Science.gov

Sample records for bcc lattices

  1. Lattice-switch Monte Carlo: the fcc—bcc problem

    NASA Astrophysics Data System (ADS)

    Underwood, T. L.; Ackland, G. J.

    2015-09-01

    Lattice-switch Monte Carlo is an efficient method for calculating the free energy difference between two solid phases, or a solid and a fluid phase. Here, we provide a brief introduction to the method, and list its applications since its inception. We then describe a lattice switch for the fcc and bcc phases based on the Bain orientation relationship. Finally, we present preliminary results regarding our application of the method to the fcc and bcc phases in the Lennard-Jones system. Our initial calculations reveal that the bcc phase is unstable, quickly degenerating into some as yet undetermined metastable solid phase. This renders conventional lattice-switch Monte Carlo intractable for this phase. Possible solutions to this problem are discussed.

  2. Quartic Box-Spline Reconstruction on the BCC Lattice.

    PubMed

    Kim, Minho

    2013-02-01

    This paper presents an alternative box-spline filter for the body-centered cubic (BCC) lattice, the seven-direction quartic box-spline M7 that has the same approximation order as the eight-direction quintic box-spline M8 but a lower polynomial degree, smaller support, and is computationally more efficient. When applied to reconstruction with quasi-interpolation prefilters, M7 shows less aliasing, which is verified quantitatively by integral filter metrics and frequency error kernels. To visualize and analyze distributional aliasing characteristics, each spectrum is evaluated on the planes and lines with various orientations.

  3. Evaluation of Watson-like integrals for a hyper bcc antiferromagnetic lattice

    NASA Astrophysics Data System (ADS)

    Radošević, S. M.; Pantić, M. R.; Kapor, D. V.; Pavkov-Hrvojević, M. V.; Škrinjar, M. G.

    2010-04-01

    Watson-like integrals for a d-dimensional bcc antiferromagnetic lattice, I_d (\\eta ) =\\frac{1}{\\pi ^d} \\prod _{i = 1}^d \\int _0^{\\pi } \\mathrm{d}x_i \\; \\frac{ \\eta }{\\sqrt{\\eta ^2 - \\prod \

  4. LatticeLibrary and BccFccRaycaster: Software for processing and viewing 3D data on optimal sampling lattices

    NASA Astrophysics Data System (ADS)

    Linnér, Elisabeth Schold; Morén, Max; Smed, Karl-Oskar; Nysjö, Johan; Strand, Robin

    In this paper, we present LatticeLibrary, a C++ library for general processing of 2D and 3D images sampled on arbitrary lattices. The current implementation supports the Cartesian Cubic (CC), Body-Centered Cubic (BCC) and Face-Centered Cubic (FCC) lattices, and is designed to facilitate addition of other sampling lattices. We also introduce BccFccRaycaster, a plugin for the existing volume renderer Voreen, making it possible to view CC, BCC and FCC data, using different interpolation methods, with the same application. The plugin supports nearest neighbor and trilinear interpolation at interactive frame rates. These tools will enable further studies of the possible advantages of non-Cartesian lattices in a wide range of research areas.

  5. Multiscale calculations of dislocation bias in fcc Ni and bcc Fe model lattices

    NASA Astrophysics Data System (ADS)

    Chang, Z.; Olsson, P.; Terentyev, D.; Sandberg, N.

    2015-06-01

    In order to gain more insights on void swelling, dislocation bias is studied in this work. Molecular static simulations with empirical potentials are applied to map the dislocation-point defects interaction energies in both fcc Ni and bcc Fe model lattices. The interaction energies are then used to numerically solve the diffusion equation and obtain the dislocation bias. The importance of the dislocation core region is studied under a the temperature range 573-1173 K and the dislocation densities 1012-1015m-2 . The results show that larger dislocation bias is found in the fcc Ni than in the bcc Fe under different temperatures and dislocation densities. The anisotropic interaction energy model is used to obtain the dislocation bias and the result is compared to that obtained using the atomistic interaction model, the contribution from the core structure is then shown in both the Ni lattice and the Fe lattice.

  6. Ab initio calculations of the lattice parameter and elastic stiffness coefficients of bcc Fe with solutes

    SciTech Connect

    Fellinger, Michael R.; Hector, Louis G.; Trinkle, Dallas R.

    2016-10-28

    Here, we present an efficient methodology for computing solute-induced changes in lattice parameters and elastic stiffness coefficients Cij of single crystals using density functional theory. We also introduce a solute strain misfit tensor that quantifies how solutes change lattice parameters due to the stress they induce in the host crystal. Solutes modify the elastic stiffness coefficients through volumetric changes and by altering chemical bonds. We compute each of these contributions to the elastic stiffness coefficients separately, and verify that their sum agrees with changes in the elastic stiffness coefficients computed directly using fully optimized supercells containing solutes. Computing the two elastic stiffness contributions separately is more computationally efficient and provides more information on solute effects than the direct calculations. We compute the solute dependence of polycrystalline averaged shear and Young's moduli from the solute dependence of the single-crystal Cij. We then apply this methodology to substitutional Al, B, Cu, Mn, Si solutes and octahedral interstitial C and N solutes in bcc Fe. Comparison with experimental data indicates that our approach accurately predicts solute-induced changes in the lattice parameter and elastic coefficients. The computed data can be used to quantify solute-induced changes in mechanical properties such as strength and ductility, and can be incorporated into mesoscale models to improve their predictive capabilities.

  7. Ab initio calculations of the lattice parameter and elastic stiffness coefficients of bcc Fe with solutes

    DOE PAGES

    Fellinger, Michael R.; Hector, Louis G.; Trinkle, Dallas R.

    2016-10-28

    Here, we present an efficient methodology for computing solute-induced changes in lattice parameters and elastic stiffness coefficients Cij of single crystals using density functional theory. We also introduce a solute strain misfit tensor that quantifies how solutes change lattice parameters due to the stress they induce in the host crystal. Solutes modify the elastic stiffness coefficients through volumetric changes and by altering chemical bonds. We compute each of these contributions to the elastic stiffness coefficients separately, and verify that their sum agrees with changes in the elastic stiffness coefficients computed directly using fully optimized supercells containing solutes. Computing the twomore » elastic stiffness contributions separately is more computationally efficient and provides more information on solute effects than the direct calculations. We compute the solute dependence of polycrystalline averaged shear and Young's moduli from the solute dependence of the single-crystal Cij. We then apply this methodology to substitutional Al, B, Cu, Mn, Si solutes and octahedral interstitial C and N solutes in bcc Fe. Comparison with experimental data indicates that our approach accurately predicts solute-induced changes in the lattice parameter and elastic coefficients. The computed data can be used to quantify solute-induced changes in mechanical properties such as strength and ductility, and can be incorporated into mesoscale models to improve their predictive capabilities.« less

  8. Superstructures formed by orientationally ordered tetrahedra in the bcc lattice: new diffusionless order-disorder transition in solids.

    PubMed

    Tamura, Ryuji

    2015-03-04

    We investigated and clarified the superstructures formed by tetrahedra in the bcc lattice within the framework of second-order transitions. Compliance with both the Landau and Lifshitz conditions was investigated for all possible superstructures and, based on this, we demonstrate that bcc crystals that contain tetrahedra at an inversion center can exhibit a variety of second-order transitions, which are regarded as a new type of diffusionless order-disorder transition with antiferroic orientational orders. Finally, we show that the transition gives rise to a new glassy state. Breaking of the local inversion symmetry may lead to a new orientational glass, which is reminiscent of spin glasses in magnetism.

  9. Data files for ab initio calculations of the lattice parameter and elastic stiffness coefficients of bcc Fe with solutes

    DOE PAGES

    Fellinger, Michael R.; Hector, Jr., Louis G.; Trinkle, Dallas R.

    2016-11-29

    Here, we present computed datasets on changes in the lattice parameter and elastic stiffness coefficients of BCC Fe due to substitutional Al, B, Cu, Mn, and Si solutes, and octahedral interstitial C and N solutes. The data is calculated using the methodology based on density functional theory (DFT). All the DFT calculations were performed using the Vienna Ab initio Simulations Package (VASP). The data is stored in the NIST dSpace repository.

  10. Data files for ab initio calculations of the lattice parameter and elastic stiffness coefficients of bcc Fe with solutes.

    PubMed

    Fellinger, Michael R; Hector, Louis G; Trinkle, Dallas R

    2017-02-01

    We present computed datasets on changes in the lattice parameter and elastic stiffness coefficients of bcc Fe due to substitutional Al, B, Cu, Mn, and Si solutes, and octahedral interstitial C and N solutes. The data is calculated using the methodology based on density functional theory (DFT) presented in Ref. (M.R. Fellinger, L.G. Hector Jr., D.R. Trinkle, 2017) [1]. All the DFT calculations were performed using the Vienna Ab initio Simulations Package (VASP) (G. Kresse, J. Furthmüller, 1996) [2]. The data is stored in the NIST dSpace repository (http://hdl.handle.net/11256/671).

  11. Thermal equation of state of bcc and hcp Fe: linear response quasi-harmonic lattice dynamics

    NASA Astrophysics Data System (ADS)

    Sha, Xianwei

    2005-03-01

    Linear-response Linear-Muffin-Tin-Orbital calculations have been performed to understand and predict the thermal equation of state, elasticity, and phase stability of bcc and hcp Fe, for input into dynamic shock finite-element simulations. The phonon dispersion and phonon density of states have been calculated at different volumes and various c/a axial ratios for hcp structures, which show good agreements with available experimental data. The thermal conductivity and electrical resistivity at different pressure have been calculated. Free energy functional for bcc and hcp Fe has been derived, and has been further applied to establish the thermal equation of state, bulk modulus K0, dK0/dT, and thermal expansion coefficients under high pressures and temperatures. A detailed comparison with experiment has been made. For hcp Fe, the variations of c/a ratios with temperatures and pressures have been predicted. The influence of anharmonic effects has been examined using tight-binding calculations. This work was supported by US Department of Energy ASCI/ASAP subcontract to Caltech , Grant DOE W-7405-ENG-48 (to REC).

  12. Formation energy of planar superstructure defects in ordered FCC and BCC alloy lattices

    SciTech Connect

    Starostenkov, M.D.; Dmitriev, S.V.; Frolov, A.M.; Volkova, S.M.

    1995-05-01

    A solid sphere model is used to develop a general procedure for calculating the energy of planar superstructure defects of any type in ordered alloys with arbitrary unit cells. As an example we obtain an analytic expression for the energy required to form c-domain boundaries for L1{sub 0} superstructures in a face-centered cubic lattice.

  13. Helium-vacancy cluster in a single bcc iron crystal lattice.

    PubMed

    Gao, N; Victoria, M; Chen, J; Van Swygenhoven, H

    2011-06-22

    The properties of the cluster He(n)V, an iron vacancy with an increasing number of He atoms, is studied with molecular statics and molecular dynamics simulations. A study of the binding energy of the self-interstitial atom (SIA) and the He, shows that from n = 6 the He(n)V cluster is stable and cannot shrink anymore, and from n = 16 the He(n)V(2) cluster is stabilized by the emission of SIA in the form of a (110) dumbbell. Calculation of the pressure exercised by the He(n)V cluster shows local peak normal stress and shear stress values up to 9 GPa and 4 GPa, respectively. The local configurations of He(n)V suggest that with increasing helium content, a high symmetry configuration close to a face centered cubic lattice is formed.

  14. Thermoreversible, epitaxial fcc<-->bcc transitions in block copolymer solutions.

    PubMed

    Bang, Joona; Lodge, Timothy P; Wang, Xiaohui; Brinker, Kristin L; Burghardt, Wesley R

    2002-11-18

    Uncharged block copolymer micelles display thermoreversible transitions between close-packed and bcc lattices for a range of concentration, solvent selectivity, and copolymer composition. Using small-angle x-ray scattering on shear-oriented solutions, highly aligned fcc crystals are seen to transform epitaxially to bcc crystals, with fcc/bcc orientational relationships that are well established in martensitic transformations in metals. The transition is driven by decreasing solvent selectivity with increasing temperature, inducing solvent penetration of the micellar core.

  15. Nitrogen addition to bcc-Fe by attrition milling

    SciTech Connect

    Rawers, J.; Krabbe, R.; Cook, D.

    1999-01-01

    To enhance the nitrogen solubility in bcc-Fe, iron powder and blends of iron and iron nitride powders were attrition-milled in nitrogen gas. X-ray diffraction and Moessbauer spectroscopy were used to characterize the milled microstructure and to characterize the nitrogen distribution. After processing for 150 hours, the infused nitrogen was determined to be interstitial (locally deforming the bcc-Fe lattice to a bct-Fe lattice) and associated with the outer layer of the bcc-Fe nanograin. Nitrogen stabilized the milled grain structure but at elevated temperatures rapidly came to thermodynamical equilibrium, transforming from bcc-Fe(N) to bcc-Fe and Fe{sub 4}N.

  16. Metastable bcc phase formation in the Nb-Cr system

    SciTech Connect

    Thoma, D.J.; Schwarz, R.B.; Perepezko, J.H.; Plantz, D.H.

    1993-08-01

    Extended metastable bcc solid solutions of Nb-Xat.%Cr (X = 35, 50, 57, 77, 82, and 94) were synthesized by two-anvil splat-quenching. In addition, bcc (Nb-67at.%Cr) was prepared by mechanically alloying mixtures of niobium and chromium powders. The lattice parameters were measured by X-ray diffraction and the Young`s moduli were measured by low-load microindentation. The composition dependence of the lattice parameters and elastic moduli show a positive deviation with respect to a rule of mixtures. During continuous heating at 15C/min., the metastable precursor bcc phases decomposed at temperatures above 750C to uniformly refined microstructures.

  17. Electronic structure and magnetism of strained bcc phases across the fcc to bcc transition in ultrathin Fe films

    NASA Astrophysics Data System (ADS)

    Calloni, Alberto; Berti, Giulia; Bussetti, Gianlorenzo; Fratesi, Guido; Finazzi, Marco; Ciccacci, Franco; Duò, Lamberto

    2016-11-01

    We investigated the electronic structure of the bcc metastable phases involved in the fcc to bcc transition of Fe. Ultrathin Fe films were grown on a 2-monolayer (ML) Ni/W(110) substrate, where a fcc lattice is stabilized at low Fe coverages and the transition proceeds through the formation of bcc nuclei showing a specific "Kurdjumov-Sachs" orientation with the substrate. A comprehensive description of the electronic structure evolution is achieved by combining spin-resolved UV photoemission spectroscopy and ab initio calculations. According to our results, an exchange-split band structure is observed starting from 2 ML of Fe, concomitant with the formation of ferromagnetic bcc nuclei. Continuous modifications are observed in the spin-resolved photoemission spectra for increasing Fe coverage, especially for what concerns the minority states, possibly indicative of the progressive relaxation of the strained bcc phase starting from the bcc/fcc interface.

  18. Perturbation theory of solid-liquid interfacial free energies of bcc metals.

    PubMed

    Warshavsky, Vadim B; Song, Xueyu

    2012-09-01

    A perturbation theory is used to calculate bcc solid-liquid interfacial free energies of metallic systems with embedded-atom model potentials. As a reference system for bcc crystals we used a single-occupancy cell, hard-sphere bcc system. Good agreements between the perturbation theory results and the corresponding results from simulations are found. The strategy to extract hard-sphere bcc solid-liquid interfacial free energies may have broader applications for other crystal lattices.

  19. Electron diffraction study of the plastic relaxation of MgO epitaxially grown on BCC FeV(001) alloys by varying the lattice mismatch

    NASA Astrophysics Data System (ADS)

    Bonell, Frédéric; Andrieu, Stéphane

    2017-02-01

    The epitaxial growth of MgO on Fe1 - xVx buffer layers with adjustable lattice parameter is studied by electron diffraction (RHEED) in real time. At the onset of plastic relaxation in the MgO layer, a clear splitting of the diffraction rods is observed in <110> directions, as well as an increase in their length in the <100> directions. Splitting along <100> is also made visible through image background subtraction. These features originate from the surface strain above misfit dislocations, as previously proposed to account for satellite spots in LEED measurements. This explanation is supported by simulations of the diffraction patterns using kinematic diffraction theory. Observation of the diffraction rods splitting is shown to be a powerful way to check the presence of dislocations in MgO tunnel barriers and to accurately determine the critical thickness of plastic relaxation.

  20. Plastic deformation nucleation in BCC crystallites under nanoindentation

    NASA Astrophysics Data System (ADS)

    Kryzhevich, Dmitrij S.; Korchuganov, Aleksandr V.; Zolnikov, Konstantin P.; Psakhie, Sergey G.

    2015-10-01

    Molecular dynamics investigation of metal crystallite with bcc lattice under nanoindentation was carried out. Potentials of interatomic interactions were calculated on the base of the approximation of the Finnis-Sinclair method. For clarity and simpler indentation data interpretation, an extended cylindrical indenter was used in the investigation. The features of the bcc iron structural response at nanoindentation of surfaces with different crystallographic orientations were revealed. Generation of structural defects in the contact zone always resulted in the decrease in the rate of growth of the reaction force.

  1. Structural transformation between bcc and fcc in Fe-Ni nanoparticle during heating process

    NASA Astrophysics Data System (ADS)

    Li, Guojian; Sui, Xudong; Qin, Xuesi; Ma, Yonghui; Wang, Kai; Wang, Qiang

    2016-10-01

    Phase transformation between bcc and fcc in Fe-Ni nanoparticle has been studied by using molecular dynamics simulation with an embedded atom method. The transformation has been explored by designing the nanoparticles with different initial structures, sizes and elemental distributions at various Ni concentrations. The results show that the structural transformation is strongly related to the Ni content and elemental distribution. Initial fcc structure transforms to bcc for a lower Ni content and bcc transforms to fcc for a higher Ni content. The transformation is accompanied with a sharp reduction in energy even for the nanoparticle with a large size. Furthermore, lattice distortion first occurs before the transformation. The transformation from fcc to bcc is occurred by elongating fcc (100) to bcc (110) and that from bcc to fcc by compressing bcc (110) to fcc (100). The reason is that the nanoparticle has a low energy state for bcc structure with a lower Ni content and also for fcc structure with a higher Ni content. The coexistence of bcc and fcc phases appears with the change of elemental distribution.

  2. Effects of electrolytic hydrogen in bcc metals

    SciTech Connect

    Armacanqui Tipacti, M.E.

    1986-01-01

    Lattice defects produced in polycrystalline bcc Ti-30Mo, tantalum, and niobium by hydrogen concentration gradients established by cathodic charging were studied. Anomalous hydrogen diffusion in these metals is revealed by x-ray diffraction and hydrogen permeation experiments. There are four main effects observed during cathodic charging: (a) much slower kinetics of the lattice parameter change compared with diffusion-controlled kinetics, (b) nonuniform lattice parameter, depending on grain orientation, (c) change in angle of diffraction, suggesting grain rotation, and (d) appearance of diffraction subpeaks. Hydrogen concentration profiles on charged samples determined by hot vacuum extraction indicate the presence of peaks of high hydrogen content throughout the sample thickness suggesting hydrogen trapping at various locations within the lattice. The traps were identified as dislocations by TEM. Hydrogen permeation experiments carried out to study the observed anomalies indicate that defects are not generated at current densities below 250 ..mu..A/cm/sup 2/ in a solution of 0.1 N NaOH. The calculated magnitude of the stresses at the entry surface sufficient to cause generation of dislocations is found to be a very small fraction of the materials' yield stress. The effects of cathodic charging on thin films of iron, titanium, and tantalum were also studied.

  3. Inert gas bubbles in bcc Fe

    NASA Astrophysics Data System (ADS)

    Gai, Xiao; Smith, Roger; Kenny, S. D.

    2016-03-01

    The properties of inert gas bubbles in bcc Fe is examined using a combination of static energy minimisation, molecular dynamics and barrier searching methods with empirical potentials. Static energy minimisation techniques indicate that for small Ar and Xe bubbles, the preferred gas to vacancy ratio at 0 K is about 1:1 for Ar and varies between 0.5:1 and 0.9:1 for Xe. In contrast to interstitial He atoms and small He interstitial clusters, which are highly mobile in the lattice, Ar and Xe atoms prefer to occupy substitutional sites and any interstitials present in the lattice soon displace Fe atoms and become substitutional. If a pre-existing bubble is present then there is a capture radius around a bubble which extends up to the 6th neighbour position. Collision cascades can also enlarge an existing bubble by the capture of vacancies. Ar and Xe can diffuse through the lattice through vacancy driven mechanisms but with relatively high energy barriers of 1.8 and 2.0 eV respectively. This indicates that Ar and Xe bubbles are much harder to form than bubbles of He and that such gases produced in a nuclear reaction would more likely be dispersed at substitutional sites without the help of increased temperature or radiation-driven mechanisms.

  4. On Weak-BCC-Algebras

    PubMed Central

    Thomys, Janus; Zhang, Xiaohong

    2013-01-01

    We describe weak-BCC-algebras (also called BZ-algebras) in which the condition (x∗y)∗z = (x∗z)∗y is satisfied only in the case when elements x, y belong to the same branch. We also characterize ideals, nilradicals, and nilpotent elements of such algebras. PMID:24311983

  5. Structural and bonding properties of bcc-based B80 solids

    NASA Astrophysics Data System (ADS)

    Liu, Amy Y.; Zope, Rajendra R.; Pederson, Mark R.

    2008-10-01

    A density-functional-theory investigation of bcc B80 and K6B80 is presented. The calculations show that B80 cages pack closely on a bcc lattice, with bond formation between atoms on both nearest-neighbor and next-nearest-neighbor molecules. While the binding energy of 9.9 eV/molecule is only about half that calculated for fcc B80 , potassium intercalation of bcc B80 adds an ionic component to the binding to further stabilize the lattice. Both B80 and K6B80 are calculated to be metallic. The electronic structure is analyzed in terms of ionic and covalent effects, and the bonding is discussed in terms of a balance between two- and three-center bonding.

  6. Direct Observation of Entropic Stabilization of bcc Crystals Near Melting

    NASA Astrophysics Data System (ADS)

    Sprakel, Joris; Zaccone, Alessio; Spaepen, Frans; Schall, Peter; Weitz, David A.

    2017-02-01

    Crystals with low latent heat are predicted to melt from an entropically stabilized body-centered cubic symmetry. At this weakly first-order transition, strongly correlated fluctuations are expected to emerge, which could change the nature of the transition. Here we show how large fluctuations stabilize bcc crystals formed from charged colloids, giving rise to strongly power-law correlated heterogeneous dynamics. Moreover, we find that significant nonaffine particle displacements lead to a vanishing of the nonaffine shear modulus at the transition. We interpret these observations by reformulating the Born-Huang theory to account for nonaffinity, illustrating a scenario of ordered solids reaching a state where classical lattice dynamics fail.

  7. Lattice models of ionic systems

    NASA Astrophysics Data System (ADS)

    Kobelev, Vladimir; Kolomeisky, Anatoly B.; Fisher, Michael E.

    2002-05-01

    A theoretical analysis of Coulomb systems on lattices in general dimensions is presented. The thermodynamics is developed using Debye-Hückel theory with ion-pairing and dipole-ion solvation, specific calculations being performed for three-dimensional lattices. As for continuum electrolytes, low-density results for simple cubic (sc), body-centered cubic (bcc), and face-centered cubic (fcc) lattices indicate the existence of gas-liquid phase separation. The predicted critical densities have values comparable to those of continuum ionic systems, while the critical temperatures are 60%-70% higher. However, when the possibility of sublattice ordering as well as Debye screening is taken into account systematically, order-disorder transitions and a tricritical point are found on sc and bcc lattices, and gas-liquid coexistence is suppressed. Our results agree with recent Monte Carlo simulations of lattice electrolytes.

  8. The Role of Ligand Packing Frustration in Body-Centered Cubic (bcc) Superlattices of Colloidal Nanocrystals.

    PubMed

    Goodfellow, Brian W; Yu, Yixuan; Bosoy, Christian A; Smilgies, Detlef-M; Korgel, Brian A

    2015-07-02

    This paper addresses the assembly of body centered-cubic (bcc) superlattices of organic ligand-coated nanocrystals. First, examples of bcc superlattices of dodecanethiol-capped Au nanocrystals and oleic acid-capped PbS and PbSe nanocrystals are presented and examined by transmission electron microscopy (TEM) and grazing incidence small-angle X-ray scattering (GISAXS). These superlattices tend to orient on their densest (110) superlattice planes and exhibit a significant amount of {112} twinning. The same nanocrystals deposit as monolayers with hexagonal packing, and these thin films can coexist with thicker bcc superlattice layers, even though there is no hexagonal plane in a bcc lattice. Both the preference of bcc in bulk films over the denser face-centered cubic (fcc) superlattice structure and the transition to hexagonal monolayers can be rationalized in terms of packing frustration of the ligands. A model is presented to calculate the difference in entropy associated with capping ligand packing frustration in bcc and fcc superlattices.

  9. Vismodegib in the treatment of advanced BCC.

    PubMed

    O'Kane, G M; Lyons, T; McDonald, I; Mulligan, N; Moloney, F J; Murray, D; Kelly, C M

    2014-01-01

    Basal-cell carcinoma (BCC) is the most commonly diagnosed malignancy, comprising over 80 per thousand of non-melanoma skin cancers. Surgical excision is adequate treatment for most BCC's. Options are however limited for the minority of patients presenting with locally advanced inoperable or metastatic BCC. The Hedgehog signalling pathway is a critical driver in the pathogenesis of both sporadic and hereditary BCC. On 31st January 2012, based on a phase II clinical trial the US Food and Drug Administration approved Vismodegib (Erivedge, Roche) a first-in-class, small-molecule oral Hedgehog-inhibitor for the treatment of locally advanced inoperable and metastatic BCC. We present our experience treating the first Irish patient with this agent.

  10. bct-Fe formation during mechanical processing of bcc-Fe powder

    SciTech Connect

    Rawers, J.; Govier, D.; Cook, D.

    1995-05-01

    In this study, a novel technique for producing nanocrystalline bct-Fe from bcc-Fe is reported. bct-Fe, often referred to as martensite, is normally produced either by a thermal transformation or through a shear stress mechanism from retained fcc-Fe. The authors produced nanocrystalline bct-iron-carbon/nitrogen phase by processing bcc-Fe powder in high-energy ball mill. bct-Fe formed after a significant amount of mechanical processing (cold working) in the presence of interstitial atoms of either carbon or nitrogen, bct-(Fe-C/N). The authors hesitate to call the bct-Fe phase observed in this study martensite because martensite is normally though to form from fcc-Fe and from planar lattice shifts resulting in a relationship in the martensite lattice orientation and the bcc/fcc lattice in which it is embedded. No such relationship between the bct formed in this study and the bcc matrix was observed. The capability of producing nanocrystalline bct powder offers the possibility of producing near-net-shape, high strength products.

  11. Lattice Green's Function for the Body-Centered Cubic Lattice

    NASA Astrophysics Data System (ADS)

    Sakaji, A. J.

    2002-05-01

    An expression for the Green's function (GF) of Body-Centered Cubic (BCC) lat tice is evaluated analytically and numerically for a single impurity lattice. Th e density of states (DOS), phase shift, and scattering cross section are express ed in terms of complete elliptic integrals of the first kind.

  12. Preparation and characterization of Co single-crystal thin films with hcp, fcc and bcc structures

    SciTech Connect

    Ohtake, Mitsuru; Yabuhara, Osamu; Higuchi, Jumpei; Futamoto, Masaaki

    2011-04-01

    Co crystals with three different structures are realized in the form of single-crystal thin films hetero-epitaxially grown on single-crystal substrates by ultrahigh vacuum rf magnetron sputtering. hcp-, fcc-, and bcc-Co single-crystal films are formed on Cr(211){sub bcc}, Cu(100){sub fcc}, and GaAs(110){sub B3}, respectively. The film growth process is studied by RHEED, and the lattice constants of these Co films are determined by x-ray diffraction. The magnetization properties of these thin films are reflecting the magnetocrystalline anisotropies of Co crystals with the easy magnetization axes along hcp<0001>, fcc<111>, and bcc<100> directions.

  13. Resonance Raman of BCC and normal skin

    NASA Astrophysics Data System (ADS)

    Liu, Cheng-hui; Sriramoju, Vidyasagar; Boydston-White, Susie; Wu, Binlin; Zhang, Chunyuan; Pei, Zhe; Sordillo, Laura; Beckman, Hugh; Alfano, Robert R.

    2017-02-01

    The Resonance Raman (RR) spectra of basal cell carcinoma (BCC) and normal human skin tissues were analyzed using 532nm laser excitation. RR spectral differences in vibrational fingerprints revealed skin normal and cancerous states tissues. The standard diagnosis criterion for BCC tissues are created by native RR biomarkers and its changes at peak intensity. The diagnostic algorithms for the classification of BCC and normal were generated based on SVM classifier and PCA statistical method. These statistical methods were used to analyze the RR spectral data collected from skin tissues, yielding a diagnostic sensitivity of 98.7% and specificity of 79% compared with pathological reports.

  14. The BCC/B2 morphologies in AlxNiCoFeCr high-entropy alloys

    DOE PAGES

    Ma, Yue; Jiang, Beibei; Li, Chunling; ...

    2017-02-15

    Here, the present work primarily investigates the morphological evolution of the body-centered-cubic (BCC)/B2 phases in AlxNiCoFeCr high-entropy alloys (HEAs) with increasing Al content. It is found that the BCC/B2 coherent morphology is closely related to the lattice misfit between these two phases, which is sensitive to Al. There are two types of microscopic BCC/B2 morphologies in this HEA series: one is the weave-like morphology induced by the spinodal decomposition, and the other is the microstructure of a spherical disordered BCC precipitation on the ordered B2 matrix that appears in HEAs with a much higher Al content. The mechanical properties, includingmore » the compressive yielding strength and microhardness of the AlxNiCoFeCr HEAs, are also discussed in light of the concept of the valence electron concentration (VEC).« less

  15. Pressure dependence of self- and solute diffusion in bcc zirconium

    SciTech Connect

    Knorr, P.; Jun, J.; Lojkowski, W.; Herzig, C.

    1998-01-01

    The pressure effect of self-diffusion in the high-temperature bcc phase of zirconium has been studied with high accuracy using the radiotracer technique. Activation volumes of 0.184{plus_minus}0.016{Omega} ({Omega}: atomic volume) at 1423 K and 0.213{plus_minus}0.014{Omega} at 1273 K were obtained. Simultaneously, the activation volumes of the {sup 95}Nb solute diffusion were measured which amount to 0.161{plus_minus}0.014{Omega} at 1423 K and 0.193{plus_minus}0.023{Omega} at 1273 K. The small activation volumes indicate a strong relaxation of the vacancy. The large relaxation volume reflects the inherent weakness of the bcc lattice towards a shear in {l_angle}111{r_angle} direction. The results provide an explanation for the absence of positron trapping in group-IV transition metals. {copyright} {ital 1998} {ital The American Physical Society}

  16. Microstructural studies of hydrogen and deuterium in bcc refractory metals

    SciTech Connect

    Moss, S.C.

    1980-01-01

    Over the past four years this research has been principally concerned with uncovering the microstructural atomic arrangements in alloys of hydrogen and deuterium with bcc refractory metals. Because these are interstitial phases in which the host metal lattice is substantially deformed by the incorporation of the H(D) atoms, there are pronounced x-ray scattering effects. X-ray diffraction has, therefore, been the main structural tool. A main objective of the project has been to determine the degree to which phase relations and solid solution properties in metal-hydride alloys depend upon the hydrogen-hydrogen interaction via the displacement field of the metal atoms. This has often included the elucidation of subtle thermodynamic properties which are revealed in structural studies.

  17. Combined molecular dynamics-spin dynamics simulations of bcc iron

    SciTech Connect

    Perera, Meewanage Dilina N; Yin, Junqi; Landau, David P; Nicholson, Don M; Stocks, George Malcolm; Eisenbach, Markus; Brown, Greg

    2014-01-01

    Using a classical model that treats translational and spin degrees of freedom on an equal footing, we study phonon-magnon interactions in BCC iron with combined molecular and spin dynamics methods. The atomic interactions are modeled via an empirical many-body potential while spin dependent interactions are established through a Hamiltonian of the Heisenberg form with a distance dependent magnetic exchange interaction obtained from first principles electronic structure calculations. The temporal evolution of translational and spin degrees of freedom was determined by numerically solving the coupled equations of motion, using an algorithm based on the second order Suzuki-Trotter decomposition of the exponential operators. By calculating Fourier transforms of space- and time-displaced correlation functions, we demonstrate that the the presence of lattice vibrations leads to noticeable softening and damping of spin wave modes. As a result of the interplay between lattice and spin subsystems, we also observe additional longitudinal spin wave excitations, with frequencies which coincide with that of the longitudinal lattice vibrations.

  18. Multiphoton imaging of basal cell carcinoma (BCC)

    NASA Astrophysics Data System (ADS)

    Cicchi, R.; Carli, P.; Massi, D.; Sestini, S.; Stambouli, D.; Pavone, F. S.

    2006-02-01

    We used two-photon microscopy towards the imaging of cutaneous basal cell carcinoma (BCC). Our aim was to evaluate the morphology of BCC using two-photon fluorescence excitation and to establish a correlation with histopathology. We built a custom two-photon microscope and we measured the system capabilities. The system allowed to perform a preliminary measurement on a fresh human skin tissue sample. A human skin tissue sample of BCC excised during dermatological surgery procedures were used. The clinical diagnosis of BCC was confirmed by subsequent histopathological examination. The sample was imaged using endogenous tissue fluorescence within 2-3 hours from the excision with a two photon laser scanning fluorescence microscope. The acquired images allowed an obvious discrimination of the neoplastic areas toward normal tissue, based on morphological differences and aberrations of the intensity of the fluorescence signal. Our results showed that BCC tissue has a more homogeneous structure in comparison to normal tissue as well as a higher fluorescent response. The images obtained by two photon microscopy were further compared to the images acquired by an optical microscope after the conventional histopathological examination on one part of the respective sample. Our suggested method may represent a new diagnostic tool that improves the diagnostic accuracy of clinical examination alone, enabling the accurate discrimination of basal cell carcinoma from normal tissue.

  19. Effect of an intermediate bcc phase on the evolution of superfluid inclusions in an hcp 3He-4He matrix

    NASA Astrophysics Data System (ADS)

    Birchenko, A. P.; Mihin, N. P.; Neoneta, A. S.; Rudavskii, E. Ya.; Fysun, Ya. Yu.

    2016-09-01

    Pulsed NMR is used to study the evolution of liquid inclusions formed in an hcp matrix during rapid cooling of a 3He-4He solution containing 1.05% 3He. The diffusion coefficient of 3He in the liquid inclusions as they evolve is measured by a spin echo technique with two probe pulses. The measurements were made at 1.67 K, which corresponds to the region of the bcc phase in the phase diagram, and at 1.38 K, where the bcc phase is absent. It is found that during the evolution in both cases, the liquid inclusions are smaller than the diffusion length and diffusion is restricted. The measured coefficient of restricted diffusion made it possible to determine the characteristic size of the inclusions. In the first case, during the evolution of the liquid inclusions an intermediate bcc phase in the form of dendrites develops and separates the liquid inclusions into a mass of fine droplets. Because of the rapid growth of the bcc phase, the size of the droplets decreases rapidly and the process ends with the disappearance of the bcc phase and the formation of an amorphous state. The results derived from the measured diffusion coefficient correlate with the behavior of the spin-lattice relaxation time in this kind of system. In the second case, at a lower temperature, the bcc phase does not develop and the evolution of the liquid inclusions is accompanied by a very slow reduction in their size until their complete solidification.

  20. Arsenic poisoning of magnetism in bcc cobalt

    NASA Astrophysics Data System (ADS)

    Singh, David J.

    1992-04-01

    Highly converged local spin-density approximation calculations are used to determine the effectiveness of As as a poisoning agent for the magnetism of bcc Co films grown on GaAs. To do this, supercell calculations of the magnetization were performed using an extension of the general potential linearized augmented plane-wave method for Co7As, Co15As, and Co31As. The effect of the nearest-neighbor relaxation around As impurities, calculated using total energy techniques, was included. It is found that substitutional As is moderately effective as a poisoning agent, each As atom contributes a moment of -3.8μB, and this may be important in explaining the discrepancy of 0.2-0.3μB between the calculated magnetization of bcc Co and the measured magnetization of bcc Co films on GaAs.

  1. Temperature dependent magnon-phonon coupling in bcc Fe from theory and experiment.

    PubMed

    Körmann, F; Grabowski, B; Dutta, B; Hickel, T; Mauger, L; Fultz, B; Neugebauer, J

    2014-10-17

    An ab initio based framework for quantitatively assessing the phonon contribution due to magnon-phonon interactions and lattice expansion is developed. The theoretical results for bcc Fe are in very good agreement with high-quality phonon frequency measurements. For some phonon branches, the magnon-phonon interaction is an order of magnitude larger than the phonon shift due to lattice expansion, demonstrating the strong impact of magnetic short-range order even significantly above the Curie temperature. The framework closes the previous simulation gap between the ferro- and paramagnetic limits.

  2. Cascade morphology transition in bcc metals.

    PubMed

    Setyawan, Wahyu; Selby, Aaron P; Juslin, Niklas; Stoller, Roger E; Wirth, Brian D; Kurtz, Richard J

    2015-06-10

    Energetic atom collisions in solids induce shockwaves with complex morphologies. In this paper, we establish the existence of a morphological transition in such cascades. The order parameter of the morphology is defined as the exponent, b, in the defect production curve as a function of cascade energy (N(F) ~ E(MD)(b)). Response of different bcc metals can be compared in a consistent energy domain when the energy is normalized by the transition energy, μ, between the high- and the low-energy regime. Using Cr, Fe, Mo and W data, an empirical formula of μ as a function of displacement threshold energy, E(d), is presented for bcc metals.

  3. Heats of formation of bcc binary alloys

    NASA Technical Reports Server (NTRS)

    Bozzolo, Guillermo; Ferrante, John

    1992-01-01

    The method of Bozzolo, Ferrante and Smith is applied for the calculation of alloy energies for bcc elements. The heat of formation of several alloys is computed with the help of the Connolly-Williams method within the tetrahedron approximation. The dependence of the results on the choice of different sets of ordered structures is discussed.

  4. Heats of formation of bcc binary alloys

    NASA Technical Reports Server (NTRS)

    Bozzolo, Guillermo; Ferrante, John; Smith, John R.

    1991-01-01

    The method of Bozzolo, Ferrante and Smith is applied for the calculation of alloy energies for bcc elements. The heat of formation of several alloys is computed with the help of the Connolly-Williams method within the tetrahedron approximation. The dependence of the results on the choice of different sets of ordered structures is discussed.

  5. Systemic treatments for basal cell carcinoma (BCC): the advent of dermato-oncology in BCC.

    PubMed

    Ali, F R; Lear, J T

    2013-07-01

    Basal cell carcinoma (BCC) is the most common cancer in the U.K. and its incidence is increasing. Vismodegib, a hedgehog pathway inhibitor, has recently been licensed by the U.S. Food and Drug Administration for treatment of advanced BCC. Phase 2 trials have demonstrated efficacy in cases of locally advanced and metastatic BCC, as well as cases of hereditary basal cell naevus (Gorlin) syndrome. Side-effects are frequent and considerable and include myalgia, taste disturbance, alopecia, weight loss and fatigue. Further research is needed to investigate means of circumventing these side-effects, and longitudinal data are required to assess the long-term benefits of, and the nature of resistance to, this novel class of agents. Alternative hedgehog inhibitors are currently in clinical development. We review the current data pertaining to this novel treatment modality and discuss its likely future role in the management of BCC.

  6. Critical dynamics of the classical anisotropic BCC Heisenberg antiferromagnet.

    NASA Astrophysics Data System (ADS)

    Tsai, Shan-Ho; Bunker, Alex; Landau, D. P.

    2001-03-01

    Large-scale spin-dynamics simulations have been used to investigate the dynamic behavior of the classical Heisenberg antiferromagnet with single-site uniaxial anisotropy, in bcc lattices. Time evolutions of spin configurations were determined numerically from coupled equations of motion for individual spins using an algorithm implemented by Krech et al [1], which is based on fourth-order Suzuki-Trotter decompositions of exponential operators. The dynamic structure factor S(q,ω) was calculated from the space- and time-displaced spin-spin correlation function. Preliminary results for the transverse and the longitudinal components of S(q,ω) show that while the former is propagative, with a relatively short time scale, the latter is diffusive and its computation requires very long time integrations. Because of difficulties for experiments to probe the critical region, experimental data have not yet been able to distinguish between competing theories. While limited by finite lattice size and finite integration time, simulations offer the hope of shedding light on the differences between theories and experiment. [1] M. Krech, A. Bunker, D.P. Landau, Comput. Phys. Commun. 111, 1 (1998). Supported by NSF and SDSC

  7. Disordered bcc γ-phase to δ-phase transformation in Zr-rich U-Zr alloy

    NASA Astrophysics Data System (ADS)

    Basak, C. B.; Neogy, S.; Srivastava, D.; Dey, G. K.; Banerjee, S.

    2011-08-01

    The transformation mechanism of hexagonal delta phase from the disordered bcc gamma phase has not been reported before in the Zr-rich U-Zr alloy system. With the help of X-ray diffraction, transmission electron microscopy (TEM) and high-resolution TEM analyses it was shown that the gamma to delta conversion takes place by the lattice collapse mechanism of omega transformation. It was also ascertained that a higher aging temperature or time promotes the growth of all four variants of the delta phase within a parent gamma grain. In addition, ab initio electronic structure calculations showed that the bcc to hexagonal transformation, involving partial ordering of the parent bcc phase followed by (111) plane collapse, is energetically favorable.

  8. Anisotropic strain enhanced hydrogen solubility in bcc metals: the independence on the sign of strain.

    PubMed

    Zhou, Hong-Bo; Jin, Shuo; Zhang, Ying; Lu, Guang-Hong; Liu, Feng

    2012-09-28

    When an impurity is doped in a solid, it inevitably induces a local stress, tending to expand or contract the lattice. Consequently, strain can be applied to change the solubility of impurity in a solid. Generally, the solubility responds to strain "monotonically," increasing (decreasing) with the tensile (compressive) strain if the impurity induces a compressive stress or vice versa. Using first-principles calculations, however, we discovered that the H solubility can be enhanced by anisotropic strain in some bcc metals, almost independent of the sign of strain. This anomalous behavior is found to be caused by a continuous change of H location induced by anisotropic strain. Our finding suggests a cascading effect of H bubble formation in bcc metals: the H solution leads to H bubble formation that induces anisotropic strain that in turn enhances H solubility to further facilitate bubble growth.

  9. Cascade morphology transition in bcc metals

    DOE PAGES

    Setyawan, Wahyu; Selby, Aaron P.; Juslin, Niklas; ...

    2015-01-01

    Energetic atom collisions in solids induce shockwaves with complex morphologies. In this paper, we establish the existence of a morphological transition in such cascades. The order parameter of the morphology is defined as the exponent, b, in the defect production curve as a function of cascade energy (N-F similar to E-MD(b)). Response of different bcc metals can be compared in a consistent energy domain when the energy is normalized by the transition energy, mu, between the high-and the low-energy regime. Using Cr, Fe, Mo and W data, an empirical formula of mu as a function of displacement threshold energy, E-d,more » is presented for bcc metals.« less

  10. Cascade morphology transition in bcc metals

    SciTech Connect

    Setyawan, Wahyu; Selby, Aaron P.; Juslin, Niklas; Stoller, Roger E.; Wirth, Brian D.; Kurtz, Richard J.

    2015-01-01

    Energetic atom collisions in solids induce shockwaves with complex morphologies. In this paper, we establish the existence of a morphological transition in such cascades. The order parameter of the morphology is defined as the exponent, b, in the defect production curve as a function of cascade energy (N-F similar to E-MD(b)). Response of different bcc metals can be compared in a consistent energy domain when the energy is normalized by the transition energy, mu, between the high-and the low-energy regime. Using Cr, Fe, Mo and W data, an empirical formula of mu as a function of displacement threshold energy, E-d, is presented for bcc metals.

  11. Twinning in nanocrystalline fcc and bcc metals

    NASA Astrophysics Data System (ADS)

    Boyko, Vladimir S.; Kezerashvili, Roman Ya.

    2013-03-01

    The deformation twinning in nanocrystalline (nc) face-centered cubic (fcc) metals, body-centered cubic (bcc) metals, and in nc Si is analyzed. The phenomenological approach is used to make a bridge between microscopical mechanisms of twin nucleation and macroscopical characteristics of twinning with different crystal structures and to calculate the grain size range of the twinning propensity, the requisite external stress for twinning propagation in nc polycrystals, and the grain size at which the slip begins to prevail over the twinning. The developed approach allows to derive analytical expressions and estimate lower and and upper limits of grain sizes at which a twinning propensity is occurred. Results of calculations for the nc fcc metals Al, Cu, Ni, Pd, Au, nc bcc metals Ta, Fe, Mo, W, Nb, and nc diamond-cubic Si are compared with the experimental data, otherwise predictions are made.

  12. Cascade morphology transition in bcc metals

    SciTech Connect

    Setyawan, Wahyu; Selby, A.; Juslin, Niklas; Stoller, Roger E.; Wirth, Brian D.; Kurtz, Richard J.

    2015-06-10

    Energetic atom collisions in solids induce shockwaves with complex morphologies. In this paper, we establish the existence of a morphological transition in such cascades. The order parameter of the morphology is defined as the exponent, $b$, in the defect production curve as a function of cascade energy ($N_F$$ \\sim$$E_{MD}^b$). Response of different bcc metals can be compared in a consistent energy domain when the energy is normalized by the transition energy, $\\mu$, between the high- and the low-energy regime. Using Cr, Fe, Mo and W data, an empirical formula of $\\mu$ as a function of displacement threshold energy, $E_d$, is presented for bcc metals.

  13. Improving the ductility of nanocrystalline bcc metals.

    PubMed

    Farkas, Diana; Hyde, Brian

    2005-12-01

    Nanocrystalline metals present extremely high yield strengths but limited ductility. Using atomistic simulations, we show that the fracture resistance of bcc nanocrystalline materials increases with decreasing grain size below a critical grain size. There appears to be a "most brittle" grain size corresponding to the "strongest size" that has been postulated. Impurities that strengthen the grain boundaries can improve ductility significantly for the relatively larger grain sizes, whereas ductility decreases for the smallest grain sizes.

  14. Single-crystal elastic constants of ferromagnetic bcc Fe-based random alloys from first-principles theory

    NASA Astrophysics Data System (ADS)

    Zhang, Hualei; Punkkinen, M. P. J.; Johansson, Börje; Hertzman, Staffan; Vitos, Levente

    2010-05-01

    The elastic properties of ferromagnetic Fe1-xMx ( M=Al , Si, V, Cr, Mn, Co, Ni, and Rh; 0≤x≤0.1 ) random alloys in the body-centered-cubic (bcc) crystallographic phase have been studied using the all-electron exact muffin-tin orbitals method in combination with the coherent-potential approximation. The theoretical lattice parameters and the single-crystal elastic constants agree well with the available experimental data. The most significant alloying effects are found for Al, Si, and Ni additions. All elements enlarge the lattice parameter and decrease the C11 , C12 , and C' elastic constants and the bulk modulus of bcc Fe. At the same time, C44 is found to increase with Al, Si, V, Cr, or Mn and remain nearly constant with Co, Ni, and Rh. Accordingly, the elastic anisotropy of bcc Fe increases with all alloying elements considered here. The calculated alloying effects on the single-crystal elastic constants are shown to originate from volume effects in combination with the peculiar electronic structure of bcc Fe.

  15. GW study of the metal-insulator transition of bcc hydrogen

    SciTech Connect

    Li, Je-luen; Rignanese, G.-M.; Chang, Eric K.; Blase, Xavier; Louie, Steven G.

    2002-01-31

    We study the metal-insulator transition in a model Mott system, a bcc hydrogen solid, by performing ab initio quasiparticle band-structure calculations within the GW approximation for a wide range of lattice constants. The value of the critical electron density n-sub c is consistent with Mott's original criterion. For smaller lattice constants, our spin-polarized GW results agree well with previous variational quantum Monte Carlo calculations. For large lattice constants, the computed quasiparticle band gap corresponds to the difference between the ionization energy and electron affinity of an isolated hydrogen atom. Near the metal-insulator transition, we investigate the quality of the quasiparticle wave functions obtained from different starting approximations in density-functional theory. Finally, we gain new insight into the GW method and its applicability to spin-polarized systems, for which several refinements are introduced.

  16. Vibrational contribution to the thermodynamics of nanosized precipitates: vacancy-copper clusters in bcc-Fe.

    PubMed

    Talati, Mina; Posselt, Matthias; Bonny, Giovanni; Al-Motasem, Ahmed; Bergner, Frank

    2012-06-06

    The effects of lattice vibration on the thermodynamics of nanosized coherent clusters in bcc-Fe consisting of vacancies and/or copper are investigated within the harmonic approximation. A combination of on-lattice simulated annealing based on Metropolis Monte Carlo simulations and off-lattice relaxation by molecular dynamics is applied to obtain the most stable cluster configurations at T = 0 K. The most recent interatomic potential built within the framework of the embedded-atom method for the Fe-Cu system is used. The total free energy of pure bcc-Fe and fcc-Cu as well as the total formation free energy and the total binding free energy of the vacancy-copper clusters are determined for finite temperatures. Our results are compared with the available data from previous investigations performed using many-body interatomic potentials and first-principles methods. For further applications in rate theory and object kinetic Monte Carlo simulations, the vibrational effects evaluated in the present study are included in the previously developed analytical fitting formulae.

  17. Superelasticity in bcc Nanowires by a Reversible Twinning Mechanism

    DTIC Science & Technology

    2010-11-29

    in bcc nanowires, such as low energy dissipation and low strain hardening. Third, certain refractory bcc nanowires, such as W and Mo, can show SE at...dissipation and low strain hardening. Third, certain refractory bcc nanowires, such as W and Mo, can show SE at very high temperatures, which are...nanowires, such as W and Mo, show SE at very high temperatures, which are higher than almost all of the reported high-temperature SMAs.16,17 Hence, our

  18. Epitaxy and Magnetic Properties of Surfactant-Mediated Growth of bcc Cobalt

    SciTech Connect

    Izquierdo, M.; Davila, M.E.; Franco, N.; Avila, J.; Asensio, M. C.; Ascolani, H.; Teodorescu, C.M.; Martin, M.G.; Chrost, J.; Arranz, A.

    2005-05-13

    High resolution core level photoemission spectroscopy, photoelectron diffraction, and x-ray magnetic circular dicroism (XMCD) have been used to characterize the structural and magnetic properties of bcc-cobalt films grown on GaAs(110) substrates by using Sb as a surfactant. We have unambiguously disentangled the surfactant role played by the Sb which improves the crystallinity and reduces the lattice distortion of the metallic films as well as changes the interdiffusion process at the interface compared to the Co/GaAs(110) system. As a consequence of these combined effects, an improvement on the magnetic response of the grown Co thin films has been observed by XMCD measurements.

  19. Tuning ideal tensile strengths and intrinsic ductility of bcc refractory alloys.

    PubMed

    Qi, Liang; Chrzan, D C

    2014-03-21

    An important theoretical ductility criterion for group V and VI metal-based refractory alloys in body-centered cubic (bcc) lattices is the mechanical failure mode of their perfect crystals under tension along the weakest direction [100]. Pure Mo and W fail by cleavage and are deemed intrinsically brittle. However, first-principles calculations show that alloying with group IV or V transition metals can transform these materials into ones that display intrinsically ductile behavior, failing in shear under [100] tension. Remarkably, this transition can be understood as an electron filling effect with the intrinsically ductile response the manifestation of a Jahn-Teller distortion.

  20. Phonon-magnon interactions in BCC iron: A combined molecular and spin dynamics study

    SciTech Connect

    Perera, Meewanage Dilina N; Landau, David P; Nicholson, Don M; Stocks, George Malcolm; Eisenbach, Markus; Yin, Junqi; Brown, Greg

    2014-01-01

    Combining an atomistic many-body potential with a classical spin Hamiltonian pa- rameterized by first principles calculations, molecular-spin dynamics computer sim- ulations were performed to investigate phonon-magnon interactions in BCC iron. Results obtained for spin-spin and density-density dynamic structure factors show that noticeable softening and damping of magnon modes occur due to the presence of lattice vibrations. Furthermore, as a result of the phonon-magnon coupling, addi- tional longitudinal spin wave excitations are observed, with the same frequencies as the longitudinal phonon modes.

  1. A general method for calculating lattice green functions on the branch cut

    NASA Astrophysics Data System (ADS)

    Loh, Yen Lee

    2017-10-01

    We present a method for calculating the complex Green function Gij (ω) at any real frequency ω between any two sites i and j on a lattice. Starting from numbers of walks on square, cubic, honeycomb, triangular, bcc, fcc, and diamond lattices, we derive Chebyshev expansion coefficients for Gij (ω) . The convergence of the Chebyshev series can be accelerated by constructing functions f(ω) that mimic the van Hove singularities in Gij (ω) and subtracting their Chebyshev coefficients from the original coefficients. We demonstrate this explicitly for the square lattice and bcc lattice. Our algorithm achieves typical accuracies of 6–9 significant figures using 1000 series terms.

  2. Identifying patients at risk for recurrent or advanced BCC.

    PubMed

    Hamid, Omid; Goldenberg, Gary

    2013-11-01

    Basal cell carcinoma (BCC) is a common skin cancer and its incidence is on the rise worldwide. Clinical presentation and histologic examination are used for diagnosis and to stratify BCCs as either low- or high-risk for recurrence or development of advanced disease. A number of surgical and nonsurgical options are available for BCC. BCC is most often managed with a surgical approach, but not all tumors and patients are suitable for surgery. Vismodegib is a recently approved first-in-class hedgehog pathway inhibitor that has expanded options for patients who have locally advanced or metastatic BCC.

  3. Surface orientation dependence of the activation energy of S diffusion in bcc Fe

    NASA Astrophysics Data System (ADS)

    Barnard, P. E.; Terblans, J. J.; Swart, H. C.

    2015-11-01

    The formation of vacancies in the low-index orientations of bcc Fe was studied by a combined computational modelling and experimental investigation by making use of density functional theory (DFT), Auger electron spectroscopy (AES), time-of-flight secondary ion mass spectrometry (TOF-SIMS) and X-ray diffraction (XRD). Vacancies were considered to occur as a result of a Schottky defect forming in the bcc Fe lattice. This predicted a surface orientation dependence on the vacancy formation energy and consequently also on the activation energy of diffusion. Activation energies for the segregation of S in the Fe(1 0 0), Fe(1 1 0) and Fe(1 1 1) surface orientations were calculated by DFT modelling as 2.75 eV, 2.86 eV and 1.94 eV respectively. Simulations furthermore revealed a variation in the segregation kinetics of S as a result of the activation energy dependence on the surface orientation. Experimental data obtained by AES, TOF-SIMS and XRD confirmed this variation in the segregation kinetics of S segregation in different Fe orientations. This article provides compelling evidence for the formation of vacancies in bcc Fe to occur via the Schottky defect mechanism, which results in the orientation dependence for the activation energy of diffusion.

  4. Phomalactone optimization and production of entomopathogenic fungi by Ophiocordyceps communis BCC 1842 and BCC 2763.

    PubMed

    Prathumpai, W; Kocharin, K

    2016-01-01

    Phomalactone, an antibacterial, insecticidal, and herbicidal compound, was produced by insect pathogenic fungi, Ophiocordyceps communis BCC 1842 and BCC 2763, in bioreactors using different carbon and nitrogen sources. Glucose and fructose were preferable for growth and phomalactone production. The highest specific growth rate (μ) of 0.012 hr(-1), the highest biomass yield (Ysx) of 0.38 g DW g(-1) sugar, the highest volumetric sugar consumption rate (qs) of 0.036 g (L hr)(-1), the maximum phomalactone concentration ([Formula: see text]) of 93.30 mg L(-1) at 127 hr, and the highest volumetric production rate of phomalactone (qp) of 0.46 ± 0.12 mg (L d)(-1) were obtained on glucose and sodium nitrate as the sole carbon and nitrogen sources, respectively, by O. communis BCC 1842. In contrast, O. communis BCC 2763 gave lower phomalactone production. This mass phomalactone production is useful for the biological synthesis of a precursor for more broad-range potent analogs such as antitumor, antifungal, and others and for its further biological studies.

  5. Role of {Sigma}5, (210), [001] CSL boundary on displacement cascade in bcc Fe

    SciTech Connect

    Nandi, Prithwish K.; Dholakia, Manan; Valsakumar, M. C.

    2012-06-05

    Molecular dynamics simulations were carried out to understand the role of grain boundaries (GB) on radiation damage in bcc Fe bicrystal. The calculations were performed for a {Sigma}5, (210), [001] symmetric tilt grain boundary for different cases where the primary knock-on atom (PKA) is placed at distances of a{sub csl}, to 15a{sub csl}, from the grain boundary plane. Here, a{sub csl}, is lattice parameter of the coincidence site lattice. Present study shows that the influence of GB on the numbers of surviving defects within a grain is confined within a distance, d{sub opt} < 9a{sub csl}. Our studies also indicate that the grain boundary acts as a reservoir for defects.

  6. Peierls potential of screw dislocations in bcc transition metals: Predictions from density functional theory

    SciTech Connect

    Weinberger, Christopher R.; Tucker, Garritt J.; Foiles, Stephen M.

    2013-02-01

    It is well known that screw dislocation motion dominates the plastic deformation in body-centered-cubic metals at low temperatures. The nature of the nonplanar structure of screw dislocations gives rise to high lattice friction, which results in strong temperature and strain rate dependence of plastic flow. Thus the nature of the Peierls potential, which is responsible for the high lattice resistance, is an important physical property of the material. However, current empirical potentials give a complicated picture of the Peierls potential. Here, we investigate the nature of the Peierls potential using density functional theory in the bcc transition metals. The results show that the shape of the Peierls potential is sinusoidal for every material investigated. Furthermore, we show that the magnitude of the potential scales strongly with the energy per unit length of the screw dislocation in the material.

  7. Premelting hcp to bcc Transition in Beryllium

    NASA Astrophysics Data System (ADS)

    Lu, Y.; Sun, T.; Zhang, Ping; Zhang, P.; Zhang, D.-B.; Wentzcovitch, R. M.

    2017-04-01

    Beryllium (Be) is an important material with wide applications ranging from aerospace components to x-ray equipment. Yet a precise understanding of its phase diagram remains elusive. We have investigated the phase stability of Be using a recently developed hybrid free energy computation method that accounts for anharmonic effects by invoking phonon quasiparticles. We find that the hcp → bcc transition occurs near the melting curve at 0

  8. Crystallographic Lattice Boltzmann Method

    NASA Astrophysics Data System (ADS)

    Namburi, Manjusha; Krithivasan, Siddharth; Ansumali, Santosh

    2016-06-01

    Current approaches to Direct Numerical Simulation (DNS) are computationally quite expensive for most realistic scientific and engineering applications of Fluid Dynamics such as automobiles or atmospheric flows. The Lattice Boltzmann Method (LBM), with its simplified kinetic descriptions, has emerged as an important tool for simulating hydrodynamics. In a heterogeneous computing environment, it is often preferred due to its flexibility and better parallel scaling. However, direct simulation of realistic applications, without the use of turbulence models, remains a distant dream even with highly efficient methods such as LBM. In LBM, a fictitious lattice with suitable isotropy in the velocity space is considered to recover Navier-Stokes hydrodynamics in macroscopic limit. The same lattice is mapped onto a cartesian grid for spatial discretization of the kinetic equation. In this paper, we present an inverted argument of the LBM, by making spatial discretization as the central theme. We argue that the optimal spatial discretization for LBM is a Body Centered Cubic (BCC) arrangement of grid points. We illustrate an order-of-magnitude gain in efficiency for LBM and thus a significant progress towards feasibility of DNS for realistic flows.

  9. Crystallographic Lattice Boltzmann Method

    PubMed Central

    Namburi, Manjusha; Krithivasan, Siddharth; Ansumali, Santosh

    2016-01-01

    Current approaches to Direct Numerical Simulation (DNS) are computationally quite expensive for most realistic scientific and engineering applications of Fluid Dynamics such as automobiles or atmospheric flows. The Lattice Boltzmann Method (LBM), with its simplified kinetic descriptions, has emerged as an important tool for simulating hydrodynamics. In a heterogeneous computing environment, it is often preferred due to its flexibility and better parallel scaling. However, direct simulation of realistic applications, without the use of turbulence models, remains a distant dream even with highly efficient methods such as LBM. In LBM, a fictitious lattice with suitable isotropy in the velocity space is considered to recover Navier-Stokes hydrodynamics in macroscopic limit. The same lattice is mapped onto a cartesian grid for spatial discretization of the kinetic equation. In this paper, we present an inverted argument of the LBM, by making spatial discretization as the central theme. We argue that the optimal spatial discretization for LBM is a Body Centered Cubic (BCC) arrangement of grid points. We illustrate an order-of-magnitude gain in efficiency for LBM and thus a significant progress towards feasibility of DNS for realistic flows. PMID:27251098

  10. BCC skin cancer diagnosis based on texture analysis techniques

    NASA Astrophysics Data System (ADS)

    Chuang, Shao-Hui; Sun, Xiaoyan; Chang, Wen-Yu; Chen, Gwo-Shing; Huang, Adam; Li, Jiang; McKenzie, Frederic D.

    2011-03-01

    In this paper, we present a texture analysis based method for diagnosing the Basal Cell Carcinoma (BCC) skin cancer using optical images taken from the suspicious skin regions. We first extracted the Run Length Matrix and Haralick texture features from the images and used a feature selection algorithm to identify the most effective feature set for the diagnosis. We then utilized a Multi-Layer Perceptron (MLP) classifier to classify the images to BCC or normal cases. Experiments showed that detecting BCC cancer based on optical images is feasible. The best sensitivity and specificity we achieved on our data set were 94% and 95%, respectively.

  11. The nanostructure and hydrogenation reaction of Mg50Co50 BCC alloy prepared by ball-milling.

    PubMed

    Matsuda, J; Shao, H; Nakamura, Y; Akiba, E

    2009-05-20

    Mg50Co50 alloy before and after hydrogenation was investigated by means of transmission electron microscopy (TEM). Mg50Co50 alloy before hydrogenation was found to contain crystals not larger than 5 nm in size. Selected-area electron diffraction patterns (SAEDPs) revealed that these nanocrystals have a body-centered cubic (BCC) structure with a lattice parameter of about 0.3 nm. Distribution of Mg and Co elements in the Mg50Co50 alloy was uniform, indicated by energy dispersive x-ray spectroscopy (EDS) analysis. Crystallization and decomposition occurred in the Mg50Co50 alloy during hydrogenation. A large number of crystals larger than 10 nm were observed in the hydrogenated sample. The SAEDPs showed polycrystalline rings corresponding to the BCC phase and the Co metal phase. The existence of Mg-rich Mg-Co crystals and Co particles was also confirmed by TEM-EDS analysis.

  12. Combined molecular and spin dynamics study of collective excitations in BCC iron

    NASA Astrophysics Data System (ADS)

    Perera, Dilina; Landau, David P.; Nicholson, Don; Stocks, G. Malcolm

    2014-03-01

    Spin dynamics simulations of classical spin systems have revealed a substantial amount of information regarding the collective excitations in magnetic materials. However, much of the previous work has been restricted to lattice-based spin models that completely disregard the effect of lattice vibrations. Combining an empirical many body potential with a spin Hamiltonian parameterized by first principles calculations, we present a compressible magnetic model for BCC iron, which treats the dynamics of translational degrees of freedom on an equal footing with the magnetic (spin) degrees of freedom. This model provides us with a unified framework for performing combined molecular and spin dynamics simulations and make simultaneous quantitative measurements of the spin wave and vibrational spectrum. Results from our simulations reveal that the presence of lattice vibrations leads to softening and damping of spin waves, as well as evidence for a novel form of longitudinal spin wave excitation coupled with the longitudinal phonon mode of the same frequency. Furthermore, we will also discuss the influence of lattice vibrations at different temperatures and the implications of using different atomistic potentials. Research sponsored by the U.S. Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, ``Center for Defect Physics,'' an Energy Frontier Research Center. Done...processed 13325 records...10:54:51

  13. DIFFUSION IN B.C.C. METALS,

    DTIC Science & Technology

    or less normal tracer element in a possibly abnormal host lattice. No data were available for vanadium, the neighbor of chromium in the periodic ... table , because of lack or a suitable isotope so (Cr-55) was used as a tracer in a few preliminary experiments. (Author)

  14. Momentum distributions in hcp, bcc, and liquid /sup 4/He

    SciTech Connect

    Sokol, P.E.; Simmons, R.O.; Price, D.L.; Hilleke, R.O.

    1984-05-01

    Using Deep Inelastic Neutron Scattering we have measured the nuclear momentum distribution in hcp, bcc and liquid /sup 4/He at constant density over a temperature range 0.96K < T < 4.0K. We find no temperature dependence of the momentum distribution in the hcp solid or the liquid. We also find no difference between the hcp, bcc and liquid phases. The average kinetic energy per atom is lower than the best present theories predict.

  15. Pivotal ERIVANCE basal cell carcinoma (BCC) study: 12-month update of efficacy and safety of vismodegib in advanced BCC.

    PubMed

    Sekulic, Aleksandar; Migden, Michael R; Lewis, Karl; Hainsworth, John D; Solomon, James A; Yoo, Simon; Arron, Sarah T; Friedlander, Philip A; Marmur, Ellen; Rudin, Charles M; Chang, Anne Lynn S; Dirix, Luc; Hou, Jeannie; Yue, Huibin; Hauschild, Axel

    2015-06-01

    Primary analysis from the pivotal ERIVANCE BCC study resulted in approval of vismodegib, a Hedgehog pathway inhibitor indicated for treatment of adults with metastatic or locally advanced basal cell carcinoma (BCC) that has recurred after surgery or for patients who are not candidates for surgery or radiation. An efficacy and safety analysis was conducted 12 months after primary analysis. This was a multinational, multicenter, nonrandomized, 2-cohort study in patients with measurable and histologically confirmed locally advanced or metastatic BCC taking oral vismodegib (150 mg/d). Primary outcome measure was objective response rate (complete and partial responses) assessed by independent review facility. After 12 months of additional follow-up, median duration of exposure to vismodegib was 12.9 months. Objective response rate increased from 30.3% to 33.3% in patients with metastatic disease, and from 42.9% to 47.6% in patients with the locally advanced form. Median duration of response in patients with locally advanced BCC increased from 7.6 to 9.5 months. No new safety signals emerged with extended treatment duration. Limitations include low prevalence of advanced BCC and challenges of designing a study with heterogenous manifestations. The 12-month update of the study confirms the efficacy and safety of vismodegib in management of advanced BCC. Copyright © 2015 American Academy of Dermatology, Inc. Published by Elsevier Inc. All rights reserved.

  16. Thermodynamics of plastic flow of BCC metals from atomistic studies of isolated screw dislocations

    NASA Astrophysics Data System (ADS)

    Gröger, Roman; Vitek, Vaclav

    2015-03-01

    The thermodynamic description of dislocation glide in BCC metals depends crucially on the shape of the Peierls barrier that 1 / 2 < 111 > screw dislocations have to overcome when moving in the lattice. While the height of this barrier can be obtained unequivocally using saddle-point search algorithms such as the Nudged Elastic Band (NEB) method, its exact shape depends on the chosen approximation of the transition pathway of the system. We formulate a procedure that allows to identify the position of the dislocation directly from the displacements of atoms in its core. We investigate the performance of this model by calculating curved paths of a 1 / 2 < 111 > screw dislocation in tungsten from a series of images obtained recently using the NEB method at zero applied stress and for positive/negative shear stresses perpendicular to the slip direction. The Peierls barriers plotted along these curved paths are shown to be quite different from those obtained previously by assuming a straight dislocation path. We demonstrate how these results can be utilized to develop a new thermodynamic model of plasticity of BCC metals that is systematically linked to the atomic-level properties of isolated 1 / 2 < 111 > screw dislocations.

  17. The expression levels of the sirtuins in patients with BCC.

    PubMed

    Temel, Metin; Koç, Mustafa Nihat; Ulutaş, Saffet; Göğebakan, Bülent

    2016-05-01

    Basal cell carcinoma (BCC) is the most common tumor in humans. Reduced expression of sirtuins interferes with DNA repair, which may cause mutations and genomic instability, and eventually leads to tumor development. In the present study, we investigate the expression levels of SIRT genes in non-tumoral and tumor tissues of patients with BCC. A total of 27 patients (16 males, 11 females) with BCC were included in the study; the mean age was 65.40 ± 10.74 years and mean follow-up was 2.5 ± 0.5 years. There were multiple synchronous lesions in six patients, and the remaining 21 patients had a single lesion. Tumor and non-tumoral tissue samples were collected from all patients, and mRNA expression levels of SIRT1-7 (Sirt1.1, Sirt1.2, Sirt2, Sirt3, Sirt4, Sirt5, Sirt6, and Sirt7) were examined by real-time PCR. The results showed that expressions of SIRT1.1, SIRT1.2, SIRT4, SIRT5, SIRT6, and SIRT7 mRNAs were unchanged in tumor tissues of BCC patients compared with non-tumoral tissue samples. Importantly, the expressions of SIRT2 and SIRT3 mRNAs were significantly reduced in tumor tissue samples from BCC patients compared with non-tumoral tissues (P = 0.02 and P = 0.03, respectively). In light of the previous reports that have demonstrated a link between SIRT proteins and cancer, our findings suggest that SIRT2 and SIRT3 may plan important roles in BCC pathogenesis and could be candidate prognostic biomarkers for BCC.

  18. Comparison of interface structure of BCC metallic (Fe, V and Nb) films on MgO (100) substrate

    NASA Astrophysics Data System (ADS)

    Du, J. L.; Zhang, L. Y.; Fu, E. G.; Ding, X.; Yu, K. Y.; Wang, Y. G.; Wang, Y. Q.; Baldwin, J. K.; Wang, X. J.; Xu, P.

    2017-07-01

    This study systematically investigates the interface structure of three body-centered-cubic (BCC) metallic (Fe, V and Nb) films grown on MgO(100) substrates through experiments and simulations. Orientation relationships of their interfaces with the different lattice mismatches exhibit cube-on-cube configurations. The misfit dislocations at these three interfaces exhibit different characteristics. High resolution TEM (HRTEM), combined with first principle calculations, demonstrates the O-atop match type between metal atoms and MgO substrates for the first time. The fundamental mechanism in determining the interface configuration is discussed in terms of the work of separation and delocalization of atomic charge density.

  19. Ginzburg-Landau theory for the solid-liquid interface of bcc elements

    NASA Technical Reports Server (NTRS)

    Shih, W. H.; Wang, Z. Q.; Zeng, X. C.; Stroud, D.

    1987-01-01

    Consideration is given to a simple order-parameter theory for the interfacial tension of body-centered-cubic solids in which the principal order parameter is the amplitude of the density wave at the smallest nonzero reciprocal-lattice vector of the solid. The parameters included in the theory are fitted to the measured heat of fusion, melting temperature, and solid-liquid density difference, and to the liquid structure factor and its temperature derivative at freezing. Good agreement is found with experiment for Na and Fe and the calculated anisotropy of the surface tension among different crystal faces is of the order of 2 percent. On the basis of various assumptions about the universal behavior of bcc crystals at melting, the formalism predicts that the surface tension is proportional to the heat of fusion per surface atom.

  20. Microstructural studies of hydrogen and deuterium in bcc refractory metals. Final technical report

    SciTech Connect

    Moss, S.C.

    1984-04-01

    Research was conducted on the microstructural atomic arrangements in alloys of hydrogen and deuterium with bcc refractory metals with emphasis on V and Nb. Because these are interstitial phases in which the host metal lattice is substantially deformed by the incorporation of the H(D) atoms, there are pronounced x-ray scattering effects. X-ray diffraction was used, with neutron scattering providing useful corollary data. One objective was to determine the phase relations, solid solution structures and phase transitions in metal-hydride alloys which depend upon the hydrogen-hydrogen interaction via the displacement field of the metal atoms. This has often included the elucidation of subtle thermodynamic properties (as in critical wetting) which are revealed in structural studies. Crystals were supplied for positron annihilation studies of the Fermi surface of H-Ta alloys which have revealed significant electronic trends. Work on alkali-graphite intercalates was initiated.

  1. The Néel temperature of a D-dimensional bcc Heisenberg antiferromagnet

    NASA Astrophysics Data System (ADS)

    Radošević, Slobodan M.; Rutonjski, Milica S.; Pantić, Milan R.; Pavkov-Hrvojević, Milica V.; Kapor, Darko V.; Škrinjar, Mario G.

    2011-12-01

    The double-time temperature-dependent Green's function method is used to determine the Néel temperature of a Heisenberg antiferromagnet with easy axis XXZ anisotropy on a D-dimensional bcc lattice. Exact equations within the random phase approximation (RPA) and Callen approximation (CA) in terms of generalized hypergeometric functions valid for arbitrary D, S, and η≥1 are given. Analytical and numerical results presented here strongly suggest that, for D≥2, the CA gives a higher critical temperature. It is also shown that the RPA set of self-consistent equations yields a Néel temperature closer to the experimental value for compound (CH 3NH 3) 2MnCl 4.

  2. Indium-defect interactions in FCC and BCC metals studied using the modified embedded atom method

    NASA Astrophysics Data System (ADS)

    Zacate, M. O.

    2016-12-01

    With the aim of developing a transferable potential set capable of predicting defect formation, defect association, and diffusion properties in a wide range of intermetallic compounds, the present study was undertaken to test parameterization strategies for determining empirical pair-wise interaction parameters in the modified embedded atom method (MEAM) developed by Baskes and coworkers. This report focuses on indium-solute and indium-vacancy interactions in FCC and BCC metals, for which a large set of experimental data obtained from perturbed angular correlation measurements is available for comparison. Simulation results were found to be in good agreement with experimental values after model parameters had been adjusted to reproduce as best as possible the following two sets of quantities: (1) lattice parameters, formation enthalpies, and bulk moduli of hypothetical equiatomic compounds with the NaCl crystal structure determined using density functional theory and (2) dilute solution enthalpies in metals as predicted by Miedema's semi-empirical model.

  3. Diffusion of yttrium in bcc-iron studied by kinetic Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Mock, Markus; Albe, Karsten

    2017-10-01

    The formation of oxide nanoclusters in oxide dispersion strengthened steels is controlled by the diffusion of yttrium. Yttrium atoms and other oversized solutes show a high binding energy to vacancies and a considerable relaxation from their lattice site towards a neighboring vacancy. In the case of yttrium the relaxation is so prominent, that the resulting situation may also be considered as an interstitial atom sitting in between two vacancies. We calculated the yttrium-vacancy binding energy and the migration barriers of vacancy jumps in the vicinity of a yttrium atom by means of nudged-elastic band calculations using density functional theory calculations. These barriers were used in a kinetic Monte Carlo code to calculate the diffusivity of yttrium and investigate the diffusion mechanism of yttrium in bcc iron with focus on correlation effects. The results reveal that the diffusion of yttrium is due to a sequence of vacancy jumps between the nearest and third nearest neighbor shell of the yttrium atom.

  4. The HCP To BCC Phase Transformation in Ti Characterized by Nanosecond Electron Microscopy

    SciTech Connect

    Campbell, G; LaGrange, T; King, W; Colvin, J; Ziegler, A; Browning, N; Kleinschmidt, H; Bostanjoglo, O

    2005-06-21

    The general class of martensitic phase transformations occurs by a rapid lattice-distortive mechanism, where kinetics and morphology of the transformation are dominated by the strain energy. Since transformation is diffusionless, phase fronts propagate through a crystal with great speed that can approach the speed of sound. We have observed a particular example of this class of phase transformation, the hexagonal close packed (HCP) to body centered cubic (BCC) transformation in titanium that is driven by a rapid increase in temperature. We have used a novel nanosecond electron microscope (the dynamic transmission electron microscope, DTEM) to acquire diffraction and imaging information on the transformation, which is driven in-situ by nanosecond laser irradiation. Using nanosecond exposure times that are possible in the DTEM, data can be collected about the transient events in these fast transformations. We have identified the phase transformation with diffraction patterns and correlated the time of the phase transformation with calculated conditions in the sample.

  5. Ginzburg-Landau theory for the solid-liquid interface of bcc elements

    NASA Technical Reports Server (NTRS)

    Shih, W. H.; Wang, Z. Q.; Zeng, X. C.; Stroud, D.

    1987-01-01

    Consideration is given to a simple order-parameter theory for the interfacial tension of body-centered-cubic solids in which the principal order parameter is the amplitude of the density wave at the smallest nonzero reciprocal-lattice vector of the solid. The parameters included in the theory are fitted to the measured heat of fusion, melting temperature, and solid-liquid density difference, and to the liquid structure factor and its temperature derivative at freezing. Good agreement is found with experiment for Na and Fe and the calculated anisotropy of the surface tension among different crystal faces is of the order of 2 percent. On the basis of various assumptions about the universal behavior of bcc crystals at melting, the formalism predicts that the surface tension is proportional to the heat of fusion per surface atom.

  6. Interaction in equilibrium plasmas of charged macroparticles located in nodes of cubic lattices

    NASA Astrophysics Data System (ADS)

    Filippov, A. V.

    2016-11-01

    Interaction of two charged pointlike macroparticles located at nodes of simple cubic (sc), body-centered cubic (bcc) and face-centered cubic (fcc) lattices in an equilibrium plasma is studied within the linearized Poisson-Boltzmann model. It is shown that the boundary shape has a strong influence on the electrostatic interaction between two macroparticles, which switches from repulsion at small interparticle distances to attraction as it approaches the halflength of a computational cell. It is found that in a case of dust particles arranged in the nodes of the sc, bcc and fcc lattices, the electrostatic force acting on them is equal to zero and the nature of the interaction changes from repulsion to attraction; hence, the infinite sc, bcc and fcc lattices of charged dust particles are thermodynamically stable at rather low temperatures.

  7. Hyperfine-field spectrum of epitaxially grown bcc cobalt

    NASA Astrophysics Data System (ADS)

    Riedi, P. C.; Dumelow, T.; Rubinstein, M.; Prinz, G. A.; Qadri, S. B.

    1987-09-01

    The hyperfine-field spectrum of the bcc phase of a 357-romanÅ-thick metallic cobalt film, epitaxially grown on a GaAs substrate, has been determined by spin-echo nuclear magnetic resonance. The peak of the distribution of hyperfine fields in bcc Co occurs at 167 MHz, much lower than the value found for fcc Co (217 MHz), suggesting that the moment in the bcc phase is lower than that of the fcc phase, in agreement with the measurements of Prinz, but in disagreement with recent theoretical calculations (assuming that no significant structural differences exist between theory and experiment). The full width of the distribution is 75 MHz, seven times greater than that found in thin fcc Co films. X-ray rocking-curve measurements yield a linewidth of 118 arc seconds, implying too low a dislocation density to explain the observed NMR line broadening.

  8. Theoretical elastic moduli of ferromagnetic bcc Fe alloys.

    PubMed

    Zhang, Hualei; Punkkinen, Marko P J; Johansson, Börje; Vitos, Levente

    2010-07-14

    The polycrystalline elastic parameters of ferromagnetic Fe(1-x)M(x) (M = Al, Si, V, Cr, Mn, Co, Ni, Rh; 0 ≤ x ≤ 0.1) random alloys in the body centered cubic (bcc) crystallographic phase have been calculated using first-principles alloy theory in combination with statistical averaging methods. With a few exceptions, the agreement between the calculated and the available experimental data for the polycrystalline aggregates is satisfactory. All additions considered here decrease the bulk modulus (B) and Poisson's ratio (ν) of bcc Fe. The complex composition dependence of the C(44) single-crystal elastic constant is reflected in the polycrystalline shear modulus (G), Young's modulus (E), and Debye temperature (Θ). The polycrystalline anisotropy of bcc Fe is increased by all additions, and Al, Si, Ni, and Rh yield the largest alloying effects.

  9. Thermodynamics of bcc metals in phase-field-crystal models.

    PubMed

    Jaatinen, A; Achim, C V; Elder, K R; Ala-Nissila, T

    2009-09-01

    We examine the influence of different forms of the free-energy functionals used in the phase-field-crystal (PFC) model, and compare them with the second-order density-functional theory (DFT) of freezing, by using bcc iron as an example case. We show that there are large differences between the PFC and the DFT and it is difficult to obtain reasonable parameters for existing PFC models directly from the DFT. Therefore, we propose a way of expanding the correlation function in terms of gradients that allows us to incorporate the bulk modulus of the liquid as an additional parameter in the theory. We show that this functional reproduces reasonable values for both bulk and surface properties of bcc iron, and therefore it should be useful in modeling bcc materials. As a further demonstration, we also calculate the grain boundary energy as a function of misorientation for a symmetric tilt boundary close to the melting transition.

  10. Formation of pentagonal atomic chains in BCC Fe nanowires

    NASA Astrophysics Data System (ADS)

    Sainath, G.; Choudhary, B. K.

    2016-12-01

    For the first time, we report the formation of pentagonal atomic chains during tensile deformation of ultra thin BCC Fe nanowires. Extensive molecular dynamics simulations have been performed on <100>/{110} BCC Fe nanowires with different cross section width varying from 0.404 to 3.634 nm at temperatures ranging from 10 to 900 K. The results indicate that above certain temperature, long and stable pentagonal atomic chains form in BCC Fe nanowires with cross section width less than 2.83 nm. The temperature, above which the pentagonal chains form, increases with increase in nanowire size. The pentagonal chains have been observed to be highly stable over large plastic strains and contribute to high ductility in Fe nanowires.

  11. Madden-Julian Oscillation simulated in BCC climate models

    NASA Astrophysics Data System (ADS)

    Zhao, Chongbo; Ren, Hong-Li; Song, Lianchun; Wu, Jie

    2015-12-01

    This study evaluates the ability of four versions BCC (Beijing Climate Center or National Climate Center) models (BCC_AGCM2.1, BCC_AGCM2.2, BCC_CSM1.1 and BCC_CSM1.1m) in simulating the MJO phenomenon using the outputs of the AMIP (Atmospheric Model Intercomparison Project) and historical runs. In general, the models can simulate some major characteristics of the MJO, such as the intensity, the periodicity, the propagation, and the temporal/spatial evolution of the MJO signals in the tropics. There are still some biases between the models and the observation/reanalysis data, such as the overestimated total intraseasonal variability, but underestimated MJO intensity, shorter significant periodicity, and excessive westward propagation. The differences in the ability of simulating the MJO between AMIP and historical experiments are also significant. Compared to the AMIP runs, the total intraseasonal variability is reduced and more realistic, however the ratio between the MJO and its westward counterpart decreases in the historical runs. This unrealistic simulation of the zonal propagation might have been associated with the greater mean precipitation over the Pacific and corresponded to the exaggeration of the South Pacific Convergence Zone structure in precipitation mean state. In contrast to the T42 versions, the improvement of model resolution demonstrate more elaborate topography, but the enhanced westward propagation signals over the Arabia Sea followed. The underestimated (overestimated) MJO variability over eastern Indian Ocean (Pacific) was assumed to be associated with the mean state. Three sets of sensitive experiments using BCC_CSM1.1m turn out to support this argument.

  12. Arrangements of four beams for any Bravais lattice.

    PubMed

    Yuan, Liang; Wang, Guo Ping; Huang, Xingkang

    2003-10-01

    A single geometric model based on a new concept of a reciprocal primitive pyramid (RPP) in reciprocal space is proposed for investigation of relationships between any three-dimensional (3D) lattice and arrangements of four beams (AFBs) that produce the lattice. A ternary linear equation set, described for the one-to-one correspondence between a RPP and AFB, can readily reveal all AFBs for the same lattice (AFBSLs). Quantitative AFBs for bcc and fcc real lattices are illustrated to show that various AFBSLs can modulate the properties of a photonic bandgap (PBG) both by tuning the lattice constant and by changing the lattice-point shape. This fact may yield the appropriate AFB for a complete 3D PBG with the desired center wavelength. The nonuniqueness of AFBSLs can provide abundant choices for persons who plan interference experiments, especially for holographic fabrication of 3D photonic crystals (PCs).

  13. FCC Fe2NiSi prepared by mechanical alloying and stabilization effect of L21B disorder on BCC Heusler structure

    NASA Astrophysics Data System (ADS)

    Luo, Hongzhi; Xin, Yuepeng; Ma, Yuexing; Liu, Bohua; Meng, Fanbin; Liu, Heyan; Liu, Enke; Wu, Guangheng

    2016-12-01

    Fe2NiSi FCC phase has been prepared by ball-milling successfully, which is different from the BCC Heusler phase prepared by arc-melting in previous literatures. The FCC Fe2NiSi is a ferromagnet with a lattice constant of 3.58 Å. The phase stability of the FCC and BCC Fe2NiSi has been compared by first-principles calculations. It has been found that the FCC structure has a lower total energy compared with the highly-ordered Heusler structures XA and L21, that is the reason why the FCC phase can be prepared by ball-milling. However, the Fe (A)-Ni (C) disorder in the BCC XA structure can lower its total energy further and make it smaller than the FCC phase. So the most stable structure in Fe2NiSi is L21B, as has been observed in the arc-melting sample. This can be explained from their DOS structures. The calculated total moments for the FCC and BCC phases agree with their Ms at 5 K quite well.

  14. Fcc-bcc transition for Yukawa interactions determined by applied strain deformation.

    PubMed

    Hoy, Robert S; Robbins, Mark O

    2004-05-01

    Calculations of the work required to transform between bcc and fcc phases yield a high-precision bcc-fcc transition line for monodisperse point Yukawa (screened-Coulomb) systems. Our results agree qualitatively but not quantitatively with recently published simulations and phenomenological criteria for the bcc-fcc transition. In particular, the bcc-fcc-fluid triple point lies at a higher inverse screening length than previously reported.

  15. Nonadiabaticity in the iron bcc to hcp phase transformation.

    PubMed

    Johnson, Donald F; Carter, Emily A

    2008-03-14

    Iron is known to undergo a pressure-induced phase transition from the ferromagnetic (FM) body-centered-cubic (bcc) alpha-phase to the nonmagnetic (NM) hexagonal-close-packed (hcp) epsilon-phase, with a large observed pressure hysteresis whose origin is still a matter of debate. Long ago, Burgers [Physica (Amsterdam) 1, 561 (1934)] proposed an adiabatic pathway for bcc to hcp transitions involving crystal shear followed by atom shuffles. However, a quantum mechanics search in six-dimensional stress-strain space reveals a much lower energy path, where the crystal smoothly shears along the entire path while the atoms shuffle only near the transition state (TS). The energy profile for this phase transition path exhibits a cusp at the TS and closely follows bcc and hcp diabatic energy wells. Both the cusp and the overlap with diabatic energy surfaces are hallmarks of nonadiabaticity, analogous to, e.g., electron transfer (ET) reactions in liquids. Fluctuations in the positions of FM bcc iron atoms near the TS induce magnetic quenching (akin to solvent fluctuations inducing ET), which then promotes NM hcp iron formation (akin to solvent reorganization after ET). We propose that the nonadiabatic nature of this transition at the atomic scale may contribute to the observed pressure hysteresis.

  16. Practical box splines for reconstruction on the body centered cubic lattice.

    PubMed

    Entezari, Alireza; Van De Ville, Dimitri; Möeller, Torsten

    2008-01-01

    We introduce a family of box splines for efficient, accurate and smooth reconstruction of volumetric data sampled on the Body Centered Cubic (BCC) lattice, which is the favorable volumetric sampling pattern due to its optimal spectral sphere packing property. First, we construct a box spline based on the four principal directions of the BCC lattice that allows for a linear C(0) reconstruction. Then, the design is extended for higher degrees of continuity. We derive the explicit piecewise polynomial representation of the C(0) and C(2) box splines that are useful for practical reconstruction applications. We further demonstrate that approximation in the shift-invariant space---generated by BCC-lattice shifts of these box splines---is {twice} as efficient as using the tensor-product B-spline solutions on the Cartesian lattice (with comparable smoothness and approximation order, and with the same sampling density). Practical evidence is provided demonstrating that not only the BCC lattice is generally a more accurate sampling pattern, but also allows for extremely efficient reconstructions that outperform tensor-product Cartesian reconstructions.

  17. Lattice QCD

    SciTech Connect

    Bornyakov, V.G.

    2005-06-01

    Possibilities that are provided by a lattice regularization of QCD for studying nonperturbative properties of QCD are discussed. A review of some recent results obtained from computer calculations in lattice QCD is given. In particular, the results for the QCD vacuum structure, the hadron mass spectrum, and the strong coupling constant are considered.

  18. Identifying self-interstitials of bcc and fcc crystals in molecular dynamics

    NASA Astrophysics Data System (ADS)

    Bukkuru, S.; Bhardwaj, U.; Warrier, M.; Rao, A. D. P.; Valsakumar, M. C.

    2017-02-01

    Identification of self-interstitials in molecular dynamics (MD) simulations is of critical importance. There exist several criteria for identifying the self-interstitial. Most of the existing methods use an assumed cut-off value for the displacement of an atom from its lattice position to identify the self-interstitial. The results obtained are affected by the chosen cut-off value. Moreover, these chosen cut-off values are independent of temperature. We have developed a novel unsupervised learning algorithm called Max-Space Clustering (MSC) to identify an appropriate cut-off value and its dependence on temperature. This method is compared with some widely used methods such as effective sphere (ES) method and nearest neighbor sphere (NNS) method. The cut-off radius obtained using our method shows a linear variation with temperature. The value of cut-off radius and its temperature dependence is derived for five bcc (Cr, Fe, Mo, Nb, W) and six fcc (Ag, Au, Cu, Ni, Pd, Pt) crystals. It is seen that the ratio of the cut-off values "r" to the lattice constant "a" lies between 0.23 and 0.3 at 300 K and this ratio is on an average smaller for the fcc crystals. Collision cascade simulations are carried out for Primary knock-on Atom (PKA) energies of 5 keV in Fe (at 300 K and 1000 K) and W (at 300 K and 2500 K) and the results are compared using the various methods.

  19. Free energy calculation of mechanically unstable but dynamically stabilized bcc titanium

    NASA Astrophysics Data System (ADS)

    Kadkhodaei, Sara; Hong, Qi-Jun; van de Walle, Axel

    2017-02-01

    The phase diagram of numerous materials of technological importance features high-symmetry high-temperature phases that exhibit phonon instabilities. Leading examples include shape-memory alloys, as well as ferroelectric, refractory, and structural materials. The thermodynamics of these phases have proven challenging to handle by atomistic computational thermodynamic techniques due to the occurrence of constant anharmonicity-driven hopping between local low-symmetry distortions, while maintaining a high-symmetry time-averaged structure. To compute the free energy in such phases, we propose to explore the system's potential-energy surface by discrete sampling of local minima by means of a lattice gas Monte Carlo approach and by continuous sampling by means of a lattice dynamics approach in the vicinity of each local minimum. Given the proximity of the local minima, it is necessary to carefully partition phase space by using a Voronoi tessellation to constrain the domain of integration of the partition function in order to avoid double counting artifacts and enable an accurate harmonic treatment near each local minima. We consider the bcc phase of titanium as a prototypical example to illustrate our approach.

  20. First-principles study of fcc-Ag/bcc-Fe interfaces

    NASA Astrophysics Data System (ADS)

    Lu, Song; Hu, Qing-Miao; Punkkinen, Marko P. J.; Johansson, Börje; Vitos, Levente

    2013-06-01

    Ab initio calculations are employed to determine the lower and upper bounds of the interfacial energy and work of separation of a fcc-Ag/bcc-Fe interface. The strain-free interfacial energy of the coherent interface is taken as the lower bound and the interfacial energy of the commensurate incoherent interface as the upper bound of the interfacial energy of a realistic semicoherent interface. The latter is estimated by applying an averaging scheme based on the interfacial energies obtained for the coherent interfaces. Similar calculations are performed for determining the bounds of the work of separation. We justify the use of the averaging scheme by carrying out large supercell calculations for a semicoherent interface. For a Fe(110)/Ag(111) semicoherent interface, we show that taking either Fe or Ag as the underlying lattice, our averaging scheme can yield a reasonable estimation of the work of separation of the semicoherent interface. However, when taking Ag as the underlying lattice, the averaged interfacial energy of the semicoherent interface is significantly underestimated due to the magnetism. The structure and magnetism at the coherent and semicoherent interfaces are discussed.

  1. Ginzburg-Landau-type multiphase field model for competing fcc and bcc nucleation.

    PubMed

    Tóth, G I; Morris, J R; Gránásy, L

    2011-01-28

    We address crystal nucleation and fcc-bcc phase selection in alloys using a multiphase field model that relies on Ginzburg-Landau free energies of the liquid-fcc, liquid-bcc, and fcc-bcc subsystems, and determine the properties of the nuclei as a function of composition, temperature, and structure. With a realistic choice for the free energy of the fcc-bcc interface, the model predicts well the fcc-bcc phase-selection boundary in the Fe-Ni system.

  2. Elastic anharmonicity of bcc Fe and Fe-based random alloys from first-principles calculations

    NASA Astrophysics Data System (ADS)

    Li, Xiaoqing; Schönecker, Stephan; Zhao, Jijun; Vitos, Levente; Johansson, Börje

    2017-01-01

    We systematically investigate elastic anharmonic behavior in ferromagnetic body-centered cubic (bcc) Fe and Fe1 -xMx (M =Al , V, Cr, Co, or Ni) random alloys by means of density-functional simulations. To benchmark computational accuracy, three ab initio codes are used to obtain the complete set of second- and third-order elastic constants (TOECs) for bcc Fe. The TOECs of Fe1 -xMx alloys are studied employing the first-principles alloy theory formulated within the exact muffin-tin orbital method in combination with the coherent-potential approximation. It is found that the alloying effects on C111,C112 , and C123, which are governed by normal strains only, are more pronounced than those on C144,C166 , and C456, which involve shear strains. Remarkably, the magnitudes of all TOECs but C123 decrease upon alloying with Al, V, Cr, Co, or Ni. Using the computed TOECs, we study compositional effects on the pressure derivatives of the effective elastic constants (d Bi j/d P ), bulk (d K /d P ), and shear moduli (d G /d P ) and derive longitudinal acoustic nonlinearity parameters (β ). Our predictions show that the pressure derivatives of K and G decrease with x for all solute elements and reveal a strong correlation between the compositional trends on d K /d P and d G /d P arising from the fact that alloying predominantly alters d B11/d P . The sensitivity of d B11/d P to composition is attributed to intrinsic alloying effects as opposed to lattice parameter changes accompanying solute addition. For Fe and the considered Fe-based alloys, β along high-symmetry directions orders as β [111 ]>β [100 ]>β [110 ] , and alloying increases the directional anisotropy of β but reduces its magnitude.

  3. Coordination chemistry of 1,4-bis-carboxymethylcyclam, H(2)(1,4-bcc).

    PubMed

    Tonei, Deborah M; Ware, David C; Brothers, Penelope J; Plieger, Paul G; Clark, George R

    2006-01-07

    Zinc metal reduction of the cobalt(III) complex [Co(1,4-bcc)](+) (1,4-bcc = 1,4-bis-carboxymethylcyclam) produces the corresponding cobalt(II) complex which crystallises as the coordination polymer {[Co(1,4-bcc)]ZnCl(2)}(n). A method has been developed for removal of the cobalt(III) ion from [Co(1,4-bcc)](+) and isolation of the free ligand as its hydrochloride salt, H(2)(1,4-bcc).4HCl. This has been used for the preparation of new metal complexes, and the syntheses and characterisation of the copper(ii), nickel(ii), zinc(ii) and chromium(iii) complexes containing the 1,4-bcc ligand are described. X-Ray crystal structures of {[Co(1,4-bcc)]ZnCl(2)}(n).2.5H(2)O, {[Cu(1,4-bcc)]CuCl(2)}(n).0.25MeOH.H(2)O and [Cu(1,4-bcc)H]ClO(4) show the complexes to have the trans(O) geometry of the 1,4-bcc ligand, while the structure of [Cr(1,4-bcc)H(0.5)](ClO(4))(1.5).EtOH exhibits the cis(O) configuration.

  4. First-principles study of stability of the bcc and ω phases of a low Al concentration Nb1-xAlx alloy.

    PubMed

    Sanati, M; Albers, R C; Lookman, T; Saxena, A

    2011-07-27

    The phase stability and site occupancy of bcc (body centered cubic) Nb(5)Al and slightly rearranged atomic structures have been examined by means of first-principles calculations. In order to use first-principles methods, a periodic cell is required and we used ordered Nb(5)Al compounds as a tractable example of a low Al concentration Nb(1 - x)Al(x) alloy (in this case, for about 17 at.% Al). The instability against an ω-structure atomic displacement was also studied, since this structure is detrimental to ductility. Mulliken population analysis was used to provide an understanding of the hybridization between the atoms and the electronic origin of the site occupancy and instability of the underlying bcc structures. By making calculations for several different configurations of the Nb-Al system we estimated the strengths of the Nb-Nb and Nb-Al bonds. It is shown that the stability of the underlying bcc phases is directly related to Nb-Nb and Nb-Al first-nearest-neighbor interactions. The first-principles calculations were extended to finite temperature by including various contributions to the free energy. In particular, the vibrational free energy was calculated within the quasiharmonic approximation, and it is shown that the contribution of the low energy modes to the lattice entropy helps to stabilize ordered bcc phases against ω-type phase transformations. Semi-quasi-random structures were employed to study the stability of the ordered and disordered bcc phases. Our study showed, in agreement with experiment, that the ω, ordered, and disordered phases can coexist in a nonequilibrium state at finite temperature.

  5. Strong, Ductile, and Thermally Stable bcc-Mg Nanolaminates

    DOE PAGES

    Pathak, Siddhartha; Velisavljevic, Nenad; Baldwin, Jon Kevin Scott; ...

    2017-08-15

    Magnesium has attracted attention worldwide because it is the lightest structural metal. However, a high strength-to-weight ratio remains its only attribute, since an intrinsic lack of strength, ductility and low melting temperature severely restricts practical applications of Mg. Through interface strains, the crystal structure of Mg can be transformed and stabilized from a simple hexagonal (hexagonal close packed hcp) to body center cubic (bcc) crystal structure at ambient pressures. Here, we demonstrate that when introduced into a nanocomposite bcc Mg is far more ductile, 50% stronger, and retains its strength after extended exposure to 200°C, which is 0.5 times itsmore » homologous temperature. These findings reveal an alternative solution to obtaining lightweight metals critically needed for future energy efficiency and fuel savings.« less

  6. Dislocation dynamics: simulation of plastic flow of bcc metals

    SciTech Connect

    Lassila, D H

    2001-02-20

    This is the final report for the LDRD strategic initiative entitled ''Dislocation Dynamic: Simulation of Plastic Flow of bcc Metals'' (tracking code: 00-SI-011). This report is comprised of 6 individual sections. The first is an executive summary of the project and describes the overall project goal, which is to establish an experimentally validated 3D dislocation dynamics simulation. This first section also gives some information of LLNL's multi-scale modeling efforts associated with the plasticity of bcc metals, and the role of this LDRD project in the multiscale modeling program. The last five sections of this report are journal articles that were produced during the course of the FY-2000 efforts.

  7. Strain relief of heteroepitaxial bcc-Fe(001) films.

    PubMed

    Wedler, G; Schneider, C M; Trampert, A; Koch, R

    2004-12-03

    The strain relief of heteroepitaxial bcc-Fe(001) films, deposited at 520-570 K onto MgO(001), has been investigated by scanning tunneling microscopy. In accordance with real-time stress measurements, the tensile misfit strain is relieved during coalescence of flat, mainly 2-3 monolayers (ML) high Fe islands at the high thickness of approximately 20 ML. To accommodate the misfit between merging strain-relaxed islands, a network of 1/2[111] screw dislocations is formed. A strong barrier for dislocation glide--which is typical for bcc metals--is most likely responsible for the big delay in strain relief of Fe/MgO(001), since only the elastic energy of the uppermost layer(s) is available for the formation of an energy-costly intermediate layer.

  8. Student Opinion Survey, 1976. Research Report: BCC 1-77.

    ERIC Educational Resources Information Center

    Eagle, Norman

    A student opinion survey was administered to a sample of 1,100 students at Bronx Community College (BCC) in 1976. Respondent ethnicity distribution was 46.2% black, 29.1% hispanic, 17.0% white, 1.5% Oriental, and 6.3% other. More than half of the respondents were in either liberal arts and music (42.8%) or business curricula (21.8%). Results…

  9. Calculation of body-centered-cubic lattice sums with an application to ferromagnetism.

    NASA Technical Reports Server (NTRS)

    Wintucky, E. G.

    1972-01-01

    The lattice sums for the bcc lattice are recalculated using the method of Flax and Raich to obtain more general expressions, valid for all temperatures, in terms of a Langevin function and its derivatives. Formulas are presented which enable easy numerical evaluation. A comparison with well-known low-temperature expansions and with the results of direct numerical integration demonstrates the validity at low temperatures of the more general expressions calculated here.

  10. Calculation of body-centered-cubic lattice sums with an application to ferromagnetism.

    NASA Technical Reports Server (NTRS)

    Wintucky, E. G.

    1972-01-01

    The lattice sums for the bcc lattice are recalculated using the method of Flax and Raich to obtain more general expressions, valid for all temperatures, in terms of a Langevin function and its derivatives. Formulas are presented which enable easy numerical evaluation. A comparison with well-known low-temperature expansions and with the results of direct numerical integration demonstrates the validity at low temperatures of the more general expressions calculated here.

  11. Magnetism in bcc and fcc Fe with carbon and manganese.

    PubMed

    Medvedeva, N I; Van Aken, D; Medvedeva, J E

    2010-08-11

    Density functional theory calculations were performed to study the structure and magnetic properties of bcc (α) and fcc (γ) Fe with 3 at.% carbon and manganese impurities. We find that all bcc-based Fe, Fe-C and Fe-Mn-C phases exhibit a ferromagnetic (FM) ground state, while the antiferromagnetic double-layer (AFMD) state is lowest in energy within the collinear spin approach in fcc Fe, Fe-C and Fe-Mn-C phases. However, the carbon and manganese impurities affect the local magnetic interactions significantly. The states with opposite manganese magnetic moments are quasi-degenerate in bcc Fe-Mn alloy, whereas octa-site carbon stabilizes ferromagnetic coupling of the nearest manganese atom with the Fe host. We demonstrate that the antiferromagnetic (AFM) fcc Fe-C and Fe-Mn-C alloys are intrinsically inhomogeneous magnetic systems. Carbon frustrates the local magnetic order by reorientation of magnetic moments of the nearest Mn and Fe atoms, and favors their ferromagnetic coupling. The competition between ferromagnetic and antiferromagnetic Fe-Fe and Fe-Mn interactions and the local magnetovolume instability near carbon may give rise to the spin-glass-like regions observed in austenitic Fe-Mn-C alloys.

  12. Compression dynamics and lattice kinetics in laser driven shocks of BCC metals using dynamic Laue diffraction

    NASA Astrophysics Data System (ADS)

    Wehrenberg, Christopher

    2013-10-01

    Laue diffraction experiments were used to directly observe the strain relaxation process in Ta shock compressed along the [001] direction. The unit cell aspect ratio was measured from Laue patterns at times ranging 0.1 to 1.6 ns relative to the shock wave entering the Ta sample. For 50 GPa shocks, the aspect ratio increases asymptotically to a value of 0.95 over the course of ~1 ns. The 1 ns time scale is on the order of predictions of the relaxation time scale made using the Livermore multiscale strength model [Rudd, R SCCM 2011]. In contrast, ultra-fast (less than 10 ps) relaxation times are expected above the homogeneous nucleation threshold. Consistent with this behavior, Ta subjected to shocks at 90 GPa relaxes faster than the resolution of the diffraction experiments (approximately 150 ps). As the relaxation time will be dependent on the dislocation density, one can infer a dislocation density behind the 50 GPa shock front. Dislocation densities estimated in this manner agree with in an order of magnitude both with predictions by the multiscale model and with residual dislocation densities observed in post-mortem samples. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  13. Formation of bcc and fcc during the coalescence of free and supported Fe and Ni clusters.

    PubMed

    Li, Guojian; Wang, Qiang; Sui, Xudong; Wang, Kai; Wu, Chun; He, Jicheng

    2015-09-07

    The formation of bcc and fcc during the coalescence of free and supported Fe and Ni clusters has been studied by molecular dynamics simulation using an embedded atom method. Structural evolution of the clusters, coalesced under varying temperature, Ni content and substrate conditions, was explored by interatomic energy, snapshots, pair distribution functions and bond order parameters. The results show that the formation of bcc and fcc is strongly related to Ni content, substrate and coalescence temperature. Free clusters coalesced at 1200 K form bcc at lower Ni contents with fcc forming at higher Ni concentrations and no observable coexistence of bcc and fcc. Differences in coalescence at 1000 K result from the coexistence of bcc and fcc within the Ni range of 50-70%. Free clusters supported on disordered Ni substrates were shown to transform from spherical morphology to islands of supported clusters with preferred epitaxial orientation. The Ni content required to form bcc and fcc coexistence on supported clusters at 1000 K decreased to 30-50% Ni. Free clusters possessing bcc and fcc generally stacked along the bcc (110) and fcc (111) facets, whereas supported clusters stacked along the (111) bcc and (100) fcc planes. Structural transformation was induced by clusters containing greater numbers of atoms. Spread over the substrate enhanced interatomic energy, order substrates affect the epitaxial growth direction and increase the melting points of the supported clusters. This study can be used to predict the nature of fcc and bcc formation in Fe-Ni films.

  14. Role of lipase in Burkholderia cepacia complex (Bcc) invasion of lung epithelial cells.

    PubMed

    Mullen, T; Markey, K; Murphy, P; McClean, S; Callaghan, M

    2007-12-01

    The Burkholderia cepacia complex (Bcc) is a group of ten closely related species associated with life-threatening infection in cystic fibrosis (CF). These bacteria are highly antibiotic resistant, with some strains transmissible, and in a subgroup of patients, they can cause a rapid and fatal necrotising pneumonia. The Bcc organisms produce a range of exoproducts with virulence potential, including exopolysaccharide, proteases and lipases. Many members of the Bcc are also capable of epithelial cell invasion, although the mechanism(s) involved are poorly understood. This study investigates a role for Bcc lipase in epithelial cell invasion by Bcc strains. Lipase activity was measured in eight species of the Bcc. Strains that produced high levels of lipase were predominantly from the B. multivorans and B. cenocepacia species. Pre-treatment of two epithelial cell lines with Bcc lipase significantly increased invasion by two B. multivorans strains and one B. cenocepacia strain and did not affect either plasma membrane or tight junction integrity. Inhibition of Bcc lipase production by the lipase inhibitor Orlistat significantly decreased invasion by both B. multivorans and B. cenocepacia strains in a concentration-dependent manner. This study demonstrates the extent of lipase production across the Bcc and establishes a potential role for lipase in Bcc epithelial cell invasion.

  15. Strong impact of lattice vibrations on electronic and magnetic properties of paramagnetic Fe revealed by disordered local moments molecular dynamics

    NASA Astrophysics Data System (ADS)

    Alling, B.; Körmann, F.; Grabowski, B.; Glensk, A.; Abrikosov, I. A.; Neugebauer, J.

    2016-06-01

    We study the impact of lattice vibrations on magnetic and electronic properties of paramagnetic bcc and fcc iron at finite temperature, employing the disordered local moments molecular dynamics (DLM-MD) method. Vibrations strongly affect the distribution of local magnetic moments at finite temperature, which in turn correlates with the local atomic volumes. Without the explicit consideration of atomic vibrations, the mean local magnetic moment and mean field derived magnetic entropy of paramagnetic bcc Fe are larger compared to paramagnetic fcc Fe, which would indicate that the magnetic contribution stabilizes the bcc phase at high temperatures. In the present study we show that this assumption is not valid when the coupling between vibrations and magnetism is taken into account. At the γ -δ transition temperature (1662 K), the lattice distortions cause very similar magnetic moments of both bcc and fcc structures and hence magnetic entropy contributions. This finding can be traced back to the electronic densities of states, which also become increasingly similar between bcc and fcc Fe with increasing temperature. Given the sensitive interplay of the different physical excitation mechanisms, our results illustrate the need for an explicit consideration of vibrational disorder and its impact on electronic and magnetic properties to understand paramagnetic Fe. Furthermore, they suggest that at the γ -δ transition temperature electronic and magnetic contributions to the Gibbs free energy are extremely similar in bcc and fcc Fe.

  16. Cubic to tetragonal crystal lattice reconstruction during ordering or decomposition

    SciTech Connect

    Cheong, Byung-kl

    1992-09-01

    This thesis studied thermodynamic stability and morphology of product phases in diffusional phase transformations involving cubic-to-tetragonal crystal lattice reconstructions. Two different kinds of diffusional transformations were examined: L1{sub 0} ordering (fcc to fct lattice change) and decomposition of off-stoichiometric B2 ordering alloys accompanying bcc to fcc Bain transformation. In the first case, Fe-45 at.% Pd alloys were studied by TEM; in the second, the Bain strain relaxation during decomposition of hyper-eutectoid Cu-9.04 wt% Be alloy was studied. CuAu and InMg were also studied.

  17. Ab initio calculations of elastic properties of bcc Fe-Mg and Fe-Cr random alloys

    NASA Astrophysics Data System (ADS)

    Zhang, Hualei; Johansson, Börje; Vitos, Levente

    2009-06-01

    Using the ab initio exact muffin-tin orbitals method in combination with the coherent-potential approximation, we have calculated the elastic parameters of ferromagnetic Fe1-mMgm (0≤m≤0.1) and Fe1-cCrc (0≤c≤0.2) random alloys in the body-centered cubic (bcc) crystallographic phase. Results obtained for Fe1-cCrc demonstrate that the employed theoretical approach accurately describes the experimentally observed composition dependence of the polycrystalline elastic moduli of Fe-rich alloys encompassing maximum ˜10% Cr. The elastic parameters of Fe-Cr alloys are found to exhibit anomalous composition dependence around 5% Cr. The immiscibility between Fe and Mg at ambient conditions is well reproduced by the present theory. The calculated lattice parameter for the Fe-Mg regular solid solution increases by ˜1.95% when 10% Mg is introduced in Fe, which corresponds approximately to 11% decrease in the average alloy density, in perfect agreement with the experimental finding. At the same time, we find that all of the elastic parameters of bcc Fe-Mg alloys decrease almost linearly with increasing Mg content. The present results show a much stronger alloying effect for Mg on the elastic properties of α-Fe than that for Cr. Our results call for further experimental studies on the mechanical properties of the Fe-Mg system.

  18. Two synchronous periungual BCC treated with Mohs surgery. Nail polish related?

    PubMed

    Dika, Emi; Patrizi, Annalisa; Fanti, Pier Alessandro; Alessandrini, Aurora; Sorci, Rita; Piraccini, Bianca Maria; Vaccari, Sabina; Misciali, Cosimo; Maibach, Howard I

    2013-06-01

    Basal cell carcinoma (BCC), the most frequent malignant skin tumor observed in Caucasian adults, especially males, occurs mainly in sun-exposed areas of the body. BCC in the periungual tissues, such as proximal nail fold, nail matrix, nail bed and hyponychium, is rarely reported. We report a patient with two synchronous BCC of the periungual tissue localized in the IV and V fingernail, effectively treated with Mohs micrographic surgery.

  19. Microstructural studies of hydrogen and deuterium in bcc refractory metals. Progress report, 1 May 1979-31 July 1980

    SciTech Connect

    Moss, S.C.

    1980-01-01

    Over the past four years this research has been principally concerned with uncovering the microstructural atomic arrangements in alloys of hydrogen and deuterium with bcc refractory metals. Because these are interstitial phases in which the host metal lattice is substantially deformed by the incorporation of the H(D) atoms, there are pronounced x-ray scattering effects. X-ray diffraction has, therefore, been the main structural tool. A main objective of the project has been to determine the degree to which phase relations and solid solution properties in metal-hydride alloys depend upon the hydrogen-hydrogen interaction via the displacement field of the metal atoms. This has often included the elucidation of subtle thermodynamic properties which are revealed in structural studies.

  20. Layer texture of hot-rolled BCC metals and its significance for stress-corrosion cracking of main gas pipelines

    NASA Astrophysics Data System (ADS)

    Perlovich, Yu. A.; Isaenkova, M. G.; Krymskaya, O. A.; Morozov, N. S.

    2016-10-01

    Based on data of X-ray texture analysis of hot-rolled BCC materials it was shown that the layerwise texture inhomogeneity of products is formed during their manufacturing. The effect can be explained by saturation with interstitial impurities of the surface layer, resulting in dynamical deformation aging (DDA). DDA prevents the dislocation slip under rolling and leads to an increase of lattice parameters in the external layer. The degree of arising inhomogeneity correlates with the tendency of hot-rolled sheets and obtained therefrom tubes to stress-corrosion cracking under exploitation, since internal layers have a compressive effect on external layers, and prevents opening of corrosion cracks at the tube surface.

  1. Lattice overview

    SciTech Connect

    Creutz, M.

    1984-01-01

    After reviewing some recent developments in supercomputer access, the author discusses a few areas where perturbation theory and lattice gauge simulations make contact. The author concludes with a brief discussion of a deterministic dynamics for the Ising model. This may be useful for numerical studies of nonequilibrium phenomena. 13 references.

  2. MD and BCA simulations of He and H bombardment of fuzz in bcc elements

    NASA Astrophysics Data System (ADS)

    Klaver, T. P. C.; Zhang, S.; Nordlund, K.

    2017-08-01

    We present results of MD simulations of low energy He ion bombardment of low density fuzz in bcc elements. He ions can penetrate several micrometers into sparse fuzz, which allows for a sufficient He flux through it to grow the fuzz further. He kinetic energy falls off exponentially with penetration depth. A BCA code was used to carry out the same ion bombardment on the same fuzz structures as in MD simulations, but with simpler, 10 million times faster calculations. Despite the poor theoretical basis of the BCA at low ion energies, and the use of somewhat different potentials in MD and BCA calculations, the ion penetration depths predicted by BCA are only ∼12% less than those predicted by MD. The MD-BCA differences are highly systematic and trends in the results of the two methods are very similar. We have carried out more than 200 BCA calculation runs of ion bombardment of fuzz, in which parameters in the ion bombardment process were varied. For most parameters, the results show that the ion bombardment process is quite generic. The ion species (He or H), ion mass, fuzz element (W, Ta, Mo, Fe) and fuzz element lattice parameter turned out to have a modest influence on ion penetration depths at most. An off-normal angle of incidence strongly reduces the ion penetration depth. Increasing the ion energy increases the ion penetration, but the rate by which ion energy drops off at high ion energies follows the same exponential pattern as at lower energies.

  3. Incidence and prevalence of basal cell carcinoma (BCC) and locally advanced BCC (LABCC) in a large commercially insured population in the United States: A retrospective cohort study.

    PubMed

    Goldenberg, Gary; Karagiannis, Tom; Palmer, Jacqueline Blanche; Lotya, Juzer; O'Neill, Caitriona; Kisa, Renata; Herrera, Vivian; Siegel, Daniel M

    2016-11-01

    Accurate evaluation of basal cell carcinoma (BCC) in the United States was not possible before the 2011 release of BCC-specific International Classification of Diseases, Ninth Revision, Clinical Modification codes. We sought to describe BCC (including locally advanced BCC [LABCC]) incidence/prevalence and the characteristics of patients in a commercially insured US population. This retrospective cohort study used Truven Health MarketScan database insurance claims. Patients, aged 18 years or older with 2 or more BCC claims at least 30 days apart from October 1, 2011, to September 30, 2012, were continuously enrolled in medical and pharmacy benefits for 12 months before and after the index claim. A specific algorithm was used to classify patients with LABCC. A total of 56,987 patients with BCC were identified (39,035 incident cases; 17,952 prevalent cases). Age-adjusted BCC incidence and prevalence were 226.09 and 342.64 per 100,000 persons, respectively. These values project to 542,782 patients (incidence) and 822,593 patients (prevalence) in the 2012 US population. LABCC was uncommon (471 cases identified; projected US incidence and prevalence: 4399 and 7940 patients, respectively). Use of medical claims data and retrospective analysis are limitations. In a study designed to distinguish patients with LABCC from the general BCC population based on BCC-specific International Classification of Diseases, Ninth Revision, Clinical Modification codes, 0.8% were found to have LABCC, the majority having pre-existing disease. Copyright © 2016 American Academy of Dermatology, Inc. Published by Elsevier Inc. All rights reserved.

  4. Nonequilibrium phase transformations in bcc titanium and niobium alloys

    NASA Astrophysics Data System (ADS)

    Doherty, Kevin James

    The major goal throughout this entire study was to find a bulk beta-titanium amorphous system. In this case, the feasibility of bulk amorphization by destabilizing the crystalline phase in bcc titanium alloys is developed. The binary Ti-Cr system was previously reported, by others, to undergo spontaneous vitrification. This work was later proven to be irreproducible by several other groups. With the proper alloying additions to the Ti-Cr system, the resultant bcc matrix is extremely unstable, however, the formation of alpha, o, and intermetallics is inhibited. Powders of the complex system Ti65Cr13Cu 16Mn4Fe2 transform to a fully amorphous structure after just 3 to 4 hours of mechanical milling. In bulk, this system forms nanoscale disordered regions, totaling 20 to 30% of the microstructure, upon annealing of the metastable bcc phase. The phase separation, beta → beta + beta' accompanies this transformation and induces strain into the matrix. Analytical high resolution transmission electron microscopy (TEM) is used to characterize the decomposition behavior by obtaining physical measurements of the microstructure and chemistry, and to determine the mechanism of the phase separation. High resolution and analytical TEM data map the development of successive chromium rich (copper poor) and chromium poor (copper rich) regions formed in <100> directions during heat treatment. This reaction is shown to occur by spinodal decomposition. A known bcc, binary spinodal decomposition system, Nb-Zr, was chosen as a reference system to verify the spinodal mechanism in the 5-component titanium system and to validate the use of analytical TEM to characterize spinodal decomposition. The Ti-Cr system is also investigated for comparison with the complex Ti-Cr-Cu-Mn-Fe system and to resolve some of the issues presented during the earlier spontaneous vitrification studies. Finally, a combination of high resolution TEM and chemical analysis is utilized to differentiate between the

  5. Electronic selection rules controlling dislocation glide in bcc metals.

    PubMed

    Jones, Travis E; Eberhart, Mark E; Clougherty, Dennis P; Woodward, Chris

    2008-08-22

    The validity of the structure-property relationships governing the low-temperature deformation behavior of many bcc metals was brought into question with recent ab initio density functional studies of isolated screw dislocations in Mo and Ta. These relationships were semiclassical in nature, having grown from atomistic investigations of the deformation properties of the group V and VI transition metals. We find that the correct form for these structure-property relationships is fully quantum mechanical, involving the coupling of electronic states with the strain field at the core of long a/<2111> screw dislocations.

  6. Cadinane sesquiterpenoids from the basidiomycete Stereum cf. sanguinolentum BCC 22926.

    PubMed

    Bunyapaiboonsri, Taridaporn; Yoiprommarat, Seangaroon; Nopgason, Rujirek; Komwijit, Somjit; Veeranondha, Sukitaya; Puyngain, Pucharapa; Boonpratuang, Thitiya

    2014-09-01

    Stereumins Q-U, together with known stereumins A, B, K, L, and N, as well as ent-strobilols E and G were isolated from the culture of Stereum cf. sanguinolentum BCC 22926. Their structures were elucidated by extensive spectroscopic analyses. The absolute configurations of stereumins A and Q, as well as ent-strobilol E were established by application of the modified Mosher's method. Stereumin T displayed antibacterial activity against Bacilluscereus with a MIC value of 3.97μM.

  7. Cosine-Weighted B-spline interpolation: a fast and high-quality reconstruction scheme for the Body-Centered Cubic lattice.

    PubMed

    Csébfalvi, Balázs

    2013-09-01

    In this paper, Cosine-Weighted B-spline (CWB) filters are proposed for interpolation on the optimal Body-Centered Cubic (BCC) lattice. We demonstrate that our CWB filters can well exploit the fast trilinear texture-fetching capability of modern GPUs, and outperform the state-of-the-art box-spline filters not just in terms of efficiency, but in terms of visual quality and numerical accuracy as well. Furthermore, we rigorously show that the CWB filters are better tailored to the BCC lattice than the previously proposed quasi-interpolating BCC B-spline filters, because they form a Riesz basis; exactly reproduce the original signal at the lattice points; but still provide the same approximation order.

  8. Ab initio calculations of mechanical properties of bcc W-Re-Os random alloys: effects of transmutation of W

    NASA Astrophysics Data System (ADS)

    Li, Xiaojie; Schönecker, Stephan; Li, Ruihuan; Li, Xiaoqing; Wang, Yuanyuan; Zhao, Jijun; Johansson, Börje; Vitos, Levente

    2016-07-01

    To examine the effect of neutron transmutation on tungsten as the first wall material of fusion reactors, the elastic properties of W1-x-y  Re x  Os y (0  ⩽  x, y  ⩽  6%) random alloys in body centered cubic (bcc) structure are investigated systematically using the all-electron exact muffin-tin orbitals (EMTO) method in combination with the coherent-potential approximation (CPA). The calculated lattice constant and elastic properties of pure W are consistent with available experiments. Both Os and Re additions reduce the lattice constant and increase the bulk modulus of W, with Os having the stronger effect. The polycrystalline shear modulus, Young’s modulus and the Debye temperature increase (decrease) with the addition of Re (Os). Except for C 11, the other elastic parameters including C 12, C 44, Cauchy pressure, Poisson ratio, B/G, increase as a function of Re and Os concentration. The variations of the latter three parameters and the trend in the ratio of cleavage energy to shear modulus for the most dominant slip system indicate that the ductility of the alloy enhances with increasing Re and Os content. The calculated elastic anisotropy of bcc W slightly increases with the concentration of both alloying elements. The estimated melting temperatures of the W-Re-Os alloy suggest that Re or Os addition will reduce the melting temperature of pure W solid. The classical Labusch-Nabarro model for solid-solution hardening predicts larger strengthening effects in W1-y  Os y than in W1-x  Re x . A strong correlation between C‧ and the fcc-bcc structural energy difference for W1-x-y  Re x  Os y is revealed demonstrating that canonical band structure dictates the alloying effect on C‧. The structural energy difference is exploited to estimate the alloying effect on the ideal tensile strength in the [0 0 1] direction.

  9. Ab initio calculations of mechanical properties of bcc W-Re-Os random alloys: effects of transmutation of W.

    PubMed

    Li, Xiaojie; Schönecker, Stephan; Li, Ruihuan; Li, Xiaoqing; Wang, Yuanyuan; Zhao, Jijun; Johansson, Börje; Vitos, Levente

    2016-06-03

    To examine the effect of neutron transmutation on tungsten as the first wall material of fusion reactors, the elastic properties of W1-x-y  Re x  Os y (0  ⩽  x, y  ⩽  6%) random alloys in body centered cubic (bcc) structure are investigated systematically using the all-electron exact muffin-tin orbitals (EMTO) method in combination with the coherent-potential approximation (CPA). The calculated lattice constant and elastic properties of pure W are consistent with available experiments. Both Os and Re additions reduce the lattice constant and increase the bulk modulus of W, with Os having the stronger effect. The polycrystalline shear modulus, Young's modulus and the Debye temperature increase (decrease) with the addition of Re (Os). Except for C 11, the other elastic parameters including C 12, C 44, Cauchy pressure, Poisson ratio, B/G, increase as a function of Re and Os concentration. The variations of the latter three parameters and the trend in the ratio of cleavage energy to shear modulus for the most dominant slip system indicate that the ductility of the alloy enhances with increasing Re and Os content. The calculated elastic anisotropy of bcc W slightly increases with the concentration of both alloying elements. The estimated melting temperatures of the W-Re-Os alloy suggest that Re or Os addition will reduce the melting temperature of pure W solid. The classical Labusch-Nabarro model for solid-solution hardening predicts larger strengthening effects in W1-y  Os y than in W1-x  Re x . A strong correlation between C' and the fcc-bcc structural energy difference for W1-x-y  Re x  Os y is revealed demonstrating that canonical band structure dictates the alloying effect on C'. The structural energy difference is exploited to estimate the alloying effect on the ideal tensile strength in the [0 0 1] direction.

  10. Bcc crystal-fluid interfacial free energy in Yukawa systems.

    PubMed

    Heinonen, V; Mijailović, A; Achim, C V; Ala-Nissila, T; Rozas, R E; Horbach, J; Löwen, H

    2013-01-28

    We determine the orientation-resolved interfacial free energy between a body-centered-cubic (bcc) crystal and the coexisting fluid for a many-particle system interacting via a Yukawa pair potential. For two different screening strengths, we compare results from molecular dynamics computer simulations, density functional theory, and a phase-field-crystal approach. Simulations predict an almost orientationally isotropic interfacial free energy of 0.12k(B)T/a(2) (with k(B)T denoting the thermal energy and a the mean interparticle spacing), which is independent of the screening strength. This value is in reasonable agreement with our Ramakrishnan-Yussouff density functional calculations, while a high-order fitted phase-field-crystal approach gives about 2-3 times higher interfacial free energies for the Yukawa system. Both field theory approaches also give a considerable anisotropy of the interfacial free energy. Our result implies that, in the Yukawa system, bcc crystal-fluid free energies are a factor of about 3 smaller than face-centered-cubic crystal-fluid free energies.

  11. Lattice fermions

    NASA Technical Reports Server (NTRS)

    Wilczek, Frank

    1987-01-01

    A simple heuristic proof of the Nielsen-Ninomaya theorem is given. A method is proposed whereby the multiplication of fermion species on a lattice is reduced to the minimal doubling, in any dimension, with retention of appropriate chiral symmetries. Also, it is suggested that use of spatially thinned fermion fields is likely to be a useful and appropriate approximation in QCD - in any case, it is a self-checking one.

  12. Deposition and characterization of magnetron sputtered bcc tantalum

    NASA Astrophysics Data System (ADS)

    Patel, Anamika

    The goal of this thesis was to provide scientific and technical research results for developing and characterizing tantalum (Ta) coatings on steel substrates deposited by DC magnetron sputtering. Deposition of tantalum on steel is of special interest for the protection it offers to surfaces, e.g. the surfaces of gun barrels against the erosive wear of hot propellant gases and the mechanical damage caused by the motion of launching projectiles. Electro-plated chromium is presently most commonly used for this purpose; however, it is considered to be carcinogenic in its hexavalent form. Tantalum is being investigated as non-toxic alternative to chromium and also because of its superior protective properties in these extreme environments. DC magnetron sputtering was chosen for this investigation of tantalum coatings on steel substrates because it is a versatile industrial proven process for deposition of metals. Sputter deposited Ta films can have two crystallographic structures: (1) body center cubic (bcc) phase, characterized by high toughness and high ductility and (2) a tetragonal beta phase characterized by brittleness and a tendency to fail under stress. It was found in this work that the bcc Ta coatings on steel can be obtained reliably by either of two methods: (1) depositing Ta on a submicron, stoichiometric TaN seed layer reactively sputtered on unheated steel and (2) depositing Ta directly on steel heated above a critical temperature. For argon sputtering gas this critical temperature was found to be 400°C at a pressure of 5 mtorr. With the heavier krypton gas, this critical temperature is reduced to 350°C. X-ray diffraction (XRD) was used to investigate the structure of tantalum and nitride films, and the composition of the nitride films was measured by nuclear reaction analyses (NRA), which were used to study in detail the enhancement of the bcc phase of Ta on steel. The scratch adhesion tests performed with a diamond hemispherical tip of radius 200 mum

  13. 22 CFR 41.33 - Nonresident alien Canadian border crossing identification card (BCC).

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 22 Foreign Relations 1 2014-04-01 2014-04-01 false Nonresident alien Canadian border crossing... Nonresident alien Canadian border crossing identification card (BCC). (a) Validity of Canadian BCC. A Canadian....122, or if the consular or immigration officer determines that the alien to whom any such document was...

  14. 22 CFR 41.33 - Nonresident alien Canadian border crossing identification card (BCC).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 22 Foreign Relations 1 2012-04-01 2012-04-01 false Nonresident alien Canadian border crossing... Nonresident alien Canadian border crossing identification card (BCC). (a) Validity of Canadian BCC. A Canadian....122, or if the consular or immigration officer determines that the alien to whom any such document was...

  15. 22 CFR 41.33 - Nonresident alien Canadian border crossing identification card (BCC).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 22 Foreign Relations 1 2013-04-01 2013-04-01 false Nonresident alien Canadian border crossing... Nonresident alien Canadian border crossing identification card (BCC). (a) Validity of Canadian BCC. A Canadian....122, or if the consular or immigration officer determines that the alien to whom any such document was...

  16. A Demographic Profile of Incoming Matriculated Students, Fall, 1977. Research Report: BCC 3-77.

    ERIC Educational Resources Information Center

    Bronx Community Coll., NY.

    Demographic data were compiled on incoming fall 1977 freshmen at Bronx Community College (BCC), including sex, age, ethnic group, veteran status, satisfaction with BCC curriculum, highest expected educational level, number living in household, parental education, total household income, counseling requests, marital status, employment status, and…

  17. Evaluation of the Bilingual Curriculum Content (BCC) Pilot Project: A Three Year Study. Final Report.

    ERIC Educational Resources Information Center

    Rothfarb, Sylvia H.; And Others

    A three-year longitudinal study of bilingual curriculum content (BCC) was initiated in the 1983-84 school year to assess alternative strategies for teaching curriculum content to Limited English Proficient (LEP) students in Dade County (Florida) Public Schools. The BCC strategy (in which content subjects are taught bilingually) was contrasted with…

  18. Vismodegib for the treatment of basal cell carcinoma: results and implications of the ERIVANCE BCC trial.

    PubMed

    Dessinioti, Clio; Plaka, Michaela; Stratigos, Alexander J

    2014-05-01

    The need for effective treatment of patients with locally advanced or metastatic basal cell carcinoma (BCC), in conjunction with major advances in the elucidation of the molecular basis of this tumor has led to the advent of new targeted therapies - namely, hedgehog inhibitors. The rationale for their use in patients with advanced BCC is based on their inhibitory effect on the hedgehog pathway, which is aberrantly activated in BCCs due to mutations of its primary components, PTCH1 and SMO genes. Vismodegib (GDC-0449) is an orally bioavailable hedgehog pathway inhibitor that selectively inhibits SMO. The ERIVANCE BCC study is a Phase II, international, multicenter clinical trial evaluating the efficacy and safety of vismodegib 150 mg once daily in patients with locally advanced or metastatic BCC. Vismodegib has been approved for the treatment of adult patients with metastatic BCC, or with locally advanced BCC that has recurred following surgery or who are not candidates for surgery or radiation therapy. This article will outline the rationale, design and available results from the ERIVANCE BCC study and discuss the clinical implications of vismodegib in the management of patients with BCC. Challenges regarding vismodegib use include the recurrence of BCC after drug discontinuation, the development of acquired resistance, the dramatic efficacy in patients with Gorlin syndrome, and class-related drug toxicity. Ongoing clinical trials aim to explore the role of vismodegib in the neoadjuvant setting prior to surgery, the potential use of alternate dosing regimens in order to limit chronic adverse events, as well as the identification of patients with BCC that are more likely to respond to this targeted therapy based on genotypic and/or phenotypic characteristics.

  19. Plastic anisotropy and dislocation trajectory in BCC metals

    NASA Astrophysics Data System (ADS)

    Dezerald, Lucile; Rodney, David; Clouet, Emmanuel; Ventelon, Lisa; Willaime, François

    2016-05-01

    Plasticity in body-centred cubic (BCC) metals at low temperatures is atypical, marked in particular by an anisotropic elastic limit in clear violation of the famous Schmid law applicable to most other metals. This effect is known to originate from the behaviour of the screw dislocations; however, the underlying physics has so far remained insufficiently understood to predict plastic anisotropy without adjustable parameters. Here we show that deviations from the Schmid law can be quantified from the deviations of the screw dislocation trajectory away from a straight path between equilibrium configurations, a consequence of the asymmetrical and metal-dependent potential energy landscape of the dislocation. We propose a modified parameter-free Schmid law, based on a projection of the applied stress on the curved trajectory, which compares well with experimental variations and first-principles calculations of the dislocation Peierls stress as a function of crystal orientation.

  20. Finite-temperature magnetism in bcc Fe under compression.

    PubMed

    Sha, Xianwei; Cohen, R E

    2010-09-22

    We investigate the contributions of finite-temperature magnetic fluctuations to the thermodynamic properties of bcc Fe as functions of pressure. First, we apply a tight-binding total-energy model parameterized to first-principles linearized augmented plane-wave computations to examine various ferromagnetic, anti-ferromagnetic, and noncollinear spin spiral states at zero temperature. The tight-binding data are fit to a generalized Heisenberg Hamiltonian to describe the magnetic energy functional based on local moments. We then use Monte Carlo simulations to compute the magnetic susceptibility, the Curie temperature, heat capacity, and magnetic free energy. Including the finite-temperature magnetism improves the agreement with experiment for the calculated thermal expansion coefficients.

  1. Atomistic modeling of carbon Cottrell atmospheres in bcc iron.

    PubMed

    Veiga, R G A; Perez, M; Becquart, C S; Domain, C

    2013-01-16

    Atomistic simulations with an EAM interatomic potential were used to evaluate carbon-dislocation binding energies in bcc iron. These binding energies were then used to calculate the occupation probability of interstitial sites in the vicinity of an edge and a screw dislocation. The saturation concentration due to carbon-carbon interactions was also estimated by atomistic simulations in the dislocation core and taken as an upper limit for carbon concentration in a Cottrell atmosphere. We obtained a maximum concentration of 10 ± 1 at.% C at T = 0 K within a radius of 1 nm from the dislocation lines. The spatial carbon distributions around the line defects revealed that the Cottrell atmosphere associated with an edge dislocation is denser than that around a screw dislocation, in contrast with the predictions of the classical model of Cochardt and colleagues. Moreover, the present Cottrell atmosphere model is in reasonable quantitative accord with the three-dimensional atom probe data available in the literature.

  2. Plastic anisotropy and dislocation trajectory in BCC metals.

    PubMed

    Dezerald, Lucile; Rodney, David; Clouet, Emmanuel; Ventelon, Lisa; Willaime, François

    2016-05-25

    Plasticity in body-centred cubic (BCC) metals at low temperatures is atypical, marked in particular by an anisotropic elastic limit in clear violation of the famous Schmid law applicable to most other metals. This effect is known to originate from the behaviour of the screw dislocations; however, the underlying physics has so far remained insufficiently understood to predict plastic anisotropy without adjustable parameters. Here we show that deviations from the Schmid law can be quantified from the deviations of the screw dislocation trajectory away from a straight path between equilibrium configurations, a consequence of the asymmetrical and metal-dependent potential energy landscape of the dislocation. We propose a modified parameter-free Schmid law, based on a projection of the applied stress on the curved trajectory, which compares well with experimental variations and first-principles calculations of the dislocation Peierls stress as a function of crystal orientation.

  3. Electronic origin of solid solution softening in bcc molybdenum alloys.

    PubMed

    Medvedeva, N I; Gornostyrev, Yu N; Freeman, A J

    2005-04-08

    The intrinsic mechanism of solid solution softening in bcc molybdenum alloys due to 5d transition metal additions is investigated on the basis of ab initio electronic-structure calculations that model the effect of alloying elements on the generalized stacking fault (GSF) energies. We demonstrate that additions with an excess of electrons (Re, Os, Ir, and Pt) lead to a decrease in the GSF energy and those with a lack of electrons (Hf and Ta) to its sharp increase. Using the generalized Peierls-Nabarro model for a nonplanar core, we associate the local reduction of the GSF energy with an enhancement of double kink nucleation and an increase of the dislocation mobility, and we reveal the electronic reasons for the observed dependence of the solution softening on the atomic number of the addition.

  4. Plastic anisotropy and dislocation trajectory in BCC metals

    PubMed Central

    Dezerald, Lucile; Rodney, David; Clouet, Emmanuel; Ventelon, Lisa; Willaime, François

    2016-01-01

    Plasticity in body-centred cubic (BCC) metals at low temperatures is atypical, marked in particular by an anisotropic elastic limit in clear violation of the famous Schmid law applicable to most other metals. This effect is known to originate from the behaviour of the screw dislocations; however, the underlying physics has so far remained insufficiently understood to predict plastic anisotropy without adjustable parameters. Here we show that deviations from the Schmid law can be quantified from the deviations of the screw dislocation trajectory away from a straight path between equilibrium configurations, a consequence of the asymmetrical and metal-dependent potential energy landscape of the dislocation. We propose a modified parameter-free Schmid law, based on a projection of the applied stress on the curved trajectory, which compares well with experimental variations and first-principles calculations of the dislocation Peierls stress as a function of crystal orientation. PMID:27221965

  5. Atomistic simulations for multiscale modeling in bcc metal

    SciTech Connect

    Belak, J.; Moriarty, J.A.; Soderlind, P.; Xu, W.; Yang, L.H.; Zhu

    1998-09-25

    Quantum-based atomistic simulations are being used to study fundamental deformation and defect properties relevant to the multiscale modeling of plasticity in bcc metals at both ambient and extreme conditions. Ab initio electronic-structure calculations on the elastic and ideal-strength properties of Ta and Mo help constrain and validate many-body interatomic potentials used to study grain boundaries and dislocations. The predicted C(capital Sigma)5 (310)[100] grain boundary structure for Mo has recently been confirmed in HREM measurements. The core structure, (small gamma) surfaces, Peierls stress, and kink-pair formation energies associated with the motion of a/2(111) screw dislocations in Ta and Mo have also been calculated. Dislocation mobility and dislocation junction formation and breaking are currently under investigation.

  6. Free surface damage induced by irradiation of BCC iron

    NASA Astrophysics Data System (ADS)

    Korchuganov, Aleksandr V.

    2016-11-01

    The influence of the crystallographic orientation of bcc iron samples on the character of structural changes near the free surface irradiated with ions was studied in the framework of a molecular dynamics method. Irradiation of the (111) surface leads to the formation of craters surrounded by atoms escaped on the surface (adatoms). In the case of the (110) surface irradiation, a vacancy-type dislocation loop with the Burgers vector a <100> or a/2 <111> was formed. The number of adatoms and survived point defects was greater in the sample with the (110) surface than in the sample with the (111) surface for the atomic displacement cascade energies lower than 20 keV. The influence of the irradiated surface orientation on the number of generated point defects decreased with the increasing atomic displacement cascade energy.

  7. Calculation of Crystallographic Texture of BCC Steels During Cold Rolling

    NASA Astrophysics Data System (ADS)

    Das, Arpan

    2017-05-01

    BCC alloys commonly tend to develop strong fibre textures and often represent as isointensity diagrams in φ 1 sections or by fibre diagrams. Alpha fibre in bcc steels is generally characterised by <110> crystallographic axis parallel to the rolling direction. The objective of present research is to correlate carbon content, carbide dispersion, rolling reduction, Euler angles (ϕ) (when φ 1 = 0° and φ 2 = 45° along alpha fibre) and the resulting alpha fibre texture orientation intensity. In the present research, Bayesian neural computation has been employed to correlate these and compare with the existing feed-forward neural network model comprehensively. Excellent match to the measured texture data within the bounding box of texture training data set has been already predicted through the feed-forward neural network model by other researchers. Feed-forward neural network prediction outside the bounds of training texture data showed deviations from the expected values. Currently, Bayesian computation has been similarly applied to confirm that the predictions are reasonable in the context of basic metallurgical principles, and matched better outside the bounds of training texture data set than the reported feed-forward neural network. Bayesian computation puts error bars on predicted values and allows significance of each individual parameters to be estimated. Additionally, it is also possible by Bayesian computation to estimate the isolated influence of particular variable such as carbon concentration, which exactly cannot in practice be varied independently. This shows the ability of the Bayesian neural network to examine the new phenomenon in situations where the data cannot be accessed through experiments.

  8. Internal friction peaks due to interstitials in bcc alloys

    SciTech Connect

    Buck, O.; Carlson, O.N.; Indrawirawan, H.; Brasche, L.J.H.; Peterson, D.T.

    1991-01-01

    Richter's and Snoek's original works established the existence of an anelastic relaxation produced by a stress-induced interstitial reorientation in bcc metals. This anelastic relaxation, now referred to as a Snoek peak, has been studied extensively and well characterized in the past for the interstitials carbon, nitrogen, and oxygen. The existence of a hydrogen Snoek peak in bcc metals has been a matter of some controversy, however. We have studied relaxation peaks in V, Nb, and V-Nb alloys recently. The alloys have complete mutual solubility and are of interest since they have an extremely high room temperature solid solubility for hydrogen. They also have, over a certain composition range, not shown any hydride phase precipitation at temperatures as low as 4K. Thus, if a hydrogen Snoek peak does exist, it should be found in such alloys. Indeed there is evidence now of a spectrum of hydrogen relaxation peaks below room temperature. Furthermore, there is a large misfit of V in Nb and Nb in V and, possibly, some chemical interaction such that trapping (or antitrapping) of the interstitials at the substitutional sites, causing solute-interstitial peaks, can be characterized. The present paper provides an overview of our observations regarding: the effect of hydrogen on the oxygen and nitrogen Snoek peaks in pure V and Nb, The oxygen relaxation peaks in V-Nb alloys, The hydrogen relaxation spectrum in V-Nb alloys, and the effect of oxygen on the hydrogen relaxation spectrum in V-Nb alloys. 52 refs., 13 figs., 3 tabs.

  9. Genetic relationships among Italian and Mexican maize-rhizosphere Burkholderia cepacia complex (BCC) populations belonging to Burkholderia cenocepacia IIIB and BCC6 group

    PubMed Central

    2011-01-01

    Background A close association between maize roots and Burkholderia cepacia complex (BCC) bacteria has been observed in different locations globally. In this study we investigated by MultiLocus Restriction Typing (MLRT) the genetic diversity and relationships among Burkholderia cenocepacia IIIB and BCC6 populations associated with roots of maize plants cultivated in geographically distant countries (Italy and Mexico), in order to provide new insights into their population structure, evolution and ecology. Results The 31 B. cenocepacia IIIB and 65 BCC6 isolates gave rise to 29 and 39 different restriction types (RTs), respectively. Two pairs of isolates of B. cenocepacia IIIB and BCC6, recovered from both Italian and Mexican maize rhizospheres, were found to share the same RT. The eBURST (Based Upon Related Sequence Types) analysis of MLRT data grouped all the B. cenocepacia IIIB isolates into four clonal complexes, with the RT-4-complex including the 42% of them, while the majority of the BCC6 isolates (94%) were grouped into the RT-104-complex. These two main clonal complexes included RTs shared by both Italian and Mexican maize rhizospheres and a clear relationship between grouping and maize variety was also found. Grouping established by eBURST correlated well with the assessment using unweighted-pair group method with arithmetic mean (UPGMA). The standardized index of association values obtained in both B. cenocepacia IIIB and BCC6 suggests an epidemic population structure in which occasional clones emerge and spread. Conclusions Taken together our data demonstrate a wide dispersal of certain B. cenocepacia IIIB and BCC6 isolates in Mexican and Italian maize rhizospheres. Despite the clear relationship found between the geographic origin of isolates and grouping, identical RTs and closely related isolates were observed in geographically distant regions. Ecological factors and selective pressure may preferably promote some genotypes within each local microbial

  10. The incidence of metastatic basal cell carcinoma (mBCC) in Denmark, 1997-2010.

    PubMed

    Nguyen-Nielsen, Mary; Wang, Lisa; Pedersen, Lars; Olesen, Anne Braae; Hou, Jeannie; Mackey, Howard; McCusker, Margaret; Basset-Seguin, Nicole; Fryzek, Jon; Vyberg, Mogens

    2015-01-01

    Few data exist on the occurrence of metastatic basal cell carcinoma (mBCC). To identify all cases of mBCC in Denmark over a 14-year period. We searched the Danish National Patient Registry covering all Danish hospitals, the Danish Cancer Registry, the National Pathology Registry and the Causes of Death Registry during the period 1997 to 2010 for potential cases of mBCC registered according to the International classification of diseases ICD-10 and the International Systemized Nomenclature of Medicine (SNOMED). We identified 126,627 patients with a history of primary basal cell carcinoma (BCC) in the registries during the 14-year study period. Using case identifications from the four registries, a total of 170 potential mBCC cases were identified. However, after a pathology review, only five cases could be confirmed, of which three were basosquamous carcinomas. The 14-year cumulative incidence proportion of mBCC was 0.0039% (95% CI 0.0016-0.0083) among individuals with a history of previous BCC (n = 126,627) and 0.0001% (95% CI 0.0000-0.0002) in the general population. MBCC is a rare disease and only a small proportion of potential cases identified in automated clinical databases or registries can be confirmed by pathology and medical record review.

  11. Interaction of dislocations with carbon-decorated dislocation loops in bcc Fe: an atomistic study.

    PubMed

    Terentyev, Dmitry; Anento, Napoleón; Serra, Anna

    2012-11-14

    Properties of ferritic Fe-based alloys are highly sensitive to the carbon content dissolved in the matrix because interstitial carbon is known to strongly interact with lattice point defects and dislocations. As a result, the accumulation of radiation defects and its impact on the change of mechanical properties is also affected by the presence of dissolved interstitial carbon. This work contributes to an understanding of how interstitial carbon atoms influence the properties of small dislocation loops, which form directly in collision cascades upon neutron or ion irradiation and are 'invisible' to (i.e. undetectable by) standard experimental techniques applied to reveal nano-structural damage in metals. We have carried out MD simulations to investigate how the trapping of 1/2 inner product 111 dislocation loops at thermally stable carbon-vacancy complexes, known to form under irradiation, affects the interaction of these dislocation loops with dislocations in bcc Fe. We have considered loops of size 1 and 3.5 nm, which represent experimentally invisible and visible defects, respectively. The obtained results point at the strong suppression of the drag of carbon-decorated loops by dislocations. In the case of direct interaction between dislocation and carbon-decorated loops, invisible loops are found to act as obstacles whose strength is at least twice as high compared to that of undecorated ones. Additional strengthening due to the carbon decoration on the visible loops was also regularly registered. The reasons for the additional strengthening have been rationalized and discussed. It is demonstrated that carbon decoration/segregation at dislocation loops affects not only accumulation of radiation damage under prolonged irradiation but also alters the post-irradiation plastic deformation mechanisms. For the first time, we provide evidence that undetectable dislocation loops decorated by carbon do contribute to the radiation hardening.

  12. First-principles study of noble gas atoms in bcc Fe

    NASA Astrophysics Data System (ADS)

    Zhang, Pengbo; Ding, Jianhua; Sun, Dan; Zhao, Jijun

    2017-08-01

    We investigate the energetics and clustering trend of noble gas atoms (He, Ne, and Ar) in bcc Fe, and their interactions with vacancy or H/He impurities using first-principles calculations. We determine the formation energy of single and double noble gas atoms inside Fe host lattice as well as the resulted volume changes. The Ne/Ar formation energy is two and three times that of He. The attraction between Ne/Ar and vacancy is stronger than He-vacancy, indicating higher dissolution energy of Ne/Ar. The interstitial Ne-Ne/Ar-Ar pairs have stronger attractions (-1.91 eV/-1.40 eV) than He-He (-0.37 eV), forming stable <110> configurations. Such strong attraction means that He/Ne/Ar tend to aggregate, which can be well explained by the lower electron density induced by interstitial noble gas atoms and its strong repulsion with Fe atoms. Moreover, H/He energetically prefers to occupy the tetrahedral sites nearby Ne/Ar atom. The attraction energies of He-Ne/He-Ar pairs (-1.01 eV/-0.85 eV) are much stronger than those of H-Ne/H-Ar (-0.22 eV/-0.10 eV) and their charge density differences are discussed. The distinct attraction strengths by various noble gas atoms provide a preliminary explanation for the difference in irradiation effects on Fe solid by He, Ne, Ar, and He+H/Ne+He. These findings improve our understanding about the behavior of noble gas atoms and gas bubble formation in iron under irradiation.

  13. Molecular dynamics simulations of the mechanisms controlling the propagation of bcc/fcc semi-coherent interfaces in iron

    NASA Astrophysics Data System (ADS)

    Ou, X.; Sietsma, J.; Santofimia, M. J.

    2016-06-01

    Molecular dynamics simulations have been used to study the effects of different orientation relationships between fcc and bcc phases on the bcc/fcc interfacial propagation in pure iron systems at 300 K. Three semi-coherent bcc/fcc interfaces have been investigated. In all the cases, results show that growth of the bcc phase starts in the areas of low potential energy and progresses into the areas of high potential energy at the original bcc/fcc interfaces. The phase transformation in areas of low potential energy is of a martensitic nature while that in the high potential energy areas involves occasional diffusional jumps of atoms.

  14. First-principles investigation of magnetism and electronic structures of substitutional 3d transition-metal impurities in bcc Fe

    NASA Astrophysics Data System (ADS)

    Rahman, Gul; Kim, In Gee; Bhadeshia, H. K. D. H.; Freeman, Arthur J.

    2010-05-01

    The magnetic and electronic structures of 3d impurity atoms from Sc to Zn in ferromagnetic body-centered-cubic iron are investigated using the all-electron full-potential linearized augmented plane-wave method based on the generalized gradient approximation (GGA). We found that, in general, the GGA results are closer to the experimental values than those of the local spin density approximation. The calculated formation enthalpy data indicate the importance of a systematic study on the ternary Fe-C-X systems rather than the binary Fe-X systems in steel design. The lattice parameters are optimized and the conditions for spin polarization at the impurity sites are discussed in terms of the local Stoner model. Our calculations, which are consistent with previous work, imply that the local spin polarizations at Sc, Ti, V, Cu, and Zn are induced by the host Fe atoms. The early transition-metal atoms couple antiferromagnetically, while the late transition-metal atoms couple ferromagnetically to the host Fe atoms. The calculated total magnetization (M) of bcc Fe is reduced by impurity elements from Sc to Cr as a result of the antiferromagnetic interaction, with the opposite effect for solutes which couple ferromagnetically. The changes in M are attributed to nearest neighbor interactions, mostly between the impurity and host atoms. The atom averaged magnetic moment is shown to follow generally the well-known Slater-Pauling curve, but our results do not follow the linearity of the Slater-Pauling curve. We attribute this discrepancy to the weak ferromagnetic nature of bcc Fe. The calculated Fermi contact hyperfine fields follow the trend of the local magnetic moments. The effect of spin-orbit coupling is found not to be significant although it comes into prominence at locations far from the impurity sites.

  15. Molecular dynamics study of melting and fcc-bcc transitions in Xe.

    PubMed

    Belonoshko, A B; Ahuja, R; Johansson, B

    2001-10-15

    We have investigated the phase diagram of Xe over a wide pressure-temperature range by molecular dynamics. The calculated melting curve is in good agreement with earlier experimental data. At a pressure of around 25 GPa and a temperature of about 2700 K we find a triple fcc-bcc liquid point. The calculated fcc-bcc boundary is in nice agreement with the experimental points, which, however, were interpreted as melting. This finding suggests that the transition from close-packed to bcc structure might be more common at high pressure and high temperature than was previously anticipated.

  16. Observation of continuous and reversible bcc-fcc phase transformation in Ag/V multilayers

    SciTech Connect

    Wei, Q. M.; Liu, X.-Y.; Misra, A.

    2011-03-14

    A continuous and reversible bcc-fcc phase transformation via a rotation of bcc(110) or fcc(111) planes is observed in the Bain orientation relationship in a sputter deposited V/Ag multilayers using high resolution transmission electron microscopy and analyzed using molecular dynamics simulations. As a result of the continuous phase transformation, an intermediate bct phase connecting the bcc and fcc phases coexists, giving rise to the Bain path. The periodic displacement of atoms occurs in every two adjacent Ag and V layers. The alternating shear stress created by misfit strain is responsible for generating such transformation.

  17. Interplay between interstitial displacement and displacive lattice transformations

    NASA Astrophysics Data System (ADS)

    Zhang, Xie; Hickel, Tilmann; Rogal, Jutta; Neugebauer, Jörg

    2016-09-01

    Diffusionless displacive lattice rearrangements, which include martensitic transformations, are in real materials often accompanied by a displacive drag of interstitials. The interplay of both processes leads to a particular atomistic arrangement of the interstitials in the product phase, which is decisive for its performance. An archetype example is the martensitic transformation in Fe-C alloys. One of the puzzles for this system is that the deviation from the cubic symmetry (i.e., the tetragonality) in the martensite resulting from this interplay is lower than what thermodynamics dictates. In our ab initio approach, the relative motion of C in the transforming lattice is studied with the nudged elastic band method. We prove that an atomic shearlike shuffle mechanism of adjacent (11 2 ¯) Fe layers along the ±[111] bcc directions is essential to achieve a redistribution of C atoms during the fcc → bcc transition, which fully explains the abnormal behavior. Furthermore, the good agreement with experiment validates our method to treat a diffusionless redistribution of interstitials and a displacive rearrangement of the host lattice simultaneously.

  18. An evaluation of prefiltered B-spline reconstruction for quasi-interpolation on the Body-Centered Cubic lattice.

    PubMed

    Csébfalvi, Balázs

    2010-01-01

    In this paper, we demonstrate that quasi-interpolation of orders two and four can be efficiently implemented on the Body-Centered Cubic (BCC) lattice by using tensor-product B-splines combined with appropriate discrete prefilters. Unlike the nonseparable box-spline reconstruction previously proposed for the BCC lattice, the prefiltered B-spline reconstruction can utilize the fast trilinear texture-fetching capability of the recent graphics cards. Therefore, it can be applied for rendering BCC-sampled volumetric data interactively. Furthermore, we show that a separable B-spline filter can suppress the postaliasing effect much more isotropically than a nonseparable box-spline filter of the same approximation power. Although prefilters that make the B-splines interpolating on the BCC lattice do not exist, we demonstrate that quasi-interpolating prefiltered linear and cubic B-spline reconstructions can still provide similar or higher image quality than the interpolating linear box-spline and prefiltered quintic box-spline reconstructions, respectively.

  19. Longitudinal spin fluctuation contribution to thermal lattice expansion of paramagnetic Fe

    NASA Astrophysics Data System (ADS)

    Dong, Zhihua; Li, Wei; Chen, Dengfu; Schönecker, Stephan; Long, Mujun; Vitos, Levente

    2017-02-01

    Using an efficient first-principles computational scheme for paramagnetic body-centered cubic (bcc) and face-centered cubic (fcc) Fe, we investigate the impact of thermal longitudinal spin fluctuations (LSFs) on the thermal lattice expansion. The equilibrium physical parameters are derived from the self-consistent Helmholtz free energy, in which the LSFs are considered within the adiabatic approximation and the anharmonic lattice vibration effect is included using the Debye-Grüneisen model taking into account the interplay between thermal, magnetic, and elastic degrees of freedom. Thermal LSFs are energetically more favorable in the fcc phase than in the bcc one giving a sizable contribution to the linear thermal expansion of γ -Fe. The present scheme leads to accurate temperature-dependent equilibrium Wigner-Seitz radius, bulk modulus, and Debye temperature within the stability fields of the two phases and demonstrates the importance of thermal spin fluctuations in paramagnetic Fe.

  20. Lattice location of O18 in ion implanted Fe crystals by Rutherford backscattering spectrometry, channeling and nuclear reaction analysis

    NASA Astrophysics Data System (ADS)

    Vairavel, Mathayan; Sundaravel, Balakrishnan; Panigrahi, Binaykumar

    2016-09-01

    There are contradictory theoretical predictions of lattice location of oxygen interstitial atom at tetrahedral and octahedral interstices in bcc Fe. For validating these predictions, 300 keV O18 ions with fluence of 5 × 1015 ions/cm2 are implanted into bcc Fe single crystals at room temperature and annealed at 400 °C. The Rutherford backscattering spectrometry (RBS) and nuclear reaction analysis (NRA)/channeling measurements are carried out with 850 keV protons. The lattice location of implanted O18 is analysed using the α-particles yield from O18(p,α)N15 nuclear reaction. The tilt angular scans of α-particle yield along <110> and <100> axial directions are performed at room temperature. Lattice location of O18 is found to be at tetrahedral interstitial site by comparing the experimental scan with simulated scans using FLUX7 software.

  1. Ab initio study of the anharmonic lattice dynamics of iron at the γ -δ phase transition

    NASA Astrophysics Data System (ADS)

    Lian, Chao-Sheng; Wang, Jian-Tao; Chen, Changfeng

    2015-11-01

    We report calculations of phonon dispersions of iron (Fe) at its γ -δ phase transition using a self-consistent ab initio lattice dynamical method in conjunction with an effective magnetic force approach via the antiferromagnetic approximation. Our results show that anharmonic phonon-phonon interactions play a crucial role in stabilizing the δ -Fe phase in the open bcc lattice. In contrast, the lattice dynamics of the close-packed fcc γ -Fe phase are dominated by magnetic interactions. Simultaneous considerations of the lattice anharmonic and magnetic interactions produced temperature-dependent phonon dispersions for δ -Fe and γ -Fe phases in excellent agreement with recent experimental measurements. The present results highlight the key role of lattice anharmonicity in determining the structural stability of iron at high temperatures, which has significant implications for other high-temperature paramagnetic metals like Ce and Pu.

  2. Random-field Ising model on isometric lattices: Ground states and non-Porod scattering.

    PubMed

    Bupathy, Arunkumar; Banerjee, Varsha; Puri, Sanjay

    2016-01-01

    We use a computationally efficient graph cut method to obtain ground state morphologies of the random-field Ising model (RFIM) on (i) simple cubic (SC), (ii) body-centered cubic (BCC), and (iii) face-centered cubic (FCC) lattices. We determine the critical disorder strength Δ_{c} at zero temperature with high accuracy. For the SC lattice, our estimate (Δ_{c}=2.278±0.002) is consistent with earlier reports. For the BCC and FCC lattices, Δ_{c}=3.316±0.002 and 5.160±0.002, respectively, which are the most accurate estimates in the literature to date. The small-r behavior of the correlation function exhibits a cusp regime characterized by a cusp exponent α signifying fractal interfaces. In the paramagnetic phase, α=0.5±0.01 for all three lattices. In the ferromagnetic phase, the cusp exponent shows small variations due to the lattice structure. Consequently, the interfacial energy E_{i}(L) for an interface of size L is significantly different for the three lattices. This has important implications for nonequilibrium properties.

  3. Random-field Ising model on isometric lattices: Ground states and non-Porod scattering

    NASA Astrophysics Data System (ADS)

    Bupathy, Arunkumar; Banerjee, Varsha; Puri, Sanjay

    2016-01-01

    We use a computationally efficient graph cut method to obtain ground state morphologies of the random-field Ising model (RFIM) on (i) simple cubic (SC), (ii) body-centered cubic (BCC), and (iii) face-centered cubic (FCC) lattices. We determine the critical disorder strength Δc at zero temperature with high accuracy. For the SC lattice, our estimate (Δc=2.278 ±0.002 ) is consistent with earlier reports. For the BCC and FCC lattices, Δc=3.316 ±0.002 and 5.160 ±0.002 , respectively, which are the most accurate estimates in the literature to date. The small-r behavior of the correlation function exhibits a cusp regime characterized by a cusp exponent α signifying fractal interfaces. In the paramagnetic phase, α =0.5 ±0.01 for all three lattices. In the ferromagnetic phase, the cusp exponent shows small variations due to the lattice structure. Consequently, the interfacial energy Ei(L ) for an interface of size L is significantly different for the three lattices. This has important implications for nonequilibrium properties.

  4. STABILITY IN BCC TRANSITION METALS: MADELUNG AND BAND-ENERGY EFFECTS DUE TO ALLOYING

    SciTech Connect

    Landa, A; Soderlind, P; Ruban, A; Peil, O; Vitos, L

    2009-08-28

    The phase stability of the bcc Group VB (V, Nb, and Ta) transition metals is explored by first-principles electronic-structure calculations. Alloying with a small amount of a neighboring metal can either stabilize or destabilize the bcc phase. This counterintuitive behavior is explained by competing mechanisms that dominate depending on particular dopand. We show that band-structure effects dictate stability when a particular Group VB metal is alloyed with its nearest neighbors within the same d-transition series. In this case, the neighbor with less (to the left) and more (to the right) d electrons, destabilize and stabilize bcc, respectively. When alloying with neighbors of different d-transition series, electrostatic Madelung energy dominates over the band energy and always stabilizes the bcc phase.

  5. Self-interstitial atom defects in bcc transition metals: Group-specific trends

    SciTech Connect

    Nguyen-Manh, D.; Dudarev, S. L.

    2006-01-01

    We present an investigation of systematic trends for the self-interstitial atom (SIA) defect behavior in body-centered cubic (bcc) transition metals using density-functional calculations. In all the nonmagnetic bcc metals the most stable SIA defect configuration has the <111> symmetry. Metals in group 5B of the periodic table (V, Nb, Ta) have significantly different energies of formation of the <111> and <110> SIA configurations, while for the group 6B metals (Cr, Mo, W) the two configurations are linked by a soft bending mode. The relative energies of SIA defects in the nonmagnetic bcc metals are fundamentally different from those in ferromagnetic bcc {alpha}-Fe. The systematic trend exhibited by the SIA defect structures in groups 5B and 6B transition metals correlates with the observed thermally activated mobility of SIA defects.

  6. Dislocations and Plasticity in bcc Transition Metals at High Pressure

    SciTech Connect

    Yang, L H; Tang, M; Moriarty, J A

    2009-01-23

    Using first-principles electronic structure calculations, quantum-based atomistic simulations and atomistically informed dislocation dynamics (DD) simulations, we have studied individual dislocation behavior and the multiscale modeling of single-crystal plasticity in the prototype bcc transition metals Ta, Mo and V under both ambient and high pressure conditions. The primary focus in this work is on the pressure-dependent structure, mobility and interaction of a/2<111> screw dislocations, which dominate the plastic deformation properties of these materials. At the electronic scale, first-principles calculations of elasticity, ideal strength and generalized stacking fault energy surfaces have been used to validate quantum-based multi-ion interatomic potentials. At the atomistic scale, these potentials have been used in flexible Green's function boundary condition simulations to study the core structure, Peierls stress {tau}{sub P}, thermally activated kink-pair formation and mobility below {tau}{sub P}, and phonon-drag mobility above {tau}{sub P}. These results have then been distilled into analytic velocity laws and used directly in predictive microscale DD simulations of flow stress and resolved yield stress over wide ranges of pressure, temperature and strain rate.

  7. Detection of helium bubble formation at fcc-bcc interfaces using neutron reflectometry

    NASA Astrophysics Data System (ADS)

    Kashinath, A.; Wang, P.; Majewski, J.; Baldwin, J. K.; Wang, Y. Q.; Demkowicz, M. J.

    2013-07-01

    We use neutron reflectometry to find the critical helium (He) fluence required to form He bubbles at interfaces between fcc and bcc metals. Our findings are in agreement with previous experimental as well as modeling results and provide evidence for the presence of stable He platelets at fcc-bcc interfaces prior to bubble formation. The stable storage of He in interfacial platelets may provide the basis for the design of materials with increased resistance to He-induced degradation.

  8. Atomistic Simulations of Dislocations in a Model BCC Multicomponent Concentrated Solid Solution Alloy (Postprint)

    DTIC Science & Technology

    2016-12-19

    COPY) AIR FORCE RESEARCH LABORATORY MATERIALS AND MANUFACTURING DIRECTORATE WRIGHT-PATTERSON AIR FORCE BASE, OH 45433-7750 AIR FORCE MATERIEL...SPONSORING/MONITORING AGENCY ACRONYM(S) Air Force Research Laboratory Materials and Manufacturing Directorate Wright-Patterson Air Force Base, OH...shallower temperature dependence of the strengthening, as compared to pure BCC Fe as well as a reference mean-field BCC alloy material of the same

  9. Improving ENSO periodicity simulation by adjusting cumulus entrainment in BCC_CSMs

    NASA Astrophysics Data System (ADS)

    Lu, Bo; Ren, Hong-Li

    2016-12-01

    The simulation of El Niño-Southern Oscillation (ENSO) phenomenon is a challenging issue for coupled climate models. This study focuses on the ENSO periodicity simulated by Beijing Climate Center Climate System Models (BCC_CSM1.1 and BCC_CSM1.1m) which can reproduce reasonably well ENSO amplitude as observations. However, the major period of ENSO simulated by the BCC_CSMs is around 2.4 years, which is much shorter than that in observations. Compared with other 24 coupled models in Coupled Model Intercomparison Project Phase 5 (CMIP5), BCC_CSMs produce a very unrealistic ENSO peak period. Such a bias in simulating periodicity is suggested as a consequence of the severely underestimated air-sea coupling intensity in BCC_CSMs. To test this hypothesis, a quantitative method is developed to diagnose the linear ENSO frequency. As an effort to improve the ENSO simulation in BCC_CSMs, three experiments are performed with varying entrainment rates in the cumulus convection parameterization scheme of BCC_CSM1.1m. A more realistic ENSO period of about 3.3 years can be generated by the model with an inflated entrainment rate. When the cumulus entrainment is increased by 10%, the ENSO-related convective precipitation will enhance in the equatorial central to eastern Pacific. This anomalous convective heating induces an intensified surface westerly wind stress to the west of the anomalous convection center and as a result, the air-sea coupling intensity becomes larger, which contributes to a longer period of ENSO based on previous theories. In addition, the pronounced eastward extension of ENSO-related surface wind stress could also be the secondary factor to generate a lower frequency of ENSO in BCC_CSMs. Our study proposes a method to reduce the biases in ENSO periodicity simulation and puts more insights into the importance of adjusting atmospheric convection to reproduce ENSO properties in coupled model.

  10. Solid-liquid interface free energies of pure bcc metals and B2 phases

    DOE PAGES

    Wilson, S. R.; Gunawardana, K. G. S. H.; Mendelev, M. I.

    2015-04-07

    The solid-liquid interface (SLI) free energy was determined from molecular dynamics (MD) simulation for several body centered cubic (bcc) metals and B2 metallic compounds (space group: Pm3¯m ; prototype: CsCl). In order to include a bcc metal with a low melting temperature in our study, a semi-empirical potential was developed for Na. Two additional synthetic “Na” potentials were also developed to explore the effect of liquid structure and latent heat on the SLI free energy. The obtained MD data were compared with the empirical Turnbull, Laird, and Ewing relations. All three relations are found to predict the general trend observedmore » in the MD data for bcc metals obtained within the present study. However, only the Laird and Ewing relations are able to predict the trend obtained within the sequence of “Na” potentials. The Laird relation provides the best prediction for our MD data and other MD data for bcc metals taken from the literature. Overall, the Laird relation also agrees well with our B2 data but requires a proportionality constant that is substantially different from the bcc case. It also fails to explain a considerable difference between the SLI free energies of some B2 phases which have nearly the same melting temperature. In contrast, this difference is satisfactorily described by the Ewing relation. Thus, the Ewing relation obtained from the bcc dataset also provides a reasonable description of the B2 data.« less

  11. Solid-liquid interface free energies of pure bcc metals and B2 phases

    NASA Astrophysics Data System (ADS)

    Wilson, S. R.; Gunawardana, K. G. S. H.; Mendelev, M. I.

    2015-04-01

    The solid-liquid interface (SLI) free energy was determined from molecular dynamics (MD) simulation for several body centered cubic (bcc) metals and B2 metallic compounds (space group: P m 3 ¯ m ; prototype: CsCl). In order to include a bcc metal with a low melting temperature in our study, a semi-empirical potential was developed for Na. Two additional synthetic "Na" potentials were also developed to explore the effect of liquid structure and latent heat on the SLI free energy. The obtained MD data were compared with the empirical Turnbull, Laird, and Ewing relations. All three relations are found to predict the general trend observed in the MD data for bcc metals obtained within the present study. However, only the Laird and Ewing relations are able to predict the trend obtained within the sequence of "Na" potentials. The Laird relation provides the best prediction for our MD data and other MD data for bcc metals taken from the literature. Overall, the Laird relation also agrees well with our B2 data but requires a proportionality constant that is substantially different from the bcc case. It also fails to explain a considerable difference between the SLI free energies of some B2 phases which have nearly the same melting temperature. In contrast, this difference is satisfactorily described by the Ewing relation. Moreover, the Ewing relation obtained from the bcc dataset also provides a reasonable description of the B2 data.

  12. Solid-liquid interface free energies of pure bcc metals and B2 phases.

    PubMed

    Wilson, S R; Gunawardana, K G S H; Mendelev, M I

    2015-04-07

    The solid-liquid interface (SLI) free energy was determined from molecular dynamics (MD) simulation for several body centered cubic (bcc) metals and B2 metallic compounds (space group: Pm3̄m; prototype: CsCl). In order to include a bcc metal with a low melting temperature in our study, a semi-empirical potential was developed for Na. Two additional synthetic "Na" potentials were also developed to explore the effect of liquid structure and latent heat on the SLI free energy. The obtained MD data were compared with the empirical Turnbull, Laird, and Ewing relations. All three relations are found to predict the general trend observed in the MD data for bcc metals obtained within the present study. However, only the Laird and Ewing relations are able to predict the trend obtained within the sequence of "Na" potentials. The Laird relation provides the best prediction for our MD data and other MD data for bcc metals taken from the literature. Overall, the Laird relation also agrees well with our B2 data but requires a proportionality constant that is substantially different from the bcc case. It also fails to explain a considerable difference between the SLI free energies of some B2 phases which have nearly the same melting temperature. In contrast, this difference is satisfactorily described by the Ewing relation. Moreover, the Ewing relation obtained from the bcc dataset also provides a reasonable description of the B2 data.

  13. Solid-liquid interface free energies of pure bcc metals and B2 phases

    SciTech Connect

    Wilson, S. R.; Gunawardana, K. G. S. H.; Mendelev, M. I.

    2015-04-07

    The solid-liquid interface (SLI) free energy was determined from molecular dynamics (MD) simulation for several body centered cubic (bcc) metals and B2 metallic compounds (space group: Pm3¯m ; prototype: CsCl). In order to include a bcc metal with a low melting temperature in our study, a semi-empirical potential was developed for Na. Two additional synthetic “Na” potentials were also developed to explore the effect of liquid structure and latent heat on the SLI free energy. The obtained MD data were compared with the empirical Turnbull, Laird, and Ewing relations. All three relations are found to predict the general trend observed in the MD data for bcc metals obtained within the present study. However, only the Laird and Ewing relations are able to predict the trend obtained within the sequence of “Na” potentials. The Laird relation provides the best prediction for our MD data and other MD data for bcc metals taken from the literature. Overall, the Laird relation also agrees well with our B2 data but requires a proportionality constant that is substantially different from the bcc case. It also fails to explain a considerable difference between the SLI free energies of some B2 phases which have nearly the same melting temperature. In contrast, this difference is satisfactorily described by the Ewing relation. Thus, the Ewing relation obtained from the bcc dataset also provides a reasonable description of the B2 data.

  14. Importance of inclusion of the effect of s electrons into bond-order potentials for transition bcc metals with d-band mediated bonding

    NASA Astrophysics Data System (ADS)

    Lin, Yi-Shen; Mrovec, M.; Vitek, V.

    2016-12-01

    In bond-order potentials (BOPs) for transition metals only the bonding mediated by the d electrons is included explicitly and the covalent part of the cohesive energy is evaluated using Slater-Koster dd bond integrals. However, the effect of s electrons with orbitals centered on atoms neighboring the corresponding dd bond is not necessarily negligible. As shown in Nguyen-Manh et al (2000 Phys. Rev. Lett. 85 4136) this can be taken into account via screening of the dd bond integrals. In a recent paper (Lin et al 2014 Model. Simul. Mater. Sci. Eng. 22 034002) the dd bond integrals were determined using a projection scheme utilizing atomic orbitals that give the best representation of the electronic wave functions in the calculations based on the density functional theory (DFT) (Madsen et al 2011 Phys. Rev. B 83 4119) and it was inferred that in this case the effect of s electrons was already included. In this paper we analyze this hypothesis by comparing studies employing BOPs with both unscreened and screened dd bond integrals. In all cases results are compared with calculations based on DFT and/or experiments. Studies of structures alternate to the bcc lattice, transformation paths that connect the bcc structure with fcc, simple cubic (sc), body centered tetragonal (bct) and hcp structures via continuously distorted configurations and calculations of γ-surfaces were all found to be insensitive to the screening of bond integrals. On the other hand, when the bond integrals are screened, formation energies of vacancies are improved and calculated phonon dispersion spectra reproduce the experimentally observed ones much better. Most importantly, dislocation core structure and dislocation glide are significantly different without and with screening of dd bond integrals. The latter lead to a much better agreement with available experiments. These findings suggest that the effect of s electrons on dd bonds, emulated by the screening of corresponding bond integrals, is

  15. Evaluation of cloud vertical structure simulated by recent BCC_AGCM versions through comparison with CALIPSO-GOCCP data

    NASA Astrophysics Data System (ADS)

    Wang, Fang; Xin, Xiaoge; Wang, Zaizhi; Cheng, Yanjie; Zhang, Jie; Yang, Song

    2014-05-01

    The abilities of BCC_AGCM2.1 and BCC_AGCM2.2 to simulate the annual-mean cloud vertical structure (CVS) were evaluated through comparison with GCM-Oriented CALIPSO Cloud Product (CALIPSO-GOCCP) data. BCC_AGCM2.2 has a dynamical core and physical processes that are consistent with BCC_AGCM2.1, but has a higher horizontal resolution. Results showed that both BCC_AGCM versions underestimated the global-mean total cloud cover (TCC), middle cloud cover (MCC) and low cloud cover (LCC), and that BCC_AGCM2.2 underestimated the global-mean high cloud cover (HCC). The global-mean cloud cover shows a systematic decrease from BCC_AGCM2.1 to BCC_AGCM2.2, especially for HCC. Geographically, HCC is significantly overestimated in the tropics, particularly by BCC_AGCM2.1, while LCC is generally overestimated over extra-tropical lands, but significantly underestimated over most of the oceans, especially for subtropical marine stratocumulus clouds. The leading EOF modes of CVS were extracted. The BCC_AGCMs perform well in reproducing EOF1, but with a larger variance explained. The two models also capture the basic features of EOF3, except an obvious deficiency in eigenvector peaks. EOF2 has the largest simulation biases in both position and strength of eigenvector peaks. Furthermore, we investigated the effects of CVS on relative shortwave and longwave cloud radiative forcing (RSCRF and RLCRF). Both BCC_AGCM versions successfully reproduce the sign of regression coefficients, except for RLCRF in PC1. However, the RSCRF relative contributions from PC1 and PC2 are overestimated, while the relative contribution from PC3 is underestimated in both BCC_AGCM versions. The RLCRF relative contribution is underestimated for PC2 and overestimated for PC3.

  16. In-situ transmission electron microscopy study of ion-irradiated copper : comparison of the temperature dependence of cascade collapse in FCC- and BCC- metals.

    SciTech Connect

    Daulton, T. L.

    1998-10-23

    The kinetics which drive cascade formation and subsequent collapse into point-defect clusters is investigated by analyzing the microstructure produced in situ by low fluence 100 keV Kr ion irradiations of fcc-Cu over a wide temperature range (18-873 K). The yield of collapsed point-defect clusters is demonstrated unequivocally to be temperature dependent, remaining approximately constant up to lattice temperatures of 573 K and then abruptly decreasing with increasing temperature. This drop in yield is not caused by defect loss during or following ion irradiation. This temperature dependence can be explained by a thermal spike effect. These in-situ yield measurements are compared to previous ex-situ yield measurements in fcc-Ni and bcc-Mo.

  17. Lattice dynamics and elasticity for ε-plutonium [First-principles lattice dynamics for ε-plutonium

    DOE PAGES

    Söderlind, Per

    2017-04-25

    Here, lattice dynamics and elasticity for the high-temperature ε phase (body-centered cubic; bcc) of plutonium is predicted utilizing first-principles electronic structure coupled with a self-consistent phonon method that takes phonon-phonon interaction and strong anharmonicity into account. These predictions establish the first sensible lattice-dynamics and elasticity data on ε-Pu. The atomic forces required for the phonon scheme are highly accurate and derived from the total energies obtained from relativistic and parameter-free density-functional theory. The results appear reasonable but no data exist to compare with except those from dynamical mean-field theory that suggest ε-plutonium is mechanically unstable. Fundamental knowledge and understanding ofmore » the high-temperature bcc phase, that is generally present in all actinide metals before melting, is critically important for a proper interpretation of the phase diagram as well as practical modeling of high-temperature properties.« less

  18. BCc1, the novel antineoplastic nanocomplex, showed potent anticancer effects in vitro and in vivo

    PubMed Central

    Kalanaky, Somayeh; Hafizi, Maryam; Fakharzadeh, Saideh; Vasei, Mohammad; Langroudi, Ladan; Janzamin, Ehsan; Hashemi, Seyed Mahmoud; Khayamzadeh, Maryam; Soleimani, Masoud; Akbari, Mohammad Esmaeil; Nazaran, Mohammad Hassan

    2016-01-01

    Purpose In spite of all the efforts and researches on anticancer therapeutics, an absolute treatment is still a myth. Therefore, it is necessary to utilize novel technologies in order to synthesize smart multifunctional structures. In this study, for the first time, we have evaluated the anticancer effects of BCc1 nanocomplex by vitro and in vivo studies, which is designed based on the novel nanochelating technology. Methods Human breast adenocarcinoma cell line (MCF-7) and mouse embryonic fibroblasts were used for the in vitro study. Antioxidant potential, cell toxicity, apoptosis induction, and CD44 and CD24 protein expression were evaluated after treatment of cells with different concentrations of BCc1 nanocomplex. For the in vivo study, mammary tumor-bearing female Balb/c mice were treated with different doses of BCc1 and their effects on tumor growth rate and survival were evaluated. Results BCc1 decreased CD44 protein expression and increased CD24 protein expression. It induced MCF-7 cell apoptosis but at the same concentrations did not have negative effects on mouse embryonic fibroblasts viability and protected them against oxidative stress. Treatment with nanocomplex increased survival and reduced the tumor size growth in breast cancer-bearing balb/c mice. Conclusion These results demonstrate that BCc1 has the capacity to be assessed as a new anticancer agent in complementary studies. PMID:26766901

  19. Langerhans cell histiocytosis arising from a BCC: a case report and review of the literature.

    PubMed

    Patel, Payal; Talpur, Rakhshandra; Duvic, Madeleine

    2010-06-01

    Langerhans cell histiocytosis (LCH) is a rare disease characterized by a proliferation of Langerhans cells. Several organs may be involved, including the skin, bone, and central nervous system. Adult onset of LCH and solely localized cutaneous involvement are quite uncommon. Langerhans cell histiocytosis has been found in combination with other skin lesions and systemic conditions, but no definitive conclusion exists for this phenomenon. We present a case report of a 63-year-old woman who initially presented with 3 pink papules on her forehead that had developed sequentially within 1 month, all diagnosed by biopsy as basal cell carcinoma (BCC) and appropriately treated. Concurrent with the appearance of the third BCC, the patient began developing crusted ulcerative nodules on her scalp. Biopsy of 1 scalp nodule revealed a BCC, but a repeat biopsy of the same nodule weeks later revealed LCH. Langerhans cell histiocytosis arising from a BCC is extremely rare. No absolute explanation exists regarding the transformation of a BCC into LCH, but understanding the behavior of Langerhans cells may give us better insight into how this process could occur.

  20. Traditional versus streamlined management of basal cell carcinoma (BCC): A cost analysis.

    PubMed

    Wu, Xinyuan; Elkin, Elena B; Jason Chen, Chih-Shan; Marghoob, Ashfaq

    2015-11-01

    Facing rising incidence of basal cell carcinoma (BCC) and increasing pressure to contain health care spending, physicians need to contemplate cost-effective paradigms for managing BCC. We sought to perform a cost analysis comparing the traditional BCC management scheme with a simplified detect-and-treat scheme that eliminates the biopsy before initiating definitive treatment. A decision analytic model was developed to compare the costs of traditional BCC management with the detect-and-treat scheme, under which qualifying lesions diagnosed clinically were either treated with shave removal or referred to Mohs micrographic surgery for on-site histologic check. Values for model parameters were based on literature and our institutional data analysis. Costs were based on 2014 Medicare fee schedule. The average cost per lesion with detect-and-treat scheme was $449 for non-Mohs micrographic surgery-indicated lesions (vs $566 with traditional management, $117 in savings) and $819 for Mohs micrographic surgery-indicated lesions (vs $864 with traditional management, $45 in savings). The combined weighted average savings per case was $95 (15% of total average cost). Conclusions were similar under various plausible scenarios. Model parameter values may vary based on individual practices. A simplified management strategy eliminating routine pretreatment biopsy can reduce BCC treatment cost without compromising quality of care. Copyright © 2015 American Academy of Dermatology, Inc. Published by Elsevier Inc. All rights reserved.

  1. Metastable bcc phase formation in the Nb-Cr-Ti system

    SciTech Connect

    Thoma, D.J.; Perepezko, J.H.

    1994-08-01

    Metastable disordered bcc phases have been formed from the melt in the Nb-Cr-Ti system where primary Laves phases would develop under equilibrium solidification conditions. Three vertical temperature-composition sections in the ternary system incorporating NbCr, were evaluated: the Nb-Cr binary, the TiCr{sub 2}-NbCr{sub 2} isoplethal section, and the NbCr{sub 2}-Ti plethal section. In the rapid solidification of NbCr{sub 2}, metastable bcc phase formation was not observed, but deviations from NbCr{sub 2} stoichiometry or alloying with Ti was found to promote bcc phase formation by decreasing the required liquid undercooling to reach the metastable bcc liquidus and solidus. The metastable phases were characterized through x-ray diffraction (XRD), and systematic deviations from Vegard`s Rule have been defined in the three plethal sections. The metastable bcc phases decompose at temperatures >800{degrees}C to uniformly refined microstructures. As a result, novel microstructural tailoring schemes are possible through the metastable precursor microstructures.

  2. Aluminum Alloying Effects on Lattice Types, Microstructures, and Mechanical Behavior of High-Entropy Alloys Systems

    NASA Astrophysics Data System (ADS)

    Tang, Zhi; Gao, Michael C.; Diao, Haoyan; Yang, Tengfei; Liu, Junpeng; Zuo, Tingting; Zhang, Yong; Lu, Zhaoping; Cheng, Yongqiang; Zhang, Yanwen; Dahmen, Karin A.; Liaw, Peter K.; Egami, Takeshi

    2013-12-01

    The crystal lattice type is one of the dominant factors for controlling the mechanical behavior of high-entropy alloys (HEAs). For example, the yield strength at room temperature varies from 300 MPa for the face-centered-cubic (fcc) structured alloys, such as the CoCrCuFeNiTi x system, to about 3,000 MPa for the body-centered-cubic (bcc) structured alloys, such as the AlCoCrFeNiTi x system. The values of Vickers hardness range from 100 to 900, depending on lattice types and microstructures. As in conventional alloys with one or two principal elements, the addition of minor alloying elements to HEAs can further alter their mechanical properties, such as strength, plasticity, hardness, etc. Excessive alloying may even result in the change of lattice types of HEAs. In this report, we first review alloying effects on lattice types and properties of HEAs in five Al-containing HEA systems: Al x CoCrCuFeNi, Al x CoCrFeNi, Al x CrFe1.5MnNi0.5, Al x CoCrFeNiTi, and Al x CrCuFeNi2. It is found that Al acts as a strong bcc stabilizer, and its addition enhances the strength of the alloy at the cost of reduced ductility. The origins of such effects are then qualitatively discussed from the viewpoints of lattice-strain energies and electronic bonds. Quantification of the interaction between Al and 3 d transition metals in fcc, bcc, and intermetallic compounds is illustrated in the thermodynamic modeling using the CALculation of PHAse Diagram method.

  3. Long-term safety and efficacy of vismodegib in patients with advanced basal cell carcinoma: final update of the pivotal ERIVANCE BCC study.

    PubMed

    Sekulic, Aleksandar; Migden, Michael R; Basset-Seguin, Nicole; Garbe, Claus; Gesierich, Anja; Lao, Christopher D; Miller, Chris; Mortier, Laurent; Murrell, Dedee F; Hamid, Omid; Quevedo, Jorge F; Hou, Jeannie; McKenna, Edward; Dimier, Natalie; Williams, Sarah; Schadendorf, Dirk; Hauschild, Axel

    2017-05-16

    In the primary analysis of the ERIVANCE BCC trial, vismodegib, the first US Food and Drug Administration-approved Hedgehog pathway inhibitor, showed objective response rates (ORRs) by independent review facility (IRF) of 30% and 43% in metastatic basal cell carcinoma (mBCC) and locally advanced BCC (laBCC), respectively. ORRs by investigator review were 45% (mBCC) and 60% (laBCC). Herein, we present long-term safety and final investigator-assessed efficacy results in patients with mBCC or laBCC. One hundred four patients with measurable advanced BCC received oral vismodegib 150 mg once daily until disease progression or intolerable toxicity. The primary end point was IRF-assessed ORR. Secondary end points included ORR, duration of response (DOR), progression-free survival, overall survival (OS), and safety. At data cutoff (39 months after completion of accrual), 8 patients were receiving the study drug (69 patients in survival follow-up). Investigator-assessed ORR was 48.5% in the mBCC group (all partial responses) and 60.3% in the laBCC group (20 patients had complete response and 18 patients had partial response). ORRs were comparable across patient subgroups, including aggressive histologic subtypes (eg, infiltrative BCC). Median DOR was 14.8 months (mBCC) and 26.2 months (laBCC). Median OS was 33.4 months in the mBCC cohort and not estimable in the laBCC cohort. Adverse events remained consistent with clinical experience. Thirty-three deaths (31.7%) were reported; none were related to vismodegib. This long-term update of the ERIVANCE BCC trial demonstrated durability of response, efficacy across patient subgroups, and manageable long-term safety of vismodegib in patients with advanced BCC. This study was registered prospectively with Clinicaltrials.gov , number NCT00833417 on January 30, 2009.

  4. The effect of topical diclofenac 3% and calcitriol 3 μg/g on superficial basal cell carcinoma (sBCC) and nodular basal cell carcinoma (nBCC): A phase II, randomized controlled trial.

    PubMed

    Brinkhuizen, Tjinta; Frencken, Kiki J A; Nelemans, Patty J; Hoff, Marlou L S; Kelleners-Smeets, Nicole W J; Zur Hausen, Axel; van der Horst, Michiel P J; Rennspiess, Dorit; Winnepenninckx, Véronique J L; van Steensel, Maurice A M; Mosterd, Klara

    2016-07-01

    Nonsteroidal anti-inflammatory drugs and vitamin-D derivatives can target signaling pathways activated in basal cell carcinoma (BCC). We investigated the efficacy of topically applied diclofenac sodium 3% gel, calcitriol 3 μg/g ointment, and a combination of both in superficial BCC (sBCC) and nodular BCC. Patients with a primary, histologically proven sBCC (n = 64) or nodular BCC (n = 64) were randomized to topical diclofenac, calcitriol, combination of both, or no topical treatment (control group). After self-application twice daily under occlusion (8 weeks), tumors were excised. Primary outcome was posttreatment expression levels of proliferation (Ki-67) and antiapoptosis (B-cell lymphoma [Bcl-2]) immunohistochemical markers. Secondary outcomes were histologic clearance, adverse events, application-site reactions, and patient compliance. sBCC treated with diclofenac showed a significant decrease in Ki-67 (P < .001) and Bcl-2 (P = .001), and after combination therapy for Ki-67 (P = .012). Complete histologic tumor regression was seen in 64.3% (P = .0003) of sBCC (diclofenac) and 43.8% (P = .007) of sBCC (combination therapy) compared with 0.0% of controls. No significant changes were found in nodular BCC. Application-site reactions were mostly mild to moderate. The sample size was small. Our results suggest that topical diclofenac is a promising new treatment for sBCC. Its mode of action differs from available noninvasive therapies, and thus has an additive value. Copyright © 2016 American Academy of Dermatology, Inc. Published by Elsevier Inc. All rights reserved.

  5. Modeling of the magnetic free energy of self-diffusion in bcc Fe

    NASA Astrophysics Data System (ADS)

    Sandberg, N.; Chang, Z.; Messina, L.; Olsson, P.; Korzhavyi, P.

    2015-11-01

    A first-principles based approach to calculating self-diffusion rates in bcc Fe is discussed with particular focus on the magnetic free energy associated with diffusion activation. First, the enthalpies and entropies of vacancy formation and migration in ferromagnetic bcc Fe are calculated from standard density functional theory methods in combination with transition state theory. Next, the shift in diffusion activation energy when going from the ferromagnetic to the paramagnetic state is estimated by averaging over random spin states. Classical and quantum mechanical Monte Carlo simulations within the Heisenberg model are used to study the effect of spin disordering on the vacancy formation and migration free energy. Finally, a quasiempirical model of the magnetic contribution to the diffusion activation free energy is applied in order to connect the current first-principles results to experimental data. The importance of the zero-point magnon energy in modeling of diffusion in bcc Fe is stressed.

  6. Elemental moment variation of bcc FexMn1-x on MgO(001)

    NASA Astrophysics Data System (ADS)

    Bhatkar, H.; Snow, R. J.; Arenholz, E.; Idzerda, Y. U.

    2017-02-01

    We report the growth, structural characterization, and electronic structure evolution of epitaxially grown bcc FexMn1-x on MgO(001). It is observed that the 20 nm thick FexMn1-x alloy films remained bcc from 0.65≤x≤1, much beyond the bulk stability range of 0.88≤x≤1. X-ray absorption spectroscopy and X-ray magnetic circular dichroism show that both the Fe and Mn L3 binding energies slightly increase with Mn incorporation and that the elemental moment of Fe in the 20 nm crystalline bcc alloy film remain nearly constant, then shows a dramatic collapse near x 0.84. The Mn MCD intensity is found to be small at all compositions that exhibit ferromagnetism

  7. Multi-scale modeling of ferromagnetism in bcc Fe as a function of pressure and temperature

    NASA Astrophysics Data System (ADS)

    Sha, Xianwei; Cohen, R. E.

    2007-03-01

    We investigate the magnetic properties of bcc Fe as functions of pressure and temperature using multi-scale modeling techniques. We employ a first-principles fitted tight-binding total-energy model in the generalized-gradient approximation to examine bcc Fe at numerous ferromagnetic, antiferromagnetic and spin spiral states, and fit the tight-binding data to a generalized Heisenberg Hamiltonian which includes both the on-site and local exchange energy to describe the magnetic energy for any arbitrary magnetic configuration. We obtain the Curie temperature, magnetization curve, and other finite-temperature magnetic properties through extensive Monte Carlo simulations, which have been further applied to examine the influence of the magnetic fluctuations on the free energy and thermal equation of state properties of bcc Fe at high temperatures. This work was supported by US Department of Energy ASCI/ASAP subcontract to Caltech, Grant DOE W-7405-ENG-48 (to REC).

  8. Possible bcc → sc phase transitions in Ca-Sr solid solutions under pressure

    NASA Astrophysics Data System (ADS)

    Pozhivatenko, V. V.

    2017-08-01

    The first-principles calculations of thermodynamic characteristics of bcc and sc structures of Ca1- x Sr x solid solutions have been carried out. Taking into account insufficient accuracy of such calculations, for the description of phase transitions, the known experimental data on bcc and sc structures of calcium and strontium have been used to determine parameters for the calculation of Ca1- x Sr x properties using linear interpolation. The possibility of the occurrence of bcc-sc structural phase transitions in Ca1- x Sr x ( x = 0.0625, 0.125, 0.25, 0.5, 0.75) solid solutions and their characteristics under different pressures have been investigated.

  9. Enhanced moments in bcc Co1-xMnx on MgO(001)

    NASA Astrophysics Data System (ADS)

    Snow, R. J.; Bhatkar, H.; N'Diaye, A. T.; Arenholz, E.; Idzerda, Y. U.

    2016-12-01

    A 40% enhancement of the Co magnetic moment has been found for thin films of bcc Co1-xMnx grown by molecular beam epitaxy on a 2 nm bcc Fe buffer layer on MgO(001). Although the bcc phase cannot be stabilized in the bulk, we confirm that it is stable as an epitaxial film in the composition range x=0-0.7. Using X-ray absorption spectroscopy and X-ray magnetic circular dichroism, we show that the Co moment is a maximum of 2.38 μB at x=0.24, while the net Mn moment remains roughly constant until x=0.24, then drops steadily. Mn is found to align parallel with Co for all ferromagnetic concentrations, up to x=0.7, where the total moment of the film abruptly collapses to zero, most likely due to the onset of the observed structural instability.

  10. Importance of shear in the bcc-to-hcp transformation in iron.

    PubMed

    Caspersen, Kyle J; Lew, Adrian; Ortiz, Michael; Carter, Emily A

    2004-09-10

    Iron shows a pressure-induced martensitic phase transformation from the ground state ferromagnetic bcc phase to a nonmagnetic hcp phase at approximately 13 GPa. The exact transformation pressure (TP) and pathway are not known. Here we present a multiscale model containing a quantum-mechanics-based multiwell energy function accounting for the bcc and hcp phases of Fe and a construction of kinematically compatible and equilibrated mixed phases. This model suggests that shear stresses have a significant influence on the bcc<-->hcp transformation. In particular, the presence of modest shear accounts for the scatter in measured TPs. The formation of mixed phases also provides an explanation for the observed hysteresis in TP.

  11. Kinetics study of crystallization with the disorder-bcc-fcc phase transition of charged colloidal dispersions.

    PubMed

    Zhou, Hongwei; Xu, Shenghua; Sun, Zhiwei; Du, Xuan; Liu, Lixia

    2011-06-21

    Structure transformation (disorder-bcc-fcc) in charged colloidal dispersions, as a manifestation of the Ostwald's step rule, was confirmed by means of reflection spectrum (RS) measurements in our previous study. By taking advantage of a reflection spectrum containing plenty of information about the crystallization behaviors, time-dependent changes of parameters associated with the crystal structure and composition during the disorder-bcc-fcc transition are reported by treating the data from RS in this article. In addition, Avrami's model is adopted to analyze the transition process and investigate the transition rate. On the basis of the above investigations, associated kinetic features of crystallization with the disorder-bcc-fcc transition are described.

  12. Strain-induced spin reorientation of bcc-like iron films grown on Cu(001)

    NASA Astrophysics Data System (ADS)

    Corredor, Edna C.; Arnaudas, José I.; Ciria, Miguel; Lofink, Fabian; Rößler, Stefan; Frömter, Robert; Oepen, Hans Peter

    2014-11-01

    The in-plane orientation of the magnetization vector M in bcc-like Fe(110) films grown on Cu(001) is determined by means of scanning electron microscopy with polarization analysis. For thicknesses of 2 nm, slightly above the fcc/bcc phase transition, it is found that M is oriented along the ⟨110⟩ directions of the Cu(001) substrate. Following the Pitsch orientational relationship these correspond to magnetically hard ⟨ 1 1 ¯1 ⟩ and ⟨ 1 1 ¯2 ⟩ axes of bulk iron. This finding is in strong contrast to the behavior reported for thicker films (above 3 nm) of bcc Fe/Cu(001), where the ⟨100⟩ directions of the substrate are preferred. The role of strain in the iron film is discussed, inferring that the presence of a shear strain is mandatory to explain the spin reorientation via the magnetoelastic contribution to the magnetic anisotropy energy.

  13. Deformation-intensified atomic separation in bcc Fe-Mn alloys

    NASA Astrophysics Data System (ADS)

    Shabashov, V. A.; Kozlov, K. A.; Lyashkov, K. A.; Zamatovskii, A. E.; Titova, S. G.

    2016-12-01

    The deformation-intensified atomic Mn-related separation of the bcc solid solution has been found in Fe100-xMnx alloys ( x = 4.5-9.9) subjected to ball milling using Mössbauer spectroscopy. In the near surrounding of iron atoms, the atomic separation is similar to that observed upon the annealing of the alloys in a temperature range of 400-500°C. It has been found that the deformation-intensified atomic separation leads to the stabilization of the bcc phase with regard to the α → γ transformation, as well as to the expansion of the field of the existence of the bcc phase during heating.

  14. High-pressure high-temperature equations of state of shocked bcc vanadium

    NASA Astrophysics Data System (ADS)

    Molodets, A. M.; Golyshev, A. A.; Shakhray, D. V.

    2016-11-01

    The semiempirical free-energy relation for hydrostatically compressed isotropic solid was written for body-centered-cubic (bcc) vanadium as a function of the specific volume and temperature with the phonon component and the contribution of the electronic subsystem. According to the thermodynamic rules the thermal as well as caloric equations of state are defined through the partial derivatives of free energy. A thermal equation of state gives the pressure as a function of volume and temperature. Caloric equation of state specifies the energy as a function of volume and temperature also. The proposed equations of state of bcc vanadium have been verified by comparison of calculated high-pressure isotherms, heat capacity, volume thermal expansion coefficient and Hugoniot with experimental data. The developed equations of state allow to calculate thermal properties of compressed bcc vanadium under static pressure and shock pressures 0-70 GPa and temperatures 100-1000 K.

  15. Energetics and diffusional properties of He in BCC Mo: an empirical potential for molecular dynamics simulations

    SciTech Connect

    Yongfeng Zhang; Paul C. Millett; Michael Tonks

    2011-10-01

    This paper presents an interatomic potential for modeling of He defects and bubbles in body-centered-cubic (BCC) Mo. We utilize three existing framework: the Finnis-Sinclair (FS) potential for Mo-Mo, the Effective-Medium-Theory (EMT) for He-Mo, and the Hartree-Fock-Dispersion (HFD) potential for He-He interactions. The energetics of He defects and the diffusivity of He interstitial givens by the present potential agree well with ab initio calculations and experimental measurements. Furthermore, in agreement with theoretical prediction, it is shown that the introduction of He gas suppresses the surface diffusivity of BCC Mo, which decays exponentially with increasing He pressure acting on the free surface. The decay constant, with is correlated with the characteristic interaction volume for He-Mo, is close to the atomic volume of BCC Mo. This suppression effect is important to understand the mobility of small gas bubbles.

  16. Application of STEM characterization for investigating radiation effects in BCC Fe-based alloys

    SciTech Connect

    Parish, Chad M.; Field, Kevin G.; Certain, Alicia G.; Wharry, Janelle P.

    2015-04-20

    This paper provides a general overview of advanced scanning transmission electron microscopy (STEM) techniques used for characterization of irradiated BCC Fe-based alloys. Advanced STEM methods provide the high-resolution imaging and chemical analysis necessary to understand the irradiation response of BCC Fe-based alloys. The use of STEM with energy dispersive x-ray spectroscopy (EDX) for measurement of radiation-induced segregation (RIS) is described, with an illustrated example of RIS in proton- and self-ion irradiated T91. Aberration-corrected STEM-EDX for nanocluster/nanoparticle imaging and chemical analysis is also discussed, and examples are provided from ion-irradiated oxide dispersion strengthened (ODS) alloys. In conclusion, STEM techniques for void, cavity, and dislocation loop imaging are described, with examples from various BCC Fe-based alloys.

  17. Application of STEM characterization for investigating radiation effects in BCC Fe-based alloys

    DOE PAGES

    Parish, Chad M.; Field, Kevin G.; Certain, Alicia G.; ...

    2015-04-20

    This paper provides a general overview of advanced scanning transmission electron microscopy (STEM) techniques used for characterization of irradiated BCC Fe-based alloys. Advanced STEM methods provide the high-resolution imaging and chemical analysis necessary to understand the irradiation response of BCC Fe-based alloys. The use of STEM with energy dispersive x-ray spectroscopy (EDX) for measurement of radiation-induced segregation (RIS) is described, with an illustrated example of RIS in proton- and self-ion irradiated T91. Aberration-corrected STEM-EDX for nanocluster/nanoparticle imaging and chemical analysis is also discussed, and examples are provided from ion-irradiated oxide dispersion strengthened (ODS) alloys. In conclusion, STEM techniques for void,more » cavity, and dislocation loop imaging are described, with examples from various BCC Fe-based alloys.« less

  18. Lichen planopilaris after imiquimod 5% cream for multiple BCC in basal cell naevus syndrome.

    PubMed

    Drummond, Alessandra; Pichler, Janine; Argenziano, Giuseppe; Zalaudek, Iris; Longo, Caterina; Lallas, Aimilios; Piana, Simonetta; Moscarella, Elvira

    2015-11-01

    Basal cell naevus syndrome is an inherited autosomal dominant genetic disorder characterised by multiple basal cell carcinomas (BCC), skeletal, neurological and opthalmological abnormalities. The treatment of choice of the often multiple and large BCC consists of a combined approach including surgery, liquid nitrogen and other topical treatment modalities. Imiquimod 5% cream is an immune-response-modifying drug with antiviral and anti-tumour activity. Recent reports have associated the immune-stimulant properties of imiquimod with the exacerbation of several autoimmune skin diseases, such as eczema, psoriasis, vitiligo and lichenoid dermatitis. Here we report a patient with basal cell naevus syndrome who developed a lichen planopilaris on the same site of the scalp, which had been previously treated with two cycles of imiquimod for multiple BCC.

  19. Exotic damping ring lattices

    SciTech Connect

    Palmer, R.B.

    1987-05-01

    This paper looks at, and compares three types of damping ring lattices: conventional, wiggler lattice with finite ..cap alpha.., wiggler lattice with ..cap alpha.. = 0, and observes the attainable equilibrium emittances for the three cases assuming a constraint on the attainable longitudinal impedance of 0.2 ohms. The emittance obtained are roughly in the ratio 4:2:1 for these cases.

  20. Wulff polyhedra derived from morse potentials and crystal habits of bcc and fcc metal particles

    NASA Astrophysics Data System (ADS)

    Saito, Yahachi

    1981-05-01

    Using the broken-bond method and the pairwise potentials of Morse type, relative surface energies were calculated to derive the Wulff polyhedra for bcc and fcc metals. When only the first and the second nearest neighbour interactions are taken into account, the resulting Wulff polyhedron is a rhombic dodecahedron truncated by {100} faces and an octahedron truncated by {100} and {100} faces for bcc and fcc metals, respectively. The truncation degrees calculated are in good agreement with those measured from smoke particles grown in an atmosphere of rarefied inactive gas. The effect of the higher order terms of interactions is simply to make the edges and corners round.

  1. Flexible Ab initio boundary conditions: simulating isolated dislocations in bcc Mo and Ta.

    PubMed

    Woodward, C; Rao, S I

    2002-05-27

    We report the first ab initio density-functional study of the strain field and Peierls stress of isolated <111> screw dislocations in bcc Mo and Ta. The local dislocation strain field is self-consistently coupled to the long-range elastic field using a flexible boundary condition method. This reduces the mesoscopic atomistic calculation to one involving only degrees of freedom near the dislocation core. The predicted equilibrium core for Mo is significantly different from previous atomistic results and the Peierls stress shows significant non-Schmid behavior as expected for the bcc metals.

  2. Peierls potential for crowdions in the bcc transition metals.

    PubMed

    Fitzgerald, S P; Nguyen-Manh, D

    2008-09-12

    We present the first derivation of the analytic expression for the Peierls-Nabarro potential for crowdion migration using the double sine-Gordon model. The analysis is guided by the group-specific trend in the shapes of the periodic lattice potentials calculated for the body-centered-cubic transition metals in groups 5B and 6B of the periodic table. We combine density-functional calculations of the crowdion's profile and environment with an extended version of the analytical Frenkel-Kontorova model, and determine the effective potential experienced by the defect's center of mass. This reveals important underlying differences between the metals in these groups, which are inaccessible to either the numerical or analytical approaches alone, and accounts for the previously unexplained significantly higher crowdion migration temperatures observed in the metals of group 6B relative to those of group 5B.

  3. Epitaxy on Substrates with Hexagonal Lattice Symmetry.

    NASA Astrophysics Data System (ADS)

    Braun, Max Willi Hermann

    A general description of epitaxy between thin films and substrates of general symmetry was developed from a model with rigid substrate and overgrowth and extended to include strain of the overgrowth. The overgrowth-substrate interaction was described by Fourier series, usually truncated, defined on the reciprocal lattice of the interface surfaces of the crystals. Energy considerations lead directly to a criterion that epitaxial configurations occur when a pair of surface reciprocal lattice vectors of the substrate and overgrowth coincide, equivalent to atomic row matching. This is analogous to the von Laue criterion and Bragg equations of diffraction theory, with a geometrical realization related to the Ewald construction. When generalized, misfit strain, the spacing, line sense and Burgers vectors of misfit dislocations and misfit verniers are obtained from the reciprocal lattices of crystals with any symmetry and misfit. The most general structures can be described with convenient unit cells by using structure factors. Homogeneous misfit strain, the interfacial atom positions after local relaxation and misfit and elastic (harmonic approximation) strain energies were obtained by direct minimization of the total interfacial energy of a large (1105 atoms), but finite, system. The local relaxation was calculated with a Finite Element formulation. Systems with fcc {111 } or bcc{ 110} overgrowths on fcc {111} or hcp{0001} substrates were studied with respect to substrate symmetry, overgrowth size and anisotropy of the overgrowth elastic constants. Configurations such as Kurdjumov-Sachs (KS), Nishiyama-Wassermann (NW) and a pseudomorphic phase (2DC) were explained, while several other higher order configurations were predicted. The inherent difference in nature between the KS and NW and their relationship to the 2DC were emphasized. Deviations from the ideal orientation of KS linked to anisotropy for systems undergoing misfit strain were discovered. Deviations were also

  4. Evaluation of the Bilingual Curriculum Content (BCC) Pilot Project: A Three-Year Study. First Interim Report.

    ERIC Educational Resources Information Center

    Rothfarb, Sylvia H.; And Others

    Bilingual Curriculum Content (BCC) is an instructional component of the Transitional Bilingual Basic Skills program offered to students with limited English proficiency (LEP) in the Dade County Public Schools, Florida. In BCC instruction, students learn mathematics and combined instruction (science, social studies, and health/safety) in their…

  5. Lattice softening in body-centered-cubic lithium-magnesium alloys

    NASA Astrophysics Data System (ADS)

    Winter, I. S.; Tsuru, T.; Chrzan, D. C.

    2017-08-01

    A first-principles investigation of the influence of lattice softening on lithium-magnesium alloys near the body-centered-cubic (bcc)/hexagonal close-packed (hcp) transition composition is presented. Results show that lithium-magnesium alloys display a softening of the shear modulus C11-C12 , and an acoustic phonon branch between the Γ and N high symmetry points, as the composition approaches the stability limit for the bcc phase. This softening is accompanied by an increase in the size of the dislocation core region. Ideal tensile strength calculations predict that ordered phases of lithium-magnesium alloys are intrinsically brittle. Methods to make the alloys more ductile are discussed, and the propensity for these alloys to display gum-metal-like behavior is assessed.

  6. Nucleation of hcp and fcc phases in bcc iron under uniform compression: classical molecular dynamics simulations.

    PubMed

    Wang, B T; Shao, J L; Zhang, G C; Li, W D; Zhang, P

    2010-11-03

    By classical molecular dynamics simulations employing an embedded atom method potential, we have simulated the bcc to hcp/fcc structural transition in single-crystal iron under uniform compression. Results showed that the transition pressure is different from uniaxial compression and shock loading. The transformation occurs on a picosecond timescale and the transition time decreases along with the increase of pressure. The nucleation and growth of the hcp and fcc phases under constant pressure and temperature are analyzed in detail. The nucleation planes, all belonging to the {110}(bcc) family and parallel to the three compression directions [100], [010], and [001], have been observed. About 20% bcc atoms have transformed to fcc phase under pressure just over the critical point, and under higher pressure the fraction of the fcc phase increases steadily to exceed that of the hcp phase. We have investigated the transition mechanism of iron from initial bcc to hcp/fcc and found that the transition mainly consists of compression, rotation, and shuffle.

  7. Sterostreins F-O, illudalanes and norilludalanes from cultures of the Basidiomycete Stereum ostrea BCC 22955.

    PubMed

    Isaka, Masahiko; Srisanoh, Urarat; Sappan, Malipan; Supothina, Sumalee; Boonpratuang, Thitiya

    2012-07-01

    Sterostreins F-O (1-10), 10 illudalanes and norilludalanes, were isolated from cultures of the Basidiomycete Stereum ostrea BCC 22955. Their structures were elucidated by analyses of the NMR spectroscopic and mass spectrometry data. Sterostreins M (8), N (9), and O (10) are pyridine-containing illudalanes.

  8. Sterostreins A-E, new terpenoids from cultures of the Basidiomycete Stereum ostrea BCC 22955.

    PubMed

    Isaka, Masahiko; Srisanoh, Urarat; Choowong, Wilunda; Boonpratuang, Thitiya

    2011-09-16

    Sterostreins A-E (1, 2, 3a/3b, 4, and 5), five novel terpenoids, were isolated from cultures of the mushroom fungus Stereum ostrea BCC 22955. Sterostrein A (1) exhibited antimalarial activity (IC(50) 2.3 μg/mL) and cytotoxicity (IC(50) 5.3-38 μg/mL).

  9. Divacancy binding energy, formation energy and surface energy of BCC transition metals using MEAM potentials

    NASA Astrophysics Data System (ADS)

    Uniyal, Shweta; Chand, Manesh; Joshi, Subodh; Semalty, P. D.

    2016-05-01

    The modified embedded atom method (MEAM) potential parameters have been employed to calculate the unrelaxed divacancy formation energy, binding energy and surface energies for low index planes in bcc transition metals. The calculated results of divacancy binding energy and vacancy formation energy compare well with experimental and other available calculated results.

  10. Comparing the structural stability of PbS nanocrystals assembled in fcc and bcc superlattice allotropes.

    PubMed

    Bian, Kaifu; Wang, Zhongwu; Hanrath, Tobias

    2012-07-04

    We investigated the structural stability of colloidal PbS nanocrystals (NCs) self-assembled into superlattice (SL) allotropes of either face-centered cubic (fcc) or body-centered cubic (bcc) symmetry. Small-angle X-ray scattering analysis showed that the NC packing density is higher in the bcc than in the fcc SL; this is a manifestation of the cuboctahedral shape of the NC building block. Using the high-pressure rock-salt/orthorhombic phase transition as a stability indicator, we discovered that the transition pressure for NCs in a bcc SL occurs at 8.5 GPa, which is 1.5 GPa higher than the transition pressure (7.0 GPa) observed for a fcc SL. The higher structural stability in the bcc SL is attributed primarily to the effective absorption of loading force in specific SL symmetry and to a lesser extent to the surface energy of the NCs. The experimental results provide new insights into the fundamental relationship between the symmetry of the self-assembled SL and the structural stability of the constituent NCs.

  11. Antitubercular Lanostane Triterpenes from Cultures of the Basidiomycete Ganoderma sp. BCC 16642.

    PubMed

    Isaka, Masahiko; Chinthanom, Panida; Sappan, Malipan; Danwisetkanjana, Kannawat; Boonpratuang, Thitiya; Choeyklin, Rattaket

    2016-01-22

    Sixteen new lanostane triterpenoids (1-16), together with 26 known compounds (17-42), were isolated from cultures of the basidiomycete Ganoderma sp. BCC 16642. Antitubercular activities of these Ganoderma lanostanoids against Mycobacterium tuberculosis H37Ra were evaluated, and structure-activity relationships are proposed.

  12. Crystallization pathways of liquid-bcc transition for a model iron by fast quenching

    NASA Astrophysics Data System (ADS)

    Pan, Shao-Peng; Feng, Shi-Dong; Qiao, Jun-Wei; Wang, Wei-Min; Qin, Jing-Yu

    2015-11-01

    We report simulations on the local structural evolution in the liquid-bcc transition of a model iron. Fourteen main Voronoi polyhedra are chosen as the representatives of short-range orders (SROs) and their transformations during crystallization are also investigated. Thus, the crystallization pathways for the main SROs are drawn. Our results also show that the transformations between two SROs in the crystallization pathways can be classified into two categories, first the enlargement of coordination number, second the transformation of local symmetry from five-fold to four-fold. The former reduces the potential energy while the latter increases it. It is found that the potential energy cannot decease monotonously whatever crystallization pathway is chosen to transform the icosahedral SRO to bcc SRO. Therefore, the latter transformation might provide the energy barrier of crystallization. We propose two transformation styles among SROs. All the transformations in the crystallization pathways can be achieved according to the styles. Moreover, the two transformation styles indicates that the bcc structure is more similar to liquid than other crystals. That might be the reason why the first phase nucleated during a rapid cooling process should be bcc crystal.

  13. Multilayer Relaxation and Surface Energies of FCC and BCC Metals Using Equivalent Crystal Theory

    NASA Technical Reports Server (NTRS)

    Rodriguez, Agustin M.; Bozzolo, Guillermo; Ferrante, John

    1993-01-01

    The multilayer relaxation of fcc and bcc metal surfaces is calculated using equivalent crystal theory. The results for changes in interplanar spacings of planes close to the surface and the ensuing surface energies are discussed in reference to other theoretical results and compared to available experimental data. The calculation includes high-index surfaces for which no other theoretical results are known.

  14. Divacancy binding energy, formation energy and surface energy of BCC transition metals using MEAM potentials

    SciTech Connect

    Uniyal, Shweta Chand, Manesh Joshi, Subodh Semalty, P. D.

    2016-05-06

    The modified embedded atom method (MEAM) potential parameters have been employed to calculate the unrelaxed divacancy formation energy, binding energy and surface energies for low index planes in bcc transition metals. The calculated results of divacancy binding energy and vacancy formation energy compare well with experimental and other available calculated results.

  15. Boron diffusion in bcc-Fe studied by first-principles calculations

    NASA Astrophysics Data System (ADS)

    Xianglong, Li; Ping, Wu; Ruijie, Yang; Dan, Yan; Sen, Chen; Shiping, Zhang; Ning, Chen

    2016-03-01

    The diffusion mechanism of boron in bcc-Fe has been studied by first-principles calculations. The diffusion coefficients of the interstitial mechanism, the B-monovacancy complex mechanism, and the B-divacancy complex mechanism have been calculated. The calculated diffusion coefficient of the interstitial mechanism is D0 = 1.05 × 10-7 exp (-0.75 eV/kT) m2 · s-1, while the diffusion coefficients of the B-monovacancy and the B-divacancy complex mechanisms are D1 = 1.22 × 10-6 f1 exp (-2.27 eV/kT) m2 · s-1 and D2 ≈ 8.36 × 10-6 exp (-4.81 eV/kT) m2 · s-1, respectively. The results indicate that the dominant diffusion mechanism in bcc-Fe is the interstitial mechanism through an octahedral interstitial site instead of the complex mechanism. The calculated diffusion coefficient is in accordance with the reported experiment results measured in Fe-3%Si-B alloy (bcc structure). Since the non-equilibrium segregation of boron is based on the diffusion of the complexes as suggested by the theory, our calculation reasonably explains why the non-equilibrium segregation of boron is not observed in bcc-Fe in experiments. Project supported by the National Natural Science Foundation of China (Grant No. 51276016) and the National Basic Research Program of China (Grant No. 2012CB720406).

  16. Hirsutane Sesquiterpenes from Cultures of the Basidiomycete Marasmiellus sp. BCC 22389.

    PubMed

    Isaka, Masahiko; Palasarn, Somporn; Sappan, Malipan; Supothina, Sumalee; Boonpratuang, Thitiya

    2016-10-01

    Two new hirsutane sesquiterpenes, marasmiellins A (1) and B (2), were isolated from cultures of the basidiomycete Marasmiellus sp. BCC 22389. The structures were elucidated on the basis of NMR spectroscopic and mass spectrometry data. The absolute configuration of marasmiellin B was determined by application of the modified Mosher's method.

  17. Crystallization pathways of liquid-bcc transition for a model iron by fast quenching.

    PubMed

    Pan, Shao-Peng; Feng, Shi-Dong; Qiao, Jun-Wei; Wang, Wei-Min; Qin, Jing-Yu

    2015-11-19

    We report simulations on the local structural evolution in the liquid-bcc transition of a model iron. Fourteen main Voronoi polyhedra are chosen as the representatives of short-range orders (SROs) and their transformations during crystallization are also investigated. Thus, the crystallization pathways for the main SROs are drawn. Our results also show that the transformations between two SROs in the crystallization pathways can be classified into two categories, first the enlargement of coordination number, second the transformation of local symmetry from five-fold to four-fold. The former reduces the potential energy while the latter increases it. It is found that the potential energy cannot decease monotonously whatever crystallization pathway is chosen to transform the icosahedral SRO to bcc SRO. Therefore, the latter transformation might provide the energy barrier of crystallization. We propose two transformation styles among SROs. All the transformations in the crystallization pathways can be achieved according to the styles. Moreover, the two transformation styles indicates that the bcc structure is more similar to liquid than other crystals. That might be the reason why the first phase nucleated during a rapid cooling process should be bcc crystal.

  18. Cytotoxic hydroanthraquinones from the mangrove-derived fungus Paradictyoarthrinium diffractum BCC 8704.

    PubMed

    Isaka, Masahiko; Chinthanom, Panida; Rachtawee, Pranee; Srichomthong, Kitlada; Srikitikulchai, Prasert; Kongsaeree, Palangpon; Prabpai, Samran

    2015-05-01

    Two new hydroanthraquinones, paradictyoarthrins A (1) and B (2), were isolated from the mangrove-derived fungus Paradictyoarthrinium diffractum BCC 8704. Structures of the new compounds were elucidated by analyses of the NMR spectroscopic and mass spectrometry data. The absolute configuration of 1 was determined by X-ray crystallography. These compounds exhibited cytotoxic activities.

  19. Lattice invariants for knots

    SciTech Connect

    Janse Van Rensburg, E.J.

    1996-12-31

    The geometry of polygonal knots in the cubic lattice may be used to define some knot invariants. One such invariant is the minimal edge number, which is the minimum number of edges necessary (and sufficient) to construct a lattice knot of given type. In addition, one may also define the minimal (unfolded) surface number, and the minimal (unfolded) boundary number; these are the minimum number of 2-cells necessary to construct an unfolded lattice Seifert surface of a given knot type in the lattice, and the minimum number of edges necessary in a lattice knot to guarantee the existence of an unfolded lattice Seifert surface. In addition, I derive some relations amongst these invariants. 8 refs., 5 figs., 2 tabs.

  20. The EMMA Lattice

    NASA Astrophysics Data System (ADS)

    Berg, J. Scott

    2008-02-01

    EMMA is a 10 to 20 MeV electron ring designed to test our understanding of beam dynamics in a relativistic linear non-scaling fixed field alternating gradient accelerator (FFAG). I will give a basic review of the EMMA lattice parameters. Then I will review the different lattice configurations that we would like to have for EMMA. Finally, I will briefly discuss the process of commissioning each lattice configuration.

  1. Oxygen plasma etching-induced crystalline lattice transformation of colloidal photonic crystals.

    PubMed

    Ding, Tao; Wang, Fei; Song, Kai; Yang, Guoqiang; Tung, Chen-Ho

    2010-12-15

    This communication describes the transformation of a colloidal crystalline lattice that was realized via oxygen plasma etching of colloidal crystals made of SiO2@PMMA core-shell microspheres. The plasma etching of the colloidal crystals proceeded nonuniformly from the top to the bottom of the colloidal crystals. The PMMA shell was etched away by the oxygen plasma in a layer-by-layer manner, and the silica core was drawn into the pit formed by the neighboring spheres in the layer below. Consequently, the crystalline lattice was transformed while the order was maintained. Scanning electron microscopy images and reflection spectra further confirmed the change in the crystalline structures. Colloidal crystals with sc and bcc lattices can be fabricated if the ratio of the polymer shell thickness to the silica core diameter is equal to certain values. More importantly, this approach may be applicable to the fabrication of various assembly structures with different inorganic particles.

  2. Characteristics of the Asian-Pacific oscillation in boreal summer simulated by BCC_CSM with different horizontal resolutions

    NASA Astrophysics Data System (ADS)

    Zhang, Yazhou; Liao, Zhijie; Zhang, Yaocun; Nie, Feng

    2016-12-01

    The summer Asian-Pacific Oscillation (APO) is a major teleconnection pattern that reflects the zonal thermal contrast between East Asia and the North Pacific in the upper troposphere. The performance of Beijing Climate Center Climate System Models (BCC_CSMs) with different horizontal resolutions, i.e., BCC_CSM1.1 and BCC_CSM1.1(m), in reproducing APO interannual variability, APO-related precipitation anomalies, and associated atmospheric circulation anomalies, is evaluated. The results show that BCC_CSM1.1(m) can successfully capture the interannual variability of the summer APO index. It is also more capable in reproducing the APO's spatial pattern, compared to BCC_CSM1.1, due to its higher horizontal resolution. Associated with a positive APO index, the northward-shifted and intensified South Asian high, strengthened extratropical westerly jet, and tropical easterly jet in the upper troposphere, as well as the southwesterly monsoonal flow over North Africa and the Indian Ocean in the lower troposphere, are realistically represented by BCC_CSM1.1(m), leading to an improvement in reproducing the increased precipitation over tropical North Africa, South Asia, and East Asia, as well as the decreased precipitation over subtropical North Africa, Japan, and North America. In contrast, these features are less consistent with observations when simulated by BCC_CSM1.1. Regression analysis further indicates that surface temperature anomalies over the North Pacific and the southern and western flanks of the Tibetan Plateau are reasonably reproduced by BCC_CSM1.1(m), which contributes to the substantial improvement in the simulation of the characteristics of summer APO compared to that of BCC_CSM1.1.

  3. Modeling the sublattice magnetizations for the layered bcc nanojunction … Fe[Fe1-cCoc ] ℓ Fe … systems

    NASA Astrophysics Data System (ADS)

    Ashokan, V.; Abou Ghantous, M.; Khater, A.

    2015-12-01

    Ferromagnetic nanojunctions … Fe[Fe1-cCoc ] ℓ Fe …, with ℓ is the number of layers which constitute the nanojunction, based on Fe/Co alloy are considered for the first time in this work. We model the salient magnetic properties of the layered ferromagnetic nanostructures between magnetically ordered iron leads. The effective field theory (EFT) Ising spin method is used to compute reliable Jav exchange values for the VCA Fe/Co alloy materials in comparison with experimental data and compared to existing DFT calculated exchange interactions. The new set of exchange interaction values between pairs of nearest neighbors atom in the alloy are deduced and agree with previous known measurement of lattice constant for this alloy. Using the combined EFT and mean field theory (MFT) spin methods, the sublattice magnetizations of the Fe and Co sites on the individual bcc basal planes of the layered nanostructures, are calculated and analyzed. The sublattice magnetizations, effective magnetic moments per site, and the possible ferromagnetic order of the layers [Fe1-cCoc ] ℓ on the individual bcc atomic planes of the embedded nanostructures for all temperatures and in particular for TcFe ≤ T ≤Tα→γ are presented as a function of temperature and thicknesses of the layered ferromagnetic nanostructures, for different stable concentrations c=0.25, 0.5 and 0.75. In the absence of first principles calculations for these basic physical variables for the layered nanostructures between iron leads, the combined EFT and MFT approach yields the only available information for them at present in the absence of a possible Curie temperature for these alloys. These variables are necessary for certain spin dynamic computations, as for the ballistic magnon transport across embedded nanojunctions in magnonics. The model is general, and may applied directly to other composite magnetic elements and embedded nanostructures.

  4. Embedded atom computer simulation of lattice distortion and dislocation core structure and mobility in Fe-Cr alloys

    SciTech Connect

    Farkas, D.; Schon, C.G.; Lima, M.S.F. de; Goldenstein, H.

    1996-01-01

    The atomistic structure of dislocation cores of <111> screw dislocations in disordered Fe-Cr b.c.c. alloys was simulated using embedded atom method potentials and molecular statics computer simulation. The mixed Fe-Cr interatomic potentials used were derived by fitting to the thermodynamic data of the disordered system and the measured lattice parameter changes of Fe upon Cr additions. The potentials predict phase separation as the most stable configuration for the central region of the phase diagram. The next most stable situation is the disordered b.c.c. phase. The structure of the screw 1/2 <111> dislocation core was studied using atomistic computer simulation and an improved visualization method for the representation of the resulting structures. The structure of the dislocation core is different from that typical of 1/2 <111> dislocations in pure b.c.c. materials. The core structure in the alloy tends to lose the threefold symmetry seen in pure b.c.c. materials and the stress necessary to initiate dislocation motion increases with Cr content. The mobility of kinks in these screw dislocations was also simulated and it was found that while the critical stress for kink motion in pure Fe is extremely low, it increases significantly with the addition of Cr. The implications of these differences for mechanical behavior are discussed.

  5. Magnetic phase transition in coupled spin-lattice systems: A replica-exchange Wang-Landau study.

    PubMed

    Perera, Dilina; Vogel, Thomas; Landau, David P

    2016-10-01

    Coupled, dynamical spin-lattice models provide a unique test ground for simulations investigating the finite-temperature magnetic properties of materials under the direct influence of the lattice vibrations. These models are constructed by combining a coordinate-dependent interatomic potential with a Heisenberg-like spin Hamiltonian, facilitating the treatment of both the atomic coordinates and the spins as explicit phase variables. Using a model parameterized for bcc iron, we study the magnetic phase transition in these complex systems via the recently introduced, massively parallel replica-exchange Wang-Landau Monte Carlo method. Comparison with the results obtained from rigid lattice (spin-only) simulations shows that the transition temperature as well as the amplitude of the peak in the specific heat curve is marginally affected by the lattice vibrations. Moreover, the results were found to be sensitive to the particular choice of interatomic potential.

  6. Magnetic phase transition in coupled spin-lattice systems: A replica-exchange Wang-Landau study

    NASA Astrophysics Data System (ADS)

    Perera, Dilina; Vogel, Thomas; Landau, David P.

    2016-10-01

    Coupled, dynamical spin-lattice models provide a unique test ground for simulations investigating the finite-temperature magnetic properties of materials under the direct influence of the lattice vibrations. These models are constructed by combining a coordinate-dependent interatomic potential with a Heisenberg-like spin Hamiltonian, facilitating the treatment of both the atomic coordinates and the spins as explicit phase variables. Using a model parameterized for bcc iron, we study the magnetic phase transition in these complex systems via the recently introduced, massively parallel replica-exchange Wang-Landau Monte Carlo method. Comparison with the results obtained from rigid lattice (spin-only) simulations shows that the transition temperature as well as the amplitude of the peak in the specific heat curve is marginally affected by the lattice vibrations. Moreover, the results were found to be sensitive to the particular choice of interatomic potential.

  7. Dissipative photonic lattice solitons.

    PubMed

    Ultanir, Erdem A; Stegeman, George I; Christodoulides, Demetrios N

    2004-04-15

    We show that discrete dissipative optical lattice solitons are possible in waveguide array configurations that involve periodically patterned semiconductor optical amplifiers and saturable absorbers. The characteristics of these low-power soliton states are investigated, and their propagation constant eigenvalues are mapped on Floquet-Bloch band diagrams. The prospect of observing such low-power dissipative lattice solitons is discussed in detail.

  8. Mysterious Lattice Rotations in Adsorbed Monolayers

    NASA Astrophysics Data System (ADS)

    Diehl, Renee D.

    1997-03-01

    Lattice rotations due to a mismatch in structure have been observed in film growth for many years, probably beginning in the 1930's with the Nishiyama-Wasserman and Kurdjumov-Sachs orientations observed when fcc(111) films grow on bcc(110) surfaces, or vice versa. Early analysis of this problem was carried out with the aid of Moiré patterns and the observation that the preferred lattice orientations are those which maximize the Moiré fringe spacing. Later energy calculations indicated that the structures which were predicted by the the Moiré technique actually do correspond to energy minima. Epitaxial rotation in adsorbed monolayers is a conceptually simpler problem since in principle it involves only two planes of atoms, and it was first observed in 1977 for Ar on a graphite surface(C. G. Shaw, M. D. Chinn, S. C. Fain, Jr. Phys. Rev. Lett. 41 (1978) 955.). This observation came only a few months after a new theory, based on the expected elastic behavior of an overlayer, was developed by A. D. Novaco and J. P. McTague(A. D. Novaco and J. P. McTague, Phys. Rev. Lett. 38 (1977) 1286.), and the agreement with the experimental results was remarkable. It was later shown that a few symmetry principles similar to those used for the film growth studies sometimes can also predict the observed structures. However, the situation for incommensurate layers physisorbed on metal surfaces currently looks bleak. None of the existing theories or models appears to describe the experimental results. New data for physisorbed gases on metal surfaces will be presented, along with some half-baked (and probably wrong) ideas for what might be happening. This work was supported by NSF.

  9. Effects of in-plane magnetization orientation on magnetic and electronic properties in a Bcc Co (001)/rock salt MgO (001)/Bcc Co (001) magnetic tunnel junction system: ab initio calculations.

    PubMed

    Yoo, Dong Su; Chae, Kisung; Chung, Yong-Chae

    2012-04-01

    Ab initio calculations were performed on a fully epitaxial bcc Co (001)/rock salt MgO (001)/bcc Co (001) magnetic tunnel junction system for two cases where the magnetization is parallel to bcc Co [100] and to bcc Co [110]. Structural optimization reveals that the two cases are equivalent systems and that the Co electrodes contract in the z-direction whereas the MgO insulating barrier expands. The magnetic moments of each monolayer vary slightly in each case; furthermore, only the magnetic moment at the surface of the Co atom shows any enhancement (12%). The layer decomposed density of states profiles reveals that the bonding character of the junction interface is derived mainly from the 2p-3d hybridization of the MgO and Co interfacial atoms.

  10. Many-body effects in the mobility and diffusivity of interstitial solute in a crystalline solid: The case of helium in BCC tungsten

    NASA Astrophysics Data System (ADS)

    Wen, Haohua; Semenov, A. A.; Woo, C. H.

    2017-09-01

    The many-body dynamics of a crystalline solid containing an interstitial solute atom (ISA) is usually interpreted within the one-particle approximation as a random walker hopping among trapping centers at periodic lattice sites. The corresponding mobility and diffusivity can be formulated based on the transition-state theory in the form of the Arrhenius law. Possible issues arising from the many-body nature of the dynamics may need to be understood and resolved both scientifically and technologically. Noting the congruence between the dynamics of the many-body and stochastic systems within the Mori-Zwanzig theory, we analyzed the dynamics of a model particle subjected to a saw-tooth potential in a noisy medium. The ISA mobility is found to be governed by two sources of dissipative friction: that which is produced by the scattering of lattice waves by the moving ISA (phonon wind), and that which is derived from the energy dissipation associated with overcoming the migration barrier screened by lattice waves (i.e., phonon screened). The many-body effect in both cases increases with temperature, so that the first component of the friction is important at high temperatures and the second component is important at low temperatures. A formulation built on this mechanistic structure of the dissipative friction requires the mobility and diffusivity to be expressed not only in terms of the migration enthalpy and entropy, but also of the phonon drag coefficient. As a test, the complex temperature dependence of the mobility and diffusivity of interstitial helium in BCC W obtained from molecular-dynamics simulation is very well reproduced.

  11. Strain-rate-induced bcc-to-hcp phase transformation of Fe nanowires

    NASA Astrophysics Data System (ADS)

    Xie, Hongxian; Yu, Tao; Fang, Wei; Yin, Fuxing; Faraz Khan, Dil

    2016-12-01

    Using molecular dynamics simulation method, the plastic deformation mechanism of Fe nanowires is studied by applying uniaxial tension along the [110] direction. The simulation result shows that the bcc-to-hcp martensitic phase transformation mechanism controls the plastic deformation of the nanowires at high strain rate or low temperature; however, the plastic deformation mechanism will transform into a dislocation nucleation mechanism at low strain rate and higher temperature. Furthermore, the underlying cause of why the bcc-to-hcp martensitic phase transition mechanism is related to high strain rate and low temperature is also carefully studied. Based on the present study, a strain rate-temperature plastic deformation map for Fe nanowires has been proposed. Project supported by the National Natural Science Foundation of China (Grant No. 51571082) and China Postdoctoral Science Foundation (Grant No. 2015M580191).

  12. Influence of the local-spin-density correlation functional on the stability of bcc ferromagnetic iron

    NASA Astrophysics Data System (ADS)

    Singh, D.; Clougherty, D. P.; MacLaren, J. M.; Albers, R. C.; Wang, C. S.

    1991-10-01

    The influence of local-spin-dependent correlation effects on the predicted stable ground-state phase of iron is reexamined with use of general-potential linearized augmented-plane-wave calculations. Differences in the form of the Vosko-Wilk-Nusair (VWN) local-spin-density functional used in previous studies are noted, since in previous studies significant additional approximations were made with respect to those of Vosko, Wilk, and Nusan [Can. J. Phys. 58, 1200 (1980)] and of MacLaren, Clougherty, and Albers [Phys. Rev. B 42, 3205 (1990)]. While the results of previous linear muffin-tin orbital calculations using the VWN functional predict a bcc ferromagnetic ground state, the present calculations show that the VWN spin-correlation effects fail to stabilize a bcc ground state. Considerable sensitivity to the form of the spin interpolation is found.

  13. Analytic bond-order potentials for the bcc refractory metals Nb, Ta, Mo and W.

    PubMed

    Čák, M; Hammerschmidt, T; Rogal, J; Vitek, V; Drautz, R

    2014-05-14

    Bond-order potentials (BOPs) are based on the tight-binding approximation for determining the energy of a system of interacting atoms. The bond energy and forces are computed analytically within the formalism of the analytic BOPs. Here we present parametrizations of the analytic BOPs for the bcc refractory metals Nb, Ta, Mo and W. The parametrizations are optimized for the equilibrium bcc structure and tested for atomic environments far from equilibrium that had not been included in the fitting procedure. These tests include structural energy differences for competing crystal structures; tetragonal, trigonal, hexagonal and orthorhombic deformation paths; formation energies of point defects as well as phonon dispersion relations. Our tests show good agreement with available experimental and theoretical data. In practice, we obtain the energetic ordering of vacancy, [1 1 1], [1 1 0], and [1 0 0] self-interstitial atom in agreement with density functional theory calculations.

  14. Domain wall modeling of bcc to hcp reconstructive phase transformation in early transition metals

    NASA Astrophysics Data System (ADS)

    Sanati, Mahdi; Saxena, A.; Lookman, T.

    2001-09-01

    The bcc (body-centered-cubic) phase to hcp (hexagonal-close-packed) phase transformation in certain elements and alloys is induced either by quenching or the application of pressure. Following the Burgers mechanism and through first-principles calculations we show that the bcc structure of Sc, Y, Ti, Zr, and Hf is unstable with respect to the shuffle of atoms rather than the shear. We therefore reduce the two-order-parameter (two-OP) Ginzburg-Landau (GL) free energy to an effective free energy in the shuffle OP. From the phonon dispersion experiments and the change of entropy at transition temperature we found the GL free energy coefficients for Ti and Zr. By using this information we obtain the domain wall width and energy for Ti and Zr.

  15. Twin nucleation in Fe-based bcc alloys—modeling and experiments

    NASA Astrophysics Data System (ADS)

    Ojha, A.; Sehitoglu, H.; Patriarca, L.; Maier, H. J.

    2014-10-01

    We develop an analytical expression for twin nucleation stress in bcc metal and alloys considering generalized planar fault energy and the dislocations bounding the twin nucleus. We minimize the total energy to predict the twinning stress relying only on parameters that are obtained through atomistic calculations, thus excluding the need for any empirical constants. We validate the present approach by means of precise measurements of the onset of twinning in bcc Fe-50at% Cr single crystals showing excellent agreement. The experimental observations of the three activated slip systems of symmetric configuration in relation to the twinning mechanism are demonstrated via transmission electron microscopy techniques along with digital image correlation. We then confirm the validity of the model for Fe, Fe-25at% Ni and Fe-3at% V alloys compared with experiments from the literature to show general applicability.

  16. 18-Electron Resonance Structures in the BCC Transition Metals and Their CsCl-type Derivatives.

    PubMed

    Vinokur, Anastasiya I; Fredrickson, Daniel C

    2017-03-06

    Bonding in elemental metals and simple alloys has long been thought of as involving intense delocalization, with little connection to the localized bonds of covalent systems. In this Article, we show that the bonding in body-centered cubic (bcc) structures of the group 6 transition metals can in fact be represented, via the concepts of the 18-n rule and isolobal bonding, in terms of two balanced resonance structures. We begin with a reversed approximation Molecular Orbital (raMO) analysis of elemental Mo in its bcc structure. The raMO analysis indicates that, despite the low electron count (six valence electrons per Mo atom), nine electron pairs can be associated with any given Mo atom, corresponding to a filled 18-electron configuration. Six of these electron pairs take part in isolobal bonds along the second-nearest neighbor contacts, with the remaining three (based on the t2g d orbitals) interacting almost exclusively with first-nearest neighbors. In this way, each primitive cubic network defined by the second-nearest neighbor contacts comprises an 18-n electron system with n = 6, which essentially describes the full electronic structure of the phase. Of course, either of the two interpenetrating primitive cubic frameworks of the bcc structure can act as a basis for this discussion, leading us to write two resonance structures with equal weights for bcc-Mo. The electronic structures of CsCl-type variants with the same electron count can then be interpreted in terms of changing the relative weights of these two resonance structures, as is qualitatively confirmed with raMO analysis. This combination of raMO analysis with the resonance concept offers an avenue to extend the 18-n rule into other transition metal-rich structures.

  17. Molecular dynamics simulation of grain-boundary diffusion of vacancies in bcc iron

    SciTech Connect

    Kwok, T.; Ho, P. S.; Yip, S.; Balluffi, R. W.; Bristowe, P. D.; Brokman, A.

    1981-06-01

    The jumping of vacancies in a bcc iron ..sigma.. = 5 tilt boundary was simulated by computer molecular dynamics. The data yielded a reasonable value of the activation energy for migration and showed that the jump processes are highly structure-dependent. The use of a temperature dependent transition probability matrix to describe the diffusion of the vacancies in the grain boundary is suggested. Formation of one type of boundary interstitial was observed which was found to be immobile.

  18. [A microstructural approach to fatigue crack processes in poly crystalline BCC materials]. Progress report

    SciTech Connect

    Gerberich, W.W.

    1992-12-31

    Objective was to study fatigue where a combination of low temperature and cyclic loading produced cyclic cleavage in bcc Fe-base systems. Both dislocation dynamics and quasi-statics of crack growth were probed. This document reviews progress over the past 6 years: hydrogen embrittlement and cleavage, computations (stress near crack tip), dislocation emission from grain boundaries, fracture process zones, and understanding brittle fracture at the atomistic/dislocation scales and at the microscopic/macroscopic scale.

  19. [A microstructural approach to fatigue crack processes in poly crystalline BCC materials

    SciTech Connect

    Gerberich, W.W.

    1992-01-01

    Objective was to study fatigue where a combination of low temperature and cyclic loading produced cyclic cleavage in bcc Fe-base systems. Both dislocation dynamics and quasi-statics of crack growth were probed. This document reviews progress over the past 6 years: hydrogen embrittlement and cleavage, computations (stress near crack tip), dislocation emission from grain boundaries, fracture process zones, and understanding brittle fracture at the atomistic/dislocation scales and at the microscopic/macroscopic scale.

  20. Correlation between critical temperature and strength of small-scale bcc pillars.

    PubMed

    Schneider, A S; Kaufmann, D; Clark, B G; Frick, C P; Gruber, P A; Mönig, R; Kraft, O; Arzt, E

    2009-09-04

    Microcompression tests were performed on focused-ion-beam-machined micropillars of several body-centered-cubic metals (W, Mo, Ta, and Nb) at room temperature. The relationship between yield strength and pillar diameter as well as the deformation morphologies were found to correlate with a parameter specific for bcc metals, i.e., the critical temperature T(c). This finding sheds new light on the phenomenon of small-scale plasticity in largely unexplored non-fcc metals.

  1. Yield Functions and Plastic Potentials for BCC Metals and Possibly Other Materials

    SciTech Connect

    Christensen, R M

    2005-09-29

    Yield functions and plastic potentials are expressed in terms of the invariants of the stress tensor for polycrystalline metals and other isotropic materials. The plastic volume change data of Richmond is used to evaluate the embedded materials properties for some bcc metals and one polymer. A general form for the plastic potential is found that is intended to represent and cover a wide range of materials types.

  2. Origin of the thermoreversible fcc-bcc transition in block copolymer solutions.

    PubMed

    Lodge, Timothy P; Bang, Joona; Park, Moon Jeong; Char, Kookheon

    2004-04-09

    The thermoreversible fcc-bcc transition in concentrated block copolymer micellar solutions is shown to be driven by decreases in the aggregation number as the solvent penetrates the core, leading to a softer intermicelle potential. Small-angle neutron scattering measurements in a dilute solution are used to quantify the temperature-dependent micellar characteristics. The observed phase boundary is in excellent agreement with recent simulations of highly branched star polymers.

  3. Garvieacin Q, a Novel Class II Bacteriocin from Lactococcus garvieae BCC 43578

    PubMed Central

    Zendo, Takeshi; Visessanguan, Wonnop; Roytrakul, Sittiruk; Pumpuang, Laphaslada; Jaresitthikunchai, Janthima; Sonomoto, Kenji

    2012-01-01

    Lactococcus garvieae BCC 43578 produces a novel class II bacteriocin, garvieacin Q (GarQ), 70 amino acids in length and containing a 20-amino-acid N-terminal leader peptide. It is cleaved at the Gly-Gly site to generate the mature GarQ (5,339 Da), which is especially inhibitory against Listeria monocytogenes ATCC 19115 and other L. garvieae strains. PMID:22210221

  4. Emergence of the bcc Phase and Phase Transition in Be through Phonon Quasiparticle Calculations

    NASA Astrophysics Data System (ADS)

    Zhang, D. B., Sr.; Wentzcovitch, R. M.

    2016-12-01

    Beryllium (Be) is an important material with applications in a number of areas ranging from aerospace components to X-ray equipment. Yet a precise understanding of the phase diagram of Be remains elusive. We have investigated the phase stability of Be using a recently developed hybrid free energy computation method that accounts for anharmonic effects by invoking phonon quasiparticle properties. We find that the hcp to bcc transition occurs near the melting curve at 0

  5. Alliacane sesquiterpenoids from submerged cultures of the basidiomycete Inonotus sp. BCC 22670.

    PubMed

    Isaka, Masahiko; Sappan, Malipan; Supothina, Sumalee; Srichomthong, Kitlada; Komwijit, Somjit; Boonpratuang, Thitiya

    2017-04-01

    Nine alliacane sesquiterpenoids, inonoalliacanes A-I, were isolated from culture broth of the basidiomycete Inonotus sp. BCC 22670. The structures were elucidated on the basis of NMR spectroscopic and mass spectrometry data. The absolute configuration of inonoalliacane F was determined by application of the modified Mosher's method. Inonoalliacane A, the most abundant sesquiterpene constituent, exhibited moderate antibacterial activity against Bacillus cereus, whereas inonoalliacane B showed antiviral activity against herpes simplex virus type 1.

  6. Aromadendrane and cyclofarnesane sesquiterpenoids from cultures of the basidiomycete Inonotus sp. BCC 23706.

    PubMed

    Isaka, Masahiko; Yangchum, Arunrat; Supothina, Sumalee; Boonpratuang, Thitiya; Choeyklin, Rattaket; Kongsaeree, Palangpon; Prabpai, Samran

    2015-10-01

    Twelve aromadendrane sesquiterpenoids, inonotins A-L, and a previously unknown cyclofarnesane, i.e., inonofarnesane, together with two known compounds, were isolated from cultures of the wood-rotting basidiomycete Inonotus sp. BCC 23706. Inonotin I is identical to a previously reported compound with an incorrect structure. Structures of the compounds were elucidated by spectroscopic analysis and X-ray crystallography. The absolute configurations of inonotin D and inonofarnesane were determined by application of the modified Mosher's method.

  7. Enhanced production of histamine dehydrogenase by Natrinema gari BCC 24369 in a non-sterile condition.

    PubMed

    Chaikaew, Siriporn; Powtongsook, Sorawit; Boonpayung, Somphop; Benjakul, Soottawat; Visessanguan, Wonnop

    2015-01-01

    The production of histamine dehydrogenase (HADH) by Natrinema gari BCC 24369, a halophilic archeaon isolated from fish sauce, was optimized and scaled up under a non-sterile condition. Through statistical design by Plackett-Burman design (PBD), casamino acid, NaCl, MgSO4·7H2O and FeCl2·4H2O were identified as the significant medium compositions influencing HADH production. Central composite design (CCD) was employed to identify the optimal values of individual composition yielding the maximum HADH production. The analysis indicated that the optimal medium was composed of 15 g/l casamino acid, 75 g/l MgSO4·7H2O, 273 g/l NaCl, 2.5 mg/l FeCl2·4H2O, 10 g/l yeast extract, 5 g/l sodium glutamate and 5 g/l KCl. Based on the one-factor-at-a-time (OFAT) method, the optimum initial pH of the culture medium and the incubation temperature for HADH production were 7.5 and 37 °C, respectively. The production of HADH under optimal conditions was 2.2-fold higher than that under un-optimized conditions. Owing to the halophilic nature of Nnm. gari BCC 24369, a more economical and eco-friendlier HADH production was developed under a completely non-sterile condition. In a 16-l batch cultivation of Nnm. gari BCC 24369, HADH productivity under a non-sterile condition (858 ± 12 U/g cell biomass) was comparable to that under a sterile condition (878 ± 15 U/g cell biomass). These results demonstrate the feasibility and simplicity of HADH production using Nnm. gari BCC 24369 under a non-sterile condition without compromising enzyme yield and any changes in Km value.

  8. Quasicrystallography from Bn lattices

    NASA Astrophysics Data System (ADS)

    Koca, M.; Koca, N. O.; Al-Mukhaini, A.; Al-Qanabi, A.

    2014-11-01

    We present a group theoretical analysis of the hypercubic lattice described by the affine Coxeter-Weyl group Wa (Bn). An h-fold symmetric quasicrystal structure follows from the hyperqubic lattice whose point group is described by the Coxeter-Weyl group W (Bn) with the Coxeter number h=2n. Higher dimensional cubic lattices are explicitly constructed for n = 4,5,6 by identifying their rank-3 Coxeter subgroups and maximal dihedral subgroups. Decomposition of their Voronoi cells under the respective rank-3 subgroups W (A3), W (H2)×W (A1) and W (H3)lead to the rhombic dodecahedron, rhombic icosahedron and rhombic triacontahedron respectively. Projection of the lattice B4 describes a quasicrystal structure with 8-fold symmetry. The B5 lattice leads to quasicrystals with both 5fold and 10 fold symmetries. The lattice B6 projects on a 12-fold symmetric quasicrystal as well as a 3D icosahedral quasicrystal depending on the choice of subspace of projections. The projected sets of lattice points are compatible with the available experimental data.

  9. Superalloy Lattice Block Structures

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. D.; Nathal, M. V.; Hebsur, M. G.; Kraus, D. L.

    2003-01-01

    In their simplest form, lattice block panels are produced by direct casting and result in lightweight, fully triangulated truss-like configurations which provide strength and stiffness [2]. The earliest realizations of lattice block were made from A1 and steels, primarily under funding from the US Navy [3]. This work also showed that the mechanical efficiency (eg., specific stiffness) of lattice block structures approached that of honeycomb structures [2]. The lattice architectures are also less anisotropic, and the investment casting route should provide a large advantage in cost and temperature capability over honeycombs which are limited to alloys that can be processed into foils. Based on this early work, a program was initiated to determine the feasibility of extending the high temperature superalloy lattice block [3]. The objective of this effort was to provide an alternative to intermetallics and composites in achieving a lightweight high temperature structure without sacrificing the damage tolerance and moderate cost inherent in superalloys. To establish the feasibility of the superalloy lattice block concept, work was performed in conjunction with JAMCORP, Inc. Billerica, MA, to produce a number of lattice block panels from both IN71 8 and Mar-M247.

  10. A realistic lattice example

    SciTech Connect

    Courant, E.D.; Garren, A.A.

    1985-10-01

    A realistic, distributed interaction region (IR) lattice has been designed that includes new components discussed in the June 1985 lattice workshop. Unlike the test lattices, the lattice presented here includes utility straights and the mechanism for crossing the beams in the experimental straights. Moreover, both the phase trombones and the dispersion suppressors contain the same bending as the normal cells. Vertically separated beams and 6 Tesla, 1-in-1 magnets are assumed. Since the cells are 200 meters long, and have 60 degree phase advance, this lattice has been named RLD1, in analogy with the corresponding test lattice, TLD1. The quadrupole gradient is 136 tesla/meter in the cells, and has similar values in other quadrupoles except in those in the IR`s, where the maximum gradient is 245 tesla/meter. RLD1 has distributed IR`s; however, clustered realistic lattices can easily be assembled from the same components, as was recently done in a version that utilizes the same type of experimental and utility straights as those of RLD1.

  11. Ab initio study of screw dislocations in Mo and ta: A new picture of plasticity in bcc transition metals

    PubMed

    Ismail-Beigi; Arias

    2000-02-14

    We report the first ab initio density-functional study of <111> screw dislocation cores in the bcc transition metals Mo and Ta. Our results suggest a new picture of bcc plasticity with symmetric and compact dislocation cores, contrary to the presently accepted picture based on continuum and interatomic potentials. Core energy scales in this new picture are in much better agreement with the Peierls energy barriers to dislocation motion suggested by experiments.

  12. Coulomb interaction parameters in bcc iron: an LDA+DMFT study.

    PubMed

    Belozerov, A S; Anisimov, V I

    2014-09-17

    We study the influence of Coulomb interaction parameters on electronic structure and magnetic properties of paramagnetic bcc Fe by means of the local density approximation plus dynamical mean-field theory approach. We consider the local Coulomb interaction in the density-density form as well as in the form with spin rotational invariance approximated by averaging over all directions of the quantization axis. Our results indicate that the magnetic properties of bcc Fe are mainly affected by the Hund's rule coupling J rather than by the Hubbard U. By employing the constrained density functional theory approach in the basis of Wannier functions of spd character, we obtain U = 4 eV and J = 0.9 eV. In spite of the widespread belief that U = 4 eV is too large for bcc Fe, our calculations with the obtained values of U and J result in a satisfactory agreement with the experiment. The correlation effects caused by U are found to be weak even for large U = 6 eV. The agreement between the calculated and experimental Curie temperatures is further improved if J is reduced to 0.8 eV. However, with the decrease of J, the effective local magnetic moment moves further away from the experimental value.

  13. Response of FCC and BCC Metals to High-Amplitude Dynamic Compression

    NASA Astrophysics Data System (ADS)

    Meyers, Marc; Remington, Bruce; Maddox, Brian; Bringa, Eduardo; Park, Hye-Sook; Lu, Chia-Hui

    2013-06-01

    The experimentally observed response of FCC and BCC metals to high-amplitude compressive waves is compared with analytical predictions using constitutive models based on dislocations and twinning and with molecular dynamics simulations. In FCC metals (Cu and Ni), the predictions of dislocation densities from a homogeneous nucleation model are close to those of molecular dynamics simulations. Both are orders of magnitude higher than experimentally observed residual dislocation densities. MD calculations predict a drastic decrease in dislocation densities upon unloading, bringing the values in agreement with measurements. For BCC metals (Ta), on the residual densities are close to predictions of Orowan dislocation multiplication. Due to the much higher Peierls-Nabarro stress, the MD simulations predict much lower dislocation densities than in FCC metals subjected to similar pressures. At higher amplitudes, both FCC and BCC metals experience extensive twinning. The threshold pressure for twinning is successfully modeled by constitutive model based on a critical shear stress for twinning, at the imposed strain rate and temperature. Research funded by UCOP/UC Labs Program.

  14. A low-surface energy carbon allotrope: the case for bcc-C6.

    PubMed

    Yin, Wen-Jin; Chen, Yuan-Ping; Xie, Yue-E; Liu, Li-Min; Zhang, S B

    2015-06-07

    Graphite may be viewed as a low-surface-energy carbon allotrope with little layer-layer interaction. Other low-surface-energy allotropes but with much stronger layer-layer interaction may also exist. Here, we report a first-principles prediction for one of the known carbon allotropes, bcc-C6 (a body centered carbon allotrope with six atoms per primitive unit), that should have exceptionally low-surface energy and little size dependence down to only a couple layer thickness. This unique property may explain the existence of the relatively-high-energy bcc-C6 during growth. The electronic properties of the bcc-C6 thin layers can also be intriguing: the (111), (110), and (001) thin layers have direct band gap, indirect band gap, and metallic character, respectively. The refrained chemical reactivity of the thin layers does not disappear after cleaving, as lithium-doped (Li-doped) 3-layers (111) has a noticeably increased binding energy of H2 molecules with a maximum storage capacity of 10.8 wt%.

  15. Jammed lattice sphere packings

    NASA Astrophysics Data System (ADS)

    Kallus, Yoav; Marcotte, Étienne; Torquato, Salvatore

    2013-12-01

    We generate and study an ensemble of isostatic jammed hard-sphere lattices. These lattices are obtained by compression of a periodic system with an adaptive unit cell containing a single sphere until the point of mechanical stability. We present detailed numerical data about the densities, pair correlations, force distributions, and structure factors of such lattices. We show that this model retains many of the crucial structural features of the classical hard-sphere model and propose it as a model for the jamming and glass transitions that enables exploration of much higher dimensions than are usually accessible.

  16. Limitations of BCC_CSM's ability to predict summer precipitation over East Asia and the Northwestern Pacific

    NASA Astrophysics Data System (ADS)

    Gong, Zhiqiang; Dogar, Muhammad Mubashar Ahmad; Qiao, Shaobo; Hu, Po; Feng, Guolin

    2017-09-01

    This study examines the ability of the Beijing Climate Center Climate System Model (BCC_CSM) to predict the meridional pattern of summer precipitation over East Asia-Northwest Pacific (EA-NWP) and its East Asia-Pacific (EAP) teleconnection. The differences of summer precipitation modes of the empirical orthogonal function and the bias of atmospheric circulations over EA-NWP are analyzed to determine the reason for the precipitation prediction errors. Results indicate that the BCC_CSM could not reproduce the positive-negative-positive meridional tripole pattern from south to north that differs markedly from that observed over the last 20 years. This failure can be attributed to the bias of the BCC_CSM hindcasts of the summer EAP teleconnection and the low predictability of 500 hPa at the mid-high latitude lobe of the EAP. Meanwhile, the BCC_CSM hindcasts' deficiencies of atmospheric responses to SST anomalies over the Indonesia maritime continent (IMC) resulted in opposite and geographically shifted geopotential anomalies at 500 hPa as well as wind and vorticity anomalies at 850 hPa, rendering the BCC_CSM unable to correctly reproduce the EAP teleconnection pattern. Understanding these two problems will help further improve BCC_CSM's summer precipitation forecasting ability over EA-NWP.

  17. SPILADY: A parallel CPU and GPU code for spin-lattice magnetic molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Ma, Pui-Wai; Dudarev, S. L.; Woo, C. H.

    2016-10-01

    Spin-lattice dynamics generalizes molecular dynamics to magnetic materials, where dynamic variables describing an evolving atomic system include not only coordinates and velocities of atoms but also directions and magnitudes of atomic magnetic moments (spins). Spin-lattice dynamics simulates the collective time evolution of spins and atoms, taking into account the effect of non-collinear magnetism on interatomic forces. Applications of the method include atomistic models for defects, dislocations and surfaces in magnetic materials, thermally activated diffusion of defects, magnetic phase transitions, and various magnetic and lattice relaxation phenomena. Spin-lattice dynamics retains all the capabilities of molecular dynamics, adding to them the treatment of non-collinear magnetic degrees of freedom. The spin-lattice dynamics time integration algorithm uses symplectic Suzuki-Trotter decomposition of atomic coordinate, velocity and spin evolution operators, and delivers highly accurate numerical solutions of dynamic evolution equations over extended intervals of time. The code is parallelized in coordinate and spin spaces, and is written in OpenMP C/C++ for CPU and in CUDA C/C++ for Nvidia GPU implementations. Temperatures of atoms and spins are controlled by Langevin thermostats. Conduction electrons are treated by coupling the discrete spin-lattice dynamics equations for atoms and spins to the heat transfer equation for the electrons. Worked examples include simulations of thermalization of ferromagnetic bcc iron, the dynamics of laser pulse demagnetization, and collision cascades.

  18. SPIN ON THE LATTICE.

    SciTech Connect

    ORGINOS,K.

    2003-01-07

    I review the current status of hadronic structure computations on the lattice. I describe the basic lattice techniques and difficulties and present some of the latest lattice results; in particular recent results of the RBC group using domain wall fermions are also discussed. In conclusion, lattice computations can play an important role in understanding the hadronic structure and the fundamental properties of Quantum Chromodynamics (QCD). Although some difficulties still exist, several significant steps have been made. Advances in computer technology are expected to play a significant role in pushing these computations closer to the chiral limit and in including dynamical fermions. RBC has already begun preliminary dynamical domain wall fermion computations [49] which we expect to be pushed forward with the arrival of QCD0C. In the near future, we also expect to complete the non-perturbative renormalization of the relevant derivative operators in quenched QCD.

  19. Root lattices and quasicrystals

    NASA Astrophysics Data System (ADS)

    Baake, M.; Joseph, D.; Kramer, P.; Schlottmann, M.

    1990-10-01

    It is shown that root lattices and their reciprocals might serve as the right pool for the construction of quasicrystalline structure models. All noncrystallographic symmetries observed so far are covered in minimal embedding with maximal symmetry.

  20. Root lattices and quasicrystals

    NASA Astrophysics Data System (ADS)

    Baake, M.; Joseph, D.; Kramer, P.; Schlottmann, M.

    1990-10-01

    It is shown how root lattices and their reciprocals might serve as the right pool for the construction of quasicrystalline structure models. All non-periodic symmetries observed so far are covered in minimal embedding with maximal symmetry.

  1. Superalloy Lattice Block Structures

    NASA Technical Reports Server (NTRS)

    Nathal, M. V.; Whittenberger, J. D.; Hebsur, M. G.; Kantzos, P. T.; Krause, D. L.

    2004-01-01

    Initial investigations of investment cast superalloy lattice block suggest that this technology will yield a low cost approach to utilize the high temperature strength and environmental resistance of superalloys in lightweight, damage tolerant structural configurations. Work to date has demonstrated that relatively large superalloy lattice block panels can be successfully investment cast from both IN-718 and Mar-M247. These castings exhibited mechanical properties consistent with the strength of the same superalloys measured from more conventional castings. The lattice block structure also accommodates significant deformation without failure, and is defect tolerant in fatigue. The potential of lattice block structures opens new opportunities for the use of superalloys in future generations of aircraft applications that demand strength and environmental resistance at elevated temperatures along with low weight.

  2. Asymptotic energy of lattices

    NASA Astrophysics Data System (ADS)

    Yan, Weigen; Zhang, Zuhe

    2009-04-01

    The energy of a simple graph G arising in chemical physics, denoted by E(G), is defined as the sum of the absolute values of eigenvalues of G. As the dimer problem and spanning trees problem in statistical physics, in this paper we propose the energy per vertex problem for lattice systems. In general for a type of lattice in statistical physics, to compute the entropy constant with toroidal, cylindrical, Mobius-band, Klein-bottle, and free boundary conditions are different tasks with different hardness and may have different solutions. We show that the energy per vertex of plane lattices is independent of the toroidal, cylindrical, Mobius-band, Klein-bottle, and free boundary conditions. In particular, the asymptotic formulae of energies of the triangular, 33.42, and hexagonal lattices with toroidal, cylindrical, Mobius-band, Klein-bottle, and free boundary conditions are obtained explicitly.

  3. Automated Lattice Perturbation Theory

    SciTech Connect

    Monahan, Christopher

    2014-11-01

    I review recent developments in automated lattice perturbation theory. Starting with an overview of lattice perturbation theory, I focus on the three automation packages currently "on the market": HiPPy/HPsrc, Pastor and PhySyCAl. I highlight some recent applications of these methods, particularly in B physics. In the final section I briefly discuss the related, but distinct, approach of numerical stochastic perturbation theory.

  4. Additive lattice kirigami.

    PubMed

    Castle, Toen; Sussman, Daniel M; Tanis, Michael; Kamien, Randall D

    2016-09-01

    Kirigami uses bending, folding, cutting, and pasting to create complex three-dimensional (3D) structures from a flat sheet. In the case of lattice kirigami, this cutting and rejoining introduces defects into an underlying 2D lattice in the form of points of nonzero Gaussian curvature. A set of simple rules was previously used to generate a wide variety of stepped structures; we now pare back these rules to their minimum. This allows us to describe a set of techniques that unify a wide variety of cut-and-paste actions under the rubric of lattice kirigami, including adding new material and rejoining material across arbitrary cuts in the sheet. We also explore the use of more complex lattices and the different structures that consequently arise. Regardless of the choice of lattice, creating complex structures may require multiple overlapping kirigami cuts, where subsequent cuts are not performed on a locally flat lattice. Our additive kirigami method describes such cuts, providing a simple methodology and a set of techniques to build a huge variety of complex 3D shapes.

  5. Additive lattice kirigami

    PubMed Central

    Castle, Toen; Sussman, Daniel M.; Tanis, Michael; Kamien, Randall D.

    2016-01-01

    Kirigami uses bending, folding, cutting, and pasting to create complex three-dimensional (3D) structures from a flat sheet. In the case of lattice kirigami, this cutting and rejoining introduces defects into an underlying 2D lattice in the form of points of nonzero Gaussian curvature. A set of simple rules was previously used to generate a wide variety of stepped structures; we now pare back these rules to their minimum. This allows us to describe a set of techniques that unify a wide variety of cut-and-paste actions under the rubric of lattice kirigami, including adding new material and rejoining material across arbitrary cuts in the sheet. We also explore the use of more complex lattices and the different structures that consequently arise. Regardless of the choice of lattice, creating complex structures may require multiple overlapping kirigami cuts, where subsequent cuts are not performed on a locally flat lattice. Our additive kirigami method describes such cuts, providing a simple methodology and a set of techniques to build a huge variety of complex 3D shapes. PMID:27679822

  6. Legless locomotion in lattices

    NASA Astrophysics Data System (ADS)

    Schiebel, Perrin; Dai, Jin; Gong, Chaohui; Serrano, Miguel M.; Mendelson, Joseph R., III; Choset, Howie; Goldman, Daniel I.

    2015-03-01

    By propagating waves from head to tail, limbless organisms like snakes can traverse terrain composed of rocks, foliage, soil and sand. Previous research elucidated how rigid obstacles influence snake locomotion by studying a model terrain-symmetric lattices of pegs placed in hard ground. We want to understand how different substrate-body interaction modes affect performance in desert-adapted snakes during transit of substrates composed of both rigid obstacles and granular media (GM). We tested Chionactis occipitalis, the Mojave shovel-nosed snake, in two laboratory treatments: lattices of 0 . 64 cm diameter obstacles arrayed on both a hard, slick substrate and in a GM of ~ 0 . 3 mm diameter glass particles. For all lattice spacings, d, speed through the hard ground lattices was less than that in GM lattices. However, maximal undulation efficiencies ηu (number of body lengths advanced per undulation cycle) in both treatments were comparable when d was intermediate. For other d, ηu was lower than this maximum in hard ground lattices, while on GM, ηu was insensitive to d. To systematically explore such locomotion, we tested a physical robot model of the snake; performance depended sensitively on base substrate, d and body wave parameters.

  7. Solitons in spiraling Vogel lattices.

    PubMed

    Kartashov, Yaroslav V; Vysloukh, Victor A; Torner, Lluis

    2013-01-15

    We address light propagation in Vogel optical lattices and show that such lattices support a variety of stable soliton solutions in both self-focusing and self-defocusing media, whose propagation constants belong to domains resembling gaps in the spectrum of a truly periodic lattice. The azimuthally rich structure of Vogel lattices allows generation of spiraling soliton motion.

  8. Measuring on Lattices

    NASA Astrophysics Data System (ADS)

    Knuth, Kevin H.

    2009-12-01

    Previous derivations of the sum and product rules of probability theory relied on the algebraic properties of Boolean logic. Here they are derived within a more general framework based on lattice theory. The result is a new foundation of probability theory that encompasses and generalizes both the Cox and Kolmogorov formulations. In this picture probability is a bi-valuation defined on a lattice of statements that quantifies the degree to which one statement implies another. The sum rule is a constraint equation that ensures that valuations are assigned so as to not violate associativity of the lattice join and meet. The product rule is much more interesting in that there are actually two product rules: one is a constraint equation arises from associativity of the direct products of lattices, and the other a constraint equation derived from associativity of changes of context. The generality of this formalism enables one to derive the traditionally assumed condition of additivity in measure theory, as well introduce a general notion of product. To illustrate the generic utility of this novel lattice-theoretic foundation of measure, the sum and product rules are applied to number theory. Further application of these concepts to understand the foundation of quantum mechanics is described in a joint paper in this proceedings.

  9. The atomistic mechanism of hcp-to-bcc martensitic transformation in the Ti-Nb system revealed by molecular dynamics simulations.

    PubMed

    Li, Yang; Li, JiaHao; Liu, BaiXin

    2015-02-14

    Applying the constructed Ti-Nb potentials, molecular dynamics simulations were conducted to investigate the martensitic transformation of Ti100-xNbx alloys (x = 5, 10…25) from the α' phase (hcp) to the β phase (bcc). It is found that the transformation involved four phases, i.e. α', α'', fco (face-centered orthorhombic), and β phases. The structures of the obtained phases exhibit consistency with experimental data, verifying the validity of atomic simulations. The simulations not only revealed the processes of atomic displacements during the transformation, but also elucidated the underlying mechanism of the martensitic transformation at the atomic level. The martensitic transformation incorporates three types of coinstantaneous deformations i.e. slide, shear as well as extension, and the subsequent lattice constant relaxation. Furthermore, according to the proposed mechanism, the crystallographic correlation between the initial α' phase and the final β phase has been deduced. The simulation results provide a clear landscape on the martensitic transformation mechanism, facilitating our comprehensive understanding on the phase transition in the Ti-Nb system.

  10. All-Digital Galvanically-Coupled BCC Receiver Resilient to Frequency Misalignment.

    PubMed

    Chen, Pengpeng; Yang, Huazhong; Luo, Rong; Zhao, Bo

    2017-06-01

    It is promising for wearable devices to go to a miniature size to alleviate the load of human body. One way to miniaturize the communication nodes on human body is to remove the bulky components such as antenna and crystal. Galvanically-coupled body channel communication (GC-BCC) has a great advantage over conventional wireless communications in reducing the size of wearable devices because it reuses the monitoring electrodes for signal transmission in place of antennas. To remove the crystal as well, the receiver must be immune to different types of frequency misalignments. This paper presents a GC-BCC receiver based on low power all-digital Gaussian frequency shift keying (GFSK) demodulation and clock-data recovery (CDR). A carrier tracking technique is proposed to detect and automatically adapt to the misalignment of carrier frequency. In addition, we also propose a circle-index CDR circuit to deal with the inaccuracy or drift of the clock frequency. The proposed circuit is implemented with 0.18 μm CMOS technology, and it operates at 200 kHz with a BFSK/GFSK modulation index of 1.0. Measured results show that the chip consumes 0.53 mA at a data rate of 100 kb/s. At a 10 cm body channel length, the GC-BCC receiver can tolerate a carrier misalignment up to [Formula: see text] and a clock error up to [Formula: see text], while keeping the bit error rate (BER) below 0.1%.

  11. Ultra-light hierarchical meta-materials on a body-centred cubic lattice

    NASA Astrophysics Data System (ADS)

    Rayneau-Kirkhope, Daniel; Mao, Yong; Farr, Robert

    2017-07-01

    Modern fabrication techniques offer the freedom to design and manufacture structures with complex geometry on many lengthscales, offering many potential advantages. For example, fractal/hierarchical struts have been shown to be exceptionally strong and yet light (Rayneau-Kirkhope D. et al., Phys. Rev. Lett., 109 (2012) 204301). In this letter, we propose a new class of meta-material, constructed from fractal or hierarchical struts linking a specific set of lattice points. We present a mechanical analysis of this meta-material resulting from a body-centred cubic (BCC) lattice. We show that, through the use of hierarchy, the material usage follows an enhanced scaling relation, and both material property and overall efficiency can be optimised for a specific applied stress. Such a design has the potential of providing the next generation of lightweight, buckling-resistant meta-materials.

  12. Lattice studies of baryons

    SciTech Connect

    David Richards

    2004-10-01

    This talk describes progress at understanding the properties of the nucleon and its excitations from lattice QCD. I begin with a review of recent lattice results for the lowest-lying states of the excited baryon spectrum. The need to approach physical values of the light quark masses is emphasized, enabling the effects of the pion cloud to be revealed. I then outline the development of techniques that will enable the extraction of the masses of the higher resonances, and describe how such calculations provide insight into the structure of the hadrons. Finally, I discuss direct probes of the quark and gluon structure of baryons through the lattice measurement of the moments of quark distributions and of Generalized Parton Distributions.

  13. Crossing on hyperbolic lattices

    NASA Astrophysics Data System (ADS)

    Gu, Hang; Ziff, Robert M.

    2012-05-01

    We divide the circular boundary of a hyperbolic lattice into four equal intervals and study the probability of a percolation crossing between an opposite pair as a function of the bond occupation probability p. We consider the {7,3} (heptagonal), enhanced or extended binary tree (EBT), the EBT-dual, and the {5,5} (pentagonal) lattices. We find that the crossing probability increases gradually from 0 to 1 as p increases from the lower pl to the upper pu critical values. We find bounds and estimates for the values of pl and pu for these lattices and identify the self-duality point p* corresponding to where the crossing probability equals 1/2. Comparison is made with recent numerical and theoretical results.

  14. Lattice gauge theories

    NASA Astrophysics Data System (ADS)

    Weisz, Peter; Majumdar, Pushan

    2012-03-01

    Lattice gauge theory is a formulation of quantum field theory with gauge symmetries on a space-time lattice. This formulation is particularly suitable for describing hadronic phenomena. In this article we review the present status of lattice QCD. We outline some of the computational methods, discuss some phenomenological applications and a variety of non-perturbative topics. The list of references is severely incomplete, the ones we have included are text books or reviews and a few subjectively selected papers. Kronfeld and Quigg (2010) supply a reasonably comprehensive set of QCD references. We apologize for the fact that have not covered many important topics such as QCD at finite density and heavy quark effective theory adequately, and mention some of them only in the last section "In Brief". These topics should be considered in further Scholarpedia articles.

  15. Lattice Boltzmann Stokesian dynamics.

    PubMed

    Ding, E J

    2015-11-01

    Lattice Boltzmann Stokesian dynamics (LBSD) is presented for simulation of particle suspension in Stokes flows. This method is developed from Stokesian dynamics (SD) with resistance and mobility matrices calculated using the time-independent lattice Boltzmann algorithm (TILBA). TILBA is distinguished from the traditional lattice Boltzmann method (LBM) in that a background matrix is generated prior to the calculation. The background matrix, once generated, can be reused for calculations for different scenarios, thus the computational cost for each such subsequent calculation is significantly reduced. The LBSD inherits the merits of the SD where both near- and far-field interactions are considered. It also inherits the merits of the LBM that the computational cost is almost independent of the particle shape.

  16. Simulation of He embrittlement at grain boundaries in bcc transition metals

    NASA Astrophysics Data System (ADS)

    Suzudo, Tomoaki; Yamaguchi, Masatake

    2015-10-01

    To investigate what atomic properties largely determine vulnerability to He embrittlement at grain boundaries (GB) of bcc metals, we introduce a computational model composed of first principles density functional theory and a He segregation rate theory model. Predictive calculations of He embrittlement at the first wall of the future DEMO fusion concept reactor indicate that variation in the He embrittlement originated not only from He production rate related to neutron irradiation, but also from the He segregation energy at the GB that has a systematic trend in the periodic table.

  17. Coupled Simulations of Texture Evolution during Deformation and Recrystallization of FCC and BCC Metals

    SciTech Connect

    Radhakrishnan, Balasubramaniam; Gorti, Sarma B

    2008-01-01

    Thermo-mechanical processing to produce optimum grain structure and texture is key to the successful utilization of commercial aluminum alloys and steels as sheet products. Several modeling techniques have been developed in the past with a reasonably good predictive capability for bulk deformation textures. However, prediction of texture evolution during recrystallization remains very challenging because of uncertainties involved in predicting the mechanisms that lead to nuclei formation and crystallographic orientations of the nuclei, and the uncertainties involved in predicting the grain boundary properties that determine the growth kinetics of the nuclei. We present some of our recent work in modeling the recrystallization textures following hot deformation in polycrystalline BCC and FCC metals.

  18. A numerical study of crack initiation in a bcc iron system based on dynamic bifurcation theory

    SciTech Connect

    Li, Xiantao

    2014-10-28

    Crack initiation under dynamic loading conditions is studied under the framework of dynamic bifurcation theory. An atomistic model for BCC iron is considered to explicitly take into account the detailed molecular interactions. To understand the strain-rate dependence of the crack initiation process, we first obtain the bifurcation diagram from a computational procedure using continuation methods. The stability transition associated with a crack initiation, as well as the connection to the bifurcation diagram, is studied by comparing direct numerical results to the dynamic bifurcation theory [R. Haberman, SIAM J. Appl. Math. 37, 69–106 (1979)].

  19. Modelling irradiation-induced softening in BCC iron by crystal plasticity approach

    NASA Astrophysics Data System (ADS)

    Xiao, Xiazi; Terentyev, Dmitry; Yu, Long; Song, Dingkun; Bakaev, A.; Duan, Huiling

    2015-11-01

    Crystal plasticity model (CPM) for BCC iron to account for radiation-induced strain softening is proposed. CPM is based on the plastically-driven and thermally-activated removal of dislocation loops. Atomistic simulations are applied to parameterize dislocation-defect interactions. Combining experimental microstructures, defect-hardening/absorption rules from atomistic simulations, and CPM fitted to properties of non-irradiated iron, the model achieves a good agreement with experimental data regarding radiation-induced strain softening and flow stress increase under neutron irradiation.

  20. Ab initio calculations of the melting temperatures of refractory bcc metals.

    PubMed

    Wang, L G; van de Walle, A

    2012-01-28

    We present ab initio calculations of the melting temperatures for bcc metals Nb, Ta and W. The calculations combine phase coexistence molecular dynamics (MD) simulations using classical embedded-atom method potentials and ab initio density functional theory free energy corrections. The calculated melting temperatures for Nb, Ta and W are, respectively, within 3%, 4%, and 7% of the experimental values. We compare the melting temperatures to those obtained from direct ab initio molecular dynamics simulations and see if they are in excellent agreement with each other. The small remaining discrepancies with experiment are thus likely due to inherent limitations associated with exchange-correlation energy approximations within density-functional theory.

  1. Observations on the deformation-induced beta internal friction peak in bcc metals

    NASA Technical Reports Server (NTRS)

    Dicarlo, J. A.

    1974-01-01

    During a study of the effects of electron irradiation on the tungsten alpha mechanism, internal friction data were obtained. The data indicate that the mechanism underlying the beta peak does not possess the relaxation parameters generally associated with a simple dislocation process. The significance of the experimental results in the light of beta observations in other metals is discussed. It is suggested that the beta peaks in deformed bcc metals are the anelastic result of the thermally-activated relaxation of deformation-induced imperfections.

  2. Heats of Segregation of BCC Binaries from Ab Initio and Quantum Approximate Calculations

    NASA Technical Reports Server (NTRS)

    Good, Brian S.

    2003-01-01

    We compare dilute-limit segregation energies for selected BCC transition metal binaries computed using ab initio and quantum approximate energy methods. Ab initio calculations are carried out using the CASTEP plane-wave pseudopotential computer code, while quantum approximate results are computed using the Bozzolo-Ferrante-Smith (BFS) method with the most recent parameters. Quantum approximate segregation energies are computed with and without atomistic relaxation. Results are discussed within the context of segregation models driven by strain and bond-breaking effects. We compare our results with full-potential quantum calculations and with available experimental results.

  3. Heats of Segregation of BCC Binaries from ab Initio and Quantum Approximate Calculations

    NASA Technical Reports Server (NTRS)

    Good, Brian S.

    2004-01-01

    We compare dilute-limit heats of segregation for selected BCC transition metal binaries computed using ab initio and quantum approximate energy methods. Ab initio calculations are carried out using the CASTEP plane-wave pseudopotential computer code, while quantum approximate results are computed using the Bozzolo-Ferrante-Smith (BFS) method with the most recent LMTO-based parameters. Quantum approximate segregation energies are computed with and without atomistic relaxation, while the ab initio calculations are performed without relaxation. Results are discussed within the context of a segregation model driven by strain and bond-breaking effects. We compare our results with full-potential quantum calculations and with available experimental results.

  4. EXAFS measurement of iron bcc-to-hcp phase transformation in nanosecond-laser shocks.

    PubMed

    Yaakobi, B; Boehly, T R; Meyerhofer, D D; Collins, T J B; Remington, B A; Allen, P G; Pollaine, S M; Lorenzana, H E; Eggert, J H

    2005-08-12

    Extended x-ray absorption fine structure (EXAFS) measurements have demonstrated the phase transformation from body-centered-cubic (bcc) to hexagonal-close-packed (hcp) iron due to nanosecond, laser-generated shocks. The EXAFS spectra are also used to determine the compression and temperature in the shocked iron, which are consistent with hydrodynamic simulations and with the compression inferred from velocity interferometry. This is a direct, atomic-level, and in situ proof of shock-induced transformation in iron, as opposed to the previous indirect proof based on shock-wave splitting.

  5. Critical currents in A-15 structure Nb3Al converted from cold-worked bcc structure

    NASA Technical Reports Server (NTRS)

    Woollam, J. A.; Alterovitz, S. A.; Haugland, E.; Webb, G. W.

    1980-01-01

    The paper considers critical currents in A-15 structure Nb3Al converted from a cold-worked bcc structure. Nb3Al prepared in the ductile phase by quenching and mechanical working followed by conversion to the A-15 structure could carry currents above 10 to the 9th power A/sq m in fields near 20 T. These critical currents are comparable to those of Nb3Ge and V3Ga which are closest competing materials for use in high fields; further enhancement of the critical current is possible if thermal treatments are optimized.

  6. Prenylhydroquinone-Derived Secondary Metabolites from Cultures of the Basidiomycete Lentinus similis BCC 52578.

    PubMed

    Isaka, Masahiko; Palasarn, Somporn; Sappana, Malipan; Srichomthong, Kitlada; Karunarathna, Samantha C; Hyde, Kevin D

    2015-08-01

    Two new prenylhydroquinone-derived compounds, Ientinospirol (1) and 1-(2,5-dihydroxyphenyl)-4-hydroxy-3-methyl-l-butanone (2), were isolated from cultures of the basidiomycete Lentinus similis BCC 52578, together with the known compounds panepoxydone (3), panepoxydione (4), isopanepoxydone (5), 2,2-dimethyl-6-hydroxy-2H-chromene (6), and (3R,4S)-3,4-dihydroxy-2,2-dimethyl-6-methoxychroman (7). Compounds 3 and 4 exhibited cytotoxicity against all cell-lines tested, while the other compounds were inactive.

  7. Ascochlorin derivatives from the leafhopper pathogenic fungus Microcera sp. BCC 17074.

    PubMed

    Isaka, Masahiko; Yangchum, Arunrat; Supothina, Sumalee; Laksanacharoen, Pattiyaa; Jennifer Luangsa-Ard, J; Hywel-Jones, Nigel L

    2015-01-01

    Two new ascochlorin derivatives, nectchlorins A (1) and B (2), together with eight known compounds (3-10), were isolated from cultures of the leafhopper pathogen Microcera sp. BCC 17074. The structures were elucidated on the basis of NMR spectroscopic and mass spectrometry data. The absolute configuration of 2 was determined by application of the modified Mosher's method. The absolute configuration of LL-Z 1272α epoxide (9), which is a plausible biosynthetic precursor of ascochlorins, was established by chemical correlations. Cytotoxic activities of these ascochlorin derivatives were evaluated.

  8. Comparison of void strengthening in fcc and bcc metals : large-scale atomic-level modelling.

    SciTech Connect

    Osetskiy, Yury N; Bacon, David J

    2005-01-01

    Strengthening due to voids can be a significant radiation effect in metals. Treatment of this by elasticity theory of dislocations is difficult when atomic structure of the obstacle and dislocation is influential. In this paper, we report results of large-scale atomic-level modelling of edge dislocation-void interaction in fcc (copper) and bcc (iron) metals. Voids of up to 5 nm diameter were studied over the temperature range from 0 to 600 K. We demonstrate that atomistic modelling is able to reveal important effects, which are beyond the continuum approach. Some arise from features of the dislocation core and crystal structure, others involve dislocation climb and temperature effects.

  9. A new Bcc-Fcc orientation relationship observed between ferrite and austenite in solidification structures of steels

    NASA Astrophysics Data System (ADS)

    Headley, T. J.; Brooks, J. A.

    2002-01-01

    A new crystallographic orientation relationship (OR) between delta-ferrite and austenite has been observed in solidification microstructures of 304L and 309S austenitic stainless steels and a ternary Fe-Cr-Ni alloy. Evidence for the new OR was obtained from electron diffraction patterns in transmission electron microscopy (TEM). This relationship, (111)fcc//(110)bcc and [bar 110]_{fcc} //[bar 110]_{bcc} , has not been previously reported for bcc-fcc systems. The <110>fcc//#x2329;110>bcc alignment is distinctive among known bcc-fcc ORs. The new OR is related to the Kurdjumov-Sachs (K-S) and Nishiyama-Wassermann (N-W) ORs by relative rotations of 35.26 and 30 deg, respectively, about the normal to the parallel close-packed planes. In 304L fabricated by laser-engineered net shaping (LENS), delta-ferrite with the new OR was found to coexist in the microstructure with both K-S and N-W oriented ferrite, but in separate austenite grains and with less frequent occurrence. In gas-tungsten arc (GTA) welds of 309S and the Fe-Cr-Ni alloy, the new OR was the only one observed within a few grains, whereas ferrite within other grains did not establish an apparent OR with the austenite matrix.

  10. Nucleation of the BCC phase from disorder in a diblock copolymer melt: Testing approximate theories through simulation

    NASA Astrophysics Data System (ADS)

    Spencer, Russell K. W.; Curry, Paul F.; Wickham, Robert A.

    2016-10-01

    We examine nucleation of the stable body-centred-cubic (BCC) phase from the metastable uniform disordered phase in an asymmetric diblock copolymer melt. Our comprehensive, large-scale simulations of the time-dependent, mean-field Landau-Brazovskii model find that spherical droplets of the BCC phase nucleate directly from disorder. Near the order-disorder transition, the critical nucleus is large and has a classical profile, attaining the bulk BCC phase in an interior that is separated from disorder by a sharp interface. At greater undercooling, the amplitude of BCC order in the interior decreases and the nucleus interface broadens, leading to a diffuse critical nucleus. This diffuse nucleus becomes large as the simulation approaches the disordered phase spinodal. We show that our simulation follows the same nucleation pathway that Cahn and Hilliard found for an incompressible two-component fluid, across the entire metastable region. In contrast, a classical nucleation theory calculation based on the free energy of a planar interface between coexisting BCC and disordered phases agrees with simulation only in the limit of very small undercooling; we can expand this region of validity somewhat by accounting for the curvature of the droplet interface. A nucleation pathway involving a classical droplet persists, however, to deep undercooling in our simulation, but this pathway is energetically unfavourable. As a droplet grows in the simulation, its interface moves with a constant speed, and this speed is approximately proportional to the undercooling.

  11. Classification of different kinds of pesticide residues on lettuce based on fluorescence spectra and WT-BCC-SVM algorithm

    NASA Astrophysics Data System (ADS)

    Zhou, Xin; Jun, Sun; Zhang, Bing; Jun, Wu

    2017-07-01

    In order to improve the reliability of the spectrum feature extracted by wavelet transform, a method combining wavelet transform (WT) with bacterial colony chemotaxis algorithm and support vector machine (BCC-SVM) algorithm (WT-BCC-SVM) was proposed in this paper. Besides, we aimed to identify different kinds of pesticide residues on lettuce leaves in a novel and rapid non-destructive way by using fluorescence spectra technology. The fluorescence spectral data of 150 lettuce leaf samples of five different kinds of pesticide residues on the surface of lettuce were obtained using Cary Eclipse fluorescence spectrometer. Standard normalized variable detrending (SNV detrending), Savitzky-Golay coupled with Standard normalized variable detrending (SG-SNV detrending) were used to preprocess the raw spectra, respectively. Bacterial colony chemotaxis combined with support vector machine (BCC-SVM) and support vector machine (SVM) classification models were established based on full spectra (FS) and wavelet transform characteristics (WTC), respectively. Moreover, WTC were selected by WT. The results showed that the accuracy of training set, calibration set and the prediction set of the best optimal classification model (SG-SNV detrending-WT-BCC-SVM) were 100%, 98% and 93.33%, respectively. In addition, the results indicated that it was feasible to use WT-BCC-SVM to establish diagnostic model of different kinds of pesticide residues on lettuce leaves.

  12. Nucleation of the BCC phase from disorder in a diblock copolymer melt: Testing approximate theories through simulation.

    PubMed

    Spencer, Russell K W; Curry, Paul F; Wickham, Robert A

    2016-10-14

    We examine nucleation of the stable body-centred-cubic (BCC) phase from the metastable uniform disordered phase in an asymmetric diblock copolymer melt. Our comprehensive, large-scale simulations of the time-dependent, mean-field Landau-Brazovskii model find that spherical droplets of the BCC phase nucleate directly from disorder. Near the order-disorder transition, the critical nucleus is large and has a classical profile, attaining the bulk BCC phase in an interior that is separated from disorder by a sharp interface. At greater undercooling, the amplitude of BCC order in the interior decreases and the nucleus interface broadens, leading to a diffuse critical nucleus. This diffuse nucleus becomes large as the simulation approaches the disordered phase spinodal. We show that our simulation follows the same nucleation pathway that Cahn and Hilliard found for an incompressible two-component fluid, across the entire metastable region. In contrast, a classical nucleation theory calculation based on the free energy of a planar interface between coexisting BCC and disordered phases agrees with simulation only in the limit of very small undercooling; we can expand this region of validity somewhat by accounting for the curvature of the droplet interface. A nucleation pathway involving a classical droplet persists, however, to deep undercooling in our simulation, but this pathway is energetically unfavourable. As a droplet grows in the simulation, its interface moves with a constant speed, and this speed is approximately proportional to the undercooling.

  13. Subseasonal variability and predictability of the Arctic Oscillation/North Atlantic Oscillation in BCC_AGCM2.2

    NASA Astrophysics Data System (ADS)

    Zuo, Jinqing; Ren, Hong-Li; Wu, Jie; Nie, Yu; Li, Qiaoping

    2016-09-01

    The subseasonal variability and predictability of the Arctic Oscillation/North Atlantic Oscillation (AO/NAO) is evaluated using a full set of hindcasts generated from the Beijing Climate Center Atmospheric General Circulation Model version 2.2 (BCC_AGCM2.2). It is shown that the predictability of the monthly mean AO/NAO index varies seasonally, with the highest predictability during winter (December-March) and the lowest during autumn (August-November), with respect to both observations and BCC_AGCM2.2 results. As compared with the persistence prediction skill of observations, the model skillfully predicts the monthly mean AO/NAO index with a one-pentad lead time during all winter months, and with a lead time of up to two pentads in December and January. During winter, BCC_AGCM2.2 exhibits an acceptable skill in predicting the daily AO/NAO index of ∼9 days, which is higher than the persistence prediction skill of observations of ∼4 days. Further analysis suggests that improvements in the simulation of storm track activity, synoptic eddy feedback, and troposphere-stratosphere coupling in the Northern Hemisphere could help to improve the prediction skill of subseasonal AO/NAO variability by BCC_AGCM2.2 during winter. In particular, BCC_AGCM2.2 underestimates storm track activity intensity but overestimates troposphere-stratosphere coupling, as compared with observations, thus providing a clue to further improvements in model performance.

  14. Isolation and Characterization of a Hybrid Respiratory Supercomplex Consisting of Mycobacterium tuberculosis Cytochrome bcc and Mycobacterium smegmatis Cytochrome aa3.

    PubMed

    Kim, Mi-Sun; Jang, Jichan; Ab Rahman, Nurlilah Binte; Pethe, Kevin; Berry, Edward A; Huang, Li-Shar

    2015-06-05

    Recently, energy production pathways have been shown to be viable antitubercular drug targets to combat multidrug-resistant tuberculosis and eliminate pathogen in the dormant state. One family of drugs currently under development, the imidazo[1,2-a]pyridine derivatives, is believed to target the pathogen's homolog of the mitochondrial bc1 complex. This complex, denoted cytochrome bcc, is highly divergent from mitochondrial Complex III both in subunit structure and inhibitor sensitivity, making it a good target for drug development. There is no soluble cytochrome c in mycobacteria to transport electrons from the bcc complex to cytochrome oxidase. Instead, the bcc complex exists in a "supercomplex" with a cytochrome aa3-type cytochrome oxidase, presumably allowing direct electron transfer. We describe here purification and initial characterization of the mycobacterial cytochrome bcc-aa3 supercomplex using a strain of M. smegmatis that has been engineered to express the M. tuberculosis cytochrome bcc. The resulting hybrid supercomplex is stable during extraction and purification in the presence of dodecyl maltoside detergent. It is hoped that this purification procedure will potentiate functional studies of the complex as well as crystallographic studies of drug binding and provide structural insight into a third class of the bc complex superfamily.

  15. Migration mechanism for oversized solutes in cubic lattices: The case of yttrium in iron

    NASA Astrophysics Data System (ADS)

    Bocquet, Jean-Louis; Barouh, Caroline; Fu, Chu-Chun

    2017-06-01

    Substitutional solutes in metals generally diffuse by successive exchanges with vacancies, that is, via the so called vacancy mechanism. However, recent density functional theory (DFT) calculations predicted an atypical behavior for the oversized solute atoms (OSAs) in bcc and fcc iron. These solutes exhibit a very strong attraction with a nearby vacancy (V) at a first neighbor (1nn) distance. The attraction is so large that the 1nn OSA-V pair is no longer stable and relaxes spontaneously towards a new configuration where the OSA sits in the middle of the two half-vacancies (V/2). As a consequence, the diffusion of OSAs cannot be described by the standard vacancy mechanism. A new migration mechanism with a new formulation of correlation effects is required. The present study rests on a revised expression of the diffusion coefficient of the OSAs in bcc and fcc lattices, which introduces the concept of macrojumps. The formalism is applied presently to the case of yttrium (Y: a principal alloying element of advanced steels) in iron, using DFT data. But it is directly transferable to other OSAs in cubic metal lattices. At variance with the standard substitutional solutes, the Y atom is found to diffuse more rapidly than iron at all temperatures by orders of magnitude in the two cubic-Fe structures. This finding is opposite to the recent common belief that yttrium is a slow diffusing species in Fe alloys, based on experimental evidences. Several suggestions are proposed to solve this apparent inconsistency.

  16. Exact Lattice Supersymmetry

    SciTech Connect

    Catterall, Simon; Kaplan, David B.; Unsal, Mithat

    2009-03-31

    We provide an introduction to recent lattice formulations of supersymmetric theories which are invariant under one or more real supersymmetries at nonzero lattice spacing. These include the especially interesting case of N = 4 SYM in four dimensions. We discuss approaches based both on twisted supersymmetry and orbifold-deconstruction techniques and show their equivalence in the case of gauge theories. The presence of an exact supersymmetry reduces and in some cases eliminates the need for fine tuning to achieve a continuum limit invariant under the full supersymmetry of the target theory. We discuss open problems.

  17. Optical Lattice Clocks

    NASA Astrophysics Data System (ADS)

    Oates, Chris

    2012-06-01

    Since they were first proposed in 2003 [1], optical lattice clocks have become one of the leading technologies for the next generation of atomic clocks, which will be used for advanced timing applications and in tests of fundamental physics [2]. These clocks are based on stabilized lasers whose frequency is ultimately referenced to an ultra-narrow neutral atom transition (natural linewidths << 1 Hz). To suppress the effects of atomic motion/recoil, the atoms in the sample (˜10^4 atoms) are confined tightly in the potential wells of an optical standing wave (lattice). The wavelength of the lattice light is tuned to its ``magic'' value so as to yield a vanishing net AC Stark shift for the clock transition. As a result lattice clocks have demonstrated the capability of generating high stability clock signals with small absolute uncertainties (˜ 1 part in 10^16). In this presentation I will first give an overview of the field, which now includes three different atomic species. I will then use experiments with Yb performed in our laboratory to illustrate the key features of a lattice clock. Our research has included the development of state-of-the-art optical cavities enabling ultra-high-resolution optical spectroscopy (1 Hz linewidth). Together with the large atom number in the optical lattice, we are able to achieve very low clock instability (< 0.3 Hz in 1 s) [3]. Furthermore, I will show results from some of our recent investigations of key shifts for the Yb lattice clock, including high precision measurements of ultracold atom-atom interactions in the lattice and the dc Stark effect for the Yb clock transition (necessary for the evaluation of blackbody radiation shifts). [4pt] [1] H. Katori, M. Takamoto, V. G. Pal'chikov, and V. D. Ovsiannikov, Phys. Rev. Lett. 91, 173005 (2003). [0pt] [2] Andrei Derevianko and Hidetoshi Katori, Rev. Mod. Phys. 83, 331 (2011). [0pt] [3] Y. Y. Jiang, A. D. Ludlow, N. D. Lemke, R. W. Fox, J. A. Sherman, L.-S. Ma, and C. W. Oates

  18. Molecular dynamics simulations of hcp/fcc nucleation and growth in bcc iron driven by uniaxial compression.

    PubMed

    Wang, B T; Shao, J L; Zhang, G C; Li, W D; Zhang, P

    2009-12-02

    Molecular dynamics simulations have been performed to study the structural transition in bcc iron under uniaxial strain loading. We found that the transition pressures are less dependent on the crystal orientations, ∼14 GPa for [001], [011], and [111] loadings. However, the pressure interval of a mixed phase for [011] loading is much shorter than loading along other orientations. In addition, the temperature increased amplitude for [001] loading is evidently lower than other orientations. The nucleation and growth of the hcp/fcc phases, and their crystal orientation dependence, were analyzed in detail, where the atom structure was presented by the topological medium-range-order analysis. For [001] compression, the hcp structure occurs first and grows into a laminar morphology in the (011)(bcc) plane with some fcc atoms as an intermediate structure. For loading along [011] and [111] directions, both hcp and fcc structure nucleation and growth along the {110}(bcc) planes are observed; their morphology is also discussed.

  19. Coexistence pressure for a martensitic transformation from theory and experiment: Revisiting the bcc-hcp transition of iron under pressure

    DOE PAGES

    Zarkevich, N. A.; Johnson, D. D.

    2015-05-12

    We revisit results from decades of pressure experiments on the bcc ↔ hcp transformations in iron, which are sensitive to non-hydrostatic conditions and sample size. We emphasize the role of martensitic stress in the observed pressure hysteresis and address the large spread in values for onset pressures of the nucleating phase. From electronic-structure calculations, we find a bcc ↔ hcp equilibrium coexistence pressure of 8.4 GPa. Accounting for non-hydrostatic martensitic stress and a stress-dependent transition barrier, we suggest a pressure inequality for better comparison to experiment and observed hysteresis. We construct the equation of state for bcc and hcp phasesmore » under hydrostatic pressure, and compare to experiments and previous calculations.« less

  20. Saddle-point equilibrium lines between fcc and bcc phases in Al and Ca from first principles

    NASA Astrophysics Data System (ADS)

    Qiu, S. L.; Marcus, P. M.

    2013-10-01

    Phase equilibrium lines (denoted ph-eq lines) of face-centered-cubic (fcc) and body-centered-cubic (bcc) phases, as well as saddle-point equilibrium lines (denoted sp-eq lines) in Al and Ca are studied by first-principles total-energy calculations. For a non-vibrating crystal of Al we determine the transition pressure p t = 2.62 Mbar from fcc to bcc phase. The sp-eq line lies between the two ph-eq lines, merges with the bcc-eq line at V = 61 au3/atom ( p = 1.64 Mbar) and with the fcc-eq line at V = 42.4 au3/atom ( p = 5.50 Mbar), gives the Gibbs free energy barrier ΔG = 0.64 mRy/atom at p t . The bcc phase is unstable below 1.64 Mbar, while the fcc phase is unstable above 5.50 Mbar. In a non-vibrating crystal of Ca two sp-eq lines (denoted sp1-eq line and sp2-eq line, respectively) are found corresponding to two phase transitions: one is from fcc to bcc at p t1 = 89.6 kbar, the other is from bcc to fcc at p t2 = 787 kbar. The sp1-eq line merges with the bcc-eq line at V = 231 au3/atom ( p = 50 kbar) and with the fcc-eq line at V = 183 au3/atom ( p = 174 kbar), gives a barrier of Δ G 1 = 0.62 mRy/atom at p t1. The sp2-eq line merges with the bcc-eq line at V = 90 au3/atom ( p = 981 kbar) and with the fcc-eq line at V = 110 au3/atom ( p = 624 kbar), gives a barrier of Δ G 2 = 1.1 mRy/atom at p t2. The bcc phase is stable in the range from 50 kbar to 981 kbar but unstable outside this range, while the fcc phase is unstable in the range from 174 to 624 kbar but stable outside this range. This work confirms all the features of the sp-eq line described in our recent work [S.L. Qiu, P.M. Marcus, J. Phys.: Condens. Matter 24, 225501 (2012)] and finds two additional features: (1) there are two sp-eq lines corresponding to the two phase transitions between fcc and bcc phases in Ca; (2) fcc phase of Ca is unstable between the two merge points on the fcc-eq line but stable beyond them, while bcc phase of Ca is stable between the two merge points on the bcc-eq line but

  1. Coexistence pressure for a martensitic transformation from theory and experiment: Revisiting the bcc-hcp transition of iron under pressure

    SciTech Connect

    Zarkevich, N. A.; Johnson, D. D.

    2015-05-12

    We revisit results from decades of pressure experiments on the bcc ↔ hcp transformations in iron, which are sensitive to non-hydrostatic conditions and sample size. We emphasize the role of martensitic stress in the observed pressure hysteresis and address the large spread in values for onset pressures of the nucleating phase. From electronic-structure calculations, we find a bcc ↔ hcp equilibrium coexistence pressure of 8.4 GPa. Accounting for non-hydrostatic martensitic stress and a stress-dependent transition barrier, we suggest a pressure inequality for better comparison to experiment and observed hysteresis. We construct the equation of state for bcc and hcp phases under hydrostatic pressure, and compare to experiments and previous calculations.

  2. Supersymmetry on the Lattice

    NASA Astrophysics Data System (ADS)

    Schaich, David

    2016-03-01

    Lattice field theory provides a non-perturbative regularization of strongly interacting systems, which has proven crucial to the study of quantum chromodynamics among many other theories. Supersymmetry plays prominent roles in the study of physics beyond the standard model, both as an ingredient in model building and as a tool to improve our understanding of quantum field theory. Attempts to apply lattice techniques to supersymmetric field theories have a long history, but until recently these efforts have generally encountered insurmountable difficulties related to the interplay of supersymmetry with the lattice discretization of spacetime. In recent years these difficulties have been overcome for a class of theories that includes the particularly interesting case of maximally supersymmetric Yang-Mills (N = 4 SYM) in four dimensions, which is a cornerstone of AdS/CFT duality. In combination with computational advances this progress enables practical numerical investigations of N = 4 SYM on the lattice, which can address questions that are difficult or impossible to handle through perturbation theory, AdS/CFT duality, or the conformal bootstrap program. I will briefly review some of the new ideas underlying this recent progress, and present some results from ongoing large-scale numerical calculations, including comparisons with analytic predictions.

  3. Fibonacci Optical Lattices

    NASA Astrophysics Data System (ADS)

    Singh, Kevin; Geiger, Zachary; Senaratne, Ruwan; Rajagopal, Shankari; Fujiwara, Kurt; Weld, David; Weld Group Team

    2015-05-01

    Quasiperiodicity is intimately involved in quantum phenomena from localization to the quantum Hall effect. Recent experimental investigation of quasiperiodic quantum effects in photonic and electronic systems have revealed intriguing connections to topological phenomena. However, such experiments have been limited by the absence of techniques for creating tunable quasiperiodic structures. We propose a new type of quasiperiodic optical lattice, constructed by intersecting a Gaussian beam with a 2D square lattice at an angle with an irrational tangent. The resulting potential, a generalization of the Fibonacci lattice, is a physical realization of the mathematical ``cut-and-project'' construction which underlies all quasiperiodic structures. Calculation of the energies and wavefunctions of atoms loaded into the proposed quasiperiodic lattice demonstrate a fractal energy spectrum and the existence of edge states. We acknowledge support from the ONR (award N00014-14-1-0805), the ARO and the PECASE program (award W911NF-14-1-0154), the AFOSR (award FA9550-12-1-0305), and the Alfred P. Sloan foundation (grant BR2013-110).

  4. Generalizing Word Lattice Translation

    DTIC Science & Technology

    2008-02-01

    demonstrate substantial gains for Chinese -English and Arabic -English translation. Keywords: word lattice translation, phrase-based and hierarchical...introduce in reordering models. Our experiments evaluating the approach demonstrate substantial gains for Chinese -English and Arabic -English translation. 15...Section 4 presents two applications of the noisier channel paradigm, demonstrating substantial performance gains in Arabic -English and Chinese -English

  5. Moving embedded lattice solitons.

    PubMed

    Malomed, B A; Fujioka, J; Espinosa-Cerón, A; Rodríguez, R F; González, S

    2006-03-01

    It was recently proved that solitons embedded in the spectrum of linear waves may exist in discrete systems, and explicit solutions for isolated unstable embedded lattice solitons (ELS) of a differential-difference version of a higher-order nonlinear Schrodinger equation were found [Gonzalez-Perez-Sandi, Fujioka, and Malomed, Physica D 197, 86 (2004)]. The discovery of these ELS gives rise to relevant questions such as the following: (1) Are there continuous families of ELS? (2) Can ELS be stable? (3) Is it possible for ELS to move along the lattice? (4) How do ELS interact? The present work addresses these questions by showing that a novel equation (a discrete version of a complex modified Korteweg-de Vries equation that includes next-nearest-neighbor couplings) has a two-parameter continuous family of exact ELS. These solitons can move with arbitrary velocities across the lattice, and the numerical simulations demonstrate that these ELS are completely stable. Moreover, the numerical tests show that these ELS are robust enough to withstand collisions, and the result of a collision is only a shift in the positions of the solitons. The model may apply to the description of a Bose-Einstein condensate with dipole-dipole interactions between the atoms, trapped in a deep optical-lattice potential.

  6. Career Ladders and Lattices.

    ERIC Educational Resources Information Center

    Dory, Fran

    1975-01-01

    The first part of this report discusses the career lattice concept in the Career Opportunities Program (COP), a concept which represents the marriage of two career development ideas--upward mobility and task differentiation at separate levels. It explains that by combining task differentiation and upward mobility, a system can effectively reduce a…

  7. Convex Lattice Polygons

    ERIC Educational Resources Information Center

    Scott, Paul

    2006-01-01

    A "convex" polygon is one with no re-entrant angles. Alternatively one can use the standard convexity definition, asserting that for any two points of the convex polygon, the line segment joining them is contained completely within the polygon. In this article, the author provides a solution to a problem involving convex lattice polygons.

  8. Progress in lattice QCD

    SciTech Connect

    Andreas S. Kronfeld

    2002-09-30

    After reviewing some of the mathematical foundations and numerical difficulties facing lattice QCD, I review the status of several calculations relevant to experimental high-energy physics. The topics considered are moments of structure functions, which may prove relevant to search for new phenomena at the LHC, and several aspects of flavor physics, which are relevant to understanding CP and flavor violation.

  9. Random lattice superstrings

    SciTech Connect

    Feng Haidong; Siegel, Warren

    2006-08-15

    We propose some new simplifying ingredients for Feynman diagrams that seem necessary for random lattice formulations of superstrings. In particular, half the fermionic variables appear only in particle loops (similarly to loop momenta), reducing the supersymmetry of the constituents of the type IIB superstring to N=1, as expected from their interpretation in the 1/N expansion as super Yang-Mills.

  10. Phenomenology Using Lattice QCD

    NASA Astrophysics Data System (ADS)

    Gupta, R.

    2005-08-01

    This talk provides a brief summary of the status of lattice QCD calculations of the light quark masses and the kaon bag parameter BK. Precise estimates of these four fundamental parameters of the standard model, i.e., mu, md, ms and the CP violating parameter η, help constrain grand unified models and could provide a window to new physics.

  11. Phenomenology Using Lattice QCD

    NASA Astrophysics Data System (ADS)

    Gupta, R.

    This talk provides a brief summary of the status of lattice QCD calculations of the light quark masses and the kaon bag parameter BK. Precise estimates of these four fundamental parameters of the standard model, i.e., mu, md, ms and the CP violating parameter η, help constrain grand unified models and could provide a window to new physics.

  12. Rigidity of lattice domes

    NASA Technical Reports Server (NTRS)

    Savelyev, V. A.

    1979-01-01

    The means of ensuring total rigidity of lattice domes, using comparison with solid shells of 1-3 layers are discussed. Irregularities of manufacture, processing, and other factors are considered, as they relate to diminution of rigidity. The discussion uses the concepts of upper and lower critical loads on the structure in question.

  13. Ab initio guided design of bcc Mg-Li alloys for ultra light-weight applications

    NASA Astrophysics Data System (ADS)

    Friák, Martin; Counts, William Art; Raabe, Dierk; Neugebauer, Jörg

    2009-03-01

    Ab initio calculations are becoming increasingly useful to engineers interested in designing new alloys because these calculations are able to accurately predict basic material properties only knowing the atomic composition of the material. In this paper, fundamental physical properties (like formation energies and elastic constants) of 11 bcc Mg-Li compounds are calculated using density-functional theory (DFT) and compared with available experimental data. These DFT-determined properties are in turn used to calculate engineering parameters like (i) specific Young's modulus (Y/ρ) or (ii) bulk over shear modulus ratio (B/G) differentiating between brittle and ductile behavior. The engineering parameters are then used to identify alloys that have optimal mechanical properties needed for a light weight structural material. It was found that the stiffest bcc magnesium-lithium alloys contain about 70 at.% Mg while the most ductile alloys have 0-20 at.% Mg. The specific modulus for alloys with 70 at.% Mg is equal to that of Al-Mg alloys. An Ashby map containing Y/ρ vs. B/G shows that it is not possible to increase both Y/ρ and B/G by changing only the composition or local order of a binary alloy (W. A. Counts, M. Fri'ak, D. Raabe and J. Neugebauer, Acta Mater 57 (2009) 69-76).

  14. Nanoscale Twinning and Martensitic Transformation in Shock-Deformed BCC Metals

    SciTech Connect

    Hsiung, L L

    2005-03-22

    Shock-induced twinning and martensitic transformation in BCC-based polycrystalline metals (Ta and U-6wt%Nb) have been observed and studied using transmission electron microscopy (TEM). The length-scale of domain thickness for both twin lamella and martensite phase is found to be smaller than 100 nm. While deformation twinning of {l_brace}112{r_brace}<111>-type is found in Ta when shock-deformed at 15 GPa, both twinning and martensitic transformation are found in Ta when shock-deformed at 45 GPa. Similar phenomena of nanoscale twinning and martensitic transformation are also found in U6Nb shock-deformed at 30 GPa. Since both deformation twinning and martensitic transformation occurred along the {l_brace}211{r_brace}{sub b} planes associated with high resolved shear stresses, it is suggested that both can be regarded as alternative paths for shear transformations to occur in shock-deformed BCC metals. Heterogeneous nucleation mechanisms for shock-induced twinning and martensitic transformation are proposed and discussed.

  15. Atomistic simulations on ductile-brittle transition in ⟨111⟩ BCC Fe nanowires

    NASA Astrophysics Data System (ADS)

    Sainath, G.; Choudhary, B. K.

    2017-09-01

    Molecular dynamics simulations have been performed to understand the influence of temperature on the tensile deformation and fracture behavior of ⟨111⟩ BCC Fe nanowires. The simulations have been carried out at different temperatures in the range 10-1000 K employing a constant strain rate of 1 × 108 s-1. The results indicate that at low temperatures (10-375 K), the nanowires yield through the nucleation of a sharp crack and fails in brittle manner. On the other hand, nucleation of multiple 1/2⟨111⟩ dislocations at yielding followed by significant plastic deformation leading to ductile failure has been observed at high temperatures in the range 450-1000 K. At 400 K, the nanowire yields through nucleation of crack associated with many mobile 1/2⟨111⟩ and immobile ⟨100⟩ dislocations at the crack tip and fails in ductile manner. The ductile-brittle transition observed in ⟨111⟩ BCC Fe nanowires is appropriately reflected in the stress-strain behavior and plastic strain at failure. The ductile-brittle transition increases with increasing nanowire size. The change in fracture behavior has been discussed in terms of the relative variations in yield and fracture stresses and change in slip behavior with respect to temperature. Further, the dislocation multiplication mechanism assisted by the kink nucleation from the nanowire surface observed at high temperatures has been presented.

  16. Interaction of Ti and Cr atoms with point defects in bcc vanadium: A DFT study

    NASA Astrophysics Data System (ADS)

    Boev, A. O.; Aksyonov, D. A.; Kartamyshev, A. I.; Maksimenko, V. N.; Nelasov, I. V.; Lipnitskii, A. G.

    2017-08-01

    The development of low-swelling radiation-resistant alloys is vital for the creation of reliable fusion reactors. In this article, we revisit the long-standing problem of very low radiation swelling in V-Ti-Cr alloys by means of DFT calculations. In particular, we study double and triple interactions of point defects such as solutes, vacancies and self-interstitial atoms in bcc V. According to our results titanium atom and vacancy are strongly attracted and in addition to pairs form highly stable triple Ti-Vacancy-Ti complexes, which are absent in the case of chromium. By using an analytic model of void growth and using calculated binding energies of point defect complexes in bcc vanadium we obtain three orders of magnitude reduction of swelling rate due to the formation of Ti-Vacancy-Ti complexes, which allows to explain experimental observations. Finally, we explain the causes of the strong attraction between titanium and vacancy using geometry and electronic structure analysis.

  17. Solving the puzzle of <100> interstitial loop formation in bcc Iron.

    PubMed

    Xu, Haixuan; Stoller, Roger E; Osetsky, Yury N; Terentyev, Dmitry

    2013-06-28

    The interstitial loop is a unique signature of radiation damage in structural materials for nuclear and other advanced energy systems. Unlike other bcc metals, two types of interstitial loops, 1/2<111> and <100>, are formed in bcc iron and its alloys. However, the mechanism by which <100> interstitial dislocation loops are formed has remained undetermined since they were first observed more than fifty years ago. We describe our atomistic simulations that have provided the first direct observation of <100> loop formation. The process was initially observed using our self-evolving atomistic kinetic Monte Carlo method, and subsequently confirmed using molecular dynamics simulations. Formation of <100> loops involves a distinctly atomistic interaction between two 1/2<111> loops, and does not follow the conventional assumption of dislocation theory, which is Burgers vector conservation between the reactants and the product. The process observed is different from all previously proposed mechanisms. Thus, our observations might provide a direct link between experiments and simulations and new insights into defect formation that may provide a basis to increase the radiation resistance of these strategic materials.

  18. Nanovoid growth in BCC α-Fe: influences of initial void geometry

    NASA Astrophysics Data System (ADS)

    Xu, Shuozhi; Su, Yanqing

    2016-12-01

    The growth of voids has a great impact on the mechanical properties of ductile materials by altering their microstructures. Exploring the process of void growth at the nanoscale helps in understanding the dynamic fracture of metals. While some very recent studies looked into the effects of the initial geometry of an elliptic void on the plastic deformation of face-centered cubic metals, a systematic study of the initial void ellipticity and orientation angle in body-centered cubic (BCC) metals is still lacking. In this paper, large scale molecular dynamics simulations with millions of atoms are conducted, investigating the void growth process during tensile loading of metallic thin films in BCC α-Fe. Our simulations elucidate the intertwined influences on void growth of the initial ellipticity and initial orientation angle of the void. It is shown that these two geometric parameters play an important role in the stress-strain response, the nucleation and evolution of defects, as well as the void size/outline evolution in α-Fe thin films. Results suggest that, together with void size, different initial void geometries should be taken into account if a continuum model is to be applied to nanoscale damage progression.

  19. Microscopic Origin of Heisenberg and Non-Heisenberg Exchange Interactions in Ferromagnetic bcc Fe.

    PubMed

    Kvashnin, Y O; Cardias, R; Szilva, A; Di Marco, I; Katsnelson, M I; Lichtenstein, A I; Nordström, L; Klautau, A B; Eriksson, O

    2016-05-27

    By means of first principles calculations, we investigate the nature of exchange coupling in ferromagnetic bcc Fe on a microscopic level. Analyzing the basic electronic structure reveals a drastic difference between the 3d orbitals of E_{g} and T_{2g} symmetries. The latter ones define the shape of the Fermi surface, while the former ones form weakly interacting impurity levels. We demonstrate that, as a result of this, in Fe the T_{2g} orbitals participate in exchange interactions, which are only weakly dependent on the configuration of the spin moments and thus can be classified as Heisenberg-like. These couplings are shown to be driven by Fermi surface nesting. In contrast, for the E_{g} states, the Heisenberg picture breaks down since the corresponding contribution to the exchange interactions is shown to strongly depend on the reference state they are extracted from. Our analysis of the nearest-neighbor coupling indicates that the interactions among E_{g} states are mainly proportional to the corresponding hopping integral and thus can be attributed to be of double-exchange origin. By making a comparison to other magnetic transition metals, we put the results of bcc Fe into context and argue that iron has a unique behavior when it comes to magnetic exchange interactions.

  20. The microstructure and associated tensile properties of irradiated fcc and bcc metals

    NASA Astrophysics Data System (ADS)

    Victoria, M.; Baluc, N.; Bailat, C.; Dai, Y.; Luppo, M. I.; Scha̋ublin, R.; Singh, B. N.

    2000-01-01

    The differences and similarities of behaviour between fcc and bcc metals after irradiation have been investigated. For this purpose, fcc Cu, Pd and 304 stainless steel and bcc Fe, Mo and Mo-5% Re were irradiated with either neutrons or 590 MeV protons at temperatures below recovery stage V. It is shown that a dense population of defect clusters (up to 10 22-10 24 m -3) develops, the type of cluster formed depending apparently on the stacking fault energy. In the case of stacking fault tetrahedra formed in Cu, their size is independent of dose, while interstitial loops in stainless steel grow at neutron doses higher than 1 dpa. The defect microstructure is found to be independent of the recoil energy spectra in this temperature region, but shows a very strong dependence on the type of crystalline structure. The results of tensile testing indicate the presence of radiation hardening, starting at very low doses as an upper yield point develops followed by a (serrated) yield region. The main deformation mode observed is dislocation channeling. The hardening is modelled in terms of the initial dislocation locking by the irradiation-induced defects followed by the dispersed hardening induced by the global distribution of clusters in the matrix.

  1. Surface energy and work function of fcc and bcc crystals: Density functional study

    NASA Astrophysics Data System (ADS)

    Wang, Jian; Wang, Shao-Qing

    2014-12-01

    The surface energies and work functions for six close-packed surfaces of 19 common fcc and bcc metals in the periodic table have been systematically calculated by means of the density functional theory (DFT) method. The accuracy of the results is established in comparison with the experimental and other theoretical values. The variations of work functions with the surface crystallographic orientation display a good regularity. For alkali metals, the work functions follow the sequence Φ(110) > Φ(133) > Φ(311) > Φ(120) > Φ(100) > Φ(111). But for the same crystal structure of bcc transition metals (Nb, Mo, Ta, W), the order is Φ(110) > Φ(133) > Φ(120) > Φ(111) > Φ(311) > Φ(100). The work functions for 3d, 4d and 5d transition fcc metals also display an obvious regularity and ordered as Φ(111) > Φ(100) > Φ(211) > Φ(123) > Φ(310) > Φ(110). Particular attention is paid to the surface energies anisotropy with the same crystal structure metals and the variations present a good regularity, too. Especially, a roughly inverse proportional relationship between the surface energy and work function is found.

  2. Structure and creep of Russian reactor steels with a BCC structure

    NASA Astrophysics Data System (ADS)

    Sagaradze, V. V.; Kochetkova, T. N.; Kataeva, N. V.; Kozlov, K. A.; Zavalishin, V. A.; Vil'danova, N. F.; Ageev, V. S.; Leont'eva-Smirnova, M. V.; Nikitina, A. A.

    2017-05-01

    The structural phase transformations have been revealed and the characteristics of the creep and long-term strength at 650, 670, and 700°C and 60-140 MPa have been determined in six Russian reactor steels with a bcc structure after quenching and high-temperature tempering. Creep tests were carried out using specially designed longitudinal and transverse microsamples, which were fabricated from the shells of the fuel elements used in the BN-600 fast neutron reactor. It has been found that the creep rate of the reactor bcc steels is determined by the stability of the lath martensitic and ferritic structures in relation to the diffusion processes of recovery and recrystallization. The highest-temperature oxide-free steel contains the maximum amount of the refractory elements and carbides. The steel strengthened by the thermally stable Y-Ti nanooxides has a record high-temperature strength. The creep rate at 700°C and 100 MPa in the samples of this steel is lower by an order of magnitude and the time to fracture is 100 times greater than that in the oxide-free reactor steels.

  3. Equation of state of bcc-Mo by static volume compression to 410 GPa

    SciTech Connect

    Akahama, Yuichi; Hirao, Naohisa; Ohishi, Yasuo; Singh, Anil K.

    2014-12-14

    Unit cell volumes of Mo and Pt have been measured simultaneously to ≈400 GPa by x-ray powder diffraction using a diamond anvil cell and synchrotron radiation source. The body-centered cubic (bcc) phase of Mo was found to be stable up to 410 GPa. The equation of state (EOS) of bcc-Mo was determined on the basis of Pt pressure scale. A fit of Vinet EOS to the volume compression data gave K{sub 0} = 262.3(4.6) GPa, K{sub 0}′ = 4.55(16) with one atmosphere atomic volume V{sub 0} = 31.155(24) A{sup 3}. The EOS was in good agreement with the previous ultrasonic data within pressure difference of 2.5%–3.3% in the multimegabar range, though the EOS of Mo proposed from a shock compression experiment gave lower pressure by 7.2%–11.3% than the present EOS. The agreement would suggest that the Pt pressure scale provides an accurate pressure value in an ultra-high pressure range.

  4. Twin migration in Fe-based bcc crystals: theory and experiments

    NASA Astrophysics Data System (ADS)

    Ojha, A.; Sehitoglu, H.; Patriarca, L.; Maier, H. J.

    2014-06-01

    We establish an overall energy expression to determine the twin migration stress in bcc metals. Twin migration succeeds twin nucleation often after a load drop, and a model to establish twin migration stress is of paramount importance. We compute the planar fault energy barriers and determine the elastic energies of twinning dislocations including the role of residual dislocations (br) and twin intersection types such as ?1 1 0?, ?1 1 3? and ?2 1 0?. The energy expression derived provides the twin migration stress in relation to the twin nucleation stress with a ratio of 0.5-0.8 depending on the resultant residual burgers vector and the intersection types. Utilizing digital image correlation, it was possible to differentiate the twin nucleation and twin advancement events experimentally, and transmission electron microscopy observations provided further support to the modelling efforts. Overall, the methodology developed provides an enhanced understanding of twin progression in bcc metals, and most importantly the proposed model does not rely on empirical constants. We utilize Fe-50at.%Cr in our experiments, and subsequently predict the twin migration stress for pure Fe, and Fe-3at.%V from the literature showing excellent agreement with experiments.

  5. Localization oscillation in antidot lattices

    NASA Astrophysics Data System (ADS)

    Uryu, S.; Ando, T.

    1998-06-01

    The Anderson localization in square and hexagonal antidot lattices is numerically studied with the use of a Thouless number method. It is revealed that localization is very sensitive to the aspect ratio between the antidot diameter and the lattice constant. In a hexagonal lattice, both the Thouless number and the localization length oscillate with the period equal to the Al’tshuler-Aronov-Spivak oscillation. The oscillation is quite weak in a square lattice.

  6. In vivo assessment of optical properties of basal cell carcinoma and differentiation of BCC subtypes by high-definition optical coherence tomography

    PubMed Central

    Boone, Marc; Suppa, Mariano; Miyamoto, Makiko; Marneffe, Alice; Jemec, Gregor; Del Marmol, Veronique

    2016-01-01

    High-definition optical coherence tomography (HD-OCT) features of basal cell carcinoma (BCC) have recently been defined. We assessed in vivo optical properties (IV-OP) of BCC, by HD-OCT. Moreover their critical values for BCC subtype differentiation were determined. The technique of semi-log plot whereby an exponential function becomes linear has been implemented on HD-OCT signals. The relative attenuation factor (µraf) at different skin layers could be assessed.. IV-OP of superficial BCC with high diagnostic accuracy (DA) and high negative predictive values (NPV) were (i) decreased µraf in lower part of epidermis and (ii) increased epidermal thickness (E-T). IV-OP of nodular BCC with good to high DA and NPV were (i) less negative µraf in papillary dermis compared to normal adjacent skin and (ii) significantly decreased E-T and papillary dermal thickness (PD-T). In infiltrative BCC (i) high µraf in reticular dermis compared to normal adjacent skin and (ii) presence of peaks and falls in reticular dermis had good DA and high NPV. HD-OCT seems to enable the combination of in vivo morphological analysis of cellular and 3-D micro-architectural structures with IV-OP analysis of BCC. This permits BCC sub-differentiation with higher accuracy than in vivo HD-OCT analysis of morphology alone. PMID:27375943

  7. DMBA/TPA treatment is necessary for BCC formation from patched deficient epidermal cells in Ptch(flox/flox)CD4Cre(+/-) mice.

    PubMed

    Uhmann, Anja; Heß, Ina; Frommhold, Anke; König, Simone; Zabel, Sebastian; Nitzki, Frauke; Dittmann, Kai; Lühder, Fred; Christiansen, Hans; Reifenberger, Julia; Schulz-Schaeffer, Walter; Hahn, Heidi

    2014-10-01

    The development of basal cell carcinoma (BCC), the most frequently diagnosed tumor among persons with European ancestry, is closely linked to mutations in the Hedgehog (Hh) receptor and tumor suppressor Patched1 (Ptch). Using Ptch(flox/flox)CD4Cre(+/-) mice, in which Ptch was ablated in CD4Cre-expressing cells, we demonstrate that the targeted cells can give rise to BCC after treatment with DMBA (7,12-dimethylbenz(a)anthracene)/TPA (12-O-tetradecanoylphorbol-13-acetate), but not after wounding of the skin. In addition, in this model, BCC are not caused by malfunctioning of Ptch-deficient T cells, as BCC did not develop when bone marrow (BM) of Ptch(flox/flox)CD4Cre(+/-) mice was transplanted into Ptch wild-type mice. Instead, lineage-tracing experiments and flow cytometric analyses suggest that the tumors are initiated from rare Ptch-deficient stem cell-like cells of the epidermis that express CD4. As DMBA/TPA is a prerequisite for BCC development in this model, the initiated cells need a second stimulus for expansion and tumor formation. However, in contrast to papilloma, this stimulus seems to be unrelated to alterations in the Ras signaling cascade. Together, these data suggest that biallelic loss of Ptch in CD4(+) cells does not suffice for BCC formation and that BCC formation requires a second so far unknown event, at least in the Ptch(flox/flox)CD4Cre(+/-) BCC mouse model.

  8. In vivo assessment of optical properties of basal cell carcinoma and differentiation of BCC subtypes by high-definition optical coherence tomography.

    PubMed

    Boone, Marc; Suppa, Mariano; Miyamoto, Makiko; Marneffe, Alice; Jemec, Gregor; Del Marmol, Veronique

    2016-06-01

    High-definition optical coherence tomography (HD-OCT) features of basal cell carcinoma (BCC) have recently been defined. We assessed in vivo optical properties (IV-OP) of BCC, by HD-OCT. Moreover their critical values for BCC subtype differentiation were determined. The technique of semi-log plot whereby an exponential function becomes linear has been implemented on HD-OCT signals. The relative attenuation factor (µraf ) at different skin layers could be assessed.. IV-OP of superficial BCC with high diagnostic accuracy (DA) and high negative predictive values (NPV) were (i) decreased µraf in lower part of epidermis and (ii) increased epidermal thickness (E-T). IV-OP of nodular BCC with good to high DA and NPV were (i) less negative µraf in papillary dermis compared to normal adjacent skin and (ii) significantly decreased E-T and papillary dermal thickness (PD-T). In infiltrative BCC (i) high µraf in reticular dermis compared to normal adjacent skin and (ii) presence of peaks and falls in reticular dermis had good DA and high NPV. HD-OCT seems to enable the combination of in vivo morphological analysis of cellular and 3-D micro-architectural structures with IV-OP analysis of BCC. This permits BCC sub-differentiation with higher accuracy than in vivo HD-OCT analysis of morphology alone.

  9. The Academic and Remedial Placement of Students Entering B. C. C. in September 1975 by Curriculum Group. Research Report BCC-9-75.

    ERIC Educational Resources Information Center

    Bronx Community Coll., NY.

    This report describes the Bronx Community College (B.C.C.) freshmen class entering in September 1975, in terms of high school grade average and scores on reading-English and mathematics placement tests. As of the fall of 1974, B.C.C. enrolled a markedly higher proportion of students with high school averages below 70 percent than any other college…

  10. The Academic and Remedial Placement Profile of Students Entering B.C.C. in September, 1976 [and September 1977] by Curriculum Group. Research Report BCC 4-76 [and] 4-77.

    ERIC Educational Resources Information Center

    Eagle, Norman

    Profiles of freshmen students entering Bronx Community College (BCC) in September, 1976 and September, 1977 are presented in terms of their academic and remedial placement. For both years, nearly 70% of those who took placement tests in the reading/English area and subsequently enrolled were recommended for at least one remedial course; 75% of…

  11. Biological Lattice Gas Models

    NASA Astrophysics Data System (ADS)

    Alber, Mark S.; Kiskowski, Maria; Jiang, Yi; Newman, Stuart

    Modelling pattern formation and morphogenesis are fundamental problems in biology. One useful approach is lattice gas cellular automata (LGCA) model. This paper reviews several stochastic lattice gas models for pattern formation in myxobacteria fruiting body morphogenesis and vertebrate limb skeletogenesis. The fruiting body formation in myxobacteria is a complex morphological process that requires the organized, collective effort of tens of thousands of cells. It provides new insight into collective microbial behavior since myxobacteria morphogenic pattern formation is governed by cell-cell interactions rather than chemotaxis. We describe LGCA models for the aggregation stage of the fruiting body formation. Limb bud precartilage mesenchymal cells in micromass culture undergo chondrogenic pattern formation, which results in the formation of regularly-spaced "islands" of cartilage analogous to the cartilage primordia of the developing limb skeleton. An LGCA model, based on reaction-diffusion coupling and cell-matrix adhesion, is described for this process.

  12. Statistics of lattice animals

    NASA Astrophysics Data System (ADS)

    Hsu, Hsiao-Ping; Nadler, Walder; Grassberger, Peter

    2005-07-01

    The scaling behavior of randomly branched polymers in a good solvent is studied in two to nine dimensions, modeled by lattice animals on simple hypercubic lattices. For the simulations, we use a biased sequential sampling algorithm with re-sampling, similar to the pruned-enriched Rosenbluth method (PERM) used extensively for linear polymers. We obtain high statistics of animals with up to several thousand sites in all dimension 2⩽d⩽9. The partition sum (number of different animals) and gyration radii are estimated. In all dimensions we verify the Parisi-Sourlas prediction, and we verify all exactly known critical exponents in dimensions 2, 3, 4, and ⩾8. In addition, we present the hitherto most precise estimates for growth constants in d⩾3. For clusters with one site attached to an attractive surface, we verify the superuniversality of the cross-over exponent at the adsorption transition predicted by Janssen and Lyssy.

  13. Parametric lattice Boltzmann method

    NASA Astrophysics Data System (ADS)

    Shim, Jae Wan

    2017-06-01

    The discretized equilibrium distributions of the lattice Boltzmann method are presented by using the coefficients of the Lagrange interpolating polynomials that pass through the points related to discrete velocities and using moments of the Maxwell-Boltzmann distribution. The ranges of flow velocity and temperature providing positive valued distributions vary with regulating discrete velocities as parameters. New isothermal and thermal compressible models are proposed for flows of the level of the isothermal and thermal compressible Navier-Stokes equations. Thermal compressible shock tube flows are simulated by only five on-lattice discrete velocities. Two-dimensional isothermal and thermal vortices provoked by the Kelvin-Helmholtz instability are simulated by the parametric models.

  14. Fractional lattice charge transport

    PubMed Central

    Flach, Sergej; Khomeriki, Ramaz

    2017-01-01

    We consider the dynamics of noninteracting quantum particles on a square lattice in the presence of a magnetic flux α and a dc electric field E oriented along the lattice diagonal. In general, the adiabatic dynamics will be characterized by Bloch oscillations in the electrical field direction and dispersive ballistic transport in the perpendicular direction. For rational values of α and a corresponding discrete set of values of E(α) vanishing gaps in the spectrum induce a fractionalization of the charge in the perpendicular direction - while left movers are still performing dispersive ballistic transport, the complementary fraction of right movers is propagating in a dispersionless relativistic manner in the opposite direction. Generalizations and the possible probing of the effect with atomic Bose-Einstein condensates and photonic networks are discussed. Zak phase of respective band associated with gap closing regime has been computed and it is found converging to π/2 value. PMID:28102302

  15. Introduction to lattice QCD

    SciTech Connect

    Gupta, R.

    1998-12-31

    The goal of the lectures on lattice QCD (LQCD) is to provide an overview of both the technical issues and the progress made so far in obtaining phenomenologically useful numbers. The lectures consist of three parts. The author`s charter is to provide an introduction to LQCD and outline the scope of LQCD calculations. In the second set of lectures, Guido Martinelli will discuss the progress they have made so far in obtaining results, and their impact on Standard Model phenomenology. Finally, Martin Luescher will discuss the topical subjects of chiral symmetry, improved formulation of lattice QCD, and the impact these improvements will have on the quality of results expected from the next generation of simulations.

  16. Exobiopolymer production of Ophiocordyceps dipterigena BCC 2073: optimization, production in bioreactor and characterization

    PubMed Central

    2010-01-01

    Background Biopolymers have various applications in medicine, food and petroleum industries. The ascomycetous fungus Ophiocordyceps dipterigena BCC 2073 produces an exobiopolymer, a (1→3)-β-D-glucan, in low quantity under screening conditions. Optimization of O. dipterigena BCC 2073 exobiopolymer production using experimental designs, a scale-up in 5 liter bioreactor, analysis of molecular weight at different cultivation times, and levels of induction of interleukin-8 synthesis are described in this study. Results In order to improve and certify the productivity of this strain, a sequential approach of 4 steps was followed. The first step was the qualitative selection of the most appropriate carbon and nitrogen sources (general factorial design) and the second step was quantitative optimization of 5 physiological factors (fractional factorial design). The best carbon and nitrogen source was glucose and malt extract respectively. From an initial production of 2.53 g·L-1, over 13 g·L-1 could be obtained in flasks under the improved conditions (5-fold increase). The third step was cultivation in a 5 L bioreactor, which produced a specific growth rate, biomass yield, exobiopolymer yield and exobiopolymer production rate of 0.014 h-1, 0.32 g·g-1 glucose, 2.95 g·g biomass-1 (1.31 g·g-1 sugar), and 0.65 g.(L·d)-1, respectively. A maximum yield of 41.2 g·L-1 was obtained after 377 h, a dramatic improvement in comparison to the initial production. In the last step, the basic characteristics of the biopolymer were determined. The molecular weight of the polymer was in the range of 6.3 × 105 - 7.7 × 105 Da. The exobiopolymer, at 50 and 100. μg·mL-1, induced synthesis in normal dermal human fibroblasts of 2227 and 3363 pg·mL-1 interleukin-8 respectively. Conclusions High exobiopolymer yield produced by O. dipterigena BCC 2073 after optimization by qualitative and quantitative methods is attractive for various applications. It induced high IL-8 production by

  17. Instantons on the lattice

    NASA Astrophysics Data System (ADS)

    Fucito, F.; Solomon, S.

    By modifying the lattice action of spin and gauge models we insure that the system cannot tunnel between topological sectors by local Monte Carlo (MC) steps. We insure the correct weight of the topological sectors in the statistical sum by considering global MC steps. This strategy permits us to study the effects of topological objects in ϑ-vacua, < Q2> scaling and chiral symmetry breaking in a straightforward way.

  18. Charmonium from Lattice QCD

    SciTech Connect

    Jozef Dudek

    2007-08-05

    Charmonium is an attractive system for the application of lattice QCD methods. While the sub-threshold spectrum has been considered in some detail in previous works, it is only very recently that excited and higher-spin states and further properties such as radiative transitions and two-photon decays have come to be calculated. I report on this recent progress with reference to work done at Jefferson Lab.

  19. Multipole plasmonic lattice solitons

    SciTech Connect

    Kou Yao; Ye Fangwei; Chen Xianfeng

    2011-09-15

    We theoretically demonstrate a variety of multipole plasmonic lattice solitons, including dipoles, quadrupoles, and necklaces, in two-dimensional metallic nanowire arrays with Kerr-type nonlinearities. Such solitons feature complex internal structures with an ultracompact mode size approaching or smaller than one wavelength. Their mode sizes and the stability characteristics are studied in detail within the framework of coupled mode theory. The conditions to form and stabilize these highly confined solitons are within the experimentally achievable range.

  20. Lattice dynamics of coesite.

    PubMed

    Wehinger, Björn; Bosak, Alexeï; Chumakov, Aleksandr; Mirone, Alessandro; Winkler, Björn; Dubrovinsky, Leonid; Dubrovinskaia, Natalia; Brazhkin, Vadim; Dyuzheva, Tatiana; Krisch, Michael

    2013-07-10

    The lattice dynamics of coesite has been studied by a combination of diffuse x-ray scattering, inelastic x-ray scattering and ab initio lattice dynamics calculations. The combined technique gives access to the full lattice dynamics in the harmonic description and thus eventually provides detailed information on the elastic properties, the stability and metastability of crystalline systems. The experimentally validated calculation was used for the investigation of the eigenvectors, mode character and their contribution to the density of vibrational states. High-symmetry sections of the reciprocal space distribution of diffuse scattering and inelastic x-ray scattering spectra as well as the density of vibrational states and the dispersion relation are reported and compared to the calculation. A critical point at the zone boundary is found to contribute strongly to the main peak of the low-energy part in the density of vibrational states. Comparison with the most abundant SiO2 polymorph--α-quartz--reveals similarities and distinct differences in the low-energy vibrational properties.

  1. Digital lattice gauge theories

    NASA Astrophysics Data System (ADS)

    Zohar, Erez; Farace, Alessandro; Reznik, Benni; Cirac, J. Ignacio

    2017-02-01

    We propose a general scheme for a digital construction of lattice gauge theories with dynamical fermions. In this method, the four-body interactions arising in models with 2 +1 dimensions and higher are obtained stroboscopically, through a sequence of two-body interactions with ancillary degrees of freedom. This yields stronger interactions than the ones obtained through perturbative methods, as typically done in previous proposals, and removes an important bottleneck in the road towards experimental realizations. The scheme applies to generic gauge theories with Lie or finite symmetry groups, both Abelian and non-Abelian. As a concrete example, we present the construction of a digital quantum simulator for a Z3 lattice gauge theory with dynamical fermionic matter in 2 +1 dimensions, using ultracold atoms in optical lattices, involving three atomic species, representing the matter, gauge, and auxiliary degrees of freedom, that are separated in three different layers. By moving the ancilla atoms with a proper sequence of steps, we show how we can obtain the desired evolution in a clean, controlled way.

  2. Topological lattice actions

    NASA Astrophysics Data System (ADS)

    Bietenholz, W.; Gerber, U.; Pepe, M.; Wiese, U.-J.

    2010-12-01

    We consider lattice field theories with topological actions, which are invariant against small deformations of the fields. Some of these actions have infinite barriers separating different topological sectors. Topological actions do not have the correct classical continuum limit and they cannot be treated using perturbation theory, but they still yield the correct quantum continuum limit. To show this, we present analytic studies of the 1-d O(2) and O(3) model, as well as Monte Carlo simulations of the 2-d O(3) model using topological lattice actions. Some topological actions obey and others violate a lattice Schwarz inequality between the action and the topological charge Q. Irrespective of this, in the 2-d O(3) model the topological susceptibility {χ_t} = {{{left< {{Q^2}} rightrangle }} left/ {V} right.} is logarithmically divergent in the continuum limit. Still, at non-zero distance the correlator of the topological charge density has a finite continuum limit which is consistent with analytic predictions. Our study shows explicitly that some classically important features of an action are irrelevant for reaching the correct quantum continuum limit.

  3. Hadroquarkonium from lattice QCD

    NASA Astrophysics Data System (ADS)

    Alberti, Maurizio; Bali, Gunnar S.; Collins, Sara; Knechtli, Francesco; Moir, Graham; Söldner, Wolfgang

    2017-04-01

    The hadroquarkonium picture [S. Dubynskiy and M. B. Voloshin, Phys. Lett. B 666, 344 (2008), 10.1016/j.physletb.2008.07.086] provides one possible interpretation for the pentaquark candidates with hidden charm, recently reported by the LHCb Collaboration, as well as for some of the charmoniumlike "X , Y , Z " states. In this picture, a heavy quarkonium core resides within a light hadron giving rise to four- or five-quark/antiquark bound states. We test this scenario in the heavy quark limit by investigating the modification of the potential between a static quark-antiquark pair induced by the presence of a hadron. Our lattice QCD simulations are performed on a Coordinated Lattice Simulations (CLS) ensemble with Nf=2 +1 flavors of nonperturbatively improved Wilson quarks at a pion mass of about 223 MeV and a lattice spacing of about a =0.0854 fm . We study the static potential in the presence of a variety of light mesons as well as of octet and decuplet baryons. In all these cases, the resulting configurations are favored energetically. The associated binding energies between the quarkonium in the heavy quark limit and the light hadron are found to be smaller than a few MeV, similar in strength to deuterium binding. It needs to be seen if the small attraction survives in the infinite volume limit and supports bound states or resonances.

  4. Universal relationships for the phonon spectra in BCC, FCC, and HCP crystals with a short-range interatomic interaction

    SciTech Connect

    Vaks, V. G. Zhuravlev, I. A.; Zabolotskii, A. D.

    2012-03-15

    The frequencies of the phonon branches that correspond to the vibrations of the close-packed atomic planes in bcc, fcc, and hcp crystals with short-range interatomic interaction are shown to be described by a universal relationship, which only contains two parameters for each branch, for any polarization {lambda}. These phonon branches correspond to the ({xi}, {xi}, 0) direction in bcc crystals, the ({xi}, {xi}, {xi}) direction in fcc crystals, and the (0, 0, {xi}) direction in hcp crystals. This universal relationship can only be violated by long-range interactions, namely, the interactions outside the sixth coordination shell in a bcc crystal, the fifth coordination shell in an fcc crystal, and the eleventh or tenth coordination shell in an hcp crystal. The effect of these long-range interactions for each phonon branch can be quantitatively characterized by certain parameters {Delta}{sub n{lambda}}, which are simply expressed in terms of the frequencies of three phonons of the branch. The values of these parameters are presented for all bcc, fcc, and hcp metals whose phonon spectra are measured. In most cases, the proposed relationships for the frequencies are found to be fulfilled accurate to several percent. In the cases where the {Delta}{sub n{lambda}} parameters are not small, they can give substantial information on the type and scale of long-range interaction effects in various metals.

  5. Experience and BCC subtypes as determinants of MAL-PDT response: preliminary results of a national Brazilian project.

    PubMed

    Ramirez, Dora P; Kurachi, Cristina; Inada, Natalia M; Moriyama, Lilian T; Salvio, Ana G; Vollet Filho, José D; Pires, Layla; Buzzá, Hilde H; de Andrade, Cintia Teles; Greco, Clovis; Bagnato, Vanderlei S

    2014-03-01

    Non-melanoma skin cancer is the most prevalent cancer type in Brazil and worldwide. Photodynamic therapy (PDT) is a noninvasive technique with excellent cosmetic outcome and good curative results, when used for the initial stages of skin cancer. A Brazilian program was established to determine the efficacy of methyl aminolevulinate (MAL)-PDT, using Brazilian device and drug. The equipment is a dual device that combines the photodiagnosis, based on widefield fluorescence, and the treatment at 630nm. A protocol was defined for the treatment of basal cell carcinoma with 20% MAL cream application. The program also involves the training of the medical teams at different Brazilian regions, and with distinct facilities and previous PDT education. In this report we present the partial results of 27 centers with 366 treated BCC lesions in 294 patients. A complete response (CR) was observed in 76.5% (280/366). The better response was observed for superficial BCC, with CR 160 lesions (80.4%), when compared with nodular or pigmented BCC. Experienced centers presented CR of 85.8% and 90.6% for superficial and nodular BCC respectively. A high influence of the previous doctor experience on the CR values was observed, especially due to a better tumor selection.

  6. A physically based model of temperature and strain rate dependent yield in BCC metals: Implementation into crystal plasticity

    NASA Astrophysics Data System (ADS)

    Lim, Hojun; Battaile, Corbett C.; Carroll, Jay D.; Boyce, Brad L.; Weinberger, Christopher R.

    2015-01-01

    In this work, we develop a crystal plasticity finite element model (CP-FEM) that constitutively captures the temperature and strain rate dependent flow stresses in pure BCC refractory metals. This model is based on the kink-pair theory developed by Seeger (1981) and is calibrated to available data from single crystal experiments to produce accurate and convenient constitutive laws that are implemented into a BCC crystal plasticity model. The model is then used to predict temperature and strain rate dependent yield stresses of single and polycrystal BCC refractory metals (molybdenum, tantalum, tungsten and niobium) and compared with existing experimental data. To connect to larger length scales, classical continuum-scale constitutive models are fit to the CP-FEM predictions of polycrystal yield stresses. The results produced by this model, based on kink-pair theory and with origins in dislocation mechanics, show excellent agreement with the Mechanical Threshold Stress (MTS) model for temperature and strain-rate dependent flow. This framework provides a method to bridge multiple length scales in modeling the deformation of BCC metals.

  7. Evaluation of the biphasic calcium composite (BCC), a novel bone cement, in a minipig model of pulmonary embolism.

    PubMed

    Qin, Yi; Ye, Jichao; Wang, Peng; Gao, Liangbin; Jiang, Jianming; Wang, Suwei; Shen, Huiyong

    2016-01-01

    Polymethylmethacrylate (PMMA) bone cement, which is used as a filler material in vertebroplasty, is one of the major sources of pulmonary embolism in patients who have undergone vertebroplasty. In the present study, we established and evaluated two animal models of pulmonary embolism by injecting PMMA or biphasic calcium composite (BCC) bone cement with a negative surface charge. A total of 12 adults and healthy Wuzhishan minipigs were randomly divided into two groups, the PMMA and BBC groups, which received injection of PMMA bone cement and BBC bone cement with a negative surface charge in the circulation system through the pulmonary trunk, respectively, to construct animal models of pulmonary embolism. The hemodynamics, arterial blood gas, and plasma coagulation were compared between these two groups. In addition, morphological changes of the lung were examined using three-dimensional computed tomography. The results showed that both PMMA and BCC injections induced pulmonary embolisms in minipigs. Compared to the PMMA group, the BCC group exhibited significantly lower levels of arterial pressure, pulmonary artery pressure, blood oxygen pressure, blood carbon dioxide pressure, blood bicarbonate, base excess, antithrombin III and D-dimer. In conclusion, BCC bone cement with a negative surface charge is a promising filler material for vertebroplasty.

  8. Equilibrium fluid-crystal interfacial free energy of bcc-crystallizing aqueous suspensions of polydisperse charged spheres.

    PubMed

    Palberg, Thomas; Wette, Patrick; Herlach, Dieter M

    2016-02-01

    The interfacial free energy is a central quantity in crystallization from the metastable melt. In suspensions of charged colloidal spheres, nucleation and growth kinetics can be accurately measured from optical experiments. In previous work, from these data effective nonequilibrium values for the interfacial free energy between the emerging bcc nuclei and the adjacent melt in dependence on the chemical potential difference between melt phase and crystal phase were derived using classical nucleation theory (CNT). A strictly linear increase of the interfacial free energy was observed as a function of increased metastability. Here, we further analyze these data for five aqueous suspensions of charged spheres and one binary mixture. We utilize a simple extrapolation scheme and interpret our findings in view of Turnbull's empirical rule. This enables us to present the first systematic experimental estimates for a reduced interfacial free energy, σ(0,bcc), between the bcc-crystal phase and the coexisting equilibrium fluid. Values obtained for σ(0,bcc) are on the order of a few k(B)T. Their values are not correlated to any of the electrostatic interaction parameters but rather show a systematic decrease with increasing size polydispersity and a lower value for the mixture as compared to the pure components. At the same time, σ(0) also shows an approximately linear correlation to the entropy of freezing. The equilibrium interfacial free energy of strictly monodisperse charged spheres may therefore be still greater.

  9. Investigation of helium at a Y2Ti2O7 nanocluster embedded in a BCC Fe matrix.

    PubMed

    Danielson, Thomas; Tea, Eric; Hin, Celine

    2016-11-02

    Nanostructured ferritic alloys (NFAs) are prime candidates for structural and first wall components of fission and fusion reactors. The main reason for this is their ability to effectively withstand high concentrations of the transmutation product helium. A high number density of oxide nanoclusters dispersed throughout a BCC Fe matrix act as trapping sites for helium and prevent its eventual delivery to high risk nucleation sites. The current study uses density functional theory to investigate the helium trapping mechanisms at the boundary between BCC iron and Y2Ti2O7, a common stoichiometry of the oxide nanoclusters in NFAs. The investigation is carried out on a structure matched oxide nanocluster that is embedded within a BCC Fe supercell. Investigation of the electronic structure and a mapping of the potential energy landscape reveals that the localized iono-covalent bonds present within the oxides create a potential energy-well within the metallically bonded BCC Fe matrix, so that trapping of helium at the oxide nanocluster is thermodynamically and kinetically favorable.

  10. The CSA calculation of the bcc Zr-Be phase diagram

    NASA Astrophysics Data System (ADS)

    Zereg, M.; Bourki, S.

    2009-12-01

    In the recent years it has been shown that the fcc-based phase diagram can be calculated from the cluster site approximation (CSA) with remarkable accuracy and great computational simplicity over the cluster variation method (CVM). The basis of this method is briefly recalled in this paper. The CSA approximation is applied to estimate the bcc based order disorder phase diagrams of the Be-Zr system. The input parameters are the cluster interactions which are obtained from first principles calculations published recently. We discuss in detail the relationships between the adjustable parameter in this method and the order disorder transition temperature. Calculations of the formation Gibbs energies are carried out for the ordered and disordered phases and are compared with the ones obtained by the CVM method.

  11. Shear banding and its contribution to texture evolution in rotated Goss orientations of BCC structured materials

    NASA Astrophysics Data System (ADS)

    Nguyen-Minh, T.; Sidor, J. J.; Petrov, R. H.; Kestens, L. A. I.

    2015-04-01

    Due to progressive deformation, the dislocation densities in crystals are accumulated and the resistance of grains to further deformation increases. Homogeneous deformation becomes energetically less favorable, which may result for some orientations in strain localization. In-grain shear banding, a typical kind of localized deformation in metals with BCC crystal structure, has been accounted for by the geometric softening of crystals. In this study, the occurrence of shear bands in rotated Goss ({110}<110>) orientations of Fe-Si steel is predicted by crystal plasticity simulations and validated by EBSD measurements. It was observed and confirmed by crystal plasticity modeling that such shear bands exhibit stable cube orientations The orientation evolution of crystals in shear bands and its impact on annealing texture of materials are also described.

  12. Vacancy-mediated fcc/bcc phase separation in Fe1-xNix ultrathin films

    DOE PAGES

    Mentes, T. O.; Stojic, N.; Vescovo, E.; ...

    2016-08-01

    The phase separation occurring in Fe-Ni thin lms near the Invar composition is studied by using high resolution spectromicroscopy techniques and density functional theory calculations. Annealed at temperatures around 300 C, Fe0.70Ni0.30 lms on W(110) break into micron-sized bcc and fcc domains with compositions in agreement with the bulk Fe-Ni phase diagram. Ni is found to be the di using species in forming the chemical heterogeneity. The experimentally-determined energy barrier of 1.59 0.09 eV is identi ed as the vacancy formation energy via density functional theory calculations. Thus, the principal role of the surface in the phase separation process ismore » attributed to vacancy creation without interstitials.« less

  13. Compositional Variation of the Phonon Dispersion Curves of bcc Fe-Ga Alloys

    SciTech Connect

    Zarestky, Jerel L; Garlea, Vasile O; Lograsso, Tom; Schlagel, D. L.; Stassis, C.

    2005-01-01

    Inelastic neutron scattering techniques have been used to measure the phonon dispersion curves of bcc Fe1?xGax x=10.8, 13.3, 16.0, 22.5 alloys as a function of Ga concentration. The phonon frequencies of every branch were found to decrease significantly with increasing Ga concentration. The softening was most pronounced for the T2 0 branch and, to a lesser extent, the L branch in the vicinity of = 2 3. The concentration dependence of the shear elastic constant C =1/2 C11?C12 , calculated from the slope of the T2 0 branch, was found to agree with the results of sound velocity measurements. For the higher concentration sample measured, 22.5 at. % Ga, new branches appeared, an effect associated with the increase in the number of atoms per unit cell.

  14. Magnetic properties of bcc-Fe(001)/C₆₀ interfaces for organic spintronics.

    PubMed

    Tran, T Lan Anh; Cakır, Deniz; Wong, P K Johnny; Preobrajenski, Alexei B; Brocks, Geert; van der Wiel, Wilfred G; de Jong, Michel P

    2013-02-01

    The magnetic structure of the interfaces between organic semiconductors and ferromagnetic contacts plays a key role in the spin injection and extraction processes in organic spintronic devices. We present a combined computational (density functional theory) and experimental (X-ray magnetic circular dichroism) study on the magnetic properties of interfaces between bcc-Fe(001) and C(60) molecules. C(60) is an interesting candidate for application in organic spintronics due to the absence of hydrogen atoms and the associated hyperfine fields. Adsorption of C(60) on Fe(001) reduces the magnetic moments on the top Fe layers by ∼6%, while inducing an antiparrallel magnetic moment of ∼-0.2 μ(B) on C(60). Adsorption of C(60) on a model ferromagnetic substrate consisting of three Fe monolayers on W(001) leads to a different structure but to very similar interface magnetic properties.

  15. Crystal plasticity investigation of the microstructural factors influencing dislocation channeling in a model irradiated bcc material

    SciTech Connect

    Patra, Anirban; McDowell, David L.

    2016-03-25

    We use a continuum crystal plasticity framework to study the effect of microstructure and mesoscopic factors on dislocation channeling and flow localization in an irradiated model bcc alloy. For simulated dislocation channeling characteristics we correlate the dislocation and defect densities in the substructure, local Schmid factor, and stress triaxiality, in terms of their temporal and spatial evolution. A metric is introduced to assess the propensity for localization and is correlated to the grain-level Schmid factor. We also found that localization generally takes place in grains with a local Schmid factor in the range 0.42 or higher. Surface slip step heights are computed at free surfaces and compared to relevant experiments.

  16. Crystal plasticity investigation of the microstructural factors influencing dislocation channeling in a model irradiated bcc material

    DOE PAGES

    Patra, Anirban; McDowell, David L.

    2016-03-25

    We use a continuum crystal plasticity framework to study the effect of microstructure and mesoscopic factors on dislocation channeling and flow localization in an irradiated model bcc alloy. For simulated dislocation channeling characteristics we correlate the dislocation and defect densities in the substructure, local Schmid factor, and stress triaxiality, in terms of their temporal and spatial evolution. A metric is introduced to assess the propensity for localization and is correlated to the grain-level Schmid factor. We also found that localization generally takes place in grains with a local Schmid factor in the range 0.42 or higher. Surface slip step heightsmore » are computed at free surfaces and compared to relevant experiments.« less

  17. Interactions of foreign interstitial and substitutional atoms in bcc iron from ab initio calculations

    NASA Astrophysics Data System (ADS)

    You, Y.; Yan, M. F.

    2013-05-01

    C and N atoms are the most frequent foreign interstitial atoms (FIAs), and often incorporated into the surface layers of steels to enhance their properties by thermochemical treatments. Al, Si, Ti, V, Cr, Mn, Co, Ni, Cu, Nb and Mo are the most common alloying elements in steels, also can be called foreign substitutional atoms (FSAs). The FIA and FSA interactions play an important role in the diffusion of C and N atoms, and the microstructures and mechanical properties of surface modified layers. Ab initio calculations based on the density functional theory are carried out to investigate FIA interactions with FSA in ferromagnetic bcc iron. The FIA-FSA interactions are analyzed systematically from five aspects, including interaction energies, density of states (DOS), bond populations, electron density difference maps and local magnetic moments.

  18. Solute/impurity diffusivities in bcc Fe: A first-principles study

    NASA Astrophysics Data System (ADS)

    Zhang, Chong; Fu, Jie; Li, Ruihuan; Zhang, Pengbo; Zhao, Jijun; Dong, Chuang

    2014-12-01

    Chinese low activation martensitic steel (CLAM) has been designed with decreased W content and increased Ta content to improve performance. We performed first-principles calculations to investigate the diffusion properties of solute element (Cr, W, Mn, V, Ta) and C diffusion with a nearby solute element inside bcc Fe. The self-diffusion coefficients and solute diffusion coefficients in Fe host were derived using the nine-frequency model. A relatively lower diffusivity was observed for W in paramagnetic state, implying enriched W concentration inside Fe host. The solute atom interacts strongly with C impurity, depending on the interatomic distance. According to our calculations, formation of Ta carbide precipitates is energetically preferred by trapping C impurity around Ta atom. Our theoretical results are helpful for investigating the evolution of microstructure of steels for engineering applications.

  19. A molecular dynamics study of the phase transition in bcc metal nanoparticles.

    PubMed

    Shibuta, Yasushi; Suzuki, Toshio

    2008-10-14

    The phase transition between liquid and solid phases in body-centered cubic (bcc) metal nanoparticles of iron, chromium, molybdenum, and tungsten with size ranging from 2000 to 31,250 atoms was investigated using a molecular dynamics simulation. The nucleation from an undercooled liquid droplet was observed during cooling in all nanoparticles considered. It was found that a nucleus was generated near one side of the particle and solidification spread toward the other side the during nucleation process. On the other hand, the surface melting and subsequent inward melting of the solid core of the nanoparticles were observed during heating. The depression of the melting point was proportional to the inverse of the particle radius due to the Gibbs-Thomson effect. On the other hand, the depression of the nucleation temperature during cooling was not monotonic with respect to the particle radius since the nucleation from an undercooled liquid depends on the event probability of an embryo or a nucleus.

  20. Stability in bcc transition metals: Madelung and band-energy effects due to alloying.

    PubMed

    Landa, A; Söderlind, P; Ruban, A V; Peil, O E; Vitos, L

    2009-12-04

    The phase stability of group VB (V, Nb, and Ta) transition metals is explored by first-principles electronic-structure calculations. Alloying with a small amount of a neighboring metal can either stabilize or destabilize the body-centered-cubic phase relative to low-symmetry rhombohedral phases. We show that band-structure effects determine phase stability when a particular group VB metal is alloyed with its nearest neighbors within the same d-transition series. In this case, the neighbor with less (to the left) and more (to the right) d electrons destabilize and stabilize bcc, respectively. When alloying with neighbors of higher d-transition series, electrostatic Madelung energy dominates and stabilizes the body-centered-cubic phase. This surprising prediction invalidates current understanding of simple d-electron bonding that dictates high-symmetry cubic and hexagonal phases.

  1. Effects of applied strain on nanoscale self-interstitial cluster formation in BCC iron

    NASA Astrophysics Data System (ADS)

    Gao, Ning; Setyawan, Wahyu; Kurtz, Richard J.; Wang, Zhiguang

    2017-09-01

    The effect of applied strains on the configurational evolution of self-interstitial clusters in BCC iron (Fe) is explored with atomistic simulations. A novel cluster configuration is discovered at low temperatures (<600 K), which consists of < 110 > dumbbells and < 111 > crowdions in a specific configuration, resulting in an immobile defect. The stability and diffusion of this cluster at higher temperatures is explored. In addition, an anisotropy distribution factor of a particular [ hkl ] interstitial loop within the family of < hkl > loops is calculated as a function of strain. The results show that loop anisotropy is governed by the angle between the stress direction and the orientation of the < 111 > crowdions in the loop, and directly linked to the stress induced preferred nucleation of self-interstitial atoms.

  2. Plastic instability behavior of bcc and hcp metals after low temperature neutron irradiation

    NASA Astrophysics Data System (ADS)

    Byun, T. S.; Farrell, K.; Hashimoto, N.

    2004-08-01

    Plastic instability in uniaxial tensile deformation has been investigated for the body centered cubic (bcc) and hexagonal close packed (hcp) pure metals, V, Nb, Mo, and Zr, after low temperature (60-100 °C) neutron irradiation up to 0.7 dpa. Relatively ductile metals, V, Nb, and Zr, experienced uniform deformation prior to necking at low doses and prompt plastic instability at yield at high doses. Mo failed in a brittle mode within the elastic limit at doses above 0.0001 dpa. V showed a quasi-brittle failure at the highest dose of 0.69 dpa. In the ductile metals, plastic instability at yield occurred when the yield stress exceeded the plastic instability stress (PIS), which was nearly independent of dose. The PIS values for V, Nb, Mo, and Zr were about 390, 370, 510, and 170 MPa, respectively. The coincidence of plastic instability at yield and dislocation channeling cannot be generalized for all metallic materials.

  3. Surface Segregation Energies of BCC Binaries from Ab Initio and Quantum Approximate Calculations

    NASA Technical Reports Server (NTRS)

    Good, Brian S.

    2003-01-01

    We compare dilute-limit segregation energies for selected BCC transition metal binaries computed using ab initio and quantum approximate energy method. Ab initio calculations are carried out using the CASTEP plane-wave pseudopotential computer code, while quantum approximate results are computed using the Bozzolo-Ferrante-Smith (BFS) method with the most recent parameterization. Quantum approximate segregation energies are computed with and without atomistic relaxation. The ab initio calculations are performed without relaxation for the most part, but predicted relaxations from quantum approximate calculations are used in selected cases to compute approximate relaxed ab initio segregation energies. Results are discussed within the context of segregation models driven by strain and bond-breaking effects. We compare our results with other quantum approximate and ab initio theoretical work, and available experimental results.

  4. Vacancy-mediated fcc/bcc phase separation in Fe1 -xNix ultrathin films

    NASA Astrophysics Data System (ADS)

    Menteş, T. O.; Stojić, N.; Vescovo, E.; Ablett, J. M.; Niño, M. A.; Locatelli, A.

    2016-08-01

    The phase separation occurring in Fe-Ni thin films near the Invar composition is studied by using high-resolution spectromicroscopy techniques and density functional theory calculations. Annealed at temperatures around 300 ∘C ,Fe0.70Ni0.30 films on W(110) break into micron-sized bcc and fcc domains with compositions in agreement with the bulk Fe-Ni phase diagram. Ni is found to be the diffusing species in forming the chemical heterogeneity. The experimentally determined energy barrier of 1.59 ±0.09 eV is identified as the vacancy formation energy via density functional theory calculations. Thus, the principal role of the surface in the phase separation process is attributed to vacancy creation without interstitials.

  5. Magnetic properties and atomic ordering of BCC Heusler alloy Fe2MnGa ribbons

    NASA Astrophysics Data System (ADS)

    Xin, Yuepeng; Ma, Yuexing; Luo, Hongzhi; Meng, Fanbin; Liu, Heyan

    2016-05-01

    The electronic structure, atomic disorder and magnetic properties of the Heusler alloy Fe2MnGa have been investigated experimentally and theoretically. BCC Fe2MnGa ribbon samples were prepared. Experimentally, a saturation magnetic moment (3.68 μB at 5 K) much larger than the theoretical value (2.04 μB) has been reported. First-principles calculations indicate that the difference is related to the Fe-Mn disorder between A, B sites, as can also be deduced from the XRD pattern. L21 type Fe2MnGa is a ferrimagnet with antiparallel Fe and Mn spin moments. However, when Fe-Mn disorder occurs, part of Mn moments will be parallel to Fe moments, and the Fe moments also clearly increase simultaneously. All this results in a total moment of 3.74 μB, close to the experimental value.

  6. Atomic-level interaction of an edge dislocation and localized obstacles in fcc and bcc metals.

    SciTech Connect

    Osetskiy, Yury N; Bacon, David J

    2004-01-01

    Interaction between a moving dislocation and localized obstacles determines microstructure-induced hardening. The mechanisms and parameters of such interactions are necessary inputs to large scale dislocation dynamics modelling. We have developed a model to investigate these characteristics at the atomic level for dislocation-obstacle interactions under both static (T=0K) and dynamic (T>0K) conditions. We present results on hardening due to pinning of edge dislocations at obstacles such as voids, coherent precipitates and stacking fault tetrahedra in bcc-iron and fcc-copper at temperatures from 0 to 600K. It is demonstrated that atomic-scale simulation is required to determine the effects of stress, strain rate and temperature and that such effects cannot always be rationalized within continuum theory.

  7. Moment Mapping of bcc Fe1-xMnx Alloy Films on MgO(001)

    NASA Astrophysics Data System (ADS)

    Idzerda, Yves; Bhatkar, Harsh; Arenholz, Elke

    2015-03-01

    The magnetic moments of ~ 20 nm single crystal films of compositionally graded Fe1-xMnx films (0.1 <= x <= 0.2) grown on MgO(001) are determined by spatially resolved moment mapping using X-ray absorption spectroscopy (XAS) and magnetic circular dichroism (MCD). RHEED measurements confirmed that the growth of Fe1-xMnx films remained epitaxial and in the bcc phase up to x =0.35 but, like Fe growth, is rotated 45 degree with respect to the MgO(001) surface net. This is beyond the bulk bcc stability limit of x =0.12. Both magnetometry and XMCD measurements show that the net magnetic moment of these alloy films behave similarly to the bulk behavior, with a gradual moment reduction at low Mn concentrations followed by an abrupt departure from the Slater-Pauling curve and disappearance of the moment at x =0.15. By generating a compositional variation around this critical concentration and subsequently using spatially resolved mapping of the X-ray absorption at the Fe and Mn L3-edge using linear and circular polarized soft X-rays, the local composition and elemental moments can be simultaneously mapped across the surface of the sample. The Fe moment is found to gradually reduce with increasing Mn content with a very abrupt decline at x =0.15. Surprisingly, the Mn moment shows a very small net moment (<0.1 muB) at all compositions, suggesting a complicated Mn spin structure.

  8. Localization of telomerase hTERT protein in frozen sections of basal cell carcinomas (BCC) and tumor margin tissues.

    PubMed

    Fabricius, Eva-Maria; Kruse-Boitschenko, Ute; Khoury, Reem; Wildner, Gustav-Paul; Raguse, Jan-Dirk; Klein, Martin; Hoffmeister, Bodo

    2009-12-01

    In previous studies we demonstrated telomerase activity in frozen tissues from BCC and their tumor-free margins by the PCR ELISA. In this study we examined in the same frozen sections immunohistochemical presence of hTERT in the nucleus. After fixation in acetone and methanol followed by steaming we used for visualization the antigen-antibody reactions by APAAP. This was the best method of preparation of the frozen sections in our preliminary hTERT-study with squamous cell carcinomas. This study was supplemented with antibodies against Ki-67, nucleolin, common leucocyte antigen CD45 and mutated p53. The immunoreactive scores were determined and included the comparison with telomerase activity. The investigation of hTERT expression was performed in the tissues of 41 patients with BCC and control tissues of 14 patients without tumor. Eleven commercial antibodies were used for a nuclear staining of hTERT expression. With the anti-hTERT antibodies we looked for both satisfactory distribution and intensity of immunohistochemical labeling in the carcinomas and in the squamous epithelia of the tumor centers, of the tumor-free margins and of the control tissues. The hTERT expression in the BCC was distributed heterogeneously. The score values established by the anti-hTERT antibodies used were variably or significantly increased. In the stroma they tended to be negative, so we disregarded stroma hTERT. Proof of hTERT did not differ uniformly from telomerase activity. We compared the high with the lower median hTERT values in the Kaplan-Meier curve. Patients with lower hTERT scores in the center or tumor margin as shown by some of the antibodies suffered relapse earlier. Finally, we compared the hTERT expression in BCC tissues with the hTERT scores in HNSCC tissues from our previous study. Only one anti-hTERT antibody (our Ab 7) yielded significantly higher scores in BCC than in HNSCC.

  9. Lattice-induced nonadiabatic frequency shifts in optical lattice clocks

    SciTech Connect

    Beloy, K.

    2010-09-15

    We consider the frequency shift in optical lattice clocks which arises from the coupling of the electronic motion to the atomic motion within the lattice. For the simplest of three-dimensional lattice geometries this coupling is shown to affect only clocks based on blue-detuned lattices. We have estimated the size of this shift for the prospective strontium lattice clock operating at the 390-nm blue-detuned magic wavelength. The resulting fractional frequency shift is found to be on the order of 10{sup -18} and is largely overshadowed by the electric quadrupole shift. For lattice clocks based on more complex geometries or other atomic systems, this shift could potentially be a limiting factor in clock accuracy.

  10. Lattice topology dictates photon statistics.

    PubMed

    Kondakci, H Esat; Abouraddy, Ayman F; Saleh, Bahaa E A

    2017-08-21

    Propagation of coherent light through a disordered network is accompanied by randomization and possible conversion into thermal light. Here, we show that network topology plays a decisive role in determining the statistics of the emerging field if the underlying lattice is endowed with chiral symmetry. In such lattices, eigenmode pairs come in skew-symmetric pairs with oppositely signed eigenvalues. By examining one-dimensional arrays of randomly coupled waveguides arranged on linear and ring topologies, we are led to a remarkable prediction: the field circularity and the photon statistics in ring lattices are dictated by its parity while the same quantities are insensitive to the parity of a linear lattice. For a ring lattice, adding or subtracting a single lattice site can switch the photon statistics from super-thermal to sub-thermal, or vice versa. This behavior is understood by examining the real and imaginary fields on a lattice exhibiting chiral symmetry, which form two strands that interleave along the lattice sites. These strands can be fully braided around an even-sited ring lattice thereby producing super-thermal photon statistics, while an odd-sited lattice is incommensurate with such an arrangement and the statistics become sub-thermal.

  11. Single identities for lattice theory and for weakly associative lattices

    SciTech Connect

    McCune, W.; Padmanabhan, R.

    1995-03-13

    We present a single identity for the variety of all lattices that is much simpler than those previously known to us. We also show that the variety of weakly associative lattices is one-based, and we present a generalized one-based theorem for subvarieties of weakly associative lattices that can be defined with absorption laws. The automated theorem-proving program OTTER was used in substantial way to obtain the results.

  12. Dynamics of lattice kinks

    NASA Astrophysics Data System (ADS)

    Kevrekidis, P. G.; Weinstein, M. I.

    2000-08-01

    We consider a class of Hamiltonian nonlinear wave equations governing a field defined on a spatially discrete one-dimensional lattice, with discreteness parameter, d= h-1, where h>0 is the lattice spacing. The specific cases we consider in detail are the discrete sine-Gordon (SG) and discrete φ4 models. For finite d and in the continuum limit ( d→∞) these equations have static kink-like (heteroclinic) states which are stable. In contrast to the continuum case, due to the breaking of Lorentz invariance, discrete kinks cannot be “Lorentz boosted” to obtain traveling discrete kinks. Peyrard and Kruskal pioneered the study of how a kink, initially propagating in the lattice, dynamically adjusts in the absence of an available family of traveling kinks. We study in detail the final stages of the discrete kink’s evolution during which it is pinned to a specified lattice site (equilibrium position in the Peierls-Nabarro barrier). We find the following: For d sufficiently large (sufficiently small lattice spacing), the state of the system approaches an asymptotically stable ground state static kink (centered between lattice sites). For d sufficiently small, d< d*, the static kink bifurcates to one or more time-periodic states. For the discrete φ4 we have wobbling kinks which have the same spatial symmetry as the static kink as well as “ g-wobblers” and “ e-wobblers”, which have different spatial symmetry. In the discrete SG case, the “ e-wobbler” has the spatial symmetry of the kink, whereas the “ g-wobbler” has the opposite one. These time-periodic states may be regarded as a class of discrete breather/topological defect states; they are spatially localized and time-periodic oscillations mounted on a static kink background. The large time limit of solutions with initial data near a kink is marked by damped oscillation about one of these two types of asymptotic states. In case (1) we compute the characteristics of the damped oscillation

  13. Thermodynamics of the Relationship between Lattice Energy and Lattice Enthalpy

    NASA Astrophysics Data System (ADS)

    Jenkins, H. Donald B.

    2005-06-01

    Incorporation of lattice potential energy, U POT , within a Born Fajans Haber thermochemical cycle based on enthalpy changes necessitates correction of the energy of the lattice to an enthalpy term, Δ H L . For a lattice containing p i ions of type i in the formula unit, the lattice enthalpy is given by Δ H L = U POT + ∑ s i [( c i /2) - 2] RT where R is the gas constant (= 8.314 J K -1 mol -1 ), T is the absolute temperature, and c i is defined according as to whether the ion i is monatomic ( c i = 3), linear polyatomic ( c i = 5), or polyatomic ( c i = 6), respectively.

  14. Lattice QCD for nuclei

    NASA Astrophysics Data System (ADS)

    Beane, Silas

    2016-09-01

    Over the last several decades, theoretical nuclear physics has been evolving from a very-successful phenomenology of the properties of nuclei, to a first-principles derivation of the properties of visible matter in the Universe from the known underlying theories of Quantum Chromodynamics (QCD) and Electrodynamics. Many nuclear properties have now been calculated using lattice QCD, a method for treating QCD numerically with large computers. In this talk, some of the most recent results in this frontier area of nuclear theory will be reviewed.

  15. Thermodynamics of lattice OCD

    SciTech Connect

    Matsuoka, H.

    1985-01-01

    The thermodynamic consequences of QCD are explored in the framework of lattice gauge theory. Attention is focused upon the nature of the chiral symmetry restoration transition at finite temperature and at finite baryon density, and possible strategies for identifying relevant thermodynamic phases are discussed. Some numerical results are presented on the chiral symmetry restoration in the SU(2) gauge theory at high baryon density. The results suggest that with T approx. = 110 MeV there is a second order restoration transition at the critical baryon density n/sub B//sup c/ approx. = 0.62 fm/sup -3/.

  16. Lattice harmonics expansion revisited

    NASA Astrophysics Data System (ADS)

    Kontrym-Sznajd, G.; Holas, A.

    2017-04-01

    The main subject of the work is to provide the most effective way of determining the expansion of some quantities into orthogonal polynomials, when these quantities are known only along some limited number of sampling directions. By comparing the commonly used Houston method with the method based on the orthogonality relation, some relationships, which define the applicability and correctness of these methods, are demonstrated. They are verified for various sets of sampling directions applicable for expanding quantities having the full symmetry of the Brillouin zone of cubic and non-cubic lattices. All results clearly show that the Houston method is always better than the orthogonality-relation one. For the cubic symmetry we present a few sets of special directions (SDs) showing how their construction and, next, a proper application depend on the choice of various sets of lattice harmonics. SDs are important mainly for experimentalists who want to reconstruct anisotropic quantities from their measurements, performed at a limited number of sampling directions.

  17. Lattice Transparency of Graphene.

    PubMed

    Chae, Sieun; Jang, Seunghun; Choi, Won Jin; Kim, Youn Sang; Chang, Hyunju; Lee, Tae Il; Lee, Jeong-O

    2017-03-08

    Here, we demonstrated the transparency of graphene to the atomic arrangement of a substrate surface, i.e., the "lattice transparency" of graphene, by using hydrothermally grown ZnO nanorods as a model system. The growth behaviors of ZnO nanocrystals on graphene-coated and uncoated substrates with various crystal structures were investigated. The atomic arrangements of the nucleating ZnO nanocrystals exhibited a close match with those of the respective substrates despite the substrates being bound to the other side of the graphene. By using first-principles calculations based on density functional theory, we confirmed the energetic favorability of the nucleating phase following the atomic arrangement of the substrate even with the graphene layer present in between. In addition to transmitting information about the atomic lattice of the substrate, graphene also protected its surface. This dual role enabled the hydrothermal growth of ZnO nanorods on a Cu substrate, which otherwise dissolved in the reaction conditions when graphene was absent.

  18. Orthocomplemented complete lattices and graphs

    NASA Astrophysics Data System (ADS)

    Ollech, Astrid

    1995-08-01

    The problem I consider originates from Dörfler, who found a construction to assign an Orthocomplemented lattice H(G) to a graph G. By Dörfler it is known that for every finite Orthocomplemented lattice L there exists a graph G such that H(G)=L. Unfortunately, we can find more than one graph G with this property, i.e., orthocomplemented lattices which belong to different graphs can be isomorphic. I show some conditions under which two graphs have the same orthocomplemented lattice.

  19. Extreme lattices: symmetries and decorrelation

    NASA Astrophysics Data System (ADS)

    Andreanov, A.; Scardicchio, A.; Torquato, S.

    2016-11-01

    We study statistical and structural properties of extreme lattices, which are the local minima in the density landscape of lattice sphere packings in d-dimensional Euclidean space {{{R}}d} . Specifically, we ascertain statistics of the densities and kissing numbers as well as the numbers of distinct symmetries of the packings for dimensions 8 through 13 using the stochastic Voronoi algorithm. The extreme lattices in a fixed dimension of space d (d≥slant 8 ) are dominated by typical lattices that have similar packing properties, such as packing densities and kissing numbers, while the best and the worst packers are in the long tails of the distribution of the extreme lattices. We also study the validity of the recently proposed decorrelation principle, which has important implications for sphere packings in general. The degree to which extreme-lattice packings decorrelate as well as how decorrelation is related to the packing density and symmetry of the lattices as the space dimension increases is also investigated. We find that the extreme lattices decorrelate with increasing dimension, while the least symmetric lattices decorrelate faster.

  20. More on lattice BRST invariance

    NASA Astrophysics Data System (ADS)

    Bock, Wolfgang; Golterman, Maarten F. L.; Shamir, Yigal

    1998-11-01

    In the gauge-fixing approach to (chiral) lattice gauge theories, the action in the U(1) case implicitly contains a free ghost term, in accordance with the continuum Abelian theory. On the lattice there is no BRST symmetry and, without fermions, the partition function is strictly positive. Recently, Neuberger pointed out, Phys. Rev. D 58, 057502 (1998), that a different choice of the ghost term would lead to a BRST-invariant lattice model, which is ill defined nonperturbatively. We show that such a lattice model is inconsistent already in perturbation theory, and clearly different from the gauge-fixing approach.

  1. Nuclear Physics and Lattice QCD

    SciTech Connect

    Beane, Silas

    2003-11-01

    Impressive progress is currently being made in computing properties and interac- tions of the low-lying hadrons using lattice QCD. However, cost limitations will, for the foreseeable future, necessitate the use of quark masses, Mq, that are signif- icantly larger than those of nature, lattice spacings, a, that are not significantly smaller than the physical scale of interest, and lattice sizes, L, that are not sig- nificantly larger than the physical scale of interest. Extrapolations in the quark masses, lattice spacing and lattice volume are therefore required. The hierarchy of mass scales is: L 1 j Mq j â ºC j a 1 . The appropriate EFT for incorporating the light quark masses, the finite lattice spacing and the lattice size into hadronic observables is C-PT, which provides systematic expansions in the small parame- ters e m L, 1/ Lâ ºC, p/â ºC, Mq/â ºC and aâ ºC . The lattice introduces other unphysical scales as well. Lattice QCD quarks will increasingly be artificially separated

  2. Two Nucleons on a Lattice

    SciTech Connect

    S.R. Beane; P.F.Bedaque; A. Parreno; M.J. Savage

    2004-04-01

    The two-nucleon sector is near an infrared fixed point of QCD and as a result the S-wave scattering lengths are unnaturally large compared to the effective ranges and shape parameters. It is usually assumed that a lattice QCD simulation of the two-nucleon sector will require a lattice that is much larger than the scattering lengths in order to extract quantitative information. In this paper we point out that this does not have to be the case: lattice QCD simulations on much smaller lattices will produce rigorous results for nuclear physics.

  3. Investigating the magnetovolume effect in isotropic body-centered-cubic iron using spin-lattice dynamics simulations

    SciTech Connect

    Chui, C. P.; Zhou, Yan

    2014-08-15

    The understanding of the magnetovolume effect lacks explicit consideration of spin-lattice coupling at the atomic level, despite abundant theoretical and experimental studies throughout the years. This research gap is filled by the recently developed spin-lattice dynamics technique implemented in this study, which investigates the magnetovolume effect of isotropic body-centered-cubic (BCC) iron, a topic that has previously been subject to macroscopic analysis only. This approach demonstrates the magnetic anomaly followed by the volumetric changes associated with the effect, each characterized by the corresponding field-induced inflection temperature. The temperature of the heat capacity peaks is useful in determining the temperature for retarding the atomic volume increase. Moreover, this work shows the correlation between the effects of temperature and field strength in determining the equilibrium atomic volume of a ferromagnetic material under a magnetic field.

  4. Elimination of spurious lattice fermion solutions and noncompact lattice QCD

    SciTech Connect

    Lee, T.D.

    1997-09-22

    It is well known that the Dirac equation on a discrete hyper-cubic lattice in D dimension has 2{sup D} degenerate solutions. The usual method of removing these spurious solutions encounters difficulties with chiral symmetry when the lattice spacing l {ne} 0, as exemplified by the persistent problem of the pion mass. On the other hand, we recall that in any crystal in nature, all the electrons do move in a lattice and satisfy the Dirac equation; yet there is not a single physical result that has ever been entangled with a spurious fermion solution. Therefore it should not be difficult to eliminate these unphysical elements. On a discrete lattice, particle hop from point to point, whereas in a real crystal the lattice structure in embedded in a continuum and electrons move continuously from lattice cell to lattice cell. In a discrete system, the lattice functions are defined only on individual points (or links as in the case of gauge fields). However, in a crystal the electron state vector is represented by the Bloch wave functions which are continuous functions in {rvec {gamma}}, and herein lies one of the essential differences.

  5. Optical Abelian lattice gauge theories

    SciTech Connect

    Tagliacozzo, L.; Celi, A.; Zamora, A.; Lewenstein, M.

    2013-03-15

    We discuss a general framework for the realization of a family of Abelian lattice gauge theories, i.e., link models or gauge magnets, in optical lattices. We analyze the properties of these models that make them suitable for quantum simulations. Within this class, we study in detail the phases of a U(1)-invariant lattice gauge theory in 2+1 dimensions, originally proposed by P. Orland. By using exact diagonalization, we extract the low-energy states for small lattices, up to 4 Multiplication-Sign 4. We confirm that the model has two phases, with the confined entangled one characterized by strings wrapping around the whole lattice. We explain how to study larger lattices by using either tensor network techniques or digital quantum simulations with Rydberg atoms loaded in optical lattices, where we discuss in detail a protocol for the preparation of the ground-state. We propose two key experimental tests that can be used as smoking gun of the proper implementation of a gauge theory in optical lattices. These tests consist in verifying the absence of spontaneous (gauge) symmetry breaking of the ground-state and the presence of charge confinement. We also comment on the relation between standard compact U(1) lattice gauge theory and the model considered in this paper. - Highlights: Black-Right-Pointing-Pointer We study the quantum simulation of dynamical gauge theories in optical lattices. Black-Right-Pointing-Pointer We focus on digital simulation of abelian lattice gauge theory. Black-Right-Pointing-Pointer We rediscover and discuss the puzzling phase diagram of gauge magnets. Black-Right-Pointing-Pointer We detail the protocol for time evolution and ground-state preparation in any phase. Black-Right-Pointing-Pointer We provide two experimental tests to validate gauge theory quantum simulators.

  6. Former-Student Perceptions of B.C.C. and Their Post B.C.C. Academic and Employment Experiences--A Follow-up Study for the Years of 1975-76. Research Report: 1-78.

    ERIC Educational Resources Information Center

    Bronx Community Coll., NY.

    As part of an on-going study, all 1,818 graduates and 6,847 non-graduates who left Bronx Community College (BCC) in 1975-76 were surveyed by mail, with a return of 1,681 responses representing 52.4% of graduate and 20% of the non-graduate sample. Findings included the following: (1) 63% of graduates and 48% of non-graduates responding continued…

  7. First principles based multiscale modeling of single crystal plasticity: Application to BCC tantalum

    NASA Astrophysics Data System (ADS)

    Wang, Guofeng

    We developed and exercised a first principles based multiscale approach to model plastic behaviors of high-purity Tantalum (Ta) single crystals. Our approach consists of three hierarchical parts. (1) Derive the atomistic interaction potential for Ta based on the data obtained from the accurate quantum mechanics (QM) calculation. (2) Predict the properties and behaviors of dislocations in the atomistic simulations using the derived first principles potential. (3) Describe the material plasticity in the kink pair mechanism based mesoscopic model with the input of the predicted atomistic level dislocation properties. In this thesis work, we accurately determined the core structure, core energy, Peierls energy barriers, Peierls stresses, kink formation energy, kink migration energy, and kink structures for 1/2a<111> screw dislocations in bcc Ta using molecular dynamics (MD) simulations. The major results are as follows. (1) The core energy is 1.400 eV/b for the asymmetric screw dislocation cores, which spread out along three <112> directions in the {110} planes. (2) The dislocation core is formed by the 12 atoms with higher strain energies around the dislocation center. (3) The twinning and anti-twinning asymmetry of shears is the main cause for the non-Schmid behavior of screw dislocations in bcc metals. (4) For 1/2a<111> screw dislocations in Ta, the Peierls energy barrier is 0.032 eV/b under twinning shears and 0.068 eV/b under anti-twinning shears. The Peierls stress is 790 MPa under twinning shears and 1430 MPa under anti-twinning shears. (5) The minimal energy cost to form a kink pair along the dislocation is 0.794 eV. (6) The effective kink pair nucleation length is 16 b. (7) There are two kinds of elementary kinks and six kinds of composite kinks. We further input these atomistic simulation results to a mesoscopic plasticity model [A. M. Cuitino, L. Stainer and M. Ortiz, Journal of the Mechanics and Physics of Solids, 2001]. The resulting atomistically informed

  8. Large scale ab initio calculations of extended defects in materials: screw dislocations in bcc metals

    NASA Astrophysics Data System (ADS)

    Dézerald, Lucile; Ventelon, Lisa; Willaime, François; Clouet, Emmanuel; Rodney, David

    2014-06-01

    Ab initio methods, based on the Density Functional Theory (DFT), have been extensively used to study point defects and defect clusters in materials. Present HPC resources and DFT codes now allow similar investigations to be performed on dislocations. The study of these extended defects requires not only larger simulation cells but also a higher accuracy because the energy differences, which are involved, are rather small, typically 50-to-100 meV for supercells containing 50-to-500 atoms. The topology of the Peierls potential of screw dislocations with 1/2 <111>Burgers vector, i.e. the 2D energy landscape seen by these dislocations, is being completely revisited by DFT calculations. From results obtained in all body-centered cubic (bcc) transition metals, except Cr (V, Nb, Ta, Mo, W and Fe), using the PWSCF code, which is part of the Quantum-Espresso package, we concluded that the 2D Peierls potentials have two common features: the single-hump shape of the barrier between two minima of the potential, and the presence of a maximum - and not a minimum as predicted by most empirical potentials - around the split core. In iron, the topology of the Peierls potential is reversed compared to the classical sinusoidal picture: the location of the saddle point and the maximum are indeed inverted with unexpected flat regions. The first results obtained within the framework of the PRACE project, DIMAIM (DIslocations in Metals using Ab Initio Methods), started at the beginning of 2013, will also be presented. In particular, in order to address the twinning-antitwinning asymmetry often observed in bcc metals and regarded as the major contribution to the breakdown of Schmid's law, we have determined the crystal orientation dependence of the Peierls stress, i.e. the critical stress required for dislocation motion. These computationally most expensive simulations were performed on the PRACE Tier-0 system at Barcelona Supercomputing Center (Marenostrum III). The scalability results

  9. Statistical theory of diffusion in concentrated bcc and fcc alloys and concentration dependencies of diffusion coefficients in bcc alloys FeCu, FeMn, FeNi, and FeCr

    SciTech Connect

    Vaks, V. G.; Khromov, K. Yu. Pankratov, I. R.; Popov, V. V.

    2016-07-15

    The statistical theory of diffusion in concentrated bcc and fcc alloys with arbitrary pairwise interatomic interactions based on the master equation approach is developed. Vacancy–atom correlations are described using both the second-shell-jump and the nearest-neighbor-jump approximations which are shown to be usually sufficiently accurate. General expressions for Onsager coefficients in terms of microscopic interatomic interactions and some statistical averages are given. Both the analytical kinetic mean-field and the Monte Carlo methods for finding these averages are described. The theory developed is used to describe sharp concentration dependencies of diffusion coefficients in several iron-based alloy systems. For the bcc alloys FeCu, FeMn, and FeNi, we predict the notable increase of the iron self-diffusion coefficient with solute concentration c, up to several times, even though values of c possible for these alloys do not exceed some percent. For the bcc alloys FeCr at high temperatures T ≳ 1400 K, we show that the very strong and peculiar concentration dependencies of both tracer and chemical diffusion coefficients observed in these alloys can be naturally explained by the theory, without invoking exotic models discussed earlier.

  10. Dynamics of Lattice Kinks

    NASA Astrophysics Data System (ADS)

    Kevrekidis, P. G.; Weinstein, M. I.

    2000-03-01

    In this paper we consider two models of soliton dynamics (the sine Gordon and the \\phi^4 equations) on a 1-dimensional lattice. We are interested in particular in the behavior of their kink-like solutions inside the Peierls- Nabarro barrier and its variation as a function of the discreteness parameter. We find explicitly the asymptotic states of the system for any value of the discreteness parameter and the rates of decay of the initial data to these asymptotic states. We show that genuinely periodic solutions are possible and we identify the regimes of the discreteness parameter for which they are expected to persist. We also prove that quasiperiodic solutions cannot exist. Our results are verified by numerical simulations.

  11. Spin-lattice coupling in molecular dynamics simulation of ferromagnetic iron

    NASA Astrophysics Data System (ADS)

    Ma, Pui Wai

    A model for magnetic iron where atoms are treated as classical particles with intrinsic spins is developed. The atoms interact via scalar many-body forces as well as via spin-dependent forces of the Heisenberg form. The coupling between the lattice and spin degrees of freedom is described by a coordinate-dependent exchange function, where the spin-orientation-dependent forces are proportional to the gradient of this function. A spin-lattice dynamics simulation approach extends the existing magnetic-potential treatment to the case where the strength of interaction between the atoms depends on the relative non-collinear orientations of their spins. An algorithm for integrating the linked spin-coordinate equations of motion is based on the 2nd order Suzuki-Trotter decomposition for the non-commuting evolution operators for both coordinates and spins. The notions of the spin thermostat and the spin temperature are introduced through the combined application of the Langevin spin dynamics and the fluctuation-dissipation theorem. We investigate several applications of the method, performing microcanonical ensemble simulations of adiabatic spin-lattice relaxation of periodic arrays of 180° domain-walls, and isothermal-isobaric ensemble dynamical simulations of thermally equilibrated homogeneous systems at various temperatures. The isothermal magnetization curve evaluated using the spin-lattice dynamics algorithm is well described by the mean-field approximation and agrees satisfactorily with the experimental data for a broad range of temperatures. The equilibrium time-correlation functions of spin orientations exhibit the presence of short-range magnetic order above the Curie temperature. Short-range order spin fluctuations are shown to contribute to the thermal expansion of the material. Simulations on thermal expansion and elastic response of bulk bcc iron, and magnetization in bcc iron thin films are also performed and the results discussed. Our analysis illustrates

  12. Computation of the lattice Green function for a dislocation

    NASA Astrophysics Data System (ADS)

    Tan, Anne Marie Z.; Trinkle, Dallas R.

    2016-08-01

    Modeling isolated dislocations is challenging due to their long-ranged strain fields. Flexible boundary condition methods capture the correct long-range strain field of a defect by coupling the defect core to an infinite harmonic bulk through the lattice Green function (LGF). To improve the accuracy and efficiency of flexible boundary condition methods, we develop a numerical method to compute the LGF specifically for a dislocation geometry; in contrast to previous methods, where the LGF was computed for the perfect bulk as an approximation for the dislocation. Our approach directly accounts for the topology of a dislocation, and the errors in the LGF computation converge rapidly for edge dislocations in a simple cubic model system as well as in BCC Fe with an empirical potential. When used within the flexible boundary condition approach, the dislocation LGF relaxes dislocation core geometries in fewer iterations than when the perfect bulk LGF is used as an approximation for the dislocation, making a flexible boundary condition approach more efficient.

  13. The EMMA Main Ring Lattice.

    SciTech Connect

    Berg,J.S.

    2008-02-21

    I give a brief introduction to the purpose and goals of the EMMA experiment and describe how they will impact the design of the main EMMA ring. I then describe the mathematical model that is used to describe the EMMA lattice. Finally, I show how the different lattice configurations were obtained and list their parameters.

  14. Buckling modes in pantographic lattices

    NASA Astrophysics Data System (ADS)

    Giorgio, Ivan; Della Corte, Alessandro; dell'Isola, Francesco; Steigmann, David J.

    2016-07-01

    We study buckling patterns in pantographic sheets, regarded as two-dimensional continua consisting of lattices of continuously distributed fibers. The fibers are modeled as beams endowed with elastic resistance to stretching, shearing, bending and twist. Included in the theory is a non-standard elasticity due to geodesic bending of the fibers relative to the lattice surface. xml:lang="fr"

  15. Introduction to lattice gauge theory

    NASA Astrophysics Data System (ADS)

    Gupta, R.

    The lattice formulation of Quantum Field Theory (QFT) can be exploited in many ways. We can derive the lattice Feynman rules and carry out weak coupling perturbation expansions. The lattice then serves as a manifestly gauge invariant regularization scheme, albeit one that is more complicated than standard continuum schemes. Strong coupling expansions: these give us useful qualitative information, but unfortunately no hard numbers. The lattice theory is amenable to numerical simulations by which one calculates the long distance properties of a strongly interacting theory from first principles. The observables are measured as a function of the bare coupling g and a gauge invariant cut-off approx. = 1/alpha, where alpha is the lattice spacing. The continuum (physical) behavior is recovered in the limit alpha yields 0, at which point the lattice artifacts go to zero. This is the more powerful use of lattice formulation, so in these lectures the author focuses on setting up the theory for the purpose of numerical simulations to get hard numbers. The numerical techniques used in Lattice Gauge Theories have their roots in statistical mechanics, so it is important to develop an intuition for the interconnection between quantum mechanics and statistical mechanics.

  16. Branes and integrable lattice models

    NASA Astrophysics Data System (ADS)

    Yagi, Junya

    2017-01-01

    This is a brief review of my work on the correspondence between four-dimensional 𝒩 = 1 supersymmetric field theories realized by brane tilings and two-dimensional integrable lattice models. I explain how to construct integrable lattice models from extended operators in partially topological quantum field theories, and elucidate the correspondence as an application of this construction.

  17. Recent progress in lattice QCD

    SciTech Connect

    Sharpe, S.R.

    1992-12-01

    A brief overview of the status of lattice QCD is given, with emphasis on topics relevant to phenomenology. The calculation of the light quark spectrum, the lattice prediction of {alpha} {sub {ovr MS}} (M {sub Z}), and the calculation of f{sub B} are discussed. 3 figs., 3 tabs., 40 refs.

  18. Study of lattice defect vibration

    NASA Technical Reports Server (NTRS)

    Elliott, R. J.

    1969-01-01

    Report on the vibrations of defects in crystals relates how defects, well localized in a crystal but interacting strongly with the other atoms, change the properties of a perfect crystal. The methods used to solve defect problems relate the properties of an imperfect lattice to the properties of a perfect lattice.

  19. A unified relation for the solid-liquid interface free energy of pure FCC, BCC, and HCP metals.

    PubMed

    Wilson, S R; Mendelev, M I

    2016-04-14

    We study correlations between the solid-liquid interface (SLI) free energy and bulk material properties (melting temperature, latent heat, and liquid structure) through the determination of SLI free energies for bcc and hcp metals from molecular dynamics (MD) simulation. Values obtained for the bcc metals in this study were compared to values predicted by the Turnbull, Laird, and Ewing relations on the basis of previously published MD simulation data. We found that of these three empirical relations, the Ewing relation better describes the MD simulation data. Moreover, whereas the original Ewing relation contains two constants for a particular crystal structure, we found that the first coefficient in the Ewing relation does not depend on crystal structure, taking a common value for all three phases, at least for the class of the systems described by embedded-atom method potentials (which are considered to provide a reasonable approximation for metals).

  20. A unified relation for the solid-liquid interface free energy of pure FCC, BCC, and HCP metals

    NASA Astrophysics Data System (ADS)

    Wilson, S. R.; Mendelev, M. I.

    2016-04-01

    We study correlations between the solid-liquid interface (SLI) free energy and bulk material properties (melting temperature, latent heat, and liquid structure) through the determination of SLI free energies for bcc and hcp metals from molecular dynamics (MD) simulation. Values obtained for the bcc metals in this study were compared to values predicted by the Turnbull, Laird, and Ewing relations on the basis of previously published MD simulation data. We found that of these three empirical relations, the Ewing relation better describes the MD simulation data. Moreover, whereas the original Ewing relation contains two constants for a particular crystal structure, we found that the first coefficient in the Ewing relation does not depend on crystal structure, taking a common value for all three phases, at least for the class of the systems described by embedded-atom method potentials (which are considered to provide a reasonable approximation for metals).

  1. Impact of Intragranular Substructure Parameters on the Forming Limit Diagrams of Single-Phase B.C.C. Steels

    PubMed Central

    Franz, Gérald; Abed-Meraim, Farid; Berveiller, Marcel

    2013-01-01

    An advanced elastic-plastic self-consistent polycrystalline model, accounting for intragranular microstructure development and evolution, is coupled with a bifurcation-based localization criterion and applied to the numerical investigation of the impact of microstructural patterns on ductility of single-phase steels. The proposed multiscale model, taking into account essential microstructural aspects, such as initial and induced textures, dislocation densities, and softening mechanisms, allows us to emphasize the relationship between intragranular microstructure of B.C.C. steels and their ductility. A qualitative study in terms of forming limit diagrams for various dislocation networks, during monotonic loading tests, is conducted in order to analyze the impact of intragranular substructure parameters on the formability of single-phase B.C.C. steels. PMID:28788385

  2. A Ti-V-based bcc phase alloy for use as metal hydride electrode with high discharge capacity.

    PubMed

    Yu, X B; Wu, Z; Xia, B J; Xu, N X

    2004-07-08

    The electrochemical characteristics of single bcc phase Ti-30V-15Cr-15Mn alloy were investigated. It was demonstrated that the single bcc phase alloy has high electrochemical discharge performance at high temperature. Its discharge capacity is closely related with temperature and discharge current. The first discharge capacities of 580-814 mAh g(-1) of the alloy powder were obtained at discharge current of 45-10 mA g(-1) in 6 M KOH solution at 353 K. Although the electrochemical cycle life of the alloy is unsatisfactory at present, it opens up prospects for developing a new hydrogen storage alloy with high hydrogen capacity for use as high performance metal hydride electrodes in rechargeable Ni-MH battery.

  3. Surface structure and electrochemical characteristics of Ti-V-Cr bcc-type solid solution alloys sintered with Ni

    SciTech Connect

    Tsuji, Yoichiro; Yamamoto, Osamu; Matsuda, Hiromu; Toyoguchi, Yoshinori

    2000-07-01

    Ti-V-Cr bcc-type solid solution alloys can absorb a large amount of hydrogen and be applied to active materials of the negative electrode in Ni-MH batteries. However, because of the insolubility of Ni into these alloys, the electrochemical characteristics like discharge capacity and cycle life were poor. In order to increase the discharge capacity of hydrogen absorbing alloy electrodes, Ti-V-Cr bcc-type alloy powders were sintered with Ni in order to form Ni contained surface layer on the alloy surface. As sintering temperature rose up, the surface composition changed from TiNi to Ti{sub 2}Ni. TiNi surface layer showed better electrochemical characteristics. For the Ni adding method, Ni electroless plating was preferred because of good adhesion. As a result of optimized conditions, a discharge capacity of 570 mAh/g and an improvement of cycle life were achieved.

  4. The fcc-bcc Bain path in In-Sn and related alloys at ambient and high pressure.

    PubMed

    Degtyareva, Valentina F

    2009-03-04

    Experimental high-pressure structural studies on an In-Sn alloy containing 8 at.% Sn reveal an isostructural transition of a face-centered tetragonal phase at pressures above 15 GPa with a switch of the axial ratio from c/a>1 to c/a<1. Such tetragonal phases in binary alloys based on In and Sn are analyzed in relation to the Bain path, i.e. a transformation between a face-centered cubic (fcc) and a body-centered cubic (bcc) structure. Variation of the axial ratio c/a in these phases correlates with the average number of valence electrons per atom in an alloy. A common Bain path from fcc to bcc is discussed within a nearly-free-electron model of Brillouin-zone-Fermi-sphere interactions.

  5. A systematic study on the interfacial energy of O-line interfaces in fcc/bcc systems

    NASA Astrophysics Data System (ADS)

    Dai, Fuzhi; Zhang, Wenzheng

    2013-10-01

    Habit planes between face-centered cubic (fcc)/body-centered cubic (bcc) phases usually exhibit irrational orientations, which often agree with the O-line criterion. Previously, energy calculation was made to test whether the habit planes were energetically favorable, but the values of the energy were found very sensitive to the initial atomic configuration in an irrationally orientated interface. In this paper, under the O-line condition, simple selection criteria are proposed to define and remove interfacial interstitials and vacancies in the initial atomic configuration. The criteria are proved to be effective in obtaining robust energy results. Interfacial energies of two types of O-line interfaces in fcc/bcc systems are calculated following the criteria. The observed transformation crystallography of precipitates in Ni-Cr and Cu-Cr systems can be explained consistently as the irrational habit plane in each system is associated with the lowest energy O-line interface.

  6. Large-scale Molecular Dynamics Simulations of Shock-induced Plasticity and Twinning in bcc Nb and Ta

    NASA Astrophysics Data System (ADS)

    Germann, Timothy; Zhang, Ruifeng; Ravelo, Ramon

    2013-06-01

    Large-scale classical molecular dynamics (MD) simulations are used to investigate dislocation slip and twinning activity in bcc metals under shock compression. We will discuss both the orientation-dependent response of Nb and Ta single crystals, as well as the more complex response of nanocrystalline samples. Of particular importance as MD simulations are becoming applied to model more complex materials, we will discuss issues related to the interatomic potential description and the analysis of the deformation response. Embedded atom method (EAM) potentials for shock compression studies must properly describe the energy landscape under the pressure range of interest; and an orientation imaging map technique is described for following the plastic response of fcc and bcc metals.

  7. Effect of non-glide components of the stress tensor on deformation behavior of bcc transition metals

    SciTech Connect

    Ito, K.; Vitek, V.

    1999-07-01

    In this paper the authors demonstrate by atomic computer simulation that the non-Schmid slip behavior in bcc metals is a direct consequence of the non-planar core structure of 1/2<111> screw dislocations and their response to the applied stress tensor. The analysis has been carried out in detail for tantalum using the Finnis-Sinclair type central force many-body potentials. Two distinct non-Schmid effects have been discerned. The first is twinning-antitwinning slip asymmetry on {l{underscore}brace}112{r{underscore}brace} planes. This is an intrinsic property of the bcc structure and depends on the sense of the applied glide stress. The second non-Schmid effect is extrinsic and is controlled by the non-glide shear stresses perpendicular to the total Burgers vector on {l{underscore}brace}110{r{underscore}brace} planes into which the stress-free core of screw dislocations spread.

  8. Anisotropic lattice models of electrolytes

    NASA Astrophysics Data System (ADS)

    Kobelev, Vladimir; Kolomeisky, Anatoly B.

    2002-11-01

    Systems of charged particles on anisotropic three-dimensional lattices are investigated theoretically using Debye-Huckel theory. It is found that the thermodynamics of these systems strongly depends on the degree of anisotropy. For weakly anisotropic simple cubic lattices, the results indicate the existence of order-disorder phase transitions and a tricritical point, while the possibility of low-density gas-liquid coexistence is suppressed. For strongly anisotropic lattices this picture changes dramatically: The low-density gas-liquid phase separation reappears and the phase diagram exhibits critical, tricritical, and triple points. For body-centered lattices, the low-density gas-liquid phase coexistence is suppressed for all degrees of anisotropy. These results show that the effect of anisotropy in lattice models of electrolytes amounts to reduction of spatial dimensionality.

  9. Shaping solitons by lattice defects

    SciTech Connect

    Dong Liangwei; Ye Fangwei

    2010-11-15

    We demonstrate the existence of shape-preserving self-localized nonlinear modes in a two-dimensional photonic lattice with a flat-topped defect that covers several lattice sites. The balance of diffraction, defocusing nonlinearity, and optical potential induced by lattices with various forms of defects results in novel families of solitons featuring salient properties. We show that the soliton shape can be controlled by varying the shape of lattice defects. The existence domains of fundamental and vortex solitons in the semi-infinite gap expand with the defect amplitude. Vortex solitons in the semi-infinite gap with rectangular intensity distributions will break into dipole solitons when the propagation constant exceeds a critical value. In the semi-infinite and first-finite gaps, we find that lattices with rectangular defects can support stable vortex solitons which exhibit noncanonical phase structure.

  10. Basal Cell Carcinoma on the Pubic Area: Report of a Case and Review of 19 Korean Cases of BCC from Non-sun-exposed Areas

    PubMed Central

    Park, Jin; Cho, Yong-Sun; Song, Ki-Hun; Lee, Jong-Sun; Kim, Han-Uk

    2011-01-01

    Basal cell carcinoma (BCC) is one of the most commonly diagnosed malignant skin tumors and develops characteristically on sun-exposed areas, such as the head and neck. Ultraviolet light exposure is an important etiologic factor in BCCs, and BCCs arising from non-sun- exposed areas are, therefore, very rare. In particular, the axilla, nipple, the genital and perianal areas are not likely to be exposed to ultraviolet light; thus, if BCC develops in these areas, other predisposing factors should be considered. Herein, we report a case of BCC arising on the pubic area in a 70-year-old man. We also performed a survey of the literature and discussed the 19 cases of BCC from non-sun-exposed areas reported to date in Korea. PMID:21909220

  11. Basal Cell Carcinoma on the Pubic Area: Report of a Case and Review of 19 Korean Cases of BCC from Non-sun-exposed Areas.

    PubMed

    Park, Jin; Cho, Yong-Sun; Song, Ki-Hun; Lee, Jong-Sun; Yun, Seok-Kweon; Kim, Han-Uk

    2011-08-01

    Basal cell carcinoma (BCC) is one of the most commonly diagnosed malignant skin tumors and develops characteristically on sun-exposed areas, such as the head and neck. Ultraviolet light exposure is an important etiologic factor in BCCs, and BCCs arising from non-sun- exposed areas are, therefore, very rare. In particular, the axilla, nipple, the genital and perianal areas are not likely to be exposed to ultraviolet light; thus, if BCC develops in these areas, other predisposing factors should be considered. Herein, we report a case of BCC arising on the pubic area in a 70-year-old man. We also performed a survey of the literature and discussed the 19 cases of BCC from non-sun-exposed areas reported to date in Korea.

  12. Production and characterization of multi-polysaccharide degrading enzymes from Aspergillus aculeatus BCC199 for saccharification of agricultural residues.

    PubMed

    Suwannarangsee, Surisa; Arnthong, Jantima; Eurwilaichitr, Lily; Champreda, Verawat

    2014-10-01

    Enzymatic hydrolysis of lignocellulosic biomass into fermentable sugars is a key step in the conversion of agricultural by-products to biofuels and value-added chemicals. Utilization of a robust microorganism for on-site production of biomass-degrading enzymes has gained increasing interest as an economical approach for supplying enzymes to biorefinery processes. In this study, production of multi-polysaccharide-degrading enzymes from Aspergillus aculeatus BCC199 by solid-state fermentation was improved through the statistical design approach. Among the operational parameters, yeast extract and soybean meal as well as the nonionic surfactant Tween 20 and initial pH were found as key parameters for maximizing production of cellulolytic and hemicellulolytic enzymes. Under the optimized condition, the production of FPase, endoglucanase, β-glucosidase, xylanase, and β-xylosidase was achieved at 23, 663, 88, 1,633, and 90 units/g of dry substrate, respectively. The multi-enzyme extract was highly efficient in the saccharification of alkaline-pretreated rice straw, corn cob, and corn stover. In comparison with commercial cellulase preparations, the BCC199 enzyme mixture was able to produce remarkable yields of glucose and xylose, as it contained higher relative activities of β-glucosidase and core hemicellulases (xylanase and β-xylosidase). These results suggested that the crude enzyme extract from A. aculeatus BCC199 possesses balanced cellulolytic and xylanolytic activities required for the efficient saccharification of lignocellulosic biomass feedstocks, and supplementation of external β-glucosidase or xylanase was dispensable. The work thus demonstrates the high potential of A. aculeatus BCC199 as a promising producer of lignocellulose-degrading enzymes for the biomass conversion industry.

  13. Adhesion at the interfaces between BCC metals and {alpha}-Al{sub 2}O{sub 3}

    SciTech Connect

    Melnikov, V. V. Kulkova, S. E.

    2012-02-15

    Ab initio calculations of the atomic and electronic structures of Me(111)/{alpha}-Al{sub 2}O{sub 3}(0001) interfaces (Me = V, Cr, Nb, Mo, Ta, W) in the framework of density functional theory are reported. The energies of separation of metal films from oxide surfaces have been calculated. The structural and electronic factors responsible for the strong adhesion of bcc metal films on the oxygen termination of the surface of aluminum oxide have been analyzed.

  14. Computational study of atomic mobility for the bcc phase of the U-Pu-Zr ternary system

    NASA Astrophysics Data System (ADS)

    Li, Weibang; Hu, Rui; Cui, Y.-W.; Zhong, Hong; Chang, Hui; Li, Jinshan; Zhou, Lian

    2010-12-01

    Experimental diffusion data in literature has been evaluated to assess the atomic mobility for the bcc phase in the U-Pu-Zr system by means of the DICTRA-type (Diffusion Controlled TRAnsformation) phenomenological treatment. The developed mobility database has been validated by comprehensive comparisons made between the experimental and calculated diffusion coefficients, as well as other interesting details resulting from interdiffusion, e.g. the concentration profile and the diffusion path of diffusion couples.

  15. Torrubiellone E, an antimalarial N-hydroxypyridone alkaloid from the spider pathogenic fungus Torrubiella longissima BCC 2022.

    PubMed

    Isaka, Masahiko; Haritakun, Rachada; Intereya, Kamolphan; Thanakitpipattana, Donnaya; Hywel-Jones, Nigel L

    2014-05-01

    Torrubiellone E (1), a new N-hydroxypyridone alkaloid, was isolated from the spider pathogenic fungus Torrubiella longissima BCC 2022, together with the known compounds, torrubiellones A (2) and B (3), and JBIR-130 (4). Compound 1 exhibited antimalarial activity against Plasmodium falciparum K1 with an IC5 value of 3.2 microg/mL, while it also showed weak cytotoxic activities.

  16. Interaction of He with Cu, V, and Ta in bcc Fe: A first-principles study

    SciTech Connect

    Yan, J. X.; Tian, Z. X.; Xiao, W.; Geng, W. T.

    2011-07-01

    Precipitates often play key roles in improving the mechanical performance of structural materials. Using first-principles density functional theory method, we have calculated the geometry and energetics of small X{sub n} and X{sub n}He (X = Cu, V, and Ta) clusters in bcc Fe matrix to investigate the effect of He on X precipitation on the initial stage in neutron-irradiated Fe alloys. Both substitutional and interstitial He attract solute atoms. The attraction of a substitutional He and a Cu atom is as strong as 0.30 eV (nearest neighbor) or 0.25 eV (next-nearest neighbor), even stronger than the vacancy-Cu pair. Such an attraction facilitates the clustering of Cu atoms. By comparison, the attraction of He to V (0.02 eV) or Ta (0.22 eV) is weaker than that of a vacancy. We find that one He can bind up to four Ta atoms to form a tetrahedron, despite the fact that in the absence of He, Ta atoms prefer to stay away from each other. The effect of He on the solute-solute and solute-matrix interactions can be understood from the facts that He behaves both as a free-volume filler and as a bonding insulator.

  17. 3D dislocation dynamics: stress-strain behavior and hardening mechanisms in FCC and BCC metals

    SciTech Connect

    Hirth, J P; Rhee, M; Zhib, H M; de la Rubia, T D

    1999-02-19

    A dislocation dynamics (DD) model for plastic deformation, connecting the macroscopic mechanical properties to basic physical laws governing dislocation mobility and related interaction mechanisms, has been under development. In this model there is a set of critical reactions that determine the overall results of the simulations, such as the stress-strain curve. These reactions are, annihilation, formation of jogs, junctions, and dipoles, and cross-slip. In this paper we discuss these reactions and the manner in which they influence the simulated stress- strain behavior in fcc and bcc metals. In particular, we examine the formation (zipping) and strength of dipoles and junctions, and effect of jogs, using the dislocation dynamics model. We show that the strengths (unzipping) of these reactions for various configurations can be determined by direct evaluation of the elastic interactions. Next, we investigate the phenomenon of hardening in metals subjected to cascade damage dislocations. The microstructure investigated consists of small dislocation loops decorating the mobile dislocations. Preliminary results reveal that these loops act as hardening agents, trapping the dislocations and resulting in increased hardening.

  18. Strain Fields And Crystallographic Characteristics Of Interstitial Dislocation Loops of Various Geometry In BCC Iron

    SciTech Connect

    Sivak, Alexander B.; Chernov, Viatcheslav M.; Romanov, Vladimir A.

    2008-04-10

    The formation energy, the relaxation volume, the dipole-force tensor, the self strain tensor and strain fields of interstitial dislocation loops in bcc iron (clusters of self interstitial atoms) have been calculated by molecular statics. Hexagonal and square dislocation loops of different types with different Burgers vectors, directions of dislocation segments and habit planes containing up to {approx}2500 self-interstitials have been considered. Analytical expressions describing size dependence of the formation energy, the relaxation volume and the self strain tensor for the loops stated have been obtained. The most energetically favorable loops are hexagonal loops with Burgers vector a/2<111> and habit plane {l_brace}11x{r_brace}, where x takes values in the range from 0 to 1 depending on the loop size. The formation energy of a<100> loops with <100> and <110> dislocation segments is {approx}14% and 23% greater than that of hexagonal a/2<111> loops at N>500, respectively. The analysis of the formation energies of a/2<111> and a<100> loops demonstrated that the nucleation of an a<100> loop by joining of two a/2<111> loops is possible when the total number of constituent self-interstitials in these loops is larger than 13.

  19. Vacancy-solute interactions in ferromagnetic and paramagnetic bcc iron: Ab initio calculations

    NASA Astrophysics Data System (ADS)

    Gorbatov, O. I.; Korzhavyi, P. A.; Ruban, A. V.; Johansson, B.; Gornostyrev, Yu. N.

    2011-12-01

    Vacancy-solute interactions play a crucial role in diffusion-controlled processes, such as ordering or decomposition, which occur in alloys under heat treatment or under irradiation. Detailed knowledge of these interactions is important for predicting long-term behavior of nuclear materials (such as reactor steels and nuclear-waste containers) as well as for advancing our general understanding of kinetic processes in alloys. Using first-principles calculations based on the density functional theory and employing the locally self-consistent Green's function technique, we develop a database of vacancy-solute interactions in dilute alloys of bcc Fe with 3p (Al, Si, P, S), 3d (Sc-Cu), and 4d (Y-Ag) elements. Unrelaxed interactions within the first three coordination shells have been computed in the ferromagnetic state as well as in the paramagnetic (disordered local moment) state of the iron matrix. Magnetism is found to have a strong effect on the vacancy-solute interactions. Implications of the obtained results for interpreting the effects of vacancy trapping and enhanced impurity diffusion are discussed.

  20. Grain Size Dependence of Uniform Elongation in Single-Phase FCC/BCC Metals

    NASA Astrophysics Data System (ADS)

    Liu, Haiting; Shen, Yao; Ma, Jiawei; Zheng, Pengfei; Zhang, Lei

    2016-09-01

    We studied the dependence of uniform elongation on grain size in the range of submicron to millimeter for single-phase FCC/BCC metals by reviewing recent experimental results and applying crystal plasticity finite element method simulation. In the order of increasing grain size, uniform elongation can be divided into three stages, namely low elongation stage, nearly constant elongation stage, and decreased elongation with large scatters stage. Low elongation stage features a dramatic increase near the critical grain size at the end of the stage, which is primarily attributed to the emergence of dislocation cell size transition from ultrafine to mid-size grain. Other factors can be neglected due to their negligible influence on overall variation trend. In nearly constant elongation stage, uniform elongation remains unchanged at a high level in general. As grain size keeps growing, uniform elongation starts decreasing and becomes scattered upon a certain grain size, indicating the initiation of decreased elongation with large scatters stage. It is shown that the increase is not linear or smooth but rather sharp at the end of low elongation stage, leading to a wider range in nearly constant elongation stage. The grain size dependence of uniform elongation can serve as a guiding principle for designing small uniaxial tensile specimens for mechanical testing, where size effect matters in most cases.

  1. The electronic structure and bonding of H pairs at Σ=5 BCC Fe grain boundary

    NASA Astrophysics Data System (ADS)

    Gesari, S. B.; Pronsato, M. E.; Juan, A.

    2002-02-01

    The H-Fe interaction at a grain boundary (GB) in BCC Fe was studied using qualitative electronic structure calculations in the framework of the atom superposition and electron delocalization molecular orbital (ASED-MO) theory. Calculations were performed using an Fe 196 cluster to simulate the 36.9° [1 0 0] {0 1 3} symmetrical tilt GB structure. The most stable positions for one H atom and two H atoms at the GB core were determined. The total energy of the cluster decreases when the H atoms are at that location, making it a possible site for H accumulation. An analysis of the orbital interaction reveals that H-Fe bonding involves mainly the Fe 4s and H 1s orbitals. In general, H drain charge from the first neighbor Fe atoms. The crystal orbital overlap population (COOP) curves gives a measure of Fe-Fe bond weakening due to H segregate at GB. Some Fe-Fe bonds in the GB plane shows a 60% decrease in the overlap population when H is present. H-H interaction was also analyzed. Although some H-H association is reveled no bond is formed between the impurity atoms.

  2. Phase-field simulation of stripe arrays on metal bcc(110) surfaces.

    PubMed

    Yu, Yan-Mei; Backofen, Rainer; Voigt, Axel

    2008-05-01

    By using a phase-field model, we simulate formation and growth of stripe arrays starting with anisotropic growth of islands under the Ehrlich-Schwoebel barrier on metal bcc(110) surfaces. The anisotropy is incorporated in terms of attachment kinetics that is locally limited at the island edge aligned to the y axis (or 100 ) and instantaneous at the island edge aligned to the x axis (or 110 ). By reproducing the stripe arrays under various anisotropy magnitudes, we investigate dynamics of formation and growth of the stripe arrays. While enhancing coarsening in the y direction, the anisotropy suppresses coarsening in the x direction at the early stage, which contributes to formation of stripe arrays. At long times, the stripe arrays develop the quasiperiodic uniaxial structure with the selected transversal slope and the decreasing longitudinal slope as consequence of competition between coarsening and roughening. At the case of the large anisotropy magnitude, the fast roughening is caused by the strongly limited attachment kinetics, where the transversal coarsening turns fast and then the uniaxial growth is broken finally. For the weak roughening at the case of the reduced anisotropy magnitude, the slow transversal coarsening is achieved with the fast longitudinal coarsening, which contributes to the stripe arrays of the regular period and the increasing uniaxial length. Such arrays have the potential to be used as templates to grow one-dimensional nanostructures.

  3. Influence of point defects on grain boundary mobility in bcc tungsten.

    PubMed

    Borovikov, Valery; Tang, Xian-Zhu; Perez, Danny; Bai, Xian-Ming; Uberuaga, Blas P; Voter, Arthur F

    2013-01-23

    Atomistic computer simulations were performed to study the influence of radiation-induced damage on grain boundary (GB) sliding processes in bcc tungsten (W), the divertor material in the ITER tokamak and the leading candidate for the first wall material in future fusion reactors. In particular, we calculated the average sliding-friction force as a function of the number of point defects introduced into the GB for a number of symmetric tilt GBs. In all cases the average sliding-friction force at fixed shear strain rate depends on the number of point defects introduced into the GB, and in many cases introduction of these defects reduces the average sliding-friction force by roughly an order of magnitude. We have also observed that as the number of interstitials in the GB is varied, the direction of the coupled GB motion sometimes reverses, causing the GB to migrate in the opposite direction under the same applied shear stress. This could be important in the microstructural evolution of polycrystalline W under the harsh radiation environment in a fusion reactor, in which high internal stresses are present and frequent collision cascades generate interstitials and vacancies.

  4. Atomic-scale simulations of material behaviors and tribology properties for BCC metal film

    NASA Astrophysics Data System (ADS)

    H, D. Aristizabal; P, A. Parra; P, López; E, Restrepo-Parra

    2016-01-01

    This work has two main purposes: (i) introducing the basic concepts of molecular dynamics analysis to material scientists and engineers, and (ii) providing a better understanding of instrumented indentation measurements, presenting an example of nanoindentation and scratch test simulations. To reach these purposes, three-dimensional molecular dynamics (MD) simulations of nanoindentation and scratch test technique were carried out for generic thin films that present BCC crystalline structures. Structures were oriented in the plane (100) and placed on FCC diamond substrates. A pair wise potential was employed to simulate the interaction between atoms of each layer and a repulsive radial potential was used to represent a spherical tip indenting the sample. Mechanical properties of this generic material were obtained by varying the indentation depth and dissociation energy. The load-unload curves and coefficient of friction were found for each test; on the other hand, dissociation energy was varied showing a better mechanical response for films that present grater dissociation energy. Structural change evolution was observed presenting vacancies and slips as the depth was varied. Project supported by la DirecciónNacional de Investigación of the Universidad Nacional de Colombia, “the Theoretical Study of Physical Properties of Hard Materials for Technological Applications” (Grant No. 20101007903).

  5. Change of regime of decay of elastic precursor wave in BCC metals

    NASA Astrophysics Data System (ADS)

    Zaretsky, Eugene; Kanel, Gennady

    2015-06-01

    Our studies of decay of elastic precursor wave with propagation distance in five BCC metals, namely V, Ta, Fe, Nb, and Mo show that at propagation distances of about h * = 1 mm the regime of the decay is changed. At propagation distances smaller than h * the decay is fast and the spatial variation of the elastic wave amplitude σHEL is described by the power function σHEL =σ0(h /h0)-α with α ranged between 0.3 and 0.7 for different metals at different temperatures. Beyond the distance h * the decay is much slower and is characterized by much lower values of α, of about 0.1 or less. The stresses τ* at which the transition occurs at room temperature is close to the Peierls stresses τP of the studied metals. This allows us to conclude that the change of the decay regime at τ* is caused by the change of the mode of the dislocations motion from the over-barrier glide controlled by the phonon viscous drag above τ* to that controlled by thermally activated generation/motion of the dislocation double-kinks below τ*. The decline of τ* with temperature (~ 50% over 1000-K interval) agrees with the growing with temperature support of dislocation motion by thermal fluctuation.

  6. Higher-order elastic constants and megabar pressure effects of bcc tungsten: Ab initio calculations

    NASA Astrophysics Data System (ADS)

    Vekilov, Yu. Kh.; Krasilnikov, O. M.; Lugovskoy, A. V.; Lozovik, Yu. E.

    2016-09-01

    The general method for the calculation of n th (n ≥2 ) order elastic constants of the loaded crystal is given in the framework of the nonlinear elasticity theory. For the crystals of cubic symmetry under hydrostatic compression, the two schemes of calculation of the elastic constants of second, third, and fourth order from energy-finite strain relations and stress-finite strain relations are implemented. Both techniques are applied for the calculation of elastic constants of orders from second to fourth to the bcc phase of tungsten at a 0-600 GPa pressure range. The energy and stress at the various pressures and deformations are obtained ab initio in the framework of projector augmented wave+generalized gradient approximation (PAW+GGA) method, as implemented in Vienna Ab initio Simulation Package (VASP) code. Using the obtained results, we found the pressure dependence of Grüneisen parameters for long-wave acoustic modes in this interval. The Lamé constants of second and third order were estimated for polycrystalline tungsten. The proposed method is applicable for crystals with arbitrary symmetry.

  7. Heats of Segregation of BCC Metals Using Ab Initio and Quantum Approximate Methods

    NASA Technical Reports Server (NTRS)

    Good, Brian; Chaka, Anne; Bozzolo, Guillermo

    2003-01-01

    Many multicomponent alloys exhibit surface segregation, in which the composition at or near a surface may be substantially different from that of the bulk. A number of phenomenological explanations for this tendency have been suggested, involving, among other things, differences among the components' surface energies, molar volumes, and heats of solution. From a theoretical standpoint, the complexity of the problem has precluded a simple, unified explanation, thus preventing the development of computational tools that would enable the identification of the driving mechanisms for segregation. In that context, we investigate the problem of surface segregation in a variety of bcc metal alloys by computing dilute-limit heats of segregation using both the quantum-approximate energy method of Bozzolo, Ferrante and Smith (BFS), and all-electron density functional theory. In addition, the composition dependence of the heats of segregation is investigated using a BFS-based Monte Carlo procedure, and, for selected cases of interest, density functional calculations. Results are discussed in the context of a simple picture that describes segregation behavior as the result of a competition between size mismatch and alloying effects

  8. Interaction of C and Mn in a ∑3 grain boundary of bcc iron

    NASA Astrophysics Data System (ADS)

    Wicaksono, A. T.; Militzer, M.

    2017-07-01

    The interaction of alloying elements with migrating interfaces is a key aspect that determines microstructure evolution during thermo-mechanical processing of metals and alloys. Recent advances in atomic scale resolution characterization techniques and atomistic modelling have dramatically increased the potential to generate new knowledge on interfaces thereby enabling paradigm shifts in microstructure design approaches. Computational materials science now offers exciting opportunities to formulate multi-scale process models that bridge the gap between atomistic and continuums approaches. In particular, the development of advanced high strength steels with novel alloying concepts has motivated atomistic scale simulations to predict the interaction of selected alloying elements with grain boundaries and the austeniteferrite interface in iron. Most of these simulations have so far been carried out for binary systems with one solute species. The extension of this modelling work to multi-component systems is, however, essential in order to account for potential interactions between different alloying elements in industrial steels. Here, we present ab initio simulations for the interaction of C and Mn at a ∑3 boundary in bcc iron using density functional theory (DFT). The simulation results confirm the strong co-segregation of C and Mn that has been recently observed in atom probe tomography studies of the austenite-ferrite interface in Fe-Mn-C alloys.

  9. Effects of different carbon and nitrogen sources on naphthoquinone production of Cordyceps unilateralis BCC 1869.

    PubMed

    Prathumpai, W; Kocharin, K; Phimmakong, K; Wongsa, P

    2007-02-01

    The production of six naphthoquinone derivatives, erythrostominone, deoxyerythrostominone, 4-O-methyl erythrostominone, epierythrostominol, deoxyerythrostominol, and 3,5,8-trihydroxy-6-methoxy-2-(5-oxohexa- 1,3-dienyl)-1,4-naphthoquinone, was examined during the growth of Cordyceps unilateralis BCC 1869 on different carbon and nitrogen sources. Erythrostominone production by the fungus accounted for more than 50% of total naphthoquinones, but production of each of the other five derivatives accounted for less than 20% of total naphthoquinones. The highest volumetric production rate of erythrostominone and overall naphthoquinone production rate were obtained on mannose as a sole carbon source and ammonium sulfate as a sole nitrogen source (4922.4 +/- 118.8 mg/[L.d] and 5.03 g/[L.d], respectively). The highest growth rate was obtained on arabinose (0.043 h-1), whereas the maximum overall naphthoquinone concentration was obtained on lactose (2 g/L) at 237 h. These naphthoquinones were produced with no pH control and were first detected at a pH of about 3.0 to 4.0. These results suggest that carbon and nitrogen influenced directly the production of naphthoquinones.

  10. An experimental statistical analysis of stress projection factors in BCC tantalum

    SciTech Connect

    Carroll, J. D.; Clark, B. G.; Buchheit, T. E.; Boyce, B. L.; Weinberger, C. R.

    2013-10-01

    Crystallographic slip planes in body centered cubic (BCC) metals are not fully understood. In polycrystals, there are additional confounding effects from grain interactions. This paper describes an experimental investigation into the effects of grain orientation and neighbors on elastic–plastic strain accumulation. In situ strain fields were obtained by performing digital image correlation (DIC) on images from a scanning electron microscope (SEM) and from optical microscopy. These strain fields were statistically compared to the grain structure measured by electron backscatter diffraction (EBSD). Spearman rank correlations were performed between effective strain and six microstructural factors including four Schmid factors associated with the <111> slip direction, grain size, and Taylor factor. Modest correlations (~10%) were found for a polycrystal tension specimen. The influence of grain neighbors was first investigated by re-correlating the polycrystal data using clusters of similarly-oriented grains identified by low grain boundary misorientation angles. Second, the experiment was repeated on a tantalum oligocrystal, with through-thickness grains. Much larger correlation coefficients were found in this multicrystal due to the dearth of grain neighbors and subsurface microstructure. Finally, a slip trace analysis indicated (in agreement with statistical correlations) that macroscopic slip often occurs on {110}<111> slip systems and sometimes by pencil glide on maximum resolved shear stress planes (MRSSP). These results suggest that Schmid factors are suitable for room temperature, quasistatic, tensile deformation in tantalum as long as grain neighbor effects are accounted for.

  11. Antimicrobial compounds from endophytic Streptomyces sp. BCC72023 isolated from rice (Oryza sativa L.).

    PubMed

    Supong, Khomsan; Thawai, Chitti; Choowong, Wilunda; Kittiwongwattana, Chokchai; Thanaboripat, Dusanee; Laosinwattana, Chamroon; Koohakan, Prommart; Parinthawong, Nonglak; Pittayakhajonwut, Pattama

    2016-05-01

    An endophytic actinomycete strain BCC72023 was isolated from rice (Oryza sativa L.) and identified as the genus Streptomyces, based on phenotypic, chemotaxonomic and 16S rRNA gene sequence analyses. The strain showed 99.80% similarity compared with Streptomyces samsunensis M1463(T). Chemical investigation led to the isolation of three macrolides, efomycins M (1), G (2) and oxohygrolidin (3), along with two polyethers, abierixin (4) and 29-O-methylabierixin (5). To our knowledge, this is the first report of efomycin M being isolated from a natural source. The compounds were identified using spectroscopic techniques and comparison with previously published data. All compounds exhibited antimalarial activity against the Plasmodium falciparum, K-1 strain, a multidrug-resistant strain, with IC50 values in a range of 1.40-5.23 μg/ml. In addition, these compounds were evaluated for biological activity against Mycobacterium tuberculosis, Bacillus cereus, Colletotrichum gloeosporioides and Colletotrichum capsici, as well as cytotoxicity against both cancerous (MCF-7, KB, NCI-H187) and non-cancerous (Vero) cells.

  12. In-situ laser ultrasonic measurement of the hcp to bcc transformation in commercially pure titanium

    SciTech Connect

    Shinbine, A. Garcin, T.; Sinclair, C.

    2016-07-15

    Using a novel in-situ laser ultrasonic technique, the evolution of longitudinal velocity was used to measure the α − β transformation during cyclic heating and cooling in commercially pure titanium. In order to quantify the transformation kinetics, it is shown that changes in texture can not be ignored. This is particularly important in the case of titanium where significant grain growth occurs in the β-phase leading to the ultrasonic wave sampling a decreasing number of grains on each thermal treatment cycle. Electron backscatter diffraction measurements made postmortem in the region where the ultrasonic pulse traveled were used to obtain an estimate of such local texture and grain size changes. An analysis technique for including the anisotropy of wave velocity depending on local texture is presented and shown to give self consistent results for the transformation kinetics. - Highlights: • Laser ultrasound and EBSD interpret the hcp/bcc phase transformation in cp-Ti. • Grain growth and texture produced variation in velocity during similar treatments. • Texture was deconvoluted from phase addition to obtain transformation kinetics.

  13. Biodegradation of organics in landfill leachate by immobilized white rot fungi, Trametes versicolor BCC 8725.

    PubMed

    Saetang, Jenjira; Babel, Sandhya

    2012-12-01

    Immobilized Trametes versicolor BCC 8725 was evaluated for the biodegradation of the organic components of four different types of landfill leachate collected at different time periods and locations from the Nonthaburi landfill site of Thailand in batch treatment. The effects of carbon source, ammonia and organic loading on colour, biochemical oxygen demand (BOD) and chemical oxygen demand (COD) removal, and the reuse of immobilized fungi were investigated. It was found that fungi can remove 78% of colour, reduce BOD by 68% and reduce COD by 57% in leachate within 15 days at optimum conditions. Organic loading and ammonia were the factors that affected the biodegradation. When immobilized T versicolor on polyurethane foam (PUF) was subjected to repeated use for treatment over the course of three cycles, the decolourization efficiency of the first and the second cycle was very similar, whereas the third cycle was about 20% lower than the first cycle under similar conditions. The obtained removal of colour, BOD and COD indicates the effectiveness of fungi for leachate treatment with high organic loading and varied leachate characteristics.

  14. Carbon impurity dissolution and migration in bcc Fe-Cr: First-principles calculations

    NASA Astrophysics Data System (ADS)

    Sandberg, Nils; Henriksson, Krister O. E.; Wallenius, Jan

    2008-09-01

    First-principles density-functional theory calculations for C solution enthalpies, Hsol , and diffusion activation enthalpies, Hdiff , in body-centered-cubic Fe and Cr are presented. The results for C in Fe compare well with experiments, provided that the effect of magnetic disordering is accounted for. Likewise, in Cr, the calculated Hsol and Hdiff agree well with available experiments. In both materials, the deviation between calculated enthalpies and critically assessed experimental enthalpies are less than 0.05 eV. Further, first-principles calculations for the interaction energies between a solute (e.g., a Cr atom in bcc Fe) and an interstitial C atom are presented. The results are in conflict with those inferred from internal friction (IF) experiments in disordered Fe-Cr-C alloys. A simple model of C relaxation in disordered Fe-Cr is used to compare theoretical and experimental IF curves directly. The results suggest that a more extensive study of the energetic, thermodynamic, and kinetic aspects of C migration in Fe-Cr is needed.

  15. Crystallization and preliminary crystallographic analysis of histamine dehydrogenase from Natrinema gari BCC 24369.

    PubMed

    Zhou, Dongwen; Visessanguan, Wonnop; Chaikaew, Siriporn; Benjakul, Soottawat; Oda, Kohei; Wlodawer, Alexander

    2014-07-01

    Histamine dehydrogenase (HADH) catalyzes the oxidative deamination of histamine, resulting in the production of imidazole acetaldehyde and an ammonium ion. The enzyme isolated from the newly identified halophilic archaeon Natrinema gari BCC 24369 is significantly different from the previously described protein from Nocardioides simplex. This newly identified HADH comprises three subunits with molecular weights of 49.0, 24.7 and 23.9 kDa, respectively, and is optimally active under high-salt conditions (3.5-5 M NaCl). As a step in the exploration of the unique properties of the protein, the HADH heterotrimer was purified and crystallized. Crystals were obtained using the sitting-drop vapor-diffusion method from a solution composed of 0.2 M calcium chloride dihydrate, 0.1 M HEPES pH 7.5, 28% PEG 400. Diffraction data were collected at -173°C to a resolution limit of 2.4 Å on the Southeast Regional Collaborative Access Team (SER-CAT) beamline 22-ID at the Advanced Photon Source, Argonne National Laboratory. The crystals belonged to the monoclinic space group C2, with unit-cell parameters a=211.9, b=58.6, c=135.4 Å, β=103.0°. The estimated Matthews coefficient is 3.21 Å3 Da(-1), corresponding to 61.7% solvent content.

  16. Atomic-Scale Mechanisms of Void Hardening in BCC and FCC Metals

    SciTech Connect

    Osetskiy, Yury N; Bacon, David J

    2010-01-01

    Strengthening due to voids can be a significant effect of radiation damage in metals, but treatment of this by elasticity theory of dislocations is difficult when the mechanisms controlling the obstacle strength are atomic in nature. Results are reported of atomic-scale modelling to compare edge dislocation-void interaction in fcc copper and bcc iron. Voids of up to 6 nm diameter in iron and 8 nm diameter in copper were studied over the temperature range 0 to 600 K at different applied strain rates. Voids in iron are strong obstacles, for the dislocation has to adopt a dipole-like configuration at the void before breaking away. The dipole unzips at the critical stress when the dislocation is able to climb by absorbing vacancies and leave the void surface. Dislocation dissociation into Shockley partials in copper prevents dislocation climb and affects the strength of small and large voids differently. Small voids are much weaker obstacles than those in iron because the partials break from a void individually. Large voids are at least as strong as those in iron, but the controlling mechanism depends on temperature.

  17. Influence of grain boundary character on point defect formation energies in BCC Fe

    SciTech Connect

    Tschopp, Mark A.; Horstemeyer, Mark; Gao, Fei; Sun, Xin; Khaleel, Mohammad A.

    2012-03-01

    The objective of this research is to understand how grain boundary character influences formation of vacancies and interstitials to grain boundaries in BCC Fe. In this study, molecular statics simulations were used to obtain a large number of minimum energy grain boundary structures in the <100> and <110> symmetric tilt grain boundary system. Then, simulations were used to calculate the formation energies associated with vacancies and self-interstitial atoms at atomic positions within 20 Angstroms of the boundary. As a first analysis, the vacancy formation energies are examined here. The simulation results show how the vacancy formation energies are influenced by grain boundary structure. Low angle boundaries are found to be an effective sink for vacancies along planes adjacent to grain boundary dislocations, while high angle low sigma grain boundaries are less effective sinks for vacancies. The grain boundary sink strength is postulated to depend upon the minimum vacancy formation energy and the influence of grain boundary character on this is shown. Interestingly, low sigma boundaries in the <100> symmetric tilt grain boundary system have higher minimum vacancy formation energies, while this quantity does not seem to be influenced by misorientation angle or grain boundary energy. The significance of this research is that atomistic simulations of this kind may ultimately help inform damage evolution via grain boundaries in multiscale models for irradiated materials as well as its implications for grain boundary engineering.

  18. Formation and evolution of metastable bcc phase during solidification of liquid Ag: a molecular dynamics simulation study.

    PubMed

    Tian, Ze-An; Liu, Rang-Su; Zheng, Cai-Xing; Liu, Hai-Rong; Hou, Zhao-Yang; Peng, Ping

    2008-12-04

    On the basis of the quantum Sutton-Chen potential, the rapid solidification processes of liquid silver have been studied by molecular dynamics simulation for four cooling rates. By means of several analysis methods, the competitions and transitions between microstructures during the cooling processes have been analyzed intensively. It is found that there are two phase transitions in all simulation processes. The first one is from liquid state to metastable (transitional) body-centered cubic (bcc) phase. The initial crystallization temperature T(ic) increases with the decrease of the cooling rate. The second one is from the transitional bcc phase to the final solid phase. This study validates the Ostwald's step rule and provides evidence for the prediction that the metastable bcc phase forms first from liquid. Further analyses reveal that the final solid at 273 K can be a mixture of hexagonal close-packed (hcp) and face-centered cubic (fcc) microstructures with various proportions of the two, and the slower the cooling rate is, the higher proportion the fcc structure occupies.

  19. Biochemical characterization and in vitro digestibility assay of Eupenicillium parvum (BCC17694) phytase expressed in Pichia pastoris.

    PubMed

    Fugthong, Anusorn; Boonyapakron, Katewadee; Sornlek, Warasirin; Tanapongpipat, Sutipa; Eurwilaichitr, Lily; Pootanakit, Kusol

    2010-03-01

    A mature phytase cDNA, encoding 441 amino acids, from Eupenicillium parvum (BCC17694) was cloned into a Pichia pastoris expression vector, pPICZ alpha A, and was successfully expressed as active extracellular glycosylated protein. The recombinant phytase contained the active site RHGXRXP and HD sequence motifs, a large alpha/beta domain and a small alpha-domain that are typical of histidine acid phosphatase. Glycosylation was found to be important for enzyme activity which is most active at 50 degrees C and pH 5.5. The recombinant phytase displayed broad substrate specificity toward p-nitrophenyl phosphate, sodium-, calcium-, and potassium-phytate. The enzyme lost its activity after incubating at 50 degrees C for 5 min and is 50% inhibited by 5mM Cu(2+). However, the enzyme exhibits broad pH stability from 2.5 to 8.0 and is resistant to pepsin. In vitro digestibility test suggested that BCC17694 phytase is at least as effective as another recombinant phytase (r-A170) which is comparable to Natuphos, a commercial phytase, in releasing phosphate from corn-based animal feed, suggesting that BCC17694 phytase is suitable for use as phytase supplement in the animal diet.

  20. Crystal plasticity model for BCC iron atomistically informed by kinetics of correlated kinkpair nucleation on screw dislocation

    NASA Astrophysics Data System (ADS)

    Narayanan, Sankar; McDowell, David L.; Zhu, Ting

    2014-04-01

    The mobility of dislocation in body-centered cubic (BCC) metals is controlled by the thermally activated nucleation of kinks along the dislocation core. By employing a recent interatomic potential and the Nudged Elastic Band method, we predict the atomistic saddle-point state of 1/2<111> screw dislocation motion in BCC iron that involves the nucleation of correlated kinkpairs and the resulting double superkinks. This unique process leads to a single-humped minimum energy path that governs the one-step activation of a screw dislocation to move into the adjacent {110} Peierls valley, which contrasts with the double-humped energy path and the two-step transition predicted by other interatomic potentials. Based on transition state theory, we use the atomistically computed, stress-dependent kinkpair activation parameters to inform a coarse-grained crystal plasticity flow rule. Our atomistically-informed crystal plasticity model quantitatively predicts the orientation dependent stress-strain behavior of BCC iron single crystals in a manner that is consistent with experimental results. The predicted temperature and strain-rate dependencies of the yield stress agree with experimental results in the 200-350 K temperature regime, and are rationalized by the small activation volumes associated with the kinkpair-mediated motion of screw dislocations.

  1. Adsorption, dissociation, penetration, and diffusion of N2 on and in bcc Fe: first-principles calculations.

    PubMed

    Yeo, Sang Chul; Han, Sang Soo; Lee, Hyuck Mo

    2013-04-14

    We report first-principles calculations of adsorption, dissociation, penetration, and diffusion for the complete nitridation mechanism of nitrogen molecules on a pure Fe surface (bcc, ferrite phase). The mechanism of the definite reaction path was calculated by dividing the process into four steps. We investigated various reaction paths for each step including the energy barrier based on the climb image nudged elastic band (CI-NEB) method, and the complete reaction pathway was computed as the minimum energy path (MEP). The adsorption characteristics of nitrogen (N) and molecular nitrogen (N2) indicate that nitrogen atoms and molecules are energetically favorable at the hollow sites on pure Fe(100) and (110). The dissociation of the nitrogen molecule (N2) was theoretically supported by electronic structure calculations. The penetration of nitrogen from the surface to the sub-surface has a large energy barrier compared with the other steps. The activation energy calculated for nitrogen diffusion in pure bcc Fe was in good agreement with the experimental results. Finally, we confirmed the rate-determining step for the full nitridation reaction pathway. This study provides fundamental insight into the nitridation mechanism for nitrogen molecules in pure bcc Fe.

  2. Nonlinear dust-lattice waves: a modified Toda lattice

    SciTech Connect

    Cramer, N. F.

    2008-09-07

    Charged dust grains in a plasma interact with a Coulomb potential, but also with an exponential component to the potential, due to Debye shielding in the background plasma. Here we investigate large-amplitude oscillations and waves in dust-lattices, employing techniques used in Toda lattice analysis. The lattice consists of a linear chain of particles, or a periodic ring as occurs in experimentally observed dust particle clusters. The particle motion has a triangular waveform, and chaotic motion for large amplitude motion of a grain.

  3. Three-Dimensional Lattice Structure Formed in a Binary System with DNA Nanoparticles

    NASA Astrophysics Data System (ADS)

    Kawasaki, Keno; Katsuno, Hiroyasu; Sato, Masahide

    2017-06-01

    Keeping the formation of lattice structures by nanoparticles covered with DNA in mind, we carry out Brownian dynamics simulations and study three-dimensional lattice structures formed by two species of particles. In our previous study [H. Katsuno, Y. Maegawa, and M. Sato, J. Phys. Soc. Jpn. 85, 074605 (2016)], we used the Lennard-Jones potential and studied two-dimensional structures formed in a binary system. When the interaction length between the different species, σ', is shorter than that between the same species, σ, the lattice structure changes with the ratio σ'/σ. In this paper, we use the same potential and study the formation of three-dimensional structures. With decreasing ratio σ'/σ, the mixture of the face-centered-cubic (fcc) structure and hexagonal-close-packed (hcp) structure is changed to the body-centered-cubic (bcc) structure and the NaCl structure.

  4. Lattice QCD: Status and Prospect

    SciTech Connect

    Ukawa, Akira

    2006-02-08

    A brief review is given of the current status and near-future prospect of lattice QCD studies of the Standard Model. After summarizing a bit of history, we describe current attempts toward inclusion of dynamical up, down and strange quarks. Recent results on the light hadron mass spectrum as well as those on the heavy quark quantities are described. Recent work on lattice pentaquark search is summarized. We touch upon the PACS-CS Project for building our next machine for lattice QCD, and conclude with a summary of computer situation and the physics possibilities over the next several years.

  5. Localized structures in Kagome lattices

    SciTech Connect

    Saxena, Avadh B; Bishop, Alan R; Law, K J H; Kevrekidis, P G

    2009-01-01

    We investigate the existence and stability of gap vortices and multi-pole gap solitons in a Kagome lattice with a defocusing nonlinearity both in a discrete case and in a continuum one with periodic external modulation. In particular, predictions are made based on expansion around a simple and analytically tractable anti-continuum (zero coupling) limit. These predictions are then confirmed for a continuum model of an optically-induced Kagome lattice in a photorefractive crystal obtained by a continuous transformation of a honeycomb lattice.

  6. Screened Wigner-lattice model

    NASA Astrophysics Data System (ADS)

    Dias, Mirabeau; Chaba, A. N.

    1983-01-01

    Recently Medeiros e Silva and Mokross proposed the screened Wigner-lattice model which consists of negative point charges on a Bravais lattice interacting through the screened Coulomb potential -Qexp(-λr)r and the positive charge background with the density (QΩ)exp(-λr). We point out the drawbacks of this model and show that by modifying the background charge density to (Qλ24π)Στ-->exp(-λ|r-->-τ-->|)|r-->-τ-->| the screened Coloumb form of the potential emerges naturally as a consequence. Further, this modified screened Wigner-lattice model is free from the defects of the other model.

  7. Random topics in lattice QCD

    SciTech Connect

    Kilcup, G.W.

    1986-01-01

    The author studies the physics of fermions in lattice regularized QCD, both abstractly and numerically. The author presents four papers, in the first showing how one can in principle extract the ..pi../sup +/-..pi../sup 0/ mass difference, in the second using a Monte Carlo simulation to compute the hadron spectrum and certain matrix elements on a small lattice, and in the third analyzing the symmetries of the staggered formulation of lattice fermions. Finally, the author presents preliminary results for the spectrum from a relatively large scale Monte Carlo simulation.

  8. Scaling the Kondo lattice.

    PubMed

    Yang, Yi-feng; Fisk, Zachary; Lee, Han-Oh; Thompson, J D; Pines, David

    2008-07-31

    The origin of magnetic order in metals has two extremes: an instability in a liquid of local magnetic moments interacting through conduction electrons, and a spin-density wave instability in a Fermi liquid of itinerant electrons. This dichotomy between 'local-moment' magnetism and 'itinerant-electron' magnetism is reminiscent of the valence bond/molecular orbital dichotomy present in studies of chemical bonding. The class of heavy-electron intermetallic compounds of cerium, ytterbium and various 5f elements bridges the extremes, with itinerant-electron magnetic characteristics at low temperatures that grow out of a high-temperature local-moment state. Describing this transition quantitatively has proved difficult, and one of the main unsolved problems is finding what determines the temperature scale for the evolution of this behaviour. Here we present a simple, semi-quantitative solution to this problem that provides a basic framework for interpreting the physics of heavy-electron materials and offers the prospect of a quantitative determination of the physical origin of their magnetic ordering and superconductivity. It also reveals the difference between the temperature scales that distinguish the conduction electrons' response to a single magnetic impurity and their response to a lattice of local moments, and provides an updated version of the well-known Doniach diagram.

  9. Phase stability of ternary fcc and bcc Fe-Cr-Ni alloys

    NASA Astrophysics Data System (ADS)

    Wróbel, Jan S.; Nguyen-Manh, Duc; Lavrentiev, Mikhail Yu.; Muzyk, Marek; Dudarev, Sergei L.

    2015-01-01

    The phase stability of fcc and bcc magnetic binary Fe-Cr, Fe-Ni, and Cr-Ni alloys, and ternary Fe-Cr-Ni alloys is investigated using a combination of density functional theory (DFT), cluster expansion (CE), and magnetic cluster expansion (MCE) approaches. Energies, magnetic moments, and volumes of more than 500 alloy structures have been evaluated using DFT, and the predicted most stable configurations are compared with experimental observations. Deviations from the Vegard law in fcc Fe-Cr-Ni alloys, resulting from the nonlinear variation of atomic magnetic moments as functions of alloy composition, are observed. The accuracy of the CE model is assessed against the DFT data, where for ternary Fe-Cr-Ni alloys the cross-validation error is found to be less than 12 meV/atom. A set of cluster interaction parameters is defined for each alloy, where it is used for predicting new ordered alloy structures. The fcc Fe2CrNi phase with Cu2NiZn -like crystal structure is predicted to be the global ground state of ternary Fe-Cr-Ni alloys, with the lowest chemical ordering temperature of 650 K. DFT-based Monte Carlo (MC) simulations are applied to the investigation of order-disorder transitions in Fe-Cr-Ni alloys. The enthalpies of formation of ternary alloys predicted by MC simulations at 1600 K, combined with magnetic correction derived from MCE, are in excellent agreement with experimental values measured at 1565 K. The relative stability of fcc and bcc phases is assessed by comparing the free energies of alloy formation. The evaluation of the free energies involved the application of a dedicated algorithm for computing the configurational entropies of the alloys. Chemical order is analyzed, as a function of temperature and composition, in terms of the Warren-Cowley short-range order (SRO) parameters and effective chemical pairwise interactions. In addition to compositions close to binary intermetallic phases CrNi2, FeNi, FeNi3, and FeNi8, pronounced chemical order is found

  10. Paramagnetic atom number and paramagnetic critical pressure of the sc, bcc and fcc Ising nanolattices

    NASA Astrophysics Data System (ADS)

    Şarlı, Numan

    2015-01-01

    The effects of the magnetic atom number in the unit volume on the magnetic properties are investigated by using sc (n=8), bcc (n=9) and fcc (n=14) Ising NLs within the effective field theory with correlations. We find that the magnetic properties expand as the magnetic atom number increases in the unit volume and this expanding constitutes an elliptical path at TC. The effect of the magnetic atom number (n) in the unit volume on the magnetic properties (mp) appear as nsc

  11. Dissolving, trapping and detrapping mechanisms of hydrogen in bcc and fcc transition metals

    NASA Astrophysics Data System (ADS)

    You, Yu-Wei; Kong, Xiang-Shan; Wu, Xue-Bang; Xu, Yi-Chun; Fang, Q. F.; Chen, J. L.; Luo, G.-N.; Liu, C. S.; Pan, B. C.; Wang, Zhiguang

    2013-01-01

    First-principles calculations are performed to investigate the dissolving, trapping and detrapping of H in six bcc (V, Nb, Ta, Cr, Mo, W) and six fcc (Ni, Pd, Pt, Cu, Ag, Au) metals. We find that the zero-point vibrations do not change the site-preference order of H at interstitial sites in these metals except Pt. One vacancy could trap a maximum of 4 H atoms in Au and Pt, 6 H atoms in V, Nb, Ta, Cr, Ni, Pd, Cu and Ag, and 12 H atoms in Mo and W. The zero-point vibrations never change the maximum number of H atoms trapped in a single vacancy in these metals. By calculating the formation energy of vacancy-H (Vac-Hn) complex, the superabundant vacancy in V, Nb, Ta, Pd and Ni is demonstrated to be much more easily formed than in the other metals, which has been found in many metals including Pd, Ni and Nb experimentally. Besides, we find that it is most energetically favorable to form Vac-H1 complex in Pt, Cu, Ag and Au, Vac-H4 in Cr, Mo and W, and Vac-H6 in V, Nb, Ta, Pd and Ni. At last, we examine the detrapping behaviors of H atoms in a single vacancy and find that with the heating rate of 10 K/min a vacancy could accommodate 4, 5 and 6 H atoms in Cr, Mo and W at room temperature, respectively. The detrapping temperatures of all H atoms in a single vacancy in V, Nb, Ta, Ni, Pd, Cu and Ag are below room temperature.

  12. A Thermostable phytase from Neosartorya spinosa BCC 41923 and its expression in Pichia pastoris.

    PubMed

    Pandee, Patcharaporn; Summpunn, Pijug; Wiyakrutta, Suthep; Isarangkul, Duangnate; Meevootisom, Vithaya

    2011-04-01

    A phytase gene was cloned from Neosartorya spinosa BCC 41923. The gene was 1,455 bp in size, and the mature protein contained a polypeptide of 439 amino acids. The deduced amino acid sequence contains the consensus motif (RHGXRXP) which is conserved among phytases and acid phosphatases. Five possible disulfide bonds and seven potential N-glycosylation sites have been predicted. The gene was expressed in Pichia pastoris KM71 as an extracellular enzyme. The purified enzyme had specific activity of 30.95 U/mg at 37°C and 38.62 U/mg at 42°C. Molecular weight of the deglycosylated recombinant phytase, determined by SDS-PAGE, was approximately 52 kDa. The optimum pH and temperature for activity were pH 5.5 and 50°C. The residual phytase activity remained over 80% of initial activity after the enzyme was stored in pH 3.0 to 7.0 for 1 h, and at 60% of initial activity after heating at 90°C for 20 min. The enzyme exhibited broad substrate specificity, with phytic acid as the most preferred substrate. Its K (m) and V (max) for sodium phytate were 1.39 mM and 434.78 U/mg, respectively. The enzyme was highly resistant to most metal ions tested, including Fe(2+), Fe(3+), and Al(3+). When incubated with pepsin at a pepsin/phytase ratio of 0.02 (U/U) at 37°C for 2 h, 92% of its initial activity was retained. However, the enzyme was very sensitive to trypsin, as 5% of its initial activity was recovered after treating with trypsin at a trypsin/phytase ratio of 0.01 (U/U).

  13. Investigation on antimicrobial agents of the terrestrial Streptomyces sp. BCC71188.

    PubMed

    Supong, Khomsan; Sripreechasak, Paranee; Tanasupawat, Somboon; Danwisetkanjana, Kannawat; Rachtawee, Pranee; Pittayakhajonwut, Pattama

    2017-01-01

    The terrestrial actinomycete strain BCC71188 was identified as Streptomyces by its morphology (having spiral chain spore on the aerial mycelium), chemotaxonomy (containing LL-diaminopimelic acid in the cell wall), and 16S rRNA gene sequence analysis [showing high similarity values compared with Streptomyces samsunensis M1463(T) (99.85 %) and Streptomyces malaysiensis NBRC 16446(T) (99.40 %)]. The crude extract exhibited antimalarial against Plasmodium falciparum (IC50 0.19 μg/ml), anti-TB against Mycobacterial tuberculosis (MIC 6.25 μg/ml), and antibacterial against Bacillus cereus (MIC 1.56 μg/ml) activities. Therefore, chemical investigation was conducted by employing bioassay-guided method and led to the isolation of 19 compounds including two cyclic peptides (1-2), five macrolides (3-7), new naphthoquinone (8), nahuoic acid C (9), geldanamycin derivatives (10-13), cyclooctatin (14), germicidins A (15) and C (16), actinoramide A (17), abierixin, and 29-O-methylabierixin. These isolated compounds were evaluated for antimicrobial activity, such as antimalarial, anti-TB, and antibacterial activities, and for cytotoxicity against both cancerous (MCF-7, KB, NCI-H187) and non-cancerous (Vero) cells. Compounds 1-7, 10-14 exhibited antimalarial (IC50 0.22-7.14 μg/ml), and elaiophylin analogs (4-6) displayed anti-TB (MIC 0.78-12.00 μg/ml) and B. cereus (MIC 0.78-3.13 μg/ml) activities. Compounds 1, 2, 14, and abierixin displayed weak cytotoxicity, indicating a potential for antimicrobial agents.

  14. Anisotropy and roughness of the solid-liquid interface of BCC Fe.

    PubMed

    Sun, Yongli; Wu, Yongquan; Lu, Xiuming; Li, Rong; Xiao, Junjiang

    2015-02-01

    Melting point T m and kinetic coefficient μ (a proportional constant between the interfacial velocity ν and undercooling ΔT), along with the structural roughness of the solid-liquid interface for body centered cubic (BCC) Fe were calculated by molecular dynamics (MD) simulation. All simulations applied the Sutton-Chen potential, and adopted average bond orientational order (ABOO) parameters together with Voronoi polyhedron method to characterize atomic structure and calculate atomic volume. Anisotropy of T m was found through about 20~40 K decreasing from [100] to [110] and continuously to [111]. Anisotropy of μ with three low index orientations was found as: μ s,[100] > > μ s,[110] > μ s,[111] for solidifying process and μ m,[100] > > μ m,[111] > μ m,[110] for melting process. Slight asymmetry between melting and solidifying was discovered from that the ratios of μ m/μ s are all slightly larger than 1. To explain these, interfacial roughness R int and area ratio S/S 0 (ratio of realistic interfacial area S and the ideal flat cross-sectional area S 0) were defined to verify the anisotropy of interfacial roughness under different supercoolings/superheatings. The results indicated interfacial roughness anisotropies were approximately [100] > [111] > [110]; the interface in melting process is rougher than that in solidifying process; asymmetry of interfacial roughness was larger when temperature deviation ΔT was larger. Anisotropy and asymmetry of interfacial roughness fitted the case of kinetic coefficient μ very well, which could give some explanations to the anisotropies of T m and μ.

  15. LATTICE QCD AT FINITE TEMPERATURE.

    SciTech Connect

    PETRECZKY, P.

    2005-03-12

    I review recent progress in lattice QCD at finite temperature. Results on the transition temperature will be summarized. Recent progress in understanding in-medium modifications of interquark forces and quarkonia spectral functions at finite temperatures is discussed.

  16. Counting Lattice-Gas Invariants

    DTIC Science & Technology

    2007-11-02

    Dominique d’Humières, Brosl Hasslacher, Pierre Lallemand, Yves Pomeau, and Jean-Pierre Rivet . Lattice gas hydrodynamics in two and three dimensions...177. Springer -Verlag, Februrary 1989. Proceedings of the Winter School, Les Houches, France. 6

  17. Lattice Multiplication: Old and New.

    ERIC Educational Resources Information Center

    Givan, Betty; Karr, Rosemary

    1988-01-01

    The author presents two examples of lattice multiplication followed by a computer algorithm to perform this multiplication. The algorithm is given in psuedocode but could easily be given in Pascal. (PK)

  18. Heavy quarks and lattice QCD

    SciTech Connect

    Andreas S. Kronfeld

    2003-11-05

    This paper is a review of heavy quarks in lattice gauge theory, focusing on methodology. It includes a status report on some of the calculations that are relevant to heavy-quark spectroscopy and to flavor physics.

  19. Lattice Studies of Hyperon Spectroscopy

    SciTech Connect

    Richards, David G.

    2016-04-01

    I describe recent progress at studying the spectrum of hadrons containing the strange quark through lattice QCD calculations. I emphasise in particular the richness of the spectrum revealed by lattice studies, with a spectrum of states at least as rich as that of the quark model. I conclude by prospects for future calculations, including in particular the determination of the decay amplitudes for the excited states.

  20. Lattice QCD in rotating frames.

    PubMed

    Yamamoto, Arata; Hirono, Yuji

    2013-08-23

    We formulate lattice QCD in rotating frames to study the physics of QCD matter under rotation. We construct the lattice QCD action with the rotational metric and apply it to the Monte Carlo simulation. As the first application, we calculate the angular momenta of gluons and quarks in the rotating QCD vacuum. This new framework is useful to analyze various rotation-related phenomena in QCD.

  1. Berry Phase in Lattice QCD.

    PubMed

    Yamamoto, Arata

    2016-07-29

    We propose the lattice QCD calculation of the Berry phase, which is defined by the ground state of a single fermion. We perform the ground-state projection of a single-fermion propagator, construct the Berry link variable on a momentum-space lattice, and calculate the Berry phase. As the first application, the first Chern number of the (2+1)-dimensional Wilson fermion is calculated by the Monte Carlo simulation.

  2. Lattice QCD: A Brief Introduction

    NASA Astrophysics Data System (ADS)

    Meyer, H. B.

    A general introduction to lattice QCD is given. The reader is assumed to have some basic familiarity with the path integral representation of quantum field theory. Emphasis is placed on showing that the lattice regularization provides a robust conceptual and computational framework within quantum field theory. The goal is to provide a useful overview, with many references pointing to the following chapters and to freely available lecture series for more in-depth treatments of specifics topics.

  3. Hadronic Resonances from Lattice QCD

    SciTech Connect

    John Bulava; Robert Edwards; George Fleming; K. Jimmy Juge; Adam C. Lichtl; Nilmani Mathur; Colin Morningstar; David Richards; Stephen J. Wallace

    2007-06-16

    The determination of the pattern of hadronic resonances as predicted by Quantum Chromodynamics requires the use of non-perturbative techniques. Lattice QCD has emerged as the dominant tool for such calculations, and has produced many QCD predictions which can be directly compared to experiment. The concepts underlying lattice QCD are outlined, methods for calculating excited states are discussed, and results from an exploratory Nucleon and Delta baryon spectrum study are presented.

  4. Hadronic Resonances from Lattice QCD

    SciTech Connect

    Lichtl, Adam C.; Bulava, John; Morningstar, Colin; Edwards, Robert; Mathur, Nilmani; Richards, David; Fleming, George; Juge, K. Jimmy; Wallace, Stephen J.

    2007-10-26

    The determination of the pattern of hadronic resonances as predicted by Quantum Chromodynamics requires the use of non-perturbative techniques. Lattice QCD has emerged as the dominant tool for such calculations, and has produced many QCD predictions which can be directly compared to experiment. The concepts underlying lattice QCD are outlined, methods for calculating excited states are discussed, and results from an exploratory Nucleon and Delta baryon spectrum study are presented.

  5. The EMMA main ring lattice

    NASA Astrophysics Data System (ADS)

    Berg, J. Scott

    2008-11-01

    The EMMA experiment will study beam dynamics in a linear non-scaling fixed-field alternating gradient (FFAG) accelerator. I give a brief introduction to the purpose and goals of the EMMA experiment and describe how they will impact the design of the main EMMA ring. I then describe the mathematical model that is used to describe the EMMA lattice. Finally, I show how the different lattice configurations were obtained and list their parameters.

  6. Lattice gauge theory for QCD

    SciTech Connect

    DeGrand, T.

    1997-06-01

    These lectures provide an introduction to lattice methods for nonperturbative studies of Quantum Chromodynamics. Lecture 1: Basic techniques for QCD and results for hadron spectroscopy using the simplest discretizations; lecture 2: Improved actions--what they are and how well they work; lecture 3: SLAC physics from the lattice-structure functions, the mass of the glueball, heavy quarks and {alpha}{sub s} (M{sub z}), and B-{anti B} mixing. 67 refs., 36 figs.

  7. Emergent three-brane lattices

    SciTech Connect

    Mello Koch, Robert de; Mashile, Grant; Park, Nicholas

    2010-05-15

    In this article the anomalous dimension of a class of operators with a bare dimension of O(N) is studied. The operators considered are dual to excited states of a two giant graviton system. In the Yang-Mills theory they are described by restricted Schur polynomials, labeled with Young diagrams that have at most two columns. In a certain limit the dilatation operator looks like a lattice version of a second derivative, with the lattice emerging from the Young diagram itself.

  8. Optimal lattice-structured materials

    DOE PAGES

    Messner, Mark C.

    2016-07-09

    This paper describes a method for optimizing the mesostructure of lattice-structured materials. These materials are periodic arrays of slender members resembling efficient, lightweight macroscale structures like bridges and frame buildings. Current additive manufacturing technologies can assemble lattice structures with length scales ranging from nanometers to millimeters. Previous work demonstrates that lattice materials have excellent stiffness- and strength-to-weight scaling, outperforming natural materials. However, there are currently no methods for producing optimal mesostructures that consider the full space of possible 3D lattice topologies. The inverse homogenization approach for optimizing the periodic structure of lattice materials requires a parameterized, homogenized material model describingmore » the response of an arbitrary structure. This work develops such a model, starting with a method for describing the long-wavelength, macroscale deformation of an arbitrary lattice. The work combines the homogenized model with a parameterized description of the total design space to generate a parameterized model. Finally, the work describes an optimization method capable of producing optimal mesostructures. Several examples demonstrate the optimization method. One of these examples produces an elastically isotropic, maximally stiff structure, here called the isotruss, that arguably outperforms the anisotropic octet truss topology.« less

  9. Optimal lattice-structured materials

    SciTech Connect

    Messner, Mark C.

    2016-07-09

    This paper describes a method for optimizing the mesostructure of lattice-structured materials. These materials are periodic arrays of slender members resembling efficient, lightweight macroscale structures like bridges and frame buildings. Current additive manufacturing technologies can assemble lattice structures with length scales ranging from nanometers to millimeters. Previous work demonstrates that lattice materials have excellent stiffness- and strength-to-weight scaling, outperforming natural materials. However, there are currently no methods for producing optimal mesostructures that consider the full space of possible 3D lattice topologies. The inverse homogenization approach for optimizing the periodic structure of lattice materials requires a parameterized, homogenized material model describing the response of an arbitrary structure. This work develops such a model, starting with a method for describing the long-wavelength, macroscale deformation of an arbitrary lattice. The work combines the homogenized model with a parameterized description of the total design space to generate a parameterized model. Finally, the work describes an optimization method capable of producing optimal mesostructures. Several examples demonstrate the optimization method. One of these examples produces an elastically isotropic, maximally stiff structure, here called the isotruss, that arguably outperforms the anisotropic octet truss topology.

  10. Optimal lattice-structured materials

    SciTech Connect

    Messner, Mark C.

    2016-07-09

    This paper describes a method for optimizing the mesostructure of lattice-structured materials. These materials are periodic arrays of slender members resembling efficient, lightweight macroscale structures like bridges and frame buildings. Current additive manufacturing technologies can assemble lattice structures with length scales ranging from nanometers to millimeters. Previous work demonstrates that lattice materials have excellent stiffness- and strength-to-weight scaling, outperforming natural materials. However, there are currently no methods for producing optimal mesostructures that consider the full space of possible 3D lattice topologies. The inverse homogenization approach for optimizing the periodic structure of lattice materials requires a parameterized, homogenized material model describing the response of an arbitrary structure. This work develops such a model, starting with a method for describing the long-wavelength, macroscale deformation of an arbitrary lattice. The work combines the homogenized model with a parameterized description of the total design space to generate a parameterized model. Finally, the work describes an optimization method capable of producing optimal mesostructures. Several examples demonstrate the optimization method. One of these examples produces an elastically isotropic, maximally stiff structure, here called the isotruss, that arguably outperforms the anisotropic octet truss topology.

  11. Advances in Lattice Quantum Chromodynamics

    NASA Astrophysics Data System (ADS)

    McGlynn, Greg

    In this thesis we make four contributions to the state of the art in numerical lattice simulations of quantum chromodynamics (QCD). First, we present the most detailed investigation yet of the autocorrelations of topological observations in hybrid Monte Carlo simulations of QCD and of the effects of the boundary conditions on these autocorrelations. This results in a numerical criterion for deciding when open boundary conditions are useful for reducing these autocorrelations, which are a major barrier to reliable calculations at fine lattice spacings. Second, we develop a dislocation-enhancing determinant, and demonstrate that it reduces the autocorrelation time of the topological charge. This alleviates problems with slow topological tunneling at fine lattice spacings, enabling simulations on fine lattices to be completed with much less computational effort. Third, we show how to apply the recently developed zMobius technique to hybrid Monte Carlo evolutions with domain wall fermions, achieving nearly a factor of two speedup in the light quark determinant, the single most expensive part of the calculation. The dislocation-enhancing determinant and the zMobius technique have enabled us to begin simulations of fine ensembles with four flavors of dynamical domain wall quarks. Finally, we show how to include the previously-neglected G1 operator in nonperturbative renormalization of the DeltaS = 1 effective weak Hamiltonian on the lattice. This removes an important systematic error in lattice calculations of weak matrix elements, in particular the important K → pipi decay.

  12. Optimal lattice-structured materials

    NASA Astrophysics Data System (ADS)

    Messner, Mark C.

    2016-11-01

    This work describes a method for optimizing the mesostructure of lattice-structured materials. These materials are periodic arrays of slender members resembling efficient, lightweight macroscale structures like bridges and frame buildings. Current additive manufacturing technologies can assemble lattice structures with length scales ranging from nanometers to millimeters. Previous work demonstrates that lattice materials have excellent stiffness- and strength-to-weight scaling, outperforming natural materials. However, there are currently no methods for producing optimal mesostructures that consider the full space of possible 3D lattice topologies. The inverse homogenization approach for optimizing the periodic structure of lattice materials requires a parameterized, homogenized material model describing the response of an arbitrary structure. This work develops such a model, starting with a method for describing the long-wavelength, macroscale deformation of an arbitrary lattice. The work combines the homogenized model with a parameterized description of the total design space to generate a parameterized model. Finally, the work describes an optimization method capable of producing optimal mesostructures. Several examples demonstrate the optimization method. One of these examples produces an elastically isotropic, maximally stiff structure, here called the isotruss, that arguably outperforms the anisotropic octet truss topology.

  13. Phyllotaxis of flux lattices in layered superconductors

    SciTech Connect

    Levitov, L.S. )

    1991-01-14

    The geometry of a flux lattice pinned by superconducting layers is studied. Under variation of magnetic field the lattice undergoes an infinite sequence of continuous transitions corresponding to different ways of selection of shortest distances. All possible lattices form a hierarchical structure identified as the hierarchy of Farey numbers. It is shown that dynamically accessible lattices are characterized by pairs of consecutive Fibonacci numbers.

  14. Lattice vertex algebras on general even, self-dual lattices

    NASA Astrophysics Data System (ADS)

    Kleinschmidt, Axel

    2003-07-01

    In this note we analyse the Lie algebras of physical states stemming from lattice constructions on general even, self-dual lattices Gammap,q with p geq q. It is known that if the lattice is at most lorentzian, the resulting Lie algebra is of generalized Kac-Moody type (or has a quotient that is). We show that this is not true as soon as q geq 1. By studying a certain sublattice in the case q > 1 we obtain results that lead to the conclusion that the resulting non-GKM Lie algebra cannot be described conveniently in terms of generators and relations and belongs to a new and qualitatively different class of Lie algebras.

  15. In-situ TEM observation of dynamic interaction between dislocation and cavity in BCC metals in tensile deformation

    NASA Astrophysics Data System (ADS)

    Tougou, Kouichi; Shikata, Akihito; Kawase, Uchu; Onitsuka, Takashi; Fukumoto, Ken-ichi

    2015-10-01

    To investigate the effect of irradiation hardening of structural materials due to cavity formation in BCC metals for nuclear applications, an in-situ transmission electron microscopy (TEM) observation in tensile test was performed for the helium ion-irradiated specimens of pure molybdenum and pure iron. The obstacle barrier strength, α was calculated from the bow-out dislocation based on line tension model, and the obstacle barrier strengths of cavity in pure molybdenum and pure iron were about 0.5-0.7. The fractions of cross-slip generation of dislocation of screw type due to interaction with the cavities were about 16-18 % for pure molybdenum.

  16. Thermodynamic properties of carbon in b.c.c. and f.c.c. iron-silicon-carbon solid solutions.

    NASA Technical Reports Server (NTRS)

    Chraska, P.; Mclellan, R. B.

    1971-01-01

    The equilibrium between hydrogen-methane gas mixtures and Fe-Si-C solid solutions has been investigated both as a function of temperature and carburizing gas composition. The thermodynamic properties of the carbon atoms in both b.c.c. and f.c.c. solid solution have been derived from the equilibrium measurements. The results found have been compared with those of earlier investigations and with the predictions of recent theoretical models on ternary solid solutions containing both substitutional and interstitial solute atoms.

  17. Residence in biofilms allows Burkholderia cepacia complex (Bcc) bacteria to evade the antimicrobial activities of neutrophil-like dHL60 cells

    PubMed Central

    Murphy, Mark P.; Caraher, Emma

    2015-01-01

    Bacteria of the Burkholderia cepacia complex (Bcc) persist in the airways of people with cystic fibrosis (CF) despite the continuous recruitment of neutrophils. Most members of Bcc are multidrug resistant and can form biofilms. As such, we sought to investigate whether biofilm formation plays a role in protecting Bcc bacteria from neutrophils. Using the neutrophil-like, differentiated cell line, dHL60, we have shown for the first time that Bcc biofilms are enhanced in the presence of these cells. Biofilm biomass was greater following culture in the presence of dHL60 cells than in their absence, likely the result of incorporating dHL60 cellular debris into the biofilm. Moreover, we have demonstrated that mature biofilms (cultured for up to 72 h) induced necrosis in the cells. Established biofilms also acted as a barrier to the migration of the cells and masked the bacteria from being recognized by the cells; dHL60 cells expressed less IL-8 mRNA and secreted significantly less IL-8 when cultured in the presence of biofilms, with respect to planktonic bacteria. Our findings provide evidence that biofilm formation can, at least partly, enable the persistence of Bcc bacteria in the CF airway and emphasize a requirement for anti-biofilm therapeutics. PMID:26371179

  18. Residence in biofilms allows Burkholderia cepacia complex (Bcc) bacteria to evade the antimicrobial activities of neutrophil-like dHL60 cells.

    PubMed

    Murphy, Mark P; Caraher, Emma

    2015-11-01

    Bacteria of the Burkholderia cepacia complex (Bcc) persist in the airways of people with cystic fibrosis (CF) despite the continuous recruitment of neutrophils. Most members of Bcc are multidrug resistant and can form biofilms. As such, we sought to investigate whether biofilm formation plays a role in protecting Bcc bacteria from neutrophils. Using the neutrophil-like, differentiated cell line, dHL60, we have shown for the first time that Bcc biofilms are enhanced in the presence of these cells. Biofilm biomass was greater following culture in the presence of dHL60 cells than in their absence, likely the result of incorporating dHL60 cellular debris into the biofilm. Moreover, we have demonstrated that mature biofilms (cultured for up to 72 h) induced necrosis in the cells. Established biofilms also acted as a barrier to the migration of the cells and masked the bacteria from being recognized by the cells; dHL60 cells expressed less IL-8 mRNA and secreted significantly less IL-8 when cultured in the presence of biofilms, with respect to planktonic bacteria. Our findings provide evidence that biofilm formation can, at least partly, enable the persistence of Bcc bacteria in the CF airway and emphasize a requirement for anti-biofilm therapeutics.

  19. Bcc and Fcc transition metals and alloys: a central role for the Jahn-Teller effect in explaining their ideal and distorted structures.

    PubMed

    Lee, Stephen; Hoffmann, Roald

    2002-05-01

    Transition metal elements, alloys, and intermetallic compounds often adopt the body centered cubic (bcc) and face centered cubic (fcc) structures. By comparing quantitative density functional with qualitative tight-binding calculations, we analyze the electronic factors which make the bcc and fcc structures energetically favorable. To do so, we develop a tight-binding function, DeltaE(star), a function that measures the energetic effects of transferring electrons within wave vector stars. This function allows one to connect distortions in solids to the Jahn-Teller effect in molecules and to provide an orbital perspective on structure determining deformations in alloys. We illustrate its use by considering first a two-dimensional square net. We then turn to three-dimensional fcc and bcc structures, and distortions of these. Using DeltaE(star), we rationalize the differences in energy of these structures. We are able to deduce which orbitals are responsible for instabilities in seven to nine valence electron per atom (e(-)/a) bcc systems and five and six e(-)/a fcc structures. Finally we demonstrate that these results account for the bcc and fcc type structures found in both the elements and binary intermetallic compounds of group 4 through 9 transition metal atoms. The outline of a theory of metal structure deformations based on loss of point group operation rather than translational symmetry is presented.

  20. Hamiltonian tomography of photonic lattices

    NASA Astrophysics Data System (ADS)

    Ma, Ruichao; Owens, Clai; LaChapelle, Aman; Schuster, David I.; Simon, Jonathan

    2017-06-01

    In this paper we introduce an approach to Hamiltonian tomography of noninteracting tight-binding photonic lattices. To begin with, we prove that the matrix element of the low-energy effective Hamiltonian between sites α and β may be obtained directly from Sα β(ω ) , the (suitably normalized) two-port measurement between sites α and β at frequency ω . This general result enables complete characterization of both on-site energies and tunneling matrix elements in arbitrary lattice networks by spectroscopy, and suggests that coupling between lattice sites is a topological property of the two-port spectrum. We further provide extensions of this technique for measurement of band projectors in finite, disordered systems with good band flatness ratios, and apply the tool to direct real-space measurement of the Chern number. Our approach demonstrates the extraordinary potential of microwave quantum circuits for exploration of exotic synthetic materials, providing a clear path to characterization and control of single-particle properties of Jaynes-Cummings-Hubbard lattices. More broadly, we provide a robust, unified method of spectroscopic characterization of linear networks from photonic crystals to microwave lattices and everything in between.

  1. Quantum lattice model solver HΦ

    NASA Astrophysics Data System (ADS)

    Kawamura, Mitsuaki; Yoshimi, Kazuyoshi; Misawa, Takahiro; Yamaji, Youhei; Todo, Synge; Kawashima, Naoki

    2017-08-01

    HΦ [aitch-phi ] is a program package based on the Lanczos-type eigenvalue solution applicable to a broad range of quantum lattice models, i.e., arbitrary quantum lattice models with two-body interactions, including the Heisenberg model, the Kitaev model, the Hubbard model and the Kondo-lattice model. While it works well on PCs and PC-clusters, HΦ also runs efficiently on massively parallel computers, which considerably extends the tractable range of the system size. In addition, unlike most existing packages, HΦ supports finite-temperature calculations through the method of thermal pure quantum (TPQ) states. In this paper, we explain theoretical background and user-interface of HΦ. We also show the benchmark results of HΦ on supercomputers such as the K computer at RIKEN Advanced Institute for Computational Science (AICS) and SGI ICE XA (Sekirei) at the Institute for the Solid State Physics (ISSP).

  2. Algebraic Lattices in QFT Renormalization

    NASA Astrophysics Data System (ADS)

    Borinsky, Michael

    2016-07-01

    The structure of overlapping subdivergences, which appear in the perturbative expansions of quantum field theory, is analyzed using algebraic lattice theory. It is shown that for specific QFTs the sets of subdivergences of Feynman diagrams form algebraic lattices. This class of QFTs includes the standard model. In kinematic renormalization schemes, in which tadpole diagrams vanish, these lattices are semimodular. This implies that the Hopf algebra of Feynman diagrams is graded by the coradical degree or equivalently that every maximal forest has the same length in the scope of BPHZ renormalization. As an application of this framework, a formula for the counter terms in zero-dimensional QFT is given together with some examples of the enumeration of primitive or skeleton diagrams.

  3. Screened Wigner-lattice model

    SciTech Connect

    Dias, M.; Chaba, A.N.

    1983-01-15

    Recently Medeiros e Silva and Mokross proposed the screened Wigner-lattice model which consists of negative point charges on a Bravais lattice interacting through the screened Coulomb potential -Q exp(-lambdar)/r and the positive charge background with the density (Q/..cap omega..) exp(-lambdar). We point out the drawbacks of this model and show that by modifying the background charge density to (Qlambda/sup 2//4..pi..) summation/sub tau-arrow-right/ exp(-lambdaVertical Barr-tau-arrow-rightVertical Bar)/Vertical Barr-tau-arrow-rightVertical Bar the screened Coloumb form of the potential emerges naturally as a consequence. Further, this modified screened Wigner-lattice model is free from the defects of the other model.

  4. Lattice QCD Beyond Ground States

    SciTech Connect

    Huey-Wen Lin; Saul D. Cohen

    2007-09-11

    In this work, we apply black box methods (methods not requiring input) to find excited-state energies. A variety of such methods for lattice QCD were introduced at the 3rd iteration of the numerical workshop series. We first review a selection of approaches that have been used in lattice calculations to determine multiple energy states: multiple correlator fits, the variational method and Bayesian fitting. In the second half, we will focus on a black box method, the multi-effective mass. We demonstrate the approach on a toy model, as well as on real lattice data, extracting multiple states from single correlators. Without complicated operator construction or specialized fitting programs, the black box method shows good consistency with the traditional approaches.

  5. THERMAL STABILITY AND MECHANICAL BEHAVIOR OF ULTRA-FINE BCC TA AND V COATINGS

    SciTech Connect

    Jankowski, A F; Go, J; Hayes, J P

    2006-11-03

    Ultra-refined microstructures of both tantalum (Ta) and vanadium (V) are produced using electron-beam evaporation and magnetron sputtering deposition. The thermal stability of the micron-to-submicron grain size foils is examined to quantify the kinetics and activation energy of diffusion, as well as identify the temperature transition in dominant mechanism from grain boundary to lattice diffusion. The activation energies for boundary diffusion in Ta and V determined from grain growth are 0.3 and 0.2 eV{center_dot}atom{sup -1}, respectively, versus lattice diffusion values of 4.3 and 3.2 eV{center_dot}atom{sup -1}, respectively. The mechanical behavior, as characterized by strength and hardness, is found to inversely scale with square-root grain size according to the Hall-Petch relationship. The strength of Ta and V increases two-fold from 400 MPa, as the grain size decreases from 2 to 0.75 {micro}m.

  6. Thermal vacancies and phase separation in bcc mixtures of helium-3 and helium-4

    SciTech Connect

    Fraass, Benedick Andrew

    1980-01-01

    Thermal vacancy concentrations in crystals of 3He-4He mixtures have been determined. A new x-ray diffractometer-position sensitive detector system is used to make measurements of the absolute lattice parameter of the helium crystals with an accuracy of 300 ppM, and measurements of changes in lattice parameters to better than 60 ppM. The phase separation of the concentrated3He-4He mixtures has been studied in detail with the x-ray measurements. Vacancy concentrations in crystals with 99%, 51%, 28%, 12%, and 0% 3He have been determined. Phase separation has been studied in mixed crystals with concentrations of 51%, 28%, and 12% 3He and melting pressures between 3.0 and 6.1 MPa. The phase separation temperatures determined in this work are in general agreement with previous work. The pressure dependence of Tc, the phase separation temperature for a 50% mixture, is found to be linear: dTc/dP = -34 mdeg/MPa. The x-ray measurements are used to make several comments on the low temperature phase diagram of the helium mixtures.

  7. Subwavelength lattice optics by evolutionary design.

    PubMed

    Huntington, Mark D; Lauhon, Lincoln J; Odom, Teri W

    2014-12-10

    This paper describes a new class of structured optical materials--lattice opto-materials--that can manipulate the flow of visible light into a wide range of three-dimensional profiles using evolutionary design principles. Lattice opto-materials are based on the discretization of a surface into a two-dimensional (2D) subwavelength lattice whose individual lattice sites can be controlled to achieve a programmed optical response. To access a desired optical property, we designed a lattice evolutionary algorithm that includes and optimizes contributions from every element in the lattice. Lattice opto-materials can exhibit simple properties, such as on- and off-axis focusing, and can also concentrate light into multiple, discrete spots. We expanded the unit cell shapes of the lattice to achieve distinct, polarization-dependent optical responses from the same 2D patterned substrate. Finally, these lattice opto-materials can also be combined into architectures that resemble a new type of compound flat lens.

  8. Tetraquark states from lattice QCD

    SciTech Connect

    Mathur, Nilmani

    2011-10-24

    Recently there have been considerable interests in studying hadronic states beyond the usual two and three quark configurations. With the renewed experimental interests in {sigma}(600) and the inability of quark model to incorporate too many light scalar mesons, it is quite appropriate to study hadronic states with four quark configurations. Moreover, some of the newly observed charmed hadrons may well be described by four quark configurations. Lattice QCD is perhaps the most desirable tool to adjudicate the theoretical controversy of the scalar mesons and to interpret the structures of the newly observed charmed states. Here we briefly reviewed the lattice studies of four-quark hadrons.

  9. Lattice QCD and Nuclear Physics

    SciTech Connect

    Konstantinos Orginos

    2007-03-01

    A steady stream of developments in Lattice QCD have made it possible today to begin to address the question of how nuclear physics emerges from the underlying theory of strong interactions. Central role in this understanding play both the effective field theory description of nuclear forces and the ability to perform accurate non-perturbative calculations in lo w energy QCD. Here I present some recent results that attempt to extract important low energy constants of the effective field theory of nuclear forces from lattice QCD.

  10. Nuclear Physics from Lattice QCD

    SciTech Connect

    William Detmold, Silas Beane, Konstantinos Orginos, Martin Savage

    2011-01-01

    We review recent progress toward establishing lattice Quantum Chromodynamics as a predictive calculational framework for nuclear physics. A survey of the current techniques that are used to extract low-energy hadronic scattering amplitudes and interactions is followed by a review of recent two-body and few-body calculations by the NPLQCD collaboration and others. An outline of the nuclear physics that is expected to be accomplished with Lattice QCD in the next decade, along with estimates of the required computational resources, is presented.

  11. Continuous Lattices and Mathematical Morphology

    DTIC Science & Technology

    1998-06-01

    ARMY RESEARCH LABORATORY Continuous Lattices and Mathematical Morphology by Dennis W. McGuire ARL-TR-1548 ^»»».■■SiSIIIBRHH^ June 1998...Research Laboratory Adelphi, MD 20783-1197 ARL-TR-1548 June 1998 Continuous Lattices and Mathematical Morphology Dennis W. McGuire Sensors and...Washington DC 20301-7100 AMCOM MRDEC Atta AMSMI-RD W C McCorkle Redstone Arsenal AL 35898-5240 Army RsrchPhysics Div Atta AMXRO-EMCS Assoc Dir Math

  12. Nucleon Structure from Lattice QCD

    SciTech Connect

    Haegler, Philipp

    2011-10-24

    Hadron structure calculations in lattice QCD have seen substantial progress during recent years. We illustrate the achievements that have been made by discussing latest lattice results for a limited number of important observables related to nucleon form factors and generalized parton distributions. A particular focus is placed on the decomposition of the nucleon spin 1/2 in terms of quark spin and orbital angular momentum contributions. Results and limitations of the necessary chiral extrapolations based on ChPT will be briefly discussed.

  13. Negative-viscosity lattice gases

    SciTech Connect

    Rothman, D.H. )

    1989-08-01

    A new irreversible collision rule is introduced for lattice-gas automata. The rule maximizes the flux of momentum in the direction of the local momentum gradient, yielding a negative shear viscosity. Numerically results in 2D show that the negative viscosity leads to the spontaneous ordering of the velocity field, with vorticity resolvable down to one lattice-link length. The new rule may be used in conjunction with previously proposed collision rules to yield a positive shear viscosity lower than the previous rules provide. In particular, Poiseuille flow tests demonstrate a decrease in viscosity by more than a factor of 2.

  14. Kondo length in bosonic lattices

    NASA Astrophysics Data System (ADS)

    Giuliano, Domenico; Sodano, Pasquale; Trombettoni, Andrea

    2017-09-01

    Motivated by the fact that the low-energy properties of the Kondo model can be effectively simulated in spin chains, we study the realization of the effect with bond impurities in ultracold bosonic lattices at half filling. After presenting a discussion of the effective theory and of the mapping of the bosonic chain onto a lattice spin Hamiltonian, we provide estimates for the Kondo length as a function of the parameters of the bosonic model. We point out that the Kondo length can be extracted from the integrated real-space correlation functions, which are experimentally accessible quantities in experiments with cold atoms.

  15. Chiral symmetry on the lattice

    SciTech Connect

    Creutz, M.

    1994-11-01

    The author reviews some of the difficulties associated with chiral symmetry in the context of a lattice regulator. The author discusses the structure of Wilson Fermions when the hopping parameter is in the vicinity of its critical value. Here one flavor contrasts sharply with the case of more, where a residual chiral symmetry survives anomalies. The author briefly discusses the surface mode approach, the use of mirror Fermions to cancel anomalies, and finally speculates on the problems with lattice versions of the standard model.

  16. Phase transition from fcc to bcc structure of the Cu-clusters during nanocrystallization of Fe85.2Si1B9P4Cu0.8 soft magnetic alloy

    NASA Astrophysics Data System (ADS)

    Nishijima, Masahiko; Matsuura, Makoto; Takenaka, Kana; Takeuchi, Akira; Ofuchi, Hironori; Makino, Akihiro

    2014-05-01

    A role of Cu on the nanocrystallization of an Fe85.2Si1B9P4Cu0.8 alloy was investigated by X-ray absorption fine structure (XAFS) and transmission electron microscopy (TEM). The Cu K-edge XAFS results show that local structure around Cu is disordered for the as-quenched sample whereas it changes to fcc-like structure at 613 K. The fcc Cu-clusters are, however, thermodynamically unstable and begin to transform into bcc structure at 638 K. An explicit bcc structure is observed for the sample annealed at 693 K for 600 s in which TEM observation shows that precipitated bcc-Fe crystallites with ˜12 nm are homogeneously distributed. The bcc structure of the Cu-clusters transforms into the fcc-type again at 973 K, which can be explained by the TEM observations; Cu segregates at grain boundaries between bcc-Fe crystallites and Fe3(B,P) compounds. Combining the XAFS results with the TEM observations, the structure transition of the Cu-clusters from fcc to bcc is highly correlated with the preliminary precipitation of the bcc-Fe which takes place prior to the onset of the first crystallization temperature, Tx1 = 707 K. Thermodynamic analysis suggests that an interfacial energy density γ between an fcc-Cu cluster and bcc-Fe matrix dominates at a certain case over the structural energy between fcc and bcc Cu, ΔGfcc - bcc, which causes phase transition of the Cu clusters from fcc to bcc structure.

  17. Correlating superlattice polymorphs to internanoparticle distance, packing density, and surface lattice in assemblies of PbS nanoparticles.

    PubMed

    Wang, Zhongwu; Schliehe, Constanze; Bian, Kaifu; Dale, Darren; Bassett, William A; Hanrath, Tobias; Klinke, Christian; Weller, Horst

    2013-03-13

    Assemblies of 3.5 nm PbS nanoparticles (NPs) nucleate in three dominant superlattice polymorphs: amorphous, body-centered-cubic (bcc) and face-centered-cubic (fcc) phase. This superlattice relationship can be controlled by the inter-NP distance without changing the NP size. Upon increase of inter-NP distance, the packing density decreases, and the capping molecules at NP surfaces change in structure and accordingly modify the surface energy. The driving force for NP assembly develops from an entropic maximization to a reduction of total free energy through multiple interactions between surface molecules and NPs and resulting variation of surface molecules. Upon long-term aging and additional thermal treatment, fcc undergoes a tetragonal distortion and subsequently transforms to bcc phase, and simultaneously, the NPs embedded in supercrystals reduce surface energy primarily in {200} facets. Linking molecule-NP interactions with a series of changes of packing density and surface lattice spacings of NPs allows for an interpretation of principles governing the nucleation, structure stability, and transformation of PbS NP-assembled supercrystals.

  18. SIMS as a new methodology to depth profile helium in as-implanted and annealed pure bcc metals?

    NASA Astrophysics Data System (ADS)

    Gorondy-Novak, S.; Jomard, F.; Prima, F.; Lefaix-Jeuland, H.

    2017-05-01

    Reliable He profiles are highly desirable for better understanding helium behavior in materials for future nuclear applications. Recently, Secondary Ions Mass Spectrometry (SIMS) allowed the characterization of helium distribution in as-implanted metallic systems. The Cs+ primary ion beam coupled with CsHe+ molecular detector appeared to be a promising technique which overcomes the very high He ionization potential. In this study, 4He depth profiles in pure body centered cubic (bcc) metals (V, Fe, Ta, Nb and Mo) as-implanted and annealed, were obtained by SIMS. All as-implanted samples exhibited a projected range of around 200 nm, in agreement with SRIM theoretical calculations. After annealing treatment, SIMS measurements evidenced the evolution of helium depth profile with temperature. The latter SIMS results were compared to the helium bubble distribution obtained by Transmission Electron Microscopy (TEM). This study confirmed the great potential of this experimental procedure as a He-depth profiling technique in bcc metals. Indeed, the methodology described in this work could be extended to other materials including metallic and non-metallic compounds. Nevertheless, the quantification of helium concentration after annealing treatment by SIMS remains uncertain probably due to the non-uniform ionization efficiency in samples containing large bubbles.

  19. Nonlinear elastic effects in phase field crystal and amplitude equations: Comparison to ab initio simulations of bcc metals and graphene

    NASA Astrophysics Data System (ADS)

    Hüter, Claas; Friák, Martin; Weikamp, Marc; Neugebauer, Jörg; Goldenfeld, Nigel; Svendsen, Bob; Spatschek, Robert

    2016-06-01

    We investigate nonlinear elastic deformations in the phase field crystal model and derived amplitude equation formulations. Two sources of nonlinearity are found, one of them is based on geometric nonlinearity expressed through a finite strain tensor. This strain tensor is based on the inverse right Cauchy-Green deformation tensor and correctly describes the strain dependence of the stiffness for anisotropic and isotropic behavior. In isotropic one- and two-dimensional situations, the elastic energy can be expressed equivalently through the left deformation tensor. The predicted isotropic low-temperature nonlinear elastic effects are directly related to the Birch-Murnaghan equation of state with bulk modulus derivative K'=4 for bcc. A two-dimensional generalization suggests K2D '=5 . These predictions are in agreement with ab initio results for large strain bulk deformations of various bcc elements and graphene. Physical nonlinearity arises if the strain dependence of the density wave amplitudes is taken into account and leads to elastic weakening. For anisotropic deformation, the magnitudes of the amplitudes depend on their relative orientation to the applied strain.

  20. First-principles phonon spectrum in bcc Ba: Three-ion forces and transition-metal behavior

    NASA Astrophysics Data System (ADS)

    Moriarty, John A.

    1986-11-01

    The influence of d electrons on the structural and vibrational properties of the heavy alkaline-earth metals increases with atomic number. The occurrence of the bcc structure in Ba (versus fcc in Ca and Sr) suggests the onset of transition-metal behavior, where the bottom of the 5d band has crossed below the Fermi level. This behavior also appears to be revealed in the recently measured phonon spectrum, which is found to be somewhat anomalous. We have made a first-principles analysis of the phonon spectrum of Ba in the context of the new transition-metal generalized pseudopotential theory. We find that partial filling of the 5d band is essential both to stabilize the bcc structure and to lower the calculated phonon frequencies into the measured range. Furthermore, the inclusion of three-ion angular forces (in addition to normal two-ion pair forces) is necessary to explain the observed anomalous lowering of the longitudinal branch below the transverse branch in the [100] direction.