Sample records for bcc fe comparison

  1. Magnetism of CrO overlayers on Fe(001)bcc surface: first principles calculations

    NASA Astrophysics Data System (ADS)

    Félix-Medina, Raúl Enrique; Leyva-Lucero, Manuel Andrés; Meza-Aguilar, Salvador; Demangeat, Claude

    2018-04-01

    Riva et al. [Surf. Sci. 621, 55 (2014)] as well as Calloni et al. [J. Phys.: Condens. Matter 26, 445001 (2014)] have studied the oxydation of Cr films deposited on Fe(001)bcc through low-energy electron diffraction, Auger electron spectroscopy and scanning tunneling microscopy. In the present work we perform a density functional approach within Quantum Expresso code in order to study structural and magnetic properties of CrO overlayers on Fe(001)bcc. The calculations are performed using DFT+U. The investigated systems include O/Cr/Fe(001)bcc, Cr/O/Fe(001)bcc, Cr0.25O0.75/Fe(001)bcc, as well as the O coverage Ox/Cr/Fe(001)bcc (x = 0.25; 0.50). We have found that the ordered CrO overlayer presents an antiferromagnetic coupling between Cr and Fe atoms. The O atoms are located closer to the Fe atoms of the surface than the Cr atoms. The ground state of the systems O/Cr/Fe(001)bcc and Cr/O/Fe(001)bcc corresponds to the O/Cr/Fe(001)bcc system with a magnetic coupling c(2 × 2). The effect of the O monolayer on Cr/Fe(001)bcc changes the ground state from p(1 × 1) ↓ to c(2 × 2) and produces an enhancement of the magnetic moments. The Ox overlayer on Cr/Fe(001)bcc produces an enhancement of the Cr magnetic moments.

  2. Fabry-Perot magnonic ballistic coherent transport across ultrathin ferromagnetic lamellar bcc Ni nanostructures between Fe leads

    NASA Astrophysics Data System (ADS)

    Khater, A.; Saim, L.; Tigrine, R.; Ghader, D.

    2018-06-01

    We propose thermodynamically stable systems of ultrathin lamellar bcc Ni nanostructures between bcc Fe leads, sbnd Fe[Ni(n)]Fesbnd , based on the available literature for bcc Ni overlayers on Fe(001) surfaces, and establish the necessary criteria for their structural and ferromagnetic order, for thicknesses n ≤ 6 bcc Ni monatomic layers. The system is globally ferromagnetic. A theoretical model is presented to investigate and understand the ballistic coherent scattering of Fe spin-waves, incident from the leads, at the ferromagnetic bcc Ni nanostructure. The Nisbnd Ni and Nisbnd Fe exchange are computed using the Ising effective field theory (EFT), and the magnetic ground state of the system is constructed in the Heisenberg representation. We compute the spin-wave eigenmodes localized on the bcc Ni nanostructure, using the phase field matching theory (PFMT), illustrating the effects of symmetry breaking on the confinement of localized spin excitations. The reflection and transmission scattering properties of spin-waves incident from the Fe leads, across the embedded Ni nanostructures are investigated within the framework of the same PFMT methodology. A highly refined Fabry-Perot magnonic ballistic coherent transmission spectra is observed for these sbnd Fe[Ni(n)]Fesbnd systems.

  3. Crystal-melt interface mobility in bcc Fe: Linking molecular dynamics to phase-field and phase-field crystal modeling

    NASA Astrophysics Data System (ADS)

    Guerdane, M.; Berghoff, M.

    2018-04-01

    By combining molecular dynamics (MD) simulations with phase-field (PF) and phase-field crystal (PFC) modeling we study collision-controlled growth kinetics from the melt for pure Fe. The MD/PF comparison shows, on the one hand, that the PF model can be properly designed to reproduce quantitatively different aspects of the growth kinetics and anisotropy of planar and curved solid-liquid interfaces. On the other hand, this comparison demonstrates the ability of classical MD simulations to predict morphology and dynamics of moving curved interfaces up to a length scale of about 0.15 μ m . After mapping the MD model to the PF one, the latter permits to analyze the separate contribution of different anisotropies to the interface morphology. The MD/PFC agreement regarding the growth anisotropy and morphology extends the trend already observed for the here used PFC model in describing structural and elastic properties of bcc Fe.

  4. Carbon in iron phases under high pressure

    NASA Astrophysics Data System (ADS)

    Huang, L.; Skorodumova, N. V.; Belonoshko, A. B.; Johansson, B.; Ahuja, R.

    2005-11-01

    The influence of carbon impurities on the properties of iron phases (bcc, hcp, dhcp, fcc) has been studied using the first-principles projector augmented-wave (PAW) method for a wide pressure range. It is shown that the presence of ~6 at. % of interstitial carbon has a little effect on the calculated structural sequence of the iron phases under high pressure. The bcc -> hcp transition both for pure iron and iron containing carbon takes place around 9 GPa. According to the enthalpies comparison, the solubility of carbon into the iron solid is decreased by high pressure. The coexistence of iron carbide (Fe3C) + pure hcp Fe is most stable phase at high pressure compared with other phases. Based on the analysis of the pressure-density dependences for Fe3C and hcp Fe, we suggest that there might be some fraction of iron carbide present in the core.

  5. The annealing temperature dependences of microstructures and magnetic properties in electro-chemical deposited CoNiFe thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suharyadi, Edi, E-mail: esuharyadi@ugm.ac.id; Riyanto, Agus; Abraha, Kamsul

    2016-04-19

    CoNiFe thin films with various compositions had been successfully fabricated using electro-chemical deposition method. The crystal structure of Co{sub 65}Ni{sub 15}Fe{sub 20}, Co{sub 62}Ni{sub 15}Fe{sub 23}, and Co{sub 55}Ni{sub 15}Fe{sub 30} thin films was fcc, bcc-fcc mix, and bcc, respectively. The difference crystal structure results the difference in magnetic properties. The saturation magnetic flux density (Bs) of Co{sub 65}Ni{sub 15}Fe{sub 20}, Co{sub 62}Ni{sub 15}Fe{sub 23}, and Co{sub 55}Ni{sub 15}Fe{sub 30} thin films was 1.89 T, 1.93 T, and 2.05 T, respectively. An optimal annealing temperature was determined for controlling the microstructure and magnetic properties of CoNiFe thin films. Depending onmore » annealing temperature, the ratio of bcc and fcc structure varied without changing the film composition. By annealing at temperature of T ≥ 350°C, the intensity ratio of X-ray diffraction peaks for bcc(110) to fcc(111) increased. The increase of phase ratio of bcc(110) to fcc(111) caused the increase of Bs, from 1.89 T to 1.95 T. Coercivity (Hc) also increased after annealing, from 2.6 Oe to 18.6 Oe for fcc phase thin films, from 2.0 Oe to 12.0 Oe for fcc-bcc mix phase thin films, and 7.8 Oe to 8 Oe for bcc phase thin films. The changing crystal structures during annealing process indicated that the thermal treatment at high temperature cause the changing crystallinity and atomic displacement. The TEM bright-field images with corresponding selected-area electron diffraction (SAED) patterns showed that there are strongly effects of thermal annealing on the size of fcc and bcc phase crystalline grain as described by size of individual spot and discontinuous rings. The size of crystalline grains increased by thermal annealing. The evolution of bcc and fcc structures of CoNiFe during annealing is though to be responsible for the change of magnetic properties.« less

  6. A multi-scale model of dislocation plasticity in α-Fe: Incorporating temperature, strain rate and non-Schmid effects

    DOE PAGES

    Lim, H.; Hale, L. M.; Zimmerman, J. A.; ...

    2015-01-05

    In this study, we develop an atomistically informed crystal plasticity finite element (CP-FE) model for body-centered-cubic (BCC) α-Fe that incorporates non-Schmid stress dependent slip with temperature and strain rate effects. Based on recent insights obtained from atomistic simulations, we propose a new constitutive model that combines a generalized non-Schmid yield law with aspects from a line tension (LT) model for describing activation enthalpy required for the motion of dislocation kinks. Atomistic calculations are conducted to quantify the non-Schmid effects while both experimental data and atomistic simulations are used to assess the temperature and strain rate effects. The parameterized constitutive equationmore » is implemented into a BCC CP-FE model to simulate plastic deformation of single and polycrystalline Fe which is compared with experimental data from the literature. This direct comparison demonstrates that the atomistically informed model accurately captures the effects of crystal orientation, temperature and strain rate on the flow behavior of siangle crystal Fe. Furthermore, our proposed CP-FE model exhibits temperature and strain rate dependent flow and yield surfaces in polycrystalline Fe that deviate from conventional CP-FE models based on Schmid's law.« less

  7. Metastable bcc phase formation in 3d ferromagnetic transition metal thin films sputter-deposited on GaAs(100) substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minakawa, Shigeyuki, E-mail: s-minakawa@futamoto.elect.chuo-u.ac.jp; Ohtake, Mitsuru; Futamoto, Masaaki

    2015-05-07

    Co{sub 100−x}Fe{sub x} and Ni{sub 100−y}Fe{sub y} (at. %, x = 0–30, y = 0–60) films of 10 nm thickness are prepared on GaAs(100) substrates at room temperature by using a radio-frequency magnetron sputtering system. The detailed growth behavior is investigated by in-situ reflection high-energy electron diffraction. (100)-oriented Co and Ni single-crystals with metastable bcc structure are formed in the early stage of film growth, where the metastable structure is stabilized through hetero-epitaxial growth. With increasing the thickness up to 2 nm, the Co and the Ni films start to transform into more stable hcp and fcc structures through atomic displacements parallel to bcc(110) slide planes,more » respectively. The stability of bcc phase is improved by adding a small volume of Fe atoms into a Co film. The critical thickness of bcc phase formation is thicker than 10 nm for Co{sub 100−x}Fe{sub x} films with x ≥ 10. On the contrary, the stability of bcc phase for Ni-Fe system is less than that for Co-Fe system. The critical thicknesses for Ni{sub 100−y}Fe{sub y} films with y = 20, 40, and 60 are 1, 3, and 5 nm, respectively. The Co{sub 100−x}Fe{sub x} single-crystal films with metastable bcc structure formed on GaAs(100) substrates show in-plane uniaxial magnetic anisotropies with the easy direction along GaAs[011], similar to the case of Fe film epitaxially grown on GaAs(100) substrate. A Co{sub 100−x}Fe{sub x} film with higher Fe content shows a higher saturation magnetization and a lower coercivity.« less

  8. Iron nanoparticles with tunable tetragonal structure and magnetic properties

    NASA Astrophysics Data System (ADS)

    Liu, Jinming; Schliep, Karl; He, Shi-Hai; Ma, Bin; Jing, Ying; Flannigan, David J.; Wang, Jian-Ping

    2018-05-01

    Body-centered cubic (bcc) Fe is known as a typical soft magnetic material with high-saturation magnetization (Ms) and low magnetocrystalline anisotropy. However, first-principles calculations demonstrate that body-centered tetragonal (bct) Fe has higher magnetocrystalline anisotropy than bcc Fe and comparable Ms. In this work, bct Fe nanoparticles (NPs) were successfully fabricated by a gas-phase condensation method for the first time. The bct Fe phase is confirmed by the x-ray diffraction pattern and diffraction images of transmission electron microscopy. An increased magnetocrystalline anisotropy of bct Fe, (2.65 ±0.67 ) ×1 05J /m3 [ (21.2 ±5.3 ) μ eV /atom ], is observed, which is around seven times higher than that of bcc Fe 4.8 ×1 04J /m3 (3.5 μ eV /atom ). The bct Fe NPs sample has coercivity of 3.22 ×1 05 A/m at 5 K and 1.0 4 ×1 05 A/m at 300 K, which are much higher than that of bcc Fe NPs. In addition, the saturation magnetization at 5 K is estimated to be (1.6 ±0.4 ) ×1 06 A/m (2.2 ±0.5 μB/atom ), comparable to that of bcc Fe 1.7 ×1 06 A/m (2.2 μB/atom ).

  9. Statistical theory of diffusion in concentrated bcc and fcc alloys and concentration dependencies of diffusion coefficients in bcc alloys FeCu, FeMn, FeNi, and FeCr

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vaks, V. G.; Khromov, K. Yu., E-mail: khromov-ky@nrcki.ru; Pankratov, I. R.

    2016-07-15

    The statistical theory of diffusion in concentrated bcc and fcc alloys with arbitrary pairwise interatomic interactions based on the master equation approach is developed. Vacancy–atom correlations are described using both the second-shell-jump and the nearest-neighbor-jump approximations which are shown to be usually sufficiently accurate. General expressions for Onsager coefficients in terms of microscopic interatomic interactions and some statistical averages are given. Both the analytical kinetic mean-field and the Monte Carlo methods for finding these averages are described. The theory developed is used to describe sharp concentration dependencies of diffusion coefficients in several iron-based alloy systems. For the bcc alloys FeCu,more » FeMn, and FeNi, we predict the notable increase of the iron self-diffusion coefficient with solute concentration c, up to several times, even though values of c possible for these alloys do not exceed some percent. For the bcc alloys FeCr at high temperatures T ≳ 1400 K, we show that the very strong and peculiar concentration dependencies of both tracer and chemical diffusion coefficients observed in these alloys can be naturally explained by the theory, without invoking exotic models discussed earlier.« less

  10. Application of STEM characterization for investigating radiation effects in BCC Fe-based alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parish, Chad M.; Field, Kevin G.; Certain, Alicia G.

    2015-04-20

    This paper provides a general overview of advanced scanning transmission electron microscopy (STEM) techniques used for characterization of irradiated BCC Fe-based alloys. Advanced STEM methods provide the high-resolution imaging and chemical analysis necessary to understand the irradiation response of BCC Fe-based alloys. The use of STEM with energy dispersive x-ray spectroscopy (EDX) for measurement of radiation-induced segregation (RIS) is described, with an illustrated example of RIS in proton- and self-ion irradiated T91. Aberration-corrected STEM-EDX for nanocluster/nanoparticle imaging and chemical analysis is also discussed, and examples are provided from ion-irradiated oxide dispersion strengthened (ODS) alloys. In conclusion, STEM techniques for void,more » cavity, and dislocation loop imaging are described, with examples from various BCC Fe-based alloys.« less

  11. Microstructure and Room-Temperature Mechanical Properties of FeCrMoVTi x High-Entropy Alloys

    NASA Astrophysics Data System (ADS)

    Guo, Jun; Huang, Xuefei; Huang, Weigang

    2017-07-01

    FeCrMoVTi x ( x values represent the molar ratio, where x = 0, 0.5, 1.0, 1.5, and 2.0) high-entropy alloys were prepared by a vacuum arc melting method. The effects of Ti element on the microstructure and room-temperature mechanical properties of the as-cast FeCrMoVTi x alloys were investigated. The results show that the prepared alloys exhibited typical dendritic microstructure and the size of the microstructure became fine with increasing Ti content. The FeCrMoV alloy exhibited a single body-centered cubic structure (BCC1) and the alloys prepared with Ti element exhibited BCC1 + BCC2 mixed structure. The new BCC2 phase is considered as (Fe, Ti)-rich phase and was distributed in the dendrite region. With the increase of Ti content, the volume fraction of the BCC2 phase increased and its shape changed from a long strip to a network. For the FeCrMoV alloy, the fracture strength, plastic strain, and hardness reached as high as 2231 MPa, 28.2%, and 720 HV, respectively. The maximum hardness of 887 HV was obtained in the FeCrMoVTi alloy. However, the fracture strength, yield stress, and plastic strain of the alloys decreased continuously as Ti content increased. In the room-temperature compressive test, the alloys showed typical brittle fracture characteristics.

  12. The BCC/B2 morphologies in Al xNiCoFeCr high-entropy alloys

    DOE PAGES

    Ma, Yue; Jiang, Beibei; Li, Chunling; ...

    2017-02-15

    Here, the present work primarily investigates the morphological evolution of the body-centered-cubic (BCC)/B2 phases in Al xNiCoFeCr high-entropy alloys (HEAs) with increasing Al content. It is found that the BCC/B2 coherent morphology is closely related to the lattice misfit between these two phases, which is sensitive to Al. There are two types of microscopic BCC/B2 morphologies in this HEA series: one is the weave-like morphology induced by the spinodal decomposition, and the other is the microstructure of a spherical disordered BCC precipitation on the ordered B2 matrix that appears in HEAs with a much higher Al content. The mechanical properties,more » including the compressive yielding strength and microhardness of the Al xNiCoFeCr HEAs, are also discussed in light of the concept of the valence electron concentration (VEC).« less

  13. Tunneling-Magnetoresistance Ratio Comparison of MgO-Based Perpendicular-Magnetic-Tunneling-Junction Spin Valve Between Top and Bottom Co2Fe6B2 Free Layer Structure.

    PubMed

    Lee, Du-Yeong; Lee, Seung-Eun; Shim, Tae-Hun; Park, Jea-Gun

    2016-12-01

    For the perpendicular-magnetic-tunneling-junction (p-MTJ) spin valve with a nanoscale-thick bottom Co2Fe6B2 free layer ex situ annealed at 400 °C, which has been used as a common p-MTJ structure, the Pt atoms of the Pt buffer layer diffused into the MgO tunneling barrier. This transformed the MgO tunneling barrier from a body-centered cubic (b.c.c) crystallized layer into a mixture of b.c.c, face-centered cubic, and amorphous layers and rapidly decreased the tunneling-magnetoresistance (TMR) ratio. The p-MTJ spin valve with a nanoscale-thick top Co2Fe6B2 free layer could prevent the Pt atoms diffusing into the MgO tunneling barrier during ex situ annealing at 400 °C because of non-necessity of a Pt buffer layer, demonstrating the TMR ratio of ~143 %.

  14. Ion-beam-induced magnetic transformation of CO-stabilized fcc Fe films on Cu(100)

    NASA Astrophysics Data System (ADS)

    Shah Zaman, Sameena; Oßmer, Hinnerk; Jonner, Jakub; Novotný, Zbyněk; Buchsbaum, Andreas; Schmid, Michael; Varga, Peter

    2010-12-01

    We have grown 22-ML-thick Fe films on a Cu(100) single crystal. The films were stabilized in the face-centered-cubic (fcc) γ phase by adsorption of carbon monoxide during growth, preventing the transformation to the body-centered-cubic (bcc) α phase. A structural transformation of these films from fcc to bcc can be induced by Ar+ ion irradiation. Scanning-tunneling microscopy images show the nucleation of bcc crystallites, which grow with increasing Ar+ ion dose and eventually result in complete transformation of the film to bcc. Surface magneto-optic Kerr effect measurements confirm the transformation of the Fe film from paramagnetic (fcc) to ferromagnetic (bcc) with an in-plane easy axis. The transformation can also be observed by low-energy electron diffraction. We find only very few nucleation sites of the bcc phase and argue that nucleation of the bcc phase happens under special circumstances during resolidification of the molten iron in the thermal spike after ion impact. Intermixing with the Cu substrate impedes the transformation. We also demonstrate the transformation of films coated with Au to protect them from oxidation at ambient conditions.

  15. Predicting the Crystal Structure and Phase Transitions in High-Entropy Alloys

    NASA Astrophysics Data System (ADS)

    King, D. M.; Middleburgh, S. C.; Edwards, L.; Lumpkin, G. R.; Cortie, M.

    2015-06-01

    High-entropy alloys (HEAs) have advantageous properties compared with other systems as a result of their chemistry and crystal structure. The transition between a face-centered cubic (FCC) and body-centered cubic (BCC) structure in the Al x CoCrFeNi high-entropy alloy system has been investigated on the atomic scale in this work. The Al x CoCrFeNi system, as well as being a useful system itself, can also be considered a model HEA material. Ordering in the FCC structure was investigated, and an order-disorder transition was predicted at ~600 K. It was found that, at low temperatures, an ordered lattice is favored over a truly random lattice. The fully disordered BCC structure was found to be unstable. When partial ordering was imposed (lowering the symmetry), with Al and Ni limited specific sites of the BCC system, the BCC packing was stabilized. Decomposition of the ordered BCC single phase into a dual phase (Al-Ni rich and Fe-Cr rich) is also considered.

  16. Thermodynamic and kinetic modeling of grain boundary equilibrium segregation of P in α-Fe

    DOE PAGES

    Yang, Y.; Chen, S. -L.

    2017-04-18

    Phosphorus is a primary contributor to interface fracture and embrittlement in steels because of its strong segregation tendency at grain boundaries (GBs). The lack of consistency in literature data imposes great difficulties in performing segregation modeling that is compatible with both the Langmuir-Mclean segregation theory and the thermodynamic description of the Bcc(Fe,P) phase. Our work carefully evaluated experimental data for phosphorus segregation at GBs in -Fe and provided a new formula for converting the auger electron spectroscopy (AES) peak height ratio to GBs. Furthermore, based on newly assessed literature data, this work proposes that the major driving force for phosphorusmore » segregation is the formation of Fe 3P-type clusters at GBs, which is supported not only by the almost equivalent Gibbs energy of _Fe using the Bcc(Fe,P) substitutional model and the Bcc(Fe,Fe 3P, P) associate model, but also by the good agreement between thermodynamic/kinetic modeling results and experimental data.« less

  17. Boron diffusion in bcc-Fe studied by first-principles calculations

    NASA Astrophysics Data System (ADS)

    Xianglong, Li; Ping, Wu; Ruijie, Yang; Dan, Yan; Sen, Chen; Shiping, Zhang; Ning, Chen

    2016-03-01

    The diffusion mechanism of boron in bcc-Fe has been studied by first-principles calculations. The diffusion coefficients of the interstitial mechanism, the B-monovacancy complex mechanism, and the B-divacancy complex mechanism have been calculated. The calculated diffusion coefficient of the interstitial mechanism is D0 = 1.05 × 10-7 exp (-0.75 eV/kT) m2 · s-1, while the diffusion coefficients of the B-monovacancy and the B-divacancy complex mechanisms are D1 = 1.22 × 10-6 f1 exp (-2.27 eV/kT) m2 · s-1 and D2 ≈ 8.36 × 10-6 exp (-4.81 eV/kT) m2 · s-1, respectively. The results indicate that the dominant diffusion mechanism in bcc-Fe is the interstitial mechanism through an octahedral interstitial site instead of the complex mechanism. The calculated diffusion coefficient is in accordance with the reported experiment results measured in Fe-3%Si-B alloy (bcc structure). Since the non-equilibrium segregation of boron is based on the diffusion of the complexes as suggested by the theory, our calculation reasonably explains why the non-equilibrium segregation of boron is not observed in bcc-Fe in experiments. Project supported by the National Natural Science Foundation of China (Grant No. 51276016) and the National Basic Research Program of China (Grant No. 2012CB720406).

  18. Theoretical Investigation of Stabilizing Mechanism by Boron in Body-Centered Cubic Iron Through (Fe,Cr)23(C,B)6 Precipitates

    NASA Astrophysics Data System (ADS)

    Sahara, Ryoji; Matsunaga, Tetsuya; Hongo, Hiromichi; Tabuchi, Masaaki

    2016-05-01

    Small amounts of boron improve the mechanical properties in high-chromium ferritic heat-resistant steels. In this work, the stabilizing mechanism by boron in body-centered cubic iron (bcc Fe) through (Fe,Cr)23(C,B)6 precipitates was investigated by first-principles calculations. Formation energy analysis of (Fe,Cr)23(C,B)6 reveals that the compounds become more stable to elemental solids as the boron concentration increases. Furthermore, the interface energy of bcc Fe(110) || Fe23(C,B)6(111) also decreases with boron concentration in the compounds. The decreased interface energy caused by boron addition is explained by the balance between the change in the phase stability of the precipitates and the change in the misfit parameter for the bcc Fe matrix and the precipitates. These results show that boron stabilizes the microstructure of heat-resistant steels, which is important for understanding the origins of the creep strength in ferritic steels.

  19. Phase Transformation and Aging Behavior of Al0.5CoCrFeNiSi0.2 High-Entropy Alloy

    NASA Astrophysics Data System (ADS)

    Zhang, C.; Wu, G. F.; Dai, P. Q.

    2015-05-01

    An Al0.5CoCrFeNiSi0.2 high-entropy alloy was prepared by vacuum arc melting. The alloy was aged from 700 to 1100 °C. The effects of aging on the phase transformation and mechanical performances were explored. The as-cast alloy showed a dendritic (DR) microstructure. The DR region was an Fe,Cr-rich FCC phase, while the interdendritic (ID) region was a spinodal structure composed of Fe,Cr-rich BCC (A2) and Ni,Al-rich BCC (B2) phases. At aging temperatures between 700 and 900 °C, the Fe,Cr-rich BCC (A2) phase in the ID region transformed into σ and Fe,Cr-rich FCC phases. Meanwhile, some Ni,Al-rich FCC phase particles precipitated from the DR region. During aging at 1100 °C, the DR microstructure disappeared, and a microstructure composed of Fe,Cr-rich FCC and Ni,Al-rich BCC (B2) phases both possessing a lamellar shape was developed. The alloy exhibited evident hardening and lower tensile strain when the aging temperature was lower than 1000 °C, which was mainly attributed to the generation of the σ phase in the ID region. However, a contrasting behavior was observed when the aging temperature was higher than 1000 °C, which was attributed to the redissolution of the σ phase and the microstructure coarsening.

  20. The effect of Mn and B on the magnetic and structural properties of nanostructured Fe60Al40 alloys produced by mechanical alloying.

    PubMed

    Rico, M M; Alcázar, G A Pérez; Zamora, L E; González, C; Greneche, J M

    2008-06-01

    The effect of Mn and B on the magnetic and structural properties of nanostructured samples of the Fe60Al40 system, prepared by mechanical alloying, was studied by 57Fe Mössbauer spectrometry, X-ray diffraction and magnetic measurements. In the case of the Fe(60-x)Mn(x)Al40 system, 24 h milling time is required to achieve the BCC ternary phase. Different magnetic structures are observed according to the temperature and the Mn content for alloys milled during 48 h: ferromagnetic, antiferromagnetic, spin-glass, reentrant spin-glass and superparamagnetic behavior. They result from the bond randomness behaviour induced by the atomic disorder introduced by the MA process and from the competitive interactions of the Fe-Fe ferromagnetic interactions and the Mn-Mn and Fe-Mn antiferromagnetic interactions and finally the presence of Al atoms acting as dilutors. When B is added in the Fe60Al40 alloy and milled for 12 and 24 hours, two crystalline phases were found: a prevailing FeAl BCC phase and a Fe2B phase type. In addition, one observes an additional contribution attributed to grain boundaries which increases when both milling time and boron composition increase. Finally Mn and B were added to samples of the Fe60Al40 system prepared by mechanical alloying during 12 and 24 hours. Mn content was fixed to 10 at.% and B content varied between 0 and 20 at.%, substituting Al. X-ray patterns show two crystalline phases, the ternary FeMnAl BCC phase, and a (Fe,Mn)2B phase type. The relative proportion of the last phase increases when the B content increases, in addition to changes of the grain size and the lattice parameter. Such behavior was observed for both milling periods. On the other hand, the magnetic hyperfine field distributions show that both phases exhibit chemical disorder, and that the contribution attributed to the grain boundaries is less important when the B content increases. Coercive field values of about 10(2) Oe slightly increase with boron content. Comparison with previous results on FeAIB alloys shows that Mn promotes the structural stability of the nanostructured powders.

  1. Synthesis of AlFeCuCrMg{sub x} (x = 0, 0.5, 1, 1.7) alloy powders by mechanical alloying

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maulik, Ornov; Kumar, Vinod, E-mail: vkt.meta@mnit.ac.in; Adjunct Faculty, Materials Research Centre, Malaviya National Institute of Technology, Jaipur 302017

    2015-12-15

    Novel AlFeCuCrMg{sub x} (x = 0, 0.5, 1, 1.7 mol) high-entropy alloys (HEAs) were synthesized by mechanical alloying. The effect of Mg content on the phase evolution of HEAs was investigated using X-Ray diffractometry (XRD), transmission electron microscopy (TEM) and selected area electron diffraction (SAED) pattern analysis. The particle morphology and composition of HEAs were investigated by scanning electron microscopy (SEM). Thermodynamic parameters were calculated and analyzed to explain the formation of a solid solution. XRD analysis revealed BCC as major phase and FCC as a minor phase in as-milled AlFeCuCr and AlFeCuCrMg{sub 0.5} HEAs. Also, XRD analysis of as-milledmore » AlFeCuCrMg, AlFeCuCrMg{sub 1.7} confirmed the formation of two BCC phases (BCC 1 and BCC 2). TEM–SAED analysis of AlFeCuCrMg{sub x} HEAs concurred with XRD results. Microstructural features and mechanism for solid solution formation have been conferred in detail. Phase formation of the present HEAs has been correlated with calculated thermodynamic parameters. Differential thermal analysis (TGA-DTA) of these alloys confirmed that there is no substantial phase change up to 500 °C. - Highlights: • Novel AlFeCuCrMg{sub x} (x = 0, 0.5, 1, 1.7) HEAs were prepared by mechanical alloying. • Phase evolution and lattice parameter were studied by X-Ray Diffraction. • Crystallite size and lattice microstrain calculated failed to obey the Williamson–Hall method. • Criterions for formation of simple solid solution were compared to the thermodynamic parameters of the present HEAs. • Increase in the Mg concentration in AlMg{sub x}FeCuCr (x = 0, 0.5, 1, 1.7) HEAs supports the formation of BCC phase.« less

  2. Phase stability, ordering tendencies, and magnetism in single-phase fcc Au-Fe nanoalloys

    DOE PAGES

    Zhuravlev, I. A.; Barabash, S. V.; An, J. M.; ...

    2017-10-01

    Bulk Au-Fe alloys separate into Au-based fcc and Fe-based bcc phases, but L1 0 and L1 2 orderings were reported in single-phase Au-Fe nanoparticles. Motivated by these observations, we study the structural and ordering energetics in this alloy by combining density functional theory (DFT) calculations with effective Hamiltonian techniques: a cluster expansion with structural filters, and the configuration-dependent lattice deformation model. The phase separation tendency in Au-Fe persists even if the fcc-bcc decomposition is suppressed. The relative stability of disordered bcc and fcc phases observed in nanoparticles is reproduced, but the fully ordered L1 0 AuFe, L1 2 Au 3Fe,more » and L1 2 AuFe 3 structures are unstable in DFT. But, a tendency to form concentration waves at the corresponding [001] ordering vector is revealed in nearly-random alloys in a certain range of concentrations. Furthermore, this incipient ordering requires enrichment by Fe relative to the equiatomic composition, which may occur in the core of a nanoparticle due to the segregation of Au to the surface. Effects of magnetism on the chemical ordering are also discussed.« less

  3. Structural and magnetic properties of FexNi100-x alloys synthesized using Al as a reducing metal

    NASA Astrophysics Data System (ADS)

    Srakaew, N.; Jantaratana, P.; Nipakul, P.; Sirisathitkul, C.

    2017-08-01

    Iron-nickel (Fe-Ni) alloys comprising nine different compositions were rapidly synthesized from the redox reaction using aluminum foils as the reducing metal. Compared with conventional chemical syntheses, this simple approach is relatively safe and allows control over the alloy morphology and magnetic behavior as a function of the alloy composition with minimal oxidation. For alloys having low (10%-30%) Fe content the single face-centered cubic (FCC) FeNi3 phase was formed with nanorods aligned in the (1 1 1) crystalline direction on the cluster surface. This highly anisotropic morphology gradually disappeared as the Fe content was raised to 40%-70% with the alloy structure possessing a mixture of FCC FeNi3 and body-centered cubic (BCC) Fe7Ni3. The FCC phase was entirely replaced by the BCC structure upon further increase the Fe content to 80%-90%. The substitution of Ni by Fe in the crystals and the dominance of the BCC phase over the FCC structure gave rise to enhanced magnetization. By contrast, the coercive field decreased as a function of increasing Fe because of the reduction in shape anisotropy and the rise of saturation magnetization.

  4. Phase stability, ordering tendencies, and magnetism in single-phase fcc Au-Fe nanoalloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhuravlev, I. A.; Barabash, S. V.; An, J. M.

    Bulk Au-Fe alloys separate into Au-based fcc and Fe-based bcc phases, but L1 0 and L1 2 orderings were reported in single-phase Au-Fe nanoparticles. Motivated by these observations, we study the structural and ordering energetics in this alloy by combining density functional theory (DFT) calculations with effective Hamiltonian techniques: a cluster expansion with structural filters, and the configuration-dependent lattice deformation model. The phase separation tendency in Au-Fe persists even if the fcc-bcc decomposition is suppressed. The relative stability of disordered bcc and fcc phases observed in nanoparticles is reproduced, but the fully ordered L1 0 AuFe, L1 2 Au 3Fe,more » and L1 2 AuFe 3 structures are unstable in DFT. But, a tendency to form concentration waves at the corresponding [001] ordering vector is revealed in nearly-random alloys in a certain range of concentrations. Furthermore, this incipient ordering requires enrichment by Fe relative to the equiatomic composition, which may occur in the core of a nanoparticle due to the segregation of Au to the surface. Effects of magnetism on the chemical ordering are also discussed.« less

  5. Magnetostrictive performance of additively manufactured CoFe rods using the LENS (TM) system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, Nicholas J.; Yoo, Jin-Hyeong; Ott, Ryan T.

    Magnetostrictive materials exhibit a strain in the presence of a variable magnetic field. While they normally require large, highly oriented crystallographic grains for high strain values, metal additive manufacturing (3D printing) may be able to produce highly textured polycrystalline rods, with properties comparable to those manufactured using the more demanding free standing zone melting (FSZM) technique. Rods of Co 75.8Fe 24.2 and Co 63.7Fe 36.3 have been fabricated using the Laser engineered net shaping (LENS TM) system to evaluate the performance of additively manufactured magnetic and magnetostrictive materials. The 76% Co sample showed an average magnetostriction (λ) of 86 ppmmore » at a stress of 124 MPa; in contrast, the 64% Co sample showed only 27 ppm at the same stress. For direct comparison, a Co 67Fe 33 single crystal disk, also measured as part of this study, exhibited a magnetostriction value of 131 and 91 microstrain in the [100] and [111] directions, respectively, with a calculated polycrystalline value (λ s) of 107 microstrain. Electron back scattered diffraction (EBSD) has been used to qualitatively link the performance with crystallographic orientation and phase information, showing only the BCC phase in the 76% Co sample, but three different phases (BCC, FCC, and HCP) in the 64% Co sample.« less

  6. Magnetostrictive performance of additively manufactured CoFe rods using the LENSTM system

    NASA Astrophysics Data System (ADS)

    Jones, Nicholas J.; Yoo, Jin-Hyeong; Ott, Ryan T.; Lambert, Paul K.; Petculescu, Gabriela; Simsek, Emrah; Schlagel, Deborah; Lograsso, Thomas A.

    2018-05-01

    Magnetostrictive materials exhibit a strain in the presence of a variable magnetic field. While they normally require large, highly oriented crystallographic grains for high strain values, metal additive manufacturing (3D printing) may be able to produce highly textured polycrystalline rods, with properties comparable to those manufactured using the more demanding free standing zone melting (FSZM) technique. Rods of Co75.8Fe24.2 and Co63.7Fe36.3 have been fabricated using the Laser engineered net shaping (LENSTM) system to evaluate the performance of additively manufactured magnetic and magnetostrictive materials. The 76% Co sample showed an average magnetostriction (λ) of 86 ppm at a stress of 124 MPa; in contrast, the 64% Co sample showed only 27 ppm at the same stress. For direct comparison, a Co67Fe33 single crystal disk, also measured as part of this study, exhibited a magnetostriction value of 131 and 91 microstrain in the [100] and [111] directions, respectively, with a calculated polycrystalline value (λs) of 107 microstrain. Electron back scattered diffraction (EBSD) has been used to qualitatively link the performance with crystallographic orientation and phase information, showing only the BCC phase in the 76% Co sample, but three different phases (BCC, FCC, and HCP) in the 64% Co sample.

  7. Magnetostrictive performance of additively manufactured CoFe rods using the LENS (TM) system

    DOE PAGES

    Jones, Nicholas J.; Yoo, Jin-Hyeong; Ott, Ryan T.; ...

    2018-05-01

    Magnetostrictive materials exhibit a strain in the presence of a variable magnetic field. While they normally require large, highly oriented crystallographic grains for high strain values, metal additive manufacturing (3D printing) may be able to produce highly textured polycrystalline rods, with properties comparable to those manufactured using the more demanding free standing zone melting (FSZM) technique. Rods of Co 75.8Fe 24.2 and Co 63.7Fe 36.3 have been fabricated using the Laser engineered net shaping (LENS TM) system to evaluate the performance of additively manufactured magnetic and magnetostrictive materials. The 76% Co sample showed an average magnetostriction (λ) of 86 ppmmore » at a stress of 124 MPa; in contrast, the 64% Co sample showed only 27 ppm at the same stress. For direct comparison, a Co 67Fe 33 single crystal disk, also measured as part of this study, exhibited a magnetostriction value of 131 and 91 microstrain in the [100] and [111] directions, respectively, with a calculated polycrystalline value (λ s) of 107 microstrain. Electron back scattered diffraction (EBSD) has been used to qualitatively link the performance with crystallographic orientation and phase information, showing only the BCC phase in the 76% Co sample, but three different phases (BCC, FCC, and HCP) in the 64% Co sample.« less

  8. Metastable phase formation in undercooled Fe-Co melts under terrestrial and parabolic flight conditions

    NASA Astrophysics Data System (ADS)

    Hermann, R.; Löser, W.; Lindenkreuz, H. G.; Yang-Bitterlich, W.; Mickel, Ch.; Diefenbach, A.; Schneider, S.; Dreier, W.

    2007-12-01

    Soft magnetic Fe-Co alloys display primary fcc phase solidification for>19,5 at% Co in conventional near-equilibrium solidification processes. Undercooled Fe-Co melt drops within the composition range of 30 to 50 at% Co have been investigated with the electromagnetic levitation technique. The solidification kinetics was measured in situ using a high-resolution Siphotodiode. Melt drops were undercooled up to 263 K below the liquidus temperature and subsequently quenched onto a chill substrate in order to characterize the solidification sequence and microstructure. The transition from stable fcc phase to metastable bcc primary phase solidification has been observed after reaching a critical undercooling level. The critical undercooling increases with rising Co content. The growth velocity drops obviously after transition to metastable bcc phase formation. Parabolic flight experiments were performed in order to study the phase selection under reduced gravity conditions. Under microgravity conditions, a much smaller critical undercooling and an increased life time of the metastable bcc phase were obtained. This result was validated with TEM investigations. The appearance of Fe-O particles gives an indirect hint for an intermediate fcc phase formation from the metastable bcc phase at elevated temperature.

  9. Elemental moment variation of bcc FexMn1-x on MgO(001)

    NASA Astrophysics Data System (ADS)

    Bhatkar, H.; Snow, R. J.; Arenholz, E.; Idzerda, Y. U.

    2017-02-01

    We report the growth, structural characterization, and electronic structure evolution of epitaxially grown bcc FexMn1-x on MgO(001). It is observed that the 20 nm thick FexMn1-x alloy films remained bcc from 0.65≤x≤1, much beyond the bulk stability range of 0.88≤x≤1. X-ray absorption spectroscopy and X-ray magnetic circular dichroism show that both the Fe and Mn L3 binding energies slightly increase with Mn incorporation and that the elemental moment of Fe in the 20 nm crystalline bcc alloy film remain nearly constant, then shows a dramatic collapse near x 0.84. The Mn MCD intensity is found to be small at all compositions that exhibit ferromagnetism

  10. High-Pressure Phase Transition of Iron: A Combined Magnetic Remanence and Mössbauer Study

    NASA Astrophysics Data System (ADS)

    Wei, Qingguo; McCammon, Catherine; Gilder, Stuart Alan

    2017-12-01

    We measured Mössbauer spectra and the acquisition of saturation isothermal remanent magnetization in alternating steps on the same sample of polycrystalline, multidiron metal powder in a diamond anvil cell across the body centered cubic (bcc) to hexagonal closed packed (hcp) phase transition at room temperature up to 19.2 GPa. Within the bcc stability field indicated by the presence of magnetic hyperfine splitting, saturation remanent magnetization and sextet area were well correlated during compression and decompression. The areas and dips of the outer (first and sixth) and middle (second and fifth) components of the sextet changed in relative proportion as a function of pressure, which was attributed to rotation of the magnetization direction perpendicular to the gamma-ray source. Sextet peaks disappeared above ˜15 GPa, yet magnetic remanence persisted. Magnetic remanence intensity divided by the fractional area of the sextet, taken to represent bcc Fe, attained maxima at pressures near the boundaries of the hysteretic transition, which we attribute to strain-related magnetostriction effects associated with a distorted bcc-hcp phase. Magnetic remanence observed within the hcp stability field, as defined by the absence of sextet peaks, could be due to a previously described, distorted bcc-hcp phase whose hyperfine field was below detection limits of Mössbauer spectroscopy. Our study suggests that distorted bcc-hcp Fe holds magnetic remanence and leaves open the possibility that this phase carries magnetic remanence into the pressure range where only pure hcp Fe is considered stable.

  11. ``Loose spins'' in Fe/Cu/Fe(001) structures

    NASA Astrophysics Data System (ADS)

    Heinrich, B.; Celinski, Z.; Liao, L. X.; From, M.; Cochran, J. F.

    1994-05-01

    Slonczewski recently proposed a model for the exchange coupling between ferromagnetic layers separated by a nonferromagnetic spacer based on the concept of ``loose spins.'' ``Loose spins'' contribute to the total exchange energy. We have studied the role of ``loose spins'' in bcc Fe/Cu/Fe(001) structures. bcc Fe/Cu/Fe(001) trilayers deposited at room temperature were investigated extensively in our previous studies. In our ``loose spin'' studies, the Fe was added inside the Cu interlayer. Several structures were atomically engineered in order to test the behavior of ``loose spins:'' One additional atomic layer of an (Fe+Cu) alloy were located in appropriate positions in a Cu spacer. The bilinear and biquadratic exchange coupling in the above structures was quantitatively studied with FMR in the temperature range 77-370 K and with MOKE at RT.

  12. Structure and magnetic properties of Fe-Co-B alloy thin films prepared on cubic (001) single-crystal substrates

    NASA Astrophysics Data System (ADS)

    Ohtake, Mitsuru; Serizawa, Kana; Futamoto, Masaaki; Kirino, Fumiyoshi; Inaba, Nobuyuki

    2018-04-01

    Fe70Co30 and (Fe70Co30)0.95B5 (at. %) alloy films of 5 nm thickness are prepared by sputtering on cubic (001) oxide substrates at 200 °C. The lattice mismatch between film and substrate is varied from -4.2%, 0%, to +3.5% by employing MgO, MgAl2O4, and SrTiO3 substrates, respectively. Fe70Co30 and (Fe70Co30)0.95B5 single-crystal films with bcc structure grow epitaxially on all the substrates in the orientation relationship of (001)[110]film || (001)[100]substrate. The in-plane and out-of-plane lattice constants, a and c, are in agreement within small differences ranging between +1.1% and -0.9% with the value of bulk bcc-Fe70Co30 crystal, even though there exist the lattice mismatches of -4.2% and +3.5%. The result indicates that misfit dislocations are introduced around the film/substrate interface when films are deposited on MgO and SrTiO3 substrates. The single-crystal films show in-plane magnetic anisotropies with the easy magnetization direction of bcc[100], which are reflecting the magnetocrystalline anisotropy of bulk Fe70Co30 crystal.

  13. Formation of Ultrafine Metal Particles by Gas-Evaporation VI. Bcc Metals, Fe, V, Nb, Ta, Cr, Mo and W

    NASA Astrophysics Data System (ADS)

    Saito, Yahachi; Mihama, Kazuhiro; Uyeda, Ryozi

    1980-09-01

    The crystal structures and habits of bcc metal particles have been investigated systematically by electron microscopy. The habits for the bcc structure are rhombic dodecahedra truncated by six {100} faces with various degrees of truncation from 0 to 100%. The truncation degree for Fe and V particles grown in the intermediate zone of a metal smoke is in good agreement with that for the Wulff polyhedron expected from the surface energies calculated for {110} and {100} faces. Particles of Cr, Mo and W have the A-15 type structure besides the ordinary bcc structure. The present results support the hypothesis that the A-15 type structure is stable when the particle size is small. The habits for the A-15 type structure are rhombic dodecahedra (Cr), {211} icositetrahedra (Cr and Mo) and rounded cubes (Mo and W).

  14. Cubic martensite in high carbon steel

    NASA Astrophysics Data System (ADS)

    Chen, Yulin; Xiao, Wenlong; Jiao, Kun; Ping, Dehai; Xu, Huibin; Zhao, Xinqing; Wang, Yunzhi

    2018-05-01

    A distinguished structural characteristic of martensite in Fe-C steels is its tetragonality originating from carbon atoms occupying only one set of the three available octahedral interstitial sites in the body-centered-cubic (bcc) Fe lattice. Such a body-centered-tetragonal (bct) structure is believed to be thermodynamically stable because of elastic interactions between the interstitial carbon atoms. For such phase stability, however, there has been a lack of direct experimental evidence despite extensive studies of phase transformations in steels over one century. In this Rapid Communication, we report that the martensite formed in a high carbon Fe-8Ni-1.26C (wt%) steel at room temperature induced by applied stress/strain has actually a bcc rather than a bct crystal structure. This finding not only challenges the existing theories on the stability of bcc vs bct martensite in high carbon steels, but also provides insights into the mechanism for martensitic transformation in ferrous alloys.

  15. Short-range order clustering in BCC Fe-Mn alloys induced by severe plastic deformation

    NASA Astrophysics Data System (ADS)

    Shabashov, V. A.; Kozlov, K. A.; Sagaradze, V. V.; Nikolaev, A. L.; Lyashkov, K. A.; Semyonkin, V. A.; Voronin, V. I.

    2018-03-01

    The effect of severe plastic deformation, namely, high-pressure torsion (HPT) at different temperatures and ball milling (BM) at different time intervals, has been investigated by means of Mössbauer spectroscopy in Fe100-xMnx (x = 4.1, 6.8, 9) alloys. Deformation affects the short-range clustering (SRC) in BCC lattice. Two processes occur: destruction of SRC by moving dislocations and enhancement of the SRC by migration of non-equilibrium defects. Destruction of SRC prevails during HPT at 80-293 K; whereas enhancement of SRC dominates at 473-573 K. BM starts enhancing the SRC formation at as low as 293 K due to local heating at impacts. The efficiency of HPT in terms of enhancing SRC increases with increasing temperature. The authors suppose that at low temperatures, a significant fraction of vacancies are excluded from enhancing SRC because of formation of mobile bi- and tri-vacancies having low efficiency of enhancing SRC as compared to that of mono vacancies. Milling of BCC Fe100-xMnx alloys stabilises the BCC phase with respect to α → γ transition at subsequent isothermal annealing because of a high degree of work hardening and formation of composition inhomogeneity.

  16. Nano-sized Superlattice Clusters Created by Oxygen Ordering in Mechanically Alloyed Fe Alloys

    NASA Astrophysics Data System (ADS)

    Hu, Yong-Jie; Li, Jing; Darling, Kristopher A.; Wang, William Y.; Vanleeuwen, Brian K.; Liu, Xuan L.; Kecskes, Laszlo J.; Dickey, Elizabeth C.; Liu, Zi-Kui

    2015-07-01

    Creating and maintaining precipitates coherent with the host matrix, under service conditions is one of the most effective approaches for successful development of alloys for high temperature applications; prominent examples include Ni- and Co-based superalloys and Al alloys. While ferritic alloys are among the most important structural engineering alloys in our society, no reliable coherent precipitates stable at high temperatures have been found for these alloys. Here we report discovery of a new, nano-sized superlattice (NSS) phase in ball-milled Fe alloys, which maintains coherency with the BCC matrix up to at least 913 °C. Different from other precipitates in ferritic alloys, this NSS phase is created by oxygen-ordering in the BCC Fe matrix. It is proposed that this phase has a chemistry of Fe3O and a D03 crystal structure and becomes more stable with the addition of Zr. These nano-sized coherent precipitates effectively double the strength of the BCC matrix above that provided by grain size reduction alone. This discovery provides a new opportunity for developing high-strength ferritic alloys for high temperature applications.

  17. Data files for ab initio calculations of the lattice parameter and elastic stiffness coefficients of bcc Fe with solutes

    DOE PAGES

    Fellinger, Michael R.; Hector, Jr., Louis G.; Trinkle, Dallas R.

    2016-11-29

    Here, we present computed datasets on changes in the lattice parameter and elastic stiffness coefficients of BCC Fe due to substitutional Al, B, Cu, Mn, and Si solutes, and octahedral interstitial C and N solutes. The data is calculated using the methodology based on density functional theory (DFT). All the DFT calculations were performed using the Vienna Ab initio Simulations Package (VASP). The data is stored in the NIST dSpace repository.

  18. Magnetic and structural characterization of ultra-thin Fe (222) films

    NASA Astrophysics Data System (ADS)

    Loving, Melissa G.; Brown, Emily E.; Rizzo, Nicholas D.; Ambrose, Thomas F.

    2018-05-01

    Varied thickness body centered cubic (BCC) ultrathin Fe films (10-50Å) have been sputter deposited onto Si (111) substrates. BCC Fe with the novel (222) texture was obtained by H- terminating the Si (111) starting substrate then immediately depositing the magnetic films. Structural results derived from grazing incidence x-ray diffraction and x-ray reflectivity confirm the crystallographic texture, film thickness, and interface roughness. Magnetic results indicate that Fe (222) exhibits soft magnetic switching (easy axis), high anisotropy (hard axis), which is maintained across the thickness range, and a positive magnetostriction (for the thicker film layers). The observed soft magnetic switching in this system makes it an ideal candidate for future magnetic memory development as well as other microelectronics applications that utilize magnetic materials.

  19. Vacancy-mediated fcc/bcc phase separation in Fe1 -xNix ultrathin films

    NASA Astrophysics Data System (ADS)

    Menteş, T. O.; Stojić, N.; Vescovo, E.; Ablett, J. M.; Niño, M. A.; Locatelli, A.

    2016-08-01

    The phase separation occurring in Fe-Ni thin films near the Invar composition is studied by using high-resolution spectromicroscopy techniques and density functional theory calculations. Annealed at temperatures around 300 ∘C ,Fe0.70Ni0.30 films on W(110) break into micron-sized bcc and fcc domains with compositions in agreement with the bulk Fe-Ni phase diagram. Ni is found to be the diffusing species in forming the chemical heterogeneity. The experimentally determined energy barrier of 1.59 ±0.09 eV is identified as the vacancy formation energy via density functional theory calculations. Thus, the principal role of the surface in the phase separation process is attributed to vacancy creation without interstitials.

  20. Interactions of solute (3p, 4p, 5p and 6p) with solute, vacancy and divacancy in bcc Fe

    NASA Astrophysics Data System (ADS)

    You, Yu-Wei; Kong, Xiang-Shan; Wu, Xue-Bang; Liu, Wei; Liu, C. S.; Fang, Q. F.; Chen, J. L.; Luo, G.-N.; Wang, Zhiguang

    2014-12-01

    Solute-vacancy binding energy is a key quantity in understanding solute diffusion kinetics and phase segregation, and may help choice of alloy compositions for future material design. However, the binding energy of solute with vacancy is notoriously difficult to measure and largely unknown in bcc Fe. With first-principles method, we systemically calculate the binding energies of solute (3p, 4p, 5p and 6p alloying solutes are included) with vacancy, divacancy and solute in bcc Fe. The binding energy of Si with vacancy in the present work is in good consistent with experimental value available. All the solutes considered are able to form stable solute-vacancy, solute-divacancy complexes, and the binding strength of solute-divacancy is about two times larger than that of solute-vacancy. Most solutes could not form stable solute-solute complexes except S, Se, In and Tl. The factors controlling the binding energies are analyzed at last.

  1. Thermodynamics and Equations of State of Iron to 350 GPa and 6000 K

    NASA Astrophysics Data System (ADS)

    Dorogokupets, P. I.; Dymshits, A. M.; Litasov, K. D.; Sokolova, T. S.

    2017-03-01

    The equations of state for solid (with bcc, fcc, and hcp structures) and liquid phases of Fe were defined via simultaneous optimization of the heat capacity, bulk moduli, thermal expansion, and volume at room and higher temperatures. The calculated triple points at the phase diagram have the following parameters: bcc-fcc-hcp is located at 7.3 GPa and 820 K, bcc-fcc-liquid at 5.2 GPa and 1998 K, and fcc-hcp-liquid at 106.5 GPa and 3787 K. At conditions near the fcc-hcp-liquid triple point, the Clapeyron slope of the fcc-liquid curve is dT/dP = 12.8 K/GPa while the slope of the hcp-liquid curve is higher (dT/dP = 13.7 K/GPa). Therefore, the hcp-liquid curve overlaps the metastable fcc-liquid curve at pressures of about 160 GPa. At high-pressure conditions, the metastable bcc-hcp curve is located inside the fcc-Fe or liquid stability field. The density, adiabatic bulk modulus and P-wave velocity of liquid Fe calculated up to 328.9 GPa at adiabatic temperature conditions started from 5882 K (outer/inner core boundary) were compared to the PREM seismological model. We determined the density deficit of hcp-Fe at the inner core boundary (T = 5882 K and P = 328.9 GPa) to be 4.4%.

  2. Thermodynamics and Equations of State of Iron to 350 GPa and 6000 K.

    PubMed

    Dorogokupets, P I; Dymshits, A M; Litasov, K D; Sokolova, T S

    2017-03-06

    The equations of state for solid (with bcc, fcc, and hcp structures) and liquid phases of Fe were defined via simultaneous optimization of the heat capacity, bulk moduli, thermal expansion, and volume at room and higher temperatures. The calculated triple points at the phase diagram have the following parameters: bcc-fcc-hcp is located at 7.3 GPa and 820 K, bcc-fcc-liquid at 5.2 GPa and 1998 K, and fcc-hcp-liquid at 106.5 GPa and 3787 K. At conditions near the fcc-hcp-liquid triple point, the Clapeyron slope of the fcc-liquid curve is dT/dP = 12.8 K/GPa while the slope of the hcp-liquid curve is higher (dT/dP = 13.7 K/GPa). Therefore, the hcp-liquid curve overlaps the metastable fcc-liquid curve at pressures of about 160 GPa. At high-pressure conditions, the metastable bcc-hcp curve is located inside the fcc-Fe or liquid stability field. The density, adiabatic bulk modulus and P-wave velocity of liquid Fe calculated up to 328.9 GPa at adiabatic temperature conditions started from 5882 K (outer/inner core boundary) were compared to the PREM seismological model. We determined the density deficit of hcp-Fe at the inner core boundary (T = 5882 K and P = 328.9 GPa) to be 4.4%.

  3. Vacancy-mediated fcc/bcc phase separation in Fe 1-xNi x ultrathin films

    DOE PAGES

    Mentes, T. O.; Stojic, N.; Vescovo, E.; ...

    2016-08-01

    The phase separation occurring in Fe-Ni thin lms near the Invar composition is studied by using high resolution spectromicroscopy techniques and density functional theory calculations. Annealed at temperatures around 300 C, Fe 0.70Ni 0.30 lms on W(110) break into micron-sized bcc and fcc domains with compositions in agreement with the bulk Fe-Ni phase diagram. Ni is found to be the di using species in forming the chemical heterogeneity. The experimentally-determined energy barrier of 1.59 0.09 eV is identi ed as the vacancy formation energy via density functional theory calculations. Thus, the principal role of the surface in the phase separationmore » process is attributed to vacancy creation without interstitials.« less

  4. Temperature dependent magnon-phonon coupling in bcc Fe from theory and experiment.

    PubMed

    Körmann, F; Grabowski, B; Dutta, B; Hickel, T; Mauger, L; Fultz, B; Neugebauer, J

    2014-10-17

    An ab initio based framework for quantitatively assessing the phonon contribution due to magnon-phonon interactions and lattice expansion is developed. The theoretical results for bcc Fe are in very good agreement with high-quality phonon frequency measurements. For some phonon branches, the magnon-phonon interaction is an order of magnitude larger than the phonon shift due to lattice expansion, demonstrating the strong impact of magnetic short-range order even significantly above the Curie temperature. The framework closes the previous simulation gap between the ferro- and paramagnetic limits.

  5. Superficial basal cell carcinoma: A comparison of superficial only subtype with superficial combined with other subtypes by age, sex and anatomic site in 3150 cases.

    PubMed

    Pyne, John H; Myint, Esther; Barr, Elizabeth M; Clark, Simon P; David, Michael; Na, Renua; Hou, Ruihang

    2017-08-01

    Basal cell carcinoma (BCC) may present as superficial subtype alone (sBCC) or superficial combined with other subtypes. The objective of this study was to compare sBCC without or with other BCC subtypes by age, sex and anatomic site. We retrospectively collected superficial BCC with the above characteristics from an Australian center during 2009 to 2014. We recorded 1528 sBCC and 1622 superficial BCC combined with other BCC subtype cases. Males numbered 2007 and females 1140. On males, head sites (forehead, cheek, nose and ear combined) compared to limb plus trunk sites displayed a higher incidence of superficial BCC combined with either nodular and or aggressive BCC subtypes (OR 13.15 CI 95% 8.9-19.5 P < .0001). On females a similar comparison also found a higher incidence of superficial BCC combined with solid subtype BCC on head sites compared to trunk and limb sites (OR 9.66 CI 95% 5.8-16.1 P < .0001). Superficial BCC alone is more likely on younger females on trunk and limb sites. Small partial biopsies reported as sBCC may miss other BCC subtypes present with higher risk on facial sites for males and females. Males had smaller proportions of superficial only subtype BCC on facial and ear sites compared to females. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Ab initio theory of noble gas atoms in bcc transition metals

    DOE PAGES

    Jiang, Chao; Zhang, Yongfeng; Gao, Yipeng; ...

    2018-01-01

    Systematic ab initio calculations based on density functional theory have been performed to gain fundamental understanding of the interactions between noble gas atoms (He, Ne, Ar and Kr) and bcc transition metals in groups 5B (V, Nb and Ta), 6B (Cr, Mo and W) and 8B (Fe).

  7. First-principles analysis of C2H2 molecule diffusion and its dissociation process on the ferromagnetic bcc-Fe110 surface.

    PubMed

    Ikeda, Minoru; Yamasaki, Takahiro; Kaneta, Chioko

    2010-09-29

    Using the projector-augmented plane wave method, we study diffusion and dissociation processes of C(2)H(2) molecules on the ferromagnetic bcc-Fe(110) surface and investigate the formation process of graphene created by C(2)H(2) molecules. The most stable site for C(2)H(2) on the Fe surface is a hollow site and its adsorption energy is - 3.5 eV. In order to study the diffusion process of the C(2)H(2) molecule, the barrier height energies for the C atom, C(2)-dimer and CH as well as the C(2)H(2) molecule are estimated using the nudged elastic band method. The barrier height energy for C(2)H(2) is 0.71 eV and this indicates that the C(2)H(2) diffuses easily on this FM bcc-Fe(110) surface. We further investigate the two step dissociation process of C(2)H(2) on Fe. The first step is the dissociation of C(2)H(2) into C(2)H and H, and the second step is that of C(2)H into C(2) and H. Their dissociation energies are 0.9 and 1.2 eV, respectively. These energies are relatively small compared to the dissociation energy 7.5 eV of C(2)H(2) into C(2)H and H in the vacuum. Thus, the Fe surface shows catalytic effects. We further investigate the initial formation process of graphene by increasing the coverage of C(2)H(2). The formation process of the benzene molecule on the FM bcc(110) surface is also discussed. We find that there exists a critical coverage of C(2)H(2) which characterizes the beginning of the formation of the graphene.

  8. Epitaxy of Fe/Cu/Si(1 1 1) ultrathin films: an Auger electron diffraction study

    NASA Astrophysics Data System (ADS)

    Castrucci, P.; Gunnella, R.; Bernardini, R.; Montecchiari, A.; Carboni, R.; De Crescenzi, M.

    2001-06-01

    Epitaxial Fe films, with thickness in the range between 1 and 50 ML (monolayer, ML), were grown in ultrahigh vacuum conditions on the 7×7 reconstructed (1 1 1)-Si surface. The films were evaporated on a Cu thick buffer layer to avoid iron silicides formation. Auger electron diffraction (AED) technique has been used to investigate the growth of the pseudomorphic film of fcc γ-Fe(1 1 1) and the successive growth of bcc Fe(1 1 0) domains in the Kurdjumov-Sachs orientation. The early stages of growth have been carefully investigated through AED to assess the pseudomorphism of iron γ-phase. AED patterns clearly show the presence of diffraction features that are fingerprints of the existence of a few bcc arranged atomic structures even for 1 ML iron coverage.

  9. Twinning to slip transition in ultrathin BCC Fe nanowires

    NASA Astrophysics Data System (ADS)

    Sainath, G.; Choudhary, B. K.

    2018-04-01

    We report twinning to slip transition with decreasing size and increasing temperature in ultrathin <100> BCC Fe nanowires. Molecular dynamics simulations have been performed on different nanowire size in the range 0.404-3.634 nm at temperatures ranging from 10 to 900 K. The results indicate that slip mode dominates at low sizes and high temperatures, while deformation twinning is promoted at high sizes and low temperatures. The temperature, at which the nanowires show twinning to slip transition, increases with increasing size. The different modes of deformation are also reflected appropriately in the respective stress-strain behaviour of the nanowires.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaur, Maninder; McCloy, John S.; Kukkadapu, Ravi

    Two sizes of iron/iron-oxide (Fe/Fe-oxide) nanoclusters (NCs) of 10 nm and 35 nm diameters were prepared using a cluster deposition technique. Both these NCs displayed XRD peaks due to body-centered cubic (bcc) Fe0 and magnetite-like phase. Mossbauer spectroscopy (MS) measurements: a) confirmed the core-shell nature of the NCs, b) the Fe-oxide shell to be nanocrystalline and partially oxidized, and c) the Fe-oxide spins are significantly canted. In addition to the bcc Fe and magnetite-like phases, a phase similar to tetragonal σ-Fe-Cr (8% Cr) was CLEARLY evident in the larger NC, based on X-ray diffraction. Origin of the tetragonallike phase inmore » the larger NC was not clear but could be due to significant distortion of the Fe0 core lattice planes; subtle peaks due to this phase were also apparent in the smaller NC. Unambiguous evidence for the presence of such a phase, however, was not clear from MS, X-ray photoelectron spectroscopy, vibrating sample magnetometry, X-ray magnetic circular dichroism, nor transmission electron microscopy. To our knowledge, this is the first report of tetragonallike phase in the Fe/Fe-oxide core-shell systems.« less

  11. Glancing angle deposition of Fe triangular nanoprisms consisting of vertically-layered nanoplates

    NASA Astrophysics Data System (ADS)

    Li, Jianghao; Li, Liangliang; Ma, Lingwei; Zhang, Zhengjun

    2016-10-01

    Fe triangular nanoprisms consisting of vertically-layered nanoplates were synthesized on Si substrate by glancing angle deposition (GLAD) with an electron beam evaporation system. It was found that Fe nanoplates with a crystallographic plane index of BCC (110) were stacked vertically to form triangular nanoprisms and the axial direction of the nanoprisms, BCC <001>, was normal to the substrate. The effects of experimental parameters of GLAD on the growth and morphology of Fe nanoprisms were systematically studied. The deposition rate played an important role in the morphology of Fe nanoprisms at the same length, the deposition angle just affected the areal density of nanoprisms, and the rotation speed of substrate had little influence within the parameter range we investigated. In addition, the crystal growth mechanism of Fe nanoprisms was explained with kinetically-controlled growth mechanism and zone model theory. The driving force of crystal growth was critical to the morphology and microstructure of Fe nanoprisms deposited by GLAD. Our work introduced an oriented crystal structure into the nanomaterials deposited by GLAD, which provided a new approach to manipulate the properties and functions of nanomaterials.

  12. Room-temperature ferromagnetic transitions and the temperature dependence of magnetic behaviors in FeCoNiCr-based high-entropy alloys

    NASA Astrophysics Data System (ADS)

    Na, Suok-Min; Yoo, Jin-Hyeong; Lambert, Paul K.; Jones, Nicholas J.

    2018-05-01

    High-entropy alloys (HEAs) containing multiple principle alloying elements exhibit unique properties so they are currently receiving great attention for developing innovative alloy designs. In FeCoNi-based HEAs, magnetic behaviors strongly depend on the addition of alloying elements, usually accompanied by structural changes. In this work, the effect of non-magnetic components on the ferromagnetic transition and magnetic behaviors in equiatomic FeCoNiCrX (X=Al, Ga, Mn and Sn) HEAs was investigated. Alloy ingots of nominal compositions of HEAs were prepared by arc melting and the button ingots were cut into discs for magnetic measurements as functions of magnetic field and temperature. The HEAs of FeCoNiCrMn and FeCoNiCrSn show typical paramagnetic behaviors, composed of solid solution FCC matrix, while the additions of Ga and Al in FeCoNiCr exhibit ferromagnetic behaviors, along with the coexistence of FCC and BCC phases due to spinodal decomposition. The partial phase transition in both HEAs with the additions of Ga and Al would enhance ferromagnetic properties due to the addition of the BCC phase. The saturation magnetization for the base alloy FeCoNiCr is 0.5 emu/g at the applied field of 20 kOe (TC = 104 K). For the HEAs of FeCoNiCrGa and FeCoNiCrAl, the saturation magnetization significantly increased to 38 emu/g (TC = 703 K) and 25 emu/g (TC = 277 K), respectively. To evaluate the possibility of solid solution FCC and BCC phases in FeCoNiCr-type HEAs, we introduced a parameter of valence electron concentration (VEC). The proposed rule for solid solution formation by the VEC was matched with FeCoNiCr-type HEAs.

  13. Angle Resolved Photoelectron and Auger Electron Diffraction as a Structural Probe for Surfaces, Interfaces, and Epitaxial Films.

    NASA Astrophysics Data System (ADS)

    Li, Hong

    The recently developed techniques of angle-resolved photoelectron and Auger electron diffraction (ARXPD/AED) have shown promise in identifying the structures of epitaxial films. This is due to the realization that electrons scattered by other atoms are enhanced along the forward direction. In this dissertation research, we have further investigated the capabilities of the ARXPD/AED technique. First, the complete polar angle distribution of the Auger electron intensity from Cu(001) was measured from the (100) to the (110) azimuth. The presentation of the ARAED in the form of a contour map clearly shows the relationship of the constructive and destructive interference of electron scattering to the crystallographic index of the crystal. Secondly, the angular distributions of electron emissions with initial states of 3p, 3d, 4d, and the Auger emission with electron kinetic energies ranging from 348 eV to 1477 eV were measured for single crystal Ag(001). The results show that all of these electron emissions have similar electron forward scattering enhancements along the directions of nearest and next nearest neighbour atoms in the crystal. The forward scattering enhancements do not shift as the electron kinectic energy changes. The ARXPD/AED combined with low energy electron diffraction (LEED) has been demonstrated to be a very powerful technique in probing both the long range order and the short range order of the epitaxial films. The epitaxial films studied include Co on Cu(001), Fe on Ag(001), Co on Ag(001), and Co on an ultra-thin film of Fe(001), which was epitaxially grown on Ag(001). We find that up to 20 ML thickness of high quality metastable fcc Co can be stabilized on Cu(001) at room temperature. We have directly verified that the Fe on Ag(001) is bcc. The Co on Ag(001) is neither bcc nor fcc for coverages of less than 3 ML. Thick films of Co on Ag(001) are disordered, of which a very small portion has a local structure of bcc. The bcc Co phases has been successfully stabilized on an ultra-thin film of bcc Fe(001). This is the first example of bcc Co epitaxially grown on a metal substrate at room temperature.

  14. Study of reversible magnetization in FeCoNi alloy nanowires with different diameters by first order reversal curve (FORC) diagrams

    NASA Astrophysics Data System (ADS)

    Samanifar, S.; Kashi, M. Almasi; Ramazani, A.

    2018-05-01

    Magnetic nanowires electrodeposited into solid templates are of high interest due to their tunable properties which are required for magnetic recording media and spintronic devices. Here, highly ordered arrays of FeCoNi NWs with varied diameters (between 60 and 150 nm) were fabricated into nanopores of hard-anodized aluminum oxide templates using pulsed ac electrodeposition technique. X-ray diffraction patterns indicated the formation of FeCoNi NWs with fcc FeNi and bcc FeCo alloy phases, being highly textured along the bcc [110] direction. Magnetic properties were studied by hysteresis loop measurements at room temperature and they showed reductions in coercivity and squareness values by increasing diameter. First-order reversal curve measurements revealed that, with increasing diameter from 60 to 150 nm, besides a transition from a single domain (SD) state to a pseudo SD state, an increase in the reversible magnetization component of the NWs from 11% to 24% occurred.

  15. Large moments in bcc FexCoyMnz ternary alloy thin films

    NASA Astrophysics Data System (ADS)

    Snow, R. J.; Bhatkar, H.; N'Diaye, A. T.; Arenholz, E.; Idzerda, Y. U.

    2018-02-01

    The elemental magnetic moments and the average atomic moment of 10-20 nm thick single crystal bcc (bct) FexCoyMnz films deposited on MgO(001) have been determined as a function of a broad range of compositions. Thin film epitaxy stabilized the bcc structure for 80% of the available ternary compositional space compared to only a 23% stability region for the bulk. The films that display ferromagnetism represent 60% of the available compositional possibilities compared to 25% for the bulk. A maximum average atomic moment of 3.25 ± 0.3 μB/atom was observed for a bcc Fe9Co62Mn29 film (well above the limit of the Slater-Pauling binary alloy curve of 2.45 μB/atom). The FexCoyMnz ternary alloys that exhibit high moments can only be synthesized as ultrathin films since the bcc structure is not stable in the bulk for those compositions.

  16. Abnormal Strain Rate Sensitivity Driven by a Unit Dislocation-Obstacle Interaction in bcc Fe

    NASA Astrophysics Data System (ADS)

    Bai, Zhitong; Fan, Yue

    2018-03-01

    The interaction between an edge dislocation and a sessile vacancy cluster in bcc Fe is investigated over a wide range of strain rates from 108 down to 103 s-1 , which is enabled by employing an energy landscape-based atomistic modeling algorithm. It is observed that, at low strain rates regime less than 105 s-1 , such interaction leads to a surprising negative strain rate sensitivity behavior because of the different intermediate microstructures emerged under the complex interplays between thermal activation and applied strain rate. Implications of our findings regarding the previously established global diffusion model are also discussed.

  17. Nanovoid growth in BCC α-Fe: influences of initial void geometry

    NASA Astrophysics Data System (ADS)

    Xu, Shuozhi; Su, Yanqing

    2016-12-01

    The growth of voids has a great impact on the mechanical properties of ductile materials by altering their microstructures. Exploring the process of void growth at the nanoscale helps in understanding the dynamic fracture of metals. While some very recent studies looked into the effects of the initial geometry of an elliptic void on the plastic deformation of face-centered cubic metals, a systematic study of the initial void ellipticity and orientation angle in body-centered cubic (BCC) metals is still lacking. In this paper, large scale molecular dynamics simulations with millions of atoms are conducted, investigating the void growth process during tensile loading of metallic thin films in BCC α-Fe. Our simulations elucidate the intertwined influences on void growth of the initial ellipticity and initial orientation angle of the void. It is shown that these two geometric parameters play an important role in the stress-strain response, the nucleation and evolution of defects, as well as the void size/outline evolution in α-Fe thin films. Results suggest that, together with void size, different initial void geometries should be taken into account if a continuum model is to be applied to nanoscale damage progression.

  18. Formation of soft magnetic high entropy amorphous alloys composites containing in situ solid solution phase

    NASA Astrophysics Data System (ADS)

    Wei, Ran; Sun, Huan; Chen, Chen; Tao, Juan; Li, Fushan

    2018-03-01

    Fe-Co-Ni-Si-B high entropy amorphous alloys composites (HEAACs), which containing high entropy solid solution phase in amorphous matrix, show good soft magnetic properties and bending ductility even in optimal annealed state, were successfully developed by melt spinning method. The crystallization phase of the HEAACs is solid solution phase with body centered cubic (BCC) structure instead of brittle intermetallic phase. In addition, the BCC phase can transformed into face centered cubic (FCC) phase with temperature rise. Accordingly, Fe-Co-Ni-Si-B high entropy alloys (HEAs) with FCC structure and a small amount of BCC phase was prepared by copper mold casting method. The HEAs exhibit high yield strength (about 1200 MPa) and good plastic strain (about 18%). Meanwhile, soft magnetic characteristics of the HEAs are largely reserved from HEAACs. This work provides a new strategy to overcome the annealing induced brittleness of amorphous alloys and design new advanced materials with excellent comprehensive properties.

  19. Experimental and Computational Investigation of High Entropy Alloys for Elevated-Temperature Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liaw, Peter; Zhang, Fan; Zhang, Chuan

    2016-07-30

    To create and design novel structural materials with enhanced creep-resistance, fundamental studies have been conducted on high-entropy alloys (HEAs), using (1) thermodynamic calculations, (2) mechanical tests, (3) neutron diffraction, (4) characterization techniques, and (5) crystal-plasticity finite-element modeling (CPFEM), to explore future candidates for next-generation power plants. All the constituent binary and ternary systems of the Al-Cr-Cu-Fe-Mn-Ni and Al-Co-Cr-Fe-Ni systems were thermodynamically modeled within the whole composition range. Comparisons between the calculated phase diagrams and literature data are in good agreement. Seven types of HEAs were fabricated from Al-Cr-Cu-Fe-Mn-Ni and Al-Co-Cr-Fe-Ni systems. The Al xCrCuFeMnNi HEAs have disordered [face-centered cubic (FCC)more » + body-centered cubic (BCC)] crystal structures, not FCC or BCC single structure. Excessive alloying of the Al element results in the change of both microstructural and mechanical properties in Al xCoCrFeNi HEAs. There are mainly three structural features in Al xCoCrFeNi: (1) the morphology, (2) the volume fractions of the constitute phases, and (3) existing temperatures of all six phases. After homogenization, the Al 0.3CoCrFeNi material is a pure FCC solid solution. After aging at 700 °C for 500 hours, the optimal microstructure combinations, the FCC matrix, needle-like B2 phase within grains, and granular σ phase along grain boundary, is achieved for Al 0.3CoCrFeNi. The cold-rolling process is utilized to reduce the grain size of Al 0.1CoCrFeNi and Al 0.3CoCrFeNi. The chemical elemental partitioning of FCC, BCC, B2, and σphases at different temperatures, before and after mechanical tests, in Al-Cr-Cu-Fe-Mn-Ni and Al-Co-Cr-Fe-Ni systems are quantitatively characterized by both synchrotron X-ray diffraction, neutron diffraction with levitation, scanning electron microscopy (SEM), advanced atom probe tomography (APT), and transmission electron microscopy (TEM). In-situ neutron diffraction experiments were conducted to study the strengthening effect of B2 phase on tensile properties of Al 0.3CoCrFeNi HEAs directly. The results shows the creep behavior of Al 0.3CoCrFeNi is superior to conventional alloys, and the heat treatment introduces secondary B2 phase into the FCC matrix, which increase the yielding strength, decrease the ductility, diminish the serrated flow during compression tests at high temperatures. In summary, the outcomes of the development of the HEAs with creep resistance include: (1) Suitable candidates, for the application to boilers and steam and gas turbines at temperatures above 760 °C and a stress of 35 MPa. (2) Fundamental understanding on the precipitate stability and deformation mechanisms of both single-phase and precipitate-strengthened alloys at room and elevated temperatures, and (3) The demonstration of an integrated approach, coupling modeling [thermodynamic calculations and crystal-plasticity finite-element modeling (CPFEM)] and focused experiments, to identify HEAs that outperform conventional alloys for high-temperature applications, which will be applicable for the discovery and development of other high-temperature materials in the power-generating industry.« less

  20. FAST TRACK COMMUNICATION: Finite-temperature magnetism in bcc Fe under compression

    NASA Astrophysics Data System (ADS)

    Sha, Xianwei; Cohen, R. E.

    2010-09-01

    We investigate the contributions of finite-temperature magnetic fluctuations to the thermodynamic properties of bcc Fe as functions of pressure. First, we apply a tight-binding total-energy model parameterized to first-principles linearized augmented plane-wave computations to examine various ferromagnetic, anti-ferromagnetic, and noncollinear spin spiral states at zero temperature. The tight-binding data are fit to a generalized Heisenberg Hamiltonian to describe the magnetic energy functional based on local moments. We then use Monte Carlo simulations to compute the magnetic susceptibility, the Curie temperature, heat capacity, and magnetic free energy. Including the finite-temperature magnetism improves the agreement with experiment for the calculated thermal expansion coefficients.

  1. Microstructure and mechanical properties of Ni and Fe-base boride-dispersion-strengthened microcrystalline alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wade, C.S.; Park, H.G.; Hoagland, R.G.

    This paper considers the relation between microstructure and mechanical properties of two Ni-base and two Fe-base Boride-Dispersion-Strengthened Microcrystalline (BDSM) alloys. In these very fine grained materials the borides were primarily Cr, Mo, and MoFe in a fcc matrix in three of the alloys, and a bcc in one of the Fe-base alloys. Strength data and resistance to stress corrosion cracking are reported and, in the latter case, extraordinary resistance to SCC in NaCl, Na{sub 2}S{sub 2}O{sub 3} and boiling MgCl{sub 2} environments was observed in every case. The fcc BDSM alloys also demonstrated excellent thermal stability in terms of strengthmore » and fracture roughness up to 1000 C. The bcc alloy suffered severe loss of toughness. The fracture mode involved ductile rupture in all alloys and they display a reasonably linear correlation between K{sub Ic} and the square root of particle spacing.« less

  2. Importance of doping and frustration in itinerant Fe-doped Cr 2Al

    DOE PAGES

    Susner, M. A.; Parker, D. S.; Sefat, A. S.

    2015-05-12

    We performed an experimental and theoretical study comparing the effects of Fe-doping of Cr 2Al, an antiferromagnet with a N el temperature of 670 K, with known results on Fe-doping of antiferromagnetic bcc Cr. (Cr 1-xFe x) 2Al materials are found to exhibit a rapid suppression of antiferromagnetic order with the presence of Fe, decreasing T N to 170 K for x=0.10. Antiferromagnetic behavior disappears entirely at x≈0.125 after which point increasing paramagnetic behavior is exhibited. Moreover, this is unlike the effects of Fe doping of bcc antiferromagnetic Cr, in which T N gradually decreases followed by the appearance ofmore » a ferromagnetic state. Theoretical calculations explain that the Cr 2Al-Fe suppression of magnetic order originates from two effects: the first is band narrowing caused by doping of additional electrons from Fe substitution that weakens itinerant magnetism; the second is magnetic frustration of the Cr itinerant moments in Fe-substituted Cr 2Al. In pure-phase Cr 2Al, the Cr moments have an antiparallel alignment; however, these are destroyed through Fe substitution and the preference of Fe for parallel alignment with Cr. This is unlike bulk Fe-doped Cr alloys in which the Fe anti-aligns with the Cr atoms, and speaks to the importance of the Al atoms in the magnetic structure of Cr 2Al and Fe-doped Cr 2Al.« less

  3. Formation of the Fe-Containing Intermetallic Compounds during Solidification of Al-5Mg-2Si-0.7Mn-1.1Fe Alloy

    NASA Astrophysics Data System (ADS)

    Que, Zhongping; Wang, Yun; Fan, Zhongyun

    2018-06-01

    Iron (Fe) is the most common and the most detrimental impurity element in Al alloys due to the formation of Fe-containing intermetallic compounds (IMCs), which are harmful to mechanical performance of the Al-alloy components. In this paper we investigate the formation of Fe-containing IMCs during solidification of an Al-5Mg-2Si-0.7Mn-1.1Fe alloy under varied solidification conditions. We found that the primary Fe-containing intermetallic compound (P-IMC) in the alloy is the BCC α-Al15(Fe,Mn)3Si2 phase and has a polyhedral morphology with {1 1 0} surface termination. The formation of the P-IMCs can be easily suppressed by increasing the melt superheat and/or cooling rate, suggesting that the nucleation of the α-Al15(Fe,Mn)3Si2 phase is difficult. In addition, we found that the IMCs with a Chinese script morphology is initiated on the {1 0 0} surfaces of the P-IMCs during the binary eutectic reaction with the α-Al phase. Both the binary and ternary eutectic IMCs are also identified as the BCC α-Al15(Fe,Mn)3Si2 phase. Furthermore, we found that the Fe content increases and the Mn content decreases in the Fe-containing intermetallic compounds with the decrease of the formation temperature, although the sum of the Fe and Mn contents in all of the IMCs is constant.

  4. Ab initio calculations of the lattice parameter and elastic stiffness coefficients of bcc Fe with solutes

    DOE PAGES

    Fellinger, Michael R.; Hector, Louis G.; Trinkle, Dallas R.

    2016-10-28

    Here, we present an efficient methodology for computing solute-induced changes in lattice parameters and elastic stiffness coefficients Cij of single crystals using density functional theory. We also introduce a solute strain misfit tensor that quantifies how solutes change lattice parameters due to the stress they induce in the host crystal. Solutes modify the elastic stiffness coefficients through volumetric changes and by altering chemical bonds. We compute each of these contributions to the elastic stiffness coefficients separately, and verify that their sum agrees with changes in the elastic stiffness coefficients computed directly using fully optimized supercells containing solutes. Computing the twomore » elastic stiffness contributions separately is more computationally efficient and provides more information on solute effects than the direct calculations. We compute the solute dependence of polycrystalline averaged shear and Young's moduli from the solute dependence of the single-crystal Cij. We then apply this methodology to substitutional Al, B, Cu, Mn, Si solutes and octahedral interstitial C and N solutes in bcc Fe. Comparison with experimental data indicates that our approach accurately predicts solute-induced changes in the lattice parameter and elastic coefficients. The computed data can be used to quantify solute-induced changes in mechanical properties such as strength and ductility, and can be incorporated into mesoscale models to improve their predictive capabilities.« less

  5. Low-Temperature Criticality of Martensitic Transformations of Cu Nanoprecipitates in α-Fe

    NASA Astrophysics Data System (ADS)

    Erhart, Paul; Sadigh, Babak

    2013-07-01

    Nanoprecipitates form during nucleation of multiphase equilibria in phase segregating multicomponent systems. In spite of their ubiquity, their size-dependent physical chemistry, in particular, at the boundary between phases with incompatible topologies, is still rather arcane. Here, we use extensive atomistic simulations to map out the size-temperature phase diagram of Cu nanoprecipitates in α-Fe. The growing precipitates undergo martensitic transformations from the body-centered cubic (bcc) phase to multiply twinned 9R structures. At high temperatures, the transitions exhibit strong first-order character and prominent hysteresis. Upon cooling, the discontinuities become less pronounced and the transitions occur at ever smaller cluster sizes. Below 300 K, the hysteresis vanishes while the transition remains discontinuous with a finite but diminishing latent heat. This unusual size-temperature phase diagram results from the entropy generated by the soft modes of the bcc-Cu phase, which are stabilized through confinement by the α-Fe lattice.

  6. Predicition and Discovery of High Tunneling Magnetoresistance in Magnetic Tunnel Junctions with Crystalline Barriers

    NASA Astrophysics Data System (ADS)

    Butler, William

    2005-03-01

    Tunneling magnetoresistance in excess of 200% has recently been observed in magnetic tunnel junctions using bcc Fe or bcc CoFe electrodes with crystalline MgO tunnel barriers[1,2]. These results demonstrate that tunneling magnetoresistance depends on more than the ``electrode polarization''. This talk will describe the calculations that predicted high TMR in these and other systems[3,4,5]. These calculations helped us to understand certain principles that may lead to high TMR through coherent electron tunneling. They can be briefly summarized as follows: (1) If the symmetry of a Bloch state can be preserved as electrons cross the interfaces between the electrode and the tunnel barrier, this be used to advantage for spin filtering. (2) Evanescent states of different symmetries decay at different rates in the barrier. (3) Interfacial bonding can be very important in determining the probability that an electron can traverse the interface. (4) Electrons of disallowed symmetry cannot propagate in an electrode. Once these simple principles are understood, simple band codes can be used to screen and to develop heterostructures with the proper symmetries to obtain high TMR. [1] S. S. P. Parkin, C. Kaiser, A. Panchula, P. M. Rice, B. Hughes, M. Samant AND S.-H. Yang, ``Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers,'' Nature Materials, Advance Online Publication [2] S. Yuasa, T. Nagahama, A. Fukushima, Y. Suzuki, K. Ando, ``Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions,'' Nature Materials, Advance Online Publication [3] W. H. Butler, X.-G. Zhang, T. C. Schulthess, and J. M. MacLaren, ``Spin-dependent tunneling conductance of Fe | MgO | Fe sandwiches'' Phys. Rev. B 63, 054416 (2001) [4] J. Mathon, A. Umerski, ``Theory of tunneling magnetoresistance of an epitaxial Fe/MgO/Fe(001) junction,'' Phys. Rev. B 63, 220403(R) (2001). [5] X.-G. Zhang, and W. H. Butler, ``Large magnetoresistance in bcc Co/MgO/Co and FeCo/MgO/FeCo tunnel junctions,'' Phys. Rev. B 70, 172407 (2004)

  7. In vivo detection of basal cell carcinoma: comparison of a reflectance confocal microscope and a multiphoton tomograph

    NASA Astrophysics Data System (ADS)

    Ulrich, Martina; Klemp, Marisa; Darvin, Maxim E.; König, Karsten; Lademann, Jürgen; Meinke, Martina C.

    2013-06-01

    The standard diagnostic procedure for basal cell carcinoma (BCC) is invasive tissue biopsy with time-consuming histological examination. To reduce the number of biopsies, noninvasive optical methods have been developed providing high-resolution skin examination. We present direct comparison of a reflectance confocal microscope (RLSM) and a multiphoton tomograph (MPT) for BCC diagnosis. Both systems are applied to nine patients prior to surgery, and the results are analyzed, including histological results. Both systems prove suitable for detecting typical characteristics of BCC in various stages. The RLSM allows large horizontal overview images to be obtained, enabling the investigator to find the regions of interest quickly, e.g., BCC nests. Elongated cells and palisading structures are easily recognized using both methods. Due to the higher resolution, changes in nucleus diameter or cytoplasm could be visualized with the MPT. Therefore, the nucleus diameter, nucleus/cytoplasm ratio, and cell density are estimated for normal and BCC cells using the MPT. The nucleus of elongated BCC cells is significantly longer than other measured normal skin cells, whereas the cell density and nucleus/cytoplasm ratio of BCC cannot be significantly distinguished from granular cells.

  8. Impeding effect of Ce on He bubble growth in bcc Fe

    NASA Astrophysics Data System (ADS)

    Hao, W.; Geng, W. T.

    2012-06-01

    Our first-principles density functional theory calculations suggest that the rare earth element Ce has a strong attraction to He (-1.31 eV/atom pair) in bcc Fe, even stronger than He-He attraction (-1.18 eV). The segregated Ce layer at the He bubble surface could introduce an additional energy barrier (0.40 eV) to trespassing He atoms. Therefore, Ce could not only have a pinning effect on mobile He atoms and hence reduce merging rate of He clusters, but also serve as a cover layer to repel further He atoms and thus slows down the bubble growth. The low cost makes Ce a great advantage over Au, which was recently predicted to have similar effect.

  9. Cascade morphology transition in bcc metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Setyawan, Wahyu; Selby, A.; Juslin, Niklas

    2015-06-10

    Energetic atom collisions in solids induce shockwaves with complex morphologies. In this paper, we establish the existence of a morphological transition in such cascades. The order parameter of the morphology is defined as the exponent,more » $b$, in the defect production curve as a function of cascade energy ($$N_F$$$ \\sim$$$E_{MD}^b$$). Response of different bcc metals can be compared in a consistent energy domain when the energy is normalized by the transition energy, $$\\mu$$, between the high- and the low-energy regime. Using Cr, Fe, Mo and W data, an empirical formula of $$\\mu$$ as a function of displacement threshold energy, $$E_d$$, is presented for bcc metals.« less

  10. Cascade morphology transition in bcc metals

    DOE PAGES

    Setyawan, Wahyu; Selby, Aaron P.; Juslin, Niklas; ...

    2015-05-18

    Energetic atom collisions in solids induce shockwaves with complex morphologies. In this paper, we establish the existence of a morphological transition in such cascades. The order parameter of the morphology is defined as the exponent, b, in the defect production curve as a function of cascade energy (N-F similar to E-MD(b)). Response of different bcc metals can be compared in a consistent energy domain when the energy is normalized by the transition energy, mu, between the high-and the low-energy regime. Using Cr, Fe, Mo and W data, an empirical formula of mu as a function of displacement threshold energy, E-d,more » is presented for bcc metals.« less

  11. A first-principles investigation on the effects of magnetism on the Bain transformation of α-phase FeNi systems

    NASA Astrophysics Data System (ADS)

    Rahman, Gul; Gee Kim, In; Bhadeshia, H. K. D. H.

    2012-03-01

    The effects of magnetism on the Bain transformation of α-phase FeNi systems are investigated by using the full potential linearized augmented plane wave method based on the generalized gradient approximation. We found that Ni impurity in bcc Fe increases the lattice constant in the ferromagnetic (FM) states, but not in the nonmagnetic (NM) states. The shear modulus, G, and Young's modulus, E, of bcc Fe are also increased by raising the concentration of nickel. All the compositions considered show high shear anisotropy, and the ratio of the bulk to shear modulus is greater than 1.75, implying ductility. The mean sound velocities in the [100] directions are greater than in the [110] directions. The Bain transformation, which is a component of martensitic transformation, has also been studied to reveal that NixFe1-x alloys are elastically unstable in the NM states, but not so in the FM states. The electronic structures explain these results in terms of the density of states at the Fermi level. It is evident that magnetism cannot be neglected when dealing with the Bain transformation in iron and its alloys.

  12. First-principles study of metallic iron interfaces

    NASA Astrophysics Data System (ADS)

    Hung, A.; Yarovsky, I.; Muscat, J.; Russo, S.; Snook, I.; Watts, R. O.

    2002-04-01

    Adhesion between clean, bulk-terminated bcc Fe(1 0 0) and Fe(1 1 0) matched and mismatched surfaces was simulated within the theoretical framework of the density functional theory. The generalized-gradient spin approximation exchange-correlation functional was used in conjunction with a plane wave-ultrasoft pseudopotential representation. The structure and properties of bulk bcc Fe were calculated in order to establish the reliability of the methodology employed, as well as to determine suitably converged values of computational parameters to be used in subsequent surface calculations. Interfaces were modelled using a single supercell approach, with the interfacial separation distance manipulated by the size of vacuum separation between vertically adjacent surface cells. The adhesive energies at discrete interfacial separations were calculated for each interface and the resulting data fitted to the universal binding energy relation (UBER) of Rose et al. [Phys. Rev. Lett. 47 (1981) 675]. An interpretation of the values of the fitted UBER parameters for the four Fe interfaces studied is given. In addition, a discussion on the validity of the employed computational methodology is presented.

  13. Atomic mixing induced by swift heavy ion irradiation of Fe/Zr multilayers

    NASA Astrophysics Data System (ADS)

    Jaouen, C.; Michel, A.; Pacaud, J.; Dufour, C.; Bauer, Ph.; Gervais, B.

    1999-01-01

    The mechanism of ion induced mixing and phase change was studied for Fe/Zr multilayers, and specifically for the case of swift heavy ions giving rise to a very large electronic excitation of the target. The multilayers had a modulation of 7.6 nm and an overall composition Fe 69Zr 31. The Zr layers were amorphous whereas the Fe ones were crystalline (bcc) with a very strong (1 1 0) texture in the growth direction. The phase transformation and the composition changes were analysed using the structural and magnetic properties of the Fe component by means of a detailed analysis of the X-ray diffraction profiles and with the aid of backscattering Mössbauer spectroscopy. A complete mixing was observed at a fluence of 10 13 U/cm 2. Both phenomena, the dose dependence of the ion beam mixed amorphous non-magnetic phase and the quantitative evolution of the crystalline iron layer thickness, suggest that mixing occurs in a two-stage process. At an initial stage, an anisotropic diffusion of iron atoms in the amorphous zirconium layers takes place along the interface, while subsequent ion bombardment leads to a generalised transformation through the whole of the Fe layer. Finally, the implications of these observations are discussed in comparison to the plastic deformation phenomena reported for amorphous alloys.

  14. [A microstructural approach to fatigue crack processes in poly crystalline BCC materials]. Progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerberich, W.W.

    1992-12-31

    Objective was to study fatigue where a combination of low temperature and cyclic loading produced cyclic cleavage in bcc Fe-base systems. Both dislocation dynamics and quasi-statics of crack growth were probed. This document reviews progress over the past 6 years: hydrogen embrittlement and cleavage, computations (stress near crack tip), dislocation emission from grain boundaries, fracture process zones, and understanding brittle fracture at the atomistic/dislocation scales and at the microscopic/macroscopic scale.

  15. Crystal-to-glass-transition induced elastic anomaly of cerium-iron multilayer films and texture-related mechanical properties after hydrogenation

    NASA Astrophysics Data System (ADS)

    Hassdorf, R.; Arend, M.; Felsch, W.

    1995-04-01

    The flexural modulus EF of pure and hydrided cerium-iron multilayer films has been measured at 300 K as a function of the modulation wavelength Λ using a vibrating-reed technique. EF is strongly correlated to the structure of the layered systems. In the pure Ce/Fe multilayers, the Fe sublayers show a structural transition from an amorphous to the bcc crystalline phase for a thickness near 20 Å. At this transition, the modulus EF is reduced by ~70%. The elastic softening occurs already, as a precursor to the structural change, for the crystalline Fe sublayers somewhat above the thickness for amorphous growth. This behavior reveals close similarities to the crystal-to-glass transition in bulk metallic alloys and compounds which seems to be driven by a shear instability of the crystal lattice. Hydrogenation leads to multilayers built of CeH~2/Fe. The Fe sublayers grow in the bcc structure above 10 Å, with a pronounced (110) or (111) texture for low- or room-temperature deposition. The flexural moduli are larger as compared to the nonhydrided multilayers and distinctly different for the two Fe textures. A simple calculation shows that the texture-related differences mainly result from the bulk properties of the Fe layers, but a contribution of interfacial effects cannot be excluded.

  16. Engineering and characterizing nanoscale multilayered structures for magnetic tunnel junctions

    NASA Astrophysics Data System (ADS)

    Yang, J. Joshua

    Magnetic tunnel junction (MTJ) has generated considerable attention due to its potential applications in improved magnetic sensors, read heads in HDDs and nonvolatile RAM. The materials issues play a crucial role in the performance of MTJs. In the work described in this thesis, we have engineered some interesting nanoscale multilayered structures mainly via thermodynamics considerations for MTJs. The insulator is usually an ultra-thin (<2nm) oxide, formed by oxidizing a pre-deposited metal, such as Al etc. We have developed novel fabrication approaches for obtaining clean and smooth interfaces between the insulator and the ferromagnets. These approaches include selectively oxidizing the pre-deposited tunnel barrier precursor metal, amorphizing the tunnel barrier precursor metal by alloying it with other elements, and in-situ annealing the bottom ferromagnetic layer. About 72% tunneling magnetoresistance (TMR) has been achieved at room temperature with AlOx and CoFe based MTJs. We have made a systemic study of the TMR vs. the Co1-xFe x electrode composition for AlOx based MTJs. A significant variation of TMR with Fe concentration has been observed. It is well known that the crystal structure of Co1-xFex changes from fcc to bcc with increasing Fe concentration. The concomitant composition change cast doubts on the role played by the crystal structure of the Co1-x Fex electrode on the TMR. By introducing different strains to an epitaxial Co1-xFex layer, we were able to fix its composition but alter its crystalline structure from fcc to bcc and found that the bcc structure resulted in much higher TMR values than found for the fcc structure. This is one of the few direct experimental confirmatory results showing the role of the FM electronic structure on the MTJ properties. Using Ag as a template, different 3d ferromagnets have been epitaxially grown on the Si substrate with hcp, fcc and bcc crystalline structures, respectively. By combining the selective oxidation method with the epitaxial growth technique, we have successfully created a single-crystal-like layer on top of an amorphous layer, which may have broad applications in thin film devices including MTJs.

  17. Dependence of phase configurations, microstructures and magnetic properties of iron-nickel (Fe-Ni) alloy nanoribbons on deoxidization temperature in hydrogen

    NASA Astrophysics Data System (ADS)

    Jing, Panpan; Liu, Mengting; Pu, Yongping; Cui, Yongfei; Wang, Zhuo; Wang, Jianbo; Liu, Qingfang

    2016-11-01

    Iron-nickel (Fe-Ni) alloy nanoribbons were reported for the first time by deoxidizing NiFe2O4 nanoribbons, which were synthesized through a handy route of electrospinning followed by air-annealing at 450 °C, in hydrogen (H2) at different temperatures. It was demonstrated that the phase configurations, microstructures and magnetic properties of the as-deoxidized samples closely depended upon the deoxidization temperature. The spinel NiFe2O4 ferrite of the precursor nanoribbons were firstly deoxidized into the body-centered cubic (bcc) Fe-Ni alloy and then transformed into the face-centered cubic (fcc) Fe-Ni alloy of the deoxidized samples with the temperature increasing. When the deoxidization temperature was in the range of 300 ~ 500 °C, although each sample possessed its respective morphology feature, all of them completely reserved the ribbon-like structures. When it was further increased to 600 °C, the nanoribbons were evolved completely into the fcc Fe-Ni alloy nanochains. Additionally, all samples exhibited typical ferromagnetism. The saturation magnetization (Ms) firstly increased, then decreased, and finally increased with increasing the deoxidization temperature, while the coercivity (Hc) decreased monotonously firstly and then basically stayed unchanged. The largest Ms (~145.7 emu·g-1) and the moderate Hc (~132 Oe) were obtained for the Fe-Ni alloy nanoribbons with a mixed configuration of bcc and fcc phases.

  18. Dependence of phase configurations, microstructures and magnetic properties of iron-nickel (Fe-Ni) alloy nanoribbons on deoxidization temperature in hydrogen.

    PubMed

    Jing, Panpan; Liu, Mengting; Pu, Yongping; Cui, Yongfei; Wang, Zhuo; Wang, Jianbo; Liu, Qingfang

    2016-11-23

    Iron-nickel (Fe-Ni) alloy nanoribbons were reported for the first time by deoxidizing NiFe 2 O 4 nanoribbons, which were synthesized through a handy route of electrospinning followed by air-annealing at 450 °C, in hydrogen (H 2 ) at different temperatures. It was demonstrated that the phase configurations, microstructures and magnetic properties of the as-deoxidized samples closely depended upon the deoxidization temperature. The spinel NiFe 2 O 4 ferrite of the precursor nanoribbons were firstly deoxidized into the body-centered cubic (bcc) Fe-Ni alloy and then transformed into the face-centered cubic (fcc) Fe-Ni alloy of the deoxidized samples with the temperature increasing. When the deoxidization temperature was in the range of 300 ~ 500 °C, although each sample possessed its respective morphology feature, all of them completely reserved the ribbon-like structures. When it was further increased to 600 °C, the nanoribbons were evolved completely into the fcc Fe-Ni alloy nanochains. Additionally, all samples exhibited typical ferromagnetism. The saturation magnetization (M s ) firstly increased, then decreased, and finally increased with increasing the deoxidization temperature, while the coercivity (H c ) decreased monotonously firstly and then basically stayed unchanged. The largest M s (~145.7 emu·g -1 ) and the moderate H c (~132 Oe) were obtained for the Fe-Ni alloy nanoribbons with a mixed configuration of bcc and fcc phases.

  19. bcc-iron as a promising new monochromator material for thermal neutrons

    NASA Astrophysics Data System (ADS)

    Kirscht, Patrick; Sobolev, Oleg; Eckold, Götz

    2018-04-01

    The development of high-performance neutron monochromators is a long-standing and still actual topic in neutron instrumentation. Due to its high scattering cross section, iron is a particularly interesting material since it offers the possibility to obtain high reflectivities at small wavelength and good resolution. Phase transitions between bcc- and fcc-phases hindered the growth of large and high-quality single crystals in the past and only recently bcc-crystals became commercially available. We have characterized the reflecting properties of as-grown and deformed crystals using γ-rays and thermal neutrons. Absolute reflectivities well above 30% for neutron wavelengths near 1 Å could be obtained that are superior to that of all other existing monochromator materials. Hence, the progress in crystal growth along with the knowledge of directed plastic deformation makes the development of bcc-Fe neutron monochromators feasible. Their application in crystal-monochromator instruments is suitable to increase the useful neutron flux at large energies considerably.

  20. Shellwise Mackay transformation in iron nanoclusters.

    PubMed

    Rollmann, Georg; Gruner, Markus E; Hucht, Alfred; Meyer, Ralf; Entel, Peter; Tiago, Murilo L; Chelikowsky, James R

    2007-08-24

    Structure and magnetism of iron clusters with up to 641 atoms have been investigated by means of density functional theory calculations including full geometric optimizations. Body-centered cubic (bcc) isomers are found to be lowest in energy when the clusters contain more than about 100 atoms. In addition, another stable conformation has been identified for magic-number clusters, which lies well within the range of thermal energies as compared to the bcc isomers. Its structure is characterized by a close-packed particle core and an icosahedral surface, while intermediate shells are partially transformed along the Mackay path between icosahedral and cuboctahedral geometry. The gradual transformation results in a favorable bcc environment for the subsurface atoms. For Fe55, the shellwise Mackay-transformed morphology is a promising candidate for the ground state.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wan, Li; Thompson, Gregory, E-mail: gthompson@eng.ua.edu

    A series of 40–2 nm bilayer spacing Ti/Fe multilayers were sputter-deposited. As the length scale of individual Ti layers equaled to 2 nm, Ti phase transforms from a hexagonal close packed (hcp)-to-body centered cubic (bcc) crystal structures for equal layer thicknesses in Ti/Fe multilayers. Further equal reductions in bilayer spacing to less than 1 nm resulted in an additional transformation from a crystalline to amorphous structure. Atom probe tomography reveals significant intermixing between layers which contributes to the observed phase transformations. Real-time, intrinsic growth stress measurements were also performed to relate the adatom mobility to these phase transformations. For the hcp Ti/bcc Femore » multilayers of equivalent volume fractions, the multilayers undergo an overall tensile stress state to a compressive stress state with decreasing bilayer thickness for the multilayers. When the above phase transformations occurred, a modest reduction in the overall compressive stress of the multilayer was noted. Depending on the Fe thickness, the Ti growth was observed to be a tensile to compressive growth change to a purely compressive growth for thinner bilayer spacing. Fe retained a tensile growth stress regardless of the bilayer spacing studied.« less

  2. NiFeCo/Cu superlattices with high magnetoresistive sensitivity and weak hysteresis

    NASA Astrophysics Data System (ADS)

    Bannikova, N. S.; Milyaev, M. A.; Naumova, L. I.; Krinitsina, T. P.; Patrakov, E. I.; Proglyado, V. V.; Chernyshova, T. A.; Ustinov, V. V.

    2016-10-01

    The microstructure and the magetoresistive characteristics of [NiFeCo/Cu]8 superlattices prepared by magnetron sputtering with various thickness of the buffer NiFeCr layer and exhibiting a giant magnetoresistive effect have been studied. It has been found that these nanostructures are formed with a strong or weak hysteresis depending on the structure (bcc or fcc) formed in the NiFeCr buffer layer. The method of the substantial decrease in the hysteresis loop width of the magnetoresistance by using the composite Ta/NiFeCr buffer layer has been suggested.

  3. Adsorption induced modification of in-plane magnetic anisotropy in epitaxial Co and Fe/Co films on Fe(110)

    NASA Astrophysics Data System (ADS)

    Ślezak, M.; Ślezak, T.; Matlak, K.; DróŻdŻ, P.; Korecki, J.

    2018-05-01

    A study of in-plane magnetic anisotropy (MA) in epitaxial bcc Co films and Fe/Co bilayers on a Fe(110) surface is reported. Surface MA of as-deposited Co films and Fe/Co bilayers strongly depends on the Co (dCo) and Fe (dFe) thickness. Adsorption of residual gases drastically modifies in-plane MA of both Co films and Fe/Co bilayers. We present two dimensional MA maps in the (dCo, dFe) space for both as grown and adsorption-modified films. Our results indicate how to precisely engineer in-plane MA that can be controlled by dCo, dFe and is sensitive to the residual gas adsorption.

  4. Burden and treatment patterns of advanced basal cell carcinoma among commercially insured patients in a United States database from 2010 to 2014.

    PubMed

    Migden, Michael; Xie, Jipan; Wei, Jin; Tang, Wenxi; Herrera, Vivian; Palmer, Jacqueline B

    2017-07-01

    The burden of advanced basal cell carcinoma (aBCC) is not fully understood. To compare BCC disease burden and treatment patterns for aBCC with those for non-aBCC. A retrospective, insurance claims-based study design was used. Adults with ≥2 claims associated with a BCC diagnosis (ICD-9-CM 173.x1) separated by ≥30 days on or after October 1, 2011, were classified as aBCC or non-aBCC by using an algorithm based on metastasis diagnosis, radiation therapy use, and medical oncologist/other specialist use. Non-aBCC and aBCC patients were matched 1:1 on the basis of age, sex, and region, and assigned the same index date (date of first qualifying diagnosis or event). Comparisons were made using Wilcoxon signed-rank (continuous variables) and McNemar's (categorical variables) tests. In total, 847 matched aBCC/non-aBCC patient pairs were selected (mean age 75 years; 57% men; locally advanced BCC, n = 826; metastatic BCC, n = 21). During the 12-month study period following the index date, aBCC patients had a significantly higher mean Charlson Comorbidity Index (P = .0023), significantly higher mean numbers of outpatient/dermatologist/medical oncologist visits (all P < .0001), and significantly higher mean total/medical/inpatient/outpatient/BCC treatment costs (all P < .05). This study only included information from a database on commercial insurance and Medicare claims. The algorithm criteria might have restricted patient numbers; data were not fully reflective of targeted therapy era. aBCC patients had a higher disease burden than non-aBCC patients. Cost differences were largely driven by higher BCC treatment costs, specifically radiation therapy. Copyright © 2017 American Academy of Dermatology, Inc. Published by Elsevier Inc. All rights reserved.

  5. Computational modeling of high-entropy alloys: Structures, thermodynamics and elasticity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Michael C.; Gao, Pan; Hawk, Jeffrey A.

    This study provides a short review on computational modeling on the formation, thermodynamics, and elasticity of single-phase high-entropy alloys (HEAs). Hundreds of predicted single-phase HEAs were re-examined using various empirical thermo-physical parameters. Potential BCC HEAs (CrMoNbTaTiVW, CrMoNbReTaTiVW, and CrFeMoNbReRuTaVW) were suggested based on CALPHAD modeling. The calculated vibrational entropies of mixing are positive for FCC CoCrFeNi, negative for BCC MoNbTaW, and near-zero for HCP CoOsReRu. The total entropies of mixing were observed to trend in descending order: CoCrFeNi > CoOsReRu > MoNbTaW. Calculated lattice parameters agree extremely well with averaged values estimated from the rule of mixtures (ROM) if themore » same crystal structure is used for the elements and the alloy. The deviation in the calculated elastic properties from ROM for select alloys is small but is susceptible to the choice used for the structures of pure components.« less

  6. Computational modeling of high-entropy alloys: Structures, thermodynamics and elasticity

    DOE PAGES

    Gao, Michael C.; Gao, Pan; Hawk, Jeffrey A.; ...

    2017-10-12

    This study provides a short review on computational modeling on the formation, thermodynamics, and elasticity of single-phase high-entropy alloys (HEAs). Hundreds of predicted single-phase HEAs were re-examined using various empirical thermo-physical parameters. Potential BCC HEAs (CrMoNbTaTiVW, CrMoNbReTaTiVW, and CrFeMoNbReRuTaVW) were suggested based on CALPHAD modeling. The calculated vibrational entropies of mixing are positive for FCC CoCrFeNi, negative for BCC MoNbTaW, and near-zero for HCP CoOsReRu. The total entropies of mixing were observed to trend in descending order: CoCrFeNi > CoOsReRu > MoNbTaW. Calculated lattice parameters agree extremely well with averaged values estimated from the rule of mixtures (ROM) if themore » same crystal structure is used for the elements and the alloy. The deviation in the calculated elastic properties from ROM for select alloys is small but is susceptible to the choice used for the structures of pure components.« less

  7. Evolution of anisotropy in bcc Fe distorted by interstitial boron

    NASA Astrophysics Data System (ADS)

    Gölden, Dominik; Zhang, Hongbin; Radulov, Iliya; Dirba, Imants; Komissinskiy, Philipp; Hildebrandt, Erwin; Alff, Lambert

    2018-01-01

    The evolution of magnetic anisotropy in bcc Fe as a function of interstitial boron atoms was investigated in thin films grown by molecular beam epitaxy. The thermodynamic nonequilibrium conditions during film growth allowed one to stabilize an interstitial boron content of about 14 at .% accompanied by lattice tetragonalization. The c /a ratio scaled linearly with the boron content up to a maximum value of 1.05 at 300 °C substrate growth temperature, with a room-temperature magnetization of. In contrast to nitrogen interstitials, the magnetic easy axis remained in-plane with an anisotropy of approximately -5.1 ×106erg /cm3 . Density functional theory calculations using the measured lattice parameters confirm this value and show that boron local ordering indeed favors in-plane magnetization. Given the increased temperature stability of boron interstitials as compared to nitrogen interstitials, this study will help to find possible ways to manipulate boron interstitials into a more favorable local order.

  8. A review of the irradiation evolution of dispersed oxide nanoparticles in the b.c.c. Fe-Cr system: Current understanding and future directions

    NASA Astrophysics Data System (ADS)

    Wharry, Janelle P.; Swenson, Matthew J.; Yano, Kayla H.

    2017-04-01

    Thus far, a number of studies have investigated the irradiation evolution of oxide nanoparticles in b.c.c. Fe-Cr based oxide dispersion strengthened (ODS) alloys. But given the inconsistent experimental conditions, results have been widely variable and inconclusive. Crystal structure and chemistry changes differ from experiment to experiment, and the total nanoparticle volume fraction has been observed to both increase and decrease. Furthermore, there has not yet been a comprehensive review of the archival literature. In this paper, we summarize the existing studies on nanoparticle irradiation evolution. We note significant observations with respect to oxide nanoparticle crystallinity, composition, size, and number density. We discuss four possible contributing mechanisms for nanoparticle evolution: ballistic dissolution, Ostwald ripening, irradiation-enhanced diffusion, and homogeneous nucleation. Finally, we propose future directions to achieve a more comprehensive understanding of irradiation effects on oxide nanoparticles in ODS alloys.

  9. Numerical study of slip system activity and crystal lattice rotation under wedge nanoindents in tungsten single crystals

    NASA Astrophysics Data System (ADS)

    Volz, T.; Schwaiger, R.; Wang, J.; Weygand, S. M.

    2018-05-01

    Tungsten is a promising material for plasma facing components in future nuclear fusion reactors. In the present work, we numerically investigate the deformation behavior of unirradiated tungsten (a body-centered cubic (bcc) single crystal) underneath nanoindents. A finite element (FE) model is presented to simulate wedge indentation. Crystal plasticity finite element (CPFE) simulations were performed for face-centered and body-centered single crystals accounting for the slip system family {110} <111> in the bcc crystal system and the {111} <110> slip family in the fcc system. The 90° wedge indenter was aligned parallel to the [1 ¯01 ]-direction and indented the crystal in the [0 1 ¯0 ]-direction up to a maximum indentation depth of 2 µm. In both, the fcc and bcc single crystals, the activity of slip systems was investigated and compared. Good agreement with the results from former investigations on fcc single crystals was observed. Furthermore, the in-plane lattice rotation in the material underneath an indent was determined and compared for the fcc and bcc single crystals.

  10. Thermodynamic approach to the stability of multi-phase systems. Application to the Y 2O 3–Fe system

    DOE PAGES

    Samolyuk, German D.; Osetskiy, Yury N.

    2015-07-07

    Oxide-metal systems (OMSs) are important in many practical applications, and therefore, are under extensive studies using a wide range of techniques. The most accurate theoretical approaches are based on density functional theory (DFT), which are limited to ~10 2 atoms. Multi-scale approaches, e.g., DFT+Monte Carlo, are often used to model OMSs at the atomic level. These approaches can describe qualitatively the kinetics of some processes but not the overall stability of OMSs. In this paper, we propose a thermodynamic approach to study equilibrium in multiphase systems, which can be sequentially enhanced by considering different defects and microstructures. We estimate themore » thermodynamic equilibrium by minimization the free energy of the whole multiphase system using a limited set of defects and microstructural objects for which the properties are calculated by DFT. As an example, we consider Y 2O 3+bcc Fe with vacancies in both the Y 2O 3 and bcc Fe phases, Y substitutions and O interstitials in Fe, Fe impurities and antisite defects in Y 2O 3. The output of these calculations is the thermal equilibrium concentration of all the defects for a particular temperature and composition. The results obtained confirmed the high temperature stability of yttria in iron. As a result, model development towards more accurate calculations is discussed.« less

  11. fcc-bcc phase transition in plasma crystals using time-resolved measurements

    NASA Astrophysics Data System (ADS)

    Dietz, C.; Bergert, R.; Steinmüller, B.; Kretschmer, M.; Mitic, S.; Thoma, M. H.

    2018-04-01

    Three-dimensional plasma crystals are often described as Yukawa systems for which a phase transition between the crystal structures fcc and bcc has been predicted. However, experimental investigations of this transition are missing. We use a fast scanning video camera to record the crystallization process of 70 000 microparticles and investigate the existence of the fcc-bcc phase transition at neutral gas pressures of 30, 40, and 50 Pa. To analyze the crystal, robust phase diagrams with the help of a machine learning algorithm are calculated. This work shows that the phase transition can be investigated experimentally and makes a comparison with numerical results of Yukawa systems. The phase transition is analyzed in dependence on the screening parameter and structural order. We suggest that the transition is an effect of gravitational compression of the plasma crystal. Experimental investigations of the fcc-bcc phase transition will provide an opportunity to estimate the coupling strength Γ by comparison with numerical results of Yukawa systems.

  12. Investigation of radiation damage tolerance in interface-containing metallic nano structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greer, Julia R.

    The proposed work seeks to conduct a basic study by applying experimental and computational methods to obtain quantitative influence of helium sink strength and proximity on He bubble nucleation and growth in He-irradiated nano-scale metallic structures, and the ensuing deformation mechanisms and mechanical properties. We utilized a combination of nano-scale in-situ tension and compression experiments on low-energy He-irradiated samples combined with site-specific microstructural characterization and modeling efforts. We also investigated the mechanical deformation of nano-architected materials, i.e. nanolattices which are comprised of 3-dimensional interwoven networks of hollow tubes, with the wall thickness in the nanometer range. This systematic approach willmore » provide us with critical information for identifying key factors that govern He bubble nucleation and growth upon irradiation as a function of both sink strength and sink proximity through an experimentally-confirmed physical understanding. As an outgrowth of these efforts, we performed irradiations with self-ions (Ni 2+) on Ni-Al-Zr metallic glass nanolattices to assess their resilience against radiation damage rather than He-ion implantation. We focused our attention on studying individual bcc/fcc interfaces within a single nano structure (nano-pillar or a hollow tube): a single Fe (bcc)-Cu (fcc) boundary per pillar oriented perpendicular to the pillar axes, as well as pure bcc and fcc nano structures. Additional interfaces of interest include bcc/bcc and metal/metallic glass all within a single nano-structure volume. The model material systems are: (1) pure single crystalline Fe and Cu, (2) a single Fe (bcc)-Cu (fcc) boundary per nano structure (3) a single metal–metallic glass, all oriented non-parallel to the loading direction so that their fracture strength can be tested. A nano-fabrication approach, which involves e-beam lithography and templated electroplating, as well as two-photon lithography, was utilized, which enabled precise control of the initial microstructure control. Experimentally determined stress-strain relationships were enhanced by in-situ SEM observations coupled with TEM microstructural characterization of the same samples before and after deformation (irradiated and as-fabricated) and atomistic (MD) modeling. A comprehensive suite of experiments was conducted to quantitatively assess the key parameters for He bubble nucleation and growth by independently varying the sink strength, sink proximity, and He implantation temperature and dose. The implantations were conducted at Sandia and Los Alamos National Labs (CINT). Nano structuress containing He-enriched interfaces and irradiation-damaged microstructure were tested under uniaxial tension to assess embrittlement, resulting boundary strength, and deformation mechanisms. Results of this work helped identify which types of interfaces are particularly resilient against radiation damage.« less

  13. Synergistic stabilization of metastable Fe{sub 23}B{sub 6} and γ-Fe in undercooled Fe{sub 83}B{sub 17}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quirinale, D. G.; Rustan, G. E.; Kreyssig, A.

    2015-06-15

    Previous investigations of undercooled liquid Fe{sub 83}B{sub 17} near the eutectic composition have found that metastable crystalline phases, such as Fe{sub 23}B{sub 6}, can be formed and persist down to ambient temperature even for rather modest cooling rates. Using time-resolved high-energy x-ray diffraction on electrostatically levitated samples of Fe{sub 83}B{sub 17}, we demonstrate that the Fe{sub 23}B{sub 6} metastable phase and fcc γ-Fe grow coherently from the undercooled Fe{sub 83}B{sub 17} liquid and effectively suppress the formation of the equilibrium Fe{sub 2}B + bcc α-Fe phases. The stabilization of γ-Fe offers another opportunity for experimental investigations of magnetism in metastable fcc iron.

  14. Ab initio theory of noble gas atoms in bcc transition metals.

    PubMed

    Jiang, Chao; Zhang, Yongfeng; Gao, Yipeng; Gan, Jian

    2018-06-18

    Systematic ab initio calculations based on density functional theory have been performed to gain fundamental understanding of the interactions between noble gas atoms (He, Ne, Ar and Kr) and bcc transition metals in groups 5B (V, Nb and Ta), 6B (Cr, Mo and W) and 8B (Fe). Our charge density analysis indicates that the strong polarization of nearest-neighbor metal atoms by noble gas interstitials is the electronic origin of their high formation energies. Such polarization becomes more significant with an increasing gas atom size and interstitial charge density in the host bcc metal, which explains the similar trend followed by the unrelaxed formation energies of noble gas interstitials. Upon allowing for local relaxation, nearby metal atoms move farther away from gas interstitials in order to decrease polarization, albeit at the expense of increasing the elastic strain energy. Such atomic relaxation is found to play an important role in governing both the energetics and site preference of noble gas atoms in bcc metals. Our most notable finding is that the fully relaxed formation energies of noble gas interstitials are strongly correlated with the elastic shear modulus of the bcc metal, and the physical origin of this unexpected correlation has been elucidated by our theoretical analysis based on the effective-medium theory. The kinetic behavior of noble gas atoms and their interaction with pre-existing vacancies in bcc transition metals have also been discussed in this work.

  15. Giant voltage-controlled magnetic anisotropy effect in a crystallographically strained CoFe system

    NASA Astrophysics Data System (ADS)

    Kato, Yushi; Yoda, Hiroaki; Saito, Yoshiaki; Oikawa, Soichi; Fujii, Keiko; Yoshiki, Masahiko; Koi, Katsuhiko; Sugiyama, Hideyuki; Ishikawa, Mizue; Inokuchi, Tomoaki; Shimomura, Naoharu; Shimizu, Mariko; Shirotori, Satoshi; Altansargai, Buyandalai; Ohsawa, Yuichi; Ikegami, Kazutaka; Tiwari, Ajay; Kurobe, Atsushi

    2018-05-01

    We experimentally demonstrate a giant voltage-controlled magnetic anisotropy (VCMA) coefficient in a crystallographically strained CoFe layer (∼15 monolayers in thickness) in a MgO/CoFe/Ir system. We observed a strong applied voltage dependence of saturation field and an asymmetric concave behavior with giant VCMA coefficients of ‑758 and 1043 fJ V‑1 m‑1. The result of structural analysis reveals epitaxial growth in MgO/CoFe/Ir layers and the orientation relationship MgO(001)[110] ∥ CoFe(001)[100] ∥ Ir(001)[110]. The CoFe layer has a bcc structure and a tetragonal distortion due to the lattice mismatch; therefore, the CoFe layer has a large perpendicular magnetic anisotropy.

  16. The clinical and histopathological characteristics of early-onset basal cell carcinoma in Asians.

    PubMed

    Yang, M Y; Kim, J M; Kim, G W; Mun, J H; Song, M; Ko, H C; Kim, B S; Kim, H S; Kim, M B

    2017-01-01

    Basal cell carcinoma (BCC) is by far the most common cancer in white populations. In addition, recent reports have demonstrated an increasing incidence of BCC in Korea. We have observed a significant number of early-onset BCC cases in which the disease occurred in patients younger than 50 years. To investigate the clinicopathological characteristics of early-onset BCC in an Asian population, specifically in Koreans. One hundred and five patients with early-onset BCC were enrolled from a total of 1047 BCC patients who underwent surgery between January 1997 and December 2014 (942 patients over the age of 50 years were designated as the control group). Early-onset BCC accounted for 10.03% of all 1047 cases and the incidence over time displayed an incremental trend. The early-onset group displayed similar results as the control group, with a predominance of female BCC patients and the majority of tumours displaying the following characteristics: small in size, occurring in sun-exposed areas and belonging to the noduloulcerative clinical subtype and nodular histopathological subtype. In comparison with a previous study in a Western population, the incidence of the disease in non-exposed areas of the body, as well as the proportion of tumours of the superficial histological subtype, were lower in Asian patients. Although the clinicopathological characteristics of BCC are well-known, these characteristics have not been determined for early-onset BCC in an Asian population. Therefore, this study is the first report on early-onset BCC in Asians, specifically in a Korean patient group. © 2016 European Academy of Dermatology and Venereology.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaur, Maninder; Dai, Qilin; Bowden, Mark E.

    Chromium (Cr) forms a solid solution with iron (Fe) lattice when doped in core-shell iron -iron oxide nanocluster (NC) and shows a mixed phase of sigma (σ) FeCr and bcc Fe. The Cr dopant affects heavily the magnetization and magnetic reversal process, and causes the hysteresis loop to shrink near the zero field axis. Dramatic transformation happens from dipolar interaction (0 at. % Cr) to strong exchange interaction (8 at. % of Cr) is confirmed from the Henkel plot and delta M plot, and is explained by a water-melon model of core-shell NC system.

  18. Kinetics of self-interstitial migration in bcc and fcc transition metals

    NASA Astrophysics Data System (ADS)

    Bukkuru, S.; Bhardwaj, U.; Srinivasa Rao, K.; Rao, A. D. P.; Warrier, M.; Valsakumar, M. C.

    2018-03-01

    Radiation damage is a multi-scale phenomenon. A thorough understanding of diffusivities and the migration energies of defects is a pre-requisite to quantify the after-effects of irradiation. We investigate the thermally activated mobility of self-interstitial atom (SIA) in bcc transition metals Fe, Mo, Nb and fcc transition metals Ag, Cu, Ni, Pt using molecular dynamics (MD) simulations. The self-interstitial diffusion involves various mechanisms such as interstitialcy, dumbbell or crowdion mechanisms. Max-Space Clustering (MSC) method has been employed to identify the interstitial and its configuration over a wide range of temperature. The self-interstitial diffusion is Arrhenius like, however, there is a slight deviation at high temperatures. The migration energies, pre-exponential factors of diffusion and jump-correlation factors, obtained from these simulations can be used as inputs to Monte Carlo simulations of defect transport. The jump-correlation factor shows the degree of preference of rectilinear or rotational jumps. We obtain the average jump-correlation factor of 1.4 for bcc metals and 0.44 for fcc metals. It indicates that rectilinear jumps are preferred in bcc metals and rotational jumps are preferred in fcc metals.

  19. Ab initio simulations of iron-nickel alloys at Earth's core conditions

    NASA Astrophysics Data System (ADS)

    Côté, Alexander S.; Vočadlo, Lidunka; Brodholt, John P.

    2012-09-01

    We report ab initio density functional theory calculations on iron-nickel (FeNi) alloys at conditions representative of the Earth's inner core. We test different concentrations of Ni, up to ∼39 wt% using ab initio lattice dynamics, and investigate the thermodynamic and vibrational stability of the three candidate crystal structures (bcc, hcp and fcc). First of all, at inner core pressures, we find that pure Fe transforms from the hcp to the fcc phase at around 6000 K. Secondly, in agreement with low pressure experiments on Fe-Ni alloys, we find the fcc structure is stabilised by the incorporation of Ni under core pressures and temperatures. Our results show that the fcc structure may, therefore, be stable under core conditions depending on the temperature in the inner core and the Ni content. Lastly, we find that within the quasi-harmonic approximation, there is no stability field for FeNi alloys in the bcc structure under core conditions.

  20. Morphology of basal cell carcinoma in high definition optical coherence tomography: en-face and slice imaging mode, and comparison with histology.

    PubMed

    Maier, T; Braun-Falco, M; Hinz, T; Schmid-Wendtner, M H; Ruzicka, T; Berking, C

    2013-01-01

    Optical coherence tomography (OCT) allows real-time, in vivo examination of basal cell carcinoma (BCC). A new high definition OCT with high lateral and axial resolution in a horizontal (en-face) and vertical (slice) imaging mode offers additional information in the diagnosis of BCC and may potentially replace invasive diagnostic biopsies. To define the characteristic morphologic features of BCC by using high definition optical coherence tomography (HD-OCT) compared to conventional histology. A total of 22 BCCs were examined preoperatively by HD-OCT in the en-face and slice imaging mode and characteristic features were evaluated in comparison to the histopathological findings. The following features were found in the en-face mode of HD-OCT: lobulated nodules (20/22), peripheral rimming (17/22), epidermal disarray (21/22), dilated vessels (11/22) and variably refractile stroma (19/22). In the slice imaging mode the following characteristics were found: grey/dark oval structures (18/22), peripheral rimming (13/22), destruction of layering (22/22), dilated vessels (7/22) and peritumoural bright stroma (11/22). In the en-face mode the lobulated structure of the BCC was more distinct than in the slice mode compared to histology. HD-OCT with a horizontal and vertical imaging mode offers additional information in the diagnosis of BCC compared to conventional OCT imaging and enhances the feasibility of non-invasive diagnostics of BCC. © 2012 The Authors. Journal of the European Academy of Dermatology and Venereology © 2012 European Academy of Dermatology and Venereology.

  1. Coexistence pressure for a martensitic transformation from theory and experiment: Revisiting the bcc-hcp transition of iron under pressure

    DOE PAGES

    Zarkevich, N. A.; Johnson, D. D.

    2015-05-12

    We revisit results from decades of pressure experiments on the bcc ↔ hcp transformations in iron, which are sensitive to non-hydrostatic conditions and sample size. We emphasize the role of martensitic stress in the observed pressure hysteresis and address the large spread in values for onset pressures of the nucleating phase. From electronic-structure calculations, we find a bcc ↔ hcp equilibrium coexistence pressure of 8.4 GPa. Accounting for non-hydrostatic martensitic stress and a stress-dependent transition barrier, we suggest a pressure inequality for better comparison to experiment and observed hysteresis. We construct the equation of state for bcc and hcp phasesmore » under hydrostatic pressure, and compare to experiments and previous calculations.« less

  2. BDA: A novel method for identifying defects in body-centered cubic crystals.

    PubMed

    Möller, Johannes J; Bitzek, Erik

    2016-01-01

    The accurate and fast identification of crystallographic defects plays a key role for the analysis of atomistic simulation output data. For face-centered cubic (fcc) metals, most existing structure analysis tools allow for the direct distinction of common defects, such as stacking faults or certain low-index surfaces. For body-centered cubic (bcc) metals, on the other hand, a robust way to identify such defects is currently not easily available. We therefore introduce a new method for analyzing atomistic configurations of bcc metals, the BCC Defect Analysis (BDA). It uses existing structure analysis algorithms and combines their results to uniquely distinguish between typical defects in bcc metals. In essence, the BDA method offers the following features:•Identification of typical defect structures in bcc metals.•Reduction of erroneously identified defects by iterative comparison to the defects in the atom's neighborhood.•Availability as ready-to-use Python script for the widespread visualization tool OVITO [http://ovito.org].

  3. bcc-to-hcp transformation pathways for iron versus hydrostatic pressure: Coupled shuffle and shear modes

    NASA Astrophysics Data System (ADS)

    Liu, J. B.; Johnson, D. D.

    2009-04-01

    Using density-functional theory, we calculate the potential-energy surface (PES), minimum-energy pathway (MEP), and transition state (TS) versus hydrostatic pressure σhyd for the reconstructive transformation in Fe from body-centered cubic (bcc) to hexagonal closed-packed (hcp). At fixed σhyd , the PES is described by coupled shear (γ) and shuffle (η) modes and is determined from structurally minimized hcp-bcc energy differences at a set of (η,γ) . We fit the PES using symmetry-adapted polynomials, permitting the MEP to be found analytically. The MEP is continuous and fully explains the transformation and its associated magnetization and volume discontinuity at TS. We show that σhyd (while not able to induce shear) dramatically alters the MEP to drive reconstruction by a shuffle-only mode at ≤30GPa , as observed. Finally, we relate our polynomial-based results to Landau and nudge-elastic-band approaches and show they yield incorrect MEP in general.

  4. Discrimination between basal cell carcinoma and hair follicles in skin tissue sections by Raman micro-spectroscopy

    NASA Astrophysics Data System (ADS)

    Larraona-Puy, M.; Ghita, A.; Zoladek, A.; Perkins, W.; Varma, S.; Leach, I. H.; Koloydenko, A. A.; Williams, H.; Notingher, I.

    2011-05-01

    Skin cancer is the most common human malignancy and basal cell carcinoma (BCC) represents approximately 80% of the non-melanoma cases. Current methods of treatment require histopathological evaluation of the tissues by qualified personnel. However, this method is subjective and in some cases BCC can be confused with other structures in healthy skin, including hair follicles. In this preliminary study, we investigated the potential of Raman micro-spectroscopy (RMS) to discriminate between hair follicles and BCC in skin tissue sections excised during Mohs micrographic surgery (MMS). Imaging and diagnosis of skin sections was automatically generated using ' a priori'-built spectral model based on LDA. This model had 90 ± 9% sensitivity and 85 ± 9% specificity for discrimination of BCC from dermis and epidermis. The model used selected Raman bands corresponding to the largest spectral differences between the Raman spectra of BCC and the normal skin regions, associated mainly with nucleic acids and collagen type I. Raman spectra corresponding to the epidermis regions of the hair follicles were found to be closer to those of healthy epidermis rather than BCC. Comparison between Raman spectral images and the gold standard haematoxylin and eosin (H&E) histopathology diagnosis showed good agreement. Some hair follicle regions were misclassified as BCC; regions corresponded mainly to the outermost layer of hair follicle (basal cells) which are expected to have higher nucleic acid concentration. This preliminary study shows the ability of RMS to distinguish between BCC and other tissue structures associated to healthy skin which can be confused with BCC due to their similar morphology.

  5. Tuning the Magnetic and Electronic Properties of Iron(x )Silicon(1-x) Thin Films for Spintronics

    NASA Astrophysics Data System (ADS)

    Karel, Julie Elizabeth

    This dissertation investigated the magnetic and electronic properties of a potentially better alternative: off-stoichimetry, bcc-like FexSi 1-x thin films (0.43800 K) and theoretically predicted high spin polarization (100%). However, little work has been done on off-stoichiometry FexSi1-x thin films (0.43

  6. Comparison of risk patterns in carcinoma and melanoma of the skin in men: a multi-centre case–case–control study

    PubMed Central

    Zanetti, R; Rosso, S; Martinez, C; Nieto, A; Miranda, A; Mercier, M; Loria, D I; Østerlind, A; Greinert, R; Navarro, C; Fabbrocini, G; Barbera, C; Sancho-Garnier, H; Gafà, L; Chiarugi, A; Mossotti, R

    2006-01-01

    We directly compared risk factors between 214 histologically confirmed melanomas (CMM), 215 basal-cell carcinomas (BCC) and 139 squamous-cell carcinomas (SCC) in a multiple case–case–control study with 349 controls from patients without dermatological disease admitted to the same hospitals. Subjects with fair hair had a significant risk increase for all types of tumours at a comparable level (ORadj for blonde hair: CMM 2.3; SCC 2.4; BCC 2.3). The effect of pale eyes was significant and similar for CMM and BCC (ORadj 2.6). Intermittent sun exposure measured in hours spent at beach during holidays was significant for both CMM (ORadj 2.6 for more than 7000 lifelong hours) and BCC (ORadj 2.1 for more than 7000 lifelong hours), while SCC exhibited a significant risk increase for chronic exposure to sunlight measured in hours of outdoor work (ORadj 2.2 for more than 6000 lifelong hours). In the case–case comparison using a multinomial logistic regression model, we found a statistically significant risk difference for pale eyes, and number of naevi in the CMM group, compared to other skin cancers. For intermittent sun exposure, there was a significant risk difference of BCC when compared to the risk of SCC. Factors influencing risk of SCC are different, with chronic exposure to sun playing a major role in causing this type of carcinoma. PMID:16495934

  7. Morphological and XPS study of ball milled Fe1-xAlx (0.3≤x≤0.6) alloys

    NASA Astrophysics Data System (ADS)

    Rajan, Sandeep; Kumar, Anil; Vyas, Anupam; Brajpuriya, Ranjeet

    2018-05-01

    The paper presents mechanical and XPS study of ball milled Fe1-xAlx (0.3≤x≤0.6) alloys. The author prepared the solid solution of Fe(Al) with different composition of Al by using mechanical alloying (MA) technique. The MA process induces a progressive dissolution of Al into Fe, resulted in the formation of an extended Fe(Al) solid solution with the bcc structure after 5 hr of milling. The SEM Images shows that the initial shape of particles disappeared completely, and their structure became a mixture of small and large angular-shaped crystallites with different sizes. The TEM micrograph also confirms the reduction in crystallite size and alloy formation. XPS study shows the shift in the binding energy position of both Fe and Al Peaks provide strong evidence of Fe(Al) phase formation after milling.

  8. Iron single crystal growth from a lithium-rich melt

    NASA Astrophysics Data System (ADS)

    Fix, M.; Schumann, H.; Jantz, S. G.; Breitner, F. A.; Leineweber, A.; Jesche, A.

    2018-03-01

    α -Fe single crystals of rhombic dodecahedral habit were grown from a Li84N12Fe∼3 melt. Crystals of several millimeter along a side form at temperatures around T ≈ 800 ° C. Upon further cooling the growth competes with the formation of Fe-doped Li3N. The b.c.c. structure and good sample quality of α -Fe single crystals were confirmed by X-ray and electron diffraction as well as magnetization measurements and chemical analysis. A nitrogen concentration of 90 ppm was detected by means of carrier gas hot extraction. Scanning electron microscopy did not reveal any sign of iron nitride precipitates.

  9. Highly (002) textured large grain bcc Cr{sub 80}Mn{sub 20} seed layer on Cr{sub 50}Ti{sub 50} amorphous layer for FePt-C granular film

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeon, Seong-Jae, E-mail: jsjigst@ecei.tohoku.ac.jp; Saito, Shin; Hinata, Shintaro

    Effect of bcc Cr{sub 80}Mn{sub 20} seed layer and Cr{sub 50}Ti{sub 50} amorphous texture inducing layer on the heteroepitaxy system in FePt-C granular film was studied by introducing a new concept of the layered structure. The concept suggested that the large grain seed layer in which the crystallographic texture was initially formed on an amorphous layer in the layered structure can reduce the angular distribution of (002) c-axis crystal orientation in the FePt-C granular film owing to heteroepitaxial growth. Structure analysis by X-ray diffraction revealed that (1) when the substrate heating temperature was elevated from 300 °C to 500 °C, grain sizemore » in the seed layer increased from 9.8 nm to 11.6 nm, and then decreased with further increasing the substrate temperature. The reduction of the grain size over 500 °C corresponds to the crystallization of the amorphous texture inducing layer, (2) when the grain size increased from 9.8 nm to 11.6 nm, the angular distribution of the (002) orientation in the seed layer dramatically decreased from 13.7° to 4.1°. It was shown that the large grain seed layer increased the perpendicular hysteresis in FePt-C granular film.« less

  10. Atomistic study on the FCC/BCC interface structure with {112}KS orientation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Keonwook; Beyerlein, Irene; Han, Weizhong

    2011-09-23

    In this study, atomistic simulation is used to explore the atomic interface structure, the intrinsic defect network, and mechanism of twin formation from the {112}KS Cu-Nb interface. The interface structure of different material systems AI-Fe and AI-Nb are also compared with Cu-Nb interface.

  11. Reverse Shape Memory Effect Related to α → γ Transformation in a Fe-Mn-Al-Ni Shape Memory Alloy

    NASA Astrophysics Data System (ADS)

    Peng, Huabei; Huang, Pan; Zhou, Tiannan; Wang, Shanling; Wen, Yuhua

    2017-05-01

    In this study, we investigated the shape memory behavior and phase transformations of solution-treated Fe43.61Mn34.74Al13.38Ni8.27 alloy between room temperature and 1173 K (900 °C). This alloy exhibits the reverse shape memory effect resulting from the phase transformation of α (bcc) → γ (fcc) between 673 K and 1073 K (400 °C and 800 °C) in addition to the shape memory effect resulting from the martensitic reverse transformation of γ' (fcc) → α (bcc) below 673 K (400 °C). There is a high density of hairpin-shaped dislocations in the α phase undergoing the martensitic reverse transformation of γ' → α. The lath γ phase, which preferentially nucleates and grows in the reversed α phase, has the same crystal orientation with the reverse-transformed γ' martensite. However, the vermiculate γ phase, which is precipitated in the α phase between lath γ phase, has different crystal orientations. The lath γ phase is beneficial to attaining better reverse shape memory effect than the vermiculate γ phase.

  12. Interplay between interstitial displacement and displacive lattice transformations

    NASA Astrophysics Data System (ADS)

    Zhang, Xie; Hickel, Tilmann; Rogal, Jutta; Neugebauer, Jörg

    2016-09-01

    Diffusionless displacive lattice rearrangements, which include martensitic transformations, are in real materials often accompanied by a displacive drag of interstitials. The interplay of both processes leads to a particular atomistic arrangement of the interstitials in the product phase, which is decisive for its performance. An archetype example is the martensitic transformation in Fe-C alloys. One of the puzzles for this system is that the deviation from the cubic symmetry (i.e., the tetragonality) in the martensite resulting from this interplay is lower than what thermodynamics dictates. In our ab initio approach, the relative motion of C in the transforming lattice is studied with the nudged elastic band method. We prove that an atomic shearlike shuffle mechanism of adjacent (11 2 ¯) Fe layers along the ±[111] bcc directions is essential to achieve a redistribution of C atoms during the fcc → bcc transition, which fully explains the abnormal behavior. Furthermore, the good agreement with experiment validates our method to treat a diffusionless redistribution of interstitials and a displacive rearrangement of the host lattice simultaneously.

  13. Further studies of iron adhesion: ( 1 1 1 ) surfaces

    NASA Astrophysics Data System (ADS)

    Spencer, Michelle J. S.; Hung, Andrew; Snook, Ian K.; Yarovsky, Irene

    2002-08-01

    Adhesion between ideal bulk-terminated bcc Fe(1 1 1) match and mismatch interfaces was simulated using density functional theory (DFT) within the plane-wave pseudopotential representation. Interfaces were modelled using the supercell approach where the interfacial separation was varied by changing the size of the vacuum spacer between image cells in the z-direction. The adhesive energy values were calculated for discrete interfacial separations and the data was fitted to the universal binding energy relation (UBER) [Rose et al., Phys. Rev. B 28 (1983) 1835]. The parameters obtained from these fits allowed the work of separation ( Wsep) to be determined and a comparison to be made of the adhesion properties of the match and mismatch interfaces. The results were also compared to those obtained previously for the (1 0 0) and (1 1 0) surfaces.

  14. Formation of bcc non-equilibrium La, Gd and Dy alloys and the magnetic structure of Mg-stabilized. beta. Gd and. beta. Dy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herchenroeder, J.W.

    1989-02-01

    The high temperature bcc allotrope of a rare earth metal has the potential for substantially different magnetic properties than the room temperature hexagonal (hcp or dhcp) counterpart because of its more symmetrical crystal field. The stabilization by alloying and quenching of this bcc phase was studied for La-M alloys where M is an non-rare earth metal from Group II or III. The factors influencing the stabilization, such as size of M and quench rate, are discussed. ..gamma..La (bcc) could be retained over a composition range around the eutectoid composition by Mg or Cd alloying. A comparison of T/sub o/ curvesmore » of the various alloy systems suggest that the eutectoid temperature of the La-M system must be approximately equal to or less than a critical T/sub o/ temperature of 515/degree/C if the bcc phase is to be retained by quenching. The thermal stability of ..beta..Gd (bcc) was investigated by DTA and isothermal annealing. It was found to transform to an intermediate phase before reverting to the equilibrium phases in contrast to ..gamma..La alloys which decompose directly on heating to the equilibrium phases. 71 refs., 52 figs., 7 tabs.« less

  15. Quantum many-body intermetallics: Phase stability of Fe3Al and small-gap formation in Fe2VAl

    NASA Astrophysics Data System (ADS)

    Kristanovski, Oleg; Richter, Raphael; Krivenko, Igor; Lichtenstein, Alexander I.; Lechermann, Frank

    2017-01-01

    Various intermetallic compounds harbor subtle electronic correlation effects. To elucidate this fact for the Fe-Al system, we perform a realistic many-body investigation based on a combination of density functional theory with dynamical mean-field theory in a charge self-consistent manner. A better characterization and understanding of the phase stability of bcc-based D 03-Fe3Al through an improved description of the correlated charge density and the magnetic energy is achieved. Upon replacement of one Fe sublattice with V, the Heusler compound Fe2VAl is realized, known to display bad-metal behavior and increased specific heat. Here we document a charge-gap opening at low temperatures in line with previous experimental work. The gap structure does not match conventional band theory and is reminiscent of (pseudo)gap characteristics in correlated oxides.

  16. FeCoNi coated glass fibers in composite sheets for electromagnetic absorption and shielding behaviors

    NASA Astrophysics Data System (ADS)

    Lee, Joonsik; Jung, Byung Mun; Lee, Sang Bok; Lee, Sang Kwan; Kim, Ki Hyeon

    2017-09-01

    To evaluate the electromagnetic (EM) absorption and shield of magnetic composite sheet, we prepared the FeCoNi coated glass fibers filled in composite sheet. The FeCoNi was coated by electroless plating on glass fiber as a filler. The coated FeCoNi found that consist of mixtures of bcc and fcc phase. The magnetization and coercivity of coated FeCoNi are about 110 emu/g and 57 Oe, respectively. The permittivity and permeability of the FeCoNi composite sheet were about 21 and 1, respectively. Power absorption increased 95% with the increment of frequency up to 10 GHz. Inter-decoupling of this composite sheet showed maximum 30 dB at around 5.3 GHz, which is comparable to that of a conductive Cu foil. Shielding effectiveness (SE) was measured by using rectangular waveguide method. SE of composite obtained about 37 dB at X-band frequency region.

  17. Data on a Laves phase intermetallic matrix composite in situ toughened by ductile precipitates.

    PubMed

    Knowles, Alexander J; Bhowmik, Ayan; Purkayastha, Surajit; Jones, Nicholas G; Giuliani, Finn; Clegg, William J; Dye, David; Stone, Howard J

    2017-10-01

    The data presented in this article are related to the research article entitled "Laves phase intermetallic matrix composite in situ toughened by ductile precipitates" (Knowles et al.) [1]. The composite comprised a Fe 2 (Mo, Ti) matrix with bcc (Mo, Ti) precipitated laths produced in situ by an aging heat treatment, which was shown to confer a toughening effect (Knowles et al.) [1]. Here, details are given on a focused ion beam (FIB) slice and view experiment performed on the composite so as to determine that the 3D morphology of the bcc (Mo, Ti) precipitates were laths rather than needles. Scanning transmission electron microscopy (S(TEM)) micrographs of the microstructure as well as energy dispersive X-ray spectroscopy (EDX) maps are presented that identify the elemental partitioning between the C14 Laves matrix and the bcc laths, with Mo rejected from the matrix into laths. A TEM selected area diffraction pattern (SADP) and key is provided that was used to validate the orientation relation between the matrix and laths identified in (Knowles et al.) [1] along with details of the transformation matrix determined.

  18. Grain boundaries in bcc-Fe: a density-functional theory and tight-binding study

    NASA Astrophysics Data System (ADS)

    Wang, Jingliang; Madsen, Georg K. H.; Drautz, Ralf

    2018-02-01

    Grain boundaries (GBs) have a significant influence on material properties. In the present paper, we calculate the energies of eleven low-Σ ({{Σ }}≤slant 13) symmetrical tilt GBs and two twist GBs in ferromagnetic bcc iron using first-principles density functional theory (DFT) calculations. The results demonstrate the importance of a sufficient sampling of initial rigid body translations in all three directions. We show that the relative GB energies can be explained by the miscoordination of atoms at the GB region. While the main features of the studied GB structures were captured by previous empirical interatomic potential calculations, it is shown that the absolute values of GB energies calculated were substantially underestimated. Based on DFT-calculated GB structures and energies, we construct a new d-band orthogonal tight-binding (TB) model for bcc iron. The TB model is validated by its predictive power on all the studied GBs. We apply the TB model to block boundaries in lath martensite and demonstrate that the experimentally observed GB character distribution can be explained from the viewpoint of interface energy.

  19. Auger electron diffraction study of V/Fe(100) interface formation

    NASA Astrophysics Data System (ADS)

    Huttel, Y.; Avila, J.; Asensio, M. C.; Bencok, P.; Richter, C.; Ilakovac, V.; Heckmann, O.; Hricovini, K.

    1998-05-01

    Vanadium atoms present a magnetic moment different to zero when they are part of a thin film deposited on Fe or as a bimetallic Fe-V alloy. The understanding of this phenomenon can only be achieved with a correct structural description of these types of systems. We report an Auger electron diffraction investigation of V films grown on body cubic centred (b.c.c.) Fe(100) substrates. Angular-scanned Auger electron diffraction (AED) patterns of V L 23M 23M 4 (473 eV) and Fe L 3VV (703 eV) show the formation of a well-ordered V/Fe interface even at room temperature. The AED patterns of V films in the range of vanadium submonolayer provide evidence of an isotropic Auger emission, indicating the absence of interdiffusion of V atoms into the Fe substrate and absence of cluster growth of the V film. The annealing of these films up to 400°C does not activate the substitution of the topmost Fe surface layers by V atoms.

  20. Electroplated Fe-Co-Ni films prepared in ammonium-chloride-based plating baths

    NASA Astrophysics Data System (ADS)

    Yanai, T.; Koda, K.; Kaji, J.; Aramaki, H.; Eguchi, K.; Takashima, K.; Nakano, M.; Fukunaga, H.

    2018-05-01

    We electroplated Fe-Co-Ni films in ammonium-chloride-based plating baths, and investigated the effect of the Co content on the magnetic properties and the structural ones of the as-plated films. The coercivity increased abruptly when the Co content become more than 60 at.%. As the rough surfaces were observed in the high Co content region, we considered that degradation of the surface is a factor of the abrupt increase in the coercivity. From the XRD analysis, we found that another factor of the abrupt increase is fcc-bcc phase transformation, and concluded that we need to keep the fcc structure to obtain Fe-Co-Ni films with low coercivity.

  1. Ordering Transformations in High-Entropy Alloys

    NASA Astrophysics Data System (ADS)

    Singh, Prashant; Johnson, Duane D.

    The high-temperature disordered phase of multi-component alloys, including high-entropy alloys (HEA), generally must experience segregation or else passes through partially-ordered phases to reach the low-temperature, fully-ordered phase. Our first-principles KKR-CPA-based atomic short-range ordering (SRO) calculations (analyzed as concentration-waves) reveal the competing partially and fully ordered phases in HEA, and these phases can be then directly assessed from KKR-CPA results in larger unit cells [Phys. Rev. B 91, 224204 (2015)]. For AlxCrFeNiTi0.25, Liu et al. [J Alloys Compd 619, 610 (2015)] experimentally find FCC+BCC coexistence that changes to BCC with increasing Al (x from 0-to-1), which then exhibits a partially-ordered B2 at low temperatures. CALPHAD (Calculation of Phase Diagrams) predicts a region with L21+B2 coexistence. From KKR-CPA calculations, we find crossover versus Al from FCC+BCC coexistence to BCC, as observed, and regions for partially-order B2+L21 coexistence, as suggest by CALPHAD. Our combined first-principles KKR-CPA method provides a powerful approach in predicting SRO and completing long-range order in HEA and other complex alloys. Supported by the U.S. DOE, Office of Science, Basic Energy Sciences, Materials Science and Engineering Division. Work was performed at Ames Laboratory, which is operated by Iowa State University for the U.S. DOE under Contract #DE-AC02-07CH11358.

  2. Patterns of Ultraviolet Radiation Exposure and Skin Cancer Risk: the E3N-SunExp Study.

    PubMed

    Savoye, Isabelle; Olsen, Catherine M; Whiteman, David C; Bijon, Anne; Wald, Lucien; Dartois, Laureen; Clavel-Chapelon, Françoise; Boutron-Ruault, Marie-Christine; Kvaskoff, Marina

    2018-01-05

    While ultraviolet (UV) radiation exposure is a recognized risk factor for skin cancer, associations are complex and few studies have allowed a direct comparison of exposure profiles associated with cutaneous melanoma, basal-cell carcinoma (BCC), and squamous-cell carcinoma (SCC) within a single population. We examined associations between UV exposures and skin cancer risk in a nested case-control study within E3N, a prospective cohort of 98,995 French women born in 1925-1950. In 2008, a lifetime UV exposure questionnaire was sent to all reported skin cancer cases and three controls per case, which were matched on age, county of birth, and education. Analyses were performed using conditional logistic regression and included 366 melanoma cases, 1,027 BCC cases, 165 SCC cases, and 3,647 controls. A history of severe sunburns <25 years was associated with increased risks of all skin cancers (melanoma: OR 2.7; BCC: OR 1.7; SCC: OR 2.0 for ≥6 sunburns vs. none), while sunburns ≥25 years were associated with BCC and SCC only. While high-sun protection factor sunscreen use before age 25 was associated with lower BCC risk (P trend = 0.02), use since age 25 and reapplication of sunscreen were associated with higher risks of all three types of skin cancer. There were positive linear associations between total UV score and risks of BCC (P trend = 0.01) and SCC (P trend = 0.09), but not melanoma. While recreational UV score was strongly associated with BCC, total and residential UV scores were more strongly associated with SCC. Melanoma, BCC, and SCC are associated with different sun exposure profiles in women.

  3. A defect density-based constitutive crystal plasticity framework for modeling the plastic deformation of Fe-Cr-Al cladding alloys subsequent to irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patra, Anirban; Wen, Wei; Martinez Saez, Enrique

    2016-02-05

    It is essential to understand the deformation behavior of these Fe-Cr-Al alloys, in order to be able to develop models for predicting their mechanical response under varied loading conditions. Interaction of dislocations with the radiation-induced defects governs the crystallographic deformation mechanisms. A crystal plasticity framework is employed to model these mechanisms in Fe-Cr-Al alloys. This work builds on a previously developed defect density-based crystal plasticity model for bcc metals and alloys, with necessary modifications made to account for the defect substructure observed in Fe-Cr-Al alloys. The model is implemented in a Visco-Plastic Self Consistent (VPSC) framework, to predict the mechanicalmore » behavior under quasi-static loading.« less

  4. Effects of applied strain on nanoscale self-interstitial cluster formation in BCC iron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Ning; Setyawan, Wahyu; Kurtz, Richard J.

    2017-09-01

    The effect of applied strains on the configurational evolution of self-interstitial clusters in BCC iron (Fe) is explored with atomistic simulations. A novel cluster configuration is discovered at low temperatures (<600 K), which consists of <110> dumbbells and <111> crowdions in a specific configuration, resulting in an immobile defect. The stability and diffusion of this cluster at higher temperatures is explored. In addition, an anisotropy distribution factor of a particular [hkl] interstitial loop within the family of loops is calculated as a function of strain. The results show that loop anisotropy is governed by the angle between the stress directionmore » and the orientation of the <111> crowdions in the loop, and directly linked to the stress induced preferred nucleation of self-interstitial atoms.« less

  5. Effects of Laves phase particles on recovery and recrystallization behaviors of Nb-containing FeCrAl alloys

    DOE PAGES

    Sun, Zhiqian; Edmondson, Philip D.; Yamamoto, Yukinori

    2017-11-15

    The microstructures and mechanical properties of deformed and annealed Nb-containing FeCrAl alloys were investigated. Fine dispersion of Fe 2Nb-type Laves phase particles was observed in the bcc-Fe matrix after applying a thermomechanical treatment, especially along grain/subgrain boundaries, which effectively stabilized the recovered and recrystallized microstructures compared with the Nb-free FeCrAl alloy. The stability of recovered areas increased with Nb content up to 1 wt%. The recrystallized grain structure in Nb-containing FeCrAl alloys consisted of elongated grains along the rolling direction with a weak texture when annealed below 1100 °C. An abnormal relationship between recrystallized grain size and annealing temperature wasmore » found. Microstructural inhomogeneity in the deformed and annealed states was explained based on the Taylor factor. Annealed Nb-containing FeCrAl alloys showed a good combination of strength and ductility, which is desirable for their application as fuel cladding in light-water reactors.« less

  6. First-Principles Study of Thermodynamic and Magnetic Properties of Alloys

    NASA Astrophysics Data System (ADS)

    Zhuravlev, Ivan

    The standard theoretical framework for predicting phase diagrams and other thermodynamic properties of alloys requires an adequate representation of the formation enthalpy. An important part of the formation enthalpy in size-mismatched alloys comes from atomic relaxations. The harmonic Kanzaki-Krivoglaz-Khachaturyan model of strain-induced interaction is generalized to concentrated size-mismatched alloys and adapted to first-principles calculations. The configuration dependence of both Kanzaki forces and force constants is represented by real-space cluster expansions that can be constructed based on the calculated forces. Developed configuration-dependent lattice deformation model is implemented for the fcc lattice and applied to Cu1-x Aux and Fe1-x Ptx alloys for concentrations x = 0.25, 0.5, and 0.75. The model is further adapted to concentration wave analysis and Monte Carlo. Good agreement with experiment is found for all systems except CuAu3 and FePt3. The structural and ordering energetics are studied in Au-Fe alloys by combining DFT calculations with effective Hamiltonian techniques: a cluster expansion with structural filters, and CLDM. The phase separation tendency in Au-Fe persists even if the fcc-bcc decomposition is suppressed. The relative stability of disordered bcc and fcc phases observed in nanoparticles is reproduced, but the fully ordered L10 AuFe, L12 Au3Fe, and L1 2 AuFe3 structures are unstable in DFT. Effects of magnetism on the chemical ordering are also discussed. Magnetocrystalline anisotropy is one of the key properties of a magnetic material. Understanding of its temperature and concentration dependence is a challenging theoretical problem with implications for the design of better materials for permanent magnets and other applications. The origins of the anomalous temperature dependence of magnetocrystalline anisotropy in (Fe 1-xCox)2B alloys are elucidated using first-principles calculations within the disordered local moment model. Excellent agreement with experimental data is obtained. Electronic structure calculations are used to examine the magnetic properties of Fe2P-based alloys and the mechanisms through which the Curie temperature and magnetocrystalline anisotropy can be optimized for specific applications. It is found that at elevated temperatures the magnetic interaction in pure Fe2P develops a pronounced two-dimensional character. Co-alloying of Fe2P with Co (or Ni) and Si is suggested as a strategy for maximizing the magnetocrystalline anisotropy above room temperature.

  7. New structures of Fe3S for rare-earth-free permanent magnets

    NASA Astrophysics Data System (ADS)

    Yu, Shu; Zhao, Xin; Wu, Shunqing; Nguyen, Manh Cuong; Zhu, Zi-zhong; Wang, Cai-Zhuang; Ho, Kai-Ming

    2018-02-01

    We applied an adaptive genetic algorithm (AGA) to search for low-energy crystal structures of Fe3S. A number of structures with energies lower than that of the experimentally reported Pnma and I-4 structures have been obtained from our AGA searches. These low-energy structures can be classified as layer-motif and column-motif structures. In the column-motif structures, Fe atoms self-assemble into rods with a bcc type of underlying lattice, which are separated by the holes terminated by S atoms. In the layer-motif structures, the bulk Fe is broken into slabs of several layers passivated by S atoms. Magnetic property calculations showed that the column-motif structures exhibit reasonably high uniaxial magnetic anisotropy. In addition, we examined the effect of Co doping to Fe3S and found that magnetic anisotropy can be enhanced through Co doping.

  8. New structures of Fe3S for rare-earth-free permanent magnets

    DOE PAGES

    Yu, Shu; Zhao, Xin; Wu, Shunqing; ...

    2018-02-25

    We applied adaptive genetic algorithm (AGA) to search for low-energy crystal structures of Fe 3S. A number of structures with energies lower than that of the experimentally reported Pnma and I-4 structures have been obtained from our AGA searches. These low-energy structures can be classified as layer-motif and column-motif structures. In the column-motif structures, Fe atoms self-assemble into rods with bcc type of underlying lattice, which are separated by the holes terminated by S atoms. In the layer-motif structures, the bulk Fe is broken into slabs of several layers passivated by S atoms. Magnetic properties calculations showed that the column-motifmore » structures exhibit reasonably high uniaxial magnetic anisotropy. In addition, we examined the effect of Co doping to Fe 3S and found magnetic anisotropy can be enhanced through Co doping.« less

  9. Blue light versus red light for photodynamic therapy of basal cell carcinoma in patients with Gorlin syndrome: A bilaterally controlled comparison study.

    PubMed

    Maytin, Edward V; Kaw, Urvashi; Ilyas, Muneeb; Mack, Judith A; Hu, Bo

    2018-06-01

    Photodynamic therapy (PDT) is a non-scarring alternative for treating basal cell carcinoma (BCC) in patients with Basal Cell Nevus Syndrome (BCNS), also known as Gorlin syndrome. In Europe, red light (635 nm) is the predominant source for PDT, whereas in the United States blue light (400 nm) is more widely available. The objective of this study was to conduct a head-to-head comparison of blue light and red light PDT in the same BCNS patients. In a pilot study of three patients with 141 BCC lesions, 5-aminolevulinate (20% solution) was applied to all tumors. After 4 h, half of the tumors were illuminated with blue light and the remainder with red light. To ensure safety while treating this many tumors simultaneously, light doses were escalated gradually. Six treatments were administered in three biweekly sessions over 4 months, with a final evaluation at 6 months. Tumor status was documented with high-resolution photographs. Persistent lesions were biopsied at 6 months. Clearance rates after blue light (98%) were slightly better than after red light (93%), with blue light shown to be statistically non-inferior to red light. Eight suspicious lesions were biopsied, 5 after red light (5/5 were BCC) and 3 after blue light (1 was BCC). Blue light PDT was reportedly less painful. Blue light and red light PDT appear to be equally safe and perhaps equally effective for treating BCC tumors in BCNS patients. Further studies to evaluate long-term clearance after blue light PDT are needed. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Local-spin-density calculations for iron: Effect of spin interpolation on ground-state properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacLaren, J.M.; Clougherty, D.P.; Albers, R.C.

    1990-08-15

    Scalar-relativistic self-consistent linear muffin-tin orbital (LMTO) calculations for bcc and fcc Fe have been performed with several different local approximations to the exchange and correlation energy density and potential. Overall, in contrast to the conclusions of previous studies, we find that the local-spin-density approximation to exchange and correlation can provide an adequate description of bulk Fe {ital provided} that a proper parametrization of the correlation energy density and potential of the homogeneous electron gas over both spin and density is used. Lattice constants, found from the position of the minimum of the total energy as a function of Wigner-Seitz radius,more » agree to within 1% (for {ital s},{ital p},{ital d} LMTO's only) and within 1--2% (for {ital s},{ital p},{ital d},{ital f} LMTO's) of the experimental lattice constants for all forms used for the local correlation. The best agreement, however, was obtained using a local correlation potential derived from the Vosko-Wilk-Nusair form for the spin dependence of the correlation energy density. The calculation performed with this correlation potential was also the only calculation to correctly predict a bcc ferromagnetic ground state.« less

  11. Heusler alloys with bcc tungsten seed layers for GMR junctions

    NASA Astrophysics Data System (ADS)

    Frost, William; Hirohata, Atsufumi

    2018-05-01

    We demonstrate that polycrystalline Co2FeSi Heusler alloys films can be grown with perpendicular anisotropy without the use of an MgO interface. By heating the substrate to 400 °C prior to deposition and using a tungsten seed layer perpendicular anisotropy is induced in the Heusler layer. This is maintained as the thickness of the Co2FeSi is increased up to 12.5 nm. The layers with thickness dependent coercivity can be implemented into a giant magnetoresistance structure leading to spin-valve behaviour without the need for an exchange biased pinned layer.

  12. Microscopic structural change in a liquid Fe-C alloy of ~5 GPa

    DOE PAGES

    Shibazaki, Yuki; Kono, Yoshio; Fei, Yingwei

    2015-07-04

    The structure of a liquid Fe-3.5 wt% C alloy is examined for up to 7.2 GPa via multiangle energy-dispersive X-ray diffraction using a Paris-Edinburgh type large-volume press. X-ray diffraction data show clear changes in the pressure-dependent peak positions of structure factor and reduced pair distribution function at 5GPa. These results suggest that the liquid Fe-3.5wt%C alloys change structurally at approximately 5GPa. This finding serves as a microscopic explanation for the alloy’s previously observed density change at the same pressure. The pressure dependencies of the nearest and second neighbor distances of the liquid Fe-3.5 wt% C alloy are similar to thosemore » of liquid Fe which exhibits a structural change near the bcc-fcc-liquid triple point (5.2GPa and 1991 K). Here, similarities between Fe-3.5wt% C and Fe suggest that a density change also occurs in liquid Fe and that this structural change extends to other Fe-light element alloys.« less

  13. Annealing induced structural changes in amorphous Co{sub 23}Fe{sub 60}B{sub 17} film on Mo buffer layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dwivedi, Jagrati, E-mail: jdwivedi.phy@gmail.com; Mishra, Ashutosh; Gupta, Ranjeeta

    2016-05-23

    Structural changes occurring in a thin amorphous Co{sub 23}Fe{sub 60}B{sub 17} film sandwiched between two Mo layers, as a function of thermal annealing has been studied. Thermal stability of the Co{sub 23}Fe{sub 60}B{sub 17} film is found to be significantly lower than the bulk ribbons. SIMS measurements show that during crystallization, boron which is expelled out of the crystallites, has a tendency to move towards the surface. No significant diffusion of boron in Mo buffer layer is observed. This result is in contrast with some earlier studies where it was proposed that the role of buffer layer of refractory metalmore » is to absorb boron which is expelled out of the bcc FeCo phase during crystallization.« less

  14. Structural and magnetic properties of FeCoC system obtained by mechanical alloying

    NASA Astrophysics Data System (ADS)

    Rincón Soler, A. I.; Rodríguez Jacobo, R. R.; Medina Barreto, M. H.; Cruz-Muñoz, B.

    2017-11-01

    Fe96-XCoXC4 (x = 0, 10, 20, 30, 40 at. %) alloys were obtained by mechanical alloying of Fe, C and Co powders using high-energy milling. The structural and magnetic properties of the alloy system were analyzed by X-ray diffraction, Scanning Electron Microscopy (SEM), Vibrating Sample Magnetometer (VSM) and Mössbauer Spectrometry at room temperature. The X-ray diffraction patterns showed a BCC-FeCoC structure phase for all samples, as well as a lattice parameter that slightly decreases with Co content. The saturation magnetization and coercive field were analyzed as a function of Co content. The Mössbauer spectra were fitted with a hyperfine magnetic field distribution showing the ferromagnetic behavior and the disordered character of the samples. The mean hyperfine magnetic field remained nearly constant (358 T) with Co content.

  15. Exact ab initio transport coefficients in bcc Fe-X (X=Cr, Cu, Mn, Ni, P, Si) dilute alloys

    NASA Astrophysics Data System (ADS)

    Messina, Luca; Nastar, Maylise; Garnier, Thomas; Domain, Christophe; Olsson, Pär

    2014-09-01

    Defect-driven diffusion of impurities is the major phenomenon leading to formation of embrittling nanoscopic precipitates in irradiated reactor pressure vessel (RPV) steels. Diffusion depends strongly on the kinetic correlations that may lead to flux coupling between solute atoms and point defects. In this work, flux coupling phenomena such as solute drag by vacancies and radiation-induced segregation at defect sinks are systematically investigated for six bcc iron-based dilute binary alloys, containing Cr, Cu, Mn, Ni, P, and Si impurities, respectively. First, solute-vacancy interactions and migration energies are obtained by means of ab initio calculations; subsequently, self-consistent mean field theory is employed in order to determine the exact Onsager matrix of the alloys. This innovative multiscale approach provides a more complete treatment of the solute-defect interaction than previous multifrequency models. Solute drag is found to be a widespread phenomenon that occurs systematically in ferritic alloys and is enhanced at low temperatures (as for instance RPV operational temperature), as long as an attractive solute-vacancy interaction is present, and that the kinetic modeling of bcc alloys requires the extension of the interaction shell to the second-nearest neighbors. Drag occurs in all alloys except Fe(Cr); the transition from dragging to nondragging regime takes place for the other alloys around (Cu, Mn, Ni) or above (P, Si) the Curie temperature. As far as only the vacancy-mediated solute migration is concerned, Cr depletion at sinks is foreseen by the model, as opposed to the other impurities which are expected to enrich up to no less than 1000 K. The results of this study confirm the current interpretation of the hardening processes in ferritic-martensitic steels under irradiation.

  16. Comparison of Primer Sets for Use in Automated Ribosomal Intergenic Spacer Analysis of Aquatic Bacterial Communities: an Ecological Perspective▿

    PubMed Central

    Jones, Stuart E.; Shade, Ashley L.; McMahon, Katherine D.; Kent, Angela D.

    2007-01-01

    Two primer sets for automated ribosomal intergenic spacer analysis (ARISA) were used to assess the bacterial community composition (BCC) in Lake Mendota, Wisconsin, over 3 years. Correspondence analysis revealed differences in community profiles generated by different primer sets, but overall ecological patterns were conserved in each case. ARISA is a powerful tool for evaluating BCC change through space and time, regardless of the specific primer set used. PMID:17122397

  17. Organometallic Routes into the Nanorealms of Binary Fe-Si Phases

    PubMed Central

    Kolel-Veetil, Manoj K.; Keller, Teddy M.

    2010-01-01

    The Fe-Si binary system provides several iron silicides that have varied and exceptional material properties with applications in the electronic industry. The well known Fe-Si binary silicides are Fe3Si, Fe5Si3, FeSi, α-FeSi2 and β-FeSi2. While the iron-rich silicides Fe3Si and Fe5Si3 are known to be room temperature ferromagnets, the stoichiometric FeSi is the only known transition metal Kondo insulator. Furthermore, Fe5Si3 has also been demonstrated to exhibit giant magnetoresistance (GMR). The silicon-rich β-FeSi2 is a direct band gap material usable in light emitting diode (LED) applications. Typically, these silicides are synthesized by traditional solid-state reactions or by ion beam-induced mixing (IBM) of alternating metal and silicon layers. Alternatively, the utilization of organometallic compounds with reactive transition metal (Fe)-carbon bonds has opened various routes for the preparation of these silicides and the silicon-stabilized bcc- and fcc-Fe phases contained in the Fe-Si binary phase diagram. The unique interfacial interactions of carbon with the Fe and Si components have resulted in the preferential formation of nanoscale versions of these materials. This review will discuss such reactions.

  18. Synthesis of core-shell iron nanoparticles via a new (novel) approach

    NASA Astrophysics Data System (ADS)

    Chaudhary, Rakesh P.; Koymen, Ali R.

    2014-03-01

    Carbon-encapsulated iron (Fe) nanoparticles were synthesized by a newly developed method in toluene. Transmission Electron Microscopy (TEM) and High Resolution Transmission Electron Microscopy (HRTEM) of the as prepared sample reveal that core-shell nanostructures have been formed with Fe as core and graphitic carbon as shell. Fe nanoparticles with diameter 11nm to 102 nm are encapsulated by 6-8 nm thick graphitic carbon layers. There was no iron carbide formation observed between the Fe core and the graphitic shell. The Fe nanoparticles have body centered cubic (bcc) crystal structure. The magnetic hysteresis loop of the as synthesized powder at room temperature showed a saturation magnetization of 9 Am2 kg-1. After thermal treatment crystalline order of the samples improved and hence saturation magnetization increased to 24 Am2kg-1. We foresee that the carbon-encapsulated Fe nanoparticles are biologically friendly and could have potential applications in Magnetic Resonance Imaging (MRI) and Photothermal cancer therapy.

  19. Crystal structure and equation of state of Fe-Si alloys at super-Earth core conditions

    DOE PAGES

    Wicks, June K.; Smith, Raymond F.; Fratanduono, Dayne E.; ...

    2018-04-25

    In this paper, the high-pressure behavior of Fe alloys governs the interior structure and dynamics of super-Earths, rocky extrasolar planets that could be as much as ten times more massive than Earth. In experiments reaching up to 1300 GPa, we combine laser-driven dynamic ramp compression with in situ X-ray diffraction to study the effect of composition on the crystal structure and density of Fe-Si alloys, a potential constituent of super-Earth cores. We find that Fe-7wt.%Si adopts the hexagonal close packed (hcp) structure over the measured pressure range, whereas Fe-15wt.%Si is observed in a body-centered cubic (bcc) structure. This study representsmore » the first experimental determination of the density and crystal structure of Fe-Si alloys at pressures corresponding to the center of a ~3 Earth-mass terrestrial planet. Our results allow for direct determination of the effects of light elements on core radius, density, and pressures for such planets.« less

  20. Crystal structure and equation of state of Fe-Si alloys at super-Earth core conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wicks, June K.; Smith, Raymond F.; Fratanduono, Dayne E.

    In this paper, the high-pressure behavior of Fe alloys governs the interior structure and dynamics of super-Earths, rocky extrasolar planets that could be as much as ten times more massive than Earth. In experiments reaching up to 1300 GPa, we combine laser-driven dynamic ramp compression with in situ X-ray diffraction to study the effect of composition on the crystal structure and density of Fe-Si alloys, a potential constituent of super-Earth cores. We find that Fe-7wt.%Si adopts the hexagonal close packed (hcp) structure over the measured pressure range, whereas Fe-15wt.%Si is observed in a body-centered cubic (bcc) structure. This study representsmore » the first experimental determination of the density and crystal structure of Fe-Si alloys at pressures corresponding to the center of a ~3 Earth-mass terrestrial planet. Our results allow for direct determination of the effects of light elements on core radius, density, and pressures for such planets.« less

  1. Enhanced spin-valve giant magneto-resistance in non-exchange biased sandwich films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mao, M; Cerjan, C; Law, B

    2000-02-17

    A large giant magnetoresistance (GMR) value of 7.5% has been measured in simple NiFeCo(1)/Cu/NiFeCo(2) sandwich films grown on a 30 {angstrom} Cr seed layer. This spin-valve GMR effect is consistent with the differential switching of the two NiFeCo layers due to an enhanced coercivity of the NiFeCo(1) layer grown on the Cr seed layer. A change in growth texture of the NiFeCo(1) layer from fcc (111) to bcc (110) crystallographic orientation leads to an increase in magnetic anisotropy and an enhancement in coercivity. The GMR value increases to 8.7% when a thin CoFe interfacial enhancing layer is incorporated. Further enhancementmore » in GMR values up to 14% is seen in the sandwich films by nano-oxide layer formation. The specular reflection at oxide/magnetic layer interface further extends the mean free path of spin-polarized electrons.« less

  2. Durable pd-based alloy and hydrogen generation membrane thereof

    DOEpatents

    Benn, Raymond C.; Opalka, Susanne M.; Vanderspurt, Thomas Henry

    2010-02-02

    A durable Pd-based alloy is used for a H.sub.2-selective membrane in a hydrogen generator, as in the fuel processor of a fuel cell plant. The Pd-based alloy includes Cu as a binary element, and further includes "X", where "X" comprises at least one metal from group "M" that is BCC and acts to stabilize the .beta. BCC phase for stability during operating temperatures. The metal from group "M" is selected from the group consisting of Fe, Cr, Nb, Ta, V, Mo, and W, with Nb and Ta being most preferred. "X" may further comprise at least one metal from a group "N" that is non-BCC, preferably FCC, that enhances other properties of the membrane, such as ductility. The metal from group "N" is selected from the group consisting of Ag, Au, Re, Ru, Rh, Y, Ce, Ni, Ir, Pt, Co, La and In. The at. % of Pd in the binary Pd--Cu alloy ranges from about 35 at. % to about 55 at. %, and the at. % of "X" in the higher order alloy, based on said binary alloy, is in the range of about 1 at. % to about 15 at. %. The metals are selected according to a novel process.

  3. Increased magnetic moment induced by lattice expansion from α-Fe to α′-Fe{sub 8}N

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dirba, Imants, E-mail: dirba@fm.tu-darmstadt.de; Komissinskiy, Philipp; Alff, Lambert, E-mail: alff@oxide.tu-darmstadt.de

    2015-05-07

    Buffer-free and epitaxial α-Fe and α′-Fe{sub 8}N{sub x} thin films have been grown by RF magnetron sputtering onto MgO (100) substrates. The film thicknesses were determined with high accuracy by evaluating the Kiessig fringes of X-ray reflectometry measurements allowing a precise volume estimation. A gradual increase of the nitrogen content in the plasma led to an expansion of the iron bcc unit cell along the [001] direction resulting finally in a tetragonal distortion of about 10% corresponding to the formation of α′-Fe{sub 8}N. The α-Fe lattice expansion was accompanied by an increase in magnetic moment to 2.61 ± 0.06μ{sub B} per Femore » atom and a considerable increase in anisotropy. These experiments show that—without requiring any additional ordering of the nitrogen atoms—the lattice expansion of α-Fe itself is the origin of the increased magnetic moment in α′-Fe{sub 8}N.« less

  4. Modern magnetostrictive materials: classical and nonclassical alloys

    NASA Astrophysics Data System (ADS)

    Clark, Arthur E.; Wun-Fogle, Marilyn

    2002-07-01

    Magnetostrictive materials have not changed greatly from their discovery by Joule in 1842 through the 1960's. Their saturation strains remained small and their magnetomechanical couplings were only moderate. The separation of the rare earth elements during World War II and the subsequent measurement of their magnetic properties, created the groundwork for the development of 'giant' magnetostrictive materials during the 1960's. Magnetically anisotropic Tb and Dy became the generators of unprecedented classical magnetostrictions of nearly 1 percent. Coupling factors increased to approximately 0.8. During the same period, a remarkable 5-fold increase of magnetostriction of commonplace b.c.c. Fe with concentrations of Al near 1 18 percent was discovered. More recently, measurements in b.c.c. Fe-Ga alloys have shown a still greater enhancement of the magnetostriction, yielding strains of nearly 400 X 10-6 over the wide range in temperature from 4 K to far above room temperature. In the Fe alloys, as well as in the rare earth alloys, there is no known stress limit to the magnetostriction. Power output is limited by magnetic field generation and mechanical sample failure. Within the last few years, a new class of magnetostrictive materials, ferromagnetic shape memory alloys (FSMA's), have been introduced. These materials have huge magnetically induced strains. However, unlike the classical magnetostrictive alloys, these strains may be stress limited. While all the above materials have been introduced primarily for their high power electrical to mechanical energy conversion capability, they also function in the reciprocal mode, as magnetomechanical sensing materials.

  5. Effects of applied strain on nanoscale self-interstitial cluster formation in BCC iron

    NASA Astrophysics Data System (ADS)

    Gao, Ning; Setyawan, Wahyu; Kurtz, Richard J.; Wang, Zhiguang

    2017-09-01

    The effect of applied strains on the configurational evolution of self-interstitial clusters in BCC iron (Fe) is explored with atomistic simulations. A novel cluster configuration is discovered at low temperatures (<600 K), which consists of 〈 110 〉 dumbbells and 〈 111 〉 crowdions in a specific configuration, resulting in an immobile defect. The stability and diffusion of this cluster at higher temperatures is explored. In addition, an anisotropy distribution factor of a particular [ hkl ] interstitial loop within the family of 〈 hkl 〉 loops is calculated as a function of strain. The results show that loop anisotropy is governed by the angle between the stress direction and the orientation of the 〈 111 〉 crowdions in the loop, and directly linked to the stress induced preferred nucleation of self-interstitial atoms.

  6. Ginzburg-Landau theory for the solid-liquid interface of bcc elements

    NASA Technical Reports Server (NTRS)

    Shih, W. H.; Wang, Z. Q.; Zeng, X. C.; Stroud, D.

    1987-01-01

    Consideration is given to a simple order-parameter theory for the interfacial tension of body-centered-cubic solids in which the principal order parameter is the amplitude of the density wave at the smallest nonzero reciprocal-lattice vector of the solid. The parameters included in the theory are fitted to the measured heat of fusion, melting temperature, and solid-liquid density difference, and to the liquid structure factor and its temperature derivative at freezing. Good agreement is found with experiment for Na and Fe and the calculated anisotropy of the surface tension among different crystal faces is of the order of 2 percent. On the basis of various assumptions about the universal behavior of bcc crystals at melting, the formalism predicts that the surface tension is proportional to the heat of fusion per surface atom.

  7. Influence of hydrogen on the stability of iron phases under pressure

    NASA Astrophysics Data System (ADS)

    Skorodumova, N. V.; Ahuja, R.; Johansson, B.

    2004-04-01

    The influence of hydrogen presence on the stability of iron phases (bcc, hcp, dhcp, fcc, simple cubic) in a wide pressure interval at 0 K has been studied by the first-principles projector augmented-wave (PAW) method. Hydrogen is shown to occupy different interstitial lattice positions depending on the type of structure and pressure. An introduction of hydrogen impurities (˜6 at. %) leads to a stabilization of the close-packed iron structures, shifting the calculated pressure of the bcc-hcp transition from ˜9 GPa for pure iron to 7 GPa for Fe (6 at. % H). This tendency is further enhanced in the iron hydride structures. The iron hydrides in the close-packed structures (hcp, dhcp, fcc) are essentially degenerate in energy and found to be most stable in the whole pressure range.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Z.P.; Fishman, R.S.

    Many experiments have verified the presence of a spin-density wave (SDW) within the Cr spacer of Fe/Cr multilayers and wedges. The authors review the recently-proposed interlayer magnetic coupling mediated by a SDW. Unlike previously proposed mechanisms, this magnetic coupling is strongly temperature-dependent. Depending on the temperature and the number N of Cr monolayers (ML), the SDW may be either commensurate (C) or incommensurate (I) with the bcc Cr lattice.

  9. MBE growth and FMR, BLS and MOKE studies of exchange coupling in Fe whisker/Cr/Fe(001) and in Fe/Cu/Fe(001) 'loose spin' structures

    NASA Astrophysics Data System (ADS)

    Heinrich, B.; From, M.; Cochran, J. F.; Kowalewski, M.; Atlan, D.; Celinski, Z.; Myrtle, K.

    1995-02-01

    The exchange coupling has been studied in structures which consist of two ferromagnetic layers separated by non-ferromagnetic spacers (trilayers). The exchange coupling was measured using FMR and BLS techniques in the temperature range 77-400 K. Two systems were investigated: (a) Fe whisker/Cr/Fe(001) and (b) Fe/Cr/Fe(001). The oscillatory thickness dependence of the exchange coupling through a spin-density wave Cr spacer will be discussed and compared with recent data obtained by other groups. Cu interlayers were deposited either in a pure form, or a single monolayer of {Cu}/{Fe} alloy ('loose spins') was inserted between two pure bcc Cu(001) layers. Several such 'loose spin' structures were engineered to test the behavior of 'loose spin' structures. It was found that the presence of Fe impurity atoms has a strong tendency to decrease the direct bilinear exchange coupling. The contribution of 'loose spins' to the exchange coupling can be made significant, and even dominant, by a suitable choice of the RKKY coupling energy between the 'loose spins' and the surrounding ferromagnetic layers.

  10. Design of refractory high-entropy alloys

    DOE PAGES

    Gao, M. C.; Carney, C. S.; Dogan, O. N.; ...

    2015-09-15

    Here, this report presents a design methodology for refractory high-entropy alloys with a body-centered cubic (bcc) structure using select empirical parameters (i.e., enthalpy of mixing, atomic size difference, Ω-parameter, and electronegativity difference) and CALPHAD approach. Sixteen alloys in equimolar compositions ranging from quinary to ennead systems were designed with experimental verification studies performed on two alloys using x-ray diffraction, energy-dispersive spectroscopy, and scanning electron microscopy. Two bcc phases were identified in the as-cast HfMoNbTaTiVZr, whereas multiple phases formed in the as-cast HfMoNbTaTiVWZr. Observed elemental segregation in the alloys qualitatively agrees with CALPHAD prediction. Comparisons of the thermodynamic mixing properties formore » liquid and bcc phases using the Miedema model and CALPHAD are presented. This study demonstrates that CALPHAD is more effective in predicting HEA formation than empirical parameters, and new single bcc HEAs are suggested: HfMoNbTiZr, HfMoTaTiZr, NbTaTiVZr, HfMoNbTaTiZr, HfMoTaTiVZr, and MoNbTaTiVZr.« less

  11. Effect of annealing under tensile loading on the structure of nanocrystals in the Finemet alloy

    NASA Astrophysics Data System (ADS)

    Ershov, N. V.; Chernenkov, Yu. P.; Fedorov, V. I.; Lukshina, V. A.; Potapov, A. P.

    2014-11-01

    The effect of nanocrystallization annealing under tensile loading on the structure of nanocrystals in the soft magnetic alloy Fe-Si-Nb-B-Cu (Finemet) has been investigated. It has been shown that the body-centered cubic (bcc) lattice of α-FeSi nanocrystals is extended along the direction of the application of the load upon annealing and is compressed in the transverse direction. Nanocrystals in the Finemet alloy have a higher degree of anisotropy of mechanical properties as compared to bulk crystals of α-FeSi, so that agreement between the measured and calculated values of the elongation is achieved only with a significant increase in the elastic moduli. Substantial changes in mechanical properties of the crystals with a decrease in their size to the nanometer scale are caused by the influence of the rigid amorphous matrix of the Fe(Nb)-B phase surrounding the nanocrystals.

  12. Application of constrained equilibrium thermodynamics to irradiated alloy systems

    NASA Astrophysics Data System (ADS)

    Holloway, James Paul; Stubbins, James F.

    1984-05-01

    Equilibrium thermodynamics are applied to systems with an excess of point defects to calculate the relative stability of phases. It is possible to model systems with supersaturation levels of vacancies and interstitials, such as those found under irradiation. The calculations reveal the extent to which phase compositional boundaries could shift when one phase or both in a two phase system contain an excess of point defects. Phase boundary shifts in the Ni-Si, Fe-Ni, Ni-Cr, and Fe-Cr systems are examined as a function of the number of excess defects in each phase. It is also found that the critical temperature of the sigma phase in the Fe-Cr system and the fcc-bcc transition in the Fe-Ni are sensitive to excess defect concentrations. These results may apply to local irradiation-induced phase transformations in the presence of solute segregation.

  13. Elastic moduli and thermal expansion coefficients of medium-entropy subsystems of the CrMnFeCoNi high-entropy alloy

    DOE PAGES

    Laplanche, Guillaume; Gadaud, P.; Barsch, C.; ...

    2018-02-23

    Elastic moduli of a set of equiatomic alloys (CrFeCoNi, CrCoNi, CrFeNi, FeCoNi, MnCoNi, MnFeNi, and CoNi), which are medium-entropy subsystems of the CrMnFeCoNi high-entropy alloy were determined as a function of temperature over the range 293 K–1000 K. Thermal expansion coefficients were determined for these alloys over the temperature range 100 K–673 K. All alloys were single-phase and had the face-centered cubic (FCC) crystal structure, except CrFeNi which is a two-phase alloy containing a small amount of body-centered cubic (BCC) precipitates in a FCC matrix. The temperature dependences of thermal expansion coefficients and elastic moduli obtained here are useful formore » quantifying fundamental aspects such as solid solution strengthening, and for structural analysis/design. Furthermore, using the above results, the yield strengths reported in literature for these alloys were normalized by their shear moduli to reveal the influence of shear modulus on solid solution strengthening.« less

  14. Auger electron diffraction study of Fe 1- xNi x alloys epitaxially grown on Cu(100)

    NASA Astrophysics Data System (ADS)

    Martin, M. G.; Foy, E.; Chevrier, F.; Krill, G.; Asensio, M. C.

    1999-08-01

    We have combined Auger electron diffraction (AED), low-energy electron diffraction (LEED) and high-energy electron diffraction (RHEED) to examine the structure of Fe xNi 1- x alloys when the Fe content approaches 65%. At this concentration, the 'invar effect' takes place, so the magnetization falls to zero, and the thermal expansion coefficient is very small. The Fe xNi 1- x alloys, grown as metastable thin films by molecular-beam epitaxy on Cu(100) substrates, were studied as a function of the x stoichiometry. In contrast to the related bulk alloy compounds, we observe the collapse of the fcc-to-bcc structural transition in the Fe-rich films. Furthermore, the local atomic structure around Fe and Ni in the alloy has been simultaneously determined by the angular intensity distributions of Fe L 3VV (703 eV) and Ni L 3VV (848 eV) Auger electrons measured as a function of polar and azimuthal angles. For the films deposited at room temperature, we have confirmed the pseudomorphic growth morphology and the uniformity of the alloys.

  15. Structural short-range order of the β-Ti phase in bulk Ti-Fe-(Sn) nanoeutectic composites

    NASA Astrophysics Data System (ADS)

    Das, J.; Eckert, J.; Theissmann, R.

    2006-12-01

    The authors report lattice distortion and "ω-like" structural short-range order (SRO) of the β-Ti phase in a Ti-Fe-(Sn) bulk nanoeutectic composite prepared by slow cooling from the melt. The nanoeuetctic phases are chemically homogeneous, but the addition of Sn releases the local lattice strain, modifies the structural SRO, and prevents the formation of stacking faults in the body centered cubic (bcc) β-Ti phase resulting in improved plastic deformability. The elastic properties and the structural SRO of the β-Ti phase are proposed to be important parameters for developing advanced high strength, ductile Ti-base nanocomposite alloys.

  16. Effect of orientation on deformation behavior of Fe nanowires: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Sainath, G.; Srinivasan, V. S.; Choudhary, B. K.; Mathew, M. D.; Jayakumar, T.

    2014-04-01

    Molecular dynamics simulations have been carried out to study the effect of crystal orientation on tensile deformation behaviour of single crystal BCC Fe nanowires at 10 K. Two nanowires with an initial orientation of <100>/{100} and <110>/{111} have been chosen for this study. The simulation results show that the deformation mechanisms varied with crystal orientation. The nanowire with an initial orientation of <100>/{100} deforms predominantly by twinning mechanism, whereas the nanowire oriented in <110>/{111}, deforms by dislocation plasticity. In addition, the single crystal oriented in <110>/{111} shows higher strength and elastic modulus than <100>/{100} oriented nanowire.

  17. Specific features of the atomic structure of metallic layers of multilayered (CoFeZr/SiO2)32 and (CoFeZr/ a-Si)40 nanostructures with different interlayers

    NASA Astrophysics Data System (ADS)

    Domashevskaya, E. P.; Guda, A. A.; Chernyshev, A. V.; Sitnikov, V. G.

    2017-02-01

    Multilayered nanostructures (MN) were prepared by ion-beam successive sputtering from two targets, one of which was a metallic Co45Fe45Zr10 alloy plate and another target was a quartz (SiO2) or silicon plate on the surface of a rotating glass-ceramic substrate in an argon atmosphere. The Co and Fe K edges X-ray absorption fine structure of XANES in the (CoFeZr/SiO2)32 sample with oxide interlayers was similar to XANES of metallic Fe foil. This indicated the existence in metallic layers of multilayered CoFeZr nanocrystals with a local environment similar to the atomic environment in solid solutions on the base of bcc Fe structure, which is also confirmed by XRD data. XANES near the Co and Fe K edges absorption in another multilayered nanostructure with silicon interlayers (CoFeZr/ a-Si)40 differs from XANES of MN with dielectric SiO2 interlayer, which demonstrates a dominant influence of the Fe-Si and Co-Si bonds in the local environment of 3 d Co and Fe metals when they form CoFeSi-type silicide phases in thinner bilayers of this MN.

  18. Predicting vacancy-mediated diffusion of interstitial solutes in α -Fe

    NASA Astrophysics Data System (ADS)

    Barouh, Caroline; Schuler, Thomas; Fu, Chu-Chun; Jourdan, Thomas

    2015-09-01

    Based on a systematic first-principles study, the lowest-energy migration mechanisms and barriers for small vacancy-solute clusters (VnXm ) are determined in α -Fe for carbon, nitrogen, and oxygen, which are the most frequent interstitial solutes in several transition metals. We show that the dominant clusters present at thermal equilibrium (V X and V X2 ) have very reduced mobility compared to isolated solutes, while clusters composed of a solute bound to a small vacancy cluster may be significantly more mobile. In particular, V3X is found to be the fastest cluster for all three solutes. This result relies on the large diffusivity of the most compact trivacancy in a bcc lattice. Therefore, it may also be expected for interstitial solutes in other bcc metals. In the case of iron, we find that V3X may be as fast as or even more mobile than an interstitial solute. At variance with common assumptions, the trapping of interstitial solutes by vacancies does not necessarily decrease the mobility of the solute. Additionally, cluster dynamics simulations are performed considering a simple iron system with supersaturation of vacancies, in order to investigate the impacts of small mobile vacancy-solute clusters on properties such as the transport of solute and the cluster size distributions.

  19. Effect of Heat Treatment on Borides Precipitation and Mechanical Properties of CoCrFeNiAl1.8Cu0.7B0.3Si0.1 High-Entropy Alloy Prepared by Arc-Melting and Laser-Cladding

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Tang, H.; He, Y. Z.; Zhang, J. L.; Li, W. H.; Guo, S.

    2017-11-01

    Effects of heat treatment on borides precipitation and mechanical properties of arc-melted and laser-cladded CoCrNiFeAl1.8Cu0.7B0.3Si0.1 high-entropy alloys were comparatively studied. The arc-melted alloy contains lots of long strip borides distributed in the body-centered cubic phase, with a hardness about 643 HV0.5. Laser-cladding can effectively inhibit the boride precipitation and the laser-cladded alloy is mainly composed of a simple bcc solid solution, with a high hardness about 769 HV0.5, indicating the strengthening effect by interstitial boron atoms is greater than the strengthening by borides precipitation. Heat treatments between 800°C and 1200°C can simultaneously improve the hardness and fracture toughness of arc-melted alloys, owing to the boride spheroidization, dissolution, re-precipitation, and hence the increased boron solubility and nano-precipitation in the bcc solid solution. By contrast, the hardness of laser-cladded alloys reduce after heat treatments in the same temperature range, due to the decreased boron solubility in the matrix.

  20. Effect of Phase Contiguity and Morphology on the Evolution of Deformation Texture in Two-Phase Alloys

    NASA Astrophysics Data System (ADS)

    Gurao, N. P.; Suwas, Satyam

    2017-02-01

    Deformation texture evolution in two-phase xFe- yNi-(100- x- y)Cr model alloys and Ti-13Nb-13Zr alloy was studied during rolling to develop an understanding of micro-mechanisms of deformation in industrially relevant two-phase FCC-BCC steels and HCP-BCC titanium alloys, respectively. It was found that volume fraction and contiguity of phases lead to systematic changes in texture, while morphology affects the strength of texture. There was a characteristic change in texture from typical Brass-type to a weaker Copper-type texture in the austenite phase accompanied with a change from alpha fiber to gamma fiber in ferrite phase for Fe-Ni-Cr alloys with increase in fraction of harder ferrite phase. However, similar characteristic texture evolution was noted in both α and β phase irrespective of the different initial morphologies in Ti-13Nb-13Zr alloy. Viscoplastic self-consistent simulations with two-phase scheme were able to qualitatively predict texture evolution in individual phases. It is proposed that the transition from iso-strain-type behavior for equiaxed microstructure at low strain to iso-stress-type behavior at higher strain is aided by the presence of higher volume fraction of the second phase and increasing aspect ratio of individual phases in two-phase alloys.

  1. Layered structure and related magnetic properties for annealed Fe/Ir(111) ultrathin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Pei-Cheng; Chen, Wei-Hsiang; Hsieh, Chen-Yuan

    2015-05-07

    After annealing treatments for fcc-Fe/Ir(111) below 600 K, the surface layers remain pseudomorphic. The Ir(111) substrate plays an important role on the expanded Fe lattice. At temperatures between 750 and 800 K, the surface composition shows a stable state and a c(2 × 4) structure is observed. We discover a layered structure composed of some Fe atoms on the top of a Fe{sub 0.5}Ir{sub 0.5} interfacial alloy supported on the Ir(111) substrate. The competition between the negative formation heat of Fe{sub 0.5}Ir{sub 0.5} and surface free energy of Fe causes the formation of layered structure. The existence of ferromagnetic dead layer coincides with themore » formation of fcc-Fe for ultrathin Fe on Fe{sub 0.5}Ir{sub 0.5}/Ir(111). For Fe films thicker than three monolayers, the linear increase of the Kerr intensity versus the Fe coverage is related to the growing of bcc-Fe on the surface where the Fe layer is incoherent to the underlying Fe{sub 0.5}Ir{sub 0.5}/Ir(111). These results emphasize the importance of the substrate induced strain and layered structure of Fe/Fe{sub 0.5}Ir{sub 0.5}/Ir(111) on the magnetic properties and provide valuable information for future applications.« less

  2. Electronic origin of strain effects on solute stabilities in iron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Wei; Li, Xiangyan; Xu, Yichun, E-mail: xuyichun@issp.ac.cn, E-mail: csliu@issp.ac.cn

    2016-08-21

    Nonuniform strain fields might induce the segregation of alloying solutes and ultimately lead to the mechanical performance degradation of body-centered-cubic (bcc) Fe based steels serving in extreme environments, which is worthy of investigation. In this paper, two typical volume-conserving strains, shear strain (SS) and normal strain (NS), are proposed to investigate the strain effects on solute stabilities in bcc iron by first-principles calculations. For solutes in each transition metal group, the calculated substitution energy change due to SS exhibits a linear dependence on the valence d radius of the solutes, and the slope decreases in an exponential manner as amore » function of the absolute difference between the Watson's electronegativity of iron and the averaged value of each transition metal group. This regularity is attributed to the Pauli repulsion between the solutes and the nearest neighboring Fe ions modulated by the hybridization of valence d bands and concluded to be originated from the characteristics of valence d bonding between the transition-metal solutes and Fe ions under SS. For main-group and post transition-metal solutes, the considerable drop of substitution energy change due to NS is concluded to be originated from the low-energy side shift of the widened valence s and p bands of the solutes. Our results indicate that the stabilities of substitutional solutes in iron under volume-conserving strain directly correlate with the intrinsic properties of the alloying elements, such as the valence d radius and occupancy, having or not having valence s and p bands.« less

  3. The synthesis and the magnetic properties of Gd 3+-doped Fe xCo 1-x/Co yFe 3-yO 4 micro-octahedrons composites

    NASA Astrophysics Data System (ADS)

    Wang, Qin; Li, Shuiming; Wu, Aibing; Yang, Hua

    2009-09-01

    Gd 3+-substituted micro-octahedron composites (Fe xCo 1-x/Co yGd zFe 3-y-zO 4) in which the Fe-Co alloy has either a bcc or fcc structure and the oxide is a spinel phase were fabricated by the hydrothermal method. The X-ray diffraction (XRD) patterns indicate that the as-synthesized Gd 3+-substituted micro-octahedron composites are well crystallized. Scanning electron microscopy (SEM) images show that the final product consists of larger numbers of micro-octahedrons with the size ranging from 1.3 to 5 μm, and the size of products are increased with increasing the concentration of KOH. The effect of the Co 2+/Fe 2+ ratio (0⩽Co 2+/Fe 2+⩽1) and substitution Fe 3+ ions by Gd 3+ ions on structure, magnetic properties of the micro-octahedrons composites were investigated, and a possible growth mechanism is suggested to explain the formation of micro-octahedrons composites. The magnetic properties of the structure show the maximal saturation magnetization (107 emu/g) and the maximal coercivity (1192 Oe) detected by a vibrating sample magnetometer.

  4. Thermodynamic modeling and experimental validation of the Fe-Al-Ni-Cr-Mo alloy system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teng, Zhenke; Zhang, F; Miller, Michael K

    2012-01-01

    NiAl-type precipitate-strengthened ferritic steels have been known as potential materials for the steam turbine applications. In this study, thermodynamic descriptions of the B2-NiAl type nano-scaled precipitates and body-centered-cubic (BCC) Fe matrix phase for four alloys based on the Fe-Al-Ni-Cr-Mo system were developed as a function of the alloy composition at the aging temperature. The calculated phase structure, composition, and volume fraction were validated by the experimental investigations using synchrotron X-ray diffraction and atom probe tomography. With the ability to accurately predict the key microstructural features related to the mechanical properties in a given alloy system, the established thermodynamic model inmore » the current study may significantly accelerate the alloy design process of the NiAl-strengthened ferritic steels.« less

  5. Magnetoresistance due to domain walls in an epitaxial microfabricated Fe wire

    NASA Astrophysics Data System (ADS)

    Rüdiger, U.; Yu, J.; Kent, A. D.; Parkin, S. S. P.

    1998-08-01

    The domain wall (DW) contribution to magnetoresistance has been investigated using an epitaxial microfabricated bcc (110) Fe wires of 2 μm linewidth. A strong in-plane uniaxial component to the magnetic anisotropy perpendicular to the wire axis causes a regular stripe domain pattern with closure domains. The stripe domain width in zero-applied magnetic field is strongly affected by the magnetic history and can be continuously varied from 0.45 to 1.8 μm. This enables a measurement of the resistivity as a function of DW density in a single wire. Clear evidence is presented that the resistivity is reduced in the presence of DWs at low temperatures.

  6. Elastic moduli and thermal expansion coefficients of medium-entropy subsystems of the CrMnFeCoNi high-entropy alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laplanche, Guillaume; Gadaud, P.; Barsch, C.

    Elastic moduli of a set of equiatomic alloys (CrFeCoNi, CrCoNi, CrFeNi, FeCoNi, MnCoNi, MnFeNi, and CoNi), which are medium-entropy subsystems of the CrMnFeCoNi high-entropy alloy were determined as a function of temperature over the range 293 K–1000 K. Thermal expansion coefficients were determined for these alloys over the temperature range 100 K–673 K. All alloys were single-phase and had the face-centered cubic (FCC) crystal structure, except CrFeNi which is a two-phase alloy containing a small amount of body-centered cubic (BCC) precipitates in a FCC matrix. The temperature dependences of thermal expansion coefficients and elastic moduli obtained here are useful for quantifying fundamental aspects suchmore » as solid solution strengthening, and for structural analysis/design. Furthermore, using the above results, the yield strengths reported in literature for these alloys were normalized by their shear moduli to reveal the influence of shear modulus on solid solution strengthening.« less

  7. Atom probe study of B2 order and A2 disorder of the FeCo matrix in an Fe-Co-Mo-alloy.

    PubMed

    Turk, C; Leitner, H; Schemmel, I; Clemens, H; Primig, S

    2017-07-01

    The physical and mechanical properties of intermetallic alloys can be tailored by controlling the degree of order of the solid solution by means of heat treatments. FeCo alloys with an appropriate composition exhibit an A2-disorder↔B2-order transition during continuous cooling from the disordered bcc region. The study of atomic order in intermetallic alloys by diffraction and its influence on the material properties is well established, however, investigating magnetic FeCo-based alloys by conventional methods such as X-ray diffraction is quite challenging. Thus, the imaging of ordered FeCo-nanostructures needs to be done with high resolution techniques. Transmission electron microscopy investigations of ordered FeCo domains are difficult, due to the chemical and physical similarity of Fe and Co atoms and the ferromagnetism of the samples. In this work it will be demonstrated, that the local atomic arrangement of ordered and disordered regions in an industrial Fe-Co-Mo alloy can be successfully imaged by atom probe measurements supported by field ion microscopy and transmission Kikuchi diffraction. Furthermore, a thorough atom probe parameter study will be presented and field evaporation artefacts as a function of crystallographic orientation in Fe-Co-samples will be discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Laser MBE-grown CoFeB epitaxial layers on MgO: Surface morphology, crystal structure, and magnetic properties

    NASA Astrophysics Data System (ADS)

    Kaveev, Andrey K.; Bursian, Viktor E.; Krichevtsov, Boris B.; Mashkov, Konstantin V.; Suturin, Sergey M.; Volkov, Mikhail P.; Tabuchi, Masao; Sokolov, Nikolai S.

    2018-01-01

    Epitaxial layers of CoFeB were grown on MgO by means of laser molecular beam epitaxy using C o40F e40B20 target. The growth was combined with in situ structural characterization by three-dimensional reciprocal space mapping obtained from reflection high energy electron diffraction (RHEED) data. High-temperature single stage growth regime was adopted to fabricate CoFeB layers. As confirmed by the atomic force microscopy, the surface of CoFeB layers consists of closely spaced nanometer sized islands with dimensions dependent on the growth temperature. As shown by RHEED and XRD analysis, the CoFeB layers grown at high-temperature on MgO(001) possess body centered cubic (bcc) crystal structure with the lattice constant a =2.87 Å close to that of the C o75F e25 alloy. It was further shown that following the same high-temperature growth technique the MgO/CoFeB/MgO(001) heterostructures can be fabricated with top and bottom MgO layers of the same crystallographic orientation. The CoFeB layers were also grown on the GaN(0001) substrates using MgO(111) as a buffer layer. In this case, the CoFeB layers crystallize in bcc crystal structure with the (111) axis perpendicular to the substrate surface. The magnetic properties of the CoFeB/MgO (001) heterostructures have been investigated by measuring magnetization curves with a vibrating sample magnetometer as well as by performing magneto-optical Kerr effect (MOKE) and ferromagnetic resonance (FMR) studies. FMR spectra were obtained for the variety of the magnetic field directions and typically consisted of a single relatively narrow resonance line. The magnetization orientations and the resonance conditions were calculated in the framework of a standard magnetic energy minimization procedure involving a single K1 c cubic term for the magnetocrystalline anisotropy. This allows a fairly accurate description of the angular dependences of the resonance fields—both in-plane and out-of-plane. It was shown that CoFeB layers exhibit in-plane fourth-order magnetic anisotropy. A two-step magnetization reversal model has been adopted for the CoFeB layers based on the VSM measurement analysis. Magnetization reversal studies performed by polar MOKE indicate that the magnetization lies in-plane in absence of magnetic field. Observed magnetic field dependences of reflected light ellipticity in geometry of longitudinal Kerr effect give convincing evidence for contribution of quadratic in magnetization terms in the dielectric tensor and clearly show the in-plane magnetization rotation.

  9. Hydrogen migration modeling in a symmetric tilt boundary of the Iron-Chromium system

    NASA Astrophysics Data System (ADS)

    Ramunni, V. P.

    2018-03-01

    Previous experimental studies of H permeation in 9%Cr-Fe alloys have found a permeation coefficient 10 times lower and a diffusion coefficient 200 times lower than in pure annealed Fe. In an effort to shed some light on the microscopic origin of these findings, we perform an extensive study of Fe, Cr, and H migration in a high-angle symmetric tilt grain boundary in bcc Fe, both via vacancy and interstitial mechanism. This is undertaken in the framework of transition state theory with the relevant energies obtained from classical interatomic potentials, and partially from Density Functional Theory calculations, in order to check the consistency of structures. Trapping sites for H and possible migration paths are explored. We find that the presence of Cr and its migration via vacancy and interstitials creates the conditions in produce stable preferential trapping sites for H in the grain boundary, that delay the H migration, thereby explaining the experimental results.

  10. Synthesis and Magnetic Properties of Fe-Co-Ni/C Nanocomposites

    NASA Astrophysics Data System (ADS)

    Muratov, D. G.; Kozhitov, L. V.; Karpenkov, D. Yu.; Yakushko, E. V.; Korovin, E. Yu.; Vasil'ev, A. V.; Popkova, A. V.; Kazaryan, T. M.; Shadrinov, A. V.

    2018-03-01

    Nanoparticles of the Fe-Co-Ni ternary alloy, encapsulated in the carbon matrix of nanocomposites, have been synthesized, The structure, phase composition, and magnetic properties of the obtained materials have been determined with the help of diffractometry and magnetometry. It has been established that nanoparticles of the ternary alloy are formed due to solution of cobalt in the Fe-Ni alloy. The composition of the nanoparticles of the alloy depends on the mass percent ratio of the metas in the precursor. With growth of the iron content, nanoparticles of the ternary alloy with various composition are formed with FCC and BCC crystal lattice structure. As the synthesis temperature and relative iron content are increased, the magnetization of the Fe-Co-Ni/C nanocomposites increases from 26 to 157 A·m2/kg. The coercive force is determined by the synthesis temperature, the size of the nanoparticles, and the composition of the alloy, and its value varies from 330 to 43 Oe.

  11. Shape-Memory Effect and Pseudoelasticity in Fe-Mn-Based Alloys

    NASA Astrophysics Data System (ADS)

    La Roca, P.; Baruj, A.; Sade, M.

    2017-03-01

    Several Fe-based alloys are being considered as potential candidates for applications which require shape-memory behavior or superelastic properties. The possibility of using fabrication methods which are well known in the steel industry is very attractive and encourages a large amount of research in the field. In the present article, Fe-Mn-based alloys are mainly addressed. On the one hand, attention is paid to the shape-memory effect where the alloys contain (a) a maximum amount of Mn up to around 30 wt%, (b) several possible substitutional elements like Si, Cr, Ni, Co, and Nb and (c) some possible interstitial elements like C. On the other hand, superelastic alloys are analyzed, mainly the Fe-Mn-Al-Ni system discovered a few years ago. The most noticeable properties resulting from the martensitic transformations which are responsible for the mentioned properties, i.e., the fcc-hcp in the first case and the bcc-fcc in the latter are discussed. Selected potential applications are also analyzed.

  12. Microstructure and Tribological Properties of AlCoCrFeNiTi0.5 High-Entropy Alloy in Hydrogen Peroxide Solution

    NASA Astrophysics Data System (ADS)

    Yu, Y.; Liu, W. M.; Zhang, T. B.; Li, J. S.; Wang, J.; Kou, H. C.; Li, J.

    2014-01-01

    Microstructure and tribological properties of an AlCoCrFeNiTi0.5 high-entropy alloy in high-concentration hydrogen peroxide solution were investigated in this work. The results show that the sigma phase precipitates and the content of bcc2 decrease during the annealing process. Meanwhile, the complex construction of the interdendrite region changes into simple isolated-island shape, and much more spherical precipitates are formed. Those changes of microstructure during the annealing process lead to the increase of hardness of this alloy. In the testing conditions, the AlCoCrFeNiTi0.5 alloy shows smoother worn surfaces and steadier coefficient of friction curves than does the 1Cr18Ni9Ti stainless steel, and SiC ceramic preserves better wear resistance than ZrO2 ceramic. After annealing, the wear resistance of the AlCoCrFeNiTi0.5 alloy increases coupled with SiC counterface but decreases with ZrO2 counterface.

  13. Recombination radius of a Frenkel pair and capture radius of a self-interstitial atom by vacancy clusters in bcc Fe

    NASA Astrophysics Data System (ADS)

    Nakashima, Kenichi; Stoller, Roger E.; Xu, Haixuan

    2015-08-01

    The recombination radius of a Frenkel pair is a fundamental parameter for the object kinetic Monte Carlo (OKMC) and mean field rate theory (RT) methods that are used to investigate irradiation damage accumulation in irradiated materials. The recombination radius in bcc Fe has been studied both experimentally and numerically, however there is no general consensus about its value. The detailed atomistic processes of recombination also remain uncertain. Values from 1.0a0 to 3.3a0 have been employed as a recombination radius in previous studies using OKMC and RT. The recombination process of a Frenkel pair is investigated at the atomic level using the self-evolved atomistic kinetic Monte Carlo (SEAKMC) method in this paper. SEAKMC calculations reveal that a self-interstitial atom recombines with a vacancy in a spontaneous reaction from several nearby sites following characteristic pathways. The recombination radius of a Frenkel pair is estimated to be 2.26a0 by taking the average of the recombination distances from 80 simulation cases. In addition, we apply these procedures to the capture radius of a self-interstitial atom by a vacancy cluster. The capture radius is found to gradually increase with the size of the vacancy cluster. The fitting curve for the capture radius is obtained as a function of the number of vacancies in the cluster.

  14. Platinum complexes of a borane-appended analogue of 1,1'-bis(diphenylphosphino)ferrocene: flexible borane coordination modes and in situ vinylborane formation.

    PubMed

    Cowie, Bradley E; Emslie, David J H

    2014-12-15

    A bis(phosphine)borane ambiphilic ligand, [Fe(η(5) -C5 H4 PPh2 )(η(5) -C5 H4 PtBu{C6 H4 (BPh2 )-ortho})] (FcPPB), in which the borane occupies a terminal position, was prepared. Reaction of FcPPB with tris(norbornene)platinum(0) provided [Pt(FcPPB)] (1) in which the arylborane is η(3) BCC-coordinated. Subsequent reaction with CO and CNXyl (Xyl=2,6-dimethylphenyl) afforded [PtL(FcPPB)] {L=CO (2) and CNXyl (3)} featuring η(2) BC- and η(1) B-arylborane coordination modes, respectively. Reaction of 1 or 2 with H2 yielded [PtH(μ-H)(FcPPB)] in which the borane is bound to a hydride ligand on platinum. Addition of PhC2 H to [Pt(FcPPB)] afforded [Pt(C2 Ph)(μ-H)(FcPPB)] (5), which rapidly converted to [Pt(FcPPB')] (6; FcPPB'=[Fe(η(5) -C5 H4 PPh2 )(η(5) -C5 H4 PtBu{C6 H4 (BPh-CPh=CHPh-Z)-ortho}]) in which the newly formed vinylborane is η(3) BCC-coordinated. Unlike arylborane complex 1, vinylborane complex 6 does not react with CO, CNXyl, H2 or HC2 Ph at room temperature. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. An x-ray diffraction study of microstructural deformation induced by cyclic loading of selected steels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fourspring, P.M.; Pangborn, R.N.

    1996-06-01

    X-ray double crystal diffractometry (XRDCD) was used to assess cyclic microstructural deformation in a face centered cubic (fcc) steel (AISI304) and a body centered cubic (bcc) steel (SA508 class 2). The first objective of the investigation was to determine if XRDCD could be used to effectively monitor cyclic microstructural deformation in polycrystalline Fe alloys. A second objective was to study the microstructural deformation induced by cyclic loading of polycrystalline Fe alloys. The approach used in the investigation was to induce fatigue damage in a material and to characterize the resulting microstructural deformation at discrete fractions of the fatigue life ofmore » the material. Also, characterization of microstructural deformation was carried out to identify differences in the accumulation of damage from the surface to the bulk, focusing on the following three regions: near surface (0--10 {micro}m), subsurface (10--300 {micro}m), and bulk. Characterization of the subsurface region was performed only on the AISI304 material because of the limited availability of the SA508 material. The results from the XRDCD data indicate a measurable change induced by fatigue from the initial state to subsequent states of both the AISI304 and the SA508 materials. Therefore, the XRDCD technique was shown to be sensitive to the microstructural deformation caused by fatigue in steels; thus, the technique can be used to monitor fatigue damage in steels. In addition, for the AISI304 material, the level of cyclic microstructural deformation in the bulk material was found to be greater than the level in the near surface material. In contrast, previous investigations have shown that the deformation is greater in the near surface than the bulk for Al alloys and bcc Fe alloys.« less

  16. Inner Core Anisotropy: Can Seismic Observations be Reconciled with Ab Initio Calculations of Elasticity?

    NASA Astrophysics Data System (ADS)

    Song, X.; Jordan, T. H.

    2016-12-01

    Body-wave and normal-mode observations have revealed an inner-core structure that is radially layered, axially anisotropic, and hemispherically asymmetric. Previous theoretical studies have examined the consistency of these features with the elasticity of iron crystals thought to dominate inner-core composition, but a fully consistent model has been elusive. Here we compare the seismic observation with effective-medium models derived from ab initio calculations of the elasticity tensors for hcp-Fe and bcc-Fe. Our estimates are based on Jordan's (GJI, 2015) effective medium theory, which is derived from a self-consistent, second-order Born approximation. The theory provides closed-form expressions for the effective elastic parameters of 3D anisotropic, heterogeneous media in which the local anisotropy is a constant hexagonal stiffness tensor C stochastically oriented about a constant symmetry axis \\hat{s} and the statistics of the small-scale heterogeneities are transversely isotropic in the plane perpendicular to \\hat{s}. The stochastic model is then described by a dimensionless "aspect ratio of the heterogeneity", 0 ≤ η < ∞, and a dimensionless "orientation ratio of the anisotropy", 0 ≤ ξ < ∞. The latter determines the degree to which the axis of C is aligned with \\hat{s}. We compute the loci of models with \\hat{s} oriented along the Earth's rotational axis ( \\hat{s} = north) by varying ξ and η for various ab initio estimates of C. We show that a lot of widely used estimates of C are inconsistent with most published normal-mode models of inner-core anisotropy. In particular, if the P-wave fast axis aligns with the rotational axis, which is required to satisfy the body-wave observations, then these hcp-Fe models predict that the fast polarization of the S waves is in the plane perpendicular to \\hat{s}, which disagrees with most normal-mode models. We have attempted to resolve this discrepancy by examining alternative hcp-Fe models, including radially anisotropic distributions of stochastic anisotropy and heterogeneity (i.e., where \\hat{s} = \\hat{r}), as well as bcc-Fe models. Our calculations constrain the form of C needed to satisfy the seismological inferences.

  17. Crossover from disordered to core-shell structures of nano-oxide Y{sub 2}O{sub 3} dispersed particles in Fe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Higgins, M. P.; Wang, L. M.; Gao, F., E-mail: gaofeium@umich.edu

    Molecular dynamic simulations of Y{sub 2}O{sub 3} in bcc Fe and transmission electron microscopy (TEM) observations were used to understand the structure of Y{sub 2}O{sub 3} nano-clusters in an oxide dispersion strengthened steel matrix. The study showed that Y{sub 2}O{sub 3} nano-clusters below 2 nm were completely disordered. Y{sub 2}O{sub 3} nano-clusters above 2 nm, however, form a core-shell structure, with a shell thickness of 0.5–0.7 nm that is independent of nano-cluster size. Y{sub 2}O{sub 3} nano-clusters were surrounded by off-lattice Fe atoms, further increasing the stability of these nano-clusters. TEM was used to corroborate our simulation results and showed a crossover frommore » a disordered nano-cluster to a core-shell structure.« less

  18. Primary radiation damage of an FeCr alloy under pressure: Atomistic simulation

    NASA Astrophysics Data System (ADS)

    Tikhonchev, M. Yu.; Svetukhin, V. V.

    2017-05-01

    The primary radiation damage of a binary FeCr alloy deformed by applied mechanical loading is studied by an atomistic molecular dynamics simulation. Loading is simulated by specifying an applied pressure of 0.25, 1.0, and 2.5 GPa of both signs. Hydrostatic and uniaxial loading is considered along the [001], [111], [112], and [210] directions. The influence of loading on the energy of point defect formation and the threshold atomic displacement energy in single-component bcc iron is investigated. The 10-keV atomic displacement cascades in a "random" binary Fe-9 at % Cr alloy are simulated at an initial temperature of 300 K. The number of the point defects generated in a cascade is estimated, and the clustering of point defects and the spatial orientation of interstitial configurations are analyzed. Our results agree with the results of other researchers and supplement them.

  19. X-ray Emission Spectroscopy in Magnetic 3d-Transition Metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iota, V; Park, J; Baer, B

    2003-11-18

    The application of high pressure affects the band structure and magnetic interactions in solids by modifying nearest-neighbor distances and interatomic potentials. While all materials experience electronic changes with increasing pressure, spin polarized, strongly electron correlated materials are expected to undergo the most dramatic transformations. In such materials, (d and f-electron metals and compounds), applied pressure reduces the strength of on-site correlations, leading to increased electron delocalization and, eventually, to loss of its magnetism. In this ongoing project, we study the electronic and magnetic properties of Group VIII, 3d (Fe, Co and Ni) magnetic transition metals and their compounds at highmore » pressures. The high-pressure properties of magnetic 3d-transition metals and compounds have been studied extensively over the years, because of iron being a major constituent of the Earth's core and its relevance to the planetary modeling to understand the chemical composition, internal structure, and geomagnetism. However, the fundamental scientific interest in the high-pressure properties of magnetic 3d-electron systems extends well beyond the geophysical applications to include the electron correlation-driven physics. The role of magnetic interactions in the stabilization of the ''non-standard'' ambient pressure structures of Fe, Co and Ni is still incompletely understood. Theoretical studies have predicted (and high pressure experiments are beginning to show) strong correlations between the electronic structure and phase stability in these materials. The phase diagrams of magnetic 3d systems reflect a delicate balance between spin interactions and structural configuration. At ambient conditions, the crystal structures of {alpha}-Fe(bcc) and {var_epsilon}-Co(hcp) phases depart from the standard sequence (hcp {yields} bcc{yields} hcp {yields} fcc), as observed in all other non-magnetic transition metals with increasing the d-band occupancy, and are different from those of their 4d- and 5d-counter parts. This anomalous behavior has been interpreted in terms of the spin-polarized d-band altering the d-band occupancy [1]. At high pressures, however, the d-valence band is expected to broaden resulting in a suppression or even a complete loss of magnetism. Experimentally, ferromagnetic {alpha}(bcc)-Fe has been confirmed to transform to non-magnetic {var_epsilon}-Fe (hcp) at 10 GPa [2,3]. Recently, we have also observed a similar transition in Co from ferromagnetic {alpha}(hcp)-Co to likely nonmagnetic {beta}(fcc)-Co at 105 GPa[4]. A similar structural phase transition is expected in Ni, probably in the second-order fcc-fcc transition. However, there has been no directly measured change in magnetism associated with the structural phase transition in Co, nor has yet been confirmed such an iso-structural phase transition in Ni. Similar electronic transitions have been proposed in these 3d-transition metal oxides (FeO, CoO and NiO) from high spin (magnetic) to low spin (nonmagnetic) states [5]. In each of these systems, the magnetic transition is accompanied by a first-order structural transition involving large volume collapse (10% in FeO, for example). So far, there have been no electronic measurements under pressure confirming these significant theoretical predictions, although the predicted pressures for the volume collapse transitions are within the experimental pressure range (80-200GPa).« less

  20. Tailoring magnetic behavior of CoFeMnNiX (X = Al, Cr, Ga, and Sn) high entropy alloys by metal doping

    DOE PAGES

    Zuo, Tingting; Gao, Michael C.; Ouyang, Lizhi; ...

    2017-03-07

    Magnetic materials with excellent performances are desired for functional applications. Based on the high-entropy effect, a system of CoFeMnNiX (X = Al, Cr, Ga, and Sn) magnetic alloys are designed and investigated. The dramatic change in phase structures from face-centered-cubic (FCC) to ordered body-centered-cubic (BCC) phases, caused by adding Al, Ga, and Sn in CoFeMnNiX alloys, originates from the potent short-range chemical order in the liquid state predicted by ab initio molecular dynamics (AIMD) simulations. This phase transition leads to the significant enhancement of the saturation magnetization (M s), e.g., the CoFeMnNiAl alloy has M s of 147.86 Am 2/kg.more » In conclusion, first-principles density functional theory (DFT) calculations on the electronic and magnetic structures reveal that the anti-ferromagnetism of Mn atoms in CoFeMnNi is suppressed especially in the CoFeMnNiAl HEA because Al changes the Fermi level and itinerant electron-spin coupling that lead to ferromagnetism.« less

  1. On the advantages of spring magnets compared to pure FePt: Strategy for rare-earth free permanent magnets following a bottom-up approach

    NASA Astrophysics Data System (ADS)

    Pousthomis, M.; Garnero, C.; Marcelot, C. G.; Blon, T.; Cayez, S.; Cassignol, C.; Du, V. A.; Krispin, M.; Arenal, R.; Soulantica, K.; Viau, G.; Lacroix, L.-M.

    2017-02-01

    Nanostructured magnets benefiting from efficient exchange-coupling between hard and soft grains represent an appealing approach for integrated miniaturized magnetic power sources. Using a bottom-up approach, nanostructured materials were prepared from binary assemblies of bcc FeCo and fcc FePt nanoparticles and compared with pure L10-FePt materials. The use of a bifunctional mercapto benzoic acid yields homogeneous assemblies of the two types of particles while reducing the organic matter amount. The 650 °C thermal annealing, mandatory to allow the L10-FePt phase transition, led to an important interdiffusion and thus decreased drastically the amount of soft phase present in the final composites. The analysis of recoil curves however evidenced the presence of an efficient interphase exchange coupling, which allows obtaining better magnetic performances than pure L10 FePt materials, energy product above 100 kJ m-3 being estimated for a Pt content of only 33%. These results clearly evidenced the interest of chemically grown nanoparticles for the preparation of performant spring-magnets, opening promising perspective for integrated subcentimetric magnets with optimized properties.

  2. Detailed Investigation of Core-Shell Precipitates in a Cu-Containing High Entropy Alloy

    NASA Astrophysics Data System (ADS)

    Alam, T.; Gwalani, B.; Viswanathan, G.; Fraser, H.; Banerjee, R.

    2018-05-01

    Due to the competing influences of configurational entropy and enthalpy of mixing, in recent years, secondary (including intermetallic) phases have been reported in many high entropy alloy (HEA) systems. These secondary phases offer great potential in terms of strengthening the HEA beyond the solid solution strengthening effects, and as such are of great interest in regards to alloy design for engineering applications. The present research investigates novel nano-scale core-shell precipitates forming within the disordered bcc matrix phase of an Al2CrCuFeNi2 HEA, utilizing complementary high-resolution microscopy techniques of atom probe tomography (APT) and transmission electron microscopy (TEM). The size, morphology, and local chemistry of these core-shell precipitates was measured by APT, and the composition was further corroborated by high-resolution scanning transmission electron microscopy-energy dispersive spectroscopy in an aberration-corrected TEM. Furthermore, high-resolution TEM imaging of the core-shell structure indicates that the Cu-rich core exhibits a bcc crystal structure.

  3. High Temperature Properties and Aging-Stress Related Changes of FeCo Materials

    DTIC Science & Technology

    2006-07-01

    ORGANIZATION NAME(S) AND ADDRESS( ES ) 8. PERFORMING ORGANIZATION REPORT NUMBER Power Generation Branch (AFRL/PRPG) Power Division Propulsion...SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS( ES ) 10. SPONSORING/MONITORING AGENCY ACRONYM(S) AFRL-PR-WP Propulsion Directorate Air Force...fcc), α-(bcc) and α’-(CsCl) phases (produced using TAPP @TM software, ES Microware) 0 200 400 600 800 1000 0 2 4 6 8 10 103 0 20 40 60 80 100 In iti

  4. Electrostatic levitation studies of supercooled liquids and metastable solid phases

    NASA Astrophysics Data System (ADS)

    Rustan, Gustav Errol

    A new laboratory has been developed at Iowa State University (ISU) to be used for the study of high temperature liquids and solids, with particular focus on the supercooling of liquids and their metastable solidification products. This new laboratory employs the electrostatic levitation (ESL) technique, in which a charged sample is suspended between a set of electrodes to achieve non-contact handling. Owing to the elimination of a crucible, high temperature processing of samples can be achieved with reduced levels of contamination and heterogeneous nucleation. Because of the reduction in heterogeneous nucleation, samples can be supercooled well below their equilibrium melting temperature, opening the door to a wide range of measurements on supercooled liquids. Measurements methods have been implemented for the characterization of thermophysical properties such as: volume/density, ratio of specific heat to total hemispherical emissivity, surface tension, viscosity, electrical resistivity, and magnetic susceptibility. For measurements of electrical resistivity and magnetic susceptibility, a new method has been developed at ISU based on the tunnel diode oscillator (TDO) technique. The TDO technique uses the negative differential resistance of a tunnel diode to drive an LC tank circuit into self-sustained oscillation at the resonant LC frequency. The LC tank is inductively coupled to the samples under study, and changes in the electrical resistivity or magnetic susceptibility of the sample are manifested as changes in the resonant frequency. By measuring the frequency shifts of the TDO, insights can be made into changes in the material's electrical and magnetic properties. This method has been validated by performing resistivity measurements on a sample of high purity Zr, and by performing measurements on the ferromagnetic transition in a low-carbon steel ball bearing. In addition to the development of the laboratory and its supporting instrumentation, an effort has been carried out to study the metastable phase formation in an Fe83B17 near eutectic alloy. Initial supercooling measurements using the ISU-ESL identified the formation of three metastable phases: a precipitate phase that shows stable coexistence with the deeply supercooled liquid, and two distinct bulk solidification phases. To identify the structure of the metastable phases, the Washington University Beamline ESL (WU-BESL) has been used to perform in-situ high energy x-ray diffraction measurements of the metastable phases. Based on the x-ray results, the precipitate phase has been identified as bcc-Fe, and the more commonly occurring bulk solidification product has been found to be a two-phase mixture of Fe23B6 plus fcc-Fe, which appears, upon cooling, to transform into a three phase mixture of Fe23B6, bcc-Fe, and an as-yet unidentified phase, with the transformation occurring at approximately the expected fcc-to-bcc transformation temperature of pure Fe. To further characterize the multi-phase metastable alloy, the ISU-ESL has been used to perform measurements of volume thermal expansion via the videographic technique, as well as RF susceptibility via the TDO technique. The results of the thermal expansion and susceptibility data have been found to be sensitive indicators of additional structural changes that may be occurring in the metastable solid at temperatures below 1000 K, and the susceptibility data has revealed that three distinct ferromagnetic phase transitions take place within the multi-phase mixture. Based on these results, it has been hypothesized that there may be an additional transformation taking place that leads to the formation of either bct- or o-Fe3B in addition to the Fe23B6 phase, although further work is required to test this hypothesis.

  5. Local configurations and atomic intermixing in as-quenched and annealed Fe1-xCrx and Fe1-xMox ribbons

    NASA Astrophysics Data System (ADS)

    Stanciu, A. E.; Greculeasa, S. G.; Bartha, C.; Schinteie, G.; Palade, P.; Kuncser, A.; Leca, A.; Filoti, G.; Birsan, A.; Crisan, O.; Kuncser, V.

    2018-04-01

    Local atomic configuration, phase composition and atomic intermixing in Fe-rich Fe1-xCrx and Fe1-xMox ribbons (x = 0.05, 0.10, 0.15), of potential interest for high-temperature applications and nuclear devices, are investigated in this study in relation to specific processing and annealing routes. The Fe-based thin ribbons have been prepared by induction melting, followed by melt spinning and further annealed in He at temperatures up to 1250 °C. The complex structural, compositional and atomic configuration characterisation has been performed by means of X-ray diffraction (XRD), transmission Mössbauer spectroscopy and differential scanning calorimetry (TG-DSC). The XRD analysis indicates the formation of the desired solid solutions with body-centred cubic (bcc) structure in the as-quenched state. The Mössbauer spectroscopy results have been analysed in terms of the two-shell model. The distribution of Cr/Mo atoms in the first two coordination spheres is not homogeneous, especially after annealing, as supported by the short-range order parameters. In addition, high-temperature annealing treatments give rise to oxidation of Fe (to haematite, maghemite and magnetite) at the surface of the ribbons. Fe1-xCrx alloys are structurally more stable than the Mo counterpart under annealing at 700 °C. Annealing at 1250 °C in He enhances drastically the Cr clustering around Fe nuclei.

  6. 22 CFR 41.33 - Nonresident alien Canadian border crossing identification card (BCC).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... identification card (BCC). 41.33 Section 41.33 Foreign Relations DEPARTMENT OF STATE VISAS VISAS: DOCUMENTATION... BCC or the BCC portion of a Canadian B-1/B-2 Visa/BCC issued to a permanent resident of Canada... officer may revoke a BCC or a B-1/B-2 Visa/BCC issued in Canada at any time under the provisions of § 41...

  7. Evaluation of the Level of Zinc and Malondialdehyde in Basal Cell Carcinoma.

    PubMed

    Majidi, Ziba; Djalali, Mahmoud; Javanbakht, Mohammad Hasan; Fathi, Mojtaba; Zarei, Mahnaz; Foladsaz, Koorosh

    2017-08-01

    Basal Cell Carcinoma (BCC) is one of the most common skin cancers in the world and that use to lifestyle, increasing chemical pollutions, environmental factors and poor nutrition. The most important cause of this cancer is oxidative stress and free radicals so antioxidant activities for the body are so important. The aim of this study was to determine the variation of zinc and (Malondialdehyde) MDA in BCC patients. This study has been performed on case and control patients from 2013 to 2014. The samples were collected from cell carcinoma patients at Razi Hospital in Tehran, Iran. We evaluated the level of zinc with the use of Atomic Absorption Spectroscopy (AAS) method. Besides, we evaluated MDA with colorimetric assay. The concentration of MDA was significantly higher in case group in comparison to control group ( P =0.001). In addition, case group had lower concentration of zinc than the control group ( P =0.000). There was no correlation between MDA and body mass index (BMI) and between zinc and BMI. All the patients with BCC showed a significant MDA serum in comparison with control group. However, significant decrease in zinc serum of the patients was seen that is because of consuming zinc during oxidative stress process so topical use of zinc in the form of 2+ ions could be effective on antioxidant protection against the sun UV radiation.

  8. Long-term safety and efficacy of vismodegib in patients with advanced basal cell carcinoma: final update of the pivotal ERIVANCE BCC study.

    PubMed

    Sekulic, Aleksandar; Migden, Michael R; Basset-Seguin, Nicole; Garbe, Claus; Gesierich, Anja; Lao, Christopher D; Miller, Chris; Mortier, Laurent; Murrell, Dedee F; Hamid, Omid; Quevedo, Jorge F; Hou, Jeannie; McKenna, Edward; Dimier, Natalie; Williams, Sarah; Schadendorf, Dirk; Hauschild, Axel

    2017-05-16

    In the primary analysis of the ERIVANCE BCC trial, vismodegib, the first US Food and Drug Administration-approved Hedgehog pathway inhibitor, showed objective response rates (ORRs) by independent review facility (IRF) of 30% and 43% in metastatic basal cell carcinoma (mBCC) and locally advanced BCC (laBCC), respectively. ORRs by investigator review were 45% (mBCC) and 60% (laBCC). Herein, we present long-term safety and final investigator-assessed efficacy results in patients with mBCC or laBCC. One hundred four patients with measurable advanced BCC received oral vismodegib 150 mg once daily until disease progression or intolerable toxicity. The primary end point was IRF-assessed ORR. Secondary end points included ORR, duration of response (DOR), progression-free survival, overall survival (OS), and safety. At data cutoff (39 months after completion of accrual), 8 patients were receiving the study drug (69 patients in survival follow-up). Investigator-assessed ORR was 48.5% in the mBCC group (all partial responses) and 60.3% in the laBCC group (20 patients had complete response and 18 patients had partial response). ORRs were comparable across patient subgroups, including aggressive histologic subtypes (eg, infiltrative BCC). Median DOR was 14.8 months (mBCC) and 26.2 months (laBCC). Median OS was 33.4 months in the mBCC cohort and not estimable in the laBCC cohort. Adverse events remained consistent with clinical experience. Thirty-three deaths (31.7%) were reported; none were related to vismodegib. This long-term update of the ERIVANCE BCC trial demonstrated durability of response, efficacy across patient subgroups, and manageable long-term safety of vismodegib in patients with advanced BCC. This study was registered prospectively with Clinicaltrials.gov , number NCT00833417 on January 30, 2009.

  9. Recombination radius of a Frenkel pair and capture radius of a self-interstitial atom by vacancy clusters in bcc Fe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakashima, Kenichi; Stoller, Roger E.; Xu, Haixuan

    The recombination radius of a Frenkel pair is a fundamental parameter for the object kinetic Monte Carlo (OKMC) and mean field rate theory (RT) methods that are used to investigate irradiation damage accumulation in neutron irradiated nuclear materials. The recombination radius in bcc Fe has been studied both experimentally and numerically, however there is no general consensus about its value. The detailed atomistic processes of recombination also remain uncertain. Values from 1:0a₀ to 3:3a₀ have been employed as a recombination radius in previous studies using OKMC and RT. The recombination process of a Frenkel pair is investigated at the atomicmore » level using the self-evolved atomistic kinetic Monte Carlo (SEAKMC) method in this paper. SEAKMC calculations reveal that a self-interstitial atom recombines with a vacancy in a spontaneous reaction from several nearby sites following characteristic pathways. The recombination radius of a Frenkel pair is estimated to be 2.26a₀ by taking the average of the recombination distances from 80 simulation cases. This value agrees well with the experimental estimate. In addition, we apply these procedures to the capture radius of a self-interstitial atom by a vacancy cluster. The capture radius is found to gradually increase with the size of the vacancy cluster. The fitting curve for the capture radius is obtained as a function of the number of vacancies in the cluster.« less

  10. Recombination radius of a Frenkel pair and capture radius of a self-interstitial atom by vacancy clusters in bcc Fe

    DOE PAGES

    Nakashima, Kenichi; Stoller, Roger E.; Xu, Haixuan

    2015-08-04

    The recombination radius of a Frenkel pair is a fundamental parameter for the object kinetic Monte Carlo (OKMC) and mean field rate theory (RT) methods that are used to investigate irradiation damage accumulation in neutron irradiated nuclear materials. The recombination radius in bcc Fe has been studied both experimentally and numerically, however there is no general consensus about its value. The detailed atomistic processes of recombination also remain uncertain. Values from 1:0a₀ to 3:3a₀ have been employed as a recombination radius in previous studies using OKMC and RT. The recombination process of a Frenkel pair is investigated at the atomicmore » level using the self-evolved atomistic kinetic Monte Carlo (SEAKMC) method in this paper. SEAKMC calculations reveal that a self-interstitial atom recombines with a vacancy in a spontaneous reaction from several nearby sites following characteristic pathways. The recombination radius of a Frenkel pair is estimated to be 2.26a₀ by taking the average of the recombination distances from 80 simulation cases. This value agrees well with the experimental estimate. In addition, we apply these procedures to the capture radius of a self-interstitial atom by a vacancy cluster. The capture radius is found to gradually increase with the size of the vacancy cluster. The fitting curve for the capture radius is obtained as a function of the number of vacancies in the cluster.« less

  11. Identifying self-interstitials of bcc and fcc crystals in molecular dynamics

    NASA Astrophysics Data System (ADS)

    Bukkuru, S.; Bhardwaj, U.; Warrier, M.; Rao, A. D. P.; Valsakumar, M. C.

    2017-02-01

    Identification of self-interstitials in molecular dynamics (MD) simulations is of critical importance. There exist several criteria for identifying the self-interstitial. Most of the existing methods use an assumed cut-off value for the displacement of an atom from its lattice position to identify the self-interstitial. The results obtained are affected by the chosen cut-off value. Moreover, these chosen cut-off values are independent of temperature. We have developed a novel unsupervised learning algorithm called Max-Space Clustering (MSC) to identify an appropriate cut-off value and its dependence on temperature. This method is compared with some widely used methods such as effective sphere (ES) method and nearest neighbor sphere (NNS) method. The cut-off radius obtained using our method shows a linear variation with temperature. The value of cut-off radius and its temperature dependence is derived for five bcc (Cr, Fe, Mo, Nb, W) and six fcc (Ag, Au, Cu, Ni, Pd, Pt) crystals. It is seen that the ratio of the cut-off values "r" to the lattice constant "a" lies between 0.23 and 0.3 at 300 K and this ratio is on an average smaller for the fcc crystals. Collision cascade simulations are carried out for Primary knock-on Atom (PKA) energies of 5 keV in Fe (at 300 K and 1000 K) and W (at 300 K and 2500 K) and the results are compared using the various methods.

  12. Strength anomaly in B2 FeAl single crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoshimi, K.; Hanada, S.; Yoo, M.H.

    1994-12-31

    Strength and deformation microstructure of B2 Fe-39 and 48%Al single crystals (composition given in atomic percent), which were fully annealed to remove frozen-in vacancies, have been investigated at temperatures between room temperature and 1073K. The hardness of as-homogenized Fe-48Al is higher than that of as-homogenized Fe-39Al while after additional annealing at 698K the hardness of Fe-48Al becomes lower than that of Fe-39Al. Fe-39Al single crystals slowly cooled after homogenizing at a high temperature were deformed in compression as a function of temperature and crystal orientation. A peak of yield strength appears around 0.5T{sub m} (T{sub m} = melting temperature). Themore » orientation dependence of the critical resolved shear stress does not obey Schmid`s law even at room temperature and is quite different from that of b.c.c. metals and B2 intermetallics at low temperatures. At the peak temperature slip transition from <111>-type to <001>-type is found to occur macroscopically and microscopically, while it is observed in TEM that some of the [111] dislocations decompose into [101] and [010] on the (1096I) plane below the peak temperature. The physical sources for the positive temperature dependence of yield stress of B2 FeAl are discussed based on the obtained results.« less

  13. Origins of giant biquadratic coupling in CoFe/Mn/CoFe sandwich structures (abstract)

    NASA Astrophysics Data System (ADS)

    Koon, Norman C.

    1996-04-01

    Recently Filipkowski et al. reported extremely strong, near 90 degree coupling of 2.5 erg/cm2 for epitaxial sandwiches of CoFe/Mn/CoFe, where the CoFe composition was chosen to be a good lattice match to Mn. Both CoFe and Mn have the bcc structure, but Mn is antiferromagnetic while CoFe is ferromagnetic. It was found that the data were very well described by a simple model due to Slonczewski, in which the interlayer coupling is given by Fc=C+(φ1-φ2)2+C-(φ1-φ2-π)2. While this model describes the data much better than the usual biquadratic form, it still does not connect directly to the microscopic origins of the effect. In the present work we seek to explain the results in terms of normal bilinear exchange and magnetocrystalline anisotropy, together with reasonable assumptions about the structure of the interfaces. We obtain excellent agreement with both the experimental results and the Slonczewski model under the assumptions that at least one of the two CoFe/Mn interfaces is smooth (i.e., atomically flat) on a length scale comparable to or greater than the thickness of the Mn layer and at least one interface is rough on a scale less than approximately a domain wall thickness.

  14. CD200-expressing human basal cell carcinoma cells initiate tumor growth.

    PubMed

    Colmont, Chantal S; Benketah, Antisar; Reed, Simon H; Hawk, Nga V; Telford, William G; Ohyama, Manabu; Udey, Mark C; Yee, Carole L; Vogel, Jonathan C; Patel, Girish K

    2013-01-22

    Smoothened antagonists directly target the genetic basis of human basal cell carcinoma (BCC), the most common of all cancers. These drugs inhibit BCC growth, but they are not curative. Although BCC cells are monomorphic, immunofluorescence microscopy reveals a complex hierarchical pattern of growth with inward differentiation along hair follicle lineages. Most BCC cells express the transcription factor KLF4 and are committed to terminal differentiation. A small CD200(+) CD45(-) BCC subpopulation that represents 1.63 ± 1.11% of all BCC cells resides in small clusters at the tumor periphery. By using reproducible in vivo xenograft growth assays, we determined that tumor initiating cell frequencies approximate one per 1.5 million unsorted BCC cells. The CD200(+) CD45(-) BCC subpopulation recreated BCC tumor growth in vivo with typical histological architecture and expression of sonic hedgehog-regulated genes. Reproducible in vivo BCC growth was achieved with as few as 10,000 CD200(+) CD45(-) cells, representing ~1,500-fold enrichment. CD200(-) CD45(-) BCC cells were unable to form tumors. These findings establish a platform to study the effects of Smoothened antagonists on BCC tumor initiating cell and also suggest that currently available anti-CD200 therapy be considered, either as monotherapy or an adjunct to Smoothened antagonists, in the treatment of inoperable BCC.

  15. Magnetic nanoparticles through organometallic synthesis: evolution of the magnetic properties from isolated nanoparticles to organised nanostructures.

    PubMed

    Dumestre, Fréderic; Martinez, Susana; Zitoun, David; Fromen, Marie-Claire; Casanove, Marie-José; Lecante, Pierre; Respaud, Marc; Serres, Arnaud; Benfield, Robert E; Amiens, Catherine; Chaudret, Bruno

    2004-01-01

    Co and NiFe nanoparticles (2.7 to 3.3 nm mean diameter) of narrow size distribution have been obtained through the decomposition of organometallic precursors in organic solutions of long alkyl chain ligands, namely oleic acid and hexadecylamine. Materials of various volume fractions were produced. The particles have been structurally characterised by WAXS. Both adopt the bulk structure: HCP in the case of cobalt; a mixture of FCC and BCC for NiFe. Their aptitude to self-assemble either on flat supports or in bulk solid state has been investigated by means of TEM and SAXS. This study suggests the crystallisation of the nanoparticles upon solvent evaporation, especially a local FCC arrangement was observed for the NiFe material. Magnetic measurements (SQUID) confirm this tendency. The blocking temperature depends on the metal volume fraction, i.e. on the anisotropy generated by the dipolar couplings (Ki). We show that, for dense samples, the particles of high intrinsic anisotropy, Ku, (Co) still display an individual behaviour while the soft ones (NiFe) display a collective behaviour.

  16. Structural Characterization of Sputter-Deposited 304 Stainless Steel+10 wt pct Al Coatings

    NASA Astrophysics Data System (ADS)

    Seelam, Uma Maheswara Rao; Suryanarayana, C.; Heinrich, Helge; Ohkubo, Tadakatsu; Hono, Kazuhiro; Cheruvu, N. S.

    2012-08-01

    An SS304 + 10 wt pct Al (with a nominal composition of Fe-18Cr-8Ni-10Al by wt pct and corresponding to Fe-17Cr-6Ni-17Al by at. pct) coating was deposited on a 304-type austenitic stainless steel (Fe-18Cr-8Ni by wt pct) substrate by the magnetron sputter-deposition technique using two targets: 304-type stainless steel (SS304) and Al. The as-deposited coatings were characterized by X-ray diffraction, transmission electron microscopy, and three-dimensional (3-D) atom probe techniques. The coating consists of columnar grains with α ferrite with the body-centered cubic (bcc) (A2) structure and precipitates with a B2 structure. It also has a deposition-induced layered structure with two alternative layers (of 3.2 nm wavelength): one rich in Fe and Cr, and the other enriched with Al and Ni. The layer with high Ni and Al contents has a B2 structure. Direct confirmation of the presence of B2 phase in the coating was obtained by electron diffraction and 3-D atom probe techniques.

  17. Determining the composition of small features in atom probe: bcc Cu-rich precipitates in an Fe-rich matrix.

    PubMed

    Morley, A; Sha, G; Hirosawa, S; Cerezo, A; Smith, G D W

    2009-04-01

    Aberrations in the ion trajectories near the specimen surface are an important factor in the spatial resolution of the atom probe technique. Near the boundary between two phases with dissimilar evaporation fields, ion trajectory overlaps may occur, leading to a biased measurement of composition in the vicinity of this interface. In the case of very small second-phase precipitates, the region affected by trajectory overlaps may extend to the centre of the precipitate prohibiting a direct measurement of composition. A method of quantifying the aberrant matrix contribution and thus estimating the underlying composition is presented. This method is applied to the Fe-Cu-alloy system, where the precipitation of low-nanometre size Cu-rich precipitates is of considerable technical importance in a number of materials applications. It is shown definitively that there is a non-zero underlying level of Fe within precipitates formed upon thermal ageing, which is augmented and masked by trajectory overlaps. The concentration of Fe in the precipitate phase is shown to be a function of ageing temperature. An estimate of the underlying Fe level is made, which is at lower levels than commonly reported by atom probe investigations.

  18. Magnetic cluster expansion model for random and ordered magnetic face-centered cubic Fe-Ni-Cr alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lavrentiev, M. Yu., E-mail: Mikhail.Lavrentiev@ukaea.uk; Nguyen-Manh, D.; Dudarev, S. L.

    A Magnetic Cluster Expansion model for ternary face-centered cubic Fe-Ni-Cr alloys has been developed, using DFT data spanning binary and ternary alloy configurations. Using this Magnetic Cluster Expansion model Hamiltonian, we perform Monte Carlo simulations and explore magnetic structures of alloys over the entire range of compositions, considering both random and ordered alloy structures. In random alloys, the removal of magnetic collinearity constraint reduces the total magnetic moment but does not affect the predicted range of compositions where the alloys adopt low-temperature ferromagnetic configurations. During alloying of ordered fcc Fe-Ni compounds with Cr, chromium atoms tend to replace nickel rathermore » than iron atoms. Replacement of Ni by Cr in ordered alloys with high iron content increases the Curie temperature of the alloys. This can be explained by strong antiferromagnetic Fe-Cr coupling, similar to that found in bcc Fe-Cr solutions, where the Curie temperature increase, predicted by simulations as a function of Cr concentration, is confirmed by experimental observations. In random alloys, both magnetization and the Curie temperature decrease abruptly with increasing chromium content, in agreement with experiment.« less

  19. Production and characterization of multi-polysaccharide degrading enzymes from Aspergillus aculeatus BCC199 for saccharification of agricultural residues.

    PubMed

    Suwannarangsee, Surisa; Arnthong, Jantima; Eurwilaichitr, Lily; Champreda, Verawat

    2014-10-01

    Enzymatic hydrolysis of lignocellulosic biomass into fermentable sugars is a key step in the conversion of agricultural by-products to biofuels and value-added chemicals. Utilization of a robust microorganism for on-site production of biomass-degrading enzymes has gained increasing interest as an economical approach for supplying enzymes to biorefinery processes. In this study, production of multi-polysaccharide-degrading enzymes from Aspergillus aculeatus BCC199 by solid-state fermentation was improved through the statistical design approach. Among the operational parameters, yeast extract and soybean meal as well as the nonionic surfactant Tween 20 and initial pH were found as key parameters for maximizing production of cellulolytic and hemicellulolytic enzymes. Under the optimized condition, the production of FPase, endoglucanase, β-glucosidase, xylanase, and β-xylosidase was achieved at 23, 663, 88, 1,633, and 90 units/g of dry substrate, respectively. The multi-enzyme extract was highly efficient in the saccharification of alkaline-pretreated rice straw, corn cob, and corn stover. In comparison with commercial cellulase preparations, the BCC199 enzyme mixture was able to produce remarkable yields of glucose and xylose, as it contained higher relative activities of β-glucosidase and core hemicellulases (xylanase and β-xylosidase). These results suggested that the crude enzyme extract from A. aculeatus BCC199 possesses balanced cellulolytic and xylanolytic activities required for the efficient saccharification of lignocellulosic biomass feedstocks, and supplementation of external β-glucosidase or xylanase was dispensable. The work thus demonstrates the high potential of A. aculeatus BCC199 as a promising producer of lignocellulose-degrading enzymes for the biomass conversion industry.

  20. A novel approach for the synthesis of ultrathin silica-coated iron oxide nanocubes decorated with silver nanodots (Fe3O4/SiO2/Ag) and their superior catalytic reduction of 4-nitroaniline

    NASA Astrophysics Data System (ADS)

    Abbas, Mohamed; Torati, Sri Ramulu; Kim, Cheolgi

    2015-07-01

    A novel sonochemical approach was developed for the synthesis of different core/shell structures of Fe3O4/SiO2/Ag nanocubes and SiO2/Ag nanospheres. The total reaction time of the three sonochemical steps for the synthesis of Fe3O4/SiO2/Ag nanocubes is shorter than that of the previously reported methods. A proposed reaction mechanism for the sonochemical functionalization of the silica and the silver on the surface of magnetic nanocubes was discussed in detail. Transmission electron microscopy revealed that the surface of Fe3O4/SiO2 nanocubes was decorated with small Ag nanoparticles of approximately 10-20 nm in size, and the energy dispersive spectroscopy mapping analysis confirmed the morphology of the structure. Additionally, X-ray diffraction data were used to confirm the formation of both phases of a cubic inverse spinel structure for Fe3O4 and bcc structures for Ag in the core/shell structure of the Fe3O4/SiO2/Ag nanocubes. The as-synthesized Fe3O4/SiO2/Ag nanocubes showed a high efficiency in the catalytic reduction reaction of 4-nitroaniline to 4-phenylenediamine and a better performance than both Ag and SiO2/Ag nanoparticles. The grafted silver catalyst was recycled and reused at least fifteen times without a significant loss of catalytic efficiency.A novel sonochemical approach was developed for the synthesis of different core/shell structures of Fe3O4/SiO2/Ag nanocubes and SiO2/Ag nanospheres. The total reaction time of the three sonochemical steps for the synthesis of Fe3O4/SiO2/Ag nanocubes is shorter than that of the previously reported methods. A proposed reaction mechanism for the sonochemical functionalization of the silica and the silver on the surface of magnetic nanocubes was discussed in detail. Transmission electron microscopy revealed that the surface of Fe3O4/SiO2 nanocubes was decorated with small Ag nanoparticles of approximately 10-20 nm in size, and the energy dispersive spectroscopy mapping analysis confirmed the morphology of the structure. Additionally, X-ray diffraction data were used to confirm the formation of both phases of a cubic inverse spinel structure for Fe3O4 and bcc structures for Ag in the core/shell structure of the Fe3O4/SiO2/Ag nanocubes. The as-synthesized Fe3O4/SiO2/Ag nanocubes showed a high efficiency in the catalytic reduction reaction of 4-nitroaniline to 4-phenylenediamine and a better performance than both Ag and SiO2/Ag nanoparticles. The grafted silver catalyst was recycled and reused at least fifteen times without a significant loss of catalytic efficiency. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr02680f

  1. Effects of Ni content on nanocrystalline Fe-Co-Ni ternary alloys synthesized by a chemical reduction method

    NASA Astrophysics Data System (ADS)

    Chokprasombat, Komkrich; Pinitsoontorn, Supree; Maensiri, Santi

    2016-05-01

    Magnetic properties of Fe-Co-Ni ternary alloys could be altered by changing of the particle size, elemental compositions, and crystalline structures. In this work, Fe50Co50-xNix nanoparticles (x=10, 20, 40, and 50) were prepared by the novel chemical reduction process. Hydrazine monohydrate was used as a reducing agent under the concentrated basic condition with the presence of poly(vinylpyrrolidone). We found that the nanoparticles were composed of Fe, Co and Ni with compositions according to the molar ratio of the metal sources. Interestingly, the particles were well-crystalline at the as-prepared state without post-annealing at high temperature. Increasing Ni content resulted in phase transformation from body centered cubic (bcc) to face centered cubic (fcc). For the fcc phase, the average particle size decreased when increased the Ni content; the Fe50Ni50 nanoparticles had the smallest average size with the narrowest size distribution. In additions, the particles exhibited ferromagnetic properties at room temperature with the coercivities higher than 300 Oe, and the saturation magnetiation decreased with increasing Ni content. These results suggest that the structural and magnetic properties of Fe-Co-Ni alloys could be adjusted by varying the Ni content.

  2. Boron cage compound materials and composites for shielding and absorbing neutrons

    DOEpatents

    Bowen, III, Daniel E; Eastwood, Eric A

    2014-03-04

    Boron cage compound-containing materials for shielding and absorbing neutrons. The materials include BCC-containing composites and compounds. BCC-containing compounds comprise a host polymer and a BCC attached thereto. BCC-containing composites comprise a mixture of a polymer matrix and a BCC filler. The BCC-containing materials can be used to form numerous articles of manufacture for shielding and absorbing neutrons.

  3. Structural Properties of Alternate Monatomic Layered [Fe/Co]n Epitaxial Films on MgO Substrate

    NASA Astrophysics Data System (ADS)

    Chu, In Chang; Saki, Yoshinobu; Kawasaki, Shohei; Doi, Masaaki; Sahashi, Masashi

    2008-06-01

    Body-centered-cubic (bcc) Fe50Co50 material is reported to show a high bulk spin scattering coefficient on current perpendicular to plane-giant magneto-resistance (CPP-GMR) system. But the origin of that phenomenon does not make sure yet. We prepared artificially alternate monatomic layered (AML) [Fe/Co] 41 MLs epitaxial films (Ts: 75, 250 °C) by monatomic deposition method and investigated the topology of AML [Fe/Co]n epitaxial films on MgO substrate with different orientation (001), (011) by the scanning tunnel microscopy (STM) and reflection high energy electron diffraction (RHEED), which we could confirm Frank-van der Merwe (FM) growth mode for AML [Fe/Co]n on MgO(001) and Volmer-Weber (VW) growth mode for that on Mg(011). The roughness of surface, Ra (0.20 nm) of AML [Fe/Co] 41 MLs epitaxial film grown at 75 °C on MgO(001) is smaller than that (0.46 nm) of AML [Fe/Co] grown at 250 °C on MgO(001), which has the large terraces of over 50 nm (Ra: 0.17 nm), even though there are some valleys between large terraces. Moreover we confirmed the structural properties of trilayered epitaxial films with AML [Fe/Co]n (Ra: 0.18 nm) and Fe50Co50 alloy epitaxial film on Au electrode by RHEED before confirming the characteristics of CPP-GMR devices.

  4. Mechanical Properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 Refractory High Entropy Alloys (Postprint)

    DTIC Science & Technology

    2011-05-01

    Mn, Fe, Co, Ni and Cu. Since metallic alloys for high temperature load bearing structures and thermal protection systems remain in high demand for aer...condition. These results indicate that the BCC crystal structure formed in both alloys during solidification is stable upon heating at least up to 1400 C... solidification (Fig. 5b). Higher magnification images reveal a dendritic structure in both alloys (Fig. 5c and d). Uneven Z contrast inside the grains indicates

  5. Phonon thermodynamics of iron and cementite

    NASA Astrophysics Data System (ADS)

    Mauger, Lisa Mary

    The vibrational properties of materials are essential to understanding material stability and thermodynamics. In this thesis I outline vibrational thermodynamic models and the experimental tools that provide evidence on phonon behavior. The introductory section discusses the history of metallurgy and thermodynamic theory, with an emphasis on the role of iron and cementite, two important components of steels. The thermodynamic framework for understanding vibrational material behavior is provided alongside the growing body of experimental and computational tools that provide physical insight on vibrational properties. The high temperature vibrational behavior of iron and cementite are explored within this context in the final chapters. Body-centered-cubic iron exhibits decreasing phonon energies at elevated temperatures. The observed energy change in not uniform across phonon modes in iron, and specific phonon modes show significant decreases in energy that are not explained by simple vibrational models. This anomalously energy decrease is linked to the second-nearest-neighbor interactions in the bcc structure, through examination of fitted interatomic force constants. The large changes in phonon energy result in a significant increase in the vibrational entropy, called the nonharmonic vibrational entropy, which emulates the temperature behavior of the magnetic entropy across the Curie temperature. The nonharmonic vibrational entropy is attributed to interactions between the vibrations and state of magnetic disorder in the material, which persists above the magnetic transitions and extends the stability region of the bcc phase. Orthorombic cementite, Fe3C, exhibits anisotropic magneto-volume behavior in the ferromagnetic phase including regions very low thermal expansion. The phonon modes of cementite show anomalous temperature dependence, with low energy phonon modes increasing their energy at elevated temperatures in the ferromagnetic phase. This behavior is reversed after the magnetic transition and these same phonon modes lower their energies with temperature, consistent with observed thermal expansion. This atypical phonon behavior lowers the vibrational entropy of cementite up to the Curie temperature. The experimentally observed increase in low energy acoustic phonons affects the elastic behavior of Fe3C, increasing the isotropy of elastic response. First principles calculations link the observed phonon energy increases to specific vibrational modes that are polarized along the b-axis, which aligns with the closest Fe-Fe bonding direction. The nonharmonic behavior of the vibrational modes are discussed in the context of other observations of anomalous anisotropic magneto-volume behavior in Fe3C.

  6. Transmission Electron Microscopy of Iron Metal in Almahata Sitta Ureilite

    NASA Technical Reports Server (NTRS)

    Mikouchi, T.; Yubuta, K.; Sugiyama, K.; Aoyagi, Y.; Yasuhara, A.; Mihira, T.; Zolensky, M. E.; Goodrich, C. A.

    2013-01-01

    Almahata Sitta (AS) is a polymict breccia mainly composed of variable ureilite lithologies with small amounts of chondritic lithologies [1]. Fe metal is a common accessory phase in ureilites, but our earlier study on Fe metals in one of AS fragments (#44) revealed a unique mineralogy never seen in other ureilites [2,3]. In this abstract we report detailed transmission electron microscopy (TEM) on these metal grains to better understand the thermal history of ureilites. We prepared FIB sections of AS#44 by JEOL JIB-4000 from the PTS that was well characterized by SEM-EBSD in our earlier study [2]. The sections were then observed by STEM (JEOL JEM- 2100F). One of the FIB sections shows a submicron-sized symplectic intergrown texture composed of Fe metal (kamacite), Fe carbide (cohenite), Fe phosphide (schreibersite), and Fe sulfide (troilite). Each phase has an identical SAED pattern in spite of its complex texture, suggesting co-crystallization of all phases. This is probably caused by shock re-melting of pre-existing metal + graphite to form a eutectic-looking texture. The other FIB section is mostly composed of homogeneous Fe metal (93 wt% Fe, 5 wt% Ni, and 2 wt% Si), but BF-STEM images exhibited the presence of elongated lathy grains (approx. 2 microns long) embedded in the interstitial matrix. The SAED patterns from these lath grains could be indexed by alpha-Fe (bcc) while interstitial areas are gamma-Fe (fcc). The elongated alpha-Fe grains show tweed-like structures suggesting martensite transformation. Such a texture can be formed by rapid cooling from high temperature where gamma-Fe was stable. Subsequently alpha-Fe crystallized, but gamma-Fe remained in the interstitial matrix due to quenching from high temperature. This scenario is consistent with very rapid cooling history of ureilites suggested by silicate mineralogy.

  7. Dislocation loop formation by swift heavy ion irradiation of metals.

    PubMed

    Khara, Galvin S; Murphy, Samuel T; Duffy, Dorothy M

    2017-07-19

    A coupled two-temperature, molecular dynamics methodology is used to simulate the structural evolution of bcc metals (Fe and W) and fcc metals (Cu and Ni) following irradiation by swift heavy ions. Electronic temperature dependent electronic specific heat capacities and electron-phonon coupling strengths are used to capture the full effects of the variation in the electronic density of states. Tungsten is found to be significantly more resistant to damage than iron, due both to the higher melting temperature and the higher thermal conductivity. Very interesting defect structures, quite different from defects formed in cascades, are found to be created by swift heavy ion irradiation in the bcc metals. Isolated vacancies form a halo around elongated interstitial dislocation loops that are oriented along the ion path. Such configurations are formed by rapid recrystallization of the molten cylindrical region that is created by the energetic ion. Vacancies are created at the recrystallization front, resulting in excess atoms at the core which form interstitial dislocation loops on completion of crystallization. These unique defect structures could, potentially, be used to create metal films with superior mechanical properties and interesting nanostructures.

  8. Dislocation loop formation by swift heavy ion irradiation of metals

    NASA Astrophysics Data System (ADS)

    Khara, Galvin S.; Murphy, Samuel T.; Duffy, Dorothy M.

    2017-07-01

    A coupled two-temperature, molecular dynamics methodology is used to simulate the structural evolution of bcc metals (Fe and W) and fcc metals (Cu and Ni) following irradiation by swift heavy ions. Electronic temperature dependent electronic specific heat capacities and electron-phonon coupling strengths are used to capture the full effects of the variation in the electronic density of states. Tungsten is found to be significantly more resistant to damage than iron, due both to the higher melting temperature and the higher thermal conductivity. Very interesting defect structures, quite different from defects formed in cascades, are found to be created by swift heavy ion irradiation in the bcc metals. Isolated vacancies form a halo around elongated interstitial dislocation loops that are oriented along the ion path. Such configurations are formed by rapid recrystallization of the molten cylindrical region that is created by the energetic ion. Vacancies are created at the recrystallization front, resulting in excess atoms at the core which form interstitial dislocation loops on completion of crystallization. These unique defect structures could, potentially, be used to create metal films with superior mechanical properties and interesting nanostructures.

  9. Magneto-structural transformations via a solid-state nudged elastic band method: Application to iron under pressure

    DOE PAGES

    Zarkevich, N. A.; Johnson, D. D.

    2015-08-14

    We extend the solid-state nudged elastic band method to handle a non-conserved order parameter, in particular, magnetization, that couples to volume and leads to many observed effects in magnetic systems. We apply this formalism to the well-studied magneto-volume collapse during the pressure-induced transformation in iron—from ferromagnetic body-centered cubic (bcc) austenite to hexagonal close-packed (hcp) martensite. We also find a bcc-hcp equilibrium coexistence pressure of 8.4 GPa, with the transition-state enthalpy of 156 meV/Fe at this pressure. A discontinuity in magnetization and coherent stress occurs at the transition state, which has a form of a cusp on the potential-energy surface (yetmore » all the atomic and cell degrees of freedom are continuous); the calculated pressure jump of 25 GPa is related to the observed 25 GPa spread in measured coexistence pressures arising from martensitic and coherency stresses in samples. Furthermore, our results agree with experiments, but necessarily differ from those arising from drag and restricted parametrization methods having improperly constrained or uncontrolled degrees of freedom.« less

  10. Computational thermodynamics aided design of novel ferritic alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Ying; Chen, Tianyi; Tan, Lizhen

    With the aid of computational thermodynamics, Ni was identified to suppress the liquidus temperature of Fe 2Zr and four Fe-Cr-Ni-Zr alloys were designed to study the Ni effect on the phase stability of Fe 2Zr laves_phase. These alloys were fabricated through traditional arc-metling, followed by annealing at 1000 C for 336 hours and 700 C for 1275 hours. The microstructure were examined and characterized by SEM BSE image, EDS compositional mapping and point scan, XRD and TEM analysis. The major results were summarized below: 1)For investigated alloys with 12wt% Cr, 3~6wt% Zr and 3~9 wt%Ni, the phases in equilibrium withmore » the BCC phase are C15_Laves phase, Fe 23Zr 6 phase. The volume fraction of intermetallic phases increases with Ni and Zr contents. 2)Instead of (Fe,Cr) 2Zr C14_Laves phase, Ni stabilizes the C15_Laves structure in Fe-Cr-Ni-Zr alloys by substituting Fe and Cr atoms with Ni atoms in the first sublattice. 3)Fe 23Zr 6, that is metastable in the Fe-Cr-Zr ternary, is also stabilized by Ni addition. 4)Ni 7Zr 2 phase was observed in samples with high Ni/Zr ratio. Extensive solubility of Fe was identified in the phase. The microstructural and composition results obtained from this study will be incorportated into the the Fe-Cr-Ni-Zr database. The current samples will be subjected to ion irradiaition to be compared with those results for Fe-Cr-Zr alloys. Additional alloys will be designed to form (Fe,Cr,Ni) 2Zr nanoprecipitates for further studies.« less

  11. SERS active Ag encapsulated Fe@SiO2 nanorods in electromagnetic wave absorption and crystal violet detection.

    PubMed

    Senapati, Samarpita; Srivastava, Suneel Kumar; Singh, Shiv Brat; Kulkarni, Ajit R

    2014-11-01

    The present work is focused on the preparation of Fe nanorods by the chemical reduction of FeCl3 (aq) using NaBH4 in the presence of glycerol as template followed by annealing of the product at 500°C in the presence of H2 gas flow. Subsequently, its surface has been modified by silica followed by silver nanoparticles to form silica coated Fe (Fe@SiO2) and Ag encapsulated Fe@SiO2 nanostructure employing the Stöber method and silver mirror reaction respectively. XRD pattern of the products confirmed the formation of bcc phase of iron and fcc phase of silver, though silica remained amorphous. FESEM images established the growth of iron nanorods from the annealed product and also formation of silica and silver coating on its surface. The appearance of the characteristics bands in FTIR confirmed the presence of SiO2 on the Fe surface. Magnetic measurements at room temperature indicated the ferromagnetic behavior of as prepared iron nanorods, Fe@SiO2 and silver encapsulated Fe@SiO2 nanostructures. All the samples exhibited strong microwave absorption property in the high frequency range (10GHz), though it is superior for Ag encapsulated Fe@SiO2 (-14.7dB) compared with Fe@SiO2 (-9.7dB) nanostructures of the same thickness. The synthesized Ag encapsulated Fe@SiO2 nanostructure also exhibited the SERS phenomena, which is useful in the detection of the carcinogenic dye crystal violet (CV) upto the concentration of 10(-10)M. All these findings clearly demonstrate that the Ag encapsulated Fe@SiO2 nanostructure could efficiently be used in the environmental remediation. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Microstructural Evolution of AlCoCrFeNiSi High-Entropy Alloy Powder during Mechanical Alloying and Its Coating Performance

    PubMed Central

    Fu, Ming; Xiong, Wei

    2018-01-01

    High-entropy alloys (HEAs) are promising structural materials due to their excellent comprehensive performances. The use of mechanically alloyed powders to deposit HEA coatings through atmospheric plasma spraying (APS) is an effective approach that can broaden the application areas of the HEAs. In this paper, a ductility–brittleness AlCoCrFeNiSi system was chosen as an object of study, and the detailed evolution of the surface morphology, particle size distribution, and microstructure of the powder during mechanical alloying was investigated. An AlCoCrFeNiSi HEA coating was deposited using powder milled for 10 h, which can be used as an ideal feedstock for APS. The surface morphology, microstructure, microhardness, and wear behavior of the coating at room temperature were investigated. The results showed that as the milling time increased, the particle size first increased, and then decreased. At the milling time of 10 h, simple body-centered cubic (BCC) and face-centered cubic (FCC) solid solution phases were formed. After spraying, the lamellar structure inside a single particle disappeared. An ordered BCC phase was detected, and the diffraction peaks of the Si element also disappeared, which indicates that phase transformation occurred during plasma spraying. A transmission electron microscopy analysis showed that nanometer crystalline grains with a grain size of about 30 nm existed in the APS coating. For the coating, an average microhardness of 612 ± 41 HV was obtained. Adhesive wear, tribo-oxidation wear, and slight abrasion wear took place during the wear test. The coating showed good wear resistance, with a volume wear rate of 0.38 ± 0.08 × 10−4 mm3·N−1·m−1, which makes it a promising coating for use in abrasive environments. PMID:29473872

  13. Community Impact Report. Executive Summary, Fall 2000.

    ERIC Educational Resources Information Center

    Hodge, Valerie

    This summary details Bellevue Community College's (BCC's) (Washington) short-term and long-term community impacts. Short-term community impacts include: (1) 34,994 students were educated and trained at BCC; (2) BCC employed over 2,272 people, 53% of whom lived in the BCC service area; (3) BCC total revenue was $62,966,226; (4) 28.6% of the total…

  14. Crystal structure and phase stability in Fe{sub 1{minus}x}Co{sub x} from AB initio theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soederlind, P.; Abrikosov, I.A.; James, P.

    1996-06-01

    For alloys between Fe and Co, their magnetic properties determine their structure. From the occupation of d states, a phase diagram is expected which depend largely on the spin polarization. A method more elaborate than canonical band models is used to calculate the spin moment and crystal structure energies. This method was the multisublattice generalization of the coherent potential approximation in conjunction with the Linear-Muffin-Tin-Orbital method in the atomic sphere approximation. To treat itinerant magnetism, the Vosko-Wilk-Nusair parameterization was used for the local spin density approximation. The fcc, bcc, and hcp phases were studied as completely random alloys, while themore » {alpha}{prime} phase for off-stoichiometries were considered as partially ordered. Results are compared with experiment and canonical band model.« less

  15. Alumina forming iron base superalloy

    DOEpatents

    Yamamoto, Yukinori; Muralidharan, Govindarajan; Brady, Michael P.

    2014-08-26

    An austenitic stainless steel alloy, consists essentially of, in weight percent 2.5 to 4 Al; 25 to 35 Ni; 12 to 19 Cr; at least 1, up to 4 total of at least one element selected from the group consisting of Nb and Ta; 0.5 to 3 Ti; less than 0.5 V; 0.1 to 1 of at least on element selected from the group consisting of Zr and Hf; 0.03 to 0.2 C; 0.005 to 0.1 B; and base Fe. The weight percent Fe is greater than the weight percent Ni. The alloy forms an external continuous scale including alumina, and contains coherent precipitates of .gamma.'-Ni.sub.3Al, and a stable essentially single phase FCC austenitic matrix microstructure. The austenitic matrix is essentially delta-ferrite-free and essentially BCC-phase-free.

  16. Study of crystallization mechanisms of Fe nanoparticle

    NASA Astrophysics Data System (ADS)

    Kien, P. H.; Trang, G. T. T.; Hung, P. K.

    2017-06-01

    In this paper, the nanoparticle (NP) Fe was investigated by means of molecular dynamics simulation. The crystallization mechanism was studied through the time evolution of crystal cluster and potential energies of different atom types. The simulation shows that the NP was crystallized into bcc crystal structure when it was annealed at 900 K for long times. At early stage of the annealing, small nuclei form in different places of NP and dissolve for short times. After long times some nuclei form and gather nearby which create the stable clusters in the core of NP. After that the crystal clusters grow in the direction to cover the core and then to spread into the surface of NP. Analyzing the energies of different type atoms, we found that the crystal growth is originated from specific atomic arrangement in the boundary region of crystal clusters.

  17. Coercivity and nanostructure of melt-spun Ti-Fe-Co-B-based alloys

    DOE PAGES

    Zhang, W. Y.; Skomski, R.; Kashyap, A.; ...

    2016-02-18

    Nanocrystalline Ti-Fe-Co-B-based alloys, prepared by melt spinning and subsequent annealing, have been characterized structurally and magnetically. X-ray diffraction and thermomagnetic measurements show that the ribbons consist of tetragonal Ti 3(Fe,Co) 5B 2, FeCo-rich bcc, and NiAl-rich L2 1 phases; Ti 3(Fe,Co) 5B 2, is a new substitutional alloy series whose end members Ti 3Co 5B 2 and Ti 3Fe 5B 2 have never been investigated magnetically and may not even exist, respectively. Two compositions are considered, namely Ti 11+xFe 37.5-0.5xCo 37.5–0.5xB 14 (x = 0, 4) and alnico-like Ti 11Fe 26Co 26Ni 10Al 11Cu 2B 14, the latter also containingmore » an L2 1-type alloy. The volume fraction of the Ti 3(Fe,Co) 5B 2 phase increases with x, which leads to a coercivity increase from 221 Oe for x = 0 to 452 Oe for x = 4. Since the grains are nearly equiaxed, there is little or no shape anisotropy, and the coercivity is largely due to the magnetocrystallineanisotropy of the tetragonal Ti 3(Fe,Co) 5B 2 phase. The alloy containing Ni,Al, and Cu exhibits a magnetization of 10.6 kG and a remanence ratio of 0.59. Lastly, our results indicate that magnetocrystallineanisotropy can be introduced in alnico-like magnets, adding to shape anisotropy that may be induced by field annealing.« less

  18. Magnetic properties of the ammonolysis product of α-Fe powder containing a small amount of aluminum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsugawa, Yuta; Maubuchi, Yuji; Motohashi, Teruki

    2015-02-15

    Magnetite was prepared containing a small amount of aluminum and its nitride was generated through low temperature ammonolysis following reduction under hydrogen. The nitrided product was determined by XRD to be a mixture of “α″-Fe{sub 16}N{sub 2}” having a slightly deformed crystal structure from α″-Fe{sub 16}N{sub 2} and the residual α-Fe. Magnetic coercivity of the mixture was decreased from the value of 150 mT obtained for the nitride product made without aluminum, due to the precipitation of nonmagnetic amorphous alumina in the low temperature nitrided bcc (Fe{sub 1−x}Al{sub x}) with x≤0.03. The aluminum-doped nitride product in which the “α″-Fe{sub 16}N{submore » 2}” fraction was 30 at% exhibited magnetization at 1.5 T of approximately 200 Am{sup 2}kg{sup −1} at room temperature and its magnetic coercivity was 20 mT. - Graphical abstract: Magnetic iron nitride particles were separated by nonmagnetic amorphous γ-alumina. Magnetic coercivity was decreased by reducing the magnetic interaction between the particles. - Highlights: • Magnetic coercivity decreased in α”-Fe{sub 16}N{sub 2} like compound as a soft magnet. • Small amount of Al addition was effective in its preparation. • Magnetic interaction decreased between the “α”-Fe{sub 16}N{sub 2}” particles.« less

  19. A community-based cluster randomised controlled trial to evaluate the effectiveness of different bundles of nutrition-specific interventions in improving mean length-for-age z score among children at 24 months of age in rural Bangladesh: study protocol.

    PubMed

    Billah, Sk Masum; Ferdous, Tarana E; Karim, Mohd Anisul; Dibley, Michael J; Raihana, Shahreen; Moinuddin, Md; Choudhury, Nuzhat; Ahmed, Tahmeed; Hoque, D M Emdadul; Menon, Purnima; Arifeen, Shams El

    2017-05-02

    Prevalence of stunting among under-five children in Bangladesh is 36%, varying with geographic and socio-economic characteristics. Previously, research groups statistically modelled the effect of 10 individual nutrition-specific interventions targeting the critical first 1000 days of life from conception, on lives saved and costs incurred in countries with the highest burden of stunted children. However, primary research on the combined effects of these interventions is limited. Our study directly addresses this gap by examining the effect of combinations of 5 preventive interventions on length-for-age z-scores (LAZ) among 2-years old children. This community-based cluster randomised trial (c-RCT) compares 4 intervention combinations against one comparison arm. Intervention combinations are: 1) Behaviour change communication (BCC) on maternal nutrition during pregnancy, exclusive breastfeeding, and complementary feeding, along with prenatal nutritional supplement (PNS) and complementary food supplement (CFS); 2) BCC with PNS; 3) BCC with CFS; and 4) BCC alone. The comparison arm receives only routine health and nutrition services. From a rural district, 125 clusters were selected and randomly assigned to any one of the five study arms by block randomisation. A bespoke automated tab-based system was developed linking data collection, intervention delivery and project supervision. Total sample size is 1500 pregnant women, with minimum 1050 resultant children expected to be retained, powered to detect a difference of at least 0.4 in the mean LAZ score of children at 24 months, the main outcome variable, between the comparison arm and each intervention arm. Length and other anthropometric measurements, nutritional intake and other relevant data on mother and children are being collected during enrolment, twice during pregnancy, postpartum monthly till 6 months, and every third month thereafter till 24 months. This c-RCT explores the effectiveness of bundles of preventive nutrition intervention approaches addressing the critical window of opportunity to mitigate childhood stunting. The results will provide robust evidence as to which bundle(s) can have significant effect on linear growth of children. Our study also will have policy-level implications for prioritising intervention(s) tackling stunting. The study was retrospectively registered on May 2, 2016 and is available online at ClinicalTrials.gov (ID: NCT02768181 ).

  20. Use of Drawing Lithography-Fabricated Polyglycolic Acid Microneedles for Transdermal Delivery of Itraconazole to a Human Basal Cell Carcinoma Model Regenerated on Mice

    NASA Astrophysics Data System (ADS)

    Zhang, Jennifer; Wang, Yan; Jin, Jane Y.; Degan, Simone; Hall, Russell P.; Boehm, Ryan D.; Jaipan, Panupong; Narayan, Roger J.

    2016-04-01

    Itraconazole is a triazole agent that is routinely used for treatment of nail infections and other fungal infections. Recent studies indicate that itraconazole can also inhibit the growth of basal cell carcinoma (BCC) through suppression of the Sonic Hedgehog (SHH) signaling pathway. In this study, polyglycolic acid microneedle arrays and stainless steel microneedle arrays were used for transdermal delivery of itraconazole to a human BCC model which was regenerated on mice. One-by-four arrays of 642- μm-long polyglycolic acid microneedles with sharp tips were prepared using injection molding and drawing lithography. Arrays of 85 stainless steel 800- μm-tall microneedles attached to syringes were obtained for comparison purposes. Skin grafts containing devitalized split-thickness human dermis that had been seeded with human keratinocytes transduced to express human SHH protein were sutured to the skin of immunodeficient mice. Mice with this human BCC model were treated daily for 2 weeks with itraconazole dissolved in 60% dimethylsulfoxane and 40% polyethylene glycol-400 solution; transdermal administration of the itraconazole solution was facilitated by either four 1 × 4 polyglycolic acid microneedle arrays or stainless steel microneedle arrays. The epidermal tissues treated with polyglycolic acid microneedles or stainless steel microneedles were markedly thinner than that of the control (untreated) graft tissue. These preliminary results indicate that microneedles may be used to facilitate transdermal delivery of itraconazole for localized treatment of BCC.

  1. Evaluate and Analysis Efficiency of Safaga Port Using DEA-CCR, BCC and SBM Models-Comparison with DP World Sokhna

    NASA Astrophysics Data System (ADS)

    Elsayed, Ayman; Shabaan Khalil, Nabil

    2017-10-01

    The competition among maritime ports is increasing continuously; the main purpose of Safaga port is to become the best option for companies to carry out their trading activities, particularly importing and exporting The main objective of this research is to evaluate and analyze factors that may significantly affect the levels of Safaga port efficiency in Egypt (particularly the infrastructural capacity). The assessment of such efficiency is a task that must play an important role in the management of Safaga port in order to improve the possibility of development and success in commercial activities. Drawing on Data Envelopment Analysis(DEA)models, this paper develops a manner of assessing the comparative efficiency of Safaga port in Egypt during the study period 2004-2013. Previous research for port efficiencies measurement usually using radial DEA models (DEA-CCR), (DEA-BCC), but not using non radial DEA model. The research applying radial - output oriented (DEA-CCR), (DEA-BCC) and non-radial (DEA-SBM) model with ten inputs and four outputs. The results were obtained from the analysis input and output variables based on DEA-CCR, DEA-BCC and SBM models, by software Max DEA Pro 6.3. DP World Sokhna port higher efficiency for all outputs were compared to Safaga port. DP World Sokhna position is below the southern entrance to the Suez Canal, on the Red Sea, Egypt, makes it strategically located to handle cargo transiting through one of the world's busiest commercial waterways.

  2. Preoperative prediction of histopathological outcome in basal cell carcinoma: flat surface and multiple small erosions predict superficial basal cell carcinoma in lighter skin types.

    PubMed

    Ahnlide, I; Zalaudek, I; Nilsson, F; Bjellerup, M; Nielsen, K

    2016-10-01

    Prediction of the histopathological subtype of basal cell carcinoma (BCC) is important for tailoring optimal treatment, especially in patients with suspected superficial BCC (sBCC). To assess the accuracy of the preoperative prediction of subtypes of BCC in clinical practice, to evaluate whether dermoscopic examination enhances accuracy and to find dermoscopic criteria for discriminating sBCC from other subtypes. The main presurgical diagnosis was compared with the histopathological, postoperative diagnosis of routinely excised skin tumours in a predominantly fair-skinned patient cohort of northern Europe during a study period of 3 years (2011-13). The study period was split in two: during period 1, dermoscopy was optional (850 cases with a pre- or postoperative diagnosis of BCC), while during period 2 (after an educational dermoscopic update) dermoscopy was mandatory (651 cases). A classification tree based on clinical and dermoscopic features for prediction of sBCC was applied. For a total of 3544 excised skin tumours, the sensitivity for the diagnosis of BCC (any subtype) was 93·3%, specificity 91·8%, and the positive predictive value (PPV) 89·0%. The diagnostic accuracy as well as the PPV and the positive likelihood ratio for sBCC were significantly higher when dermoscopy was mandatory. A flat surface and multiple small erosions predicted sBCC. The study shows a high accuracy for an overall diagnosis of BCC and increased accuracy in prediction of sBCC for the period when dermoscopy was applied in all cases. The most discriminating findings for sBCC, based on clinical and dermoscopic features in this fair-skinned population, were a flat surface and multiple small erosions. © 2016 British Association of Dermatologists.

  3. The effect of topical diclofenac 3% and calcitriol 3 μg/g on superficial basal cell carcinoma (sBCC) and nodular basal cell carcinoma (nBCC): A phase II, randomized controlled trial.

    PubMed

    Brinkhuizen, Tjinta; Frencken, Kiki J A; Nelemans, Patty J; Hoff, Marlou L S; Kelleners-Smeets, Nicole W J; Zur Hausen, Axel; van der Horst, Michiel P J; Rennspiess, Dorit; Winnepenninckx, Véronique J L; van Steensel, Maurice A M; Mosterd, Klara

    2016-07-01

    Nonsteroidal anti-inflammatory drugs and vitamin-D derivatives can target signaling pathways activated in basal cell carcinoma (BCC). We investigated the efficacy of topically applied diclofenac sodium 3% gel, calcitriol 3 μg/g ointment, and a combination of both in superficial BCC (sBCC) and nodular BCC. Patients with a primary, histologically proven sBCC (n = 64) or nodular BCC (n = 64) were randomized to topical diclofenac, calcitriol, combination of both, or no topical treatment (control group). After self-application twice daily under occlusion (8 weeks), tumors were excised. Primary outcome was posttreatment expression levels of proliferation (Ki-67) and antiapoptosis (B-cell lymphoma [Bcl-2]) immunohistochemical markers. Secondary outcomes were histologic clearance, adverse events, application-site reactions, and patient compliance. sBCC treated with diclofenac showed a significant decrease in Ki-67 (P < .001) and Bcl-2 (P = .001), and after combination therapy for Ki-67 (P = .012). Complete histologic tumor regression was seen in 64.3% (P = .0003) of sBCC (diclofenac) and 43.8% (P = .007) of sBCC (combination therapy) compared with 0.0% of controls. No significant changes were found in nodular BCC. Application-site reactions were mostly mild to moderate. The sample size was small. Our results suggest that topical diclofenac is a promising new treatment for sBCC. Its mode of action differs from available noninvasive therapies, and thus has an additive value. Copyright © 2016 American Academy of Dermatology, Inc. Published by Elsevier Inc. All rights reserved.

  4. Phase relations in the Fe-FeSi system at high pressures and temperatures

    NASA Astrophysics Data System (ADS)

    Fischer, Rebecca A.; Campbell, Andrew J.; Reaman, Daniel M.; Miller, Noah A.; Heinz, Dion L.; Dera, Przymyslaw; Prakapenka, Vitali B.

    2013-07-01

    The Earth's core is comprised mostly of iron and nickel, but it also contains several weight percent of one or more unknown light elements, which may include silicon. Therefore it is important to understand the high pressure, high temperature properties and behavior of alloys in the Fe-FeSi system, such as their phase diagrams. We determined melting temperatures and subsolidus phase relations of Fe-9 wt% Si and stoichiometric FeSi using synchrotron X-ray diffraction at high pressures and temperatures, up to ~200 GPa and ~145 GPa, respectively. Combining this data with that of previous studies, we generated phase diagrams in pressure-temperature, temperature-composition, and pressure-composition space. We find the B2 crystal structure in Fe-9Si where previous studies reported the less ordered bcc structure, and a shallower slope for the hcp+B2 to fcc+B2 boundary than previously reported. In stoichiometric FeSi, we report a wide B2+B20 two-phase field, with complete conversion to the B2 structure at ~42 GPa. The minimum temperature of an Fe-Si outer core is 4380 K, based on the eutectic melting point of Fe-9Si, and silicon is shown to be less efficient at depressing the melting point of iron at core conditions than oxygen or sulfur. At the highest pressures reached, only the hcp and B2 structures are seen in the Fe-FeSi system. We predict that alloys containing more than ~4-8 wt% silicon will convert to an hcp+B2 mixture and later to the hcp structure with increasing pressure, and that an iron-silicon alloy in the Earth's inner core would most likely be a mixture of hcp and B2 phases.

  5. Developing precipitation hardenable high entropy alloys

    NASA Astrophysics Data System (ADS)

    Gwalani, Bharat

    High entropy alloys (HEAs) is a concept wherein alloys are constructed with five or more elements mixed in equal proportions; these are also known as multi-principle elements (MPEs) or complex concentrated alloys (CCAs). This PhD thesis dissertation presents research conducted to develop precipitation-hardenable high entropy alloys using a much-studied fcc-based equi-atomic quaternary alloy (CoCrFeNi). Minor additions of aluminium make the alloy amenable for precipitating ordered intermetallic phases in an fcc matrix. Aluminum also affects grain growth kinetics and Hall-Petch hardenability. The use of a combinatorial approach for assessing composition-microstructure-property relationships in high entropy alloys, or more broadly in complex concentrated alloys; using laser deposited compositionally graded AlxCrCuFeNi 2 (0 < x < 1.5) complex concentrated alloys as a candidate system. The composition gradient has been achieved from CrCuFeNi2 to Al 1.5CrCuFeNi2 over a length of ˜25 mm, deposited using the laser engineered net shaping process from a blend of elemental powders. With increasing Al content, there was a gradual change from an fcc-based microstructure (including the ordered L12 phase) to a bcc-based microstructure (including the ordered B2 phase), accompanied with a progressive increase in microhardness. Based on this combinatorial assessment, two promising fcc-based precipitation strengthened systems have been identified; Al0.3CuCrFeNi2 and Al0.3CoCrFeNi, and both compositions were subsequently thermo-mechanically processed via conventional techniques. The phase stability and mechanical properties of these alloys have been investigated and will be presented. Additionally, the activation energy for grain growth as a function of Al content in these complex alloys has also been investigated. Change in fcc grain growth kinetic was studied as a function of aluminum; the apparent activation energy for grain growth increases by about three times going from Al0.1CoCrFeNi (3% Al (at%)) to Al0.3CoCrFeNi. (7% Al (at%)). Furthermore, Al addition leads to the precipitation of highly refined ordered L12 (gamma') and B2 precipitates in Al0.3CoCrFeNi. A detailed investigation of precipitation of the ordered phases in Al0.3CoCrFeNi and their thermal stability is done using atom probe tomography (APT), transmission electron microscopy (TEM) and Synchrotron X-ray in situ and ex situ analyses. The alloy strengthened via grain boundary strengthening following the Hall-Petch relationship offers a large increment of strength with small variation in grain size. Tensile strength of the Al0.3CoFeNi is increased by 50% on precipitation fine-scale gamma' precipitates. Furthermore, precipitation of bcc based ordered phase B2 in Al0.3CoCrFeNi can further strengthen the alloy. Fine-tuning the microstructure by thermo-mechanical treatments achieved a wide range of mechanical properties in the same alloy. The Al0.3CoCrFeNi HEA exhibited ultimate tensile strength (UTS) of ˜250 MPa and ductility of ˜65%; a UTS of ˜1100 MPa and ductility of ˜30%; and a UTS of 1850 MPa and a ductility of 5% after various thermo-mechanical treatments. Grain sizes, precipitates type and size scales manipulated in the alloy result in different strength ductility combinations. Henceforth, the alloy presents a fertile ground for development by grain boundary strengthening and precipitation strengthening, and offers very high activation energy of grain growth aptly suitable for high-temperature applications.

  6. Poly(methyl methacrylate) coating of soft magnetic amorphous and crystalline Fe,Co-B nanoparticles by chemical reduction.

    PubMed

    Fernández Barquín, L; Yedra Martínez, A; Rodríguez Fernández, L; Rojas, D P; Murphy, F J; Alba Venero, D; Ruiz González, L; González-Calbet, J; Fdez-Gubieda, M L; Pankhurst, Q A

    2012-03-01

    The structural and magnetic properties of a collection of nanoparticles coated by Poly(methyl methacrylate) through a wet chemical synthesis have been investigated. The particles display either an amorphous (M = Fe, Co) M-B arrangement or a mixed structure bcc-Fe and fcc-Co + amorphous M-B. Both show the presence of a metal oxi-hydroxide formed in aqueous reduction. The organic coating facilitates technological handling. The cost-effective synthesis involves a reduction in a Poly(methyl methacrylate) aqueous solution of iron(II) or cobalt(II) sulphates (< 0.5 M) by sodium borohydride (< 0.5 M). The particles present an oxidized component, as deduced from X-ray diffraction, Mössbauer and Fe- and Co K-edge X-ray absorption spectroscopy and electron microscopy. For the ferrous alloys, this Fe-oxide is alpha-goethite, favoured by the aqueous solution. The Poly(methyl methacrylate) coating is confirmed by Fourier transform infrared spectroscopy. In pure amorphous core alloys there is a drastic change of the coercivity from bulk to around 30 Oe in the nanoparticles. The mixed structured alloys also lie in the soft magnetic regime. Magnetisation values at room temperature range around 100 emu/g. The coercivity stems from multidomain particles and their agglomeration, triggering the dipolar interactions.

  7. Elastic constants of stressed and unstressed materials in the phase-field crystal model

    NASA Astrophysics Data System (ADS)

    Wang, Zi-Le; Huang, Zhi-Feng; Liu, Zhirong

    2018-04-01

    A general procedure is developed to investigate the elastic response and calculate the elastic constants of stressed and unstressed materials through continuum field modeling, particularly the phase-field crystal (PFC) models. It is found that for a complete description of system response to elastic deformation, the variations of all the quantities of lattice wave vectors, their density amplitudes (including the corresponding anisotropic variation and degeneracy breaking), the average atomic density, and system volume should be incorporated. The quantitative and qualitative results of elastic constant calculations highly depend on the physical interpretation of the density field used in the model, and also importantly, on the intrinsic pressure that usually pre-exists in the model system. A formulation based on thermodynamics is constructed to account for the effects caused by constant pre-existing stress during the homogeneous elastic deformation, through the introducing of a generalized Gibbs free energy and an effective finite strain tensor used for determining the elastic constants. The elastic properties of both solid and liquid states can be well produced by this unified approach, as demonstrated by an analysis for the liquid state and numerical evaluations for the bcc solid phase. The numerical calculations of bcc elastic constants and Poisson's ratio through this method generate results that are consistent with experimental conditions, and better match the data of bcc Fe given by molecular dynamics simulations as compared to previous work. The general theory developed here is applicable to the study of different types of stressed or unstressed material systems under elastic deformation.

  8. Synthesis of FeCo magnetic nanoalloys and investigation of heating properties for magnetic fluid hyperthermia

    NASA Astrophysics Data System (ADS)

    Çelik, Özer; Fırat, Tezer

    2018-06-01

    In this study, size controlled FeCo colloidal magnetic nanoalloys in the range of 11.5-37.2 nm were synthesized by surfactant assistant ball milling method. Magnetic separation technique was performed subsequent to synthesis process so as to obtain magnetic nanoalloy fluid with narrow size distribution. Particle distribution was determined by transmission electron microscope (TEM) while X-ray diffraction (XRD) measurements verified FeCo alloy formation as BCC structure. Vibrating sample magnetometer (VSM) method was used to investigate magnetic properties of nanoalloys. Maximum saturation magnetization and maximum coercivity were obtained as 172 Am2/kg for nanoparticles with the mean size of 37.2 nm and 19.4 mT for nanoparticles with the mean size of 13.3 nm, respectively. The heating ability of FeCo magnetic nanoalloys was determined through calorimetrical measurements for magnetic fluid hyperthermia (MFH) applications. Heat generation mechanisms were investigated by using linear response theory and Stoner-Wohlfarth (S-W) model. Specific absorption rate (SAR) values were obtained in the range of 2-15 W/g for magnetic field frequency of 171 kHz and magnetic field strength in between 6 and 14 mT.

  9. Safety and efficacy of vismodegib in patients aged ≥65 years with advanced basal cell carcinoma.

    PubMed

    Chang, Anne Lynn S; Lewis, Karl D; Arron, Sarah T; Migden, Michael R; Solomon, James A; Yoo, Simon; Day, Bann-Mo; McKenna, Edward F; Sekulic, Aleksandar

    2016-11-15

    Because many patients with unresectable basal cell carcinoma (BCC) are aged ≥65 years, this study explores the efficacy and safety of vismodegib in these patients with locally advanced (la) or metastatic (m) basal cell carcinoma (BCC) in the ERIVANCE BCC trial and the expanded access study (EAS).We compared patients aged ≥65 years to patients aged <65 years taking vismodegib 150 mg/day, using descriptive statistics for response and safety. Patients aged ≥65 years (laBCC/mBCC) were enrolled in ERIVANCE BCC (33/14) and EAS (27/26). Investigator-assessed best overall response rate in patients ≥65 and <65 years was 46.7%/35.7% and 72.7%/52.6% (laBCC/mBCC), respectively, in ERIVANCE BCC and 45.8%/33.3% and 46.9%/28.6%, respectively, in EAS. These differences were not clinically meaningful. Safety was similar in both groups, although those aged ≥65 years had a higher percentage of grade 3-5 adverse events than those aged <65 years. Vismodegib demonstrated similar clinical activity and adverse events regardless of age.

  10. Serratia symbiotica from the aphid Cinara cedri: a missing link from facultative to obligate insect endosymbiont.

    PubMed

    Lamelas, Araceli; Gosalbes, María José; Manzano-Marín, Alejandro; Peretó, Juli; Moya, Andrés; Latorre, Amparo

    2011-11-01

    The genome sequencing of Buchnera aphidicola BCc from the aphid Cinara cedri, which is the smallest known Buchnera genome, revealed that this bacterium had lost its symbiotic role, as it was not able to synthesize tryptophan and riboflavin. Moreover, the biosynthesis of tryptophan is shared with the endosymbiont Serratia symbiotica SCc, which coexists with B. aphidicola in this aphid. The whole-genome sequencing of S. symbiotica SCc reveals an endosymbiont in a stage of genome reduction that is closer to an obligate endosymbiont, such as B. aphidicola from Acyrthosiphon pisum, than to another S. symbiotica, which is a facultative endosymbiont in this aphid, and presents much less gene decay. The comparison between both S. symbiotica enables us to propose an evolutionary scenario of the transition from facultative to obligate endosymbiont. Metabolic inferences of B. aphidicola BCc and S. symbiotica SCc reveal that most of the functions carried out by B. aphidicola in A. pisum are now either conserved in B. aphidicola BCc or taken over by S. symbiotica. In addition, there are several cases of metabolic complementation giving functional stability to the whole consortium and evolutionary preservation of the actors involved.

  11. High-pressure and high-temperature phase diagram for Fe0.9Ni0.1-H alloy

    NASA Astrophysics Data System (ADS)

    Shibazaki, Yuki; Terasaki, Hidenori; Ohtani, Eiji; Tateyama, Ryuji; Nishida, Keisuke; Funakoshi, Ken-ichi; Higo, Yuji

    2014-03-01

    Planetary cores are considered to consist of an iron-nickel (Fe-Ni) alloy and light elements and hydrogen is one of plausible light elements in the core. Here we have performed in situ X-ray diffraction experiments on an Fe0.9Ni0.1-H system up to 15.1 GPa and 1673 K, and investigated the effect of Ni on phase relations of FeHx under high pressure and high temperature. The experimental system in the present work was oversaturated with hydrogen. We found a face-center-cubic (fcc) phase (with hydrogen concentration up to x∼1) and a body-center-cubic (bcc) phase (x < 0.1) as stable phases. The partial melting was observed below 6 GPa. We could not observe a double-hexagonal-close-packed (dhcp) phase because of limitations in pressure and temperature conditions. The stability field of each phase of Fe0.9Ni0.1Hx was almost same as that of FeHx. The solidus of Fe0.9Ni0.1Hx was 500-700 K lower than the melting curve of Fe and its liquidus was 400-600 K lower than that of Fe in the pressure range of this study. Both the solidus and liquidus of Fe0.9Ni0.1Hx were depressed at around 3.5 GPa, as was the solidus of FeHx. The hydrogen contents in fcc-Fe0.9Ni0.1Hx just below solidus were slightly lower than those of fcc-FeHx, which suggests that nickel is likely to prevent dissolution of hydrogen into iron. Due to the lower hydrogen solubilities in Fe0.9Ni0.1 compared to Fe, the solidus of Fe0.9Ni0.1Hx is about 100-150 K higher than that of FeHx.

  12. High-resolution imaging of basal cell carcinoma: a comparison between multiphoton microscopy with fluorescence lifetime imaging and reflectance confocal microscopy.

    PubMed

    Manfredini, Marco; Arginelli, Federica; Dunsby, Christopher; French, Paul; Talbot, Clifford; König, Karsten; Pellacani, Giovanni; Ponti, Giovanni; Seidenari, Stefania

    2013-02-01

    The aim of this study was to compare morphological aspects of basal cell carcinoma (BCC) as assessed by two different imaging methods: in vivo reflectance confocal microscopy (RCM) and multiphoton tomography with fluorescence lifetime imaging implementation (MPT-FLIM). The study comprised 16 BCCs for which a complete set of RCM and MPT-FLIM images were available. The presence of seven MPT-FLIM descriptors was evaluated. The presence of seven RCM equivalent parameters was scored in accordance to their extension. Chi-squared test with Fisher's exact test and Spearman's rank correlation coefficient were determined between MPT-FLIM scores and adjusted-RCM scores. MPT-FLIM and RCM descriptors of BCC were coupled to match the descriptors that define the same pathological structures. The comparison included: Streaming and Aligned elongated cells, Streaming with multiple directions and Double alignment, Palisading (RCM) and Palisading (MPT-FLIM), Typical tumor islands, and Cell islands surrounded by fibers, Dark silhouettes and Phantom islands, Plump bright cells and Melanophages, Vessels (RCM), and Vessels (MPT-FLIM). The parameters that were significantly correlated were Melanophages/Plump Bright Cells, Aligned elongated cells/Streaming, Double alignment/Streaming with multiple directions, and Palisading (MPT-FLIM)/Palisading (RCM). According to our data, both methods are suitable to image BCC's features. The concordance between MPT-FLIM and RCM is high, with some limitations due to the technical differences between the two devices. The hardest difficulty when comparing the images generated by the two imaging modalities is represented by their different field of view. © 2012 John Wiley & Sons A/S.

  13. Comparative analysis of cytokeratin 15, TDAG51, cytokeratin 20 and androgen receptor in sclerosing adnexal neoplasms and variants of basal cell carcinoma.

    PubMed

    Evangelista, Mara Therese P; North, Jeffrey P

    2015-11-01

    Desmoplastic trichoepithelioma (DTE), morpheaform basal cell carcinoma (BCC) and microcystic adnexal carcinoma (MAC) are sclerosing adnexal neoplasms with overlapping histopathologic features. We compared cytokeratin 15, (CK15), T-cell death-associated gene 51 (TDAG51), cytokeratin 20 (CK20) and androgen receptor (AR) in differentiating these tumors and assessed their expression in BCC subtypes. Fifteen DTE, 15 infundibulocystic BCC, 18 micronodular BCC, 18 morpheaform BCC and 6 MAC were assessed for CK15, TDAG51, CK20 and AR expression. Quantitative CK15 staining was higher in DTE compared with BCC (p < 0.0001) and MAC (p = 0.02). Quantitative TDAG51 staining was higher in DTE than BCC (p < 0.0001). The CK20+AR- immunophenotype was 100% sensitive and specific in diagnosing DTE. The CK20-AR+ immunophenotype was 95.24% specific and 83.33% sensitive for BCC. The CK20-AR- immunophenotype was 83.33% sensitive and 90.91% specific for MAC. CK15, CK20 and AR were positive in 87, 53 and 67% of infundibulocystic BCC cases, respectively. Combination of CK20 and AR best differentiated these sclerosing adnexal neoplasms. Greater positivity for CK15 and TDAG51 generally favors benign lesions. Infundibulocystic BCC has higher CK20 and lower AR immunopositivity than other BCC variants and a high degree of CK15 and TDAG51 positivity. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Differential senescence capacities in meibomian gland carcinoma and basal cell carcinoma.

    PubMed

    Zhang, Leilei; Huang, Xiaolin; Zhu, Xiaowei; Ge, Shengfang; Gilson, Eric; Jia, Renbing; Ye, Jing; Fan, Xianqun

    2016-03-15

    Meibomian gland carcinoma (MGC) and basal cell carcinoma (BCC) are common eyelid carcinomas that exhibit highly dissimilar degrees of proliferation and prognoses. We address here the question of the differential mechanisms between these two eyelid cancers that explain their different outcome. A total of 102 confirmed MGC and 175 diagnosed BCC cases were analyzed. Twenty confirmed MGC and twenty diagnosed BCC cases were collected to determine the telomere length, the presence of senescent cells, and the expression levels of the telomere capping shelterin complex, P53, and the E3 ubiquitin ligase Siah1. Decreased protein levels of the shelterin subunits, shortened telomere length, over-expressed Ki-67, and Bcl2 as well as mutations in P53 were detected both in MGC and BCC. It suggests that the decreased protein levels of the shelterin complex and the shortened telomere length contribute to the tumorigenesis of MGC and BCC. However, several parameters distinguish MGC from BCC samples: (i) the mRNA level of the shelterin subunits decreased in MGC but it increased in BCC; (ii) P53 was more highly mutated in MGC; (iii) Siah1 mRNA was over-expressed in BCC; (iv) BCC samples contain a higher level of senescent cells; (v) Ki-67 and Bcl2 expression were lower in BCC. These results support a model where a preserved P53 checkpoint in BCC leads to cellular senescence and reduced tumor proliferation as compared to MGC. © 2015 UICC.

  15. Induction of chemokine receptor CXCR4 expression by transforming growth factor-β1 in human basal cell carcinoma cells.

    PubMed

    Chu, Chia-Yu; Sheen, Yi-Shuan; Cha, Shih-Ting; Hu, Yeh-Fang; Tan, Ching-Ting; Chiu, Hsien-Ching; Chang, Cheng-Chi; Chen, Min-Wei; Kuo, Min-Liang; Jee, Shiou-Hwa

    2013-11-01

    Higher CXCR4 expression enhances basal cell carcinoma (BCC) invasion and angiogenesis. The underlying mechanism of increased CXCR4 expression in invasive BCC is still not well understood. To investigate the mechanisms involved in the regulation of CXCR4 expression in invasive BCC. We used qRT-PCR, RT-PCR, Western blot, and flow cytometric analyses to examine different CXCR4 levels among the clinical samples, co-cultured BCC cells and BCC cells treated with recombinant transforming growth factor-β1 (TGF-β1) and connective tissue growth factor (CTGF). Immunohistochemical studies were used to demonstrate the correlation between TGF-β1 and CXCR4 expressions. The signal transduction pathway and transcriptional regulation were confirmed by treatments with chemical inhibitors, neutralizing antibodies, or short interfering RNAs, as well as luciferase reporter activity. Invasive BCC has higher TGF-β1 and CTGF levels compared to non-invasive BCC. Non-contact dermal fibroblasts co-culture with human BCC cells also increases the expression of CXCR4 in BCC cells. Treatment with recombinant human TGF-β1, but not CTGF, enhanced the CXCR4 levels in time- and dose-dependent manners. The protein level and surface expression of CXCR4 in human BCC cells was increased by TGF-β1 treatment. TGF-β1 was intensely expressed in the surrounding fibroblasts of invasive BCC and was positively correlated with the CXCR4 expression of BCC cells. The transcriptional regulation of CXCR4 by TGF-β1 is mediated by its binding to the TGF-β receptor II and phosphorylation of the extracellular signal-related kinase 1/2 (ERK1/2)-ETS-1 pathway. TGF-β1 induces upregulation of CXCR4 in human BCC cells by phosphorylation of ERK1/2-ETS-1 pathway. Copyright © 2013 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  16. On the nature of the Fe-bearing particles influencing hard anodizing behavior of AA 7075 extrusion products

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, A. K.

    1998-03-01

    The deleterious effects of Fe-bearing constituent particles on the fracture toughness of wrought A1 alloys have been known. Recent studies have shown that the presence of Fe-bearing, constituent particles is also determental to the nature and growth of the hard anodic oxide coating formed on such materials. The present study, using a combination of scanning electron microscopy (SEM), transmission electron microscopy (TEM), and electron probe microanalysis (EPMA), was made to examine the influence of the nature of the Fe-bearing particles on the hard anodizing behavior of AA 7075 extrusion products containing varying amounts of Si, Mn, and Fe impurities. It was found that, in the alloy containing 0.25 wt pct Si, 0.27 wt pct Mn, and 0.25 wt pct Fe, the Fe-bearing constituent particles are based on the Al12(FeMn)3Si phase (bcc with α=1.260 nm). These particles survive the hard anodizing treatment, add resistance to the electrical path, causing a rapid rise in the bath voltage with time, and cause a nonuniform growth of the anodic oxide film. In the materials containing 0.05 wt pct Si, 0.04 wt pct Mn, and 0.18 wt pct Fe, on the other hand, the formation of the Al12(FeMn)3Si-based phase is suppressed, and two different Fe-bearing phases, based on Al-Fe-Cu-Mn-based (simple cubic with a=1.265 nm) and Al7Cu2Fe, respectively form. Neither the Al-Fe-Cu-Mn-based phase nor the Al7Cu2Fe-based phase survive the hard anodizing treatment, and this results in a steady rise in the bath voltage with time and a relatively uniform growth of the anodic oxide film. Consideration of the size of the Fe-bearing, particles reveals that the smaller the particle, the more uniform the growth of the anodic oxide film.

  17. An empirical approach to predicting long term behavior of metal particle based recording media

    NASA Technical Reports Server (NTRS)

    Hadad, Allan S.

    1992-01-01

    Alpha iron particles used for magnetic recording are prepared through a series of dehydration and reduction steps of alpha-Fe2O3-H2O resulting in acicular, polycrystalline, body centered cubic (bcc) alpha-Fe particles that are single magnetic domains. Since fine iron particles are pyrophoric by nature, stabilization processes had to be developed in order for iron particles to be considered as a viable recording medium for long term archival (i.e., 25+ years) information storage. The primary means of establishing stability is through passivation or controlled oxidation of the iron particle's surface. A study was undertaken to examine the degradation in magnetic properties as a function of both temperature and humidity on silicon-containing iron particles between 50-120 C and 3-89 percent relative humidity. The methodology to which experimental data was collected and analyzed leading to predictive capability is discussed.

  18. Effects of temperature on serrated flows of Al 0.5CoCrCuFeNi high-entropy alloy

    DOE PAGES

    Chen, Shuying; Xie, Xie; Chen, Bilin; ...

    2015-08-14

    Compression behavior of the Al 0.5CoCrCuFeNi high-entropy alloy (HEA) was studied at different temperatures from 673 K to 873 K at a low strain rate of 5 x 10 –5/s to investigate the temperature effect on the mechanical properties and serration behavior. The face-centered-cubic (fcc) structure is confirmed at the lower temperature of 673 K and 773 K, and a structure of mixed fcc and body-centered cubic (bcc) is identified at a higher temperature of 873 K after compression tests using high-energy synchrotron x-ray diffraction. As a result, by comparing the stress–strain curves at different temperatures, two opposite directions ofmore » serrations types were found, named upward serrations appearing at 673 K and 773 K and downward serrations at 873 K, which may be due to dynamic strain aging.« less

  19. Plasma-Sprayed High Entropy Alloys: Microstructure and Properties of AlCoCrFeNi and MnCoCrFeNi

    NASA Astrophysics Data System (ADS)

    Ang, Andrew Siao Ming; Berndt, Christopher C.; Sesso, Mitchell L.; Anupam, Ameey; S, Praveen; Kottada, Ravi Sankar; Murty, B. S.

    2015-02-01

    High entropy alloys (HEAs) represent a new class of materials that present novel phase structures and properties. Apart from bulk material consolidation methods such as casting and sintering, HEAs can also be deposited as a surface coating. In this work, thermal sprayed HEA coatings are investigated that may be used as an alternative bond coat material for a thermal barrier coating system. Nanostructured HEAs that were based on AlCoCrFeNi and MnCoCrFeNi were prepared by ball milling and then plasma sprayed. Splat studies were assessed to optimise the appropriate thermal spray parameters and spray deposits were prepared. After mechanical alloying, aluminum-based and manganese-based HEA powders revealed contrary prominences of BCC and FCC phases in their X-ray diffraction patterns. However, FCC phase was observed as the major phase present in both of the plasma-sprayed AlCoCrFeNi and MnCoCrFeNi coatings. There were also minor oxide peaks detected, which can be attributed to the high temperature processing. The measured porosity levels for AlCoCrFeNi and MnCoCrFeNi coatings were 9.5 ± 2.3 and 7.4 ± 1.3 pct, respectively. Three distinct phase contrasts, dark gray, light gray and white, were observed in the SEM images, with the white regions corresponding to retained multicomponent HEAs. The Vickers hardness (HV0.3kgf) was 4.13 ± 0.43 and 4.42 ± 0.60 GPa for AlCoCrFeNi and MnCoCrFeNi, respectively. Both type of HEAs coatings exhibited anisotropic mechanical behavior due to their lamellar, composite-type microstructure.

  20. Alumina-Forming Austenitic Stainless Steels Strengthened by Laves Phase and MC Carbide Precipitates

    NASA Astrophysics Data System (ADS)

    Yamamoto, Y.; Brady, M. P.; Lu, Z. P.; Liu, C. T.; Takeyama, M.; Maziasz, P. J.; Pint, B. A.

    2007-11-01

    Creep strengthening of Al-modified austenitic stainless steels by MC carbides or Fe2Nb Laves phase was explored. Fe-20Cr-15Ni-(0-8)Al and Fe-15Cr-20Ni-5Al base alloys (at. pct) with small additions of Nb, Mo, W, Ti, V, C, and B were cast, thermally-processed, and aged. On exposure from 650 °C to 800 °C in air and in air with 10 pct water vapor, the alloys exhibited continuous protective Al2O3 scale formation at an Al level of only 5 at. pct (2.4 wt pct). Matrices of the Fe-20Cr-15Ni-5Al base alloys consisted of γ (fcc) + α (bcc) dual phase due to the strong α-Fe stabilizing effect of the Al addition and exhibited poor creep resistance. However, adjustment of composition to the Fe-15Cr-20Ni-5Al base resulted in alloys that were single-phase γ-Fe and still capable of alumina scale formation. Alloys that relied solely on Fe2Nb Laves phase precipitates for strengthening exhibited relatively low creep resistance, while alloys that also contained MC carbide precipitates exhibited creep resistance comparable to that of commercially available heat-resistant austenitic stainless steels. Phase equilibria studies indicated that NbC precipitates in combination with Fe2Nb were of limited benefit to creep resistance due to the solution limit of NbC within the γ-Fe matrix of the alloys studied. However, when combined with other MC-type strengtheners, such as V4C3 or TiC, higher levels of creep resistance were obtained.

  1. Clinical characteristics of basal cell carcinoma in a tertiary hospital in Sarawak, Malaysia.

    PubMed

    Yap, Felix Boon Bin

    2010-02-01

    Basal cell carcinoma (BCC) is the most common skin cancer among Orientals. Data on this malignancy is lacking in Malaysia, prompting a retrospective study to determine the clinical characteristics in the skin clinic, Sarawak General Hospital between 2000 and 2008. Demographic data and clinical features of 64 histopathologically proven BCC from 43 patients were retrieved. Statistical analysis was performed comparing the clinical characteristics based on the region of involvement and gender. The mean age of presentation was 60.9 years. Male to female ratio was 1.05. Majority of the patients were Chinese (44.2%) followed by Malays (32.6%), Bidayuhs (14.0%) and Ibans (6.9%). Nodular BCC accounted for 95.3% of cases while 4.7% were superficial BCC. All the nodular BCC were pigmented. Ulceration was noted in 18%. There were 82.8% of BCC on the head and neck region and 17.2% on the trunk and limb region. BCC on the latter region were larger (mean 35.0 cf. 14.4 mm, p < 0.001) and ulcerated (45.5% cf. 11.3%, p = 0.01). Superficial BCC were also more frequently encountered in this region (18.2% cf. 1.9%, p = 0.02). Compared to women, men had larger BCC (mean 21.1 cf. 13.3 mm, p = 0.03) and kept them for a longer duration (mean 21.6 cf. 13.3 months, p = 0.04). Clinical characteristics of BCC in Sarawak were similar to other Asian studies. Additionally, BCC on the trunk and limbs and in men were larger, ulcerative and long standing warranting better efforts for earlier detection.

  2. Efficient gradient-based Monte Carlo simulation of materials: Applications to amorphous Si and Fe and Ni clusters

    NASA Astrophysics Data System (ADS)

    Limbu, Dil; Biswas, Parthapratim

    We present a simple and efficient Monte-Carlo (MC) simulation of Iron (Fe) and Nickel (Ni) clusters with N =5-100 and amorphous Silicon (a-Si) starting from a random configuration. Using Sutton-Chen and Finnis-Sinclair potentials for Ni (in fcc lattice) and Fe (in bcc lattice), and Stillinger-Weber potential for a-Si, respectively, the total energy of the system is optimized by employing MC moves that include both the stochastic nature of MC simulations and the gradient of the potential function. For both iron and nickel clusters, the energy of the configurations is found to be very close to the values listed in the Cambridge Cluster Database, whereas the maximum force on each cluster is found to be much lower than the corresponding value obtained from the optimized structural configurations reported in the database. An extension of the method to model the amorphous state of Si is presented and the results are compared with experimental data and those obtained from other simulation methods. The work is partially supported by the NSF under Grant Number DMR 1507166.

  3. Ternary alloy material prediction using genetic algorithm and cluster expansion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Chong

    2015-12-01

    This thesis summarizes our study on the crystal structures prediction of Fe-V-Si system using genetic algorithm and cluster expansion. Our goal is to explore and look for new stable compounds. We started from the current ten known experimental phases, and calculated formation energies of those compounds using density functional theory (DFT) package, namely, VASP. The convex hull was generated based on the DFT calculations of the experimental known phases. Then we did random search on some metal rich (Fe and V) compositions and found that the lowest energy structures were body centered cube (bcc) underlying lattice, under which we didmore » our computational systematic searches using genetic algorithm and cluster expansion. Among hundreds of the searched compositions, thirteen were selected and DFT formation energies were obtained by VASP. The stability checking of those thirteen compounds was done in reference to the experimental convex hull. We found that the composition, 24-8-16, i.e., Fe 3VSi 2 is a new stable phase and it can be very inspiring to the future experiments.« less

  4. Effects of van der Waals Interactions in the Adsorption of Isooctane and Ethanol on Fe(100) Surfaces

    PubMed Central

    2014-01-01

    van der Waals (vdW) forces play a fundamental role in the structure and behavior of diverse systems. Because of development of functionals that include nonlocal correlation, it is possible to study the effects of vdW interactions in systems of industrial and tribological interest. Here we simulated within the framework of density functional theory (DFT) the adsorption of isooctane (2,2,4-trimethylpentane) and ethanol on an Fe(100) surface, employing various exchange–correlation functionals to take vdW forces into account. In particular, this paper discusses the effect of vdW forces on the magnitude of adsorption energies, equilibrium geometries, and their role in the binding mechanism. According to our calculations, vdW interactions increase the adsorption energies and reduce the equilibrium distances. Nevertheless, they do not influence the spatial configuration of the adsorbed molecules. Their effect on the electronic density is a nonisotropic, delocalized accumulation of charge between the molecule and the slab. In conclusion, vdW forces are essential for the adsorption of isooctane and ethanol on a bcc Fe(100) surface. PMID:25126156

  5. Irradiation-induced microstructural evolution and mechanical properties in iron with and without helium

    NASA Astrophysics Data System (ADS)

    Okuniewski, Maria Ann

    Ferritic-martensitic steels have been identified as candidate structural materials for Generation IV reactors, fusion systems, and accelerator driven systems (ADS). These steels have been selected because of their superior radiation resistance to void swelling, irradiation creep, and helium (He) and hydrogen (H) embrittlement at higher temperatures (T/Tm > 0.4). In fusion and ADS reactors the structural materials will be subjected to irradiation damage, as well as the introduction of He and H. The He and H can be introduced via (n,alpha) and (n,p) threshold reactions, respectively. Also protons can be directly implanted from the beam in an ADS. In fusion and ADS environments the He generation is approximately 10 appm/dpa and 150 appm/dpa. The H generation is approximately three to ten times higher than He production in ADS environments. The impact of these large generation rates of He and H impurities on microstructural evolution during irradiation is not well understood. The irradiation-induced microstructural evolution and its relationship to mechanical properties in body-centered cubic (bcc) iron (Fe) with and without He was systematically investigated. The bcc Fe was selected as a simplified material to serve as a basis for a reactor structural material that was exposed to varying He-to-damage ratios to simulate fusion (10 appm/dpa) and ADS (150 appm/dpa) environments. Through utilizing relatively pure, single crystal, bcc Fe, microstructural and mechanical properties effects from alloying elements can be reduced, if not eliminated. Ion irradiations were carried out at two temperature regimes (300 and 450°C). A coordinated group of experiments and simulations were carried out. Following specimen irradiations, the resultant microstructure and mechanical properties were evaluated with both non-destructive and destructive experimental techniques. The experimental techniques included positron annihilation spectroscopy (PAS), specifically, Doppler broadening spectroscopy (DBS) and positron annihilation lifetime spectroscopy (PALS); in-situ and ex-situ transmission electron microscopy (TEM), nanoindentation, and atomic force microscopy (AFM). Kinetic lattice Monte Carlo (KLMC) was selected as the modeling technique since it has the capability of producing mesoscale results that can be directly compared to the length and time scales of the experimental work. ATomic SUPerposition (ATSUP) was utilized to calculate positron lifetimes and W parameters in Fe as a function of vacancy concentration. The results of the experiments and simulations were directly compared and related. The major findings included: (1) A link was established between the irradiated microstructure and its impact on mechanical properties. This was achieved through the quantitative evaluation of the ex-situ TEM defect analyses and the relationship of nanohardness to yield strength. The microstructural results from KMC modeling were also related to the mechanical properties through the Dispersed Barrier Model. (2) KMC was identified as a complementary technique for microstructural evaluation since it resulted in a distribution of defects that were not visible via TEM, however they are known to be present based on the PAS results. (3) PAS results and KMC simulations were compared with ATSUP calculations to quantify defect size versus positron lifetime.

  6. Composition design for Laves phase-related body-centered cubic-V solid solution alloys with large hydrogen storage capacities.

    PubMed

    Wang, H B; Wang, Q; Dong, C; Yuan, L; Xu, F; Sun, L X

    2008-03-19

    This paper analyzes the characteristics of alloy compositions with large hydrogen storage capacities in Laves phase-related body-centered cubic (bcc) solid solution alloy systems using the cluster line approach. Since a dense-packed icosahedral cluster A(6)B(7) characterizes the local structure of AB(2) Laves phases, in an A-B-C ternary system, such as Ti-Cr (Mn, Fe)-V, where A-B forms AB(2) Laves phases while A-C and B-C tend to form solid solutions, a cluster line A(6)B(7)-C is constructed by linking A(6)B(7) to C. The alloy compositions with large hydrogen storage capacities are generally located near this line and are approximately expressed with the cluster-plus-glue-atom model. The cluster line alloys (Ti(6)Cr(7))(100-x)V(x) (x = 2.5-70 at.%) exhibit different structures and hence different hydrogen storage capacities with increasing V content. The alloys (Ti(6)Cr(7))(95)V(5) and Ti(30)Cr(40)V(30) with bcc solid solution structure satisfy the cluster-plus-glue-atom model.

  7. Identification of Human Cutaneous Basal Cell Carcinoma Cancer Stem Cells.

    PubMed

    Morgan, Huw; Olivero, Carlotta; Patel, Girish K

    2018-04-20

    The cancer stem cell model states that a subset of tumor cells, called "cancer stem cells," can initiate and propagate tumor growth through self-renewal, high proliferative capacity, and their ability to recreate tumor heterogeneity. In basal cell carcinoma (BCC), we have shown that tumor cells that express the cell surface protein CD200 fulfill the cancer stem cell hypothesis. CD200+ CD45- BCC cells represent 0.05-3.96% of all BCC cells and reside in small clusters at the tumor periphery. Using a novel, reproducible in vivo xenograft growth assay, we determined that tumor-initiating cell (TIC) frequencies are approximately 1 per 1.5 million unsorted BCC cells. The CD200+ CD45- BCC subpopulation recreated BCC tumor growth in vivo with typical histological architecture and expression of sonic hedgehog-regulated genes. Reproducible in vivo BCC growth was achieved with as few as 10,000 CD200+ CD45- cells, representing ~1500-fold enrichment. The methods used to identify and purify CD200+ CD45- BCC cells, as well as characterize gene expression, are described herein.

  8. Basal cell carcinoma of the eyelid in Finland during 1953-97.

    PubMed

    Paavilainen, Ville; Tuominen, Juhani; Pukkala, Eero; Saari, K Matti

    2005-04-01

    To study the incidence of basal cell carcinoma (BCC) of the eyelid in Finland. We studied 6241 cases of BCC of the eyelid reported to the nationwide Finnish Cancer Registry during 1953-97. We determined the age- and sex- specific incidence rates and overall rates adjusted for age to the world standard population, and social class- and occupation-specific standardized incidence ratios, with the total Finnish population as reference. The incidence rates of BCC of the eyelid varied between 0.7 and 3.0 per 100 000 person-years in men and between 0.5 and 2.8 per 100 000 person-years in women during the study period. The age-adjusted incidence rates of BCC of the eyelid increased during 1953-87 (p < 0.0001). The incidence of BCC of the eyelid rose significantly with age. There were no significant differences in standardized incidence ratios (SIRs) for BCC of the eyelid between different social class and occupation categories. Age-adjusted incidence rates showed that BCC of the eyelid was more than twice as frequent during 1978-97 than before 1968. Ageing may partly explain the increased incidence of BCC of the eyelid, whereas there were no differences in the SIRs for BCC of the eyelid between different social class and occupation categories in Finland.

  9. Tuning the exchange bias in NiFe/Fe-oxide bilayers by way of different Fe-oxide based mixtures made with an ion-beam deposition technique.

    PubMed

    Lin, K W; Kol, P H; Guo, Z Y; Ouyang, H; van Lierop, J

    2007-01-01

    We have investigated the structural and magnetic properties of ion-beam deposited polycrystalline NiFe (25 nm)/Fe-oxide (35 nm) bilayers. A film prepared with an assist beam O2 to Ar gas ratio of 0% during deposition had a bottom layer that consisted of pure b.c.c. Fe (a = 2.87 A) whereas films prepared with 19%O2/Ar and 35%O2/Ar had either Fe3O4 (a = 8.47 angstroms) or alpha-Fe2O3 (a = 5.04 angstroms, c = 13.86 angstroms) bottom layers, respectively. Cross-sectional transmission electron microscopy revealed a smooth interface between the top nano-columnar NiFe and bottom nano-columnar Fe-oxide layer for all films. At room temperature, the observed coercivity (Hc approximately 25 Oe) for a film prepared with 19% O2/Ar indicates the existence of a magnetically hard ferrimagnetic Fe3O4 phase that is enhancing the plain NiFe (Hc approximately 2 Oe) by way of exchange coupling. A significant amount of exchange bias is observed below 50 K, and at 10 K the size of exchange bias hysteresis loops shift increases with increasing oxygen in the films. Furthermore, the strongest exchange coupling (H(ex) approximately 135 Oe at 10 K) is with alpha-Fe2O3 (35% O2/Ar) as the bottom film layer. This indicates that the pure antiferromagnetic phases work better than ferrimagnetic phases when in contact with ferromagnetic NiFe. H(ex) (T) is well described by an effective AF domain wall energy that creates an exchange field with a (1 - T/T(crit)) temperature dependence. Hc (T) exhibits three distinct regimes of constant temperature that may indicate the existence of different AF spin populations that couple to the FM layer at different temperatures.

  10. Cancer associated fibroblasts (CAFs) are activated in cutaneous basal cell carcinoma and in the peritumoural skin.

    PubMed

    Omland, Silje Haukali; Wettergren, Erika Elgstrand; Mollerup, Sarah; Asplund, Maria; Mourier, Tobias; Hansen, Anders Johannes; Gniadecki, Robert

    2017-10-07

    Cutaneous basal cell carcinoma (BCC) is the commonest cancer worldwide. BCC is locally invasive and the surrounding stromal microenvironment is pivotal for tumourigenesis. Cancer associated fibroblasts (CAFs) in the microenvironment are essential for tumour growth in a variety of neoplasms but their role in BCC is poorly understood. Material included facial BCC and control skin from the peritumoural area and from the buttocks. With next-generation sequencing (NGS) we compared mRNA expression between BCC and peritumoural skin. qRT-PCR, immunohistochemical and immunofluorescent staining were performed to validate the NGS results and to investigate CAF-related cyto-and chemokines. NGS revealed upregulation of 65 genes in BCC coding for extracellular matrix components pointing at CAF-related matrix remodeling. qRT-PCR showed increased mRNA expression of CAF markers FAP-α, PDGFR-β and prolyl-4-hydroxylase in BCC. Peritumoural skin (but not buttock skin) also exhibited high expression of PDGFR-β and prolyl-4-hydroxylase but not FAP-α. We found a similar pattern for the CAF-associated chemokines CCL17, CCL18, CCL22, CCL25, CXCL12 and IL6 with high expression in BCC and peritumoural skin but absence in buttock skin. Immunofluorescence revealed correlation between FAP-α and PDGFR-β and CXCL12 and CCL17. Matrix remodeling is the most prominent molecular feature of BCC. CAFs are present within BCC stroma and associated with increased expression of chemokines involved in tumour progression and immunosuppression (CXCL12, CCL17). Fibroblasts from chronically sun-exposed skin near tumours show gene expression patterns resembling that of CAFs, indicating that stromal fibroblasts in cancer-free surgical BCC margins exhibit a tumour promoting phenotype.

  11. Microstructure evolution and texture development in a friction stir-processed AISI D2 tool steel

    NASA Astrophysics Data System (ADS)

    Yasavol, N.; Abdollah-zadeh, A.; Vieira, M. T.; Jafarian, H. R.

    2014-02-01

    Crystallographic texture developments during friction stir processing (FSP) of AISI D2 tool were studied with respect to grain sizes in different tool rotation rates. Comparison of the grain sizes in various rotation rates confirmed that grain refinement occurred progressively in higher rotation rates by severe plastic deformation. It was found that the predominant mechanism during FSP should be dynamic recovery (DRV) happened concurrently with continuous dynamic recrystallization (CDRX) caused by particle-stimulated nucleation (PSN). The developed shear texture relates to the ideal shear textures of D1 and D2 in bcc metals. The prevalence of highly dense arrangement of close-packed planes of bcc and the lowest Taylor factor showed the lowest compressive residual stress which is responsible for better mechanical properties compared with the grain-precipitate refinement.

  12. Sliding friction and wear behavior of high entropy alloys at room and elevated temperatures

    NASA Astrophysics Data System (ADS)

    Kadhim, Dheyaa

    Structure-tribological property relations have been studied for five high entropy alloys (HEAs). Microhardness, room and elevated (100°C and 300°C) temperature sliding friction coefficients and wear rates were determined for five HEAs: Co0.5 Cr Cu0.5 Fe Ni1.5 Al Ti0.4; Co Cr Fe Ni Al0.25 Ti0.75; Ti V Nb Cr Al; Al0.3CoCrFeNi; and Al0.3CuCrFeNi2. Wear surfaces were characterized with scanning electron microscopy and micro-Raman spectroscopy to determine the wear mechanisms and tribochemical phases, respectively. It was determined that the two HEAs Co0.5 Cr Cu0.5 Fe Ni1.5 Al Ti0.4 and Ti V Nb Cr Al exhibit an excellent balance of high hardness, low friction coefficients and wear rates compared to 440C stainless steel, a currently used bearing steel. This was attributed to their more ductile body centered cubic (BCC) solid solution phase along with the formation of tribochemical Cr oxide and Nb oxide phases, respectively, in the wear surfaces. This study provides guidelines for fabricating novel, low-friction, and wear-resistant HEAs for potential use at room and elevated temperatures, which will help reduce energy and material losses in friction and wear applications.

  13. Basal cell carcinoma: CD56 and cytokeratin 5/6 staining patterns in the differential diagnosis with Merkel cell carcinoma.

    PubMed

    Panse, Gauri; McNiff, Jennifer M; Ko, Christine J

    2017-06-01

    Basal cell carcinoma (BCC) can resemble Merkel cell carcinoma (MCC) on histopathological examination and while CK20 is a useful marker in this differential, it is occasionally negative in MCC. CD56, a sensitive marker of neuroendocrine differentiation, is sometimes used to identify MCC, but has been reportedly variably positive in BCC as well. In contrast, CK5/6 consistently labels BCC but is not expressed in neuroendocrine tumors. We evaluated 20 cases of BCC for the pattern of CD56 and cytokeratin 5/6 (CK5/6) staining, hypothesizing that these 2 stains could differentiate BCC from MCC in difficult cases. Seventeen cases of MCC previously stained with CD56 were also examined. All BCCs showed patchy expression of CD56 except for 2 cases, which showed staining of greater than 70% of tumor. CK5/6 was diffusely positive in all cases of BCC. Fifteen of 17 MCCs were diffusely positive for CD56. The difference in the pattern of CD56 expression between MCC and BCC (diffuse vs patchy, respectively) was statistically significant (P < .05). BCC typically shows patchy CD56 expression and diffuse CK5/6 positivity. These 2 markers can be used to distinguish between BCC and MCC in challenging cases. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Involvement of matrix metalloproteinase-13 in stromal-cell-derived factor 1 alpha-directed invasion of human basal cell carcinoma cells.

    PubMed

    Chu, C-Y; Cha, S-T; Chang, C-C; Hsiao, C-H; Tan, C-T; Lu, Y-C; Jee, S-H; Kuo, M-L

    2007-04-12

    Basal cell carcinoma (BCC) is one of the most common skin neoplasms in humans and is usually characterized by local aggressiveness with little metastatic potential, although deep invasion, recurrence, and regional and distant metastases may occur. Here, we studied the mechanism of BCC invasion. We found that human BCC tissues and a BCC cell line had significant expression of CXCR4, which was higher in invasive than non-invasive BCC types. Further, of 19 recurrent tumors among 390 BCCs diagnosed during the past 12 years, 17/19 (89.5%) had high CXCR4 expression. We found that the CXCR4 ligand, stromal-cell-derived factor 1alpha (SDF-1alpha), directed BCC invasion and that this was mediated by time-dependent upregulation of mRNA expression and gelatinase activity of matrix metalloproteinase-13 (MMP-13). The transcriptional regulation of MMP-13 by SDF-1alpha was mediated by phosphorylation of extracellular signal-related kinase 1/2 and activation of the AP-1 component c-Jun. Finally, CXCR4-transfected BCC cells injected into nude mice induced aggressive BCCs that co-expressed CXCR4 and MMP-13. The identification of SDF-1alpha/CXCR4 as an important factor in BCC invasiveness may contribute insight into mechanisms involved in the aggressive potential of human BCC and may improve therapy for invasive BCCs.

  15. Laser surface alloying of FeCoCrAlNi high-entropy alloy on 304 stainless steel to enhance corrosion and cavitation erosion resistance

    NASA Astrophysics Data System (ADS)

    Zhang, S.; Wu, C. L.; Zhang, C. H.; Guan, M.; Tan, J. Z.

    2016-10-01

    FeCoCrAlNi high-entropy alloy coating was synthesized with premixed high-purity Co, Cr, Al and Ni powders on 304 stainless steel by laser surface alloying, aiming at improving corrosion and cavitation erosion resistance. Phase constituents, microstructure and microhardness were investigated using XRD, SEM, and microhardness tester, respectively. The cavitation erosion and electrochemical corrosion behavior of FeCoCrAlNi coating in 3.5% NaCl solution were also evaluated using an ultrasonic vibrator and potentiodynamic polarization measurement. Experimental results showed that with appropriate laser processing parameters, FeCoCrAlNi coating with good metallurgical bonding to the substrate could be achieved. FeCoCrAlNi coating was composed of a single BCC solid solution. The formation of simple solid solutions in HEAs was the combined effect of mixing entropy (ΔSmix), mixing enthalpy (ΔHmix), atom-size difference (δ) and valence electron concentration (VEC), and the effect of ΔSmix was much larger than that of the other factors. The microhardness of the FeCoCrAlNi coating was ~3 times that of the 304 stainless steel. Both the corrosion and cavitation erosion resistance of the coating were improved. The cavitation erosion resistance for FeCoCrAlNi HEA coating was ~7.6 times that of 304 stainless steel. The corrosion resistance was also improved as reflected by a reduction in the current density of one order of magnitude as compared with 304 stainless steel.

  16. Tracking the Magnetization Evolution in γ-Fe2O3 / Metallic Fe Core-Shell Nanoparticle Variants

    NASA Astrophysics Data System (ADS)

    Kons, C.; Nemati, Z.; Srikanth, H.; Phan, M.-H.; Krycka, K.; Borchers, J.; Keavney, D.; Arena, D. A.

    Iron-core magnetic nanoparticles (MNPs) with oxide shells exhibit varying magnetic properties due to the different ordering temperatures of the core and shell spins, as well as the coupling across the metal/oxide interface. While spin coupling across two dimensional interfaces has been well explored, less is known about three dimensional interfaces such as those presented in the MNPs. In this work, MNPs were synthesized with a bcc Fe core and γ-Fe2O3 shell and placed in an oxygen rich environment to encourage the transition from cores shell (CS) to core void shell (CVS) to hollow (H) structures. Static magnetic measurements (MvT) and AC magnetometry were performed to explore the magnetic behavior of the various synthesized structures. To further understand the nature of the spin coupling in the MNPs, TEM and conventional magnetometry as well as variable-temperature small angle neutron scattering (SANS), x-ray absorption spectroscopy (XAS) and x-ray magnetic circular dichroism (XMCD) spectroscopy were performed. Modeling of the x-ray spectra and SANS data will enable us to develop a cohesive picture of spin coupling, freezing and frustration along the three-dimensional metal / oxide interface. Supported by Department of Energy award #DE-FG02-07ER46438; NSF Award #DMR-1508249.

  17. Simple model for molecular scattering

    NASA Astrophysics Data System (ADS)

    Mehta, Nirav; Ticknor, Christopher; Hazzard, Kaden

    2017-04-01

    The collisions of ultracold molecules are qualitatively different from the collisions of ultracold atoms due to the high density of bimolecular resonances near the collision energy. We present results from a simple N-channel scattering model with square-well channel potentials and constant channel couplings (inside the well) designed to reproduce essential features of chaotic molecular scattering. The potential depths and channel splittings are tuned to reproduce the appropriate density of states for the short-range bimolecular collision complex (BCC), which affords a direct comparison of the resulting level-spacing distribution to that expected from random matrix theory (RMT), namely the so-called Wigner surmise. The density of states also sets the scale for the rate of dissociation from the BCC to free molecules, as approximated by transition state theory (TST). Our model affords a semi-analytic solution for the scattering amplitude in the open channel, and a determinantal equation for the eigenenergies of the short-ranged BCC. It is likely the simplest finite-ranged scattering model that can be compared to expectations from the approximations of RMT, and TST. The validity of these approximations has implications for the many-channel Hubbard model recently developed. This research was funded in part by the National Science Foundation under Grant No. NSF PHY-1125915.

  18. Refractory metal particles in refractory inclusions in the Allende meteorite

    NASA Technical Reports Server (NTRS)

    Fuchs, L. H.; Blander, M.

    1980-01-01

    SEM and X-ray analysis were used to study refractory metal particles in five calcium-aluminum-rich inclusions in the Allende meteorite, and a complex variety of compositions and large departures from equilibrium were found. It is suggested that these particles could have been primordial condensates which were isolated from the nebula and from each other at different times by cocondensing oxides. Selective diffusion and/or oxidation of the more oxidizable metals (Mo, W, Fe, and Ni), phase segregations into different alloy phases (fcc, bcc, hcp, and, possibly, ordered phases), and the formation of metastable condensates could have been involved in the genesis of these materials

  19. Iron Atoms in Cr-Mn Antiferromagnetic Matrix

    NASA Astrophysics Data System (ADS)

    Szymański, K.; Satuła, D.; Dobrzyński, L.; Biernacka, M.; Perzyńska, K.; Zaleski, P.

    2002-06-01

    The results of the Mössbauer effect measurements on bcc Cr rich Cr-Fe-Mn alloys in temperature range 12-296 K in zero- and in applied magnetic fields are reported. Monochromatic, circularly polarized radiation was used for investigation of iron moments alignment. Strong enhancement of internal hyperfine magnetic field induced by the applied magnetic field was detected and explained as due to dynamical effects. At high temperatures alignment of iron moments in antiferromagnetic phase is weakly magnetic field-dependent. At low temperatures the average hyperfine magnetic field is antiparallel to the net magnetization showing that iron moments are partly ordered by the applied field.

  20. Composition and extracellular enzymatic function of pelagic, particle-associated, and benthic bacterial communities in the central Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Balmonte, J. P.; Teske, A.; Arnosti, C.

    2016-02-01

    The structure and function of Arctic bacterial communities have rarely been studied in concert, but are crucial to our understanding of biogeochemical cycles. As the Arctic transitions to become seasonally-ice free, a critical priority is to elucidate the present ecological role and environmental dependence of Arctic bacterial communities. We investigated the depth and regional variations in Central Arctic bacterial community composition (BCC) and extracellular enzymatic activities (EEA)—the initial step in organic matter breakdown—to explore links between community structure and function. Samples were collected across a gradient of sea-ice cover (open ocean, first year ice, multi-year ice) from 79°N to 88°N and from surface to bottom waters ( 3.5 to 4.5 km). Pelagic BCC most strongly varies with hydrography and with particle-association, which likely selects for a specialized community of heterotrophic opportunists; benthic BCC show little regional variation. In contrast, EEA reveal significant depth and regional differences in hydrolysis rates as well as in the spectrum of substrates hydrolyzed. Particle-associated EEA reveal an equal or greater range of enzymatic capabilities than in bulk-seawater measurements, supporting previous findings that particles are hotspots of microbial heterotrophic activity. These patterns suggest a complex relationship between BCC, EEA, and the environment: while water mass characteristics consistently differentiate bacterial communities, additional local factors shape their capabilities to hydrolyze organic matter. Multivariate analyses will be used to further explore the relationships between composition and function as well as their correlations with environmental data. Our findings provide a baseline for future comparisons and initial insight into the functionality and biogeography of Arctic bacterial communities.

  1. Ambient air quality status in Raniganj-Asansol area, India.

    PubMed

    Reddy, G S; Ruj, Biswajit

    2003-12-01

    This investigation presents the assessment of ambient air quality with respect to suspended particulate matter (SPM), sulphur dioxide (SO2) and oxides of nitrogen (NOx) at four sites (RGC, SRS, BBC and BCC) in the Raniganj-Asansol area in West Bengal, India. Ambient air was monitored with a sampling frequency of twenty four hours (3 x 8 hours) at each site on every alternate day (3 days a week) covering a period of one year. A total of 429 samples were collected from RGC, 429 from SRS and 435 each from the BBC and BCC sites. Meteorological parameters such as temperature, relative humidity, wind-speed and wind-direction were also recorded simultaneously during the sampling period. Monthly and seasonal variation of these pollutants have been observed and recorded. The annual average and range values have also been calculated. Results of the investigation indicates that the 95th percentile values of SPM levels exceed the limits (200 microg m(-3)) at RGC, SRS and BBC sites and is within the limit of 500 microg m(-3) at the BCC sites. The 95th percentile values of SO2 levels did not exceed the reference level at any of the monitoring stations. The 95th percentile values of NOx are found to be exceeding the limit (80 microg m(-3)) at RGC, SRS and BBC sites but is within the prescribed limit of 120 microg m(-3) at the BCC site. Further, it has been observed that the concentrations of the pollutants are high in winter in comparison to the summer or the monsoon seasons. Results of the investigation indicates that industrial activities, indiscriminate open air burning of coal by the local inhabitants for cooking as well as coking purposes, vehicular traffic, etc. are responsible for the high concentration of pollutants in this area.

  2. Skin Cancer Chemoprevention by Silibinin: Mechanisms and Efficacy | Division of Cancer Prevention

    Cancer.gov

    Basal cell carcinoma (BCC), a non-melanoma skin cancer (NMSC) type, is a major health problem in the United States (US); annual BCC incidences alone are higher than all other cancer incidences combined (1.67 million/year). Most BCC cases are curable by surgery/radiation, but these can be painful and highly disfiguring and are not viable treatment options for BCC patients with

  3. Diagnostic value of CD10 and Bcl2 expression in distinguishing cutaneous basal cell carcinoma from squamous cell carcinoma and seborrheic keratosis.

    PubMed

    Gaballah, Mohammad A; Ahmed, Rehab-Allah

    2015-12-01

    The distinction between cutaneous basal cell carcinoma (BCC), squamous cell carcinoma (SCC) and seborrheic keratosis (SK), which are common entities in clinical practice, can be difficult clinically and histologically. CD10 and Bcl2 antigens are important factors in tumor growth, survival and spread. The aim of the present study is to define the frequency of CD10 and Bcl2 expression in such cutaneous tumors and its relation to the clinicopathological characteristics as well as their possible diagnostic utility. CD10 and Bcl2 immunohistochemistry was performed on 30 BCC, 20 SCC and 15 SK. 93.3% of SK cases and 53.3% of BCC cases showed significant expression of CD10 in tumor cells when compared either with each other or with SCC cases (100% negative). Stromal CD10 expression was positive in 50% of BCC cases and 75% of SCC cases. Stromal CD10 expression was significantly higher in high risk BCC and BCC with infiltrating deep margins; furthermore, it showed a significant positive correlation with grade of SCC. A significant inverse correlation between CD10 expression in stromal and tumor cells of BCC was present. Bcl2 was significantly expressed in 93.3% of SK cases and 80% of BCC cases when compared with SCC cases (100% negative). It was found that for distinguishing BCC from SK, only CD10 expression in tumor cells provided a high diagnostic value with positive likelihood ratio (PLR) was 7.00. In addition, CD10 and Bcl2 expression in tumor cells could give convincing diagnostic value to distinguish SCC from SK (PLR=15.00 for each marker). Moreover, for differentiating BCC from SCC, only Bcl2 in the tumor cells could provide a high diagnostic value (PLR=5.5). In conclusion, CD10 and Bcl2 can help in differentiating cutaneous BCC from SK and SCC. The overexpression of CD10 in the stromal cells of SCC and some variants of BCC suggests the invasive properties of such tumors. Copyright © 2015 Elsevier GmbH. All rights reserved.

  4. Crystal structure of Earth's inner core: A first-principles study

    NASA Astrophysics Data System (ADS)

    Moustafa, S. G.; Schultz, A. J.; Zurek, E.; Kofke, D. A.

    2017-12-01

    Since the detection of the Earth's solid inner core (IC) by Lehmann in 1936, its composition and crystal structure (which are essential to understand Earth's evolution) have been controversial. While seismological measurements (e.g. PREM) can give a robust estimation of the density, pressure, and elasticity of the IC, they cannot be directly used to determine its composition and/or crystal structure. Experimentally, reaching the extreme IC conditions ( 330 GPa and 6000 K) and getting reliable measurements is very challenging. First-principles calculations provide a viable alternative that can work as a powerful investigative tool. Although several attempts have been made to assess phase stability at IC conditions computationally, they often use a low level of theory for electronic structure (e.g., classical force-field), adopt approximate methods (e.g., quasiharmonic approximation, fixed hcp-c/a), or do not consider finite-size effects. The study of phase stability using accurate first-principles methods is hampered in part by the difficulty of computing the free energy (FE), the central thermodynamic quantity that determines stability, while including anharmonic and finite-size effects. Additional difficulty related to the IC in particular is introduced by the dynamical instability of one of the IC candidate structures (bcc) at low temperature. Recently [1-3], we introduced a novel method (denoted as "harmonically mapped averaging", or HMA) to efficiently measure anharmonic properties (e.g. FE, pressure, elastic modulus) by molecular simulation, yielding orders of magnitude CPU speedup compared to conventional methods. We have applied this method to the hcp candidate phase of iron at the IC conditions, obtaining first-principles anharmonic FE values with unprecedented accuracy and precision [4]. We have now completed and report HMA calculations to assess the phase stability of all IC candidate phases (fcc/hcp/bcc). This knowledge is the prerequisite for interpreting the geophysical and geochemical constraints of the IC (e.g. anisotropy and low rigidity); which should be a key ingredient in the longstanding debate about the nature of the Earth's IC. References[1] 10.1103/PhysRevE.92.043303[2] 10.1021/acs.jctc.6b00018[3] 10.1021/acs.jctc.6b01082[4] 10.1103/PhysRevB.96.014117

  5. Targeting the Bacterial Cytoskeleton of the Burkholderia cepacia Complex for Antimicrobial Development: A Cautionary Tale.

    PubMed

    Carnell, Sonya C; Perry, John D; Borthwick, Lee; Vollmer, Daniela; Biboy, Jacob; Facchini, Marcella; Bragonzi, Alessandra; Silipo, Alba; Vergunst, Annette C; Vollmer, Waldemar; Khan, Anjam C M; De Soyza, Anthony

    2018-05-30

    Burkholderia cepacia complex (BCC) bacteria are a group of opportunistic pathogens that cause severe lung infections in cystic fibrosis (CF). Treatment of BCC infections is difficult, due to the inherent and acquired multidrug resistance of BCC. There is a pressing need to find new bacterial targets for antimicrobials. Here, we demonstrate that the novel compound Q22, which is related to the bacterial cytoskeleton destabilising compound A22, can reduce the growth rate and inhibit growth of BCC bacteria. We further analysed the phenotypic effects of Q22 treatment on BCC virulence traits, to assess its feasibility as an antimicrobial. BCC bacteria were grown in the presence of Q22 with a broad phenotypic analysis, including resistance to H₂O₂-induced oxidative stress, changes in the inflammatory potential of cell surface components, and in-vivo drug toxicity studies. The influence of the Q22 treatment on inflammatory potential was measured by monitoring the cytokine responses of BCC whole cell lysates, purified lipopolysaccharide, and purified peptidoglycan extracted from bacterial cultures grown in the presence or absence of Q22 in differentiated THP-1 cells. BCC bacteria grown in the presence of Q22 displayed varying levels of resistance to H₂O₂-induced oxidative stress, with some strains showing increased resistance after treatment. There was strain-to-strain variation in the pro-inflammatory ability of bacterial lysates to elicit TNFα and IL-1β from human myeloid cells. Despite minimal toxicity previously shown in vitro with primary CF cell lines, in-vivo studies demonstrated Q22 toxicity in both zebrafish and mouse infection models. In summary, destabilisation of the bacterial cytoskeleton in BCC, using compounds such as Q22, led to increased virulence-related traits in vitro. These changes appear to vary depending on strain and BCC species. Future development of antimicrobials targeting the BCC bacterial cytoskeleton may be hampered if such effects translate into the in-vivo environment of the CF infection.

  6. PTCH1 gene haplotype association with basal cell carcinoma after transplantation.

    PubMed

    Begnini, A; Tessari, G; Turco, A; Malerba, G; Naldi, L; Gotti, E; Boschiero, L; Forni, A; Rugiu, C; Piaserico, S; Fortina, A B; Brunello, A; Cascone, C; Girolomoni, G; Gomez Lira, M

    2010-08-01

    Basal cell carcinoma (BCC) is 10 times more frequent in organ transplant recipients (OTRs) than in the general population. Factors in OTRs conferring increased susceptibility to BCC include ultraviolet radiation exposure, immunosuppression, viral infections such as human papillomavirus, phototype and genetic predisposition. The PTCH1 gene is a negative regulator of the hedgehog pathway, that provides mitogenic signals to basal cells in skin. PTCH1 gene mutations cause naevoid BCC syndrome, and contribute to the development of sporadic BCC and other types of cancers. Associations have been reported between PTCH1 polymorphisms and BCC susceptibility in nontransplanted individuals. To search for novel common polymorphisms in the proximal 5' regulatory region upstream of PTCH1 gene exon 1B, and to investigate the possible association of PTCH1 polymorphisms and haplotypes with BCC risk after organ transplantation. Three PTCH1 single nucleotide polymorphisms (rs2297086, rs2066836 and rs357564) were analysed by restriction fragment length polymorphism analysis in 161 northern Italian OTRs (56 BCC cases and 105 controls). Two regions of the PTCH1 gene promoter were screened by heteroduplex analysis in 30 cases and 30 controls. Single locus analysis showed no significant association. Haplotype T(1686)-T(3944) appeared to confer a significantly higher risk for BCC development (odds ratio 2.98, 95% confidence interval 2.55-3.48; P = 0.001). Two novel rare polymorphisms were identified at positions 176 and 179 of the 5'UTR. Two novel alleles of the -4 (CGG)(n) microsatellite were identified. No association of this microsatellite with BCC was observed. Haplotypes containing T(1686)-T(3944) alleles were shown to be associated with an increased BCC risk in our study population. These data appear to be of great interest for further investigations in a larger group of transplant individuals. Our results do not support the hypothesis that common polymorphisms in the proximal 5' regulatory region of the PTCH1 gene could represent an important risk factor for BCC after organ transplantation.

  7. Histologic Mimics of Basal Cell Carcinoma.

    PubMed

    Stanoszek, Lauren M; Wang, Grace Y; Harms, Paul W

    2017-11-01

    - Basal cell carcinoma (BCC) is the most common human malignant neoplasm and is a frequently encountered diagnosis in dermatopathology. Although BCC may be locally destructive, it rarely metastasizes. Many diagnostic entities display morphologic and immunophenotypic overlap with BCC, including nonneoplastic processes, such as follicular induction over dermatofibroma; benign follicular tumors, such as trichoblastoma, trichoepithelioma, or basaloid follicular hamartoma; and malignant tumors, such as sebaceous carcinoma or Merkel cell carcinoma. Thus, misdiagnosis has significant potential to result in overtreatment or undertreatment. - To review key features distinguishing BCC from histologic mimics, including current evidence regarding immunohistochemical markers useful for that distinction. - Review of pertinent literature on BCC immunohistochemistry and differential diagnosis. - In most cases, BCC can be reliably diagnosed by histopathologic features. Immunohistochemistry may provide useful ancillary data in certain cases. Awareness of potential mimics is critical to avoid misdiagnosis and resulting inappropriate management.

  8. Occupation and keratinocyte cancer risk: a population-based case-control study.

    PubMed

    Marehbian, Josh; Colt, Joanne S; Baris, Dalsu; Stewart, Patricia; Stukel, Therese A; Spencer, Steven K; Karagas, Margaret R

    2007-10-01

    The aim of our study was to identify occupations associated with increased risk of basal cell carcinoma (BCC) and squamous cell carcinoma (SCC). We conducted a population-based case-control study of BCC and SCC in New Hampshire. Cases (n = 599 BCC, n = 290 SCC) and controls (n = 524) completed a self-administered residence and work history questionnaire and personal interview regarding major risk factors for skin cancer. Reported jobs were coded using the Standardized Occupational Classification system (SOC). Odds ratios (ORs) and confidence intervals (CIs) for BCC and SCC were calculated for men and women separately using unconditional logistic regression models taking into account age, education, skin reaction to sun, history of painful sunburns, time spent outdoors, and for SCC, smoking. Among men, we observed elevated risks of both BCC and SCC among groundskeepers and gardeners, except farm (SOC 5622). We also found that garage and service station-related occupations (SOCs 873) and to some extent food/beverage preparation/service occupations (SOC 521) were associated with BCC risk among men. Women in health services occupations (SOC 523) had elevated risks for both tumors, especially for BCC. Additionally, administrative support (SOC 46/47) occupations were related to BCC risk among women. Other occupations were associated with excess risks, but without consistent trends by duration of employment. We observed several occupations associated with elevated BCC and SCC risk. These results resemble reported findings for cutaneous melanoma and are generally consistent with the few available studies on keratinocyte cancers.

  9. Magnetic interaction reversal in watermelon nanostructured Cr-doped Fe nanoclusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaur, Maninder; Dai, Qilin; Bowden, Mark

    2013-01-01

    Cr-doped core-shell Fe/Fe-oxide nanoclusters (NCs) were synthesized at varied atomic percentages of Cr from 0 at. % to 8 at. %. The low concentrations of Cr (<10 at. %) were selected in order to inhibit the complete conversion of the Fe-oxide shell to Cr2O3 and the Fe core to FeCr alloy. The magnetic interaction in Fe/Fe-oxide NCs (rv25 nm) can be controlled by antiferromagnetic Cr-dopant. We report the origin of r-FeCr phase at very low Cr concentration (2 at. %) unlike in previous studies, and the interaction reversal from dipolar to exchange interaction in watermelon-like Cr-doped core-shell NCs. The giantmore » magnetoresistance (GMR) effect,1,2 where an antiferromagnetic (AFM) exchange coupling exists between two ferromagnetic (FM) layers separated by a certain type of magnetic or non-magnetic spacer,3 has significant potential for application in the magnetic recording industry. Soon after the discovery of the GMR, the magnetic properties of multilayer systems (FeCr) became a subject of intensive study. The application of bulk iron-chromium (Fe-Cr) alloys has been of great interest, as these alloys exhibit favorable prop- erties including corrosion resistance, high strength, hardness, low oxidation rate, and strength retention at elevated temper- ature. However, the structural and magnetic properties of Cr-doped Fe nanoclusters (NCs) have not been investigated in-depth. Of all NCs, Fe-based clusters have unique magnetic properties as well as favorable catalytic characteristics in reactivity, selectivity, and durability.4 The incorporation of dopant of varied type and concentration in Fe can modify its chemical ordering, thereby optimizing its electrical, optical, and magnetic properties and opening up many new applications. The substitution of an Fe atom (1.24 A°) by a Cr atom (1.25 A° ) can easily modify the magnetic properties, since (i) the curie temperature (Tc ) of Fe is 1043 K, while Cr is an itinerant AFM with a bulk Neel temperature TN =311 K, and (ii) Fe and Cr share the same crystal structure (bcc) with only 0.5% difference between their lattice constants.« less

  10. Spatiotemporal variation of bacterial community composition and possible controlling factors in tropical shallow lagoons.

    PubMed

    Laque, Thaís; Farjalla, Vinicius F; Rosado, Alexandre S; Esteves, Francisco A

    2010-05-01

    Bacterial community composition (BCC) has been extensively related to specific environmental conditions. Tropical coastal lagoons present great temporal and spatial variation in their limnological conditions, which, in turn, should influence the BCC. Here, we sought for the limnological factors that influence, in space and time, the BCC in tropical coastal lagoons (Rio de Janeiro State, Brazil). The Visgueiro lagoon was sampled monthly for 1 year and eight lagoons were sampled once for temporal and spatial analysis, respectively. BCC was evaluated by bacteria-specific PCR-DGGE methods. Great variations were observed in limnological conditions and BCC on both temporal and spatial scales. Changes in the BCC of Visgueiro lagoon throughout the year were best related to salinity and concentrations of NO (3) (-) , dissolved phosphorus and chlorophyll-a, while changes in BCC between lagoons were best related to salinity and dissolved phosphorus concentration. Salinity has a direct impact on the integrity of the bacterial cell, and it was previously observed that phosphorus is the main limiting nutrient to bacterial growth in these lagoons. Therefore, we conclude that great variations in limnological conditions of coastal lagoons throughout time and space resulted in different BCCs and salinity and nutrient concentration, particularly dissolved phosphorus, are the main limnological factors influencing BCC in these tropical coastal lagoons.

  11. Medicare claims data reliably identify treatments for basal cell carcinoma and squamous cell carcinoma: a prospective cohort study.

    PubMed

    Thompson, Bridie S; Olsen, Catherine M; Subramaniam, Padmini; Neale, Rachel E; Whiteman, David C

    2016-04-01

    To investigate the accuracy of Medical Benefit Schedule (MBS) item numbers to identify treatments for basal cell carcinomas (BCC) and squamous cell carcinomas (SCC). We linked records from QSkin Study participants (n=37,103) to Medicare. We measured the proportion of Medicare claims for primary excision of BCC/SCC that had corresponding claims for histopathology services. In subsets of participants, we estimated the sensitivity and external concordance of MBS item numbers for identifying BCC/SCC diagnoses by comparing against 'gold-standard' histopathology reports. A total of 2,821 (7.6%) participants had 4,830 separate Medicare claims for BCC/SCC excision; almost all (97%) had contemporaneous Medicare claims for histopathology services. Among participants with BCC/SCC confirmed by histology reports, 76% had a corresponding Medicare claim for primary surgical excision of BCC/SCC. External concordance for Medicare claims for primary BCC/SCC excision was 68%, increasing to 97% when diagnoses for intra-epidermal carcinomas and keratoacanthomas were included. MBS item numbers for primary excision of BCC/SCC are reasonably reliable for determining incident cases of keratinocyte skin cancers, but may underestimate incidence by up to 24%. Medicare claims data may have utility in monitoring trends in conditions for which there is no mandatory reporting. © 2015 Public Health Association of Australia.

  12. Basal cell carcinoma of the vulva: a case series.

    PubMed

    Mulvany, Nicholas J; Rayoo, Mukta; Allen, David G

    2012-10-01

    To review the diagnostic features and characteristics of an uncommon tumour, basal cell carcinoma (BCC) of the vulva. The clinical and pathological details of six vulvar BCCs were reviewed. Four of the BCCs arose in isolation, one was combined with vulvar Paget's disease and another was intimately associated with a poorly differentiated squamous cell carcinoma. The average age of the six patients was 76 years (75 years for 'isolated' BCC; 78 years for BCC 'mixed' with other lesions). The duration of symptoms averaged 13 months in 'isolated' BCC but 24 months in 'mixed' BCC. Vulvar pruritus was the most common presenting complaint in the four cases of 'isolated' BCC. The initial biopsies included shave (× 2) or punch biopsies (× 4). Definitive surgery included excisional biopsy (× 2) or a wide local excision (× 3). In the five assessable tumours, the maximum tumour diameter averaged 19.8 mm (range 11-36 mm). In the sixth patient the BCC was contiguous with a 70 mm, unresectable, poorly differentiated squamous cell carcinoma which was treated by radiotherapy alone. : Although the histological diagnosis of vulvar BCC was straightforward in some of our cases, others presented difficulties due to non-representative initial biopsies, insufficient clinical information or contiguity with lesions of greater clinical significance such as Paget's disease or squamous cell carcinoma.

  13. Transformation of BCC and B2 High Temperature Phases to HCP and Orthorhombic Structures in the Ti-Al-Nb System. Part I: Microstructural Predictions Based on a Subgroup Relation Between Phases

    PubMed Central

    Bendersky, L. A.; Roytburd, A.; Boettinger, W. J.

    1993-01-01

    Possible paths for the constant composition coherent transformation of BCC or B2 high temperature phases to low temperature HCP or Orthorhombic phases in the Ti-Al-Nb system are analyzed using a sequence of ciystallographic structural relationships developed from subgroup symmetry relations. Symmetry elements lost in each step of the sequence determine the possibilities for variants of the low symmetry phase and domains that can be present in the microstructure. The orientation of interdomain interfaces is determined by requiring the existence of a strain-free interface between the domains. Polydomain structures are also determined that minimize elastic energy. Microstructural predictions are made for comparison to experimental results given by Benderslcy and Boettinger [J. Res. Natl. Inst. Stand. Technol. 98, 585 (1993)]. PMID:28053487

  14. Profile of vismodegib and its potential in the treatment of advanced basal cell carcinoma.

    PubMed

    Macha, Muzafar A; Batra, Surinder K; Ganti, Apar Kishor

    2013-01-01

    Basal cell carcinoma (BCC) is the most common human malignancy. Recent advances in our understanding of the critical biologic pathways implicated in the development and progression of BCC have led to the development of the first molecular targeted therapy for this disease. The hedgehog pathway is mutated in virtually all patients with BCC and recent trials with vismodegib, an inhibitor of this pathway, have shown significant responses. This review will discuss the importance of the hedgehog pathway in the pathogenesis of BCC and describe in detail the pharmacology of vismodegib in relation to its activity in advanced BCC.

  15. Profile of vismodegib and its potential in the treatment of advanced basal cell carcinoma

    PubMed Central

    Macha, Muzafar A; Batra, Surinder K; Ganti, Apar Kishor

    2013-01-01

    Basal cell carcinoma (BCC) is the most common human malignancy. Recent advances in our understanding of the critical biologic pathways implicated in the development and progression of BCC have led to the development of the first molecular targeted therapy for this disease. The hedgehog pathway is mutated in virtually all patients with BCC and recent trials with vismodegib, an inhibitor of this pathway, have shown significant responses. This review will discuss the importance of the hedgehog pathway in the pathogenesis of BCC and describe in detail the pharmacology of vismodegib in relation to its activity in advanced BCC. PMID:23940421

  16. Immunosuppressive Environment in Basal Cell Carcinoma: The Role of Regulatory T Cells.

    PubMed

    Omland, Silje H; Nielsen, Patricia S; Gjerdrum, Lise M R; Gniadecki, Robert

    2016-11-02

    Interaction between tumour survival tactics and anti-tumour immune response is a major determinant for cancer growth. Regulatory T cells (T-regs) contribute to tumour immune escape, but their role in basal cell carcinoma (BCC) is not understood. The fraction of T-regs among T cells was analysed by immunohistochemistry followed by automated image analysis in facial BCC, peritumoural skin and normal, buttock skin. Quantitative real-time PCR (qRT-PCR) was performed for FOXP3 and cytokines involved in T-reg attraction and T-cell activation. T-regs comprised 45% of CD4-cells surrounding BCC. FOXP3 was highly expressed in BCC, but absent in buttock skin. Unexpectedly, expression of FOXP3 was increased in peritumoural skin, with the FOXP3/CD3 fractions exceeding those of BCC (p?=?0.0065). Transforming growth factor (TGF)-? and T-reg chemokine expression was increased in BCC and peritumoural skin, but not in buttock skin, with expression levels correlating with FOXP3. T-regs are abundantly present both in BCC and in peritumoural skin, mediating an immunosuppressed microenvironment permissive for skin cancer.

  17. Depletion of cutaneous macrophages and dendritic cells promotes growth of basal cell carcinoma in mice.

    PubMed

    König, Simone; Nitzki, Frauke; Uhmann, Anja; Dittmann, Kai; Theiss-Suennemann, Jennifer; Herrmann, Markus; Reichardt, Holger M; Schwendener, Reto; Pukrop, Tobias; Schulz-Schaeffer, Walter; Hahn, Heidi

    2014-01-01

    Basal cell carcinoma (BCC) belongs to the group of non-melanoma skin tumors and is the most common tumor in the western world. BCC arises due to mutations in the tumor suppressor gene Patched1 (Ptch). Analysis of the conditional Ptch knockout mouse model for BCC reveals that macrophages and dendritic cells (DC) of the skin play an important role in BCC growth restraining processes. This is based on the observation that a clodronate-liposome mediated depletion of these cells in the tumor-bearing skin results in significant BCC enlargement. The depletion of these cells does not modulate Ki67 or K10 expression, but is accompanied by a decrease in collagen-producing cells in the tumor stroma. Together, the data suggest that cutaneous macrophages and DC in the tumor microenvironment exert an antitumor effect on BCC.

  18. Impediments to media communication of social change in family planning and reproductive health: experiences from East Africa.

    PubMed

    Kagurusi, Patrick T

    2013-09-01

    The media has been employed to increase uptake of Family Planning through behaviour change communication (BCC). Understanding the barriers encountered in effectively undertaking this function would increase the strategy's effectiveness. Sixty journalists from East Africa participated in trainings to enhance their BCC skills for Family Planning in which a qualitative study was nested to identify barriers to effective Family Planning BCC in the region's media. The barriers were observed to be insufficient BCC skills, journalists' conflict of interest, interests of media houses, inaccessible sources of family planning information, editorial ideologies and absence of commercially beneficial demand. Coupled with the historical ideologies of the media in the region, the observed barriers have precipitated ineffective family planning BCC in the regions media. Effective BCC for family planning in the regions media requires capacity building among practitioners and alignment of the concept to the media's and consumers' aspirations.

  19. The 12-month analysis from Basal Cell Carcinoma Outcomes with LDE225 Treatment (BOLT): A phase II, randomized, double-blind study of sonidegib in patients with advanced basal cell carcinoma.

    PubMed

    Dummer, Reinhard; Guminski, Alexander; Gutzmer, Ralf; Dirix, Luc; Lewis, Karl D; Combemale, Patrick; Herd, Robert M; Kaatz, Martin; Loquai, Carmen; Stratigos, Alexander J; Schulze, Hans-Joachim; Plummer, Ruth; Gogov, Sven; Pallaud, Celine; Yi, Tingting; Mone, Manisha; Chang, Anne Lynn S; Cornélis, Frank; Kudchadkar, Ragini; Trefzer, Uwe; Lear, John T; Sellami, Dalila; Migden, Michael R

    2016-07-01

    The hedgehog pathway inhibitor sonidegib demonstrated meaningful tumor shrinkage in more than 90% of patients with locally advanced basal cell carcinoma (BCC) or metastatic BCC in the BCC Outcomes with LDE225 Treatment study. This report provides long-term follow-up data collected up to 12 months after the last patient was randomized. In this multicenter, randomized, double-blind phase II study, patients were randomized 1:2 to sonidegib 200 or 800 mg. The primary end point was objective response rate assessed by central review. Objective response rates in the 200- and 800-mg arms were 57.6% and 43.8% in locally advanced BCC and 7.7% and 17.4% in metastatic BCC, respectively. Among the 94 patients with locally advanced BCC who responded, only 18 progressed or died and more than 50% had responses lasting longer than 6 months. In addition, 4 of 5 responders with metastatic BCC maintained an objective response. Grade 3/4 adverse events and those leading to discontinuation were less frequent with sonidegib 200 versus 800 mg (38.0% vs 59.3%; 27.8% vs 37.3%, respectively). No placebo or comparator arms were used because sonidegib demonstrated efficacy in advanced BCC in a phase I study, and the hedgehog pathway inhibitor vismodegib was not yet approved. With longer follow-up, sonidegib demonstrated sustained tumor responses in patients with advanced BCC. Copyright © 2016 American Academy of Dermatology, Inc. Published by Elsevier Inc. All rights reserved.

  20. Effect of cobalt on microstructure and properties of AlCr1.5CuFeNi2Cox high-entropy alloys

    NASA Astrophysics Data System (ADS)

    Kukshal, Vikas; Patnaik, Amar; Bhat, I. K.

    2018-04-01

    The present paper investigates the effect of Co addition on the alloying behaviour, microstructure and the resulting properties of cast AlCr1.5CuFeNi2Cox high-entropy alloys intended to be used for high temperature applications. The elements Al, Cr, Cu, Fe, Ni and Co (Purity > 99) weighing approximately 800 g was melted in a high temperature vacuum induction furnace. The microstructure, phase transformation, density, microhardness and compressive strength of the samples were analysed using x-ray diffraction (XRD), scanning electron microscopes (SEM), Vickers microhardness tester and universal Testing machine. The crystalline structure of the alloys exhibits simple FCC and BCC phases. The microstructures investigation of the alloys shows the segregation of copper in the interdendritic region resulting in Cu-rich FCC phase. The addition of Co further enhances the formation of FCC phase resulting in the decrease in micro hardness value of the alloys, which varies from 471 HV to 364 HV with increase in the cobalt content from x = 0 to x = 1 (molar ratio). The similar decreasing trend is also observed for the compressive strength of the alloys.

  1. Spin-transfer torque switched magnetic tunnel junctions in magnetic random access memory

    NASA Astrophysics Data System (ADS)

    Sun, Jonathan Z.

    2016-10-01

    Spin-transfer torque (or spin-torque, or STT) based magnetic tunnel junction (MTJ) is at the heart of a new generation of magnetism-based solid-state memory, the so-called spin-transfer-torque magnetic random access memory, or STT-MRAM. Over the past decades, STT-based switchable magnetic tunnel junction has seen progress on many fronts, including the discovery of (001) MgO as the most favored tunnel barrier, which together with (bcc) Fe or FeCo alloy are yielding best demonstrated tunnel magneto-resistance (TMR); the development of perpendicularly magnetized ultrathin CoFeB-type of thin films sufficient to support high density memories with junction sizes demonstrated down to 11nm in diameter; and record-low spin-torque switching threshold current, giving best reported switching efficiency over 5 kBT/μA. Here we review the basic device properties focusing on the perpendicularly magnetized MTJs, both in terms of switching efficiency as measured by sub-threshold, quasi-static methods, and of switching speed at super-threshold, forced switching. We focus on device behaviors important for memory applications that are rooted in fundamental device physics, which highlights the trade-off of device parameters for best suitable system integration.

  2. EFFECT OF ANNEALING TEMPERATURE ON THE STRUCTURE AND AC MAGNETIC PROPERTIES OF Fe73Cu1Nb3.5-xVxSi13.5B9 (x = 1.0, 1.5, 2.0) NANOCRYSTALLINE SOFT MAGNETIC ALLOYS

    NASA Astrophysics Data System (ADS)

    Lu, Wei; Huang, Ping; Wang, Yuxin; Yan, Biao

    2013-07-01

    In this paper, Nb element was partially replaced by V element in Finemet-type Fe73Cu1Nb3.5-xVxSi13.5B9 (x = 1, 1.5, 2) alloys and the effect of annealing temperatures on the microstructure and AC magnetic properties of the samples are studied. The annealing temperatures affect the grain sizes of the bcc α-Fe phase greatly. When the annealing temperature is between 540-560°C, the samples have better AC magnetic properties than the samples annealed at other temperatures. The optimized annealing temperature of the studied samples is around 560°C. The coercivity and iron loss of the V2 sample is a little bit higher than that of V1 and V1.5 alloys while the amplitude permeability of V2 alloy is larger than that of V1 and V1.5, which indicate that the content of V element has strong influence on the magnetic properties of nanocrystalline soft magnetic alloys.

  3. An outbreak of Burkholderia cepacia complex in the paediatric unit of a tertiary care hospital.

    PubMed

    Mali, Swapna; Dash, Lona; Gautam, Vikas; Shastri, Jayanthi; Kumar, Sunil

    2017-01-01

    Burkholderia cepacia complex (Bcc) has emerged as a serious nosocomial pathogen worldwide especially in patients with indwelling catheters and cystic fibrosis. Bcc is a common contaminant of pharmaceutical products. We describe an outbreak of Bcc bacteraemia amongst children admitted in Paediatric Intensive Care Unit (PICU) and paediatric ward at a tertiary care hospital, Mumbai, in Western India. Blood culture samples from paediatric patients yielded growth of non-fermenting, oxidase positive, motile, Gram negative bacilli (NFGNB) (76/909) over a period of 8 months. Based on conventional biochemical tests and antimicrobial susceptibility testing, these isolates were provisionally identified as Bcc. The increased, repeated and continued isolation of Bcc alerted the possibility of an outbreak confined to PICU and paediatric ward. Active surveillance was undertaken to trace the source and contain the outbreak. Isolates were subjected to recA polymerase chain reaction (PCR) and Expanded multilocus sequence typing (EMLST). Surveillance revealed the presence of Bcc on the upper surface of rubber stopper of sealed multidose amikacin vials. Isolates from blood culture and rubber stoppers were confirmed as Bcc by recA PCR. EMLST revealed that these isolates shared an identical novel sequence type 824 proving clonality. Timely interventions instituted led to control of the outbreak. This study highlights the importance of identification and molecular characterization of Bcc to establish its role in infection and outbreak.

  4. Pivotal ERIVANCE basal cell carcinoma (BCC) study: 12-month update of efficacy and safety of vismodegib in advanced BCC.

    PubMed

    Sekulic, Aleksandar; Migden, Michael R; Lewis, Karl; Hainsworth, John D; Solomon, James A; Yoo, Simon; Arron, Sarah T; Friedlander, Philip A; Marmur, Ellen; Rudin, Charles M; Chang, Anne Lynn S; Dirix, Luc; Hou, Jeannie; Yue, Huibin; Hauschild, Axel

    2015-06-01

    Primary analysis from the pivotal ERIVANCE BCC study resulted in approval of vismodegib, a Hedgehog pathway inhibitor indicated for treatment of adults with metastatic or locally advanced basal cell carcinoma (BCC) that has recurred after surgery or for patients who are not candidates for surgery or radiation. An efficacy and safety analysis was conducted 12 months after primary analysis. This was a multinational, multicenter, nonrandomized, 2-cohort study in patients with measurable and histologically confirmed locally advanced or metastatic BCC taking oral vismodegib (150 mg/d). Primary outcome measure was objective response rate (complete and partial responses) assessed by independent review facility. After 12 months of additional follow-up, median duration of exposure to vismodegib was 12.9 months. Objective response rate increased from 30.3% to 33.3% in patients with metastatic disease, and from 42.9% to 47.6% in patients with the locally advanced form. Median duration of response in patients with locally advanced BCC increased from 7.6 to 9.5 months. No new safety signals emerged with extended treatment duration. Limitations include low prevalence of advanced BCC and challenges of designing a study with heterogenous manifestations. The 12-month update of the study confirms the efficacy and safety of vismodegib in management of advanced BCC. Copyright © 2015 American Academy of Dermatology, Inc. Published by Elsevier Inc. All rights reserved.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Rong; Wu, Yongquan, E-mail: yqwu@shu.edu.cn; Xiao, Junjiang

    We observed homogeneous nucleation process of supercooled liquid Fe by molecular dynamics simulations. Using bond-orientational order parameters together with Voronoi polyhedron method, we characterized local structure, calculated the volume of Voronoi polyhedra of atoms and identified the structure and density fluctuations. We monitored the formation of nucleus and analyzed its inner structure. The birth and growth of the pre-nucleus and nucleus are accompanied with aggregating and disaggregating processes in the time scale of femtosecond. Only the initial solid-like clusters (ISLC), ranging from 1 to 7 atoms, pop up directly from liquid. The relation between the logarithm of number of clustersmore » and the cluster size was found to be linear for ISLCs and was observed to be parabolic for all solid-like clusters (SLC) due to aggregating and disaggregating effects. The nucleus and pre-nuclei mainly consist of body centered cubic (BCC) and hexagonal close packed atoms, while the BCC atoms tend to be located at the surface. Medium-range structure fluctuations induce the birth of ISLCs, benefit the aggregation of embryos and remarkably promote the nucleation. But density fluctuations contribute little to nucleation. The lifetime of most icosahedral-like atoms (ICO) is shorter than 0.7 ps. No obvious relationship was found between structure/density fluctuations and the appearance of ICO atoms.« less

  6. Fracture Toughness and Fatigue Crack Growth Behavior of As-Cast High-Entropy Alloys

    NASA Astrophysics Data System (ADS)

    Seifi, Mohsen; Li, Dongyue; Yong, Zhang; Liaw, Peter K.; Lewandowski, John J.

    2015-08-01

    The fracture toughness and fatigue crack growth behavior of two as-vacuum arc cast high-entropy alloys (HEAs) (Al0.2CrFeNiTi0.2 and AlCrFeNi2Cu) were determined. A microstructure examination of both HEA alloys revealed a two-phase structure consisting of body-centered cubic (bcc) and face-centered cubic (fcc) phases. The notched and fatigue precracked toughness values were in the range of those reported in the literature for two-phase alloys but significantly less than recent reports on a single phase fcc-HEA that was deformation processed. Fatigue crack growth experiments revealed high fatigue thresholds that decreased significantly with an increase in load ratio, while Paris law slopes exhibited metallic-like behavior at low R with significant increases at high R. Fracture surface examinations revealed combinations of brittle and ductile/dimpled regions at overload, with some evidence of fatigue striations in the Paris law regime.

  7. Long spin lifetime and large barrier polarisation in single electron transport through a CoFe nanoparticle

    PubMed Central

    Temple, R. C.; McLaren, M.; Brydson, R. M. D.; Hickey, B. J.; Marrows, C. H.

    2016-01-01

    We have investigated single electron spin transport in individual single crystal bcc Co30Fe70 nanoparticles using scanning tunnelling microscopy with a standard tungsten tip. Particles were deposited using a gas-aggregation nanoparticle source and individually addressed as asymmetric double tunnel junctions with both a vacuum and a MgO tunnel barrier. Spectroscopy measurements on the particles show a Coulomb staircase that is correlated with the measured particle size. Field emission tunnelling effects are incorporated into standard single electron theory to model the data. This formalism allows spin-dependent parameters to be determined even though the tip is not spin-polarised. The barrier spin polarisation is very high, in excess of 84%. By variation of the resistance, several orders of magnitude of the system timescale are probed, enabling us to determine the spin relaxation time on the island. It is found to be close to 10 μs, a value much longer than previously reported. PMID:27329575

  8. High Mn austenitic stainless steel

    DOEpatents

    Yamamoto, Yukinori [Oak Ridge, TN; Santella, Michael L [Knoxville, TN; Brady, Michael P [Oak Ridge, TN; Maziasz, Philip J [Oak Ridge, TN; Liu, Chain-tsuan [Knoxville, TN

    2010-07-13

    An austenitic stainless steel alloy includes, in weight percent: >4 to 15 Mn; 8 to 15 Ni; 14 to 16 Cr; 2.4 to 3 Al; 0.4 to 1 total of at least one of Nb and Ta; 0.05 to 0.2 C; 0.01 to 0.02 B; no more than 0.3 of combined Ti+V; up to 3 Mo; up to 3 Co; up to 1W; up to 3 Cu; up to 1 Si; up to 0.05 P; up to 1 total of at least one of Y, La, Ce, Hf, and Zr; less than 0.05 N; and base Fe, wherein the weight percent Fe is greater than the weight percent Ni, and wherein the alloy forms an external continuous scale including alumina, nanometer scale sized particles distributed throughout the microstructure, the particles including at least one of NbC and TaC, and a stable essentially single phase FCC austenitic matrix microstructure that is essentially delta-ferrite-free and essentially BCC-phase-free.

  9. Austenite-martensite transformation in electrodeposited Fe70Pd30 NWs: a step towards making bio-nano-actuators tested on in vivo systems

    NASA Astrophysics Data System (ADS)

    Zuzek Rozman, K.; Pecko, D.; Trafela, S.; Samardzija, Z.; Spreitzer, M.; Jaglicic, Z.; Nadrah, P.; Zorko, M.; Bele, M.; Tisler, T.; Pintar, A.; Sturm, S.; Kostevsek, N.

    2018-03-01

    Fe69±3Pd31±3 nanowires (NWs) with lengths of a few microns and diameters of 200 nm were synthesized via template-assisted pulsed electrodeposition into alumina-based templates. The as-deposited Fe69±3Pd31±3 NWs exhibited α-Fe (bcc-solid solution of Fe, Pd) nanocrystalline structure as seen from the x-ray diffraction (XRD), that got confirmed by transmission electron microscopy (TEM) with some larger grains up 50 nm observed. Annealing of the as-deposited Fe69±3Pd31±3 NWs at 1173 K/45 min was followed by quenching in ice water and resulted in a transformation to the fcc crystal structure (XRD) with grain sizes up to 200 nm (TEM). To induce the austenite-to-martensite, i.e., fcc-to-fct phase transformation the fcc Fe69±3Pd31±3 NWs were cooled to 73 K. The XRD showed the disappearance of the (200) fcc reflection (at room temperature) and the appearance of the (200) fct reflection (at 73 K), confirming the fcc-to-fct transformation took place. The magnetic measurements revealed that the fcc Fe69±3Pd31±3 NWs measured at low temperatures (50 K) had a larger coercivity than at room temperature, which suggests the fct phase was present in the undercooled state, exhibiting a larger magnetocrystalline anisotropy than the fcc phase present at room temperature. As part of our interest in magnetic-shape-memory actuators, the as-deposited Fe69±3Pd31±3 NWs were tested for toxicity on zebrafish. In vivo tests showed no acute lethal or sub-lethal effects, which implies that the Fe69±3Pd31±3 NWs have the potential to be used as nano-actuators in biomedical applications.

  10. Engineering and characterizing inverse tunneling magnetoresistance magnetic tunnel junctions with novel ferromagnetic electrodes

    NASA Astrophysics Data System (ADS)

    Xiang, Hua

    Magnetic tunnel junctions (MTJs) have attracted great interest for applications in read heads and nonvolatile magnetic random access memories. MTJs exhibit tunneling magnetoresistance (TMR), which is proportional to the spin polarization (SP) of ferromagnetic (FM) electrodes. This thesis describes the fabrication and characterization of inverse TMR MTJs with novel FM electrodes and tunnel barriers, including Fe3O4 and Fe4N electrodes and Ta2O5 tunnel barriers. Fe3O4 has been predicted to have perfect negative SP at the Fermi level, making it a promising FM electrode for inverse TMR MTJs. Two approaches were developed to grow epitaxial Fe3O 4 films on Si substrates, reactive sputtering and selective oxidation, and the physical properties were characterized. Epitaxial Fe3O 4 films with smooth surfaces were achieved using a TiN buffer and low temperature selective oxidation. Fe4N has also been predicted to have nearly perfect negative SP. Epitaxial Fe4N films were fabricated on Si substrates by reactive sputtering, and the magnetic properties and thermal stability were characterized. Fe4N is metastable with respect to decomposition into Fe and N 2. During room temperature air oxidation, an epitaxial Fe3O 4 layer formed on Fe4N surface, by incorporation of oxygen, decomposition of Fe4N, and release of N. We fabricated Fe4N/AlOx/Fe MTJs and found normal TMR for the as-prepared junction but inverse TMR with abnormal bias dependence after annealing. The TMR inversion is caused by an Fe3O4 layer at the Fe4N/AlO, interface. The abnormal bias dependence is caused by an imperfect Fe3O4/AlOx interface. Fe3O4 (or Fe4N)/Ta2O5/Fe MTJs show relatively low junction resistance and noisy TMR signals, due to the difficulty of preparing high quality Ta2O5 barriers. The effect of composition of bcc Co100-xFex electrodes on the TMR for AlOx-based MTJs has been studied. The TMR increases with x until it reaches a maximum of 66.7% at 28 at.% Fe, and then decreases. The reason for this TMR variation is the s-like electron dominant tunneling and the variation of the s-like electron density of state with different compositions.

  11. Risk Factors for Basal Cell Carcinoma in Men Younger Than 40 Years: A Case-Control Study.

    PubMed

    Nemer, Kathleen M; Bauman, Tyler M; Boyd, Alan S

    2018-05-09

    Basal cell carcinoma (BCC) is the most common malignancy in the United States and is more prevalent in older populations. The aim of this study was to investigate BCC risk factors in male patients younger than 40 years. A consecutive series of male patients with pathology-proven BCC and younger than 40 years at time of diagnosis were retrospectively identified along with matched controls. Phone interviews were conducted using a structured questionnaire, and differences between patients with and without BCC were investigated. A total of 50 patients with BCC and 27 controls were included in this study. Compared with controls, patients with BCC worked outdoor jobs for longer lengths of time (43.2 vs 15.6 months; p = .04), were more likely to have a family history of skin cancer (66% vs 44%; p = .02), and were more likely to use sunscreen heavily after biopsy (p = .02). Patients with multiple BCCs (n = 20) were more likely to have a history of substantial recreational sun exposure (p = .01) than patients with solitary lesions (n = 30). The authors conclude that outdoor sun exposure in patients with underlying genetic susceptibility is the most likely mechanism of BCC formation in young male patients.

  12. Reconstructive structural phase transitions in dense Mg

    NASA Astrophysics Data System (ADS)

    Yao, Yansun; Klug, Dennis D.

    2012-07-01

    The question raised recently about whether the high-pressure phase transitions of Mg follow a hexagonal close-packed (hcp) → body centered cubic (bcc) or hcp → double hexagonal close-packed (dhcp) → bcc sequence at room temperature is examined by the use of first principles density functional methods. Enthalpy calculations show that the bcc structure replaces the hcp structure to become the most stable structure near 48 GPa, whereas the dhcp structure is never the most stable structure in the pressure range of interest. The characterized phase-transition mechanisms indicate that the hcp → dhcp transition is also associated with a higher enthalpy barrier. At room temperature, the structural sequence hcp → bcc is therefore more energetically favorable for Mg. The same conclusion is also reached from the simulations of the phase transitions using metadynamics methods. At room temperature, the metadynamics simulations predict the onset of a hcp → bcc transition at 40 GPa and the transition becomes more prominent upon further compression. At high temperatures, the metadynamics simulations reveal a structural fluctuation among the hcp, dhcp, and bcc structures at 15 GPa. With increasing pressure, the structural evolution at high temperatures becomes more unambiguous and eventually settles to a bcc structure once sufficient pressure is applied.

  13. Reconstructive structural phase transitions in dense Mg.

    PubMed

    Yao, Yansun; Klug, Dennis D

    2012-07-04

    The question raised recently about whether the high-pressure phase transitions of Mg follow a hexagonal close-packed (hcp) → body centered cubic (bcc) or hcp → double hexagonal close-packed (dhcp) → bcc sequence at room temperature is examined by the use of first principles density functional methods. Enthalpy calculations show that the bcc structure replaces the hcp structure to become the most stable structure near 48 GPa, whereas the dhcp structure is never the most stable structure in the pressure range of interest. The characterized phase-transition mechanisms indicate that the hcp → dhcp transition is also associated with a higher enthalpy barrier. At room temperature, the structural sequence hcp → bcc is therefore more energetically favorable for Mg. The same conclusion is also reached from the simulations of the phase transitions using metadynamics methods. At room temperature, the metadynamics simulations predict the onset of a hcp → bcc transition at 40 GPa and the transition becomes more prominent upon further compression. At high temperatures, the metadynamics simulations reveal a structural fluctuation among the hcp, dhcp, and bcc structures at 15 GPa. With increasing pressure, the structural evolution at high temperatures becomes more unambiguous and eventually settles to a bcc structure once sufficient pressure is applied.

  14. Case-crossover study of Burkholderia cepacia complex bloodstream infection associated with contaminated intravenous bromopride.

    PubMed

    Martins, Ianick Souto; Pellegrino, Flávia Lúcia Piffano Costa; Freitas, Andrea d'Avila; Santos, Marisa da Silva; Ferraiuoli, Giovanna Ianini d'Alemeida; Vasques, Márcia Regina Guimarães; Amorim, Efigenia Lourdes Teixeira; Oliveira, Sandra; Nouér, Simone Aranha; Cardoso, Fernando Luiz Lopes; Mascarenhas, Luiz Affonso; Magalhães, Ana Cristina Gouveia; Cleinman, Isabella Barbosa; Figueiredo, Agnes Marie Sá; Moreira, Beatriz Meurer

    2010-05-01

    To investigate an outbreak of healthcare-associated Burkholderia cepacia complex (BCC) primary bloodstream infections (BCC-BSI). Case-crossover study in a public hospital, a university hospital and a private hospital in Rio de Janeiro, Brazil, from March 2006 to May 2006. Twenty-five patients with BCC-BSI. After determining the date BCC-BSI symptoms started for each patient, 3 time intervals of data collection were defined, each one with a duration of 3 days: the case period, starting just before BCC-BSI symptoms onset; the control period, starting 6 days before BCC-BSI symptoms onset; and the washout period, comprising the 3 days between the case period and the control period. Exposures evaluated were intravascular solutions and invasive devices and procedures. Potential risk factors were identified by using the McNemar chi(2) adjusted test. Cultures of samples of potentially contaminated solutions were performed. BCC strain typing was performed by pulsed-field gel electrophoresis using SpeI. The statistical analysis revealed that the use of bromopride and dipyrone was associated with BCC-BSI. A total of 21 clinical isolates from 17 (68%) of the 25 patients and an isolate obtained from the bromopride vial were available for strain typing. Six pulsotypes were detected. A predominant pulsotype (A) accounted for 11 isolates obtained from 11 patients (65%) in the 3 study hospitals. Our investigation, using a case-crossover design, of an outbreak of BCC-BSI infections concluded it was polyclonal but likely caused by infusion of contaminated bromopride. The epidemiological finding was validated by microbiological analysis. After recall of contaminated bromopride vials by the manufacturer, the outbreak was controlled.

  15. C-C4-01: Statin Use and Risk of Basal Cell Carcinoma

    PubMed Central

    Asgari, Maryam M; Tang, Jean; Epstein, Ervin; Chren, Mary-Margaret; Warton, Margaret; Quesenberry, Charles P; Go, Alan S; Friedman, Gary D

    2010-01-01

    Background: Limited data exist about the association between statin use and skin cancer risk. We examined the independent relation between statin use and basal cell carcinoma (BCC) risk. Methods: We identified all members of a large integrated healthcare delivery system diagnosed with a histologically proven BCC in 1997. Subsequent BCCs were identified through 2006 from health plan electronic pathology records. Longitudinal exposure to statins and other lipid lowering agents was determined from automated pharmacy records. We used extended Cox regression to examine the independent association between receipt of statin therapy (ever vs. never, cumulative duration) and risk of subsequent BCC. To minimize confounding by indication, we conducted sensitivity analyses in the subset of individuals considered eligible for lipid lowering therapy based on national guidelines. Results: Among 12,123 members diagnosed with BCC who had no prior statin exposure, 6,381 developed a subsequent BCC during follow-up. Neither ever use of statins (adjusted hazard ratio [aHR] 1.02, 95% CI: 0.92–1.12) or cumulative duration of statin (aHR 1.02 per year, 95% CI: 0.99–1.11) was associated with subsequent BCC after adjustment for age, sex, and healthcare utilization. Risk estimates did not change appreciably when the analysis was limited to the subset of individuals who met eligibility criteria for initiating statin therapy. There was also no significant association between use of non-statin anti-lipemics and subsequent BCC (aHR 1.10, 95% CI: 0.76–1.58). Conclusions: Among a large cohort of individuals with BCC, statin therapy was not significantly associated with risk of subsequent BCC.

  16. Clinical outcome following lung transplantation in patients with cystic fibrosis colonised with Burkholderia cepacia complex: results from two French centres.

    PubMed

    Boussaud, V; Guillemain, R; Grenet, D; Coley, N; Souilamas, R; Bonnette, P; Stern, M

    2008-08-01

    Infection with Burkholderia cepacia complex (BCC) is a life threatening complication of cystic fibrosis (CF), often seen as a contraindication for lung transplantation. A long term retrospective study was conducted of all patients with CF undergoing lung transplants from January 1990 to October 2006 in two French centres allowing transplantation in patients colonised with BCC. 22 of the 247 lung transplant patients with CF were infected with BCC (B. cenocepacia genomovar III (n = 8), B. multivorans genomovar II (n = 11), B. vietnamiensis genomovar V (n = 2) and B. stabilis genomovar IV (n = 1)). BCC colonisation was not associated with any significant excess mortality (HR 1.5, 95% CI 0.7 to 3.2; p = 0.58). However, early mortality rates tended to be higher in the BCC group than in the non-BCC group (3 month survival: 85% vs 95%, respectively; log rank p = 0.05). Univariate analysis showed that the risk of death was significantly higher for the eight patients infected with B. cenocepacia than for the other 14 colonised patients (HR 3.2, 95% CI 1.1 to 5.9; p = 0.04). None of the other risk factors tested-primary graft failure, late extubation, septicaemia-had a significant effect. The 5 year cumulative incidence rate of bronchiolitis obliterans syndrome was not significantly higher in the BCC group than in the non-BCC group (38% vs 24%, respectively; p = 0.35). Our results suggest that BCC infection with a non-genomovar III organism may not be associated with excess mortality after lung transplantation in patients with CF and should not be seen as sufficient reason to exclude lung transplantation. However, colonisation with B. cenocepacia remains potentially detrimental.

  17. Localization of Burkholderia cepacia Complex Bacteria in Cystic Fibrosis Lungs and Interactions with Pseudomonas aeruginosa in Hypoxic Mucus

    PubMed Central

    Abdullah, Lubna H.; Perlmutt, Olivia S.; Albert, Daniel; Davis, C. William; Arnold, Roland R.; Yankaskas, James R.; Gilligan, Peter; Neubauer, Heiner; Randell, Scott H.; Boucher, Richard C.

    2014-01-01

    The localization of Burkholderia cepacia complex (Bcc) bacteria in cystic fibrosis (CF) lungs, alone or during coinfection with Pseudomonas aeruginosa, is poorly understood. We performed immunohistochemistry for Bcc and P. aeruginosa bacteria on 21 coinfected or singly infected CF lungs obtained at transplantation or autopsy. Parallel in vitro experiments examined the growth of two Bcc species, Burkholderia cenocepacia and Burkholderia multivorans, in environments similar to those occupied by P. aeruginosa in the CF lung. Bcc bacteria were predominantly identified in the CF lung as single cells or small clusters within phagocytes and mucus but not as “biofilm-like structures.” In contrast, P. aeruginosa was identified in biofilm-like masses, but densities appeared to be reduced during coinfection with Bcc bacteria. Based on chemical analyses of CF and non-CF respiratory secretions, a test medium was defined to study Bcc growth and interactions with P. aeruginosa in an environment mimicking the CF lung. When test medium was supplemented with alternative electron acceptors under anaerobic conditions, B. cenocepacia and B. multivorans used fermentation rather than anaerobic respiration to gain energy, consistent with the identification of fermentation products by high-performance liquid chromatography (HPLC). Both Bcc species also expressed mucinases that produced carbon sources from mucins for growth. In the presence of P. aeruginosa in vitro, both Bcc species grew anaerobically but not aerobically. We propose that Bcc bacteria (i) invade a P. aeruginosa-infected CF lung when the airway lumen is anaerobic, (ii) inhibit P. aeruginosa biofilm-like growth, and (iii) expand the host bacterial niche from mucus to also include macrophages. PMID:25156735

  18. Epidemiologic risk factors of basal cell carcinoma development and age at onset in a Southern European population from Greece.

    PubMed

    Dessinioti, Clio; Tzannis, Kimon; Sypsa, Vana; Nikolaou, Vasiliki; Kypreou, Katerina; Antoniou, Christina; Katsambas, Andreas; Stratigos, Alexander J

    2011-08-01

    Basal cell carcinoma (BCC) is the most common form of skin cancer with increasing incidence rates worldwide. To assess the association of BCC with epidemiologic risk factors in a Southern European population from Greece, we conducted a hospital-based case-control study of 199 patients with BCC and 200 controls. In the multivariate analysis, fair skin colour was associated with increased risk of BCC (OR: 4.9, 95% CI: 2.4-10.0). However, darker skin phototypes III/IV (patient's reported sun sensitivity/tanning ability) showed a higher BCC risk (OR: 3.9, 95% CI: 1.8-8.5). Persons with occupational UV exposure of 5 years or more had a 2.7-fold increased risk (95% CI:1.4-5.3). There was an increased risk of BCC related to the number of sunburns after the age of 20 years (OR: 3.2, 95% CI: 1.4-7.3) and solar lentigines (OR: 6.8, 95% CI: 3.6-12.8). Subgroup analysis showed that different risk factors are associated with early onset BCC including the presence of dysplastic nevi (OR: 6.4, 95% CI: 1.5-27.2), the number of weeks per year spent at the beach during childhood (OR: 8.9, 95% CI: 3.3-24.1) and the history of sunburns during childhood (OR:5.0, 95% CI: 1.3-19.1). Fair skin colour was significantly associated with BCC risk. The relation of sunburns during adulthood with BCC underlies the importance of sunburn prevention throughout life time. Early onset BCCs seem to have a different pathogenetic background and were associated with dysplastic nevi as well as intermittent sun exposure and sunburns during the early years of life. © 2011 John Wiley & Sons A/S.

  19. Improved Decadal Climate Prediction in the North Atlantic using EnOI-Assimilated Initial Condition

    NASA Astrophysics Data System (ADS)

    Li, Q.; Xin, X.; Wei, M.; Zhou, W.

    2017-12-01

    Decadal prediction experiments of Beijing Climate Center climate system model version 1.1(BCC-CSM1.1) participated in Coupled Model Intercomparison Project Phase 5 (CMIP5) had poor skill in extratropics of the North Atlantic, the initialization of which was done by relaxing modeled ocean temperature to the Simple Ocean Data Assimilation (SODA) reanalysis data. This study aims to improve the prediction skill of this model by using the assimilation technique in the initialization. New ocean data are firstly generated by assimilating the sea surface temperature (SST) of the Hadley Centre Sea Ice and Sea Surface Temperature (HadISST) dataset to the ocean model of BCC-CSM1.1 via Ensemble Optimum Interpolation (EnOI). Then a suite of decadal re-forecasts launched annually over the period 1961-2005 is carried out with simulated ocean temperature restored to the assimilated ocean data. Comparisons between the re-forecasts and previous CMIP5 forecasts show that the re-forecasts are more skillful in mid-to-high latitude SST of the North Atlantic. Improved prediction skill is also found for the Atlantic multi-decadal Oscillation (AMO), which is consistent with the better skill of Atlantic meridional overturning circulation (AMOC) predicted by the re-forecasts. We conclude that the EnOI assimilation generates better ocean data than the SODA reanalysis for initializing decadal climate prediction of BCC-CSM1.1 model.

  20. Ensemble averaged structure–function relationship for nanocrystals: effective superparamagnetic Fe clusters with catalytically active Pt skin [Ensemble averaged structure-function relationship for composite nanocrystals: magnetic bcc Fe clusters with catalytically active fcc Pt skin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petkov, Valeri; Prasai, Binay; Shastri, Sarvjit

    Practical applications require the production and usage of metallic nanocrystals (NCs) in large ensembles. Besides, due to their cluster-bulk solid duality, metallic NCs exhibit a large degree of structural diversity. This poses the question as to what atomic-scale basis is to be used when the structure–function relationship for metallic NCs is to be quantified precisely. In this paper, we address the question by studying bi-functional Fe core-Pt skin type NCs optimized for practical applications. In particular, the cluster-like Fe core and skin-like Pt surface of the NCs exhibit superparamagnetic properties and a superb catalytic activity for the oxygen reduction reaction,more » respectively. We determine the atomic-scale structure of the NCs by non-traditional resonant high-energy X-ray diffraction coupled to atomic pair distribution function analysis. Using the experimental structure data we explain the observed magnetic and catalytic behavior of the NCs in a quantitative manner. Lastly, we demonstrate that NC ensemble-averaged 3D positions of atoms obtained by advanced X-ray scattering techniques are a very proper basis for not only establishing but also quantifying the structure–function relationship for the increasingly complex metallic NCs explored for practical applications.« less

  1. First-Principles Momentum-Dependent Local Ansatz Wavefunction and Momentum Distribution Function Bands of Iron

    NASA Astrophysics Data System (ADS)

    Kakehashi, Yoshiro; Chandra, Sumal

    2016-04-01

    We have developed a first-principles local ansatz wavefunction approach with momentum-dependent variational parameters on the basis of the tight-binding LDA+U Hamiltonian. The theory goes beyond the first-principles Gutzwiller approach and quantitatively describes correlated electron systems. Using the theory, we find that the momentum distribution function (MDF) bands of paramagnetic bcc Fe along high-symmetry lines show a large deviation from the Fermi-Dirac function for the d electrons with eg symmetry and yield the momentum-dependent mass enhancement factors. The calculated average mass enhancement m*/m = 1.65 is consistent with low-temperature specific heat data as well as recent angle-resolved photoemission spectroscopy (ARPES) data.

  2. Expression of drebrin, an actin binding protein, in basal cell carcinoma, trichoblastoma and trichoepithelioma.

    PubMed

    Mizutani, Yoko; Iwamoto, Ikuko; Kanoh, Hiroyuki; Seishima, Mariko; Nagata, Koh-ichi

    2014-06-01

    Drebrin, an F-actin binding protein, is known to play important roles in cell migration, synaptogenesis and neural plasticity. Although drebrin was long thought to be specific for neuronal cells, its expression has recently been reported in non-neuronal cells. As for skin-derived cells, drebrin was shown to be enriched at adhering junctions (AJs) in cultured primary keratinocytes and also be highly expressed in basal cell carcinoma (BCC) cells. Since BCC and two types of benign neoplasm, trichoblastoma and trichoepithelioma, are considered to derive from the same origin, follicular germinative cells, it is sometimes difficult to morphologically distinguish BCC from trichoblastoma and trichoepithelioma. In this study, we performed immunohistochemical staining of drebrin in BCC, trichoblastoma and trichoepithelioma, to examine whether drebrin could serve as a biomarker for BCC diagnosis. In western blotting, drebrin was detected highly and moderately in the lysates from a squamous cell carcinoma cell line, DJM-1, and normal human epidermis, respectively. In immunofluorescence analyses, drebrin was colocalized with markers of AJs and tight junctions in DJM-1 cells and detected at cell-cell junction areas of human normal epidermis tissue. We then examined the distribution patterns of drebrin in BCC, trichoblastoma and trichoepithelioma. In BCC tissues, intense and homogeneous drebrin expression was observed mainly at tumor cell-cell boundaries. In contrast, drebrin was stained only weakly and non-homogeneously in trichoblastoma and trichoepthelioma tissue samples. For differential diagnosis of BCC, drebrin may be a novel and useful marker.

  3. Structural evolution in the crystallization of rapid cooling silver melt

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tian, Z.A., E-mail: ze.tian@gmail.com; Laboratory for Simulation and Modelling of Particulate Systems School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052; Dong, K.J.

    2015-03-15

    The structural evolution in a rapid cooling process of silver melt has been investigated at different scales by adopting several analysis methods. The results testify Ostwald’s rule of stages and Frank conjecture upon icosahedron with many specific details. In particular, the cluster-scale analysis by a recent developed method called LSCA (the Largest Standard Cluster Analysis) clarified the complex structural evolution occurred in crystallization: different kinds of local clusters (such as ico-like (ico is the abbreviation of icosahedron), ico-bcc like (bcc, body-centred cubic), bcc, bcc-like structures) in turn have their maximal numbers as temperature decreases. And in a rather wide temperaturemore » range the icosahedral short-range order (ISRO) demonstrates a saturated stage (where the amount of ico-like structures keeps stable) that breeds metastable bcc clusters. As the precursor of crystallization, after reaching the maximal number bcc clusters finally decrease, resulting in the final solid being a mixture mainly composed of fcc/hcp (face-centred cubic and hexagonal-closed packed) clusters and to a less degree, bcc clusters. This detailed geometric picture for crystallization of liquid metal is believed to be useful to improve the fundamental understanding of liquid–solid phase transition. - Highlights: • A comprehensive structural analysis is conducted focusing on crystallization. • The involved atoms in our analysis are more than 90% for all samples concerned. • A series of distinct intermediate states are found in crystallization of silver melt. • A novelty icosahedron-saturated state breeds the metastable bcc state.« less

  4. Basal-Cell Carcinoma Incidence and Associated Risk Factors in US Women and Men

    PubMed Central

    Wu, Shaowei; Han, Jiali; Li, Wen-Qing; Li, Tricia; Qureshi, Abrar A.

    2013-01-01

    There is a paucity of data on basal-cell carcinoma (BCC) in the United States, since most national registries do not collect information on BCC. We evaluated BCC incidence trends and associated risk factors for BCC in 140,171 participants from a US female cohort, the Nurses' Health Study (1986–2006), and a US male cohort, the Health Professionals' Follow-up Study (1988–2006). Age-adjusted BCC incidence rates increased from 519 cases per 100,000 person-years to 1,019 cases per 100,000 person years for women and increased from 606 cases per 100,000 person-years to 1,488 cases per 100,000 person-years for men during the follow-up period. Cox proportional hazards analysis identified the following phenotypic risk factors for BCC in both cohorts: family history of melanoma, blond or red hair colors, higher number of extremity moles, higher susceptibility to sunburn as a child/adolescent, and higher lifetime number of severe/blistering sunburns. The multivariate-adjusted risk ratio for the highest quintile of cumulative midrange ultraviolet B flux exposure versus the lowest quintile was 3.18 (95% confidence interval: 2.70, 3.76) in women and 1.90 (95% confidence interval: 1.57, 2.29) in men. BCC incidence was generally higher in men than in women, and BCC risk was strongly associated with several phenotypic and exposure factors, including midrange ultraviolet B radiation, in our study populations. PMID:23828250

  5. Circular RNA expression in basal cell carcinoma.

    PubMed

    Sand, Michael; Bechara, Falk G; Sand, Daniel; Gambichler, Thilo; Hahn, Stephan A; Bromba, Michael; Stockfleth, Eggert; Hessam, Schapoor

    2016-05-01

    Circular RNAs (circRNAs), are nonprotein coding RNAs consisting of a circular loop with multiple miRNA, binding sites called miRNA response elements (MREs), functioning as miRNA sponges. This study was performed to identify differentially expressed circRNAs and their MREs in basal cell carcinoma (BCC). Microarray circRNA expression profiles were acquired from BCC and control followed by qRT-PCR validation. Bioinformatical target prediction revealed multiple MREs. Sequence analysis was performed concerning MRE interaction potential with the BCC miRNome. We identified 23 upregulated and 48 downregulated circRNAs with 354 miRNA response elements capable of sequestering miRNA target sequences of the BCC miRNome. The present study describes a variety of circRNAs that are potentially involved in the molecular pathogenesis of BCC.

  6. Limitations of BCC_CSM's ability to predict summer precipitation over East Asia and the Northwestern Pacific

    NASA Astrophysics Data System (ADS)

    Gong, Zhiqiang; Dogar, Muhammad Mubashar Ahmad; Qiao, Shaobo; Hu, Po; Feng, Guolin

    2017-09-01

    This study examines the ability of the Beijing Climate Center Climate System Model (BCC_CSM) to predict the meridional pattern of summer precipitation over East Asia-Northwest Pacific (EA-NWP) and its East Asia-Pacific (EAP) teleconnection. The differences of summer precipitation modes of the empirical orthogonal function and the bias of atmospheric circulations over EA-NWP are analyzed to determine the reason for the precipitation prediction errors. Results indicate that the BCC_CSM could not reproduce the positive-negative-positive meridional tripole pattern from south to north that differs markedly from that observed over the last 20 years. This failure can be attributed to the bias of the BCC_CSM hindcasts of the summer EAP teleconnection and the low predictability of 500 hPa at the mid-high latitude lobe of the EAP. Meanwhile, the BCC_CSM hindcasts' deficiencies of atmospheric responses to SST anomalies over the Indonesia maritime continent (IMC) resulted in opposite and geographically shifted geopotential anomalies at 500 hPa as well as wind and vorticity anomalies at 850 hPa, rendering the BCC_CSM unable to correctly reproduce the EAP teleconnection pattern. Understanding these two problems will help further improve BCC_CSM's summer precipitation forecasting ability over EA-NWP.

  7. Burkholderia cepacia complex in cystic fibrosis in a Brazilian reference center.

    PubMed

    Dentini, Priscila; Marson, Fernando Augusto Lima; Bonadia, Luciana Cardoso; Bertuzzo, Carmen Sílvia; Ribeiro, Antônio Fernando; Levy, Carlos Emílio; Ribeiro, José Dirceu

    2017-12-01

    The Burkholderia cepacia complex (BCC) can cause a severe decline in lung function in cystic fibrosis (CF). Our objective was to determine the BCC prevalence and to evaluate its clinical impact on CF. Clinical and laboratory variables were determined for CF patients with BCC (Group-A = 50 patients) and without BCC (Group-B = 134 patients). The microorganisms were identified by biochemical tests, the Vitek2 ® Compact test, recA-PCR and recA-nested-PCR with species-specific primers and DNA sequencing. The patients were evaluated by the Shwachman-Kulczycki score (SKCS), Bhalla score (BS), spirometry and body mass index (BMI). The BCC prevalence was 22.5%. The most common species were Burkholderia multivorans (30%), Burkholderia cepacia (24%), Burkholderia cenocepacia IIIA (10%), B. cenocepacia IIIB (2%) and Burkholderia vietnamiensis (2%). There was difference between the groups in nutritional status (p = 0.02) and general activity (p = 0.026). There was difference in total BS points (p = 0.04) and the following parameters: bronchiectasis severity (p = 0.007), peribronchial thickening (p = 0.013), bronchiectasis extent (p = 0.01) and general aspects of the affected bronchial zone (p = 0.02). The respiratory disorder classifications were as follows: obstructive-4.8% (Group-A) and 23.8% (Group-B); restrictive-9.5% (Group-A and Group-B); obstructive + restrictive-19% (Group-A) and 1.6% (Group-B); and obstructive + restrictive with a decreased forced expiratory flow-47.6% (Group-A) and 30.2% (Group-B) (p = 0.02). Nutritional status was a minor contributing factor to weight, height and BMI in the Group-A (p = 0.02). The BCC prevalence, particularly the prevalence of B. multivorans, was higher in this study. The SKCS, BS, spirometry and nutritional status results showed that BCC has a negative impact on clinical status. Phenotypic methods are useful for the identification of presumptive BCC. The Vitek2 ® Compact test showed accuracy in BCC identification. PCR, nested-PCR, and recA sequencing showed specificity in BCC species identification.

  8. Mechanical properties of Fe rich Fe-Si alloys: ab initio local bulk-modulus viewpoint

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Somesh Kr; Kohyama, Masanori; Tanaka, Shingo; Shiihara, Yoshinori; Saengdeejing, Arkapol; Chen, Ying; Mohri, Tetsuo

    2017-11-01

    Fe-rich Fe-Si alloys show peculiar bulk-modulus changes depending on the Si concentration in the range of 0-15 at.%Si. In order to clarify the origin of this phenomenon, we have performed density-functional theory calculations of supercells of Fe-Si alloy models with various Si concentrations. We have applied our recent techniques of ab initio local energy and local stress, by which we can obtain a local bulk modulus of each atom or atomic group as a local constituent of the cell-averaged bulk modulus. A2-phase alloy models are constructed by introducing Si substitution into bcc Fe as uniformly as possible so as to prevent mutual neighboring, while higher Si concentrations over 6.25 at.%Si lead to contacts between SiFe8 cubic clusters via sharing corner Fe atoms. For 12.5 at.%Si, in addition to an A2 model, we deal with partial D03 models containing local D03-like layers consisting of edge-shared SiFe8 cubic clusters. For the cell-averaged bulk modulus, we have successfully reproduced the Si-concentration dependence as a monotonic decrease until 11.11 at.%Si and a recovery at 12.5 at.%Si. The analysis of local bulk moduli of SiFe8 cubic clusters and Fe regions is effective to understand the variations of the cell-averaged bulk modulus. The local bulk moduli of Fe regions become lower for increasing Si concentration, due to the suppression of bulk-like d-d bonding states in narrow Fe regions. For higher Si concentrations till 11.11 at.%Si, corner-shared contacts or 1D chains of SiFe8 clusters lead to remarkable reduction of local bulk moduli of the clusters. At 12 at.%Si, on the other hand, two- or three-dimensional arrangements of corner- or edge-shared SiFe8 cubic clusters show greatly enhanced local bulk moduli, due to quite different bonding nature with much stronger p-d hybridization. The relation among the local bulk moduli, local electronic and magnetic structures, and local configurations such as connectivity of SiFe8 clusters and Fe-region sizes has been analyzed. The ab initio local stress has opened the way for obtaining accurate local elastic properties reflecting local valence-electron behaviors.

  9. Burkholderia cepacia complex infection in an Adult Cystic Fibrosis unit in Madrid.

    PubMed

    Correa-Ruiz, Ana; Girón, Rosa; Buendía, Buenaventura; Medina-Pascual, M José; Valenzuela, Claudia; López-Brea, Manuel; Sáez-Nieto, Juan Antonio

    2013-12-01

    Burkholderia cepacia complex have emerged as significant pathogens in cystic fibrosis (CF) patients due to the risk of cepacia syndrome and the innate multi-resistance of the microorganisms to antibiotics. The aim of this study was to describe the antimicrobial susceptibility profiles, the genotypes and subtypes of BCC, and the clinical evolution of CF patients with BCC. The lung function and Brasfield and Shwachman score were assessed in 12 patients. BCC were identified and susceptibility was studied by MicroScan (Siemens). Species and genospecies of BCC were confirmed by molecular methods in a Reference Centre (Majadahonda). BCC were identified in 12 of 70 patients (17.1%) over a ten year period. The mean age to colonization by BCC was 24.4 years (SD: 7.71). B. cenocepacia was isolated in 4 patients (33.3%), B. contaminans was isolated in 3 patients (25%), both B. vietnamiensis and B. stabilis were isolated in 2 patients (16.7%), and B. cepacia, B. multivorans and B. late were isolated in one patient (8.3%). Among the B. cenocepacia, subtype IIIa was identified in two strains, and subtype IIIb was identified in the other two strains. There was susceptibility to meropenem in 90% of BCC, 80% to cotrimoxazole, 60% to minocycline, 50% to ceftazidime, and 40% to levofloxacin. B. cenocepacia was the most prevalent species among the BCC isolated in CF adult patients, and subtypes IIIa and IIIb were identified in the 50% of the strains. Meropenem and cotrimoxazole showed the best activity. Copyright © 2012 Elsevier España, S.L. All rights reserved.

  10. Single-Nucleotide Polymorphisms of the MSH2 and MLH1 Genes, Potential Molecular Markers for Susceptibility to the Development of Basal Cell Carcinoma in the Brazilian Population.

    PubMed

    da Silva Calixto, Poliane; Lopes, Otávio Sérgio; Dos Santos Maia, Mayara; Herrero, Sylvia Satomi Takeno; Longui, Carlos Alberto; Melo, Cynthia Germoglio Farias; de Carvalho Filho, Ivan Rodrigues; Soares, Leonardo Ferreira; de Medeiros, Arnaldo Correia; Delatorre, Plínio; Khayat, André Salim; Burbano, Rommel Rodriguez; Lima, Eleonidas Moura

    2018-07-01

    Basal cell carcinoma - BCC is considered a multifactorial neoplasm involving genetic, epigenetic and environmental factors. Where UVB radiation is considered the main physical agent involved in BCC carcinogenesis. The Brazil and state of Paraíba are exposed to high levels of UVB rays. The mismatch repair - MMR is important DNA repair mechanisms to maintain replication fidelity. Therefore, single nucleotide polymorphisms (SNPs) in genes encoding proteins involved in MMR may be potential molecular markers of susceptibility to BCC. The objective of this study was to evaluate and describe for the first time the SNPs rs560246973, rs2303425 and rs565410865 and risk of developing BCC. The present study analyzed 100 samples of paraffin-embedded tissue from patients with histopathological diagnosis of BCC and 100 control samples. The results were obtained by genotyping method, Dideoxy Unique Allele Specific - PCR (DSASP). The SNPs rs2303425 were not associated with Basal Cell Carcinoma. However, the SNPs rs560246973 and rs565410865 was shown to be associated with the development of BCC when compared to control samples (P < 0.0001). The SNPs rs565410865 was also statistical significance between the genotypes of and the age group (p = 0.0027) and tumor location (p = 0,0191). The result suggests that SNPs rs2303425 and rs565410865 are associated with susceptibility to the development of BCC in the Brazilian population and may be considered as potential molecular markers for BCC.

  11. Burkholderia cepacia complex in cystic fibrosis in the post-epidemic period: multilocus sequence typing-based approach.

    PubMed

    Fila, Libor; Dřevínek, Pavel

    2017-11-01

    Cystic fibrosis (CF) patients in the Czech Republic suffered in the late 1990s from an epidemic with ST32 strain of Burkholderia cepacia complex (Bcc). Cohort segregation of Bcc and of ST32 positive patients was introduced in 1999 and 2002, respectively. We performed a study to evaluate the molecular epidemiology of Bcc infection after implementation of these infection control measures. Patients attending the Prague CF adult Centre from 2000 to 2015 were included in the present study. Demographic data and microbial statuses were collected from patient records. All Bcc isolates were analyzed using multilocus sequence typing (MLST). The prevalences of epidemic strain ST32 and of other Bcc strains were calculated. Ninety out of 227 CF patients were infected with Bcc during the study period. The prevalence of ST32 cases significantly decreased from 46.5% in 2000-2001 to 10.4% in 2014-2015 (P < 0.001) due to occurrence of only one new case in 2003, as well as to the death of 72% of ST32-infected patients. Conversely, there was a significant increase in prevalence of other Bcc strains, which rose from 0 to 14.9% (P = 0.015) and of transient infections. A micro-epidemic of infection with ST630 strain was observed in 2014 in lung transplant patients hospitalized in intensive care unit. The prevalence of epidemic strain ST32 decreased, whereas that of non-clonal strains of Bcc increased. Routine use of MLST allowed early detection of new and potentially epidemic strains.

  12. Bellevue Community College Community Impact Report, Fall 2002.

    ERIC Educational Resources Information Center

    Bellevue Community Coll., WA.

    This document presents data pertaining to the impact of Bellevue Community College (BCC), Washington, on the surrounding community. The study examines both short- and long-term impacts of BCC on the larger community. Short-term impacts include the revenue and expenditures for which BCC is responsible, which for 2001-02 totaled $86,431,309. During…

  13. 22 CFR 41.33 - Nonresident alien Canadian border crossing identification card (BCC).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 22 Foreign Relations 1 2012-04-01 2012-04-01 false Nonresident alien Canadian border crossing... Nonresident alien Canadian border crossing identification card (BCC). (a) Validity of Canadian BCC. A Canadian....122, or if the consular or immigration officer determines that the alien to whom any such document was...

  14. 22 CFR 41.33 - Nonresident alien Canadian border crossing identification card (BCC).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 22 Foreign Relations 1 2011-04-01 2011-04-01 false Nonresident alien Canadian border crossing... Nonresident alien Canadian border crossing identification card (BCC). (a) Validity of Canadian BCC. A Canadian....122, or if the consular or immigration officer determines that the alien to whom any such document was...

  15. 22 CFR 41.33 - Nonresident alien Canadian border crossing identification card (BCC).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 22 Foreign Relations 1 2013-04-01 2013-04-01 false Nonresident alien Canadian border crossing... Nonresident alien Canadian border crossing identification card (BCC). (a) Validity of Canadian BCC. A Canadian....122, or if the consular or immigration officer determines that the alien to whom any such document was...

  16. 22 CFR 41.33 - Nonresident alien Canadian border crossing identification card (BCC).

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 22 Foreign Relations 1 2014-04-01 2014-04-01 false Nonresident alien Canadian border crossing... Nonresident alien Canadian border crossing identification card (BCC). (a) Validity of Canadian BCC. A Canadian....122, or if the consular or immigration officer determines that the alien to whom any such document was...

  17. The Importance of Dispersal for Bacterial Community Composition and Functioning

    PubMed Central

    Lindström, Eva S.; Östman, Örjan

    2011-01-01

    We conducted a metacommunity experiment to investigate the role of dispersal for bacterial community composition (BCC) and function of freshwater bacteria. Bacteria were dispersed from a common source pool into three different lake communities in their natural lake water. The experiment was conducted in dialysis bags to enable a decoupling between a change in the local environment and dispersal. BCC was determined by terminal restriction fragment length polymorphism (tRFLP) of the 16S rRNA gene. We show that the greatest changes in BCC occurred between 10% and 43% of dispersal of standing stock per day. Functioning, measured as growth rate, was also affected by dispersal in all three communities but the qualitative pattern differed between communities, sometimes showing a hump-shaped relationship to dispersal and sometimes decreasing with increasing dispersal. In all waters, functioning was related to BCC. Our results show that dispersal does affect BCC and functioning but that high dispersal rates are needed. Further, the effect of dispersal on BCC and function seem to depend on the quality of the habitat to which bacteria disperse into. PMID:21998714

  18. Protein expression of MMP-2 and MT1-MMP in actinic keratosis, squamous cell carcinoma of the skin, and basal cell carcinoma.

    PubMed

    de Oliveira Poswar, Fabiano; de Carvalho Fraga, Carlos Alberto; Gomes, Emisael Stênio Batista; Farias, Lucyana Conceição; Souza, Linton Wallis Figueiredo; Santos, Sérgio Henrique Souza; Gomez, Ricardo Santiago; de-Paula, Alfredo Maurício Batista; Guimarães, André Luiz Sena

    2015-02-01

    Squamous cell carcinoma (SCC) and basal cell carcinoma (BCC) are 2 skin neoplasms with distinct potentials to invasion and metastasis. Actinic keratosis (AK) is a precursor lesion of SCC. Immunohistochemistry was performed to evaluate the expression of MMP-2 and MT1-MMP in samples of BCC (n = 29), SCC (n = 12), and AK (n = 13). The ratio of positive cells to total cells was used to quantify the staining. Statistical significance was considered under the level P < .05. We found a higher expression of MMP-2 in tumor stroma and parenchyma of SCC as compared to BCC. The expression of this protein was also similar between SCC and its precursor actinic keratosis, and it was higher in the stroma of high-risk BCC when compared to low-risk BCC. MT1-MMP, which is an activator of MMP-2, was similarly expressed in all groups. Our results suggest that MMP-2 expression may contribute to the distinct invasive patterns seen in SCC and BCC. © The Author(s) 2014.

  19. No Evidence of Human Papilloma Virus Infection in Basal Cell Carcinoma

    PubMed Central

    Nahidi, Yalda; Meibodi, Naser Tayyebi; Meshkat, Zahra; Esmaili, Habibollah; Jahanfakhr, Samaneh

    2015-01-01

    Background: Basal cell carcinoma (BCC) is the most common skin cancer among whites, and several risk factors have been discussed in itsdevelopment and progress. Detection of human papilloma virus (HPV) deoxyribonucleic acid (DNA) BCCs in some studies suggests that the virus may play a role in the pathogenesis of this disease. Several molecular studies showed conflicting reports. Aims: The purpose of this study was to investigate the association between HPV and BCC using polymerase chain reaction (PCR). Materials and Methods: HPV DNA detection was done for 42 paraffin-embedded tissue specimens of BCC and 42 normal skin samples around the lesions by PCR using GP5+/GP6+ primers. Results: HPV DNA was not found in any of the 42 samples of BCC, and only one normal skin sample around the lesions was positive for HPV DNA by PCR. Conclusion: In this study, no statistically significant difference was seen between the presence of HPV DNA in BCC and normal skin around the lesion, and HPV is not likely to have an important role in pathogenesis of BCC. PMID:26288402

  20. First-principles study of intermetallic phase stability in the ternary Ti-Al-Nb alloy system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asta, M.; Ormeci, A.; Wills, J.M.

    The stability of bcc-based phases in the Ti-Al-Nb alloy system has been studied from first-principles using a combination of ab-initio total energy and cluster variation method (CVM) calculations. Total energies have been computed for 18 binary and ternary bcc superstructures in order to determine low temperature ordering tendencies. From the results of these calculations a set of effective cluster interaction parameters have been derived. These interaction parameters are required input for CVM computations of alloy thermodynamic properties. The CVM has been used to study the effect of composition on finite-temperature ordering tendencies and site preferences for bcc-based phases. Strong orderingmore » tendencies are observed for binary Nb-Al and Ti-Al bcc phases as well as for ternary alloys with compositions near Ti{sub 2}AlNb. For selected superstructures we have also analyzed structural stabilities with respect to tetragonal distortions which transform the bcc into an fcc lattice. Instabilities with respect to such distortions are found to exist for binary but not ternary bcc compounds.« less

  1. Molecular Dynamics Simulations of Grain Boundary and Bulk Diffusion in Metals.

    NASA Astrophysics Data System (ADS)

    Plimpton, Steven James

    Diffusion is a microscopic mass transport mechanism that underlies many important macroscopic phenomena affecting the structural, electrical, and mechanical properties of metals. This thesis presents results from atomistic simulation studies of diffusion both in bulk and in the fast diffusion paths known as grain boundaries. Using the principles of molecular dynamics single boundaries are studied and their structure and dynamic properties characterized. In particular, tilt boundary bicrystal and bulk models of fcc Al and bcc alpha-Fe are simulated. Diffusion coefficients and activation energies for atomic motion are calculated for both models and compared to experimental data. The influence of the interatomic pair potential on the diffusion is studied in detail. A universal relation between the melting temperature that a pair potential induces in a simulated bulk model and the potential energy barrier height for atomic hopping is derived and used to correlate results for a wide variety of pair potentials. Using these techniques grain boundary and bulk diffusion coefficients for any fcc material can be estimated from simple static calculations without the need to perform more time-consuming dynamic simulations. The influences of two other factors on grain boundary diffusion are also studied because of the interest of the microelectronics industry in the diffusion related reliability problem known as electromigration. The first factor, known to affect the self diffusion rate of Al, is the presence of Cu impurity atoms in Al tilt boundaries. The bicrystal model for Al is seeded randomly with Cu atoms and a simple hybrid Morse potential used to model the Al-Cu interaction. While some effect due to the Cu is noted, it is concluded that pair potentials are likely an inadequate approximation for the alloy system. The second factor studied is the effect of the boundary orientation angle on the diffusion rate. Symmetric bcc Fe boundaries are relaxed to find optimal structures and their diffusion coefficients calculated. Good agreement is found with the dislocation pipe model for tilt boundary diffusion.

  2. An x-ray diffraction study of microstructural deformation induced by cyclic loading of selected steel

    NASA Astrophysics Data System (ADS)

    Fourspring, Patrick Michael

    X-ray double crystal diffractometry (XRDCD) and X-ray scanning diffractometry (XRSD) were used to assess cyclic microstructural deformation in a face centered cubic (fcc) steel (AISI304) and a body centered cubic (bcc) steel (SA508 class 2). The objectives of the investigation were to determine if X-ray diffraction could be used effectively to monitor cyclic microstructural deformation in polycrystalline Fe alloys and to study the distribution of the microstructural deformation induced by cyclic loading in these alloys. The approach used in the investigation was to induce fatigue damage in a material and to characterize the resulting microstructural deformation at discrete fractions of the fatigue life of the material. Also, characterization of microstructural deformation was carried out to identify differences in the accumulation of damage from the surface to the bulk, focusing on the following three regions: near surface (0-10 mum), subsurface (10-300 mum), and bulk. Characterization of the subsurface region was performed only on the AISI304 material because of the limited availability of the SA508 material. The results from the XRDCD data indicate a measurable change induced by fatigue from the initial state to subsequent states of both the AISI304 and the SA508 materials. The results from the XRSD data show similar but less coherent trends than the results from the XRDCD data. Therefore, the XRDCD technique was shown to be sensitive to the microstructural deformation caused by fatigue in steels; thus, the technique can be used to monitor fatigue damage in steels. In addition, for the AISI304 material, the level of cyclic microstructural deformation in the bulk material was found to be greater than the level in the near surface material. In contrast, previous investigations have shown that the deformation is greater in the near surface than the bulk for Al alloys and bcc Fe alloys.

  3. Geographic Clusters of Basal Cell Carcinoma in a Northern California Health Plan Population.

    PubMed

    Ray, G Thomas; Kulldorff, Martin; Asgari, Maryam M

    2016-11-01

    Rates of skin cancer, including basal cell carcinoma (BCC), the most common cancer, have been increasing over the past 3 decades. A better understanding of geographic clustering of BCCs can help target screening and prevention efforts. Present a methodology to identify spatial clusters of BCC and identify such clusters in a northern California population. This retrospective study used a BCC registry to determine rates of BCC by census block group, and used spatial scan statistics to identify statistically significant geographic clusters of BCCs, adjusting for age, sex, and socioeconomic status. The study population consisted of white, non-Hispanic members of Kaiser Permanente Northern California during years 2011 and 2012. Statistically significant geographic clusters of BCC as determined by spatial scan statistics. Spatial analysis of 28 408 individuals who received a diagnosis of at least 1 BCC in 2011 or 2012 revealed distinct geographic areas with elevated BCC rates. Among the 14 counties studied, BCC incidence ranged from 661 to 1598 per 100 000 person-years. After adjustment for age, sex, and neighborhood socioeconomic status, a pattern of 5 discrete geographic clusters emerged, with a relative risk ranging from 1.12 (95% CI, 1.03-1.21; P = .006) for a cluster in eastern Sonoma and northern Napa Counties to 1.40 (95% CI, 1.15-1.71; P < .001) for a cluster in east Contra Costa and west San Joaquin Counties, compared with persons residing outside that cluster. In this study of a northern California population, we identified several geographic clusters with modestly elevated incidence of BCC. Knowledge of geographic clusters can help inform future research on the underlying etiology of the clustering including factors related to the environment, health care access, or other characteristics of the resident population, and can help target screening efforts to areas of highest yield.

  4. Evolution of structural and magnetic properties of amorphous CoFeB film with thermal annealing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, Ranjeeta; Gupta, Ajay; Gupta, Mukul

    2013-08-14

    Evolution of structural and magnetic properties of amorphous Co{sub 68}Fe{sub 14}B{sub 18} thin film with thermal annealing has been studied. Initially, the film exhibits a structural relaxation as evidenced by annihilation of excess free volume and an increase in topological short range order. Annealing at 473 K results in precipitation of primary phase followed by formation of boride phase at a still higher temperature of 598 K. Iron preferentially precipitates out in the primary phase, resulting in the formation of bcc Co{sub 58}Fe{sub 41}. This suggests an affinity of Co towards B. Such affinity between Co and B is evidencedmore » even in the as-deposited film, using hard x-ray photoelectron spectroscopy (HAXPES) measurements. As-deposited film exhibits an in-plane uniaxial magnetic anisotropy which disappears at a temperature well beyond crystallization temperature, suggesting that the origin of anisotropy is mainly a chemical short range order in the system. Variation in the coercivity with thermal annealing can be understood in terms of random anisotropy model. Precise measurement of Fe self-diffusion using neutron reflectivity shows that diffusion length associated with annihilation of excess free volume in the film is about 0.5 nm. This agrees with the length scale of structural fluctuations in amorphous alloys. Secondary ion mass spectrometry measurements show that thermal annealing results in depletion of B in the region of the interface with the substrate, with associated faster Fe diffusion in this region. This faster diffusion of Fe may be a possible cause of preferential crystallization of the film in the interfacial region as seen in some earlier studies.« less

  5. Phase relations in the Fe-FeSi system at high pressures and temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fischer, Rebecca A.; Campbell, Andrew J.; Reaman, Daniel M.

    2016-07-29

    The Earth's core is comprised mostly of iron and nickel, but it also contains several weight percent of one or more unknown light elements, which may include silicon. Therefore it is important to understand the high pressure, high temperature properties and behavior of alloys in the Fe–FeSi system, such as their phase diagrams. We determined melting temperatures and subsolidus phase relations of Fe–9 wt% Si and stoichiometric FeSi using synchrotron X-ray diffraction at high pressures and temperatures, up to ~200 GPa and ~145 GPa, respectively. Combining this data with that of previous studies, we generated phase diagrams in pressure–temperature, temperature–composition,more » and pressure–composition space. We find the B2 crystal structure in Fe–9Si where previous studies reported the less ordered bcc structure, and a shallower slope for the hcp+B2 to fcc+B2 boundary than previously reported. In stoichiometric FeSi, we report a wide B2+B20 two-phase field, with complete conversion to the B2 structure at ~42 GPa. The minimum temperature of an Fe–Si outer core is 4380 K, based on the eutectic melting point of Fe–9Si, and silicon is shown to be less efficient at depressing the melting point of iron at core conditions than oxygen or sulfur. At the highest pressures reached, only the hcp and B2 structures are seen in the Fe–FeSi system. We predict that alloys containing more than ~4–8 wt% silicon will convert to an hcp+B2 mixture and later to the hcp structure with increasing pressure, and that an iron–silicon alloy in the Earth's inner core would most likely be a mixture of hcp and B2 phases.« less

  6. Resonance Raman of BCC and normal skin

    NASA Astrophysics Data System (ADS)

    Liu, Cheng-hui; Sriramoju, Vidyasagar; Boydston-White, Susie; Wu, Binlin; Zhang, Chunyuan; Pei, Zhe; Sordillo, Laura; Beckman, Hugh; Alfano, Robert R.

    2017-02-01

    The Resonance Raman (RR) spectra of basal cell carcinoma (BCC) and normal human skin tissues were analyzed using 532nm laser excitation. RR spectral differences in vibrational fingerprints revealed skin normal and cancerous states tissues. The standard diagnosis criterion for BCC tissues are created by native RR biomarkers and its changes at peak intensity. The diagnostic algorithms for the classification of BCC and normal were generated based on SVM classifier and PCA statistical method. These statistical methods were used to analyze the RR spectral data collected from skin tissues, yielding a diagnostic sensitivity of 98.7% and specificity of 79% compared with pathological reports.

  7. Basal cell carcinoma of the skin (part 1): epidemiology, pathology and genetic syndromes.

    PubMed

    Correia de Sá, Tiago Ribeiro; Silva, Roberto; Lopes, José Manuel

    2015-11-01

    Basal cell carcinoma (BCC) is the most common skin cancer worldwide with increasing incidence, but difficult to assess due to the current under registration practice. Despite the low mortality rate, BCC is a cause of great morbidity and an economic burden to health services. There are several risk factors that increase the risk of BCC and partly explain its incidence. Low-penetrance susceptibility alleles, as well as genetic alterations in signaling pathways, namely SHH pathway, also contribute to the carcinogenesis. BCC associate with several genetic syndromes, of which basal cell nevus syndrome is the most common.

  8. Molecular dynamics study of melting and fcc-bcc transitions in Xe.

    PubMed

    Belonoshko, A B; Ahuja, R; Johansson, B

    2001-10-15

    We have investigated the phase diagram of Xe over a wide pressure-temperature range by molecular dynamics. The calculated melting curve is in good agreement with earlier experimental data. At a pressure of around 25 GPa and a temperature of about 2700 K we find a triple fcc-bcc liquid point. The calculated fcc-bcc boundary is in nice agreement with the experimental points, which, however, were interpreted as melting. This finding suggests that the transition from close-packed to bcc structure might be more common at high pressure and high temperature than was previously anticipated.

  9. Fast evaluation of 69 basal cell carcinomas with ex vivo fluorescence confocal microscopy: criteria description, histopathological correlation, and interobserver agreement.

    PubMed

    Bennàssar, Antoni; Carrera, Cristina; Puig, Susana; Vilalta, Antoni; Malvehy, Josep

    2013-07-01

    Fluorescence confocal microscopy (FCM) represents a first step toward a rapid "bedside pathology" in the Mohs surgery setting and in other fields of general pathology. To describe and validate FCM criteria for the main basal cell carcinoma (BCC) subtypes and to demonstrate the overall agreement with classic pathologic analysis of hematoxylin-eosin-stained samples. DESIGN A total of 69 BCCs from 66 patients were prospectively imaged using ex vivo FCM. Confocal mosaics were evaluated in real time and compared with classic pathologic analysis. Department of Dermatology, Hospital Clínic of Barcelona, Barcelona, Spain, between November 2010 and July 2011. Patients with BCC attending the Mohs Surgery Unit. Presence or absence of BCC and histological subtype (superficial, nodular, and infiltrating) in the confocal mosaics. Eight criteria for BCC were described, evaluated, and validated. Although there were minor differences among BCC subtypes, the most BCC-defining criteria were peripheral palisading, clefting, nuclear pleomorphism, and presence of stroma. These criteria were validated with independent observers (κ values >0.7 [corrected] for most criteria). We herein propose, describe, and validate FCM criteria for BCC diagnosis. Fluorescence confocal microscopy is an attractive alternative to histopathologic analysis of frozen sections during Mohs surgery because large areas of freshly excised tissue can be assessed in real time without the need for tissue processing while minimizing labor and costs.

  10. Cytokeratin 20 expression in basaloid follicular hamartoma and infundibulocystic basal cell carcinoma.

    PubMed

    Honarpisheh, Hedieh; Glusac, Earl J; Ko, Christine J

    2014-12-01

    Tumors with similar or identical histopathologic features have been termed basaloid follicular hamartoma (BFH) or infundibulocystic basal cell carcinoma (BCC). BCC typically lacks immunoreactivity with cytokeratin 20 (CK20) and pleckstrin homology-like domain, family A, member 1 protein (PHLDA1). A series of BFH and infundibulocystic BCC were investigated to determine the pattern of CK20 and PHLDA1 labeling in these lesions. Thirty-six samples of BFH (n = 14) and infundibulocystic BCC (n = 22) were collected. CK20 and PHLDA1 staining was performed and evaluated. All the lesions were small (average of 3 mm), well circumscribed, and composed of basaloid to squamoid cells arranged in islands resembling ramifying rootlets with interspersed horn cysts. CK20-positive cells were present in all 36 cases (average, 22/mm(2)), throughout the tumor, including deeper portions, irrespective of original diagnosis. Six of thirty cases (20%; 5 infundibulocystic BCC, 1 BFH) were focally PHLDA1 positive. Findings on hematoxylin and eosin staining and those of CK20 staining in BFH and infundibulocystic BCC were similar, and in most cases were indistinguishable. The CK20 labeling was similar to that of trichoepithelioma. The findings add a degree of support to the argument that BFH and infundibulocystic BCC represent the same lesion and, further, a benign one. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. [Human papilloma virus infection in basal cell carcinoma of the skin: a systematic review and meta-analysis study].

    PubMed

    Ramezani, Mazaher; Sadeghi, Masoud

    Human papillomaviruses (HPVs) are a large and ubiquitous group of viruses that some of them have been suggested as a co-factor in the development of non-melanoma skin cancers. The aim of this meta-analysis study was to evaluate HPVs' prevalence in basal cell carcinoma (BCC) of the skin and the risk of them in the BCC patients compared with the healthy controls. Five databases were searched from January 1980 to February 2017. A random-effects meta-analysis was done with the event rate (ER) for the prevalence of HPVs and odds ratio (OR) for estimation of the incidence of HPVs. Out of 1087 studies, 45 studies were included in the review. The pooled analysis demonstrated that the incidence of γ-HPV was effective in the BCC patients compared with the healthy controls [OR = 1.97; 95% CI: 1.52-2.55; p < 0.00001], but not for α-HPV, β-HPV and epidermodysplasia verruciformis (EV)-HPV (p > 0.05). The pooled ER of incidence of β1-HPV in the BCC patients was z3.3% and for β2-HPV in BCC patients was 44.2%. In conclusion, this meta-analysis showed that probably the risk of γ-HPV was more on BCC patients and also the rate of γ-HPV was higher than α-, β- and EV-HPVs in the BCC patients.

  12. Metastable bcc mischmetal-magnesium alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sabariz, A.L.R.

    1989-02-01

    The bcc phase in the MM-Mg system can be metastably retained at room temperature for magnesium composition within the range 16 at.% - 20 at.%. The retention of a lower composition was restricted by quenching rate and at higher concentrations by intermetallic compound precipitation. The lattice parameter for the pure bcc mischmetal phase was determined by extrapolation. The value obtained (a/sub E/ = 4.131 /angstrom/) was in good agreement with the theoretical value (a/sub t/ = 4.156 /angstrom/). Magnetic susceptibility data suggested that bcc mischmetal-magnesium alloys underwent a change from paramagnetic to antiferromagnetic behavior on cooling at /approximately/20 K, independentmore » of magnesium composition. The value found for the magnetic effective moment per gram-atom-magnetic-rare earth of each bcc MM-Mg alloy examined (MM - 16 Mg, MM - 18 Mg and MM - 20 Mg) was found to be constant (p/sub eff/ approx. 1.62 ..mu../sub B/), independent of the magnesium composition. The observed Curie-Weiss temperature values decreasing with the magnesium content increasing were due to magnetic dilution. The equilibrium reaction bcc ..-->.. dhcp + MMMg presented an undercooling effect of /approximately/40/degree/C around the eutectoid composition (/approximately/17 at.% Mg). The sluggish character of this reaction was considered the strongest effect for the bcc structure retention in the mischmetal-magnesium system. 16 refs., 27 figs.« less

  13. Metal-silicate interaction in quenched shock-induced melt of the Tenham L6-chondrite

    NASA Astrophysics Data System (ADS)

    Leroux, Hugues; Doukhan, Jean-Claude; Guyot, François

    2000-07-01

    The metal-silicate microstructures in the shock-induced melt pockets of the Tenham (L6) chondrite have been investigated by analytical transmission electron microscopy. The melt areas, formed under high-pressure, high-temperature dynamic shock conditions, consist of spherical Fe-Ni metal/iron sulfide globules embedded in a silicate glass matrix, showing that the melt was quenched at high cooling rate. The Fe-Ni fraction in the globules is two-phase, composed of a bcc phase (˜5 wt% Ni) and an fcc phase (˜49 wt% Ni), indicating that fractional crystallisation of the metal occurred during the fast cooling. The metal fraction also contains appreciable amounts of non-siderophile elements (mostly Si, Mg and O) suggesting that these elements were trapped in the metal, either as alloying components or as tiny silicate or oxide inclusions. In the iron sulfide fraction, the Na content is high (>3 wt%), suggesting chalcophile behaviour for Na during the shock event. The composition of the silicate glass reflects non-equilibrium melting of several silicate phases (olivine, pyroxene and plagioclase). Moreover, the FeO content is high compared to the FeO contents of the unmelted silicates. Some Fe redistribution took place between metal and silicate liquids during the shock event. The silicate glass also contains tiny iron sulfide precipitates which most probably originated by exsolution during quench, suggesting that the molten silicate retained significant amounts of S, dissolved at high temperature and high pressure. Based on these observations, we suggest that non-equilibrium phenomena may be important in determining the compositions of metal and silicate reservoirs during their differentiation.

  14. Superconducting and Magnetic Properties of Vanadium/iron Superlattices.

    NASA Astrophysics Data System (ADS)

    Wong, Hong-Kuen

    A novel ultrahigh vacuum evaporator was constructed for the preparation of superlattice samples. The thickness control was much better than an atomic plane. With this evaporator we prepared V/Fe superlattice samples on (0001) sapphire substrates with different thicknesses. All samples showed a good bcc(110) structure. Mossbauer experiments showed that the interface mixing extended a distance of about one atomic plane indicating an almost rectangular composition profile. Because of this we were able to prepare samples with layer thickness approaching one atomic plane. Even with ultrathin Fe layers, the samples are ferromagnetic, at least at lower temperatures. Superparamagnetism and spin glass states were not seen. In the absence of an external field, the magnetic moments lie close to the film plane. In addition to this shape anisotropy, there is some uniaxial anisotropy. No magnetic dead layers have been observed. The magnetic moments within the Fe layers vary little with the distance from the interfaces. At the interfaces the Fe moment is reduced and an antiparallel moment is induced on the vanadium atoms. It is observed that ultrathin Fe layers behave in a 2D fashion when isolated by sufficiently thick vanadium layers; however, on thinning the vanadium layers, a magnetic coupling between the Fe layers has been observed. We also studied the superconducting properties of V/Fe sandwiches and superlattices. In both cases, the Fe layer, a strong pair-breaker, suppresses the superconducting transition temperature consistent with the current knowledge of the magnetic proximity effect. For the sandwiches with thin (thick) vanadium layers, the temperature dependence of the upper critical fields is consistent with the simple theory for a 2D (3D) superconductor. For the superlattices, when the vanadium layer is on the order of the BCS coherence length and the Fe layer is only a few atomic planes thick, a 2D-3D crossover has been observed in the temperature dependence of the parallel upper critical field. This implies the coexistence of superconductivity and ferromagnetism. We observe three dimensional behavior for thinner Fe layers ((TURN)1 atomic plane) and two dimensional behavior for thicker Fe layers (greater than 10 atomic planes).

  15. Histopathological study of perilesional skin in patients diagnosed with nonmelanoma skin cancer.

    PubMed

    Apalla, Z; Calzavara-Pinton, P; Lallas, A; Argenziano, G; Kyrgidis, A; Crotti, S; Facchetti, F; Monari, P; Gualdi, G

    2016-01-01

    Epidemiological and clinical data suggest that actinic damage to the skin is an important predictor of skin carcinogenesis. To investigate the association of squamous cell carcinoma (SCC) and basal cell carcinoma (BCC) with sun-damage alterations seen by histopathology. In the current prospective study, perilesional skin of SCC or BCC lesions was evaluated for presence of alterations associated with chronic photodamage. Presence of scarring, perineural/perivascular invasion, haemorrhage/haemorrhagic crust, ulceration/erosion and margin involvement were also assessed. Of 6038 included lesions, 4523 (74.9%) were BCCs and 1515 (25.1%) were SCCs. Presence of actinic damage was five times more frequent in SCC than in BCC (OR = 5.29, 95% CI 4.44-6.00, P < 0.001), and diagnosis of SCC was twice as common in photo-exposed than nonphoto-exposed body sites (OR = 2.34, 95% CI 2.03-2.70, P < 0.001). There were twofold higher odds for actinic damage in SCC compared with Bowen disease (OR = 2.015, 95% CI 1.55-2.61, P < 0.001). Assessing the different BCC histological subtypes, we found that nodular BCC had at least twofold higher odds (OR = 2.63, 95% CI 2.09-3.32), infiltrative BCC had 48% higher odds (OR = 1.487, 95% CI 1.18-1.87) and basosquamous BCC had fourfold higher odds (OR = 4.10, 95% CI 3.01-5.57) of having actinic damage compared with superficial BCC. Histological verification of ultraviolet-associated alterations in the perilesional skin in patients with NMSC in our study confirms the aetiopathogenic link between sun exposure and epithelial carcinogenesis on a histopathological basis. This correlation was stronger for SCCs than for BCCs. © 2015 British Association of Dermatologists.

  16. Evaluation of the tropical variability from the Beijing Climate Center's real-time operational global Ocean Data Assimilation System

    NASA Astrophysics Data System (ADS)

    Zhou, Wei; Chen, Mengyan; Zhuang, Wei; Xu, Fanghua; Zheng, Fei; Wu, Tongwen; Wang, Xin

    2016-02-01

    The second-generation Global Ocean Data Assimilation System of the Beijing Climate Center (BCC GODAS2.0) has been run daily in a pre-operational mode. It spans the period 1990 to the present day. The goal of this paper is to introduce the main components and to evaluate BCC GODAS2.0 for the user community. BCC GODAS2.0 consists of an observational data preprocess, ocean data quality control system, a three-dimensional variational (3DVAR) data assimilation, and global ocean circulation model [Modular Ocean Model 4 (MOM4)]. MOM4 is driven by six-hourly fluxes from the National Centers for Environmental Prediction. Satellite altimetry data, SST, and in-situ temperature and salinity data are assimilated in real time. The monthly results from the BCC GODAS2.0 reanalysis are compared and assessed with observations for 1990-2011. The climatology of the mixed layer depth of BCC GODAS2.0 is generally in agreement with that ofWorld Ocean Atlas 2001. The modeled sea level variations in the tropical Pacific are consistent with observations from satellite altimetry on interannual to decadal time scales. Performances in predicting variations in the SST using BCC GODAS2.0 are evaluated. The standard deviation of the SST in BCC GODAS2.0 agrees well with observations in the tropical Pacific. BCC GODAS2.0 is able to capture the main features of El Ni˜no Modoki I and Modoki II, which have different impacts on rainfall in southern China. In addition, the relationships between the Indian Ocean and the two types of El Ni˜no Modoki are also reproduced.

  17. History of Allergy and Atopic Dermatitis in Relation to Squamous Cell and Basal Cell Carcinoma of the Skin

    PubMed Central

    Cheng, Judy; Zens, M. Scot; Duell, Eric; Perry, Ann E.; Chapman, M. Shane; Karagas, Margaret R.

    2015-01-01

    Background Little is known about whether history of allergies and atopy are related to the occurrence of keratinocyte cancers. Thus, we evaluated the association between history of allergies and atopy and the incidence of squamous cell carcinoma (SCC) and early onset basal cell carcinoma (BCC). Methods As part of a population-based case-control study, interviews were conducted with 1,050 residents of New Hampshire (375 early onset BCC cases and 251 controls, 254 SCC cases and 432 controls). Odds ratios (ORs) of SCC and early onset BCC and history of allergy and atopic dermatitis were computed using logistic regression, while controlling for potential confounding factors. Results An overall inverse association was observed between a history of allergy and early onset BCC (OR 0.61, 95% CI 0.38-0.97) but not SCC (OR 1.18, 95% CI 0.78-1.79). Among women, we found reduced ORs of both early onset BCC and for SCC in relation to allergy history (early onset BCC OR 0.53, 95% CI 0.31-0.92 and SCC OR 0.59, 95% CI 0.29-1.19). Among men, we observed no clear association with early onset BCC (OR 0.87, 95% CI 0.39-1.99) and an increased risk of SCC (OR 1.58, 95% CI 0.93-2.69). Conclusion Our findings suggest that allergies and atopy may influence risk of early onset BCC and SCC, and that effects may be gender specific. Impact A deeper understanding of the immune mechanisms underlying allergies and atopy may provide new routes of preventing keratinocyte cancer. PMID:25670807

  18. Morphologic features of basal cell carcinoma using the en-face mode in frequency domain optical coherence tomography.

    PubMed

    von Braunmühl, T; Hartmann, D; Tietze, J K; Cekovic, D; Kunte, C; Ruzicka, T; Berking, C; Sattler, E C

    2016-11-01

    Optical coherence tomography (OCT) has become a valuable non-invasive tool in the in vivo diagnosis of non-melanoma skin cancer, especially of basal cell carcinoma (BCC). Due to an updated software-supported algorithm, a new en-face mode - similar to the horizontal en-face mode in high-definition OCT and reflectance confocal microscopy - surface-parallel imaging is possible which, in combination with the established slice mode of frequency domain (FD-)OCT, may offer additional information in the diagnosis of BCC. To define characteristic morphologic features of BCC using the new en-face mode in addition to the conventional cross-sectional imaging mode for three-dimensional imaging of BCC in FD-OCT. A total of 33 BCC were examined preoperatively by imaging in en-face mode as well as cross-sectional mode in FD-OCT. Characteristic features were evaluated and correlated with histopathology findings. Features established in the cross-sectional imaging mode as well as additional features were present in the en-face mode of FD-OCT: lobulated structures (100%), dark peritumoral rim (75%), bright peritumoral stroma (96%), branching vessels (90%), compressed fibrous bundles between lobulated nests ('star shaped') (78%), and intranodular small bright dots (51%). These features were also evaluated according to the histopathological subtype. In the en-face mode, the lobulated structures with compressed fibrous bundles of the BCC were more distinct than in the slice mode. FD-OCT with a new depiction for horizontal and vertical imaging modes offers additional information in the diagnosis of BCC, especially in nodular BCC, and enhances the possibility of the evaluation of morphologic tumour features. © 2016 European Academy of Dermatology and Venereology.

  19. Patterns and timing of sunlight exposure and risk of basal cell and squamous cell carcinomas of the skin--a case-control study.

    PubMed

    Iannacone, Michelle R; Wang, Wei; Stockwell, Heather G; O'Rourke, Kathleen; Giuliano, Anna R; Sondak, Vernon K; Messina, Jane L; Roetzheim, Richard G; Cherpelis, Basil S; Fenske, Neil A; Rollison, Dana E

    2012-09-20

    Non-melanoma skin cancer (NMSC), comprised of basal (BCC) and squamous (SCC) cell carcinomas, is the most common cancer in Caucasians. Ultraviolet radiation (UVR) exposure is the most important environmental risk factor for NMSC. However, the precise relationship between UVR and the risk of NMSC is complex, and the relationship may differ by skin cancer type. A case-control study was conducted among Florida residents to investigate measures of patterns (intermittent vs. continuous) and timing (childhood vs. adulthood) of sunlight exposure in BCC and SCC. Participants included 218 BCC and 169 SCC cases recruited from a university dermatology clinic and 316 controls with no history of skin or other cancers. A history of blistering sunburn (a measure of intermittent sunlight exposure) was associated with both BCC (OR = 1.96, 95% CI = 1.27-3.03) and SCC (OR = 2.02, 95% CI = 1.22-3.33). Additionally, having a job in the sun for ≥ 3 months for 10 years or longer (a measure of continuous sunlight exposure) was also associated with both BCC and SCC in our study population. With the exception of younger age at first blistering sunburn, measures of younger age at sunlight exposure tended to be associated with SCC, but not BCC risk. Results from the current study suggest that sunlight exposure is associated with both BCC and SCC risk regardless of the pattern in which the exposure was received (i.e. intermittent vs. continuous). The data also suggest that sunlight exposure at a younger age may be more important for SCC but not BCC, however additional studies are needed to further characterize sunlight exposure-response relationships in different types of NMSC.

  20. Patterns and timing of sunlight exposure and risk of basal cell and squamous cell carcinomas of the skin – a case–control study

    PubMed Central

    2012-01-01

    Background Non-melanoma skin cancer (NMSC), comprised of basal (BCC) and squamous (SCC) cell carcinomas, is the most common cancer in Caucasians. Ultraviolet radiation (UVR) exposure is the most important environmental risk factor for NMSC. However, the precise relationship between UVR and the risk of NMSC is complex, and the relationship may differ by skin cancer type. Methods A case–control study was conducted among Florida residents to investigate measures of patterns (intermittent vs. continuous) and timing (childhood vs. adulthood) of sunlight exposure in BCC and SCC. Participants included 218 BCC and 169 SCC cases recruited from a university dermatology clinic and 316 controls with no history of skin or other cancers. Results A history of blistering sunburn (a measure of intermittent sunlight exposure) was associated with both BCC (OR = 1.96, 95% CI = 1.27-3.03) and SCC (OR = 2.02, 95% CI = 1.22-3.33). Additionally, having a job in the sun for ≥3 months for 10 years or longer (a measure of continuous sunlight exposure) was also associated with both BCC and SCC in our study population. With the exception of younger age at first blistering sunburn, measures of younger age at sunlight exposure tended to be associated with SCC, but not BCC risk. Conclusions Results from the current study suggest that sunlight exposure is associated with both BCC and SCC risk regardless of the pattern in which the exposure was received (i.e. intermittent vs. continuous). The data also suggest that sunlight exposure at a younger age may be more important for SCC but not BCC, however additional studies are needed to further characterize sunlight exposure-response relationships in different types of NMSC. PMID:22994655

  1. Downregulation of the Sonic Hedgehog/Gli pathway transcriptional target Neogenin-1 is associated with basal cell carcinoma aggressiveness.

    PubMed

    Casas, Bárbara S; Adolphe, Christelle; Lois, Pablo; Navarrete, Nelson; Solís, Natalia; Bustamante, Eva; Gac, Patricio; Cabané, Patricio; Gallegos, Ivan; Wainwright, Brandon J; Palma, Verónica

    2017-10-13

    Basal Cell Carcinoma (BCC) is one of the most diagnosed cancers worldwide. It develops due to an unrestrained Sonic Hedgehog (SHH) signaling activity in basal cells of the skin. Certain subtypes of BCC are more aggressive than others, although the molecular basis of this phenomenon remains unknown. We have previously reported that Neogenin-1 (NEO1) is a downstream target gene of the SHH/GLI pathway in neural tissue. Given that SHH participates in epidermal homeostasis, here we analyzed the epidermal expression of NEO1 in order to identify whether it plays a role in adult epidermis or BCC. We describe the mRNA and protein expression profile of NEO1 and its ligands (Netrin-1 and RGMA) in human and mouse control epidermis and in a broad range of human BCCs. We identify in human BCC a significant positive correlation in the levels of NEO1 receptor, NTN-1 and RGMA ligands with respect to GLI1 , the main target gene of the canonical SHH pathway. Moreover, we show via cyclopamine inhibition of the SHH/GLI pathway of ex vivo cultures that NEO1 likely functions as a downstream target of SHH/GLI signaling in the skin. We also show how Neo1 expression decreases throughout BCC progression in the K14-Cre:Ptch1 lox/lox mouse model and that aggressive subtypes of human BCC exhibit lower levels of NEO1 than non-aggressive BCC samples. Taken together, these data suggest that NEO1 is a SHH/GLI target in epidermis. We propose that NEO1 may be important in tumor onset and is then down-regulated in advanced BCC or aggressive subtypes.

  2. Downregulation of the Sonic Hedgehog/Gli pathway transcriptional target Neogenin-1 is associated with basal cell carcinoma aggressiveness

    PubMed Central

    Casas, Bárbara S.; Adolphe, Christelle; Lois, Pablo; Navarrete, Nelson; Solís, Natalia; Bustamante, Eva; Gac, Patricio; Cabané, Patricio; Gallegos, Ivan; Wainwright, Brandon J.; Palma, Verónica

    2017-01-01

    Basal Cell Carcinoma (BCC) is one of the most diagnosed cancers worldwide. It develops due to an unrestrained Sonic Hedgehog (SHH) signaling activity in basal cells of the skin. Certain subtypes of BCC are more aggressive than others, although the molecular basis of this phenomenon remains unknown. We have previously reported that Neogenin-1 (NEO1) is a downstream target gene of the SHH/GLI pathway in neural tissue. Given that SHH participates in epidermal homeostasis, here we analyzed the epidermal expression of NEO1 in order to identify whether it plays a role in adult epidermis or BCC. We describe the mRNA and protein expression profile of NEO1 and its ligands (Netrin-1 and RGMA) in human and mouse control epidermis and in a broad range of human BCCs. We identify in human BCC a significant positive correlation in the levels of NEO1 receptor, NTN-1 and RGMA ligands with respect to GLI1, the main target gene of the canonical SHH pathway. Moreover, we show via cyclopamine inhibition of the SHH/GLI pathway of ex vivo cultures that NEO1 likely functions as a downstream target of SHH/GLI signaling in the skin. We also show how Neo1 expression decreases throughout BCC progression in the K14-Cre:Ptch1lox/lox mouse model and that aggressive subtypes of human BCC exhibit lower levels of NEO1 than non-aggressive BCC samples. Taken together, these data suggest that NEO1 is a SHH/GLI target in epidermis. We propose that NEO1 may be important in tumor onset and is then down-regulated in advanced BCC or aggressive subtypes. PMID:29137400

  3. Use of non-steroidal anti-inflammatory drugs and risk of basal cell carcinoma in the United States Radiologic Technologists study

    PubMed Central

    EK, Cahoon; P, Rajaraman; BH, Alexander; MM, Doody; MS, Linet; DM, Freedman

    2011-01-01

    Non-steroidal anti-inflammatory drugs (NSAIDs) have been associated with reduced risk of colorectal and other cancers, but the association with basal cell carcinoma (BCC) is unclear. Previous epidemiological studies have been small in size, conducted in especially vulnerable populations, or have not accounted for solar UV exposure, a major risk factor for BCC. In the United States Radiologic Technologists cohort, we followed subjects to assess NSAID use on risk of first incident BCC. We included Caucasian participants who responded to both second and third questionnaires (administered from 1994–1998 and 2003–2005, respectively) and who reported no cancer at the time of the second questionnaire, N=58,213. BCC, constituent risk factors (e.g., eye color, complexion, hair color) and sun exposure history were assessed through self-administered survey. Hazard ratios (HRs) and 95% confidence intervals (CIs) were calculated using Cox proportional hazards models. Of the 58,213 people in the study population, 2,291 went on to develop BCC. Any NSAID use was not associated with subsequent incidence of BCC (HR = 1.04, 95% CI: 0.92–1.16) after adjusting for age, sex, and estimated lifetime summer sun exposure. No association was observed when stratified by NSAID type (aspirin and other NSAIDs), nor did dose-response patterns emerge by frequency of use (average days per month). Further analyses did not reveal interaction with sex, birth cohort, smoking, alcohol consumption, sun exposure, occupational radiation exposure, or personal risk factors for BCC. In this large nationwide study, we observed no association between NSAID use and subsequent BCC risk. PMID:21780102

  4. Basal cell carcinoma-treatments for the commonest skin cancer.

    PubMed

    Berking, Carola; Hauschild, Axel; Kölbl, Oliver; Mast, Gerson; Gutzmer, Ralf

    2014-05-30

    With an incidence of 70 to over 800 new cases per 100 000 persons per year, basal cell carcinoma (BCC) is a very common disease, accounting for about 80% of all cases of non-melanoma skin cancer. It very rarely metastasizes. A variety of treatments are available for the different subtypes and stages of BCC. This review is based on pertinent literature retrieved by a selective search in the Medline database, as well as the American Cancer Society guidelines on BCC and the German guidelines on BCC and skin cancer prevention. The gold standard of treatment is surgical excision with histological control of excision margins, which has a 5-year recurrence rate of less than 3% on the face. For superficial BCC, approved medications such as imiquimod (total remission rate, 82-90%) and topical 5-fluorouracil (80%) are available, as is photodynamic therapy (71-87%). Other ablative methods (laser, cryosurgery) are applicable in some cases. Radiotherapy is an alternative treatment for invasive, inoperable BCC, with 5-year tumor control rates of 89-96%. Recently, drugs that inhibit an intracellular signaling pathway have become available for the treatment of locally advanced or metastatic BCC. Phase I and II clinical trials revealed that vismodegib was associated with objective response rates of 30-55% and tumor control rates of 80-90%. This drug was approved on the basis of a non-randomized trial with no control arm. It has side effects ranging from muscle cramps (71%) and hair loss (65%) to taste disturbances (55%) and birth defects. The established, standard treatments are generally highly effective. Vismodegib is a newly approved treatment option for locally advanced BCC that is not amenable to either surgery or radiotherapy.

  5. CPP-GMR films with a current-confined-path nano-oxide layer (CCP-NOL)

    NASA Astrophysics Data System (ADS)

    Fukuzawa, Hideaki; Yuasa, Hiromi; Iwasaki, Hitoshi

    2007-03-01

    We investigated the film performance and nanostructure of current-perpendicular-to-plane giant magnetoresistance (CPP-GMR) spin-valve film with a current-confined-path nano-oxide layer (CCP-NOL). By applying ion-assisted oxidation (IAO) for the CCP-NOL formation, we enhanced the MR ratio to 5.4% at a small RA value of 500 mΩ µm2 for conventional Co90Fe10 layers. Furthermore, the use of bcc-Fe50Co50 also increased the MR ratio to 8.2% at a small RA value of 580 mΩ µm2. A modified Valet-Fert model for the CCP-NOL showed that the MR enhancement by the IAO is due to the improvement in resistivity of the CCP, and that by Fe50Co50 is due to a larger spin-dependent interface scattering effect. Analysis by cross-sectional TEM and three-dimensional atom probe confirmed the formation of the CCP-NOL structure. A reliability test for test element devices showed almost no change even under acceleration stress. The CPP-GMR spin-valve film with the CCP-NOL is extendable to future high-density recording heads due to its potential for a higher MR ratio at a small value of RA.

  6. Effect of crystallization annealing under loading on the magnetic properties and the structure of a soft magnetic FeSiNbCuB alloy doped with chromium

    NASA Astrophysics Data System (ADS)

    Ershov, N. V.; Fedorov, V. I.; Chernenkov, Yu. P.; Lukshina, V. A.; Shishkin, D. A.

    2017-09-01

    The changes of quasi-static magnetic hysteresis loops and X-ray diffraction patterns of the Fe73.5Si13.5B9Nb3Cu1 doped to 10 at % chromium instead of iron have been studied to elucidate the influence of the thermomechanical treatment consisting of annealing and cooling of the alloy under the tensile stress (tensile-stress annealing (TSA)) on the magnetic properties and the structure of these alloys. It is shown that the treatment results in the induction of the magnetic anisotropy of the hard axis type at which the magnetization reversal along the direction of applying the external stress during annealing is hampered. The energy of the induced magnetic anisotropy decreases as the chromium content increases. During TSA, the nanocrystal lattices are deformed, and the deformation is retained after cooling. The interplanar spacings increase along the extension direction and decrease in the transverse direction. The deformation anisotropy is observed for crystallographic directions. The anisotropic deformation of the bcc lattice of nanocrystals with high content of the ordered Fe3Si phase characterized by a negative magnetoelastic interaction is the cause of formation of the state with the transverse magnetic anisotropy of the hard axis type.

  7. Bayes-Turchin analysis of x-ray absorption data above the Fe L{sub 2,3}-edges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rossner, H. H.; Schmitz, D.; Imperia, P.

    2006-10-01

    Extended x-ray absorption fine structure (EXAFS) data and magnetic EXAFS (MEXAFS) data were measured at two temperatures (180 and 296 K) in the energy region of the overlapping L-edges of bcc Fe grown on a V(110) crystal surface. In combination with a Bayes-Turchin data analysis procedure these measurements enable the exploration of local crystallographic and magnetic structures. The analysis determined the atomic-like background together with the EXAFS parameters which consisted of ten shell radii, the Debye-Waller parameters, separated into structural and vibrational components, and the third cumulant of the first scattering path. The vibrational components for 97 different scattering pathsmore » were determined by a two parameter force-field model using a priori values adjusted to Born-von Karman parameters of inelastic neutron scattering data. The investigations of the system Fe/V(110) demonstrate that the simultaneous fitting of atomic background parameters and EXAFS parameters can be performed reliably. Using the L{sub 2}- and L{sub 3}-components extracted from the EXAFS analysis and the rigid-band model, the MEXAFS oscillations can only be described when the sign of the exchange energy is changed compared to the predictions of the Hedin Lundquist exchange and correlation functional.« less

  8. Crystal nucleation and metastable bcc phase in charged colloids: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Ji, Xinqiang; Sun, Zhiwei; Ouyang, Wenze; Xu, Shenghua

    2018-05-01

    The dynamic process of homogenous nucleation in charged colloids is investigated by brute-force molecular dynamics simulation. To check if the liquid-solid transition will pass through metastable bcc, simulations are performed at the state points that definitely lie in the phase region of thermodynamically stable fcc. The simulation results confirm that, in all of these cases, the preordered precursors, acting as the seeds of nucleation, always have predominant bcc symmetry consistent with Ostwald's step rule and the Alexander-McTague mechanism. However, the polymorph selection is not straightforward because the crystal structures formed are not often determined by the symmetry of intermediate precursors but have different characters under different state points. The region of the state point where bcc crystal structures of large enough size are formed during crystallization is narrow, which gives a reasonable explanation as to why the metastable bcc phase in charged colloidal suspensions is rarely detected in macroscopic experiments.

  9. Pigmented Paraaxillary Located "Complex" Basal Cell Carcinoma Imitating clinically irritated Melanocytic Lesion - Succesfull Surgical Approach in Bulgarian Patient.

    PubMed

    Voicu, Cristiana; Mihai, Mara; Lupu, Mihai; Patterson, James W; Koleva, Nely; Wollina, Uwe; Lotti, Torello; Lotti, Jacopo; França, Katlein; Batashki, Atanas; Gianfaldoni, Serena; Bakardzhiev, Ilko; Mangarov, Hristo; Tchernev, Georgi

    2017-07-25

    Basal cell carcinoma (BCC) is the most frequently encountered neoplasm worldwide. While nodular BCC is the most frequent clinical subtype, other forms of BCC, such as superficial, cystic, morpheiform, infiltrative, and pigmented may also be encountered. We present the case of a 67-year-old male with a relatively well-defined infiltrative, pigmented plaque with multiple colours and peripheral growth situated in the right axillary region. The histopathologic examination performed after complete surgical excision of the tumour revealed a complex pigmented BCC with macronodular, fibroepithelioma-like, cystic, focally infiltrative and basosquamous features. Uncommon locations of BCCs in sun-protected areas such as the axillary region require a higher degree of suspicion for diagnosis. The complex histology of the presented case, including subtypes with differing biologic attributes, emphasises the importance of histopathological examination in the diagnosis and therapeutic management of BCC.

  10. Adenoid basal cell carcinoma: a rare facet of basal cell carcinoma

    PubMed Central

    Saxena, Kartikay; Manohar, Vidya; Bhakhar, Vikas; Bahl, Sumit

    2016-01-01

    Basal cell carcinoma (BCC) is a common, locally invasive epithelial malignancy of skin and its appendages. Every year, close to 10 million people get diagnosed with BCC worldwide. While the histology of this lesion is mostly predictable, some of the rare histological variants such as cystic, adenoid, morpheaform, infundibulocystic, pigmented and miscellaneous variants (clear-cell, signet ring cell, granular, giant cell, adamantanoid, schwannoid) are even rarer, accounting for <10% of all BCC's. Adenoid BCC (ADBCC) is a very rare histopathological variant with reported incidence of only approximately 1.3%. The clinical appearance of this lesion can be a pigmented or non-pigmented nodule or ulcer without predilection for any particular site. We share a case report of ADBCC, a rare histological variant of BCC that showed interesting features not only histologically but also by clinically mimicking a benign lesion. PMID:27095806

  11. BCC skin cancer diagnosis based on texture analysis techniques

    NASA Astrophysics Data System (ADS)

    Chuang, Shao-Hui; Sun, Xiaoyan; Chang, Wen-Yu; Chen, Gwo-Shing; Huang, Adam; Li, Jiang; McKenzie, Frederic D.

    2011-03-01

    In this paper, we present a texture analysis based method for diagnosing the Basal Cell Carcinoma (BCC) skin cancer using optical images taken from the suspicious skin regions. We first extracted the Run Length Matrix and Haralick texture features from the images and used a feature selection algorithm to identify the most effective feature set for the diagnosis. We then utilized a Multi-Layer Perceptron (MLP) classifier to classify the images to BCC or normal cases. Experiments showed that detecting BCC cancer based on optical images is feasible. The best sensitivity and specificity we achieved on our data set were 94% and 95%, respectively.

  12. Energy barrier of bcc-fcc phase transition via the Bain path in Yukawa system

    NASA Astrophysics Data System (ADS)

    Kiyokawa, Shuji

    2018-05-01

    In the Yukawa system with the dimensionless screening parameter κ>1.5 , when bcc-fcc transition occurs via Bain path, we show that spontaneous transitions do not occur even if the system temperature reaches the transition point of bcc-fcc because it is necessary to increase once the free energy in the process of transition from bcc to fcc through Bain deformation. Here, we refer the temporary increment of the free energy during Bain deformation as Bain barrier. Since there are the Bain barriers at the transitions between bcc and fcc phases, these phases may coexist as metastable state in the wide region (not a coexistence line) of κ and the coupling constant Γ. We study the excess energy of the system and the free energy difference between bcc and fcc phases by the Monte Carlo method, where the simulation box is divided into a large number of elements with small volume and a particle in the box is restricted be placed in one of these elements. By this method, we can tabulate the values of the interparticle potential and can calculate the internal energy fast and precisely.

  13. The detection of basal cell determinants in human basal cell carcinomas using two different monoclonal antibodies.

    PubMed

    Habets, J M; Tank, B; Vuzevski, V D; van Reede, E C; Stolz, E; van Joost, T

    1987-01-01

    This report deals with the reaction pattern(s) of two monoclonal antibodies (MoAbs) with normal skin and basal cell carcinomas (BCC). Using indirect immunoperoxidase (IIP) and indirect immunofluorescence (IIF) techniques, MoAb 12 G7 was observed to react with a determinant related to the cell membrane of the epidermal basal cells. In the IIP technique MoAb 12 G7 showed a positive reaction with 32 out of 34 BCC (94%), while in IIF all the 14 BCC that were studied were positive. In most cases only the cells at the periphery of the tumour nests were stained. MoAb 253 B7 reacted with cytoplasmic determinant(s) of the epidermal basal cells both in the IIF as well as in the IIP techniques. Using the IIP technique only 5 out of 34 BCC (15%) showed a positive reaction with this MoAb. Four of the 5 positively staining tumours showed aggressive histological features. Using IIF technique only 2 out of 14 BCC were positive. The results presented in this communication are discussed with regard to the possible expression of selective differentiation and tumor-associated determinant(s) in BCC.

  14. The Embedded Atom Model and large-scale MD simulation of tin under shock loading

    NASA Astrophysics Data System (ADS)

    Sapozhnikov, F. A.; Ionov, G. V.; Dremov, V. V.; Soulard, L.; Durand, O.

    2014-05-01

    The goal of the work was to develop an interatomic potential, that can be used in large-scale classical MD simulations to predict tin properties near the melting curve, the melting curve itself, and the kinetics of melting and solidification when shock and ramp loading. According to phase diagram, shocked tin melts from bcc phase, and since the main objective was to investigate melting, the EAM was parameterized for bcc phase. The EAM was optimized using isothermal compression data (experimental at T=300 K and ab-initio at T=0 K for bcc, fcc, bct structures), experimental and QMD data on the Hugoniot and on the melting at elevated pressures. The Hugoniostat calculations centred at β-tin at ambient conditions showed that the calculated Hugoniot is in good agreement with experimental and QMD data above p-bct transition pressure. Calculations of overcooled liquid in pressure range corresponding to bcc phase showed crystallization into bcc phase. Since the principal Hugoniot of tin originates from the β-tin that is not described by this EAM the special initial state of bcc samples was constructed to perform large-scale MD simulations of shock loading.

  15. Genome Characterization of Oleaginous Aspergillus oryzae BCC7051: A Potential Fungal-Based Platform for Lipid Production

    DOE PAGES

    Thammarongtham, Chinae; Nookaew, Intawat; Vorapreeda, Tayvich; ...

    2017-09-01

    The selected robust fungus, Aspergillus oryzae strain BCC7051 is of interest for biotechnological production of lipid-derived products due to its capability to accumulate high amount of intracellular lipids using various sugars and agro-industrial substrates. Here in this paper, we report the genome sequence of the oleaginous A. oryzae BCC7051. The obtained reads were de novo assembled into 25 scaffolds spanning of 38,550,958 bps with predicted 11,456 protein-coding genes. By synteny mapping, a large rearrangement was found in two scaffolds of A. oryzae BCC7051 as compared to the reference RIB40 strain. The genetic relationship between BCC7051 and other strains of A.more » oryzae in terms of aflatoxin production was investigated, indicating that the A. oryzae BCC7051 was categorized into group 2 nonaflatoxin-producing strain. Moreover, a comparative analysis of the structural genes focusing on the involvement in lipid metabolism among oleaginous yeast and fungi revealed the presence of multiple isoforms of metabolic enzymes responsible for fatty acid synthesis in BCC7051. The alternative routes of acetyl-CoA generation as oleaginous features and malate/citrate/pyruvate shuttle were also identified in this A. oryzae strain. The genome sequence generated in this work is a dedicated resource for expanding genome-wide study of microbial lipids at systems level, and developing the fungal-based platform for production of diversified lipids with commercial relevance.« less

  16. Nutrition behaviour change communication causes sustained effects on IYCN knowledge in two cluster-randomised trials in Bangladesh.

    PubMed

    Hoddinott, John; Ahmed, Akhter; Karachiwalla, Naureen I; Roy, Shalini

    2018-01-01

    Behaviour change communication (BCC) can improve infant and young child nutrition (IYCN) knowledge, practices, and health outcomes. However, few studies have examined whether the improved knowledge persists after BCC activities end. This paper assesses the effect of nutrition sensitive social protection interventions on IYCN knowledge in rural Bangladesh, both during and after intervention activities. We use data from two, 2-year, cluster randomised control trials that included nutrition BCC in some treatment arms. These data were collected at intervention baseline, midline, and endline, and 6-10 months after the intervention ended. We analyse data on IYCN knowledge from the same 2,341 women over these 4 survey rounds. We construct a number correct score on 18 IYCN knowledge questions and assess whether the impact of the BCC changes over time for the different treatment groups. Effects are estimated using ordinary least squares accounting for the clustered design of the study. There are 3 main findings: First, the BCC improves IYCN knowledge substantially in the 1st year of the intervention; participants correctly answer 3.0-3.2 more questions (36% more) compared to the non-BCC groups. Second, the increase in knowledge between the 1st and 2nd year was smaller, an additional 0.7-0.9 correct answers. Third, knowledge persists; there are no significant decreases in IYCN knowledge 6-10 months after nutrition BCC activities ended. © 2017 The Authors. Maternal and Child Nutrition Published by John Wiley & Sons, Ltd.

  17. Genome Characterization of Oleaginous Aspergillus oryzae BCC7051: A Potential Fungal-Based Platform for Lipid Production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thammarongtham, Chinae; Nookaew, Intawat; Vorapreeda, Tayvich

    The selected robust fungus, Aspergillus oryzae strain BCC7051 is of interest for biotechnological production of lipid-derived products due to its capability to accumulate high amount of intracellular lipids using various sugars and agro-industrial substrates. Here in this paper, we report the genome sequence of the oleaginous A. oryzae BCC7051. The obtained reads were de novo assembled into 25 scaffolds spanning of 38,550,958 bps with predicted 11,456 protein-coding genes. By synteny mapping, a large rearrangement was found in two scaffolds of A. oryzae BCC7051 as compared to the reference RIB40 strain. The genetic relationship between BCC7051 and other strains of A.more » oryzae in terms of aflatoxin production was investigated, indicating that the A. oryzae BCC7051 was categorized into group 2 nonaflatoxin-producing strain. Moreover, a comparative analysis of the structural genes focusing on the involvement in lipid metabolism among oleaginous yeast and fungi revealed the presence of multiple isoforms of metabolic enzymes responsible for fatty acid synthesis in BCC7051. The alternative routes of acetyl-CoA generation as oleaginous features and malate/citrate/pyruvate shuttle were also identified in this A. oryzae strain. The genome sequence generated in this work is a dedicated resource for expanding genome-wide study of microbial lipids at systems level, and developing the fungal-based platform for production of diversified lipids with commercial relevance.« less

  18. Solid-liquid interface free energies of pure bcc metals and B2 phases

    DOE PAGES

    Wilson, S. R.; Gunawardana, K. G. S. H.; Mendelev, M. I.

    2015-04-07

    The solid-liquid interface (SLI) free energy was determined from molecular dynamics (MD) simulation for several body centered cubic (bcc) metals and B2 metallic compounds (space group: Pm3¯m ; prototype: CsCl). In order to include a bcc metal with a low melting temperature in our study, a semi-empirical potential was developed for Na. Two additional synthetic “Na” potentials were also developed to explore the effect of liquid structure and latent heat on the SLI free energy. The obtained MD data were compared with the empirical Turnbull, Laird, and Ewing relations. All three relations are found to predict the general trend observedmore » in the MD data for bcc metals obtained within the present study. However, only the Laird and Ewing relations are able to predict the trend obtained within the sequence of “Na” potentials. The Laird relation provides the best prediction for our MD data and other MD data for bcc metals taken from the literature. Overall, the Laird relation also agrees well with our B2 data but requires a proportionality constant that is substantially different from the bcc case. It also fails to explain a considerable difference between the SLI free energies of some B2 phases which have nearly the same melting temperature. In contrast, this difference is satisfactorily described by the Ewing relation. Thus, the Ewing relation obtained from the bcc dataset also provides a reasonable description of the B2 data.« less

  19. Case-control study of smoking and non-melanoma skin cancer.

    PubMed

    Rollison, Dana E; Iannacone, Michelle R; Messina, Jane L; Glass, L Frank; Giuliano, Anna R; Roetzheim, Richard G; Cherpelis, Basil S; Fenske, Neil A; Jonathan, Kristen A; Sondak, Vernon K

    2012-02-01

    To investigate the association between cigarette smoking and basal and squamous cell carcinomas (BCC and SCC) of the skin, a clinic-based case-control study was conducted in Tampa, FL. Patients with histologically confirmed BCC/SCC were recruited from a university dermatology clinic (n = 215 BCC, 165 SCC). Controls were comprised of individuals with no history of skin cancer who screened negative for skin cancer upon physical examination at the affiliated cancer screening or primary care clinics (n = 315). Information on smoking and other risk factors was obtained from self-administered questionnaires. After adjustment for age, sex, and other skin cancer-risk factors, ever smoking was not associated with BCC (odds ratio (OR) = 1.26, 95% confidence interval (CI) = 0.83-1.92), but was statistically significantly associated with SCC (OR = 1.97, 95% CI = 1.19-3.26), with significant trends observed for SCC associated with increasing cigarettes per day (p = 0.01) and pack-years smoked (p = 0.01). Among men, smoking ≥20 pack-years was associated with non-significant increased risks of BCC (OR = 1.90, 95% CI = 0.88-4.12) and SCC (OR = 1.97, 95% CI = 0.84-4.66), whereas among women, no association was observed with BCC (OR = 0.98, 95% CI = 0.39-2.46) while a statistically significant three-fold risk was observed with SCC (OR = 3.00, 95% CI = 1.02-8.80). Cigarette smoking is more strongly associated with SCC than BCC, particularly among women.

  20. Solid-liquid interface free energies of pure bcc metals and B2 phases

    NASA Astrophysics Data System (ADS)

    Wilson, S. R.; Gunawardana, K. G. S. H.; Mendelev, M. I.

    2015-04-01

    The solid-liquid interface (SLI) free energy was determined from molecular dynamics (MD) simulation for several body centered cubic (bcc) metals and B2 metallic compounds (space group: P m 3 ¯ m ; prototype: CsCl). In order to include a bcc metal with a low melting temperature in our study, a semi-empirical potential was developed for Na. Two additional synthetic "Na" potentials were also developed to explore the effect of liquid structure and latent heat on the SLI free energy. The obtained MD data were compared with the empirical Turnbull, Laird, and Ewing relations. All three relations are found to predict the general trend observed in the MD data for bcc metals obtained within the present study. However, only the Laird and Ewing relations are able to predict the trend obtained within the sequence of "Na" potentials. The Laird relation provides the best prediction for our MD data and other MD data for bcc metals taken from the literature. Overall, the Laird relation also agrees well with our B2 data but requires a proportionality constant that is substantially different from the bcc case. It also fails to explain a considerable difference between the SLI free energies of some B2 phases which have nearly the same melting temperature. In contrast, this difference is satisfactorily described by the Ewing relation. Moreover, the Ewing relation obtained from the bcc dataset also provides a reasonable description of the B2 data.

  1. Solid-liquid interface free energies of pure bcc metals and B2 phases.

    PubMed

    Wilson, S R; Gunawardana, K G S H; Mendelev, M I

    2015-04-07

    The solid-liquid interface (SLI) free energy was determined from molecular dynamics (MD) simulation for several body centered cubic (bcc) metals and B2 metallic compounds (space group: Pm3̄m; prototype: CsCl). In order to include a bcc metal with a low melting temperature in our study, a semi-empirical potential was developed for Na. Two additional synthetic "Na" potentials were also developed to explore the effect of liquid structure and latent heat on the SLI free energy. The obtained MD data were compared with the empirical Turnbull, Laird, and Ewing relations. All three relations are found to predict the general trend observed in the MD data for bcc metals obtained within the present study. However, only the Laird and Ewing relations are able to predict the trend obtained within the sequence of "Na" potentials. The Laird relation provides the best prediction for our MD data and other MD data for bcc metals taken from the literature. Overall, the Laird relation also agrees well with our B2 data but requires a proportionality constant that is substantially different from the bcc case. It also fails to explain a considerable difference between the SLI free energies of some B2 phases which have nearly the same melting temperature. In contrast, this difference is satisfactorily described by the Ewing relation. Moreover, the Ewing relation obtained from the bcc dataset also provides a reasonable description of the B2 data.

  2. Intrinsic Resistance of Burkholderia cepacia Complex to Benzalkonium Chloride

    PubMed Central

    Ahn, Youngbeom; Kim, Jeong Myeong; Kweon, Ohgew; Kim, Seong-Jae; Jones, Richard C.; Woodling, Kellie; Gamboa da Costa, Gonçalo; LiPuma, John J.; Hussong, David; Marasa, Bernard S.

    2016-01-01

    ABSTRACT Pharmaceutical products that are contaminated with Burkholderia cepacia complex (BCC) bacteria may pose serious consequences to vulnerable patients. Benzyldimethylalkylammonium chloride (BZK) cationic surfactants are extensively used in medical applications and have been implicated in the coselection of antimicrobial resistance. The ability of BCC to degrade BZK, tetradecyldimethylbenzylammonium chloride (C14BDMA-Cl), dodecyldimethylbenzylammonium chloride (C12BDMA-Cl), decyldimethylbenzylammonium chloride (C10BDMA-Cl), hexyldimethylbenzylammonium chloride, and benzyltrimethylammonium chloride was determined by incubation in 1/10-diluted tryptic soy broth (TSB) to determine if BCC bacteria have the ability to survive and inactivate these disinfectants. With BZK, C14BDMA-Cl, and C12BDMA-Cl, inhibition of the growth of 20 BCC strains was observed in disinfectant solutions that ranged from 64 to 256 µg/ml. The efflux pump inhibitor carbonyl cyanide m-chlorophenylhydrazone increased the sensitivity of bacteria to 64 µg/ml BZK. The 20 BCC strains grew well in 1/10-diluted TSB medium with BZK, C12BDMA-Cl, and C10BDMA-Cl; they absorbed and degraded the compounds in 7 days. Formation of benzyldimethylamine and benzylmethylamine as the initial metabolites suggested that the cleavage of the C alkyl-N bond occurred as the first step of BZK degradation by BCC bacteria. Proteomic data confirmed the observed efflux activity and metabolic inactivation via biodegradation in terms of BZK resistance of BCC bacteria, which suggests that the two main resistance mechanisms are intrinsic and widespread. PMID:27879334

  3. Thermodynamics and Equations of State of Iron to 350 GPa and 6000 K

    PubMed Central

    Dorogokupets, P. I.; Dymshits, A. M.; Litasov, K. D.; Sokolova, T. S.

    2017-01-01

    The equations of state for solid (with bcc, fcc, and hcp structures) and liquid phases of Fe were defined via simultaneous optimization of the heat capacity, bulk moduli, thermal expansion, and volume at room and higher temperatures. The calculated triple points at the phase diagram have the following parameters: bcc–fcc–hcp is located at 7.3 GPa and 820 K, bcc–fcc–liquid at 5.2 GPa and 1998 K, and fcc–hcp–liquid at 106.5 GPa and 3787 K. At conditions near the fcc–hcp–liquid triple point, the Clapeyron slope of the fcc–liquid curve is dT/dP = 12.8 K/GPa while the slope of the hcp–liquid curve is higher (dT/dP = 13.7 K/GPa). Therefore, the hcp–liquid curve overlaps the metastable fcc–liquid curve at pressures of about 160 GPa. At high-pressure conditions, the metastable bcc–hcp curve is located inside the fcc-Fe or liquid stability field. The density, adiabatic bulk modulus and P-wave velocity of liquid Fe calculated up to 328.9 GPa at adiabatic temperature conditions started from 5882 K (outer/inner core boundary) were compared to the PREM seismological model. We determined the density deficit of hcp-Fe at the inner core boundary (T = 5882 K and P = 328.9 GPa) to be 4.4%. PMID:28262683

  4. First principles calculations of the magnetic and hyperfine properties of Fe/N/Fe and Fe/O/Fe multilayers in the ground state of cohesive energy

    NASA Astrophysics Data System (ADS)

    dos Santos, A. V.; Samudio Pérez, C. A.; Muenchen, D.; Anibele, T. P.

    2015-01-01

    The ground state properties of Fe/N/Fe and Fe/O/Fe multilayers were investigated using the first principles calculations. The calculations were performed using the Linearized Augmented Plane Wave (LAPW) method implemented in the Wien2k code. A supercell consisting of one layer of nitride (or oxide) between two layers of Fe in the bcc structure was used to model the structure of the multilayer. The research in new materials also stimulated theoretical and experimental studies of iron-based nitrides due to their variety of structural and magnetic properties for the potential applications as in high strength steels and for high corrosion resistance. It is obvious from many reports that magnetic iron nitrides such as γ-Fe4N and α-Fe16N2 have interesting magnetic properties, among these a high magnetisation saturation and a high density crimp. However, although Fe-N films and multilayers have many potential applications, they can be produced in many ways and are being extensively studied from the theoretical point of view there is no detailed knowledge of their electronic structure. Clearly, efforts to understand the influence of the nitrogen atoms on the entire electronic structure are needed as to correctly interpret the observed changes in the magnetic properties when going from Fe-N bulk compounds to multilayer structures. Nevertheless, the N atoms are not solely responsible for electronics alterations in solid compounds. Theoretical results showed that Fe4X bulk compounds, where X is a variable atom with increasing atomic number (Z), the nature of bonding between X and adjacent Fe atoms changes from more covalent to more ionic and the magnetic moments of Fe also increase for Z=7, i.e. N. This is an indicative that atoms with a Z number higher than 7, i.e., O, can produce several new alterations in the entire magnetic properties of Fe multilayers. This paper presents the first results of an ab-initio electronic structure calculations, performed for Fe-N and Fe-O multilayers. Firstly, the formation energy and the cohesive energy of the multilayers are discussed. For optimised values, the cohesive energy of the multilayers to obtain the lattice parameters at the equilibrium ground state was used, i.e. a new methodology for this calculus was applied. Secondly, the magnetic properties and hyperfine interactions (magnetic field, electric field gradient and the isomer shift) of the iron atoms of the multilayers are discussed.

  5. Enhancement of current-perpendicular-to-plane giant magnetoresistance in Heusler-alloy based pseudo spin valves by using a CuZn spacer layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Furubayashi, T., E-mail: furubayashi.takao@nims.go.jp; Takahashi, Y. K.; Sasaki, T. T.

    2015-10-28

    Enhancement of magnetoresistance output was attained in current-perpendicular-to-plane giant magnetoresistance (CPP-GMR) devices by using a bcc CuZn alloy for the spacer. Pseudo spin valves that consisted of the Co{sub 2}Fe(Ga{sub 0.5}Ge{sub 0.5}) Heusler alloy for ferromagnetic layers and CuZn alloy with the composition of Cu{sub 52.4}Zn{sub 47.6} for a spacer showed the large change of the resistance-area products, ΔRA, up to 8 mΩ·μm{sup 2} for a low annealing temperature of 350 °C. The ΔRA value is one of the highest reported so far for the CPP-GMR devices for the low annealing temperature, which is essential for processing read heads for hardmore » disk drives. We consider that the enhancement of ΔRA is produced from the spin-dependent resistance at the Co{sub 2}Fe(Ga{sub 0.5}Ge{sub 0.5})/CuZn interfaces.« less

  6. First-Principles Momentum Dependent Local Ansatz Approach to the Momentum Distribution Function in Iron-Group Transition Metals

    NASA Astrophysics Data System (ADS)

    Kakehashi, Yoshiro; Chandra, Sumal

    2017-03-01

    The momentum distribution function (MDF) bands of iron-group transition metals from Sc to Cu have been investigated on the basis of the first-principles momentum dependent local ansatz wavefunction method. It is found that the MDF for d electrons show a strong momentum dependence and a large deviation from the Fermi-Dirac distribution function along high-symmetry lines of the first Brillouin zone, while the sp electrons behave as independent electrons. In particular, the deviation in bcc Fe (fcc Ni) is shown to be enhanced by the narrow eg (t2g) bands with flat dispersion in the vicinity of the Fermi level. Mass enhancement factors (MEF) calculated from the jump on the Fermi surface are also shown to be momentum dependent. Large mass enhancements of Mn and Fe are found to be caused by spin fluctuations due to d electrons, while that for Ni is mainly caused by charge fluctuations. Calculated MEF are consistent with electronic specific heat data as well as recent angle resolved photoemission spectroscopy data.

  7. Intermediate phases in some rare earth-ruthenium systems

    NASA Technical Reports Server (NTRS)

    Sharifrazi, P.; Raman, A.; Mohanty, R. C.

    1984-01-01

    The phase equilibria and crystal structures of intermediate phases were investigated in eight representative RE-Ru systems using powder X-ray diffraction and metallographic techniques. The Fe3C, Mn5C2 and Er5Ru3 structures occur in all but the Ce-Ru systems. Phases analogous to Er5Ru3 possess an unknown crystal structure similar to Er5Rh3(I). MgCu2 and MgZn2 type Laves phases are encountered in the light rare earth and heavy rare earth systems, respectively, and RERu2 phases, where RE = Nd and Sm, possess both the Laves phase structures. An intermediate phase, NdRu, with an unknown structure, occurs only in the Nd-Ru system. A bcc structure with 40 atoms per unit cell is encountered in the phases Er3Ru2 and Y3Ru2. The behavior of cerium in Ce-Ru alloys is unique in that four unidentified structures, not encountered in other RE-Ru systems, have been encountered. Also a phase designated as Ce3Ru is found with the Th7Fe3 type structure.

  8. High Nb, Ta, and Al creep- and oxidation-resistant austenitic stainless steel

    DOEpatents

    Brady, Michael P [Oak Ridge, TN; Santella, Michael L [Knoxville, TN; Yamamoto, Yukinori [Oak Ridge, TN; Liu, Chain-tsuan [Oak Ridge, TN

    2010-07-13

    An austenitic stainless steel HTUPS alloy includes, in weight percent: 15 to 30 Ni; 10 to 15 Cr; 2 to 5 Al; 0.6 to 5 total of at least one of Nb and Ta; no more than 0.3 of combined Ti+V; up to 3 Mo; up to 3 Co; up to 1 W; up to 0.5 Cu; up to 4 Mn; up to 1 Si; 0.05 to 0.15 C; up to 0.15 B; up to 0.05 P; up to 1 total of at least one of Y, La, Ce, Hf, and Zr; less than 0.05 N; and base Fe, wherein the weight percent Fe is greater than the weight percent Ni wherein said alloy forms an external continuous scale comprising alumina, nanometer scale sized particles distributed throughout the microstructure, said particles comprising at least one composition selected from the group consisting of NbC and TaC, and a stable essentially single phase fcc austenitic matrix microstructure, said austenitic matrix being essentially delta-ferrite-free and essentially BCC-phase-free.

  9. Arecoline decreases interleukin-6 production and induces apoptosis and cell cycle arrest in human basal cell carcinoma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Li-Wen; Hsieh, Bau-Shan; Cheng, Hsiao-Ling

    2012-01-15

    Arecoline, the most abundant areca alkaloid, has been reported to decrease interleukin-6 (IL-6) levels in epithelial cancer cells. Since IL-6 overexpression contributes to the tumorigenic potency of basal cell carcinoma (BCC), this study was designed to investigate whether arecoline altered IL-6 expression and its downstream regulation of apoptosis and the cell cycle in cultured BCC-1/KMC cells. BCC-1/KMC cells and a human keratinocyte cell line, HaCaT, were treated with arecoline at concentrations ranging from 10 to 100 μg/ml, then IL-6 production and expression of apoptosis- and cell cycle progress-related factors were examined. After 24 h exposure, arecoline inhibited BCC-1/KMC cell growthmore » and decreased IL-6 production in terms of mRNA expression and protein secretion, but had no effect on HaCaT cells. Analysis of DNA fragmentation and chromatin condensation showed that arecoline induced apoptosis of BCC-1/KMC cells in a dose-dependent manner, activated caspase-3, and decreased expression of the anti-apoptotic protein Bcl-2. In addition, arecoline induced progressive and sustained accumulation of BCC-1/KMC cells in G2/M phase as a result of reducing checkpoint Cdc2 activity by decreasing Cdc25C phosphatase levels and increasing p53 levels. Furthermore, subcutaneous injection of arecoline led to decreased BCC-1/KMC tumor growth in BALB/c mice by inducing apoptosis. This study demonstrates that arecoline has potential for preventing BCC tumorigenesis by reducing levels of the tumor cell survival factor IL-6, increasing levels of the tumor suppressor factor p53, and eliciting cell cycle arrest, followed by apoptosis. Highlights: ► Arecoline has potential to prevent against basal cell carcinoma tumorigenesis. ► It has more effectiveness on BCC as compared with a human keratinocyte cell line. ► Mechanisms involved including reducing tumor cells’ survival factor IL-6, ► Decreasing Cdc25C phosphatase, enhancing tumor suppressor factor p53, ► Eliciting G2/M phase arrest, followed by apoptosis.« less

  10. Basal Cell Carcinoma With Matrical Differentiation: Clinicopathologic, Immunohistochemical, and Molecular Biological Study of 22 Cases.

    PubMed

    Kyrpychova, Liubov; Carr, Richard A; Martinek, Petr; Vanecek, Tomas; Perret, Raul; Chottová-Dvořáková, Magdalena; Zamecnik, Michal; Hadravsky, Ladislav; Michal, Michal; Kazakov, Dmitry V

    2017-06-01

    Basal cell carcinoma (BCC) with matrical differentiation is a fairly rare neoplasm, with about 30 cases documented mainly as isolated case reports. We studied a series of this neoplasm, including cases with an atypical matrical component, a hitherto unreported feature. Lesions coded as BCC with matrical differentiation were reviewed; 22 cases were included. Immunohistochemical studies were performed using antibodies against BerEp4, β-catenin, and epithelial membrane antigen (EMA). Molecular genetic studies using Ion AmpliSeq Cancer Hotspot Panel v2 by massively parallel sequencing on Ion Torrent PGM were performed in 2 cases with an atypical matrical component (1 was previously subjected to microdissection to sample the matrical and BCC areas separately). There were 13 male and 9 female patients, ranging in age from 41 to 89 years. Microscopically, all lesions manifested at least 2 components, a BCC area (follicular germinative differentiation) and areas with matrical differentiation. A BCC component dominated in 14 cases, whereas a matrical component dominated in 4 cases. Matrical differentiation was recognized as matrical/supramatrical cells (n=21), shadow cells (n=21), bright red trichohyaline granules (n=18), and blue-gray corneocytes (n=18). In 2 cases, matrical areas manifested cytologic atypia, and a third case exhibited an infiltrative growth pattern, with the tumor metastasizing to a lymph node. BerEP4 labeled the follicular germinative cells, whereas it was markedly reduced or negative in matrical areas. The reverse pattern was seen with β-catenin. EMA was negative in BCC areas but stained a proportion of matrical/supramatrical cells. Genetic studies revealed mutations of the following genes: CTNNB1, KIT, CDKN2A, TP53, SMAD4, ERBB4, and PTCH1, with some differences between the matrical and BCC components. It is concluded that matrical differentiation in BCC in most cases occurs as multiple foci. Rare neoplasms manifest atypia in the matrical areas. Immunohistochemical analysis for BerEP4, EMA, and β-catenin can be helpful in limited biopsy specimens. From a molecular biological prospective, BCC and matrical components appear to share some of the gene mutations but have differences in others, but this observation must be validated in a large series.

  11. An expanded study of long-pulsed 1064 nm Nd:YAG laser treatment of basal cell carcinoma.

    PubMed

    Ortiz, Arisa E; Anderson, R Rox; DiGiorgio, Catherine; Jiang, Shang I Brian; Shafiq, Faiza; Avram, Mathew M

    2018-02-13

    Basal cell carcinoma (BCC) is an indolent form of skin cancer that is rarely life threatening, but can cause significant cosmetic and functional morbidity. Surgical treatments often result in disfiguring scars, while topical therapies frequently result in recurrence. The need for a more effective nonsurgical alternative has led to the investigation of laser treatment of BCC. We have previously conducted a pilot study which showed 100% histologic clearance at high fluences. Treatments were well tolerated with no significant adverse events. The objective of this larger study was to confirm preliminary results that the 1064 nm Nd:YAG laser is a safe and effective method for treating non-facial BCC. This is an IRB-approved, prospective, multi-center study evaluating the safety and efficacy of the 1064 nm Nd:YAG laser for the treatment of BCC on the trunk and extremities. Thirty-three subjects seeking treatment for biopsy-proven BCC that did not meet the criteria for Mohs surgery were recruited. Subjects on current anticoagulation therapy, or with a history of immunosuppression were excluded. Subjects received one treatment with the 1064 nm Nd:YAG laser as follows: 5-6 mm spot, fluence of 125-140 J/cm 2 and a pulse duration of 7-10 ms. Standard excision with 5 mm clinical margins was performed at 30 days after laser treatment to evaluate clinical and histologic clearance of BCC. Standardized photographs and adverse assessments were taken at the baseline visit, immediately after laser treatment and on the day of excision. Thirty-one subjects completed the study. BCC tumors had a 90% (28 of 31 BCC tumors) histologic clearance rate after one treatment with the long-pulsed 1064 nm Nd:YAG laser. Treatments were generally well tolerated without any anesthesia. Immediate side effects included edema and erythema. At 1-month follow-up, some patients had residual crusting. No significant adverse events occurred. The 1064 nm long-pulsed Nd:YAG laser is an alternative for treating non-facial BCC for those that are poor surgical candidates. Lasers Surg. Med. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  12. Measurement of Body-Centered-Cubic Aluminum at 475 GPa [Observation of Body-Centered-Cubic Aluminum at 475 GPa

    DOE PAGES

    Polsin, D. N.; Fratanduono, D. E.; Rygg, J. R.; ...

    2017-10-27

    Nanosecond in situ x-ray diffraction and simultaneous velocimetry measurements were used to determine the crystal structure and pressure, respectively, of ramp compressed aluminum at stress states between 111 and 475 GPa. The solid-solid Al phase transformations, fcc-hcp and hcp-bcc, are observed at 216 ± 9 GPa and 321 ± 12 GPa, respectively, with the bcc phase persisting to 475 GPa. Here, this is the first in situ observation of the high-pressure bcc phase of Al. High-pressure texture of the hcp and bcc phases suggests close-packed or nearly close-packed lattice planes remain parallel through both transformations.

  13. Management of periorbital basal cell carcinoma with orbital invasion.

    PubMed

    Sun, Michelle T; Wu, Albert; Figueira, Edwin; Huilgol, Shyamala; Selva, Dinesh

    2015-11-01

    Basal cell carcinoma (BCC) is the most common eyelid malignancy; however, orbital invasion by periocular BCC is rare, and management remains challenging. Established risk factors for orbital invasion by BCC include male gender, advanced age, medial canthal location, previous recurrences, large tumor size, aggressive histologic subtype and perineural invasion. Management requires a multidisciplinary approach with orbital exenteration remaining the treatment of choice. Globe-sparing treatment may be appropriate in selected patients and radiotherapy and chemotherapy are often used as adjuvant therapies for advanced or inoperable cases, although the evidence remains limited. We aim to summarize the presentation and treatment of BCC with orbital invasion to better guide the management of this complex condition.

  14. Building and testing a patient-centric electronic bedside communication center.

    PubMed

    Dykes, Patricia C; Carroll, Diane L; Hurley, Ann C; Benoit, Angela; Chang, Frank; Pozzar, Rachel; Caligtan, Christine A

    2013-01-01

    In this article, the authors describe the development and pilot testing of an electronic bedside communication center (eBCC) prototype to improve access to health information for hospitalized adults and their family caregivers. Focus groups were used to identify improvements for the initial eBCC prototype developed by the research team. Face-to-face bedside interviews and questions were presented while patients used the eBCC for usability testing to drive further development. Qualitative methods within an iterative, participatory approach supported the development of an eBCC prototype that was considered both easy to use and helpful for accessing tailored patient information during an inpatient hospitalization to receive acute care. Copyright 2013, SLACK Incorporated.

  15. Measurement of Body-Centered-Cubic Aluminum at 475 GPa [Observation of Body-Centered-Cubic Aluminum at 475 GPa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polsin, D. N.; Fratanduono, D. E.; Rygg, J. R.

    Nanosecond in situ x-ray diffraction and simultaneous velocimetry measurements were used to determine the crystal structure and pressure, respectively, of ramp compressed aluminum at stress states between 111 and 475 GPa. The solid-solid Al phase transformations, fcc-hcp and hcp-bcc, are observed at 216 ± 9 GPa and 321 ± 12 GPa, respectively, with the bcc phase persisting to 475 GPa. Here, this is the first in situ observation of the high-pressure bcc phase of Al. High-pressure texture of the hcp and bcc phases suggests close-packed or nearly close-packed lattice planes remain parallel through both transformations.

  16. Gene Expression and Proteome Analysis as Sources of Biomarkers in Basal Cell Carcinoma

    PubMed Central

    Ghita, Mihaela Adriana; Voiculescu, Suzana; Rosca, Adrian E.; Moraru, Liliana; Greabu, Maria

    2016-01-01

    Basal cell carcinoma (BCC) is the world's leading skin cancer in terms of frequency at the moment and its incidence continues to rise each year, leading to profound negative psychosocial and economic consequences. UV exposure is the most important environmental factor in the development of BCC in genetically predisposed individuals, this being reflected by the anatomical distribution of lesions mainly on sun-exposed skin areas. Early diagnosis and prompt management are of crucial importance in order to prevent local tissue destruction and subsequent disfigurement. Although various noninvasive or minimal invasive techniques have demonstrated their utility in increasing diagnostic accuracy of BCC and progress has been made in its treatment options, recurrent, aggressive, and metastatic variants of BCC still pose significant challenge for the healthcare system. Analysis of gene expression and proteomic profiling of tumor cells and of tumoral microenvironment in various tissues strongly suggests that certain molecules involved in skin cancer pathogenic pathways might represent novel predictive and prognostic biomarkers in BCC. PMID:27578920

  17. 980nm laser for difficult-to-treat basal cell carcinoma

    NASA Astrophysics Data System (ADS)

    Derjabo, A. D.; Cema, I.; Lihacova, I.; Derjabo, L.

    2013-06-01

    Begin basal cell carcinoma (BCC) is most common skin cancer over the world. There are around 20 modalities for BCC treatment. Laser surgery is uncommon option. We demonstrate our long term follow up results. Aim: To evaluate long term efficacy of a 980nm diode laser for the difficult-to-treat basal cell carcinoma. Materials and Methods: 167 patients with 173 basal cell carcinoma on the nose were treated with a 980 nm diode laser from May 1999 till May 2005 at Latvian Oncology center. All tumors were morphologically confirmed. 156 patients were followed for more than 5 years. Results: The lowest recurrence rate was observed in cases of superficial BCC, diameter<6mm bet the highest recurrence rate was in cases of infiltrative BCC and nodular recurrent BCC. Conclusions: 980 nm diode laser is useful tool in dermatology with high long term efficacy, good acceptance by the patients and good cosmetics results.

  18. Vismodegib Therapy for Basal Cell Carcinoma in an 8-Year-Old Chinese Boy with Xeroderma Pigmentosum.

    PubMed

    Fife, Douglas; Laitinen, Marko A; Myers, David J; Landsteiner, Pamela B

    2017-03-01

    Vismodegib is an oral inhibitor of the Hedgehog signaling pathway and has been used to treat basal cell carcinoma (BCC) in adults. This article reports clearance of a nodular BCC of the nasal tip in an 8-year-old boy with xeroderma pigmentosum (XP). BCC can pose therapeutic challenges when located in areas that are not amenable to traditional therapies such as Mohs micrographic surgery or topical agents. Vismodegib was used at a dose of 150 mg/day to treat the boy's BCC. After 4 months of therapy, we achieved complete clinical clearance. During 21 months of follow-up, the patient's nose remained clinically clear of tumor. Vismodegib was successfully used to treat a child with XP and nodular BCC. Our goal in using vismodegib was tumor regression while avoiding cosmetic and functional disfigurement. Vismodegib was effective in clinically clearing the tumor, and the patient has shown no signs of recurrence. Further studies are warranted. © 2017 Wiley Periodicals, Inc.

  19. Reentrant behavior in the nearest-neighbor Ising antiferromagnet in a magnetic field

    NASA Astrophysics Data System (ADS)

    Neto, Minos A.; de Sousa, J. Ricardo

    2004-12-01

    Motived by the H-T phase diagram in the bcc Ising antiferromagnetic with nearest-neighbor interactions obtained by Monte Carlo simulation [Landau, Phys. Rev. B 16, 4164 (1977)] that shows a reentrant behavior at low temperature, with two critical temperatures in magnetic field about 2% greater than the critical value Hc=8J , we apply the effective field renormalization group (EFRG) approach in this model on three-dimensional lattices (simple cubic-sc and body centered cubic-bcc). We find that the critical curve TN(H) exhibits a maximum point around of H≃Hc only in the bcc lattice case. We also discuss the critical behavior by the effective field theory in clusters with one (EFT-1) and two (EFT-2) spins, and a reentrant behavior is observed for the sc and bcc lattices. We have compared our results of EFRG in the bcc lattice with Monte Carlo and series expansion, and we observe a good accordance between the methods.

  20. First-principles study of high-pressure structural phase transitions of magnesium

    NASA Astrophysics Data System (ADS)

    Liu, Qiuxiang; Fan, Changzeng; Zhang, Ruijun

    2009-06-01

    The structural phase transitions for the hcp, bcc, dhcp, and fcc of magnesium at hydrostatic pressures larger than about 200 GPa at zero temperature are studied by first-principles total energy calculations. The plane-wave basis pseudopotential method has been adopted, in which the generalized gradient approximation implanted in the CASTEP code is employed. By comparing the enthalpy differences of the hcp structure with other three structures under different pressures, it can be seen that when the pressure becomes higher than about 65, 130, and 190 GPa, the bcc, dhcp, and fcc structures become more stable relative to the hcp structure, respectively. Due to the lowest enthalpy value of the bcc structure above 65 GPa, it can be deduced that magnesium may transform to the bcc structure from the ground state hcp structure around 65 GPa, but no further phase transitions occur without additionally applying high temperature. In addition, the equation of state of magnesium is calculated, indicating that bcc structure is the softest phase.

  1. Height, height-related SNPs, and risk of non-melanoma skin cancer.

    PubMed

    Li, Xin; Liang, Liming; Feng, Yen-Chen Anne; De Vivo, Immaculata; Giovannucci, Edward; Tang, Jean Y; Han, Jiali

    2017-01-03

    Adult height has been associated with risk of several site-specific cancers, including melanoma. However, less attention has been given to non-melanoma skin cancer (NMSC). We prospectively examined the risk of squamous cell carcinoma (SCC) and basal cell carcinoma (BCC) in relation to adult height in the Nurses' Health Study (NHS, n=117 863) and the Health Professionals Follow-up Study (HPFS, n=51 111). We also investigated the relationships between height-related genetic markers and risk of BCC and SCC in the genetic data sets of the NHS and HPFS (3898 BCC cases, and 8530 BCC controls; 527 SCC cases, and 8962 SCC controls). After controlling for potential confounding factors, the hazard ratios were 1.09 (95% CI: 1.02, 1.15) and 1.10 (95% CI: 1.07, 1.13) for the associations between every 10 cm increase in height and risk of SCC and BCC respectively. None of the 687 height-related single-nucleotide polymorphisms (SNPs) was significantly associated with the risk of SCC or BCC, nor were the genetic scores combining independent height-related loci. Our data from two large cohorts provide further evidence that height is associated with an increased risk of NMSC. More studies on height-related genetic loci and early-life exposures may help clarify the underlying mechanisms.

  2. Evaluation of Dogs with Border Collie Collapse, Including Response to Two Standardized Strenuous Exercise Protocols.

    PubMed

    Taylor, Susan; Shmon, Cindy; Su, Lillian; Epp, Tasha; Minor, Katie; Mickelson, James; Patterson, Edward; Shelton, G Diane

    2016-01-01

    Clinical and metabolic variables were evaluated in 13 dogs with border collie collapse (BCC) before, during, and following completion of standardized strenuous exercise protocols. Six dogs participated in a ball-retrieving protocol, and seven dogs participated in a sheep-herding protocol. Findings were compared with 16 normal border collies participating in the same exercise protocols (11 retrieving, five herding). Twelve dogs with BCC developed abnormal mentation and/or an abnormal gait during evaluation. All dogs had post-exercise elevations in rectal temperature, pulse rate, arterial blood pH, PaO2, and lactate, and decreased PaCO2 and bicarbonate, as expected with strenuous exercise, but there were no significant differences between BCC dogs and normal dogs. Electrocardiography demonstrated sinus tachycardia in all dogs following exercise. Needle electromyography was normal, and evaluation of muscle biopsy cryosections using a standard panel of histochemical stains and reactions did not reveal a reason for collapse in 10 dogs with BCC in which these tests were performed. Genetic testing excluded the dynamin-1 related exercise-induced collapse mutation and the V547A malignant hyperthermia mutation as the cause of BCC. Common reasons for exercise intolerance were eliminated. Although a genetic basis is suspected, the cause of collapse in BCC was not determined.

  3. Uhlenbeck-Ford model: Phase diagram and corresponding-states analysis

    NASA Astrophysics Data System (ADS)

    Paula Leite, Rodolfo; Santos-Flórez, Pedro Antonio; de Koning, Maurice

    2017-09-01

    Using molecular dynamics simulations and nonequilibrium thermodynamic-integration techniques we compute the Helmholtz free energies of the body-centered-cubic (bcc), face-centered-cubic (fcc), hexagonal close-packed, and fluid phases of the Uhlenbeck-Ford model (UFM) and use the results to construct its phase diagram. The pair interaction associated with the UFM is characterized by an ultrasoft, purely repulsive pair potential that diverges logarithmically at the origin. We find that the bcc and fcc are the only thermodynamically stable crystalline phases in the phase diagram. Furthermore, we report the existence of two reentrant transition sequences as a function of the number density, one featuring a fluid-bcc-fluid succession and another displaying a bcc-fcc-bcc sequence near the triple point. We find strong resemblances to the phase behavior of other soft, purely repulsive systems such as the Gaussian-core model (GCM), inverse-power-law, and Yukawa potentials. In particular, we find that the fcc-bcc-fluid triple point and the phase boundaries in its vicinity are in good agreement with the prediction supplied by a recently proposed corresponding-states principle [J. Chem. Phys. 134, 241101 (2011), 10.1063/1.3605659; Europhys. Lett. 100, 66004 (2012), 10.1209/0295-5075/100/66004]. The particularly strong resemblance between the behavior of the UFM and GCM models are also discussed.

  4. Basal cell skin cancer and the risk of second primary cancers: a cancer registry-based study in Lithuania.

    PubMed

    Krilaviciute, Agne; Vincerzevskiene, Ieva; Smailyte, Giedre

    2016-07-01

    The aim of this population-based cohort study was to determine the risk of second primary cancer in basal cell carcinoma (BCC) patients in Lithuania. This analysis was based on patients diagnosed with BCC in Lithuania between 1998 and 2007 and followed until 2011. Standardized incidence ratios for subsequent cancers as a ratio of observed number of cancer cases in people with previous BCC diagnosis to the expected number of cancer cases in the underlying general population were calculated. After diagnosis of BCC, 1442 new cases of selected cancers were diagnosed. Compared with the general population, the incidence of all new primaries combined after BCC was very close to expected. Statistically meaningful increase in developing subsequent cancer was obtained for Hodgkin's lymphoma, prostate cancer, and leukemia in men, and for cancers of the lip, lung, and breast in women. Risk of melanoma and thyroid cancer was significantly elevated in both sexes. Relative risk of cancer of the eye was increased although not significant. In our study, we found increased cancer risk for cancers related to sun exposure. In addition, increased risks were identified for Hodgkin's lymphoma, thyroid cancer, leukemia, prostate, and breast cancer in BCC patients. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Classifying distinct basal cell carcinoma subtype by means of dermatoscopy and reflectance confocal microscopy.

    PubMed

    Longo, Caterina; Lallas, Aimilios; Kyrgidis, Athanassios; Rabinovitz, Harold; Moscarella, Elvira; Ciardo, Silvana; Zalaudek, Iris; Oliviero, Margaret; Losi, Amanda; Gonzalez, Salvador; Guitera, Pascale; Piana, Simonetta; Argenziano, Giuseppe; Pellacani, Giovanni

    2014-10-01

    The current guidelines for the management of basal cell carcinoma (BCC) suggest a different therapeutic approach according to histopathologic subtype. Although dermatoscopic and confocal criteria of BCC have been investigated, no specific studies were performed to evaluate the distinct reflectance confocal microscopy (RCM) aspects of BCC subtypes. To define the specific dermatoscopic and confocal criteria for delineating different BCC subtypes. Dermatoscopic and confocal images of histopathologically confirmed BCCs were retrospectively evaluated for the presence of predefined criteria. Frequencies of dermatoscopic and confocal parameters are provided. Univariate and adjusted odds ratios were calculated. Discriminant analyses were performed to define the independent confocal criteria for distinct BCC subtypes. Eighty-eight BCCs were included. Dermatoscopically, superficial BCCs (n=44) were primarily typified by the presence of fine telangiectasia, multiple erosions, leaf-like structures, and revealed cords connected to the epidermis and epidermal streaming upon RCM. Nodular BCCs (n=22) featured the classic dermatoscopic features and well outlined large basaloid islands upon RCM. Infiltrative BCCs (n=22) featured structureless, shiny red areas, fine telangiectasia, and arborizing vessels on dermatoscopy and dark silhouettes upon RCM. The retrospective design. Dermatoscopy and confocal microscopy can reliably classify different BCC subtypes. Copyright © 2014 American Academy of Dermatology, Inc. Published by Elsevier Inc. All rights reserved.

  6. Red Dot Basal Cell Carcinoma: An Unusual Variant of a Common Malignancy.

    PubMed

    Loh, Tiffany Y; Cohen, Philip R

    2016-05-01

    Red dot basal cell carcinoma is a distinct but rare subtype of basal cell carcinoma (BCC). It presents as a red macule or papule; therefore, in most cases, it may easily be mistaken for a benign vascular lesion, such as a telangiectasia or angioma.
    A red dot BCC in an older woman is described. Clinical and histological differences between red dot BCCs and telangiectasias are described.
    A 72-year-old woman initially presented with a painless red macule on her nose. Biopsy of the lesion established the diagnosis of a red dot BCC. Pubmed was searched for the following terms: angioma, basal cell carcinoma, dermoscope, diascopy, red dot, non-melanoma skin cancer, telangiectasia, and vascular. The papers were reviewed for cases of red dot basal cell carcinoma. Clinical and histological characteristics of red dot basal cell carcinoma and telangiectasias were compared.
    Red dot BCC is an extremely rare variant of BCC that may be confused with benign vascular lesions. Although BCCs rarely metastasize and are associated with low mortality, they have the potential to become locally invasive and destructive if left untreated. Thus, a high index of suspicion for red dot BCC is necessary.

    J Drugs Dermatol. 2016;15(5):645-647.

  7. The burden of non-melanoma skin cancers in Auckland, New Zealand.

    PubMed

    Pondicherry, Ashwini; Martin, Richard; Meredith, Ineke; Rolfe, Jack; Emanuel, Patrick; Elwood, Mark

    2018-01-19

    As the New Zealand Cancer Registry does not require mandatory reporting of non-melanoma skin cancers (NMSC), basal cell carcinomas (BCC) and squamous cell carcinomas (SCC), the clinical burden of these diseases is unknown. A retrospective review of all patients with histopathology performed allowed us to estimate invasive BCC and SCC in the Auckland region in 2008 (population 1.44 million). During this period, a total of 21 236 NMSC were diagnosed among 13 996 patients, consisting of 5611 SCC lesions (26%) and 15 525 (74%) BCC. The Auckland incidence rates per 100 000 were 425 for SCC and 1177 for BCC. The overall rate of NMSC per 100 000 was 1906.5 (standardised to the census data of Australia 2001); 1385 for BCC and 522 for SCC. Using published data on incidence trends and population growth, we estimate that 29 000-33 000 NMSC would have been excised in Auckland in 2016, and 78 000-87 000 in New Zealand. Auckland has the highest reported incidence of invasive NMSC in the world. We believe that high-risk cutaneous SCC and complex BCC should be recorded. Our study provides information for clinicians and health economists on the scale of the problem. © 2018 The Australasian College of Dermatologists.

  8. Cohort study of Gorlin syndrome with emphasis on standardised phenotyping and quality of life assessment.

    PubMed

    Huq, Aamira J; Bogwitz, Michael; Gorelik, Alexandra; Winship, Ingrid M; White, Susan M; Trainer, Alison H

    2017-06-01

    Gorlin syndrome (nevoid basal cell carcinoma syndrome) is a rare genetic predisposition to basal cell carcinomas (BCC), keratocysts of the jaw and calcification of the falx cerebri among other clinical features. With the advent of sonic hedgehog inhibitors for the treatment of BCC, it is timely to establish a cohort of individuals with Gorlin syndrome and collect standardised phenotypic information on these individuals. Moreover, the health-related quality of life (QoL) in individuals with Gorlin syndrome is not well studied. To establish a Victorian cohort of Gorlin syndrome and study the QoL in these individuals. Phenotypic data were obtained by reviewing medical records of individuals attending two major tertiary/quaternary genetic referral centres in Victoria, followed by telephone or face-to-face interviews where possible. QoL information was obtained utilising the AQoL-6D quality of life survey form. The median number of BCC in the 19 individuals studied was 17.5 (interquartile range 3-70). The number of patients with ≥100 BCC in this group was similar to a previously described national cohort (22.2 vs 27% respectively). A total of 58% of referrals to the genetics clinics originated from maxillofacial surgeons and 42% from dermatologists. Individuals with ≥100 BCC had worse median QoL scores compared to those with <100 BCC (36 vs 29, P-value of 0.031). The clinical features in our cohort were congruent with those previously described in Australia. The QoL is adversely correlated with increased BCC burden. © 2017 Royal Australasian College of Physicians.

  9. Burkholderia cepacia complex in Serbian patients with cystic fibrosis: prevalence and molecular epidemiology.

    PubMed

    Vasiljevic, Z V; Novovic, K; Kojic, M; Minic, P; Sovtic, A; Djukic, S; Jovcic, B

    2016-08-01

    The Burkholderia cepacia complex (Bcc) organisms remain significant pathogens in patients with cystic fibrosis (CF). This study was performed to evaluate the prevalence, epidemiological characteristics, and presence of molecular markers associated with virulence and transmissibility of the Bcc strains in the National CF Centre in Belgrade, Serbia. The Bcc isolates collected during the four-year study period (2010-2013) were further examined by 16 s rRNA gene, pulsed-field gel electrophoresis of genomic DNA, multilocus sequence typing analysis, and phylogenetic analysis based on concatenated sequence of seven alleles. Fifty out of 184 patients (27.2 %) were colonized with two Bcc species, B. cenocepacia (n = 49) and B. stabilis (n = 1). Thirty-four patients (18.5 %) had chronic colonization. Typing methods revealed a high level of similarity among Bcc isolates, indicating a person-to-person transmission or acquisition from a common source. New sequence types (STs) were identified, and none of the STs with an international distribution were found. One centre-specific ST, B. cenocepacia ST856, was highly dominant and shared by 48/50 (96 %) patients colonized by Bcc. This clone was characterized by PCR positivity for both the B. cepacia epidemic strain marker and cable pilin, and showed close genetic relatedness to the epidemic strain CZ1 (ST32). These results indicate that the impact of Bcc on airway colonization in the Serbian CF population is high and virtually exclusively limited to a single clone of B. cenocepacia. The presence of a highly transmissible clone and probable patient-to-patient spread was observed.

  10. Citrus consumption and risk of basal cell carcinoma and squamous cell carcinoma of the skin.

    PubMed

    Wu, Shaowei; Cho, Eunyoung; Feskanich, Diane; Li, Wen-Qing; Sun, Qi; Han, Jiali; Qureshi, Abrar A

    2015-10-01

    Animal experiments have demonstrated the photocarcinogenic properties of furocoumarins, a group of naturally occurring chemicals that are rich in citrus products. We conducted a prospective study for citrus consumption and risk of basal cell carcinoma (BCC) and squamous cell carcinoma (SCC) of the skin based on data from 41530 men in the Health Professionals Follow-up Study (1986-2010) and 63759 women in the Nurses' Health Study (1984-2010) who were free of cancers at baseline. Over 24-26 years of follow-up, we documented 20840 incident BCCs and 3544 incident SCCs. Compared to those who consumed citrus products less than twice per week, the pooled multivariable-adjusted hazard ratios were 1.03 [95% confidence interval (95% CI): 0.99-1.08] for BCC and 1.14 (95% CI: 1.00-1.30) for SCC for those who consumed two to four times per week, 1.06 (95% CI: 1.01-1.11) for BCC and 1.15 (95% CI: 1.02-1.28) for SCC for five to six times per week, 1.11 (95% CI: 1.06-1.16) for BCC and 1.22 (95% CI: 1.08-1.37) for SCC for once to 1.4 times per day and 1.16 (95% CI: 1.09-1.23) for BCC and 1.21 (95% Cl: 1.06-1.38) for SCC for 1.5 times per day or more (P trend = 0.001 for BCC and 0.04 for SCC). In contrast, consumption of non-citrus fruit and juice appeared to be inversely associated with risk of BCC and SCC. Our findings support positive associations between citrus consumption and risk of cutaneous BCC and SCC in two cohorts of men and women, and call for further investigations to better understand the potential photocarcinogenesis associated with dietary intakes. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Citrus consumption and risk of basal cell carcinoma and squamous cell carcinoma of the skin

    PubMed Central

    Wu, Shaowei; Cho, Eunyoung; Feskanich, Diane; Li, Wen-Qing; Sun, Qi; Han, Jiali; Qureshi, Abrar A.

    2015-01-01

    Animal experiments have demonstrated the photocarcinogenic properties of furocoumarins, a group of naturally occurring chemicals that are rich in citrus products. We conducted a prospective study for citrus consumption and risk of basal cell carcinoma (BCC) and squamous cell carcinoma (SCC) of the skin based on data from 41530 men in the Health Professionals Follow-up Study (1986–2010) and 63759 women in the Nurses’ Health Study (1984–2010) who were free of cancers at baseline. Over 24–26 years of follow-up, we documented 20840 incident BCCs and 3544 incident SCCs. Compared to those who consumed citrus products less than twice per week, the pooled multivariable-adjusted hazard ratios were 1.03 [95% confidence interval (95% CI): 0.99–1.08] for BCC and 1.14 (95% CI: 1.00–1.30) for SCC for those who consumed two to four times per week, 1.06 (95% CI: 1.01–1.11) for BCC and 1.15 (95% CI: 1.02–1.28) for SCC for five to six times per week, 1.11 (95% CI: 1.06–1.16) for BCC and 1.22 (95% CI: 1.08–1.37) for SCC for once to 1.4 times per day and 1.16 (95% CI: 1.09–1.23) for BCC and 1.21 (95% Cl: 1.06–1.38) for SCC for 1.5 times per day or more (P trend = 0.001 for BCC and 0.04 for SCC). In contrast, consumption of non-citrus fruit and juice appeared to be inversely associated with risk of BCC and SCC. Our findings support positive associations between citrus consumption and risk of cutaneous BCC and SCC in two cohorts of men and women, and call for further investigations to better understand the potential photocarcinogenesis associated with dietary intakes. PMID:26224304

  12. Basal Cell Carcinoma: Pathogenesis, Epidemiology, Clinical Features, Diagnosis, Histopathology, and Management

    PubMed Central

    Marzuka, Alexander G.; Book, Samuel E.

    2015-01-01

    Basal cell carcinoma (BCC) is the most common malignancy. Exposure to sunlight is the most important risk factor. Most, if not all, cases of BCC demonstrate overactive Hedgehog signaling. A variety of treatment modalities exist and are selected based on recurrence risk, importance of tissue preservation, patient preference, and extent of disease. The pathogenesis, epidemiology, clinical features, diagnosis, histopathology, and management of BCC will be discussed in this review. PMID:26029015

  13. Exceptional bone metastasis of basal cell carcinoma in Gorlin-Goltz syndrome.

    PubMed

    Lamon, Tatiana; Gerard, Stephane; Meyer, Nicolas; Losfeld, Benjamin; Abellan van Kan, Gabor; Balardy, Laurent; Vellas, Bruno

    2010-01-01

    Basal cell carcinoma (BCC), the most prevalent form of cancer worldwide, is a malignant skin neoplasm. It is locally invasive, with an exceptional incidence of reported metastasis. It can also be part of the Gorlin-Goltz syndrome, an autosomal dominant genetic disorder with high penetrance and variable expressivity, which is principally characterized by cutaneous BCC, odontogenic keratocysts, palmar and/or plantar pits, and falx cerebri calcification. We report the exceptional clinical observation of a 54-year-old man presenting bone metastasis from BCC in Gorlin-Goltz syndrome. Less than 300 cases of metastatic BCC have been reported in the literature. The present case is the second associated with Gorlin-Goltz syndrome. Copyright 2009 S. Karger AG, Basel.

  14. Grain boundary phases in bcc metals

    DOE PAGES

    Frolov, T.; Setyawan, W.; Kurtz, R. J.; ...

    2018-01-01

    Evolutionary grand-canonical search predicts novel grain boundary structures and multiple grain boundary phases in elemental body-centered cubic (bcc) metals represented by tungsten, tantalum and molybdenum.

  15. On the mechanical stability of the body-centered cubic phase and the emergence of a metastable cI16 phase in classical hard sphere solids

    NASA Astrophysics Data System (ADS)

    Warshavsky, Vadim B.; Ford, David M.; Monson, Peter A.

    2018-01-01

    The stability of the body-centered cubic (bcc) solid phase of classical hard spheres is of intrinsic interest and is also relevant to the development of perturbation theories for bcc solids of other model systems. Using canonical ensemble Monte Carlo, we simulated systems initialized in a perfect bcc lattice at various densities in the solid region. We observed that the systems rapidly evolved into one of four structures that then persisted for the duration of the simulation. Remarkably, one of these structures was identified as cI16, a cubic crystalline structure with 16 particles in the unit cell, which has recently been observed experimentally in lithium and sodium solids at high pressures. The other three structures do not exhibit crystalline order but are characterized by common patterns in the radial distribution function and bond-orientational order parameter distribution; we refer to them as bcc-di, with i ranging from 1 to 3. We found similar outcomes when employing any of the three single occupancy cell (SOC) restrictions commonly used in the literature. We also ran long constant-pressure simulations with box shape fluctuations initiated from bcc and cI16 initial configurations. At lower pressures, all the systems evolved to defective face-centered cubic (fcc) or hexagonal close-packed (hcp) structures. At higher pressures, most of the systems initiated as bcc evolved to cI16 with some evolving to defective fcc/hcp. High pressure systems initiated from cI16 remained in that structure. We computed the chemical potential of cI16 using the Einstein crystal reference method and found that it is higher than that of fcc by ˜0.5kT-2.5kT over the pressure range studied, with the difference increasing with pressure. We find that the undistorted bcc solid, even with constant-volume and SOC restrictions applied, is so mechanically unstable that it is unsuitable for consideration as a metastable phase or as a reference system for studying bcc phases of other systems. On the other hand, cI16 is a mechanically stable structure that can spontaneously emerge from a bcc starting point but it is thermodynamically metastable relative to fcc or hcp.

  16. Common variants modify the age of onset for basal cell carcinomas in Gorlin syndrome.

    PubMed

    Yasar, Binnaz; Byers, Helen J; Smith, Miriam J; Lear, John; Oudit, Deemesh; Bholah, Zaynab; Roberts, Stephen A; Newman, William G; Evans, D Gareth

    2015-05-01

    Gorlin syndrome is an autosomal dominant disorder, characterized by multiple early-onset basal cell carcinomas (BCCs) and jaw keratocysts. Through association studies in cohorts of sporadic BCC, nine genetic variants have previously been identified to increase the risk of BCC. The nine SNPs were genotyped by Taqman allelic discrimination in 125 individuals with Gorlin syndrome. Kaplan-Meier survival curves and Cox proportional-Hazard regression analysis were applied to determine the association between genotypes and age of first BCC in individuals with Gorlin syndrome. The p.(Arg151Cys) variant in MC1R (rs1805007) was associated with an earlier median age of onset of BCC of 27 years (95% CI: 20-34) compared with 34 years (95% CI: 30-40) for wild-type individuals (hazard ratio (HR)=1.64, 95% CI: 1.04-2.58, P=0.034). The risk allele of the variant at the chromosome 5p15 locus encompassing TERT-CLPTM1L (rs401681) was also associated with an earlier median onset of BCC, 31 years (95% CI: 28-37) compared with 41 years (95% CI: 32-48, HR=1.44, 95% CI: 1.08-1.93, P=0.014). In individuals with a risk allele at either rs1805007 or rs401681 the median time to BCC was 31 years of age (95% CI: 28-34) compared with 44 years of age (95% CI: 38-53) in wild-type individuals (HR=2.48, 95% CI: 1.47-4.17, P=0.0002). Our findings may have implications for future personalized risk estimates and BCC screening strategies in individuals with Gorlin syndrome.

  17. Shear-induced partial translational ordering of a colloidal solid

    NASA Astrophysics Data System (ADS)

    Ackerson, B. J.; Clark, N. A.

    1984-08-01

    Highly charged submicrometer plastic spheres suspended in water at low ionic strength will order spontaneously into bcc crystals or polycrystals. A simple linear shear orients and disorders these crystals by forcing (110) planes to stack normal to the shear gradient and to slide relative to each other with a <111> direction parallel to the solvent flow. In this paper we analyze in detail the disordering and flow processes occurring beyond the intrinsic elastic limit of the bcc crystal. We are led to a model in which the flow of a colloidal crystal is interpreted as a fundamentally different process from that found in atomic crystals. In the colloidal crystal the coupling of particle motion to the background fluid forces a homogeneous flow, where every layer is in motion relative to its neighboring layers. In contrast, the plastic flow in an atomic solid is defect mediated flow. At the lowest applied stress, the local bcc order in the colloidal crystal exhibits shear strains both parallel and perpendicular to the direction of the applied stress. The magnitude of these deformations is estimated using the configurational energy for bcc and distorted bcc crystals, assuming a screened Coulomb pair interaction between colloidal particles. As the applied stress is increased, the intrinsic elastic limit of the crystal is exceeded and the crystal begins to flow with adjacent layers executing an oscillatory path governed by the balance of viscous and screened Coulomb forces. The path takes the structure from the bcc1 and bcc2 twins observed at zero shear to a distorted two-dimensional hcp structure at moderate shear rates, with a loss of interlayer registration as the shear is increased. This theoretical model is consistent with other experimental observations, as well.

  18. Basal cell carcinomas in a tertiary referral centre: a systematic analysis.

    PubMed

    Dreier, J; Cheng, P F; Bogdan Alleman, I; Gugger, A; Hafner, J; Tschopp, A; Goldinger, S M; Levesque, M P; Dummer, R

    2014-11-01

    Basal cell carcinoma (BCC) is the most frequent skin cancer with increasing incidence and generally high cure rates. BCC can be quite aggressive and is difficult to treat. To investigate BCCs with a focus on histological subtypes, treatment procedures and correlation to clinical progress to collect further information on complex BCC cases. In this retrospective single-centre analysis the dermatopathology database, a network of cooperating dermatological surgeons, was queried for BCC cases between January 2007 and December 2011. Of 14,423 samples from a total of 9652 patients initially identified, 2938 patients were treated at the University Hospital Zurich and had corresponding local electronic patient records. Patients (n = 2938) (with 4769 diagnoses, 2006 re-excisions with 1180 microscopically controlled surgeries) were classified based on severity estimations into 2240 simple, 640 moderate, and 58 severe cases, including one BCC-treatment-associated death and 11 patients with subsequent participation in a clinical trial. In moderate and severe cases (n = 698), there were significantly higher rates of unique histological diagnoses (n = 2·5; P < 0·0001), higher association with basosquamous carcinoma [odds ratio (OR) 3·6; P < 0·0001] and sclerosing BCC (OR 2·48; P < 0·0001). Of the patients with basosquamous carcinoma 82·6% had a previous history of BCC. This is the first study that analyses the frequency of complicated BCCs in a tertiary referral centre. There were 6·6% moderate (640 of 9652) and 0·6% (58 of 9652) severe cases. We found significantly more varying histological diagnoses and significant association with aggressive subtypes in moderate and severe cases. These patients might especially benefit from new therapeutic options. © 2014 British Association of Dermatologists.

  19. Family history of skin cancer is associated with early-onset basal cell carcinoma independent of MC1R genotype.

    PubMed

    Berlin, Nicholas L; Cartmel, Brenda; Leffell, David J; Bale, Allen E; Mayne, Susan T; Ferrucci, Leah M

    2015-12-01

    As a marker of genetic susceptibility and shared lifestyle characteristics, family history of cancer is often used to evaluate an individual's risk for developing a particular malignancy. With comprehensive data on pigment characteristics, lifestyle factors, and melanocortin 1 receptor (MC1R) gene sequence, we sought to clarify the role of family history of skin cancer in early-onset basal cell carcinoma (BCC). Early onset BCC cases (n=376) and controls with benign skin conditions (n=383) under age 40 were identified through Yale dermatopathology. Self-report data on family history of skin cancer (melanoma and non-melanoma skin cancer), including age of onset in relatives, was available from a structured interview. Participants also provided saliva samples for sequencing of MC1R. A family history of skin cancer was associated with an increased risk of early-onset BCC (OR 2.49, 95% CI 1.80-3.45). In multivariate models, family history remained a strong risk factor for early-onset BCC after adjustment for pigment characteristics, UV exposure, and MC1R genotype (OR 2.41, 95% CI 1.74-3.35). Risk for BCC varied based upon the type and age of onset of skin cancer among affected relatives; individuals with a first-degree relative diagnosed with skin cancer prior to age 50 were at highest risk for BCC (OR 4.79, 95% CI 2.90-7.90). Even after taking into account potential confounding effects of MC1R genotype and various lifestyle factors that close relatives may share, family history of skin cancer remained strongly associated with early-onset BCC. Copyright © 2015. Published by Elsevier Ltd.

  20. Regional variations of basal cell carcinoma incidence in the U.K. using The Health Improvement Network database (2004-10).

    PubMed

    Musah, A; Gibson, J E; Leonardi-Bee, J; Cave, M R; Ander, E L; Bath-Hextall, F

    2013-11-01

    Basal cell carcinoma (BCC) is one of the most common types of nonmelanoma skin cancer affecting the white population; however, little is known about how the incidence varies across the U.K. To determine the variation in BCC throughout the U.K. Data from 2004 to 2010 were obtained from The Health Improvement Network database. European and world age-standardized incidence rates (EASRs and WASRs, respectively) were obtained for country-level estimates and levels of socioeconomic deprivation, while strategic health-authority-level estimates were directly age and sex standardized to the U.K. standard population. Incidence-rate ratios were estimated using multivariable Poisson regression models. The overall EASR and WASR of BCC in the U.K. were 98.6 per 100,000 person-years and 66.9 per 100,000 person-years, respectively. Regional-level incidence rates indicated a significant geographical variation in the distribution of BCC, which was more pronounced in the southern parts of the country. The South East Coast had the highest BCC rate followed by South Central, Wales and the South West. Incidence rates were substantially higher in the least deprived groups and we observed a trend of decreasing incidence with increasing levels of deprivation (P < 0.001). Finally, in terms of age groups, the largest annual increase was observed among those aged 30-49 years. Basal cell carcinoma is an increasing health problem in the U.K.; the southern regions of the U.K. and those in the least deprived groups had a higher incidence of BCC. Our findings indicate an increased incidence of BCC for younger age groups below 49 years. © 2013 British Association of Dermatologists.

  1. Silibinin and its 2,3-Dehydro-derivative Inhibit Basal Cell Carcinoma Growth via Suppression of Mitogenic Signaling and Transcription Factors Activation

    PubMed Central

    Tilley, Cynthia; Deep, Gagan; Agarwal, Chapla; Wempe, Michael F; Biedermann, David; Valentová, Kateřina; Kren, Vladimir; Agarwal, Rajesh

    2014-01-01

    Basal cell carcinoma (BCC) is the most common cancer worldwide, and its current treatment options are insufficient and toxic. Surprisingly, unlike several other malignancies, chemopreventive efforts against BCC are almost lacking. Silibinin, a natural agent from milk thistle seeds, has shown strong efficacy against several cancers including ultraviolet radiation-induced skin (squamous) cancer; however, its potential activity against BCC is not yet examined. Herein, for the first time, we report the efficacy of silibinin and its oxidation product 2,3-dehydrosilibinin (DHS) against BCC both in vitro and in vivo using ASZ (p53 mutated) and BSZ (p53 deleted) cell lines derived from murine BCC tumors. Both silibinin and DHS significantly inhibited cell growth and clonogenicity while inducing apoptosis in a dose- and time-dependent manner, with DHS showing higher activity at lower concentrations. Both agents also inhibited the mitogenic signaling by reducing EGFR, ERK1/2, Akt, and STAT3 phosphorylation and suppressed the activation of transcription factors NF-κB and AP-1. More importantly, in an ectopic allograft model, oral administration of silibinin and DHS (200 mg/kg body weight) strongly inhibited the ASZ tumor growth by 44 and 71% (p<0.05), respectively, and decreased the expression of proliferation biomarkers (PCNA and cyclin D1) as well as NF-κB p50 and c-Fos in the tumor tissues. Taken together, these results provide the first evidence for the efficacy and usefulness of silibinin and its derivative DHS against BCC, and suggest the need for additional studies with these agents in pre-clinical and clinical BCC chemoprevention and therapy models. PMID:25492239

  2. Silibinin and its 2,3-dehydro-derivative inhibit basal cell carcinoma growth via suppression of mitogenic signaling and transcription factors activation.

    PubMed

    Tilley, Cynthia; Deep, Gagan; Agarwal, Chapla; Wempe, Michael F; Biedermann, David; Valentová, Kateřina; Kren, Vladimir; Agarwal, Rajesh

    2016-01-01

    Basal cell carcinoma (BCC) is the most common cancer worldwide, and its current treatment options are insufficient and toxic. Surprisingly, unlike several other malignancies, chemopreventive efforts against BCC are almost lacking. Silibinin, a natural agent from milk thistle seeds, has shown strong efficacy against several cancers including ultraviolet radiation-induced skin (squamous) cancer; however, its potential activity against BCC is not yet examined. Herein, for the first time, we report the efficacy of silibinin and its oxidation product 2,3-dehydrosilibinin (DHS) against BCC both in vitro and in vivo using ASZ (p53 mutated) and BSZ (p53 deleted) cell lines derived from murine BCC tumors. Both silibinin and DHS significantly inhibited cell growth and clonogenicity while inducing apoptosis in a dose- and time-dependent manner, with DHS showing higher activity at lower concentrations. Both agents also inhibited the mitogenic signaling by reducing EGFR, ERK1/2, Akt, and STAT3 phosphorylation and suppressed the activation of transcription factors NF-κB and AP-1. More importantly, in an ectopic allograft model, oral administration of silibinin and DHS (200 mg/kg body weight) strongly inhibited the ASZ tumor growth by 44% and 71% (P < 0.05), respectively, and decreased the expression of proliferation biomarkers (PCNA and cyclin D1) as well as NF-κB p50 and c-Fos in the tumor tissues. Taken together, these results provide the first evidence for the efficacy and usefulness of silibinin and its derivative DHS against BCC, and suggest the need for additional studies with these agents in pre-clinical and clinical BCC chemoprevention and therapy models. © 2014 Wiley Periodicals, Inc.

  3. Height, height-related SNPs, and risk of non-melanoma skin cancer

    PubMed Central

    Li, Xin; Liang, Liming; Feng, Yen-Chen Anne; De Vivo, Immaculata; Giovannucci, Edward; Tang, Jean Y; Han, Jiali

    2017-01-01

    Background: Adult height has been associated with risk of several site-specific cancers, including melanoma. However, less attention has been given to non-melanoma skin cancer (NMSC). Methods: We prospectively examined the risk of squamous cell carcinoma (SCC) and basal cell carcinoma (BCC) in relation to adult height in the Nurses' Health Study (NHS, n=117 863) and the Health Professionals Follow-up Study (HPFS, n=51 111). We also investigated the relationships between height-related genetic markers and risk of BCC and SCC in the genetic data sets of the NHS and HPFS (3898 BCC cases, and 8530 BCC controls; 527 SCC cases, and 8962 SCC controls). Results: After controlling for potential confounding factors, the hazard ratios were 1.09 (95% CI: 1.02, 1.15) and 1.10 (95% CI: 1.07, 1.13) for the associations between every 10 cm increase in height and risk of SCC and BCC respectively. None of the 687 height-related single-nucleotide polymorphisms (SNPs) was significantly associated with the risk of SCC or BCC, nor were the genetic scores combining independent height-related loci. Conclusions: Our data from two large cohorts provide further evidence that height is associated with an increased risk of NMSC. More studies on height-related genetic loci and early-life exposures may help clarify the underlying mechanisms. PMID:27846199

  4. The incidence and body site of skin cancers in the population groups of South Africa.

    PubMed

    Norval, Mary; Kellett, Patricia; Wright, Caradee Yael

    2014-10-01

    Data regarding basal cell carcinoma (BCC), squamous cell carcinoma of the skin (SSCC) and cutaneous melanoma (CM) in multiracial populations are sparse. Here the incidence and body site of these tumours in the South African population in 2000-2004 were analysed. Annual age-standardized incidences and body sites of BCC, SSCC and CM in black, coloured, Asian and white groups were obtained from histological confirmed cases, reported to the National Cancer Registry. Highest annual incidences of BCC, SSCC and CM occurred in the white group, followed by coloured, then Asian and then black. BCCs and SSCCs were about twice as common in males than females. CM was the least frequent skin tumour, and BCC the most frequent, except in black people. The head was the commonest body site for SSCC and BCC in all groups and both sexes, whereas the lower limb was the predominant site for CM in black people. Mean age at diagnosis was generally mid-50s for CM, and mid-60s for BCC and SSCC. In South Africa, differences in reported incidence rates and body sites of skin tumours by population group and sex occur. Host characteristics, particularly skin phototype, and personal behaviour are likely to affect the risk of these cancers. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Preliminary data on antibacterial activity of Echinacea purpurea-associated bacterial communities against Burkholderia cepacia complex strains, opportunistic pathogens of Cystic Fibrosis patients.

    PubMed

    Chiellini, Carolina; Maida, Isabel; Maggini, Valentina; Bosi, Emanuele; Mocali, Stefano; Emiliani, Giovanni; Perrin, Elena; Firenzuoli, Fabio; Mengoni, Alessio; Fani, Renato

    2017-03-01

    Burkholderia cepacia complex bacteria (Bcc) represent a serious threat for immune-compromised patient affected by Cystic Fibrosis (CF) since they are resistant to many substances and to most antibiotics. For this reason, the research of new natural compounds able to inhibit the growth of Bcc strains has raised new interest during the last years. A source of such natural compounds is represented by medicinal plants and, in particular, by bacterial communities associated with these plants able to produce molecules with antimicrobial activity. In this work, a panel of 151 (endophytic) bacteria isolated from three different compartments (rhizospheric soil, roots, and stem/leaves) of the medicinal plant Echinacea purpurea were tested (using the cross-streak method) for their ability to inhibit the growth of 10 Bcc strains. Data obtained revealed that bacteria isolated from the roots of E. purpurea are the most active in the inhibition of Bcc strains, followed by bacteria isolated from the rhizospheric soil, and endophytes from stem/leaf compartment. At the same time, Bcc strains of environmental origin showed a higher resistance toward inhibition than the Bcc strains with clinical (i.e. CF patients) origin. Differences in the inhibition activity of E. purpurea-associated bacteria are mainly linked to the environment -the plant compartment- rather than to their taxonomical position. Copyright © 2016 Elsevier GmbH. All rights reserved.

  6. Snowmelt-driven changes in dissolved organic matter and bacterioplankton communities in the Heilongjiang watershed of China.

    PubMed

    Qiu, Linlin; Cui, Hongyang; Wu, Junqiu; Wang, Baijie; Zhao, Yue; Li, Jiming; Jia, Liming; Wei, Zimin

    2016-06-15

    Bacterioplankton plays a significant role in the circulation of materials and ecosystem function in the biosphere. Dissolved organic matter (DOM) from dead plant material and surface soil leaches into water bodies when snow melts. In our study, water samples from nine sampling sites along the Heilongjiang watershed were collected in February and June 2014 during which period snowmelt occurred. The goal of this study was to characterize changes in DOM and bacterioplankton community composition (BCC) associated with snowmelt, the effects of DOM, environmental and geographical factors on the distribution of BCC and interactions of aquatic bacterioplankton populations with different sources of DOM in the Heilongjiang watershed. BCC was measured by denaturing gradient gel electrophoresis (DGGE). DOM was measured by excitation-emission matrix (EEM) fluorescence spectroscopy. Bacterioplankton exhibited a distinct seasonal change in community composition due to snowmelt at all sampling points except for EG. Redundancy analysis (RDA) indicated that BCC was more closely related to DOM (Components 1 and 4, dissolved organic carbon, biochemical oxygen demand and chlorophyll a) and environmental factors (water temperature and nitrate nitrogen) than geographical factors. Furthermore, DOM had a greater impact on BCC than environmental factors (29.80 vs. 15.90% of the variation). Overall, spring snowmelt played an important role in altering the quality and quantity of DOM and BCC in the Heilongjiang watershed. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Evaluating ex vivo fluorescence confocal microscopy images of basal cell carcinomas in Mohs excised tissue.

    PubMed

    Longo, C; Rajadhyaksha, M; Ragazzi, M; Nehal, K; Gardini, S; Moscarella, E; Lallas, A; Zalaudek, I; Piana, S; Argenziano, G; Pellacani, G

    2014-09-01

    Fluorescence confocal microscopy (FCM) is an emerging technology for rapid imaging of excised tissue, without the need for frozen- or fixed-section processing. Basal cell carcinomas (BCCs) can be detected in Mohs excisions although few studies have described the major BCC findings as seen on FCM. To describe the major BCC findings of excised tissue during Mohs surgery and to correlate them with histopathology. Freshly excised tumours and frozen-thawed discarded tissue of BCC during Mohs surgery were analysed by means of FCM. A side-by-side correlation between FCM images and histological sections was performed. The FCM features of overlying skin and adnexal structures were also described. Sixty-four BCC cases were analysed. Distinct BCC types appeared unique in terms of shape and size of tumour islands [bigger in nodular (18/25), smaller and rounded in micronodular (7/7) and tiny cords for infiltrative ones (24/30)] and for the presence of clefting, palisading and increased nucleus/cytoplasm ratio. An excellent correlation was found between FCM and histological findings (Cohen's κ statistics = 0·9). In six cases, the presence of sebaceous glands and intense stroma reaction represented possible confounders. Fluorescence confocal microscopy is a fast and new imaging technique that allows an excellent visualization of skin structures and BCC findings during Mohs surgery. © 2014 British Association of Dermatologists.

  8. Bcc and Fcc transition metals and alloys: a central role for the Jahn-Teller effect in explaining their ideal and distorted structures.

    PubMed

    Lee, Stephen; Hoffmann, Roald

    2002-05-01

    Transition metal elements, alloys, and intermetallic compounds often adopt the body centered cubic (bcc) and face centered cubic (fcc) structures. By comparing quantitative density functional with qualitative tight-binding calculations, we analyze the electronic factors which make the bcc and fcc structures energetically favorable. To do so, we develop a tight-binding function, DeltaE(star), a function that measures the energetic effects of transferring electrons within wave vector stars. This function allows one to connect distortions in solids to the Jahn-Teller effect in molecules and to provide an orbital perspective on structure determining deformations in alloys. We illustrate its use by considering first a two-dimensional square net. We then turn to three-dimensional fcc and bcc structures, and distortions of these. Using DeltaE(star), we rationalize the differences in energy of these structures. We are able to deduce which orbitals are responsible for instabilities in seven to nine valence electron per atom (e(-)/a) bcc systems and five and six e(-)/a fcc structures. Finally we demonstrate that these results account for the bcc and fcc type structures found in both the elements and binary intermetallic compounds of group 4 through 9 transition metal atoms. The outline of a theory of metal structure deformations based on loss of point group operation rather than translational symmetry is presented.

  9. BCc1, the novel antineoplastic nanocomplex, showed potent anticancer effects in vitro and in vivo.

    PubMed

    Kalanaky, Somayeh; Hafizi, Maryam; Fakharzadeh, Saideh; Vasei, Mohammad; Langroudi, Ladan; Janzamin, Ehsan; Hashemi, Seyed Mahmoud; Khayamzadeh, Maryam; Soleimani, Masoud; Akbari, Mohammad Esmaeil; Nazaran, Mohammad Hassan

    2016-01-01

    In spite of all the efforts and researches on anticancer therapeutics, an absolute treatment is still a myth. Therefore, it is necessary to utilize novel technologies in order to synthesize smart multifunctional structures. In this study, for the first time, we have evaluated the anticancer effects of BCc1 nanocomplex by vitro and in vivo studies, which is designed based on the novel nanochelating technology. Human breast adenocarcinoma cell line (MCF-7) and mouse embryonic fibroblasts were used for the in vitro study. Antioxidant potential, cell toxicity, apoptosis induction, and CD44 and CD24 protein expression were evaluated after treatment of cells with different concentrations of BCc1 nanocomplex. For the in vivo study, mammary tumor-bearing female Balb/c mice were treated with different doses of BCc1 and their effects on tumor growth rate and survival were evaluated. BCc1 decreased CD44 protein expression and increased CD24 protein expression. It induced MCF-7 cell apoptosis but at the same concentrations did not have negative effects on mouse embryonic fibroblasts viability and protected them against oxidative stress. Treatment with nanocomplex increased survival and reduced the tumor size growth in breast cancer-bearing balb/c mice. These results demonstrate that BCc1 has the capacity to be assessed as a new anticancer agent in complementary studies.

  10. Classification of different kinds of pesticide residues on lettuce based on fluorescence spectra and WT-BCC-SVM algorithm

    NASA Astrophysics Data System (ADS)

    Zhou, Xin; Jun, Sun; Zhang, Bing; Jun, Wu

    2017-07-01

    In order to improve the reliability of the spectrum feature extracted by wavelet transform, a method combining wavelet transform (WT) with bacterial colony chemotaxis algorithm and support vector machine (BCC-SVM) algorithm (WT-BCC-SVM) was proposed in this paper. Besides, we aimed to identify different kinds of pesticide residues on lettuce leaves in a novel and rapid non-destructive way by using fluorescence spectra technology. The fluorescence spectral data of 150 lettuce leaf samples of five different kinds of pesticide residues on the surface of lettuce were obtained using Cary Eclipse fluorescence spectrometer. Standard normalized variable detrending (SNV detrending), Savitzky-Golay coupled with Standard normalized variable detrending (SG-SNV detrending) were used to preprocess the raw spectra, respectively. Bacterial colony chemotaxis combined with support vector machine (BCC-SVM) and support vector machine (SVM) classification models were established based on full spectra (FS) and wavelet transform characteristics (WTC), respectively. Moreover, WTC were selected by WT. The results showed that the accuracy of training set, calibration set and the prediction set of the best optimal classification model (SG-SNV detrending-WT-BCC-SVM) were 100%, 98% and 93.33%, respectively. In addition, the results indicated that it was feasible to use WT-BCC-SVM to establish diagnostic model of different kinds of pesticide residues on lettuce leaves.

  11. Fe-Al alloy single-crystal thin film preparation for basic magnetic measurements

    NASA Astrophysics Data System (ADS)

    Abe, Tatsuya; Kawai, Tetsuroh; Futamoto, Masaaki; Ohtake, Mitsuru; Inaba, Nobuyuki

    2018-04-01

    Fe100-xAlx (x = 0, 4, 10, 20, 30 at. %) alloy films of 40 nm thickness are prepared on MgO(001) single-crystal substrates by varying substrate temperature from room temperature to 600 °C. Single-crystal films of (001) orientation with bcc-based disordered A2 structure are obtained for the Al content range of x = 0 - 20 at. %. An ordered phase of DO3 structure is observed in Fe70Al30 films prepared at temperatures higher than 200 °C, whereas (001) oriented single-crystal films of A2 structure are obtained when prepared at room temperature. The film surface profile does not depend much on the film composition, while the surface roughness increases with increasing substrate temperature. Island-like crystals are observed for films prepared at 600°C for all compositions. Difference in lattice spacing measured parallel and perpendicular to the substrate is noted for the single-crystal thin films and it increases with increasing Al content. The lattice strain in single-crystal film is caused possibly to accommodate the lattice mismatch with the MgO substrate. The (001)-oriented single-crystal films with A2 structure show four-fold symmetries in in-plane magnetic anisotropy with the easy magnetization axis A2[100] and the hard magnetization axis A2[110], whereas the films with DO3 ordered structure show almost isotropic magnetic properties.

  12. Early detection of skin cancer via terahertz spectral profiling and 3D imaging.

    PubMed

    Rahman, Anis; Rahman, Aunik K; Rao, Babar

    2016-08-15

    Terahertz scanning reflectometry, terahertz 3D imaging and terahertz time-domain spectroscopy have been used to identify features in human skin biopsy samples diagnosed for basal cell carcinoma (BCC) and compared with healthy skin samples. It was found from the 3D images that the healthy skin samples exhibit regular cellular pattern while the BCC skin samples indicate lack of regular cell pattern. The skin is a highly layered structure organ; this is evident from the thickness profile via a scan through the thickness of the healthy skin samples, where, the reflected intensity of the terahertz beam exhibits fluctuations originating from different skin layers. Compared to the healthy skin samples, the BCC samples' profiles exhibit significantly diminished layer definition; thus indicating a lack of cellular order. In addition, terahertz time-domain spectroscopy reveals significant and quantifiable differences between the healthy and BCC skin samples. Thus, a combination of three different terahertz techniques constitutes a conclusive route for detecting the BCC condition on a cellular level compared to the healthy skin. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Robust demarcation of basal cell carcinoma by dependent component analysis-based segmentation of multi-spectral fluorescence images.

    PubMed

    Kopriva, Ivica; Persin, Antun; Puizina-Ivić, Neira; Mirić, Lina

    2010-07-02

    This study was designed to demonstrate robust performance of the novel dependent component analysis (DCA)-based approach to demarcation of the basal cell carcinoma (BCC) through unsupervised decomposition of the red-green-blue (RGB) fluorescent image of the BCC. Robustness to intensity fluctuation is due to the scale invariance property of DCA algorithms, which exploit spectral and spatial diversities between the BCC and the surrounding tissue. Used filtering-based DCA approach represents an extension of the independent component analysis (ICA) and is necessary in order to account for statistical dependence that is induced by spectral similarity between the BCC and surrounding tissue. This generates weak edges what represents a challenge for other segmentation methods as well. By comparative performance analysis with state-of-the-art image segmentation methods such as active contours (level set), K-means clustering, non-negative matrix factorization, ICA and ratio imaging we experimentally demonstrate good performance of DCA-based BCC demarcation in two demanding scenarios where intensity of the fluorescent image has been varied almost two orders of magnitude. Copyright 2010 Elsevier B.V. All rights reserved.

  14. Interfacial Microstructure Evolution due to Strain Path Changes in Sliding Contacts.

    PubMed

    Eder, Stefan J; Cihak-Bayr, Ulrike; Gachot, Carsten; Rodriguez Ripoll, Manel

    2018-06-22

    We performed large-scale molecular dynamics (MD) simulations to study the transient softening stage that has been observed experimentally in sliding interfaces subject to strain path changes. The occurrence of this effect can be of crucial importance for the energy efficiency and wear resistance of systems that experience changes in sliding direction, such as bearings or gears in wind parks, piston rings in combustion engines, or wheel--rail contacts for portal cranes. We therefore modeled the sliding of a rough counterbody against two polycrystalline substrates of fcc copper and bcc iron with initial near-surface grain sizes of 40 nm. The microstructural development of these substrates was monitored and quantified as a function of time, depth, and applied pressure during unidirectional sliding for 7 ns. The results were then compared to the case of sliding in one direction for 5 ns and reversing the sliding direction for an additional 2 ns. We observed the generation of partial dislocations, grain refinement and rotation, as well as twinning (for fcc) in the near-surface region. All microstructures were increasingly affected by these processes when maintaining the sliding direction, but recovered to a great extent upon sliding reversal up to applied pressures of 0.4 GPa in the case of fcc Cu and 1.5 GPa for bcc Fe. We discuss the applicability and limits of our polycrystalline MD model for reproducing well-known bulk phenomena such as the Bauschinger effect in interfacial processes.

  15. Nonlinear spectral imaging of human normal skin, basal cell carcinoma and squamous cell carcinoma based on two-photon excited fluorescence and second-harmonic generation

    NASA Astrophysics Data System (ADS)

    Xiong, S. Y.; Yang, J. G.; Zhuang, J.

    2011-10-01

    In this work, we use nonlinear spectral imaging based on two-photon excited fluorescence (TPEF) and second harmonic generation (SHG) for analyzing the morphology of collagen and elastin and their biochemical variations in basal cell carcinoma (BCC), squamous cell carcinoma (SCC) and normal skin tissue. It was found in this work that there existed apparent differences among BCC, SCC and normal skin in terms of their thickness of the keratin and epithelial layers, their size of elastic fibers, as well as their distribution and spectral characteristics of collagen. These differences can potentially be used to distinguish BCC and SCC from normal skin, and to discriminate between BCC and SCC, as well as to evaluate treatment responses.

  16. Physics-Based Crystal Plasticity Modeling of Single Crystal Niobium

    NASA Astrophysics Data System (ADS)

    Maiti, Tias

    Crystal plasticity models based on thermally activated dislocation kinetics has been successful in predicting the deformation behavior of crystalline materials, particularly in face-centered cubic (fcc) metals. In body-centered cubic (bcc) metals success has been limited owing to ill-defined slip planes. The flow stress of a bcc metal is strongly dependent on temperature and orientation due to the non-planar splitting of a/2 screw dislocations. As a consequence of this, bcc metals show two unique deformation characteristics: (a) thermally-activated glide of screw dislocations--the motion of screw components with their non-planar core structure at the atomistic level occurs even at low stress through the nucleation (assisted by thermal activation) and lateral propagation of dislocation kink pairs; (b) break-down of the Schmid Law, where dislocation slip is driven only by the resolved shear stress. Since the split dislocation core has to constrict for a kink pair formation (and propagation), the non-planarity of bcc screw dislocation cores entails an influence of (shear) stress components acting on planes other than the primary glide plane on their mobility. Another consequence of the asymmetric core splitting on the glide plane is a direction-sensitive slip resistance, which is termed twinning/atwinning sense of shear and should be taken into account when developing constitutive models. Modeling thermally-activated flow including the above-mentioned non-Schmid effects in bcc metals has been the subject of much work, starting in the 1980s and gaining increased interest in recent times. The majority of these works focus on single crystal deformation of commonly used metals such as Iron (Fe), Molybdenum (Mo), and Tungsten (W), while very few published studies address deformation behavior in Niobium (Nb). Most of the work on Nb revolves around fitting parameters of phenomenological descriptions, which do not capture adequately the macroscopic multi-stage hardening behavior and evolution of crystallographic texture from a physical point of view. Therefore, we aim to develop a physics-based crystal plasticity model that can capture these effects as a function of grain orientations, microstructure parameters, and temperature. To achieve this goal, first, a new dilatational constitutive model is developed for simulating the deformation of non-compact geometries (foams or geometries with free surfaces) using the spectral method. The model has been used to mimic the void-growth behavior of a biaxially loaded plate with a circular inclusion. The results show that the proposed formulation provides a much better description of void-like behavior compared to the pure elastic behavior of voids. Using the developed dilatational framework, periodic boundary conditions arising from the spectral solver has been relaxed to study the tensile deformation behavior of dogbone-shaped Nb single crystals. Second, a dislocation density-based constitutive model with storage and recovery laws derived from Discrete Dislocation Dynamics (DDD) is implemented to model multi-stage strain hardening. The influence of pre-deformed dislocation content, dislocation interaction strengths and mean free path on stage II hardening is then simulated and compared with in-situ tensile experiments.

  17. Cesium under pressure: First-principles calculation of the bcc-to-fcc phase transition

    NASA Astrophysics Data System (ADS)

    Carlesi, S.; Franchini, A.; Bortolani, V.; Martinelli, S.

    1999-05-01

    In this paper we present the ab initio calculation of the structural properties of cesium under pressure. The calculation of the total energy is done in the local-density approximation of density-functional theory, using a nonlocal pseudopotential including the nonlinear core corrections proposed by Louie et al. The calculation of the pressure-volume diagram for both bcc and fcc structures allows us to prove that the transition from bcc to fcc structure is a first-order transition.

  18. Treatment of Basal Cell Carcinoma Using a One-Stop-Shop With Reflectance Confocal Microscopy: Study Design and Protocol of a Randomized Controlled Multicenter Trial.

    PubMed

    Kadouch, Daniel J; Wolkerstorfer, Albert; Elshot, Yannick; Zupan-Kajcovski, Biljana; Crijns, Marianne B; Starink, Markus V; Bekkenk, Marcel W; van der Wal, Allard C; Spuls, Phyllis I; de Rie, Menno A

    2015-09-10

    Basal cell carcinoma (BCC) is the most common cancer diagnosed in white populations worldwide. The rising incidence of BCC is becoming a major worldwide public health problem. Therefore, there is a need for more efficient management. The aim of this research is to assess the efficacy and safety of a one-stop-shop (OSS) concept, using real-time in vivo reflectance confocal microscopy (RCM) (Vivascope 1500; Lucid Technologies, Henrietta, NY, USA) as a diagnostic tool, prior to surgical management of new primary BCCs. This is a prospective non-inferiority multi-center RCT designed to compare the "OSS concept using RCM" to current standards of care in diagnosing and treating clinically suspected BCC. Patients ≥ 18 years attending our outpatient clinic at the Department of Dermatology, Academic Medical Center, University of Amsterdam, and the Department of Dermatology, the Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital (Amsterdam, The Netherlands) with a clinically suspected new primary BCC lesion will be considered for enrollment using predefined inclusion and exclusion criteria, and will be randomly allocated to the experimental or control group. The main outcome parameter is the assessment of incomplete surgical excision margins on the final pathology report of confirmed BCC lesions (either by punch biopsy or RCM imaging). Other outcome measures include diagnostic accuracy (sensitivity and specificity) of RCM for diagnosing BCC and dividing between subtypes, and throughput time. Patient satisfaction data will be collected postoperatively after 3 months during routine follow-up. This research is investigator-initiated and received ethics approval. Patient recruitment started in February 2015, and we expect all study-related activities to be completed by fall 2015. This RCT is the first to examine an OSS concept using RCM for diagnosing and treating clinically suspected BCC lesions. Results of this research are expected to have applications in evidence-based practice for the increasing number of patients suffering from BCC and possibly lead to a more efficient disease management strategy. ClinicalTrials.gov: NCT02285790; https://clinicaltrial.gov/ct2/show/NCT02285790 (Archived by WebCite at http://www.webcitation.org/6b2LfDKWu).

  19. Behavior change communication activities improve infant and young child nutrition knowledge and practice of neighboring non-participants in a cluster-randomized trial in rural Bangladesh.

    PubMed

    Hoddinott, John; Ahmed, Ishita; Ahmed, Akhter; Roy, Shalini

    2017-01-01

    To examine the impact on infant and young child nutrition knowledge and practice of mothers who were neighbors of mothers participating in a nutrition Behavior Change Communication (BCC) intervention in rural Bangladesh. We analyzed data from 300 mothers whose neighbor participated in a nutrition BCC intervention and 600 mothers whose neighbor participated in an intervention that did not include BCC. We constructed measures capturing mothers' knowledge of infant and young child nutrition (IYCN) and measures of food consumption by children 6-24m. The effect on these outcomes of exposure to a neighbor receiving a nutrition BCC intervention was estimated using ordinary least squares and probit regressions. The study was registered with ClinicalTrials.gov (Study ID: NCT02237144). Having a neighboring mother participate in a nutrition BCC intervention increased non-participant mothers' IYCN knowledge by 0.17 SD (translating to 0.3 more correct answers). They were 14.1 percentage points more likely to feed their 6-24m children legumes and nuts; 11.6 percentage points more likely to feed these children vitamin A rich fruits and vegetables; and 10.0 percentage points more likely to feed these children eggs. Children of non-participant mothers who had a neighboring mother participate in a nutrition BCC intervention were 13.8 percentage points more likely to meet World Health Organization (WHO) guidelines for minimum diet diversity, 11.9 percentage points more likely to meet WHO guidelines for minimum acceptable diet, and 10.3 percentage points more likely to meet WHO guidelines for minimum meal frequency for children who continue to be breastfed after age 6m. Children aged 0-6m of non-participant mothers who are neighbors of mothers receiving BCC were 7.1 percentage points less likely to have ever consumed water-based liquids. Studies of nutrition BCC that do not account for information spillovers to non-participants may underestimate its benefits in terms of IYCN knowledge and practice.

  20. Behavior change communication activities improve infant and young child nutrition knowledge and practice of neighboring non-participants in a cluster-randomized trial in rural Bangladesh

    PubMed Central

    Ahmed, Ishita; Ahmed, Akhter; Roy, Shalini

    2017-01-01

    Objective To examine the impact on infant and young child nutrition knowledge and practice of mothers who were neighbors of mothers participating in a nutrition Behavior Change Communication (BCC) intervention in rural Bangladesh. Methods We analyzed data from 300 mothers whose neighbor participated in a nutrition BCC intervention and 600 mothers whose neighbor participated in an intervention that did not include BCC. We constructed measures capturing mothers’ knowledge of infant and young child nutrition (IYCN) and measures of food consumption by children 6-24m. The effect on these outcomes of exposure to a neighbor receiving a nutrition BCC intervention was estimated using ordinary least squares and probit regressions. The study was registered with ClinicalTrials.gov (Study ID: NCT02237144). Results Having a neighboring mother participate in a nutrition BCC intervention increased non-participant mothers’ IYCN knowledge by 0.17 SD (translating to 0.3 more correct answers). They were 14.1 percentage points more likely to feed their 6-24m children legumes and nuts; 11.6 percentage points more likely to feed these children vitamin A rich fruits and vegetables; and 10.0 percentage points more likely to feed these children eggs. Children of non-participant mothers who had a neighboring mother participate in a nutrition BCC intervention were 13.8 percentage points more likely to meet World Health Organization (WHO) guidelines for minimum diet diversity, 11.9 percentage points more likely to meet WHO guidelines for minimum acceptable diet, and 10.3 percentage points more likely to meet WHO guidelines for minimum meal frequency for children who continue to be breastfed after age 6m. Children aged 0-6m of non-participant mothers who are neighbors of mothers receiving BCC were 7.1 percentage points less likely to have ever consumed water-based liquids. Conclusions Studies of nutrition BCC that do not account for information spillovers to non-participants may underestimate its benefits in terms of IYCN knowledge and practice. PMID:28636674

  1. Strategic roles for behaviour change communication in a changing malaria landscape.

    PubMed

    Koenker, Hannah; Keating, Joseph; Alilio, Martin; Acosta, Angela; Lynch, Matthew; Nafo-Traore, Fatoumata

    2014-01-02

    Strong evidence suggests that quality strategic behaviour change communication (BCC) can improve malaria prevention and treatment behaviours. As progress is made towards malaria elimination, BCC becomes an even more important tool. BCC can be used 1) to reach populations who remain at risk as transmission dynamics change (e.g. mobile populations), 2) to facilitate identification of people with asymptomatic infections and their compliance with treatment, 3) to inform communities of the optimal timing of malaria control interventions, and 4) to explain changing diagnostic concerns (e.g. increasing false negatives as parasite density and multiplicity of infections fall) and treatment guidelines. The purpose of this commentary is to highlight the benefits and value for money that BCC brings to all aspects of malaria control, and to discuss areas of operations research needed as transmission dynamics change.

  2. Strategic roles for behaviour change communication in a changing malaria landscape

    PubMed Central

    2014-01-01

    Strong evidence suggests that quality strategic behaviour change communication (BCC) can improve malaria prevention and treatment behaviours. As progress is made towards malaria elimination, BCC becomes an even more important tool. BCC can be used 1) to reach populations who remain at risk as transmission dynamics change (e.g. mobile populations), 2) to facilitate identification of people with asymptomatic infections and their compliance with treatment, 3) to inform communities of the optimal timing of malaria control interventions, and 4) to explain changing diagnostic concerns (e.g. increasing false negatives as parasite density and multiplicity of infections fall) and treatment guidelines. The purpose of this commentary is to highlight the benefits and value for money that BCC brings to all aspects of malaria control, and to discuss areas of operations research needed as transmission dynamics change. PMID:24383426

  3. Calculated temperature dependence of elastic constants and phonon dispersion of hcp and bcc beryllium

    NASA Astrophysics Data System (ADS)

    Hahn, Steven; Arapan, Sergiu; Harmon, Bruce; Eriksson, Olle

    2011-03-01

    Conventional first principle methods for calculating lattice dynamics are unable to calculate high temperature thermophysical properties of materials containing modes that are entropically stabilized. In this presentation we use a relatively new approach called self-consistent ab initio lattice dynamics (SCAILD) to study the hcp to bcc transition (1530 K) in beryllium. The SCAILD method goes beyond the harmonic approximation to include phonon-phonon interactions and produces a temperature-dependent phonon dispersion. In the high temperature bcc structure, phonon-phonon interactions dynamically stabilize the N-point phonon. Fits to the calculated phonon dispersion were used to determine the temperature dependence of the elastic constants in the hcp and bcc phases. Work at the Ames Laboratory was supported by the Department of Energy-Basic Energy Sciences under Contract No. DE-AC02-07CH11358.

  4. Pseudoalteromonas haloplanktis produces methylamine, a volatile compound active against Burkholderia cepacia complex strains.

    PubMed

    Sannino, Filomena; Parrilli, Ermenegilda; Apuzzo, Gennaro Antonio; de Pascale, Donatella; Tedesco, Pietro; Maida, Isabel; Perrin, Elena; Fondi, Marco; Fani, Renato; Marino, Gennaro; Tutino, Maria Luisa

    2017-03-25

    The Antarctic marine bacterium Pseudoalteromonas haloplanktis TAC125 has been reported to produce several Volatile Organic Compounds (VOCs), which are able to inhibit the growth of Burkholderia cepacia complex (Bcc) strains, opportunistic pathogens responsible for the infection of immune-compromised patients. However, no specific antibacterial VOCs have been identified to date. The purpose of the present study was to identify specific VOCs that contribute to Bcc inhibition by the Antarctic strain. When grown on defined medium containing D-gluconate and L-glutamate as carbon, nitrogen and energy sources, P. haloplanktis TAC125 is unable to inhibit the growth of Bcc strains. However, single addition of several amino acids to the defined medium restores the P. haloplanktis TAC125 inhibition ability. With the aim of identifying specific volatile compound/s responsible for Bcc inhibition, we set up an apparatus for VOC capture, accumulation, and storage. P. haloplanktis TAC125 was grown in an automatic fermenter which was connected to a cooling system to condense VOCs present in the exhaust air outlet. Upon addition of methionine to the growth medium, the VOC methylamine was produced by P. haloplanktis TAC125. Methylamine was found to inhibit the growth of several Bcc strains in a dose-dependent way. Although it was reported that P. haloplanktis TAC125 produces VOCs endowed with antimicrobial activity, this is the first demonstration that methylamine probably contributes to the anti-Bcc activity of P. haloplanktis TAC125 VOCs. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Efficacy of Photodynamic Therapy in the Short and Medium Term in the Treatment of Actinic Keratosis, Basal Cell Carcinoma, Acne Vulgaris and Photoaging: Results from Four Clinical Trials

    PubMed Central

    Martínez-Carpio, PA; Alcolea-López, JM; Vélez, M

    2012-01-01

    Objective: To determine the clinical efficacy of methyl-aminolevulinate (MAL)-Photodynamic Therapy (PDT) in the treatment of actinic keratosis (AK), basal cell carcinoma (BCC), acne vulgaris (AV) and photoaging (PA), in the short and medium term. Subjects and methods: Four separate prospective studies were designed on patients with AK (n=25), BCC (n=20), AV (n=20) and PA (n=25). Two PDT protocols were applied, and different clinical efficacy criteria were established, including lesion count and size. Two semi-quantitative and four analogue visual scales were completed for the evaluation of results according to the therapist, the patient and two independent experts. Results: In the AK and BCC studies, full clinical remission was observed in 84.7% and 75.7% of lesions, respectively. In the AV study, the number of inflammatory and non-inflammatory lesions fell significantly (p<0.001, p<0.05). In the PA study a reduction in Dover scale scores (3.19 vs. 2.14, p<0.001) was proven. The percentages of satisfied or very satisfied patients were: AK=88%, BCC=90%, AV=89% and PA=80%. A year later, none of the AK or BCC lesions had reappeared, and the cases of AV and PA remained stable, with a tendency towards improvement. Conclusion: the MAL-PDT procedures used produced efficacious, safe and satisfactory results in KA, BCC, AV and PA in the short and medium term. PMID:24511190

  6. Clinical and pathologic parameters predicting recurrence of facial basal cell carcinoma: a retrospective audit in an advanced care center.

    PubMed

    Troeltzsch, Matthias; Probst, Florian A; Knösel, Thomas; Mast, Gerson; Ehrenfeld, Michael; Otto, Sven

    2016-11-01

    This study was designed to investigate the associations between clinical, pathologic, and therapeutic parameters of facial basal cell carcinoma (BCC) and recurrence rates in patients treated at an advanced care center. A retrospective cohort study was performed. Patients who presented to an advanced care center within a 6-year period with facial BCC and who received surgical treatment were included for further review according to predefined inclusion criteria. The predictor variable was defined as "negative-margin (R0) resection after the first surgery". The primary outcome variable was defined as "BCC recurrence". Descriptive and inferential statistics were computed. The significance level was set at P ≤ 0.05. A total of 71 patients (29 female, 42 male; average age: 71.76 years) were found to meet all of the study inclusion criteria. All BCCs had been referred, and 50.7% had been submitted to previous surgery. The mean ± standard deviation tumor diameter was 2.3 ± 1.8 cm. Recurrence of BCC was observed in 11 patients (15.5%). Large tumor diameters, increased patient age, and failure to achieve R0 resection at the first surgical appointment significantly increased recurrence rates. Complete facial BCC excision at the first surgical appointment is pivotal in reducing the likelihood of recurrence. The influence of the anatomic location of facial BCC on recurrence rates may be limited. © 2016 The International Society of Dermatology.

  7. Evaluation of intensified behaviour change communication strategies in an artemisinin resistance setting.

    PubMed

    Canavati, Sara E; de Beyl, Celine Zegers; Ly, Po; Shafique, Muhammad; Boukheng, Thavrin; Rang, Chandary; Whittaker, Maxine Anne; Roca-Feltrer, Arantxa; Sintasath, David

    2016-04-30

    In Cambodia, behaviour change communication (BCC) represents an integral component of malaria efforts aimed at fighting artemisinin resistant parasites and achieving elimination. The multi-pronged BCC interventions include interpersonal communication through village health volunteers (VHVs) and village malaria workers (VMWs), broadcasting malaria prevention, diagnosis and treatment messages via TV, radio and mobile broadcasting units (MBUs), distributing information education and communication (IEC) materials and introducing mobile malaria workers (MMWs) in endemic villages. This was a cross sectional household survey using a stratified multi-stage cluster sampling approach, conducted in December 2012. A stratified multi-stage cluster sampling approach was used; 30 villages were selected (15 in each stratum) and a total of 774 households were interviewed. This survey aimed to assess the potential added effect of 'intense' BCC interventions in three Western provinces. Conducted 2 years after start of these efforts, 'non-intense' BCC (niBBC) interventions (e.g., radio or TV) were compared to "intense" BCC (iBBC) implemented through a set of interpersonal communication strategies such as VMWs, VHVs, mobile broadcasting units and listener viewer clubs. In both groups, the knowledge of the mode of malaria transmission was high (96.9 vs 97.2 %; p = 0.83), as well as of fever as a symptom (91.5 vs 93.5 %; p = 0.38). Knowledge of local risk factors, such as staying in the forest (39.7 vs 30.7 %; p = 0.17) or the farm (7.1 vs 5.1 %; p = 0.40) was low in both groups. Few respondents in either group knew that they must get tested if they suspected malaria (0.3 vs 0.1; p = 0.69). However, iBBC increased the discussions about malaria in the family (51.7 vs 35.8 %; p = 0.002) and reported prompt access to treatment in case of fever (77.1 vs 59.4 %; p < 0.01). The use of iBCC supported positive improvements in both attitudes and behaviours among the population with regard to malaria compared to mass media (niBCC) only. The significantly increase in people seeking treatment for fever in iBCC villages supports Objective Five of the Strategic Plan in the Cambodia Malaria Elimination Action Framework (2016-2020). Therefore, this study provides evidence for the planning and implementation of future BCC interventions to achieve the elimination of artemisinin resistant Plasmodium falciparum malaria.

  8. PHASEGO: A toolkit for automatic calculation and plot of phase diagram

    NASA Astrophysics Data System (ADS)

    Liu, Zhong-Li

    2015-06-01

    The PHASEGO package extracts the Helmholtz free energy from the phonon density of states obtained by the first-principles calculations. With the help of equation of states fitting, it reduces the Gibbs free energy as a function of pressure/temperature at fixed temperature/pressure. Based on the quasi-harmonic approximation (QHA), it calculates the possible phase boundaries among all the structures of interest and finally plots the phase diagram automatically. For the single phase analysis, PHASEGO can numerically derive many properties, such as the thermal expansion coefficients, the bulk moduli, the heat capacities, the thermal pressures, the Hugoniot pressure-volume-temperature relations, the Grüneisen parameters, and the Debye temperatures. In order to check its ability of phase transition analysis, I present here two examples: semiconductor GaN and metallic Fe. In the case of GaN, PHASEGO automatically determined and plotted the phase boundaries among the provided zinc blende (ZB), wurtzite (WZ) and rocksalt (RS) structures. In the case of Fe, the results indicate that at high temperature the electronic thermal excitation free energy corrections considerably alter the phase boundaries among the body-centered cubic (bcc), face-centered cubic (fcc) and hexagonal close-packed (hcp) structures.

  9. Effects of helium concentration and radiation temperature on interaction of helium atoms with displacement cascades in bcc iron

    NASA Astrophysics Data System (ADS)

    Gao, Chan; Tian, Dongfeng; Li, Maosheng; Qian, Dazhi

    2018-03-01

    In fusion applications, helium, implanted or created by transmutation, plays an important role in the response of reduced-activation ferritic/martensitic steels to neutron radiation damage. The effects of helium concentration and radiation temperature on interaction of interstitial helium atoms with displacement cascades have been studied in Fe-He system using molecular dynamics with recently developed Fe-He potential. Results indicate that interstitial helium atoms produce no additional defects at peak time and promote recombination of Frenkel pairs at lower helium concentrations, but suppress recombination of Frenkel pairs at larger helium concentrations. Moreover, large helium concentrations promote the production of defects at the end of cascades. The number of substitutional helium atoms increases with helium concentration at peak time and the end of cascades, but the number of substitutional helium atoms at peak time is smaller than that at the end of displacement cascades. High radiation temperatures promote the production at peak time and the recombination of defects at the end of cascades. The number of substitutional helium atoms increases with radiation temperature, but that at peak time is smaller than that at the end of cascades.

  10. Efficient simultaneous reverse Monte Carlo modeling of pair-distribution functions and extended x-ray-absorption fine structure spectra of crystalline disordered materials.

    PubMed

    Németh, Károly; Chapman, Karena W; Balasubramanian, Mahalingam; Shyam, Badri; Chupas, Peter J; Heald, Steve M; Newville, Matt; Klingler, Robert J; Winans, Randall E; Almer, Jonathan D; Sandi, Giselle; Srajer, George

    2012-02-21

    An efficient implementation of simultaneous reverse Monte Carlo (RMC) modeling of pair distribution function (PDF) and EXAFS spectra is reported. This implementation is an extension of the technique established by Krayzman et al. [J. Appl. Cryst. 42, 867 (2009)] in the sense that it enables simultaneous real-space fitting of x-ray PDF with accurate treatment of Q-dependence of the scattering cross-sections and EXAFS with multiple photoelectron scattering included. The extension also allows for atom swaps during EXAFS fits thereby enabling modeling the effects of chemical disorder, such as migrating atoms and vacancies. Significant acceleration of EXAFS computation is achieved via discretization of effective path lengths and subsequent reduction of operation counts. The validity and accuracy of the approach is illustrated on small atomic clusters and on 5500-9000 atom models of bcc-Fe and α-Fe(2)O(3). The accuracy gains of combined simultaneous EXAFS and PDF fits are pointed out against PDF-only and EXAFS-only RMC fits. Our modeling approach may be widely used in PDF and EXAFS based investigations of disordered materials. © 2012 American Institute of Physics

  11. Seasonal Variations and Resilience of Bacterial Communities in a Sewage Polluted Urban River

    PubMed Central

    Ouattara, Nouho Koffi; Anzil, Adriana; Verbanck, Michel A.; Brion, Natacha; Servais, Pierre

    2014-01-01

    The Zenne River in Brussels (Belgium) and effluents of the two wastewater treatment plants (WWTPs) of Brussels were chosen to assess the impact of disturbance on bacterial community composition (BCC) of an urban river. Organic matters, nutrients load and oxygen concentration fluctuated highly along the river and over time because of WWTPs discharge. Tag pyrosequencing of bacterial 16S rRNA genes revealed the significant effect of seasonality on the richness, the bacterial diversity (Shannon index) and BCC. The major grouping: -winter/fall samples versus spring/summer samples- could be associated with fluctuations of in situ bacterial activities (dissolved and particulate organic carbon biodegradation associated with oxygen consumption and N transformation). BCC of the samples collected upstream from the WWTPs discharge were significantly different from BCC of downstream samples and WWTPs effluents, while no significant difference was found between BCC of WWTPs effluents and the downstream samples as revealed by ANOSIM. Analysis per season showed that allochthonous bacteria brought by WWTPs effluents triggered the changes in community composition, eventually followed by rapid post-disturbance return to the original composition as observed in April (resilience), whereas community composition remained altered after the perturbation by WWTPs effluents in the other seasons. PMID:24667680

  12. An efficient system for the generation of marked genetic mutants in members of the genus Burkholderia.

    PubMed

    Shastri, Sravanthi; Spiewak, Helena L; Sofoluwe, Aderonke; Eidsvaag, Vigdis A; Asghar, Atif H; Pereira, Tyrone; Bull, Edward H; Butt, Aaron T; Thomas, Mark S

    2017-01-01

    To elucidate the function of a gene in bacteria it is vital that targeted gene inactivation (allelic replacement) can be achieved. Allelic replacement is often carried out by disruption of the gene of interest by insertion of an antibiotic-resistance marker followed by subsequent transfer of the mutant allele to the genome of the host organism in place of the wild-type gene. However, due to their intrinsic resistance to many antibiotics only selected antibiotic-resistance markers can be used in members of the genus Burkholderia, including the Burkholderia cepacia complex (Bcc). Here we describe the construction of improved antibiotic-resistance cassettes that specify resistance to kanamycin, chloramphenicol or trimethoprim effectively in the Bcc and related species. These were then used in combination with and/or to construct a series enhanced suicide vectors, pSHAFT2, pSHAFT3 and pSHAFT-GFP to facilitate effective allelic replacement in the Bcc. Validation of these improved suicide vectors was demonstrated by the genetic inactivation of selected genes in the Bcc species Burkholderia cenocepacia and B. lata, and in the non-Bcc species, B. thailandensis. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Detection of misidentifications of species from the Burkholderia cepacia complex and description of a new member, the soil bacterium Burkholderia catarinensis sp. nov.

    PubMed

    Bach, Evelise; Sant'Anna, Fernando Hayashi; Magrich Dos Passos, João Frederico; Balsanelli, Eduardo; de Baura, Valter Antonio; Pedrosa, Fábio de Oliveira; de Souza, Emanuel Maltempi; Passaglia, Luciane Maria Pereira

    2017-08-31

    The correct identification of bacteria from the Burkholderia cepacia complex (Bcc) is crucial for epidemiological studies and treatment of cystic fibrosis infections. However, genome-based identification tools are revealing many controversial Bcc species assignments. The aim of this work is to re-examine the taxonomic position of the soil bacterium B. cepacia 89 through polyphasic and genomic approaches. recA and 16S rRNA gene sequence analysis positioned strain 89 inside the Bcc group. However, based on the divergence score of seven concatenated allele sequences, and values of average nucleotide identity, and digital DNA:DNA hybridization, our results suggest that strain 89 is different from other Bcc species formerly described. Thus, we propose to classify Burkholderia sp. 89 as the novel species Burkholderia catarinensis sp. nov. with strain 89T (=DSM 103188T = BR 10601T) as the type strain. Moreover, our results call the attention to some probable misidentifications of Bcc genomes at the National Center for Biotechnology Information database. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. Direct Observation of the BCC (100) Plane in Thin Films of Sphere-forming Diblock Copolymers

    NASA Astrophysics Data System (ADS)

    Ji, Shengxiang; Nagpal, Umang; Liao, Wen; de Pablo, Juan; Nealey, Paul

    2010-03-01

    In sphere-forming diblock copolymers, periodic arrays of spheres are arranged in a body-centred cubic (BCC) lattice structure in bulk. However, in thin films different surface morphologies were observed as a function of the film thickness, and the transition from the hexagonal array to the BCC (110) arrangement of spheres on film surfaces was located with respect to the increase of the film thickness. Here we report the first direct observation of the BCC (100) plane in thin films of poly (styrene-b-methyl methacrylate) diblock copolymers on homogeneous substrates. By balancing the surface energies of both blocks, the lower energy BCC (100) plane corresponding to a square arrangement of half spheres, formed on film surfaces when the film thickness was commensurate with the spacing, L100, between (100) planes or greater than 2 L100. A hexagonal arrangement of spheres was only observed when the thickness was less than 2 L100 and incommensurate with 1 L100. Monte Carlo (MC) simulation confirmed our experimental observation and was used to investigate the transition of the arrangement of spheres as a function of the film thickness.

  15. Phylogeographic, genomic, and meropenem susceptibility analysis of Burkholderia ubonensis

    PubMed Central

    Sarovich, Derek S.; Webb, Jessica R.; Hall, Carina M.; Jaramillo, Sierra A.; Sahl, Jason W.; Kaestli, Mirjam; Mayo, Mark; Harrington, Glenda; Baker, Anthony L.; Sidak-Loftis, Lindsay C.; Settles, Erik W.; Lummis, Madeline; Schupp, James M.; Gillece, John D.; Tuanyok, Apichai; Warner, Jeffrey; Busch, Joseph D.; Keim, Paul; Currie, Bart J.; Wagner, David M.

    2017-01-01

    The bacterium Burkholderia ubonensis is commonly co-isolated from environmental specimens harbouring the melioidosis pathogen, Burkholderia pseudomallei. B. ubonensis has been reported in northern Australia and Thailand but not North America, suggesting similar geographic distribution to B. pseudomallei. Unlike most other Burkholderia cepacia complex (Bcc) species, B. ubonensis is considered non-pathogenic, although its virulence potential has not been tested. Antibiotic resistance in B. ubonensis, particularly towards drugs used to treat the most severe B. pseudomallei infections, has also been poorly characterised. This study examined the population biology of B. ubonensis, and includes the first reported isolates from the Caribbean. Phylogenomic analysis of 264 B. ubonensis genomes identified distinct clades that corresponded with geographic origin, similar to B. pseudomallei. A small proportion (4%) of strains lacked the 920kb chromosome III replicon, with discordance of presence/absence amongst genetically highly related strains, demonstrating that the third chromosome of B. ubonensis, like other Bcc species, probably encodes for a nonessential pC3 megaplasmid. Multilocus sequence typing using the B. pseudomallei scheme revealed that one-third of strains lack the “housekeeping” narK locus. In comparison, all strains could be genotyped using the Bcc scheme. Several strains possessed high-level meropenem resistance (≥32 μg/mL), a concern due to potential transmission of this phenotype to B. pseudomallei. In silico analysis uncovered a high degree of heterogeneity among the lipopolysaccharide O-antigen cluster loci, with at least 35 different variants identified. Finally, we show that Asian B. ubonensis isolate RF23-BP41 is avirulent in the BALB/c mouse model via a subcutaneous route of infection. Our results provide several new insights into the biology of this understudied species. PMID:28910350

  16. Phylogeographic, genomic, and meropenem susceptibility analysis of Burkholderia ubonensis.

    PubMed

    Price, Erin P; Sarovich, Derek S; Webb, Jessica R; Hall, Carina M; Jaramillo, Sierra A; Sahl, Jason W; Kaestli, Mirjam; Mayo, Mark; Harrington, Glenda; Baker, Anthony L; Sidak-Loftis, Lindsay C; Settles, Erik W; Lummis, Madeline; Schupp, James M; Gillece, John D; Tuanyok, Apichai; Warner, Jeffrey; Busch, Joseph D; Keim, Paul; Currie, Bart J; Wagner, David M

    2017-09-01

    The bacterium Burkholderia ubonensis is commonly co-isolated from environmental specimens harbouring the melioidosis pathogen, Burkholderia pseudomallei. B. ubonensis has been reported in northern Australia and Thailand but not North America, suggesting similar geographic distribution to B. pseudomallei. Unlike most other Burkholderia cepacia complex (Bcc) species, B. ubonensis is considered non-pathogenic, although its virulence potential has not been tested. Antibiotic resistance in B. ubonensis, particularly towards drugs used to treat the most severe B. pseudomallei infections, has also been poorly characterised. This study examined the population biology of B. ubonensis, and includes the first reported isolates from the Caribbean. Phylogenomic analysis of 264 B. ubonensis genomes identified distinct clades that corresponded with geographic origin, similar to B. pseudomallei. A small proportion (4%) of strains lacked the 920kb chromosome III replicon, with discordance of presence/absence amongst genetically highly related strains, demonstrating that the third chromosome of B. ubonensis, like other Bcc species, probably encodes for a nonessential pC3 megaplasmid. Multilocus sequence typing using the B. pseudomallei scheme revealed that one-third of strains lack the "housekeeping" narK locus. In comparison, all strains could be genotyped using the Bcc scheme. Several strains possessed high-level meropenem resistance (≥32 μg/mL), a concern due to potential transmission of this phenotype to B. pseudomallei. In silico analysis uncovered a high degree of heterogeneity among the lipopolysaccharide O-antigen cluster loci, with at least 35 different variants identified. Finally, we show that Asian B. ubonensis isolate RF23-BP41 is avirulent in the BALB/c mouse model via a subcutaneous route of infection. Our results provide several new insights into the biology of this understudied species.

  17. Chronicle of a pigmented superficial Basal cell carcinoma.

    PubMed

    Caucanas, Marie; Piérard-Franchimont, Claudine; Piérard, Gérald E

    2012-01-01

    Dermoscopic patterns of basal cell carcinoma (BCC) are well defined, but the dynamics of dermoscopic changes in time were apparently never described so far. In this paper, prominent changes were observed over a 8-week period, allowing to establish a close connection between spoke wheel areas and maple leaf-like aspects, through progressive thickening of the former ones. A chronobiological phenomenon ruling synchronous apoptosis in some of the most superficial BCC nests is suggested, leading to a wax and wane process of millimetric crusts, taking part in the spontaneous BCC regression/progression process.

  18. One-stop-shop with confocal microscopy imaging vs. standard care for surgical treatment of basal cell carcinoma: an open-label, noninferiority, randomized controlled multicentre trial.

    PubMed

    Kadouch, D J; Elshot, Y S; Zupan-Kajcovski, B; van Haersma de With, A S E; van der Wal, A C; Leeflang, M; Jóźwiak, K; Wolkerstorfer, A; Bekkenk, M W; Spuls, P I; de Rie, M A

    2017-09-01

    Routine punch biopsies are considered to be standard care for diagnosing and subtyping basal cell carcinoma (BCC) when clinically suspected. We assessed the efficacy of a one-stop-shop concept using in vivo reflectance confocal microscopy (RCM) imaging as a diagnostic tool vs. standard care for surgical treatment in patients with clinically suspected BCC. In this open-label, parallel-group, noninferiority, randomized controlled multicentre trial we enrolled patients with clinically suspected BCC at two tertiary referral centres in Amsterdam, the Netherlands. Patients were randomly assigned to the RCM one-stop-shop (diagnosing and subtyping using RCM followed by direct surgical excision) or standard care (planned excision based on the histological diagnosis and subtype of a punch biopsy). The primary outcome was the proportion of patients with tumour-free margins after surgical excision of BCC. Of the 95 patients included, 73 (77%) had a BCC histologically confirmed using a surgical excision specimen. All patients (40 of 40, 100%) in the one-stop-shop group had tumour-free margins. In the standard-care group tumour-free margins were found in all but two patients (31 of 33, 94%). The difference in the proportion of patients with tumour-free margins after BCC excision between the one-stop-shop group and the standard-care group was -0·06 (90% confidence interval -0·17-0·01), establishing noninferiority. The proposed new treatment strategy seems suitable in facilitating early diagnosis and direct treatment for patients with BCC, depending on factors such as availability of RCM, size and site of the lesion, patient preference and whether direct surgical excision is feasible. © 2017 The Authors. British Journal of Dermatology published by John Wiley & Sons Ltd on behalf of British Association of Dermatologists.

  19. SOCS3 inhibits the pathological effects of IL-22 in non-melanoma skin tumor-derived keratinocytes.

    PubMed

    Madonna, Stefania; Scarponi, Claudia; Morelli, Martina; Sestito, Rosanna; Scognamiglio, Pasqualina Liana; Marasco, Daniela; Albanesi, Cristina

    2017-04-11

    Basal cell carcinomas (BCC) and squamous-cell carcinomas (SCC) are common malignancies in humans, caused by neoplastic transformation of keratinocytes of the basal or suprabasal layers of epidermis, respectively. Tumor-infiltrating lymphocytes (TILs) are frequently found in BCC and SCC, and functionally promote epithelial carcinogenesis. TILs secreting IL-22, in particular, participate to BCC and SCC growth by inducing keratinocyte proliferation and migration, as well as the expression of inflammatory, anti-apoptotic and pro-angiogenic genes.In this study, we identified SOCS3 as a valid candidate to be manipulated for suppressing tumorigenic functions in BCC and SCC. We found that SOCS3 and SOCS1 expression was reduced in vivo, in tumor lesions of BCC and SCC, as compared to other skin inflammatory conditions such as psoriasis, despite the high number of IL-22-secreting TILs. Moreover, IL-22 was not able to induce in vitro the transcriptional expression of SOCS3 in BCC-or SCC-derived keratinocytes, contrarily to healthy cells. Aimed at rescuing SOCS3 activity in these tumor contexts, a SOCS3-derived peptide, named KIR-ESS, was synthesized, and its ability in suppressing IL-22-induced responses was evaluated in healthy and transformed keratinocytes. We found that KIR-ESS peptide efficiently suppressed the IL-22 molecular signaling in keratinocytes, by acting on STAT3 and Erk1/2 cascade, as well as on the expression of STAT3-dependent downstream genes. Interestingly, after treatment with peptide, both healthy and transformed keratinocytes could no longer aberrantly proliferate and migrate in response to IL-22. Finally, treatment of athymic nude mice bearing SCC xenografts with KIR-ESS peptide concomitantly reduced tumor growth and activated STAT3 levels. As a whole, these data provides the rationale for the use in BCC and SCC skin tumors of SOCS3 mimetics, being able to inhibit the deleterious effects of IL-22 in these contexts.

  20. Basal cell carcinoma: 10-year experience with electrochemotherapy.

    PubMed

    Campana, Luca G; Marconato, Roberto; Valpione, Sara; Galuppo, Sara; Alaibac, Mauro; Rossi, Carlo R; Mocellin, Simone

    2017-05-31

    Electrochemotherapy (ECT), by combining manageable cytotoxic agents with short electric pulses, represents an effective palliative skin-directed therapy. The accumulated evidence indicates that ECT stands out as a safe and well-tolerated alternative treatment for patients with multiple or large basal cell carcinoma (BCC), who are not suitable for conventional treatments. However, long-term data and shared indications are lacking. In this observational study, we retrospectively analyzed 84 prospectively collected patients with multiple, recurrent or locally advanced BCC who were not candidate for standard therapies and received bleomycin-based ECT according to the European Standard Operative Procedures of ECT, from 2006 to 2016. Disease extent was local, locally advanced and metastatic in 40 (48%), 41 (49%) and 3 (3%), respectively. Forty-four (52%) individuals had multiple BCCs. Grade 3 skin toxicity after ECT was observed in 6% of cases. Clearance rate was 50% (95% CI 39-61%). Primary presentation (p = 0.004), tumor size <3 cm (p < 0.001), well-defined borders (p = 0.021), absence of tumor ulceration (p = 0.001), non-aggressive BCC histology (p = 0.046) and age ≤69 years were associated with higher complete response rate. In patients with local BCC, the clearance rate was 72.5 and 85% after one or two ECT cycles, respectively. In the laBCC group, 32 patients (78%) achieved an objective response. Five-year recurrence rate for local and laBCC was 20 and 38%, respectively (p ≤ 0.001). One or two ECT cycles with bleomycin may be a valuable palliative treatment in well-selected patients with multiple BCCs and favorable tumor features. Validation of predictive factors will be imperative to match patients with optimal ECT treatment modalities. Management of laBCC with ECT warrants further investigation. Trial registration ISRCTN14633165 Registered 24 March 2017 (retrospectively registered).

  1. SOCS3 inhibits the pathological effects of IL-22 in non-melanoma skin tumor-derived keratinocytes

    PubMed Central

    Madonna, Stefania; Scarponi, Claudia; Morelli, Martina; Sestito, Rosanna; Scognamiglio, Pasqualina Liana; Marasco, Daniela; Albanesi, Cristina

    2017-01-01

    Basal cell carcinomas (BCC) and squamous-cell carcinomas (SCC) are common malignancies in humans, caused by neoplastic transformation of keratinocytes of the basal or suprabasal layers of epidermis, respectively. Tumor-infiltrating lymphocytes (TILs) are frequently found in BCC and SCC, and functionally promote epithelial carcinogenesis. TILs secreting IL-22, in particular, participate to BCC and SCC growth by inducing keratinocyte proliferation and migration, as well as the expression of inflammatory, anti-apoptotic and pro-angiogenic genes. In this study, we identified SOCS3 as a valid candidate to be manipulated for suppressing tumorigenic functions in BCC and SCC. We found that SOCS3 and SOCS1 expression was reduced in vivo, in tumor lesions of BCC and SCC, as compared to other skin inflammatory conditions such as psoriasis, despite the high number of IL-22-secreting TILs. Moreover, IL-22 was not able to induce in vitro the transcriptional expression of SOCS3 in BCC-or SCC-derived keratinocytes, contrarily to healthy cells. Aimed at rescuing SOCS3 activity in these tumor contexts, a SOCS3-derived peptide, named KIR-ESS, was synthesized, and its ability in suppressing IL-22-induced responses was evaluated in healthy and transformed keratinocytes. We found that KIR-ESS peptide efficiently suppressed the IL-22 molecular signaling in keratinocytes, by acting on STAT3 and Erk1/2 cascade, as well as on the expression of STAT3-dependent downstream genes. Interestingly, after treatment with peptide, both healthy and transformed keratinocytes could no longer aberrantly proliferate and migrate in response to IL-22. Finally, treatment of athymic nude mice bearing SCC xenografts with KIR-ESS peptide concomitantly reduced tumor growth and activated STAT3 levels. As a whole, these data provides the rationale for the use in BCC and SCC skin tumors of SOCS3 mimetics, being able to inhibit the deleterious effects of IL-22 in these contexts. PMID:28445952

  2. Phonon Softening due to Melting of the Ferromagnetic Order in Elemental Iron

    NASA Astrophysics Data System (ADS)

    Han, Qiang; Birol, Turan; Haule, Kristjan

    2018-05-01

    We study the fundamental question of the lattice dynamics of a metallic ferromagnet in the regime where the static long-range magnetic order is replaced by the fluctuating local moments embedded in a metallic host. We use the ab initio density functional theory + embedded dynamical mean-field theory functional approach to address the dynamic stability of iron polymorphs and the phonon softening with an increased temperature. We show that the nonharmonic and inhomogeneous phonon softening measured in iron is a result of the melting of the long-range ferromagnetic order and is unrelated to the first-order structural transition from the bcc to the fcc phase, as is usually assumed. We predict that the bcc structure is dynamically stable at all temperatures at normal pressure and is thermodynamically unstable only between the bcc-α and the bcc-δ phases of iron.

  3. Applying behavioral science to behavior change communication: the pathways to change tools.

    PubMed

    Petraglia, Joseph; Galavotti, Christine; Harford, Nicola; Pappas-DeLuca, Katina A; Mooki, Maungo

    2007-10-01

    Entertainment-education (EE) is a popular vehicle for behavior change communication (BCC) in many areas of public health, especially in the developing world where soap operas and other serial drama formats play a central role in encouraging people to avoid risky behavior. Yet BCC/EE developers have been largely unable to integrate behavioral theory and research systematically into storylines and scripts, depending instead on external, technical oversight of what should be an essentially local, creative process. This article describes how the Modeling and Reinforcement to Combat HIV/AIDS project at the Centers for Disease Control and Prevention has developed a set of tools through which creative writers can exercise greater control over the behavioral content of their stories. The Pathways to Change tools both guide scriptwriters as they write BCC/EE storylines and help project managers monitor BCC/EE products for theoretical fidelity and sensitivity to research.

  4. Landau free energy for a bcc-hcp reconstructive phase transformation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanati, Mahdi; Saxena, A.; Lookman, T.

    We study the bcc-hcp phase transition in Ti and Zr with the use of first-principles calculations. We have determined the complete energy surface from the bcc to hcp structure. The results are used to find an appropriate Landau free energy density for describing this transformation. The proposed Landau free energy density has two relevant order parameters: shear and shuffle. Through first-principles calculations, we show that the bcc structure is unstable with respect to the shuffle of atoms (TA{sub 1} N-point phonon) rather than the shear. Therefore, we reduce the two order parameter Landau free energy to an effective one ordermore » parameter (shuffle) potential, which is a reasonable approximation. In general, the effective Landau free energy is a triple-well potential. From the phonon dispersion data and the change in entropy at the transition temperature we find the free energy coefficients for Ti and Zr.« less

  5. Structural Transitions in Elemental Tin at Ultra High Pressures up to 230 GPa

    NASA Astrophysics Data System (ADS)

    Gavriliuk, A. G.; Troyan, I. A.; Ivanova, A. G.; Aksenov, S. N.; Starchikov, S. S.; Lyubutin, I. S.; Morgenroth, W.; Glazyrin, K. V.; Mezouar, M.

    2017-12-01

    The crystal structure of elemental Sn was investigated by synchrotron X-ray diffraction at ultra high pressures up to ˜230 GPa creating in diamond anvil cells. Above 70 GPa, a pure bcc structure of Sn was observed, which is stable up to 160GPa, until an occurrence of the hcp phase was revealed. At the onset of the bcc- hcp transition at pressure of about 160GPa, the drop of the unit cell volume is about 1%. A mixture of the bcc- hcp states was observed at least up to 230GPa, and it seems that this state could exist even up to higher pressures. The fractions of the bcc and hcp phases were evaluated in the pressure range of the phase coexistence 160-230 GPa. The difference between static and dynamic compression and its effect on the V- P phase diagram of Sn are discussed.

  6. Hemispherical Anisotropic Patterns of the Earth's Inner Core

    NASA Astrophysics Data System (ADS)

    Mattesini, M.; Belonoshko, A. B.; Buforn, E.; Ramirez, M.; Simak, S. I.; Udias, A.; Mao, H.; Ahuja, R.

    2010-12-01

    It has been shown that the Earth's inner core has an axisymmetric anisotropic structure with seismic waves travelling ˜3% faster along polar paths than along equatorial directions. However, hemispherical anisotropic patterns of solid Earth's core are rather complex, and the commonly used hexagonal-close-packed (hcp) iron phase might be insufficient to account for seismological observations. We show that the data we collected are in good agreement with the presence of two anisotropically specular east and west core hemispheres. The detected travel-time anomalies can only be disclosed by a lattice preferred orientation of a body-centered-cubic iron aggregate (bcc), having a fraction of their [111] crystal axes parallel to the Earth's rotation axis. This is a compelling evidence for the presence of a body-centered-cubic Fe phase at the top 100 km of the Earth's inner core.

  7. Phase relations of Fe-Si-Ni alloys at core conditions: Implications for the Earth inner core

    NASA Astrophysics Data System (ADS)

    Fiquet, G.; Boulard, E.; Auzende, A.; Antonangeli, D.; Badro, J.; Morard, G.; Siebert, J.; Perrillat, J.; Mezouar, M.

    2008-12-01

    The Earth core consists of a liquid outer core and a solid inner core, which are believed to be made predominantly of iron (Fe). Among all crystallographic structures proposed, a consensus has more or less emerged with the hexagonal closed packed structure -hcp- for iron. The question of the structure of this alloy at core conditions, in particular in vicinity of the melting line is however still largely debated. Among others, a possible thermal and chemical stabilization of body-centered cubic iron in the Earth's core has indeed been proposed with the theoretical calculations of Vocadlo et al. [Nature, 424, 536, 2003]. Recent X-ray experiments have shown the existence of such a bcc structure above 220 GPa at high-temperature for iron- nickel alloys [Dubrovinsky et al., Science, 316, 1880, 2007]. It is also known from density systematics that the Earth's core is made of iron alloyed with light elements [see Poirier, Phys. Earth Planet. Int., 85, 319, 1994]. We recently proposed a compositional model for the Earth's inner core from a systematic study of the effect of light elements on sound velocities at high pressure. Our preferred core model is an inner core which contains 2.3 wt % silicon and traces of oxygen [see Badro et al., Earth Planet. Sci. Lett., 254, 233, 2007 for more details]. Recent studies, however, suggest that small amount of silicon or nickel can substantially affect the phase relations and thermodynamic properties of iron alloys. We present results from an X-ray diffraction carried out at ESRF at high-pressure and high-temperature, using a state-of-the-art double sided laser heating system. We address the question of the structure of this alloy at core conditions. Two different alloys have been synthesized for this experiment, with Fe : 92.4, Si : 3.7, Ni 3.9 and Fe: 88.4, Si: 7.3, Ni: 4.3 in wt %, so as to satisfy the core preferred compositional model described in Badro et al. [2007]. The samples were loaded in a diamond anvil cell with neon as pressure transmitting medium transmitting medium, and subsequently analyzed by diffraction collected on a CCD detector during laser-heating at pressure. Experiments were carried out between 20 and 200 GPa, and 1500-5000 K. Our results show an increase of the pressure transition from bcc to hcp with increasing silicon content, with much more precise pressure transitions than previously published. X-ray diffraction pattern contain fcc or hcp at high-temperature and high-pressure conditions. If an expansion of the fcc stability field is observed with increasing silicon and/or nickel content, our observations show a wide stability of hcp-iron alloys up to 200 GPa and high-temperature. These results are discussed in the light of recent experimental and theoretical investigations.

  8. Alcohol intake and early-onset basal cell carcinoma in a case-control study

    PubMed Central

    Zhang, Y; Ferrucci, L.M.; Cartmel, B.; Molinaro, A.M.; Leffell, D.J.; Bale, A.E.; Mayne, S.T.

    2014-01-01

    Background Previous epidemiologic studies of overall alcohol intake and basal cell carcinoma (BCC) are inconsistent, with some evidence for differences by type of alcoholic beverage. While alcohol may enhance the carcinogenicity of ultraviolet (UV) light, this has not been evaluated in existing epidemiologic studies. Objective To evaluate alcohol intake in relation to early-onset BCC, and explore potential interactions with UV exposure. Methods BCC cases (n=380) and controls with benign skin conditions (n=390) under age 40 were identified through Yale Dermatopathology. Participants provided information on lifetime alcohol intake, including type of beverage during an in-person interview. Self-report data on indoor tanning and outdoor sunbathing were used to categorize UV exposure. We calculated odds ratios (OR) and 95% confidence intervals (CI) using unconditional multivariate logistic regression in the full sample and in women only. Results There was no statistically significant association between lifetime alcohol intake and early-onset BCC overall (above median intake vs. no regular alcohol intake OR 1.10, 95% CI 0.69-1.73) or in women only (OR 1.21, 95% CI 0.73-2.01). Similarly, intake of red wine, white wine, beer or hard liquor and mixed drinks was not associated with early-onset BCC. In exploratory analyses, we saw limited evidence for an interaction (pinteraction=0.003), with highest risk for high alcohol and high UV exposures, especially in women, but subgroup risk estimates had wide and overlapping confidence intervals. Conclusions Overall, we did not observe any clear association between lifetime alcohol intake and early-onset BCC. PMID:25059635

  9. Characterization of the volatile profile of Antarctic bacteria by using solid-phase microextraction-gas chromatography-mass spectrometry.

    PubMed

    Romoli, Riccardo; Papaleo, Maria Cristiana; de Pascale, Donatella; Tutino, Maria Luisa; Michaud, Luigi; LoGiudice, Angelina; Fani, Renato; Bartolucci, Gianluca

    2011-10-01

    Bacteria belonging to the Burkholderia cepacia complex (Bcc) are significant pathogens in Cystic Fibrosis (CF) patients and are resistant to a plethora of antibiotics. In this context, microorganisms from Antarctica are interesting because they produce antimicrobial compounds inhibiting the growth of other bacteria. This is particularly true for bacteria isolated from Antarctic sponges. The aim of this work was to characterize a set of Antarctic bacteria for their ability to produce new natural drugs that could be exploited in the control of infections in CF patients by Bcc bacteria. Hence, 11 bacterial strains allocated to different genera (e.g., Pseudoalteromonas, Arthrobacter and Psychrobacter) were tested for their ability to inhibit the growth of 21 Bcc strains and some other human pathogens. All these bacteria completely inhibited the growth of most, if not all, Bcc strains, suggesting a highly specific activity toward Bcc strains. Experimental evidences showed that the antimicrobial compounds are small volatile organic compounds, and are constitutively produced via an unknown pathway. The microbial volatile profile was obtained by SPME-GC-MS within the m/z interval of 40-450. Solid phase micro extraction technique affords the possibility to extract the volatile compounds in head space with a minimal sample perturbation. Principal component analysis and successive cluster discriminant analysis was applied to evaluate the relationships among the volatile organic compounds with the aim of classifying the microorganisms by their volatile profile. These data highlight the potentiality of Antarctic bacteria as novel sources of antibacterial substances to face Bcc infections in CF patients. Copyright © 2011 John Wiley & Sons, Ltd.

  10. Perspectives and reflections on the practice of behaviour change communication for infant and young child feeding.

    PubMed

    Pelto, Gretel H; Martin, Stephanie L; van Liere, Marti J; Fabrizio, Cecilia S

    2016-04-01

    Behaviour change communication (BCC) is a critical component of infant and young child feeding (IYCF) interventions. In this study we asked BCC practitioners working in low- and middle-income countries to participate in an examination of BCC practice. We focus here on results of their personal reflections related to larger issues of practice. We used a combination of iterative triangulation and snowball sampling procedures to obtain a sample of 29 BCC professionals. Major themes include (1) participants using tools and guidelines to structure their work, and many consider their organisation's tools to be their most important contribution to the field; (2) they value research to facilitate programme design and implementation; (3) half felt research needed to increase; (4) they have a strong commitment to respecting cultural beliefs and culturally appropriate programming; (5) they are concerned about lack of a strong theoretical foundation for their work. Based on participants' perspectives and the authors' reflections, we identified the following needs: (1) conducting a systematic examination of the alternative theoretical structures that are available for nutrition BCC, followed by a review of the evidence base and suggestions for future programmatic research to fill the gaps in knowledge; (2) developing a checklist of common patterns to facilitate efficiency in formative research; (3) developing an analytic compendium of current IYCF BCC guidelines and tools; (4) developing tools and guidelines that cover the full programme process, including use of innovative channels to support 'scaling up nutrition'; and (5) continued support for programmes of proven effectiveness. © 2015 John Wiley & Sons Ltd.

  11. Burkholderia puraquae sp. nov., a novel species of the Burkholderia cepacia complex isolated from hospital settings and agricultural soils.

    PubMed

    Martina, Pablo; Leguizamon, Mariana; Prieto, Claudia I; Sousa, Silvia A; Montanaro, Patricia; Draghi, Walter O; Stämmler, Maren; Bettiol, Marisa; de Carvalho, Carla C C R; Palau, Juliana; Figoli, Cecilia; Alvarez, Florencia; Benetti, Silvina; Lejona, Sergio; Vescina, Cecilia; Ferreras, Julián; Lasch, Peter; Lagares, Antonio; Zorreguieta, Angeles; Leitão, Jorge H; Yantorno, Osvaldo M; Bosch, Alejandra

    2018-01-01

    Bacteria from the Burkholderia cepacia complex (Bcc) are capable of causing severe infections in patients with cystic fibrosis (CF). These opportunistic pathogens are also widely distributed in natural and man-made environments. After a 12-year epidemiological surveillance involving Bcc bacteria from respiratory secretions of Argentinean patients with CF and from hospital settings, we found six isolates of the Bcc with a concatenated species-specific allele sequence that differed by more than 3 % from those of the Bcc with validly published names. According to the multilocus sequence analysis (MLSA), these isolates clustered with the agricultural soil strain, Burkholderia sp. PBP 78, which was already deposited in the PubMLST database. The isolates were examined using a polyphasic approach, which included 16S rRNA, recA, Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), DNA base composition, average nucleotide identities (ANIs), fatty acid profiles, and biochemical characterizations. The results of the present study demonstrate that the seven isolates represent a single novel species within the Bcc, for which the name Burkholderia puraquae sp. nov. is proposed. Burkholderia puraquae sp. nov. CAMPA 1040 T (=LMG 29660 T =DSM 103137 T ) was designated the type strain of the novel species, which can be differentiated from other species of the Bcc mainly from recA gene sequence analysis, MLSA, ANIb, MALDI-TOF MS analysis, and some biochemical tests, including the ability to grow at 42 °C, aesculin hydrolysis, and lysine decarboxylase and β-galactosidase activities.

  12. Heterogeneous relationships of squamous and basal cell carcinomas of the skin with smoking: the UK Million Women Study and meta-analysis of prospective studies.

    PubMed

    Pirie, Kirstin; Beral, Valerie; Heath, Alicia K; Green, Jane; Reeves, Gillian K; Peto, Richard; McBride, Penelope; Olsen, Catherine M; Green, Adèle C

    2018-06-14

    Published findings on the associations between smoking and the incidence of cutaneous squamous cell carcinoma (SCC) and basal cell carcinoma (BCC) are inconsistent. We aimed to generate prospective evidence on these relationships overall and by anatomical site. We followed 1,223,626 women without prior cancer by electronic linkage to national cancer registration data. Questionnaire information about smoking and other factors was recorded at recruitment (1996-2001) and every 3-5 years subsequently. Cox regression yielded adjusted relative risks (RRs) comparing smokers versus never-smokers. After 14 (SD4) years follow-up per woman, 6699 had a first registered cutaneous SCC and 48,666 a first BCC. In current versus never-smokers, SCC incidence was increased (RR = 1.22, 95% CI 1.15-1.31) but BCC incidence was decreased (RR = 0.80, 0.78-0.82). RRs varied substantially by anatomical site; for the limbs, current smoking was associated with an increased incidence of SCC (1.55, 1.41-1.71) and a decreased incidence of BCC (0.72, 0.66-0.79), but for facial lesions there was little association of current smoking with either SCC (0.93, 0.82-1.06) or BCC (0.92, 0.88-0.96). Findings in meta-analyses of results from this and seven other prospective studies were largely dominated by the findings in this study. Smoking-associated risks for cutaneous SCC and BCC are in the opposite direction to each other and appear to vary by anatomical site.

  13. Association between genetic variation within vitamin D receptor-DNA binding sites and risk of basal cell carcinoma.

    PubMed

    Lin, Yuan; Chahal, Harvind S; Wu, Wenting; Cho, Hyunje G; Ransohoff, Katherine J; Dai, Hongji; Tang, Jean Y; Sarin, Kavita Y; Han, Jiali

    2017-05-01

    An increasing number of studies have reported a protective association between vitamin D and cancer risk. The vitamin D endocrine system regulates transcriptional programs involved in inflammation, cell growth and differentiation through the binding of vitamin D receptor (VDR) to specific VDR elements. However, limited attention has been given to the role of variation within VDR binding sites in the development of basal cell carcinoma (BCC). Across 2,776 previously identified VDR binding sites, we identified 2,540 independent single-nucleotide polymorphisms (SNPs) and examined their associations with BCC risk in a genome-wide association meta-analysis totaling 17,187 BCC cases and 287,054 controls from two data sets. After multiple testing corrections, we identified two SNPs at new loci (rs16917546 at 10q21.1: odds ratio (OR) = 1.06, p = 3.16 × 10 -7 and rs79824801 at 12q13.3: OR = 1.10, p = 1.88 × 10 -5 ) for the first time as independently related to BCC risk in meta-analysis; and both SNPs were nominally significant in two data sets. In addition, the SNP rs3769823 within VDR binding site at a previously reported BCC susceptibility locus (2q33.1, rs13014235) also exhibited a significant association (OR = 1.12, p = 3.99 × 10 -18 ). A mutually adjusted model suggested that rs3769823 explained the signal in this region. Our findings support the hypothesis that inherited common variation in VDR binding sites affects the development of BCC. © 2017 UICC.

  14. Follow-up of basal cell carcinomas: an audit of current practice.

    PubMed

    Mc Loone, N M; Tolland, J; Walsh, M; Dolan, O M

    2006-07-01

    Follow-up of patients after treatment of basal cell carcinoma (BCC) allows for monitoring of recurrence and detection of new tumours, but adds a significant burden to outpatient clinics. At the skin tumour clinic in the dermatology department, the Royal Hospitals, Belfast, all patients are reviewed for 2 years after surgical excision of a low-risk primary BCC. An audit was undertaken to determine the quality of data set recorded relating to prognostic factors for BCCs to determine the rate of recurrence and number of new primary tumours detected and to determine the completeness of follow-up by patients. Patients who had primary BCCs treated by excision were identified from a database held at the clinic. Medical charts were reviewed to determine data recorded about lesions, the number of recurrent BCCs and new tumours detected, and the number of patients completing follow-up. Between January 1999 and December 2000, 114 patients had 121 primary BCCs excised. BCC location and size were recorded in 100% and 35% of cases, respectively. Histological type was stated for morphoeic or multifocal lesions. Two years of follow-up was completed by 53% of patients and 1 year by 78% of patients. The rate of recurrence was low, with 2 BCC recurring within 2 years of excision. The risk of developing a new BCC was 11.6% in the first year and 6.3% in the second year. Follow-up of patients after excision of a low-risk BCC at the clinic has been reduced to 1 year. A proforma has been developed to encourage documentation of prognostic factors.

  15. Fish-mediated changes in bacterioplankton community composition: an in situ mesocosm experiment

    NASA Astrophysics Data System (ADS)

    Luo, Congqiang; Yi, Chunlong; Ni, Leyi; Guo, Longgen

    2017-06-01

    We characterized variations in bacterioplankton community composition (BCC) in mesocosms subject to three different treatments. Two groups contained fish (group one: Cyprinus carpio; group two: Hypophthalmichthys molitrix); and group three, the untreated mesocosm, was the control. Samples were taken seven times over a 49-day period, and BCC was analyzed by PCR-denaturing gradient gel electrophoresis (DGGE) and real-time quantitative PCR (qPCR). Results revealed that introduction of C. carpio and H. molitrix had a remarkable impact on the composition of bacterioplankton communities, and the BCC was significantly different between each treatment. Sequencing of DGGE bands revealed that the bacterioplankton community in the different treatment groups was consistent at a taxonomic level, but differed in its abundance. H. molitrix promoted the richness of Alphaproteobacteria and Actinobacteria, while more bands affiliated to Cyanobacteria were detected inC. carpio mesocosms. The redundancy analysis (RDA) result demonstrated that the BCC was closely related to the bottom-up (total phosphorus, chlorophyll a, phytoplankton biomass) and top-down forces (biomass of copepods and cladocera) in C. carpio and control mesocosms, respectively. We found no evidence for top-down regulation of BCC by zooplankton in H. molitrix mesocosms, while grazing by protozoa (heterotrophic nanoflagellates, ciliates) became the major way to regulate BCC. Total bacterioplankton abundances were significantly higher in C. carpio mesocosms because of high nutrient concentration and suspended solids. Our study provided insights into the relationship between fish and bacterioplankton at species level, leading to a deep understanding of the function of the microbial loop and the aquatic ecosystem.

  16. Cytological diagnosis of basal cell carcinoma and actinic keratosis, using Papanicolaou and May-Grünwald-Giemsa stained cutaneous tissue smear.

    PubMed

    Christensen, E; Bofin, A; Gudmundsdóttir, I; Skogvoll, E

    2008-10-01

    Cytology may become the diagnostic method of choice with the advent of new non-invasive treatments for non-melanoma skin cancer, as the sampling technique for cytology entails little tissue disfiguration. The aim of this study was to compare and evaluate the diagnostic performance of scrape cytology using two different cytological staining techniques, and to evaluate additional touch imprint cytology, with that of histopathology of basal cell carcinoma (BCC) and actinic keratosis (AK). We investigated 50 BCC and 28 AK histologically verified lesions, from 41 and 25 patients, respectively. Two separate skin scrape samples and one touch imprint sample were taken from each lesion. The smears were stained with Papanicolaou (Pap) or May-Grünwald-Giemsa (MGG) stains. All cytological specimens were examined in random order by pathologists without knowledge of the histology. Cytodiagnostic results were compared with the histopathological report. Scrape cytodiagnosis agreed with histopathology in 48 (Pap) and 47 (MGG) of the 50 BCC cases, and in 26 of 28 (Pap) and 21 of 26 (MGG) AK cases, yielding sensitivities of 96%, 94%, 93% and 81%, respectively. No significant difference in sensitivity between the two staining methods was found but a trend towards higher Pap sensitivity for AK was noted (P = 0.10). Touch imprint cytology confirmed histopathology in 38 of the 77 cases of BCC and AK. Cytological diagnosis with either Pap or MGG stain for BCC and AK is reliable, and differentiates well between BCC and AK. Imprint cytology proved to be non-diagnostic in half of the examined cases.

  17. Tea, coffee, and caffeine and early-onset basal cell carcinoma in a case-control study

    PubMed Central

    Ferrucci, Leah M.; Cartmel, Brenda; Molinaro, Annette M.; Leffell, David J.; Bale, Allen E.; Mayne, Susan T.

    2014-01-01

    Objectives Tea and coffee are hypothesized to play a protective role in skin carcinogenesis via bioactive components, such as caffeine, yet the epidemiologic evidence is mixed. Existing data supports an inverse association with basal cell carcinoma (BCC) more so than for melanoma or squamous cell carcinoma. To understand if tea, coffee, and caffeine are related to early-onset BCC, we evaluated data from 767 non-Hispanic Whites under age 40 in a case-control study in Connecticut. Methods BCC cases (n=377) were identified through Yale's Dermatopathology database. Controls (n=390) were randomly sampled from individuals in the same database with benign skin diagnoses and frequency matched to cases on age, gender, and biopsy site. Subjects completed an in-person interview including assessment of caffeinated coffee and hot tea. We calculated multivariate odds ratios (OR) and 95% confidence intervals (CIs) with unconditional logistic regression for regular consumption and frequency and duration measures. Results Combined regular consumption of caffeinated coffee plus hot tea was inversely associated with early-onset BCC (OR=0.60, 95% CI=0.38–0.96). Those in the highest category of caffeine from these sources had a 43% reduced risk of BCC compared to non-consumers (OR=0.57, 95% CI=0.34–0.95, p-trend=0.037). Conclusions Our findings suggest a modest protective effect for caffeinated coffee plus tea in relation to early-onset BCC that may, in part, be due to caffeine. This study adds to the growing body of literature suggesting potential health benefits from these beverages. PMID:24841641

  18. Tea, coffee, and caffeine and early-onset basal cell carcinoma in a case-control study.

    PubMed

    Ferrucci, Leah M; Cartmel, Brenda; Molinaro, Annette M; Leffell, David J; Bale, Allen E; Mayne, Susan T

    2014-07-01

    Tea and coffee are hypothesized to play a protective role in skin carcinogenesis through bioactive components, such as caffeine, yet the epidemiologic evidence is mixed. Existing data support an inverse association with basal cell carcinoma (BCC), more so than for melanoma or squamous cell carcinoma. To understand whether tea, coffee, and caffeine are related to early-onset BCC, we evaluated data from 767 non-Hispanic Whites under age 40 in a case-control study in Connecticut. BCC cases (n=377) were identified through Yale's Dermatopathology database. Controls (n=390) were randomly sampled from individuals in the same database with benign skin diagnoses and frequency matched to cases on age, sex, and biopsy site. Participants completed an in-person interview including assessment of caffeinated coffee and hot tea. We calculated multivariate odds ratios (ORs) and 95% confidence intervals (CIs) with unconditional logistic regression for regular consumption and frequency and duration measures. Combined regular consumption of caffeinated coffee plus hot tea was inversely associated with early-onset BCC (OR=0.60, 95% CI=0.38-0.96). Those in the highest category of caffeine from these sources had a 43% reduced risk of BCC compared with nonconsumers (OR=0.57, 95% CI=0.34-0.95, P-trend=0.037). Our findings suggest a modest protective effect for caffeinated coffee plus tea in relation to early-onset BCC that may, in part, be due to caffeine. This study adds to the growing body of literature suggesting potential health benefits from these beverages.

  19. Fish-mediated changes in bacterioplankton community composition: an in situ mesocosm experiment

    NASA Astrophysics Data System (ADS)

    Luo, Congqiang; Yi, Chunlong; Ni, Leyi; Guo, Longgen

    2018-03-01

    We characterized variations in bacterioplankton community composition (BCC) in mesocosms subject to three different treatments. Two groups contained fish (group one: Cyprinus carpio; group two: Hypophthalmichthys molitrix); and group three, the untreated mesocosm, was the control. Samples were taken seven times over a 49-d period, and BCC was analyzed by PCR-denaturing gradient gel electrophoresis (DGGE) and real-time quantitative PCR (qPCR). Results revealed that introduction of C. carpio and H. molitrix had a remarkable impact on the composition of bacterioplankton communities, and the BCC was significantly different between each treatment. Sequencing of DGGE bands revealed that the bacterioplankton community in the different treatment groups was consistent at a taxonomic level, but differed in its abundance. H. molitrix promoted the richness of Alphaproteobacteria and Actinobacteria, while more bands affiliated to Cyanobacteria were detected in C. carpio mesocosms. The redundancy analysis (RDA) result demonstrated that the BCC was closely related to the bottom-up (total phosphorus, chlorophyll a, phytoplankton biomass) and top-down forces (biomass of copepods and cladocera) in C. carpio and control mesocosms, respectively. We found no evidence for top-down regulation of BCC by zooplankton in H. molitrix mesocosms, while grazing by protozoa (heterotrophic nanoflagellates, ciliates) became the major way to regulate BCC. Total bacterioplankton abundances were significantly higher in C. carpio mesocosms because of high nutrient concentration and suspended solids. Our study provided insights into the relationship between fish and bacterioplankton at species level, leading to a deep understanding of the function of the microbial loop and the aquatic ecosystem.

  20. U-Zr alloy: XPS and TEM study of surface passivation

    NASA Astrophysics Data System (ADS)

    Paukov, M.; Tkach, I.; Huber, F.; Gouder, T.; Cieslar, M.; Drozdenko, D.; Minarik, P.; Havela, L.

    2018-05-01

    Surface reactivity of Uranium metal is an important factor limiting its practical applications. Bcc alloys of U with various transition metals are much less reactive than pure Uranium. So as to specify the mechanism of surface protection, we have been studying the U-20 at.% Zr alloy by photoelectron spectroscopy and transmission electron microscopy. The surface was studied in as-obtained state, in various stages of surface cleaning, and during an isochronal annealing cycle. The analysis based on U-4f, Zr-3p, and O-1 s spectra shows that a Zr-rich phase segregates at the surface at temperatures exceeding 550 K, which provides a self-assembled coating. The comparison of oxygen exposure of the stoichiometric and coated surfaces shows that the coating is efficiently preventing the oxidation of uranium even at elevated temperatures. The coating can be associated with the UZr2+x phase. TEM study indicated that the coating is about 20 nm thick. For the clean state, the U-4f core-level lines of the bcc alloy are practically identical to those of α-U, revealing similar delocalization of the 5f electronic states.

  1. Effect of Ti content on the microstructure and mechanical behavior of (Fe 36Ni 18Mn 33Al 13) 100–xTi x high entropy alloys

    DOE PAGES

    Wang, Zhangwei; Wu, Margaret; Cai, Zhonghou; ...

    2016-06-13

    The microstructure and mechanical properties studies of a series of two-phase f.c.c./B2 (ordered b.c.c.) lamellar-structured, high entropy alloys (HEA) Fe 36Ni 18Mn 33Al 13Ti x with x up to 6 at. % Ti have been investigated. X-ray microanalysis in a TEM showed that the Ti resided mostly in the B2 phase. The lamellar spacing decreased significantly with increasing Ti content from 1.56 μm for the undoped alloy to 155 nm with an addition of 4 at. % Ti, leading to a sharp increase in room-temperature yield strength,σ y, from 270 MPa to 953 MPa, but with a concomitant decrease inmore » ductility from 22% elongation to 2.3%. Annealing at 1173 K for 20 h greatly increased the lamellar spacing of Fe 36Ni 18Mn 33Al 13Ti 4 to 577 nm, producing a corresponding decrease in σy to 511 MPa. The yield strengths of all the doped alloys decreased significantly when tensile tested at 973 K with a concomitant increase in ductility due to softening of the B2 phase. The fracture mode changed from cleavage at room temperature to a ductile dimple-type rupture at 973 K. Lastly, the results are discussed in terms of the Hall-Petch-type relationship.« less

  2. Effect of Ti content on the microstructure and mechanical behavior of (Fe 36Ni 18Mn 33Al 13) 100–xTi x high entropy alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Zhangwei; Wu, Margaret; Cai, Zhonghou

    The microstructure and mechanical properties studies of a series of two-phase f.c.c./B2 (ordered b.c.c.) lamellar-structured, high entropy alloys (HEA) Fe 36Ni 18Mn 33Al 13Ti x with x up to 6 at. % Ti have been investigated. X-ray microanalysis in a TEM showed that the Ti resided mostly in the B2 phase. The lamellar spacing decreased significantly with increasing Ti content from 1.56 μm for the undoped alloy to 155 nm with an addition of 4 at. % Ti, leading to a sharp increase in room-temperature yield strength,σ y, from 270 MPa to 953 MPa, but with a concomitant decrease inmore » ductility from 22% elongation to 2.3%. Annealing at 1173 K for 20 h greatly increased the lamellar spacing of Fe 36Ni 18Mn 33Al 13Ti 4 to 577 nm, producing a corresponding decrease in σy to 511 MPa. The yield strengths of all the doped alloys decreased significantly when tensile tested at 973 K with a concomitant increase in ductility due to softening of the B2 phase. The fracture mode changed from cleavage at room temperature to a ductile dimple-type rupture at 973 K. Lastly, the results are discussed in terms of the Hall-Petch-type relationship.« less

  3. Epitaxial bain paths and metastable phases of tetragonal iron and manganese

    NASA Astrophysics Data System (ADS)

    Ma, Hong

    2002-04-01

    Epitaxial Bain paths and metastable states of tetragonal Fe and Mn have been studied by first-principles total-energy calculations using the full-potential linearized-augmented-plane-wave method. The main accomplishments are as follows. (1) We have performed the first ever EBP calculation of tetragonal antiferromagnetic (AF) Mn showing that when grown epitaxially on Pd(001), the AF Mn film is strained gamma-Mn, but grown on V(001) the film is strained delta-Mn, which could not be determined using the available crystallographic and elastic data because they were obtained from unstrained states. (2) We have calculated the EBP's of Fe at zero pressure in four magnetic phases, i.e., ferromagnetic (FM), nonmagnetic (NM), type-I antiferromagnetic (AF1), and type-II antiferromagnetic (AF2), which show that the AF2 is the phase of the bulk of epitaxial Fe films on Cu(001) and it is unstable for [110] and [010] shears in the (001) plane, but it can be stabilized by epitaxy on Cu(001). (3)We have unified and simplified the theory of elasticity under hydrostatic pressure p at zero temperature using the Gibbs free energy G, rather than the energy E. The minima of G, but not E, with respect to strains at the equilibrium structure give the zero temperature elastic constants; the stability of a phase at p is then determined by the same Born stability conditions used at p = 0 when applied to the elastic constants from G. The EBP's of FM Fe under hydrostatic pressure show that the bcc phase exists up to 1500 kbar. A bct phase is shown to come into existence at 1300 kbar and becomes stable at 1825 kbar and above. (4) Based on this dissertation research five papers have been published in refereed journals.

  4. Ab-initio study of high temperature lattice dynamics of BCC zirconium (β-Zr) and uranium (γ-U)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghosh, Partha S., E-mail: parthasarathi13@gmail.com; Arya, A., E-mail: parthasarathi13@gmail.com; Dey, G. K., E-mail: parthasarathi13@gmail.com

    2014-04-24

    Using self consistent ab-initio lattice dynamics calculations, we show that bcc structures of Zr and U phases become stable at high temperature by phonon-phonon interactions. The calculated temperature dependent phonon dispersion curve (PDC) of β-Zr match excellently with experimental PDC. But the calculated PDC for γ-U shows negative phonon frequencies even at solid to liquid transition temperature. We show that this discrepancy is due to an overestimation of instability depth of bcc U phase which is removed by incorporation of spin-orbit coupling in the electronic structure calculations.

  5. Possible metastable rhombohedral states of the bcc transition metals

    NASA Astrophysics Data System (ADS)

    Mehl, Michael; Finkenstadt, Daniel

    2007-03-01

    The energy E(c/a) for a bcc element stretched along its [001] axis (the Bain path) has a minimum at c/a = 1, a maximum at c/a = √2, and an elastically unstable local minimum at c/a > √2. A rhombohedral strain is an alternative method of connecting the bcc and fcc structures. The primitive lattice keeps R3m symmetry, with the angle α changing from 109.4^o (bcc), to 90^o (simple cubic), to 60^o (fcc). We studied this path for the non-magnetic bcc transition metals (V, Nb, Mo, Ta, and W) using both a full-potential LAPW and PAW VASP. Except for Ta, the energy E(α) has a local maximum at α=60^o, with local minima near 55^o and 70^o, the later having lower energy. We studied the elastic stability of the 70^o minimum structure. Only W is elastically stable in this structure, with the smallest eigenvalue of the elastic tensor at 4 GPa, while the other three elements are unstable. We discuss the possibility that Tungsten is actually metastable in this structure. We also consider the possible epitaxial growth of this structure. M. J. Mehl, A. Aguayo, L. L. Boyer, and R. De Coss, Phys. Rev. B 70, 014105 (2004).

  6. Nearly metastable rhombohedral phases of bcc metals

    NASA Astrophysics Data System (ADS)

    Mehl, Michael J.; Finkenstadt, Daniel

    2008-02-01

    The energy E(c/a) for a bcc element stretched along its [001] axis (the Bain path) has a minimum at c/a=1 , a maximum at c/a=2 , and an elastically unstable local minimum at c/a>2 . An alternative path connecting the bcc and fcc structures is the rhombohedral lattice. The primitive lattice has R3¯m symmetry, with the angle α changing from 109.4° (bcc), to 90° (simple cubic), to 60 ° (fcc). We study this path for the non-magnetic bcc transition metals (V, Nb, Mo, Ta, and W) using both all-electron linearized augmented plane wave and projector augmented wave VASP codes. Except for Ta, the energy E(α) has a local maximum at α=60° , with local minima near 55° and 70° , the latter having lower energy, suggesting the possibility of a metastable rhombohedral state for these materials. We first examine the elastic stability of the 70° minimum structure, and determine that only W is elastically stable in this structure, with the smallest eigenvalue of the elastic tensor at 4GPa . We then consider the possibility that tungsten is actually metastable in this structure by looking at its vibrational and third-order elastic stability.

  7. Development of an interatomic potential for the simulation of defects, plasticity, and phase transformations in titanium

    DOE PAGES

    Mendelev, M. I.; Underwood, T. L.; Ackland, G. J.

    2016-10-17

    New interatomic potentials describing defects, plasticity, and high temperature phase transitions for Ti are presented. Fitting the martensitic hcp-bcc phase transformation temperature requires an efficient and accurate method to determine it. We apply a molecular dynamics method based on determination of the melting temperature of competing solid phases, and Gibbs-Helmholtz integration, and a lattice-switch Monte Carlo method: these agree on the hcp-bcc transformation temperatures to within 2 K. We were able to develop embedded atom potentials which give a good fit to either low or high temperature data, but not both. The first developed potential (Ti1) reproduces the hcp-bcc transformationmore » and melting temperatures and is suitable for the simulation of phase transitions and bcc Ti. Two other potentials (Ti2 and Ti3) correctly describe defect properties and can be used to simulate plasticity or radiation damage in hcp Ti. The fact that a single embedded atom method potential cannot describe both low and high temperature phases may be attributed to neglect of electronic degrees of freedom, notably bcc has a much higher electronic entropy. As a result, a temperature-dependent potential obtained from the combination of potentials Ti1 and Ti2 may be used to simulate Ti properties at any temperature.« less

  8. Direct connection of the nucleus reticularis gigantocellularis neurons with neck motoneurons in cats.

    PubMed

    Sasaki, S

    1999-10-01

    Functional connections of single reticulospinal neurons (RSNs) in the nucleus reticularis gigantocellularis (NRG) with ipsilateral dorsal neck motoneurons were examined with the spike-triggered averaging technique. Extracellular spikes of single NRG-RSNs activated antidromically from the C6, but not from the L1 segment (C-RSNs) were used as the trigger. These neurons were monosynaptically activated from the superior colliculus and the cerebral peduncle. Single-RSN PSPs were recorded in 43 dorsal neck motoneurons [biventer cervicis and complexus (BCC) and splenius (SPL)] for 21 NRG-RSNs and 135 motoneurons tested. All synaptic potentials were EPSPs, and most of their latencies, measured from the triggering spikes, were 0.8-1.5 ms, which is in a monosynaptic range. The amplitudes of single-RSN EPSPs were 10-360 microV. Spike-triggered averaging revealed single-RSN EPSPs in multiple motoneurons of the same species (SPL or BCC), their locations extending up to nearly 1 mm rostrocaudally. Synaptic connections of single RSNs with both SPL and BCC motoneurons were also found with some predominance for one of them. The results provide direct evidence that NRG-RSNs make monosynaptic excitatory connections with SPL and BCC motoneurons. It appears that some NRG-RSNs connect predominantly with SPL motoneurons and others with BCC motoneurons.

  9. Impact of various color LED flashlights and different lighting source to skin distances on the manual and the computer-aided detection of basal cell carcinoma borders.

    PubMed

    Bakht, Mohamadreza K; Pouladian, Majid; Mofrad, Farshid B; Honarpisheh, Hamid

    2014-02-01

    Quantitative analysis based on digital skin image has been proven to be helpful in dermatology. Moreover, the borders of the basal cell carcinoma (BCC) lesions have been challenging borders for the automatic detection methods. In this work, a computer-aided dermatoscopy system was proposed to enhance the clinical detection of BCC lesion borders. Fifty cases of BCC were selected and 2000 pictures were taken. The lesion images data were obtained with eight colors of flashlights and in five different lighting source to skin distances (SSDs). Then, the image-processing techniques were used for automatic detection of lesion borders. Further, the dermatologists marked the lesions on the obtained photos. Considerable differences between the obtained values referring to the photographs that were taken at super blue and aqua green color lighting were observed for most of the BCC borders. It was observed that by changing the SSD, an optimum distance could be found where that the accuracy of the detection reaches to a maximum value. This study clearly indicates that by changing SSD and lighting color, manual and automatic detection of BCC lesions borders can be enhanced. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Expression of matrix metalloproteinase-13 and Ki-67 in nonmelanoma skin cancer in xeroderma pigmentosum and non-xeroderma pigmentosum.

    PubMed

    El-Hawary, Amira K; Yassin, Eman; Khater, Ashraf; Abdelgaber, Soheir

    2013-02-01

    Xeroderma pigmentosum (XP) is a heterogenous group of genetic diseases in which basal cell carcinoma (BCC) is the most common nonmelanoma skin cancer (NMSC) followed by squamous cell carcinoma (SCC). The aim of this study was to investigate the expression of matrix metalloproteinase (MMP)-13 and Ki-67 in SCC and BCC from patients with and without XP to elucidate their roles in the pathogenesis of these highly aggressive tumors in patients with XP. Immunolabeling using MMP-13 and Ki-67 antibodies was performed on tissue sections derived from skin biopsies of SCC and BCC of 15 patients with XP and 40 non-XP patients. There was no significant difference between XP and non-XP patients as regards MMP-13 expression by epithelial and stromal cells of SCC or BCC. Ki-67 expression in SCC and BCC of patients with XP was significantly higher than in non-XP patients. We concluded that the higher expression of Ki-67 in NMSC of patients with XP than of non-XP patients may reflect the growth and invasive capacity of these tumors in patients with XP. MMP-13 is expressed by tumor epithelial cells, stromal and inflammatory cells of NMSC of both XP and non-XP patients.

  11. Boron isotope-based seasonal paleo-pH reconstruction for the Southeast Atlantic - A multispecies approach using habitat preference of planktonic foraminifera

    NASA Astrophysics Data System (ADS)

    Raitzsch, Markus; Bijma, Jelle; Benthien, Albert; Richter, Klaus-Uwe; Steinhoefel, Grit; Kučera, Michal

    2018-04-01

    The boron isotopic composition of planktonic foraminiferal shell calcite (δ11BCc) provides valuable information on the pH of ambient water at the time of calcification. Hence, δ11BCc of fossil surface-dwelling planktonic foraminifera can be used to reconstruct ancient aqueous pCO2 if information on a second carbonate system parameter, temperature and salinity is available. However, pH and pCO2 of surface waters may vary seasonally, largely due to changes in temperature, DIC, and alkalinity. As also the shell fluxes of planktonic foraminifera show species-specific seasonal patterns that are linked to intra-annual changes in temperature, it is obvious that δ11BCc of a certain species reflects the pH and thus pCO2 biased towards a specific time period within a year. This is important to consider for the interpretation of fossil δ11BCc records that may mirror seasonal pH signals. Here we present new Multi-Collector Inductively Coupled Mass Spectrometry (MC-ICPMS) δ11BCc coretop data for the planktonic foraminifera species Globigerina bulloides, Globigerinoides ruber, Trilobatus sacculifer and Orbulina universa and compare them with δ11Bborate derived from seasonally resolved carbonate system parameters. We show that the inferred season-adjusted δ11BCc /δ11Bborate relationships are similar to existing calibrations and can be combined with published δ11BCc field and culture data to augment paleo-pH calibrations. To test the applicability of these calibrations, we used a core drilled on the Walvis Ridge in the Southeast Atlantic spanning the last 330,000 years to reconstruct changes in surface-water pCO2. The reconstruction based on G. bulloides, which reflects the austral spring season, was shown to yield values that closely resemble the Vostok ice-core data indicating that surface-water pCO2 was close to equilibrium with the atmosphere during the cooler spring season. In contrast, pCO2 estimated from δ11BCc of O. universa, T. sacculifer and G. ruber that predominantly lived during the warmer seasons, exhibits up to ∼50 ppmv higher values than the Vostok ice-core data. This is probably due to the higher austral summer and fall temperatures, as shown by Mg/Ca to be on average ∼4 °C higher than during the cooler spring season, accounting for an increase in pCO2 of ∼4% per 1 °C. Our results demonstrate that paleo-pH estimates based on δ11BCc contain a significant seasonal signal reflecting the habitat preference of the recording foraminifera species.

  12. MD and BCA simulations of He and H bombardment of fuzz in bcc elements

    NASA Astrophysics Data System (ADS)

    Klaver, T. P. C.; Zhang, S.; Nordlund, K.

    2017-08-01

    We present results of MD simulations of low energy He ion bombardment of low density fuzz in bcc elements. He ions can penetrate several micrometers into sparse fuzz, which allows for a sufficient He flux through it to grow the fuzz further. He kinetic energy falls off exponentially with penetration depth. A BCA code was used to carry out the same ion bombardment on the same fuzz structures as in MD simulations, but with simpler, 10 million times faster calculations. Despite the poor theoretical basis of the BCA at low ion energies, and the use of somewhat different potentials in MD and BCA calculations, the ion penetration depths predicted by BCA are only ∼12% less than those predicted by MD. The MD-BCA differences are highly systematic and trends in the results of the two methods are very similar. We have carried out more than 200 BCA calculation runs of ion bombardment of fuzz, in which parameters in the ion bombardment process were varied. For most parameters, the results show that the ion bombardment process is quite generic. The ion species (He or H), ion mass, fuzz element (W, Ta, Mo, Fe) and fuzz element lattice parameter turned out to have a modest influence on ion penetration depths at most. An off-normal angle of incidence strongly reduces the ion penetration depth. Increasing the ion energy increases the ion penetration, but the rate by which ion energy drops off at high ion energies follows the same exponential pattern as at lower energies.

  13. Phase Relations of Iron and Iron-Nickel Alloys up to 3 Mbars

    NASA Astrophysics Data System (ADS)

    Kuwayama, Y.; Hirose, K.; Sata, N.; Ohishi, Y.

    2007-12-01

    Iron is believed to be the major component of the Earth's core because it is the most abundant element that satisfies the observed seismic densities. Based on cosmochemical models and the studies of iron meteorites, it is generally accepted that the Earth's core also contains substantial amounts of nickel. Therefore, the high pressure behaviour of iron-nickel alloys is crucially important for interpreting and constraining geophysical and geochemical models of the Earth's core. The phase relation of iron at relatively low pressure has been well established. α-Fe with bcc structure at ambient condition transforms to γ-Fe at high temperature and to ɛ-Fe with hcp structure at above ~ 10 GPa. In contrast, the phase relation and the crystal structure at high pressure and temperature are still highly controversial. The phase relations of iron-nickel alloys were also studied in an externally-heated diamond-anvil cell (Huang et al. 1988, 1992) and in a laser-heated diamond-anvil cell (Lin et al. 2002, Mao et al. 2005, Dubrovinsky et al. 2007), but these experiments were limited to the pressure of 225 GPa. Applications of the previous results to the Earth's inner core conditions required significant extrapolations. In this study, we have investigated the phase relations of iron and a number of iron-nickel alloys in a wide range of pressures (>300 GPa), temperatures (>2000 K) and compositions (0-80 wt% Ni) using a laser-heated diamond-anvil cell with synchrotron x-ray diffraction. For iron, in-situ x-ray diffraction studies showed a wide range of stability of ɛ-Fe with an hcp structure up to 300 GPa and 2000 K and up to 343 GPa at room temperature. No evidence for the existence of phases other than ɛ-Fe, such as β-Fe with a dhcp structure (suggested by Dubrovinsky et al. 2000) or orthorhombic structure (suggested by Andrault et al. 1997), was observed. For iron-nickel alloys, high pressure and temperature experiments were conducted on Fe-18.4 wt% Ni, Fe-24.9 wt% Ni, Fe-35.7 wt% Ni, Fe-50.0 wt% Ni and Fe-80.0 wt% Ni up to 300 GPa. The experimental results indicate that the iron-nickel alloys strongly favour an fcc structure under multimegabar pressures. Our results can directly apply to the Earth's inner core pressures and the phase relations of iron- nickel alloys may interpret seismically observed anisotropy and discontinuity in the Earth's inner core.

  14. Consensus recommendations for the treatment of basal cell carcinomas in Gorlin syndrome with topical methylaminolaevulinate-photodynamic therapy.

    PubMed

    Basset-Seguin, N; Bissonnette, R; Girard, C; Haedersdal, M; Lear, J T; Paul, C; Piaserico, S

    2014-05-01

    Patients with Gorlin syndrome develop multiple basal cell carcinomas (BCC), for which treatment is often difficult. Methylaminolevulinate-photodynamic therapy (MAL-PDT) is approved for the treatment of superficial and nodular BCCs in Canada and several European countries. To establish consensus recommendations for the use of MAL-PDT in patients with Gorlin syndrome. The Gorlin consensus panel was comprised of 7 dermatologists who had treated a total of 83 patients with Gorlin syndrome using MAL-PDT. Consensus was developed based on the personal experience of the expert and results of literature review (on PUBMED using the keywords 'MAL' and 'PDT' and 'Gorlin' or 'naevoid basal cell carcinoma syndrome'). Consensus was reached among the experts and the literature review identified 9 relevant reports. The experts considered MAL-PDT a generally effective and safe therapy for treatment of BCC in Gorlin syndrome. For superficial BCC (sBCC), all sizes can be treated, and in nodular BCC (nBCC), better efficacy can be achieved in thinner lesions (<2 mm in thickness). MAL-PDT treatment schedule should be performed according to labelling although in individual cases, it may be adapted and performed on a monthly basis based on clinical assessment. Follow-up should be related to frequency of recurrence, and severity, number and location of lesions. Multiple lesions and large areas may be treated during the same session; however, adequate pain management should be considered. MAL-PDT is safe and effective in patients with Gorlin syndrome. Utilization of these recommendations may improve efficacy and clearance rates in this population. © 2013 The Authors Journal of the European Academy of Dermatology and Venereology © 2013 European Academy of Dermatology and Venereology.

  15. Immunolocalization of glioma-associated oncogene homolog 1 in non melanoma skin cancer.

    PubMed

    Bakry, Ola Ahmed; Samaka, Rehab Monir; Shoeib, Mohamed Abdel Moneim; Megahed, Doaa Mohamed

    2015-04-01

    Glioma-associated oncogene homolog (GLI)1 is involved in controlling cell proliferation and angiogenesis. The aim of this work was to explore its possible role in non-melanoma skin cancer pathogenesis through its immunohistochemical (IHC) expression in skin biopsies of these diseases and correlating this expression with the clinico-pathological parameters of the studied cases. Seventy-six cutaneous specimens were studied; 30 cases with basal cell carcinoma (BCC), 30 cases with squamous cell carcinoma (SCC) and 16 normal skin samples, from age- and gender-matched subjects, as a control group. GLI1 was expressed in all BCC cases and in 60% of SCC cases. All SCC cases showed cytoplasmic, while 70% of BCC cases showed nucleocytoplasmic immunoreactivity. It was over expressed in BCC and SCC compared to normal skin (p = 0.01 and 0.0006, respectively). Higher Histo (H) score in BCC cases was significantly associated with female gender (p = 0.04), multiple lesions, desmoplastic stromal reaction and stromal angiogenesis (p < 0.001 for all). Higher H score in SCC cases was significantly associated with scalp location, nodular type, recurrent lesions, high tumor grade, lymphovascular invasion (p = 0.004 for all), inflammatory stromal reaction (p = 0.01), lymph node involvement and absence of calcification (p = 0.001 for both). In conclusion, GLI1 may play a role in BCC pathogenesis through its role in cell proliferation, migration, and angiogenesis. Its upregulation and cytoplasmic localization in SCC may suggest that its role in tumor pathogenesis is through mechanisms other than Hedgehog pathway activation. Further studies are needed to clarify the exact molecular basis of its oncogenic action.

  16. Key role for efflux in the preservative susceptibility and adaptive resistance of Burkholderia cepacia complex bacteria.

    PubMed

    Rushton, Laura; Sass, Andrea; Baldwin, Adam; Dowson, Christopher G; Donoghue, Denise; Mahenthiralingam, Eshwar

    2013-07-01

    Bacteria from the Burkholderia cepacia complex (Bcc) are encountered as industrial contaminants, and little is known about the species involved or their mechanisms of preservative resistance. Multilocus sequence typing (MLST) revealed that multiple Bcc species may cause contamination, with B. lata (n = 17) and B. cenocepacia (n = 11) dominant within the collection examined. At the strain level, 11 of the 31 industrial sequence types identified had also been recovered from either natural environments or clinical infections. Minimal inhibitory (MIC) and minimum bactericidal (MBC) preservative concentrations varied across 83 selected Bcc strains, with industrial strains demonstrating increased tolerance for dimethylol dimethyl hydantoin (DMDMH). Benzisothiazolinone (BIT), DMDMH, methylisothiazolinone (MIT), a blend of 3:1 methylisothiazolinone-chloromethylisothiazolinone (M-CMIT), methyl paraben (MP), and phenoxyethanol (PH), were all effective anti-Bcc preservatives; benzethonium chloride (BC) and sodium benzoate (SB) were least effective. Since B. lata was the dominant industrial Bcc species, the type strain, 383(T) (LMG 22485(T)), was used to study preservative tolerance. Strain 383 developed stable preservative tolerance for M-CMIT, MIT, BIT, and BC, which resulted in preservative cross-resistance and altered antibiotic susceptibility, motility, and biofilm formation. Transcriptomic analysis of the B. lata 383 M-CMIT-adapted strain demonstrated that efflux played a key role in its M-CMIT tolerance and elevated fluoroquinolone resistance. The role of efflux was corroborated using the inhibitor l-Phe-Arg-β-napthylamide, which reduced the MICs of M-CMIT and ciprofloxacin. In summary, intrinsic preservative tolerance and stable adaptive changes, such as enhanced efflux, play a role in the ability of Bcc bacteria to cause industrial contamination.

  17. Key Role for Efflux in the Preservative Susceptibility and Adaptive Resistance of Burkholderia cepacia Complex Bacteria

    PubMed Central

    Rushton, Laura; Sass, Andrea; Baldwin, Adam; Dowson, Christopher G.; Donoghue, Denise

    2013-01-01

    Bacteria from the Burkholderia cepacia complex (Bcc) are encountered as industrial contaminants, and little is known about the species involved or their mechanisms of preservative resistance. Multilocus sequence typing (MLST) revealed that multiple Bcc species may cause contamination, with B. lata (n = 17) and B. cenocepacia (n = 11) dominant within the collection examined. At the strain level, 11 of the 31 industrial sequence types identified had also been recovered from either natural environments or clinical infections. Minimal inhibitory (MIC) and minimum bactericidal (MBC) preservative concentrations varied across 83 selected Bcc strains, with industrial strains demonstrating increased tolerance for dimethylol dimethyl hydantoin (DMDMH). Benzisothiazolinone (BIT), DMDMH, methylisothiazolinone (MIT), a blend of 3:1 methylisothiazolinone-chloromethylisothiazolinone (M-CMIT), methyl paraben (MP), and phenoxyethanol (PH), were all effective anti-Bcc preservatives; benzethonium chloride (BC) and sodium benzoate (SB) were least effective. Since B. lata was the dominant industrial Bcc species, the type strain, 383T (LMG 22485T), was used to study preservative tolerance. Strain 383 developed stable preservative tolerance for M-CMIT, MIT, BIT, and BC, which resulted in preservative cross-resistance and altered antibiotic susceptibility, motility, and biofilm formation. Transcriptomic analysis of the B. lata 383 M-CMIT-adapted strain demonstrated that efflux played a key role in its M-CMIT tolerance and elevated fluoroquinolone resistance. The role of efflux was corroborated using the inhibitor l-Phe-Arg-β-napthylamide, which reduced the MICs of M-CMIT and ciprofloxacin. In summary, intrinsic preservative tolerance and stable adaptive changes, such as enhanced efflux, play a role in the ability of Bcc bacteria to cause industrial contamination. PMID:23587949

  18. Interactions between coherent twin boundaries and phase transition of iron under dynamic loading and unloading

    NASA Astrophysics Data System (ADS)

    Wang, Kun; Chen, Jun; Zhang, Xueyang; Zhu, Wenjun

    2017-09-01

    Phase transitions and deformation twins are constantly reported in many BCC metals under high pressure, whose interactions are of fundamental importance to understand the strengthening mechanism of these metals under extreme conditions. However, the interactions between twins and phase transition in BCC metals remain largely unexplored. In this work, interactions between coherent twin boundaries and α ↔ ɛ phase transition of iron are investigated using both non-equilibrium molecular dynamics simulations and the nudged elastic band method. Mechanisms of both twin-assisted phase transition and reverse phase transition are studied, and orientation relationships between BCC and HCP phases are found to be ⟨"separators="|11 1 ¯ ⟩ B C C||⟨"separators="|1 ¯2 1 ¯ 0 ⟩ H C P and ⟨"separators="|1 1 ¯ 0 ⟩ B C C||⟨"separators="|0001 ⟩ H C P for both cases. The twin boundary corresponds to {"separators="|10 1 ¯ 0 } H C P after the phase transition. It is amazing that the reverse transition seems to be able to "memorize" and recover the initial BCC twins. The memory would be partly lost when plastic slips take place in the HCP phase before the reverse transition. In the recovered initial BCC twins, three major twin spacings are observed, which are well explained in terms of energy barriers of transition from the HCP phase to the BCC twin. Besides, the variant selection rule of the twin assisted phase transition is also discussed. The results of present work could be expected to give some clues for producing ultra-fine grain structures in materials exhibiting martensitic phase transition.

  19. Favourable results of Mohs micrographic surgery for basal cell carcinoma.

    PubMed

    Gniadecki, Robert; Glud, Martin; Mortensen, Kia; Bang, Bo; Biskup, Edyta; Omland, Silje Haukali

    2015-12-01

    Basal cell carcinoma (BCC) is the most common malignant neoplasm with an annual incidence approaching 200/100,000 person-years. Mohs micrographic surgery (MMS) is widely used in North America and in Europe for treatment of BCC. This technique ensures radical tumour removal, sparing of the surrounding healthy skin, and it also offers higher cure rates than standard tumour excision with a predefined margin of healthy skin. The superiority of MMS relies on the fact that the entire (100%) margin of the excised tissue is examined microscopically for residual tumour in contrast to the traditional histopathological examination, in which 2% of the margin is examined. In Denmark, MMS was first introduced by us in 2012. In the present study, we retrospectively included all patients who underwent MMS from May 2012 to June 2015. A total of 231 patients with 263 BCC were included. The mean age was 66.1 years. The most common localisations were the forehead (31.3%), the nose (31.0%) and the cheek (14.7%). Primary BCC comprised 54.0%; the remaining cases were relapses, most frequently after curettage (36.9%), radiotherapy (18.9%) and photodynamic therapy (11.7%). MMS leads to 40% smaller skin defects than standard excisions with 4 or 6 mm margins. Closure of skin defects was achieved by side-to-side closure in 49% and by local flaps in 40%. There were no relapses during the observation time. The safety, cosmetic and functional outcome were excellent. We recommend that MMS be included in the Danish BCC treatment guidelines, especially for high-risk BCC in the face, in line with standard practice in Europe and the United States. none. not relevant.

  20. Temporal and vertical distributions of bacterioplankton at the Gray's Reef National Marine Sanctuary.

    PubMed

    Lu, Xinxin; Sun, Shulei; Zhang, Yu-Qin; Hollibaugh, James T; Mou, Xiaozhen

    2015-02-01

    Large spatial scales and long-term shifts of bacterial community composition (BCC) in the open ocean can often be reliably predicted based on the dynamics of physical-chemical variables. The power of abiotic factors in shaping BCC on shorter time scales in shallow estuarine mixing zones is less clear. We examined the diurnal variation in BCC at different water depths in the spring and fall of 2011 at a station in the Gray's Reef National Marine Sanctuary (GRNMS). This site is located in the transition zone between the estuarine plume and continental shelf waters of the South Atlantic Bight. A total of 234,516 pyrotag sequences of bacterial 16S rRNA genes were recovered; they were taxonomically affiliated with >200 families of 23 bacterial phyla. Nonmetric multidimensional scaling analysis revealed significant differences in BCC between spring and fall samples, likely due to seasonality in the concentrations of dissolved organic carbon and nitrate plus nitrite. Within each diurnal sampling, BCC differed significantly by depth only in the spring and differed significantly between day and night only in the fall. The former variation largely tracked changes in light availability, while the latter was most correlated with concentrations of polyamines and chlorophyll a. Our results suggest that at the GRNMS, a coastal mixing zone, diurnal variation in BCC is attributable to the mixing of local and imported bacterioplankton rather than to bacterial growth in response to environmental changes. Our results also indicate that, like members of the Roseobacter clade, SAR11 bacteria may play an important role in processing dissolved organic material in coastal oceans. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  1. Increased caffeine intake is associated with reduced risk of basal cell carcinoma of the skin.

    PubMed

    Song, Fengju; Qureshi, Abrar A; Han, Jiali

    2012-07-01

    Studies in animals suggest that caffeine administration helps prevent squamous cell skin cancer development, but there have been limited epidemiologic studies on the association between caffeine consumption and skin cancer risk. Using data from the Nurses' Health Study and the Health Professionals Follow-up Study, we prospectively examined risks of basal cell carcinoma (BCC, 22,786 cases), squamous cell carcinoma (SCC, 1,953 cases), and melanoma (741 cases) in relation to caffeine intake. Cox proportional hazard models were used to calculate relative risks (RR) and 95% confidence intervals (CI). The amount of caffeine intake from all dietary sources was inversely associated with BCC risk. Compared with the lowest quintile, the highest quintile had the lowest risk (RR, 0.82 in women; 95% CI:,0.77-0.86 and RR, 0.87 in men; 95% CI, 0.81-0.94; Ptrend<0.0001 in both). A significant inverse association was also found between caffeinated coffee consumption and BCC risk. Compared with individuals who consumed caffeinated coffee less than 1 cup per month, women who consumed more than 3 cups/d had the lowest risk (RR, 0.79; 95% CI, 0.74-0.85; Ptrend<0.0001) and the RR for men was 0.90 (95% CI, 0.80-1.01; Ptrend=0.003). Caffeine from other dietary sources (tea, cola, and chocolate) was also inversely associated with BCC risk. Decaffeinated coffee consumption was not associated with a similar decrease in BCC risk. In contrast, caffeine intake was not found to be inversely associated with risks of SCC or melanoma. Our findings argue that caffeine intake in men and women is inversely associated with risk of BCC. ©2012 AACR.

  2. Indoor tanning and risk of early-onset basal cell carcinoma

    PubMed Central

    Ferrucci, Leah M.; Cartmel, Brenda; Molinaro, Annette M.; Leffell, David J.; Bale, Allen E.; Mayne, Susan T.

    2011-01-01

    Background Despite a rise in incidence of basal cell carcinoma (BCC) among young people and the ubiquity of indoor tanning in this population, few epidemiologic studies have investigated this exposure-disease relationship. Objective Evaluate the association between indoor tanning and early-onset BCC. Methods BCC cases (n=376) and controls with minor benign skin conditions (n=390) under age 40 were identified through Yale Dermatopathology. Participants provided information on ever indoor tanning, age of initiation, frequency, duration, burns while tanning, and type of tanning device during an in-person interview. We calculated odds ratios (OR) and 95% confidence intervals (CI) using multivariate logistic regression with never indoor tanners as the referent group. Results Ever indoor tanning was associated with a 69% increased risk of early-onset BCC (95% CI=1.15-2.48). This association was stronger among women (OR=2.14, 95% CI=1.31-3.47), for multiple BCCs (OR=2.16, 95% CI=1.26-3.70), and for BCCs on the trunk and extremities (OR=2.81, 95% CI=1.57-5.02). Risk increased dose-dependently with years used regular indoor tanning devices (p-trend=0.003), number of overall burns (p-trend=<0.001) and burns to biopsy site (p-trend=<0.001) from indoor tanning. Approximately one-quarter (27%) of early-onset BCCs (or 43% among women) could be prevented if individuals never tanned indoors. Limitations Potential recall bias of indoor tanning by cases and generalizability of the control population suggest replication in other studies is warranted. Conclusions Indoor tanning was a strong risk factor for early-onset BCC, particularly among women. Indoor tanning should continue to be targeted by both policy-based and behavioral interventions, as the impact on BCC-associated morbidity may be substantial. PMID:22153793

  3. Sebaceous gland carcinoma of the ocular adnexa - variability in clinical and histological appearance with analysis of immunohistochemical staining patterns.

    PubMed

    Schmitz, Eva Janine; Herwig-Carl, Martina C; Holz, Frank G; Loeffler, Karin U

    2017-11-01

    The purpose of the study was to evaluate the characteristics of sebaceous gland carcinoma (SGC) of the ocular adnexae, which is due to a high variability in clinical, histological and immunohistochemical characteristics often challenging to diagnose. Records of six patients with SGC were reviewed, who underwent surgical excision and who were histologically diagnosed with SGC. For comparison, there were specimens from four patients with basal cell carcinoma (BCC) and four patients with squamous cell carcinoma (SCC). Histological and immunohistochemical analysis included stains for HE, cytokeratins (CKpan, Cam5.2), epithelial membrane antigen (EMA), androgen receptor (AR441), perforin and adipophilin. SGC's were located in the upper (n = 2) or lower (n = 4) eyelid and were associated with various presenting clinical signs including chalazion-like lesions with pyogenic granuloma (n = 1), papillomatous conjunctival tumors (n = 3), a hyperkeratotic exophytic neoplasm (n = 1) and an ulcerating crusted lesion resembling chronic blepharitis (n = 1). The treatment was tumor resection, followed (if necessary) by adjuvant therapy with topical Mitomycin C (n = 2). Histologic characteristics included basophilic pleomorphic cells with vacuolated cytoplasm, prominent nucleoli, mitotic figures and in some cases pagetoid spread (n = 2). CKpan, EMA and Cam5.2 showed strong positive immunoreactivity in all specimens (SGC, BCC, SCC). Perforin immunostaining showed a varying, but overall weak, non-specific cytoplasmatic staining reaction in all lesions. AR441 positivity was noted with variable intensity in almost all lesions and in particular in pagetoid spread in contrast to non-tumor cells. Adipophilin showed an annular staining of lipid granules in immature sebaceous cells in SGC in contrast to a more granular staining pattern in BCC and SCC. SGCs display a variety of clinical signs and may mimic many other lesions. Tumor resection, followed by histological and immunohistochemical analysis, leads to the diagnosis and initiation of the proper treatment regimen. Herein, immunohistochemistry showed an unequivocal profile in SGC and did not allow for an exact differentiation from BCC and SCC by immunohistochemical means only. An extended evaluation of HE stains remains essential. However, immunohistochemistry can make relevant contributions to the diagnosis of SGC, especially in cases of inconclusive histology, by positive staining for adipophilin in immature sebaceous cells or by AR441 labeling in cases of pagetoid spread.

  4. Ultra-soft magnetic properties and correlated phase analysis by {sup 57}Fe Mössbauer spectroscopy of Fe{sub 74}Cu{sub 0.8}Nb{sub 2.7}Si{sub 15.5}B{sub 7} alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manjura Hoque, S.; Liba, S. I.; Akhter, Shireen

    2016-02-15

    A detailed study of magnetic softness has been performed on FINEMENT type of ribbons by investigating the BH loop with maximum applied field of 960 A/m. The ribbon with the composition of Fe{sub 74}Cu{sub 0.8}Nb{sub 2.7}Si{sub 15.5}B{sub 7} was synthesized by rapid solidification technique and the compositions volume fraction was controlled by changing the annealing condition. Detail phase analysis was performed through X-ray diffraction (XRD), Differential scanning calorimetry (DSC), Vibrating sample magnetometer (VSM) and Mössbauer spectroscopy in order to correlate the ultrasoft magnetic properties with the volume fraction of amorphous and α-Fe(Si) soft nano composites. Bright (BF) and dark fieldmore » (DF) image with selective area diffraction (SAD) patterns by the transmission electron microscopy (TEM) of the sample annealed for the optimized annealed condition at 853 K for 3 min reveals nanocrystals with an average size between 10-15 nm possessing the bcc structure which matches with the grain size revealed by the X-ray diffraction. Kinetics of crystallization of α-Fe(Si) phases has been determined by DSC curves. Extremely small coercivity of 30.9 A/m and core loss of 2.5 W/Kg for the sample annealed at 853 K for 3 min was found. Similar values for other crystalline conditions were determined by using BH loop tracer with a maximum applied field of around 960 A/m. Mössbauer spectroscopy was used to determine chemical shift, hyperfine field distribution (HFD), and peak width of different phases. The volume fractions of the relative amount of amorphous and crystalline phases are also determined by Mössbauer spectroscopy. High saturation magnetization along with ultrasoft magnetic properties exhibits very high potentials technological applications.« less

  5. Ultra-soft magnetic properties and correlated phase analysis by 57Fe Mössbauer spectroscopy of Fe74Cu0.8Nb2.7Si15.5B7 alloy

    NASA Astrophysics Data System (ADS)

    Manjura Hoque, S.; Liba, S. I.; Anirban, A.; Choudhury, Shamima; Akhter, Shireen

    2016-02-01

    A detailed study of magnetic softness has been performed on FINEMENT type of ribbons by investigating the BH loop with maximum applied field of 960 A/m. The ribbon with the composition of Fe74Cu0.8Nb2.7Si15.5B7 was synthesized by rapid solidification technique and the compositions volume fraction was controlled by changing the annealing condition. Detail phase analysis was performed through X-ray diffraction (XRD), Differential scanning calorimetry (DSC), Vibrating sample magnetometer (VSM) and Mössbauer spectroscopy in order to correlate the ultrasoft magnetic properties with the volume fraction of amorphous and α-Fe(Si) soft nano composites. Bright (BF) and dark field (DF) image with selective area diffraction (SAD) patterns by the transmission electron microscopy (TEM) of the sample annealed for the optimized annealed condition at 853 K for 3 min reveals nanocrystals with an average size between 10-15 nm possessing the bcc structure which matches with the grain size revealed by the X-ray diffraction. Kinetics of crystallization of α-Fe(Si) phases has been determined by DSC curves. Extremely small coercivity of 30.9 A/m and core loss of 2.5 W/Kg for the sample annealed at 853 K for 3 min was found. Similar values for other crystalline conditions were determined by using BH loop tracer with a maximum applied field of around 960 A/m. Mössbauer spectroscopy was used to determine chemical shift, hyperfine field distribution (HFD), and peak width of different phases. The volume fractions of the relative amount of amorphous and crystalline phases are also determined by Mössbauer spectroscopy. High saturation magnetization along with ultrasoft magnetic properties exhibits very high potentials technological applications.

  6. Ready or Not: Preparation through Simulation

    ERIC Educational Resources Information Center

    Spellman, Joy

    2008-01-01

    Immediately after 9/11, Burlington County College (BCC) realized that the focus of emergency preparedness must change. BCC responded by identifying community needs, developing customized simulation training using high-fidelity human patient simulators and laptop/desktop technology; developing partnerships, and securing outside funding. Over 8,500…

  7. On Weak-BCC-Algebras

    PubMed Central

    Thomys, Janus; Zhang, Xiaohong

    2013-01-01

    We describe weak-BCC-algebras (also called BZ-algebras) in which the condition (x∗y)∗z = (x∗z)∗y is satisfied only in the case when elements x, y belong to the same branch. We also characterize ideals, nilradicals, and nilpotent elements of such algebras. PMID:24311983

  8. AUTOMATIC DIRT TRAIL ANALYSIS IN DERMOSCOPY IMAGES

    PubMed Central

    Cheng, Beibei; Stanley, R. Joe; Stoecker, William V.; Osterwise, Christopher T.P.; Stricklin, Sherea M.; Hinton, Kristen A.; Moss, Randy H.; Oliviero, Margaret; Rabinovitz, Harold S.

    2011-01-01

    Basal cell carcinoma (BCC) is the most common cancer in the U.S. Dermatoscopes are devices used by physicians to facilitate the early detection of these cancers based on the identification of skin lesion structures often specific to BCCs. One new lesion structure, referred to as dirt trails, has the appearance of dark gray, brown or black dots and clods of varying sizes distributed in elongated clusters with indistinct borders, often appearing as curvilinear trails. In this research, we explore a dirt trail detection and analysis algorithm for extracting, measuring, and characterizing dirt trails based on size, distribution, and color in dermoscopic skin lesion images. These dirt trails are then used to automatically discriminate BCC from benign skin lesions. For an experimental data set of 35 BCC images with dirt trails and 79 benign lesion images, a neural network-based classifier achieved a 0.902 area under a receiver operating characteristic curve using a leave-one-out approach, demonstrating the potential of dirt trails for BCC lesion discrimination. PMID:22233099

  9. Basal cell carcinoma of the nipple-areola complex.

    PubMed

    Ferguson, Mark S; Nouraei, S A Reza; Davies, Ben J H; McLean, N R

    2009-11-01

    Basal cell carcinoma (BCC) of the nipple-areola complex is uncommon. It has been suggested that BCCs in this region behave more aggressively, with a higher potential for distant spread, than in other anatomical sites. To address questions about etiology, behavior, optimal treatment, and prognosis of this entity. A literature search identifying all cases of BCC of the nipple and nipple-areola complex in the English literature from 1893 to 2008. Thirty-four cases of BCC of the nipple, areola, or both were identified, mostly affecting middle-aged men. The majority of patients were treated with tissue-sparing surgery. There was a metastatic rate of 9.1%, and one patient died from the disease (3.0%). The optimal treatment of this condition should be local excision, but patients with this condition should be followed up for primary site recurrence and axillary metastasis, because there is greater incidence than with BCC at other anatomical sites. Furthermore, proven axillary metastasis should be surgically treated.

  10. Alcohol consumption and risk of cutaneous basal cell carcinoma in women and men: 3 prospective cohort studies12

    PubMed Central

    Wu, Shaowei; Li, Wen-Qing; Qureshi, Abrar A; Cho, Eunyoung

    2015-01-01

    Background: Alcohol consumption has been associated with an increased prevalence of sunburn, which is an established skin cancer risk factor. Objective: We investigated whether alcohol consumption is associated with risk of cutaneous basal cell carcinoma (BCC). Design: We conducted a prospective analysis on alcohol consumption and risk of BCC on the basis of data from 167,765 women in the NHS (Nurses’ Health Study) (1984–2010) and NHS II (1991–2011) and 43,697 men in the Health Professionals Follow-Up Study (1986–2010). Alcohol intake was repeatedly assessed every 2–4 y over the follow-up period. HRs and 95% CIs for BCC in association with alcohol intake were computed with the use of Cox proportional hazards models with adjustment for sun exposure and other skin cancer risk factors. Results: A total of 28,951 incident BCC cases were documented over 3.74 million person-years of follow-up. Increased alcohol intake was associated with increased BCC risk in both women and men (both P-trend < 0.0001). Pooled multivariable-adjusted HRs over increasing cumulative averaged alcohol intake categories were 1.00 (reference) for nondrinkers, 1.13 (95% CI: 1.06, 1.20) for 0.1–9.9 g/d, 1.24 (95% CI: 1.14, 1.35) for 10.0–19.9 g/d, 1.27 (95% CI: 1.20, 1.35) for 20.0–29.9 g/d, and 1.22 (95% CI: 1.15, 1.30) for ≥30.0 g/d (P-trend < 0.0001, P-heterogeneity by study = 0.10 ). The association remained consistent when we used alcohol intakes over different latency periods (0–4, 4–8, 8–12, and 12–16 y) as exposures and over categories of sun exposure–related factors. In the individual alcoholic beverages, white wine and liquor were positively associated with BCC risk. Conclusion: Alcohol consumption is associated with increased risk of cutaneous BCC in both women and men. PMID:26423390

  11. Improved fertility in gilts and sows after artificial insemination of frozen-thawed boar semen by supplementation of semen extender with caffeine and CaCl2.

    PubMed

    Yamaguchi, Shoichiro; Funahashi, Hiroaki; Murakami, Tetsuya

    2009-12-01

    Supplementation of semen extender with caffeine and CaCl(2) for artificial insemination (AI) of fresh spermatozoa has been demonstrated to reduce recruitment of uterine polymorphonuclear leukocytes (PMNs) and the activity of phagocytosis. Here, we determined if addition of caffeine and CaCl(2) to semen extender improves the fertility of frozen-thawed boar semen. In experiment 1, gilts were cervically inseminated twice with frozen-thawed boar spermatozoa (25 x 10(8) cells per dose) suspended in Modena solution (n=7) or modified Beltsville Thawing Solution supplemented with caffeine and CaCl(2) (BCC, n=7). The gilts were slaughtered 4 h later, and their oviducts and uterine horns plus the body of the uterus were flushed to recover PMNs and non-phagocytosed spermatozoa. There was no difference in the total number of uterine PMNs between gilts inseminated with Modena solution and those inseminated with BCC (3.8 x 10(8) vs. 1.5 x 10(8) cells, respectively); however, the total number of uterine spermatozoa was higher when gilts were inseminated with BCC (40.6 x 10(6) cells) compared with those inseminated with Modena solution (1.4 x 10(6) cells, P<0.05). In experiment 2, gilts and sows were subjected to intrauterine insemination twice with frozen-thawed spermatozoa suspended (25 x 10(8) sperm per dose) in Modena (n=21) or BCC (n=21). The overall pregnancy and farrowing rates were higher in females inseminated with BCC (71.4 and 61.9%, respectively) compared with those inseminated with Modena solution (38.1 and 28.6%, respectively, P<0.05). However, no significant difference in litter size of piglets was observed between treatments (7.2 +/- 1.6 piglets for Modena solution vs. 8.2 +/- 0.9 piglets for BCC solution). In conclusion, we demonstrated that use of BCC solution for frozen-thawed boar semen produced better pregnancy and farrowing rates following AI than Modena solution, probably by reducing the phagocytosis of spermatozoa.

  12. The Concerted Action of Type 2 and Type 3 Deiodinases Regulates the Cell Cycle and Survival of Basal Cell Carcinoma Cells.

    PubMed

    Miro, Caterina; Ambrosio, Raffaele; De Stefano, Maria Angela; Di Girolamo, Daniela; Di Cicco, Emery; Cicatiello, Annunziata Gaetana; Mancino, Giuseppina; Porcelli, Tommaso; Raia, Maddalena; Del Vecchio, Luigi; Salvatore, Domenico; Dentice, Monica

    2017-04-01

    Thyroid hormones (THs) mediate pleiotropic cellular processes involved in metabolism, cellular proliferation, and differentiation. The intracellular hormonal environment can be tailored by the type 1 and 2 deiodinase enzymes D2 and D3, which catalyze TH activation and inactivation respectively. In many cellular systems, THs exert well-documented stimulatory or inhibitory effects on cell proliferation; however, the molecular mechanisms by which they control rates of cell cycle progression have not yet been entirely clarified. We previously showed that D3 depletion or TH treatment influences the proliferation and survival of basal cell carcinoma (BCC) cells. Surprisingly, we also found that BCC cells express not only sustained levels of D3 but also robust levels of D2. The aim of the present study was to dissect the contribution of D2 to TH metabolism in the BCC context, and to identify the molecular changes associated with cell proliferation and survival induced by TH and mediated by D2 and D3. We used the CRISPR/Cas9 technology to genetically deplete D2 and D3 in BCC cells and studied the consequences of depletion on cell cycle progression and on cell death. Cell cycle progression was analyzed by fluorescence activated cell sorting analysis of synchronized cells, and the apoptosis rate by annexin V incorporation. Mechanistic investigations revealed that D2 inactivation accelerates cell cycle progression thereby enhancing the proportion of S-phase cells and cyclin D1 expression. Conversely, D3 mutagenesis drastically suppressed cell proliferation and enhanced apoptosis of BCC cells. Furthermore, the basal apoptotic rate was oppositely regulated in D2- and D3-depleted cells. Our results indicate that BCC cells constitute an example in which the TH signal is finely tuned by the concerted expression of opposite-acting deiodinases. The dual regulation of D2 and D3 expression plays a critical role in cell cycle progression and cell death by influencing cyclin D1-mediated entry into the G1-S phase. These findings reinforce the concept that TH is a potential therapeutic target in human BCC.

  13. Basal cell carcinoma in farmers: an occupation group at high risk.

    PubMed

    Szewczyk, Mateusz; Pazdrowski, Jakub; Golusiński, Paweł; Dańczak-Pazdrowska, Aleksandra; Łuczewski, Łukasz; Marszałek, Sławomir; Majchrzak, Ewa; Golusiński, Wojciech

    2016-04-01

    Skin cancer is the most commonly diagnosed cancer type worldwide, and 80 % of skin cancers are basal cell carcinoma (BCC). The main risk factor for developing BCC is exposure to ultraviolet radiation (UVR), particularly high-dose exposure at a young age. Outdoor workers, particularly farmers, are at high risk of developing BCC. However, studies of BCC in this population are scant. To comprehensively evaluate all cases of BCC of the head and neck region treated during the years 2007-2013 at our hospital in Poland, and to compare the tumour characteristics in farmers to non-farmers. Retrospective analysis of 312 patients treated for head and neck BCC during the study period (2007-2013). Most patients (198 cases; 63 %) were males, with 114 females (37 %). Median age was 73 years (range 32-96 years). The most common tumour location was the nose and cheek (114 pts; 37 %) followed by the auricle (82 pts; 26 %), lips (54 pts; 18 %), scalp (26 pts; 8 %), and eye (36 pts; 12 %). The most common disease stage on presentation was stage T2 (104 pts, 33 %), followed by stage T1 (79 pts; 25 %), stage T3 (89 pts; 28 %), and stage T4 (40 pts; 14 %). By occupation, farmers accounted for 33 % of all patients (102 of 312 pts). The most common tumour localisations in the farmer subgroup were the nose and cheek (50 pts; 49 %; p < 0.001; odds ratio [OR] 2.19; 95 % confidence interval [CI] 1.35-3.57), followed by the auricle (32 pts; 31 %), scalp (16 pts; 16 %), ocular region (3 pts; 3 %), and lips (1 pt; 1 %). Patients in the farmer group were significantly younger than non-farmers (62 vs. 73 years; p < 0.001; OR 0.90, 95 % CI 0.88-0.93). Farmers were significantly more likely to present disease recurrence (27 vs. 12 % of cases; p < 0.001; OR 5.94; 95 % CI 2.86-12.33). The results highlight the increased incidence and risk of recurrence of BCC in farmers. It is therefore necessary to consider enhancing educational programmes and other preventative measures in this occupational group and to evaluate the effectiveness of such programmes.

  14. X-ray diffraction of molybdenum under shock compression to 450 GPa

    DOE PAGES

    Wang, Jue; Coppari, Federica; Smith, Raymond F.; ...

    2015-11-20

    Molybdenum (Mo) is a body-centered-cubic (bcc) transition metal that has widespread technological applications. Although the bcc transition elements are used as test cases for understanding the behavior of metals under extreme conditions, the melting curves and phase transitions of these elements have been the subject of stark disagreements in recent years. Here we use x-ray diffraction to examine the phase stability and melting behavior of Mo under shock loading to 450 GPa. The bcc phase of Mo remains stable along the Hugoniot until 380 GPa. Here, our results do not support previous claims of a shallow melting curve for molybdenum.

  15. Basal cell carcinoma in young women: an evaluation of the association of tanning bed use and smoking.

    PubMed

    Boyd, Alan S; Shyr, Yu; King, Lloyd E

    2002-05-01

    Basal cell carcinomas (BCCs) typically occur in middle-aged to elderly patients but less commonly in younger ones. In our experience, most BCCs seen in patients younger than 40 years are found in women. We evaluated 30 women with biopsy-proven BCC and 30 control patients matched for sex, age, and skin type to determine potential risk factors for this population. Tanning bed visits, pack-years of cigarette smoking, recreational sun exposure, number of blistering sunburns, and use of sunscreens were determined for both groups. Among patients with a BCC, the histologic type of tumor, site of involvement, method of treatment, follow-up period, incidence of recurrence, and presence of actinic keratoses were also evaluated. Patients with a BCC had a statistically greater number of pack years of smoking (P =.045), and a greater percentage of these women had experienced blistering sunburns (P =.028). Although women with a BCC had, on average, almost twice as many tanning salon visits (152.2 vs 83.1), this was not statistically significant. Sunscreen use and amount of recreational ultraviolet light exposure were essentially equal between the two groups. Young women with a BCC are more likely to have a past or current history of cigarette smoking and blistering sunburns. Repeated exposure to tanning beds may also be a contributory factor.

  16. Discriminating model for skin cancer diagnosis in vivo through Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Silveira, Fabrício Luiz; Pacheco, Marcos Tadeu T.; Bodanese, Benito; Zângaro, Renato Amaro; Silveira, Landulfo

    2013-03-01

    This work aimed the development of a discriminating model, using Raman spectroscopy, based on the estimated concentration of biochemical components presented in skin, for in vivo diagnosis. Raman spectra were collected in patients who underwent excision surgery of suspicious lesions at the lesion site and at a normal circumjacent site. It has been estimated the relative amount of selected biochemical compounds presented in skin. The Raman spectra of normal and malignant (basal cell carcinoma - BCC and squamous cell carcinoma - SCC) skin are quite similar, with some spectral differences in the regions of lipids, nucleic acids, and hemoglobin. Some biochemicals showed statistically significant differences among N, BCC and SCC, such as elastin, ceramide, melanin, nucleid acid, actin and phenylalanine. Elastin and ceramide presented significant differences between N and BCC, melanin, DNA and actin presented significant differences between N and BCC and between N and SCC, being melanin and DNA decreased in neoplasias, in contrast with actin, that increased in neoplasias. Concentration of phenylalanine was significantly increased for SCC compared to N and BCC. The relative concentration of melanin, DNA and phenylalanine showed sensitivity, specificity and accuracy of about 81%, 65% and 60%, respectively, using Mahalanobis distance as a discriminator. This model is being incorporated to a Raman system with automated data collection and processing that could be used for a future in vivo, real time discrimination algorithm.

  17. Dermal changes in superficial basal cell carcinoma, melanoma in situ and actinic keratosis and their implications

    PubMed Central

    Kazlouskaya, Viktoryia; Malhotra, Saurabh; Navarro, Raquel; Wu, Karen Nguyen; Shvartsbeyn, Marianna; Shengli, Chen; Gui, Jiang; Elston, Dirk M.

    2018-01-01

    Background Basal cell carcinoma (BCC) has a characteristic stroma, but less is known about the dermal characteristics associated with melanoma in situ (MIS) and actinic keratosis (AK). Materials and methods Dermal changes were studied in 301 specimens of AK, BCC and MIS. Subsequently, blinded images of dermal changes from 90 randomly selected cases of those entities were used to assess the predictive value of the dermal changes. Agreement with the final diagnosis was calculated using kappa coefficient (κ). Results Fibromyxoid stroma was present in 82% of BCC cases; fibrous stroma was seen in 25% of BCC, 58% of MIS and 35.6% of AK specimens (p <0.05). A lichenoid inflammatory infiltrate was frequently associated with AK and a perifollicular infiltrate with periadnexal fibrosis with MIS. Blinded evaluation of images of the dermal changes associated with the tumors yielded the correct diagnosis in (54.4, 41.1 and 27.8%; average 41.2%) by the three appraisers. Coefficient of agreement in blinded imaged evaluation with the actual diagnosis was higher in the BCC and MIS compared with AK (κ = 0.37, p = 0.0001; κ = 0.2, p = 0.0005 and κ = −0.06, p = 0.84, respectively). Conclusion Dermal features may be helpful in predicting the correct diagnosis when tumor is not visible. PMID:24117926

  18. MD modeling of screw dislocation influence upon initiation and mechanism of BCC-HCP polymorphous transition in iron

    NASA Astrophysics Data System (ADS)

    Dremov, V. V.; Ionov, G. V.; Sapozhnikov, F. A.; Smirnov, N. A.; Karavaev, A. V.; Vorobyova, M. A.; Ryzhkov, M. V.

    2015-09-01

    The present work is devoted to classical molecular dynamics investigation into microscopic mechanisms of the bcc-hcp transition in iron. The interatomic potential of EAM type used in the calculations was tested for the capability to reproduce ab initio data on energy evolution along the bcc-hcp transformation path (Burgers deformation + shuffe) and then used in the large-scale MD simulations. The large-scale simulations included constant volume deformation along the Burgers path to study the origin and nature of the plasticity, hydrostatic volume compression of defect free samples above the bcc to hcp transition threshold to observe the formation of new phase embryos, and the volume compression of samples containing screw dislocations to study the effect of the dislocations on the probability of the new phase critical embryo formation. The volume compression demonstrated high level of metastability. The transition starts at pressure much higher than the equilibrium one. Dislocations strongly affect the probability of the critical embryo formation and significantly reduce the onset pressure of transition. The dislocations affect also the resulting structure of the samples upon the transition. The formation of layered structure is typical for the samples containing the dislocations. The results of the simulations were compared with the in-situ experimental data on the mechanism of the bcc-hcp transition in iron.

  19. Phase stability and microstructures of high entropy alloys ion irradiated to high doses

    NASA Astrophysics Data System (ADS)

    Xia, Songqin; Gao, Michael C.; Yang, Tengfei; Liaw, Peter K.; Zhang, Yong

    2016-11-01

    The microstructures of AlxCoCrFeNi (x = 0.1, 0.75 and 1.5 in molar ratio) high entropy alloys (HEAs) irradiated at room temperature with 3 MeV Au ions at the highest fluence of 105, 91, and 81 displacement per atom, respectively, were studied. Transmission electron microscopy (TEM) and high-resolution TEM (HRTEM) analyses show that the initial microstructures and phase composition of all three alloys are retained after ion irradiation and no phase decomposition is observed. Furthermore, it is demonstrated that the disordered face-centered cubic (FCC) and disordered body-centered cubic (BCC) phases show much less defect cluster formation and structural damage than the NiAl-type ordered B2 phase. This effect is explained by higher entropy of mixing, higher defect formation/migration energies, substantially lower thermal conductivity, and higher atomic level stress in the disordered phases.

  20. Effect of metallurgical structure and properties on adhesion and friction behavior of cobalt alloys

    NASA Technical Reports Server (NTRS)

    Keller, D. V., Jr.; Shatynski, S.; Vedamanikam, P. M.

    1972-01-01

    The metallurgical structure and some of the mechanical properties of two cobalt alloys, cobalt-50% iron and cobalt-25% molybdenum-10% chromium, were determined under various heat treated conditions. The mechanical properties of the bcc disordered Co-50Fe alloy, which was found to be very brittle, indicated an exceedingly low fracture strength, low hardness, and very weak grain boundary strength. Ordering by suitable heat treatment only produced a more brittle material with a lower fracture strength and a slightly higher hardness value. Work hardening was found to produce a finer grain structure and a greater grain boundary strength. Tensile properties were examined. It was found that the Co-25Mo-10Cr alloy was difficult to place in the alpha Co solid solution condition, which limited the ability to use precipitation as a hardening reaction. Over two hundred adhesion cycles from zero contact load, to maximum load, to fracture were conducted between couples for each of the above alloys in an ultrahigh vacuum system which would permit the sample surfaces to be cleaned of all contaminant layers. In the Co-50Fe case, the calculated fracture stress from the adhesion tests showed values in the range of 80 to 150 k.s.i., which is about ten times greater than the values from tension tests.

Top