time of day, with an overall average UFP concentration in the residential areas of ∼33 000 cm-3. The averaged UFP, BC, and NO concentrations measured on Soto St, a major surface street in BH, were 57 000 cm-3, 5.1 μg m-3, and 67 ppb, respectively. Concentrations of UFP across the residential areas in BH were nearly uniform spatially, in contrast to other areas in the greater metropolitan area of Los Angeles where UFP concentrations exhibit strong gradients downwind of roadways. We attribute this “UFP cloud” to high traffic volumes, including heavy duty diesel trucks on the freeways which surround and traverse BH, and substantial numbers of high-emitting vehicles (HEVs) on the surface streets traversing BH. Additionally, the high density of stop signs and lights and short block lengths, requiring frequent accelerations of vehicles, may contribute. The data also support a role for photochemical production of UFP in the afternoon. UFP concentration peaks (5 s average) of up to 9 million particles cm-3 were also observed immediately behind HEVs when they accelerated from stop lights in the BH neighborhood and areas immediately adjacent. Although encounters with HEV during mornings accounted for only about 6% and 17% of time spent monitoring residential areas and major surface streets, HEV contributed to about 28% and 53% of total ultrafine particles measured on the route, respectively. The observation of elevated pollutant concentrations across the Boyle Heights community highlights how multiple factors combine to create high pollutant levels, and has important human exposure assessment implications, including the potential utility of our data as inputs to epidemiological studies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JASTP.167...48N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JASTP.167...48N"><span>Investigation of black carbon aerosols and their characteristics over tropical urban and semi-arid rural environments in peninsular India</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nazeer Hussain, S.; Chakradhar Rao, T.; Balakrishnaiah, G.; Rama Gopal, K.; Raja Obul Reddy, K.; Siva Kumar Reddy, N.; Lokeswara Reddy, T.; Pavan Kumari, S.; Ramanjaneya Reddy, P.; Ramakrishna Reddy, R.</p> <p>2018-01-01</p> <p>We conducted the campaign studies on Black Carbon (BC) aerosol measured at two different locations such as semi-arid rural, Anantapur (ATP) and tropical wet and dry urban, Tirupati (TPTY) of Andhra Pradesh. The campaign took place from June 1 to June 30, 2015. We studied diurnal variations and weekdays/weekends differences of BC mass Concentration and its correlations with meteorological parameters for two sites. BC exhibits a strong weekly cycle in which weekend concentrations are significantly lower than weekday concentrations by ∼14 and 31% for ATP and TPTY due to the decrease in the local traffic volumes during weekends due to a well-known 'weekend effect'. An estimation of percentage of contribution of BC indicates the main sources of BC as fossil fuel combustion and which is dominantly observed at TPTY than at ATP. Finally, the influence of the transported air masses has also been discussed with the help of HYSPLIT air mass backward trajectories.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..1615103C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..1615103C"><span>Radiocarbon-insights into temporal variations in the sources and concentrations of carbonaceous aerosols in the Los Angeles and Salt Lake City Metropolitan Areas</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Czimczik, Claudia; Mouteva, Gergana; Simon, Fahrni; Guaciara, Santos; James, Randerson</p> <p>2014-05-01</p> <p>Increased fossil fuel consumption and biomass burning are contributing to significantly larger emissions of black carbon (BC) aerosols to the atmosphere. Together with organic carbon (OC), BC is a major constituent of fine particulate matter in urban air, contributes to haze and has been linked to a broad array of adverse health effects. Black carbon's high light absorption capacity and role in key (in-)direct climate feedbacks also lead to a range of impacts in the Earth system (e.g. warming, accelerated snow melt, changes in cloud formation). Recent work suggests that regulating BC emissions can play an important role in improving regional air quality and reducing future climate warming. However, BC's atmospheric transport pathways, lifetime and magnitudes of emissions by sector and region, particularly emissions from large urban centers, remain poorly constrained by measurements. Contributions of fossil and modern sources to the carbonaceous aerosol pool (corresponding mainly to traffic/industrial and biomass-burning/biogenic sources, respectively) can be quantified unambiguously by measuring the aerosol radiocarbon (14C) content. However, accurate 14C-based source apportionment requires the physical isolation of BC and OC, and minimal sample contamination with extraneous carbon or from OC charring. Compound class-specific 14C analysis of BC remains challenging due to very small sample sizes (5-15 ug C). Therefore, most studies to date have only analyzed the 14C content of the total organic carbonaceous aerosol fraction. Here, we present time-series 14C data of BC and OC from the Los Angeles (LA) metropolitan area in California - one of two megacities in the United States - and from Salt Lake City (SLC), UT. In the LA area, we analyzed 48h-PM10 samples near the LA port throughout 2007 and 2008 (with the exception of summer). We also collected monthly-PM2.5 samples at the University of California - Irvine, with shorter sampling periods during regional wildfire activity and Santa Ana winds from March to August 2013. In SLC, we seasonally collected 48h-PM2.5 samples from October 2012 to February 2014. We isolated and quantified BC and OC using a thermo-optical analyzer (RT 3080, Sunset Laboratory, Tigard, OR, USA) with the Swiss_4S protocol, and measured the 14C content of BC and OC with accelerator mass spectrometry at UCI's KCCAMS facility. We also measured the concentration and stable isotope composition of total (organic) carbon and nitrogen on the aerosol filters with EA-IRMS (Carlo Erba coupled to Finnigan DeltaPlus). Preliminary results suggest that in LA, PM10-BC concentrations are on the order of 2-8 ug C/m3. Black carbon is 14C-depleted (FM 0.04-0.21) - indicating that fossil sources dominate emissions. In comparison, OC concentrations were higher (12-17 ugC/m3) and more enriched in 14C (FM 0.54-0.83). In SLC, PM2.5-BC concentrations range from <1 to 3 ug C/m3, with the highest concentrations observed during wintertime inversions. The BC fraction is strongly 14C -depleted (FM 0.06 to 0.12) - indicating a dominance of fossil BC emissions throughout the year. Together, our measurements contribute to a comprehensive quantification of temporal and spatial variations in urban BC, a key uncertainty in constraining BC sources and transport in western North America.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27873360','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27873360"><span>Personal measurement of exposure to black carbon and ultrafine particles in schoolchildren from PARIS cohort (Paris, France).</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Paunescu, A-C; Attoui, M; Bouallala, S; Sunyer, J; Momas, I</p> <p>2017-07-01</p> <p>This study aimed to measure in French children personal exposure concentrations of black carbon (BC) and ultrafine particles (UFP) and to quantify the contribution of different microenvironments (home, school, places of extracurricular activities, transport) to their total exposure. It was conducted on 96 9-year-old children from the PARIS birth cohort. BC and UFP were continuously measured by portable devices (microAeth ® AE51 and DiSCmini ® ) for a minimum of 24 hours, while participating families simultaneously filled in a space-time-activities-budget questionnaire. BC exposure concentration was higher during trips (principally metro/train and bus), while UFP exposure concentration was higher during indoor activities (mainly eating at restaurants) and in trips. The most important UFP peaks were measured at home, especially during cooking. Home and school together accounted for much of the total exposure, 83.8% for BC and 85.3% for UFP. The contribution of transport to total exposure was 12.4% for BC and 9.7% for UFP, while extracurricular activities were responsible for 3.8% and 5% of the total exposure to BC and UFP, respectively. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20040105524','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20040105524"><span>Black Carbon in Estuarine and Coastal Ocean Dissolved Organic Matter</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mannino, Antonio; Harvey, H. Rodger</p> <p>2003-01-01</p> <p>Black carbon (BC) in ultrafiltered high-molecular-weight DOM (UDOM) was measured in surface waters of Delaware Bay, Chesapeake Bay and the adjacent Atlantic Ocean (USA) to ascertain the importance of riverine and estuarine DOM as a source of BC to the ocean. BC comprised 5-72% of UDOM-C (27+/-l7%) and on average 8.9+/-6.5% of dissolved organic carbon (DOC) with higher values in the turbid region of the Delaware Estuary and lower yields in the river and coastal ocean. The spatial and seasonal distributions of BC along the salinity gradient of Delaware Bay suggest that the higher levels of BC in surface water UDOM originated from localized sources, possibly from atmospheric deposition or released from resuspended sediments. Black carbon comprised 4 to 7% of the DOC in the coastal Atlantic Ocean, revealing that river-estuary systems are important exporters of colloidal BC to the ocean. The annual flux of BC from Delaware Bay UDOM to the Atlantic Ocean was estimated at 2.4x10(exp 10) g BC yr(exp -1). The global river flux of BC through DOM to the ocean could be on the order of 5.5x1O(exp 12)g BC yr (exp -1). These results support the hypothesis that the DOC pool is the intermediate reservoir in which BC ages prior to sedimentary deposition.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29701940','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29701940"><span>Urinary Phthalate Metabolite Concentrations and Breast Cancer Incidence and Survival following Breast Cancer: The Long Island Breast Cancer Study Project.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Parada, Humberto; Gammon, Marilie D; Chen, Jia; Calafat, Antonia M; Neugut, Alfred I; Santella, Regina M; Wolff, Mary S; Teitelbaum, Susan L</p> <p>2018-04-26</p> <p>Phthalates, known endocrine disruptors, may play a role in breast carcinogenesis. Few studies have examined phthalates in relation to breast cancer (BC), and, to our knowledge, none have considered survival following BC. We examined 11 urinary phthalate metabolites, individually and as molar sum groupings, in association with BC incidence and subsequent survival. Our study includes 710 women diagnosed with first primary BC in 1996-1997 and 598 women without BC from Long Island, New York. Within 3 mo of diagnosis, participants provided spot urine samples. Nine phthalate metabolites were measured in all women; two [monocarboxyoctyl phthalate (MCOP) and monocarboxy-isononyl phthalate (MCNP)] were measured in 320 women with and 205 without BC. Women with BC were followed since diagnosis using the National Death Index; during follow-up (median=17.6 y), we identified 271 deaths (98 BC related). We examined creatinine-corrected metabolite concentrations in association with: BC, using logistic regression to estimate odds ratios (ORs) and 95% confidence intervals (CIs) and all-cause/BC-specific mortality, using Cox regression to estimate hazard ratios (HRs) and 95% CIs. We also examined effect modification by body mass index (BMI) and estrogen receptor (ER) status. The highest (vs. lowest) quintiles of mono(3-carboxypropyl) phthalate (MCPP), monobenzyl phthalate (MBzP), MCNP, and MCOP were associated with BC ORs ranging from 0.71-0.73. The highest (vs. lowest) quintiles of mono(2-ethylhexyl) phthalate (MEHP) and MCOP were associated with BC-specific mortality HRs of 0.54 (95% CI: 0.28, 1.04) and 0.55 (95% CI: 0.23, 1.35), respectively. For BC-specific mortality, interactions were significant between BMI and mono(2-ethyl-5-oxyhexyl) phthalate (MEOHP), mono(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP), and mono(2-ethyl-5-carboxypentyl) phthalate (MECPP), with positive associations among women with BMI<25 and inverse associations among women with BMI≥25.0 kg/m 2 . Consistent with laboratory evidence, we observed inverse associations between urinary concentrations of several phthalate metabolites and BC and subsequent survival; however, these results should be interpreted with caution given that biospecimen collection among women with BC occurred after diagnosis, which may be of particular concern for our case-control findings. https://doi.org/10.1289/EHP2083.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ACP....18.2821W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ACP....18.2821W"><span>Dome effect of black carbon and its key influencing factors: a one-dimensional modelling study</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Zilin; Huang, Xin; Ding, Aijun</p> <p>2018-02-01</p> <p>Black carbon (BC) has been identified to play a critical role in aerosol-planetary boundary layer (PBL) interaction and further deterioration of near-surface air pollution in megacities, which has been referred to as the <q>dome effect</q>. However, the impacts of key factors that influence this effect, such as the vertical distribution and aging processes of BC, as well as the underlying land surface, have not been quantitatively explored yet. Here, based on available in situ measurements of meteorology and atmospheric aerosols together with the meteorology-chemistry online coupled model WRF-Chem, we conduct a set of parallel simulations to quantify the roles of these factors in influencing the BC dome effect and surface haze pollution. Furthermore, we discuss the main implications of the results to air pollution mitigation in China. We found that the impact of BC on the PBL is very sensitive to the altitude of aerosol layer. The upper-level BC, especially that near the capping inversion, is more essential in suppressing the PBL height and weakening the turbulent mixing. The dome effect of BC tends to be significantly intensified as BC mixed with scattering aerosols during winter haze events, resulting in a decrease in PBL height by more than 15 %. In addition, the dome effect is more substantial (up to 15 %) in rural areas than that in the urban areas with the same BC loading, indicating an unexpected regional impact of such an effect to air quality in countryside. This study indicates that China's regional air pollution would greatly benefit from BC emission reductions, especially those from elevated sources from chimneys and also domestic combustion in rural areas, through weakening the aerosol-boundary layer interactions that are triggered by BC.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20080032553&hterms=climate+change+rise+temperature&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dclimate%2Bchange%2Brise%2Btemperature','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20080032553&hterms=climate+change+rise+temperature&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dclimate%2Bchange%2Brise%2Btemperature"><span>Climate Response of Direct Radiative Forcing of Anthropogenic Black Carbon</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Chung, Serena H.; Seinfeld,John H.</p> <p>2008-01-01</p> <p>The equilibrium climate effect of direct radiative forcing of anthropogenic black carbon (BC) is examined by 100-year simulations in the Goddard Institute for Space Studies General Circulation Model II-prime coupled to a mixed-layer ocean model. Anthropogenic BC is predicted to raise globally and annually averaged equilibrium surface air temperature by 0.20 K if BC is assumed to be externally mixed. The predicted increase is significantly greater in the Northern Hemisphere (0.29 K) than in the Southern Hemisphere (0.11 K). If BC is assumed to be internally mixed with the present day level of sulfate aerosol, the predicted annual mean surface temperature increase rises to 0.37 K globally, 0.54 K for the Northern Hemisphere, and 0.20 K for the Southern Hemisphere. The climate sensitivity of BC direct radiative forcing is calculated to be 0.6 K W (sup -1) square meters, which is about 70% of that of CO2, independent of the assumption of BC mixing state. The largest surface temperature response occurs over the northern high latitudes during winter and early spring. In the tropics and midlatitudes, the largest temperature increase is predicted to occur in the upper troposphere. Direct radiative forcing of anthropogenic BC is also predicted to lead to a change of precipitation patterns in the tropics; precipitation is predicted to increase between 0 and 20 N and decrease between 0 and 20 S, shifting the intertropical convergence zone northward. If BC is assumed to be internally mixed with sulfate instead of externally mixed, the change in precipitation pattern is enhanced. The change in precipitation pattern is not predicted to alter the global burden of BC significantly because the change occurs predominantly in regions removed from BC sources.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28139325','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28139325"><span>Characterization of black carbon in an urban-rural fringe area of Beijing.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ji, Dongsheng; Li, Liang; Pang, Bo; Xue, Peng; Wang, Lili; Wu, Yunfei; Zhang, Hongliang; Wang, Yuesi</p> <p>2017-04-01</p> <p>Measuring black carbon (BC) is critical to understand the impact of combustion aerosols on air quality and climate change. In this study, BC was measured in 2014 at a unique community formed with rapid economic development and urbanization in an urban-rural fringe area of Beijing. Hourly BC concentrations were 0.1-33.5 μg/m 3 with the annual average of 4.4 ± 3.7 μg/m 3 . BC concentrations had clear diurnal, weekly, and seasonal variations, and were closely related with atmospheric visibility. The absorption coefficient of aerosols increased while its contribution to extinction coefficient decreased with the enhancement of PM 2.5 concentration. The high mass absorption efficiency (MAE) of EC was attributed to a combination of coal combustion, vehicular emission and rapidly coating by water-soluble ions and organic carbon (OC). BC concentrations followed a typical lognormal pattern, with over 88% samples in 0.1-10.0 μg/m 3 . Low BC levels were mostly bounded up with winds from north and northwest. Coal combustion and biomass burning were closely associated with severe haze pollution events. Firework discharge had significant UV absorption contribution. During the Asia-Pacific Economic Cooperation (APEC) forum in November 2014, air quality obviously improved due to various control strategies. Copyright © 2017 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4270389','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4270389"><span>Black Carbon and Particulate Matter (PM2.5) Concentrations in New York City’s Subway Stations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p></p> <p>2015-01-01</p> <p>The New York City (NYC) subway is the main mode of transport for over 5 million passengers on an average weekday. Therefore, airborne pollutants in the subway stations could have a significant impact on commuters and subway workers. This study looked at black carbon (BC) and particulate matter (PM2.5) concentrations in selected subway stations in Manhattan. BC and PM2.5 levels were measured in real time using a Micro-Aethalometer and a PDR-1500 DataRAM, respectively. Simultaneous samples were also collected on quartz filters for organic and elemental carbon (OC/EC) analysis and on Teflon filters for gravimetric and trace element analysis. In the underground subway stations, mean real time BC concentrations ranged from 5 to 23 μg/m3, with 1 min average peaks >100 μg/m3, while real time PM2.5 levels ranged from 35 to 200 μg/m3. Mean EC levels ranged from 9 to 12.5 μg/m3. At street level on the same days, the mean BC and PM2.5 concentrations were below 3 and 10 μg/m3, respectively. This study shows that both BC soot and PM levels in NYC’s subways are considerably higher than ambient urban street levels and that further monitoring and investigation of BC and PM subway exposures are warranted. PMID:25409007</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25409007','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25409007"><span>Black carbon and particulate matter (PM2.5) concentrations in New York City's subway stations.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Vilcassim, M J Ruzmyn; Thurston, George D; Peltier, Richard E; Gordon, Terry</p> <p>2014-12-16</p> <p>The New York City (NYC) subway is the main mode of transport for over 5 million passengers on an average weekday. Therefore, airborne pollutants in the subway stations could have a significant impact on commuters and subway workers. This study looked at black carbon (BC) and particulate matter (PM2.5) concentrations in selected subway stations in Manhattan. BC and PM2.5 levels were measured in real time using a Micro-Aethalometer and a PDR-1500 DataRAM, respectively. Simultaneous samples were also collected on quartz filters for organic and elemental carbon (OC/EC) analysis and on Teflon filters for gravimetric and trace element analysis. In the underground subway stations, mean real time BC concentrations ranged from 5 to 23 μg/m(3), with 1 min average peaks >100 μg/m(3), while real time PM2.5 levels ranged from 35 to 200 μg/m(3). Mean EC levels ranged from 9 to 12.5 μg/m(3). At street level on the same days, the mean BC and PM2.5 concentrations were below 3 and 10 μg/m(3), respectively. This study shows that both BC soot and PM levels in NYC's subways are considerably higher than ambient urban street levels and that further monitoring and investigation of BC and PM subway exposures are warranted.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1817460R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1817460R"><span>Black carbon concentrations in the highly polluted Kathmandu Valley, Nepal: a three year monitoring with a dual-spot Aethalometer</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rupakheti, Maheswar; Drinovec, Luka; Puppala, SivaPraveen; Mahata, Khadak; Rupakheti, Dipesh; Kathayat, Bhogendra; Singdan, Pratik; Panday, Arnico; Lawrence, Mark</p> <p>2016-04-01</p> <p>Our knowledge about ambient black carbon (BC) in the vast Himalayan region, a region vulnerable to impacts of global warming, is very limited due to unavailability of a long-term ambient monitoring. Here we present results from a continuous monitoring of ambient BC concentrations, with a new generation Aethalometer (AE33), over a three year period (January 2013- January 2016) at a semi-urban site in the highly polluted Kathmandu Valley in the foothills of the central Himalaya, one of the most polluted cities in the world. This is the longest time series of BC concentrations that have been monitored with AE33 (which uses the dual-spot technique for a real-time filter loading compensation) in highly polluted ambient environment. The measurements were carried out under the framework of project SusKat (Sustainable Atmosphere for the Kathmandu Valley). BC concentrations were found to be extremely high, especially in winter and the pre-monsoon period, with the hourly-averaged values often exceeding 50 μg/m3. BC concentrations showed a clear diurnal cycle with a prominent peak around 8-9 am and a second peak around 8-9 pm local time in all four seasons. Night-time BC was also fairly high. The diurnal cycle was driven by a combination of increased emissions from traffic, cooking activities, garbage burning, and lower mixing heights (˜200 m) and reduced horizontal ventilation in the mornings and evenings. BC concentrations showed significant seasonal variations - a maximum in winter season and minimum during the monsoon (rainy) season, with monthly average values in the range 5-30 μg/m3. An increase in emissions from the operation of over 100 brick kilns in winter and spring, and an increase in the use of small but numerous diesel power generators during hours with power cuts contributed significantly to ambient BC concentrations in the valley. Fractional contributions of biomass burning and fossil fuel combustion to BC was estimated based on a real-time method for loading effect compensation (using compensation parameter, k) implemented in the algorithm of the new dual-spot Aethalometer. This technique indicated that fossil fuel combustion (FF) and biomass burning (BB) contribute on average 70% and 30%, respectively, to ambient BC in the Kathmandu Valley. Relative contributions changed from season to season, e.g., BB fraction increased during November-December and March-April due to the seasonal increase in agro-residue burning and forest fires in the region, while FF fraction increased in winter due to increase in use of FF in brick factories and diesel generators. These measurements provided important information for understanding the properties of ambient BC and its impacts, especially on human health and climate, in the Kathmandu Valley and the surrounding foothills of the Himalayas.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..17.8367E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..17.8367E"><span>RICE ice core: Black Carbon reflects climate variability at Roosevelt Island, West Antarctica</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ellis, Aja; Edwards, Ross; Bertler, Nancy; Winton, Holly; Goodwin, Ian; Neff, Peter; Tuohy, Andrea; Proemse, Bernadette; Hogan, Chad; Feiteng, Wang</p> <p>2015-04-01</p> <p>The Roosevelt Island Climate Evolution (RICE) project successfully drilled a deep ice core from Roosevelt Island during the 2011/2012 and 2012/2013 seasons. Located in the Ross Ice Shelf in West Antarctica, the site is an ideal location for investigating climate variability and the past stability of the Ross Ice Shelf. Black carbon (BC) aerosols are emitted by both biomass burning and fossil fuels, and BC particles emitted in the southern hemisphere are transported in the atmosphere and preserved in Antarctic ice. The past record of BC is expected to be sensitive to climate variability, as it is modulated by both emissions and transport. To investigate BC variability over the past 200 years, we developed a BC record from two overlapping ice cores (~1850-2012) and a high-resolution snow pit spanning 2010-2012 (cal. yr). Consistent results are found between the snow pit profiles and ice core records. Distinct decadal trends are found with respect to BC particle size, and the record indicates a steady rise in BC particle size over the last 100 years. Differences in emission sources and conditions may be a possible explanation for changes in BC size. These records also show a significant increase in BC concentration over the past decade with concentrations rising over 1.5 ppb (1.5*10^-9 ng/g), suggesting a fundamental shift in BC deposition to the site.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AtmRe.178..393T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AtmRe.178..393T"><span>Atmospheric heating due to black carbon aerosol during the summer monsoon period over Ballia: A rural environment over Indo-Gangetic Plain</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tiwari, S.; Dumka, U. C.; Hopke, P. K.; Tunved, P.; Srivastava, A. K.; Bisht, D. S.; Chakrabarty, R. K.</p> <p>2016-09-01</p> <p>Black carbon (BC) aerosols are one of the most uncertain drivers of global climate change. The prevailing view is that BC mass concentrations are low in rural areas where industrialization and vehicular emissions are at a minimum. As part of a national research program called the "Ganga Basin Ground Based Experiment-2014 under the Cloud Aerosol Interaction and Precipitation Enhancement Experiment (CAIPEEX) Phase-III" of Ministry of Earth Sciences, Government of India, the continuous measurements of BC and particulate matter (PM) mass concentrations, were conducted in a rural environment in the highly-polluted Indo-Gangetic Plain region during 16th June to 15th August (monsoon period), 2014. The mean mass concentration of BC was 4.03 (± 0.85) μg m- 3 with a daily variability between 2.4 and 5.64 μg m- 3, however, the mean mass PM concentrations [near ultrafine (PM1.0), fine (PM2.5) and inhalable (PM10)] were 29.1(± 16.2), 34.7 (± 19.9) and 43.7 (± 28.3) μg m- 3, respectively. The contribution of BC in PM1.0 was approximately 13%, which is one of the highest being recorded. Diurnally, the BC mass concentrations were highest (mean: 5.89 μg m- 3) between 20:00 to 22:00 local time (LT) due to the burning of biofuels/biomass such as wood, dung, straw and crop residue mixed with dung by the local residents for cooking purposes. The atmospheric direct radiative forcing values due to the composite and BC aerosols were determined to be + 78.3, + 44.9, and + 45.0 W m- 2 and + 42.2, + 35.4 and + 34.3 W m- 2 during the months of June, July and August, respectively. The corresponding atmospheric heating rates (AHR) for composite and BC aerosols were 2.21, 1.26 and 1.26; and 1.19, 0.99 and 0.96 K day- 1 for the month of June, July and August, respectively, with a mean of 1.57 and 1.05 K day- 1 which was 33% lower AHR (BC) than for the composite particles during the study period. This high AHR underscores the importance of absorbing aerosols such as BC contributed by residential cooking using biofuels in India. Our study demonstrates the need for immediate, effective regulations and policies that mitigate the emission of BC particles from domestic cooking in rural areas of India.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014ACPD...1417527W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014ACPD...1417527W"><span>Exploiting simultaneous observational constraints on mass and absorption to estimate the global direct radiative forcing of black carbon and brown carbon</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, X.; Heald, C. L.; Ridley, D. A.; Schwarz, J. P.; Spackman, J. R.; Perring, A. E.; Coe, H.; Liu, D.; Clarke, A. D.</p> <p>2014-06-01</p> <p>Atmospheric black carbon (BC) is a leading climate warming agent, yet uncertainties on the global direct radiative forcing (DRF) remain large. Here we expand a global model simulation (GEOS-Chem) of BC to include the absorption enhancement associated with BC coating and separately treat both the aging and physical properties of fossil fuel and biomass burning BC. In addition we develop a global simulation of Brown Carbon (BrC) from both secondary (aromatic) and primary (biomass burning and biofuel) sources. The global mean lifetime of BC in this simulation (4.4 days) is substantially lower compared to the AeroCom I model means (7.3 days), and as a result, this model captures both the mass concentrations measured in near-source airborne field campaigns (ARCTAS, EUCAARI) and surface sites within 30%, and in remote regions (HIPPO) within a factor of two. We show that the new BC optical properties together with the inclusion of BrC reduces the model bias in Absorption Aerosol Optical Depth (AAOD) at multiple wavelengths by more than 50% at AERONET sites worldwide. However our improved model still underestimates AAOD by a factor of 1.4 to 2.8 regionally, with largest underestimates in regions influenced by fire. Using the RRTMG model integrated with GEOS-Chem we estimate that the all-sky top-of-atmosphere DRF of BC is +0.13 W m-2 (0.08 W m-2 from anthropogenic sources and 0.05 W m-2 from biomass burning). If we scale our model to match AERONET AAOD observations we estimate the DRF of BC is +0.21 W m-2, with an additional +0.11 W m-2 of warming from BrC. Uncertainties in size, optical properties, observations, and emissions suggest an overall uncertainty in BC DRF of -80% / +140%. Our estimates are at the lower end of the 0.2-1.0 W m-2 range from previous studies, and substantially less than the +0.6 W m-2 DRF estimated in the IPCC 5th Assessment Report. We suggest that the DRF of BC has previously been overestimated due to the overestimation of the BC lifetime and the incorrect attribution of BrC absorption to BC.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_14 --> <div id="page_15" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="281"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014ACP....1410989W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014ACP....1410989W"><span>Exploiting simultaneous observational constraints on mass and absorption to estimate the global direct radiative forcing of black carbon and brown carbon</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, X.; Heald, C. L.; Ridley, D. A.; Schwarz, J. P.; Spackman, J. R.; Perring, A. E.; Coe, H.; Liu, D.; Clarke, A. D.</p> <p>2014-10-01</p> <p>Atmospheric black carbon (BC) is a leading climate warming agent, yet uncertainties on the global direct radiative forcing (DRF) remain large. Here we expand a global model simulation (GEOS-Chem) of BC to include the absorption enhancement associated with BC coating and separately treat both the aging and physical properties of fossil-fuel and biomass-burning BC. In addition we develop a global simulation of brown carbon (BrC) from both secondary (aromatic) and primary (biomass burning and biofuel) sources. The global mean lifetime of BC in this simulation (4.4 days) is substantially lower compared to the AeroCom I model means (7.3 days), and as a result, this model captures both the mass concentrations measured in near-source airborne field campaigns (ARCTAS, EUCAARI) and surface sites within 30%, and in remote regions (HIPPO) within a factor of 2. We show that the new BC optical properties together with the inclusion of BrC reduces the model bias in absorption aerosol optical depth (AAOD) at multiple wavelengths by more than 50% at AERONET sites worldwide. However our improved model still underestimates AAOD by a factor of 1.4 to 2.8 regionally, with the largest underestimates in regions influenced by fire. Using the RRTMG model integrated with GEOS-Chem we estimate that the all-sky top-of-atmosphere DRF of BC is +0.13 Wm-2 (0.08 Wm-2 from anthropogenic sources and 0.05 Wm-2 from biomass burning). If we scale our model to match AERONET AAOD observations we estimate the DRF of BC is +0.21 Wm-2, with an additional +0.11 Wm-2 of warming from BrC. Uncertainties in size, optical properties, observations, and emissions suggest an overall uncertainty in BC DRF of -80%/+140%. Our estimates are at the lower end of the 0.2-1.0 Wm-2 range from previous studies, and substantially less than the +0.6 Wm-2 DRF estimated in the IPCC 5th Assessment Report. We suggest that the DRF of BC has previously been overestimated due to the overestimation of the BC lifetime (including the effect on the vertical profile) and the incorrect attribution of BrC absorption to BC.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AtmEn..45.4470A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AtmEn..45.4470A"><span>Concentrations of fine, ultrafine, and black carbon particles in auto-rickshaws in New Delhi, India</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Apte, Joshua, S.; Kirchstetter, Thomas W.; Reich, Alexander, H.; Deshpande, Shyam J.; Kaushik, Geetanjali; Chel, Arvind; Marshall, Julian D.; Nazaroff, William W.</p> <p>2011-08-01</p> <p>Concentrations of air pollutants from vehicles are elevated along roadways, indicating that human exposure in transportation microenvironments may not be adequately characterized by centrally located monitors. We report results from ˜180 h of real-time measurements of fine particle and black carbon mass concentration (PM 2.5, BC) and ultrafine particle number concentration (PN) inside a common vehicle, the auto-rickshaw, in New Delhi, India. Measured exposure concentrations are much higher in this study (geometric mean for ˜60 trip-averaged concentrations: 190 μg m -3 PM 2.5, 42 μg m -3 BC, 280 × 10 3 particles cm -3; GSD ˜1.3 for all three pollutants) than reported for transportation microenvironments in other megacities. In-vehicle concentrations exceeded simultaneously measured ambient levels by 1.5× for PM 2.5, 3.6× for BC, and 8.4× for PN. Short-duration peak concentrations (averaging time: 10 s), attributable to exhaust plumes of nearby vehicles, were greater than 300 μg m -3 for PM 2.5, 85 μg m -3 for BC, and 650 × 10 3 particles cm -3 for PN. The incremental increase of within-vehicle concentration above ambient levels—which we attribute to in- and near-roadway emission sources—accounted for 30%, 68% and 86% of time-averaged in-vehicle PM 2.5, BC and PN concentrations, respectively. Based on these results, we estimate that one's exposure during a daily commute by auto-rickshaw in Delhi is as least as large as full-day exposures experienced by urban residents of many high-income countries. This study illuminates an environmental health concern that may be common in many populous, low-income cities.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5320976','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5320976"><span>Siberian Arctic black carbon sources constrained by model and observation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Andersson, August; Eckhardt, Sabine; Stohl, Andreas; Semiletov, Igor P.; Dudarev, Oleg V.; Charkin, Alexander; Shakhova, Natalia; Klimont, Zbigniew; Heyes, Chris; Gustafsson, Örjan</p> <p>2017-01-01</p> <p>Black carbon (BC) in haze and deposited on snow and ice can have strong effects on the radiative balance of the Arctic. There is a geographic bias in Arctic BC studies toward the Atlantic sector, with lack of observational constraints for the extensive Russian Siberian Arctic, spanning nearly half of the circum-Arctic. Here, 2 y of observations at Tiksi (East Siberian Arctic) establish a strong seasonality in both BC concentrations (8 ng⋅m−3 to 302 ng⋅m−3) and dual-isotope–constrained sources (19 to 73% contribution from biomass burning). Comparisons between observations and a dispersion model, coupled to an anthropogenic emissions inventory and a fire emissions inventory, give mixed results. In the European Arctic, this model has proven to simulate BC concentrations and source contributions well. However, the model is less successful in reproducing BC concentrations and sources for the Russian Arctic. Using a Bayesian approach, we show that, in contrast to earlier studies, contributions from gas flaring (6%), power plants (9%), and open fires (12%) are relatively small, with the major sources instead being domestic (35%) and transport (38%). The observation-based evaluation of reported emissions identifies errors in spatial allocation of BC sources in the inventory and highlights the importance of improving emission distribution and source attribution, to develop reliable mitigation strategies for efficient reduction of BC impact on the Russian Arctic, one of the fastest-warming regions on Earth. PMID:28137854</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/945150','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/945150"><span>A multi-model assessment of pollution transport to the Arctic</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Shindell, D T; Chin, M; Dentener, F</p> <p>2008-03-13</p> <p>We examine the response of Arctic gas and aerosol concentrations to perturbations in pollutant emissions from Europe, East and South Asia, and North America using results from a coordinated model intercomparison. These sensitivities to regional emissions (mixing ratio change per unit emission) vary widely across models and species. Intermodel differences are systematic, however, so that the relative importance of different regions is robust. North America contributes the most to Arctic ozone pollution. For aerosols and CO, European emissions dominate at the Arctic surface but East Asian emissions become progressively more important with altitude, and are dominant in the upper troposphere.more » Sensitivities show strong seasonality: surface sensitivities typically maximize during boreal winter for European and during spring for East Asian and North American emissions. Mid-tropospheric sensitivities, however, nearly always maximize during spring or summer for all regions. Deposition of black carbon (BC) onto Greenland is most sensitive to North American emissions. North America and Europe each contribute {approx}40% of total BC deposition to Greenland, with {approx}20% from East Asia. Elsewhere in the Arctic, both sensitivity and total BC deposition are dominated by European emissions. Model diversity for aerosols is especially large, resulting primarily from differences in aerosol physical and chemical processing (including removal). Comparison of modeled aerosol concentrations with observations indicates problems in the models, and perhaps, interpretation of the measurements. For gas phase pollutants such as CO and O{sub 3}, which are relatively well-simulated, the processes contributing most to uncertainties depend on the source region and altitude examined. Uncertainties in the Arctic surface CO response to emissions perturbations are dominated by emissions for East Asian sources, while uncertainties in transport, emissions, and oxidation are comparable for European and North American sources. At higher levels, model-to-model variations in transport and oxidation are most important. Differences in photochemistry appear to play the largest role in the intermodel variations in Arctic ozone sensitivity, though transport also contributes substantially in the mid-troposphere.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ACP....18.6441N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ACP....18.6441N"><span>Seasonal variation and light absorption property of carbonaceous aerosol in a typical glacier region of the southeastern Tibetan Plateau</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Niu, Hewen; Kang, Shichang; Wang, Hailong; Zhang, Rudong; Lu, Xixi; Qian, Yun; Paudyal, Rukumesh; Wang, Shijin; Shi, Xiaofei; Yan, Xingguo</p> <p>2018-05-01</p> <p>Deposition and accumulation of light-absorbing carbonaceous aerosol on glacier surfaces can alter the energy balance of glaciers. In this study, 2 years (December 2014 to December 2016) of continuous observations of carbonaceous aerosols in the glacierized region of the Mt. Yulong and Ganhaizi (GHZ) basin are analyzed. The average elemental carbon (EC) and organic carbon (OC) concentrations were 1.51±0.93 and 2.57±1.32 µg m-3, respectively. Although the annual mean OC / EC ratio was 2.45±1.96, monthly mean EC concentrations during the post-monsoon season were even higher than OC in the high altitudes (approximately 5000 m a. s. l. ) of Mt. Yulong. Strong photochemical reactions and local tourism activities were likely the main factors inducing high OC / EC ratios in the Mt. Yulong region during the monsoon season. The mean mass absorption efficiency (MAE) of EC, measured for the first time in Mt. Yulong, at 632 nm with a thermal-optical carbon analyzer using the filter-based method, was 6.82±0.73 m2 g-1, comparable with the results from other studies. Strong seasonal and spatial variations of EC MAE were largely related to the OC abundance. Source attribution analysis using a global aerosol-climate model, equipped with a black carbon (BC) source tagging technique, suggests that East Asia emissions, including local sources, have the dominant contribution (over 50 %) to annual mean near-surface BC in the Mt. Yulong area. There is also a strong seasonal variation in the regional source apportionment. South Asia has the largest contribution to near-surface BC during the pre-monsoon season, while East Asia dominates the monsoon season and post-monsoon season. Results in this study have great implications for accurately evaluating the influences of carbonaceous matter on glacial melting and water resource supply in glacierization areas.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1437544-seasonal-variation-light-absorption-property-carbonaceous-aerosol-typical-glacier-region-southeastern-tibetan-plateau','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1437544-seasonal-variation-light-absorption-property-carbonaceous-aerosol-typical-glacier-region-southeastern-tibetan-plateau"><span>Seasonal variation and light absorption property of carbonaceous aerosol in a typical glacier region of the southeastern Tibetan Plateau</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Niu, Hewen; Kang, Shichang; Wang, Hailong</p> <p></p> <p>Deposition and accumulation of light-absorbing carbonaceous aerosol on glacier surfaces can alter the energy balance of glaciers. In this study, 2 years (December 2014 to December 2016) of continuous observations of carbonaceous aerosols in the glacierized region of the Mt. Yulong and Ganhaizi (GHZ) basin are analyzed. The average elemental carbon (EC) and organic carbon (OC) concentrations were 1.51±0.93 and 2.57±1.32μg m -3, respectively. Although the annual mean OC/EC ratio was 2.45±1.96, monthly mean EC concentrations during the post-monsoon season were even higher than OC in the high altitudes (approximately 5000 m a.s.l.) of Mt. Yulong. Strong photochemical reactions and local tourism activitiesmore » were likely the main factors inducing high OC/EC ratios in the Mt. Yulong region during the monsoon season. The mean mass absorption efficiency (MAE) of EC, measured for the first time in Mt. Yulong, at 632 nm with a thermal-optical carbon analyzer using the filter-based method, was 6.82±0.73 m 2g -1, comparable with the results from other studies. Strong seasonal and spatial variations of EC MAE were largely related to the OC abundance. Source attribution analysis using a global aerosol–climate model, equipped with a black carbon (BC) source tagging technique, suggests that East Asia emissions, including local sources, have the dominant contribution (over 50%) to annual mean near-surface BC in the Mt. Yulong area. There is also a strong seasonal variation in the regional source apportionment. South Asia has the largest contribution to near-surface BC during the pre-monsoon season, while East Asia dominates the monsoon season and post-monsoon season. Results in this study have great implications for accurately evaluating the influences of carbonaceous matter on glacial melting and water resource supply in glacierization areas.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012EGUGA..14..846S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012EGUGA..14..846S"><span>Influence of biochar and terra preta substrates on wettability and erodibility of soils</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Smetanova, A.; Dotterweich, M.; Diehl, D.; Ulrich, U.; Fohrer, N.</p> <p>2012-04-01</p> <p>Biochar (BC) and terra preta substrates (TPS) have recently been promoted as soil amendments suitable for soil stabilization, soil amelioration and long-term carbon sequestration. BC is a carbon-enriched substance produced by thermal decomposition of organic material. TPS is composed of liquid and solid organic matter, including BC, altered by acid-lactic fermentation. Their effect on wettability, soil erodibility and nutrient discharge through overland flow was studied by laboratory experiments. At water contents between 0 and 100% BC is water repellent, while TPS changes from a wettable into a repellent state. The 5 and 10 vol % mixtures of BC and 10 and 20 vol% mixtures of TPS with sand remain mainly wettable during drying but repellency maxima are shifted to higher water contents with respect to pure sand and are mainly of subcritical nature. The runoff response was dominated by infiltration properties of the substrates rather than their wettability.Only one mixtures (20% TPS) produced more runoff than sandy-loamy soil on a 15% slope at an intensity of 25 mm•h-1. The 10% BC decreased runoff by up to 40%. At higher rainfall intensities (45 and 55 mm•h-1) the 10% TPS7 was up to 35% less erodible than 10% BC. Despite the TPS containing more nutrients, nutrient discharge varied between types of nutrients, slopes, rainfall intensities and mixtures. The application of a 1 cm layer onto the soil surface instead of 10% mixtures is not recommended due to high nutrient concentrations in the runoff and the wettability of pure substrates. The usage of 10% BC in lowland areas with low frequency and low-intensity precipitation and 10% TPS7 in areas with higher rainfall intensities appears to be appropriate and commendable according to current results. However, together with reversibility of repellency, it needs to undergo further examination in the field under different environmental and land use conditions Key words: biochar, terra preta substrate, wettability, erodibility, nutrient discharge</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.A23K0378S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.A23K0378S"><span>Characterizing the vertical presence of atmospheric black carbon in the in the high Arctic region from airborne measurements</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schulz, H.; Zanatta, M.; Stefanie, W.; Herber, A. B.</p> <p>2016-12-01</p> <p>Black carbon (BC) is an important contributor to climate change in the Arctic region. Due to its light absorption behavior, BC leads to a direct warming of the corresponding aerosol layer. Nevertheless, the net Arctic warming induced by BC strongly depends on its vertical distribution. At present, the low level of knowledge in BC vertical variability in the Arctic region may introduce a strong source of uncertainty in radiative forcing estimations. Vertical distribution of refractory black carbon (rBC) was investigated in spring 2015 during an aircraft campaign, as part of the NETCARE (Network on Climate and Aerosols: Addressing Key Uncertainties in Remote Canadian Environments) project. A single particle soot photometer was deployed on the research aircraft POLAR-6 during nine flights over the European and Canadian high Arctic. In the European Arctic, a decreasing vertical trend of rBC mass concentration was observed, with an average of 40 ng m-3 below 1000 m asl, and less than 10 ng m-3 above 3000 m asl. Combining potential temperature trends and number fraction of rBC particles, plume events were isolated from background conditions. At the Canadian site of Alert, low and high altitude background conditions were characterized by an average rBC number fraction below 10%, while higher values (17%) were observed during plume events. rBC mass concentration was found to decrease by a factor of five from low altitude background (27 ng m-3) to high altitude background (5.4 ng m-3). The plume event, located between 2500 and 3000 m asl, represented a discontinuity point in the decreasing vertical trend showing a rBC concentration of 25 ng m-3. Moreover, background conditions were characterized by a rBC mass mean diameter of 230 nm, while during plume events the observed mean size distribution was peaking at 180 nm only. Our work provides new insights on vertical variability of rBC properties and plume outbreaks in the high Arctic. This information is of actual interest for decreasing the high uncertainty of radiative forcing and atmospheric warming estimations in the Arctic region.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AdSpR..53..828Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AdSpR..53..828Z"><span>Bacterial cellulose may provide the microbial-life biosignature in the rock records</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zaets, I.; Podolich, O.; Kukharenko, O.; Reshetnyak, G.; Shpylova, S.; Sosnin, M.; Khirunenko, L.; Kozyrovska, N.; de Vera, J.-P.</p> <p>2014-03-01</p> <p>Bacterial cellulose (BC) is a matrix for a biofilm formation, which is critical for survival and persistence of microbes in harsh environments. BC could play a significant role in the formation of microbial mats in pristine ecosystems on Earth. The prime objective of this study was to measure to what extent spectral and other characteristics of BC were changed under the performance of BC interaction with the earthly rock - anorthosite - via microorganisms. The spectral analyses (Fourier Transform Infrared FT-IR, spectroscopy, and atomic absorption spectroscopy) showed unprecedented accumulation of chemical elements in the BC-based biofilm. The absorption capacity of IR by BC was shielded a little by mineral crust formed by microorganisms on the BC-based biofilm surface, especially clearly seen in the range of 1200-900 cm-1 in FT-IR spectra. Confocal scanning laser microscopy analysis revealed that elements bioleached from anorthosite created surface coats on the BC nanofibril web. At the same time, the vibrational spectra bands showed the presence of the characteristic region of anomeric carbons (960-730 cm-1), wherein a band at 897 cm-1 confirmed the presence of β-1, 4-linkages, which may serve as the cellulose fingerprint region. Results show that BC may be a biosignature for search signs of living organisms in rock records.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.B41D1978L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.B41D1978L"><span>Interplay between black carbon and minerals contributes to long term carbon stabilization and mineral transformation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liang, B.; Weng, Y. T.; Wang, C. C.; Chiang, C. C.; Liu, C. C.; Lehmann, J.</p> <p>2017-12-01</p> <p>Black carbon receives increasing global wide research attention due to its role in carbon sequestration, soil fertility enhancement and remediation application. Generally considered chemically stable in bulk, the reactive surface of BC can interplays with minerals and form strong chemical bondage, which renders physical protection of BC and contributes to its long term stabilization. Using historical BC-rich Amazonian Dark Earth (ADE), we probe the in-situ organo-mineral association and transformation of BC and minerals over a millennium scale using various synchrotron-based spectroscopic (XANES, FTIR) and microscopic (TXM) methods. Higher content of SRO minerals was found in BC-rich ADE compare to adjacent tropical soils. The iron signature found in BC-rich ADE was mainly ferrihydrite/lepidocrocite, a more reactive form of Fe compared to goethite, which was dominant in adjacent soil. Abundant nano minerals particles were observed in-situ associated with BC surface, in clusters and layers. The organo-mineral interaction lowers BC bioavailability and enhances its long-term stabilization in environment, while at the same time, transforms associated minerals into more reactive forms under rapid redox/weathering environment. The results suggest that mineral physical protection for BC sequestration may be more important than previous understanding. The scale up application of BC/biochar into agricultural systems and natural environments have long lasting impact on the in-situ transformation of associated minerals.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22839594','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22839594"><span>High performance cellulose nanocomposites: comparing the reinforcing ability of bacterial cellulose and nanofibrillated cellulose.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lee, Koon-Yang; Tammelin, Tekla; Schulfter, Kerstin; Kiiskinen, Harri; Samela, Juha; Bismarck, Alexander</p> <p>2012-08-01</p> <p>This work investigates the surface and bulk properties of nanofibrillated cellulose (NFC) and bacterial cellulose (BC), as well as their reinforcing ability in polymer nanocomposites. BC possesses higher critical surface tension of 57 mN m(-1) compared to NFC (41 mN m(-1)). The thermal degradation temperature in both nitrogen and air atmosphere of BC was also found to be higher than that of NFC. These results are in good agreement with the higher crystallinity of BC as determined by XRD, measured to be 71% for BC as compared to NFC of 41%. Nanocellulose papers were prepared from BC and NFC. Both papers possessed similar tensile moduli and strengths of 12 GPa and 110 MPa, respectively. Nanocomposites were manufactured by impregnating the nanocellulose paper with an epoxy resin using vacuum assisted resin infusion. The cellulose reinforced epoxy nanocomposites had a stiffness and strength of approximately ∼8 GPa and ∼100 MPa at an equivalent fiber volume fraction of 60 vol.-%. In terms of the reinforcing ability of NFC and BC in a polymer matrix, no significant difference between NFC and BC was observed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014ACP....14.6315S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014ACP....14.6315S"><span>Analysis of transpacific transport of black carbon during HIPPO-3: implications for black carbon aging</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shen, Z.; Liu, J.; Horowitz, L. W.; Henze, D. K.; Fan, S.; Levy, H., II; Mauzerall, D. L.; Lin, J.-T.; Tao, S.</p> <p>2014-06-01</p> <p>Long-range transport of black carbon (BC) is a growing concern as a result of the efficiency of BC in warming the climate and its adverse impact on human health. We study transpacific transport of BC during HIPPO-3 using a combination of inverse modeling and sensitivity analysis. We use the GEOS-Chem chemical transport model and its adjoint to constrain Asian BC emissions and estimate the source of BC over the North Pacific. We find that different sources of BC dominate the transport to the North Pacific during the southbound (29 March 2010) and northbound (13 April 2010) measurements in HIPPO-3. While biomass burning in Southeast Asia (SE) contributes about 60% of BC in March, more than 90% of BC comes from fossil fuel and biofuel combustion in East Asia (EA) during the April mission. GEOS-Chem simulations generally resolve the spatial and temporal variation of BC concentrations over the North Pacific, but are unable to reproduce the low and high tails of the observed BC distribution. We find that the optimized BC emissions derived from inverse modeling fail to improve model simulations significantly. This failure indicates that uncertainties in BC removal as well as transport, rather than in emissions, account for the major biases in GEOS-Chem simulations of BC over the North Pacific. The aging process, transforming BC from hydrophobic into hydrophilic form, is one of the key factors controlling wet scavenging and remote concentrations of BC. Sensitivity tests on BC aging (ignoring uncertainties of other factors controlling BC long range transport) suggest that in order to fit HIPPO-3 observations, the aging timescale of anthropogenic BC from EA may be several hours (faster than assumed in most global models), while the aging process of biomass burning BC from SE may occur much slower, with a timescale of a few days. To evaluate the effects of BC aging and wet deposition on transpacific transport of BC, we develop an idealized model of BC transport. We find that the mid-latitude air masses sampled during HIPPO-3 may have experienced a series of precipitation events, particularly near the EA and SE source region. Transpacific transport of BC is sensitive to BC aging when the aging rate is fast; this sensitivity peaks when the aging timescale is in the range of 1-1.5 d. Our findings indicate that BC aging close to the source must be simulated accurately at a process level in order to simulate better the global abundance and climate forcing of BC.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20170002487&hterms=impact+factor&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dimpact%2Bfactor','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20170002487&hterms=impact+factor&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dimpact%2Bfactor"><span>What Factors Control the Trend of Increasing AAOD Over the United States in the Last Decade?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Zhang, Li; Henze, Daven K.; Grell, Georg A.; Torres, Omar; Jethva, Hiren; Lamsal, Lok N.</p> <p>2017-01-01</p> <p>We examine the spatial and temporal trends of absorbing aerosol optical depth (AAOD) in the last decade over the United States (U.S.) observed by the Ozone Monitoring Instrument (OMI). Monthly average OMI AAOD has increased over broad areas of the central U.S. from 2005 to 2015, by up to a factor of 4 in some grid cells (60 km resolution). The AAOD increases in all seasons, although the percentage increases are larger in summer (June-July-August) than in winter (December-January-February) by a factor of 3. Despite enhancements in AAOD, OMI AOD exhibits insignificant trend over most of the U.S. except parts of the central and western U.S., the latter which may partly be due to decreases in precipitation. Trends in AAOD contrast with declining trends in surface concentrations of black carbon (BC) aerosol. Interannual variability of local biomass burning emissions of BC may contribute to the positive trend in AAOD over the western U.S. Changes in both dust aerosol measured at the surface (in terms of concentration and size) and dust AAOD indicate distinct enhancements, especially over the central U.S. by 50-100%, which appears to be one of the major factors that impacts positive trends in AAOD.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PolSc..16...10G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PolSc..16...10G"><span>Scavenging ratio of black carbon in the Arctic and the Antarctic</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gogoi, Mukunda M.; Babu, S. Suresh; Pandey, Santosh K.; Nair, Vijayakumar S.; Vaishya, Aditya; Girach, I. A.; Koushik, N.</p> <p>2018-06-01</p> <p>Long-term monitoring of atmospheric aerosols and their interaction with radiation, cloud, and cryosphere over the Arctic and the Antarctic are very important for the global climate change related issues. In this regard, for conducting aerosol measurements, India has extended the concerted efforts to the Svalbard region of the Norwegian Arctic (Himadri, 78°55‧N 11°56‧E, 8 m a.s.l.) in the northern hemisphere and the Larsemann Hills of coastal Antarctic (Bharati, 69°24.4‧S 76°11.7‧E, 40 m a.s.l.) in the southern hemisphere. In the present study, we have examined the role of black carbon (BC) deposition in darkening the polar snow in different sunlit seasons and estimated the scavenging ratio of BC over both the poles from simultaneous measurements of atmospheric and snow deposited BC concentrations. The study reveals distinct spatio-temporal variability of BC in polar snow, even though the concentrations are, in general, low (<12 ppbw, parts per billion by weight). During local summer seasons, the BC in snow at the Arctic (median ∼ 7.98 ppbw) was higher than that at the Antarctica (median ∼ 1.70 ppbw). Concurrent with this, the scavenging ratio (SR) also showed large variability over both the poles. Relatively higher values of SR over the Antarctica (mean ∼ 119.54 ± 23.04; during southern hemispheric summer) in comparison to that over the Arctic (mean ∼ 69.48 ± 4.79; during northern hemispheric spring) clearly indicate the difference in removal mechanisms (aerosol mixing, aging and size distribution) of BC from the atmosphere over distinct polar environments. Measurement of spectral incoming and reflected radiances over the Arctic snow during the early spring season of 2017 indicated the values of surface broadband albedo varying between 0.64 and 0.79. The Snow, Ice and Aerosol Radiative (SNICAR) model simulated values of spectral albedo correlated well with the measured ones and indicated the role of dust absorption, in addition to that of BC, in changing the snow albedo. This information needs to be accurately incorporated in the radiative transfer models for the accurate estimation of snow albedo forcing over the Polar Regions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AtmEn.132..296W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AtmEn.132..296W"><span>Daily personal exposure to black carbon: A pilot study</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Williams, Ryan D.; Knibbs, Luke D.</p> <p>2016-05-01</p> <p>Continuous personal monitoring is the benchmark for air pollution exposure assessment. Black carbon (BC) is a strong marker of primary combustion like vehicle and biomass emissions. There have been few studies that quantified daily personal BC exposure and the contribution that different microenvironments make to it. In this pilot study, we used a portable aethalometer to measure BC concentrations in an individual's breathing zone at 30-s intervals while he performed his usual daily activities. We used a GPS and time-activity diary to track where he spent his time. We performed twenty 24-h measurements, and observed an arithmetic mean daily exposure concentration of 603 ng/m3. We estimated that changing commute modes from bus to train reduced the 24-h mean BC exposure concentration by 29%. Switching from open windows to closed windows and recirculated air in a car led to a reduction of 32%. Living in a home without a wood-fired heater caused a reduction of 50% compared with a wood-heated home. Our preliminary findings highlight the potential utility of simple approaches to reduce a person's daily BC exposure.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28634793','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28634793"><span>Arsenic sorption by red mud-modified biochar produced from rice straw.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wu, Chuan; Huang, Liu; Xue, Sheng-Guo; Huang, Yu-Ying; Hartley, William; Cui, Meng-Qian; Wong, Ming-Hung</p> <p>2017-08-01</p> <p>Red mud-modified biochar (RM-BC) has been produced to be utilized as a novel adsorbent to remove As because it can effectively combine the beneficial features of red mud (rich metal oxide composition and porous structure) and biochar (large surface area and porous structure properties). SEM-EDS and XRD analyses demonstrated that red mud had loaded successfully on the surface of biochar. With the increasing of pH in solution, arsenate (As(V)) adsorption on RM-BC decreased while arsenite (As(III)) increased. Arsenate adsorption kinetics process on RM-BC fitted the pseudo-second-order model, while that of As(III) favored the Elovich model. All sorption isotherms produced superior fits with the Langmuir model. RM-BC exhibited improved As removal capabilities, with a maximum adsorption capacity (Q max ) for As(V) of 5923 μg g -1 , approximately ten times greater than that of the untreated BC (552.0 μg g -1 ). Furthermore, it has been indicated that the adsorption of As(V) on RM-BC may be strongly associated with iron oxides (hematite and magnetite) and aluminum oxides (gibbsite) by X-ray absorption near-edge spectroscopy (XANES), which was possibly because of surface complexation and electrostatic interactions. RM-BC may be used as a valuable adsorbent for removing As in the environment due to the waste materials being relatively abundant.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26136757','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26136757"><span>Influence of biochar, mycorrhizal inoculation, and fertilizer rate on growth and flowering of Pelargonium (Pelargonium zonale L.) plants.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Conversa, Giulia; Bonasia, Anna; Lazzizera, Corrado; Elia, Antonio</p> <p>2015-01-01</p> <p>Peat is the most common substrate used in nurseries despite being a very expensive and a non-renewable material. Peat replacement with biochar could be a sound environmental practice, as it is produced from waste biomass, but evaluation of biochar as a potting substrate is needed. Ratios of peat:biochar of 100:0, 70:30, 30:70 (BC0, BC30, and BC70, respectively), two fertilizer rates (FERT1, FERT2), and arbuscular mycorrhizal fungi (AMF) inoculation were tested on potted Pelargonium plants. Plant growth, flowering, bio-physiological and nutritional responses, and root mycorrhization were evaluated. The BC30 mixture did not affect plant growth compared with pure peat. However, BC30 in combination with FERT2 treatment was more effective in enhancing nitrogen (N) and chlorophyll (CHL) leaf concentrations, and leaf and flower numbers. The BC70 mixture depressed plant growth, flowering traits, and root mycorrhization. Leaf N concentration was below the sufficiency range reported for Pelargonium growth. Leaf concentration of phosphorous (P) was adequate in pure peat and in BC30 but it dropped close to sub-optimal values in BC70. The pH value of the mixtures lowered P availability, though in BC30 the mycorrhizal activity could have allowed adequate P plant uptake. In BC70 plants, the deficiency of both N and P might be a reason for the observed growth reduction. The inoculation of the substrate with selected AMF improved plant growth (higher dry biomass, greater floral clusters, larger and more abundant leaves) and quality resulting in unstressed (lower electrolyte leakage and higher relative water content values) and greener leaves (low L(∗) and C(∗), high CHL content) and in more intensely colored flowers. We conclude that biochar can be applied in nursery/potted plant production provided that the proportion in the peat mixture does not exceed 30%. Furthermore, AMF inoculation contributed to achieving the best plant performance in 30% biochar amended medium.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1813510P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1813510P"><span>Parametric uncertainties in global model simulations of black carbon column mass concentration</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pearce, Hana; Lee, Lindsay; Reddington, Carly; Carslaw, Ken; Mann, Graham</p> <p>2016-04-01</p> <p>Previous studies have deduced that the annual mean direct radiative forcing from black carbon (BC) aerosol may regionally be up to 5 W m-2 larger than expected due to underestimation of global atmospheric BC absorption in models. We have identified the magnitude and important sources of parametric uncertainty in simulations of BC column mass concentration from a global aerosol microphysics model (GLOMAP-Mode). A variance-based uncertainty analysis of 28 parameters has been performed, based on statistical emulators trained on model output from GLOMAP-Mode. This is the largest number of uncertain model parameters to be considered in a BC uncertainty analysis to date and covers primary aerosol emissions, microphysical processes and structural parameters related to the aerosol size distribution. We will present several recommendations for further research to improve the fidelity of simulated BC. In brief, we find that the standard deviation around the simulated mean annual BC column mass concentration varies globally between 2.5 x 10-9 g cm-2 in remote marine regions and 1.25 x 10-6 g cm-2 near emission sources due to parameter uncertainty Between 60 and 90% of the variance over source regions is due to uncertainty associated with primary BC emission fluxes, including biomass burning, fossil fuel and biofuel emissions. While the contributions to BC column uncertainty from microphysical processes, for example those related to dry and wet deposition, are increased over remote regions, we find that emissions still make an important contribution in these areas. It is likely, however, that the importance of structural model error, i.e. differences between models, is greater than parametric uncertainty. We have extended our analysis to emulate vertical BC profiles at several locations in the mid-Pacific Ocean and identify the parameters contributing to uncertainty in the vertical distribution of black carbon at these locations. We will present preliminary comparisons of emulated BC vertical profiles from the AeroCom multi-model ensemble and Hiaper Pole-to-Pole (HIPPO) observations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4468377','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4468377"><span>Influence of biochar, mycorrhizal inoculation, and fertilizer rate on growth and flowering of Pelargonium (Pelargonium zonale L.) plants</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Conversa, Giulia; Bonasia, Anna; Lazzizera, Corrado; Elia, Antonio</p> <p>2015-01-01</p> <p>Peat is the most common substrate used in nurseries despite being a very expensive and a non-renewable material. Peat replacement with biochar could be a sound environmental practice, as it is produced from waste biomass, but evaluation of biochar as a potting substrate is needed. Ratios of peat:biochar of 100:0, 70:30, 30:70 (BC0, BC30, and BC70, respectively), two fertilizer rates (FERT1, FERT2), and arbuscular mycorrhizal fungi (AMF) inoculation were tested on potted Pelargonium plants. Plant growth, flowering, bio-physiological and nutritional responses, and root mycorrhization were evaluated. The BC30 mixture did not affect plant growth compared with pure peat. However, BC30 in combination with FERT2 treatment was more effective in enhancing nitrogen (N) and chlorophyll (CHL) leaf concentrations, and leaf and flower numbers. The BC70 mixture depressed plant growth, flowering traits, and root mycorrhization. Leaf N concentration was below the sufficiency range reported for Pelargonium growth. Leaf concentration of phosphorous (P) was adequate in pure peat and in BC30 but it dropped close to sub-optimal values in BC70. The pH value of the mixtures lowered P availability, though in BC30 the mycorrhizal activity could have allowed adequate P plant uptake. In BC70 plants, the deficiency of both N and P might be a reason for the observed growth reduction. The inoculation of the substrate with selected AMF improved plant growth (higher dry biomass, greater floral clusters, larger and more abundant leaves) and quality resulting in unstressed (lower electrolyte leakage and higher relative water content values) and greener leaves (low L∗ and C∗, high CHL content) and in more intensely colored flowers. We conclude that biochar can be applied in nursery/potted plant production provided that the proportion in the peat mixture does not exceed 30%. Furthermore, AMF inoculation contributed to achieving the best plant performance in 30% biochar amended medium. PMID:26136757</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25267468','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25267468"><span>Comparison of the platelet-rich plasma and buffy coat protocols for preparation of canine platelet concentrates.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hoareau, Guillaume L; Jandrey, Karl E; Burges, Julie; Bremer, Daphne; Tablin, Fern</p> <p>2014-12-01</p> <p>Platelet (PLT) concentrates (PC) can be produced via the buffy coat (BC) or platelet-rich plasma (PRP) protocols. The 2 methods have not been compared with canine blood. The aims of the study were to compare the PLT, WBC, and RBC concentrations, in vitro PLT function, and markers of platelet storage lesion (PSL) in canine PC generated by 2 different protocols, and determine microbial growth throughout storage. PC from 8 healthy donor dogs were produced using 2 standard protocols, PRP and BC. PLT, WBC, and RBC counts, optical aggregometry assays, and PSL markers (pH, pCO2 , HCO3 , lactate and glucose concentrations, and LDH activity) were determined on storage days 0, 1, 3, 5, and 7. Aerobic and anaerobic bacterial cultures were also performed. Mean PLT counts were comparable between protocols and remained stable throughout storage up to day 7, while median WBC and RBC counts on day 0 were significantly higher in the BC-PC group (17,800 WBCs/μL; 195,000 RBCs/μL) than in the PRP-PC group (200 WBCs/μL; 10,000 RBCs/μL) (P = .012). In PRP-PC aggregometry, the median slope and amplitude in response to γ-thrombin and convulxin (+ ADP) were significantly decreased, and virtually absent in BC-PC during storage. PSL markers (lactate, LDH activity) were higher in BC-PC. Aerobic bacterial growth was observed in 2 PRP-PC and 1 BC-PC. This in vitro study suggests that PRP-PC had lesser WBC and RBC contamination and superior PLT function compared with BC-PC. In vivo studies are required to address safety and efficacy of PRP-PC. © 2014 American Society for Veterinary Clinical Pathology.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_15 --> <div id="page_16" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="301"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.A33D0206L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.A33D0206L"><span>Inference of Spatiotemporal Distribution of Black Carbon Aerosols over Northern Pacific from Satellite Observations (2005-2012)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liu, J.; Li, Z.; Mauzerall, D. L.; Fan, S.; Horowitz, L. W.; He, C.; Yi, K.; Tao, S.</p> <p>2015-12-01</p> <p>Knowledge on the spatiotemporal distribution of black carbon aerosol over the Northern Pacific is limited by a deficiency of observations. The HIAPER Pole-to-Pole Observation (HIPPO) program from 2009 to 2011 is the most comprehensive data source available and it reveals a 2 to 10 times overestimates of BC by current global models. Incorporation and assimilation of more data sources is needed to increase our understanding of the spatiotemporal distribution of black carbon aerosol and its corresponding climate effects. Based on measurements from aircraft campaigns and satellites, a robust association is observed between BC concentrations and satellite retrieved CO, tropospheric NO2, and aerosol optical depth (AOD) (R2 > 0.7). Such robust relationships indicate that BC aerosols share a similar emission sources, evolution processes and transport characteristics with other pollutants measured by satellite observations. It also establishes a basis to derive a satellite-based proxy (BC*) over remote oceans. The inferred satellite-based BC* shows that Asian export events in spring bring much more BC aerosols to the mid-Pacific than occurs in other seasons. In addition, inter-annual variability of BC* is seen over the Northern Pacific, with abundances correlated to the springtime Pacific/North American (PNA) index. The inferred BC* dataset also indicates a widespread overestimation of BC loadings by models over most remote oceans beyond the Pacific. Our method presents a novel approach to infer BC concentrations by combining satellite and aircraft observations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AtmEn.150..295G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AtmEn.150..295G"><span>Estimation of spatial patterns of urban air pollution over a 4-week period from repeated 5-min measurements</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gillespie, Jonathan; Masey, Nicola; Heal, Mathew R.; Hamilton, Scott; Beverland, Iain J.</p> <p>2017-02-01</p> <p>Determination of intra-urban spatial variations in air pollutant concentrations for exposure assessment requires substantial time and monitoring equipment. The objective of this study was to establish if short-duration measurements of air pollutants can be used to estimate longer-term pollutant concentrations. We compared 5-min measurements of black carbon (BC) and particle number (PN) concentrations made once per week on 5 occasions, with 4 consecutive 1-week average nitrogen dioxide (NO2) concentrations at 18 locations at a range of distances from busy roads in Glasgow, UK. 5-min BC and PN measurements (averaged over the two 5-min periods at the start and end of a week) explained 40-80%, and 7-64% respectively, of spatial variation in the intervening 1-week NO2 concentrations for individual weeks. Adjustment for variations in background concentrations increased the percentage of explained variation in the bivariate relationship between the full set of NO2 and BC measurements over the 4-week period from 28% to 50% prior to averaging of repeat measurements. The averages of five 5-min BC and PN measurements made over 5 weeks explained 75% and 33% respectively of the variation in average 1-week NO2 concentrations over the same period. The relatively high explained variation observed between BC and NO2 measured on different time scales suggests that, with appropriate steps to correct or average out temporal variations, repeated short-term measurements can be used to provide useful information on longer-term spatial patterns for these traffic-related pollutants.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhDT........57H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhDT........57H"><span>Climatic Effects of Black Carbon Aerosols Over the Tibetan Plateau</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>He, Cenlin</p> <p></p> <p>Black carbon (BC), also known as soot, has been identified as the second most important anthropogenic emissions in terms of global climate forcing in the current atmosphere. Ample evidence has shown that BC deposition is an important driver of rapid snow melting and glacier retreat over the Tibetan Plateau, which holds the largest snow/ice mass outside polar regions. However, the climatic effects of BC over the Tibetan Plateau have not been thoroughly investigated in such a manner as to understand, quantify, and reduce large uncertainties in the estimate of radiative and hydrological effects. Thus, this Ph.D. study seeks to understand and improve key processes controlling BC life cycle in global and regional models and to quantify BC radiative effects over the Tibetan Plateau. First, the capability of a state-of-the-art global chemical transport model (CTM), GEOS-Chem, and the associated model uncertainties are systematically evaluated in simulating BC over the Tibetan Plateau, using in situ measurements of BC in surface air, BC in snow, and BC absorption optical depth. The effects of three key factors on the simulation are also delineated, including Asian anthropogenic emissions, BC aging process, and model resolution. Subsequently, a microphysics-based BC aging scheme that accounts for condensation, coagulation, and heterogeneous chemical oxidation processes is developed and examined in GEOS-Chem by comparing with aircraft measurements. Compared to the default aging scheme, the microphysical scheme reduces model-observation discrepancies by a factor of 3, particularly in the middle and upper troposphere. In addition, a theoretical BC aging-optics model is developed to account for three typical evolution stages, namely, freshly emitted aggregates, coated BC by soluble material, and BC particles undergoing further hygroscopic growth. The geometric-optics surface-wave (GOS) approach is employed to compute the BC single-scattering properties at each aging stage, which are subsequently compared with laboratory measurements. Results show large variations in BC optical properties caused by coating morphology and aging stages. Furthermore, a comprehensive intercomparison of the GOS approach, the superposition T-matrix method, and laboratory measurements is performed for optical properties of BC with complex structures during aging. Moreover, a new snow albedo model is developed for widely-observed close-packed snow grains internally mixed with BC. Results indicate that albedo simulations that account for snow close packing match closer to observations. Close packing enhances BC-induced snow albedo reduction and associated surface radiative forcing by up to 15% (20%) for fresh (old) snow, which suggests that BC-snow albedo forcing is underestimated in previous modeling studies without accounting for close packing. Finally, the snow albedo forcing and direct radiative forcing (DRF) of BC in the Tibetan Plateau are estimated using GEOS-Chem in conjunction with a stochastic snow model and a radiative transfer model. This, for the first time, accounts for realistic non-spherical snow grain shape and stochastic multiple inclusions of BC within snow in assessing BC-snow interactions. The annual mean BC snow albedo forcing is 2.9 W m-2 over snow-covered Plateau regions. BC-snow internal mixing increases the albedo forcing by 40-60% compared with external mixing, whereas Koch snowflakes reduce the forcing by 20-40% relative to spherical snow grains. BC DRF at the top of the atmosphere is 2.3 W m-2 with uncertainties of -70% - +85% in the Plateau. The BC forcings are further attributed to emissions from different regions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRG..122.2925J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRG..122.2925J"><span>Do Regional Aerosols Contribute to the Riverine Export of Dissolved Black Carbon?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jones, M. W.; Quine, T. A.; de Rezende, C. E.; Dittmar, T.; Johnson, B.; Manecki, M.; Marques, J. S. J.; de Aragão, L. E. O. C.</p> <p>2017-11-01</p> <p>The fate of black carbon (BC), a stable form of thermally altered organic carbon produced during biomass and fuel combustion, remains an area of uncertainty in the global carbon cycle. The transfer of photosynthetically derived BC into extremely long-term oceanic storage is of particular significance and rivers are the key linkage between terrestrial sources and oceanic stores. Significant fluvial fluxes of dissolved BC to oceans result from the slow release of BC from degrading charcoal stocks; however, these fluvial fluxes may also include undetermined contributions of aerosol BC, produced by biomass and fossil fuel combustion, which are deposited in river catchments following atmospheric transport. By investigation of the Paraíba do Sul River catchment in Southeast Brazil we show that aerosol deposits can be substantial contributors to fluvial fluxes of BC. We derived spatial distributions of BC stocks within the catchment associated with soil charcoal and with aerosol from both open biomass burning and fuel combustion. We then modeled the fluvial concentrations of dissolved BC (DBC) in scenarios with varying rates of export from each stock. We analyzed the ability of each scenario to reproduce the variability in DBC concentrations measured in four data sets of river water samples collected between 2010 and 2014 and found that the best performing scenarios included a 5-18% (135-486 Mg DBC year-1) aerosol contribution. Our results suggest that aerosol deposits of BC in river catchments have a shorter residence time in catchments than charcoal BC and, therefore, contribute disproportionately (with respect to stock magnitude) toward fluvial fluxes of BC.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3344204','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3344204"><span>Subminimal Inhibitory Concentrations of the Disinfectant Benzalkonium Chloride Select for a Tolerant Subpopulation of Escherichia coli with Inheritable Characteristics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Moen, Birgitte; Rudi, Knut; Bore, Erlend; Langsrud, Solveig</p> <p>2012-01-01</p> <p>Exposure of Escherichia coli to a subminimal inhibitory concentration (25% below MIC) of benzalkonium chloride (BC), an antimicrobial membrane-active agent commonly used in medical and food-processing environments, resulted in cell death and changes in cell morphology (filamentation). A small subpopulation (1–5% of the initial population) survived and regained similar morphology and growth rate as non-exposed cells. This subpopulation maintained tolerance to BC after serial transfers in medium without BC. To withstand BC during regrowth the cells up regulated a drug efflux associated gene (the acrB gene, member of the AcrAB-TolC efflux system) and changed expression of outer membrane porin genes (ompFW) and several genes involved in protecting the cell from the osmotic- and oxidative stress. Cells pre-exposed to osmotic- and oxidative stress (sodium chloride, salicylic acid and methyl viologen) showed higher tolerance to BC. A control and two selected isolates showing increased BC-tolerance after regrowth in BC was genome sequenced. No common point mutations were found in the BC- isolates but one point mutation in gene rpsA (Ribosomal protein S1) was observed in one of the isolates. The observed tolerance can therefore not solely be explained by the observed point mutation. The results indicate that there are several different mechanisms responsible for the regrowth of a tolerant subpopulation in BC, both BC-specific and general stress responses, and that sub-MIC of BC may select for phenotypic variants in a sensitive E. coli culture. PMID:22605968</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22605968','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22605968"><span>Subminimal inhibitory concentrations of the disinfectant benzalkonium chloride select for a tolerant subpopulation of Escherichia coli with inheritable characteristics.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Moen, Birgitte; Rudi, Knut; Bore, Erlend; Langsrud, Solveig</p> <p>2012-01-01</p> <p>Exposure of Escherichia coli to a subminimal inhibitory concentration (25% below MIC) of benzalkonium chloride (BC), an antimicrobial membrane-active agent commonly used in medical and food-processing environments, resulted in cell death and changes in cell morphology (filamentation). A small subpopulation (1-5% of the initial population) survived and regained similar morphology and growth rate as non-exposed cells. This subpopulation maintained tolerance to BC after serial transfers in medium without BC. To withstand BC during regrowth the cells up regulated a drug efflux associated gene (the acrB gene, member of the AcrAB-TolC efflux system) and changed expression of outer membrane porin genes (ompFW) and several genes involved in protecting the cell from the osmotic- and oxidative stress. Cells pre-exposed to osmotic- and oxidative stress (sodium chloride, salicylic acid and methyl viologen) showed higher tolerance to BC. A control and two selected isolates showing increased BC-tolerance after regrowth in BC was genome sequenced. No common point mutations were found in the BC- isolates but one point mutation in gene rpsA (Ribosomal protein S1) was observed in one of the isolates. The observed tolerance can therefore not solely be explained by the observed point mutation. The results indicate that there are several different mechanisms responsible for the regrowth of a tolerant subpopulation in BC, both BC-specific and general stress responses, and that sub-MIC of BC may select for phenotypic variants in a sensitive E. coli culture.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AtmEn.185...41K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AtmEn.185...41K"><span>Long-term monitoring of black carbon across Germany</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kutzner, Rebecca D.; von Schneidemesser, Erika; Kuik, Friderike; Quedenau, Jörn; Weatherhead, Elizabeth C.; Schmale, Julia</p> <p>2018-07-01</p> <p>Lately, black carbon (BC) has received significant attention due to its climate-warming properties and adverse health effects. Nevertheless, long-term observations in urban areas are scarce, most likely because BC monitoring is not required by environmental legislation. This, however, handicaps the evaluation of air quality models which can be used to assess the effectiveness of policy measures which aim to reduce BC concentrations. Here, we present a new dataset of atmospheric BC measurements from Germany constructed from over six million measurements at over 170 stations. Data covering the period between 1994 and 2014 were collected from twelve German Federal States and the Federal Environment Agency, quality checked and harmonized into a database with comprehensive metadata. The final data in original time resolution are available for download (https://doi.org/10.1594/PANGAEA.881173) Our analysis focuses on 2009, the year with the largest data coverage with one single methodology, as well as on the relative changes in long-term trends over ten years. For 2009, we find that BC concentrations at traffic sites were at least twice as high as at urban background, industrial and rural sites. Weekly cycles are most prominent at traffic stations, however, the presence of differences in concentrations during the week and on weekends at other station types suggests that traffic plays an important role throughout the full network. Generally higher concentrations and weaker weekly cycles during the winter months point towards the influence of other sources such as domestic heating. Regarding the long-term trends, advanced statistical techniques allow us to account for instrumentation changes and to separate seasonal and long-term changes in our dataset. Analysis shows a downward trend in BC at nearly all locations and in all conditions, with a high level of confidence for the period of 2005-2014. In depth analysis indicates that background BC is decreasing slowly, while the occurrences of high concentrations are decreasing more rapidly. In summary, legislation - both in Europe and locally - to reduce particulate emissions and indirectly BC appear to be working, based on this analysis. Adverse human health and climate impacts are likely to be diminished because of the improvements in air quality.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.B13I0324P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.B13I0324P"><span>Continuous measurement of carbon black in a densely populated area of Mexico City</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Peralta, O.; Ortinez, A.; Castro, T.; Espinoza, M. D. L. L.; Saavedra, I.; Carabali-Sandoval, G. A., Sr.; Páramo, V. H.; Gavilán, A.; Martínez-Arroyo, A.</p> <p>2014-12-01</p> <p>The black carbon (BC) is a byproduct of burning fossil fuels and is an important short-lived climate forcer because it absorbs solar radiation altering the Earth's radiative budget and climate. It is also an atmospheric pollutant that promotes reactions of other compounds in the atmosphere. Despite its importance for health and climate, in Mexico there are very few studies on ambient concentrations of BC in urban areas and virtually no information of continuous measurements over long periods (more than a month of measurements). So, in order to develop more efficient local and regional mitigation strategies and policies that allow reducing ambient concentrations of BC, it is necessary to know BC seasonal evolution, contribution to radiative budget and impacts on health. This study shows continuous measurements (from July 2013 to July 2014) of BC to perform an analysis of seasonal variations. The selected monitoring site is located at Iztapalapa, a densely populated area with high traffic on the southeastern part of Mexico City. BC concentrations were obtained by two aethalometers (Magee Scientific Company, models AET31 and AET42) placed 15 meters above the ground. The aethalometers operate in the wavelength range of 370-950 nm and use a standard value of mass absorption coefficient MAC = 10.8 m2/g to calculate BC environmental concentration. To correct the aethalometers readings to the conditions of Mexico City, it was employed MAC = to 6.7 m2/g, which was determined for PM2.5 with a carbon analyzer (UIC, Inc.) and represents the mass absorption coefficient of soot emitted in Mexico City. The average value of the corrected concentration of BC in Mexico City during the period from July 2013 to July 2014 was 5.39 ± 1.89 μg/m3 (1.6 higher than readings recorded by aethalometers), which is greater than that measured in Shanghai in 2014 (annual average 2.33 μg/m3) and those reported for some U.S. cities; the value implies a potential danger to the health of inhabitants in Mexico City.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.A11J0148Q','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.A11J0148Q"><span>Effects of Wegener-Bergeron-Findeisen Process on Global Black Carbon Distribution</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Qi, L.</p> <p>2016-12-01</p> <p>In mixed-phase clouds, the Wegener-Bergeron-Findeisen (WBF) process (ice crystals may grow while water drops evaporate, thereby releasing black carbon (BC) particles into the interstitial air) slows down wet scavenging of BC. Rimming (snowflakes fall and collect cloud water drops and the BC in them along their pathways), in contrast, results in more efficient wet scavenging. We systematically investigate the effects of WBF on BC scavenging efficiency, surface BCair, deposition flux, concentration in snow, and washout ratio using a global 3D chemical transport model. We differentiate riming- vs WBF-dominated in-cloud scavenging based on liquid water content and temperature. Specifically, we relate WBF to either temperature or ice mass fraction in mixed-phase clouds. We find that at Jungfraujoch, Switzerland and Abisko, Sweden, where WBF dominates, the discrepancies of simulated BC scavenging efficiency and washout ratio are significantly reduced (from a factor of 3 to 10% and from a factor of 4-5 to a factor of two). However, at Zeppelin, Norway, where riming dominates, simulation of BC scavenging efficiency, BCair, and washout ratio become worse (relative to observations) when WBF is included. There is thus an urgent need for extensive observations to distinguish and characterize riming- versus WBF-dominated aerosol scavenging in mixed-phase clouds and the associated BC scavenging efficiency. We find the reduction resulting from WBF to global BC scavenging efficiency varies substantially, from 8% in the tropics to 76% in the Arctic. The resulting annual mean BCair increases by up to 156% at high altitudes and at northern high latitudes. Overall, WBF halves the model-observation discrepancy (from -65% to -30%) of BCair across North America, Europe, China and the Arctic. Globally WBF increases BC burden from 0.22 to 0.29-0.35 mg m-2 yr-1, which partially explains the gap between observed and previous model simulated BC burdens over land (Bond et al., 2013). In addition, WBF significantly increases BC lifetime from 5.7 days to 8 days. We find that WBF decreases BCsnow at mid-latitudes (by 15%) but increases it in the Arctic (by 26%) while improving model comparisons with observations. In addition, WBF dramatically reduces the model-observation discrepancy of washout ratios in winter (from a factor of 16 to 4).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005AdAtS..22..401Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005AdAtS..22..401Y"><span>Seasonal variations of number size distributions and mass concentrations of atmospheric particles in Beijing</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yu, Jianhua; Guinot, Benjamin; Yu, Tong; Wang, Xin; Liu, Wenqing</p> <p>2005-06-01</p> <p>Particle number and mass concentrations were measured in Beijing during the winter and summer periods in 2003, together with some other parameters including black carbon (BC) and meteorological conditions. Particle mass concentrations exhibited low seasonality, and the ratio of PM2.5/PM10 in winter was higher than that in summer. Particle number size distribution (PSD) was characterized by four modes and exhibited low seasonality. BC was well correlated with the number and mass concentrations of accumulation and coarse particles, indicating these size particles are related to anthropogenic activities. Particle mass and number concentrations (except ultra-fine and nucleation particles) followed well the trends of BC concentration for the majority of the day, indicating that most particles were associated with primary emissions. The diurnal number distributions of accumulation and coarse mode particles were characterized by two peaks.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28966026','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28966026"><span>Arsenic removal by perilla leaf biochar in aqueous solutions and groundwater: An integrated spectroscopic and microscopic examination.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Niazi, Nabeel Khan; Bibi, Irshad; Shahid, Muhammad; Ok, Yong Sik; Burton, Edward D; Wang, Hailong; Shaheen, Sabry M; Rinklebe, Jörg; Lüttge, Andreas</p> <p>2018-01-01</p> <p>In this study, we examined the removal of arsenite (As(III)) and arsenate (As(V)) by perilla leaf-derived biochars produced at 300 and 700 °C (referred as BC300 and BC700) in aqueous environments. Results revealed that the Langmuir isotherm model provided the best fit for As(III) and As(V) sorption, with the sorption affinity following the order: BC700-As(III) > BC700-As(V) > BC300-As(III) > BC300-As(V) (Q L  = 3.85-11.01 mg g -1 ). In general, As removal decreased (76-60%) with increasing pH from 7 to 10 except for the BC700-As(III) system, where notably higher As removal (88-90%) occurred at pH from 7 to 9. Surface functional moieties contributed to As sequestration by the biochars examined here. However, significantly higher surface area and aromaticity of BC700 favored a greater As removal compared to BC300, suggesting that surface complexation/precipitation dominated As removal by BC700. Arsenic K-edge X-ray absorption near edge structure (XANES) spectroscopy demonstrated that up to 64% of the added As(V) was reduced to As(III) in BC700- and BC300-As(V) sorption experiments, and in As(III) sorption experiments, partial oxidation of As(III) to As(V) occurred (37-39%). However, XANES spectroscopy was limited to precisely quantify As binding with sulfur species as As 2 S 3 -like phase. Both biochars efficiently removed As from natural As-contaminated groundwater (As: 23-190 μg L -1 ; n = 12) despite in the presence of co-occurring anions (e.g., CO 3 2- , PO 4 3- , SO 4 2- ) with the highest levels of As removal observed for BC700 (97-100%). Overall, this study highlights that perilla leaf biochars, notably BC700, possessed the greatest ability to remove As from solution and groundwater (drinking water). Significantly, the integrated spectroscopic techniques advanced our understanding to examine complex redox transformation of As(III)/As(V) with biochar, which are crucial to determine fate of As on biochar in aquatic environments. Copyright © 2017 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25909267','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25909267"><span>Personal exposure to black carbon during commuting in peak and off-peak hours in Shanghai.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Li, Bo; Lei, Xiao-ning; Xiu, Guang-li; Gao, Chi-yuan; Gao, Shuang; Qian, Ni-sheng</p> <p>2015-08-15</p> <p>A study on a commuter's exposure to black carbon (BC) in five different traffic modes (taxi, bus, subway, cycling and walking) was conducted in Xuhui District, Shanghai. A commuter's real-time exposure concentrations were recorded by MicroAeth AE51 BC monitors, and the average BC exposure concentration and inhalation dose were analyzed. Data collected by cyclist was applied to characterize the micro-variability in relation to traffic density and street topology. The distance to the traffic and the street topology as well as the volume of heavy diesel trucks were the dominant factors influencing the BC concentrations. In this study, a high variability of BC concentrations between streets and even within streets was observed, and also between days and hour of the day. The average BC exposure concentrations were 5.59±1.02 μg/m(3), 6.58±1.78 μg/m(3), 7.28±1.87 μg/m(3), 8.62±4.13 μg/m(3) and 9.43±2.89 μg/m(3) for walking, cycling, bus, taxi and subway trips, respectively. Exposure levels of in-vehicle microenvironments were 8.66±3.66 μg/m(3), 9.39±6.98 μg/m(3) and 10.96±2.72 μg/m(3) for bus, taxi and subway, respectively. While inhalation doses were 0.68±0.33 μg, 0.95±0.29 μg, 1.36±0.37 μg, 1.50±0.39 μg and 1.58±0.29 μg for taxi, subway, cycling, bus and walking, respectively. BC exposure level of walking was the lowest among all the traffic modes, but its inhalation dose was the highest. Copyright © 2015 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20120010621','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20120010621"><span>Variability of Black Carbon Deposition to the East Antarctic Plateau, 1800-2000 AD</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bisiaux, M. M.; Edwards, R.; McConnell, J. R.; Albert, M. R.; Anschutz, H.; Neumann, T. A.; Isaksson, E.; Penner, J. E.</p> <p>2012-01-01</p> <p>Refractory black carbon aerosols (rBC) from biomass burning and fossil fuel combustion are deposited to the Antarctic ice sheet and preserve a history of emissions and long-range transport from low- and mid-latitudes. Antarctic ice core rBC records may thus provide information with respect to past combustion aerosol emissions and atmospheric circulation. Here, we present six East Antarctic ice core records of rBC concentrations and fluxes covering the last two centuries with approximately annual resolution (cal. yr. 1800 to 2000). The ice cores were drilled in disparate regions of the high East Antarctic ice sheet, at different elevations and net snow accumulation rates. Annual rBC concentrations were log-normally distributed and geometric means of annual concentrations ranged from 0.10 to 0.18 m cro-g/kg. Average rBC fluxes were determined over the time periods 1800 to 2000 and 1963 to 2000 and ranged from 3.4 to 15.5 m /a and 3.6 to 21.8 micro-g/sq m/a, respectively. Geometric mean concentrations spanning 1800 to 2000 increased linearly with elevation at a rate of 0.025 micro-g/kg/500 m. Spectral analysis of the records revealed significant decadal-scale variability, which at several sites was comparable to decadal ENSO variability.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26255599','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26255599"><span>Preparation and characterization of a novel graphene/biochar composite for aqueous phenanthrene and mercury removal.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Tang, Jingchun; Lv, Honghong; Gong, Yanyan; Huang, Yao</p> <p>2015-11-01</p> <p>A graphene/biochar composite (G/BC) was synthesized via slow pyrolysis of graphene (G) pretreated wheat straw, and tested for the sorption characteristics and mechanisms of representative aqueous contaminants (phenanthrene and mercury). Structure and morphology analysis showed that G was coated on the surface of biochar (BC) mainly through π-π interactions, resulting in a larger surface area, more functional groups, greater thermal stability, and higher removal efficiency of phenanthrene and mercury compared to BC. Pseudo second-order model adequately simulated sorption kinetics, and sorption isotherms of phenanthrene and mercury were simulated well by dual-mode and BET models, respectively. FTIR and SEM analysis suggested that partitioning and surface sorption were dominant mechanisms for phenanthrene sorption, and that surface complexation between mercury and C-O, CC, -OH, and OC-O functional groups was responsible for mercury removal. The results suggested that the G/BC composite is an efficient, economic, and environmentally friendly multifunctional adsorbent for environmental remediation. Copyright © 2015 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011JPhCS.304a2006V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011JPhCS.304a2006V"><span>Workplace exposure to traffic-derived nanoscaled particulates</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Viana, M.; Díez, S.; Alastuey, A.; Querol, X.; Reche, C.</p> <p>2011-07-01</p> <p>Workplace exposure to traffic-derived nanoscaled particulates was determined at a chemical research facility. Sub-micron particles were monitored by means of a multi-angle absorption photometer (MAAP) and a laser spectrometer (GRIMM 1107), providing 10-minute black carbon (BC) concentrations and 15-minute PM1 concentrations, respectively, over a 4-month period (22/03/2010 - 28/07/2010). BC levels were simultaneously monitored during 1-day periods using a handheld aethalometer (Magee AE51), with excellent agreement between both techniques (MAAP and AE51, r2 = 0.96, y = 0.84x).The studied laboratory is located on the 5th floor of an 8-storey building in an urban background environment in Barcelona, Spain. The laboratory was not in use during the study period, and both of its doors were kept open at all times in order to ensure air circulation between the study laboratory and the remaining offices and laboratories on the same floor (where workers were exposed). Windows were kept closed at all times. Indoor BC and PM1 concentrations were compared with ambient BC and PM1 levels from an outdoor monitoring station located at <150 m away from the research facility. Results evidenced the major impact of outdoor vehicular traffic emissions on the levels of nanoscale particulates monitored in the workplace, with clear daily cycles coinciding with traffic rush hours, especially during week days. Penetration ratios were calculated for BC which showed that, even ensuring that all windows were closed, at least 82% of indoor BC concentrations originate from outdoor emissions. Outdoor/indoor penetration ratios were stable for BC (ranging between 1.20 and 1.35) but not for PM1 (1.76 to 1.02), suggesting that it is necessary to monitor the variability of penetration factors as a function of time. BC emission sources in the workplace still need to be determined, but could be related to printer/photocopier toner emissions and laboratory work. Potential contamination due to the monitoring instruments (pumps) was discarded through the analysis of daily indoor BC cycles.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AtmEn.158...60P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AtmEn.158...60P"><span>Physical and chemical characterization of urban winter-time aerosols by mobile measurements in Helsinki, Finland</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pirjola, Liisa; Niemi, Jarkko V.; Saarikoski, Sanna; Aurela, Minna; Enroth, Joonas; Carbone, Samara; Saarnio, Karri; Kuuluvainen, Heino; Kousa, Anu; Rönkkö, Topi; Hillamo, Risto</p> <p>2017-06-01</p> <p>A two-week measurement campaign by a mobile laboratory van was performed in urban environments in the Helsinki metropolitan area, Finland, in winter 2012, to obtain a comprehensive view on aerosol properties and sources. The abundances and physico-chemical properties of particles varied strongly in time and space, depending on the main sources of aerosols. Four major types of winter aerosol were recognized: 1) clean background aerosol with low particle number (Ntot) and lung deposited surface area (LDSA) concentrations due to marine air flows from the Atlantic Ocean; 2) long-range transported (LRT) pollution aerosol due to air flows from eastern Europe where the particles were characterized by the high contribution of oxygenated organic aerosol (OOA) and inorganic species, particularly sulphate, but low BC contribution, and their size distribution possessed an additional accumulation mode; 3) fresh smoke plumes from residential wood combustion in suburban small houses, these particles were characterized by high biomass burning organic aerosol (BBOA) and black carbon (BC) concentrations; and 4) fresh emissions from traffic while driving on busy streets in the city centre and on the highways during morning rush hours. This aerosol was characterized by high concentration of Ntot, LDSA, small particles in the nucleation mode, as well as high hydrocarbon-like organic aerosol (HOA) and BC concentrations. In general, secondary components (OOA, NO3, NH4, and SO4) dominated the PM1 chemical composition during the LRT episode accounting for 70-80% of the PM1 mass, whereas fresh primary emissions (BC, HOA and BBOA) dominated the local traffic and wood burning emissions. The major individual particle types observed with electron microscopy analysis (TEM/EDX) were mainly related to residential wood combustion (K/S/C-rich, soot, other C-rich particles), traffic (soot, Si/Al-rich, Fe-rich), heavy fuel oil combustion in heat plants or ships (S with V-Ni-Fe), LRT pollutants (S/C-rich secondary particles) and sea salt (Na/Cl-rich). Tar balls from wood combustion were also observed, especially (∼5%) during the LRT pollution episode.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GBioC..31.1501S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GBioC..31.1501S"><span>Release of Black Carbon From Thawing Permafrost Estimated by Sequestration Fluxes in the East Siberian Arctic Shelf Recipient</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Salvadó, Joan A.; Bröder, Lisa; Andersson, August; Semiletov, Igor P.; Gustafsson, Örjan</p> <p>2017-10-01</p> <p>Black carbon (BC) plays an important role in carbon burial in marine sediments globally. Yet the sequestration of BC in the Arctic Ocean is poorly understood. Here we assess the concentrations, fluxes, and sources of soot BC (SBC)—the most refractory component of BC—in sediments from the East Siberian Arctic Shelf (ESAS), the World's largest shelf sea system. SBC concentrations in the contemporary shelf sediments range from 0.1 to 2.1 mg g-1 dw, corresponding to 2-12% of total organic carbon. The 210Pb-derived fluxes of SBC (0.42-11 g m-2 yr-1) are higher or in the same range as fluxes reported for marine surface sediments closer to anthropogenic emissions. The total burial flux of SBC in the ESAS ( 4,000 Gg yr-1) illustrates the great importance of this Arctic shelf in marine sequestration of SBC. The radiocarbon signal of the SBC shows more depleted yet also more uniform signatures (-721 to -896‰; average of -774 ± 62‰) than of the non-SBC pool (-304 to -728‰; average of -491 ± 163‰), suggesting that SBC is coming from an, on average, 5,900 ± 300 years older and more specific source than the non-SBC pool. We estimate that the atmospheric BC input to the ESAS is negligible ( 0.6% of the SBC burial flux). Statistical source apportionment modeling suggests that the ESAS sedimentary SBC is remobilized by thawing of two permafrost carbon (PF/C) systems: surface soil permafrost (topsoil/PF; 25 ± 8%) and Pleistocene ice complex deposits (ICD/PF; 75 ± 8%). The SBC contribution to the total mobilized permafrost carbon (PF/C) increases with increasing distance from the coast (from 5 to 14%), indicating that the SBC is more recalcitrant than other forms of translocated PF/C. These results elucidate for the first time the key role of permafrost thaw in the transport of SBC to the Arctic Ocean. With ongoing global warming, these findings have implications for the biogeochemical carbon cycle, increasing the size of this refractory carbon pool in the Arctic Ocean.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25315931','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25315931"><span>Trace element biogeochemistry in the soil-water-plant system of a temperate agricultural soil amended with different biochars.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kloss, Stefanie; Zehetner, Franz; Buecker, Jannis; Oburger, Eva; Wenzel, Walter W; Enders, Akio; Lehmann, Johannes; Soja, Gerhard</p> <p>2015-03-01</p> <p>Various biochar (BC) types have been investigated as soil amendment; however, information on their effects on trace element (TE) biogeochemistry in the soil-water-plant system is still scarce. In the present study, we determined aqua-regia (AR) and water-extractable TEs of four BC types (woodchips (WC), wheat straw (WS), vineyard pruning (VP), pyrolyzed at 525 °C, of which VP was also pyrolyzed at 400 °C) and studied their effects on TE concentrations in leachates and mustard (Sinapis alba L.) tissue in a greenhouse pot experiment. We used an acidic, sandy agricultural soil and a BC application rate of 3% (w/w). Our results show that contents and extractability of TEs in the BCs and effectuated changes of TE biogeochemistry in the soil-water-plant system strongly varied among the different BC types. High AR-digestable Cu was found in VP and high B contents in WC. WS had the highest impact on TEs in leachates showing increased concentrations of As, Cd, Mo, and Se, whereas WC application resulted in enhanced leaching of B. All BC types increased Mo and decreased Cu concentrations in the plant tissue; however, they showed diverging effects on Cu in the leachates with decreased concentrations for WC and WS, but increased concentrations for both VPs. Our results demonstrate that BCs may release TEs into the soil-water-plant system. A BC-induced liming effect in acidic soils may lead to decreased plant uptake of cationic TEs, including Pb and Cd, but may enhance the mobility of anionic TEs like Mo and As. We also found that BCs with high salt contents (e.g., straw-based BCs) may lead to increased mobility of both anionic and cationic TEs in the short term.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28675863','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28675863"><span>Polychlorinated biphenyls in Nepalese surface soils: Spatial distribution, air-soil exchange, and soil-air partitioning.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Yadav, Ishwar Chandra; Devi, Ningombam Linthoingambi; Li, Jun; Zhang, Gan</p> <p>2017-10-01</p> <p>Regardless of the ban on the polychlorinated biphenyls (PCBs) decade ago, significant measures of PCBs are still transmitted from essential sources in cities and are all inclusive ecological contaminants around the world. In this study, the concentrations of PCBs in soil, the air-soil exchange of PCBs, and the soil-air partitioning coefficient (K SA ) of PCBs were investigated in four noteworthy urban areas in Nepal. Overall, the concentrations of ∑ 30 PCBs ranged from 10 to 59.4ng/g dry weight; dw (mean 12.2ng/g ±11.2ng/g dw). The hexa-CBs (22-31%) was most dominant among several PCB-homologues, followed by tetra-CBs (20-29%), hepta-CBs (12-21%), penta-CBs (15-17%) and tri-CBs (9-19%). The sources of elevated level of PCBs discharge in Nepalese soil was identified as emission from transformer oil, lubricants, breaker oil, cutting oil and paints, and cable insulation. Slightly strong correlation of PCBs with TOC than BC demonstrated that amorphous organic matter (AOM) assumes a more critical part in holding of PCBs than BC in Nepalese soil. The fugacity fraction (ff) results indicated the soil being the source of PCB in air through volatilization and net transport from soil to air. The soil-air partitioning coefficient study suggests the absorption by soil organic matter control soil-air partitioning of PCBs. Slightly weak but positive correlation of measured Log K SA with Log K OA (R 2 = 0.483) and Log K BC-A (R 2 = 0.438) suggests that both Log K OA and Log K BC-A can predict soil-air partitioning to lesser extent for PCBs. Copyright © 2017 Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1167307-simulating-black-carbon-dust-radiative-forcing-seasonal-snow-case-study-over-north-china-field-campaign-measurements','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1167307-simulating-black-carbon-dust-radiative-forcing-seasonal-snow-case-study-over-north-china-field-campaign-measurements"><span>Simulating Black Carbon and Dust and their Radiative Forcing in Seasonal Snow: A Case Study over North China with Field Campaign Measurements</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Zhao, Chun; Hu, Zhiyuan; Qian, Yun</p> <p>2014-10-30</p> <p>A state-of-the-art regional model, WRF-Chem, is coupled with the SNICAR model that includes the sophisticated representation of snow metamorphism processes available for climate study. The coupled model is used to simulate the black carbon (BC) and dust concentrations and their radiative forcing in seasonal snow over North China in January-February of 2010, with extensive field measurements used to evaluate the model performance. In general, the model simulated spatial variability of BC and dust mass concentrations in the top snow layer (hereafter BCS and DSTS, respectively) are quantitatively or qualitatively consistent with observations. The model generally moderately underestimates BCS in themore » clean regions but significantly overestimates BCS in some polluted regions. Most model results fall into the uncertainty ranges of observations. The simulated BCS and DSTS are highest with >5000 ng g-1 and up to 5 mg g-1, respectively, over the source regions and reduce to <50 ng g-1 and <1 μg g-1, respectively, in the remote regions. BCS and DSTS introduce similar magnitude of radiative warming (~10 W m-2) in snowpack, which is comparable to the magnitude of surface radiative cooling due to BC and dust in the atmosphere. This study represents the first effort in using a regional modeling framework to simulate BC and dust and their direct radiative forcing in snow. Although a variety of observational datasets have been used to attribute model biases, some uncertainties in the results remain, which highlights the need for more observations, particularly concurrent measurements of atmospheric and snow aerosols and the deposition fluxes of aerosols, in future campaigns.« less</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_16 --> <div id="page_17" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="321"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.A52C..04C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.A52C..04C"><span>Emission inventories for ships in the Arctic based on satellite sampled AIS data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Christensen, J. H.; Winther, M.; Plejdrup, M. S.; Ravn, E. S.; Eriksson, O. M.; Kristensen, H. O.</p> <p>2013-12-01</p> <p>Emissions from ships inside Arctic are an important source of the Arctic pollution as e.g. SO2, NOx and Black Carbon (BC). This paper presents a detailed BC, NOx and SO2 emission inventory for ships in the Arctic for the year 2012 based on satellite AIS data, ship engine power functions and technology stratified emission factors. Emission projections are presented for the years 2020, 2030 and 2050 combined with emission from polar diversion routes as given by Corbett et al. (2010). Furthermore the Danish Eulerian Hemispheric Model (Christensen, 1997; Brandt et al., 2012), which is 3-d Chemical Transport Model covering the Northern hemisphere was use to study the transport of BC, SO2 and O3 and estimate BC deposition results in order to study then current and future contribution from Arctic ship traffics to atmospheric concentrations and deposition of pollutants in the Arctic. In 2012, the largest emission contributions of Artic ships emissions are from fishing ships (45% for BC, 38% for NOx and 23% for SO2) followed by passenger ships (20%, 17%, 25%), tankers (9%, 13%, 15%), general cargo (8%, 11%, 12%) and container ships (5%, 7%, 8%). Without diverted traffic from 2012 to 2050 the total BC, NOx and SO2 emissions are expected to change by 16 %, -32 % and -63 %, respectively. For the year 2012 the average calculated contributions for ships of BC, SO, and O3 concentrations and BC deposition become low and similar for the emissions projections without diverted traffic of the years 2020, 2030 and 2050, but with diverted traffic the contributions for ships to the BC, SO, and O3 concentrations and BC deposition becomes significantly higher especially for the year 2050 and especially during the summer season over the areas, where the diverted traffic are assumed to occur. These high forecasted values for BC sea-ice deposition close to the Polar routes are of main concern due to decreases in the albedo which in turn enhances the melting of sea-ice.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5322381','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5322381"><span>Enhanced Fenton-like Degradation of Trichloroethylene by Hydrogen Peroxide Activated with Nanoscale Zero Valent Iron Loaded on Biochar</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Yan, Jingchun; Qian, Linbo; Gao, Weiguo; Chen, Yun; Ouyang, Da; Chen, Mengfang</p> <p>2017-01-01</p> <p>Composite of nanoscale Zero Valent Iron (nZVI) loaded on Biochar (BC) was prepared and characterized as hydrogen peroxide (H2O2) activator for the degradation of trichloroethylene (TCE). nZVI is homogeneously loaded on lamellarly structured BC surfaces to form nZVI/BC with specific surface area (SBET) of 184.91 m2 g−1, which can efficiently activate H2O2 to achieve TCE degradation efficiency of 98.9% with TOC removal of 78.2% within 30 min under the conditions of 0.10 mmol L−1 TCE, 1.13 g L−1 nZVI/BC and 1.50 mmol L−1 H2O2. Test results from the Electron Spin Resonance (ESR) measurement and coumarin based fluorescent probe technology indicated that ∙OH radicals were the dominant species responsible for the degradation of TCE within the nZVI/BC-H2O2 system. Activation mechanism of the redox action of Fe2+/Fe3+ generated under both aerobic and anaerobic conditions from nZVI and single electron transfer process from BC surface bound C–OH to H2O2 promoted decomposition of H2O2 into ∙OH radicals was proposed. PMID:28230207</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017NatSR...743051Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017NatSR...743051Y"><span>Enhanced Fenton-like Degradation of Trichloroethylene by Hydrogen Peroxide Activated with Nanoscale Zero Valent Iron Loaded on Biochar</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yan, Jingchun; Qian, Linbo; Gao, Weiguo; Chen, Yun; Ouyang, Da; Chen, Mengfang</p> <p>2017-02-01</p> <p>Composite of nanoscale Zero Valent Iron (nZVI) loaded on Biochar (BC) was prepared and characterized as hydrogen peroxide (H2O2) activator for the degradation of trichloroethylene (TCE). nZVI is homogeneously loaded on lamellarly structured BC surfaces to form nZVI/BC with specific surface area (SBET) of 184.91 m2 g-1, which can efficiently activate H2O2 to achieve TCE degradation efficiency of 98.9% with TOC removal of 78.2% within 30 min under the conditions of 0.10 mmol L-1 TCE, 1.13 g L-1 nZVI/BC and 1.50 mmol L-1 H2O2. Test results from the Electron Spin Resonance (ESR) measurement and coumarin based fluorescent probe technology indicated that •OH radicals were the dominant species responsible for the degradation of TCE within the nZVI/BC-H2O2 system. Activation mechanism of the redox action of Fe2+/Fe3+ generated under both aerobic and anaerobic conditions from nZVI and single electron transfer process from BC surface bound C-OH to H2O2 promoted decomposition of H2O2 into •OH radicals was proposed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014ACPD...1410025M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014ACPD...1410025M"><span>Air quality in Delhi during the CommonWealth Games</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Marrapu, P.; Cheng, Y.; Beig, G.; Sahu, S.; Srinivas, R.; Carmichael, G. R.</p> <p>2014-04-01</p> <p>Air quality during The CommonWealth Games (CWG, held in Delhi in October 2010) is analyzed using a new air quality forecasting system established for the Games. The CWG stimulated enhanced efforts to monitor and model air quality in the region. The air quality of Delhi during the CWG had high levels of particles with mean values of PM2.5 and PM10 at the venues of 111 and 238 μg m-3, respectively. Black carbon (BC) accounted for ∼10% of the PM2.5 mass. It is shown that BC, PM2.5 and PM10 concentrations are well predicted, but with positive biases of ∼25%. The diurnal variations are also well captured, with both the observations and the modeled values showing nighttime maxima and daytime minima. A new emissions inventory, developed as part of this air quality forecasting initiative, is evaluated by comparing the observed and predicted species-species correlations (i.e., BC : CO; BC : PM2.5; PM2.5 : PM10). Assuming that the observations at these sites are representative and that all the model errors are associated with the emissions, then the modeled concentrations and slopes can be made consistent by scaling the emissions by: 0.6 for NOx, 2 for CO, and 0.7 for BC, PM2.5 and PM10. The emission estimates for particles are remarkably good considering the uncertainty in the estimates due to the diverse spread of activities and technologies that take place in Delhi and the rapid rates of change. The contribution of various emission sectors including transportation, power, domestic and industry to surface concentrations are also estimated. Transport, domestic and industrial sectors all make significant contributions to PM levels in Delhi, and the sectoral contributions vary spatially within the city. Ozone levels in Delhi are elevated, with hourly values sometimes exceeding 100 ppb. The continued growth of the transport sector is expected to make ozone pollution a more pressing air pollution problem in Delhi. The sector analysis provides useful inputs into the design of strategies to reduce air pollution levels in Delhi. The contribution for sources outside of Delhi on Delhi air quality range from ∼25% for BC and PM to ∼60% for day time ozone. The significant contributions from non-Delhi sources indicates that in Delhi (as has been show elsewhere) these strategies will also need a more regional perspective.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29054629','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29054629"><span>Arsenic removal by Japanese oak wood biochar in aqueous solutions and well water: Investigating arsenic fate using integrated spectroscopic and microscopic techniques.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Niazi, Nabeel Khan; Bibi, Irshad; Shahid, Muhammad; Ok, Yong Sik; Shaheen, Sabry M; Rinklebe, Jörg; Wang, Hailong; Murtaza, Behzad; Islam, Ejazul; Farrakh Nawaz, M; Lüttge, Andreas</p> <p>2018-04-15</p> <p>In this study, we examined the sorption of arsenite (As(III)) and arsenate (As(V)) to Japanese oak wood-derived biochar (OW-BC) in aqueous solutions, and determined its efficiency to remove As from As-contaminated well water. Results revealed that, among the four sorption isotherm models, Langmuir model showed the best fit to describe As(III) and As(V) sorption on OW-BC, with slightly greater sorption affinity for As(V) compared to As(III) (Q L =3.89 and 3.16mgg -1 ; R 2 =0.91 and 0.85, respectively). Sorption edge experiments indicated that the maximum As removal was 81% and 84% for As(III)- and As(V)-OW-BC systems at pH7 and 6, respectively, which decreased above these pH values (76-69% and 80-58%). Surface functional groups, notably OH, COOH, CO, CH 3 , were involved in As sequestration by OW-BC, suggesting the surface complexation/precipitation and/or electrostatic interaction of As on OW-BC surface. Arsenic K-edge X-ray absorption near edge structure (XANES) spectroscopy indicated that 36% of the added As(III) was partially oxidized to As(V) in the As(III) sorption experiment, and in As(V) sorption experiment, 48% of As(V) was, albeit incompletely, reduced to As(III) on OW-BC surface. Application of OW-BC to As-contaminated well water (As: 27-144μgL -1 ; n=10) displayed that 92 to 100% of As was depleted despite in the presence of co-occurring competing anions (e.g., SO 4 2- , CO 3 2- , PO 4 3- ). This study shows that OW-BC has a great potential to remove As from solution and drinking (well) water. Overall, the combination of macroscopic sorption data and integrated spectroscopic and microscopic techniques highlight that the fate of As on biochar involves complex redox transformation and association with surface functional moieties in aquatic systems, thereby providing crucial information required for implication of biochar in environmental remediation programs. Copyright © 2017 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=67474&keyword=planetary+AND+science&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=67474&keyword=planetary+AND+science&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>TEMPORAL TRENDS OF BLACK CARBON CONCENTRATIONS AND REGIONAL CLIMATE FORCING IN THE SOUTHEASTERN UNITED STATES. (R825248)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p><P>The effect of black carbon (BC) on climate forcing is potentially important, but its estimates have large uncertainties due to a lack of sufficient observational data. The BC mass concentration in the southeastern US was measured at a regionally representative site, Mount Gibb...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ApJ...860..131C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ApJ...860..131C"><span>On the Red Giant Branch: Ambiguity in the Surface Boundary Condition Leads to ≈100 K Uncertainty in Model Effective Temperatures</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Choi, Jieun; Dotter, Aaron; Conroy, Charlie; Ting, Yuan-Sen</p> <p>2018-06-01</p> <p>The effective temperature (T eff) distribution of stellar evolution models along the red giant branch (RGB) is sensitive to a number of parameters including the overall metallicity, elemental abundance patterns, the efficiency of convection, and the treatment of the surface boundary condition (BC). Recently there has been interest in using observational estimates of the RGB T eff to place constraints on the mixing length parameter, α MLT, and possible variation with metallicity. Here we use 1D Modules for Experiments in Stellar Astrophysics (MESA) stellar evolution models to explore the sensitivity of the RGB T eff to the treatment of the surface BC. We find that different surface BCs can lead to ±100 K metallicity-dependent offsets on the RGB relative to one another in spite of the fact that all models can reproduce the properties of the Sun. Moreover, for a given atmosphere T–τ relation, we find that the RGB T eff is also sensitive to the optical depth at which the surface BC is applied in the stellar model. Nearly all models adopt the photosphere as the location of the surface BC, but this choice is somewhat arbitrary. We compare our models to stellar parameters derived from the APOGEE-Kepler sample of first ascent red giants and find that systematic uncertainties in the models due to treatment of the surface BC place a limit of ≈100 K below which it is not possible to make firm conclusions regarding the fidelity of the current generation of stellar models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1409110-bonding-elastic-vibrational-properties-low-high-pressure-synthesized-diamond-like-bcx-phases','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1409110-bonding-elastic-vibrational-properties-low-high-pressure-synthesized-diamond-like-bcx-phases"><span>Bonding, elastic and vibrational properties in low and high pressure synthesized diamond-like BCx phases</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Zinin, P.; Liu, X. R.; Jia, R.</p> <p></p> <p>Recent studies demonstrate that low pressure chemical vapor deposition at 950 K leads to the synthesis of diamond-like boron carbides with high concentrations of boron (0.66 < x < 4) in which the sp 2 fraction depends on the boron concentration [1]. This indicates that the graphitic BC3 (g-BC3) phases obtained by chemical vapor deposition materials are mixtures of diamond-like and graphitic BCx phases. This finding allows us to revise the interpretation of the x-ray diffraction (XRD) patterns of the g-BC3 phases discussed previously [2, 3]. To support the new interpretation, we conducted a laser heating experiment of the g-BC3more » phase. We found that after laser heating at 1100 K and 25 GPa in a diamond anvil cell (DAC) almost all graphitic layers of the g-BC3 transform into a cubic structure. The XRD pattern of the cubic BC3 phase (c-BC3) can be indexed with a cubic unit cell a = 3.619 (0.165) Å. Measurements of the equation of state of the g-BC3 phase demonstrated that boron atoms were incorporated into the graphitic B-C network. The linear compressibility along the c axis can be characterized by the value of the linear modulus Bc = 29.2 ± 1.8 GPa. Linear fitting of the experimental data for the a/a o parameter as a function of pressure gives us the value of the linear elastic modulus along the a axes: Ba = 800 ± 75 GPa.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015SPIE.9680E..2TK','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015SPIE.9680E..2TK"><span>Spatial variability of aerosol and black carbon concentrations in the troposphere of the Russian Arctic</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kozlov, Valerii S.; Panchenko, Mikhail V.; Paris, Jean D.; Nédéléc, Philippe; Chernov, Dmitry G.; Shmargunov, Vladimir P.</p> <p>2015-11-01</p> <p>A cycle of flights of the Optik TU-134 Flying Laboratory of IAO SB RAS over regions of Western Siberia and the Russian Arctic (55.0-74.8°N, 61.3-82.9°E) was carried out on October 15-17 of 2014 within the framework of the YAK-AEROSIB Russian—French Project. The mass concentrations of submicron aerosol and Black Carbon (BC) in the troposphere up to a height of 8.5 km were measured in the flights. The ranges of variability were 0.3-20 μg/m3 for the aerosol concentration and 0.02-1 μg/m3 for the BC concentration. In the subpolar latitudes of 71-74.8°N, the lower levels of aerosol (0.8-6 μg/m3) and BC (0.02-0.3 μg/m3) were observed. The comparison of the results of airborne sensing in 2008 and 2014 has shown that in the Western Subartic the aerosol and BC concentrations in the vertical profiles up to six times exceeded those observed in the Eastern Subarctic (0.3-1 μg/m3 and 10-50 ng/m3). The excess of the mean integral BC concentrations and the aerosol optical depth was, on average, 2-2.5 times (0.16 mg/m2; 0.02). In the region of the Kara Sea at heights of 0.5-2 and 4-6 km, the excess of the aerosol content in the western sector in comparison with the eastern one was, on average, 2 times, while for the black carbon the excess achieved 7 times at heights of 1-2 km (0.25- 0.035 μg/m3). The mean integral concentrations of aerosol and black carbon ˜ 1.3 times exceeded those in the clearer eastern region of the sea (0.31 mg/m2; 0.049). The obtained estimates indicate the decrease of the aerosol and BC concentrations in the subpolar latitudes of the Russian Federation from the west to the east.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015ACP....15.3671W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015ACP....15.3671W"><span>Simultaneous reductions in emissions of black carbon and co-emitted species will weaken the aerosol net cooling effect</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Z. L.; Zhang, H.; Zhang, X. Y.</p> <p>2015-04-01</p> <p>Black carbon (BC), a distinct type of carbonaceous material formed from the incomplete combustion of fossil and biomass based fuels under certain conditions, can interact with solar radiation and clouds through its strong light-absorption ability, thereby warming the Earth's climate system. Some studies have even suggested that global warming could be slowed down in the short term by eliminating BC emission due to its short lifetime. In this study, we estimate the influence of removing some sources of BC and other co-emitted species on the aerosol radiative effect by using an aerosol-climate atmosphere-only model BCC_AGCM2.0.1_CUACE/Aero with prescribed sea surface temperature and sea ice cover, in combination with the aerosol emissions from the Representative Concentration Pathways (RCPs) scenarios. We find that the global annual mean aerosol net cooling effect at the top of the atmosphere (TOA) will be enhanced by 0.12 W m-2 compared with recent past year 2000 levels if the emissions of only BC are reduced to the level projected for 2100 based on the RCP2.6 scenario. This will be beneficial~for the mitigation of global warming. However, both aerosol negative direct and indirect radiative effects are weakened when BC and its co-emitted species (sulfur dioxide and organic carbon) are simultaneously reduced. Relative to year 2000 levels, the global annual mean aerosol net cooling effect at the TOA will be weakened by 1.7-2.0 W m-2 if the emissions of all these aerosols are decreased to the levels projected for 2100 in different ways based on the RCP2.6, RCP4.5, and RCP8.5 scenarios. Because there are no effective ways to remove the BC exclusively without influencing the other co-emitted components, our results therefore indicate that a reduction in BC emission can lead to an unexpected warming on the Earth's climate system in the future.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24520700','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24520700"><span>High black carbon and ozone concentrations during pollution transport in the Himalayas: five years of continuous observations at NCO-P global GAW station.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Marinoni, A; Cristofanelli, P; Laj, P; Duchi, R; Putero, D; Calzolari, F; Landi, T C; Vuillermoz, E; Maione, M; Bonasoni, P</p> <p>2013-08-01</p> <p>To study the influence of polluted air-mass transport carrying ozone (O3) and black carbon (BC) in the high Himalayas, since March 2006 the Nepal Climate Observatory at Pyramid (NCO-P) GAW-WMO global station (Nepal, 5079 m a.s.l.) is operative. During the first 5-year measurements, the O3 and BC concentrations have shown a mean value of 48 +/- 12 ppb (+/- standard deviation) and 208 +/- 374 ng/m3, respectively. Both O3 and BC showed well defined seasonal cycles with maxima during pre-monsoon (O3: 61.3 +/- 7.7 ppbV; BC: 444 +/- 433 ng/m3) and minima during the summer monsoon (O3: 40.1 +/- 12.4 ppbV; BC: 64 +/- 101 ng/m3). The analysis of the days characterised by the presence of a significant BC increase with respect to the typical seasonal cycle identified 156 days affected by "acute" pollution events, corresponding to 9.1% of the entire data-set. Such events mostly occur in the pre-monsoon period, when the O3 diurnal variability is strongly related to the transport of polluted air-mass rich on BC. On average, these "acute" pollution events were characterised by dramatic increases of BC (352%) and O3 (29%) levels compared with the remaining days.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018LaPhy..28c5603Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018LaPhy..28c5603Z"><span>Classifying low-grade and high-grade bladder cancer using label-free serum surface-enhanced Raman spectroscopy and support vector machine</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, Yanjiao; Lai, Xiaoping; Zeng, Qiuyao; Li, Linfang; Lin, Lin; Li, Shaoxin; Liu, Zhiming; Su, Chengkang; Qi, Minni; Guo, Zhouyi</p> <p>2018-03-01</p> <p>This study aims to classify low-grade and high-grade bladder cancer (BC) patients using serum surface-enhanced Raman scattering (SERS) spectra and support vector machine (SVM) algorithms. Serum SERS spectra are acquired from 88 serum samples with silver nanoparticles as the SERS-active substrate. Diagnostic accuracies of 96.4% and 95.4% are obtained when differentiating the serum SERS spectra of all BC patients versus normal subjects and low-grade versus high-grade BC patients, respectively, with optimal SVM classifier models. This study demonstrates that the serum SERS technique combined with SVM has great potential to noninvasively detect and classify high-grade and low-grade BC patients.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009ACPD....912857W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009ACPD....912857W"><span>Use of a mobile laboratory to evaluate changes in on-road air pollutants during the Beijing 2008 Summer Olympics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, M.; Zhu, T.; Zheng, J.; Zhang, R. Y.; Zhang, S. Q.; Xie, X. X.; Han, Y. Q.; Li, Y.</p> <p>2009-06-01</p> <p>China implemented systematic air pollution control measures during the 2008 Beijing Summer Olympics and Paralympics to improve air quality. This study used an innovative mobile laboratory to conduct in situ monitoring of on-road air pollutants along Beijing's 4th Ring Road on 31 selected days before, during, and after the Olympics air pollution control period. A suite of instruments with response times of less than 30 s was used to measure temporal and spatial variations in traffic-related air pollutants, including NOx, CO, PM1.0 surface area (SPM1), black carbon (BC), and benzene, toluene, ethylbenzene, and m-, p-, and o-xylene (BTEX). During the Olympics (8-23 August 2008), on-road air pollutant concentrations decreased significantly by up to 54% for CO, 41% for NOx, 70% for SO2, 66% for BTEX, 12% for BC, and 18% for SPM1 compared to the pre-control period (before 20 July). Concentrations increased again after the control period ended (after 20 September), with average increases of 33% for CO, 42% for NOx, 60% for SO2, 40% for BTEX, 26% for BC, and 37% for SPM1. Variations in pollutants concentrations were correlated with changes in traffic speed and the number and types of vehicles on the road. Throughout the measurement periods, the concentrations of NOx, CO, and BTEX varied markedly with the numbers of light- and medium-duty vehicles (LDVs and MDVs, respectively) on the road. Only after 8 August was a noticeable relationship between BC and SPM1 and the number of heavy-duty vehicles (HDVs) found. Additionally, BC and SPM1 showed a strong correlation with SO2 before the Olympics, indicating possible industrial sources from local emissions as well as regional transport activities in the Beijing area. Such factors were identified in measurements conducted on 6 August in an area southwest of Beijing. The ratio of benzene to toluene, a good indicator of traffic emissions, shifted suddenly from about 0.26 before the Olympics to approximately 0.48 after the Olympics began. This finding suggests that regulations on traffic volume and restrictions on the use of painting solvents were effective after the Olympics began. This study demonstrated the effectiveness of air pollution control measures and identified local and regional pollution sources within and surrounding the city of Beijing. The findings will be invaluable for emission inventory evaluations and model verifications.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009ACP.....9.8247W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009ACP.....9.8247W"><span>Use of a mobile laboratory to evaluate changes in on-road air pollutants during the Beijing 2008 Summer Olympics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, M.; Zhu, T.; Zheng, J.; Zhang, R. Y.; Zhang, S. Q.; Xie, X. X.; Han, Y. Q.; Li, Y.</p> <p>2009-11-01</p> <p>China implemented systematic air pollution control measures during the 2008 Beijing Summer Olympics and Paralympics to improve air quality. This study used a versatile mobile laboratory to conduct in situ monitoring of on-road air pollutants along Beijing's Fourth Ring Road on 31 selected days before, during, and after the Olympics air pollution control period. A suite of instruments with response times of less than 30 s was used to measure temporal and spatial variations in traffic-related air pollutants, including NOx, CO, PM1.0 surface area (S(PM1)), black carbon (BC), and benzene, toluene, the sum of ethylbenzene, and m-, p-, and o-xylene (BTEX). During the Olympics (8-23 August, 2008), on-road air pollutant concentrations decreased significantly, by up to 54% for CO, 41% for NOx, 70% for SO2, 66% for BTEX, 12% for BC, and 18% for SPM1, compared with the pre-control period (before 20 July). Concentrations increased again after the control period ended (after 20 September), with average increases of 33% for CO, 42% for NOx, 60% for SO2, 40% for BTEX, 26% for BC, and 37% for S(PM1), relative to the control period. Variations in pollutants concentrations were correlated with changes in traffic speed and the number and types of vehicles on the road. Throughout the measurement periods, the concentrations of NOx, CO, and BTEX varied markedly with the numbers of light- and medium-duty vehicles (LDVs and MDVs, respectively) on the road. Only after 8 August was a noticeable relationship found between BC and S(PM1) and the number of heavy-duty vehicles (HDVs). Additionally, BC and S(PM1) showed a strong correlation with SO2 before the Olympics, indicating possible industrial sources from local emissions as well as regional transport activities in the Beijing area. Such factors were identified in measurements conducted on 6 August in an area southwest of Beijing. The ratio of benzene to toluene, a good indicator of traffic emissions, shifted suddenly from about 0.26 before the Olympics to approximately 0.48 after the Olympics began. This finding suggests that regulations on traffic volume and restrictions on the use of painting solvents were effective after the Olympics began. This study demonstrated the effectiveness of air pollution control measures and identified local and regional pollution sources within and surrounding the city of Beijing. The findings will be invaluable for emission inventory evaluations and model verifications.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28120171','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28120171"><span>Shear bond strengths of tooth coating materials including the experimental materials contained various amounts of multi-ion releasing fillers and their effects for preventing dentin demineralization.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Arita, Shoko; Suzuki, Masaya; Kazama-Koide, Miku; Shinkai, Koichi</p> <p>2017-10-01</p> <p>We examined shear bond strengths (SBSs) of various tooth-coating-materials including the experimental materials to dentin and demineralization resistance of a fractured adhesive surface after the SBS testing. Three resin-type tooth-coating-materials (BC, PRG Barrier Coat; HC, Hybrid Coat II; and SF, Shield force plus) and two glass-ionomer-type tooth-coating-materials (CV, Clinpro XT Varnish; and FJ, Fuji VII) were selected. The experimental PRG Barrier Coat containing 0, 17, and 33 wt% S-PRG filler (BC0, BC17, and BC33, respectively) were developed. Each tooth-coating-material was applied to flattened dentin surfaces of extracted human teeth for SBS testing. After storing in water for 32 days with 4000 thermal cycling, the specimens were subjected to the SBS test. Specimens after SBS testing were subjected to a pH cycling test, and then, demineralization depths were measured using a polarized-light microscope. ANOVA and Tukey's HSD test were used for statistical analysis. The SBS value of FJ and CV was significantly lower than those of other materials except for BC (p < 0.01). The lesion depth of FJ was significantly shallower than those of other materials (p < 0.01); that of CV was significantly shallower than those of BC, HC, SF, and the control; and those of BC0 and BC17 were significantly shallower than that of the control (p < 0.05). The resin-type tooth-coating-materials demonstrated significantly higher SBS for dentin than the glass-ionomer-type tooth-coating-materials; however, they were inferior to the glass ionomer-type tooth-coating-materials in regards to the acid resistance of the fractured adhesion surface.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20801027','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20801027"><span>An artificial intelligence approach to Bacillus amyloliquefaciens CCMI 1051 cultures: application to the production of anti-fungal compounds.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Caldeira, A Teresa; Arteiro, José M; Roseiro, José C; Neves, José; Vicente, H</p> <p>2011-01-01</p> <p>The combined effect of incubation time (IT) and aspartic acid concentration (AA) on the predicted biomass concentration (BC), Bacillus sporulation (BS) and anti-fungal activity of compounds (AFA) produced by Bacillus amyloliquefaciens CCMI 1051, was studied using Artificial Neural Networks (ANNs). The values predicted by ANN were in good agreement with experimental results, and were better than those obtained when using Response Surface Methodology. The database used to train and validate ANNs contains experimental data of B. amyloliquefaciens cultures (AFA, BS and BC) with different incubation times (1-9 days) using aspartic acid (3-42 mM) as nitrogen source. After the training and validation stages, the 2-7-6-3 neural network results showed that maximum AFA can be achieved with 19.5 mM AA on day 9; however, maximum AFA can also be obtained with an incubation time as short as 6 days with 36.6 mM AA. Furthermore, the model results showed two distinct behaviors for AFA, depending on IT. Copyright © 2010 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AtmEn..64..366K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AtmEn..64..366K"><span>Seasonal variation in the spatial distribution of aerosol black carbon over Bay of Bengal: A synthesis of multi-campaign measurements</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kompalli, Sobhan Kumar; Suresh Babu, S.; Krishna Moorthy, K.; Nair, Vijayakumar S.; Gogoi, Mukunda M.; Chaubey, Jai Prakash</p> <p>2013-01-01</p> <p>Synthesizing data from several cruise experiments over the Bay of Bengal (BoB), the seasonal characterization of aerosol black carbon (BC) mass concentration was made. The study indicated that the BC mass concentration (MBC) showed significant seasonal variation over the oceanic region with MBC being the highest during the winter season (˜2407 ± 1756 ng m-3) and lowest in summer monsoon (˜765 ± 235 ng m-3). The seasonal changes in the BC mass concentration were more prominent over the northern BoB (having an annual amplitude of ˜4) compared to southern BoB (amplitude ˜ 2). Significant spatial gradients in MBC, latitudinal as well as longitudinal, existed in all the seasons. Latitudinal gradients, despite being consistently increasing northwards, were found to be sharper during winter and weakest during summer monsoon with e-fold scaling distances of ˜7.7° and ˜15.6° during winter and summer monsoon seasons respectively. Longitudinally, BC concentrations tend to increase toward east during winter and premonsoon seasons, but an opposite trend was seen in monsoon season highlighting the seasonally changing source impacts on BC loading over BoB. Examination of the results in light of possible role of transport from adjoining landmasses, using airmass back trajectory cluster analysis, also supported spatially and temporally varying source influence on oceanic region.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18253687','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18253687"><span>Patterns and trends of chlorinated hydrocarbons in nestling bald eagle (Haliaeetus leucocephalus) plasma in British Columbia and Southern California.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Cesh, Lillian S; Williams, Tony D; Garcelon, David K; Elliott, John E</p> <p>2008-10-01</p> <p>Patterns and trends of chlorinated hydrocarbons were assessed in bald eagle nestling plasma from sites along the west coast of North America. Eagle plasma was sampled from four areas in southwestern British Columbia (BC), a reference site in northern BC, and from Santa Catalina Island, off the coast of California. Sites were chosen to reflect variation in contaminant exposure due to differing recent and/or historic anthropogenic activities. Santa Catalina Island had significantly greater mean concentrations of p,p'-DDE, 41.3 microg/kg wet weight (ww), than other sites, and Nanaimo/Crofton, BC had the greatest mean concentration of total PCBs, 28.9 microg/kg ww. Contaminant levels measured in 2003 in BC were compared to levels measured in 1993; over that ten year span, concentrations and patterns of chlorinated hydrocarbons have not significantly changed. There were no significant differences in levels of p,p'-DDE or hexachlorobenzene between 1993 and 2003, but significant decreases were found for trans-nonachlor and PCBs at BC sites. Levels of total PCBs and trans-nonachlor in the central Fraser Valley and Nanaimo/Crofton area have significantly decreased. Mean concentrations of p,p'-DDE measured in bald eagle nestling plasma samples in 2003 exceeded published criteria for effects on bald eagle reproduction at Santa Catalina Island and Barkley Sound, more than 30 years since heavy usage restrictions were imposed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28010175','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28010175"><span>Particle count and black carbon measurements at schools in Las Vegas, NV and in the greater Salt Lake City, UT area.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Brown, Steven G; Vaughn, David L; Roberts, Paul T</p> <p>2017-11-01</p> <p>As part of two separate studies aimed to characterize ambient pollutant concentrations at schools in urban areas, we compare black carbon and particle count measurements at Adcock Elementary in Las Vegas, NV (April-June 2013), and Hunter High School in the West Valley City area of greater Salt Lake City, UT (February 2012). Both schools are in urban environments, but Adcock Elementary is next to the U.S. 95 freeway. Black carbon (BC) concentrations were 13% higher at Adcock compared to Hunter, while particle count concentrations were 60% higher. When wind speeds were low-less than 2 m/sec-both BC and particle count concentrations were significantly higher at Adcock, while concentrations at Hunter did not have as strong a variation with wind speed. When wind speeds were less than 2 m/sec, emissions from the adjacent freeway greatly affected concentrations at Adcock, regardless of wind direction. At both sites, BC and particle count concentrations peaked in the morning during commute hours. At Adcock, particle count also peaked during midday or early afternoon, when BC was low and conditions were conducive to new particle formation. While this midday peak occurred at Adcock on roughly 45% of the measured days, it occurred on only about 25% of the days at Hunter, since conditions for particle formation (higher solar radiation, lower wind speeds, lower relative humidity) were more conducive at Adcock. Thus, children attending these schools are likely to be exposed to pollution peaks during school drop-off in the morning, when BC and particle count concentrations peak, and often again during lunchtime recess when particle count peaks again. Particle count concentrations at two schools were shown to typically be independent of BC or other pollutants. At a school in close proximity to a major freeway, particle count concentrations were high during the midday and when wind speeds were low, regardless of wind direction, showing a large area of effect from roadway emissions even when the school was not downwind of the roadway. At the second school, which sits in an urban neighborhood away from freeways, high particle counts occurred even though solar radiation was low during wintertime conditions, meaning that exposure to high particle counts can occur throughout the year.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1910078B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1910078B"><span>Black carbon network in Mexico. First Results</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Barrera, Valter; Peralta, Oscar; Granado, Karen; Ortinez, Abraham; Alvarez-Ospina, Harry; Espinoza, Maria de la Luz; Castro, Telma</p> <p>2017-04-01</p> <p>After the United Nations Framework Convention on Climate Change celebrated in Paris 2016, many countries should adopt some mechanisms in the next years to contribute to mitigate greenhouse gas emissions and support sustainable development. Mexico Government has adopted an unconditional international commitment to carry out mitigation actions that would result in the reduction of 51% in black carbon (BC) emissions by year 2030. However, many BC emissions have been calculated by factor emissions. Since optical measurements of environmental BC concentrations can vary according the different components and their subsequence wavelength measure, it's important to obtain more accurate values. BC is formally defined as an ideally light-absorbing substance composed by carbon (Bond et al., 2013), and is the second main contributor (behind Carbon Dioxide; CO2) to positive radiative forcing (Ramanathan and Carmichael, 2008). Recently, BC has been used as an additional indicator in air quality management in some cities because is emitted from the incomplete combustion of fossil fuels, biofuel and biomass burning in both anthropogenic and it is always emitted with other particles and gases, such as organic carbon (OC), nitrogen oxides (NOx), and sulfur dioxide (SO2). Black Carbon, PM2.5 and pollutant gases were measured from January 2015 to December 2015 at three main cities in Mexico, and two other places to evaluate the BC concentration levels in the country. The urban background sites (Mexico City, Monterrey, Guadalajara, MXC-UB, GDL-UB, MTY-UB), a sub-urban background site (Juriquilla, Queretaro, JUR-SUB) and a regional background site (Altzomoni, ALT-RB). Results showed the relationship between BC and PM2.5 in the 3 large cities, with BC/PM2.5 ratios near 0.14 to 0.09 and a high BC-CO relationship in all the year in Mexico City, who showed that mobile sources are a common, at least in cities with a non-significant biomass burning emission related to agriculture or coal heating. The annual BC concentration media for Mexico City and Monterrey site were near 2.5 μg/m3, Guadalajara near 2 μg/m3, and Juriquilla 1.2 μg/m3. Daily and weekly data showed the BC and CO strong relationships produced by the traffic source in the three main cities. BC can be used as a marker for mobile sources policies in cities to evaluate these results quickly. Guadalajara and Juriquilla had some monitoring issues. Data verification is still been verified. This work presents a first year BC experimental network extended measure campaign for year 2015 in some cities in Mexico, to obtain direct equivalent black carbon (eBC) concentrations (Also, named when eBC data is derived from optical absorption methods) (Petzold, 2013) using aethalometers and photoacoustic extinctiometers. After this effort (mainly from National University and local agencies) it is planned to extend this BC Network to other cities around Mexico and with the Mexican Government support. REFERENCES Bond, T. C., et al., (2013). Bounding the role of black carbon in the climate system: A scientific assessment, J. Geophys. Res.-Atmos., 118, 5380-5552. Ramanathan, V. and Carmichael, G. (2008). Global and regional climate changes due to black carbon, Nat. Geosci., 1, 221-227 Petzold A., et al. (2013). Recommendations for reporting "black carbon" measurements. Atmos. Chem. Phys., 13, 8365-8379.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_17 --> <div id="page_18" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="341"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25217282','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25217282"><span>Determination of wood burning and fossil fuel contribution of black carbon at Delhi, India using aerosol light absorption technique.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Tiwari, S; Pipal, A S; Srivastava, A K; Bisht, D S; Pandithurai, G</p> <p>2015-02-01</p> <p>A comprehensive measurement program of effective black carbon (eBC), fine particle (PM2.5), and carbon monoxide (CO) was undertaken during 1 December 2011 to 31 March 2012 (winter period) in Delhi, India. The mean mass concentrations of eBC, PM2.5, and CO were recorded as 12.1 ± 8.7 μg/m(3), 182.75 ± 114.5 μg/m(3), and 3.41 ± 1.6 ppm, respectively, during the study period. Also, the absorption Angstrom exponent (AAE) was estimated from eBC and varied from 0.38 to 1.29 with a mean value of 1.09 ± 0.11. The frequency of occurrence of AAE was ~17 % less than unity whereas ~83 % greater than unity was observed during the winter period in Delhi. The mass concentrations of eBC were found to be higher by ~34 % of the average value of eBC (12.1 μg/m(3)) during the study period. Sources of eBC were estimated, and they were ~94 % from fossil fuel (eBCff) combustion whereas only 6 % was from wood burning (eBCwb). The ratio between eBCff and eBCwb was 15, which indicates a higher impact from fossil fuels compared to biomass burning. When comparing eBCff during day and night, a factor of three higher concentrations was observed in nighttime than daytime, and it is due to combustion of fossil fuel (diesel vehicle emission) and shallow boundary layer conditions. The contribution of eBCwb in eBC was higher between 1800 and 2100 hours due to burning of wood/biomass. A significant correlation between eBC and PM2.5 (r = 0.78) and eBC and CO (r = 0.46) indicates the similarity in location sources. The mass concentration of eBC was highest (23.4 μg/m(3)) during the month of December when the mean visibility (VIS) was lowest (1.31 km). Regression analysis among wind speed (WS), VIS, soot particles, and CO was studied, and significant negative relationships were seen between VIS and eBC (-0.65), eBCff (-0.66), eBCwb (-0.34), and CO (-0.65); however, between WS and eBC (-0.68), eBCff (-0.67), eBCwb (-0.28), and CO (-0.53). The regression analysis indicated that emission of soot particles may be localized to fossil fuel combustion, whereas wood/biomass burning emission of black carbon is due to transportation from farther distances. Regression analysis between eBCff and CO (r = 0.44) indicated a similar source as vehicular emissions. The very high loading of PM2.5 along with eBC over Delhi suggests that urgent action is needed to mitigate the emissions of carbonaceous aerosol in the northern part of India.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011ACP....11.9037M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011ACP....11.9037M"><span>Black carbon aerosol mixing state, organic aerosols and aerosol optical properties over the United Kingdom</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>McMeeking, G. R.; Morgan, W. T.; Flynn, M.; Highwood, E. J.; Turnbull, K.; Haywood, J.; Coe, H.</p> <p>2011-09-01</p> <p>Black carbon (BC) aerosols absorb sunlight thereby leading to a positive radiative forcing and a warming of climate and can also impact human health through their impact on the respiratory system. The state of mixing of BC with other aerosol species, particularly the degree of internal/external mixing, has been highlighted as a major uncertainty in assessing its radiative forcing and hence its climate impact, but few in situ observations of mixing state exist. We present airborne single particle soot photometer (SP2) measurements of refractory BC (rBC) mass concentrations and mixing state coupled with aerosol composition and optical properties measured in urban plumes and regional pollution over the United Kingdom. All data were obtained using instrumentation flown on the UK's BAe-146-301 large Atmospheric Research Aircraft (ARA) operated by the Facility for Airborne Atmospheric Measurements (FAAM). We measured sub-micron aerosol composition using an aerosol mass spectrometer (AMS) and used positive matrix factorization to separate hydrocarbon-like (HOA) and oxygenated organic aerosols (OOA). We found a higher number fraction of thickly coated rBC particles in air masses with large OOA relative to HOA, higher ozone-to-nitrogen oxides (NOx) ratios and large concentrations of total sub-micron aerosol mass relative to rBC mass concentrations. The more ozone- and OOA-rich air masses were associated with transport from continental Europe, while plumes from UK cities had higher HOA and NOx and fewer thickly coated rBC particles. We did not observe any significant change in the rBC mass absorption efficiency calculated from rBC mass and light absorption coefficients measured by a particle soot absorption photometer despite observing significant changes in aerosol composition and rBC mixing state. The contributions of light scattering and absorption to total extinction (quantified by the single scattering albedo; SSA) did change for different air masses, with lower SSA observed in urban plumes compared to regional aerosol (0.85 versus 0.9-0.95). We attribute these differences to the presence of relatively rapidly formed secondary aerosol, primarily OOA and ammonium nitrate, which must be taken into account in radiative forcing calculations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011ACPD...1114991M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011ACPD...1114991M"><span>Black carbon aerosol mixing state, organic aerosols and aerosol optical properties over the UK</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>McMeeking, G. R.; Morgan, W. T.; Flynn, M.; Highwood, E. J.; Turnbull, K.; Haywood, J.; Coe, H.</p> <p>2011-05-01</p> <p>Black carbon (BC) aerosols absorb sunlight thereby leading to a positive radiative forcing and a warming of climate and can also impact human health through their impact on the respiratory system. The state of mixing of BC with other aerosol species, particularly the degree of internal/external mixing, has been highlighted as a major uncertainty in assessing its radiative forcing and hence its climate impact, but few in situ observations of mixing state exist. We present airborne single particle soot photometer (SP2) measurements of refractory BC (rBC) mass concentrations and mixing state coupled with aerosol composition and optical properties measured in urban plumes and regional pollution over the UK. All data were obtained using instrumentation flown on the UK's BAe-146-301 large Atmospheric Research Aircraft (ARA) operated by the Facility for Airborne Atmospheric Measurements (FAAM). We measured sub-micron aerosol composition using an aerosol mass spectrometer (AMS) and used positive matrix factorization to separate hydrocarbon-like (HOA) and oxygenated organic aerosols (OOA). We found a higher number fraction of thickly coated rBC particles in air masses with large OOA relative to HOA, higher ozone-to-nitrogen oxides (NOx) ratios and large concentrations of total sub-micron aerosol mass relative to rBC mass concentrations. The more ozone- and OOA-rich air masses were associated with transport from continental Europe, while plumes from UK cities had higher HOA and NOx and fewer thickly coated rBC particles. We did not observe any significant change in the rBC mass absorption efficiency calculated from rBC mass and light absorption coefficients measured by a particle soot absorption photometer despite observing significant changes in aerosol composition and rBC mixing state. The contributions of light scattering and absorption to total extinction (quantified by the single scattering albedo; SSA) did change for different air masses, with lower SSA observed in urban plumes compared to regional aerosol (0.85 versus 0.9-0.95). We attribute these differences to the presence of relatively rapidly formed secondary aerosol, primarily OOA and ammonium nitrate, which must be taken into account in radiative forcing calculations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22154745','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22154745"><span>Bacterial cellulose production from cotton-based waste textiles: enzymatic saccharification enhanced by ionic liquid pretreatment.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hong, Feng; Guo, Xiang; Zhang, Shuo; Han, Shi-fen; Yang, Guang; Jönsson, Leif J</p> <p>2012-01-01</p> <p>Cotton-based waste textiles were explored as alternative feedstock for production of bacterial cellulose (BC) by Gluconacetobacter xylinus. The cellulosic fabrics were treated with the ionic liquid (IL) 1-allyl-3-methylimidazolium chloride ([AMIM]Cl). [AMIM]Cl caused 25% inactivation of cellulase activity at a concentration as low as of 0.02 g/mL and decreased BC production during fermentation when present in concentrations higher than 0.0005 g/mL. Therefore, removal of residual IL by washing with hot water was highly beneficial to enzymatic saccharification as well as BC production. IL-treated fabrics exhibited a 5-7-fold higher enzymatic hydrolysis rate and gave a seven times larger yield of fermentable sugars than untreated fabrics. BC from cotton cloth hydrolysate was obtained at an yield of 10.8 g/L which was 83% higher than that from the culture grown on glucose-based medium. The BC from G. xylinus grown on IL-treated fabric hydrolysate had a 79% higher tensile strength than BC from glucose-based culture medium which suggests that waste cotton pretreated with [AMIM]Cl has potential to serve as a high-quality carbon source for BC production. Copyright © 2011 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AtmRe.198..113Q','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AtmRe.198..113Q"><span>A campaign for investigating aerosol optical properties during winter hazes over Shijiazhuang, China</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Qin, Kai; Wang, Luyao; Wu, Lixin; Xu, Jian; Rao, Lanlan; Letu, Husi; Shi, Tiewei; Wang, Runfeng</p> <p>2017-12-01</p> <p>As the capital of the most air-polluted Hebei province in China, Shijiazhuang has been suffering serious haze pollutions especially during wintertime. An integrated campaign for investigating aerosol optical properties under haze conditions over Shijiazhuang were carried out using a sunphotometer, an aethalometer and a lidar in the winter from late 2013 to early 2014. The results indicated that the haze episodes during the measurement period were severer and more frequent over Shijiazhuang than Beijing. Under heavy pollution conditions (PM2.5 > 150 μg/m3) over Shijiazhuang, fine-mode fractions of AOD500nm were larger than 0.80 with more dispersive angstrom exponent due to hygroscopic growth. The mean values of SSA over Shijiazhuang were smaller than those over Beijing both in this study and the severe haze episodes in January 2013, suggesting that there were more fine-mode absorbing particles over Shijiazhuang. More significant spectrally-dependence of imaginary part of refractive index over Shijiazhuang implies larger relative magnitude of brown carbon (BrC) as compared to Beijing. The black carbon (BC) measurement displayed extremely high records with a larger ratio of BC to PM2.5 (12.11% in average) comparing with other cities in China. The high carbonaceous aerosols (BC and BrC) should be attributed to large amounts of coal consumption. During the hazes with high BC concentrations, the daily maximal planetary boundary layer (PBL) heights were consistently lower than 500 m, implying the impacts of BC aerosols on the PBL development and hence enhance the surface haze pollution.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.A51B0035M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.A51B0035M"><span>Chinese Soot on a Vietnamese Soup</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mari, X.</p> <p>2015-12-01</p> <p>Black Carbon (BC) is an aerosol emitted as soot during biomass burning and fossil fuels combustion together with other carbonaceous aerosols such as organic carbon (OC) and polyaromatic hydrocarbons (PAHs). While the impacts of BC on health and climate have been studied for many years, studies about its deposition and impact on marine ecosystems are scares. This is rather surprising considering that a large fraction of atmospheric BC deposits on the surface of the ocean via dry or wet deposition. On a global scale, deposition on the ocean is about 45 Tg C per year, with higher fluxes in the northern hemisphere and in inter-tropical regions, following the occurrence of the hot-spots of concentration. In the present study conducted on shore, in Haiphong and Halong cities, North Vietnam, we measured the seasonal variations of atmospheric BC, OC and PAHs during a complete annual cycle. The presentation will discuss the atmospheric results in terms of seasonal variability and sources. Inputs to the marine system are higher during the dry season, concomitantly with the arrival of air masses enriched in BC coming from the North. However, the carbon fingerprint can significantly differ at shorter time periods depending on the air mass pathway and speed. Our work leads to the characterization and the determination of the relative contribution of more specific sources like local traffic, which includes tourism and fishing boats, coal dust emitted from the nearby mine, and long-range transported aerosols. This variable input of carbonaceous aerosols might have consequences for the cycling and the repartition of carbon and nutrients in the marine ecosystem of Halong Bay.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29151019','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29151019"><span>bcROCsurface: an R package for correcting verification bias in estimation of the ROC surface and its volume for continuous diagnostic tests.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>To Duc, Khanh</p> <p>2017-11-18</p> <p>Receiver operating characteristic (ROC) surface analysis is usually employed to assess the accuracy of a medical diagnostic test when there are three ordered disease status (e.g. non-diseased, intermediate, diseased). In practice, verification bias can occur due to missingness of the true disease status and can lead to a distorted conclusion on diagnostic accuracy. In such situations, bias-corrected inference tools are required. This paper introduce an R package, named bcROCsurface, which provides utility functions for verification bias-corrected ROC surface analysis. The shiny web application of the correction for verification bias in estimation of the ROC surface analysis is also developed. bcROCsurface may become an important tool for the statistical evaluation of three-class diagnostic markers in presence of verification bias. The R package, readme and example data are available on CRAN. The web interface enables users less familiar with R to evaluate the accuracy of diagnostic tests, and can be found at http://khanhtoduc.shinyapps.io/bcROCsurface_shiny/ .</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28704666','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28704666"><span>TiO2 supported on reed straw biochar as an adsorptive and photocatalytic composite for the efficient degradation of sulfamethoxazole in aqueous matrices.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zhang, Hanyu; Wang, Zhaowei; Li, Ruining; Guo, Jialei; Li, Yan; Zhu, Junmin; Xie, Xiaoyun</p> <p>2017-10-01</p> <p>Heterogeneous photocatalysis namely titanium dioxide supported on reed straw biochar (acid pre-treated) (TiO 2 /pBC) was synthesized by sol-gel method. The morphology, surface area and structure of TiO 2 /pBC were characterized by scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET), and X-ray diffraction (XRD). Low calcination condition maintained the structure of biochar completely and prevented the agglomeration of TiO 2 particles. Due to the combination of adsorption and photocatalysis, TiO 2 /pBC performed higher removal efficiency of sulfamethoxazole (SMX) than pure TiO 2 powder under UV light irradiation. The photocatalytic degradation (PCD) of SMX was also studied with the water collected from the Yellow River. Three high concentration inorganic anions (Cl - , NO 3 - , SO 4 2- ) of the river exerted certain degree of detrimental effects on the contaminant degradation. TiO 2 /pBC showed stable photocatalytic activity after five sequential PCD cycles. The biochar was able to promote further PCD on TiO 2 by adsorbing SMX and intermediates thereby prolonging the separation lifetime of electrons (e - ) and valence band hole (h + ). The transformation intermediates of SMX were identified and three possible degradation reactions of hydroxylation, opening of isoxazole ring and cleavage of SN bond might occur during the PCD of SMX. Copyright © 2017 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28238486','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28238486"><span>Spatial variation in polycyclic aromatic hydrocarbon exposure in Barrow's goldeneye (Bucephala islandica) in coastal British Columbia.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Willie, Megan; Esler, Daniel; Boyd, W Sean; Molloy, Philip; Ydenberg, Ronald C</p> <p>2017-05-15</p> <p>Barrow's goldeneyes are sea ducks that winter throughout coastal British Columbia (BC). Their diet consists primarily of intertidal blue mussels, which can accumulate PAHs; accordingly, goldeneyes may be susceptible to exposure through contaminated prey. In 2014/15, we examined total PAH concentrations in mussels from undeveloped and developed coastal areas of BC. At those same sites, we used EROD to measure hepatic CYP1A induction in goldeneyes. We found higher mussel PAH concentrations at developed coastal sites. Regionally, goldeneyes from southern BC, which has relatively higher coastal development, had higher EROD activity compared to birds from northern BC. Our results suggest goldeneyes wintering in coastal BC were exposed to PAHs through diet, with higher exposure among birds wintering in coastal areas with greater anthropogenic influence. These results suggest the mussel-goldeneye system is suitable as a natural, multi-trophic-level indicator of contemporary hydrocarbon contamination occurrence and exposure useful for establishing oil spill recovery endpoints. Copyright © 2017 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70193426','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70193426"><span>Spatial variation in polycyclic aromatic hydrocarbon exposure in Barrow's goldeneye (Bucephala islandica) in coastal British Columbia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Willie, Megan; Esler, Daniel N.; Boyd, W. Sean; Molloy, Philip; Ydenberg, Ronald C.</p> <p>2017-01-01</p> <p>Barrow's goldeneyes are sea ducks that winter throughout coastal British Columbia (BC). Their diet consists primarily of intertidal blue mussels, which can accumulate PAHs; accordingly, goldeneyes may be susceptible to exposure through contaminated prey. In 2014/15, we examined total PAH concentrations in mussels from undeveloped and developed coastal areas of BC. At those same sites, we used EROD to measure hepatic CYP1A induction in goldeneyes. We found higher mussel PAH concentrations at developed coastal sites. Regionally, goldeneyes from southern BC, which has relatively higher coastal development, had higher EROD activity compared to birds from northern BC. Our results suggest goldeneyes wintering in coastal BC were exposed to PAHs through diet, with higher exposure among birds wintering in coastal areas with greater anthropogenic influence. These results suggest the mussel-goldeneye system is suitable as a natural, multi-trophic-level indicator of contemporary hydrocarbon contamination occurrence and exposure useful for establishing oil spill recovery endpoints.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010GMD.....3..519M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010GMD.....3..519M"><span>Description and evaluation of GLOMAP-mode: a modal global aerosol microphysics model for the UKCA composition-climate model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mann, G. W.; Carslaw, K. S.; Spracklen, D. V.; Ridley, D. A.; Manktelow, P. T.; Chipperfield, M. P.; Pickering, S. J.; Johnson, C. E.</p> <p>2010-10-01</p> <p>A new version of the Global Model of Aerosol Processes (GLOMAP) is described, which uses a two-moment pseudo-modal aerosol dynamics approach rather than the original two-moment bin scheme. GLOMAP-mode simulates the multi-component global aerosol, resolving sulfate, sea-salt, dust, black carbon (BC) and particulate organic matter (POM), the latter including primary and biogenic secondary POM. Aerosol processes are simulated in a size-resolved manner including primary emissions, secondary particle formation by binary homogeneous nucleation of sulfuric acid and water, particle growth by coagulation, condensation and cloud-processing and removal by dry deposition, in-cloud and below-cloud scavenging. A series of benchmark observational datasets are assembled against which the skill of the model is assessed in terms of normalised mean bias (b) and correlation coefficient (R). Overall, the model performs well against the datasets in simulating concentrations of aerosol precursor gases, chemically speciated particle mass, condensation nuclei (CN) and cloud condensation nuclei (CCN). Surface sulfate, sea-salt and dust mass concentrations are all captured well, while BC and POM are biased low (but correlate well). Surface CN concentrations compare reasonably well in free troposphere and marine sites, but are underestimated at continental and coastal sites related to underestimation of either primary particle emissions or new particle formation. The model compares well against a compilation of CCN observations covering a range of environments and against vertical profiles of size-resolved particle concentrations over Europe. The simulated global burden, lifetime and wet removal of each of the simulated aerosol components is also examined and each lies close to multi-model medians from the AEROCOM model intercomparison exercise.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010GMDD....3..651M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010GMDD....3..651M"><span>Description and evaluation of GLOMAP-mode: a modal global aerosol microphysics model for the UKCA composition-climate model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mann, G. W.; Carslaw, K. S.; Spracklen, D. V.; Ridley, D. A.; Manktelow, P. T.; Chipperfield, M. P.; Pickering, S. J.; Johnson, C. E.</p> <p>2010-05-01</p> <p>A new version of the Global Model of Aerosol Processes (GLOMAP) is described, which uses a two-moment modal aerosol scheme rather than the original two-moment bin scheme. GLOMAP-mode simulates the multi-component global aerosol, resolving sulphate, sea-salt, dust, black carbon (BC) and particulate organic matter (POM), the latter including primary and biogenic secondary POM. Aerosol processes are simulated in a size-resolved manner including primary emissions, secondary particle formation by binary homogeneous nucleation of sulphuric acid and water, particle growth by coagulation, condensation and cloud-processing and removal by dry deposition, in-cloud and below-cloud scavenging. A series of benchmark observational datasets are assembled against which the skill of the model is assessed in terms of normalised mean bias (b) and correlation coefficient (R). Overall, the model performs well against the datasets in simulating concentrations of aerosol precursor gases, chemically speciated particle mass, condensation nuclei (CN) and cloud condensation nuclei (CCN). Surface sulphate, sea-salt and dust mass concentrations are all captured well, while BC and POM are biased low (but correlate well). Surface CN concentrations compare reasonably well in free troposphere and marine sites, but are underestimated at continental and coastal sites related to underestimation of either primary particle emissions or new particle formation. The model compares well against a compilation of CCN observations covering a range of environments and against vertical profiles of size-resolved particle concentrations over Europe. The simulated global burden, lifetime and wet removal of each of the simulated aerosol components is also examined and each lies close to multi-model medians from the AEROCOM model intercomparison exercise.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.A43C0290R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.A43C0290R"><span>Aerosol Size, CCN, and Black Carbon Properties at a Coastal Site in the Eastern U.S.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Royalty, T. M.; Petters, M. D.; Grieshop, A. P.; Meskhidze, N.; Reed, R. E.; Phillips, B.; Dawson, K. W.</p> <p>2015-12-01</p> <p>Atmospheric aerosols play an important role in regulating the global radiative budget through direct and indirect effects. To date, the role of sea spray aerosols in modulating climate remains poorly understood. Here we present results from measurements performed at the United States Army Corps of Engineers' Field Research Facility in Duck, North Carolina, USA. Aerosol mobility size distributions (10-600 nm), refractory black carbon (rBC) and scattering particle size distributions (200-620 nm), and size resolved cloud condensation nuclei distributions (.07% - .6% supersaturation) were collected at the end of a 560m pier. Aerosol characteristics associated with northerly, high wind speed (15+ m s-1) flow originating from an oceanic trajectory are contrasted with aerosol properties observed during a weak to moderate westerly flow originating from a continental trajectory. Both marine and continental air masses had aerosol with bi-modal number size distributions with modes centered at 30nm and 140nm. In the marine air-mass, the CCN concentration at supersaturation of 0.4%, total aerosol number, surface, and volume concentration were low. rBC number concentration (D > 200 nm) associated with the marine air-mass was an order of magnitude less than continental number concentration and indicative of relatively unpolluted air. These measurements are consistent with measurements from other coastal sites under marine influence. The relative proportion of Aitken mode size particles increased from 1:2 to 2:1 while aerosol surface area was < 25 μm2 cm-3, suggesting that conditions upwind were potentially conducive to new particle formation. Overall, these results will contribute a better understanding to composition and size variation of marine aerosols.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006AGUFM.A43A0105F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006AGUFM.A43A0105F"><span>Climate effects of reducing black carbon emissions: Dependence on location of emission</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fuglestvedt, J.; Berntsen, T.; Myhre, G.; Rive, N. A.; Rypdal, K.; Gerland, S.; Pedersen, C.; Strøm, J.</p> <p>2006-12-01</p> <p>The role played by emissions of black carbon aerosols (BC) on the Earth's climate is diverse and the overall effect is still quite uncertain: Black carbon not only absorbs sunlight (direct effect), but it also has a semi- direct effect on clouds, and when deposited on snow and ice it changes the reflectivity (albedo) of the ground surface. These mechanisms generally have a warming effect on the climate. This poster presents a Norwegian project that focus on the net effect of current BC emissions and future possible reductions in emissions of BC aerosols, taking into account scientific, economic, and political perspectives on the inclusion of BC in climate policies. Thus, the scope of the project is interdisciplinary and includes observations in the Arctic, model simulations of dispersion of BC aerosols, its radiative forcing and climate effects. Some initial results from measurements of BC content in snow from the Norwegian Arctic and corresponding measurements for surface reflectance will be presented. The radiative forcing of BC emissions from different geographical regions differs due to differences in the removal processes (i.e. the lifetime) and the amount of solar radiation available for absorption (depends on latitude, clouds, and surface albedo). The atmospheric burdens and RF (of the direct effect) of regional BC emissions from fossil fuel sources have been calculated by the global chemical transport model Oslo-CTM2 and a radiative transfer model, and first results of time-integrated RF per unit of emission (equivalent to absolute GWPs) are presented. Future plans including i) analysis of cost effective emission reduction strategies, taking into account regional differences the forcing efficiencies, but also cost estimates for BC reductions in the different regions, and ii) an evaluation of the climate effects of the emission reductions through model simulations, including climatic, economic and political perspectives exploring obstacles and opportunities will also be presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.A33D0180H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.A33D0180H"><span>A Microphysics-Based Black Carbon Aging Scheme in a Global Chemical Transport Model: Constraints from HIPPO Observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>He, C.; Li, Q.; Liou, K. N.; Qi, L.; Tao, S.; Schwarz, J. P.</p> <p>2015-12-01</p> <p>Black carbon (BC) aging significantly affects its distributions and radiative properties, which is an important uncertainty source in estimating BC climatic effects. Global models often use a fixed aging timescale for the hydrophobic-to-hydrophilic BC conversion or a simple parameterization. We have developed and implemented a microphysics-based BC aging scheme that accounts for condensation and coagulation processes into a global 3-D chemical transport model (GEOS-Chem). Model results are systematically evaluated by comparing with the HIPPO observations across the Pacific (67°S-85°N) during 2009-2011. We find that the microphysics-based scheme substantially increases the BC aging rate over source regions as compared with the fixed aging timescale (1.2 days), due to the condensation of sulfate and secondary organic aerosols (SOA) and coagulation with pre-existing hydrophilic aerosols. However, the microphysics-based scheme slows down BC aging over Polar regions where condensation and coagulation are rather weak. We find that BC aging is primarily dominated by condensation process that accounts for ~75% of global BC aging, while the coagulation process is important over source regions where a large amount of pre-existing aerosols are available. Model results show that the fixed aging scheme tends to overestimate BC concentrations over the Pacific throughout the troposphere by a factor of 2-5 at different latitudes, while the microphysics-based scheme reduces the discrepancies by up to a factor of 2, particularly in the middle troposphere. The microphysics-based scheme developed in this work decreases BC column total concentrations at all latitudes and seasons, especially over tropical regions, leading to large improvement in model simulations. We are presently analyzing the impact of this scheme on global BC budget and lifetime, quantifying its uncertainty associated with key parameters, and investigating the effects of heterogeneous chemical oxidation on BC aging.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JGRD..121..785L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JGRD..121..785L"><span>Simulated responses of terrestrial aridity to black carbon and sulfate aerosols</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lin, L.; Gettelman, A.; Xu, Y.; Fu, Q.</p> <p>2016-01-01</p> <p>Aridity index (AI), defined as the ratio of precipitation to potential evapotranspiration (PET), is a measure of the dryness of terrestrial climate. Global climate models generally project future decreases of AI (drying) associated with global warming scenarios driven by increasing greenhouse gas and declining aerosols. Given their different effects in the climate system, scattering and absorbing aerosols may affect AI differently. Here we explore the terrestrial aridity responses to anthropogenic black carbon (BC) and sulfate (SO4) aerosols with Community Earth System Model simulations. Positive BC radiative forcing decreases precipitation averaged over global land at a rate of 0.9%/°C of global mean surface temperature increase (moderate drying), while BC radiative forcing increases PET by 1.0%/°C (also drying). BC leads to a global decrease of 1.9%/°C in AI (drying). SO4 forcing is negative and causes precipitation a decrease at a rate of 6.7%/°C cooling (strong drying). PET also decreases in response to SO4 aerosol cooling by 6.3%/°C cooling (contributing to moistening). Thus, SO4 cooling leads to a small decrease in AI (drying) by 0.4%/°C cooling. Despite the opposite effects on global mean temperature, BC and SO4 both contribute to the twentieth century drying (AI decrease). Sensitivity test indicates that surface temperature and surface available energy changes dominate BC- and SO4-induced PET changes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015ApSS..332..699B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015ApSS..332..699B"><span>Interaction of Al with O2 exposed Mo2BC</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bolvardi, Hamid; Music, Denis; Schneider, Jochen M.</p> <p>2015-03-01</p> <p>A Mo2BC(0 4 0) surface was exposed to O2. The gas interaction was investigated using ab initio molecular dynamics and X-ray photoelectron spectroscopy (XPS) of air exposed surfaces. The calculations suggest that the most dominating physical mechanism is dissociative O2 adsorption whereby Mosbnd O, Osbnd Mosbnd O and Mo2sbnd Csbnd O bond formation is observed. To validate these results, Mo2BC thin films were synthesized utilizing high power pulsed magnetron sputtering and air exposed surfaces were probed by XPS. MoO2 and MoO3 bond formation is observed and is consistent with here obtained ab initio data. Additionally, the interfacial interactions of O2 exposed Mo2BC(0 4 0) surface with an Al nonamer is studied with ab initio molecular dynamics to describe on the atomic scale the interaction between this surface and Al to mimic the interface present during cold forming processes of Al based alloys. The Al nonamer was disrupted and Al forms chemical bonds with oxygen contained in the O2 exposed Mo2BC(0 4 0) surface. Based on the comparison of here calculated adsorption energy with literature data, Alsbnd Al bonds are shown to be significantly weaker than the Alsbnd O bonds formed across the interface. Hence, Alsbnd Al bond rupture is expected for a mechanically loaded interface. Therefore the adhesion of a residual Al on the native oxide layer is predicted. This is consistent with experimental observations. The data presented here may also be relevant for other oxygen containing surfaces in a contact with Al or Al based alloys for example during forming operations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29292029','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29292029"><span>Superior integrin activating capacity and higher adhesion to fibrinogen matrix in buffy coat-derived platelet concentrates (PCs) compared to PRP-PCs.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Beshkar, Pezhman; Hosseini, Ehteramolsadat; Ghasemzadeh, Mehran</p> <p>2018-02-01</p> <p>Regardless of different sources, methods or devices which are applied for preparation of therapeutic platelets, these products are generally isolated from whole blood by the sedimentation techniques which are based on PRP or buffy coat (BC) separation. As a general fact, platelet preparation and storage are also associated with some deleterious changes that known as platelet storage lesion (PSL). Although these alternations in platelet functional activity are aggravated during storage, whether technical issues within preparation can affect integrin activation and platelet adhesion to fibrinogen were investigated in this study. PRP- and BC-platelet concentrates (PCs) were subjected to flowcytometry analysis to examine the expression of platelet activation marker, P-selectin as well as active confirmation of the GPIIb/IIIa (α IIb β 3 ) on day 0, 1, 3 and 5 post-storage. Platelet adhesion to fibrinogen matrix was evaluated by fluorescence microscopy. Glucose concentration and LDH activity were also measured by colorimetric methods. The increasing P-selectin expression during storage was in a reverse correlation with PAC-1 binding (r = -0.67; p = .001). PRP-PCs showed the higher level of P-selectin expression than BC-PCs, whereas the levels of PAC-1 binding and platelet adhesion to fibrinogen matrix were significantly lower in PRP-PCs. Higher levels of active confirmation of the GPIIb/IIIa in BC-PCs were also associated with greater concentration of glucose in these products. We demonstrated the superior capacities of integrin activation and adhesion to fibrinogen for BC-PCs compared to those of PRP-PCs. These findings may provide more advantages for BC method of platelet preparation. Copyright © 2017 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29906760','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29906760"><span>Promoting the productivity and quality of brinjal aligned with heavy metals immobilization in a wastewater irrigated heavy metal polluted soil with biochar and chitosan.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Turan, Veysel; Khan, Shahbaz Ali; Mahmood-Ur-Rahman; Iqbal, Muhammad; Ramzani, Pia Muhammad Adnan; Fatima, Maryam</p> <p>2018-06-12</p> <p>Depleting aquifers, lack of planning and low socioeconomic status of Pakistani farmers have led them to use wastewater (WW) for irrigating their crops causing food contamination with heavy metals and ultimately negative effects on human health. This study evaluates the effects of chitosan (CH) and biochar (BC) on growth and nutritional quality of brinjal plant together with in situ immobilization of heavy metals in a soil polluted with heavy metals due to irrigation with wastewater (SPHIW) and further irrigated with the same WW. Both CH and BC were applied at three different rates i.e. low rate [(LR), BC0.5%, CH0.5% and BC0.25%+CH0.25%], medium rate [(MR), BC1%, CH1% and BC0.5%+CH0.5%] and high rate [(HR), BC1.5%, CH1.5% and BC0.75%+CH0.75%]. Result revealed that brinjal growth, antioxidant enzymes, and fruit nutritional quality significantly improved from LR to HR for each amendment, relative to control. However, these results were more prominent with BC alone and BC+CH, compared with CH alone at each rate. Similarly, with few exceptions, significant reduction in Ni, Cd, Co, Cr and Pb concentrations in the root, shoot and fruit were found in sole CH treatment both at LR and MR but in both CH and BC+CH treatments at HR, relative to control. Interestingly, the concentrations of Fe in the roots, shoots and fruit were more pronounced at BC treatments relative to CH and BC+CH treatments at each rate, compared to control. Overall, the BC+CH treatment at HR was the most effective treatment for in situ immobilization of heavy metals in SPHIW and further irrigated with the same WW, compared to rest of the treatments. This study indicates that BC0.75%+CH0.75% treatment can be used to reduce mobility and bioavailability of heavy metals in SPHIW and facilitates plant growth by improving the antioxidant system. However, the feasibility of BC0.75%+CH0.75% treatment should also be tested at the field scale. Copyright © 2018 Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16830534','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16830534"><span>Origin of PCDDs in ball clay assessed with compound-specific chlorine isotope analysis and radiocarbon dating.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Holmstrand, Henry; Gadomski, Damien; Mandalakis, Manolis; Tysklind, Mats; Irvine, Robert; Andersson, Per; Gustafsson, Orjan</p> <p>2006-06-15</p> <p>Polychlorinated dibenzo-p-dioxins (PCDDs) of high concentrations in a ball clay deposit from the Mississippi Embayment were found to be consistent with a natural abiotic and non-pyrogenic origin by investigation with bulk radiocarbon analysis, compound-specific chlorine isotope analysis (CSIA-delta37Cl) of octachlorodibenzo-p-dioxin (OCDD), and black carbon (BC) analysis. The conventional radiocarbon date of total organic carbon from a depth of approximately 10 m in three parallel cores ranged from 14 700 years to >48 000 years, indicating that the strata with elevated levels of PCDDs have remained isolated from recent anthropogenic input in these >40 Ma old clay sediments. The CSIA-delta37Cl of OCDD yielded a delta37Cl of -0.2 per thousandth, which is significantly higher than the postulated range for biotic chlorination by chloroperoxidase enzymes, -11 to -10 per thousandth, and falls within the known range for abiotic organochlorines, -6 to +3 per thousandth. The absence of correlations between concentrations of PCDDs and corresponding pyrogenic black carbon (BC), together with estimations of BC sorptive loadings and the absence of polychlorinated dibenzofurans (PCDFs), suggest that vegetation fires did not form these ball-clay PCDDs. Results from this study indicate that the high levels of the toxic and carcinogenic PCDDs found in kaolinite-bearing clays may result from natural abiotic formation via in situ surface-promoted reactions on the clay mineral, including a so-far unknown organic precursor, rather than being the result of anthropogenic contamination.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_18 --> <div id="page_19" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="361"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.A14B..06T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.A14B..06T"><span>Chemical and optical properties of atmospheric aerosols in Phimai, Thailand by intensive surface measurements and satellite data analysis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tsuruta, H.; Thana, B.; Takamura, T.; Hashimoto, M.; Yabuki, M.; Oikawa, E.; Nakajima, T.</p> <p>2013-12-01</p> <p>Atmospheric aerosols were measured at the Observatory of Atmospheric Research, in Phimai, Thailand, a key station of SKYNET, during 2006-2008. In the surface measurement, mass concentrations and major chemical components in fine and coarse aerosols were analyzed, and the optical properties such as AOT and SSA were measured by skyradiometer. Analysis of MODIS and CALIPSO satellite data was made for wild fire activities and aerosol distribution, respectively. In this paper, the following topics are summarized. The surface wind pattern in dry season was divided into the three periods as follows; D1 (Oct.-Nov.) with northeasterly monsoon, D3 (middle March-April) with southerly wind, and D2 (Dec.-early March) with a transit stage between D1 and D3. Wet season in southwesterly monsoon was from May to September. The concentration ratio of BC/nss-SO4 showed that the dominant PM2.5 aerosols in D1 were due to long-range transport of air pollutants emitted from urban/industrial area of east Asia. In contrast, most of aerosols in D3 were derived from biomass burning in Indochina, because the activity of biomass burning was highest in the latter D2 and early D3 period, by the analysis of the fire database in MODIS and of BC/nss-SO4. The mass concentration in PM2.5 showed a clear seasonal variation with the maximum in D2. On the contrary, AOT showed the maximum in D3, and which could be attributed to an increase in the vertical thickness of high aerosol concentration in the boundary layer by the CALIOP data analysis. Dust particles in D1 were directly transported from east Asia, and re-suspension of soil dusts was dominant in D2 because the surface soil became dry. In D3, soil dusts were re-suspended with the thermal plume caused by biomass burning. In contrast, high dust particles measured in the wet season was due to long range transport of dust aerosols from western desert area by the CALIOP data analysis.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AtmEn.167..335H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AtmEn.167..335H"><span>Commuter exposure to PM2.5, BC, and UFP in six common transport microenvironments in Sacramento, California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ham, Walter; Vijayan, Abhilash; Schulte, Nico; Herner, Jorn D.</p> <p>2017-10-01</p> <p>This study was designed to estimate and compare the air pollution exposures experienced by commuters in six common transportation modes utilized by California residents, and to evaluate the impact of practical exposure mitigation strategies in reducing commute exposures. We measured concentrations of fine particle matter (PM2.5), black carbon (BC), and ultrafine particles (UFP) for 161 commutes between April 2014 and November 2015 in Sacramento, CA. We collected measurements for six modes including single occupancy vehicles, high occupancy vehicles (multiple occupants), buses, light rail, train, and bicycling. The largest average concentrations for most pollutants were measured during train commutes and the lowest average concentrations were observed during light-rail commutes. Mitigation options were explored for personal vehicles, bicycling, and train commute modes. We found that ventilation settings of personal vehicles can reduce in-vehicle PM2.5, BC, and UFP concentrations by up to 75%. Similarly, bicycle route choice can reduce exposures by 15-75% with the lowest concentrations observed during commutes on dedicated bicycle paths away from traffic sources. Train commuters experienced UFP concentrations an order of magnitude greater when the locomotive engine was pulling the rail cars versus pushing the rail cars. We found that UFP concentrations during bus, bicycling, and train commutes were 1.6-5.3 times greater than personal vehicle commutes, while light rail commutes had 30% lower UFP concentrations than personal vehicle commutes. The largest exposure per mile occurred during bicycle commutes with PM2.5, BC, and UFP exposures of 1.312 μg/mile, 0.097 μg/mile, and 3.0 × 109 particles/mile, respectively. Train commutes experienced the largest exposure per mile of all of the combustion-derived transportation commute modes. BC accounted for 5-20% of total PM mass across all commute modes with an average fraction of ∼7% of PM2.5.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AtmEn.157..135M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AtmEn.157..135M"><span>Exposure to fine particulate, black carbon, and particle number concentration in transportation microenvironments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Morales Betancourt, R.; Galvis, B.; Balachandran, S.; Ramos-Bonilla, J. P.; Sarmiento, O. L.; Gallo-Murcia, S. M.; Contreras, Y.</p> <p>2017-05-01</p> <p>This research determined intake dose of fine particulate matter (PM2.5), equivalent black carbon (eBC), and number of sub-micron particles (Np) for commuters in Bogotá, Colombia. Doses were estimated through measurements of exposure concentration, a surrogate of physical activity, as well as travel times and speeds. Impacts of travel mode, traffic load, and street configuration on dose and exposure were explored. Three road segments were selected because of their different traffic loads and composition, and dissimilar street configuration. The transport modes considered include active modes (walking and cycling) and motorized modes (bus, car, taxi, and motorcycle). Measurements were performed simultaneously in the available modes at each road segment. High average eBC concentrations were observed throughout the campaign, ranging from 20 to 120 μgm-3 . Commuters in motorized modes experienced significantly higher exposure concentrations than pedestrians and bicyclists. The highest average concentrations of PM2.5, eBC , and Np were measured inside the city's Bus Rapid Transit (BRT) system vehicles. Pedestrians and bicycle users in an open street configuration were exposed to the lowest average concentrations of PM2.5 and eBC , six times lower than those experienced by commuters using the BRT in the same street segment. Pedestrians experienced the highest particulate matter intake dose in the road segments studied, despite being exposed to lower concentrations than commuters in motorized modes. Average potential dose of PM2.5 and eBC per unit length traveled were nearly three times higher for pedestrians in a street canyon configuration compared to commuters in public transport. Slower travel speed and elevated inhalation rates dominate PM dose for pedestrians. The presence of dedicated bike lanes on sidewalks has a significant impact on reducing the exposure concentration for bicyclists compared to those riding in mixed traffic lanes. This study proposes a simple method to perform loading effect correction for measurements of black carbon using multiple portable aethalometers.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29197797','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29197797"><span>Biochar application increased the growth and yield and reduced cadmium in drought stressed wheat grown in an aged contaminated soil.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Abbas, Tahir; Rizwan, Muhammad; Ali, Shafaqat; Adrees, Muhammad; Mahmood, Abid; Zia-Ur-Rehman, Muhammad; Ibrahim, Muhammad; Arshad, Muhammad; Qayyum, Muhammad Farooq</p> <p>2018-02-01</p> <p>Cadmium (Cd) and drought stress in plants is a worldwide problem, whereas little is known about the effect of biochar (BC) under combined Cd and drought stress. The current study was conducted to determine the impact of BC on Cd uptake in wheat sown in Cd-contaminated soil under drought stress. Wheat was grown in a soil after incubating the soil for 15 days with three levels of BC (0%, 3.0% and 5.0% w/w). Three levels of drought stress (well-watered, mild drought and severe drought containing 70%, 50%, and 35% of soil water holding capacity respectively) were applied to 45-d-old wheat plants. Drought stress decreased plant height, spike length, chlorophyll contents, gas exchange parameters, root and shoot dry biomasses and grain yields. Drought stress also caused oxidative stress and decreased the antioxidant enzymes activities whereas increased the Cd concentration in plants. Biochar increased morphological and physiological parameters of wheat under combined drought and Cd stress and reduced the oxidative stress and Cd contents and increased antioxidant enzymes activities. The decrease in Cd concentration with BC application in drought-stressed plant might be attributed to BC-induced increase in crop biomass production and reduction in oxidative stress. These results indicate that BC could be used as an amendment in metal contaminated soil for improving wheat growth and reducing Cd concentrations under semiarid conditions. Copyright © 2017 Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A13F2137C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A13F2137C"><span>Estimation of the mass absorption cross-section of the black and brown carbon aerosols during GoPoEx 2014</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cho, C.; Kim, S. W.; Lee, M.; Gustafsson, O.; Fang, W.</p> <p>2017-12-01</p> <p>Black carbon (BC) is a major contributor to the atmospheric heating by absorbing the solar radiation. According to recent studies, the solar absorption of brown carbon (BrC) is not negligible and even comparable to that of BC at visible to UV wavelengths, but most optical instruments that quantify light absorption are unable to distinguish each other. Thus, light absorption properties of BC or BrC usually have been studied through modeling researches by using mass absorption cross-section (MAC). Although MAC has a large spatial and temporal variability, most modeling studies have used a specific value of BC MAC and even the absorption by BrC is seldom considered in most chemical and climate models. The generalization of modeling research can lead to serious errors of radiative forcing by BC and BrC. In this study, MAC of BC and BrC are separately determined and the contribution of BC and BrC on aerosol light absorption are estimated from co-located simultaneous in-situ measurements, COSMOS, CLAP and Sunset EC/OC analyzer, at Gosan climate observatory, Korea during Gosan Pollution Experiment in January 2014 (GoPoEx 2014). At 565 nm, MAC of BC is found to be about 6.4±1.5 m2 g-1 from COSMOS and Sunset EC/OC analyzer measurements. This value is similar to those from previous studies in China (Cui et al., STE, 2016), but lower than those observed to be ranged 10-18 m2 g-1 in America or Europe (Lack et al., PNAS, 2012). Aerosol absorption coefficient (AAC) and BC mass concentration from COSMOS, meanwhile, are approximately 15-20% lower than those of CLAP. This difference can be attributable to the contribution of BrC. The MAC of BrC was calculated using the absorption coefficient of BrC and by the following three methods: (1) the difference of mass concentration from Aethalometer and COSMOS applied new BC MAC of this study, (2) The mass concentration of water-soluble organic carbon, (3) a method using the mass concentration of organic carbon suggested by Chung et al. (ACP, 2012). The MAC of BrC values obtained from the three methods ranged from 1.0 m2 g-1 to 1.5 m2 g-1 at 565 nm which is slightly higher than those from previous studies (Srinivas et al., AE, 2016). The contribution of BC to AAC is estimated to be about 85-90%, while BrC accounts for about 10-15% of total AAC, having increases about 1% of BrC contribution when the BrC MAC value increases 10%.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014BGD....1116799B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014BGD....1116799B"><span>Distribution of black carbon in Ponderosa pine litter and soils following the High Park wildfire</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Boot, C. M.; Haddix, M.; Paustian, K.; Cotrufo, M. F.</p> <p>2014-12-01</p> <p>Black carbon (BC), the heterogeneous product of burned biomass, is a critical component in the global carbon cycle, yet timescales and mechanisms for incorporation into the soil profile are not well understood. The High Park Fire, which took place in northwestern Colorado in the summer of 2012, provided an opportunity to study the effects of both fire intenstiy and geomorphology on properties of carbon (C), nitrogen (N), and BC in the Cache La Poudre River drainage. We sampled montane Ponderosa pine litter, 0-5 cm soils, and 5-15 cm soils four months post-fire in order to examine the effects of slope and burn intensity on %C, C stocks, %N and black carbon (g kg-1 C, and g m-2). We developed and implemented the benzene polycarboxylic acid (BPCA) method for quantifying BC. With regard to slope, we found that steeper slopes had higher C : N than shallow slopes, but that there was no difference in black carbon content or stocks. BC content was greatest in the litter in burned sites (19 g kg-1 C), while BC stocks were greatest in the 5-15 cm subsurface soils (23 g m-2). At the time of sampling, none of the BC deposited on the land surface post-fire had been incorporated into to either the 0-5 cm or 5-15 cm soil layers. The ratio of B5CA : B6CA (less condensed to more condensed BC) indicated there was significantly more older, more processed BC at depth. Total BC soil stocks were relatively low compared to other fire-prone grassland and boreal forest systems, indicating most of the BC produced in this system is likely transported off the surface through erosion events. Future work examining mechanisms for BC transport will be required for understanding the role BC plays in the global carbon cycle.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/944769-long-term-black-carbon-dynamics-cultivated-soil','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/944769-long-term-black-carbon-dynamics-cultivated-soil"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Nguyen, Binh T; Lehmann, Johannes C; Kinyangi, James</p> <p></p> <p>Black carbon (BC) is a quantitatively important C pool in the global carbon cycle due to its relative recalcitrance against decay compared with other C pools. However, how rapidly BC is oxidized and in what way the molecular structure changes during decomposition over decadal time scales, is largely unknown. In the present study, the long-term dynamics in quality and quantity of BC were investigated in cultivated soil using X-ray Photoelectron Spectroscopy (XPS), Fourier-Transform Infrared (FTIR) and Nuclear Magnetic Resonance (NMR) techniques. BC particles, obtained from soil samples at 8 conversion ages stretching over 100 years and from a forest soilmore » sample from Kenya, were manually picked under a light microscope for characterization and quantification. BC contents rapidly decreased from 12.7 to 3.8 mg C g⁻¹ soil during the first 30 years since conversion, after which they slowly decreased to a steady state at 3.51 mg C g ⁻¹soil. BC-derived C losses over 100 years were estimated at 6000 kg C ha⁻¹ to a depth of 0.1 m. The initial rapid changes in BC stocks resulted in a mean residence time of only around 8.3 years, which was likely a function of both decomposition as well as transport processes. The molecular properties of BC changed more rapidly on surfaces than in the interior of BC particles and more rapidly during the first 30 years than during the following 70 years. The Oc/C ratios (Oc is O bound to C) and carbonyl groups (C=O) increased over time by 133 and 192 %, respectively, indicating oxidation was an important degradation process controlling BC quality. Al, Si, polysaccharides, and to a lesser extent Fe were rapidly adsorbed on BC particle surfaces within the first few years after BC deposition to soil. The protection by physical and chemical stabilization was apparently sufficient to not only minimize decomposition below detection between 30 and 100 years after deposition, but also physical export by erosion and vertical transport below 0.1 m.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.A42B..02M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.A42B..02M"><span>Relationship between Black Carbon and heavy traffic in São Paulo, Brazil</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Miranda, R. M.; Perez-Martinez, P.; Ribeiro, F. N. D.; Andrade, M. D. F.</p> <p>2015-12-01</p> <p>Carbonaceous aerosols play an important role in air quality, human health and global climate change. Black Carbon (BC) can be considered the most efficient light absorber in the visible spectrum and is mainly found in the fine fraction of aerosol. Typically is emitted by incomplete combustion of fossil fuels related to traffic, industrial processes and biomass burning. São Paulo Metropolitan Area (SPMA) with more than 19 million inhabitants, 7 million vehicles, as well as the major industrial and technological park of the country, has high concentrations of air pollutants, especially in the winter and vehicles are considered the principal source of particles emitted to the atmosphere. Since November 2014, Black Carbon and PM2.5 are being monitored using a MAAP (Multi Angle Absorption Photometer) Thermo 5012 and a Dust Trak DRX-8533 TSI in the East Campus of University of São Paulo, close to important highways and also to the largest airport of Brazil (Guarulhos Airport). Average BC concentration was 1.7 μg/m3 with some peaks above 17.0 μg/m3 and for PM2.5 average was 10.2 μg/m3. Particle concentrations reached values greater than the air quality standard (60 μg/m3) in the winter months. Winds coming from the East direction predominate. Traffic restrictions to heavy duty vehicles in the road-rings next to the sampling site during some hours of the day are the responsible for the daily BC and PM2.5 behavior (figure below), where high concentrations occur early in the morning and late at night, when heavy diesel vehicles are released for transit. Seasonal variations are different for BC and PM2.5 due to local sources of BC and meteorological conditions that have more influence on the particles. The weekly variation indicates that concentrations are lower on Sundays and higher from Tuesday to Thursday. Emission factors for BC were calculated based on traffic information.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28893502','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28893502"><span>Recent advances in nanoscale-metal assisted biochar derived from waste biomass used for heavy metals removal.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ho, Shih-Hsin; Zhu, Shishu; Chang, Jo-Shu</p> <p>2017-12-01</p> <p>Pollution of heavy metals (HMs) is a detrimental treat to human health and need to be cleaned up in a proper way. Biochar (BC), a low-cost and "green" adsorbent, has attracted significant attention due to its considerable HMs removal capacity. In particular, nano-metals have recently been used to assist BC in improving its reactivity, surface texture and magnetism. Synthesis methods and metal precursors greatly influence the properties and structures of the nanocomposites, thereby affecting their HMs removal performance. This review presents advances in synthesis methods, formation mechanisms and surface characteristics of BC nanocomposites, along with the discussions on HMs removal mechanisms and the effects of environmental factors on HMs removal efficiency. Performance of using BC nanocomposites to remediate real HMs-containing wastewater and issues associated with its process scale-up are also discussed. This review aims to provide useful information to facilitate the development of HMs removal by nanoscale-metal assisted BC. Copyright © 2017 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1437544-seasonal-variation-light-absorption-property-carbonaceous-aerosol-typical-glacieri-region-southeastern-tibetan-plateau','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1437544-seasonal-variation-light-absorption-property-carbonaceous-aerosol-typical-glacieri-region-southeastern-tibetan-plateau"><span>Seasonal variation and light absorption property of carbonaceous aerosol in a typical glacieri region of the southeastern Tibetan Plateau</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Niu, Hewen; Kang, Shichang; Wang, Hailong</p> <p>2018-05-07</p> <p>Deposition and accumulation of light-absorbing carbonaceous aerosol on glacier surfaces can alter the energy balance of glaciers. In this study, 2 years (December 2014 to December 2016) of continuous observations of carbonaceous aerosols in the glacierized region of the Mt. Yulong and Ganhaizi (GHZ) basin are analyzed. The average elemental carbon (EC) and organic carbon (OC) concentrations were 1.51±0.93 and 2.57±1.32 µg m−3, respectively. Although the annual mean OC ∕ EC ratio was 2.45±1.96, monthly mean EC concentrations during the post-monsoon season were even higher than OC in the high altitudes (approximately 5000 m a. s. l. ) of Mt. Yulong. Strong photochemical reactions and local tourism activities weremore » likely the main factors inducing high OC ∕ EC ratios in the Mt. Yulong region during the monsoon season. The mean mass absorption efficiency (MAE) of EC, measured for the first time in Mt. Yulong, at 632 nm with a thermal-optical carbon analyzer using the filter-based method, was 6.82±0.73 m2 g−1, comparable with the results from other studies. Strong seasonal and spatial variations of EC MAE were largely related to the OC abundance. Source attribution analysis using a global aerosol–climate model, equipped with a black carbon (BC) source tagging technique, suggests that East Asia emissions, including local sources, have the dominant contribution (over 50 %) to annual mean near-surface BC in the Mt. Yulong area. There is also a strong seasonal variation in the regional source apportionment. South Asia has the largest contribution to near-surface BC during the pre-monsoon season, while East Asia dominates the monsoon season and post-monsoon season. Results in this study have great implications for accurately evaluating the influences of carbonaceous matter on glacial melting and water resource supply in glacierization areas.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25793355','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25793355"><span>Long-term trends in California mobile source emissions and ambient concentrations of black carbon and organic aerosol.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>McDonald, Brian C; Goldstein, Allen H; Harley, Robert A</p> <p>2015-04-21</p> <p>A fuel-based approach is used to assess long-term trends (1970-2010) in mobile source emissions of black carbon (BC) and organic aerosol (OA, including both primary emissions and secondary formation). The main focus of this analysis is the Los Angeles Basin, where a long record of measurements is available to infer trends in ambient concentrations of BC and organic carbon (OC), with OC used here as a proxy for OA. Mobile source emissions and ambient concentrations have decreased similarly, reflecting the importance of on- and off-road engines as sources of BC and OA in urban areas. In 1970, the on-road sector accounted for ∼90% of total mobile source emissions of BC and OA (primary + secondary). Over time, as on-road engine emissions have been controlled, the relative importance of off-road sources has grown. By 2010, off-road engines were estimated to account for 37 ± 20% and 45 ± 16% of total mobile source contributions to BC and OA, respectively, in the Los Angeles area. This study highlights both the success of efforts to control on-road emission sources, and the importance of considering off-road engine and other VOC source contributions when assessing long-term emission and ambient air quality trends.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28266532','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28266532"><span>A potential large and persistent black carbon forcing over Northern Pacific inferred from satellite observations.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Li, Zhongshu; Liu, Junfeng; Mauzerall, Denise L; Li, Xiaoyuan; Fan, Songmiao; Horowitz, Larry W; He, Cenlin; Yi, Kan; Tao, Shu</p> <p>2017-03-07</p> <p>Black carbon (BC) aerosol strongly absorbs solar radiation, which warms climate. However, accurate estimation of BC's climate effect is limited by the uncertainties of its spatiotemporal distribution, especially over remote oceanic areas. The HIAPER Pole-to-Pole Observation (HIPPO) program from 2009 to 2011 intercepted multiple snapshots of BC profiles over Pacific in various seasons, and revealed a 2 to 5 times overestimate of BC by current global models. In this study, we compared the measurements from aircraft campaigns and satellites, and found a robust association between BC concentrations and satellite-retrieved CO, tropospheric NO 2 , and aerosol optical depth (AOD) (R 2  > 0.8). This establishes a basis to construct a satellite-based column BC approximation (sBC*) over remote oceans. The inferred sBC* shows that Asian outflows in spring bring much more BC aerosols to the mid-Pacific than those occurring in other seasons. In addition, inter-annual variability of sBC* is seen over the Northern Pacific, with abundances varying consistently with the springtime Pacific/North American (PNA) index. Our sBC* dataset infers a widespread overestimation of BC loadings and BC Direct Radiative Forcing by current models over North Pacific, which further suggests that large uncertainties exist on aerosol-climate interactions over other remote oceanic areas beyond Pacific.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70035783','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70035783"><span>Vegetation death and rapid loss of surface elevation in two contrasting Mississippi delta salt marshes: The role of sedimentation, autocompaction and sea-level rise</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Day, J.W.; Kemp, G.P.; Reed, D.J.; Cahoon, D.R.; Boumans, R.M.; Suhayda, J.M.; Gambrell, R.</p> <p>2011-01-01</p> <p>From 1990 to 2004, we carried out a study on accretionary dynamics and wetland loss in salt marshes surrounding two small ponds in the Mississippi delta; Old Oyster Bayou (OB), a sediment-rich area near the mouth of the Atchafalaya River and Bayou Chitigue (BC), a sediment-poor area about 70. km to the east. The OB site was stable, while most of the marsh at BC disappeared within a few years. Measurements were made of short-term sedimentation, vertical accretion, change in marsh surface elevation, pond wave activity, and marsh soil characteristics. The OB marsh was about 10. cm higher than BC; the extremes of the elevation range for Spartina alterniflora in Louisiana. Vertical accretion and short-term sedimentation were about twice as high at BC than at OB, but the OB marsh captured nearly all sediments deposited, while the BC marsh captured <30%. The OB and BC sites flooded about 15% and 85% of the time, respectively. Marsh loss at BC was not due to wave erosion. The mineral content of deposited sediments was higher at OB. Exposure and desiccation of the marsh surface at OB increased the efficiency that deposited sediments were incorporated into the marsh soil, and displaced the marsh surface upward by biological processes like root growth, while also reducing shallow compaction. Once vegetation dies, there is a loss of soil volume due to loss of root turgor and oxidation of root organic matter, which leads to elevation collapse. Revegetation cannot occur because of the low elevation and weak soil strength. The changes in elevation at both marsh sites are punctuated, occurring in steps that can either increase or decrease elevation. When a marsh is low as at BC, a step down can result in an irreversible change. At this point, the option is not restoration but creating a new marsh with massive sediment input either from the river or via dredging. ?? 2010 Elsevier B.V.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28791916','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28791916"><span>Immobilization of metals in contaminated soil from E-waste recycling site by dairy-manure-derived biochar.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Chen, Zhiliang; Zhang, Jianqiang; Liu, Minchao; Wu, Yingxin; Yuan, Zhihui</p> <p>2017-08-24</p> <p>E-waste is a growing concern around the world and varieties of abandoned E-waste recycling sites, especially in urban area, need to remediate immediately. The impacts of dairy-manure-derived biochars (BCs) on the amelioration of soil properties, the changes in the morphologies as well as the mobility of metals were studied to test their efficacy in immobilization of metals for a potential restoration of vegetation landscape in abandoned E-waste recycling site. The amendment with BCs produced positive effects on bioavailability and mobility reduction for Pb, Cd, Zn and Cu depending on BC ratio and incubation time. The BCs promoted the transformation of species of heavy metals to a more stable fraction, and the metals concentrations in Toxicity Characteristic Leaching Procedure extract declined significantly, especially Pb and Cu. Besides, the BCs ameliorated the substrate with increasing the soil pH, cations exchangeable capacity and available phosphorous, which suggested BC as a potential amendment material for abandoned E-waste recycling sites before restoration of vegetation landscape. Generally, the BC modified by alkaline treatment has a higher efficacy, probably due to increase of specific surface area and porosity as well as the functional groups after alkaline treatment.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19431774','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19431774"><span>Effect of integral membrane proteins on the lateral mobility of plastoquinone in phosphatidylcholine proteoliposomes.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Blackwell, M F; Whitmarsh, J</p> <p>1990-11-01</p> <p>PYRENE FLUORESCENCE QUENCHING BY PLASTOQUINONE WAS USED TO ESTIMATE THE RATE OF PLASTOQUINONE LATERAL DIFFUSION IN SOYBEAN PHOSPHATIDYLCHOLINE PROTEOLIPOSOMES CONTAINING THE FOLLOWING INTEGRAL MEMBRANE PROTEINS: gramicidin D, spinach cytochrome bf complex, spinach cytochrome f, reaction centers from Rhodobacter sphaeroides, beef heart mitochondrial cytochrome bc(1), and beef heart mitochondrial cytochrome oxidase. The measured plastoquinone lateral diffusion coefficient varied between 1 and 3 . 10(-7) cm(2) s(-1) in control liposomes that lacked protein. When proteins were added, these values decreased: a 10-fold decrease was observed when 16-26% of the membrane surface area was occupied by protein for all the proteins but gramicidin. The larger protein complexes (cytochrome bf, Rhodobacter sphaeroides reaction centers, cytochrome bc(1), and cytochrome oxidase), whose hydrophobic volumes were 15-20 times as large as that of cytochrome f and the gramicidin transmembrane dimer, were 15-20 times as effective in decreasing the lateral-diffusion coefficient over the range of concentrations studied. These proteins had a much stronger effect than that observed for bacteriorhodopsin in fluorescence photobleaching recovery measurements. The effect of high-protein concentrations in gramicidin proteoliposomes was in close agreement with fluorescence photobleaching measurements. The results are compared with the predictions of several theoretical models of lateral mobility as a function of integral membrane concentration.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1281070','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1281070"><span>Effect of integral membrane proteins on the lateral mobility of plastoquinone in phosphatidylcholine proteoliposomes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Blackwell, Mary F.; Whitmarsh, John</p> <p>1990-01-01</p> <p>Pyrene fluorescence quenching by plastoquinone was used to estimate the rate of plastoquinone lateral diffusion in soybean phosphatidylcholine proteoliposomes containing the following integral membrane proteins: gramicidin D, spinach cytochrome bf complex, spinach cytochrome f, reaction centers from Rhodobacter sphaeroides, beef heart mitochondrial cytochrome bc1, and beef heart mitochondrial cytochrome oxidase. The measured plastoquinone lateral diffusion coefficient varied between 1 and 3 · 10-7 cm2 s-1 in control liposomes that lacked protein. When proteins were added, these values decreased: a 10-fold decrease was observed when 16-26% of the membrane surface area was occupied by protein for all the proteins but gramicidin. The larger protein complexes (cytochrome bf, Rhodobacter sphaeroides reaction centers, cytochrome bc1, and cytochrome oxidase), whose hydrophobic volumes were 15-20 times as large as that of cytochrome f and the gramicidin transmembrane dimer, were 15-20 times as effective in decreasing the lateral-diffusion coefficient over the range of concentrations studied. These proteins had a much stronger effect than that observed for bacteriorhodopsin in fluorescence photobleaching recovery measurements. The effect of high-protein concentrations in gramicidin proteoliposomes was in close agreement with fluorescence photobleaching measurements. The results are compared with the predictions of several theoretical models of lateral mobility as a function of integral membrane concentration. PMID:19431774</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFM.A51B0024F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFM.A51B0024F"><span>Real-time black carbon emission factors of light-duty vehicles tested on a chassis dynamometer</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Forestieri, S. D.; Cappa, C. D.; Kuwayama, T.; Collier, S.; Zhang, Q.; Kleeman, M. J.</p> <p>2012-12-01</p> <p>Eight light-duty gasoline vehicles were tested on a Chassis dynamometer using the California Unified Driving Cycle (UDC) at the Haagen-Smit vehicle test facility at the California Air Resources Board (CARB) in El Monte, CA during September 2011. In addition, one light-duty gasoline vehicle, one ultra low-emission vehicle, one diesel passenger vehicle, and one gasoline direct injection vehicle were tested on a constant velocity driving cycle. Vehicle exhaust was diluted through CARB's CVS tunnel and a secondary dilution system in order to examine particulate matter (PM) emissions at atmospherically relevant concentrations (5-30 μg-m3). A variety of real-time instrumentation was used to characterize how the major PM components vary during a typical driving cycle, which includes a cold start phase followed by a hot stabilized running phase. Aerosol absorption coefficients were obtained at 532 nm and 405 nm with a time resolution of 2 seconds from a photo-acoustic spectrometer. These absorption coefficients were then converted to black carbon (BC) concentrations via a mass absorption coefficient. Non-refractory organic and inorganic PM and CO2 concentrations were quantified with a time resolution of 10 seconds using a High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS). Real-time BC and CO2 concentrations allowed for the determination of BC emission factors (EFs), providing insights into the variability of BC EFs during different phases of a typical driving cycle and aiding in the modeling BC emissions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28821155','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28821155"><span>Simultaneous influence of pectin and xyloglucan on structure and mechanical properties of bacterial cellulose composites.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Szymańska-Chargot, Monika; Chylińska, Monika; Cybulska, Justyna; Kozioł, Arkadiusz; Pieczywek, Piotr M; Zdunek, Artur</p> <p>2017-10-15</p> <p>The impact of the matrix polysaccharides on the cellulose microfibrils structure as well as on the mechanical properties of cell walls still remains an open question. Therefore, the aim of investigations was to determine the simultaneous influence of (i) different concentrations of pectins with constant concentration of xyloglucan, and (ii) different concentrations of xyloglucan with constant concentration of pectins on cellulose structure. Composites of bacterial cellulose (BC) produced by Komagataeibacter xylinus are considered to mimic natural plant cell walls. This investigation showed that the lower the ratio of xyloglucan to pectin was, the higher Young's modulus of BC composite was and also obtained cellulose microfibrils were thinner. The increasing concentration of xyloglucan to pectin also caused the drop down in microfibrils crystallinity degree with predominant structure of cellulose I β . In that case, also the length of cellulose chains was growing and reaching the highest value among all BC composites. Copyright © 2017 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29233260','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29233260"><span>Tooth whitening evaluation of blue covarine containing toothpastes.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Tao, Danying; Smith, Richard N; Zhang, Qiong; Sun, Jianing N; Philpotts, Carole J; Ricketts, Stephen R; Naeeni, Mojgan; Joiner, Andrew</p> <p>2017-12-01</p> <p>To measure the tooth whitening effects delivered immediately after brushing with silica-based toothpastes containing blue covarine in vitro and in vivo. Salivary pellicle coated human extracted teeth were brushed with either a slurry of a toothpaste containing blue covarine (BC), a formulation containing an increased level of blue covarine (BC+) or a negative control toothpaste containing no blue covarine. The colour of the specimens were measured in vitro using either a Minolta chromameter or a VITA Easyshade spectrophotometer, before and after brushing and changes in CIELAB values and tooth Whiteness Index (WIO) values calculated. In a double-blind cross-over clinical study, subjects brushed with either BC or BC+ toothpaste and tooth colour changes were measured with a digital image analysis system. The in vitro studies demonstrated that toothpastes containing blue covarine gave a significantly (p<0.05) greater change in b* and WIO values than the negative control toothpaste; the BC+ toothpaste gave a significantly greater increase in b* and WIO values than the BC toothpaste, and BC+ gave a significant increase in shade change versus the negative control. Clinical results showed that BC and BC+ gave a significant reduction in b* (p<0.0001) and increase in WIO (p<0.0001) from baseline indicating significant tooth whitening had occurred. The parameter changes were significantly greater when brushing with the BC+ toothpaste than with the BC toothpaste (WIO p=0.006; b* p=0.013). Toothpastes containing blue covarine gave a statistically significant reduction in tooth yellowness and improvement in tooth whiteness immediately after brushing in both in vitro and clinical studies. In addition, the higher concentration blue covarine toothpaste gave statistically significant greater tooth whitening benefits than the lower concentration blue covarine toothpaste. The silica-based toothpastes containing blue covarine evaluated in the current study gave tooth whitening benefits immediately after one brush. Copyright © 2017 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28660457','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28660457"><span>Marker-assisted breeding for introgression of opaque-2 allele into elite maize inbred line BML-7.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Krishna, M S R; Sokka Reddy, S; Satyanarayana, Sadam D V</p> <p>2017-07-01</p> <p>Improvement of quality protein maize (QPM) along with high content of lysine and tryptophan had foremost importance in maize breeding program. The efficient and easiest way of developing QPM hybrids was by backcross breeding in marker aided selection. Hence, the present investigation aimed at conversion of elite maize inbred line BML-7 into QPM line. CML-186 was identified to be a donor variety as it revealed high-quality polymorphism with BML-7 for opaque-2 gene specific marker umc1066. Non-QPM inbred line BML-7 was crossed with QPM donor CML-186 and produced F 1 followed by the development of BC 1 F 1 and BC 2 F 1 population. Foreground selection was carried out with umc1066 in F 1 , and selected plants were used for BC 1 F 1 and BC 2 F 1 populations. Two hundred plants were screened in both BC 1 F 1 and BC 2 F 1 population with umc1066 for foreground selection amino acid modifiers. Foreground selected plants for both opaque-2 and amino acid modifiers were screened for background selection for BML-7 genome. Recurrent parent genome (RPG) was calculated for BC 2 F 1 population plants. Two plants have shown with RPG 90-93% in two generation with back cross population. Two BC 2 F 2 populations resulted from marker recognized BC 2 F 1 individuals subjected toward foreground selection followed by tryptophan estimation. The tryptophan and lysine concentration was improved in all the plants. BC 2 F 2 lines developed from hard endosperm kernels were selfed for BC 2 F 2 lines and finest line was selected to illustrate the QPM version of BML-7, with 0.97% of tryptophan and 4.04% of lysine concentration in protein. Therefore, the QPM version of BML-7 line can be used for the development of single cross hybrid QPM maize version.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_19 --> <div id="page_20" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="381"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006AGUFM.A43A0120O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006AGUFM.A43A0120O"><span>Investigating the Use of a Diffusion Flame to Produce Black Carbon Standards for Thermal- Optical Analysis of Carbonaceous Aerosols</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ortiz Montalvo, D. L.; Kirchstetter, T. W.; Soto-García, L. L.; Mayol-Bracero, O. L.</p> <p>2006-12-01</p> <p>Combustion generated particles are a concern to both climate and public health due to their ability to scatter and absorb solar radiation and alter cloud properties, and because they are small enough to be inhaled and deposit in the lungs where they may cause respiratory and other health problems. Specific concern is focused on particles that originate from the combustion of diesel fuel. Diesels particles are composed mainly of carbonaceous material, especially in locations where diesel fuel sulfur is low. These particles are black due to the strongly light absorbing nature of the refractory carbon components, appropriately called black carbon (BC). This research project focuses on the uncertainty in the measurement of BC mass concentration, which is typically determined by analysis of particles collected on a filter using a thermal-optical analysis (TOA) method. Many studies have been conducted to examine the accuracy of the commonly used variations of the TOA method, which vary in their sample heating protocol, carrier gas, and optical measurement. These studies show that BC measurements are inaccurate due to the presence of organic carbon (OC) in the aerosols. OC may co-evolve with BC or char to form BC during analysis, both of which make it difficult to distinguish between the OC and BC in the sample. The goal of this study is to develop the capability of producing standard samples of known amounts of BC, either alone or mixed with other aerosol constituents, and then evaluate which TOA methods accurately determine the BC amount. An inverted diffusion flame of methane and air was used to produce particle samples containing only BC as well as samples of BC mixed with humic acid (HA). Our study found that HA is light absorbing and catalyzes the combustion of BC. It is expected that both of these attributes will challenge the ability of TOA methods in distinguishing between OC and BC, such as the simple two step TOA method which relies solely on temperature to distinguish between OC and BC. These samples were analyzed using two TOA methods to compare the estimates of BC concentration. Future work will focus on the preparation of a variety of BC standards and comparing measurements of the prepared samples using a range of other TOA methods.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFM.A33D0203U','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFM.A33D0203U"><span>Measurements and Analysis of Black Carbon Aerosols in the Eastern Mediterranean Megacity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Unal, A.; Ozdemir, H.; Kindap, T.; Demir, G.; Karaca, M.; Khan, M. N.</p> <p>2010-12-01</p> <p>In a world where at least 50 percent of the population is living in urban environments, air pollution and specifically particulate matter became one of the most critical issues. There have been many studies that focused on mass concentration measurements of PM10 and PM2.5. Recent studies suggest that chemical composition is critical in understanding the effects of PM on health as well as climate. For example, public health studies reveal that, components of the atmospheric aerosols have different impacts on human health. Smith et al. (2009) stated that; on the basis of the 1μg/m3 contrast, the percentage increase in all-cause mortality for PM2.5 was 0.58; sulfate effects were about twice those of PM2.5, and effects of elemental carbon (an indicator of black carbon mass) about ten times greater. To date, many studies and national inventories have been based on particulate matter (PM10 and PM2.5), and the major greenhouse pollutants, but not speciated emissions, especially in the developing world (Smith et al., 2009; Chow et al., 2010). But air quality standards will soon need to include particulate black carbon (BC), as it directly afffects climate, visibility, and human health. Anthropogenic emissions are increasing dramatically worldwide and recent estimates of global BC emissions range from 8 to 24 Tg (1012 g) per year. In this study, we investigated BC pollution for the first time in Istanbul, Turkey. Istanbul is a megacity of over 15 million inhabitants (OECD, 2008). On-road traffic is also increasing rapidly in the city (over 3 million vehicles on the road). Hence, the city has a potential to be an important source for both local and regional pollution in the Eastern Mediterranean. In our study, an Aethalometer (<0.1μg/m3 sensitivity) was used for continuous and real-time measurements of BC concentration. Measurements were carried out at the selected five different locations throughout the city. 1st and 2nd sites were near high-traffic streets; in the city center, and on the shore of the Bosphorus, respectively; 3rd was near a high way; 4th was located on an urban park (provided for recreational use); and 5th was on a low-traffic residential street. Mean BC aerosol mass concentrations were 5,500 ng/m3 and 7,600 ng/m3 during the study periods for 2009 (155 days), and 2010 (122 days), respectively. BC concentrations near dense traffic were found to reach higher values; average concentration at the 2nd site in 2010 was 8,400 ng/m3; at the 1st site in 2009 was 12,000 ng/m3. BC concentration measured in the urban park, which had very low traffic activity, was lower; 4,300 ng/m3, and 6,000 ng/m3 for 2009, and 2010, respectively. This paper will present findings on BC measurements and statistical analysis of temporal and spatial distributions of the BC concentrations to understand the origin of the BC problem in Istanbul. These findings will be essential in understanding the aerosol problem and developing mitigation measures to reduce public health risks associated with it.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015JNR....17...77J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015JNR....17...77J"><span>Nanomaterial release characteristics in a single-walled carbon nanotube manufacturing workplace</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ji, Jun Ho; Kim, Jong Bum; Lee, Gwangjae; Bae, Gwi-Nam</p> <p>2015-02-01</p> <p>As carbon nanotubes (CNTs) are widely used in various applications, exposure assessment also increases in importance with other various toxicity tests for CNTs. We conducted 24-h continuous nanoaerosol measurements to identify possible nanomaterial release in a single-walled carbon nanotube (SWCNT) manufacturing workplace. Four real-time aerosol instruments were used to determine the nanosized and microsized particle numbers, particle surface area, and carbonaceous species. Task-based exposure assessment was carried out for SWCNT synthesis using the arc plasma and thermal decomposition processes to remove amorphous carbon components as impurities. During the SWCNT synthesis, the black carbon (BC) concentration was 2-12 μg/m3. The maximum BC mass concentrations occurred when the synthesis chamber was opened for harvesting the SWCNTs. The number concentrations of particles with sizes 10-420 nm were 10,000-40,000 particles/cm3 during the tasks. The maximum number concentration existed when a vacuum pump was operated to remove exhaust air from the SWCNT synthesis chamber due to the penetration of highly concentrated oil mists through the window opened. We analyzed the particle mass size distribution and particle number size distribution for each peak episode. Using real-time aerosol detectors, we distinguished the SWCNT releases from background nanoaerosols such as oil mist and atmospheric photochemical smog particles. SWCNT aggregates with sizes of 1-10 μm were mainly released from the arc plasma synthesis. The harvesting process was the main release route of SWCNTs in the workplace.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012PhDT.......407M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012PhDT.......407M"><span>Local and regional interactions between air quality and climate in New Delhi- A sector based analysis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Marrapu, Pallavi</p> <p></p> <p>Deteriorating air quality is one of the major problems faced worldwide and in particular in Asia. The world's most polluted megacities are located in Asia highlighting the urgent need for efforts to improve the air quality. New Delhi (India), one of the world's most polluted cities, was the host of the Common Wealth Games during the period of 4-14 October 2010. This high profile event provided a good opportunity to accelerate efforts to improve air quality. Computational advances now allow air quality forecast models to fully couple the meteorology with chemical constituents within a unified modeling system that allows two-way interactions. The WRF-Chem model is used to simulate air quality in New Delhi. The thesis focuses on evaluating air quality and meteorology feedbacks. Four nested domains ranging from South Asia, Northern India, NCR Delhi and Delhi city at 45km, 15km, 5km and 1.67km resolution for a period of 20 day (26th Sep--15th Oct, 2010) are used in the study. The predicted mean surface concentrations of various pollutants show similar spatial distributions with peak values in the middle of the domain reflecting the traffic and population patterns in the city. Along with these activities, construction dust and industrial emissions contribute to high levels of criteria pollutants. The study evaluates the WRF-Chem capabilities using a new emission inventory developed over Delhi at a fine resolution of 1.67km and evaluating the results with observational data from 11 monitoring sties placed at various Game venues. The contribution of emission sectors including transportation, power, industry, and domestic to pollutant concentrations at targeted regions are studied and the results show that transportation and domestic sector are the major contributors to the pollution levels in Delhi, followed by industry. Apart from these sectors, emissions outside of Delhi contribute 20-50% to surface concentrations depending on the species. This indicates that pollution control efforts should take a regional perspective. Air quality projections in Delhi for 2030 are investigated. The Greenhouse Gas and Air Pollution I nteractions and Synergies (GAINS) model is used to generate a 2030 future emission scenario for Delhi using projections of air quality control measures and energy demands. Net reductions in CO concentrations by 50%, and increases of 140% and 40% in BC and NOx concentrations, respectively, are predicted. The net changes in concentration are associated with increases in transport and industry sectors. The domestic sector still has a significant contribution to air pollutant levels. The air quality levels show a profound effect under this scenario on the environment and human health. The increase in pollution from 2010 to 2030 is predicted to cause an increase in surface temperature by ˜0.65K. These increasing pollution levels also show effects on the radiative forcing. The high aerosols loading i.e. BC, PM2.5 and PM10 levels show strong influence on the short and longwave fluxes causing strong surface dimming and strong atmosphere heating due to BC. These results indicate transport and domestic sectors should be targeted for air quality and climate mitigations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004AtmEn..38.5283M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004AtmEn..38.5283M"><span>Ambient pollutant concentrations measured by a mobile laboratory in South Bronx, NY</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Maciejczyk, Polina B.; Offenberg, John H.; Clemente, Jessica; Blaustein, Martin; Thurston, George D.; Chi Chen, Lung</p> <p>2004-10-01</p> <p>The objective of this study is to characterize the ambient air quality of the South Bronx, New York City (NYC), having high concentrations of diesel trucks and waste transfer facilities. We employed a mobile laboratory for continuous measurements of concentrations of fine particulate matter (PM2.5), black carbon (BC), and gaseous pollutants at 6 locations for three-four weeks each during the period of April 2001-February 2003. Integrated 24-hr PM2.5 samples were also collected for elemental and PAHs analyses. South Bronx PM2.5 and BC levels were compared to those at Bronx PS 154 (NYSDEC site) and at Hunter College in the Lower Manhattan. Although the median daily PM2.5 concentrations agreed within 20%, the median hourly BC concentrations were higher at all South Bronx sites ranging from 2.2 to 3.8 μg m-3, compared to 1.0-2.6 μg m-3 at Hunter College. Continuous Aethelometer measurements at additional 27 sampling sites in the South Bronx were conducted along major highways. BC concentrations varied within each site, depending on time-of-day, with a large spatial variability from site-to-site. Daily median BC concentrations varied from 1.7 to 12 μg m-3 on the weekdays, and were lower (0.50-2.9 μg m-3) on the weekends. Elemental concentrations were higher at all South Bronx sites than those at Hunter College for all measured elements but Ni and V, and at the Hunts Point, an industrial location, were approximately 2.5-fold higher. The average sum of 35 PAHs was 225 ng m-3, which is 4.5 times larger than representative regional concentrations in Jersey City, NJ. Among the individual PAHs, 3,6-dimethylphenanthrene had the highest concentrations, and the overall PAH fingerprint differed from signal for Jersey City. Our data indicates that highways encircling the South Bronx are having a measurable adverse influence on residents' exposure to pollutants compared to other NYC areas.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20160013722&hterms=biomass&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dbiomass','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20160013722&hterms=biomass&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dbiomass"><span>Impacts of Brown Carbon from Biomass Burning on Surface UV and Ozone Photochemistry in the Amazon Basin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mok, Jungbin; Krotkov, Nickolay A.; Arola, Antti; Torres, Omar; Jethva, Hiren; Andrade, Marcos; Labow, Gordon; Eck, Thomas F.; Li, Zhangqing; Dickerson, Russell R.; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_20160013722'); toggleEditAbsImage('author_20160013722_show'); toggleEditAbsImage('author_20160013722_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_20160013722_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_20160013722_hide"></p> <p>2016-01-01</p> <p>The spectral dependence of light absorption by atmospheric particulate matter has major implications for air quality and climate forcing, but remains uncertain especially in tropical areas with extensive biomass burning. In the September-October 2007 biomass-burning season in Santa Cruz, Bolivia, we studied light absorbing (chromophoric) organic or brown carbon (BrC) with surface and space-based remote sensing. We found that BrC has negligible absorption at visible wavelengths, but significant absorption and strong spectral dependence at UV wavelengths. Using the ground-based inversion of column effective imaginary refractive index in the range 305368nm, we quantified a strong spectral dependence of absorption by BrC in the UV and diminished ultraviolet B (UV-B) radiation reaching the surface. Reduced UV-B means less erythema, plant damage, and slower photolysis rates. We use a photochemical box model to show that relative to black carbon (BC) alone, the combined optical properties of BrC and BC slow the net rate of production of ozone by up to 18 and lead to reduced concentrations of radicals OH, HO2, and RO2 by up to 17, 15, and 14, respectively. The optical properties of BrC aerosol change in subtle ways the generally adverse effects of smoke from biomass burning.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27833145','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27833145"><span>Impacts of brown carbon from biomass burning on surface UV and ozone photochemistry in the Amazon Basin.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Mok, Jungbin; Krotkov, Nickolay A; Arola, Antti; Torres, Omar; Jethva, Hiren; Andrade, Marcos; Labow, Gordon; Eck, Thomas F; Li, Zhanqing; Dickerson, Russell R; Stenchikov, Georgiy L; Osipov, Sergey; Ren, Xinrong</p> <p>2016-11-11</p> <p>The spectral dependence of light absorption by atmospheric particulate matter has major implications for air quality and climate forcing, but remains uncertain especially in tropical areas with extensive biomass burning. In the September-October 2007 biomass-burning season in Santa Cruz, Bolivia, we studied light absorbing (chromophoric) organic or "brown" carbon (BrC) with surface and space-based remote sensing. We found that BrC has negligible absorption at visible wavelengths, but significant absorption and strong spectral dependence at UV wavelengths. Using the ground-based inversion of column effective imaginary refractive index in the range 305-368 nm, we quantified a strong spectral dependence of absorption by BrC in the UV and diminished ultraviolet B (UV-B) radiation reaching the surface. Reduced UV-B means less erythema, plant damage, and slower photolysis rates. We use a photochemical box model to show that relative to black carbon (BC) alone, the combined optical properties of BrC and BC slow the net rate of production of ozone by up to 18% and lead to reduced concentrations of radicals OH, HO 2 , and RO 2 by up to 17%, 15%, and 14%, respectively. The optical properties of BrC aerosol change in subtle ways the generally adverse effects of smoke from biomass burning.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ACP....17.7459Q','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ACP....17.7459Q"><span>Effects of the Wegener-Bergeron-Findeisen process on global black carbon distribution</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Qi, Ling; Li, Qinbin; He, Cenlin; Wang, Xin; Huang, Jianping</p> <p>2017-06-01</p> <p>We systematically investigate the effects of Wegener-Bergeron-Findeisen process (hereafter WBF) on black carbon (BC) scavenging efficiency, surface BCair, deposition flux, concentration in snow (BCsnow, ng g-1), and washout ratio using a global 3-D chemical transport model (GEOS-Chem). We differentiate riming- versus WBF-dominated in-cloud scavenging based on liquid water content (LWC) and temperature. Specifically, we implement an implied WBF parameterization using either temperature or ice mass fraction (IMF) in mixed-phase clouds based on field measurements. We find that at Jungfraujoch, Switzerland, and Abisko, Sweden, where WBF dominates in-cloud scavenging, including the WBF effect strongly reduces the discrepancies of simulated BC scavenging efficiency and washout ratio against observations (from a factor of 3 to 10 % and from a factor of 4-5 to a factor of 2). However, at Zeppelin, Norway, where riming dominates, simulation of BC scavenging efficiency, BCair, and washout ratio become worse (relative to observations) when WBF is included. There is thus an urgent need for extensive observations to distinguish and characterize riming- versus WBF-dominated aerosol scavenging in mixed-phase clouds and the associated BC scavenging efficiency. Our model results show that including the WBF effect lowers global BC scavenging efficiency, with a higher reduction at higher latitudes (8 % in the tropics and up to 76 % in the Arctic). The resulting annual mean BCair increases by up to 156 % at high altitudes and at northern high latitudes because of lower temperature and higher IMF. Overall, WBF halves the model-observation discrepancy (from -65 to -30 %) of BCair across North America, Europe, China and the Arctic. Globally WBF increases BC burden from 0.22 to 0.29-0.35 mg m-2 yr-1, which partially explains the gap between observed and previous model-simulated BC burdens over land. In addition, WBF significantly increases BC lifetime from 5.7 to ˜ 8 days. Additionally, WBF results in a significant redistribution of BC deposition in source and remote regions. Specifically, it lowers BC wet deposition (by 37-63 % at northern mid-latitudes and by 21-29 % in the Arctic), while it increases dry deposition (by 3-16 % at mid-latitudes and by 81-159 % in the Arctic). The resulting total BC deposition is lower at mid-latitudes (by 12-34 %) but higher in the Arctic (by 2-29 %). We find that WBF decreases BCsnow at mid-latitudes (by ˜ 15 %) but increases it in the Arctic (by 26 %) while improving model comparisons with observations. In addition, WBF dramatically reduces the model-observation discrepancy of washout ratios in winter (from a factor of 16 to 4). The remaining discrepancies in BCair, BCsnow and BC washout ratios suggest that in-cloud removal in mixed-phased clouds is likely still excessive over land.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28024536','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28024536"><span>Nanocellulose based asymmetric composite membrane for the multiple functions in cell encapsulation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Park, Minsung; Shin, Sungchul; Cheng, Jie; Hyun, Jinho</p> <p>2017-02-20</p> <p>We describe the nanocomposite membrane for cell encapsulation using nanocelluose hydrogels. One of the surfaces of bacterial cellulose (BC) pellicles was coated with collagen to enhance cell adhesion and the opposite side of the BC pellicles was coated with alginate to protect transplanted cells from immune rejection by the reduced pore size of the composite membrane. The morphology of nanocomposite membrane was observed by scanning electron microscopy and the permeability of the membrane was estimated by the release test using different molecular weights of polymer solution. The nanocomposite membrane was permeable to small molecules but impermeable to large molecules such as IgG antibodies inferring the potential use in cell implantation. In addition, the BC-based nanocomposite membrane showed a superior mechanical property due to the incorporation of compared with alginate membranes. The cells attached efficiently to the surface of BC composite membranes with a high level of cell viability as well as bioactivity. Cells grown on the BC composite membrane kit released dopamine freely to the medium through the membrane, which showed that the BC composite membrane would be a promising cell encapsulation material in implantation. Copyright © 2016 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27810443','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27810443"><span>Tolerance to quaternary ammonium compound disinfectants may enhance growth of Listeria monocytogenes in the food industry.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Møretrø, Trond; Schirmer, Bjørn C T; Heir, Even; Fagerlund, Annette; Hjemli, Pernille; Langsrud, Solveig</p> <p>2017-01-16</p> <p>The antibacterial effect of disinfectants is crucial for the control of Listeria monocytogenes in food processing environments. Tolerance of L. monocytogenes to sublethal levels of disinfectants based on quaternary ammonium compounds (QAC) is conferred by the resistance determinants qacH and bcrABC. The presence and distribution of these genes have been anticipated to have a role in the survival and growth of L. monocytogenes in food processing environments where QAC based disinfectants are in common use. In this study, a panel of 680 L. monocytogenes from nine Norwegian meat- and salmon processing plants were grouped into 36 MLVA profiles. The presence of qacH and bcrABC was determined in 101 isolates from the 26 most common MLVA profiles. Five MLVA profiles contained qacH and two contained bcrABC. Isolates with qacH and bcrABC showed increased tolerance to the QAC Benzalkonium chloride (BC), with minimal inhibitory concentrations (MICs) of 5-12, 10-13 and <5ppm for strains with qacH (two allele variants observed), bcrABC, and neither gene, respectively. Isolates with qacH or bcrABC were not more tolerant to BC in bactericidal tests in suspension or in biofilms compared with isolates lacking the genes. Water residue samples collected from surfaces in meat processing plants after QAC disinfection had bactericidal effect against L. monocytogenes when the sample BC levels were high (>100ppm). A sample with lower BC concentrations (14ppm of chain length C-12 and 2.7ppm of chain length C-14) inhibited growth of L. monocytogenes not containing bcrABC or qacH, compared to strains with these genes. The study has shown that L. monocytogenes harbouring the QAC resistance genes qacH and bcrABC are prevalent in the food industry and that residuals of QAC may be present in concentrations after sanitation in the industry that result in a growth advantage for bacteria with such resistance genes. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA576087','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA576087"><span>Black Carbon Aerosol over the Los Angeles Basin during CalNex</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2012-04-20</p> <p>were more thickly coated by a light-scattering substance than those below, indicating a more aged aerosol in the free troposphere . Near the surface, as... Troposphere 14 (54 90) 0.0167 (0.0346 0.0454) 188 (31) 76 (13) 1.7 (2.8) 161 (41) aThe concentrations are campaign medians (mean 1s); all other...6. That the more thickly coated rBC particles lie in the free troposphere is consistent with a more aged aerosol, on which secondary species have</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5256269','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5256269"><span>Deposition of boron doped DLC films on TiNb and characterization of their mechanical properties and blood compatibility</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Liza, Shahira; Hieda, Junko; Akasaka, Hiroki; Ohtake, Naoto; Tsutsumi, Yusuke; Nagai, Akiko; Hanawa, Takao</p> <p>2017-01-01</p> <p>Abstract Diamond-like carbon (DLC) material is used in blood contacting devices as the surface coating material because of the antithrombogenicity behavior which helps to inhibit platelet adhesion and activation. In this study, DLC films were doped with boron during pulsed plasma chemical vapor deposition (CVD) to improve the blood compatibility. The ratio of boron to carbon (B/C) was varied from 0 to 0.4 in the film by adjusting the flow rate of trimethylboron and acetylene. Tribological tests indicated that boron doping with a low B/C ratio of 0.03 is beneficial for reducing friction (μ = 0.1), lowering hardness and slightly increasing wear rate compared to undoped DLC films. The B/C ratio in the film of 0.03 and 0.4 exhibited highly hydrophilic surface owing to their high wettability and high surface energy. An in vitro platelet adhesion experiment was conducted to compare the blood compatibility of TiNb substrates before and after coating with undoped and boron doped DLC. Films with highly hydrophilic surface enhanced the blood compatibility of TiNb, and the best results were obtained for DLC with the B/C ratio of 0.03. Boron doped DLC films are promising surface coatings for blood contacting devices. PMID:28179961</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1438461','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1438461"><span>Simulated responses of terrestrial aridity to black carbon and sulfate aerosols</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Lin, L.; Gettelman, A.; Xu, Y.</p> <p></p> <p>Aridity index (AI), defined as the ratio of precipitation to potential evapotranspiration (PET), is a measure of the dryness of terrestrial climate. Global climate models generally project future decreases of AI (drying) associated with global warming scenarios driven by increasing greenhouse gas and declining aerosols. Given their different effects in the climate system, scattering and absorbing aerosols may affect AI differently. In this work, we explore the terrestrial aridity responses to anthropogenic black carbon (BC) and sulfate (SO 4) aerosols with Community Earth System Model simulations. Positive BC radiative forcing decreases precipitation averaged over global land at a rate ofmore » 0.9%/°C of global mean surface temperature increase (moderate drying), while BC radiative forcing increases PET by 1.0%/°C (also drying). BC leads to a global decrease of 1.9%/°C in AI (drying). SO 4 forcing is negative and causes precipitation a decrease at a rate of 6.7%/°C cooling (strong drying). PET also decreases in response to SO 4 aerosol cooling by 6.3%/°C cooling (contributing to moistening). Thus, SO 4 cooling leads to a small decrease in AI (drying) by 0.4%/°C cooling. Despite the opposite effects on global mean temperature, BC and SO 4 both contribute to the twentieth century drying (AI decrease). Sensitivity test indicates that surface temperature and surface available energy changes dominate BC- and SO 4-induced PET changes.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1438461-simulated-responses-terrestrial-aridity-black-carbon-sulfate-aerosols','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1438461-simulated-responses-terrestrial-aridity-black-carbon-sulfate-aerosols"><span>Simulated responses of terrestrial aridity to black carbon and sulfate aerosols</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Lin, L.; Gettelman, A.; Xu, Y.; ...</p> <p>2016-01-27</p> <p>Aridity index (AI), defined as the ratio of precipitation to potential evapotranspiration (PET), is a measure of the dryness of terrestrial climate. Global climate models generally project future decreases of AI (drying) associated with global warming scenarios driven by increasing greenhouse gas and declining aerosols. Given their different effects in the climate system, scattering and absorbing aerosols may affect AI differently. In this work, we explore the terrestrial aridity responses to anthropogenic black carbon (BC) and sulfate (SO 4) aerosols with Community Earth System Model simulations. Positive BC radiative forcing decreases precipitation averaged over global land at a rate ofmore » 0.9%/°C of global mean surface temperature increase (moderate drying), while BC radiative forcing increases PET by 1.0%/°C (also drying). BC leads to a global decrease of 1.9%/°C in AI (drying). SO 4 forcing is negative and causes precipitation a decrease at a rate of 6.7%/°C cooling (strong drying). PET also decreases in response to SO 4 aerosol cooling by 6.3%/°C cooling (contributing to moistening). Thus, SO 4 cooling leads to a small decrease in AI (drying) by 0.4%/°C cooling. Despite the opposite effects on global mean temperature, BC and SO 4 both contribute to the twentieth century drying (AI decrease). Sensitivity test indicates that surface temperature and surface available energy changes dominate BC- and SO 4-induced PET changes.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1438461-simulated-responses-terrestrial-aridity-black-carbon-sulfate-aerosols-lin-simulated-responses-aridity','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1438461-simulated-responses-terrestrial-aridity-black-carbon-sulfate-aerosols-lin-simulated-responses-aridity"><span>Simulated responses of terrestrial aridity to black carbon and sulfate aerosols: LIN: SIMULATED RESPONSES ARIDITY</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Lin, L.; Gettelman, A.; Xu, Y.; ...</p> <p>2016-01-27</p> <p>Aridity index (AI), defined as the ratio of precipitation to potential evapotranspiration (PET), is a measure of the dryness of terrestrial climate. Global climate models generally project future decreases of AI (drying) associated with global warming scenarios driven by increasing greenhouse gas and declining aerosols. Given their different effects in the climate system, scattering and absorbing aerosols may affect AI differently. Here we explore the terrestrial aridity responses to anthropogenic black carbon (BC) and sulfate (SO4) aerosols with Community Earth System Model simulations. Positive BC radiative forcing decreases precipitation averaged over global land at a rate of 0.9%/°C of globalmore » mean surface temperature increase (moderate drying), while BC radiative forcing increases PET by 1.0%/°C (also drying). BC leads to a global decrease of 1.9%/°C in AI (drying). SO4 forcing is negative and causes precipitation a decrease at a rate of 6.7%/°C cooling (strong drying). PET also decreases in response to SO4 aerosol cooling by 6.3%/°C cooling (contributing to moistening). Thus, SO4 cooling leads to a small decrease in AI (drying) by 0.4%/°C cooling. Despite the opposite effects on global mean temperature, BC and SO4 both contribute to the twentieth century drying (AI decrease). Sensitivity test indicates that surface temperature and surface available energy changes dominate BC- and SO4-induced PET changes.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24751018','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24751018"><span>Thin stillage supplementation greatly enhances bacterial cellulose production by Gluconacetobacter xylinus.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wu, Jyh-Ming; Liu, Ren-Han</p> <p>2012-09-01</p> <p>Thin stillage (TS), a wastewater from rice wine distillery can well sustain the growth of Gluconacetobacter xylinus for production of bacterial cellulose (BC). When used as a supplement to the traditional BC production medium (Hestrin and Schramm medium), the enhancement of BC production increased with the amount of TS supplemented in a static culture of G. xylinus. When TS was employed to replace distilled water for preparing HS medium (100%TS-HS medium), the BC production in this 100%TS-HS medium was enhanced 2.5-fold to a concentration of 10.38 g/l with sugar to BC conversion yield of 57% after 7 days cultivation. The cost-free TS as a supplement in BC production medium not only can greatly enhance the BC production, but also can effectively dispose the nuisance wastewater of rice wine distillery. Copyright © 2012 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AtmRe.200...97C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AtmRe.200...97C"><span>Seasonal variability of carbonaceous aerosols in an urban background area in Southern Italy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cesari, D.; Merico, E.; Dinoi, A.; Marinoni, A.; Bonasoni, P.; Contini, D.</p> <p>2018-02-01</p> <p>Organic (OC) and Elemental Carbon (EC) are important components of atmospheric aerosol particles, playing a key role in climate system and potentially affecting human health. There is a lack of data reported for Southern Italy and this work aims to fill this gap, focusing the attention on the long-term trends of OC and EC concentrations in PM2.5 and PM10, and on atmospheric processes and sources influencing seasonal variability. Measurements were taken at the Environmental-Climate Observatory of Lecce (SE Italy, 40°20‧8″N-18°07‧28″E, 37 m a.s.l.), regional station of the Global Atmosphere Watch program (GAW-WMO). Daily PM10 and PM2.5 samples were collected between July 2013 and July 2016. In addition, starting in December 2014, simultaneous equivalent Black Carbon (eBC) concentrations in PM10 were measured using a Multi Angle Absorption Photometer. A subset of 722 PM samples (361 for each size fraction) was analysed by using a thermo-optical method with a Sunset Laboratory OC/EC analyser, to determine elemental and organic carbon concentrations. The average PM10 and PM2.5 concentrations were 28.8 μg/m3 and 17.5 μg/m3. The average OC and EC concentrations in PM10 were 5.4 μg/m3 and 0.8 μg/m3, in PM2.5 these were 4.7 μg/m3 and 0.6 μg/m3. Carbonaceous content was larger during cold season with respect to warm season as well as secondary organic carbon (SOC) that was evaluated using the OC/EC minimum ratio method. SOC was mainly segregated in PM2.5 and represented 53% - 75% of the total OC. A subset of EC data was compared with eBC measurements, showing a good correlation (R2 = 0.80), however, eBC concentrations were higher than EC concentrations of an average factor of 1.95 (+/- 0.55 standard deviation). This could be explained by the presence of a contribution of Brown Carbon (BrC), for example from biomass burning, in eBC measurements. Weekly patterns showed a slight decrease of carbon content during weekends with respect to weekdays especially visible on eBC concentration due to the decrease of road traffic emissions. The daily patterns of hourly eBC concentrations showed a decrease in central diurnal hours, due to the cycle of planetary boundary-layer height, and concentrations peaks during rush hours due to road traffic emissions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19320171','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19320171"><span>Application of the integrating sphere method to separate the contributions of brown and black carbon in atmospheric aerosols.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wonaschütz, Anna; Hitzenberger, Regina; Bauer, Heidi; Pouresmaeil, Parissa; Klatzer, Barbara; Caseiro, Alexandre; Puxbaum, Hans</p> <p>2009-02-15</p> <p>Until about a decade ago, black carbon (BC) was thought to be the only light absorbing substance in the atmospheric aerosol except for soil or desert dust In more recent years, light absorbing polymeric carbonaceous material was found in atmospheric aerosols. Absorption increases appreciably toward short wavelengths, so this fraction was called brown carbon. Because brown carbon is thermally rather refractory, it influences the split between organic carbon (OC) and elemental carbon (EC) in thermal methods and, through its light absorption characteristics, leads to overestimations of BC concentrations. The goal of the present study was to extend the integrating sphere method to correct the BC signal for the contribution of brown carbon and to obtain an estimate of brown carbon concentrations. Humic acid sodium salt was used as proxy for brown carbon. The extended method is first tested on mixtures of test substances and then applied to atmospheric samples collected during biomass smoke episodes (Easter bonfires) in Austria. The resulting concentrations of black and brown carbon are compared to EC obtained with a widely used thermal method, the Cachier method (Cachier et al. Tellus 1989, 41B, 379-390) and a thermal-optical method (Schmid et al. Atmos. Environ. 2001, 35, 2111-2121), as well as to concentrations of humic like substances (HULIS) and to biomass smoke POM (particulate organic matter). Both the thermal methods were found to overestimate BC on days with large contributions of woodsmoke, which agrees with the findings of the method intercomparison study by Reisinger et at. (Environ. Sci. Technol. 2008, 42, 884-889). During the days of the bonfires, the Cachier method gave EC concentrations that were higher by a factor of 3.8 than the BC concentrations, while the concentrations obtained with the thermal-optical method were higher by a factor of 2.6.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ACP....1714975Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ACP....1714975Z"><span>The single-particle mixing state and cloud scavenging of black carbon: a case study at a high-altitude mountain site in southern China</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, Guohua; Lin, Qinhao; Peng, Long; Bi, Xinhui; Chen, Duohong; Li, Mei; Li, Lei; Brechtel, Fred J.; Chen, Jianxin; Yan, Weijun; Wang, Xinming; Peng, Ping'an; Sheng, Guoying; Zhou, Zhen</p> <p>2017-12-01</p> <p>In the present study, a ground-based counterflow virtual impactor (GCVI) was used to sample cloud droplet residual (cloud RES) particles, while a parallel PM2.5 inlet was used to sample cloud-free or cloud interstitial (cloud INT) particles. The mixing state of black carbon (BC)-containing particles and the mass concentrations of BC in the cloud-free, RES and INT particles were investigated using a single-particle aerosol mass spectrometer (SPAMS) and two aethalometers, respectively, at a mountain site (1690 m a. s. l. ) in southern China. The measured BC-containing particles were extensively internally mixed with sulfate and were scavenged into cloud droplets (with number fractions of 0.05-0.45) to a similar (or slightly lower) extent as all the measured particles (0.07-0.6) over the measured size range of 0.1-1.6 µm. The results indicate the preferential activation of larger particles and/or that the production of secondary compositions shifts the BC-containing particles towards larger sizes. BC-containing particles with an abundance of both sulfate and organics were scavenged less than those with sulfate but limited organics, implying the importance of the mixing state on the incorporation of BC-containing particles into cloud droplets. The mass scavenging efficiency of BC with an average of 33 % was similar for different cloud events independent of the air mass. This is the first time that both the mixing state and cloud scavenging of BC in China have been reported. Our results would improve the knowledge on the concentration, mixing state, and cloud scavenging of BC in the free troposphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1008224-sensitivity-studies-impacts-tibetan-plateau-snowpack-pollution-asian-hydrological-cycle-monsoon-climate','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1008224-sensitivity-studies-impacts-tibetan-plateau-snowpack-pollution-asian-hydrological-cycle-monsoon-climate"><span>Sensitivity studies on the impacts of Tibetan Plateau snowpack pollution on the Asian hydrological cycle and monsoon climate</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Qian, Yun; Flanner, M G; Leung, Lai-Yung R</p> <p>2011-03-02</p> <p>The Tibetan Plateau (TP), the highest and largest plateau in the world, has long been identified to be critical in regulating the Asian monsoon climate and hydrological cycle. The snowpack and glaciers over the TP provide fresh water to billions of people in Asian countries, but the TP glaciers have been retreating extensively at a speed faster than any other part of the world. In this study a series of experiments with a global climate model are designed to simulate black carbon (BC) and dust in snow and their radiative forcing and to assess the relative impacts of anthropogenic COmore » 2 and carbonaceous particles in the atmosphere and snow, respectively, on the snowpack over the TP, as well as their subsequent impacts on the Asian monsoon climate and hydrological cycle. Results show a large BC content in snow over the TP, especially the southern slope, with concentration larger than 100 µk/kg. Because of the high aerosol content in snow and large incident solar radiation in the low latitude and high elevation, the TP exhibits the largest surface radiative forcing induced by aerosols (e.g. BC, Dust) in snow compared to other snow-covered regions in the world. The aerosol-induced snow albedo perturbations generate surface radiative forcing of 5-25 W m -2 during spring, with a maximum in April or May. BC-in-snow increases the surface air temperature by around 1.0°C averaged over the TP and reduces snowpack over the TP more than that induced by pre-industrial to present CO 2 increase and carbonaceous particles in the atmosphere during spring. As a result, runoff increases during late winter and early spring but decreases during late spring and early summer (i.e. a trend toward earlier melt dates). The snowmelt efficacy, defined as the snowpack reduction per unit degree of warming induced by the forcing agent, is 1-4 times larger for BC-in-snow than CO 2 increase during April-July, indicating that BC-in-snow more efficiently accelerates snowmelt because the increased net solar radiation induced by reduced albedo melts the snow more efficiently than snow melt due to warming in the air. The TP also influences the South (SAM) and East (EAM) Asian monsoon through its dynamical and thermal forcing. During boreal spring, aerosols are transported by the southwesterly and reach the higher altitude and/or deposited in the snowpack over the TP. While BC and OM in the atmosphere directly absorb sunlight and warm the air, the darkened snow surface polluted by BC absorbs more solar radiation and increases the skin temperature, which warms the air above by the increased sensible heat flux over the TP. Both effects enhance the upward motion of air and spur deep convection along the TP during pre-monsoon season, resulting in earlier onset of the SAM and increase of moisture, cloudiness and convective precipitation over northern India. BC-in-snow has a more significant impact on the EAM in July than CO 2 increase and carbonaceous particles in the atmosphere. Contributed by the significant increase of both sensible heat flux associated with the warm skin temperature and latent heat flux associated with increased soil moisture with long memory, the role of the TP as a heat pump is elevated from spring through summer as the land-sea thermal contrast increases to strengthen the EAM. As a result, both southern China and northern China become wetter, but central China (i.e. Yangtze River Basin) becomes drier - a near zonal anomaly pattern that is consistent with the dominant mode of precipitation variability in East Asia.« less</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_20 --> <div id="page_21" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="401"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017NatSR...743429L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017NatSR...743429L"><span>A potential large and persistent black carbon forcing over Northern Pacific inferred from satellite observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, Zhongshu; Liu, Junfeng; Mauzerall, Denise L.; Li, Xiaoyuan; Fan, Songmiao; Horowitz, Larry W.; He, Cenlin; Yi, Kan; Tao, Shu</p> <p>2017-03-01</p> <p>Black carbon (BC) aerosol strongly absorbs solar radiation, which warms climate. However, accurate estimation of BC’s climate effect is limited by the uncertainties of its spatiotemporal distribution, especially over remote oceanic areas. The HIAPER Pole-to-Pole Observation (HIPPO) program from 2009 to 2011 intercepted multiple snapshots of BC profiles over Pacific in various seasons, and revealed a 2 to 5 times overestimate of BC by current global models. In this study, we compared the measurements from aircraft campaigns and satellites, and found a robust association between BC concentrations and satellite-retrieved CO, tropospheric NO2, and aerosol optical depth (AOD) (R2 > 0.8). This establishes a basis to construct a satellite-based column BC approximation (sBC*) over remote oceans. The inferred sBC* shows that Asian outflows in spring bring much more BC aerosols to the mid-Pacific than those occurring in other seasons. In addition, inter-annual variability of sBC* is seen over the Northern Pacific, with abundances varying consistently with the springtime Pacific/North American (PNA) index. Our sBC* dataset infers a widespread overestimation of BC loadings and BC Direct Radiative Forcing by current models over North Pacific, which further suggests that large uncertainties exist on aerosol-climate interactions over other remote oceanic areas beyond Pacific.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhPl...25e3509W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhPl...25e3509W"><span>Investigation of surface boundary conditions for continuum modeling of RF plasmas</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wilson, A.; Shotorban, B.</p> <p>2018-05-01</p> <p>This work was motivated by a lacking general consensus in the exact form of the boundary conditions (BCs) required on the solid surfaces for the continuum modeling of Radiofrequency (RF) plasmas. Various kinds of number and energy density BCs on solid surfaces were surveyed, and how they interacted with the electric potential BC to affect the plasma was examined in two fundamental RF plasma reactor configurations. A second-order local mean energy approximation with equations governing the electron and ion number densities and the electron energy density was used to model the plasmas. Zero densities and various combinations of drift, diffusion, and thermal fluxes were considered to set up BCs. It was shown that the choice of BC can have a significant impact on the sheath and bulk plasma. The thermal and diffusion fluxes to the surface were found to be important. A pure drift BC for dielectric walls failed to produce a sheath.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25621722','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25621722"><span>Natural oxidation of a temperature series of biochars: opposite effect on the sorption of aromatic cationic herbicides.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Shi, Kaishun; Xie, Ya; Qiu, Yuping</p> <p>2015-04-01</p> <p>The natural oxidation of biochar in the environment has been widely observed. However, its influence on the sorption of organic contaminants remains poorly understood. In the present study, a series of wood-based biochars prepared between 300 and 600°C (referred to as BC300-BC600) was abiotically incubated for one year to examine the aging effect of the temperature series of biochars on their sorption of aromatic cationic herbicides (ACHs, paraquat and diquat) as well as a nonpolar reference adsorbate (naphthalene). One year of oxidation showed no obvious effect on the surface area, but distinct increases in the O/C elemental ratio, density of the surface groups and cation exchange capacity (CEC) were observed. Therefore, these properties were significantly affected by the charring temperature. After incubation, high-temperature biochars (BC500 and BC600) displayed a 14.1-36.3% decrease in the sorption (qm) of ACHs. The alteration of their sorption tendency was similar to the reduced sorption of naphthalene on oxidized biochars, in which the increased surface groups lowered the surface area accessible to adsorbates because of blockage by adsorbed water molecule clusters. Conversely, a pronounced increase of ACHs sorption by 121.7-201.1% on the low-temperature biochar (BC300) was observed, presumably due to the increase of CEC values after oxidation. This result was further demonstrated by a significant linear relationship between the paraquat sorption (qm) and CEC values (R(2)=0.9895) of oxidized biochars. Interestingly, one year of oxidation simultaneously resulted in an enhanced sorption of paraquat and a reduced sorption of diquat on BC400, which indicated that the oxidation-induced sorption change of ACHs is a complex function of changes in the surface properties of the biochars as well as the molecular structure of the solute. Copyright © 2015 Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4267475','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4267475"><span>EXTENDED STORAGE OF BUFFY-COAT PLATELET CONCENTRATES IN PLASMA OR A PLATELET ADDITIVE SOLUTION</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Slichter, Sherrill J.; Bolgiano, Doug; Corson, Jill; Jones, Mary Kay; Christoffel, Todd; Bailey, S. Lawrence; Pellham, Esther</p> <p>2014-01-01</p> <p>Background Platelet concentrates prepared from whole blood in the U.S. are made using the platelet-rich-plasma (PRP) method. The platelet concentrates must be made within 8 hours of blood collection and stored for only 5 days. In Europe and Canada, platelet concentrates are made using the buffy-coat (BC) method from whole blood held overnight at 22°C and storage times may be up to 7 days. Our studies were designed to determine how long BC platelets can be stored in plasma or Plasmalyte while meeting the FDA’s post-storage viability criteria. Study Design, Materials, And Methods Normal subjects donated whole blood that was stored at 22°C for 22 ± 2 hours prior to preparation of BC platelets. Platelets were stored for 5 to 8 days in either plasma or Plasmalyte concentrations of 65% or 80%. Radiolabeled autologous stored versus fresh platelet recoveries and survivals were assessed as well as post-storage in vitro assays. Results BC platelets stored in either plasma or 65% Plasmalyte met FDA post-storage platelet recovery criteria for 7 days but survivals for only 6 days, while storage in 80% Plasmalyte gave very poor results. Both stored platelet recoveries and survivals correlated with the same donor’s fresh results, but the correlation was much stronger between recoveries than survivals. In vitro measures of extent of shape change, morphology score, and pH best predicted post-storage platelet recoveries, while annexin V binding best predicted platelet survivals. Conclusion BC platelets stored in either plasma or 65% Plasmalyte meet FDA’s post-storage viability criteria for 6 days. PMID:24673482</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3795059','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3795059"><span>Co-Culture with Listeria monocytogenes within a Dual-Species Biofilm Community Strongly Increases Resistance of Pseudomonas putida to Benzalkonium Chloride</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Giaouris, Efstathios; Chorianopoulos, Nikos; Doulgeraki, Agapi; Nychas, George-John</p> <p>2013-01-01</p> <p>Biofilm formation is a phenomenon occurring almost wherever microorganisms and surfaces exist in close proximity. This study aimed to evaluate the possible influence of bacterial interactions on the ability of Listeria monocytogenes and Pseudomonas putida to develop a dual-species biofilm community on stainless steel (SS), as well as on the subsequent resistance of their sessile cells to benzalkonium chloride (BC) used in inadequate (sub-lethal) concentration (50 ppm). The possible progressive adaptability of mixed-culture biofilms to BC was also investigated. To accomplish these, 3 strains per species were left to develop mixed-culture biofilms on SS coupons, incubated in daily renewable growth medium for a total period of 10 days, under either mono- or dual-species conditions. Each day, biofilm cells were exposed to disinfection treatment. Results revealed that the simultaneous presence of L. monocytogenes strongly increased the resistance of P. putida biofilm cells to BC, while culture conditions (mono-/dual-species) did not seem to significantly influence the resistance of L. monocytogenes biofilm cells. BC mainly killed L. monocytogenes cells when this was applied against the dual-species sessile community during the whole incubation period, despite the fact that from the 2nd day this community was mainly composed (>90%) of P. putida cells. No obvious adaptation to BC was observed in either L. monocytogenes or P. putida biofilm cells. Pulsed field gel electrophoresis (PFGE) analysis showed that the different strains behaved differently with regard to biofilm formation and antimicrobial resistance. Such knowledge on the physiological behavior of mixed-culture biofilms could provide the information necessary to control their formation. PMID:24130873</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..1513422L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..1513422L"><span>Light Absorption of Black Carbon Aerosol and Its Radiative Forcing Effect in an Megacity Atmosphere in South China</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lan, Zijuan</p> <p>2013-04-01</p> <p>The effects of black carbon (BC) aerosol on climate warming have been the study focus in the recent decade, the regional effect of BC light absorption is more significant. The reduction of BC is now expected to have significant near-term climate change mitigation. Mass absorption efficient (MAE) was one of the important optical properties of BC aerosol for evaluating the BC on its radiative forcing effect, while BC mixing state is one main influencing factor for MAE. Models have estimated that BC radiative forcing can be increased by a factor of ~2 for internally versus externally mixed BC. On the other hand, some organic carbon had been found to significantly absorb light at UV or shorter wavelengths in the most recent studies, with strong spectral dependence. But large uncertainties still remain in determining the positive forcing effect of BC on global clime change due to the technical limitations. In this study, advanced instrumentation (a three-wavelength photoacoustic soot spectrometer (PASS-3) and a single particle soot photometer (SP2)) were used to measure black carbon aerosol and analyze its optical properties in a megacity in South China, Shenzhen, during the summer of 2011. It is in the southeast corner of the Pearl River Delta (PRD) region, neighboring Hong Kong to the south. During the campaign, the average BC mass concentration was 4.0±3.1 μg m-3, accounting for about 11% of PM2.5 mass concentration, which mainly came from fossil fuel combustion rather than biomass burning. The MAE of BC ranged from 5.0 to 8.5 m2 g-1, with an average value of 6.5±0.5 m2 g-1. The percentage of internally mixed BC was averagely 24.3±7.9% and positively correlated with the MAE. It is estimated that the internally mixed BC amplified MAE by about 7% during the campaign, suggesting that the BC absorption enhancement due to internal mixing in the real atmosphere is relatively low in comparison with the predictions by theoretical models, which stands in accordance with the new finding of a very recent Science magazine paper by Cappa.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016ACP....16.5399G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016ACP....16.5399G"><span>Size distribution and mixing state of black carbon particles during a heavy air pollution episode in Shanghai</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gong, Xianda; Zhang, Ci; Chen, Hong; Nizkorodov, Sergey A.; Chen, Jianmin; Yang, Xin</p> <p>2016-04-01</p> <p>A Single Particle Aerosol Mass Spectrometer (SPAMS), a Single Particle Soot Photometer (SP2) and various meteorological instruments were employed to investigate the chemical and physical properties of black carbon (BC) aerosols during a regional air pollution episode in urban Shanghai over a 5-day period in December 2013. The refractory black carbon (rBC) mass concentrations measured by SP2 averaged 3.2 µg m-3, with the peak value of 12.1 µg m-3 at 04:26 LT on 7 December. The number of BC-containing particles captured by SPAMS in the size range 200-1200 nm agreed very well with that detected by SP2 (R2 = 0.87). A cluster analysis of the single particle mass spectra allowed for the separation of BC-containing particles into five major classes: (1) Pure BC; (2) BC attributed to biomass burning (BBBC); (3) K-rich BC-containing (KBC); (4) BC internally mixed with OC and ammonium sulfate (BCOC-SOx); (5) BC internally mixed with OC and ammonium nitrate (BCOC-NOx). The size distribution of internally mixed BC particles was bimodal. Detected by SP2, the condensation mode peaked around ˜ 230 nm and droplet mode peaked around ˜ 380 nm, with a clear valley in the size distribution around ˜ 320 nm. The condensation mode mainly consisted of traffic emissions, with particles featuring a small rBC core (˜ 60-80 nm) and a relatively thin absolute coating thickness (ACT, ˜ 50-130 nm). The droplet mode included highly aged traffic emission particles and biomass burning particles. The biomass burning particles had a larger rBC core (˜ 80-130 nm) and a thick ACT (˜ 110-300 nm). The highly aged traffic emissions had a smaller core (˜ 60-80 nm) and a very thick ACT (˜ 130-300 nm), which is larger than reported in any previous literature. A fast growth rate (˜ 20 nm h-1) of rBC with small core sizes was observed during the experiment. High concentrations pollutants like NO2 likely accelerated the aging process and resulted in a continuous size growth of rBC-containing particles from traffic emission.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A53F2329M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A53F2329M"><span>Black Carbon, Aerosol optical depth and Angstrom Exponent in São Paulo, Brazil</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Miranda, R. M.; Perez-Martinez, P. J.; Andrade, M. D. F.</p> <p>2017-12-01</p> <p>Black carbon (BC) is a major absorber of solar radiation, and its impact on the radiative balance is therefore considered important. Fossil fuel combustion processes and biomass burning result in the emission of BC. Black carbon is being monitored since 2014 with a Multi-Angle Absorption Photometer-MAAP (5012; Thermo Scientific) in the East Zone of São Paulo, Brazil. São Paulo Metropolitan Area with more than 19 million inhabitants, 7 million vehicles, has high concentrations of air pollutants, especially in the winter. Vehicles can be considered the principal source of particles emitted to the atmosphere. Concentration of the pollutant had an average of 1.95 ug.m-3 ± 2.06 and a maximum value of 19.93 ug.m-3. These large variations were due to meteorological effects and to the influence of anthropogenic activities, since samples were collected close to important highways. Winds coming from the East part predominate. Higher concentrations were found in the winter months (June, July and August). Optical data from AERONET (Aerosol Optical Depth-AOD 550 nm and Angstrom Exponent 440-675 nm) were related to BC concentrations for the period from August, 2016. Average values of AOD at 500 nm and Angstrom Parameter (440-675nm) were 0.16±0.11 and 1.44±0.23, respectively. Higher BC concentrations were related to lower Angstrom values.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27555129','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27555129"><span>Middle cerebral artery blood flow velocity during beach chair position for shoulder surgery under general anesthesia.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hanouz, Jean-Luc; Fiant, Anne-Lise; Gérard, Jean-Louis</p> <p>2016-09-01</p> <p>The goal of the present study was to examine changes of middle cerebral artery (VMCA) blood flow velocity in patients scheduled for shoulder surgery in beach chair position. Prospective observational study. Operating room, shoulder surgery. Fifty-three consecutive patients scheduled for shoulder surgery in beach chair position. Transcranial Doppler performed after induction of general anesthesia (baseline), after beach chair positioning (BC1), during surgery 20minutes (BC2), and after back to supine position before stopping anesthesia (supine). Mean arterial pressure (MAP), end-tidal CO2, and volatile anesthetic concentration and VMCA were recorded at baseline, BC1, BC2, and supine. Postoperative neurologic complications were searched. Beach chair position induced decrease in MAP (baseline: 73±10mm Hg vs lower MAP recorded: 61±10mm Hg; P<.0001) requiring vasopressors and fluid challenge in 44 patients (83%). There was a significant decrease in VMCA after beach chair positioning (BC1: 33±10cm/s vs baseline: 39±14cm/s; P=.001). The VMCA at baseline (39±2cm/s), BC2 (35±14cm/s), and supine (39±14cm/s) were not different. The minimal alveolar concentration of volatile anesthetics, end-tidal CO2, SpO2, and MAP were not different at baseline, BC1, BC2, and supine. Beach chair position resulted in transient decrease in MAP requiring fluid challenge and vasopressors and a moderate decrease in VMCA. Copyright © 2016 Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013PhDT.......222B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013PhDT.......222B"><span>Black Carbon Emissions from In-use Ships: Results from CalNex 2010</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Buffaloe, Gina Marise</p> <p></p> <p>Black carbon (BC) mass emission factors (EFBC; g-BC (kg-fuel)--1) from a variety of ocean going vessels have been determined from measurements of BC and CO2 concentrations in ship plumes intercepted by the R/V Atlantis during the 2010 California Nexus (CalNex) campaign. The ships encountered were all operating within 24 nautical miles of the California coast and were utilizing relatively low sulphur fuels. Black carbon concentrations within the plumes, from which EFBC values are determined, were measured using four independent instruments: a photoacoustic spectrometer and a particle soot absorption photometer, which measure light absorption, and a single particle soot photometer and soot particle aerosol mass spectrometer, which measure the mass concentration of refractory BC directly. The measured EFBC have been divided into vessel type categories and engine type categories, from which averages have been determined. The geometric average EFBC, determined from over 71 vessels and 135 plumes encountered, was 0.31 g-BC (kg-fuel)--1. The most frequent engine type encountered was the slow speed diesel (SSD), and the most frequent SSD vessel type was the cargo ship sub-category. Average and median EF BC values from these two categories are compared to previous observations from the Texas Air Quality Study (TexAQS) in 2006, in which the ships encountered were predominately operating high sulphur fuels. There is some indication that the EFBC values for SSD vessels during CalNex were lower than during TexAQS, although ship-to-ship variability in these data sets makes it difficult to draw firm conclusions about the influence of fuel quality on EFBC.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.5896E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.5896E"><span>Quantifying Black Carbon emissions in high northern latitudes using an Atmospheric Bayesian Inversion</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Evangeliou, Nikolaos; Thompson, Rona; Stohl, Andreas; Shevchenko, Vladimir P.</p> <p>2016-04-01</p> <p>Black carbon (BC) is the main light absorbing aerosol species and it has important impacts on air quality, weather and climate. The major source of BC is incomplete combustion of fossil fuels and the burning of biomass or bio-fuels (soot). Therefore, to understand to what extent BC affects climate change and pollutant dynamics, accurate knowledge of the emissions, distribution and variation of BC is required. Most commonly, BC emission inventory datasets are built by "bottom up" approaches based on activity data and emissions factors, but these methods are considered to have large uncertainty (Cao et al, 2006). In this study, we have used a Bayesian Inversion to estimate spatially resolved BC emissions. Emissions are estimated monthly for 2014 and over the domain from 180°W to 180°E and 50°N to 90°N. Atmospheric transport is modeled using the Lagrangian Particle Dispersion Model, FLEXPART (Stohl et al., 1998; 2005), and the inversion framework, FLEXINVERT, developed by Thompson and Stohl, (2014). The study domain is of particular interest concerning the identification and estimation of BC sources. In contrast to Europe and North America, where BC sources are comparatively well documented as a result of intense monitoring, only one station recording BC concentrations exists in the whole of Siberia. In addition, emissions from gas flaring by the oil industry have been geographically misplaced in most emission inventories and may be an important source of BC at high latitudes since a significant proportion of the total gas flared occurs at these high latitudes (Stohl et al., 2013). Our results show large differences with the existing BC inventories, whereas the estimated fluxes improve modeled BC concentrations with respect to observations. References Cao, G. et al. Atmos. Environ., 40, 6516-6527, 2006. Stohl, A. et al. Atmos. Environ., 32(24), 4245-4264, 1998. Stohl, A. et al. Atmos. Chem. Phys., 5(9), 2461-2474, 2005. Stohl, A. et al. Atmos. Chem. Phys., 13, 8833-8855, 2013. Thompson, R. L., and Stohl A. Geosci. Model Dev., 7, 2223-2242, 2014.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1816467Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1816467Z"><span>1 Mixing state and absorbing properties of black carbon during Arctic haze</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zanatta, Marco; Gysel, Martin; Eleftheriadis, Kosas; Laj, Paolo; Hans-Werner, Jacobi</p> <p>2016-04-01</p> <p>The Arctic atmosphere is periodically affected by the Arctic haze occurring in spring. One of its particulate components is the black carbon (BC), which is considered to be an important contributor to climate change in the Arctic region. Beside BC-cloud interaction and albedo reduction of snow, BC may influence Arctic climate interacting directly with the solar radiation, warming the corresponding aerosol layer (Flanner, 2013). Such warming depends on BC atmospheric burden and also on the efficiency of BC to absorb light, in fact the light absorption is enhanced by mixing of BC with other atmospheric non-absorbing materials (lensing effect) (Bond et al., 2013). The BC reaching the Arctic is evilly processed, due to long range transport. Aging promote internal mixing and thus absorption enhancement. Such modification of mixing and is quantification after long range transport have been observed in the Atlantic ocean (China et al., 2015) but never investigated in the Arctic. During field experiments conducted at the Zeppelin research site in Svalbard during the 2012 Arctic spring, we investigated the relative precision of different BC measuring techniques; a single particle soot photometer was then used to assess the coating of Arctic black carbon. This allowed quantifying the absorption enhancement induced by internal mixing via optical modelling; the optical assessment of aged black carbon in the arctic will be of major interest for future radiative forcing assessment.Optical characterization of the total aerosol indicated that in 2012 no extreme smoke events took place and that the aerosol population was dominated by fine and non-absorbing particles. Low mean concentration of rBC was found (30 ng m-3), with a mean mass equivalent diameter above 200 nm. rBC concentration detected with the continuous soot monitoring system and the single particle soot photometer was agreeing within 15%. Combining absorption coefficient observed with an aethalometer and rBC mass concentration from SP2, a mass absorption cross section of 6.0 m2 g-1 was found at a wavelength of 880 nm. Concerning mixing, rBC cores with a dimeter between 170 nm and 280 nm were found to be covered by a layer of non-absorbing material having a median thickness of 50 nm. From Mie calculation, such mixing would lead to an enhancement of absorption of 46% compared to a bare BC core. The aforementioned absorption enhancement would lead to a net decrease of single scattering albedo of the total aerosol of less than 1%. The reliability of Mie approach was confirmed by agreement with observations, while MAC values commonly used in radiative forcing models might lead to discrepancies up to 80%. Our work provides all the major optical properties of total aerosol and BC to minimize the uncertainty of radiative estimations based on a priori assumptions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ACP....18.4981G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ACP....18.4981G"><span>Concentrations and source regions of light-absorbing particles in snow/ice in northern Pakistan and their impact on snow albedo</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gul, Chaman; Praveen Puppala, Siva; Kang, Shichang; Adhikary, Bhupesh; Zhang, Yulan; Ali, Shaukat; Li, Yang; Li, Xiaofei</p> <p>2018-04-01</p> <p>Black carbon (BC), water-insoluble organic carbon (OC), and mineral dust are important particles in snow and ice which significantly reduce albedo and accelerate melting. Surface snow and ice samples were collected from the Karakoram-Himalayan region of northern Pakistan during 2015 and 2016 in summer (six glaciers), autumn (two glaciers), and winter (six mountain valleys). The average BC concentration overall was 2130 ± 1560 ng g-1 in summer samples, 2883 ± 3439 ng g-1 in autumn samples, and 992 ± 883 ng g-1 in winter samples. The average water-insoluble OC concentration overall was 1839 ± 1108 ng g-1 in summer samples, 1423 ± 208 ng g-1 in autumn samples, and 1342 ± 672 ng g-1 in winter samples. The overall concentration of BC, OC, and dust in aged snow samples collected during the summer campaign was higher than the concentration in ice samples. The values are relatively high compared to reports by others for the Himalayas and the Tibetan Plateau. This is probably the result of taking more representative samples at lower elevation where deposition is higher and the effects of ageing and enrichment are more marked. A reduction in snow albedo of 0.1-8.3 % for fresh snow and 0.9-32.5 % for aged snow was calculated for selected solar zenith angles during daytime using the Snow, Ice, and Aerosol Radiation (SNICAR) model. The daily mean albedo was reduced by 0.07-12.0 %. The calculated radiative forcing ranged from 0.16 to 43.45 W m-2 depending on snow type, solar zenith angle, and location. The potential source regions of the deposited pollutants were identified using spatial variance in wind vector maps, emission inventories coupled with backward air trajectories, and simple region-tagged chemical transport modeling. Central, south, and west Asia were the major sources of pollutants during the sampling months, with only a small contribution from east Asia. Analysis based on the Weather Research and Forecasting (WRF-STEM) chemical transport model identified a significant contribution (more than 70 %) from south Asia at selected sites. Research into the presence and effect of pollutants in the glaciated areas of Pakistan is economically significant because the surface water resources in the country mainly depend on the rivers (the Indus and its tributaries) that flow from this glaciated area.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5551119','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5551119"><span>Effects of Biochar-Derived Sewage Sludge on Heavy Metal Adsorption and Immobilization in Soils</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Zhou, Dan; Liu, Dan; Gao, Fengxiang; Li, Mengke; Luo, Xianping</p> <p>2017-01-01</p> <p>The object of this study was to evaluate the effect of sewage sludge biochar on adsorption and mobility of Cr, Mn, Cu, and Zn. Biochar (BC400) was produced via pyrolysis of municipal sewage sludge at 400 °C. Maximum adsorption capacities (qm) for Zn, Cr, Mn, and Cu were 5.905, 5.724, 5.681, and 5.342 mg·g−1, respectively, in the mono-metal solution and 2.475, 8.204, 1.01, and 5.415 mg·g−1, respectively, in the multi-metal solution. The adsorption capacities for Mn, Cu, and Zn decreased in the multi-metal solution due to competitive adsorption, whereas the capacity for Cr increased. Surface precipitation is an important mechanism in the sorption of these metals on BC400. The 360-day incubation experiment showed that BC400 application reduced metal mobility in contaminated soils, which was attributed to the substantial decreases in the acid-soluble fractions of Cr, Mn, Cu, and Zn (72.20%, 70.38%, 50.43%, and 29.78%, respectively). Furthermore, the leaching experiment using simulated acid rain indicated that the addition of BC400 enhanced the acid buffer capacity of contaminated soil, and the concentration of Cr, Mn, Cu, and Zn in the leachate was lower than in untreated soil. Overall, this study indicates that sewage sludge biochar application reduces the mobility of heavy metal in co-contaminated soil, and this adsorption experiment is suitable for the evaluation of biochar properties for remediation. PMID:28644399</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21929467','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21929467"><span>Acute and chronic toxicity of four frequently used UV filter substances for Desmodesmus subspicatus and Daphnia magna.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sieratowicz, Agnes; Kaiser, Dominic; Behr, Maximilian; Oetken, Matthias; Oehlmann, Jörg</p> <p>2011-01-01</p> <p>As a consequence of growing public concern about UV radiation effects on human health chemical and physical UV filters are increasingly used in personal care and other products. The release of these lipophilic and often persistent compounds into surface waters may pose a risk for aquatic organisms. The aim of the study was to determine effects of four frequently used UV filters on primary aquatic producers and consumers, the green alga Desmodesmus subspicatus and the crustacean Daphnia magna. Exposure to benzophenone 3 (BP3), ethylhexyl methoxycinnamate (EHMC), 3-benzylidene camphor (3-BC) and 3-(4'-methylbenzylidene)-camphor (4-MBC) resulted in growth inhibition of D. subspicatus with 72 h IC(10) values of 0.56 mg/L (BP 3), 0.24 mg/L (EHMC), 0.27 mg/L (3-BC) and 0.21 mg/L (4-MBC). EC(50) concentrations in the acute test with D. magna were 1.67, 0.57, 3.61 and 0.80 mg/L for BP3, EHMC, 3-BC and 4-MBC, respectively. Chronic exposure of D. magna resulted in NOECs of 0.04 mg/L (EHMC) and 0.1 mg/L (3-BC and 4-MBC). BP 3 showed no effects on neonate production or the length of adults. Rapid dissipation of these substances from the water phase was observed indicating the need for more frequent test medium renewal in chronic tests or the use of flow-through test systems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28644399','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28644399"><span>Effects of Biochar-Derived Sewage Sludge on Heavy Metal Adsorption and Immobilization in Soils.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zhou, Dan; Liu, Dan; Gao, Fengxiang; Li, Mengke; Luo, Xianping</p> <p>2017-06-23</p> <p>The object of this study was to evaluate the effect of sewage sludge biochar on adsorption and mobility of Cr, Mn, Cu, and Zn. Biochar (BC400) was produced via pyrolysis of municipal sewage sludge at 400 °C. Maximum adsorption capacities ( q m ) for Zn, Cr, Mn, and Cu were 5.905, 5.724, 5.681, and 5.342 mg·g -1 , respectively, in the mono-metal solution and 2.475, 8.204, 1.01, and 5.415 mg·g -1 , respectively, in the multi-metal solution. The adsorption capacities for Mn, Cu, and Zn decreased in the multi-metal solution due to competitive adsorption, whereas the capacity for Cr increased. Surface precipitation is an important mechanism in the sorption of these metals on BC400. The 360-day incubation experiment showed that BC400 application reduced metal mobility in contaminated soils, which was attributed to the substantial decreases in the acid-soluble fractions of Cr, Mn, Cu, and Zn (72.20%, 70.38%, 50.43%, and 29.78%, respectively). Furthermore, the leaching experiment using simulated acid rain indicated that the addition of BC400 enhanced the acid buffer capacity of contaminated soil, and the concentration of Cr, Mn, Cu, and Zn in the leachate was lower than in untreated soil. Overall, this study indicates that sewage sludge biochar application reduces the mobility of heavy metal in co-contaminated soil, and this adsorption experiment is suitable for the evaluation of biochar properties for remediation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19745580','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19745580"><span>Removal of fluoride ion by bone char produced from animal biomass.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kawasaki, Naohito; Ogata, Fumihiko; Tominaga, Hisato; Yamaguchi, Isao</p> <p>2009-01-01</p> <p>Bone char (BC) was prepared by carbonizing four types of animal biomass, and the adsorption of fluoride ions and elution of phosphate ions were investigated. It was found that the BC yield decreased as carbonization temperature increased, and that carbonization temperature had no significant effect on surface pH, base or acid consumptions. Fluoride ion adsorption was increased in BC produced at a low carbonization temperature. The adsorption mechanism of fluoride ion on BCs might be monolayer adsorption. BC can potentially be used to remove fluoride ions in drinking water. However, it was found that phosphate ions from BC are eluted due to adsorption of fluoride ions, and that ingestion of large amounts of phosphate ions inhibits reabsorption of calcium in the human body. Thus there is a need to study the elution behavior of phosphate ions. The adsorption mechanisms of fluoride ions onto BC would be a physical adsorption onto BC and phosphate ion in BC is exchanged to fluoride ion.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24004575','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24004575"><span>Adsorption-photodegradation of humic acid in water by using ZnO coupled TiO2/bamboo charcoal under visible light irradiation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wang, Xuejiang; Wu, Zhen; Wang, Yin; Wang, Wei; Wang, Xin; Bu, Yunjie; Zhao, Jianfu</p> <p>2013-11-15</p> <p>ZnO coupled TiO2/bamboo charcoal (ZnO-TiO2/BC) was prepared using the sol-gel method combined with microwave irradiation. The ZnO-TiO2/BC and TiO2/BC were characterized by means of X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), N2 adsorption (BET), and UV-vis diffuse reflectance spectroscopy (UV-vis-DRS). The ZnO dopant promoted the transformation of anatase TiO2 to rutile phase, and a significant red shift of absorption edge was brought out due to the interfacial coupling effect between ZnO and TiO2 particles. The BET specific surface area and total pore volume decreased with ZnO doping, indicating that some micropores were blocked. SEM studies indicated that ZnO was almost uniformly deposited on the surface of the ZnO-TiO2/BC. The adsorption and photocatalytic degradation experiments showed that the photo-degrade efficiency for Zno-TiO2/BC was higher than that of TiO2/BC, and for both composites, the removal efficiency of HA increased as pH decreased from 10.0 to 2.0. The degradation of HA by ZnO-TiO2/BC and TiO2/BC fitted well with the Langmuir-Hinshelwood kinetics model, and HA degradation was achieved through a synergistic mechanism of adsorption and photocatalysis. ZnO-TiO2/BC could be used as an effective and alternative photocatalyst for the treatment of water contaminated by organic pollutants. Copyright © 2013 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.6143K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.6143K"><span>A contribution of black and brown carbon to the aerosol light absorption</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kim, Sang-Woo; Cho, Chaeyoon; Jo, Duseong; Park, Rokjin</p> <p>2017-04-01</p> <p>Black carbon (BC) is functionally defined as the absorbing component of atmospheric total carbonaceous aerosols and is typically dominated by soot-like elemental carbon (EC). Organic carbon (OC) has also been shown to absorb strongly at visible to UV wavelengths and the absorbing organics are referred to as brown carbon (BrC; Alexander et al., 2008). These two aerosols contribute to solar radiative forcing through absorption of solar radiation and heating of the absorbing aerosol layer, but most optical instruments that quantify light absorption are unable to distinguish one type of absorbing aerosol from another (Moosmüller et al. 2009). In this study, we separate total aerosol absorption from these two different light absorbers from co-located simultaneous in-situ measurements, such as Continuous Soot Monitoring System (COSMOS), Continuous Light Absorption Photometer (CLAP) and Sunset EC/OC analyzer, at Gosan climate observatory, Korea. We determine the mass absorption cross-section (MAC) of BC, and then estimate the contribution of BC and BrC on aerosol light absorption, together with a global 3-D chemical transport model (GEOS-Chem) simulation. At 565 nm wavelength, BC MAC is found to be about 5.4±2.8 m2 g-1 from COSMOS and Sunset EC/OC analyzer measurements during January-May 2012. This value is similar to those from Alexander et al. (2008; 4.3 ˜ 4.8 m2 g-1 at 550 nm) and Chung et al. (2012; 5.1 m2 g-1 at 520 nm), but slightly lower than Bond and Bergstrom (2006; 7.5±1.2 m2 g-1 at 550 nm). The COMOS BC mass concentration calculated with 5.4 m2 g-1 of BC MAC shows a good agreement with thermal EC concentration, with a good slope (1.1). Aerosol absorption coefficient and BC mass concentration from COSMOS, meanwhile, are approximately 25 ˜ 30 % lower than those of CLAP. This difference can be attributable to the contribution of volatile light-absorbing aerosols (i.e., BrC). The absorption coefficient of BrC, which is determined by the difference of absorption coefficients from CLAP and COSMOS measurements, increases with increasing thermal OC mass concentration. Monthly variation of BC and BrC absorption coefficients estimated from in-situ measurements and GEOS-Chem model simulation are generally well agreed, even though GEOS-Chem simulation overestimates BC absorption coefficient while underestimates BrC absorption coefficient. Here, we note that MAC of 5.4 m2 g-1 and3.8 m2 g-1 (taken from Alexander et al., 2008) are used to calculate aerosol absorption coefficient of BC and BrC, respectively. The contribution of BC to aerosol light absorption is estimated to be about 70˜75%, while BrC accounts for about 25˜30% of total aerosol light absorption, having a significant climatic implication in East Asia.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4421048','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4421048"><span>Electrical Stimulation Improves Microbial Salinity Resistance and Organofluorine Removal in Bioelectrochemical Systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Feng, Huajun; Zhang, Xueqin; Guo, Kun; Vaiopoulou, Eleni; Shen, Dongsheng; Long, Yuyang; Yin, Jun</p> <p>2015-01-01</p> <p>Fed batch bioelectrochemical systems (BESs) based on electrical stimulation were used to treat p-fluoronitrobenzene (p-FNB) wastewater at high salinities. At a NaCl concentration of 40 g/liter, p-FNB was removed 100% in 96 h in the BES, whereas in the biotic control (BC) (absence of current), p-FNB removal was only 10%. By increasing NaCl concentrations from 0 g/liter to 40 g/liter, defluorination efficiency decreased around 40% in the BES, and in the BC it was completely ceased. p-FNB was mineralized by 30% in the BES and hardly in the BC. Microorganisms were able to store 3.8 and 0.7 times more K+ and Na+ intracellularly in the BES than in the BC. Following the same trend, the ratio of protein to soluble polysaccharide increased from 3.1 to 7.8 as the NaCl increased from 0 to 40 g/liter. Both trends raise speculation that an electrical stimulation drives microbial preference toward K+ and protein accumulation to tolerate salinity. These findings are in accordance with an enrichment of halophilic organisms in the BES. Halobacterium dominated in the BES by 56.8% at a NaCl concentration of 40 g/liter, while its abundance was found as low as 17.5% in the BC. These findings propose a new method of electrical stimulation to improve microbial salinity resistance. PMID:25819966</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_21 --> <div id="page_22" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="421"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A13A2052R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A13A2052R"><span>Ice Nucleation Activity of Black Carbon and Organic Aerosol Emitted from Biomass Burning</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rauker, A. M.; Schill, G. P.; Hill, T. C. J.; Levin, E. J.; DeMott, P. J.; Kreidenweis, S. M.</p> <p>2017-12-01</p> <p>Ice-nucleating particles (INPs) must be present in clouds warmer than approximately -36 °C for initial ice crystal formation to occur. Although rare, they modify the lifetime, albedo and precipitation rates of clouds. Black carbon (BC) particles are present in the upper troposphere, and have been implicated as possible INPs, but recent research has not led to a consensus on their importance as INPs. Biomass burning is known to be a source of INPs as well as a major contributor to BC concentrations. Preliminary research from both prescribed burns (Manhattan, Kanas) and wildfires (Boise, Idaho and Weldon, Colorado), using the Colorado State University Continuous Flow Diffusion Chamber (CSU-CFDC) coupled to a Single Particle Soot Photometer (SP2), suggest that BC contributed ≤ 10% to INP concentrations in biomass burning conditions. To evaluate the identity of non-BC as an INP, filters were collected downwind from the same prescribed burns and wildfires, and particles re-suspended in water were subjected to the immersion freezing method to quantify INP concentrations. The contributions of biological and total organic species to INP concentrations were determined through heat and hydrogen peroxide pre-treatments. Total INPs ranged from 0.88 - 31 L-1 air at -20 °C with 82 - 99 % of the INPs at that temperature being organic (i.e., deactivated by H2O2 digestion). Results are consistent with CSU-CFDC-SP2 derived rBC INP contributions from the same fires. The results from the study also support previous findings that prescribed burns and wildfires produce plumes enriched in INPs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20120011155&hterms=climate+change+ocean&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dclimate%2Bchange%2Bocean','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20120011155&hterms=climate+change+ocean&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dclimate%2Bchange%2Bocean"><span>Coupled Aerosol-Chemistry-Climate Twentieth-Century Transient Model Investigation: Trends in Short-Lived Species and Climate Responses</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Koch, Dorothy; Bauer, Susanne E.; Del Genio, Anthony; Faluvegi, Greg; McConnell, Joseph R.; Menon, Surabi; Miller, Ronald L.; Rind, David; Ruedy, Reto; Schmidt, Gavin A.; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_20120011155'); toggleEditAbsImage('author_20120011155_show'); toggleEditAbsImage('author_20120011155_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_20120011155_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_20120011155_hide"></p> <p>2011-01-01</p> <p>The authors simulate transient twentieth-century climate in the Goddard Institute for Space Studies (GISS) GCM, with aerosol and ozone chemistry fully coupled to one another and to climate including a full dynamic ocean. Aerosols include sulfate, black carbon (BC), organic carbon, nitrate, sea salt, and dust. Direct and BC snow-albedo radiative effects are included. Model BC and sulfur trends agree fairly well with records from Greenland and European ice cores and with sulfur deposition in North America; however, the model underestimates the sulfur decline at the end of the century in Greenland. Global BC effects peak early in the century (1940s); afterward the BC effects decrease at high latitudes of the Northern Hemisphere but continue to increase at lower latitudes. The largest increase in aerosol optical depth occurs in the middle of the century (1940s-80s) when sulfate forcing peaks and causes global dimming. After this, aerosols decrease in eastern North America and northern Eurasia leading to regional positive forcing changes and brightening. These surface forcing changes have the correct trend but are too weak. Over the century, the net aerosol direct effect is -0.41 Watts per square meter, the BC-albedo effect is -0.02 Watts per square meter, and the net ozone forcing is +0.24 Watts per square meter. The model polar stratospheric ozone depletion develops, beginning in the 1970s. Concurrently, the sea salt load and negative radiative flux increase over the oceans around Antarctica. Net warming over the century is modeled fairly well; however, the model fails to capture the dynamics of the observedmidcentury cooling followed by the late century warming.Over the century, 20% of Arctic warming and snow ice cover loss is attributed to the BC albedo effect. However, the decrease in this effect at the end of the century contributes to Arctic cooling. To test the climate responses to sulfate and BC pollution, two experiments were branched from 1970 that removed all pollution sulfate or BC. Averaged over 1970-2000, the respective radiative forcings relative to the full experiment were +0.3 and -0.3 Watts per square meter; the average surface air temperature changes were +0.2 degrees and -0.03 C. The small impact of BC reduction on surface temperature resulted from reduced stability and loss of low-level clouds.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18025093','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18025093"><span>yadBC of Yersinia pestis, a new virulence determinant for bubonic plague.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Forman, Stanislav; Wulff, Christine R; Myers-Morales, Tanya; Cowan, Clarissa; Perry, Robert D; Straley, Susan C</p> <p>2008-02-01</p> <p>In all Yersinia pestis strains examined, the adhesin/invasin yadA gene is a pseudogene, yet Y. pestis is invasive for epithelial cells. To identify potential surface proteins that are structurally and functionally similar to YadA, we searched the Y. pestis genome for open reading frames with homology to yadA and found three: the bicistronic operon yadBC (YPO1387 and YPO1388 of Y. pestis CO92; y2786 and y2785 of Y. pestis KIM5), which encodes two putative surface proteins, and YPO0902, which lacks a signal sequence and likely is nonfunctional. In this study we characterized yadBC regulation and tested the importance of this operon for Y. pestis adherence, invasion, and virulence. We found that loss of yadBC caused a modest loss of invasiveness for epithelioid cells and a large decrease in virulence for bubonic plague but not for pneumonic plague in mice.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JPS...325..322M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JPS...325..322M"><span>Bacterial cellulose-polyaniline nano-biocomposite: A porous media hydrogel bioanode enhancing the performance of microbial fuel cell</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mashkour, Mehrdad; Rahimnejad, Mostafa; Mashkour, Mahdi</p> <p>2016-09-01</p> <p>Microbial fuel cells (MFCs) are one of the possible renewable energy supplies which microorganisms play an active role in bio-oxidize reactions of a substrate such as glucose. Electrode materials and surface modifications are highly effective tools in enhancing MFCs' Performance. In this study, new composite anodes are fabricated. Bacterial cellulose (BC) is used as continuous phase and polyaniline (PANI) as dispersed one which is synthesized by in situ chemical oxidative polymerization on BC's fibers. With hydrogel nature of BC as a novel feature and polyaniline conductivity there meet the favorable conditions to obtain an active microbial biofilm on anode surface. Maximum power density of 117.76 mW/m2 in current density of 617 mA/m2 is achieved for BC/PANI anode. The amounts demonstrate a considerable enhancement compared with graphite plate (1 mW/m2 and 10 mA/m2).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19731681','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19731681"><span>Asian aerosols: current and year 2030 distributions and implications to human health and regional climate change.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Carmichael, Gregory R; Adhikary, Bhupesh; Kulkarni, Sarika; D'Allura, Alessio; Tang, Youhua; Streets, David; Zhang, Qiang; Bond, Tami C; Ramanathan, Veerabhadran; Jamroensan, Aditsuda; Marrapu, Pallavi</p> <p>2009-08-01</p> <p>Aerosol distributions in Asia calculated over a 4-year period and constrained by satellite observations of aerosol optical depth (AOD) are presented. Vast regions in Asia that include > 80% of the population have PM2.5 concentrations that exceed on an annual basis the WHO guideline of 10 microg/m3, often by factors of 2 to 4. These high aerosol loadings also have important radiative effects, causing a significant dimming at the surface, and mask approximately 45% of the warming by greenhouse gases. Black carbon (BC) concentrations are high throughout Asia, representing 5-10% of the total AOD, and contributing significantly to atmospheric warming (its warming potential is approximately 55% of that due to CO2). PM levels and AODs in year 2030, estimated based on simulations that consider future changes in emissions, are used to explore opportunities for win-win strategies built upon addressing air quality and climate change together. It is found that in 2030 the PM2.5 levels in significant parts of Asia will increase and exacerbate health impacts; but the aerosols will have a larger masking effect on radiative forcing, due to a decrease in BC and an increase in SO2 emissions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011JGRD..11618309P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011JGRD..11618309P"><span>Utilization of satellite observation of ozone and aerosols in providing initial and boundary condition for regional air quality studies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pour-Biazar, Arastoo; Khan, Maudood; Wang, Lihua; Park, Yun-Hee; Newchurch, Mike; McNider, Richard T.; Liu, Xiong; Byun, Daewon W.; Cameron, Robert</p> <p>2011-09-01</p> <p>To demonstrate the efficacy of satellite observations in the realization of the background and transboundary transport of pollution in regional air quality modeling practices, satellite observations of ozone and aerosol optical depth were incorporated in the EPA Models-3 Community Multiscale Air Quality (CMAQ) model (http://www.cmascenter.org). Observations from Ozone Monitoring Instrument (OMI) aboard NASA's Aura satellite and AOD products from the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard Terra (EOS AM) and Aqua (EOS PM) satellites were used to specify initial and lateral boundary conditions (IC/BC) for a simulation that spanned over August 2006. The tools and techniques using the satellite data were tested in the context of current regulatory air quality modeling practices. Daily satellite observations were remapped onto the modeling domain and used as IC/BC for daily segments of a month-long simulation and the results were evaluated against surface and ozonesonde observations. Compared to the standard application of CMAQ, OMI O3 profiles significantly improved model performance in the free troposphere and MODIS aerosol products substantially improved PM2.5 predictions in the boundary layer. The utilization of satellite data for BC helped in the realization of transboundary transport of pollution and was able to explain the recirculation of pollution from Northeast Corridor to the southeastern region. Ozone in the mid- to upper-troposphere was largely dominated by transport and thus benefited most from satellite provided BC. The ozone within the boundary layer was mostly affected by fast production/loss mechanisms that are impacted by surface emissions, chemistry and removal processes and was not impacted as much. A case study for August 18-22 demonstrated that model errors in the placement of a stationary front were the main reason for errors in PM2.5 predictions as the front acted as a boundary between high and low PM2.5 concentrations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28629908','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28629908"><span>Use of Underarm Cosmetic Products in Relation to Risk of Breast Cancer: A Case-Control Study.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Linhart, Caroline; Talasz, Heribert; Morandi, Evi M; Exley, Christopher; Lindner, Herbert H; Taucher, Susanne; Egle, Daniel; Hubalek, Michael; Concin, Nicole; Ulmer, Hanno</p> <p>2017-07-01</p> <p>Previous studies on breast cancer (BC), underarm cosmetic products (UCP) and aluminum salts have shown conflicting results. We conducted a 1:1 age-matched case-control study to investigate the risk for BC in relation to self-reported UCP application. Self-reported history of UCP use was compared between 209 female BC patients (cases) and 209 healthy controls. Aluminum concentration in breast tissue was measured in 100 cases and 52 controls. Multivariable conditional logistic regression analysis was performed to estimate odds ratios (ORs) with 95% confidence intervals (CIs), adjusting for established BC risk factors. Use of UCP was significantly associated with risk of BC (p=0.036). The risk for BC increased by an OR of 3.88 (95% CI 1.03-14.66) in women who reported using UCP's several times daily starting at an age earlier than 30years. Aluminum in breast tissue was found in both cases and controls and was significantly associated to self-reported UCP use (p=0.009). Median (interquartile) aluminum concentrations were significantly higher (p=0.001) in cases than in controls (5.8, 2.3-12.9 versus 3.8, 2.5-5.8nmol/g). Frequent use of UCPs may lead to an accumulation of aluminum in breast tissue. More than daily use of UCPs at younger ages may increase the risk of BC. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27399754','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27399754"><span>Characteristics of Ambient Black Carbon Mass and Size-Resolved Particle Number Concentrations during Corn Straw Open-Field Burning Episode Observations at a Rural Site in Southern Taiwan.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Cheng, Yu-Hsiang; Yang, Li-Sing</p> <p>2016-07-08</p> <p>Information on the effect of open-field burning of agricultural residues on ambient black carbon (BC) mass and size-resolved particle number concentrations is scarce. In this study, to understand the effect of such open-field burning on short-term air quality, real-time variations of the BC mass and size-resolved particle number concentrations were monitored before and during a corn straw open-field burning episode at a rural site. Correlations between the BC mass and size-resolved particle number concentrations during the episode were investigated. Moreover, the particle number size distribution and absorption Ångström exponent were determined for obtaining the characteristics of aerosol emissions from the corn straw open-field burning. The results can be used to address public health concerns and as a reference for managing similar episodes of open-field burning of agricultural residues.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5339901','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5339901"><span>A potential large and persistent black carbon forcing over Northern Pacific inferred from satellite observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Li, Zhongshu; Liu, Junfeng; Mauzerall, Denise L.; Li, Xiaoyuan; Fan, Songmiao; Horowitz, Larry W.; He, Cenlin; Yi, Kan; Tao, Shu</p> <p>2017-01-01</p> <p>Black carbon (BC) aerosol strongly absorbs solar radiation, which warms climate. However, accurate estimation of BC’s climate effect is limited by the uncertainties of its spatiotemporal distribution, especially over remote oceanic areas. The HIAPER Pole-to-Pole Observation (HIPPO) program from 2009 to 2011 intercepted multiple snapshots of BC profiles over Pacific in various seasons, and revealed a 2 to 5 times overestimate of BC by current global models. In this study, we compared the measurements from aircraft campaigns and satellites, and found a robust association between BC concentrations and satellite-retrieved CO, tropospheric NO2, and aerosol optical depth (AOD) (R2 > 0.8). This establishes a basis to construct a satellite-based column BC approximation (sBC*) over remote oceans. The inferred sBC* shows that Asian outflows in spring bring much more BC aerosols to the mid-Pacific than those occurring in other seasons. In addition, inter-annual variability of sBC* is seen over the Northern Pacific, with abundances varying consistently with the springtime Pacific/North American (PNA) index. Our sBC* dataset infers a widespread overestimation of BC loadings and BC Direct Radiative Forcing by current models over North Pacific, which further suggests that large uncertainties exist on aerosol-climate interactions over other remote oceanic areas beyond Pacific. PMID:28266532</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/9436291','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/9436291"><span>Evaluation of 99mtechnetium-radiopharmaceutical binding to blood elements using different trichloroacetic acid concentrations.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Freitas, R S; Gutfilen, B; da Fonseca, L M; Bernardo-Filho, M</p> <p>1996-01-01</p> <p>Secure determination of the binding of 99mTc-radiopharmaceuticals to plasma (P) and blood cell (BC) constituents can help to understand the biodistribution of radiophamaceuticals. The reported precipitation studies of blood with radiopharmaceuticals have shown that the results can not be easily compared between studies. We decided to determine the "gold standard" concentration of trichloroacetic acid (TCA) to evaluate the binding to blood elements for several radiopharmaceuticals used in routine nuclear medicine. We have studied phytic (99mTc-PHY), diethylenetriaminepentaacetic (99mTc-DTPA), glucoheptonic (99mTc-GHA) and dimercaptosuccinic (99mTc-DMSA) acids. Blood was incubated with radiopharmaceuticals, centrifuged and P and BC separated. Samples of P and BC were also precipitated with TCA concentrations (20.0, 10.0, 5.0, 1.0, 0.5 and 0.1 percent) and soluble (SF) and insoluble fractions (IF) were isolated. The percent radioactivity (percent rad) in IF-P depends on TCA concentration. It varied from 36.4 to 65.0 (99mTc-PHY), from 17.9 to 32.0 (99mTc-DTPA), from 11.5 to 38.8 (99mTc-GHA) and from 52.8 to 66.2 (99mTc-DMSA). The results for the binding of 99mTc-PHY to IF-P show that there was no differences in the percent rad when TCA concentrations of 0.1 to 1.0 percent were used. For 99mTc-DTPA, 5.0 percent is the best TCA concentration. For 99mTc-GHA, low values of percent rad bound to IF-P is found with TCA concentrations of 0.1, 0.5 and 1.0. Interestingly, with 99mTc-DMSA, high values of bound radioactivity are not dependent on TCA concentrations (0.1 to 10.0). Radioactivity in IF-BC depends on TCA concentration and it varied for 99mTc-PHY (80.1 to 54.1) and for 99mTc-GHA (85.5 to 61.7). With 99mTc-DTPA and with 99mTc-DMSA the percent rad in IF-BC seems independent of TCA concentration. We suggest that the evaluation of the binding of the various 99mTc-radiopharmaceuticals to blood constituents, using only one TCA concentration, should be avoided.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/40066','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/40066"><span>Topographic controls on black carbon accumulation in Alaskan black spruce forest soils: implications for organic matter dynamics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>E.S. Kane; W.C. Hockaday; M.R. Turetsky; C.A. Masiello; D.W. Valentine; B.P. Finney; J.A. Badlock</p> <p>2010-01-01</p> <p>There is still much uncertainty as to how wildfire affects the accumulation of burn residues (such as black carbon [BC]) in the soil, and the corresponding changes in soil organic carbon (SOC) composition in boreal forests. We investigated SOC and BC composition in black spruce forests on different landscape positions in Alaska, USA. Mean BC stocks in surface mineral...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017REDS..172..364A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017REDS..172..364A"><span>Evolution of displacement cascades in Fe-Cr structures with different [001] tilt grain boundaries</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Abu-Shams, M.; Haider, W.; Shabib, I.</p> <p>2017-06-01</p> <p>Reduced-activation ferritic/martensitic steels of Cr concentration between 2.25 and 12 wt% are candidate structural materials for next-generation nuclear reactors. In this study, molecular dynamics (MD) simulation is used to generate the displacement cascades in Fe-Cr structures with different Cr concentrations by using different primary knock-on atom (PKA) energies between 2 and 10 keV. A concentration-dependent model potential has been used to describe the interactions between Fe and Cr. Single crystals (SCs) of three different coordinate bases (e.g. [310], [510], and [530]) and bi-crystal (BC) structures with three different [001] tilt grain boundaries (GBs) (e.g. Σ5, Σ13, and Σ17) have been simulated. The Wigner-Seitz cell criterion has been used to identify the produced Frenkel pairs. The results show a marked difference between collisions observed in SCs and those in BC structures. The numbers of vacancies and interstitials are found to be significantly higher in BC structures than those found in SCs. The number of point defects exhibits a power relationship with the PKA energies; however, the Cr concentration does not seem to have any influence on the number of survived point defects. In BC models, a large fraction of the total survived point defects (between 59% and 93%) tends accumulate at the GBs, which seem to trap the generated point defects. The BC structure with Σ17 GB is found to trap more defects than Σ5 and Σ13 GBs. The defect trapping is found to be dictated by the crystallographic parameters of the GBs. For all studied GBs, self-interstitial atoms (SIAs) are easily trapped within the GB region than vacancies. An analysis of defect composition reveals an enrichment of Cr in SIAs, and in BC cases, more than half of the Cr-SIAs are found to be located within the GB region.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011ACP....1110407C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011ACP....1110407C"><span>Time-resolved measurements of black carbon light absorption enhancement in urban and near-urban locations of southern Ontario, Canada</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chan, T. W.; Brook, J. R.; Smallwood, G. J.; Lu, G.</p> <p>2011-10-01</p> <p>In this study a photoacoustic spectrometer (PA), a laser-induced incandescence instrument system (LII) and an Aerosol Mass Spectrometer were operated in parallel for in-situ measurements of black carbon (BC) light absorption enhancement. Results of a thermodenuder experiment using ambient particles in Toronto are presented first to show that LII measurements of BC are not influenced by the presence of non-refractory material thus providing true atmospheric BC mass concentrations. In contrast, the PA response is enhanced when the non-refractory material is internally mixed with the BC particles. Through concurrent measurements using the LII and PA the specific absorption cross-section (SAC) can be quantified with high time resolution (1 min). Comparisons of ambient PA and LII measurements from four different locations (suburban Toronto; a street canyon with diesel bus traffic in Ottawa; adjacent to a commuter highway in Ottawa and; regional background air in and around Windsor, Ontario), show that different impacts from emission sources and/or atmospheric processes result in different particle light absorption enhancements and hence variations in the SAC. The diversity of measurements obtained, including those with the thermodenuder, demonstrated that it is possible to identify measurements where the presence of externally-mixed non-refractory particles obscures direct observation of the effect of coating material on the SAC, thus allowing this effect to be measured with more confidence. Depending upon the time and location of measurement (urban, rural, close to and within a lake breeze frontal zone), 30 min average SAC varies between 9 ± 2 and 43 ± 4 m2 g-1. Causes of this variation, which were determined through the use of meteorological and gaseous measurements (CO, SO2, O3), include the particle emission source, airmass source region, the degree of atmospheric processing. Observations from this study also show that the active surface area of the BC aggregate, which is measured by the LII as the PPS, is an important parameter for inferring the degree of particle collapse of a BC particle. In addition, PPS could be a useful measurement for indicating the importance of recently emitted BC (e.g. from gasoline or diesel engines) relative to the total measured BC in the atmosphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016ACP....1610441R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016ACP....1610441R"><span>Vertical profiles of black carbon measured by a micro-aethalometer in summer in the North China Plain</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ran, Liang; Deng, Zhaoze; Xu, Xiaobin; Yan, Peng; Lin, Weili; Wang, Ying; Tian, Ping; Wang, Pucai; Pan, Weilin; Lu, Daren</p> <p>2016-08-01</p> <p>Black carbon (BC) is a dominant absorber in the visible spectrum and a potent factor in climatic effects. Vertical profiles of BC were measured using a micro-aethalometer attached to a tethered balloon during the Vertical Observations of trace Gases and Aerosols (VOGA) field campaign, in summer 2014 at a semirural site in the North China Plain (NCP). The diurnal cycle of BC vertical distributions following the evolution of the mixing layer (ML) was investigated for the first time in the NCP region. Statistical parameters including identified mixing height (Hm) and average BC mass concentrations within the ML (Cm) and in the free troposphere (Cf) were obtained for a selected dataset of 67 vertical profiles. Hm was usually lower than 0.2 km in the early morning and rapidly rose thereafter due to strengthened turbulence. The maximum height of the ML was reached in the late afternoon. The top of a full developed ML exceeded 1 km on sunny days in summer, while it stayed much lower on cloudy days. The sunset triggered the collapse of the ML, and a stable nocturnal boundary layer (NBL) gradually formed. Accordingly, the highest level Cm was found in the early morning and the lowest was found in the afternoon. In the daytime, BC was almost uniformly distributed within the ML and significantly decreased above the ML. During the field campaign, Cm averaged about 5.16 ± 2.49 µg m-3, with a range of 1.12 to 14.49 µg m-3, comparable with observational results in many polluted urban areas such as Milan in Italy and Shanghai in China. As evening approached, BC gradually built up near the surface and exponentially declined with height. In contrast to the large variability found both in Hm and Cm, Cf stayed relatively unaffected through the day. Cf was less than 10 % of the ground level under clean conditions, while it amounted to half of the ground level in some polluted cases. In situ measurements of BC vertical profiles would hopefully have an important implication for accurately estimating direct radiative forcing by BC and improving the retrieval of aerosol optical properties by remote sensing in this region.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1225142-direct-radiative-effect-multicomponent-aerosol-over-china','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1225142-direct-radiative-effect-multicomponent-aerosol-over-china"><span>Direct radiative effect by multicomponent aerosol over China</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Huang, Xin; Song, Yu; Zhao, Chun</p> <p></p> <p>The direct radiative effect (DRE) of multiple aerosol species (sulfate, nitrate, ammonium, black carbon (BC), organic carbon (OC), and mineral aerosol) and their spatiotemporal variations over China were investigated using a fully coupled meteorology–chemistry model (WRF-Chem) for the entire year of 2006. We made modifications to improve model performance, including updating land surface parameters, improving the calculation of transition metal-catalyzed oxidation of SO 2, and adding in heterogeneous reactions between mineral aerosol and acid gases. The modified model well reproduced the magnitude, seasonal pattern, and spatial distribution of the measured meteorological conditions, concentrations of PM 10 and its components, andmore » aerosol optical depth (AOD). A diagnostic iteration method was used to estimate the overall DRE of aerosols and contributions from different components. At the land surface, all kinds of aerosol species reduced the incident net radiation flux with a total DRE of 10.2 W m -2 over China. Aerosols significantly warm the atmosphere with the national mean DRE of +10.8 W m -2. BC was the leading radiative-heating component (+8.7 W m -2), followed by mineral aerosol (+1.1 W m -2). At the top of the atmosphere (TOA), BC introduced the largest radiative perturbation (+4.5 W m -2), followed by sulfate (-1.4 W m -2). The overall perturbation of aerosols on radiation transfer is quite small over China, demonstrating the counterbalancing effect between scattering and adsorbing aerosols. Aerosol DRE at the TOA had distinct seasonality, generally with a summer maximum and winter minimum, mainly determined by mass loadings, hygroscopic growth, and incident radiation flux.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016ACP....16..873B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016ACP....16..873B"><span>The impact of residential combustion emissions on atmospheric aerosol, human health, and climate</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Butt, E. W.; Rap, A.; Schmidt, A.; Scott, C. E.; Pringle, K. J.; Reddington, C. L.; Richards, N. A. D.; Woodhouse, M. T.; Ramirez-Villegas, J.; Yang, H.; Vakkari, V.; Stone, E. A.; Rupakheti, M.; Praveen, P. S.; van Zyl, P. G.; Beukes, J. P.; Josipovic, M.; Mitchell, E. J. S.; Sallu, S. M.; Forster, P. M.; Spracklen, D. V.</p> <p>2016-01-01</p> <p>Combustion of fuels in the residential sector for cooking and heating results in the emission of aerosol and aerosol precursors impacting air quality, human health, and climate. Residential emissions are dominated by the combustion of solid fuels. We use a global aerosol microphysics model to simulate the impact of residential fuel combustion on atmospheric aerosol for the year 2000. The model underestimates black carbon (BC) and organic carbon (OC) mass concentrations observed over Asia, Eastern Europe, and Africa, with better prediction when carbonaceous emissions from the residential sector are doubled. Observed seasonal variability of BC and OC concentrations are better simulated when residential emissions include a seasonal cycle. The largest contributions of residential emissions to annual surface mean particulate matter (PM2.5) concentrations are simulated for East Asia, South Asia, and Eastern Europe. We use a concentration response function to estimate the human health impact due to long-term exposure to ambient PM2.5 from residential emissions. We estimate global annual excess adult (> 30 years of age) premature mortality (due to both cardiopulmonary disease and lung cancer) to be 308 000 (113 300-497 000, 5th to 95th percentile uncertainty range) for monthly varying residential emissions and 517 000 (192 000-827 000) when residential carbonaceous emissions are doubled. Mortality due to residential emissions is greatest in Asia, with China and India accounting for 50 % of simulated global excess mortality. Using an offline radiative transfer model we estimate that residential emissions exert a global annual mean direct radiative effect between -66 and +21 mW m-2, with sensitivity to the residential emission flux and the assumed ratio of BC, OC, and SO2 emissions. Residential emissions exert a global annual mean first aerosol indirect effect of between -52 and -16 mW m-2, which is sensitive to the assumed size distribution of carbonaceous emissions. Overall, our results demonstrate that reducing residential combustion emissions would have substantial benefits for human health through reductions in ambient PM2.5 concentrations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29456844','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29456844"><span>An efficient biomarker panel for diagnosis of breast cancer using surface-enhanced laser desorption ionization time-of-flight mass spectrometry.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Yigitbasi, Turkan; Calibasi-Kocal, Gizem; Buyukuslu, Nihal; Atahan, Murat Kemal; Kupeli, Hakan; Yigit, Seyran; Tarcan, Ercument; Baskin, Yasemin</p> <p>2018-03-01</p> <p>Breast cancer (BC) is the most frequently diagnosed cancer that affects women worldwide. Early detection of BC is important to improve survival rates and decrease mortality. The aim of the present study was to investigate serum biomarkers using surface-enhanced laser desorption ionization time-of-flight mass spectrometry (SELDI-TOF-MS) to distinguish patients with BC from the healthy population and patients with benign breast diseases (BBDs). A total of 62 patients with invasive ductal carcinoma, as confirmed by histopathology, and 47 non-cancerous individuals (NCIs) [16 healthy controls (HCs) and 31 patients with BBD] were enrolled in the present study. Serum protein profiles were determined by SELDI-TOF-MS using an immobilized metal affinity capture array. Serum from patients with BC were compared with that from the HC group using univariate and multivariate statistical analyses. A total of 118 clusters were generated from the individual serum. Univariate analysis revealed that 5 peaks were significantly downregulated (m/z 1,452, 2,670, 3,972, 5,354 and 5,523; P<0.001) and 4 were upregulated (m/z 6,850, 7,926, 8,115 and 8,143; P<0.001) in patients with BC compared with the HC group. A comparison of patients with BC and patients with BBD revealed an additional 9 protein peaks. Among these, 3 peaks (m/z 3,972, 5,336 and 11,185) were significantly downregulated and 6 peaks (m/z 4,062, 4,071, 4,609, 6,850, 8,115 and 8,133) were significantly upregulated. A total of 3 peaks [mass-to-change ratio (m/z) 3,972, 6,850 and 8,115 (BC2)] were common in both sets. The results of the present study suggest that a 4 protein peak set [m/z 3,972, 6,850 and 8,115 (BC2) and 8,949 (BC3)] could be used to distinguish patients with BC from NCI.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1324138-black-carbon-aerosol-induced-northern-hemisphere-tropical-expansion','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1324138-black-carbon-aerosol-induced-northern-hemisphere-tropical-expansion"><span>Black carbon aerosol-induced Northern Hemisphere tropical expansion</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Kovilakam, Mahesh; Mahajan, Salil</p> <p>2015-06-23</p> <p>Global climate models (GCMs) underestimate the observed trend in tropical expansion. Recent studies partly attribute it to black carbon (BC) aerosols, which are poorly represented in GCMs. In this paper, we conduct a suite of idealized experiments with the Community Atmosphere Model version 4 coupled to a slab ocean model forced with increasing BC concentrations covering a large swath of the estimated range of current BC radiative forcing while maintaining their spatial distribution. The Northern Hemisphere (NH) tropics expand poleward nearly linearly as BC radiative forcing increases (0.7° W -1 m 2), indicating that a realistic representation of BC couldmore » reduce GCM biases. We find support for the mechanism where BC-induced midlatitude tropospheric heating shifts the maximum meridional tropospheric temperature gradient poleward resulting in tropical expansion. Finally, we also find that the NH poleward tropical edge is nearly linearly correlated with the location of the Intertropical Convergence Zone, which shifts northward in response to increasing BC.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28698527','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28698527"><span>Engineering of a Potent Recombinant Lectin-Toxin Fusion Protein to Eliminate Human Pluripotent Stem Cells.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Tateno, Hiroaki; Saito, Sayoko</p> <p>2017-07-10</p> <p>The use of human pluripotent stem cells (hPSCs) such as human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs) in regenerative medicine is hindered by their tumorigenic potential. Previously, we developed a recombinant lectin-toxin fusion protein of the hPSC-specific lectin rBC2LCN, which has a 23 kDa catalytic domain (domain III) of Pseudomonas aeruginosa exotoxin A (rBC2LCN-PE23). This fusion protein could selectively eliminate hPSCs following its addition to the cell culture medium. Here we conjugated rBC2LCN lectin with a 38 kDa domain of exotoxin A containing domains Ib and II in addition to domain III (PE38). The developed rBC2LCN-PE38 fusion protein could eliminate 50% of 201B7 hPSCs at a concentration of 0.003 μg/mL (24 h incubation), representing an approximately 556-fold higher activity than rBC2LCN-PE23. Little or no effect on human fibroblasts, human mesenchymal stem cells, and hiPSC-derived hepatocytes was observed at concentrations lower than 1 μg/mL. Finally, we demonstrate that rBC2LCN-PE38 selectively eliminates hiPSCs from a mixed culture of hiPSCs and hiPSC-derived hepatocytes. Since rBC2LCN-PE38 can be prepared from soluble fractions of E. coli culture at a yield of 9 mg/L, rBC2LCN-PE38 represents a practical reagent to remove human pluripotent stem cells residing in cultured cells destined for transplantation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRD..122.9843M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRD..122.9843M"><span>Using radiocarbon to constrain black and organic carbon aerosol sources in Salt Lake City</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mouteva, Gergana O.; Randerson, James T.; Fahrni, Simon M.; Bush, Susan E.; Ehleringer, James R.; Xu, Xiaomei; Santos, Guaciara M.; Kuprov, Roman; Schichtel, Bret A.; Czimczik, Claudia I.</p> <p>2017-09-01</p> <p>Black carbon (BC) and organic carbon (OC) aerosols are important components of fine particulate matter (PM2.5) in polluted urban environments. Quantifying the contribution of fossil fuel and biomass combustion to BC and OC concentrations is critical for developing and validating effective air quality control measures and climate change mitigation policy. We used radiocarbon (14C) to measure fossil and contemporary biomass contributions to BC and OC at three locations in Salt Lake City, Utah, USA, during 2012-2014, including during winter inversion events. Aerosol filters were analyzed with the Swiss_4S thermal-optical protocol to isolate BC. We measured fraction modern (fM) of BC and total carbon in PM2.5 with accelerator mass spectrometry and derived the fM of OC using isotope mass balance. Combined with 14C information of end-member composition, our data set of 31 14C aerosol measurements provided a baseline of the fossil and contemporary biomass components of carbonaceous aerosol. We show that fossil fuels were the dominant source of carbonaceous aerosol during winter, contributing 88% (80-98%) of BC and 58% (48-69%) of OC. While the concentration of both BC and OC increased during inversion events, the relative source contributions did not change. The sources of BC also did not vary throughout the year, while OC had a considerably higher contemporary biomass component in summer at 62% (49-76%) and was more variable. Our results suggest that in order to reduce PM2.5 levels in Salt Lake City to meet national standards, a more stringent policy targeting mobile fossil fuel sources may be necessary.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_22 --> <div id="page_23" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="441"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28985534','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28985534"><span>Organophosphate ester flame retardants in Nepalese soil: Spatial distribution, source apportionment and air-soil exchange assessment.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Yadav, Ishwar Chandra; Devi, Ningombam Linthoingambi; Li, Jun; Zhang, Gan</p> <p>2018-01-01</p> <p>Despite soil being the major terrestrial environmental reservoir and one of the significant sinks for many hydrophobic organic compounds including organophosphate ester flame retardants (OPFRs), limited information is available about concentration and fate of OPFRs contamination in urban soil in general and especially in case of Nepal. This study investigates the environmental concentration, spatial distribution and source apportionment of eight OPFRs in surface soil (n = 28) from four major cities of Nepal with special interest on air-soil exchange. Overall, significantly high concentrations of ∑ 8 OPFR were measured in soil ranging from 25-27,900 ng/g dw (median 248 ng/g dw). In terms of compositional pattern, tris(methyl phenyl) phosphate (TMPP) was the most abundant phosphorus chemical in soil, followed by tris(2-chloroisopropyl) phosphate (TCIPP), and accounted for 35-49% and 8-25% of ∑ 8 OPFRs, respectively. The high level of these OPFRs was attributed to local sources as opposed to transboundary influence from remote areas. A Spearman's rank correlation analysis exhibited weak correlation of ∑ 8 OPFRs with TOC (Rho = 0.117, p < 0.05) and BC (Rho = 0.007, p < 0.05), suggesting little or no influence of TOC and BC on the concentration of ∑ 8 OPFRs. The fugacity fraction (ff) results indicated a strong influence of soil contamination on atmospheric level of OPFRs via volatilization. Copyright © 2017 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27834492','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27834492"><span>Single and Combined Effects of Beetroot Crystals and Sodium Bicarbonate on 4-km Cycling Time Trial Performance.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Callahan, Marcus J; Parr, Evelyn B; Hawley, John A; Burke, Louise M</p> <p>2017-06-01</p> <p>When ingested alone, beetroot juice and sodium bicarbonate are ergogenic for high-intensity exercise performance. This study sought to determine the independent and combined effects of these supplements. Eight endurance trained (VO 2 max 65 mL·kg·min -1 ) male cyclists completed four × 4-km time trials (TT) in a doubleblind Latin square design supplementing with beetroot crystals (BC) for 3 days (15 g·day -1 + 15 g 1 h before TT, containing 300 mg nitrate per 15 g), bicarbonate (Bi 0.3 g·kg -1 body mass [BM] in 5 doses every 15 min from 2.5 h before TT); BC+Bi or placebo (PLA). Subjects completed TTs on a Velotron cycle ergometer under standardized laboratory conditions. Plasma nitrite concentrations were significantly elevated only in the BC+Bi trial before the TT (1520 ± 786 nmol·L -1 ) compared with baseline (665 ± 535 nmol·L -1 , p = .02) and the Bi and PLA conditions (Bi: 593 ± 203 nmol·L -1 , p < .01; PLA: 543 ± 369 nmol·L -1 , p < .01). Plasma nitrite concentrations were not elevated in the BC trial before the TT (1102 ± 218 nmol·L -1 ) compared with baseline (975 ± 607 nmol·L -1 , p > .05). Blood bicarbonate concentrations were increased in the BC+Bi and Bi trials before the TT (BC+Bi: 30.9 ± 2.8 mmol·L -1 ; Bi: 31.7 ± 1.1 mmol·L -1 ). There were no differences in mean power output (386-394 W) or the time taken to complete the TT (335.8-338.1 s) between any conditions. Under the conditions of this study, supplementation was not ergogenic for 4-km TT performance.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16295834','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16295834"><span>Acidification of soil solution in a chestnut forest stand in southern Switzerland: are there signs of recovery?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Pannatier, Elisabeth Graf; Luster, Jörg; Zimmermann, Stephan; Blaser, Peter</p> <p>2005-10-15</p> <p>In a previous study, a rapid acidification of soil solution was observed between 1987 and 1997 in a cryptopodzolic soil in southern Switzerland despite a reduction in acidic deposition. The molar ratio of base nutrient cations to aluminum (BC/Al) in the soil solution was used to assess acidification. The monitoring of the soil solution chemistry was continued at the same site between 1998 and 2003 to find out how long the delay in reaction to reduced deposition would last and whether the BC/Al ratios would recover. The reevaluation of all data collected during the 16-year observation period showed no clear improvement in the BC/Al ratios, except below the litter layer where the ratios greatly increased after 1998. Initial signs of recovery were also detected in the mineral horizons, the ratios stabilizing in the second part of the observation period. Sulfate concentrations decreased significantly below the litter mat in response to decreased S deposition. BC concentrations markedly declined below the litter layer and in the mineral horizons, which was attributed to the depletion of the BC exchangeable pool as a result of continued acidic deposition.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.A23A0215R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.A23A0215R"><span>Vertical profiles of black carbon concentration and particle number size distribution in the North China Plain</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ran, L.; Deng, Z.</p> <p>2013-12-01</p> <p>The vertical distribution of aerosols is of great importance to our understanding in the impacts of aerosols on radiation balance and climate, as well as air quality and public health. To better understand and estimate the effects of atmospheric components including trace gases and aerosols on atmospheric environment and climate, an intensive field campaign, Vertical Observations of trace Gases and Aerosols in the North China Plain (VOGA-NCP), was carried out from late July to early August 2013 over a rural site in the polluted NCP. During the campaign, vertical profiles of black carbon (BC) concentration and particle number size distribution were measured respectively by a micro-Aethalometer and an optical particle counter attached to a tethered balloon within 1000 m height. Meteorological parameters, including temperature, relative humidity, wind speed and wind direction, were measured simultaneously by a radiosonde also attached to the tethered balloon. Preliminary results showed distinct diurnal variations of the vertical distribution of aerosol total number concentration and BC concentration, following the development of the mixing layer. Generally, there was a well mixing of aerosols within the mixing layer and a sharp decrease above the mixing layer. Particularly, a small peak of BC concentrations was observed around 400-500 m height for several profiles. Further analysis would be needed to explain such phenomenon. It was also found that measured vertical profiles of BC using the filter-based method might be affected by the vertical distribution of relative humidity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28321937','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28321937"><span>Ultrafine particles and black carbon personal exposures in asthmatic and non-asthmatic children at school age.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Pañella, P; Casas, M; Donaire-Gonzalez, D; Garcia-Esteban, R; Robinson, O; Valentín, A; Gulliver, J; Momas, I; Nieuwenhuijsen, M; Vrijheid, M; Sunyer, J</p> <p>2017-09-01</p> <p>Traffic-related air pollution (TRAP) exposure during childhood is associated with asthma; however, the contribution of the different TRAP pollutants in each microenvironment (home, school, transportation, others) in asthmatic and non-asthmatic children is unknown. Daily (24-h) personal black carbon (BC), ultrafine particle (UFP), and alveolar lung-deposited surface area (LDSA) individual exposure measurements were obtained from 100 children (29 past and 21 current asthmatics, 50 non-asthmatics) aged 9±0.7 years from the INMA-Sabadell cohort (Catalonia, Spain). Time spent in each microenvironment was derived by the geolocation provided by the smartphone and a new spatiotemporal map-matching algorithm. Asthmatics and non-asthmatics spent the same amount of time at home (60% and 61%, respectively), at school (20% and 23%), on transportation (8% and 7%), and in other microenvironments (7% and 5%). The highest concentrations of all TRAPs were attributed to transportation. No differences in TRAP concentrations were found overall or by type of microenvironment between asthmatics and non-asthmatics, nor when considering past and current asthmatics, separately. In conclusion, asthmatic and non-asthmatic children had a similar time-activity pattern and similar average exposures to BC, UFP, and LDSA concentrations. This suggests that interventions should be tailored to general population, rather than to subgroups defined by disease. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18..757S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18..757S"><span>Modulation of aerosol radiative forcing due to mixing state in clear and cloudy-sky: A case study from Delhi National Capital Region, India</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Srivastava, Parul; Dey, Sagnik; Srivastava, Atul K.; Singh, Sachchidanand; Tiwari, Suresh; Agarwal, Poornima</p> <p>2016-04-01</p> <p>Aerosol properties change with the change in mixing state of aerosols and therefore it is a source of uncertainty in estimated aerosol radiative forcing (ARF) from observations or by models assuming a specific mixing state. The problem is important in the Indo-Gangetic Basin, Northern India, where various aerosol types mix and show strong seasonal variations. Quantifying the modulation of ARF by mixing state is hindered by lack of knowledge about proper aerosol composition. Hence, first a detailed chemical composition analysis of aerosols for Delhi National capital region (NCR) is carried out. Aerosol composition is arranged quantitatively into five major aerosol types - accumulation dust, coarse dust, water soluble (WS), water insoluble (WINS), and black carbon (BC) (directly measured by Athelometer). Eight different mixing cases - external mixing, internal mixing, and six combinations of core- shell mixing (BC over dust, WS over dust, WS over BC, BC over WS, WS over WINS, and BC over WINS; each of the combinations externally mixed with other species) have been considered. The spectral aerosol optical properties - extinction coefficient, single scattering albedo (SSA) and asymmetry parameter (g) for each of the mixing cases are calculated and finally 'clear-sky' and 'cloudy-sky' ARF at the top-of-the-atmosphere (TOA) and surface are estimated using a radiative transfer model. Comparison of surface-reaching flux for each of the cases with MERRA downward shortwave surface flux reveals the most likely mixing state. 'BC-WINS+WS+Dust' show least deviation relative to MERRA during the pre-monsoon (MAMJ) and monsoon (JAS) seasons and hence is the most probable mixing states. During the winter season (DJF), 'BC-Dust+WS+WINS' case shows the closest match with MERRA, while external mixing is the most probable mixing state in the post-monsoon season (ON). Lowest values for both TOA and surface 'clear-sky' ARF is observed for 'BC-WINS+WS+ Dust' mixing case. TOA ARF is 0.28±2.4, 2.2±1.1, -1.4±1.4, -0.15±0.13, while, surface ARF is -16.4±3.1, -7.6±1.7, -31.5±4.7, -17.1±8.4, respectively for the MAMJ, JAS, ON and DJF seasons. Post-monsoon and winter season shows negative values of TOA ARF, hence suggest 'cooling'. The associated heating rate profiles show higher values for 'WS-BC+Dust+WINS' case as compared to other cases, with relatively large values during the winter and post-monsoon seasons, while lower value was observed for 'BC-WINS+WS+Dust'. We examined the modulation of clear sky ARF by 'water-cloud' and 'ice-cloud' separately. The seasonal mean ARF for both water and ice clouds show nearly similar characteristics as observed for clear-sky case, with relatively large ARF at TOA and surface in water cloud case as compared to ice cloud during all the seasons. As a result, the associated heating rate is also relatively higher in water cloud case as compared to ice cloud. Such large modulation of ARF due to mixing state calls for a coordinated effort to create a mixing state database for this region to reduce the uncertainty in climate forcing.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JNR....19..245Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JNR....19..245Y"><span>The key role of biochar in the rapid removal of decabromodiphenyl ether from aqueous solution by biochar-supported Ni/Fe bimetallic nanoparticles</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yi, Yunqiang; Wu, Juan; Wei, Yufen; Fang, Zhanqiang; Tsang, Eric Pokeung</p> <p>2017-07-01</p> <p>Some problems exist in the current remediation of polybrominated diphenyl ethers (PBDEs) from aqueous solution by using iron-based nanoparticles. Our efforts have contributed to the synthesis of biochar-supported Ni/Fe bimetallic nanoparticle composites (BC@Ni/Fe). Under the optimum operating parameters of BC@Ni/Fe, the morphologic analysis revealed that biochar effectively solved the agglomeration of Ni/Fe nanoparticles and the removal efficiency of BDE209 obtained by BC@Ni/Fe (91.29%) was seven times higher than the sum of biochar (2.55%) and Ni/Fe (11.22%) in 10 min. The degradation products of BDE209 in the solution and absorbed on the BC@Ni/Fe were analyzed with gas chromatography-mass spectroscopy, which indicated that the degradation of BDE209 was mainly a process of stepwise debromination. Meanwhile, compared with Ni/Fe nanoparticles, the adsorption ability of the by-products of BDE209 by BC@Ni/Fe was greater, to a certain extent, which reduced the additional environmental burden. In addition, the concentration of nickle ion leaching from the Ni/Fe nanoparticles was 3.09 mg/L; conversely, the concentration of nickle leaching from BC@Ni/Fe was not detected. This excellent performance in our study indicates a possible means to enhance the reactivity and reduce the secondary risks of Ni/Fe nanoparticles.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25470755','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25470755"><span>The discoloration of the Taj Mahal due to particulate carbon and dust deposition.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bergin, M H; Tripathi, S N; Jai Devi, J; Gupta, T; Mckenzie, M; Rana, K S; Shafer, M M; Villalobos, Ana M; Schauer, J J</p> <p>2015-01-20</p> <p>The white marble domes of the Taj Mahal are iconic images of India that attract millions of visitors every year. Over the past several decades the outer marble surfaces of the Taj Mahal have begun to discolor with time and must be painstakingly cleaned every several years. Although it has been generally believed that the discoloration is in some way linked with poor air quality in the Agra region, the specific components of air pollution responsible have yet to be identified. With this in mind, ambient particulate matter (PM) samples were collected over a one-year period and found to contain relatively high concentrations of light absorbing particles that could potentially discolor the Taj Mahal marble surfaces, that include black carbon (BC), light absorbing organic carbon (brown carbon, BrC), and dust. Analyses of particles deposited to marble surrogate surfaces at the Taj Mahal indicate that a large fraction of the outer Taj Mahal surfaces are covered with particles that contain both carbonaceous components and dust. We have developed a novel approach that estimates the impact of these deposited particles on the visible light surface reflectance, which is in turn used to estimate the perceived color by the human eye. Results indicate that deposited light absorbing dust and carbonaceous particles (both BC and BrC from the combustion of fossil fuels and biomass) are responsible for the surface discoloration of the Taj Mahal. Overall, the results suggest that the deposition of light absorbing particulate matter in regions of high aerosol loading are not only influencing cultural heritage but also the aesthetics of both natural and urban surfaces.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28841500','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28841500"><span>Reduced arsenic accumulation in indica rice (Oryza sativa L.) cultivar with ferromanganese oxide impregnated biochar composites amendments.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lin, Lina; Gao, Minling; Qiu, Weiwen; Wang, Di; Huang, Qing; Song, Zhengguo</p> <p>2017-12-01</p> <p>The effects of biochar (BC) and ferromanganese oxide biochar composites (FMBC 1 and FMBC 2 ) on As (Arsenic) accumulation in rice were determined using a pot experiment. Treatments with BC or FMBC improved the dry weights of rice roots, stems, leaves, and grains in soils containing different As contamination levels. Compared to BC treatment, FMBC treatments significantly reduced As accumulation in different parts of the rice plants (P < 0.05), and FMBC 2 performed better than FMBC 1 did. Furthermore, exposure to 2% FMBC 2 decreased the total As concentration in the grain by 68.9-78.3%. The addition of FMBC increased the ratio of essential amino acids in the grain, decreased As availability in the soil, and significantly increased the Fe and Mn plaque contents. The reduced As accumulation in rice can be attributed to As(III) to As(V) oxidation by ferro - manganese binary oxide, which increased the As adsorbed by FMBC. Furthermore, Fe and Mn plaques on the rice root surface decreased the transport of As in rice. Taken together, our results demonstrated the applicability of FMBC as a potential measure for reducing As accumulation in rice, improving the amino acid content of rice grains, and effectively remediating As-polluted soil. Copyright © 2017 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ERL....12d4012W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ERL....12d4012W"><span>Effects of photochemical oxidation on the mixing state and light absorption of black carbon in the urban atmosphere of China</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Qiyuan; Huang, Rujin; Zhao, Zhuzi; Cao, Junji; Ni, Haiyan; Tie, Xuexi; Zhu, Chongshu; Shen, Zhenxing; Wang, Meng; Dai, Wenting; Han, Yongming; Zhang, Ningning; Prévôt, André S. H.</p> <p>2017-04-01</p> <p>The relationship between the refractory black carbon (rBC) aerosol mixing state and the atmospheric oxidation capacity was investigated to assess the possible influence of oxidants on the particles’ light absorption effects at two large cities in China. The number fraction of thickly-coated rBC particles (F rBC) was positively correlated with a measure of the oxidant concentrations (OX = O3 + NO2), indicating an enhancement of coated rBC particles under more oxidizing conditions. The slope of a linear regression of F rBC versus OX was 0.58% ppb-1 for Beijing and 0.84% ppb-1 for Xi’an, and these relationships provide some insights into the evolution of rBC mixing state in relation to atmospheric oxidation processes. The mass absorption cross-section of rBC (MACrBC) increased with OX during the daytime at Xi’an, at a rate of 0.26 m2 g-1 ppb-1, suggesting that more oxidizing conditions lead to internal mixing that enhances the light-absorbing capacity of rBC particles. Understanding the dependence of the increasing rates of F rBC and MACrBC as a function of OX may lead to improvements of climate models that deal with the warming effects, but more studies in different cities and seasons are needed to gauge the broader implications of these findings.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=307498&Lab=NRMRL&keyword=dependency&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=307498&Lab=NRMRL&keyword=dependency&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>On-road black carbon instrument intercomparison and aerosol characteristics by driving environment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>Large spatial variations of black carbon (BC) concentrations in the on-road and near-road environments necessitate measurements with high spatial resolution to assess exposure accurately. A series of measurements was made comparing the performance of several different BC instrume...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016PhDT........53T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016PhDT........53T"><span>An Investigation of the Effects of Black Carbon on Precipitation in the Western United States</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tseng, Hsien-Liang Rose</p> <p></p> <p>Black carbon (BC), the byproduct of incomplete combustion, is considered to be the second most important anthropogenic climate forcing agent after carbon dioxide. BC warms the atmosphere by absorbing solar radiation (direct effect), alters cloud and precipitation formation by acting as cloud condensation nuclei (indirect effect), and modifies cloud distribution via cloud burn-off (semi-direct effect). Currently, there are large discrepancies in general circulation model estimates of the influence of BC on precipitation. Even less known is how BC changes precipitation on regional scales. In the drought-stricken western United States (WUS), where BC emissions are known to affect the hydrological cycle, an investigation on how BC influences precipitation is warranted. In this study, we employ the Weather Research and Forecasting-Chemistry (WRF Chem) model (version 3.6.0) with the newly chemistry- and microphysics-coupled Fu-Liou-Gu radiation scheme to study how black carbon affects precipitation by separating BC-related effects into direct and semi-direct, and indirect effects. In this three-part study, we use a recent wet year (2005) to investigate black carbon effects. We first examine BC effects during a heavy wintertime heavy precipitation event (7-11 January 2005), a heavy summertime precipitation week for comparison to the wintertime event (20-24 July 2005), and finally, examine these same effects for the months of January to June 2005 to investigate month-long trends. We find that BC suppresses precipitation, predominantly through its direct and semi-direct effects. The direct and semi-direct effects warm the air aloft, and cool the lower levels of the atmosphere (surface dimming) through the reduction of downward shortwave radiation flux at the surface. These changes in vertical temperature increase the stability of the atmosphere and reduce convective precipitation. Convective precipitation reduction accounts for approximately 60 75% of the total precipitation reduction. Additionally, cooling in the lower levels reduces evaporation from the surface, which reduces the moisture needed for non-convective precipitation. Subsequently, reduced moisture in the atmosphere suppresses non-convective precipitation by approximately 10-40%. The indirect effects also reduce precipitation, but to a much smaller extent of 5-20%. Although we use an atypical BC emission dataset is used in this study, the resulting reduction of the different types of precipitation sheds light on the physical mechanisms of BC-cloud-radiation interactions by which the reductions follow. In particular, our results highlight the importance of the cumulus and surface layer parameterizations that house the triggering mechanism and surface moisture flux parameterizations in future studies. In this research we find the NEI 2005 emissions did not significantly change precipitation. This is likely due to the aggressive emission regulations that exist for the United States. Emission regulations, however, do not exist or are enforced equally across the globe. In the developing countries that rely on inefficient cook stoves and heating systems, the populations suffer the most due to black carbon emission. Along with respiratory and cardiovascular impacts from black carbon, they may suffer from reduced water resources from suppressed precipitation, as well. In a larger sense, findings from this research serve as a platform for understanding the wider-reaching effects of black carbon on regional precipitation and drought. In particular, in areas where there are no black carbon emission regulations, this would highlight health and potentially significant environmental benefits that could be achieved from a black carbon cap and trade.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29156303','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29156303"><span>Assessment of nickel bioavailability through chemical extractants and red clover (Trifolium pratense L.) in an amended soil: Related changes in various parameters of red clover.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Shahbaz, Ali Khan; Iqbal, Muhammad; Jabbar, Abdul; Hussain, Sabir; Ibrahim, Muhammad</p> <p>2018-03-01</p> <p>Application of immobilizing agents may efficiently reduce the bioavailability of nickel (Ni) in the soil. Here we report the effect of biochar (BC), gravel sludge (GS) and zeolite (ZE) as a sole treatment and their combinations on the bioavailability of Ni after their application into a Ni-polluted soil. The bioavailability of Ni after the application of immobilizing agents was assessed through an indicator plant (red clover) and chemical indicators of bioavailability like soil water extract (SWE), DTPA and Ca(NO 3 ) 2 extracts. Additionally, the effects of Ni bioavailability and immobilizing agents on the growth, physiological and biochemical attributes of red clover were also observed. Application of ZE significantly reduced Ni concentrations in all chemical extracts compared to rest of the treatments. Similarly, the combined application of BC and ZE (BC+ ZE) significantly reduced Ni concentrations, reactive oxygen species (ROS) whereas, significant enhancement in the growth, physiological and biochemical attributes along with an improvement in antioxidant defence machinery of red clover plant, compared to rest of the treatments, were observed. Furthermore, BC+ ZE treatment significantly reduced bioconcentration factor (BCF) and bioaccumulation factor (BAF) of Ni in red clover, compared to rest of the treatments. The Ni concentrations in red clover leaves individually reflected a good correlation with Ni concentrations in the extracts (SWE at R 2 =0.79, DTPA extract at R 2 =0.84 and Ca(NO 3 ) 2 extracts at R 2 =0.86). Our results indicate that combined application of ZE and BC can significantly reduce the Ni bioavailability in the soil while in parallel improve the antioxidant defence mechanism in plants. Copyright © 2017 Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JSSCh.261...53W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JSSCh.261...53W"><span>Competitive adsorption of Pb(II), Cu(II), and Zn(II) ions onto hydroxyapatite-biochar nanocomposite in aqueous solutions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Yu-Ying; Liu, Yu-Xue; Lu, Hao-Hao; Yang, Rui-Qin; Yang, Sheng-Mao</p> <p>2018-05-01</p> <p>A hydroxyapatite-biochar nanocomposite (HAP-BC) was successfully fabricated and its physicochemical properties characterized. The analyses showed that HAP nanoparticles were successfully loaded on the biochar surface. The adsorption of Pb(II), Cu(II), and Zn(II) by HAP-BC was systematically studied in single and ternary metal systems. The results demonstrated that pH affects the adsorption of heavy metals onto HAP-BC. Regarding the adsorption kinetics, the pseudo-second-order model showed the best fit for all three heavy metal ions on HAP-BC. In both single and ternary metal ion systems, the adsorption isotherm of Pb(II) by HAP-BC followed Langmuir model, while those of Cu(II) and Zn(II) fitted well with Freundlich model. The maximum adsorption capacity for each tested metal by HAP-BC was higher than that of pristine rice straw biochar (especially for Pb(II)) or those of other reported adsorbents. Therefore, HAP-BC could explore as a new material for future application in heavy metal removal.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25459832','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25459832"><span>Biochar supported nanoscale zerovalent iron composite used as persulfate activator for removing trichloroethylene.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Yan, Jingchun; Han, Lu; Gao, Weiguo; Xue, Song; Chen, Mengfang</p> <p>2015-01-01</p> <p>Biochar (BC) supported nanoscale zerovalent iron (nZVI) composite was synthesized and used as an activator for persulfate to enhance the trichloroethylene (TCE) removal in aqueous solutions. The degradation efficiency of TCE (0.15mmolL(-1)) was 99.4% in the presence of nZVI/BC (4.5mmolL(-1), nZVI to BC mass ratio was 1:5) and persulfate (4.5mmolL(-1)) within 5min, which was significantly higher than that (56.6%) in nZVI-persulfate system under the same conditions. Owing to large specific surface area and oxygen-containing functional groups of BC, nZVI/BC enhanced the SO4(-) generation and accelerated TCE degradation. On the basis of the characterization and analysis data, possible activation mechanisms of the Fe(2+)/Fe(3+) (Fe(II)/Fe(III)) redox action and the electron-transfer mediator of the BC oxygen functional groups promoting the generation of SO4(-) in nZVI/BC-persulfate system were clarified. Copyright © 2014 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24507345','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24507345"><span>In situ synthesis of silver-nanoparticles/bacterial cellulose composites for slow-released antimicrobial wound dressing.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wu, Jian; Zheng, Yudong; Song, Wenhui; Luan, Jiabin; Wen, Xiaoxiao; Wu, Zhigu; Chen, Xiaohua; Wang, Qi; Guo, Shaolin</p> <p>2014-02-15</p> <p>Bacterial cellulose has attracted increasing attention as a novel wound dressing material, but it has no antimicrobial activity, which is one of critical skin-barrier functions in wound healing. To overcome such deficiency, we developed a novel method to synthesize and impregnate silver nanoparticles on to bacterial cellulose nanofibres (AgNP-BC). Uniform spherical silver nano-particles (10-30 nm) were generated and self-assembled on the surface of BC nano-fibers, forming a stable and evenly distributed Ag nanoparticles coated BC nanofiber. Such hybrid nanostructure prevented Ag nanoparticles from dropping off BC network and thus minimized the toxicity of nanoparticles. Regardless the slow Ag(+) release, AgNP-BC still exhibited significant antibacterial activities with more than 99% reductions in Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa. Moreover, AgNP-BC allowed attachment and growth of epidermal cells with no cytotoxicity emerged. The results demonstrated that AgNP-BC could reduce inflammation and promote wound healing. Copyright © 2013 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AtmEn.154..179J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AtmEn.154..179J"><span>Characteristics of elementary school children's daily exposure to black carbon (BC) in Korea</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jeong, Hyeran; Park, Donguk</p> <p>2017-04-01</p> <p>A daily black carbon (BC) exposure assessment of forty 10-12 years-old children was conducted in the Seoul Metropolitan Area from August 2015 to January 2016. Each participant carried a micro-aethalometer to measure BC concentrations for 24 h while their whereabouts and microenvironments (MEs) were recorded via a time-activity diary (TAD) and follow-up interviews. Analysis of variance (ANOVA) was employed to compare average BC levels by potential risk factors including demographic, temporal, residential, and indoor/outdoor/transportation activity variables. The children's average daily exposure was 1.93 μg/m3, with a range of 0.2-85.43 μg/m3 (mean daily individual exposure ranges from 0.54 to 4.80 μg/m3). Even children attending the same elementary school reported BC exposures which differed by approximately 40%, primarily because of individually distinct time-activity patterns and the MEs with which each child interacted. On weekends (Saturdays and Sundays) (1.86 ± 2.50 μg/m3) and holidays (Saturdays, Sundays, and vacation) (1.71 ± 2.48 μg/m3), children were subject to reduced exposures to BC, likely due to decreased surrounding traffic volumes and different time-activity patterns on weekend days compared to on weekdays (from Mondays to Fridays) (1.95 ± 2.44 μg/m3) or school days (weekdays during the school semesters) (2.05 ± 2.43 μg/m3). Commuting in diesel vehicles (often to private academies) or in the subway, cooking, and environmental tobacco smoke were all found to elevate BC exposure. Likewise, proximity to traffic sources and parental indoor smoking contributed to the enhancement of residential BC concentrations. Our findings suggested a need to emplace proactive measures including diesel fleet regulation and smoking cessation campaigns to protect children from high levels of BC exposure.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20040031783','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20040031783"><span>Black Carbon in Estuarine (Coastal) High-molecular-weight Dissolved Organic Matter</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mannino, Antonio; Harvey, H. Rodger</p> <p>2003-01-01</p> <p>Dissolved organic matter (DOM) in the ocean constitutes one of the largest pools of organic carbon in the biosphere, yet much of its composition is uncharacterized. Observations of black carbon (BC) particles (by-products of fossil fuel combustion and biomass burning) in the atmosphere, ice, rivers, soils and marine sediments suggest that this material is ubiquitous, yet the contribution of BC to the ocean s DOM pool remains unknown. Analysis of high-molecular-weight DOM isolated from surface waters of two estuaries in the northwest Atlantic Ocean finds that BC is a significant component of DOM, suggesting that river-estuary systems are important exporters of BC to the ocean through DOM. We show that BC comprises 4-7% of the dissolved organic carbon (DOC) at coastal ocean sites, which supports the hypothesis that the DOC pool is the intermediate reservoir in which BC ages prior to sedimentary deposition. Flux calculations suggest that BC could be as important as vascular plant-derived lignin in terms of carbon inputs to the ocean. Production of BC sequesters fossil fuel- and biomass-derived carbon into a refractory carbon pool. Hence, BC may represent a significant sink for carbon to the ocean.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1393750','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1393750"><span>Cross-polar transport and scavenging of Siberian aerosols containing black carbon during the 2012 ACCESS summer campaign</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Raut, Jean -Christophe; Marelle, Louis; Fast, Jerome D.</p> <p></p> <p>During the ACCESS airborne campaign in July 2012, extensive boreal forest fires resulted in significant aerosol transport to the Arctic. A 10-day episode combining intense biomass burning over Siberia and low-pressure systems over the Arctic Ocean resulted in efficient transport of plumes containing black carbon (BC) towards the Arctic, mostly in the upper troposphere (6–8 km). Here, a combination of in situ observations (DLR Falcon aircraft), satellite analysis and WRF-Chem simulations is used to understand the vertical and horizontal transport mechanisms of BC with a focus on the role of wet removal. Between the northwestern Norwegian coast and the Svalbardmore » archipelago, the Falcon aircraft sampled plumes with enhanced CO concentrations up to 200 ppbv and BC mixing ratios up to 25 ng kg –1. During transport to the Arctic region, a large fraction of BC particles are scavenged by two wet deposition processes, namely wet removal by large-scale precipitation and removal in wet convective updrafts, with both processes contributing almost equally to the total accumulated deposition of BC. Our results underline that applying a finer horizontal resolution (40 instead of 100 km) improves the model performance, as it significantly reduces the overestimation of BC levels observed at a coarser resolution in the mid-troposphere. According to the simulations at 40 km, the transport efficiency of BC (TE BC) in biomass burning plumes was larger (60 %), because it was impacted by small accumulated precipitation along trajectory (1 mm). In contrast TE BC was small (< 30 %) and accumulated precipitation amounts were larger (5–10 mm) in plumes influenced by urban anthropogenic sources and flaring activities in northern Russia, resulting in transport to lower altitudes. TE BC due to large-scale precipitation is responsible for a sharp meridional gradient in the distribution of BC concentrations. Wet removal in cumulus clouds is the cause of modeled vertical gradient of TE BC, especially in the mid-latitudes, reflecting the distribution of convective precipitation, but is dominated in the Arctic region by the large-scale wet removal associated with the formation of stratocumulus clouds in the planetary boundary layer (PBL) that produce frequent drizzle.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1393750-cross-polar-transport-scavenging-siberian-aerosols-containing-black-carbon-during-access-summer-campaign','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1393750-cross-polar-transport-scavenging-siberian-aerosols-containing-black-carbon-during-access-summer-campaign"><span>Cross-polar transport and scavenging of Siberian aerosols containing black carbon during the 2012 ACCESS summer campaign</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Raut, Jean -Christophe; Marelle, Louis; Fast, Jerome D.; ...</p> <p>2017-09-15</p> <p>During the ACCESS airborne campaign in July 2012, extensive boreal forest fires resulted in significant aerosol transport to the Arctic. A 10-day episode combining intense biomass burning over Siberia and low-pressure systems over the Arctic Ocean resulted in efficient transport of plumes containing black carbon (BC) towards the Arctic, mostly in the upper troposphere (6–8 km). Here, a combination of in situ observations (DLR Falcon aircraft), satellite analysis and WRF-Chem simulations is used to understand the vertical and horizontal transport mechanisms of BC with a focus on the role of wet removal. Between the northwestern Norwegian coast and the Svalbardmore » archipelago, the Falcon aircraft sampled plumes with enhanced CO concentrations up to 200 ppbv and BC mixing ratios up to 25 ng kg –1. During transport to the Arctic region, a large fraction of BC particles are scavenged by two wet deposition processes, namely wet removal by large-scale precipitation and removal in wet convective updrafts, with both processes contributing almost equally to the total accumulated deposition of BC. Our results underline that applying a finer horizontal resolution (40 instead of 100 km) improves the model performance, as it significantly reduces the overestimation of BC levels observed at a coarser resolution in the mid-troposphere. According to the simulations at 40 km, the transport efficiency of BC (TE BC) in biomass burning plumes was larger (60 %), because it was impacted by small accumulated precipitation along trajectory (1 mm). In contrast TE BC was small (< 30 %) and accumulated precipitation amounts were larger (5–10 mm) in plumes influenced by urban anthropogenic sources and flaring activities in northern Russia, resulting in transport to lower altitudes. TE BC due to large-scale precipitation is responsible for a sharp meridional gradient in the distribution of BC concentrations. Wet removal in cumulus clouds is the cause of modeled vertical gradient of TE BC, especially in the mid-latitudes, reflecting the distribution of convective precipitation, but is dominated in the Arctic region by the large-scale wet removal associated with the formation of stratocumulus clouds in the planetary boundary layer (PBL) that produce frequent drizzle.« less</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5105132','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5105132"><span>Impacts of brown carbon from biomass burning on surface UV and ozone photochemistry in the Amazon Basin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Mok, Jungbin; Krotkov, Nickolay A.; Arola, Antti; Torres, Omar; Jethva, Hiren; Andrade, Marcos; Labow, Gordon; Eck, Thomas F.; Li, Zhanqing; Dickerson, Russell R.; Stenchikov, Georgiy L.; Osipov, Sergey; Ren, Xinrong</p> <p>2016-01-01</p> <p>The spectral dependence of light absorption by atmospheric particulate matter has major implications for air quality and climate forcing, but remains uncertain especially in tropical areas with extensive biomass burning. In the September-October 2007 biomass-burning season in Santa Cruz, Bolivia, we studied light absorbing (chromophoric) organic or “brown” carbon (BrC) with surface and space-based remote sensing. We found that BrC has negligible absorption at visible wavelengths, but significant absorption and strong spectral dependence at UV wavelengths. Using the ground-based inversion of column effective imaginary refractive index in the range 305–368 nm, we quantified a strong spectral dependence of absorption by BrC in the UV and diminished ultraviolet B (UV-B) radiation reaching the surface. Reduced UV-B means less erythema, plant damage, and slower photolysis rates. We use a photochemical box model to show that relative to black carbon (BC) alone, the combined optical properties of BrC and BC slow the net rate of production of ozone by up to 18% and lead to reduced concentrations of radicals OH, HO2, and RO2 by up to 17%, 15%, and 14%, respectively. The optical properties of BrC aerosol change in subtle ways the generally adverse effects of smoke from biomass burning. PMID:27833145</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AtmEn.102..406X','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AtmEn.102..406X"><span>Indoor air pollution from burning yak dung as a household fuel in Tibet</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Xiao, Qingyang; Saikawa, Eri; Yokelson, Robert J.; Chen, Pengfei; Li, Chaoliu; Kang, Shichang</p> <p>2015-02-01</p> <p>Yak dung is widely used for cooking and heating in Tibet. We measured real-time concentrations of black carbon (BC) and fine particulate matter with an aerodynamic diameter of 2.5 μm or less (PM2.5) emitted by yak dung burning in six households with different living conditions and stove types in the Nam Co region, Tibet. We observed a much lower average BC/PM2.5 mass ratio (0.013, range 0.006-0.028) from dung combustion in this area than previously reported estimates, ranging between 0.05 and 0.11. Based on our measurements, estimated fuel use, and published emission factors of BC and PM2.5, about 0.4-1.7 Gg/year of BC is emitted by yak dung combustion in Tibet in addition to the previously estimated 0.70 Gg/year of BC for Tibetan residential sources. Our survey shows that most residents were aware of adverse health impacts of indoor yak dung combustion and approximately 2/3 of residents had already installed chimney stoves to mitigate indoor air pollution. However, our measurements reveal that, without adequate ventilation, installing a chimney may not ensure good indoor air quality. For instance, the 6-h average BC and PM2.5 concentrations in a stone house using a chimney stove were 24.5 and 873 μg/m3, respectively. We also observed a change in the BC/PM2.5 ratios before and after a snow event. The impact of dung moisture content on combustion efficiency and pollutant emissions needs further investigation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=209195&keyword=carbon+AND+balance&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=209195&keyword=carbon+AND+balance&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>Fluxes of Soot Carbon to South Atlantic Sediments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>Deep sea sediment samples from the South Atlantic Ocean were analyzed for soot black carbon (BC), total organic carbon (TOC), stable carbon isotope ratios (δ 13C), and polycyclic aromatic hydrocarbons (PAHs). Soot BC was present at low concentrations (0.04–0.17% dry weight), but ...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.A23K..04F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.A23K..04F"><span>Contribution of Black Carbon to PM2.5 Concentration in Six Brazilian Cities</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fornaro, A.; Andrade, M.; Miranda, R. M.</p> <p>2013-12-01</p> <p>The data presented here was part of a comprehensive project coordinated by the University of São Paulo School of Medicine. The objective was to identify the sources to the PM2.5 mass in the following cities: São Paulo (classified as a megacity, with 20 million inhabitants); Rio de Janeiro (the second largest city in Brazil, with ten million inhabitants); Belo Horizonte (2.5 million inhabitants); Curitiba (1.8 million inhabitants); Recife (a coastal city in the northeast of the country, with 1.5 million inhabitants); and Porto Alegre (1.4 million inhabitants). For each city, sampling was performed over a period of approximately 2 years (from winter 2007 to winter 2009). At each location, 24-h samples (8:00 AM to 8:00 AM) were collected on 37-mm polycarbonate filters at 10 Lm -1 using a PM2.5 Harvard Impactor, developed at the Harvard School of Public Health. The sampling stations can all be classified as being urban sites (Chow et al. 2002). They were all near streets with high traffic volumes, where there is significant participation not only by the light-duty fleet (gasohol and ethanol emissions) but also by the heavy-duty fleet (diesel emissions). Two of the cities evaluated, Rio de Janeiro and Recife, are near the Atlantic coast. Before and after sampling, the filters were weighed on a microbalance with 1-μg readability (Mettler-Toledo, Columbus, OH, USA). The BC concentrations were determined by optical reflectance with a smoke stain reflectometer (model 43D; Diffusion Systems Ltd, London, UK). It was shown in Sao Paulo that BC is mainly emitted by heavy-duty fleet. Mean PM2.5 concentrations in the cities of São Paulo, Rio de Janeiro, Belo Horizonte, Curitiba, Porto Alegre, and Recife were 28.0, 17.2, 14.7, 14.4, 13.4, and 7.3 μg/m3, respectively. And mean BC concentrations were 10.2, 3.5, 4.6, 4.1, 3.6 and 1.9 in the cities of São Paulo, Rio de Janeiro, Belo Horizonte, Curitiba, Porto Alegre, and Recife, respectively. The BC concentration was used as a tracer for the diesel emission estimative. According to receptor analysis the participation of diesel to the contribution of BC was more than 70% of the PM2.5 mass concentration. So, the control of BC emission is an important tool in reducing the concentration of fine particles in atmosphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..15.2940I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..15.2940I"><span>Effects of airborne black carbon pollution on maize</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Illes, Bernadett; Anda, Angela; Soos, Gabor</p> <p>2013-04-01</p> <p>The black carbon (BC) changes the radiation balance of the Earth and contributes to global warming. The airborne BC deposited on the surface of plant, changing the radiation balance, water balance and the total dry matter (TDM) content of plant. The objective of our study was to investigate the impact of soot originated from motor vehicle exhaust on maize. The field experiment was carried out in Keszthely Agrometeorological Research Station (Hungary) in three consecutive years (2010, 2011, 2012) of growing season. The test plant was the maize hybrid Sperlona (FAO 340) with short growing season. The BC was chemically "pure", which means that it is free any contaminants (e.g. heavy metals). The BC was coming from the Hankook Tyre Company (Dunaújváros, Hungary), where used that for improve the wear resistance of tires. We used a motorised sprayer of SP 415 type to spray the BC onto the leaf surface. The leaf area index (LAI) was measured each week on the same 12 sample maize in each treatment using an LI 3000A automatic planimeter (LI-COR, Lincoln, NE). Albedo was measured by pyranometers of the CMA-11 type (Kipp & Zonen, Vaisala), what we placed the middle of the plot of 0.3 ha. The effects of BC were studied under two different water supplies: evapotranspirometers of Thornthwaite type were used for "ad libitum" treatment and rainfed treatment in field plots. In 2010 and 2012, a big difference was not observed in the case of LAI in the effects of BC. However, in 2011 there was a significant difference. The LAI of the BC polluted maize was higher (10-15%, P<0.05), than the LAI of the control maize in the rainfed plot and in the ET chambers, respectively. The albedo of the BC contaminated maize decreased (15-30%, P<0.05) in all three years. We also detected that the green plant surface of maize increased on BC contaminated treatment. These results may suggest that the plant is able to absorb the additional carbon source through the leaves. The albedo decreased because of the dark color of soot, so more energy left in the plant stand. Irrigation could be the solution against the harmful effects of soot. This article was made under the projects TÁMOP-4.2.2/B-10/1-2010-0025 and TÁMOP-4.2.4. A/2-11-1-2012-0001. These projects are supported by the European Union and co-financed by the European Social Fund.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.A41B0032T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.A41B0032T"><span>Local and remote impacts of aerosol species on Indian summer monsoon rainfall in a GCM</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Turner, A. G.; Guo, L.; Highwood, E.</p> <p>2016-12-01</p> <p>The HadGEM2 AGCM is used to determine the most important anthropogenic aerosols in the Indian monsoon using experiments in which observed trends in individual aerosol species are imposed. Sulphur dioxide (SD) emissions are shown to impact rainfall more strongly than black carbon (BC) aerosols, causing reduced rainfall especially over northern India. Significant perturbations due to BC are not noted until its emissions are scaled up in a sensitivity test, resulting in rainfall increases over northern India due to the Elevated Heat Pump mechanism, enhancing convection during the premonsoon and bringing forward the monsoon onset. Secondly, the impact of anthropogenic aerosols is compared to that of increasing greenhouse-gas concentrations and observed sea-surface temperature (SST) warming. The tropospheric temperature gradient driving the monsoon shows weakening when forced by either SD or imposed SST trends. However the observed SST trend is dominated by warming in the deep tropics; when the component of SST trend related to aerosol emissions is removed, further warming is found in the extratropical northern hemisphere that tends to offset monsoon weakening. This suggests caution is needed when using SST forcing as a proxy for greenhouse warming. Finally, aerosol emissions are decomposed into those from the Indian region and those elsewhere, in pairs of experiments with SD and BC. Both local and remote aerosol emissions are found to lead to rainfall changes over India; for SD, remote aerosols contribute around 75% of the rainfall decrease over India, while for BC the remote forcing is even more dominant.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1817099G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1817099G"><span>Local and remote impacts of aerosol species on Indian summer monsoon rainfall in a GCM</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Guo, Liang; Turner, Andrew; Highwood, Eleanor</p> <p>2016-04-01</p> <p>The HadGEM2 AGCM is used to determine the most important anthropogenic aerosols in the Indian monsoon using experiments in which observed trends in individual aerosol species are imposed. Sulphur dioxide (SD) emissions are shown to impact rainfall more strongly than black carbon (BC) aerosols, causing reduced rainfall especially over northern India. Significant perturbations due to BC are not noted until its emissions are scaled up in a sensitivity test, in which rainfall increases over northern India as a result of the Elevated Heat Pump mechanism, enhancing convection during the pre-monsoon and bringing forward the monsoon onset. Secondly, the impact of anthropogenic aerosols is compared to that of increasing greenhouse-gas concentrations and observed sea-surface temperature (SST) warming. The tropospheric temperature gradient driving the monsoon shows weakening when forced by either SD or imposed SST trends. However the observed SST trend is dominated by warming in the deep tropics; when the component of SST trend related to aerosol emissions is removed, further warming is found in the extratropical northern hemisphere that tends to offset monsoon weakening. This suggests caution is needed when using SST forcing as a proxy for greenhouse warming. Finally, aerosol emissions are decomposed into those from the Indian region and those elsewhere, in pairs of experiments with SD and BC. Both local and remote aerosol emissions are found to lead to rainfall changes over India; for SD, remote aerosols contribute around 75% of the rainfall decrease over India, while for BC the remote forcing is even more dominant.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28545323','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28545323"><span>An efficient phosphorus scavenging from aqueous solution using magnesiothermally modified bio-calcite.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ahmad, Munir; Ahmad, Mahtab; Usman, Adel R A; Al-Faraj, Abdullah S; Ok, Yong Sik; Hussain, Qaiser; Abduljabbar, Adel S; Al-Wabel, Mohammad I</p> <p>2018-07-01</p> <p>Bio-calcite (BC) derived from waste hen eggshell was subjected to thermal treatments (calcined bio-calcite (CBC)). The BC and CBC were further modified via magnesiothermal treatments to produce modified bio-calcite (MBC) and modified calcined bio-calcite (MCBC), respectively, and evaluated as a novel green sorbent for P removal from aqueous solutions in the batch experiments. Modified BC exhibited improved structural and chemical properties, such as porosity, surface area, thermal stability, mineralogy and functional groups, than pristine material. Langmuir and Freundlich models well described the P sorption onto both thermally and magnesiothermally sorbents, respectively, suggesting mono- and multi-layer sorption. Langmuir predicted highest P sorption capacities were in the order of: MCBC (43.33 mg g -1 ) > MBC (35.63 mg g- 1 ) > CBC (34.38 mg g -1 ) > BC (30.68 mg g -1 ). The MBC and MCBC removed 100% P up to 50 mg P L -1 , which reduced to 35.43 and 39.96%, respectively, when P concentration was increased up to 1000 mg L -1 . Dynamics of P sorption was well explained by the pseudo-second-order rate equation, with the highest sorption rate of 4.32 mg g -1  min -1 for the MCBC. Hydroxylapatite [Ca 10 (PO 4 ) 6 (OH) 2 ] and brushite [CaH(PO 4 )·2H 2 O] were detected after P sorption onto the modified sorbents by X-ray diffraction analysis, suggesting chemisorption as the operating sorption mechanism.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27810533','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27810533"><span>Effects of manganese oxide-modified biochar composites on arsenic speciation and accumulation in an indica rice (Oryza sativa L.) cultivar.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Yu, Zhihong; Qiu, Weiwen; Wang, Fei; Lei, Ming; Wang, Di; Song, Zhengguo</p> <p>2017-02-01</p> <p>A pot experiment was used to investigate arsenic (As) speciation and accumulation in rice, as well as its concentration in both heavily contaminated and moderately contaminated soils amended with manganese oxide-modified biochar composites (MBC) and biochar alone (BC). In heavily As-contaminated soil, application of BC and MBC improved the weight of above-ground part and rice root, whereas in moderately As-contaminated soil, the application of MBC and low rate BC amendment increased rice root, grain weight and the biomass of the plant. Arsenic reduction in different parts of rice grown in MBC-amended soils was greater than that in plants cultivated in BC-amended soils. Such reduction can be attributed to the oxidation of arsenite, As(III), to arsenate, As(V), by Mn-oxides, which also had a strong adsorptive capacity for As(V). MBC amended to As-contaminated soil had a positive effect on amino acids. The Fe and Mn levels in the iron-manganese plaque that formed on the rice root surface differed among the treatments. MBC addition significantly increased Mn content (p < 0.05); the application of 2.0% MBC increased Mn content 36- and 10-fold compared to the control in heavily and moderately As-contaminated soils, respectively. The results indicate that application of Mn oxide-modified biochar to As-contaminated paddy soil could effectively remediate contaminated soil and reduce As accumulation in edible parts of rice. Copyright © 2016 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/21013731-casimir-effect-parallel-plates-revisited','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/21013731-casimir-effect-parallel-plates-revisited"><span>The Casimir effect for parallel plates revisited</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Kawakami, N. A.; Nemes, M. C.; Wreszinski, Walter F.</p> <p>2007-10-15</p> <p>The Casimir effect for a massless scalar field with Dirichlet and periodic boundary conditions (bc's) on infinite parallel plates is revisited in the local quantum field theory (lqft) framework introduced by Kay [Phys. Rev. D 20, 3052 (1979)]. The model displays a number of more realistic features than the ones he treated. In addition to local observables, as the energy density, we propose to consider intensive variables, such as the energy per unit area {epsilon}, as fundamental observables. Adopting this view, lqft rejects Dirichlet (the same result may be proved for Neumann or mixed) bc, and accepts periodic bc: inmore » the former case {epsilon} diverges, in the latter it is finite, as is shown by an expression for the local energy density obtained from lqft through the use of the Poisson summation formula. Another way to see this uses methods from the Euler summation formula: in the proof of regularization independence of the energy per unit area, a regularization-dependent surface term arises upon use of Dirichlet bc, but not periodic bc. For the conformally invariant scalar quantum field, this surface term is absent due to the condition of zero trace of the energy momentum tensor, as remarked by De Witt [Phys. Rep. 19, 295 (1975)]. The latter property does not hold in the application to the dark energy problem in cosmology, in which we argue that periodic bc might play a distinguished role.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26048085','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26048085"><span>Effect of pyrolysis temperature on polycyclic aromatic hydrocarbons toxicity and sorption behaviour of biochars prepared by pyrolysis of paper mill effluent treatment plant sludge.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Devi, Parmila; Saroha, Anil K</p> <p>2015-09-01</p> <p>The polycyclic aromatic hydrocarbons (PAHs) toxicity and sorption behaviour of biochars prepared from pyrolysis of paper mill effluent treatment plant (ETP) sludge in temperature range 200-700 °C was studied. The sorption behaviour was found to depend on the degree of carbonization where the fractions of carbonized and uncarbonized organic content in the biochar act as an adsorption media and partition media, respectively. The sorption and partition fractions were quantified by isotherm separation method and isotherm parameters were correlated with biochar properties (aromaticity, polarity, surface area, pore volume and ash content). The risk assessment for the 16 priority EPA PAHs present in the biochar matrix was performed and it was found that the concentrations of the PAHs in the biochar were within the permissible limits prescribed by US EPA (except BC400 and BC500 for high molecular weight PAHs). Copyright © 2015 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AtmEn.115..223B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AtmEn.115..223B"><span>Factors affecting pollutant concentrations in the near-road environment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Baldwin, Nichole; Gilani, Owais; Raja, Suresh; Batterman, Stuart; Ganguly, Rajiv; Hopke, Philip; Berrocal, Veronica; Robins, Thomas; Hoogterp, Sarah</p> <p>2015-08-01</p> <p>An improved understanding of traffic-related air pollutants is needed to estimate exposures and adverse health impacts in traffic corridors and near-road environments. In this study, concentrations of black carbon (BC), nitrogen oxides (NO, NO2, NOx), sulfur dioxide (SO2), and particulate matter (PM2.5, PM10, ultrafine particles, and accumulation mode particles, AMP) were measured using a mobile air pollutant laboratory along nine transects across major roads in Detroit, MI in winter 2012. Repeated measurements were taken during rush-hour periods at sites in residential neighborhoods located 50-500 m from both sides of the road. Concentration gradients attributable to on-road emissions were estimated by accounting for traffic volume and mix, wind speed, wind direction, and background concentrations. BC, NO, NOx, and UFP had the strongest gradients, and elevated concentrations of NOx, NO2, PM2.5 and PM10, as well as decreased particle size, were found at the 50 m sites compared to background levels. Exponential models incorporating effects of road size, wind speed, and up- and downwind distance explained from 31 to 53% of the variability in concentration gradients for BC, NO, NOx, UFP and particle size. The expected concentration increments 50 m from the study roads were 17.0 ppb for NO, 17.7 ppb for NOx, 2245 particles/cm3 for UFP, and 0.24 μg/m3 for BC, and the expected distance to decrease increments by half was 89-129 m in the downwind direction, and 14-20 m in the upwind direction. While accounting for portion of the temporal and spatial variability across transects and measurement periods, these results highlight the influence of road-to-road differences and other locally-varying factors important in urban and industrial settings. The study demonstrates a methodology to quantify near-road concentrations and influences on these concentrations while accounting for temporal and spatial variability, and it provides information useful for estimating exposures of traffic-related air pollutants in urban environments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.B33H0727W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.B33H0727W"><span>Potential Impacts of Urban Land Expansion on Asian Outflows of Air Pollutants</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wei, T.; Liu, J.; Tao, S.; Ban-Weiss, G. A.</p> <p>2016-12-01</p> <p>We investigate the impacts of urban land expansion over Eastern China (EC) on the export of black carbon (BC), carbon monoxide (CO) and ozone (O3) to the West Pacific during the January, April, July and October of 2009, using WRF/Chem model coupled with the tracers tagging technique and an up-to-date single layer urban canopy scheme updated with the treatment of urban hydrological processes. Our model simulations could reproduce well the vertical profiles of Asian outflows of BC and CO observed during the A-FORCE period (March to April of 2009). Over urbanizing areas, increment in urban land fraction could linearly elevate primary pollutants from the lower boundary layer to higher altitudes, and perturb the thermal, hydrological, and kinetic exchange processes between land surface and the atmosphere aloft through all seasons (such local impacts highest in July but lowest in January). Furthermore, we find robust linear relationships exist between urban land fraction (averaged over EC) and export of BC emitted from EC across meridional planes over the western Pacific (e.g., 140 °E). Specifically, each 10% increase in urban land fraction over EC enhances the eastward mass fluxes of BC by about 5%-10% in January and July, and 10%-20% in April and October, respectively, in the free troposphere, which is the dominant pathway for Asian outflows. Such a linear relationship is relatively weaker for CO and only appears in April and October. The different response patterns between BC and CO arise from their distinct physical and chemical properties. Even with decreased vegetation (and reduced biogenic emissions), the O3­ concentrations at the surface and 800 hPa over urbanizing areas both tend to increase. However, no clear trend is observed for the export of O3 over West Pacific for all four months. Urban land expansion facilitates the uplift of local pollutants, but also changes the large-scale circulation pattern (the perturbation cyclone over the downwind Pacific acts to impede the eastward transpacific transport), both playing important roles on the efficiency that Asian emissions are exported. Our finding indicates that the extensive urban land expansion would significantly impact the local climate and air quality, which also have a large impact on long-range transboundary transport.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25325322','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25325322"><span>Bacterial cellulose of Gluconoacetobacter hansenii as a potential bioadsorption agent for its green environment applications.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Mohite, Bhavna V; Patil, Satish V</p> <p>2014-01-01</p> <p>Bacterial cellulose (BC) is an interesting biopolymer produced by bacteria having superior properties. BC produced by Gluconoacetobacter hansenii (strain NCIM 2529) under shaking condition and explored for its applications in dye removal and bioadsorption of protein and heavy metals. Purity of BC was confirmed by Fourier transform infrared spectroscopy and scanning electron microscopy (SEM) analysis. BC removed azo dye and Aniline blue (400 mg/L) with 80% efficiency within 60 min. The adsorption and elution of Bovine serum albumin (BSA) and heavy metals like lead, cadmium and nickel (Pb(2+), Cd(2+) and Ni(2+)) was achieved with BC which confirms the exclusion ability with reusability. The BSA adsorption quantity was increased with increase in protein concentration with more than 90% adsorption and elution ratio. The effect of pH and temperature on BSA adsorption has been investigated. Bioadsorption (82%) and elution ratio (92%) of BC for Pb(2+) was more when compared with Cd(2+) (41 and 67%) and Ni(2+) (33 and 85%), respectively. BC was also explored as soil conditioner to increase the water-holding capacity and porosity of soil. The results elucidated the significance of BC as renewable effective ecofriendly bioadsorption agent.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28341173','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28341173"><span>Preparation and characterization of reinforced papers using nano bacterial cellulose.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Tabarsa, Taghi; Sheykhnazari, Somayeh; Ashori, Alireza; Mashkour, Mahdi; Khazaeian, Abolghasem</p> <p>2017-08-01</p> <p>The main goal of this work was to reinforce softwood pulp (SP) with bacterial cellulose (BC) to generate a sustainable biocomposite. BC is a nanocellulose, which was anticipated to increase interfacial adhesion between the cellulosic fibers and BC. The organism used was Gluconacetobacter xylinus, which was incubated in a static Hestrin-Schramm culture at 28°C for 14days. The specimens of BC, SP and the reinforced SP with BC were characterized using X-ray diffraction (XRD), FT-IR, FESEM, and physico-mechanical testing. The crystallinity index was found to be 83 and 54% for BC and SP, respectively. FT-IR spectra showed that the composition of BC was fully different from that of SP fibers. Based on FESEM images, one can conclude that BC and softwood fibers do form a good combination with a nonporous structure. BC fibers fill in among the softwood fibers in the sheet. The physical and mechanical properties showed that as the dosage of BC increased, the properties of tensile index, tear index, and burst index greatly improved, while the porosity and the elongation decreased. The reason for the improved mechanical properties can be attributed to the increase of interfibrillar bonding which reduced porosity. This would be due to the high aspect ratio of BC that is capable of connecting between the cellulosic fibers and BC nanofibers, enhancing a large contact surface and therefore producing excellent coherence. This study suggests that BC could be a promising material for reinforcing composites at low loading. Copyright © 2017 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22513735','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22513735"><span>Use of real-time sensors to characterise human exposures to combustion related pollutants.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Delgado-Saborit, Juana Maria</p> <p>2012-07-01</p> <p>Concentrations of black carbon and nitrogen dioxide have been collected concurrently using a MicrAeth AE-51 and an Aeroqual GSS NO(2) sensor. Forty five sampling events with a duration spanning between 16 and 22 hours have collected 10,800 5 min data in Birmingham (UK) from July to October 2011. The high temporal resolution database allowed identification of peak exposures and which activities contributed the most to these peaks, such as cooking and commuting. Personal exposure concentrations for non-occupationally exposed subjects ranged between 0.01 and 50 μg m(-3) for BC with average values of 1.3 ± 2.2 μg m(-3) (AM ± SD). Nitrogen dioxide exposure concentrations were in the range <LOD to 800 ppb with average concentrations of 23 ± 50 ppb. The correlation between personal exposures (PEs) and central site (A) concentrations was evaluated, with only NO(2) exposures averaged over the sampling event significantly correlating with central site levels. The PE/A ratio ranged between 1.1 (BC) and 0.2-0.7 (NO(2)) in the absence of combustion sources to 13 (BC) for subjects commuting in trains and 2.9 (NO(2)) for subjects cooking with gas appliances.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27845883','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27845883"><span>Salivary flow rate, buffer capacity, and urea concentration in adolescents with type 1 diabetes mellitus.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Saes Busato, Ivana Maria; Antoni, Carlos Cesar De; Calcagnotto, Thiago; Ignácio, Sérgio Aparecido; Azevedo-Alanis, Luciana Reis</p> <p>2016-12-01</p> <p>The objective of the study was to analyze salivary flow rate, urea concentration, and buffer capacity in adolescents with type 1 diabetes mellitus (type 1 DM) in two different stages. This study was performed on adolescents (14-19 years), allocated between two groups: type 1 DM group comprised 32 adolescents with type 1 DM, and non-type 1 DM group comprised 32 nondiabetics. The adolescents in type 1 DM group were evaluated at a baseline (T0) and after 15 months (T1), and those in non-type 1 DM group were only evaluated at T0. Diabetic status was determined by glycosylated hemoglobin (GHb) and capillary glucose tests. Measurement of salivary flow was performed by means of stimulated saliva (SSFR) collection. The buffer capacity (BC) was determined, and analysis of urea salivary concentration was performed using the colorimetric method. At T0, there were significant differences between diabetics and nondiabetics for SSFR and BC (p<0.05). In diabetics, SSFR was 0.790 mL/min in T0 and 0.881 mL/min in T1 (p>0.05). BC at T0 was 4.8, and at T1, it was 3.9 (p=0.000). Urea concentration mean value had a significant decrease at T1 (28.13) compared with T0 (34.88) (p=0.013). There was a negative correlation between SSFR and urea salivary concentration at both T0 (r=-0.426, p≤0.05) and T1 (r=-0.601, p≤0.01). In adolescents with type 1 DM, hyposalivation at T0 was associated with an increase in urea salivary concentration. At T1, hyposalivation was associated with a reduction in BC, and an increase in salivary urea.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.A23K0380W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.A23K0380W"><span>Modeled Response of Greenland Climate to the Presence of Biomass Burning-Based Absorbing Aerosols in the Atmosphere and Snow</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ward, J. L.; Flanner, M.; Bergin, M. H.; Courville, Z.; Dibb, J. E.; Polashenski, C.; Soja, A. J.; Strellis, B. M.; Thomas, J. L.</p> <p>2016-12-01</p> <p>Combustion of biomass material results in the emission of microscopic particles, some of which absorb incoming solar radiation. Including black carbon (BC), these absorbing species can affect regional climate through changes in the local column energy budgets, cloud direct and indirect effects, and atmospheric dynamical processes. The cryosphere, which consists of both snow and ice, is unusually susceptible to changes in radiation due to its characteristically high albedo. As the largest element of the cryosphere in the Northern Hemisphere, the Greenland Ice Sheet (GrIS) covers most of Greenland's terrestrial surface and, if subjected to the increased presence of light-absorbing impurities, could experience enhanced melt. A particularly enhanced melt episode of the GrIS occurred during July 2012; at the same time, large-scale biomass burning events were observed in Eurasia and North America. Observations showed that, at the same time, single-scattering albedo (SSA) was lower than average while aerosol optical depth (AOD) was high for the Greenland region. In this study, we apply idealized climate simulations to analyze how various aspects of Greenland's climate are affected by the enhanced presence of particulate matter in the atmospheric and on the surface of the GrIS. We employ the Community Earth System Model (CESM) with prescribed sea surface temperatures and active land and atmospheric components. Using four sets of modeling experiments, we perturb 1) only AOD, 2) only SSA, 3) mass mixing ratios of BC and dust in snow, and 4) both AOD and in-snow impurity concentrations. The chosen values for each of these modeling experiments are based on field measurements taken in 2011 (AOD, SSA) and the summers of 2012-2014 (mass mixing ratios of BC and dust). Comparing the results of these experiments provides information on how the overall climate of Greenland could be affected by large biomass burning events.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1992JHyd..138..559S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1992JHyd..138..559S"><span>Hydrogeochemistry of Maine seepage lakes and related groundwaters</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stauffer, Robert E.; Wittchen, Bruce D.</p> <p>1992-10-01</p> <p>Southeastern Maine contains numerous small seepage lakes (no perennial surface inflows or outflows), set in felsic, glacial deposits (eskers, pitted outwash, glacio-marine deltaic terraces) dating from the Wisconsin glacial retreat ca. 12 500 years B.P. The modern landscape is either forested or maintained as low blueberry heath by semi-annual mowing and burning. Although local precipitation is currently moderately acidic (volume-weighted pH ≈ 4.5), spring waters issuing from the glacial deposits are only weakly acidic (6.1 < pH < 7.0), and bicarbonate-buffered (120 to 300 mmol m -3) on account of tertiary weathering by dissolved CO 2. The order of mobility (denudation rate) for base cations (BC) is: Ca > Na > Mg > K, the same as for upland granitic terrane in the same region. Springwater composition is temporally stable but geographically variable. The most dilute springwaters drain blueberry barrens. Here, chemical weathering is limited by available acidity as evidenced by the relatively high final pHs (> 6.3) and low concentrations of strong oxy-anions (nitrate, sulfate) and dissolved inorganic carbon (DIC < 250 μM). Closely neighboring lakes often range widely in alkalinity, BC, and F, depending on their connection to the local groundwater system. Tracer analysis indicates seepage inflow is equal to 5-50 cm year -1 for typical regional seepage lakes, vs. higher rates (> 100 cm year -1) for groundwater discharge lakes. Approximately 88% of Si inputs to regional seepage lakes is retained in the sediments. Non-marine sulfate is lowest in groundwater discharge lakes containing the highest concentrations of BC and F, and featuring the shortest hydraulic residence times, suggesting that S retention in lake sediments is currently less efficient than in the adjoining terrestrial soils and vegetation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/5697339-bacterial-cellulose-membrane-separation-medium','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/5697339-bacterial-cellulose-membrane-separation-medium"><span>Bacterial cellulose membrane as separation medium</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Shibazaki, Hideki; Kuga, Shigenori; Onabe, Fumihiko</p> <p>1993-11-10</p> <p>A thin membrane of bacterial cellulose (BC) obtained from Acetobacter culture was tested for its performance as a dialysis membrane in aqueous systems. The BC membrane showed superior mechanical strength to that of a dialysis-grade regenerated cellulose membrane, allowing the use of a thinner membrane than the latter. As a result, the BC membrane gave higher permeation rates for poly(ethylene glycols) as probe solutes. The cutoff molecular weight of the original BC membrane, significantly greater than that of regenerated cellulose, could be modified by concentrated alkali treatments of the membrane. The nature of the change at the ultrastructural level causedmore » by the alkali treatments was studied by X-ray diffraction and scanning electron microscopy.« less</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..1613025L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..1613025L"><span>Black carbon measurements during winter 2013-2014 in Athens and intercomparison between different techniques</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liakakou, Eleni; Stravroulas, Jason; Roukounakis, Nikolaos; Paraskevopoulou, Despina; Fourtziou, Luciana; Psiloglou, Vassilis; Gerasopoulos, Evangelos; Sciare, Jean; Mihalopoulos, Nikolaos</p> <p>2014-05-01</p> <p>Black carbon (BC) is a particulate pollutant species emitted from the combustion of fuels, biomass burning for agricultural purposes and forest fires, with the first two anthropogenic sources being the major contributors to the atmospheric burden of BC. The presence of BC is important due to its direct and indirect physicochemical effects and its use as a tracer of burning and subsequent transport processes. Black carbon measurements took place during winter 2013 -2014 in the frame of a pollution monitoring experiment conducted at the urban site of Thissio, Athens (city center) at the premises of the National Observatory of Athens. The economic crisis in Greece and the resulting turn of Athens inhabitants to wood burning for domestic heating, has led to increased daily concentrations of BC in the range of 2-6 μg m-3, peaking at night time (15-20 μg m-3). Three different optical methods were used for the determination of BC. A Particle Soot Absorption Photometer (PSAP; Radiance Research) commercial instrument was used to monitor the light absorption coefficient (σap) at 565 nm of ambient aerosols, with 1 minute resolution. During parts of the campaign, a portable Aethalometer (AE-42; Magee Scientific) was also used to provide measurement of the aerosol BC content at 7 wavelengths over 5 minutes intervals. Exploiting the measurements at different wavelengths is was feasible to separate wood burning BC from BC related to fossil fuel. Two Multi Angle Absorption Photometers (MAAP; Thermo) were also operated as reference. Finally, aerosol samples were collected on 12-hour basis using a sequential dichotomous sampler for the sampling of PM2.5, PM2.5-10and PM10 fractions of aerosols on quartz filters, and the filters were analyzed for elemental carbon (EC) by a thermal - optical transmission technique. The main objective of the study is the intercomparison of the different BC monitoring techniques under a large range of ambient concentrations achieved due to the special circumstance occurring in Athens with the rapid increase of BC emission due to wood burning. In parallel, the BC measurements are used for the estimation of the contribution of wood burning in fireplaces and wood-stoves in ambient PM levels, compared to other known sources of local pollution (e.g. traffic, central heating).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29063949','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29063949"><span>Bovine colostrum supplementation does not affect plasma I-FABP concentrations following exercise in a hot and humid environment.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>McKenna, Zachary; Berkemeier, Quint; Naylor, Ashley; Kleint, Austin; Gorini, Felipe; Ng, Jason; Kim, Jong-Kyung; Sullivan, Sean; Gillum, Trevor</p> <p>2017-12-01</p> <p>To quantify the impact of a 14-day bovine colostrum (BC) supplementation on intestinal cell damage following exercise in a hot and humid environment. Ten male participants (20 ± 2 years, VO 2max 55.80 ± 3.79 mL kg -1  min -1 , 11.81 ± 2.71% body fat) ran for 46 ± 7.75 min at 95% of ventiliatory threshold in 40 °C and 50% RH following a 14-day double-blinded supplementation with either BC or placebo (Plac). Core temperature, skin temperature, heart rate, and rating of perceived exertion were recorded every 5 min during exercise. Blood was taken pre, post, 1 h, and 4 h post exercise. Intestinal cell damage was assessed via intestinal fatty acid binding protein (I-FABP). I-FABP concentrations were similar between conditions at all time points [pre 989.39 ± 490.88 pg ml -1 (BC) 851.35 ± 450.71 pg ml -1 (Plac) post 1505.10 ± 788.63 pg ml -1 (BC) 1267.12 ± 521.51 pg ml -1 (Plac) 1-h, 1087.77 ± 397.06 pg ml -1 (BC) 997.25 ± 524.74 pg ml -1 (Plac) 4-h, 511.35 ± 243.10 pg ml -1 (BC) 501.46 ± 222.54 pg ml -1 (Plac)]. I-FABP was elevated pre to post exercise for both BC (162 ± 50%) and Plac (162 ± 56%) (p < 0.05). BC had no effect on mean body temperature [beginning 36.11 ± 0.30 °C, ending: 39.52 ± 0.28 °C (BC); beginning:35.96 ± 0.43 °C, ending:39.42 ± 0.38 °C (Plac)]. While BC supplementation may protect against enterocyte damage during exercise in thermonuetral environments, our data suggest that BC supplementation may not be an effective technique for preventing enterocyte damage during exercise when core temperature exceeds 39 °C.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5554020','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5554020"><span>Effect of Different Carbon Sources on Bacterial Nanocellulose Production and Structure Using the Low pH Resistant Strain Komagataeibacter Medellinensis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Molina-Ramírez, Carlos; Castro, Margarita; Osorio, Marlon; Torres-Taborda, Mabel; Gómez, Beatriz; Zuluaga, Robin; Gómez, Catalina; Gañán, Piedad; Rojas, Orlando J.; Castro, Cristina</p> <p>2017-01-01</p> <p>Bacterial cellulose (BC) is a polymer obtained by fermentation with microorganism of different genera. Recently, new producer species have been discovered, which require identification of the most important variables affecting cellulose production. In this work, the influence of different carbon sources in BC production by a novel low pH-resistant strain Komagataeibacter medellinensis was established. The Hestrin-Schramm culture medium was used as a reference and was compared to other media comprising glucose, fructose, and sucrose, used as carbon sources at three concentrations (1, 2, and 3% w/v). The BC yield and dynamics of carbon consumption were determined at given fermentation times during cellulose production. While the carbon source did not influence the BC structural characteristics, different production levels were determined: glucose > sucrose > fructose. These results highlight considerations to improve BC industrial production and to establish the BC property space for applications in different fields. PMID:28773001</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16691636','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16691636"><span>Guava extract (Psidium guajava) alters the labelling of blood constituents with technetium-99m.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Abreu, P R C; Almeida, M C; Bernardo, R M; Bernardo, L C; Brito, L C; Garcia, E A C; Fonseca, A S; Bernardo-Filho, M</p> <p>2006-06-01</p> <p>Psidium guajava (guava) leaf is a phytotherapic used in folk medicine to treat gastrointestinal and respiratory disturbances and is used as anti-inflammatory medicine. In nuclear medicine, blood constituents (BC) are labelled with technetium-99m ((99m)Tc) and used to image procedures. However, data have demonstrated that synthetic or natural drugs could modify the labelling of BC with (99m)Tc. The aim of this work was to evaluate the effects of aqueous extract of guava leaves on the labelling of BC with (99m)Tc. Blood samples of Wistar rats were incubated with different concentrations of guava extract and labelled with (99m)Tc after the percentage of incorporated radioactivity (%ATI) in BC was determined. The results suggest that aqueous guava extract could present antioxidant action and/or alters the membrane structures involved in ion transport into cells, thus decreasing the radiolabelling of BC with (99m)Tc. The data showed significant (P<0.05) alteration of ATI in BC from blood incubated with guava extract.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24288113','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24288113"><span>Double network bacterial cellulose hydrogel to build a biology-device interface.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Shi, Zhijun; Li, Ying; Chen, Xiuli; Han, Hongwei; Yang, Guang</p> <p>2014-01-21</p> <p>Establishing a biology-device interface might enable the interaction between microelectronics and biotechnology. In this study, electroactive hydrogels have been produced using bacterial cellulose (BC) and conducting polymer (CP) deposited on the BC hydrogel surface to cover the BC fibers. The structures of these composites thus have double networks, one of which is a layer of electroactive hydrogels combined with BC and CP. The electroconductivity provides the composites with capabilities for voltage and current response, and the BC hydrogel layer provides good biocompatibility, biodegradability, bioadhesion and mass transport properties. Such a system might allow selective biological functions such as molecular recognition and specific catalysis and also for probing the detailed genetic and molecular mechanisms of life. A BC-CP composite hydrogel could then lead to a biology-device interface. Cyclic voltammetry and electrochemical impedance spectroscopy (EIS) are used here to study the composite hydrogels' electroactive property. BC-PAni and BC-PPy respond to voltage changes. This provides a mechanism to amplify electrochemical signals for analysis or detection. BC hydrogels were found to be able to support the growth, spreading and migration of human normal skin fibroblasts without causing any cytotoxic effect on the cells in the cell culture. These double network BC-CP hydrogels are biphasic Janus hydrogels which integrate electroactivity with biocompatibility, and might provide a biology-device interface to produce implantable devices for personalized and regenerative medicine.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013Nanos...6..970S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013Nanos...6..970S"><span>Double network bacterial cellulose hydrogel to build a biology-device interface</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shi, Zhijun; Li, Ying; Chen, Xiuli; Han, Hongwei; Yang, Guang</p> <p>2013-12-01</p> <p>Establishing a biology-device interface might enable the interaction between microelectronics and biotechnology. In this study, electroactive hydrogels have been produced using bacterial cellulose (BC) and conducting polymer (CP) deposited on the BC hydrogel surface to cover the BC fibers. The structures of these composites thus have double networks, one of which is a layer of electroactive hydrogels combined with BC and CP. The electroconductivity provides the composites with capabilities for voltage and current response, and the BC hydrogel layer provides good biocompatibility, biodegradability, bioadhesion and mass transport properties. Such a system might allow selective biological functions such as molecular recognition and specific catalysis and also for probing the detailed genetic and molecular mechanisms of life. A BC-CP composite hydrogel could then lead to a biology-device interface. Cyclic voltammetry and electrochemical impedance spectroscopy (EIS) are used here to study the composite hydrogels' electroactive property. BC-PAni and BC-PPy respond to voltage changes. This provides a mechanism to amplify electrochemical signals for analysis or detection. BC hydrogels were found to be able to support the growth, spreading and migration of human normal skin fibroblasts without causing any cytotoxic effect on the cells in the cell culture. These double network BC-CP hydrogels are biphasic Janus hydrogels which integrate electroactivity with biocompatibility, and might provide a biology-device interface to produce implantable devices for personalized and regenerative medicine.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26456606','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26456606"><span>Heterogeneous oxidation of SO2 by O3-aged black carbon and its dithiothreitol oxidative potential.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Xu, Weiwei; Li, Qian; Shang, Jing; Liu, Jia; Feng, Xiang; Zhu, Tong</p> <p>2015-10-01</p> <p>Ozone (O3) is an important atmospheric oxidant. Black carbon (BC) particles released into the atmosphere undergo an aging process via O3 oxidation. O3-aged BC particles may change their uptake ability toward trace reducing gases such as SO2 in the atmosphere, leading to different environmental and health effects. In this paper, the heterogeneous reaction process between O3-aged BC and SO2 was explored via in-situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). Combined with ion chromatography (IC), DRIFTS was used to qualitatively and quantitatively analyze the sulfate product. The results showed that O3-aged BC had stronger SO2 oxidation ability than fresh BC, and the reactive species/sites generated on the surface had an important role in the oxidation of SO2. Relative humidity or 254nm UV (ultraviolet) light illumination enhanced the oxidation uptake of SO2 on O3-aged BC. The oxidation potentials of the BC particles were detected via dithiothreitol (DTT) assay. The DTT activity over BC was decreased in the process of SO2 reduction, with the consumption of oxidative active sites. Copyright © 2015. Published by Elsevier B.V.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29421756','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29421756"><span>Carbon and nitrogen mineralization and enzyme activities in soil aggregate-size classes: Effects of biochar, oyster shells, and polymers.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Awad, Yasser Mahmoud; Lee, Sang Soo; Kim, Ki-Hyun; Ok, Yong Sik; Kuzyakov, Yakov</p> <p>2018-05-01</p> <p>Biochar (BC) and polymers are cost-effective additives for soil quality improvement and long-term sustainability. The additional use of the oyster shells (OS) powder in BC- or polymer-treated soils is recommended as a nutrient source, to enhance aggregation and to increase enzyme activities. The effects of soil treatments (i.e., BC (5 Mg ha -1 ) and polymers (biopolymer at 0.4 Mg ha -1 or polyacrylamide at 0.4 Mg ha -1 ) with or without the OS (1%)) on the short-term changes were evaluated based on a 30-day incubation experiment with respect to several variables (e.g., CO 2 release, NH 4 + and NO 3 - concentrations, aggregate-size classes, and enzyme activities in an agricultural Luvisol). The BC and BP with the addition of OS increased the portion of microaggregates (<0.25 mm) relative to the control soil without any additions, while PAM alone increased the portion of large macroaggregates (1-2 mm). Concentrations of NO 3 - also increased in soils treated with OS, OS + BC, and OS + BP as result of the increased chitinase and leucine aminopeptidase activities. The BC and BP when treated with the additional OS had significant short-term impacts on N mineralization without affecting C mineralization in soil. Consequently, the combination of BC or BP with OS was seen to accelerate N turnover without affecting C turnover (and related C losses) from soil. As such, the addition of these additives contributed considerably to the improvement of soil fertility and C sequestration. Copyright © 2018 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4902235','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4902235"><span>Anti-Breast Cancer Potential of Quercetin via the Akt/AMPK/Mammalian Target of Rapamycin (mTOR) Signaling Cascade</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Rivera Rivera, Amilcar; Castillo-Pichardo, Linette; Gerena, Yamil; Dharmawardhane, Suranganie</p> <p>2016-01-01</p> <p>The Akt/adenosine monophosphate protein kinase (AMPK)/mammalian target of rapamycin (mTOR) pathway has emerged as a critical signaling nexus for regulating cellular metabolism, energy homeostasis, and cell growth. Thus, dysregulation of this pathway contributes to the development of metabolic disorders such as obesity, type 2diabetes, and cancer. We previously reported that a combination of grape polyphenols (resveratrol, quercetin and catechin: RQC), at equimolar concentrations, reduces breast cancer (BC) growth and metastasis in nude mice, and inhibits Akt and mTOR activities and activates AMPK, an endogenous inhibitor of mTOR, in metastatic BC cells. The objective of the present study was to determine the contribution of individual polyphenols to the effect of combined RQC on mTOR signaling. Metastatic BC cells were treated with RQC individually or in combination, at various concentrations, and the activities (phosphorylation) of AMPK, Akt, and the mTOR downstream effectors, p70S6 kinase (p70S6K) and 4E binding protein (4EBP1), were determined by Western blot. Results show that quercetin was the most effective compound for Akt/mTOR inhibition. Treatment with quercetin at 15μM had a similar effect as the RQC combination in the inhibition of BC cell proliferation, apoptosis, and migration. However, cell cycle analysis showed that the RQC treatment arrested BC cells in the G1 phase, while quercetin arrested the cell cycle in G2/M. In vivo experiments, using SCID mice with implanted tumors from metastatic BC cells, demonstrated that administration of quercetin at 15mg/kg body weight resulted in a ~70% reduction in tumor growth. In conclusion, quercetin appears to be a viable grape polyphenol for future development as an anti BC therapeutic. PMID:27285995</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25979825','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25979825"><span>The effect of benzalkonium chloride additions to AH Plus sealer. Antimicrobial, physical and chemical properties.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Arias-Moliz, M T; Ruiz-Linares, M; Cassar, G; Ferrer-Luque, C M; Baca, P; Ordinola-Zapata, R; Camilleri, J</p> <p>2015-07-01</p> <p>The aim of this study was to determine the antimicrobial and antibiofilm activities and physicochemical properties of AH Plus sealer mixed with different concentrations of benzalkonium chloride (BC). AH Plus was tested alone and mixed with 1%, 2% and 3% of BC. The antimicrobial and antibiofilm activities of the sealers against Enterococcus faecalis were evaluated by the direct contact test (DCT) and by confocal laser scanning microscopy, respectively. Setting time, flow and solubility were assessed according to ANSI/ADA specifications. Microhardness and contact angle tests were also performed. The chemical changes of the sealers were evaluated by X-ray diffraction analysis, and both Fourier transform infrared spectroscopy (FT-IR) and attenuated total reflectance Fourier transform infrared (ATR FT-IR). AH Plus+3% BC was the only sealer to promote total elimination of E. faecalis and the biovolume in this group was significantly lower than in the rest of the sealers (p>0.05). The physical properties of the sealers were according to the ANSI/ADA specifications. The microhardness decreased significantly when BC was added and a significant reduction in contact angle was obtained when incorporating 2% and 3% BC (p<0.05). No phase changes were observed with the modified sealers. The addition of 2% or higher concentrations BC to AH Plus showed antimicrobial and antibiofilm activities without affecting the properties specified in ANSI/ADA standards. However, additives to the root canal sealer altered other physical and chemical properties that are not commonly found in the literature to evaluate filling materials. The present study highlights that the antimicrobial properties of AH Plus can be significantly improved with the addition of BC. Testing beyond what is specified in standards may be indicated. Copyright © 2015 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AtmEn.181...34H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AtmEn.181...34H"><span>Refractory black carbon at the Whistler Peak High Elevation Research Site - Measurements and simulations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hanna, Sarah J.; Xu, Jun-Wei; Schroder, Jason C.; Wang, Qiaoqiao; McMeeking, Gavin R.; Hayden, Katherine; Leaitch, W. Richard; Macdonald, AnneMarie; von Salzen, Knut; Martin, Randall V.; Bertram, Allan K.</p> <p>2018-05-01</p> <p>Measurements of black carbon at remote and high altitude locations provide an important constraint for models. Here we present six months of refractory black carbon (rBC) data collected in July-August of 2009, June-July of 2010, and April-May of 2012 using a single particle soot photometer (SP2) at the remote Whistler High Elevation Research Site in the Coast Mountains of British Columbia (50.06°N, 122.96°W, 2182 m a.m.s.l). In order to reduce regional boundary layer influences, only measurements collected during the night (2000-0800 PST) were considered. Times impacted by local biomass burning were removed from the data set, as were periods of in-cloud sampling. Back trajectories and back trajectory cluster analysis were used to classify the sampled air masses as Southern Pacific, Northern Pacific, Western Pacific/Asian, or Northern Canadian in origin. The largest rBC mass median diameter (182 nm) was seen for air masses in the Southern Pacific cluster, and the smallest (156 nm) was seen for air masses in the Western Pacific/Asian cluster. Considering all the clusters, the median mass concentration of rBC was 25.0 ± 7.6 ng/m3-STP. The Northern Pacific, Southern Pacific, Western Pacific/Asian, and Northern Canada clusters had median mass concentrations of 25.0 ± 7.6, 21.3 ± 6.9, 25.0 ± 7.9, and 40.6 ± 12.9 ng/m3-STP, respectively. We compared these measurements with simulations from the global chemical transport model GEOS-Chem. The default GEOS-Chem simulations overestimated the median rBC mass concentrations for the different clusters by a factor of 1.2-2.2. The largest difference was observed for the Northern Pacific cluster (factor of 2.2) and the smallest difference was observed for the Northern Canada cluster (factor of 1.2). A sensitivity simulation that excluded Vancouver emissions still overestimated the median rBC mass concentrations for the different clusters by a factor of 1.1-2.0. After implementation of a revised wet scavenging scheme, the simulations overestimated the median rBC mass concentrations for the different clusters by a factor of 1.0-2.0.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AtmEn.142..132R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AtmEn.142..132R"><span>Black carbon and wavelength-dependent aerosol absorption in the North China Plain based on two-year aethalometer measurements</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ran, L.; Deng, Z. Z.; Wang, P. C.; Xia, X. A.</p> <p>2016-10-01</p> <p>Light-absorbing components of atmospheric aerosols have gained particular attention in recent years due to their climatic and environmental effects. Based on two-year measurements of aerosol absorption at seven wavelengths, aerosol absorption properties and black carbon (BC) were investigated in the North China Plain (NCP), one of the most densely populated and polluted regions in the world. Aerosol absorption was stronger in fall and the heating season (from November to March) than in spring and summer at all seven wavelengths. Similar spectral dependence of aerosol absorption was observed in non-heating seasons despite substantially strong absorption in fall. With an average absorption Angström exponent (α) of 1.36 in non-heating seasons, freshly emitted BC from local fossil fuel burning was thought to be the major component of light-absorbing aerosols. In the heating season, strong ultraviolet absorption led to an average α of 1.81, clearly indicating the importance of non-BC light-absorbing components, which were possibly from coal burning for domestic heating and aging processes on a regional scale. Diurnally, the variation of BC mass concentrations experienced a double-peak pattern with a higher level at night throughout the year. However, the diurnal cycle of α in the heating season was distinctly different from that in non-heating seasons. α peaked in the late afternoon in non-heating seasons with concomitantly observed low valley in BC mass concentrations. In contrast, α peaked around the midnight in the heating season and lowered down during the daytime. The relationship of aerosol absorption and winds in non-heating seasons also differed from that in the heating season. BC mass concentrations declined while α increased with increasing wind speed in non-heating seasons, which suggested elevated non-BC light absorbers in transported aged aerosols. No apparent dependence of α on wind speed was found in the heating season, probably due to well mixed regional pollution. Pollution episodes were mostly encountered under low winds and had a low level of α, implying aerosol absorption should be largely attributed to freshly emitted BC from local sources under such conditions. Extensive field campaigns and long-term chemical and optical measurements of light-absorbing aerosols are needed in the future to further advance our understanding on optical properties of light-absorbing aerosols and their radiative forcing in this region.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22721877','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22721877"><span>Effects of pyrolysis temperature on soybean stover- and peanut shell-derived biochar properties and TCE adsorption in water.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ahmad, Mahtab; Lee, Sang Soo; Dou, Xiaomin; Mohan, Dinesh; Sung, Jwa-Kyung; Yang, Jae E; Ok, Yong Sik</p> <p>2012-08-01</p> <p>Conversion of crop residues into biochars (BCs) via pyrolysis is beneficial to environment compared to their direct combustion in agricultural field. Biochars developed from soybean stover at 300 and 700 °C (S-BC300 and S-BC700, respectively) and peanut shells at 300 and 700 °C (P-BC300 and P-BC700, respectively) were used for the removal of trichloroethylene (TCE) from water. Batch adsorption experiments showed that the TCE adsorption was strongly dependent on the BCs properties. Linear relationships were obtained between sorption parameters (K(M) and S(M)) and molar elemental ratios as well as surface area of the BCs. The high adsorption capacity of BCs produced at 700 °C was attributed to their high aromaticity and low polarity. The efficacy of S-BC700 and P-BC700 for removing TCE from water was comparable to that of activated carbon (AC). Pyrolysis temperature influencing the BC properties was a critical factor to assess the removal efficiency of TCE from water. Copyright © 2012 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AtmEn.170...22P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AtmEn.170...22P"><span>Monumental heritage exposure to urban black carbon pollution</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Patrón, D.; Lyamani, H.; Titos, G.; Casquero-Vera, J. A.; Cardell, C.; Močnik, G.; Alados-Arboledas, L.; Olmo, F. J.</p> <p>2017-12-01</p> <p>In this study, aerosol light-absorption measurements obtained at three sites during a winter campaign were used to analyse and identify the major sources of Black Carbon (BC) particles in and around the Alhambra monument, a UNESCO World Heritage Site that receives over 2 million visitors per year. The Conditional Bivariate Probability Function and the Aethalometer model were employed to identify the main sources of BC particles and to estimate the contributions of biomass burning and fossil fuel emissions to the total Equivalent Black Carbon (EBC) concentrations over the monumental complex. Unexpected high levels of EBC were found at the Alhambra, comparable to those measured in relatively polluted European urban areas during winter. EBC concentrations above 3.0 μg/m3, which are associated with unacceptable levels of soiling and negative public reactions, were observed at Alhambra monument on 13 days from 12 October 2015 to 29 February 2016, which can pose a risk to its long-term conservation and may cause negative social and economic impacts. It was found that road traffic emissions from the nearby urban area and access road to the Alhambra were the main sources of BC particles over the monument. However, biomass burning emissions were found to have very small impact on EBC concentrations at the Alhambra. The highest EBC concentrations were observed during an extended stagnant episode associated with persistent high-pressure systems, reflecting the large impact that can have these synoptic conditions on BC over the Alhambra.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..1611440E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..1611440E"><span>How well is black carbon in the Arctic atmosphere captured by models?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Eckhardt, Sabine; Berntsen, Terje; Cherian, Ribu; Daskalakis, Nikos; Heyes, Chris; Hodnebrog, Øivind; Kanakidou, Maria; Klimont, Zbigniew; Law, Kathy; Lund, Marianne; Myhre, Gunnar; Myriokefalitakis, Stelios; Olivie, Dirk; Quaas, Johannes; Quennehen, Boris; Raut, Jean-Christophe; Samset, Bjørn; Schulz, Michael; Skeie, Ragnhild; Stohl, Andreas</p> <p>2014-05-01</p> <p>A correct representation of the spatial distribution of aerosols in atmospheric models is essential for realistic simulations of deposition and calculations of radiative forcing. It has been observed that transport of black carbon (BC) into the Arctic and scavenging is sometimes not captured accurately enough in chemistry transport models (CTM) as well as global circulation models (GCM). In this study we determine the discrepancies between measured equivalent BC (EBC) and modeled BC for several Arctic measurement stations as well as for Arctic aircraft campaigns. For this, we use the output of a set of 5 models based on the same emission dataset (ECLIPSE emissions, see eclipse.nilu.no) and evaluate the simulated concentrations at the measurement locations and times. Emissions are separated for different sources such as biomass burning, domestic heating, gas flaring, industry and the transport sector. We focus on the years 2008 and 2009, where many campaigns took place in the framework of the International Polar Year. Arctic stations like Barrow, Alert, Station Nord in Greenland and Zeppelin show a very pronounced winter/spring maximum in BC. While monthly averaged measured EBC values are around 80 ng/m^3, the models severely underestimate this with some models simulating only a small percentage of the observed values. During summer measured concentrations are a magnitude lower, and still underestimated by almost an order of magnitude in some models. However, the best models are correct within a factor of 2 in winter/spring and give realistic concentrations in summer. In order to get information on the vertical profile we used measurements from aircraft campaigns like ARCTAS, ARCPAC and HIPPO. It is found that BC in latitudes below 60 degrees is better captured by the models than BC at higher latitudes, even though it is overestimated at high altitudes. A systematic analysis of the performance of different models is presented. With the dataset we use we capture remote, polluted and fire-influenced conditions. We estimate the impact of model deficiencies on calculated BC radiative forcing by introducing scaling factors based on the model-measurement comparisons.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFM.A41B0076R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFM.A41B0076R"><span>Comparison Between Elemental Carbon Measured Using Thermal-Optical Analysis and Black Carbon Measurements Using A Novel Cellphone-Based System</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ramanathan, N.; Khan, B.; Leong, I.; Lukac, M.</p> <p>2011-12-01</p> <p>Black carbon (BC) is produced through the incomplete combustion of fossil and solid fuels. Current BC emissions inventories have large uncertainties of factors of 2 or more due to sparse measurements and because BC is often emitted by local sources that vary over time and space (Bond et al, 2004). Those uncertainties are major sources of error in air pollution models. Emissions from a variety of improved cookstove/fuel/combustion conditions were collected on pre-conditioned 47 mm quartz-fiber filters and analyzed for organic carbon (OC) and elemental carbon (EC) using thermal-optical analysis (TOA). The samples were then analyzed for BC concentration by using cellphone-based instrumentation developed by Ramanathan et al., 2011. The cellphone-based monitoring system (CBMS) is a wireless, low-cost, low-power system that monitors BC emissions. The CBMS is comprised of an aerosol filter sampler containing a battery-powered air pump and a 25mm filter holder that draws air in through a quartz-fiber filter. As black carbon deposits increase, the filter darkens--the darkest color representing the highest loading. A cellphone photograph of the filter with the black carbon deposit is taken and relayed to an analytics unit for comparison to a reference scale to estimate airborne BC concentration. The BC concentration can then be compared to the thermally derived EC concentration. TOA was conducted on a Sunset Laboratory Dual Optics Carbon Analyzer using a modified version of the Birch and Cary (1996) NIOSH 5040 protocol. The dual-optical instrument permitted simultaneous monitoring of the transmission (TOT) and reflectance (TOR). 619 samples were collected; EC was obtained using NIOSH TOT and NIOSH TOR methods, and BC was obtained using the CBMS analytics unit. The mean BC value reported by the CBMS agrees within 20% of the reference values for EC, confirming the findings in Ramanathan et al. (2011) based on samples from India. Given this accuracy, we conclude that the CBMS provides an affordable real-time method for gathering BC data on a mass scale. The CBMS' scalability should enable dense deployments near emissions sources and reduce uncertainty in emissions inventories due to undersampling. Bond, T. C., E. Bhardwaj, R. Dong, R. Jogani, S. Jung, C. Roden, D. G. Streets, and N. M. Trautmann (2007), Historical emissions of black and organic carbon aerosol from energy-related combustion, 1850-2000, Global Biogeochem. Cycles, 21, GB2018, doi:10.1029/2006GB002840. Birch, M. E. and R.A. Cary (1996), Elemental Carbon-Based Method for Monitoring Occupational Exposures to Particulate Diesel Exhaust. Aerosol Sci. Technol., 25, 221-241. NIOSH (1996). Elemental carbon (diesel particulate) method 5040. NIOSH Manual of Analytical Methods, 4th ed. National Institute for Occupational Safety and Health, Cincinnati, Ohio (1st Suppl.). Ramanathan, N., M. Lukac, T. Ahmed, A. Kar, P.S. Praveen, T. Honles, I. Leong, I.H. Rehman, J.J. Schauer, V. Ramanathan (2011), A cellphone based system for large-scale monitoring of black carbon, Atmos. Environ., 45 (26), 4481-4487.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015JQSRT.161..105Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015JQSRT.161..105Z"><span>The influence of different black carbon and sulfate mixing methods on their optical and radiative properties</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, Hua; Zhou, Chen; Wang, Zhili; Zhao, Shuyun; Li, Jiangnan</p> <p>2015-08-01</p> <p>Three different internal mixing methods (Core-Shell, Maxwell-Garnett, and Bruggeman) and one external mixing method are used to study the impact of mixing methods of black carbon (BC) with sulfate aerosol on their optical properties, radiative flux, and heating rate. The optical properties of a mixture of BC and sulfate aerosol particles are considered for three typical bands. The results show that mixing methods, the volume ratio of BC to sulfate, and relative humidity have a strong influence on the optical properties of mixed aerosols. Compared to internal mixing, external mixing underestimates the particle mass absorption coefficient by 20-70% and the particle mass scattering coefficient by up to 50%, whereas it overestimates the particle single scattering albedo by 20-50% in most cases. However, the asymmetry parameter is strongly sensitive to the equivalent particle radius, but is only weakly sensitive to the different mixing methods. Of the internal methods, there is less than 2% difference in all optical properties between the Maxwell-Garnett and Bruggeman methods in all bands; however, the differences between the Core-Shell and Maxwell-Garnett/Bruggeman methods are usually larger than 15% in the ultraviolet and visible bands. A sensitivity test is conducted with the Beijing Climate Center Radiation transfer model (BCC-RAD) using a simulated BC concentration that is typical of east-central China and a sulfate volume ratio of 75%. The results show that the internal mixing methods could reduce the radiative flux more effectively because they produce a higher absorption. The annual mean instantaneous radiative force due to BC-sulfate aerosol is about -3.18 W/m2 for the external method and -6.91 W/m2 for the internal methods at the surface, and -3.03/-1.56/-1.85 W/m2 for the external/Core-Shell/(Maxwell-Garnett/Bruggeman) methods, respectively, at the tropopause.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014PhDT.......104N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014PhDT.......104N"><span>Bacterial Cellulose (BC) as a Functional Nanocomposite Biomaterial</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nandgaonkar, Avinav Ghanashyam</p> <p></p> <p>Cellulosic is the most abundant biopolymer in the landscape and can be found in many different organisms. It has been already seen use in the medical field, for example cotton for wound dressings and sutures. Although cellulose is naturally occurring and has found a number of applications inside and outside of the medical field, it is not typically produced in its pure state. A lengthy process is required to separate the lignin, hemicelluloses and other molecules from the cellulose in most renewables (wood, agricultural fibers such as cotton, monocots, grasses, etc.). Although bacterial cellulose has a similar chemical structure to plant cellulose, it is easier to process because of the absence of lignin and hemicelluloses which require a lot of energy and chemicals for removal. Bacterial cellulose (BC) is produced from various species of bacteria such as Gluconacetobacter xylinus. Due to its high water uptake, it has the tendency to form gels. It displays high tensile strength, biocompatibility, and purity compared to wood cellulose. It has found applications in fields such as paper, paper products, audio components (e.g., speaker diaphragms), flexible electronics, supercapacitors, electronics, and soft tissue engineering. In my dissertation, we have functionalized and studied BC-based materials for three specific applications: cartilage tissue engineering, bioelectronics, and dye degradation. In our first study, we prepared a highly organized porous material based on BC by unidirectional freezing followed by a freeze-drying process. Chitosan was added to impart additional properties to the resulting BC-based scaffolds that were evaluated in terms of their morphological, chemical, and physical properties for cartilage tissue engineering. The properties of the resulting scaffold were tailored by adjusting the concentration of chitosan over 1, 1.5, and 2 % (by wt-%). The scaffolds containing chitosan showed excellent shape recovery and structural stability after compressive tests. In our second study, we developed a one-pot in-situ biosynthetic method to fabricate structurally controllable bacterial cellulose (BC)/reduced graphene oxide (RGO) composites. The graphene oxide (GO) was highly reduced during a standard autoclave process using a traditional mannitol culture medium as the reducing agent. The electrical conductivity of the RGO was found to be 23.75 S m-1. The final BC/RGO composites were developed in three distinct forms: 1) sealed structures in the water, 2) aerogels characterized by a porous cross section and aligned longitudinal structure, and 3) films embedded within the RGO sheets. Because of the simplicity and non-toxic nature of this work, it can be used in biomedical and bioelectronics applications. The last study was on dye degradation using BC as the substrate. The surface of the BC was chemically oxidized to produce aldehyde groups to successfully covalently crosslink laccase. TiO2 and laccase (Lac) were co-immobilized on the surface of OBC and the dye degradation process was carried out under specific conditions. Compared with free laccase, the optimum pH of the immobilized laccase system shifted to lower pH, while the optimum temperature decreased from 55 °C to 50 °C. The dye degradation experiments showed that the optimum pH for dye degradation was pH 5.0-6.0, while the optimum temperature was ca. 40 ºC. Under UV illumination, the dye degradation efficiency significantly improved characteristic of a synergy in the system. This dissertation contributes to the basic research of bacterial cellulose which will result in novel ideas that can possibly result in future industrial applications. The research provides a fundamental underpinning of specialized structure-property relationships between BC and the materials used to fabricate the BC nanocomposites that have value-added applications that are environmentally safe and eco-friendly.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=235088&keyword=windows&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=235088&keyword=windows&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>Post-processing method to reduce noise while preserving high time resolution in aethalometer real-time black carbon data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>Real-time aerosol black carbon (BC) data, presented at time resolutions on the order of seconds to minutes, is desirable in field and source characterization studies measuring rapidly varying concentrations of BC. The Optimized Noise-reduction Averaging (ONA) algorithm has been d...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29197956','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29197956"><span>Comparative Effects of Biochar, Slag and Ferrous-Mn Ore on Lead and Cadmium Immobilization in Soil.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Mehmood, Sajid; Rizwan, Muhammad; Bashir, Saqib; Ditta, Allah; Aziz, Omar; Yong, Li Zhe; Dai, Zhihua; Akmal, Muhammad; Ahmed, Waqas; Adeel, Muhammad; Imtiaz, Muhammad; Tu, Shuxin</p> <p>2018-02-01</p> <p>A variety of remediation approaches have been applied to the heavy metals-contaminated soils, however, the immobilization of metals in co-contaminated soils still not cleared. Therefore, an incubation study was conducted to evaluate the instantaneous effects of different concentrations of biochar (BC), slag (SL) and Fe-Mn ore (FMO) on immobilization of Pb and Cd through the Toxicity Characteristic Leaching Procedure (TCLP) by following the the European Community Bureau of Reference (BCR), CaCl 2 and NH 4 NO 3 . The sequential extraction of BCR showed decrease in acid soluble fractions, while the residual proportions of Pb and Cd were enhanced with increasing concentrations of SL and BC. Addition of BC significantly lowered the extractable fractions of both metals by TCLP, NH 4 NO 3 and CaCl 2 as compared to SL and FMO. Among all amendments, BC incorporation into co-contaminated soil offered promising results for Pb and Cd immobilization. Overall, all amendments showed positive and long-term impact on the reclamation of co-contaminated soil with heavy metals and could deserve advance monitoring studies on a field scale.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <a id="backToTop" href="#top"> Top </a> <footer> <nav> <ul class="links"> <li><a href="/sitemap.html">Site Map</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://www.energy.gov/vulnerability-disclosure-policy" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>