Sample records for bci engineering aspects

  1. Information Theoretic Extraction of EEG Features for Monitoring Subject Attention

    NASA Technical Reports Server (NTRS)

    Principe, Jose C.

    2000-01-01

    The goal of this project was to test the applicability of information theoretic learning (feasibility study) to develop new brain computer interfaces (BCI). The difficulty to BCI comes from several aspects: (1) the effective data collection of signals related to cognition; (2) the preprocessing of these signals to extract the relevant information; (3) the pattern recognition methodology to detect reliably the signals related to cognitive states. We only addressed the two last aspects in this research. We started by evaluating an information theoretic measure of distance (Bhattacharyya distance) for BCI performance with good predictive results. We also compared several features to detect the presence of event related desynchronization (ERD) and synchronization (ERS), and concluded that at least for now the bandpass filtering is the best compromise between simplicity and performance. Finally, we implemented several classifiers for temporal - pattern recognition. We found out that the performance of temporal classifiers is superior to static classifiers but not by much. We conclude by stating that the future of BCI should be found in alternate approaches to sense, collect and process the signals created by populations of neurons. Towards this goal, cross-disciplinary teams of neuroscientists and engineers should be funded to approach BCIs from a much more principled view point.

  2. A note on ethical aspects of BCI.

    PubMed

    Haselager, Pim; Vlek, Rutger; Hill, Jeremy; Nijboer, Femke

    2009-11-01

    This paper focuses on ethical aspects of BCI, as a research and a clinical tool, that are challenging for practitioners currently working in the field. Specifically, the difficulties involved in acquiring informed consent from locked-in patients are investigated, in combination with an analysis of the shared moral responsibility in BCI teams, and the complications encountered in establishing effective communication with media.

  3. A Development Architecture for Serious Games Using BCI (Brain Computer Interface) Sensors

    PubMed Central

    Sung, Yunsick; Cho, Kyungeun; Um, Kyhyun

    2012-01-01

    Games that use brainwaves via brain–computer interface (BCI) devices, to improve brain functions are known as BCI serious games. Due to the difficulty of developing BCI serious games, various BCI engines and authoring tools are required, and these reduce the development time and cost. However, it is desirable to reduce the amount of technical knowledge of brain functions and BCI devices needed by game developers. Moreover, a systematic BCI serious game development process is required. In this paper, we present a methodology for the development of BCI serious games. We describe an architecture, authoring tools, and development process of the proposed methodology, and apply it to a game development approach for patients with mild cognitive impairment as an example. This application demonstrates that BCI serious games can be developed on the basis of expert-verified theories. PMID:23202227

  4. A development architecture for serious games using BCI (brain computer interface) sensors.

    PubMed

    Sung, Yunsick; Cho, Kyungeun; Um, Kyhyun

    2012-11-12

    Games that use brainwaves via brain-computer interface (BCI) devices, to improve brain functions are known as BCI serious games. Due to the difficulty of developing BCI serious games, various BCI engines and authoring tools are required, and these reduce the development time and cost. However, it is desirable to reduce the amount of technical knowledge of brain functions and BCI devices needed by game developers. Moreover, a systematic BCI serious game development process is required. In this paper, we present a methodology for the development of BCI serious games. We describe an architecture, authoring tools, and development process of the proposed methodology, and apply it to a game development approach for patients with mild cognitive impairment as an example. This application demonstrates that BCI serious games can be developed on the basis of expert-verified theories.

  5. Context-aware brain-computer interfaces: exploring the information space of user, technical system and environment

    NASA Astrophysics Data System (ADS)

    Zander, T. O.; Jatzev, S.

    2012-02-01

    Brain-computer interface (BCI) systems are usually applied in highly controlled environments such as research laboratories or clinical setups. However, many BCI-based applications are implemented in more complex environments. For example, patients might want to use a BCI system at home, and users without disabilities could benefit from BCI systems in special working environments. In these contexts, it might be more difficult to reliably infer information about brain activity, because many intervening factors add up and disturb the BCI feature space. One solution for this problem would be adding context awareness to the system. We propose to augment the available information space with additional channels carrying information about the user state, the environment and the technical system. In particular, passive BCI systems seem to be capable of adding highly relevant context information—otherwise covert aspects of user state. In this paper, we present a theoretical framework based on general human-machine system research for adding context awareness to a BCI system. Building on that, we present results from a study on a passive BCI, which allows access to the covert aspect of user state related to the perceived loss of control. This study is a proof of concept and demonstrates that context awareness could beneficially be implemented in and combined with a BCI system or a general human-machine system. The EEG data from this experiment are available for public download at www.phypa.org. Parts of this work have already been presented in non-journal publications. This will be indicated specifically by appropriate references in the text.

  6. [Neural engineering and neural prostheses].

    PubMed

    Gao, Shang-Kai; Zhang, Zhi-Guang; Gao, Xiao-Rong; Hong, Bo; Yang, Fu-Sheng

    2006-03-01

    The motivation of the brain-computer interface (BCI) research and its potential applications are introduced in this paper. Some of the problems in BCI-based medical device developments are also discussed.

  7. BCI2000: a general-purpose brain-computer interface (BCI) system.

    PubMed

    Schalk, Gerwin; McFarland, Dennis J; Hinterberger, Thilo; Birbaumer, Niels; Wolpaw, Jonathan R

    2004-06-01

    Many laboratories have begun to develop brain-computer interface (BCI) systems that provide communication and control capabilities to people with severe motor disabilities. Further progress and realization of practical applications depends on systematic evaluations and comparisons of different brain signals, recording methods, processing algorithms, output formats, and operating protocols. However, the typical BCI system is designed specifically for one particular BCI method and is, therefore, not suited to the systematic studies that are essential for continued progress. In response to this problem, we have developed a documented general-purpose BCI research and development platform called BCI2000. BCI2000 can incorporate alone or in combination any brain signals, signal processing methods, output devices, and operating protocols. This report is intended to describe to investigators, biomedical engineers, and computer scientists the concepts that the BC12000 system is based upon and gives examples of successful BCI implementations using this system. To date, we have used BCI2000 to create BCI systems for a variety of brain signals, processing methods, and applications. The data show that these systems function well in online operation and that BCI2000 satisfies the stringent real-time requirements of BCI systems. By substantially reducing labor and cost, BCI2000 facilitates the implementation of different BCI systems and other psychophysiological experiments. It is available with full documentation and free of charge for research or educational purposes and is currently being used in a variety of studies by many research groups.

  8. Informed Consent in Implantable BCI Research: Identifying Risks and Exploring Meaning.

    PubMed

    Klein, Eran

    2016-10-01

    Implantable brain-computer interface (BCI) technology is an expanding area of engineering research now moving into clinical application. Ensuring meaningful informed consent in implantable BCI research is an ethical imperative. The emerging and rapidly evolving nature of implantable BCI research makes identification of risks, a critical component of informed consent, a challenge. In this paper, 6 core risk domains relevant to implantable BCI research are identified-short and long term safety, cognitive and communicative impairment, inappropriate expectations, involuntariness, affective impairment, and privacy and security. Work in deep brain stimulation provides a useful starting point for understanding this core set of risks in implantable BCI. Three further risk domains-risks pertaining to identity, agency, and stigma-are identified. These risks are not typically part of formalized consent processes. It is important as informed consent practices are further developed for implantable BCI research that attention be paid not just to disclosing core research risks but exploring the meaning of BCI research with potential participants.

  9. A Brain-Based Communication and Orientation System

    DTIC Science & Technology

    2014-10-06

    Review of the BCI Competition IV, Frontiers in Neuroscience, ( 2012): 0. doi: 10.3389/fnins.2012.00055 Eric C. Leuthardt, Xiao-Mei Pei, Jonathan...hardware and software for brain– computer interfaces ( BCIs ), Journal of Neural Engineering, (04 2011): 1. doi: 10.1088/1741-2560/8/2/025001...Cincotti, G. Schalk, Peter Brunner. Current Trends in Brain–Computer Interface ( BCI ) Research and Development, Journal of Neural Engineering, (3 2011

  10. The user-centered design as novel perspective for evaluating the usability of BCI-controlled applications.

    PubMed

    Kübler, Andrea; Holz, Elisa M; Riccio, Angela; Zickler, Claudia; Kaufmann, Tobias; Kleih, Sonja C; Staiger-Sälzer, Pit; Desideri, Lorenzo; Hoogerwerf, Evert-Jan; Mattia, Donatella

    2014-01-01

    Albeit research on brain-computer interfaces (BCI) for controlling applications has expanded tremendously, we still face a translational gap when bringing BCI to end-users. To bridge this gap, we adapted the user-centered design (UCD) to BCI research and development which implies a shift from focusing on single aspects, such as accuracy and information transfer rate (ITR), to a more holistic user experience. The UCD implements an iterative process between end-users and developers based on a valid evaluation procedure. Within the UCD framework usability of a device can be defined with regard to its effectiveness, efficiency, and satisfaction. We operationalized these aspects to evaluate BCI-controlled applications. Effectiveness was regarded equivalent to accuracy of selections and efficiency to the amount of information transferred per time unit and the effort invested (workload). Satisfaction was assessed with questionnaires and visual-analogue scales. These metrics have been successfully applied to several BCI-controlled applications for communication and entertainment, which were evaluated by end-users with severe motor impairment. Results of four studies, involving a total of N = 19 end-users revealed: effectiveness was moderate to high; efficiency in terms of ITR was low to high and workload low to medium; depending on the match between user and technology, and type of application satisfaction was moderate to high. The here suggested evaluation metrics within the framework of the UCD proved to be an applicable and informative approach to evaluate BCI controlled applications, and end-users with severe impairment and in the locked-in state were able to participate in this process.

  11. The User-Centered Design as Novel Perspective for Evaluating the Usability of BCI-Controlled Applications

    PubMed Central

    Kübler, Andrea; Holz, Elisa M.; Riccio, Angela; Zickler, Claudia; Kaufmann, Tobias; Kleih, Sonja C.; Staiger-Sälzer, Pit; Desideri, Lorenzo; Hoogerwerf, Evert-Jan; Mattia, Donatella

    2014-01-01

    Albeit research on brain-computer interfaces (BCI) for controlling applications has expanded tremendously, we still face a translational gap when bringing BCI to end-users. To bridge this gap, we adapted the user-centered design (UCD) to BCI research and development which implies a shift from focusing on single aspects, such as accuracy and information transfer rate (ITR), to a more holistic user experience. The UCD implements an iterative process between end-users and developers based on a valid evaluation procedure. Within the UCD framework usability of a device can be defined with regard to its effectiveness, efficiency, and satisfaction. We operationalized these aspects to evaluate BCI-controlled applications. Effectiveness was regarded equivalent to accuracy of selections and efficiency to the amount of information transferred per time unit and the effort invested (workload). Satisfaction was assessed with questionnaires and visual-analogue scales. These metrics have been successfully applied to several BCI-controlled applications for communication and entertainment, which were evaluated by end-users with severe motor impairment. Results of four studies, involving a total of N = 19 end-users revealed: effectiveness was moderate to high; efficiency in terms of ITR was low to high and workload low to medium; depending on the match between user and technology, and type of application satisfaction was moderate to high. The here suggested evaluation metrics within the framework of the UCD proved to be an applicable and informative approach to evaluate BCI controlled applications, and end-users with severe impairment and in the locked-in state were able to participate in this process. PMID:25469774

  12. Brain-computer interface design using alpha wave

    NASA Astrophysics Data System (ADS)

    Zhao, Hai-bin; Wang, Hong; Liu, Chong; Li, Chun-sheng

    2010-01-01

    A brain-computer interface (BCI) is a novel communication system that translates brain activity into commands for a computer or other electronic devices. BCI system based on non-invasive scalp electroencephalogram (EEG) has become a hot research area in recent years. BCI technology can help improve the quality of life and restore function for people with severe motor disabilities. In this study, we design a real-time asynchronous BCI system using Alpha wave. The basic theory of this BCI system is alpha wave-block phenomenon. Alpha wave is the most prominent wave in the whole realm of brain activity. This system includes data acquisition, feature selection and classification. The subject can use this system easily and freely choose anyone of four commands with only short-time training. The results of the experiment show that this BCI system has high classification accuracy, and has potential application for clinical engineering and is valuable for further research.

  13. A Procedure for Measuring Latencies in Brain-Computer Interfaces

    PubMed Central

    Wilson, J. Adam; Mellinger, Jürgen; Schalk, Gerwin; Williams, Justin

    2011-01-01

    Brain-computer interface (BCI) systems must process neural signals with consistent timing in order to support adequate system performance. Thus, it is important to have the capability to determine whether a particular BCI configuration (i.e., hardware, software) provides adequate timing performance for a particular experiment. This report presents a method of measuring and quantifying different aspects of system timing in several typical BCI experiments across a range of settings, and presents comprehensive measures of expected overall system latency for each experimental configuration. PMID:20403781

  14. Current trends in hardware and software for brain-computer interfaces (BCIs)

    NASA Astrophysics Data System (ADS)

    Brunner, P.; Bianchi, L.; Guger, C.; Cincotti, F.; Schalk, G.

    2011-04-01

    A brain-computer interface (BCI) provides a non-muscular communication channel to people with and without disabilities. BCI devices consist of hardware and software. BCI hardware records signals from the brain, either invasively or non-invasively, using a series of device components. BCI software then translates these signals into device output commands and provides feedback. One may categorize different types of BCI applications into the following four categories: basic research, clinical/translational research, consumer products, and emerging applications. These four categories use BCI hardware and software, but have different sets of requirements. For example, while basic research needs to explore a wide range of system configurations, and thus requires a wide range of hardware and software capabilities, applications in the other three categories may be designed for relatively narrow purposes and thus may only need a very limited subset of capabilities. This paper summarizes technical aspects for each of these four categories of BCI applications. The results indicate that BCI technology is in transition from isolated demonstrations to systematic research and commercial development. This process requires several multidisciplinary efforts, including the development of better integrated and more robust BCI hardware and software, the definition of standardized interfaces, and the development of certification, dissemination and reimbursement procedures.

  15. The Cybathlon BCI race: Successful longitudinal mutual learning with two tetraplegic users.

    PubMed

    Perdikis, Serafeim; Tonin, Luca; Saeedi, Sareh; Schneider, Christoph; Millán, José Del R

    2018-05-01

    This work aims at corroborating the importance and efficacy of mutual learning in motor imagery (MI) brain-computer interface (BCI) by leveraging the insights obtained through our participation in the BCI race of the Cybathlon event. We hypothesized that, contrary to the popular trend of focusing mostly on the machine learning aspects of MI BCI training, a comprehensive mutual learning methodology that reinstates the three learning pillars (at the machine, subject, and application level) as equally significant could lead to a BCI-user symbiotic system able to succeed in real-world scenarios such as the Cybathlon event. Two severely impaired participants with chronic spinal cord injury (SCI), were trained following our mutual learning approach to control their avatar in a virtual BCI race game. The competition outcomes substantiate the effectiveness of this type of training. Most importantly, the present study is one among very few to provide multifaceted evidence on the efficacy of subject learning during BCI training. Learning correlates could be derived at all levels of the interface-application, BCI output, and electroencephalography (EEG) neuroimaging-with two end-users, sufficiently longitudinal evaluation, and, importantly, under real-world and even adverse conditions.

  16. The Cybathlon BCI race: Successful longitudinal mutual learning with two tetraplegic users

    PubMed Central

    Saeedi, Sareh; Schneider, Christoph; Millán, José del R.

    2018-01-01

    This work aims at corroborating the importance and efficacy of mutual learning in motor imagery (MI) brain–computer interface (BCI) by leveraging the insights obtained through our participation in the BCI race of the Cybathlon event. We hypothesized that, contrary to the popular trend of focusing mostly on the machine learning aspects of MI BCI training, a comprehensive mutual learning methodology that reinstates the three learning pillars (at the machine, subject, and application level) as equally significant could lead to a BCI–user symbiotic system able to succeed in real-world scenarios such as the Cybathlon event. Two severely impaired participants with chronic spinal cord injury (SCI), were trained following our mutual learning approach to control their avatar in a virtual BCI race game. The competition outcomes substantiate the effectiveness of this type of training. Most importantly, the present study is one among very few to provide multifaceted evidence on the efficacy of subject learning during BCI training. Learning correlates could be derived at all levels of the interface—application, BCI output, and electroencephalography (EEG) neuroimaging—with two end-users, sufficiently longitudinal evaluation, and, importantly, under real-world and even adverse conditions. PMID:29746465

  17. DARPA-funded efforts in the development of novel brain-computer interface technologies.

    PubMed

    Miranda, Robbin A; Casebeer, William D; Hein, Amy M; Judy, Jack W; Krotkov, Eric P; Laabs, Tracy L; Manzo, Justin E; Pankratz, Kent G; Pratt, Gill A; Sanchez, Justin C; Weber, Douglas J; Wheeler, Tracey L; Ling, Geoffrey S F

    2015-04-15

    The Defense Advanced Research Projects Agency (DARPA) has funded innovative scientific research and technology developments in the field of brain-computer interfaces (BCI) since the 1970s. This review highlights some of DARPA's major advances in the field of BCI, particularly those made in recent years. Two broad categories of DARPA programs are presented with respect to the ultimate goals of supporting the nation's warfighters: (1) BCI efforts aimed at restoring neural and/or behavioral function, and (2) BCI efforts aimed at improving human training and performance. The programs discussed are synergistic and complementary to one another, and, moreover, promote interdisciplinary collaborations among researchers, engineers, and clinicians. Finally, this review includes a summary of some of the remaining challenges for the field of BCI, as well as the goals of new DARPA efforts in this domain. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  18. Designing a hands-on brain computer interface laboratory course.

    PubMed

    Khalighinejad, Bahar; Long, Laura Kathleen; Mesgarani, Nima

    2016-08-01

    Devices and systems that interact with the brain have become a growing field of research and development in recent years. Engineering students are well positioned to contribute to both hardware development and signal analysis techniques in this field. However, this area has been left out of most engineering curricula. We developed an electroencephalography (EEG) based brain computer interface (BCI) laboratory course to educate students through hands-on experiments. The course is offered jointly by the Biomedical Engineering, Electrical Engineering, and Computer Science Departments of Columbia University in the City of New York and is open to senior undergraduate and graduate students. The course provides an effective introduction to the experimental design, neuroscience concepts, data analysis techniques, and technical skills required in the field of BCI.

  19. Brain-computer interface technology: a review of the first international meeting.

    PubMed

    Wolpaw, J R; Birbaumer, N; Heetderks, W J; McFarland, D J; Peckham, P H; Schalk, G; Donchin, E; Quatrano, L A; Robinson, C J; Vaughan, T M

    2000-06-01

    Over the past decade, many laboratories have begun to explore brain-computer interface (BCI) technology as a radically new communication option for those with neuromuscular impairments that prevent them from using conventional augmentative communication methods. BCI's provide these users with communication channels that do not depend on peripheral nerves and muscles. This article summarizes the first international meeting devoted to BCI research and development. Current BCI's use electroencephalographic (EEG) activity recorded at the scalp or single-unit activity recorded from within cortex to control cursor movement, select letters or icons, or operate a neuroprosthesis. The central element in each BCI is a translation algorithm that converts electrophysiological input from the user into output that controls external devices. BCI operation depends on effective interaction between two adaptive controllers, the user who encodes his or her commands in the electrophysiological input provided to the BCI, and the BCI which recognizes the commands contained in the input and expresses them in device control. Current BCI's have maximum information transfer rates of 5-25 b/min. Achievement of greater speed and accuracy depends on improvements in signal processing, translation algorithms, and user training. These improvements depend on increased interdisciplinary cooperation between neuroscientists, engineers, computer programmers, psychologists, and rehabilitation specialists, and on adoption and widespread application of objective methods for evaluating alternative methods. The practical use of BCI technology depends on the development of appropriate applications, identification of appropriate user groups, and careful attention to the needs and desires of individual users. BCI research and development will also benefit from greater emphasis on peer-reviewed publications, and from adoption of standard venues for presentations and discussion.

  20. Review of wireless and wearable electroencephalogram systems and brain-computer interfaces--a mini-review.

    PubMed

    Lin, Chin-Teng; Ko, Li-Wei; Chang, Meng-Hsiu; Duann, Jeng-Ren; Chen, Jing-Ying; Su, Tung-Ping; Jung, Tzyy-Ping

    2010-01-01

    Biomedical signal monitoring systems have rapidly advanced in recent years, propelled by significant advances in electronic and information technologies. Brain-computer interface (BCI) is one of the important research branches and has become a hot topic in the study of neural engineering, rehabilitation, and brain science. Traditionally, most BCI systems use bulky, wired laboratory-oriented sensing equipments to measure brain activity under well-controlled conditions within a confined space. Using bulky sensing equipments not only is uncomfortable and inconvenient for users, but also impedes their ability to perform routine tasks in daily operational environments. Furthermore, owing to large data volumes, signal processing of BCI systems is often performed off-line using high-end personal computers, hindering the applications of BCI in real-world environments. To be practical for routine use by unconstrained, freely-moving users, BCI systems must be noninvasive, nonintrusive, lightweight and capable of online signal processing. This work reviews recent online BCI systems, focusing especially on wearable, wireless and real-time systems. Copyright 2009 S. Karger AG, Basel.

  1. Real-time mobile phone dialing system based on SSVEP

    NASA Astrophysics Data System (ADS)

    Wang, Dongsheng; Kobayashi, Toshiki; Cui, Gaochao; Watabe, Daishi; Cao, Jianting

    2017-03-01

    Brain computer interface (BCI) systems based on the steady state visual evoked potential (SSVEP) provide higher information transfer rates and require shorter training time than BCI systems using other brain signals. It has been widely used in brain science, rehabilitation engineering, biomedical engineering and intelligent information processing. In this paper, we present a real-time mobile phone dialing system based on SSVEP, and it is more portable than other dialing system because the flashing dial interface is set on a small tablet. With this online BCI system, we can take advantage of this system based on SSVEP to identify the specific frequency on behalf of a number using canonical correlation analysis (CCA) method and dialed out successfully without using any physical movements such as finger tapping. This phone dialing system will be promising to help disable patients to improve the quality of lives.

  2. Designing a Hands-On Brain Computer Interface Laboratory Course

    PubMed Central

    Khalighinejad, Bahar; Long, Laura Kathleen; Mesgarani, Nima

    2017-01-01

    Devices and systems that interact with the brain have become a growing field of research and development in recent years. Engineering students are well positioned to contribute to both hardware development and signal analysis techniques in this field. However, this area has been left out of most engineering curricula. We developed an electroencephalography (EEG) based brain computer interface (BCI) laboratory course to educate students through hands-on experiments. The course is offered jointly by the Biomedical Engineering, Electrical Engineering, and Computer Science Departments of Columbia University in the City of New York and is open to senior undergraduate and graduate students. The course provides an effective introduction to the experimental design, neuroscience concepts, data analysis techniques, and technical skills required in the field of BCI. PMID:28268946

  3. Affective Aspects of Perceived Loss of Control and Potential Implications for Brain-Computer Interfaces.

    PubMed

    Grissmann, Sebastian; Zander, Thorsten O; Faller, Josef; Brönstrup, Jonas; Kelava, Augustin; Gramann, Klaus; Gerjets, Peter

    2017-01-01

    Most brain-computer interfaces (BCIs) focus on detecting single aspects of user states (e.g., motor imagery) in the electroencephalogram (EEG) in order to use these aspects as control input for external systems. This communication can be effective, but unaccounted mental processes can interfere with signals used for classification and thereby introduce changes in the signal properties which could potentially impede BCI classification performance. To improve BCI performance, we propose deploying an approach that potentially allows to describe different mental states that could influence BCI performance. To test this approach, we analyzed neural signatures of potential affective states in data collected in a paradigm where the complex user state of perceived loss of control (LOC) was induced. In this article, source localization methods were used to identify brain dynamics with source located outside but affecting the signal of interest originating from the primary motor areas, pointing to interfering processes in the brain during natural human-machine interaction. In particular, we found affective correlates which were related to perceived LOC. We conclude that additional context information about the ongoing user state might help to improve the applicability of BCIs to real-world scenarios.

  4. Affective Aspects of Perceived Loss of Control and Potential Implications for Brain-Computer Interfaces

    PubMed Central

    Grissmann, Sebastian; Zander, Thorsten O.; Faller, Josef; Brönstrup, Jonas; Kelava, Augustin; Gramann, Klaus; Gerjets, Peter

    2017-01-01

    Most brain-computer interfaces (BCIs) focus on detecting single aspects of user states (e.g., motor imagery) in the electroencephalogram (EEG) in order to use these aspects as control input for external systems. This communication can be effective, but unaccounted mental processes can interfere with signals used for classification and thereby introduce changes in the signal properties which could potentially impede BCI classification performance. To improve BCI performance, we propose deploying an approach that potentially allows to describe different mental states that could influence BCI performance. To test this approach, we analyzed neural signatures of potential affective states in data collected in a paradigm where the complex user state of perceived loss of control (LOC) was induced. In this article, source localization methods were used to identify brain dynamics with source located outside but affecting the signal of interest originating from the primary motor areas, pointing to interfering processes in the brain during natural human-machine interaction. In particular, we found affective correlates which were related to perceived LOC. We conclude that additional context information about the ongoing user state might help to improve the applicability of BCIs to real-world scenarios. PMID:28769776

  5. Papers from the Fifth International Brain-Computer Interface Meeting

    NASA Astrophysics Data System (ADS)

    Huggins, Jane E.; Wolpaw, Jonathan R.

    2014-06-01

    Brain-computer interfaces (BCIs), also known as brain-machine interfaces (BMIs), translate brain activity into new outputs that replace, restore, enhance, supplement or improve natural brain outputs. BCI research and development has grown rapidly for the past two decades. It is beginning to provide useful communication and control capacities to people with severe neuromuscular disabilities; and it is expanding into new areas such as neurorehabilitation that may greatly increase its clinical impact. At the same time, significant challenges remain, particularly in regard to translating laboratory advances into clinical use. The papers in this special section report some of the work presented at the Fifth International BCI Meeting held on 3-7 June 2013 at the Asilomar Conference Center in Pacific Grove, California, USA. Like its predecessors over the past 15 years, this meeting was supported by the National Institutes of Health, the National Science Foundation, and a variety of other governmental and private sponsors [1]. This fifth meeting was organized and managed by a program committee of BCI researchers from throughout the world [2]. It retained the distinctive retreat-style format developed by the Wadsworth Center researchers who organized and managed the first four meetings. The 301 attendees came from 165 research groups in 29 countries; 37% were students or postdoctoral fellows. Of more than 200 extended abstracts submitted for peer review, 25 were selected for oral presentation [3], and 181 were presented as posters [4] and published in the open-access conference proceedings [5]. The meeting featured 19 highly interactive workshops [6] covering the broad spectrum of BCI research and development, as well as many demonstrations of BCI systems and associated technology. Like the first four meetings, this one included attendees and embraced topics from across the broad spectrum of disciplines essential to effective BCI research and development, including neuroscience, engineering, applied mathematics, computer science, psychology and rehabilitation. In addition, this fifth meeting extended the spectrum in two very important ways. For the first time, presentations were given by several people who could potentially benefit from current BCI technology-people with severe disabilities who need assistive technology for communication. One presented in person and one remotely. A Virtual BCI User's Forum allowed these presenters and other potential BCI users to speak directly to the BCI research community about the advantages and disadvantages of current BCIs and important directions for future study (see [7]). Their personal experiences and desires can help guide BCI research and development. Their active participation, particularly in regard to the selection of goals and the evaluation and optimization of new methods and systems, is essential if BCIs are to become clinically valuable and widely used technology. The second major innovation in this meeting was the strong emphasis on ethical issues related to BCI development and use. The meeting opened with a keynote presentation entitled 'Neuroethics, BCIs and the Cyborg Myth' by Dr Joseph Fins, a noted authority on neuroethics from the Weill Cornell Medical College and the Rockefeller University. He focused on the ability of BCIs to relieve suffering and restore function, while cautioning against applications that take intentional control away from the user. Ethical issues were also addressed in several of the workshops, and arose on multiple occasions and in multiple contexts over the course of the meeting. Their prominence reflected the growing importance and difficulty of ethical issues as BCI capacities and applications grow and extend to potentially enhancing or supplementing normal nervous system function. The 16 articles in this special section reflect the breadth, depth, growing maturity and future directions of BCI research. The first paper presents a tutorial on best practices in BCI performance measurement [8]. The following eight papers focus on specific BCI applications and on methods for increasing their usefulness for people with severe disabilities. The next two examine how brain activity and BCI use affect each other. The final five studies investigate brain signals and evaluate new signal processing algorithms in order to improve BCI performance and broaden its possible applications in some of the newest areas of BCI research, including the direct interpretation of speech from electrocorticographic (ECoG) activity [9]. Together, these papers span many aspects of BCI research, including different recording modalities (i.e. electroencephalogram (EEG), ECoG, functional magnetic resonance imaging (fMRI)) and signal types (e.g. P300 event-related potentials (ERPs), sensorimotor rhythms, steady-state visual evoked potentials (SSVEPs)). Furthermore, additional clinically related studies that were presented at the meeting but were considered to be outside the scope of the Journal of Neural Engineering will appear in a special issue of the Archives of Physical Medicine and Rehabilitation . With a theme of 'Defining the Future' the Fifth International BCI Meeting tackled the issues of a rapidly growing multidisciplinary research and development enterprise that is now entering clinical use. Important new areas that received attention included the need for active involvement of the people with severe disabilities who are the primary initial users of BCI technology and the growing importance and difficulty of the multiple ethical questions raised by BCIs and their potential applications. The meeting also marked the launching of the new journal Brain--Computer Interfaces , dedicated to BCI research and development, and initiated the establishment of the Brain--Computer Interface Society, which will organize and manage the Sixth International BCI Meeting to be held in 2016. References [1] http://bcimeeting.org/2013/sponsors.html [2] http://bcimeeting.org/2013/meetinginfo.html [3] http://bcimeeting.org/2013/researchsessions.html (indexes individual abstracts) [4] http://bcimeeting.org/2013/posters.html (indexes individual abstracts) [5] http://castor.tugraz.at/doku/BCIMeeting2013/BCIMeeting2013_all.pdf [6] Huggins J E et al 2014 Workshops of the Fifth International Brain--Computer Interface Meeting: Defining the Future Brain--Computer Interface J. 1 27-49 [7] Peters B, Bieker G, Heckman S M, Huggins J E, Wolf C, Zeitlin D and Fried-Oken M 2014 Brain--computer interface users speak up: the Virtual Users' Forum at the 2013 International BCI Meeting Archives of Physical Medicine and Rehabilitation vol 95 fall supplement at press [8] Thompson D E et al 2014 Performance measurement for brain-computer or brain-machine interfaces: a tutorial J. Neural Eng. 11 035001 [9] Mugler E, Patton J, Flint R, Wright Z, Schuele S, Rosenow J, Shih J, Krusienski D and Slutzky M 2014 Direct classification of all American English phonemes using signals from functional speech motor cortex J. Neural Eng. 11 035015

  6. Brain-controlled body movement assistance devices and methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leuthardt, Eric C.; Love, Lonnie J.; Coker, Rob

    Methods, devices, systems, and apparatus, including computer programs encoded on a computer storage medium, for brain-controlled body movement assistance devices. In one aspect, a device includes a brain-controlled body movement assistance device with a brain-computer interface (BCI) component adapted to be mounted to a user, a body movement assistance component operably connected to the BCI component and adapted to be worn by the user, and a feedback mechanism provided in connection with at least one of the BCI component and the body movement assistance component, the feedback mechanism being configured to output information relating to a usage session of themore » brain-controlled body movement assistance device.« less

  7. Light on! Real world evaluation of a P300-based brain-computer interface (BCI) for environment control in a smart home.

    PubMed

    Carabalona, Roberta; Grossi, Ferdinando; Tessadri, Adam; Castiglioni, Paolo; Caracciolo, Antonio; de Munari, Ilaria

    2012-01-01

    Brain-computer interface (BCI) systems aim to enable interaction with other people and the environment without muscular activation by the exploitation of changes in brain signals due to the execution of cognitive tasks. In this context, the visual P300 potential appears suited to control smart homes through BCI spellers. The aim of this work is to evaluate whether the widely used character-speller is more sustainable than an icon-based one, designed to operate smart home environment or to communicate moods and needs. Nine subjects with neurodegenerative diseases and no BCI experience used both speller types in a real smart home environment. User experience during BCI tasks was evaluated recording concurrent physiological signals. Usability was assessed for each speller type immediately after use. Classification accuracy was lower for the icon-speller, which was also more attention demanding. However, in subjective evaluations, the effect of a real feedback partially counterbalanced the difficulty in BCI use. Since inclusive BCIs require to consider interface sustainability, we evaluated different ergonomic aspects of the interaction of disabled users with a character-speller (goal: word spelling) and an icon-speller (goal: operating a real smart home). We found the first one as more sustainable in terms of accuracy and cognitive effort.

  8. A high-speed BCI based on code modulation VEP

    NASA Astrophysics Data System (ADS)

    Bin, Guangyu; Gao, Xiaorong; Wang, Yijun; Li, Yun; Hong, Bo; Gao, Shangkai

    2011-04-01

    Recently, electroencephalogram-based brain-computer interfaces (BCIs) have attracted much attention in the fields of neural engineering and rehabilitation due to their noninvasiveness. However, the low communication speed of current BCI systems greatly limits their practical application. In this paper, we present a high-speed BCI based on code modulation of visual evoked potentials (c-VEP). Thirty-two target stimuli were modulated by a time-shifted binary pseudorandom sequence. A multichannel identification method based on canonical correlation analysis (CCA) was used for target identification. The online system achieved an average information transfer rate (ITR) of 108 ± 12 bits min-1 on five subjects with a maximum ITR of 123 bits min-1 for a single subject.

  9. L1 norm based common spatial patterns decomposition for scalp EEG BCI.

    PubMed

    Li, Peiyang; Xu, Peng; Zhang, Rui; Guo, Lanjin; Yao, Dezhong

    2013-08-06

    Brain computer interfaces (BCI) is one of the most popular branches in biomedical engineering. It aims at constructing a communication between the disabled persons and the auxiliary equipments in order to improve the patients' life. In motor imagery (MI) based BCI, one of the popular feature extraction strategies is Common Spatial Patterns (CSP). In practical BCI situation, scalp EEG inevitably has the outlier and artifacts introduced by ocular, head motion or the loose contact of electrodes in scalp EEG recordings. Because outlier and artifacts are usually observed with large amplitude, when CSP is solved in view of L2 norm, the effect of outlier and artifacts will be exaggerated due to the imposing of square to outliers, which will finally influence the MI based BCI performance. While L1 norm will lower the outlier effects as proved in other application fields like EEG inverse problem, face recognition, etc. In this paper, we present a new CSP implementation using the L1 norm technique, instead of the L2 norm, to solve the eigen problem for spatial filter estimation with aim to improve the robustness of CSP to outliers. To evaluate the performance of our method, we applied our method as well as the standard CSP and the regularized CSP with Tikhonov regularization (TR-CSP), on both the peer BCI dataset with simulated outliers and the dataset from the MI BCI system developed in our group. The McNemar test is used to investigate whether the difference among the three CSPs is of statistical significance. The results of both the simulation and real BCI datasets consistently reveal that the proposed method has much higher classification accuracies than the conventional CSP and the TR-CSP. By combining L1 norm based Eigen decomposition into Common Spatial Patterns, the proposed approach can effectively improve the robustness of BCI system to EEG outliers and thus be potential for the actual MI BCI application, where outliers are inevitably introduced into EEG recordings.

  10. Application of BCI systems in neurorehabilitation: a scoping review.

    PubMed

    Bamdad, Mahdi; Zarshenas, Homayoon; Auais, Mohammad A

    2015-01-01

    To review various types of electroencephalographic activities of the brain and present an overview of brain-computer interface (BCI) systems' history and their applications in rehabilitation. A scoping review of published English literature on BCI application in the field of rehabilitation was undertaken. IEEE Xplore, ScienceDirect, Google Scholar and Scopus databases were searched since inception up to August 2012. All experimental studies published in English and discussed complete cycle of the BCI process was included in the review. In total, 90 articles met the inclusion criteria and were reviewed. Various approaches that improve the accuracy and performance of BCI systems were discussed. Based on BCI's clinical application, reviewed articles were categorized into three groups: motion rehabilitation, speech rehabilitation and virtual reality control (VRC). Almost half of the reviewed papers (48%) concentrated on VRC. Speech rehabilitation and motion rehabilitation made up 33% and 19% of the reviewed papers, respectively. Among different types of electroencephalography signals, P300, steady state visual evoked potentials and motor imagery signals were the most common. This review discussed various applications of BCI in rehabilitation and showed how BCI can be used to improve the quality of life for people with neurological disabilities. It will develop and promote new models of communication and finally, will create an accurate, reliable, online communication between human brain and computer and reduces the negative effects of external stimuli on BCI performance. Implications for Rehabilitation The field of brain-computer interfaces (BCI) is rapidly advancing and it is expected to fulfill a critical role in rehabilitation of neurological disorders and in movement restoration in the forthcoming years. In the near future, BCI has notable potential to become a major tool used by people with disabilities to control locomotion and communicate with surrounding environment and, consequently, improve the quality of life for many affected persons. Electrical field recording at the scalp (i.e. electroencephalography) is the most likely method to be of practical value for clinical use as it is simple and non-invasive. However, some aspects need future improvements, such as the ability to separate close imagery signal (motion of extremities and phalanges that are close together).

  11. Keeping Disability in Mind: A Case Study in Implantable Brain-Computer Interface Research.

    PubMed

    Sullivan, Laura Specker; Klein, Eran; Brown, Tim; Sample, Matthew; Pham, Michelle; Tubig, Paul; Folland, Raney; Truitt, Anjali; Goering, Sara

    2018-04-01

    Brain-Computer Interface (BCI) research is an interdisciplinary area of study within Neural Engineering. Recent interest in end-user perspectives has led to an intersection with user-centered design (UCD). The goal of user-centered design is to reduce the translational gap between researchers and potential end users. However, while qualitative studies have been conducted with end users of BCI technology, little is known about individual BCI researchers' experience with and attitudes towards UCD. Given the scientific, financial, and ethical imperatives of UCD, we sought to gain a better understanding of practical and principled considerations for researchers who engage with end users. We conducted a qualitative interview case study with neural engineering researchers at a center dedicated to the creation of BCIs. Our analysis generated five themes common across interviews. The thematic analysis shows that participants identify multiple beneficiaries of their work, including other researchers, clinicians working with devices, device end users, and families and caregivers of device users. Participants value experience with device end users, and personal experience is the most meaningful type of interaction. They welcome (or even encourage) end-user input, but are skeptical of limited focus groups and case studies. They also recognize a tension between creating sophisticated devices and developing technology that will meet user needs. Finally, interviewees espouse functional, assistive goals for their technology, but describe uncertainty in what degree of function is "good enough" for individual end users. Based on these results, we offer preliminary recommendations for conducting future UCD studies in BCI and neural engineering.

  12. Ethics in published brain-computer interface research

    NASA Astrophysics Data System (ADS)

    Specker Sullivan, L.; Illes, J.

    2018-02-01

    Objective. Sophisticated signal processing has opened the doors to more research with human subjects than ever before. The increase in the use of human subjects in research comes with a need for increased human subjects protections. Approach. We quantified the presence or absence of ethics language in published reports of brain-computer interface (BCI) studies that involved human subjects and qualitatively characterized ethics statements. Main results. Reports of BCI studies with human subjects that are published in neural engineering and engineering journals are anchored in the rationale of technological improvement. Ethics language is markedly absent, omitted from 31% of studies published in neural engineering journals and 59% of studies in biomedical engineering journals. Significance. As the integration of technological tools with the capacities of the mind deepens, explicit attention to ethical issues will ensure that broad human benefit is embraced and not eclipsed by technological exclusiveness.

  13. Decoding Onset and Direction of Movements Using Electrocorticographic (ECoG) Signals in Humans

    DTIC Science & Technology

    2012-08-08

    Institute, Troy, NY, USA 2 J Crayton Pruitt Family Department of Biomed Engineering, University of Florida, Gainesville, FL, USA 3 BCI R&D Program...INTRODUCTION Brain-computer interfaces ( BCIs ) aim to translate a person’s intentions into meaningful computer commands using brain activity alone...applications for those suffering from neuromuscular disorders (Sejnowski et al., 2007; Tan and Nijholt, 2010). For example, a BCI that detects intended move

  14. Passive BCI in Operational Environments: Insights, Recent Advances, and Future Trends.

    PubMed

    Arico, Pietro; Borghini, Gianluca; Di Flumeri, Gianluca; Sciaraffa, Nicolina; Colosimo, Alfredo; Babiloni, Fabio

    2017-07-01

    This minireview aims to highlight recent important aspects to consider and evaluate when passive brain-computer interface (pBCI) systems would be developed and used in operational environments, and remarks future directions of their applications. Electroencephalography (EEG) based pBCI has become an important tool for real-time analysis of brain activity since it could potentially provide covertly-without distracting the user from the main task-and objectively-not affected by the subjective judgment of an observer or the user itself-information about the operator cognitive state. Different examples of pBCI applications in operational environments and new adaptive interface solutions have been presented and described. In addition, a general overview regarding the correct use of machine learning techniques (e.g., which algorithm to use, common pitfalls to avoid, etc.) in the pBCI field has been provided. Despite recent innovations on algorithms and neurotechnology, pBCI systems are not completely ready to enter the market yet, mainly due to limitations of the EEG electrodes technology, and algorithms reliability and capability in real settings. High complexity and safety critical systems (e.g., airplanes, ATM interfaces) should adapt their behaviors and functionality accordingly to the user' actual mental state. Thus, technologies (i.e., pBCIs) able to measure in real time the user's mental states would result very useful in such "high risk" environments to enhance human machine interaction, and so increase the overall safety.

  15. The cortical mouse: a piece of forgotten history in noninvasive brain–computer interfaces.

    PubMed

    Principe, Jose C

    2013-07-01

    Early research on brain-computer interfaces (BCIs) was fueled by the study of event-related potentials (ERPs) by Farwell and Donchin, who are rightly credited for laying important groundwork for the BCI field. However, many other researchers have made substantial contributions that have escaped the radar screen of the current BCI community. For example, in the late 1980s, I worked with a brilliant multidisciplinary research group in electrical engineering at the University of Florida, Gainesville, headed by Dr. Donald Childers. Childers should be well known to long-time members of the IEEE Engineering in Medicine and Biology Society since he was the editor-in-chief of IEEE Transactions on Biomedical Engineering in the 1970s and the recipient of one of the most prestigious society awards, the William J. Morlock Award, in 1973.

  16. Defining and quantifying users' mental Imagery-based BCI skills: a first step.

    PubMed

    Lotte, Fabien; Jeunet, Camille

    2018-05-17

    While promising for many applications, Electroencephalography (EEG)-based Brain-Computer Interfaces (BCIs) are still scarcely used outside laboratories, due to a poor reliability. It is thus necessary to study and fix this reliability issue. Doing so requires the use of appropriate reliability metrics to quantify both the classification algorithm and the BCI user's performances. So far, Classification Accuracy (CA) is the typical metric used for both aspects. However, we argue in this paper that CA is a poor metric to study BCI users' skills. Here, we propose a definition and new metrics to quantify such BCI skills for Mental Imagery (MI) BCIs, independently of any classification algorithm. Approach: We first show in this paper that CA is notably unspecific, discrete, training data and classifier dependent, and as such may not always reflect successful self-modulation of EEG patterns by the user. We then propose a definition of MI-BCI skills that reflects how well the user can self-modulate EEG patterns, and thus how well he could control an MI-BCI. Finally, we propose new performance metrics, classDis, restDist and classStab that specifically measure how distinct and stable the EEG patterns produced by the user are, independently of any classifier. Main results: By re-analyzing EEG data sets with such new metrics, we indeed confirmed that CA may hide some increase in MI-BCI skills or hide the user inability to self-modulate a given EEG pattern. On the other hand, our new metrics could reveal such skill improvements as well as identify when a mental task performed by a user was no different than rest EEG. Significance: Our results showed that when studying MI-BCI users' skills, CA should be used with care, and complemented with metrics such as the new ones proposed. Our results also stressed the need to redefine BCI user training by considering the different BCI subskills and their measures. To promote the complementary use of our new metrics, we provide the Matlab code to compute them for free and open-source. © 2018 IOP Publishing Ltd.

  17. The use of the bicycle compatibility index in identifying gaps and deficiencies in bicycle networks

    NASA Astrophysics Data System (ADS)

    Ilie, A.; Oprea, C.; Costescu, D.; Roşca, E.; Dinu, O.; Ghionea, F.

    2016-11-01

    Currently, no methodology is widely accepted by engineers, planners, or bicycle coordinators that allow them to determine how compatible a roadway is in providing efficient operation of both bicycles and motor vehicles. Previous studies reported a number of approaches to obtain an appropriate level of service; some authors developed the bicycle level of service (BLOS) and other authors developed the bicycle compatibility indexes (BCI). The level of service (BLOS) for a bicycle route represents an evaluation of safety and commodity perceived by a bicyclist reported to the motorized traffic, while running on the road surface. The bicycle compatibility index (BCI) is used by bicycle coordinators, transportation planners, traffic engineers to evaluate the capability of specific roadways to accommodate both motorists and bicyclists and to plan for and design roadways that are bicycle compatible. After applying BCI and BLOS models for the designed bicycle infrastructure network in the city of Dej, one can see that only few streets are Moderately Low compatible compared to the others with a high degree of compatibility that recommends to include them in the bicycle infrastructure network.

  18. EDITORIAL: Special issue containing contributions from the Fourth International Brain-Computer Interface Meeting Special issue containing contributions from the Fourth International Brain-Computer Interface Meeting

    NASA Astrophysics Data System (ADS)

    Vaughan, Theresa M.; Wolpaw, Jonathan R.

    2011-04-01

    This special issue of Journal of Neural Engineering is a result of the Fourth International Brain-Computer Interface Meeting, which was held at the Asilomar Conference Center in Monterey, California, USA from 31 May to 4 June, 2010. The meeting was sponsored by the National Institutes of Health, The National Science Foundation and the Department of Defense, and was organized by the Wadsworth Center of the New York State Department of Health. It attracted over 260 participants from 17 countries—including many graduate students and postdoctoral fellows—and featured 19 workshops, platform presentations from 26 research groups, 170 posters, multiple brain-computer interface (BCI) demonstrations, and a keynote address by W Zev Rymer of the Rehabilitation Institute of Chicago. The number of participants and the diversity of the topics covered greatly exceeded those of the previous meeting in 2005, and testified to the continuing rapid expansion and growing sophistication of this exciting and still relatively new research field. BCI research focuses primarily on using brain signals to replace or restore the motor functions that people have lost due to amyotrophic lateral sclerosis (ALS), a brainstem stroke, or some other devastating neuromuscular disorder. In the last few years, attention has also turned towards using BCIs to improve rehabilitation after a stroke, and beyond that to enhancing or supplementing the capabilities of even those without disabilities. These diverse interests were represented in the wide range of topics covered in the workshops. While some workshops addressed broad traditional topics, such as signal acquisition, feature extraction and translation, and software development, many addressed topics that were entirely new or focused sharply on areas that have become important only recently. These included workshops on optimizing P300-based BCIs; improving the mutual adaptations of the BCI and the user; BCIs that can control neuroprostheses, robotic arms, and other complex devices; moving BCIs from the laboratory to the home; BCIs that can induce neural plasticity and restore function; BCIs that use metabolic brain signals; novel BCI designs; non-medical BCI applications; ethical issues in BCI research; and contentious issues in BCI research. Dr Rymer's keynote address, 'BCI: a long range view from within a rehabilitation hospital', applied lessons from the field of rehabilitation robotics to the current state and future prospects of BCI technology. He noted that the present enthusiasm for BCI research and development reflects a desire to help people and to make basic research serve clinical needs, the excitement of the challenges for engineers and scientists, and (perhaps overly optimistic) anticipation of future benefits. He emphasized the importance of focusing research on major clinical problems that affect large numbers of people and can be addressed by BCI technology. In this regard, he identified the common and devastating motor problems produced by hemispheric stroke and limb loss as realistic and important targets for BCI research. He also cautioned against overly aggressive invasive BCI studies that might produce adverse events that could sharply curtail support and enthusiasm for further work. The keynote address, and presentations and discussions throughout the meeting, brought out five major issues that will help determine whether BCIs realize the exciting future that many envision for them. The first issue is the identification and characterization of those brain signals that are best able to encode user intent and the development of improved methods for recording these signals. Both noninvasive and invasive BCIs need sensors and associated hardware that are robust, convenient, cosmetically acceptable and function reliably and safely for long periods with minimal ongoing technical support. The second issue is the need for BCI software that optimizes the ongoing adaptive interactions between the BCI and the user to achieve the reliability lacking in current BCIs. Marked improvement in reliability is essential if BCIs are to move from the laboratory into widespread practical use for significant purposes in real life. The third issue is the development of BCI applications that serve the most important unmet needs of specific populations of potential users. BCI applications are needed that can extend the current spectrum of assistive technology or augment rehabilitation to move beyond what is possible using conventional methods. The fourth issue is the critical requirement for well-designed studies that validate the ability of BCIs to serve the needs and improve the lives of people with severe disabilities. Without such translational studies, BCIs will never realize the promise projected from laboratory results. Finally, the future of BCI technology depends on the realization of clinically and economically viable models for implementing and supporting its widespread dissemination. Effective attention to these five issues requires cooperation among researchers from many diverse disciplines: neuroscientists, engineers, psychologists, applied mathematicians, computer scientists, clinicians and rehabilitation specialists. The translational research essential for the validation of BCI technology is particularly dependent on such multidisciplinary collaborations. The need for multidisciplinary interactions has been the primary impetus for the four international BCI meetings to date. In the service of this continuing need, a discussion session at the meeting resulted in the formation of a multidisciplinary steering committee to organize future meetings at three-year intervals. Chaired by Jane E Huggins of the University of Michigan, this committee is planning the next meeting for 2013. The 28 primary research articles and workshop-based reviews that comprise this special issue reflect the substance and range of the meeting, and illustrate the current state of the field. The articles are loosely organized into three groups: signal acquisition; feature extraction and translation; and applications. The large number of application studies indicates the critical importance of this area for the ultimate significance of BCI research and development.

  19. Mental workload during brain-computer interface training.

    PubMed

    Felton, Elizabeth A; Williams, Justin C; Vanderheiden, Gregg C; Radwin, Robert G

    2012-01-01

    It is not well understood how people perceive the difficulty of performing brain-computer interface (BCI) tasks, which specific aspects of mental workload contribute the most, and whether there is a difference in perceived workload between participants who are able-bodied and disabled. This study evaluated mental workload using the NASA Task Load Index (TLX), a multi-dimensional rating procedure with six subscales: Mental Demands, Physical Demands, Temporal Demands, Performance, Effort, and Frustration. Able-bodied and motor disabled participants completed the survey after performing EEG-based BCI Fitts' law target acquisition and phrase spelling tasks. The NASA-TLX scores were similar for able-bodied and disabled participants. For example, overall workload scores (range 0-100) for 1D horizontal tasks were 48.5 (SD = 17.7) and 46.6 (SD 10.3), respectively. The TLX can be used to inform the design of BCIs that will have greater usability by evaluating subjective workload between BCI tasks, participant groups, and control modalities. Mental workload of brain-computer interfaces (BCI) can be evaluated with the NASA Task Load Index (TLX). The TLX is an effective tool for comparing subjective workload between BCI tasks, participant groups (able-bodied and disabled), and control modalities. The data can inform the design of BCIs that will have greater usability.

  20. Brain-computer interface controlled gaming: evaluation of usability by severely motor restricted end-users.

    PubMed

    Holz, Elisa Mira; Höhne, Johannes; Staiger-Sälzer, Pit; Tangermann, Michael; Kübler, Andrea

    2013-10-01

    Connect-Four, a new sensorimotor rhythm (SMR) based brain-computer interface (BCI) gaming application, was evaluated by four severely motor restricted end-users; two were in the locked-in state and had unreliable eye-movement. Following the user-centred approach, usability of the BCI prototype was evaluated in terms of effectiveness (accuracy), efficiency (information transfer rate (ITR) and subjective workload) and users' satisfaction. Online performance varied strongly across users and sessions (median accuracy (%) of end-users: A=.65; B=.60; C=.47; D=.77). Our results thus yielded low to medium effectiveness in three end-users and high effectiveness in one end-user. Consequently, ITR was low (0.05-1.44bits/min). Only two end-users were able to play the game in free-mode. Total workload was moderate but varied strongly across sessions. Main sources of workload were mental and temporal demand. Furthermore, frustration contributed to the subjective workload of two end-users. Nevertheless, most end-users accepted the BCI application well and rated satisfaction medium to high. Sources for dissatisfaction were (1) electrode gel and cap, (2) low effectiveness, (3) time-consuming adjustment and (4) not easy-to-use BCI equipment. All four end-users indicated ease of use as being one of the most important aspect of BCI. Effectiveness and efficiency are lower as compared to applications using the event-related potential as input channel. Nevertheless, the SMR-BCI application was satisfactorily accepted by the end-users and two of four could imagine using the BCI application in their daily life. Thus, despite moderate effectiveness and efficiency BCIs might be an option when controlling an application for entertainment. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Validation of the Polish version of Diabetes Quality of Life - Brief Clinical Inventory (DQL-BCI) among patients with type 2 diabetes.

    PubMed

    Dudzińska, Marta; Tarach, Jerzy S; Burroughs, Thomas E; Zwolak, Agnieszka; Matuszek, Beata; Smoleń, Agata; Nowakowski, Andrzej

    2014-10-27

    The aim of the study was to develop a Polish version of the Diabetes Quality of Life Brief Clinical Inventory (DQL-BCI) and to perform validating evaluation of selected psychometric aspects. The translation process was performed in accordance with generally accepted international principles of translation and cultural adaptation of measurement tools. Two hundred and seventy-four subjects with type 2 diabetes completed the Polish version of DQL-BCI, the generic EQ-5D questionnaire and the diabetes-specific DSC-R. The examination provides information about the reliability (internal consistency, test-retest) and the construct validity of the studied tool (the relationship between the DQL-BCI score and EQ-5D and DSC-R scales, as well as selected clinical patient characteristics). Cronbach's α (internal consistency) for the translated version of DQL-BCI was 0.76. Test-retest Pearson correlation coefficient was 0.96. Spearman's coefficient correlation between DQL-BCI score and EQ-5D index and EQ-VAS were 0.6 (p = 0.0000001) and 0.61 (p = 0.0000001) respectively. The correlation between scores of the examined tool and DSC-R total score was -0.6 (p = 0.0000001). Quality of life was lower among patients with microvascular as well as macrovascular complications and with occurring hypoglycemic episodes. The result of this study is the Polish scale used to test the quality of life of patients with diabetes, which includes the range of problems faced by patients while maintaining a patient-friendly form. High reliability of the scale and good construct validity qualify the Polish version of DQL-BCI as a reliable tool in both research and individual diagnostics.

  2. Validation of the Polish version of Diabetes Quality of Life – Brief Clinical Inventory (DQL-BCI) among patients with type 2 diabetes

    PubMed Central

    Tarach, Jerzy S.; Burroughs, Thomas E.; Zwolak, Agnieszka; Matuszek, Beata; Smoleń, Agata; Nowakowski, Andrzej

    2014-01-01

    Introduction The aim of the study was to develop a Polish version of the Diabetes Quality of Life Brief Clinical Inventory (DQL-BCI) and to perform validating evaluation of selected psychometric aspects. Material and methods The translation process was performed in accordance with generally accepted international principles of translation and cultural adaptation of measurement tools. Two hundred and seventy-four subjects with type 2 diabetes completed the Polish version of DQL-BCI, the generic EQ-5D questionnaire and the diabetes-specific DSC-R. The examination provides information about the reliability (internal consistency, test-retest) and the construct validity of the studied tool (the relationship between the DQL-BCI score and EQ-5D and DSC-R scales, as well as selected clinical patient characteristics). Results Cronbach's α (internal consistency) for the translated version of DQL-BCI was 0.76. Test-retest Pearson correlation coefficient was 0.96. Spearman's coefficient correlation between DQL-BCI score and EQ-5D index and EQ-VAS were 0.6 (p = 0.0000001) and 0.61 (p = 0.0000001) respectively. The correlation between scores of the examined tool and DSC-R total score was –0.6 (p = 0.0000001). Quality of life was lower among patients with microvascular as well as macrovascular complications and with occurring hypoglycemic episodes. Conclusions The result of this study is the Polish scale used to test the quality of life of patients with diabetes, which includes the range of problems faced by patients while maintaining a patient-friendly form. High reliability of the scale and good construct validity qualify the Polish version of DQL-BCI as a reliable tool in both research and individual diagnostics. PMID:25395940

  3. Gaming control using a wearable and wireless EEG-based brain-computer interface device with novel dry foam-based sensors

    PubMed Central

    2012-01-01

    A brain-computer interface (BCI) is a communication system that can help users interact with the outside environment by translating brain signals into machine commands. The use of electroencephalographic (EEG) signals has become the most common approach for a BCI because of their usability and strong reliability. Many EEG-based BCI devices have been developed with traditional wet- or micro-electro-mechanical-system (MEMS)-type EEG sensors. However, those traditional sensors have uncomfortable disadvantage and require conductive gel and skin preparation on the part of the user. Therefore, acquiring the EEG signals in a comfortable and convenient manner is an important factor that should be incorporated into a novel BCI device. In the present study, a wearable, wireless and portable EEG-based BCI device with dry foam-based EEG sensors was developed and was demonstrated using a gaming control application. The dry EEG sensors operated without conductive gel; however, they were able to provide good conductivity and were able to acquire EEG signals effectively by adapting to irregular skin surfaces and by maintaining proper skin-sensor impedance on the forehead site. We have also demonstrated a real-time cognitive stage detection application of gaming control using the proposed portable device. The results of the present study indicate that using this portable EEG-based BCI device to conveniently and effectively control the outside world provides an approach for researching rehabilitation engineering. PMID:22284235

  4. Neurobionics and the brain-computer interface: current applications and future horizons.

    PubMed

    Rosenfeld, Jeffrey V; Wong, Yan Tat

    2017-05-01

    The brain-computer interface (BCI) is an exciting advance in neuroscience and engineering. In a motor BCI, electrical recordings from the motor cortex of paralysed humans are decoded by a computer and used to drive robotic arms or to restore movement in a paralysed hand by stimulating the muscles in the forearm. Simultaneously integrating a BCI with the sensory cortex will further enhance dexterity and fine control. BCIs are also being developed to: provide ambulation for paraplegic patients through controlling robotic exoskeletons; restore vision in people with acquired blindness; detect and control epileptic seizures; and improve control of movement disorders and memory enhancement. High-fidelity connectivity with small groups of neurons requires microelectrode placement in the cerebral cortex. Electrodes placed on the cortical surface are less invasive but produce inferior fidelity. Scalp surface recording using electroencephalography is much less precise. BCI technology is still in an early phase of development and awaits further technical improvements and larger multicentre clinical trials before wider clinical application and impact on the care of people with disabilities. There are also many ethical challenges to explore as this technology evolves.

  5. Brain-computer interface technology: a review of the Second International Meeting.

    PubMed

    Vaughan, Theresa M; Heetderks, William J; Trejo, Leonard J; Rymer, William Z; Weinrich, Michael; Moore, Melody M; Kübler, Andrea; Dobkin, Bruce H; Birbaumer, Niels; Donchin, Emanuel; Wolpaw, Elizabeth Winter; Wolpaw, Jonathan R

    2003-06-01

    This paper summarizes the Brain-Computer Interfaces for Communication and Control, The Second International Meeting, held in Rensselaerville, NY, in June 2002. Sponsored by the National Institutes of Health and organized by the Wadsworth Center of the New York State Department of Health, the meeting addressed current work and future plans in brain-computer interface (BCI) research. Ninety-two researchers representing 38 different research groups from the United States, Canada, Europe, and China participated. The BCIs discussed at the meeting use electroencephalographic activity recorded from the scalp or single-neuron activity recorded within cortex to control cursor movement, select letters or icons, or operate neuroprostheses. The central element in each BCI is a translation algorithm that converts electrophysiological input from the user into output that controls external devices. BCI operation depends on effective interaction between two adaptive controllers, the user who encodes his or her commands in the electrophysiological input provided to the BCI, and the BCI that recognizes the commands contained in the input and expresses them in device control. Current BCIs have maximum information transfer rates of up to 25 b/min. Achievement of greater speed and accuracy requires improvements in signal acquisition and processing, in translation algorithms, and in user training. These improvements depend on interdisciplinary cooperation among neuroscientists, engineers, computer programmers, psychologists, and rehabilitation specialists, and on adoption and widespread application of objective criteria for evaluating alternative methods. The practical use of BCI technology will be determined by the development of appropriate applications and identification of appropriate user groups, and will require careful attention to the needs and desires of individual users.

  6. Brain-controlled applications using dynamic P300 speller matrices.

    PubMed

    Halder, Sebastian; Pinegger, Andreas; Käthner, Ivo; Wriessnegger, Selina C; Faller, Josef; Pires Antunes, João B; Müller-Putz, Gernot R; Kübler, Andrea

    2015-01-01

    Access to the world wide web and multimedia content is an important aspect of life. We present a web browser and a multimedia user interface adapted for control with a brain-computer interface (BCI) which can be used by severely motor impaired persons. The web browser dynamically determines the most efficient P300 BCI matrix size to select the links on the current website. This enables control of the web browser with fewer commands and smaller matrices. The multimedia player was based on an existing software. Both applications were evaluated with a sample of ten healthy participants and three end-users. All participants used a visual P300 BCI with face-stimuli for control. The healthy participants completed the multimedia player task with 90% accuracy and the web browsing task with 85% accuracy. The end-users completed the tasks with 62% and 58% accuracy. All healthy participants and two out of three end-users reported that they felt to be in control of the system. In this study we presented a multimedia application and an efficient web browser implemented for control with a BCI. Both applications provide access to important areas of modern information retrieval and entertainment. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. On the Relationship Between Attention Processing and P300-Based Brain Computer Interface Control in Amyotrophic Lateral Sclerosis

    PubMed Central

    Riccio, Angela; Schettini, Francesca; Simione, Luca; Pizzimenti, Alessia; Inghilleri, Maurizio; Olivetti-Belardinelli, Marta; Mattia, Donatella; Cincotti, Febo

    2018-01-01

    Our objective was to investigate the capacity to control a P3-based brain-computer interface (BCI) device for communication and its related (temporal) attention processing in a sample of amyotrophic lateral sclerosis (ALS) patients with respect to healthy subjects. The ultimate goal was to corroborate the role of cognitive mechanisms in event-related potential (ERP)-based BCI control in ALS patients. Furthermore, the possible differences in such attentional mechanisms between the two groups were investigated in order to unveil possible alterations associated with the ALS condition. Thirteen ALS patients and 13 healthy volunteers matched for age and years of education underwent a P3-speller BCI task and a rapid serial visual presentation (RSVP) task. The RSVP task was performed by participants in order to screen their temporal pattern of attentional resource allocation, namely: (i) the temporal attentional filtering capacity (scored as T1%); and (ii) the capability to adequately update the attentive filter in the temporal dynamics of the attentional selection (scored as T2%). For the P3-speller BCI task, the online accuracy and information transfer rate (ITR) were obtained. Centroid Latency and Mean Amplitude of N200 and P300 were also obtained. No significant differences emerged between ALS patients and Controls with regards to online accuracy (p = 0.13). Differently, the performance in controlling the P3-speller expressed as ITR values (calculated offline) were compromised in ALS patients (p < 0.05), with a delay in the latency of P3 when processing BCI stimuli as compared with Control group (p < 0.01). Furthermore, the temporal aspect of attentional filtering which was related to BCI control (r = 0.51; p < 0.05) and to the P3 wave amplitude (r = 0.63; p < 0.05) was also altered in ALS patients (p = 0.01). These findings ground the knowledge required to develop sensible classes of BCI specifically designed by taking into account the influence of the cognitive characteristics of the possible candidates in need of a BCI system for communication. PMID:29892218

  8. A novel channel selection method for optimal classification in different motor imagery BCI paradigms.

    PubMed

    Shan, Haijun; Xu, Haojie; Zhu, Shanan; He, Bin

    2015-10-21

    For sensorimotor rhythms based brain-computer interface (BCI) systems, classification of different motor imageries (MIs) remains a crucial problem. An important aspect is how many scalp electrodes (channels) should be used in order to reach optimal performance classifying motor imaginations. While the previous researches on channel selection mainly focus on MI tasks paradigms without feedback, the present work aims to investigate the optimal channel selection in MI tasks paradigms with real-time feedback (two-class control and four-class control paradigms). In the present study, three datasets respectively recorded from MI tasks experiment, two-class control and four-class control experiments were analyzed offline. Multiple frequency-spatial synthesized features were comprehensively extracted from every channel, and a new enhanced method IterRelCen was proposed to perform channel selection. IterRelCen was constructed based on Relief algorithm, but was enhanced from two aspects: change of target sample selection strategy and adoption of the idea of iterative computation, and thus performed more robust in feature selection. Finally, a multiclass support vector machine was applied as the classifier. The least number of channels that yield the best classification accuracy were considered as the optimal channels. One-way ANOVA was employed to test the significance of performance improvement among using optimal channels, all the channels and three typical MI channels (C3, C4, Cz). The results show that the proposed method outperformed other channel selection methods by achieving average classification accuracies of 85.2, 94.1, and 83.2 % for the three datasets, respectively. Moreover, the channel selection results reveal that the average numbers of optimal channels were significantly different among the three MI paradigms. It is demonstrated that IterRelCen has a strong ability for feature selection. In addition, the results have shown that the numbers of optimal channels in the three different motor imagery BCI paradigms are distinct. From a MI task paradigm, to a two-class control paradigm, and to a four-class control paradigm, the number of required channels for optimizing the classification accuracy increased. These findings may provide useful information to optimize EEG based BCI systems, and further improve the performance of noninvasive BCI.

  9. Mental Workload during Brain-Computer Interface Training

    PubMed Central

    Felton, Elizabeth A.; Williams, Justin C.; Vanderheiden, Gregg C.; Radwin, Robert G.

    2012-01-01

    It is not well understood how people perceive the difficulty of performing brain-computer interface (BCI) tasks, which specific aspects of mental workload contribute the most, and whether there is a difference in perceived workload between participants who are able-bodied and disabled. This study evaluated mental workload using the NASA Task Load Index (TLX), a multi-dimensional rating procedure with six subscales: Mental Demands, Physical Demands, Temporal Demands, Performance, Effort, and Frustration. Able-bodied and motor disabled participants completed the survey after performing EEG-based BCI Fitts’ law target acquisition and phrase spelling tasks. The NASA-TLX scores were similar for able-bodied and disabled participants. For example, overall workload scores (range 0 – 100) for 1D horizontal tasks were 48.5 (SD = 17.7) and 46.6 (SD 10.3), respectively. The TLX can be used to inform the design of BCIs that will have greater usability by evaluating subjective workload between BCI tasks, participant groups, and control modalities. PMID:22506483

  10. Wyrm: A Brain-Computer Interface Toolbox in Python.

    PubMed

    Venthur, Bastian; Dähne, Sven; Höhne, Johannes; Heller, Hendrik; Blankertz, Benjamin

    2015-10-01

    In the last years Python has gained more and more traction in the scientific community. Projects like NumPy, SciPy, and Matplotlib have created a strong foundation for scientific computing in Python and machine learning packages like scikit-learn or packages for data analysis like Pandas are building on top of it. In this paper we present Wyrm ( https://github.com/bbci/wyrm ), an open source BCI toolbox in Python. Wyrm is applicable to a broad range of neuroscientific problems. It can be used as a toolbox for analysis and visualization of neurophysiological data and in real-time settings, like an online BCI application. In order to prevent software defects, Wyrm makes extensive use of unit testing. We will explain the key aspects of Wyrm's software architecture and design decisions for its data structure, and demonstrate and validate the use of our toolbox by presenting our approach to the classification tasks of two different data sets from the BCI Competition III. Furthermore, we will give a brief analysis of the data sets using our toolbox, and demonstrate how we implemented an online experiment using Wyrm. With Wyrm we add the final piece to our ongoing effort to provide a complete, free and open source BCI system in Python.

  11. The effects of semantic congruency: a research of audiovisual P300-speller.

    PubMed

    Cao, Yong; An, Xingwei; Ke, Yufeng; Jiang, Jin; Yang, Hanjun; Chen, Yuqian; Jiao, Xuejun; Qi, Hongzhi; Ming, Dong

    2017-07-25

    Over the past few decades, there have been many studies of aspects of brain-computer interface (BCI). Of particular interests are event-related potential (ERP)-based BCI spellers that aim at helping mental typewriting. Nowadays, audiovisual unimodal stimuli based BCI systems have attracted much attention from researchers, and most of the existing studies of audiovisual BCIs were based on semantic incongruent stimuli paradigm. However, no related studies had reported that whether there is difference of system performance or participant comfort between BCI based on semantic congruent paradigm and that based on semantic incongruent paradigm. The goal of this study was to investigate the effects of semantic congruency in system performance and participant comfort in audiovisual BCI. Two audiovisual paradigms (semantic congruent and incongruent) were adopted, and 11 healthy subjects participated in the experiment. High-density electrical mapping of ERPs and behavioral data were measured for the two stimuli paradigms. The behavioral data indicated no significant difference between congruent and incongruent paradigms for offline classification accuracy. Nevertheless, eight of the 11 participants reported their priority to semantic congruent experiment, two reported no difference between the two conditions, and only one preferred the semantic incongruent paradigm. Besides, the result indicted that higher amplitude of ERP was found in incongruent stimuli based paradigm. In a word, semantic congruent paradigm had a better participant comfort, and maintained the same recognition rate as incongruent paradigm. Furthermore, our study suggested that the paradigm design of spellers must take both system performance and user experience into consideration rather than merely pursuing a larger ERP response.

  12. Towards a holistic assessment of the user experience with hybrid BCIs.

    PubMed

    Lorenz, Romy; Pascual, Javier; Blankertz, Benjamin; Vidaurre, Carmen

    2014-06-01

    In recent years, brain-computer interfaces (BCIs) have become mature enough to immensely benefit from the expertise and tools established in the field of human-computer interaction (HCI). One of the core objectives in HCI research is the design of systems that provide a pleasurable user experience (UX). While the majority of BCI studies exclusively evaluate common efficiency measures such as classification accuracy and speed, single research groups have begun to look at further usability aspects such as ease of use, workload and learnability. However, these evaluation metrics only cover pragmatic aspects of UX while still not considering the hedonic quality of UX. In order to gain a holistic perspective on UX, hedonic quality aspects such as motivation and frustration were also taken into account for our evaluation of three BCI-driven interfaces, which were proposed to be used as a two-stage neuroprosthetic control within the EU project MUNDUS. At the first stage, one of six possible actions was selected and either confirmed or cancelled at the second stage. For the experiment, a solely event-related-potential-based interface (ERP-ERP) and two hybrid solutions were tested that were controlled by ERP and motor imagery (MI)--resulting in the two possible combinations: ERP selection/MI confirmation (ERP-MI) or MI selection/ERP confirmation (MI-ERP). Behavioural, subjective and encephalographic (EEG) data of 12 healthy subjects were collected during an online experiment with the three graphical user interfaces (GUIs). Results showed a significantly greater pragmatic quality (in terms of accuracy, efficiency, workload, use quality and learnability) for the ERP-ERP and ERP-MI GUIs in contrast to the MI-ERP GUI. Consequently, the MI-ERP GUI is least suited for use as a neuroprosthetic control. With respect to the comparison of the ERP-ERP and ERP-MI GUIs, no significant differences in pragmatic and hedonic quality of UX were found. Since throughout better results were obtained for the conventional approach and it was most preferred by the subjects, the ERP-ERP GUI seems more suitable for its deployment in actual end-users. Nevertheless, for individuals with stable MI patterns, the hybrid interface can be provided as an additional option of choice within the MUNDUS framework. Although the paramount goal in BCI research still remains the improvement of classification accuracy and communication speed, it is of significance to note that it is equally important for end-users to keep up their motivation and prevent frustration. By including pragmatic as well as hedonic quality aspects, this study is the first effort to gain a holistic perspective of the UX while interacting with BCI-driven assistive technology aimed at actual end-users. The broad-scale methodology provided valuable insights into the underlying dynamics causing the users' experience to differ across the GUIs. The results will be used to refine a BCI-driven neuroprosthesis and test it with end-users.

  13. Towards a holistic assessment of the user experience with hybrid BCIs

    NASA Astrophysics Data System (ADS)

    Lorenz, Romy; Pascual, Javier; Blankertz, Benjamin; Vidaurre, Carmen

    2014-06-01

    Objective. In recent years, brain-computer interfaces (BCIs) have become mature enough to immensely benefit from the expertise and tools established in the field of human-computer interaction (HCI). One of the core objectives in HCI research is the design of systems that provide a pleasurable user experience (UX). While the majority of BCI studies exclusively evaluate common efficiency measures such as classification accuracy and speed, single research groups have begun to look at further usability aspects such as ease of use, workload and learnability. However, these evaluation metrics only cover pragmatic aspects of UX while still not considering the hedonic quality of UX. In order to gain a holistic perspective on UX, hedonic quality aspects such as motivation and frustration were also taken into account for our evaluation of three BCI-driven interfaces, which were proposed to be used as a two-stage neuroprosthetic control within the EU project MUNDUS. Approach. At the first stage, one of six possible actions was selected and either confirmed or cancelled at the second stage. For the experiment, a solely event-related-potential-based interface (ERP-ERP) and two hybrid solutions were tested that were controlled by ERP and motor imagery (MI)—resulting in the two possible combinations: ERP selection/MI confirmation (ERP-MI) or MI selection/ERP confirmation (MI-ERP). Behavioural, subjective and encephalographic (EEG) data of 12 healthy subjects were collected during an online experiment with the three graphical user interfaces (GUIs). Main results. Results showed a significantly greater pragmatic quality (in terms of accuracy, efficiency, workload, use quality and learnability) for the ERP-ERP and ERP-MI GUIs in contrast to the MI-ERP GUI. Consequently, the MI-ERP GUI is least suited for use as a neuroprosthetic control. With respect to the comparison of the ERP-ERP and ERP-MI GUIs, no significant differences in pragmatic and hedonic quality of UX were found. Since throughout better results were obtained for the conventional approach and it was most preferred by the subjects, the ERP-ERP GUI seems more suitable for its deployment in actual end-users. Nevertheless, for individuals with stable MI patterns, the hybrid interface can be provided as an additional option of choice within the MUNDUS framework. Significance. Although the paramount goal in BCI research still remains the improvement of classification accuracy and communication speed, it is of significance to note that it is equally important for end-users to keep up their motivation and prevent frustration. By including pragmatic as well as hedonic quality aspects, this study is the first effort to gain a holistic perspective of the UX while interacting with BCI-driven assistive technology aimed at actual end-users. The broad-scale methodology provided valuable insights into the underlying dynamics causing the users’ experience to differ across the GUIs. The results will be used to refine a BCI-driven neuroprosthesis and test it with end-users.

  14. A hybrid BCI for enhanced control of a telepresence robot.

    PubMed

    Carlson, Tom; Tonin, Luca; Perdikis, Serafeim; Leeb, Robert; del R Millán, José

    2013-01-01

    Motor-disabled end users have successfully driven a telepresence robot in a complex environment using a Brain-Computer Interface (BCI). However, to facilitate the interaction aspect that underpins the notion of telepresence, users must be able to voluntarily and reliably stop the robot at any moment, not just drive from point to point. In this work, we propose to exploit the user's residual muscular activity to provide a fast and reliable control channel, which can start/stop the telepresence robot at any moment. Our preliminary results show that not only does this hybrid approach increase the accuracy, but it also helps to reduce the workload and was the preferred control paradigm of all the participants.

  15. Mind-controlled transgene expression by a wireless-powered optogenetic designer cell implant.

    PubMed

    Folcher, Marc; Oesterle, Sabine; Zwicky, Katharina; Thekkottil, Thushara; Heymoz, Julie; Hohmann, Muriel; Christen, Matthias; Daoud El-Baba, Marie; Buchmann, Peter; Fussenegger, Martin

    2014-11-11

    Synthetic devices for traceless remote control of gene expression may provide new treatment opportunities in future gene- and cell-based therapies. Here we report the design of a synthetic mind-controlled gene switch that enables human brain activities and mental states to wirelessly programme the transgene expression in human cells. An electroencephalography (EEG)-based brain-computer interface (BCI) processing mental state-specific brain waves programs an inductively linked wireless-powered optogenetic implant containing designer cells engineered for near-infrared (NIR) light-adjustable expression of the human glycoprotein SEAP (secreted alkaline phosphatase). The synthetic optogenetic signalling pathway interfacing the BCI with target gene expression consists of an engineered NIR light-activated bacterial diguanylate cyclase (DGCL) producing the orthogonal second messenger cyclic diguanosine monophosphate (c-di-GMP), which triggers the stimulator of interferon genes (STING)-dependent induction of synthetic interferon-β promoters. Humans generating different mental states (biofeedback control, concentration, meditation) can differentially control SEAP production of the designer cells in culture and of subcutaneous wireless-powered optogenetic implants in mice.

  16. Hybrid brain-computer interfaces and hybrid neuroprostheses for restoration of upper limb functions in individuals with high-level spinal cord injury.

    PubMed

    Rohm, Martin; Schneiders, Matthias; Müller, Constantin; Kreilinger, Alex; Kaiser, Vera; Müller-Putz, Gernot R; Rupp, Rüdiger

    2013-10-01

    The bilateral loss of the grasp function associated with a lesion of the cervical spinal cord severely limits the affected individuals' ability to live independently and return to gainful employment after sustaining a spinal cord injury (SCI). Any improvement in lost or limited grasp function is highly desirable. With current neuroprostheses, relevant improvements can be achieved in end users with preserved shoulder and elbow, but missing hand function. The aim of this single case study is to show that (1) with the support of hybrid neuroprostheses combining functional electrical stimulation (FES) with orthoses, restoration of hand, finger and elbow function is possible in users with high-level SCI and (2) shared control principles can be effectively used to allow for a brain-computer interface (BCI) control, even if only moderate BCI performance is achieved after extensive training. The individual in this study is a right-handed 41-year-old man who sustained a traumatic SCI in 2009 and has a complete motor and sensory lesion at the level of C4. He is unable to generate functionally relevant movements of the elbow, hand and fingers on either side. He underwent extensive FES training (30-45min, 2-3 times per week for 6 months) and motor imagery (MI) BCI training (415 runs in 43 sessions over 12 months). To meet individual needs, the system was designed in a modular fashion including an intelligent control approach encompassing two input modalities, namely an MI-BCI and shoulder movements. After one year of training, the end user's MI-BCI performance ranged from 50% to 93% (average: 70.5%). The performance of the hybrid system was evaluated with different functional assessments. The user was able to transfer objects of the grasp-and-release-test and he succeeded in eating a pretzel stick, signing a document and eating an ice cream cone, which he was unable to do without the system. This proof-of-concept study has demonstrated that with the support of hybrid FES systems consisting of FES and a semiactive orthosis, restoring hand, finger and elbow function is possible in a tetraplegic end-user. Remarkably, even after one year of training and 415 MI-BCI runs, the end user's average BCI performance remained at about 70%. This supports the view that in high-level tetraplegic subjects, an initially moderate BCI performance cannot be improved by extensive training. However, this aspect has to be validated in future studies with a larger population. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Scientific profile of brain-computer interfaces: Bibliometric analysis in a 10-year period.

    PubMed

    Hu, Kejia; Chen, Chao; Meng, Qingyao; Williams, Ziv; Xu, Wendong

    2016-12-02

    With the tremendous advances in the field of brain-computer interfaces (BCI), the literature in this field has grown exponentially; examination of highly cited articles is a tool that can help identify outstanding scientific studies and landmark papers. This study examined the characteristics of 100 highly cited BCI papers over the past 10 years. The Web of Science was searched for highly cited papers related to BCI research published from 2006 to 2015. The top 100 highly cited articles were identified. The number of citations and countries, and the corresponding institutions, year of publication, study design, and research area were noted and analyzed. The 100 highly cited articles had a mean of 137.1(SE: 15.38) citations. These articles were published in 45 high-impact journals, and mostly in TRANSACTIONS ON BIOMEDICAL ENGINEERING (n=14). Of the 100 articles, 72 were original articles and the rest were review articles. These articles came from 15 countries, with the USA contributing most of the highly cited articles (n=52). Fifty-seven institutions produced these 100 highly cited articles, led by Duke University (n=7). This study provides a historical perspective on the progress in the field of BCI, allows recognition of the most influential reports, and provides useful information that can indicate areas requiring further investigation. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. Towards an architecture of a hybrid BCI based on SSVEP-BCI and passive-BCI.

    PubMed

    Cotrina, Anibal; Benevides, Alessandro; Ferreira, Andre; Bastos, Teodiano; Castillo, Javier; Menezes, Maria Luiza; Pereira, Carlos

    2014-01-01

    Recent decades have seen BCI applications as a novel and promising new channel of communication, control and entertainment for disabled and healthy people. However, BCI technology can be prone to errors due to the basic emotional state of the user: the performance of reactive and active BCIs decrease when user becomes stressed or bored, for example. Passive-BCI is a recent approach that fuses BCI technology with cognitive monitoring, providing valuable information about the user's intentions, the situational interpretations and mainly the emotional state. In this work, an architecture composed by passive-BCI co-working with SSVEP-BCI is proposed, with the aim of improving the performance of the reactive-BCI. The possibility of adjusting recognition characteristics of SSVEP-BCIs using a passive-BCI output is evaluated. In this sense, two ways to recover the accuracy of SSVEP are presented in this paper: 1) Adjusting of Amplitude of the SSVEP and 2) Adjusting of Frequency of the SSVEP response. The results are promising, because accuracy of SSVEP-BCI can be recovered in the case that it was reduced by the BCI user's emotional state.

  19. Fast Recognition of BCI-Inefficient Users Using Physiological Features from EEG Signals: A Screening Study of Stroke Patients.

    PubMed

    Shu, Xiaokang; Chen, Shugeng; Yao, Lin; Sheng, Xinjun; Zhang, Dingguo; Jiang, Ning; Jia, Jie; Zhu, Xiangyang

    2018-01-01

    Motor imagery (MI) based brain-computer interface (BCI) has been developed as an alternative therapy for stroke rehabilitation. However, experimental evidence demonstrates that a significant portion (10-50%) of subjects are BCI-inefficient users (accuracy less than 70%). Thus, predicting BCI performance prior to clinical BCI usage would facilitate the selection of suitable end-users and improve the efficiency of stroke rehabilitation. In the current study, we proposed two physiological variables, i.e., laterality index (LI) and cortical activation strength (CAS), to predict MI-BCI performance. Twenty-four stroke patients and 10 healthy subjects were recruited for this study. Each subject was required to perform two blocks of left- and right-hand MI tasks. Linear regression analyses were performed between the BCI accuracies and two physiological predictors. Here, the predictors were calculated from the electroencephalography (EEG) signals during paretic hand MI tasks (5 trials; approximately 1 min). LI values exhibited a statistically significant correlation with two-class BCI (left vs. right) performance (r = -0.732, p < 0.001), and CAS values exhibited a statistically significant correlation with brain-switch BCI (task vs. idle) performance ( r = 0.641, p < 0.001). Furthermore, the BCI-inefficient users were successfully recognized with a sensitivity of 88.2% and a specificity of 85.7% in the two-class BCI. The brain-switch BCI achieved a sensitivity of 100.0% and a specificity of 87.5% in the discrimination of BCI-inefficient users. These results demonstrated that the proposed BCI predictors were promising to promote the BCI usage in stroke rehabilitation and contribute to a better understanding of the BCI-inefficiency phenomenon in stroke patients.

  20. Fast Recognition of BCI-Inefficient Users Using Physiological Features from EEG Signals: A Screening Study of Stroke Patients

    PubMed Central

    Shu, Xiaokang; Chen, Shugeng; Yao, Lin; Sheng, Xinjun; Zhang, Dingguo; Jiang, Ning; Jia, Jie; Zhu, Xiangyang

    2018-01-01

    Motor imagery (MI) based brain-computer interface (BCI) has been developed as an alternative therapy for stroke rehabilitation. However, experimental evidence demonstrates that a significant portion (10–50%) of subjects are BCI-inefficient users (accuracy less than 70%). Thus, predicting BCI performance prior to clinical BCI usage would facilitate the selection of suitable end-users and improve the efficiency of stroke rehabilitation. In the current study, we proposed two physiological variables, i.e., laterality index (LI) and cortical activation strength (CAS), to predict MI-BCI performance. Twenty-four stroke patients and 10 healthy subjects were recruited for this study. Each subject was required to perform two blocks of left- and right-hand MI tasks. Linear regression analyses were performed between the BCI accuracies and two physiological predictors. Here, the predictors were calculated from the electroencephalography (EEG) signals during paretic hand MI tasks (5 trials; approximately 1 min). LI values exhibited a statistically significant correlation with two-class BCI (left vs. right) performance (r = −0.732, p < 0.001), and CAS values exhibited a statistically significant correlation with brain-switch BCI (task vs. idle) performance (r = 0.641, p < 0.001). Furthermore, the BCI-inefficient users were successfully recognized with a sensitivity of 88.2% and a specificity of 85.7% in the two-class BCI. The brain-switch BCI achieved a sensitivity of 100.0% and a specificity of 87.5% in the discrimination of BCI-inefficient users. These results demonstrated that the proposed BCI predictors were promising to promote the BCI usage in stroke rehabilitation and contribute to a better understanding of the BCI-inefficiency phenomenon in stroke patients. PMID:29515363

  1. A Ternary Hybrid EEG-NIRS Brain-Computer Interface for the Classification of Brain Activation Patterns during Mental Arithmetic, Motor Imagery, and Idle State.

    PubMed

    Shin, Jaeyoung; Kwon, Jinuk; Im, Chang-Hwan

    2018-01-01

    The performance of a brain-computer interface (BCI) can be enhanced by simultaneously using two or more modalities to record brain activity, which is generally referred to as a hybrid BCI. To date, many BCI researchers have tried to implement a hybrid BCI system by combining electroencephalography (EEG) and functional near-infrared spectroscopy (NIRS) to improve the overall accuracy of binary classification. However, since hybrid EEG-NIRS BCI, which will be denoted by hBCI in this paper, has not been applied to ternary classification problems, paradigms and classification strategies appropriate for ternary classification using hBCI are not well investigated. Here we propose the use of an hBCI for the classification of three brain activation patterns elicited by mental arithmetic, motor imagery, and idle state, with the aim to elevate the information transfer rate (ITR) of hBCI by increasing the number of classes while minimizing the loss of accuracy. EEG electrodes were placed over the prefrontal cortex and the central cortex, and NIRS optodes were placed only on the forehead. The ternary classification problem was decomposed into three binary classification problems using the "one-versus-one" (OVO) classification strategy to apply the filter-bank common spatial patterns filter to EEG data. A 10 × 10-fold cross validation was performed using shrinkage linear discriminant analysis (sLDA) to evaluate the average classification accuracies for EEG-BCI, NIRS-BCI, and hBCI when the meta-classification method was adopted to enhance classification accuracy. The ternary classification accuracies for EEG-BCI, NIRS-BCI, and hBCI were 76.1 ± 12.8, 64.1 ± 9.7, and 82.2 ± 10.2%, respectively. The classification accuracy of the proposed hBCI was thus significantly higher than those of the other BCIs ( p < 0.005). The average ITR for the proposed hBCI was calculated to be 4.70 ± 1.92 bits/minute, which was 34.3% higher than that reported for a previous binary hBCI study.

  2. Toward brain-actuated car applications: Self-paced control with a motor imagery-based brain-computer interface.

    PubMed

    Yu, Yang; Zhou, Zongtan; Yin, Erwei; Jiang, Jun; Tang, Jingsheng; Liu, Yadong; Hu, Dewen

    2016-10-01

    This study presented a paradigm for controlling a car using an asynchronous electroencephalogram (EEG)-based brain-computer interface (BCI) and presented the experimental results of a simulation performed in an experimental environment outside the laboratory. This paradigm uses two distinct MI tasks, imaginary left- and right-hand movements, to generate a multi-task car control strategy consisting of starting the engine, moving forward, turning left, turning right, moving backward, and stopping the engine. Five healthy subjects participated in the online car control experiment, and all successfully controlled the car by following a previously outlined route. Subject S1 exhibited the most satisfactory BCI-based performance, which was comparable to the manual control-based performance. We hypothesize that the proposed self-paced car control paradigm based on EEG signals could potentially be used in car control applications, and we provide a complementary or alternative way for individuals with locked-in disorders to achieve more mobility in the future, as well as providing a supplementary car-driving strategy to assist healthy people in driving a car. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Fuzzy Decision-Making Fuser (FDMF) for Integrating Human-Machine Autonomous (HMA) Systems with Adaptive Evidence Sources.

    PubMed

    Liu, Yu-Ting; Pal, Nikhil R; Marathe, Amar R; Wang, Yu-Kai; Lin, Chin-Teng

    2017-01-01

    A brain-computer interface (BCI) creates a direct communication pathway between the human brain and an external device or system. In contrast to patient-oriented BCIs, which are intended to restore inoperative or malfunctioning aspects of the nervous system, a growing number of BCI studies focus on designing auxiliary systems that are intended for everyday use. The goal of building these BCIs is to provide capabilities that augment existing intact physical and mental capabilities. However, a key challenge to BCI research is human variability; factors such as fatigue, inattention, and stress vary both across different individuals and for the same individual over time. If these issues are addressed, autonomous systems may provide additional benefits that enhance system performance and prevent problems introduced by individual human variability. This study proposes a human-machine autonomous (HMA) system that simultaneously aggregates human and machine knowledge to recognize targets in a rapid serial visual presentation (RSVP) task. The HMA focuses on integrating an RSVP BCI with computer vision techniques in an image-labeling domain. A fuzzy decision-making fuser (FDMF) is then applied in the HMA system to provide a natural adaptive framework for evidence-based inference by incorporating an integrated summary of the available evidence (i.e., human and machine decisions) and associated uncertainty. Consequently, the HMA system dynamically aggregates decisions involving uncertainties from both human and autonomous agents. The collaborative decisions made by an HMA system can achieve and maintain superior performance more efficiently than either the human or autonomous agents can achieve independently. The experimental results shown in this study suggest that the proposed HMA system with the FDMF can effectively fuse decisions from human brain activities and the computer vision techniques to improve overall performance on the RSVP recognition task. This conclusion demonstrates the potential benefits of integrating autonomous systems with BCI systems.

  4. Fuzzy Decision-Making Fuser (FDMF) for Integrating Human-Machine Autonomous (HMA) Systems with Adaptive Evidence Sources

    PubMed Central

    Liu, Yu-Ting; Pal, Nikhil R.; Marathe, Amar R.; Wang, Yu-Kai; Lin, Chin-Teng

    2017-01-01

    A brain-computer interface (BCI) creates a direct communication pathway between the human brain and an external device or system. In contrast to patient-oriented BCIs, which are intended to restore inoperative or malfunctioning aspects of the nervous system, a growing number of BCI studies focus on designing auxiliary systems that are intended for everyday use. The goal of building these BCIs is to provide capabilities that augment existing intact physical and mental capabilities. However, a key challenge to BCI research is human variability; factors such as fatigue, inattention, and stress vary both across different individuals and for the same individual over time. If these issues are addressed, autonomous systems may provide additional benefits that enhance system performance and prevent problems introduced by individual human variability. This study proposes a human-machine autonomous (HMA) system that simultaneously aggregates human and machine knowledge to recognize targets in a rapid serial visual presentation (RSVP) task. The HMA focuses on integrating an RSVP BCI with computer vision techniques in an image-labeling domain. A fuzzy decision-making fuser (FDMF) is then applied in the HMA system to provide a natural adaptive framework for evidence-based inference by incorporating an integrated summary of the available evidence (i.e., human and machine decisions) and associated uncertainty. Consequently, the HMA system dynamically aggregates decisions involving uncertainties from both human and autonomous agents. The collaborative decisions made by an HMA system can achieve and maintain superior performance more efficiently than either the human or autonomous agents can achieve independently. The experimental results shown in this study suggest that the proposed HMA system with the FDMF can effectively fuse decisions from human brain activities and the computer vision techniques to improve overall performance on the RSVP recognition task. This conclusion demonstrates the potential benefits of integrating autonomous systems with BCI systems. PMID:28676734

  5. Combined rTMS and virtual reality brain-computer interface training for motor recovery after stroke

    NASA Astrophysics Data System (ADS)

    Johnson, N. N.; Carey, J.; Edelman, B. J.; Doud, A.; Grande, A.; Lakshminarayan, K.; He, B.

    2018-02-01

    Objective. Combining repetitive transcranial magnetic stimulation (rTMS) with brain-computer interface (BCI) training can address motor impairment after stroke by down-regulating exaggerated inhibition from the contralesional hemisphere and encouraging ipsilesional activation. The objective was to evaluate the efficacy of combined rTMS  +  BCI, compared to sham rTMS  +  BCI, on motor recovery after stroke in subjects with lasting motor paresis. Approach. Three stroke subjects approximately one year post-stroke participated in three weeks of combined rTMS (real or sham) and BCI, followed by three weeks of BCI alone. Behavioral and electrophysiological differences were evaluated at baseline, after three weeks, and after six weeks of treatment. Main results. Motor improvements were observed in both real rTMS  +  BCI and sham groups, but only the former showed significant alterations in inter-hemispheric inhibition in the desired direction and increased relative ipsilesional cortical activation from fMRI. In addition, significant improvements in BCI performance over time and adequate control of the virtual reality BCI paradigm were observed only in the former group. Significance. When combined, the results highlight the feasibility and efficacy of combined rTMS  +  BCI for motor recovery, demonstrated by increased ipsilesional motor activity and improvements in behavioral function for the real rTMS  +  BCI condition in particular. Our findings also demonstrate the utility of BCI training alone, as shown by behavioral improvements for the sham rTMS  +  BCI condition. This study is the first to evaluate combined rTMS and BCI training for motor rehabilitation and provides a foundation for continued work to evaluate the potential of both rTMS and virtual reality BCI training for motor recovery after stroke.

  6. The hybrid BCI system for movement control by combining motor imagery and moving onset visual evoked potential.

    PubMed

    Ma, Teng; Li, Hui; Deng, Lili; Yang, Hao; Lv, Xulin; Li, Peiyang; Li, Fali; Zhang, Rui; Liu, Tiejun; Yao, Dezhong; Xu, Peng

    2017-04-01

    Movement control is an important application for EEG-BCI (EEG-based brain-computer interface) systems. A single-modality BCI cannot provide an efficient and natural control strategy, but a hybrid BCI system that combines two or more different tasks can effectively overcome the drawbacks encountered in single-modality BCI control. In the current paper, we developed a new hybrid BCI system by combining MI (motor imagery) and mVEP (motion-onset visual evoked potential), aiming to realize the more efficient 2D movement control of a cursor. The offline analysis demonstrates that the hybrid BCI system proposed in this paper could evoke the desired MI and mVEP signal features simultaneously, and both are very close to those evoked in the single-modality BCI task. Furthermore, the online 2D movement control experiment reveals that the proposed hybrid BCI system could provide more efficient and natural control commands. The proposed hybrid BCI system is compensative to realize efficient 2D movement control for a practical online system, especially for those situations in which P300 stimuli are not suitable to be applied.

  7. Brain-computer interfaces using capacitive measurement of visual or auditory steady-state responses

    NASA Astrophysics Data System (ADS)

    Baek, Hyun Jae; Kim, Hyun Seok; Heo, Jeong; Lim, Yong Gyu; Park, Kwang Suk

    2013-04-01

    Objective. Brain-computer interface (BCI) technologies have been intensely studied to provide alternative communication tools entirely independent of neuromuscular activities. Current BCI technologies use electroencephalogram (EEG) acquisition methods that require unpleasant gel injections, impractical preparations and clean-up procedures. The next generation of BCI technologies requires practical, user-friendly, nonintrusive EEG platforms in order to facilitate the application of laboratory work in real-world settings. Approach. A capacitive electrode that does not require an electrolytic gel or direct electrode-scalp contact is a potential alternative to the conventional wet electrode in future BCI systems. We have proposed a new capacitive EEG electrode that contains a conductive polymer-sensing surface, which enhances electrode performance. This paper presents results from five subjects who exhibited visual or auditory steady-state responses according to BCI using these new capacitive electrodes. The steady-state visual evoked potential (SSVEP) spelling system and the auditory steady-state response (ASSR) binary decision system were employed. Main results. Offline tests demonstrated BCI performance high enough to be used in a BCI system (accuracy: 95.2%, ITR: 19.91 bpm for SSVEP BCI (6 s), accuracy: 82.6%, ITR: 1.48 bpm for ASSR BCI (14 s)) with the analysis time being slightly longer than that when wet electrodes were employed with the same BCI system (accuracy: 91.2%, ITR: 25.79 bpm for SSVEP BCI (4 s), accuracy: 81.3%, ITR: 1.57 bpm for ASSR BCI (12 s)). Subjects performed online BCI under the SSVEP paradigm in copy spelling mode and under the ASSR paradigm in selective attention mode with a mean information transfer rate (ITR) of 17.78 ± 2.08 and 0.7 ± 0.24 bpm, respectively. Significance. The results of these experiments demonstrate the feasibility of using our capacitive EEG electrode in BCI systems. This capacitive electrode may become a flexible and non-intrusive tool fit for various applications in the next generation of BCI technologies.

  8. A systematic review of hybrid brain-computer interfaces: Taxonomy and usability perspectives

    PubMed Central

    Lee, Yushin; Yun, Myung Hwan

    2017-01-01

    A new Brain-Computer Interface (BCI) technique, which is called a hybrid BCI, has recently been proposed to address the limitations of conventional single BCI system. Although some hybrid BCI studies have shown promising results, the field of hybrid BCI is still in its infancy and there is much to be done. Especially, since the hybrid BCI systems are so complicated and complex, it is difficult to understand the constituent and role of a hybrid BCI system at a glance. Also, the complicated and complex systems make it difficult to evaluate the usability of the systems. We systematically reviewed and analyzed the current state-of-the-art hybrid BCI studies, and proposed a systematic taxonomy for classifying the types of hybrid BCIs with multiple taxonomic criteria. After reviewing 74 journal articles, hybrid BCIs could be categorized with respect to 1) the source of brain signals, 2) the characteristics of the brain signal, and 3) the characteristics of operation in each system. In addition, we exhaustively reviewed recent literature on usability of BCIs. To identify the key evaluation dimensions of usability, we focused on task and measurement characteristics of BCI usability. We classified and summarized 31 BCI usability journal articles according to task characteristics (type and description of task) and measurement characteristics (subjective and objective measures). Afterwards, we proposed usability dimensions for BCI and hybrid BCI systems according to three core-constructs: Satisfaction, effectiveness, and efficiency with recommendations for further research. This paper can help BCI researchers, even those who are new to the field, can easily understand the complex structure of the hybrid systems at a glance. Recommendations for future research can also be helpful in establishing research directions and gaining insight in how to solve ergonomics and HCI design issues surrounding BCI and hybrid BCI systems by usability evaluation. PMID:28453547

  9. A systematic review of hybrid brain-computer interfaces: Taxonomy and usability perspectives.

    PubMed

    Choi, Inchul; Rhiu, Ilsun; Lee, Yushin; Yun, Myung Hwan; Nam, Chang S

    2017-01-01

    A new Brain-Computer Interface (BCI) technique, which is called a hybrid BCI, has recently been proposed to address the limitations of conventional single BCI system. Although some hybrid BCI studies have shown promising results, the field of hybrid BCI is still in its infancy and there is much to be done. Especially, since the hybrid BCI systems are so complicated and complex, it is difficult to understand the constituent and role of a hybrid BCI system at a glance. Also, the complicated and complex systems make it difficult to evaluate the usability of the systems. We systematically reviewed and analyzed the current state-of-the-art hybrid BCI studies, and proposed a systematic taxonomy for classifying the types of hybrid BCIs with multiple taxonomic criteria. After reviewing 74 journal articles, hybrid BCIs could be categorized with respect to 1) the source of brain signals, 2) the characteristics of the brain signal, and 3) the characteristics of operation in each system. In addition, we exhaustively reviewed recent literature on usability of BCIs. To identify the key evaluation dimensions of usability, we focused on task and measurement characteristics of BCI usability. We classified and summarized 31 BCI usability journal articles according to task characteristics (type and description of task) and measurement characteristics (subjective and objective measures). Afterwards, we proposed usability dimensions for BCI and hybrid BCI systems according to three core-constructs: Satisfaction, effectiveness, and efficiency with recommendations for further research. This paper can help BCI researchers, even those who are new to the field, can easily understand the complex structure of the hybrid systems at a glance. Recommendations for future research can also be helpful in establishing research directions and gaining insight in how to solve ergonomics and HCI design issues surrounding BCI and hybrid BCI systems by usability evaluation.

  10. Why standard brain-computer interface (BCI) training protocols should be changed: an experimental study.

    PubMed

    Jeunet, Camille; Jahanpour, Emilie; Lotte, Fabien

    2016-06-01

    While promising, electroencephaloraphy based brain-computer interfaces (BCIs) are barely used due to their lack of reliability: 15% to 30% of users are unable to control a BCI. Standard training protocols may be partly responsible as they do not satisfy recommendations from psychology. Our main objective was to determine in practice to what extent standard training protocols impact users' motor imagery based BCI (MI-BCI) control performance. We performed two experiments. The first consisted in evaluating the efficiency of a standard BCI training protocol for the acquisition of non-BCI related skills in a BCI-free context, which enabled us to rule out the possible impact of BCIs on the training outcome. Thus, participants (N = 54) were asked to perform simple motor tasks. The second experiment was aimed at measuring the correlations between motor tasks and MI-BCI performance. The ten best and ten worst performers of the first study were recruited for an MI-BCI experiment during which they had to learn to perform two MI tasks. We also assessed users' spatial ability and pre-training μ rhythm amplitude, as both have been related to MI-BCI performance in the literature. Around 17% of the participants were unable to learn to perform the motor tasks, which is close to the BCI illiteracy rate. This suggests that standard training protocols are suboptimal for skill teaching. No correlation was found between motor tasks and MI-BCI performance. However, spatial ability played an important role in MI-BCI performance. In addition, once the spatial ability covariable had been controlled for, using an ANCOVA, it appeared that participants who faced difficulty during the first experiment improved during the second while the others did not. These studies suggest that (1) standard MI-BCI training protocols are suboptimal for skill teaching, (2) spatial ability is confirmed as impacting on MI-BCI performance, and (3) when faced with difficult pre-training, subjects seemed to explore more strategies and therefore learn better.

  11. High Theta and Low Alpha Powers May Be Indicative of BCI-Illiteracy in Motor Imagery

    PubMed Central

    Ahn, Minkyu; Cho, Hohyun; Ahn, Sangtae; Jun, Sung Chan

    2013-01-01

    In most brain computer interface (BCI) systems, some target users have significant difficulty in using BCI systems. Such target users are called ‘BCI-illiterate’. This phenomenon has been poorly investigated, and a clear understanding of the BCI-illiteracy mechanism or a solution to this problem has not been reported to date. In this study, we sought to demonstrate the neurophysiological differences between two groups (literate, illiterate) with a total of 52 subjects. We investigated recordings under non-task related state (NTS) which is collected during subject is relaxed with eyes open. We found that high theta and low alpha waves were noticeable in the BCI-illiterate relative to the BCI-literate people. Furthermore, these high theta and low alpha wave patterns were preserved across different mental states, such as NTS, resting before motor imagery (MI), and MI states, even though the spatial distribution of both BCI-illiterate and BCI-literate groups did not differ. From these findings, an effective strategy for pre-screening subjects for BCI illiteracy has been determined, and a performance factor that reflects potential user performance has been proposed using a simple combination of band powers. Our proposed performance factor gave an r = 0.59 (r2 = 0.34) in a correlation analysis with BCI performance and yielded as much as r = 0.70 (r2 = 0.50) when seven outliers were rejected during the evaluation of whole data (N = 61), including BCI competition datasets (N = 9). These findings may be directly applicable to online BCI systems. PMID:24278339

  12. High theta and low alpha powers may be indicative of BCI-illiteracy in motor imagery.

    PubMed

    Ahn, Minkyu; Cho, Hohyun; Ahn, Sangtae; Jun, Sung Chan

    2013-01-01

    In most brain computer interface (BCI) systems, some target users have significant difficulty in using BCI systems. Such target users are called 'BCI-illiterate'. This phenomenon has been poorly investigated, and a clear understanding of the BCI-illiteracy mechanism or a solution to this problem has not been reported to date. In this study, we sought to demonstrate the neurophysiological differences between two groups (literate, illiterate) with a total of 52 subjects. We investigated recordings under non-task related state (NTS) which is collected during subject is relaxed with eyes open. We found that high theta and low alpha waves were noticeable in the BCI-illiterate relative to the BCI-literate people. Furthermore, these high theta and low alpha wave patterns were preserved across different mental states, such as NTS, resting before motor imagery (MI), and MI states, even though the spatial distribution of both BCI-illiterate and BCI-literate groups did not differ. From these findings, an effective strategy for pre-screening subjects for BCI illiteracy has been determined, and a performance factor that reflects potential user performance has been proposed using a simple combination of band powers. Our proposed performance factor gave an r = 0.59 (r(2) = 0.34) in a correlation analysis with BCI performance and yielded as much as r = 0.70 (r(2) = 0.50) when seven outliers were rejected during the evaluation of whole data (N = 61), including BCI competition datasets (N = 9). These findings may be directly applicable to online BCI systems.

  13. Brain computer interface learning for systems based on electrocorticography and intracortical microelectrode arrays.

    PubMed

    Hiremath, Shivayogi V; Chen, Weidong; Wang, Wei; Foldes, Stephen; Yang, Ying; Tyler-Kabara, Elizabeth C; Collinger, Jennifer L; Boninger, Michael L

    2015-01-01

    A brain-computer interface (BCI) system transforms neural activity into control signals for external devices in real time. A BCI user needs to learn to generate specific cortical activity patterns to control external devices effectively. We call this process BCI learning, and it often requires significant effort and time. Therefore, it is important to study this process and develop novel and efficient approaches to accelerate BCI learning. This article reviews major approaches that have been used for BCI learning, including computer-assisted learning, co-adaptive learning, operant conditioning, and sensory feedback. We focus on BCIs based on electrocorticography and intracortical microelectrode arrays for restoring motor function. This article also explores the possibility of brain modulation techniques in promoting BCI learning, such as electrical cortical stimulation, transcranial magnetic stimulation, and optogenetics. Furthermore, as proposed by recent BCI studies, we suggest that BCI learning is in many ways analogous to motor and cognitive skill learning, and therefore skill learning should be a useful metaphor to model BCI learning.

  14. Amyotrophic lateral sclerosis progression and stability of brain-computer interface communication.

    PubMed

    Silvoni, Stefano; Cavinato, Marianna; Volpato, Chiara; Ruf, Carolin A; Birbaumer, Niels; Piccione, Francesco

    2013-09-01

    Our objective was to investigate the relationship between brain-computer interface (BCI) communication skill and disease progression in amyotrophic lateral sclerosis (ALS). We sought also to assess stability of BCI communication performance over time and whether it is related to the progression of neurological impairment before entering the locked-in state. A three years follow-up, BCI evaluation in a group of ALS patients (n = 24) was conducted. For a variety of reasons only three patients completed the three years follow-up. BCI communication skill and disability level, using the Amyotrophic Lateral Sclerosis Functional Rating Scale-Revised, were assessed at admission and at each of the three follow-ups. Multiple non-parametric statistical methods were used to ensure reliability of the dependent variables: correlations, paired test and factor analysis of variance. Results demonstrated no significant relationship between BCI communication skill (BCI-CS) and disease evolution. The patients who performed the follow-up evaluations preserved their BCI-CS over time. Patients' age at admission correlated positively with the ability to achieve control over a BCI. In conclusion, disease evolution in ALS does not affect the ability to control a BCI for communication. BCI performance can be maintained in the different stages of the illness.

  15. The hybrid BCI system for movement control by combining motor imagery and moving onset visual evoked potential

    NASA Astrophysics Data System (ADS)

    Ma, Teng; Li, Hui; Deng, Lili; Yang, Hao; Lv, Xulin; Li, Peiyang; Li, Fali; Zhang, Rui; Liu, Tiejun; Yao, Dezhong; Xu, Peng

    2017-04-01

    Objective. Movement control is an important application for EEG-BCI (EEG-based brain-computer interface) systems. A single-modality BCI cannot provide an efficient and natural control strategy, but a hybrid BCI system that combines two or more different tasks can effectively overcome the drawbacks encountered in single-modality BCI control. Approach. In the current paper, we developed a new hybrid BCI system by combining MI (motor imagery) and mVEP (motion-onset visual evoked potential), aiming to realize the more efficient 2D movement control of a cursor. Main result. The offline analysis demonstrates that the hybrid BCI system proposed in this paper could evoke the desired MI and mVEP signal features simultaneously, and both are very close to those evoked in the single-modality BCI task. Furthermore, the online 2D movement control experiment reveals that the proposed hybrid BCI system could provide more efficient and natural control commands. Significance. The proposed hybrid BCI system is compensative to realize efficient 2D movement control for a practical online system, especially for those situations in which P300 stimuli are not suitable to be applied.

  16. The BCI competition. III: Validating alternative approaches to actual BCI problems.

    PubMed

    Blankertz, Benjamin; Müller, Klaus-Robert; Krusienski, Dean J; Schalk, Gerwin; Wolpaw, Jonathan R; Schlögl, Alois; Pfurtscheller, Gert; Millán, José del R; Schröder, Michael; Birbaumer, Niels

    2006-06-01

    A brain-computer interface (BCI) is a system that allows its users to control external devices with brain activity. Although the proof-of-concept was given decades ago, the reliable translation of user intent into device control commands is still a major challenge. Success requires the effective interaction of two adaptive controllers: the user's brain, which produces brain activity that encodes intent, and the BCI system, which translates that activity into device control commands. In order to facilitate this interaction, many laboratories are exploring a variety of signal analysis techniques to improve the adaptation of the BCI system to the user. In the literature, many machine learning and pattern classification algorithms have been reported to give impressive results when applied to BCI data in offline analyses. However, it is more difficult to evaluate their relative value for actual online use. BCI data competitions have been organized to provide objective formal evaluations of alternative methods. Prompted by the great interest in the first two BCI Competitions, we organized the third BCI Competition to address several of the most difficult and important analysis problems in BCI research. The paper describes the data sets that were provided to the competitors and gives an overview of the results.

  17. Empathy, motivation, and P300 BCI performance

    PubMed Central

    Kleih, Sonja C.; Kübler, Andrea

    2013-01-01

    Motivation moderately influences brain–computer interface (BCI) performance in healthy subjects when monetary reward is used to manipulate extrinsic motivation. However, the motivation of severely paralyzed patients, who are potentially in need for BCI, could mainly be internal and thus, an intrinsic motivator may be more powerful. Also healthy subjects who participate in BCI studies could be internally motivated as they may wish to contribute to research and thus extrinsic motivation by monetary reward would be less important than the content of the study. In this respect, motivation could be defined as “motivation-to-help.” The aim of this study was to investigate, whether subjects with high motivation for helping and who are highly empathic would perform better with a BCI controlled by event-related potentials (P300-BCI). We included N = 20 healthy young participants naïve to BCI and grouped them according to their motivation for participating in a BCI study in a low and highly motivated group. Motivation was further manipulated with interesting or boring presentations about BCI and the possibility to help patients. Motivation for helping did neither influence BCI performance nor the P300 amplitude. Post hoc, subjects were re-grouped according to their ability for perspective taking. We found significantly higher P300 amplitudes on parietal electrodes in participants with a low ability for perspective taking and therefore, lower empathy, as compared to participants with higher empathy. The lack of an effect of motivation on BCI performance contradicts previous findings and thus, requires further investigation. We speculate that subjects with higher empathy who are good perspective takers with regards to patients in potential need of BCI, may be more emotionally involved and therefore, less able to allocate attention on the BCI task at hand. PMID:24146640

  18. Empathy, motivation, and P300 BCI performance.

    PubMed

    Kleih, Sonja C; Kübler, Andrea

    2013-01-01

    Motivation moderately influences brain-computer interface (BCI) performance in healthy subjects when monetary reward is used to manipulate extrinsic motivation. However, the motivation of severely paralyzed patients, who are potentially in need for BCI, could mainly be internal and thus, an intrinsic motivator may be more powerful. Also healthy subjects who participate in BCI studies could be internally motivated as they may wish to contribute to research and thus extrinsic motivation by monetary reward would be less important than the content of the study. In this respect, motivation could be defined as "motivation-to-help." The aim of this study was to investigate, whether subjects with high motivation for helping and who are highly empathic would perform better with a BCI controlled by event-related potentials (P300-BCI). We included N = 20 healthy young participants naïve to BCI and grouped them according to their motivation for participating in a BCI study in a low and highly motivated group. Motivation was further manipulated with interesting or boring presentations about BCI and the possibility to help patients. Motivation for helping did neither influence BCI performance nor the P300 amplitude. Post hoc, subjects were re-grouped according to their ability for perspective taking. We found significantly higher P300 amplitudes on parietal electrodes in participants with a low ability for perspective taking and therefore, lower empathy, as compared to participants with higher empathy. The lack of an effect of motivation on BCI performance contradicts previous findings and thus, requires further investigation. We speculate that subjects with higher empathy who are good perspective takers with regards to patients in potential need of BCI, may be more emotionally involved and therefore, less able to allocate attention on the BCI task at hand.

  19. Predicting BCI subject performance using probabilistic spatio-temporal filters.

    PubMed

    Suk, Heung-Il; Fazli, Siamac; Mehnert, Jan; Müller, Klaus-Robert; Lee, Seong-Whan

    2014-01-01

    Recently, spatio-temporal filtering to enhance decoding for Brain-Computer-Interfacing (BCI) has become increasingly popular. In this work, we discuss a novel, fully Bayesian-and thereby probabilistic-framework, called Bayesian Spatio-Spectral Filter Optimization (BSSFO) and apply it to a large data set of 80 non-invasive EEG-based BCI experiments. Across the full frequency range, the BSSFO framework allows to analyze which spatio-spectral parameters are common and which ones differ across the subject population. As expected, large variability of brain rhythms is observed between subjects. We have clustered subjects according to similarities in their corresponding spectral characteristics from the BSSFO model, which is found to reflect their BCI performances well. In BCI, a considerable percentage of subjects is unable to use a BCI for communication, due to their missing ability to modulate their brain rhythms-a phenomenon sometimes denoted as BCI-illiteracy or inability. Predicting individual subjects' performance preceding the actual, time-consuming BCI-experiment enhances the usage of BCIs, e.g., by detecting users with BCI inability. This work additionally contributes by using the novel BSSFO method to predict the BCI-performance using only 2 minutes and 3 channels of resting-state EEG data recorded before the actual BCI-experiment. Specifically, by grouping the individual frequency characteristics we have nicely classified them into the subject 'prototypes' (like μ - or β -rhythm type subjects) or users without ability to communicate with a BCI, and then by further building a linear regression model based on the grouping we could predict subjects' performance with the maximum correlation coefficient of 0.581 with the performance later seen in the actual BCI session.

  20. A Review of Brain-Computer Interface Games and an Opinion Survey from Researchers, Developers and Users

    PubMed Central

    Ahn, Minkyu; Lee, Mijin; Choi, Jinyoung; Jun, Sung Chan

    2014-01-01

    In recent years, research on Brain-Computer Interface (BCI) technology for healthy users has attracted considerable interest, and BCI games are especially popular. This study reviews the current status of, and describes future directions, in the field of BCI games. To this end, we conducted a literature search and found that BCI control paradigms using electroencephalographic signals (motor imagery, P300, steady state visual evoked potential and passive approach reading mental state) have been the primary focus of research. We also conducted a survey of nearly three hundred participants that included researchers, game developers and users around the world. From this survey, we found that all three groups (researchers, developers and users) agreed on the significant influence and applicability of BCI and BCI games, and they all selected prostheses, rehabilitation and games as the most promising BCI applications. User and developer groups tended to give low priority to passive BCI and the whole head sensor array. Developers gave higher priorities to “the easiness of playing” and the “development platform” as important elements for BCI games and the market. Based on our assessment, we discuss the critical point at which BCI games will be able to progress from their current stage to widespread marketing to consumers. In conclusion, we propose three critical elements important for expansion of the BCI game market: standards, gameplay and appropriate integration. PMID:25116904

  1. A review of brain-computer interface games and an opinion survey from researchers, developers and users.

    PubMed

    Ahn, Minkyu; Lee, Mijin; Choi, Jinyoung; Jun, Sung Chan

    2014-08-11

    In recent years, research on Brain-Computer Interface (BCI) technology for healthy users has attracted considerable interest, and BCI games are especially popular. This study reviews the current status of, and describes future directions, in the field of BCI games. To this end, we conducted a literature search and found that BCI control paradigms using electroencephalographic signals (motor imagery, P300, steady state visual evoked potential and passive approach reading mental state) have been the primary focus of research. We also conducted a survey of nearly three hundred participants that included researchers, game developers and users around the world. From this survey, we found that all three groups (researchers, developers and users) agreed on the significant influence and applicability of BCI and BCI games, and they all selected prostheses, rehabilitation and games as the most promising BCI applications. User and developer groups tended to give low priority to passive BCI and the whole head sensor array. Developers gave higher priorities to "the easiness of playing" and the "development platform" as important elements for BCI games and the market. Based on our assessment, we discuss the critical point at which BCI games will be able to progress from their current stage to widespread marketing to consumers. In conclusion, we propose three critical elements important for expansion of the BCI game market: standards, gameplay and appropriate integration.

  2. Machine-Learning Based Co-adaptive Calibration: A Perspective to Fight BCI Illiteracy

    NASA Astrophysics Data System (ADS)

    Vidaurre, Carmen; Sannelli, Claudia; Müller, Klaus-Robert; Blankertz, Benjamin

    "BCI illiteracy" is one of the biggest problems and challenges in BCI research. It means that BCI control cannot be achieved by a non-negligible number of subjects (estimated 20% to 25%). There are two main causes for BCI illiteracy in BCI users: either no SMR idle rhythm is observed over motor areas, or this idle rhythm is not attenuated during motor imagery, resulting in a classification performance lower than 70% (criterion level) already for offline calibration data. In a previous work of the same authors, the concept of machine learning based co-adaptive calibration was introduced. This new type of calibration provided substantially improved performance for a variety of users. Here, we use a similar approach and investigate to what extent co-adapting learning enables substantial BCI control for completely novice users and those who suffered from BCI illiteracy before.

  3. Why standard brain-computer interface (BCI) training protocols should be changed: an experimental study

    NASA Astrophysics Data System (ADS)

    Jeunet, Camille; Jahanpour, Emilie; Lotte, Fabien

    2016-06-01

    Objective. While promising, electroencephaloraphy based brain-computer interfaces (BCIs) are barely used due to their lack of reliability: 15% to 30% of users are unable to control a BCI. Standard training protocols may be partly responsible as they do not satisfy recommendations from psychology. Our main objective was to determine in practice to what extent standard training protocols impact users’ motor imagery based BCI (MI-BCI) control performance. Approach. We performed two experiments. The first consisted in evaluating the efficiency of a standard BCI training protocol for the acquisition of non-BCI related skills in a BCI-free context, which enabled us to rule out the possible impact of BCIs on the training outcome. Thus, participants (N = 54) were asked to perform simple motor tasks. The second experiment was aimed at measuring the correlations between motor tasks and MI-BCI performance. The ten best and ten worst performers of the first study were recruited for an MI-BCI experiment during which they had to learn to perform two MI tasks. We also assessed users’ spatial ability and pre-training μ rhythm amplitude, as both have been related to MI-BCI performance in the literature. Main results. Around 17% of the participants were unable to learn to perform the motor tasks, which is close to the BCI illiteracy rate. This suggests that standard training protocols are suboptimal for skill teaching. No correlation was found between motor tasks and MI-BCI performance. However, spatial ability played an important role in MI-BCI performance. In addition, once the spatial ability covariable had been controlled for, using an ANCOVA, it appeared that participants who faced difficulty during the first experiment improved during the second while the others did not. Significance. These studies suggest that (1) standard MI-BCI training protocols are suboptimal for skill teaching, (2) spatial ability is confirmed as impacting on MI-BCI performance, and (3) when faced with difficult pre-training, subjects seemed to explore more strategies and therefore learn better.

  4. Attention-level transitory response: a novel hybrid BCI approach

    NASA Astrophysics Data System (ADS)

    Diez, Pablo F.; Garcés Correa, Agustina; Orosco, Lorena; Laciar, Eric; Mut, Vicente

    2015-10-01

    Objective. People with disabilities may control devices such as a computer or a wheelchair by means of a brain-computer interface (BCI). BCI based on steady-state visual evoked potentials (SSVEP) requires visual stimulation of the user. However, this SSVEP-based BCI suffers from the ‘Midas touch effect’, i.e., the BCI can detect an SSVEP even when the user is not gazing at the stimulus. Then, these incorrect detections deteriorate the performance of the system, especially in asynchronous BCI because ongoing EEG is classified. In this paper, a novel transitory response of the attention-level of the user is reported. It was used to develop a hybrid BCI (hBCI). Approach. Three methods are proposed to detect the attention-level of the user. They are based on the alpha rhythm and theta/beta rate. The proposed hBCI scheme is presented along with these methods. Hence, the hBCI sends a command only when the user is at a high-level of attention, or in other words, when the user is really focused on the task being performed. The hBCI was tested over two different EEG datasets. Main results. The performance of the hybrid approach is superior to the standard one. Improvements of 20% in accuracy and 10 bits min-1 are reported. Moreover, the attention-level is extracted from the same EEG channels used in SSVEP detection and this way, no extra hardware is needed. Significance. A transitory response of EEG signal is used to develop the attention-SSVEP hBCI which is capable of reducing the Midas touch effect.

  5. Attention-level transitory response: a novel hybrid BCI approach.

    PubMed

    Diez, Pablo F; Garcés Correa, Agustina; Orosco, Lorena; Laciar, Eric; Mut, Vicente

    2015-10-01

    People with disabilities may control devices such as a computer or a wheelchair by means of a brain-computer interface (BCI). BCI based on steady-state visual evoked potentials (SSVEP) requires visual stimulation of the user. However, this SSVEP-based BCI suffers from the 'Midas touch effect', i.e., the BCI can detect an SSVEP even when the user is not gazing at the stimulus. Then, these incorrect detections deteriorate the performance of the system, especially in asynchronous BCI because ongoing EEG is classified. In this paper, a novel transitory response of the attention-level of the user is reported. It was used to develop a hybrid BCI (hBCI). Three methods are proposed to detect the attention-level of the user. They are based on the alpha rhythm and theta/beta rate. The proposed hBCI scheme is presented along with these methods. Hence, the hBCI sends a command only when the user is at a high-level of attention, or in other words, when the user is really focused on the task being performed. The hBCI was tested over two different EEG datasets. The performance of the hybrid approach is superior to the standard one. Improvements of 20% in accuracy and 10 bits min(-1) are reported. Moreover, the attention-level is extracted from the same EEG channels used in SSVEP detection and this way, no extra hardware is needed. A transitory response of EEG signal is used to develop the attention-SSVEP hBCI which is capable of reducing the Midas touch effect.

  6. Development document for final best conventional technology effluent limitations guidelines for the pharmaceutical manufacturing point source category. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Farrell, T.; Hund, F.

    1986-12-01

    The document presents the technical rationale for best conventional technology (BCI) effluent limitations guidelines for the pharmaceutical manufacturing point-source category as required by the Clean Water Act of 1977 (P.L. 95-217, the Act). The document describes the technologies considered as the bases for BCT limitations. Section II of this document summarizes the rulemaking process. Sections III through V describe the technical data and engineering analyses used to develop the regulatory technology options. The costs and removals associated with each technology option for each plant and the application of the BCT cost test methodology are presented in Section VI. BCI limitationsmore » bases on the best conventional pollutant control technology are to be achieved by existing direct-discharging facilities.« less

  7. BNCI systems as a potential assistive technology: ethical issues and participatory research in the BrainAble project.

    PubMed

    Carmichael, Clare; Carmichael, Patrick

    2014-01-01

    This paper highlights aspects related to current research and thinking about ethical issues in relation to Brain Computer Interface (BCI) and Brain-Neuronal Computer Interfaces (BNCI) research through the experience of one particular project, BrainAble, which is exploring and developing the potential of these technologies to enable people with complex disabilities to control computers. It describes how ethical practice has been developed both within the multidisciplinary research team and with participants. The paper presents findings in which participants shared their views of the project prototypes, of the potential of BCI/BNCI systems as an assistive technology, and of their other possible applications. This draws attention to the importance of ethical practice in projects where high expectations of technologies, and representations of "ideal types" of disabled users may reinforce stereotypes or drown out participant "voices". Ethical frameworks for research and development in emergent areas such as BCI/BNCI systems should be based on broad notions of a "duty of care" while being sufficiently flexible that researchers can adapt project procedures according to participant needs. They need to be frequently revisited, not only in the light of experience, but also to ensure they reflect new research findings and ever more complex and powerful technologies.

  8. A small, portable, battery-powered brain-computer interface system for motor rehabilitation.

    PubMed

    McCrimmon, Colin M; Ming Wang; Silva Lopes, Lucas; Wang, Po T; Karimi-Bidhendi, Alireza; Liu, Charles Y; Heydari, Payam; Nenadic, Zoran; Do, An H

    2016-08-01

    Motor rehabilitation using brain-computer interface (BCI) systems may facilitate functional recovery in individuals after stroke or spinal cord injury. Nevertheless, these systems are typically ill-suited for widespread adoption due to their size, cost, and complexity. In this paper, a small, portable, and extremely cost-efficient (<;$200) BCI system has been developed using a custom electroencephalographic (EEG) amplifier array, and a commercial microcontroller and touchscreen. The system's performance was tested using a movement-related BCI task in 3 able-bodied subjects with minimal previous BCI experience. Specifically, subjects were instructed to alternate between relaxing and dorsiflexing their right foot, while their EEG was acquired and analyzed in real-time by the BCI system to decode their underlying movement state. The EEG signals acquired by the custom amplifier array were similar to those acquired by a commercial amplifier (maximum correlation coefficient ρ=0.85). During real-time BCI operation, the average correlation between instructional cues and decoded BCI states across all subjects (ρ=0.70) was comparable to that of full-size BCI systems. Small, portable, and inexpensive BCI systems such as the one reported here may promote a widespread adoption of BCI-based movement rehabilitation devices in stroke and spinal cord injury populations.

  9. Long-term independent brain-computer interface home use improves quality of life of a patient in the locked-in state: a case study.

    PubMed

    Holz, Elisa Mira; Botrel, Loic; Kaufmann, Tobias; Kübler, Andrea

    2015-03-01

    Despite intense brain-computer interface (BCI) research for >2 decades, BCIs have hardly been established at patients' homes. The current study aimed at demonstrating expert independent BCI home use by a patient in the locked-in state and the effect it has on quality of life. In this case study, the P300 BCI-controlled application Brain Painting was facilitated and installed at the patient's home. Family and caregivers were trained in setting up the BCI system. After every BCI session, the end user indicated subjective level of control, loss of control, level of exhaustion, satisfaction, frustration, and enjoyment. To monitor BCI home use, evaluation data of every session were automatically sent and stored on a remote server. Satisfaction with the BCI as an assistive device and subjective workload was indicated by the patient. In accordance with the user-centered design, usability of the BCI was evaluated in terms of its effectiveness, efficiency, and satisfaction. The influence of the BCI on quality of life of the end user was assessed. At the patient's home. A 73-year-old patient with amyotrophic lateral sclerosis in the locked-in state. Not applicable. The BCI has been used by the patient independent of experts for >14 months. The patient painted in about 200 BCI sessions (1-3 times per week) with a mean painting duration of 81.86 minutes (SD=52.15, maximum: 230.41). BCI improved quality of life of the patient. In most of the BCI sessions the end user's satisfaction was high (mean=7.4, SD=3.24; range, 0-10). Dissatisfaction occurred mostly because of technical problems at the beginning of the study or varying BCI control. The subjective workload was moderate (mean=40.61; range, 0-100). The end user was highy satisfied with all components of the BCI (mean 4.42-5.0; range, 1-5). A perfect match between the user and the BCI technology was achieved (mean: 4.8; range, 1-5). Brain Painting had a positive impact on the patient's life on all three dimensions: competence (1.5), adaptability (2.17) and self-esteem (1.5); (range: -3 = maximum negative impact; 3 maximum positive impact). The patient had her first public art exhibition in July 2013; future exhibitions are in preparation. Independent BCI home use is possible with high satisfaction for the end user. The BCI indeed positively influenced quality of life of the patient and supports social inclusion. Results demonstrate that visual P300 BCIs can be valuable for patients in the locked-in state even if other means of communication are still available (eye tracker). Copyright © 2015 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  10. Performance assessment in brain-computer interface-based augmentative and alternative communication

    PubMed Central

    2013-01-01

    A large number of incommensurable metrics are currently used to report the performance of brain-computer interfaces (BCI) used for augmentative and alterative communication (AAC). The lack of standard metrics precludes the comparison of different BCI-based AAC systems, hindering rapid growth and development of this technology. This paper presents a review of the metrics that have been used to report performance of BCIs used for AAC from January 2005 to January 2012. We distinguish between Level 1 metrics used to report performance at the output of the BCI Control Module, which translates brain signals into logical control output, and Level 2 metrics at the Selection Enhancement Module, which translates logical control to semantic control. We recommend that: (1) the commensurate metrics Mutual Information or Information Transfer Rate (ITR) be used to report Level 1 BCI performance, as these metrics represent information throughput, which is of interest in BCIs for AAC; 2) the BCI-Utility metric be used to report Level 2 BCI performance, as it is capable of handling all current methods of improving BCI performance; (3) these metrics should be supplemented by information specific to each unique BCI configuration; and (4) studies involving Selection Enhancement Modules should report performance at both Level 1 and Level 2 in the BCI system. Following these recommendations will enable efficient comparison between both BCI Control and Selection Enhancement Modules, accelerating research and development of BCI-based AAC systems. PMID:23680020

  11. BCI Use and Its Relation to Adaptation in Cortical Networks.

    PubMed

    Casimo, Kaitlyn; Weaver, Kurt E; Wander, Jeremiah; Ojemann, Jeffrey G

    2017-10-01

    Brain-computer interfaces (BCIs) carry great potential in the treatment of motor impairments. As a new motor output, BCIs interface with the native motor system, but acquisition of BCI proficiency requires a degree of learning to integrate this new function. In this review, we discuss how BCI designs often take advantage of the brain's motor system infrastructure as sources of command signals. We highlight a growing body of literature examining how this approach leads to changes in activity across cortex, including beyond motor regions, as a result of learning the new skill of BCI control. We discuss the previous research identifying patterns of neural activity associated with BCI skill acquisition and use that closely resembles those associated with learning traditional native motor tasks. We then discuss recent work in animals probing changes in connectivity of the BCI control site, which were linked to BCI skill acquisition, and use this as a foundation for our original work in humans. We present our novel work showing changes in resting state connectivity across cortex following the BCI learning process. We find substantial, heterogeneous changes in connectivity across regions and frequencies, including interactions that do not involve the BCI control site. We conclude from our review and original work that BCI skill acquisition may potentially lead to significant changes in evoked and resting state connectivity across multiple cortical regions. We recommend that future studies of BCIs look beyond motor regions to fully describe the cortical networks involved and long-term adaptations resulting from BCI skill acquisition.

  12. A novel hybrid auditory BCI paradigm combining ASSR and P300.

    PubMed

    Kaongoen, Netiwit; Jo, Sungho

    2017-03-01

    Brain-computer interface (BCI) is a technology that provides an alternative way of communication by translating brain activities into digital commands. Due to the incapability of using the vision-dependent BCI for patients who have visual impairment, auditory stimuli have been used to substitute the conventional visual stimuli. This paper introduces a hybrid auditory BCI that utilizes and combines auditory steady state response (ASSR) and spatial-auditory P300 BCI to improve the performance for the auditory BCI system. The system works by simultaneously presenting auditory stimuli with different pitches and amplitude modulation (AM) frequencies to the user with beep sounds occurring randomly between all sound sources. Attention to different auditory stimuli yields different ASSR and beep sounds trigger the P300 response when they occur in the target channel, thus the system can utilize both features for classification. The proposed ASSR/P300-hybrid auditory BCI system achieves 85.33% accuracy with 9.11 bits/min information transfer rate (ITR) in binary classification problem. The proposed system outperformed the P300 BCI system (74.58% accuracy with 4.18 bits/min ITR) and the ASSR BCI system (66.68% accuracy with 2.01 bits/min ITR) in binary-class problem. The system is completely vision-independent. This work demonstrates that combining ASSR and P300 BCI into a hybrid system could result in a better performance and could help in the development of the future auditory BCI. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Spatial co-adaptation of cortical control columns in a micro-ECoG brain-computer interface

    NASA Astrophysics Data System (ADS)

    Rouse, A. G.; Williams, J. J.; Wheeler, J. J.; Moran, D. W.

    2016-10-01

    Objective. Electrocorticography (ECoG) has been used for a range of applications including electrophysiological mapping, epilepsy monitoring, and more recently as a recording modality for brain-computer interfaces (BCIs). Studies that examine ECoG electrodes designed and implanted chronically solely for BCI applications remain limited. The present study explored how two key factors influence chronic, closed-loop ECoG BCI: (i) the effect of inter-electrode distance on BCI performance and (ii) the differences in neural adaptation and performance when fixed versus adaptive BCI decoding weights are used. Approach. The amplitudes of epidural micro-ECoG signals between 75 and 105 Hz with 300 μm diameter electrodes were used for one-dimensional and two-dimensional BCI tasks. The effect of inter-electrode distance on BCI control was tested between 3 and 15 mm. Additionally, the performance and cortical modulation differences between constant, fixed decoding using a small subset of channels versus adaptive decoding weights using the entire array were explored. Main results. Successful BCI control was possible with two electrodes separated by 9 and 15 mm. Performance decreased and the signals became more correlated when the electrodes were only 3 mm apart. BCI performance in a 2D BCI task improved significantly when using adaptive decoding weights (80%-90%) compared to using constant, fixed weights (50%-60%). Additionally, modulation increased for channels previously unavailable for BCI control under the fixed decoding scheme upon switching to the adaptive, all-channel scheme. Significance. Our results clearly show that neural activity under a BCI recording electrode (which we define as a ‘cortical control column’) readily adapts to generate an appropriate control signal. These results show that the practical minimal spatial resolution of these control columns with micro-ECoG BCI is likely on the order of 3 mm. Additionally, they show that the combination and interaction between neural adaptation and machine learning are critical to optimizing ECoG BCI performance.

  14. Expanding the (kaleido)scope: exploring current literature trends for translating electroencephalography (EEG) based brain-computer interfaces for motor rehabilitation in children

    NASA Astrophysics Data System (ADS)

    Kinney-Lang, E.; Auyeung, B.; Escudero, J.

    2016-12-01

    Rehabilitation applications using brain-computer interfaces (BCI) have recently shown encouraging results for motor recovery. Effective BCI neurorehabilitation has been shown to exploit neuroplastic properties of the brain through mental imagery tasks. However, these applications and results are currently restricted to adults. A systematic search reveals there is essentially no literature describing motor rehabilitative BCI applications that use electroencephalograms (EEG) in children, despite advances in such applications with adults. Further inspection highlights limited literature pursuing research in the field, especially outside of neurofeedback paradigms. Then the question naturally arises, do current literature trends indicate that EEG based BCI motor rehabilitation applications could be translated to children? To provide further evidence beyond the available literature for this particular topic, we present an exploratory survey examining some of the indirect literature related to motor rehabilitation BCI in children. Our goal is to establish if evidence in the related literature supports research on this topic and if the related studies can help explain the dearth of current research in this area. The investigation found positive literature trends in the indirect studies which support translating these BCI applications to children and provide insight into potential pitfalls perhaps responsible for the limited literature. Careful consideration of these pitfalls in conjunction with support from the literature emphasize that fully realized motor rehabilitation BCI applications for children are feasible and would be beneficial. • BCI intervention has improved motor recovery in adult patients and offer supplementary rehabilitation options to patients. • A systematic literature search revealed that essentially no research has been conducted bringing motor rehabilitation BCI applications to children, despite advances in BCI. • Indirect studies discovered from the systematic literature search, i.e. neurorehabilitation in children via BCI for autism spectrum disorder, provide insight into translating motor rehabilitation BCI applications to children. • Translating BCI applications to children is a relevant, important area of research which is relatively barren.

  15. Expanding the (kaleido)scope: exploring current literature trends for translating electroencephalography (EEG) based brain-computer interfaces for motor rehabilitation in children.

    PubMed

    Kinney-Lang, E; Auyeung, B; Escudero, J

    2016-12-01

    Rehabilitation applications using brain-computer interfaces (BCI) have recently shown encouraging results for motor recovery. Effective BCI neurorehabilitation has been shown to exploit neuroplastic properties of the brain through mental imagery tasks. However, these applications and results are currently restricted to adults. A systematic search reveals there is essentially no literature describing motor rehabilitative BCI applications that use electroencephalograms (EEG) in children, despite advances in such applications with adults. Further inspection highlights limited literature pursuing research in the field, especially outside of neurofeedback paradigms. Then the question naturally arises, do current literature trends indicate that EEG based BCI motor rehabilitation applications could be translated to children? To provide further evidence beyond the available literature for this particular topic, we present an exploratory survey examining some of the indirect literature related to motor rehabilitation BCI in children. Our goal is to establish if evidence in the related literature supports research on this topic and if the related studies can help explain the dearth of current research in this area. The investigation found positive literature trends in the indirect studies which support translating these BCI applications to children and provide insight into potential pitfalls perhaps responsible for the limited literature. Careful consideration of these pitfalls in conjunction with support from the literature emphasize that fully realized motor rehabilitation BCI applications for children are feasible and would be beneficial. •  BCI intervention has improved motor recovery in adult patients and offer supplementary rehabilitation options to patients. •  A systematic literature search revealed that essentially no research has been conducted bringing motor rehabilitation BCI applications to children, despite advances in BCI. •  Indirect studies discovered from the systematic literature search, i.e. neurorehabilitation in children via BCI for autism spectrum disorder, provide insight into translating motor rehabilitation BCI applications to children. •  Translating BCI applications to children is a relevant, important area of research which is relatively barren.

  16. Flaws in current human training protocols for spontaneous Brain-Computer Interfaces: lessons learned from instructional design

    PubMed Central

    Lotte, Fabien; Larrue, Florian; Mühl, Christian

    2013-01-01

    While recent research on Brain-Computer Interfaces (BCI) has highlighted their potential for many applications, they remain barely used outside laboratories. The main reason is their lack of robustness. Indeed, with current BCI, mental state recognition is usually slow and often incorrect. Spontaneous BCI (i.e., mental imagery-based BCI) often rely on mutual learning efforts by the user and the machine, with BCI users learning to produce stable ElectroEncephaloGraphy (EEG) patterns (spontaneous BCI control being widely acknowledged as a skill) while the computer learns to automatically recognize these EEG patterns, using signal processing. Most research so far was focused on signal processing, mostly neglecting the human in the loop. However, how well the user masters the BCI skill is also a key element explaining BCI robustness. Indeed, if the user is not able to produce stable and distinct EEG patterns, then no signal processing algorithm would be able to recognize them. Unfortunately, despite the importance of BCI training protocols, they have been scarcely studied so far, and used mostly unchanged for years. In this paper, we advocate that current human training approaches for spontaneous BCI are most likely inappropriate. We notably study instructional design literature in order to identify the key requirements and guidelines for a successful training procedure that promotes a good and efficient skill learning. This literature study highlights that current spontaneous BCI user training procedures satisfy very few of these requirements and hence are likely to be suboptimal. We therefore identify the flaws in BCI training protocols according to instructional design principles, at several levels: in the instructions provided to the user, in the tasks he/she has to perform, and in the feedback provided. For each level, we propose new research directions that are theoretically expected to address some of these flaws and to help users learn the BCI skill more efficiently. PMID:24062669

  17. A Co-Adaptive Brain-Computer Interface for End Users with Severe Motor Impairment

    PubMed Central

    Faller, Josef; Scherer, Reinhold; Costa, Ursula; Opisso, Eloy; Medina, Josep; Müller-Putz, Gernot R.

    2014-01-01

    Co-adaptive training paradigms for event-related desynchronization (ERD) based brain-computer interfaces (BCI) have proven effective for healthy users. As of yet, it is not clear whether co-adaptive training paradigms can also benefit users with severe motor impairment. The primary goal of our paper was to evaluate a novel cue-guided, co-adaptive BCI training paradigm with severely impaired volunteers. The co-adaptive BCI supports a non-control state, which is an important step toward intuitive, self-paced control. A secondary aim was to have the same participants operate a specifically designed self-paced BCI training paradigm based on the auto-calibrated classifier. The co-adaptive BCI analyzed the electroencephalogram from three bipolar derivations (C3, Cz, and C4) online, while the 22 end users alternately performed right hand movement imagery (MI), left hand MI and relax with eyes open (non-control state). After less than five minutes, the BCI auto-calibrated and proceeded to provide visual feedback for the MI task that could be classified better against the non-control state. The BCI continued to regularly recalibrate. In every calibration step, the system performed trial-based outlier rejection and trained a linear discriminant analysis classifier based on one auto-selected logarithmic band-power feature. In 24 minutes of training, the co-adaptive BCI worked significantly (p = 0.01) better than chance for 18 of 22 end users. The self-paced BCI training paradigm worked significantly (p = 0.01) better than chance in 11 of 20 end users. The presented co-adaptive BCI complements existing approaches in that it supports a non-control state, requires very little setup time, requires no BCI expert and works online based on only two electrodes. The preliminary results from the self-paced BCI paradigm compare favorably to previous studies and the collected data will allow to further improve self-paced BCI systems for disabled users. PMID:25014055

  18. Gamma band activity associated with BCI performance: simultaneous MEG/EEG study.

    PubMed

    Ahn, Minkyu; Ahn, Sangtae; Hong, Jun H; Cho, Hohyun; Kim, Kiwoong; Kim, Bong S; Chang, Jin W; Jun, Sung C

    2013-01-01

    While brain computer interface (BCI) can be employed with patients and healthy subjects, there are problems that must be resolved before BCI can be useful to the public. In the most popular motor imagery (MI) BCI system, a significant number of target users (called "BCI-Illiterates") cannot modulate their neuronal signals sufficiently to use the BCI system. This causes performance variability among subjects and even among sessions within a subject. The mechanism of such BCI-Illiteracy and possible solutions still remain to be determined. Gamma oscillation is known to be involved in various fundamental brain functions, and may play a role in MI. In this study, we investigated the association of gamma activity with MI performance among subjects. Ten simultaneous MEG/EEG experiments were conducted; MI performance for each was estimated by EEG data, and the gamma activity associated with BCI performance was investigated with MEG data. Our results showed that gamma activity had a high positive correlation with MI performance in the prefrontal area. This trend was also found across sessions within one subject. In conclusion, gamma rhythms generated in the prefrontal area appear to play a critical role in BCI performance.

  19. Prediction of brain-computer interface aptitude from individual brain structure.

    PubMed

    Halder, S; Varkuti, B; Bogdan, M; Kübler, A; Rosenstiel, W; Sitaram, R; Birbaumer, N

    2013-01-01

    Brain-computer interface (BCI) provide a non-muscular communication channel for patients with impairments of the motor system. A significant number of BCI users is unable to obtain voluntary control of a BCI-system in proper time. This makes methods that can be used to determine the aptitude of a user necessary. We hypothesized that integrity and connectivity of involved white matter connections may serve as a predictor of individual BCI-performance. Therefore, we analyzed structural data from anatomical scans and DTI of motor imagery BCI-users differentiated into high and low BCI-aptitude groups based on their overall performance. Using a machine learning classification method we identified discriminating structural brain trait features and correlated the best features with a continuous measure of individual BCI-performance. Prediction of the aptitude group of each participant was possible with near perfect accuracy (one error). Tissue volumetric analysis yielded only poor classification results. In contrast, the structural integrity and myelination quality of deep white matter structures such as the Corpus Callosum, Cingulum, and Superior Fronto-Occipital Fascicle were positively correlated with individual BCI-performance. This confirms that structural brain traits contribute to individual performance in BCI use.

  20. Prediction of brain-computer interface aptitude from individual brain structure

    PubMed Central

    Halder, S.; Varkuti, B.; Bogdan, M.; Kübler, A.; Rosenstiel, W.; Sitaram, R.; Birbaumer, N.

    2013-01-01

    Objective: Brain-computer interface (BCI) provide a non-muscular communication channel for patients with impairments of the motor system. A significant number of BCI users is unable to obtain voluntary control of a BCI-system in proper time. This makes methods that can be used to determine the aptitude of a user necessary. Methods: We hypothesized that integrity and connectivity of involved white matter connections may serve as a predictor of individual BCI-performance. Therefore, we analyzed structural data from anatomical scans and DTI of motor imagery BCI-users differentiated into high and low BCI-aptitude groups based on their overall performance. Results: Using a machine learning classification method we identified discriminating structural brain trait features and correlated the best features with a continuous measure of individual BCI-performance. Prediction of the aptitude group of each participant was possible with near perfect accuracy (one error). Conclusions: Tissue volumetric analysis yielded only poor classification results. In contrast, the structural integrity and myelination quality of deep white matter structures such as the Corpus Callosum, Cingulum, and Superior Fronto-Occipital Fascicle were positively correlated with individual BCI-performance. Significance: This confirms that structural brain traits contribute to individual performance in BCI use. PMID:23565083

  1. Effects of Background Music on Objective and Subjective Performance Measures in an Auditory BCI.

    PubMed

    Zhou, Sijie; Allison, Brendan Z; Kübler, Andrea; Cichocki, Andrzej; Wang, Xingyu; Jin, Jing

    2016-01-01

    Several studies have explored brain computer interface (BCI) systems based on auditory stimuli, which could help patients with visual impairments. Usability and user satisfaction are important considerations in any BCI. Although background music can influence emotion and performance in other task environments, and many users may wish to listen to music while using a BCI, auditory, and other BCIs are typically studied without background music. Some work has explored the possibility of using polyphonic music in auditory BCI systems. However, this approach requires users with good musical skills, and has not been explored in online experiments. Our hypothesis was that an auditory BCI with background music would be preferred by subjects over a similar BCI without background music, without any difference in BCI performance. We introduce a simple paradigm (which does not require musical skill) using percussion instrument sound stimuli and background music, and evaluated it in both offline and online experiments. The result showed that subjects preferred the auditory BCI with background music. Different performance measures did not reveal any significant performance effect when comparing background music vs. no background. Since the addition of background music does not impair BCI performance but is preferred by users, auditory (and perhaps other) BCIs should consider including it. Our study also indicates that auditory BCIs can be effective even if the auditory channel is simultaneously otherwise engaged.

  2. Effects of user mental state on EEG-BCI performance.

    PubMed

    Myrden, Andrew; Chau, Tom

    2015-01-01

    Changes in psychological state have been proposed as a cause of variation in brain-computer interface performance, but little formal analysis has been conducted to support this hypothesis. In this study, we investigated the effects of three mental states-fatigue, frustration, and attention-on BCI performance. Twelve able-bodied participants were trained to use a two-class EEG-BCI based on the performance of user-specific mental tasks. Following training, participants completed three testing sessions, during which they used the BCI to play a simple maze navigation game while periodically reporting their perceived levels of fatigue, frustration, and attention. Statistical analysis indicated that there is a significant relationship between frustration and BCI performance while the relationship between fatigue and BCI performance approached significance. BCI performance was 7% lower than average when self-reported fatigue was low and 7% higher than average when self-reported frustration was moderate. A multivariate analysis of mental state revealed the presence of contiguous regions in mental state space where BCI performance was more accurate than average, suggesting the importance of moderate fatigue for achieving effortless focus on BCI control, frustration as a potential motivating factor, and attention as a compensatory mechanism to increasing frustration. Finally, a visual analysis showed the sensitivity of underlying class distributions to changes in mental state. Collectively, these results indicate that mental state is closely related to BCI performance, encouraging future development of psychologically adaptive BCIs.

  3. Collaborative Approach in the Development of High‐Performance Brain–Computer Interfaces for a Neuroprosthetic Arm: Translation from Animal Models to Human Control

    PubMed Central

    Collinger, Jennifer L.; Kryger, Michael A.; Barbara, Richard; Betler, Timothy; Bowsher, Kristen; Brown, Elke H. P.; Clanton, Samuel T.; Degenhart, Alan D.; Foldes, Stephen T.; Gaunt, Robert A.; Gyulai, Ferenc E.; Harchick, Elizabeth A.; Harrington, Deborah; Helder, John B.; Hemmes, Timothy; Johannes, Matthew S.; Katyal, Kapil D.; Ling, Geoffrey S. F.; McMorland, Angus J. C.; Palko, Karina; Para, Matthew P.; Scheuermann, Janet; Schwartz, Andrew B.; Skidmore, Elizabeth R.; Solzbacher, Florian; Srikameswaran, Anita V.; Swanson, Dennis P.; Swetz, Scott; Tyler‐Kabara, Elizabeth C.; Velliste, Meel; Wang, Wei; Weber, Douglas J.; Wodlinger, Brian

    2013-01-01

    Abstract Our research group recently demonstrated that a person with tetraplegia could use a brain–computer interface (BCI) to control a sophisticated anthropomorphic robotic arm with skill and speed approaching that of an able‐bodied person. This multiyear study exemplifies important principles in translating research from foundational theory and animal experiments into a clinical study. We present a roadmap that may serve as an example for other areas of clinical device research as well as an update on study results. Prior to conducting a multiyear clinical trial, years of animal research preceded BCI testing in an epilepsy monitoring unit, and then in a short‐term (28 days) clinical investigation. Scientists and engineers developed the necessary robotic and surgical hardware, software environment, data analysis techniques, and training paradigms. Coordination among researchers, funding institutes, and regulatory bodies ensured that the study would provide valuable scientific information in a safe environment for the study participant. Finally, clinicians from neurosurgery, anesthesiology, physiatry, psychology, and occupational therapy all worked in a multidisciplinary team along with the other researchers to conduct a multiyear BCI clinical study. This teamwork and coordination can be used as a model for others attempting to translate basic science into real‐world clinical situations. PMID:24528900

  4. Tools for Brain-Computer Interaction: A General Concept for a Hybrid BCI

    PubMed Central

    Müller-Putz, Gernot R.; Breitwieser, Christian; Cincotti, Febo; Leeb, Robert; Schreuder, Martijn; Leotta, Francesco; Tavella, Michele; Bianchi, Luigi; Kreilinger, Alex; Ramsay, Andrew; Rohm, Martin; Sagebaum, Max; Tonin, Luca; Neuper, Christa; Millán, José del. R.

    2011-01-01

    The aim of this work is to present the development of a hybrid Brain-Computer Interface (hBCI) which combines existing input devices with a BCI. Thereby, the BCI should be available if the user wishes to extend the types of inputs available to an assistive technology system, but the user can also choose not to use the BCI at all; the BCI is active in the background. The hBCI might decide on the one hand which input channel(s) offer the most reliable signal(s) and switch between input channels to improve information transfer rate, usability, or other factors, or on the other hand fuse various input channels. One major goal therefore is to bring the BCI technology to a level where it can be used in a maximum number of scenarios in a simple way. To achieve this, it is of great importance that the hBCI is able to operate reliably for long periods, recognizing and adapting to changes as it does so. This goal is only possible if many different subsystems in the hBCI can work together. Since one research institute alone cannot provide such different functionality, collaboration between institutes is necessary. To allow for such a collaboration, a new concept and common software framework is introduced. It consists of four interfaces connecting the classical BCI modules: signal acquisition, preprocessing, feature extraction, classification, and the application. But it provides also the concept of fusion and shared control. In a proof of concept, the functionality of the proposed system was demonstrated. PMID:22131973

  5. BCI induces apoptosis via generation of reactive oxygen species and activation of intrinsic mitochondrial pathway in H1299 lung cancer cells.

    PubMed

    Shin, Jong-Woon; Kwon, Sae-Bom; Bak, Yesol; Lee, Sang-Ku; Yoon, Do-Young

    2018-03-28

    The compound (E)-2-benzylidene-3-(cyclohexylamino)-2,3-dihydro-1H-inden-1-one (BCI) is known as an inhibitor of dual specific phosphatase 1/6 and mitogen-activated protein kinase. However, its precise anti-lung cancer mechanism remains unknown. In this study, the effects of BCI on the viability of non-small cell lung cancer cell lines NCI-H1299, A549, and NCI-H460 were evaluated. We confirmed that BCI significantly inhibited the viability of p53(-) NCI-H1299 cells as compared to NCI-H460 and A549 cells, which express wild-type p53. Furthermore, BCI treatment increased the level of cellular reactive oxygen species and pre-treatment of cells with N-acetylcysteine markedly attenuated BCI-mediated apoptosis of NCI-H1299 cells. BCI induced cellular morphological changes, inhibited viability, and produced reactive oxygen species in NCI-H1299 cells in a dose-dependent manner. BCI induced processing of caspase-9, caspase-3, and poly ADP-ribose polymerase as well as the release of cytochrome c from the mitochondria into the cytosol. In addition, BCI downregulated Bcl-2 expression and enhanced Bax expression in a dose-dependent manner in NCI-H1299 cells. However, BCI failed to modulate the expression of the death receptor and extrinsic factor caspase-8 and Bid, a linker between the intrinsic and extrinsic apoptotic pathways in NCI-H1299 cells. Thus, BCI induces apoptosis via generation of reactive oxygen species and activation of the intrinsic pathway in NCI-H1299 cells.

  6. Brain-computer interface users speak up: the Virtual Users' Forum at the 2013 International Brain-Computer Interface Meeting.

    PubMed

    Peters, Betts; Bieker, Gregory; Heckman, Susan M; Huggins, Jane E; Wolf, Catherine; Zeitlin, Debra; Fried-Oken, Melanie

    2015-03-01

    More than 300 researchers gathered at the 2013 International Brain-Computer Interface (BCI) Meeting to discuss current practice and future goals for BCI research and development. The authors organized the Virtual Users' Forum at the meeting to provide the BCI community with feedback from users. We report on the Virtual Users' Forum, including initial results from ongoing research being conducted by 2 BCI groups. Online surveys and in-person interviews were used to solicit feedback from people with disabilities who are expert and novice BCI users. For the Virtual Users' Forum, their responses were organized into 4 major themes: current (non-BCI) communication methods, experiences with BCI research, challenges of current BCIs, and future BCI developments. Two authors with severe disabilities gave presentations during the Virtual Users' Forum, and their comments are integrated with the other results. While participants' hopes for BCIs of the future remain high, their comments about available systems mirror those made by consumers about conventional assistive technology. They reflect concerns about reliability (eg, typing accuracy/speed), utility (eg, applications and the desire for real-time interactions), ease of use (eg, portability and system setup), and support (eg, technical support and caregiver training). People with disabilities, as target users of BCI systems, can provide valuable feedback and input on the development of BCI as an assistive technology. To this end, participatory action research should be considered as a valuable methodology for future BCI research. Copyright © 2015 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  7. Informed consent in implantable BCI research: identification of research risks and recommendations for development of best practices

    NASA Astrophysics Data System (ADS)

    Klein, Eran; Ojemann, Jeffrey

    2016-08-01

    Objective. Implantable brain-computer interface (BCI) research promises improvements in human health and enhancements in quality of life. Informed consent of subjects is a central tenet of this research. Rapid advances in neuroscience, and the intimate connection between functioning of the brain and conceptions of the self, make informed consent particularly challenging in BCI research. Identification of safety and research-related risks associated with BCI devices is an important step in ensuring meaningful informed consent. Approach. This paper highlights a number of BCI research risks, including safety concerns, cognitive and communicative impairments, inappropriate subject expectations, group vulnerabilities, privacy and security, and disruptions of identity. Main results. Based on identified BCI research risks, best practices are needed for understanding and incorporating BCI-related risks into informed consent protocols. Significance. Development of best practices should be guided by processes that are: multidisciplinary, systematic and transparent, iterative, relational and exploratory.

  8. The Effects of Working Memory on Brain-Computer Interface Performance

    PubMed Central

    Sprague, Samantha A.; McBee, Matthew; Sellers, Eric W.

    2015-01-01

    Objective The purpose of the present study is to evaluate the relationship between working memory and BCI performance. Methods Participants took part in two separate sessions. The first session consisted of three computerized tasks. The LSWM was used to measure working memory, the TPVT was used to measure general intelligence, and the DCCS was used to measure executive function, specifically cognitive flexibility. The second session consisted of a P300-based BCI copy-spelling task. Results The results indicate that both working memory and general intelligence are significant predictors of BCI performance. Conclusions This suggests that working memory training could be used to improve performance on a BCI task. Significance Working memory training may help to reduce a portion of the individual differences that exist in BCI performance allowing for a wider range of users to successfully operate the BCI system as well as increase the BCI performance of current users. PMID:26620822

  9. Informed consent in implantable BCI research: identification of research risks and recommendations for development of best practices.

    PubMed

    Klein, Eran; Ojemann, Jeffrey

    2016-08-01

    Implantable brain-computer interface (BCI) research promises improvements in human health and enhancements in quality of life. Informed consent of subjects is a central tenet of this research. Rapid advances in neuroscience, and the intimate connection between functioning of the brain and conceptions of the self, make informed consent particularly challenging in BCI research. Identification of safety and research-related risks associated with BCI devices is an important step in ensuring meaningful informed consent. This paper highlights a number of BCI research risks, including safety concerns, cognitive and communicative impairments, inappropriate subject expectations, group vulnerabilities, privacy and security, and disruptions of identity. Based on identified BCI research risks, best practices are needed for understanding and incorporating BCI-related risks into informed consent protocols. Development of best practices should be guided by processes that are: multidisciplinary, systematic and transparent, iterative, relational and exploratory.

  10. A Novel Design of 4-Class BCI Using Two Binary Classifiers and Parallel Mental Tasks

    PubMed Central

    Geng, Tao; Gan, John Q.; Dyson, Matthew; Tsui, Chun SL; Sepulveda, Francisco

    2008-01-01

    A novel 4-class single-trial brain computer interface (BCI) based on two (rather than four or more) binary linear discriminant analysis (LDA) classifiers is proposed, which is called a “parallel BCI.” Unlike other BCIs where mental tasks are executed and classified in a serial way one after another, the parallel BCI uses properly designed parallel mental tasks that are executed on both sides of the subject body simultaneously, which is the main novelty of the BCI paradigm used in our experiments. Each of the two binary classifiers only classifies the mental tasks executed on one side of the subject body, and the results of the two binary classifiers are combined to give the result of the 4-class BCI. Data was recorded in experiments with both real movement and motor imagery in 3 able-bodied subjects. Artifacts were not detected or removed. Offline analysis has shown that, in some subjects, the parallel BCI can generate a higher accuracy than a conventional 4-class BCI, although both of them have used the same feature selection and classification algorithms. PMID:18584040

  11. Investigation of the effect of EEG-BCI on the simultaneous execution of flight simulation and attentional tasks.

    PubMed

    Vecchiato, Giovanni; Borghini, Gianluca; Aricò, Pietro; Graziani, Ilenia; Maglione, Anton Giulio; Cherubino, Patrizia; Babiloni, Fabio

    2016-10-01

    Brain-computer interfaces (BCIs) are widely used for clinical applications and exploited to design robotic and interactive systems for healthy people. We provide evidence to control a sensorimotor electroencephalographic (EEG) BCI system while piloting a flight simulator and attending a double attentional task simultaneously. Ten healthy subjects were trained to learn how to manage a flight simulator, use the BCI system, and answer to the attentional tasks independently. Afterward, the EEG activity was collected during a first flight where subjects were required to concurrently use the BCI, and a second flight where they were required to simultaneously use the BCI and answer to the attentional tasks. Results showed that the concurrent use of the BCI system during the flight simulation does not affect the flight performances. However, BCI performances decrease from the 83 to 63 % while attending additional alertness and vigilance tasks. This work shows that it is possible to successfully control a BCI system during the execution of multiple tasks such as piloting a flight simulator with an extra cognitive load induced by attentional tasks. Such framework aims to foster the knowledge on BCI systems embedded into vehicles and robotic devices to allow the simultaneous execution of secondary tasks.

  12. Brain-Computer Interfaces and communication in paralysis: extinction of goal directed thinking in completely paralysed patients?

    PubMed Central

    Kübler, A.; Birbaumer, N.

    2008-01-01

    Objective To investigate the relationship between physical impairment and brain-computer interface (BCI) performance. Method We present a meta-analysis of 29 patients with amyotrophic lateral sclerosis and 6 with other severe neurological diseases in different stages of physical impairment who were trained with a BCI. In most cases voluntary regulation of slow cortical potentials has been used as input signal for BCI control. More recently sensorimotor rhythms and the P300 event-related brain potential were recorded. Results A strong correlation has been found between physical impairment and BCI performance, indicating that performance worsens as impairment increases. Seven patients were in the complete locked-in state (CLIS) with no communication possible. After removal of these patients from the analysis, the relationship between physical impairment and BCI performance disappeared. The lack of a relation between physical impairment and BCI performance was confirmed when adding BCI data of patients from other BCI research groups. Conclusions Basic communication (yes/no) was not restored in any of the CLIS patients with a BCI. Whether locked-in patients can transfer learned brain control to the CLIS remains an open empirical question. Significance Voluntary brain regulation for communication is possible in all stages of paralysis except the CLIS. PMID:18824406

  13. Towards Rehabilitation Robotics: Off-the-Shelf BCI Control of Anthropomorphic Robotic Arms.

    PubMed

    Athanasiou, Alkinoos; Xygonakis, Ioannis; Pandria, Niki; Kartsidis, Panagiotis; Arfaras, George; Kavazidi, Kyriaki Rafailia; Foroglou, Nicolas; Astaras, Alexander; Bamidis, Panagiotis D

    2017-01-01

    Advances in neural interfaces have demonstrated remarkable results in the direction of replacing and restoring lost sensorimotor function in human patients. Noninvasive brain-computer interfaces (BCIs) are popular due to considerable advantages including simplicity, safety, and low cost, while recent advances aim at improving past technological and neurophysiological limitations. Taking into account the neurophysiological alterations of disabled individuals, investigating brain connectivity features for implementation of BCI control holds special importance. Off-the-shelf BCI systems are based on fast, reproducible detection of mental activity and can be implemented in neurorobotic applications. Moreover, social Human-Robot Interaction (HRI) is increasingly important in rehabilitation robotics development. In this paper, we present our progress and goals towards developing off-the-shelf BCI-controlled anthropomorphic robotic arms for assistive technologies and rehabilitation applications. We account for robotics development, BCI implementation, and qualitative assessment of HRI characteristics of the system. Furthermore, we present two illustrative experimental applications of the BCI-controlled arms, a study of motor imagery modalities on healthy individuals' BCI performance, and a pilot investigation on spinal cord injured patients' BCI control and brain connectivity. We discuss strengths and limitations of our design and propose further steps on development and neurophysiological study, including implementation of connectivity features as BCI modality.

  14. Towards Rehabilitation Robotics: Off-the-Shelf BCI Control of Anthropomorphic Robotic Arms

    PubMed Central

    Xygonakis, Ioannis; Pandria, Niki; Kartsidis, Panagiotis; Arfaras, George; Kavazidi, Kyriaki Rafailia; Foroglou, Nicolas

    2017-01-01

    Advances in neural interfaces have demonstrated remarkable results in the direction of replacing and restoring lost sensorimotor function in human patients. Noninvasive brain-computer interfaces (BCIs) are popular due to considerable advantages including simplicity, safety, and low cost, while recent advances aim at improving past technological and neurophysiological limitations. Taking into account the neurophysiological alterations of disabled individuals, investigating brain connectivity features for implementation of BCI control holds special importance. Off-the-shelf BCI systems are based on fast, reproducible detection of mental activity and can be implemented in neurorobotic applications. Moreover, social Human-Robot Interaction (HRI) is increasingly important in rehabilitation robotics development. In this paper, we present our progress and goals towards developing off-the-shelf BCI-controlled anthropomorphic robotic arms for assistive technologies and rehabilitation applications. We account for robotics development, BCI implementation, and qualitative assessment of HRI characteristics of the system. Furthermore, we present two illustrative experimental applications of the BCI-controlled arms, a study of motor imagery modalities on healthy individuals' BCI performance, and a pilot investigation on spinal cord injured patients' BCI control and brain connectivity. We discuss strengths and limitations of our design and propose further steps on development and neurophysiological study, including implementation of connectivity features as BCI modality. PMID:28948168

  15. Brain-Computer Interface Spellers: A Review.

    PubMed

    Rezeika, Aya; Benda, Mihaly; Stawicki, Piotr; Gembler, Felix; Saboor, Abdul; Volosyak, Ivan

    2018-03-30

    A Brain-Computer Interface (BCI) provides a novel non-muscular communication method via brain signals. A BCI-speller can be considered as one of the first published BCI applications and has opened the gate for many advances in the field. Although many BCI-spellers have been developed during the last few decades, to our knowledge, no reviews have described the different spellers proposed and studied in this vital field. The presented speller systems are categorized according to major BCI paradigms: P300, steady-state visual evoked potential (SSVEP), and motor imagery (MI). Different BCI paradigms require specific electroencephalogram (EEG) signal features and lead to the development of appropriate Graphical User Interfaces (GUIs). The purpose of this review is to consolidate the most successful BCI-spellers published since 2010, while mentioning some other older systems which were built explicitly for spelling purposes. We aim to assist researchers and concerned individuals in the field by illustrating the highlights of different spellers and presenting them in one review. It is almost impossible to carry out an objective comparison between different spellers, as each has its variables, parameters, and conditions. However, the gathered information and the provided taxonomy about different BCI-spellers can be helpful, as it could identify suitable systems for first-hand users, as well as opportunities of development and learning from previous studies for BCI researchers.

  16. Autonomous Parameter Adjustment for SSVEP-Based BCIs with a Novel BCI Wizard.

    PubMed

    Gembler, Felix; Stawicki, Piotr; Volosyak, Ivan

    2015-01-01

    Brain-Computer Interfaces (BCIs) transfer human brain activities into computer commands and enable a communication channel without requiring movement. Among other BCI approaches, steady-state visual evoked potential (SSVEP)-based BCIs have the potential to become accurate, assistive technologies for persons with severe disabilities. Those systems require customization of different kinds of parameters (e.g., stimulation frequencies). Calibration usually requires selecting predefined parameters by experienced/trained personnel, though in real-life scenarios an interface allowing people with no experience in programming to set up the BCI would be desirable. Another occurring problem regarding BCI performance is BCI illiteracy (also called BCI deficiency). Many articles reported that BCI control could not be achieved by a non-negligible number of users. In order to bypass those problems we developed a SSVEP-BCI wizard, a system that automatically determines user-dependent key-parameters to customize SSVEP-based BCI systems. This wizard was tested and evaluated with 61 healthy subjects. All subjects were asked to spell the phrase "RHINE WAAL UNIVERSITY" with a spelling application after key parameters were determined by the wizard. Results show that all subjects were able to control the spelling application. A mean (SD) accuracy of 97.14 (3.73)% was reached (all subjects reached an accuracy above 85% and 25 subjects even reached 100% accuracy).

  17. Relief of neuropathic pain after spinal cord injury by brain-computer interface training.

    PubMed

    Yoshida, Naoki; Hashimoto, Yasunari; Shikota, Mio; Ota, Tetsuo

    2016-01-01

    The aim of this study was to report the effects of brain-computer interface (BCI) training, a neurofeedback rehabilitation technique, on persistent neuropathic pain (NP) after cervical spinal cord injury (SCI). We present the case of a 71-year-old woman with NP in her left upper extremity after SCI (C8). She underwent BCI training as outpatient rehabilitation for 4 months to enhance event-related desynchronization (ERD), which is triggered by the patient's motor intuition. Scalp electroencephalography was recorded to observe the ERD during every BCI training session. The patient's pain was evaluated with the McGill Pain Questionnaire (MPQ) and a visual analog scale (VAS). The MPQ was performed after every BCI training session, and the patient assessed the VAS score on her own, once every few days during the BCI training period. After the BCI training started, the patient's ERD during the BCI training period increased significantly, from 15.6-30.3%. Moreover, her VAS score decreased gradually, from 8 to 5, after the BCI training started, although the MPQ did not change significantly. BCI training has the potential to provide relief for patients with persistent NP via brain plasticity, and to improve their activities of daily living and quality of life.

  18. Development of a blunt chest injury care bundle: An integrative review.

    PubMed

    Kourouche, Sarah; Buckley, Thomas; Munroe, Belinda; Curtis, Kate

    2018-06-01

    Blunt chest injuries (BCI) are associated with high rates of morbidity and mortality. There are many interventions for BCI which may be able to be combined as a care bundle for improved and more consistent outcomes. To review and integrate the BCI management interventions to inform the development of a BCI care bundle. A structured search of the literature was conducted to identify studies evaluating interventions for patients with BCI. Databases MEDLINE, CINAHL, PubMed and Scopus were searched from 1990-April 2017. A two-step data extraction process was conducted using pre-defined data fields, including research quality indicators. Each study was appraised using a quality assessment tool, scored for level of evidence, then data collated into categories. Interventions were also assessed using the APEASE criteria then integrated to develop a BCI care bundle. Eighty-one articles were included in the final analysis. Interventions that improved BCI outcomes were grouped into three categories; respiratory intervention, analgesia and surgical intervention. Respiratory interventions included continuous positive airway pressure and high flow nasal oxygen. Analgesia interventions included regular multi-modal analgesia and paravertebral or epidural analgesia. Surgical fixation was supported for use in moderate to severe rib fractures/BCI. Interventions supported by evidence and that met APEASE criteria were combined into a BCI care bundle with four components: respiratory adjuncts, analgesia, complication prevention, and surgical fixation. The key components of a BCI care bundle are respiratory support, analgesia, complication prevention including chest physiotherapy and surgical fixation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Investigating the effects of a sensorimotor rhythm-based BCI training on the cortical activity elicited by mental imagery

    NASA Astrophysics Data System (ADS)

    Toppi, J.; Risetti, M.; Quitadamo, L. R.; Petti, M.; Bianchi, L.; Salinari, S.; Babiloni, F.; Cincotti, F.; Mattia, D.; Astolfi, L.

    2014-06-01

    Objective. It is well known that to acquire sensorimotor (SMR)-based brain-computer interface (BCI) control requires a training period before users can achieve their best possible performances. Nevertheless, the effect of this training procedure on the cortical activity related to the mental imagery ability still requires investigation to be fully elucidated. The aim of this study was to gain insights into the effects of SMR-based BCI training on the cortical spectral activity associated with the performance of different mental imagery tasks. Approach. Linear cortical estimation and statistical brain mapping techniques were applied on high-density EEG data acquired from 18 healthy participants performing three different mental imagery tasks. Subjects were divided in two groups, one of BCI trained subjects, according to their previous exposure (at least six months before this study) to motor imagery-based BCI training, and one of subjects who were naive to any BCI paradigms. Main results. Cortical activation maps obtained for trained and naive subjects indicated different spectral and spatial activity patterns in response to the mental imagery tasks. Long-term effects of the previous SMR-based BCI training were observed on the motor cortical spectral activity specific to the BCI trained motor imagery task (simple hand movements) and partially generalized to more complex motor imagery task (playing tennis). Differently, mental imagery with spatial attention and memory content could elicit recognizable cortical spectral activity even in subjects completely naive to (BCI) training. Significance. The present findings contribute to our understanding of BCI technology usage and might be of relevance in those clinical conditions when training to master a BCI application is challenging or even not possible.

  20. Investigating the effects of a sensorimotor rhythm-based BCI training on the cortical activity elicited by mental imagery.

    PubMed

    Toppi, J; Risetti, M; Quitadamo, L R; Petti, M; Bianchi, L; Salinari, S; Babiloni, F; Cincotti, F; Mattia, D; Astolfi, L

    2014-06-01

    It is well known that to acquire sensorimotor (SMR)-based brain-computer interface (BCI) control requires a training period before users can achieve their best possible performances. Nevertheless, the effect of this training procedure on the cortical activity related to the mental imagery ability still requires investigation to be fully elucidated. The aim of this study was to gain insights into the effects of SMR-based BCI training on the cortical spectral activity associated with the performance of different mental imagery tasks. Linear cortical estimation and statistical brain mapping techniques were applied on high-density EEG data acquired from 18 healthy participants performing three different mental imagery tasks. Subjects were divided in two groups, one of BCI trained subjects, according to their previous exposure (at least six months before this study) to motor imagery-based BCI training, and one of subjects who were naive to any BCI paradigms. Cortical activation maps obtained for trained and naive subjects indicated different spectral and spatial activity patterns in response to the mental imagery tasks. Long-term effects of the previous SMR-based BCI training were observed on the motor cortical spectral activity specific to the BCI trained motor imagery task (simple hand movements) and partially generalized to more complex motor imagery task (playing tennis). Differently, mental imagery with spatial attention and memory content could elicit recognizable cortical spectral activity even in subjects completely naive to (BCI) training. The present findings contribute to our understanding of BCI technology usage and might be of relevance in those clinical conditions when training to master a BCI application is challenging or even not possible.

  1. Toward an Open-Ended BCI: A User-Centered Coadaptive Design.

    PubMed

    Dhindsa, Kiret; Carcone, Dean; Becker, Suzanna

    2017-10-01

    Brain-computer interfaces (BCIs) allow users to control a device by interpreting their brain activity. For simplicity, these devices are designed to be operated by purposefully modulating specific predetermined neurophysiological signals, such as the sensorimotor rhythm. However, the ability to modulate a given neurophysiological signal is highly variable across individuals, contributing to the inconsistent performance of BCIs for different users. These differences suggest that individuals who experience poor BCI performance with one class of brain signals might have good results with another. In order to take advantage of individual abilities as they relate to BCI control, we need to move beyond the current approaches. In this letter, we explore a new BCI design aimed at a more individualized and user-focused experience, which we call open-ended BCI. Individual users were given the freedom to discover their own mental strategies as opposed to being trained to modulate a given brain signal. They then underwent multiple coadaptive training sessions with the BCI. Our first open-ended BCI performed similarly to comparable BCIs while accommodating a wider variety of mental strategies without a priori knowledge of the specific brain signals any individual might use. Post hoc analysis revealed individual differences in terms of which sensory modality yielded optimal performance. We found a large and significant effect of individual differences in background training and expertise, such as in musical training, on BCI performance. Future research should be focused on finding more generalized solutions to user training and brain state decoding methods to fully utilize the abilities of different individuals in an open-ended BCI. Accounting for each individual's areas of expertise could have important implications on BCI training and BCI application design.

  2. Visuo-motor coordination ability predicts performance with brain-computer interfaces controlled by modulation of sensorimotor rhythms (SMR)

    PubMed Central

    Hammer, Eva M.; Kaufmann, Tobias; Kleih, Sonja C.; Blankertz, Benjamin; Kübler, Andrea

    2014-01-01

    Modulation of sensorimotor rhythms (SMR) was suggested as a control signal for brain-computer interfaces (BCI). Yet, there is a population of users estimated between 10 to 50% not able to achieve reliable control and only about 20% of users achieve high (80–100%) performance. Predicting performance prior to BCI use would facilitate selection of the most feasible system for an individual, thus constitute a practical benefit for the user, and increase our knowledge about the correlates of BCI control. In a recent study, we predicted SMR-BCI performance from psychological variables that were assessed prior to the BCI sessions and BCI control was supported with machine-learning techniques. We described two significant psychological predictors, namely the visuo-motor coordination ability and the ability to concentrate on the task. The purpose of the current study was to replicate these results thereby validating these predictors within a neurofeedback based SMR-BCI that involved no machine learning.Thirty-three healthy BCI novices participated in a calibration session and three further neurofeedback training sessions. Two variables were related with mean SMR-BCI performance: (1) a measure for the accuracy of fine motor skills, i.e., a trade for a person’s visuo-motor control ability; and (2) subject’s “attentional impulsivity”. In a linear regression they accounted for almost 20% in variance of SMR-BCI performance, but predictor (1) failed significance. Nevertheless, on the basis of our prior regression model for sensorimotor control ability we could predict current SMR-BCI performance with an average prediction error of M = 12.07%. In more than 50% of the participants, the prediction error was smaller than 10%. Hence, psychological variables played a moderate role in predicting SMR-BCI performance in a neurofeedback approach that involved no machine learning. Future studies are needed to further consolidate (or reject) the present predictors. PMID:25147518

  3. A Parallel Approach in Computing Correlation Immunity up to Six Variables

    DTIC Science & Technology

    2015-03-10

    their nonlinearity is divisible by 4. Let CI(n, k) (respectively, BCI (n, k)) be the number of exact order k correlation im- mune, (respectively...further balanced) n-variable Boolean functions. The notations CI(n, k, d), BCI (n, k, d) restricts the previous count to degree d Boolean functions...Theorem 3. The following are true: (i) BCI (n, n, 0) = 0, CI(n, n, 0) = 2, CI(n, k, 1) = BCI (n, k, 1) = 2 ( n k+1 ) , 0 ≤ k ≤ n− 1. (ii) BCI (n, n− 2) = 2

  4. Biased feedback in brain-computer interfaces.

    PubMed

    Barbero, Alvaro; Grosse-Wentrup, Moritz

    2010-07-27

    Even though feedback is considered to play an important role in learning how to operate a brain-computer interface (BCI), to date no significant influence of feedback design on BCI-performance has been reported in literature. In this work, we adapt a standard motor-imagery BCI-paradigm to study how BCI-performance is affected by biasing the belief subjects have on their level of control over the BCI system. Our findings indicate that subjects already capable of operating a BCI are impeded by inaccurate feedback, while subjects normally performing on or close to chance level may actually benefit from an incorrect belief on their performance level. Our results imply that optimal feedback design in BCIs should take into account a subject's current skill level.

  5. Tactile and bone-conduction auditory brain computer interface for vision and hearing impaired users.

    PubMed

    Rutkowski, Tomasz M; Mori, Hiromu

    2015-04-15

    The paper presents a report on the recently developed BCI alternative for users suffering from impaired vision (lack of focus or eye-movements) or from the so-called "ear-blocking-syndrome" (limited hearing). We report on our recent studies of the extents to which vibrotactile stimuli delivered to the head of a user can serve as a platform for a brain computer interface (BCI) paradigm. In the proposed tactile and bone-conduction auditory BCI novel multiple head positions are used to evoke combined somatosensory and auditory (via the bone conduction effect) P300 brain responses, in order to define a multimodal tactile and bone-conduction auditory brain computer interface (tbcaBCI). In order to further remove EEG interferences and to improve P300 response classification synchrosqueezing transform (SST) is applied. SST outperforms the classical time-frequency analysis methods of the non-linear and non-stationary signals such as EEG. The proposed method is also computationally more effective comparing to the empirical mode decomposition. The SST filtering allows for online EEG preprocessing application which is essential in the case of BCI. Experimental results with healthy BCI-naive users performing online tbcaBCI, validate the paradigm, while the feasibility of the concept is illuminated through information transfer rate case studies. We present a comparison of the proposed SST-based preprocessing method, combined with a logistic regression (LR) classifier, together with classical preprocessing and LDA-based classification BCI techniques. The proposed tbcaBCI paradigm together with data-driven preprocessing methods are a step forward in robust BCI applications research. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Psychological Predictors of Visual and Auditory P300 Brain-Computer Interface Performance

    PubMed Central

    Hammer, Eva M.; Halder, Sebastian; Kleih, Sonja C.; Kübler, Andrea

    2018-01-01

    Brain-Computer Interfaces (BCIs) provide communication channels independent from muscular control. In the current study we used two versions of the P300-BCI: one based on visual the other on auditory stimulation. Up to now, data on the impact of psychological variables on P300-BCI control are scarce. Hence, our goal was to identify new predictors with a comprehensive psychological test-battery. A total of N = 40 healthy BCI novices took part in a visual and an auditory BCI session. Psychological variables were measured with an electronic test-battery including clinical, personality, and performance tests. The personality factor “emotional stability” was negatively correlated (Spearman's rho = −0.416; p < 0.01) and an output variable of the non-verbal learning test (NVLT), which can be interpreted as ability to learn, correlated positively (Spearman's rho = 0.412; p < 0.01) with visual P300-BCI performance. In a linear regression analysis both independent variables explained 24% of the variance. “Emotional stability” was also negatively related to auditory P300-BCI performance (Spearman's rho = −0.377; p < 0.05), but failed significance in the regression analysis. Psychological parameters seem to play a moderate role in visual P300-BCI performance. “Emotional stability” was identified as a new predictor, indicating that BCI users who characterize themselves as calm and rational showed worse BCI performance. The positive relation of the ability to learn and BCI performance corroborates the notion that also for P300 based BCIs learning may constitute an important factor. Further studies are needed to consolidate or reject the presented predictors. PMID:29867319

  7. Removal of proprioception by BCI raises a stronger body ownership illusion in control of a humanlike robot.

    PubMed

    Alimardani, Maryam; Nishio, Shuichi; Ishiguro, Hiroshi

    2016-09-22

    Body ownership illusions provide evidence that our sense of self is not coherent and can be extended to non-body objects. Studying about these illusions gives us practical tools to understand the brain mechanisms that underlie body recognition and the experience of self. We previously introduced an illusion of body ownership transfer (BOT) for operators of a very humanlike robot. This sensation of owning the robot's body was confirmed when operators controlled the robot either by performing the desired motion with their body (motion-control) or by employing a brain-computer interface (BCI) that translated motor imagery commands to robot movement (BCI-control). The interesting observation during BCI-control was that the illusion could be induced even with a noticeable delay in the BCI system. Temporal discrepancy has always shown critical weakening effects on body ownership illusions. However the delay-robustness of BOT during BCI-control raised a question about the interaction between the proprioceptive inputs and delayed visual feedback in agency-driven illusions. In this work, we compared the intensity of BOT illusion for operators in two conditions; motion-control and BCI-control. Our results revealed a significantly stronger BOT illusion for the case of BCI-control. This finding highlights BCI's potential in inducing stronger agency-driven illusions by building a direct communication between the brain and controlled body, and therefore removing awareness from the subject's own body.

  8. Fast attainment of computer cursor control with noninvasively acquired brain signals

    NASA Astrophysics Data System (ADS)

    Bradberry, Trent J.; Gentili, Rodolphe J.; Contreras-Vidal, José L.

    2011-06-01

    Brain-computer interface (BCI) systems are allowing humans and non-human primates to drive prosthetic devices such as computer cursors and artificial arms with just their thoughts. Invasive BCI systems acquire neural signals with intracranial or subdural electrodes, while noninvasive BCI systems typically acquire neural signals with scalp electroencephalography (EEG). Some drawbacks of invasive BCI systems are the inherent risks of surgery and gradual degradation of signal integrity. A limitation of noninvasive BCI systems for two-dimensional control of a cursor, in particular those based on sensorimotor rhythms, is the lengthy training time required by users to achieve satisfactory performance. Here we describe a novel approach to continuously decoding imagined movements from EEG signals in a BCI experiment with reduced training time. We demonstrate that, using our noninvasive BCI system and observational learning, subjects were able to accomplish two-dimensional control of a cursor with performance levels comparable to those of invasive BCI systems. Compared to other studies of noninvasive BCI systems, training time was substantially reduced, requiring only a single session of decoder calibration (~20 min) and subject practice (~20 min). In addition, we used standardized low-resolution brain electromagnetic tomography to reveal that the neural sources that encoded observed cursor movement may implicate a human mirror neuron system. These findings offer the potential to continuously control complex devices such as robotic arms with one's mind without lengthy training or surgery.

  9. Brain–Computer Interface Spellers: A Review

    PubMed Central

    Gembler, Felix; Saboor, Abdul

    2018-01-01

    A Brain–Computer Interface (BCI) provides a novel non-muscular communication method via brain signals. A BCI-speller can be considered as one of the first published BCI applications and has opened the gate for many advances in the field. Although many BCI-spellers have been developed during the last few decades, to our knowledge, no reviews have described the different spellers proposed and studied in this vital field. The presented speller systems are categorized according to major BCI paradigms: P300, steady-state visual evoked potential (SSVEP), and motor imagery (MI). Different BCI paradigms require specific electroencephalogram (EEG) signal features and lead to the development of appropriate Graphical User Interfaces (GUIs). The purpose of this review is to consolidate the most successful BCI-spellers published since 2010, while mentioning some other older systems which were built explicitly for spelling purposes. We aim to assist researchers and concerned individuals in the field by illustrating the highlights of different spellers and presenting them in one review. It is almost impossible to carry out an objective comparison between different spellers, as each has its variables, parameters, and conditions. However, the gathered information and the provided taxonomy about different BCI-spellers can be helpful, as it could identify suitable systems for first-hand users, as well as opportunities of development and learning from previous studies for BCI researchers. PMID:29601538

  10. Neuroanatomical correlates of brain-computer interface performance.

    PubMed

    Kasahara, Kazumi; DaSalla, Charles Sayo; Honda, Manabu; Hanakawa, Takashi

    2015-04-15

    Brain-computer interfaces (BCIs) offer a potential means to replace or restore lost motor function. However, BCI performance varies considerably between users, the reasons for which are poorly understood. Here we investigated the relationship between sensorimotor rhythm (SMR)-based BCI performance and brain structure. Participants were instructed to control a computer cursor using right- and left-hand motor imagery, which primarily modulated their left- and right-hemispheric SMR powers, respectively. Although most participants were able to control the BCI with success rates significantly above chance level even at the first encounter, they also showed substantial inter-individual variability in BCI success rate. Participants also underwent T1-weighted three-dimensional structural magnetic resonance imaging (MRI). The MRI data were subjected to voxel-based morphometry using BCI success rate as an independent variable. We found that BCI performance correlated with gray matter volume of the supplementary motor area, supplementary somatosensory area, and dorsal premotor cortex. We suggest that SMR-based BCI performance is associated with development of non-primary somatosensory and motor areas. Advancing our understanding of BCI performance in relation to its neuroanatomical correlates may lead to better customization of BCIs based on individual brain structure. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Feasibility of a Hybrid Brain-Computer Interface for Advanced Functional Electrical Therapy

    PubMed Central

    Savić, Andrej M.; Malešević, Nebojša M.; Popović, Mirjana B.

    2014-01-01

    We present a feasibility study of a novel hybrid brain-computer interface (BCI) system for advanced functional electrical therapy (FET) of grasp. FET procedure is improved with both automated stimulation pattern selection and stimulation triggering. The proposed hybrid BCI comprises the two BCI control signals: steady-state visual evoked potentials (SSVEP) and event-related desynchronization (ERD). The sequence of the two stages, SSVEP-BCI and ERD-BCI, runs in a closed-loop architecture. The first stage, SSVEP-BCI, acts as a selector of electrical stimulation pattern that corresponds to one of the three basic types of grasp: palmar, lateral, or precision. In the second stage, ERD-BCI operates as a brain switch which activates the stimulation pattern selected in the previous stage. The system was tested in 6 healthy subjects who were all able to control the device with accuracy in a range of 0.64–0.96. The results provided the reference data needed for the planned clinical study. This novel BCI may promote further restoration of the impaired motor function by closing the loop between the “will to move” and contingent temporally synchronized sensory feedback. PMID:24616644

  12. The Asilomar Survey: Stakeholders' Opinions on Ethical Issues Related to Brain-Computer Interfacing.

    PubMed

    Nijboer, Femke; Clausen, Jens; Allison, Brendan Z; Haselager, Pim

    2013-01-01

    Brain-Computer Interface (BCI) research and (future) applications raise important ethical issues that need to be addressed to promote societal acceptance and adequate policies. Here we report on a survey we conducted among 145 BCI researchers at the 4 th International BCI conference, which took place in May-June 2010 in Asilomar, California. We assessed respondents' opinions about a number of topics. First, we investigated preferences for terminology and definitions relating to BCIs. Second, we assessed respondents' expectations on the marketability of different BCI applications (BCIs for healthy people, BCIs for assistive technology, BCIs-controlled neuroprostheses and BCIs as therapy tools). Third, we investigated opinions about ethical issues related to BCI research for the development of assistive technology: informed consent process with locked-in patients, risk-benefit analyses, team responsibility, consequences of BCI on patients' and families' lives, liability and personal identity and interaction with the media. Finally, we asked respondents which issues are urgent in BCI research.

  13. The effects of working memory on brain-computer interface performance.

    PubMed

    Sprague, Samantha A; McBee, Matthew T; Sellers, Eric W

    2016-02-01

    The purpose of the present study is to evaluate the relationship between working memory and BCI performance. Participants took part in two separate sessions. The first session consisted of three computerized tasks. The List Sorting Working Memory Task was used to measure working memory, the Picture Vocabulary Test was used to measure general intelligence, and the Dimensional Change Card Sort Test was used to measure executive function, specifically cognitive flexibility. The second session consisted of a P300-based BCI copy-spelling task. The results indicate that both working memory and general intelligence are significant predictors of BCI performance. This suggests that working memory training could be used to improve performance on a BCI task. Working memory training may help to reduce a portion of the individual differences that exist in BCI performance allowing for a wider range of users to successfully operate the BCI system as well as increase the BCI performance of current users. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  14. A Brain-Computer Interface (BCI) system to use arbitrary Windows applications by directly controlling mouse and keyboard.

    PubMed

    Spuler, Martin

    2015-08-01

    A Brain-Computer Interface (BCI) allows to control a computer by brain activity only, without the need for muscle control. In this paper, we present an EEG-based BCI system based on code-modulated visual evoked potentials (c-VEPs) that enables the user to work with arbitrary Windows applications. Other BCI systems, like the P300 speller or BCI-based browsers, allow control of one dedicated application designed for use with a BCI. In contrast, the system presented in this paper does not consist of one dedicated application, but enables the user to control mouse cursor and keyboard input on the level of the operating system, thereby making it possible to use arbitrary applications. As the c-VEP BCI method was shown to enable very fast communication speeds (writing more than 20 error-free characters per minute), the presented system is the next step in replacing the traditional mouse and keyboard and enabling complete brain-based control of a computer.

  15. A Parallel Approach in Computing Correlation Immunity up to Six Variables

    DTIC Science & Technology

    2015-07-24

    nonlinearity is divisible by 4. Let CI(n, k) (respectively, BCI (n, k)) be the number of exact order k corre- lation immune, (respectively, further...balanced) n-variable Boolean functions. The notations CI(n, k, d), BCI (n, k, d) restricts the previous count to degree d Boolean functions. Theorem 3...The following are true: (i) BCI (n, n, 0) = 0, CI(n, n, 0) = 2, CI(n, k, 1) = BCI (n, k, 1) = 2 ( n k+1 ) , 0 ≤ k ≤ n− 1. (ii) BCI (n, n− 2) = 2 ( n n−1

  16. Co-Adaptive Aiding and Automation Enhance Operator Performance

    DTIC Science & Technology

    2013-03-01

    activation system. There is a close relation between physiologically activated adaptive aiding and brain- computer interfaces ( BCI ). BCI here refers...classification of EEG signals (Farwell & Donchin, 1988). Physiologically activated adaptive aiding is, in a sense, a special case of BCI wherein the...as passive BCI , e.g. Zander, Kothe, Jatzev, & 3 Distribution A: Approved for public release; distribution unlimited. 88 ABW Cleared 05/13/2013

  17. Towards a user-friendly brain-computer interface: initial tests in ALS and PLS patients.

    PubMed

    Bai, Ou; Lin, Peter; Huang, Dandan; Fei, Ding-Yu; Floeter, Mary Kay

    2010-08-01

    Patients usually require long-term training for effective EEG-based brain-computer interface (BCI) control due to fatigue caused by the demands for focused attention during prolonged BCI operation. We intended to develop a user-friendly BCI requiring minimal training and less mental load. Testing of BCI performance was investigated in three patients with amyotrophic lateral sclerosis (ALS) and three patients with primary lateral sclerosis (PLS), who had no previous BCI experience. All patients performed binary control of cursor movement. One ALS patient and one PLS patient performed four-directional cursor control in a two-dimensional domain under a BCI paradigm associated with human natural motor behavior using motor execution and motor imagery. Subjects practiced for 5-10min and then participated in a multi-session study of either binary control or four-directional control including online BCI game over 1.5-2h in a single visit. Event-related desynchronization and event-related synchronization in the beta band were observed in all patients during the production of voluntary movement either by motor execution or motor imagery. The online binary control of cursor movement was achieved with an average accuracy about 82.1+/-8.2% with motor execution and about 80% with motor imagery, whereas offline accuracy was achieved with 91.4+/-3.4% with motor execution and 83.3+/-8.9% with motor imagery after optimization. In addition, four-directional cursor control was achieved with an accuracy of 50-60% with motor execution and motor imagery. Patients with ALS or PLS may achieve BCI control without extended training, and fatigue might be reduced during operation of a BCI associated with human natural motor behavior. The development of a user-friendly BCI will promote practical BCI applications in paralyzed patients. Copyright 2010 International Federation of Clinical Neurophysiology. All rights reserved.

  18. Structural and functional correlates of motor imagery BCI performance: Insights from the patterns of fronto-parietal attention network.

    PubMed

    Zhang, Tao; Liu, Tiejun; Li, Fali; Li, Mengchen; Liu, Dongbo; Zhang, Rui; He, Hui; Li, Peiyang; Gong, Jinnan; Luo, Cheng; Yao, Dezhong; Xu, Peng

    2016-07-01

    Motor imagery (MI)-based brain-computer interfaces (BCIs) have been widely used for rehabilitation of motor abilities and prosthesis control for patients with motor impairments. However, MI-BCI performance exhibits a wide variability across subjects, and the underlying neural mechanism remains unclear. Several studies have demonstrated that both the fronto-parietal attention network (FPAN) and MI are involved in high-level cognitive processes that are crucial for the control of BCIs. Therefore, we hypothesized that the FPAN may play an important role in MI-BCI performance. In our study, we recorded multi-modal datasets consisting of MI electroencephalography (EEG) signals, T1-weighted structural and resting-state functional MRI data for each subject. MI-BCI performance was evaluated using the common spatial pattern to extract the MI features from EEG signals. One cortical structural feature (cortical thickness (CT)) and two measurements (degree centrality (DC) and eigenvector centrality (EC)) of node centrality were derived from the structural and functional MRI data, respectively. Based on the information extracted from the EEG and MRI, a correlation analysis was used to elucidate the relationships between the FPAN and MI-BCI performance. Our results show that the DC of the right ventral intraparietal sulcus, the EC and CT of the left inferior parietal lobe, and the CT of the right dorsolateral prefrontal cortex were significantly associated with MI-BCI performance. Moreover, the receiver operating characteristic analysis and machine learning classification revealed that the EC and CT of the left IPL could effectively predict the low-aptitude BCI users from the high-aptitude BCI users with 83.3% accuracy. Those findings consistently reveal that the individuals who have efficient FPAN would perform better on MI-BCI. Our findings may deepen the understanding of individual variability in MI-BCI performance, and also may provide a new biomarker to predict individual MI-BCI performance. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Brain-computer interface controlled functional electrical stimulation system for ankle movement.

    PubMed

    Do, An H; Wang, Po T; King, Christine E; Abiri, Ahmad; Nenadic, Zoran

    2011-08-26

    Many neurological conditions, such as stroke, spinal cord injury, and traumatic brain injury, can cause chronic gait function impairment due to foot-drop. Current physiotherapy techniques provide only a limited degree of motor function recovery in these individuals, and therefore novel therapies are needed. Brain-computer interface (BCI) is a relatively novel technology with a potential to restore, substitute, or augment lost motor behaviors in patients with neurological injuries. Here, we describe the first successful integration of a noninvasive electroencephalogram (EEG)-based BCI with a noninvasive functional electrical stimulation (FES) system that enables the direct brain control of foot dorsiflexion in able-bodied individuals. A noninvasive EEG-based BCI system was integrated with a noninvasive FES system for foot dorsiflexion. Subjects underwent computer-cued epochs of repetitive foot dorsiflexion and idling while their EEG signals were recorded and stored for offline analysis. The analysis generated a prediction model that allowed EEG data to be analyzed and classified in real time during online BCI operation. The real-time online performance of the integrated BCI-FES system was tested in a group of five able-bodied subjects who used repetitive foot dorsiflexion to elicit BCI-FES mediated dorsiflexion of the contralateral foot. Five able-bodied subjects performed 10 alternations of idling and repetitive foot dorsifiexion to trigger BCI-FES mediated dorsifiexion of the contralateral foot. The epochs of BCI-FES mediated foot dorsifiexion were highly correlated with the epochs of voluntary foot dorsifiexion (correlation coefficient ranged between 0.59 and 0.77) with latencies ranging from 1.4 sec to 3.1 sec. In addition, all subjects achieved a 100% BCI-FES response (no omissions), and one subject had a single false alarm. This study suggests that the integration of a noninvasive BCI with a lower-extremity FES system is feasible. With additional modifications, the proposed BCI-FES system may offer a novel and effective therapy in the neuro-rehabilitation of individuals with lower extremity paralysis due to neurological injuries.

  20. The effects of yoga and self-esteem on menopausal symptoms and quality of life in breast cancer survivors-A secondary analysis of a randomized controlled trial.

    PubMed

    Koch, Anna K; Rabsilber, Sybille; Lauche, Romy; Kümmel, Sherko; Dobos, Gustav; Langhorst, Jost; Cramer, Holger

    2017-11-01

    Previous research has found that yoga can enhance quality of life and ease menopausal symptoms of breast cancer survivors. The study examined whether self-esteem mediated the effects of yoga on quality of life, fatigue and menopausal symptoms, utilizing validated outcome measures. This is a secondary analysis of a randomized controlled trial comparing the effects of yoga with those of usual care in 40 breast cancer survivors who suffered from menopausal symptoms. All participants completed all 3 assessments (week 0, week 12, and week 24) and provided full data. Outcomes were measured using self-rating instruments. Mediation analyses were performed using SPSS. Self-esteem mediated the effect of yoga on total menopausal symptoms (B=-2.11, 95% BCI [-5.40 to -0.37]), psychological menopausal symptoms (B=-0.94, 95% BCI [-2.30 to -0.01]), and urogenital menopausal symptoms (B=-0.66, 95% BCI [-1.65 to -0.15]), quality of life (B=8.04, 95% BCI [3.15-17.03]), social well-being (B=1.80, 95% BCI [0.54-4.21]), emotional well-being (B=1.62, 95% BCI [0.70-3.34]), functional well-being (B=1.84, 95% BCI [0.59-4.13]), and fatigue (B=4.34, 95% BCI [1.28-9.55]). Self-esteem had no effect on somatovegetative menopausal symptoms (B=-0.50, 95% BCI n.s.) or on physical well-being (B=0.79, 95% BCI n.s.). Findings support the assumption that self-esteem plays a vital role in the beneficial effect of yoga and that yoga can have long-term benefits for women diagnosed with breast cancer and undergoing menopausal transition. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Non-motor tasks improve adaptive brain-computer interface performance in users with severe motor impairment

    PubMed Central

    Faller, Josef; Scherer, Reinhold; Friedrich, Elisabeth V. C.; Costa, Ursula; Opisso, Eloy; Medina, Josep; Müller-Putz, Gernot R.

    2014-01-01

    Individuals with severe motor impairment can use event-related desynchronization (ERD) based BCIs as assistive technology. Auto-calibrating and adaptive ERD-based BCIs that users control with motor imagery tasks (“SMR-AdBCI”) have proven effective for healthy users. We aim to find an improved configuration of such an adaptive ERD-based BCI for individuals with severe motor impairment as a result of spinal cord injury (SCI) or stroke. We hypothesized that an adaptive ERD-based BCI, that automatically selects a user specific class-combination from motor-related and non motor-related mental tasks during initial auto-calibration (“Auto-AdBCI”) could allow for higher control performance than a conventional SMR-AdBCI. To answer this question we performed offline analyses on two sessions (21 data sets total) of cue-guided, five-class electroencephalography (EEG) data recorded from individuals with SCI or stroke. On data from the twelve individuals in Session 1, we first identified three bipolar derivations for the SMR-AdBCI. In a similar way, we determined three bipolar derivations and four mental tasks for the Auto-AdBCI. We then simulated both, the SMR-AdBCI and the Auto-AdBCI configuration on the unseen data from the nine participants in Session 2 and compared the results. On the unseen data of Session 2 from individuals with SCI or stroke, we found that automatically selecting a user specific class-combination from motor-related and non motor-related mental tasks during initial auto-calibration (Auto-AdBCI) significantly (p < 0.01) improved classification performance compared to an adaptive ERD-based BCI that only used motor imagery tasks (SMR-AdBCI; average accuracy of 75.7 vs. 66.3%). PMID:25368546

  2. Hilbert-Huang Spectrum as a new field for the identification of EEG event related de-/synchronization for BCI applications.

    PubMed

    Panoulas, Konstantinos I; Hadjileontiadis, Leontios J; Panas, Stavros M

    2008-01-01

    Brain Computer Interfaces (BCI) usually utilize the suppression of mu-rhythm during actual or imagined motor activity. In order to create a BCI system, a signal processing method is required to extract features upon which the discrimination is based. In this article, the Empirical Mode Decomposition along with the Hilbert-Huang Spectrum (HHS) is found to contain the necessary information to be considered as an input to a discriminator. Also, since the HHS defines amplitude and instantaneous frequency for each sample, it can be used for an online BCI system. Experimental results when the HHS applied to EEG signals from an on-line database (BCI Competition III) show the potentiality of the proposed analysis to capture the imagined motor activity, contributing to a more enhanced BCI performance.

  3. A Modular Framework for EEG Web Based Binary Brain Computer Interfaces to Recover Communication Abilities in Impaired People.

    PubMed

    Placidi, Giuseppe; Petracca, Andrea; Spezialetti, Matteo; Iacoviello, Daniela

    2016-01-01

    A Brain Computer Interface (BCI) allows communication for impaired people unable to express their intention with common channels. Electroencephalography (EEG) represents an effective tool to allow the implementation of a BCI. The present paper describes a modular framework for the implementation of the graphic interface for binary BCIs based on the selection of symbols in a table. The proposed system is also designed to reduce the time required for writing text. This is made by including a motivational tool, necessary to improve the quality of the collected signals, and by containing a predictive module based on the frequency of occurrence of letters in a language, and of words in a dictionary. The proposed framework is described in a top-down approach through its modules: signal acquisition, analysis, classification, communication, visualization, and predictive engine. The framework, being modular, can be easily modified to personalize the graphic interface to the needs of the subject who has to use the BCI and it can be integrated with different classification strategies, communication paradigms, and dictionaries/languages. The implementation of a scenario and some experimental results on healthy subjects are also reported and discussed: the modules of the proposed scenario can be used as a starting point for further developments, and application on severely disabled people under the guide of specialized personnel.

  4. Learning to control an SSVEP-based BCI speller in naïve subjects.

    PubMed

    Zhihua Tang; Yijun Wang; Guoya Dong; Weihua Pei; Hongda Chen

    2017-07-01

    High-speed steady-state visual evoked potential (SSVEP)-based brain-computer interface (BCI) has been demonstrated in several recent studies. This study aimed to investigate some issues regarding feasibility of learning to control an SSVEP-based BCI speller in naïve subjects. An experiment with new BCI users was designed to answer the following questions: (1) How many people can use the SSVEP-BCI speller? (2) How much time is required to train the user? (3) Does continuous system use lead to user fatigue and deteriorated BCI performance? The experiment consisted of three tasks including a 40-class BCI spelling task, a psychomotor vigilance test (PVT) task, and a test of sleepiness scale. Subjects' reaction time (RT) in the PVT task and the fatigue rank in the sleepiness scale test were used as objective and subjective parameters to evaluate subjects' alertness level. Among 11 naïve subjects, 10 of them fulfilled the 9-block experiment. Four of them showed clear learning effects (i.e., an increasing trend of classification accuracy and information transfer rate (ITR)) over time. The remaining subjects showed stable BCI performance during the whole experiment. The results of RT and fatigue rank showed a gradually increasing trend, which is not significant across blocks. In summary, the results of this study suggest that controlling an SSVEP-based BCI speller is in general feasible to learn by naïve subjects after a short training procedure, showing no clear performance deterioration related to fatigue.

  5. Group Augmentation in Realistic Visual-Search Decisions via a Hybrid Brain-Computer Interface.

    PubMed

    Valeriani, Davide; Cinel, Caterina; Poli, Riccardo

    2017-08-10

    Groups have increased sensing and cognition capabilities that typically allow them to make better decisions. However, factors such as communication biases and time constraints can lead to less-than-optimal group decisions. In this study, we use a hybrid Brain-Computer Interface (hBCI) to improve the performance of groups undertaking a realistic visual-search task. Our hBCI extracts neural information from EEG signals and combines it with response times to build an estimate of the decision confidence. This is used to weigh individual responses, resulting in improved group decisions. We compare the performance of hBCI-assisted groups with the performance of non-BCI groups using standard majority voting, and non-BCI groups using weighted voting based on reported decision confidence. We also investigate the impact on group performance of a computer-mediated form of communication between members. Results across three experiments suggest that the hBCI provides significant advantages over non-BCI decision methods in all cases. We also found that our form of communication increases individual error rates by almost 50% compared to non-communicating observers, which also results in worse group performance. Communication also makes reported confidence uncorrelated with the decision correctness, thereby nullifying its value in weighing votes. In summary, best decisions are achieved by hBCI-assisted, non-communicating groups.

  6. Towards passive brain-computer interfaces: applying brain-computer interface technology to human-machine systems in general.

    PubMed

    Zander, Thorsten O; Kothe, Christian

    2011-04-01

    Cognitive monitoring is an approach utilizing realtime brain signal decoding (RBSD) for gaining information on the ongoing cognitive user state. In recent decades this approach has brought valuable insight into the cognition of an interacting human. Automated RBSD can be used to set up a brain-computer interface (BCI) providing a novel input modality for technical systems solely based on brain activity. In BCIs the user usually sends voluntary and directed commands to control the connected computer system or to communicate through it. In this paper we propose an extension of this approach by fusing BCI technology with cognitive monitoring, providing valuable information about the users' intentions, situational interpretations and emotional states to the technical system. We call this approach passive BCI. In the following we give an overview of studies which utilize passive BCI, as well as other novel types of applications resulting from BCI technology. We especially focus on applications for healthy users, and the specific requirements and demands of this user group. Since the presented approach of combining cognitive monitoring with BCI technology is very similar to the concept of BCIs itself we propose a unifying categorization of BCI-based applications, including the novel approach of passive BCI.

  7. Integrating language models into classifiers for BCI communication: a review

    NASA Astrophysics Data System (ADS)

    Speier, W.; Arnold, C.; Pouratian, N.

    2016-06-01

    Objective. The present review systematically examines the integration of language models to improve classifier performance in brain-computer interface (BCI) communication systems. Approach. The domain of natural language has been studied extensively in linguistics and has been used in the natural language processing field in applications including information extraction, machine translation, and speech recognition. While these methods have been used for years in traditional augmentative and assistive communication devices, information about the output domain has largely been ignored in BCI communication systems. Over the last few years, BCI communication systems have started to leverage this information through the inclusion of language models. Main results. Although this movement began only recently, studies have already shown the potential of language integration in BCI communication and it has become a growing field in BCI research. BCI communication systems using language models in their classifiers have progressed down several parallel paths, including: word completion; signal classification; integration of process models; dynamic stopping; unsupervised learning; error correction; and evaluation. Significance. Each of these methods have shown significant progress, but have largely been addressed separately. Combining these methods could use the full potential of language model, yielding further performance improvements. This integration should be a priority as the field works to create a BCI system that meets the needs of the amyotrophic lateral sclerosis population.

  8. Integrating language models into classifiers for BCI communication: a review.

    PubMed

    Speier, W; Arnold, C; Pouratian, N

    2016-06-01

    The present review systematically examines the integration of language models to improve classifier performance in brain-computer interface (BCI) communication systems. The domain of natural language has been studied extensively in linguistics and has been used in the natural language processing field in applications including information extraction, machine translation, and speech recognition. While these methods have been used for years in traditional augmentative and assistive communication devices, information about the output domain has largely been ignored in BCI communication systems. Over the last few years, BCI communication systems have started to leverage this information through the inclusion of language models. Although this movement began only recently, studies have already shown the potential of language integration in BCI communication and it has become a growing field in BCI research. BCI communication systems using language models in their classifiers have progressed down several parallel paths, including: word completion; signal classification; integration of process models; dynamic stopping; unsupervised learning; error correction; and evaluation. Each of these methods have shown significant progress, but have largely been addressed separately. Combining these methods could use the full potential of language model, yielding further performance improvements. This integration should be a priority as the field works to create a BCI system that meets the needs of the amyotrophic lateral sclerosis population.

  9. Differentiating closed-loop cortical intention from rest: building an asynchronous electrocorticographic BCI.

    PubMed

    Williams, Jordan J; Rouse, Adam G; Thongpang, Sanitta; Williams, Justin C; Moran, Daniel W

    2013-08-01

    Recent experiments have shown that electrocorticography (ECoG) can provide robust control signals for a brain-computer interface (BCI). Strategies that attempt to adapt a BCI control algorithm by learning from past trials often assume that the subject is attending to each training trial. Likewise, automatic disabling of movement control would be desirable during resting periods when random brain fluctuations might cause unintended movements of a device. To this end, our goal was to identify ECoG differences that arise between periods of active BCI use and rest. We examined spectral differences in multi-channel, epidural micro-ECoG signals recorded from non-human primates when rest periods were interleaved between blocks of an active BCI control task. Post-hoc analyses demonstrated that these states can be decoded accurately on both a trial-by-trial and real-time basis, and this discriminability remains robust over a period of weeks. In addition, high gamma frequencies showed greater modulation with desired movement direction, while lower frequency components demonstrated greater amplitude differences between task and rest periods, suggesting possible specialized BCI roles for these frequencies. The results presented here provide valuable insight into the neurophysiology of BCI control as well as important considerations toward the design of an asynchronous BCI system.

  10. Functional recovery in upper limb function in stroke survivors by using brain-computer interface A single case A-B-A-B design.

    PubMed

    Ono, Takashi; Mukaino, Masahiko; Ushiba, Junichi

    2013-01-01

    Resent studies suggest that brain-computer interface (BCI) training for chronic stroke patient is useful to improve their motor function of paretic hand. However, these studies does not show the extent of the contribution of the BCI clearly because they prescribed BCI with other rehabilitation systems, e.g. an orthosis itself, a robotic intervention, or electrical stimulation. We therefore compared neurological effects between interventions with neuromuscular electrical stimulation (NMES) with motor imagery and BCI-driven NMES, employing an ABAB experimental design. In epoch A, the subject received NMES on paretic extensor digitorum communis (EDC). The subject was asked to attempt finger extension simultaneously. In epoch B, the subject received NMES when BCI system detected motor-related electroencephalogram change while attempting motor imagery. Both epochs were carried out for 60 min per day, 5 days per week. As a result, EMG activity of EDC was enhanced by BCI-driven NMES and significant cortico-muscular coherence was observed at the final evaluation. These results indicate that the training by BCI-driven NMES is effective even compared to motor imagery combined with NMES, suggesting the superiority of closed-loop training with BCI-driven NMES to open-loop NMES for chronic stroke patients.

  11. Differentiating closed-loop cortical intention from rest: building an asynchronous electrocorticographic BCI

    NASA Astrophysics Data System (ADS)

    Williams, Jordan J.; Rouse, Adam G.; Thongpang, Sanitta; Williams, Justin C.; Moran, Daniel W.

    2013-08-01

    Objective. Recent experiments have shown that electrocorticography (ECoG) can provide robust control signals for a brain-computer interface (BCI). Strategies that attempt to adapt a BCI control algorithm by learning from past trials often assume that the subject is attending to each training trial. Likewise, automatic disabling of movement control would be desirable during resting periods when random brain fluctuations might cause unintended movements of a device. To this end, our goal was to identify ECoG differences that arise between periods of active BCI use and rest. Approach. We examined spectral differences in multi-channel, epidural micro-ECoG signals recorded from non-human primates when rest periods were interleaved between blocks of an active BCI control task. Main Results. Post-hoc analyses demonstrated that these states can be decoded accurately on both a trial-by-trial and real-time basis, and this discriminability remains robust over a period of weeks. In addition, high gamma frequencies showed greater modulation with desired movement direction, while lower frequency components demonstrated greater amplitude differences between task and rest periods, suggesting possible specialized BCI roles for these frequencies. Significance. The results presented here provide valuable insight into the neurophysiology of BCI control as well as important considerations toward the design of an asynchronous BCI system.

  12. Implementation of an Embedded Web Server Application for Wireless Control of Brain Computer Interface Based Home Environments.

    PubMed

    Aydın, Eda Akman; Bay, Ömer Faruk; Güler, İnan

    2016-01-01

    Brain Computer Interface (BCI) based environment control systems could facilitate life of people with neuromuscular diseases, reduces dependence on their caregivers, and improves their quality of life. As well as easy usage, low-cost, and robust system performance, mobility is an important functionality expected from a practical BCI system in real life. In this study, in order to enhance users' mobility, we propose internet based wireless communication between BCI system and home environment. We designed and implemented a prototype of an embedded low-cost, low power, easy to use web server which is employed in internet based wireless control of a BCI based home environment. The embedded web server provides remote access to the environmental control module through BCI and web interfaces. While the proposed system offers to BCI users enhanced mobility, it also provides remote control of the home environment by caregivers as well as the individuals in initial stages of neuromuscular disease. The input of BCI system is P300 potentials. We used Region Based Paradigm (RBP) as stimulus interface. Performance of the BCI system is evaluated on data recorded from 8 non-disabled subjects. The experimental results indicate that the proposed web server enables internet based wireless control of electrical home appliances successfully through BCIs.

  13. Comparison of the BCI Performance between the Semitransparent Face Pattern and the Traditional Face Pattern.

    PubMed

    Cheng, Jiao; Jin, Jing; Wang, Xingyu

    2017-01-01

    Brain-computer interface (BCI) systems allow users to communicate with the external world by recognizing the brain activity without the assistance of the peripheral motor nervous system. P300-based BCI is one of the most common used BCI systems that can obtain high classification accuracy and information transfer rate (ITR). Face stimuli can result in large event-related potentials and improve the performance of P300-based BCI. However, previous studies on face stimuli focused mainly on the effect of various face types (i.e., face expression, face familiarity, and multifaces) on the BCI performance. Studies on the influence of face transparency differences are scarce. Therefore, we investigated the effect of semitransparent face pattern (STF-P) (the subject could see the target character when the stimuli were flashed) and traditional face pattern (F-P) (the subject could not see the target character when the stimuli were flashed) on the BCI performance from the transparency perspective. Results showed that STF-P obtained significantly higher classification accuracy and ITR than those of F-P ( p < 0.05).

  14. Workshops of the Sixth International Brain–Computer Interface Meeting: brain–computer interfaces past, present, and future

    PubMed Central

    Huggins, Jane E.; Guger, Christoph; Ziat, Mounia; Zander, Thorsten O.; Taylor, Denise; Tangermann, Michael; Soria-Frisch, Aureli; Simeral, John; Scherer, Reinhold; Rupp, Rüdiger; Ruffini, Giulio; Robinson, Douglas K. R.; Ramsey, Nick F.; Nijholt, Anton; Müller-Putz, Gernot; McFarland, Dennis J.; Mattia, Donatella; Lance, Brent J.; Kindermans, Pieter-Jan; Iturrate, Iñaki; Herff, Christian; Gupta, Disha; Do, An H.; Collinger, Jennifer L.; Chavarriaga, Ricardo; Chase, Steven M.; Bleichner, Martin G.; Batista, Aaron; Anderson, Charles W.; Aarnoutse, Erik J.

    2017-01-01

    The Sixth International Brain–Computer Interface (BCI) Meeting was held 30 May–3 June 2016 at the Asilomar Conference Grounds, Pacific Grove, California, USA. The conference included 28 workshops covering topics in BCI and brain–machine interface research. Topics included BCI for specific populations or applications, advancing BCI research through use of specific signals or technological advances, and translational and commercial issues to bring both implanted and non-invasive BCIs to market. BCI research is growing and expanding in the breadth of its applications, the depth of knowledge it can produce, and the practical benefit it can provide both for those with physical impairments and the general public. Here we provide summaries of each workshop, illustrating the breadth and depth of BCI research and highlighting important issues and calls for action to support future research and development. PMID:29152523

  15. Workshops of the Sixth International Brain-Computer Interface Meeting: brain-computer interfaces past, present, and future.

    PubMed

    Huggins, Jane E; Guger, Christoph; Ziat, Mounia; Zander, Thorsten O; Taylor, Denise; Tangermann, Michael; Soria-Frisch, Aureli; Simeral, John; Scherer, Reinhold; Rupp, Rüdiger; Ruffini, Giulio; Robinson, Douglas K R; Ramsey, Nick F; Nijholt, Anton; Müller-Putz, Gernot; McFarland, Dennis J; Mattia, Donatella; Lance, Brent J; Kindermans, Pieter-Jan; Iturrate, Iñaki; Herff, Christian; Gupta, Disha; Do, An H; Collinger, Jennifer L; Chavarriaga, Ricardo; Chase, Steven M; Bleichner, Martin G; Batista, Aaron; Anderson, Charles W; Aarnoutse, Erik J

    2017-01-01

    The Sixth International Brain-Computer Interface (BCI) Meeting was held 30 May-3 June 2016 at the Asilomar Conference Grounds, Pacific Grove, California, USA. The conference included 28 workshops covering topics in BCI and brain-machine interface research. Topics included BCI for specific populations or applications, advancing BCI research through use of specific signals or technological advances, and translational and commercial issues to bring both implanted and non-invasive BCIs to market. BCI research is growing and expanding in the breadth of its applications, the depth of knowledge it can produce, and the practical benefit it can provide both for those with physical impairments and the general public. Here we provide summaries of each workshop, illustrating the breadth and depth of BCI research and highlighting important issues and calls for action to support future research and development.

  16. User-centered design in brain-computer interfaces-a case study.

    PubMed

    Schreuder, Martijn; Riccio, Angela; Risetti, Monica; Dähne, Sven; Ramsay, Andrew; Williamson, John; Mattia, Donatella; Tangermann, Michael

    2013-10-01

    The array of available brain-computer interface (BCI) paradigms has continued to grow, and so has the corresponding set of machine learning methods which are at the core of BCI systems. The latter have evolved to provide more robust data analysis solutions, and as a consequence the proportion of healthy BCI users who can use a BCI successfully is growing. With this development the chances have increased that the needs and abilities of specific patients, the end-users, can be covered by an existing BCI approach. However, most end-users who have experienced the use of a BCI system at all have encountered a single paradigm only. This paradigm is typically the one that is being tested in the study that the end-user happens to be enrolled in, along with other end-users. Though this corresponds to the preferred study arrangement for basic research, it does not ensure that the end-user experiences a working BCI. In this study, a different approach was taken; that of a user-centered design. It is the prevailing process in traditional assistive technology. Given an individual user with a particular clinical profile, several available BCI approaches are tested and - if necessary - adapted to him/her until a suitable BCI system is found. Described is the case of a 48-year-old woman who suffered from an ischemic brain stem stroke, leading to a severe motor- and communication deficit. She was enrolled in studies with two different BCI systems before a suitable system was found. The first was an auditory event-related potential (ERP) paradigm and the second a visual ERP paradigm, both of which are established in literature. The auditory paradigm did not work successfully, despite favorable preconditions. The visual paradigm worked flawlessly, as found over several sessions. This discrepancy in performance can possibly be explained by the user's clinical deficit in several key neuropsychological indicators, such as attention and working memory. While the auditory paradigm relies on both categories, the visual paradigm could be used with lower cognitive workload. Besides attention and working memory, several other neurophysiological and -psychological indicators - and the role they play in the BCIs at hand - are discussed. The user's performance on the first BCI paradigm would typically have excluded her from further ERP-based BCI studies. However, this study clearly shows that, with the numerous paradigms now at our disposal, the pursuit for a functioning BCI system should not be stopped after an initial failed attempt. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  17. Assessment of the prognostic and predictive utility of the Breast Cancer Index (BCI): an NCIC CTG MA.14 study.

    PubMed

    Sgroi, Dennis C; Chapman, Judy-Anne W; Badovinac-Crnjevic, T; Zarella, Elizabeth; Binns, Shemeica; Zhang, Yi; Schnabel, Catherine A; Erlander, Mark G; Pritchard, Kathleen I; Han, Lei; Shepherd, Lois E; Goss, Paul E; Pollak, Michael

    2016-01-04

    Biomarkers that can be used to accurately assess the residual risk of disease recurrence in women with hormone receptor-positive breast cancer are clinically valuable. We evaluated the prognostic value of the Breast Cancer Index (BCI), a continuous risk index based on a combination of HOXB13:IL17BR and molecular grade index, in women with early breast cancer treated with either tamoxifen alone or tamoxifen plus octreotide in the NCIC MA.14 phase III clinical trial (ClinicalTrials.gov Identifier NCT00002864; registered 1 November 1999). Gene expression analysis of BCI by real-time polymerase chain reaction was performed blinded to outcome on RNA extracted from archived formalin-fixed, paraffin-embedded tumor samples of 299 patients with both lymph node-negative (LN-) and lymph node-positive (LN+) disease enrolled in the MA.14 trial. Our primary objective was to determine the prognostic performance of BCI based on relapse-free survival (RFS). MA.14 patients experienced similar RFS on both treatment arms. Association of gene expression data with RFS was evaluated in univariate analysis with a stratified log-rank test statistic, depicted with a Kaplan-Meier plot and an adjusted Cox survivor plot. In the multivariate assessment, we used stratified Cox regression. The prognostic performance of an emerging, optimized linear BCI model was also assessed in a post hoc analysis. Of 299 samples, 292 were assessed successfully for BCI for 146 patients accrued in each MA.14 treatment arm. BCI risk groups had a significant univariate association with RFS (stratified log-rank p = 0.005, unstratified log-rank p = 0.007). Adjusted 10-year RFS in BCI low-, intermediate-, and high-risk groups was 87.5 %, 83.9 %, and 74.7 %, respectively. BCI had a significant prognostic effect [hazard ratio (HR) 2.34, 95 % confidence interval (CI) 1.33-4.11; p = 0.004], although not a predictive effect, on RFS in stratified multivariate analysis, adjusted for pathological tumor stage (HR 2.22, 95 % CI 1.22-4.07; p = 0.01). In the post hoc multivariate analysis, higher linear BCI was associated with shorter RFS (p = 0.002). BCI had a strong prognostic effect on RFS in patients with early-stage breast cancer treated with tamoxifen alone or with tamoxifen and octreotide. BCI was prognostic in both LN- and LN+ patients. This retrospective study is an independent validation of the prognostic performance of BCI in a prospective trial.

  18. Assisted closed-loop optimization of SSVEP-BCI efficiency

    PubMed Central

    Fernandez-Vargas, Jacobo; Pfaff, Hanns U.; Rodríguez, Francisco B.; Varona, Pablo

    2012-01-01

    We designed a novel assisted closed-loop optimization protocol to improve the efficiency of brain-computer interfaces (BCI) based on steady state visually evoked potentials (SSVEP). In traditional paradigms, the control over the BCI-performance completely depends on the subjects' ability to learn from the given feedback cues. By contrast, in the proposed protocol both the subject and the machine share information and control over the BCI goal. Generally, the innovative assistance consists in the delivery of online information together with the online adaptation of BCI stimuli properties. In our case, this adaptive optimization process is realized by (1) a closed-loop search for the best set of SSVEP flicker frequencies and (2) feedback of actual SSVEP magnitudes to both the subject and the machine. These closed-loop interactions between subject and machine are evaluated in real-time by continuous measurement of their efficiencies, which are used as online criteria to adapt the BCI control parameters. The proposed protocol aims to compensate for variability in possibly unknown subjects' state and trait dimensions. In a study with N = 18 subjects, we found significant evidence that our protocol outperformed classic SSVEP-BCI control paradigms. Evidence is presented that it takes indeed into account interindividual variabilities: e.g., under the new protocol, baseline resting state EEG measures predict subjects' BCI performances. This paper illustrates the promising potential of assisted closed-loop protocols in BCI systems. Probably their applicability might be expanded to innovative uses, e.g., as possible new diagnostic/therapeutic tools for clinical contexts and as new paradigms for basic research. PMID:23443214

  19. BCI demographics II: how many (and what kinds of) people can use a high-frequency SSVEP BCI?

    PubMed

    Volosyak, Ivan; Valbuena, Diana; Lüth, Thorsten; Malechka, Tatsiana; Gräser, Axel

    2011-06-01

    Brain-computer interface (BCI) systems use brain activity as an input signal and enable communication without movement. This study is a successor of our previous study (BCI demographics I) and examines correlations among BCI performance, personal preferences, and different subject factors such as age or gender for two sets of steady-state visual evoked potential (SSVEP) stimuli: one in the medium frequency range (13, 14, 15 and 16 Hz) and another in the high-frequency range (34, 36, 38, 40 Hz). High-frequency SSVEPs (above 30 Hz) diminish user fatigue and risk of photosensitive epileptic seizures. Results showed that most people, despite having no prior BCI experience, could use the SSVEP-based Bremen-BCI system in a very noisy field setting at a fair. Results showed that demographic parameters as well as handedness, tiredness, alcohol and caffeine consumption, etc., have no significant effect on the performance of SSVEP-based BCI. Most subjects did not consider the flickering stimuli annoying, only five out of total 86 participants indicated change in fatigue during the experiment. 84 subjects performed with a mean information transfer rate of 17.24 ±6.99 bit/min and an accuracy of 92.26 ±7.82% with the medium frequency set, whereas only 56 subjects performed with a mean information transfer rate of 12.10 ±7.31 bit/min and accuracy of 89.16 ±9.29% with the high-frequency set. These and other demographic analyses may help identify the best BCI for each user.

  20. Clinical feasibility of brain-computer interface based on steady-state visual evoked potential in patients with locked-in syndrome: Case studies.

    PubMed

    Hwang, Han-Jeong; Han, Chang-Hee; Lim, Jeong-Hwan; Kim, Yong-Wook; Choi, Soo-In; An, Kwang-Ok; Lee, Jun-Hak; Cha, Ho-Seung; Hyun Kim, Seung; Im, Chang-Hwan

    2017-03-01

    Although the feasibility of brain-computer interface (BCI) systems based on steady-state visual evoked potential (SSVEP) has been extensively investigated, only a few studies have evaluated its clinical feasibility in patients with locked-in syndrome (LIS), who are the main targets of BCI technology. The main objective of this case report was to share our experiences of SSVEP-based BCI experiments involving five patients with LIS, thereby providing researchers with useful information that can potentially help them to design BCI experiments for patients with LIS. In our experiments, a four-class online SSVEP-based BCI system was implemented and applied to four of five patients repeatedly on multiple days to investigate its test-retest reliability. In the last experiments with two of the four patients, the practical usability of our BCI system was tested using a questionnaire survey. All five patients showed clear and distinct SSVEP responses at all four fundamental stimulation frequencies (6, 6.66, 7.5, 10 Hz), and responses at harmonic frequencies were also observed in three patients. Mean classification accuracy was 76.99% (chance level = 25%). The test-retest reliability experiments demonstrated stable performance of our BCI system over different days even when the initial experimental settings (e.g., electrode configuration, fixation time, visual angle) used in the first experiment were used without significant modifications. Our results suggest that SSVEP-based BCI paradigms might be successfully used to implement clinically feasible BCI systems for severely paralyzed patients. © 2016 Society for Psychophysiological Research.

  1. Assisted closed-loop optimization of SSVEP-BCI efficiency.

    PubMed

    Fernandez-Vargas, Jacobo; Pfaff, Hanns U; Rodríguez, Francisco B; Varona, Pablo

    2013-01-01

    We designed a novel assisted closed-loop optimization protocol to improve the efficiency of brain-computer interfaces (BCI) based on steady state visually evoked potentials (SSVEP). In traditional paradigms, the control over the BCI-performance completely depends on the subjects' ability to learn from the given feedback cues. By contrast, in the proposed protocol both the subject and the machine share information and control over the BCI goal. Generally, the innovative assistance consists in the delivery of online information together with the online adaptation of BCI stimuli properties. In our case, this adaptive optimization process is realized by (1) a closed-loop search for the best set of SSVEP flicker frequencies and (2) feedback of actual SSVEP magnitudes to both the subject and the machine. These closed-loop interactions between subject and machine are evaluated in real-time by continuous measurement of their efficiencies, which are used as online criteria to adapt the BCI control parameters. The proposed protocol aims to compensate for variability in possibly unknown subjects' state and trait dimensions. In a study with N = 18 subjects, we found significant evidence that our protocol outperformed classic SSVEP-BCI control paradigms. Evidence is presented that it takes indeed into account interindividual variabilities: e.g., under the new protocol, baseline resting state EEG measures predict subjects' BCI performances. This paper illustrates the promising potential of assisted closed-loop protocols in BCI systems. Probably their applicability might be expanded to innovative uses, e.g., as possible new diagnostic/therapeutic tools for clinical contexts and as new paradigms for basic research.

  2. The Berlin Brain–Computer Interface: Non-Medical Uses of BCI Technology

    PubMed Central

    Blankertz, Benjamin; Tangermann, Michael; Vidaurre, Carmen; Fazli, Siamac; Sannelli, Claudia; Haufe, Stefan; Maeder, Cecilia; Ramsey, Lenny; Sturm, Irene; Curio, Gabriel; Müller, Klaus-Robert

    2010-01-01

    Brain–computer interfacing (BCI) is a steadily growing area of research. While initially BCI research was focused on applications for paralyzed patients, increasingly more alternative applications in healthy human subjects are proposed and investigated. In particular, monitoring of mental states and decoding of covert user states have seen a strong rise of interest. Here, we present some examples of such novel applications which provide evidence for the promising potential of BCI technology for non-medical uses. Furthermore, we discuss distinct methodological improvements required to bring non-medical applications of BCI technology to a diversity of layperson target groups, e.g., ease of use, minimal training, general usability, short control latencies. PMID:21165175

  3. Student teaching and research laboratory focusing on brain-computer interface paradigms--A creative environment for computer science students.

    PubMed

    Rutkowski, Tomasz M

    2015-08-01

    This paper presents an applied concept of a brain-computer interface (BCI) student research laboratory (BCI-LAB) at the Life Science Center of TARA, University of Tsukuba, Japan. Several successful case studies of the student projects are reviewed together with the BCI Research Award 2014 winner case. The BCI-LAB design and project-based teaching philosophy is also explained. Future teaching and research directions summarize the review.

  4. Electrochemical and catalytic properties of Ni/BaCe0.75Y0.25O3-δ anode for direct ammonia-fueled solid oxide fuel cells.

    PubMed

    Yang, Jun; Molouk, Ahmed Fathi Salem; Okanishi, Takeou; Muroyama, Hiroki; Matsui, Toshiaki; Eguchi, Koichi

    2015-04-08

    In this study, Ni/BaCe0.75Y0.25O3-δ (Ni/BCY25) was investigated as an anode for direct ammonia-fueled solid oxide fuel cells. The catalytic activity of Ni/BCY25 for ammonia decomposition was found to be remarkably higher than Ni/8 mol % Y2O3-ZrO2 and Ni/Ce0.90Gd0.10O1.95. The poisoning effect of water and hydrogen on ammonia decomposition reaction over Ni/BCY25 was evaluated. In addition, an electrolyte-supported SOFC employing BaCe0.90Y0.10O3-δ (BCY10) electrolyte and Ni/BCY25 anode was fabricated, and its electrochemical performance was investigated at 550-650 °C with supply of ammonia and hydrogen fuel gases. The effect of water content in anode gas on the cell performance was also studied. Based on these results, it was concluded that Ni/BCY25 was a promising anode for direct ammonia-fueled SOFCs. An anode-supported single cell denoted as Ni/BCY25|BCY10|Sm0.5Sr0.5CoO3-δ was also fabricated, and maximum powder density of 216 and 165 mW cm(-2) was achieved at 650 and 600 °C, for ammonia fuel, respectively.

  5. Combining Brain–Computer Interfaces and Assistive Technologies: State-of-the-Art and Challenges

    PubMed Central

    Millán, J. d. R.; Rupp, R.; Müller-Putz, G. R.; Murray-Smith, R.; Giugliemma, C.; Tangermann, M.; Vidaurre, C.; Cincotti, F.; Kübler, A.; Leeb, R.; Neuper, C.; Müller, K.-R.; Mattia, D.

    2010-01-01

    In recent years, new research has brought the field of electroencephalogram (EEG)-based brain–computer interfacing (BCI) out of its infancy and into a phase of relative maturity through many demonstrated prototypes such as brain-controlled wheelchairs, keyboards, and computer games. With this proof-of-concept phase in the past, the time is now ripe to focus on the development of practical BCI technologies that can be brought out of the lab and into real-world applications. In particular, we focus on the prospect of improving the lives of countless disabled individuals through a combination of BCI technology with existing assistive technologies (AT). In pursuit of more practical BCIs for use outside of the lab, in this paper, we identify four application areas where disabled individuals could greatly benefit from advancements in BCI technology, namely, “Communication and Control”, “Motor Substitution”, “Entertainment”, and “Motor Recovery”. We review the current state of the art and possible future developments, while discussing the main research issues in these four areas. In particular, we expect the most progress in the development of technologies such as hybrid BCI architectures, user–machine adaptation algorithms, the exploitation of users’ mental states for BCI reliability and confidence measures, the incorporation of principles in human–computer interaction (HCI) to improve BCI usability, and the development of novel BCI technology including better EEG devices. PMID:20877434

  6. Brain-computer interface control along instructed paths

    NASA Astrophysics Data System (ADS)

    Sadtler, P. T.; Ryu, S. I.; Tyler-Kabara, E. C.; Yu, B. M.; Batista, A. P.

    2015-02-01

    Objective. Brain-computer interfaces (BCIs) are being developed to assist paralyzed people and amputees by translating neural activity into movements of a computer cursor or prosthetic limb. Here we introduce a novel BCI task paradigm, intended to help accelerate improvements to BCI systems. Through this task, we can push the performance limits of BCI systems, we can quantify more accurately how well a BCI system captures the user’s intent, and we can increase the richness of the BCI movement repertoire. Approach. We have implemented an instructed path task, wherein the user must drive a cursor along a visible path. The instructed path task provides a versatile framework to increase the difficulty of the task and thereby push the limits of performance. Relative to traditional point-to-point tasks, the instructed path task allows more thorough analysis of decoding performance and greater richness of movement kinematics. Main results. We demonstrate that monkeys are able to perform the instructed path task in a closed-loop BCI setting. We further investigate how the performance under BCI control compares to native arm control, whether users can decrease their movement variability in the face of a more demanding task, and how the kinematic richness is enhanced in this task. Significance. The use of the instructed path task has the potential to accelerate the development of BCI systems and their clinical translation.

  7. Noninvasive Electroencephalogram Based Control of a Robotic Arm for Writing Task Using Hybrid BCI System.

    PubMed

    Gao, Qiang; Dou, Lixiang; Belkacem, Abdelkader Nasreddine; Chen, Chao

    2017-01-01

    A novel hybrid brain-computer interface (BCI) based on the electroencephalogram (EEG) signal which consists of a motor imagery- (MI-) based online interactive brain-controlled switch, "teeth clenching" state detector, and a steady-state visual evoked potential- (SSVEP-) based BCI was proposed to provide multidimensional BCI control. MI-based BCI was used as single-pole double throw brain switch (SPDTBS). By combining the SPDTBS with 4-class SSEVP-based BCI, movement of robotic arm was controlled in three-dimensional (3D) space. In addition, muscle artifact (EMG) of "teeth clenching" condition recorded from EEG signal was detected and employed as interrupter, which can initialize the statement of SPDTBS. Real-time writing task was implemented to verify the reliability of the proposed noninvasive hybrid EEG-EMG-BCI. Eight subjects participated in this study and succeeded to manipulate a robotic arm in 3D space to write some English letters. The mean decoding accuracy of writing task was 0.93 ± 0.03. Four subjects achieved the optimal criteria of writing the word "HI" which is the minimum movement of robotic arm directions (15 steps). Other subjects had needed to take from 2 to 4 additional steps to finish the whole process. These results suggested that our proposed hybrid noninvasive EEG-EMG-BCI was robust and efficient for real-time multidimensional robotic arm control.

  8. Noninvasive Electroencephalogram Based Control of a Robotic Arm for Writing Task Using Hybrid BCI System

    PubMed Central

    Gao, Qiang

    2017-01-01

    A novel hybrid brain-computer interface (BCI) based on the electroencephalogram (EEG) signal which consists of a motor imagery- (MI-) based online interactive brain-controlled switch, “teeth clenching” state detector, and a steady-state visual evoked potential- (SSVEP-) based BCI was proposed to provide multidimensional BCI control. MI-based BCI was used as single-pole double throw brain switch (SPDTBS). By combining the SPDTBS with 4-class SSEVP-based BCI, movement of robotic arm was controlled in three-dimensional (3D) space. In addition, muscle artifact (EMG) of “teeth clenching” condition recorded from EEG signal was detected and employed as interrupter, which can initialize the statement of SPDTBS. Real-time writing task was implemented to verify the reliability of the proposed noninvasive hybrid EEG-EMG-BCI. Eight subjects participated in this study and succeeded to manipulate a robotic arm in 3D space to write some English letters. The mean decoding accuracy of writing task was 0.93 ± 0.03. Four subjects achieved the optimal criteria of writing the word “HI” which is the minimum movement of robotic arm directions (15 steps). Other subjects had needed to take from 2 to 4 additional steps to finish the whole process. These results suggested that our proposed hybrid noninvasive EEG-EMG-BCI was robust and efficient for real-time multidimensional robotic arm control. PMID:28660211

  9. Quantification of Emphysema: A Bullae Distribution Based Approach

    NASA Astrophysics Data System (ADS)

    Tan, Kok Liang; Tanaka, Toshiyuki; Nakamura, Hidetoshi; Shirahata, Toru; Sugiura, Hiroaki

    Computed tomography (CT)-based quantifications of emphysema encompass, and are not limited to, the ratio of the low-attenuation area, the bullae size, and the distribution of bullae in the lung. The standard CT-based emphysema describing indices include the mean lung density, the percentage of area of low attenuation [the pixel index (PI)] and the bullae index (BI). These standard emphysema describing indices are not expressive for describing the distribution of bullae in the lung. Consequently, the goal of this paper is to present a new emphysema describing index, the bullae congregation index (BCI), that describes whether bullae gather in a specific area of the lung and form a nearly single mass, and if so, how dense the mass of bullae is in the lung. BCI ranges from zero to ten corresponding to sparsely distributed bullae to densely distributed bullae. BCI is calculated based on the relative distance between every pair of bullae in the lung. The bullae pair distances are sorted into 200 distance classes. A smaller distance class corresponds to a closer proximity between the bullae. BCI is derived by calculating the percentage of the area of bullae in the lung that are separated by a certain distance class. Four bullae congregation classes are defined based on BCI. We evaluate BCI using 114 CT images that are hand-annotated by a radiologist into four bullae congregation classes. The average four-class classification accuracy of BCI is 88.21%. BCI correlates better than PI, BI and other standard statistical dispersion based methods with the radiological consensus-classified bullae congregation class.While BCI is not a specific index for indicating emphysema severity, it complements the existing set of emphysema describing indices to facilitate a more thorough knowledge about the emphysematous conditions in the lung. BCI is especially useful when it comes to comparing the distribution of bullae for cases with approximately the same PI, BI or PI and BI. BCI is easy to interpret and potentitally helpful for the purpose of comparative study and progressive monitoring of emphysema.

  10. Gait adaptation to visual kinematic perturbations using a real-time closed-loop brain-computer interface to a virtual reality avatar

    NASA Astrophysics Data System (ADS)

    Phat Luu, Trieu; He, Yongtian; Brown, Samuel; Nakagome, Sho; Contreras-Vidal, Jose L.

    2016-06-01

    Objective. The control of human bipedal locomotion is of great interest to the field of lower-body brain-computer interfaces (BCIs) for gait rehabilitation. While the feasibility of closed-loop BCI systems for the control of a lower body exoskeleton has been recently shown, multi-day closed-loop neural decoding of human gait in a BCI virtual reality (BCI-VR) environment has yet to be demonstrated. BCI-VR systems provide valuable alternatives for movement rehabilitation when wearable robots are not desirable due to medical conditions, cost, accessibility, usability, or patient preferences. Approach. In this study, we propose a real-time closed-loop BCI that decodes lower limb joint angles from scalp electroencephalography (EEG) during treadmill walking to control a walking avatar in a virtual environment. Fluctuations in the amplitude of slow cortical potentials of EEG in the delta band (0.1-3 Hz) were used for prediction; thus, the EEG features correspond to time-domain amplitude modulated potentials in the delta band. Virtual kinematic perturbations resulting in asymmetric walking gait patterns of the avatar were also introduced to investigate gait adaptation using the closed-loop BCI-VR system over a period of eight days. Main results. Our results demonstrate the feasibility of using a closed-loop BCI to learn to control a walking avatar under normal and altered visuomotor perturbations, which involved cortical adaptations. The average decoding accuracies (Pearson’s r values) in real-time BCI across all subjects increased from (Hip: 0.18 ± 0.31 Knee: 0.23 ± 0.33 Ankle: 0.14 ± 0.22) on Day 1 to (Hip: 0.40 ± 0.24 Knee: 0.55 ± 0.20 Ankle: 0.29 ± 0.22) on Day 8. Significance. These findings have implications for the development of a real-time closed-loop EEG-based BCI-VR system for gait rehabilitation after stroke and for understanding cortical plasticity induced by a closed-loop BCI-VR system.

  11. A Closed-loop Brain Computer Interface to a Virtual Reality Avatar: Gait Adaptation to Visual Kinematic Perturbations

    PubMed Central

    Luu, Trieu Phat; He, Yongtian; Brown, Samuel; Nakagome, Sho; Contreras-Vidal, Jose L.

    2016-01-01

    The control of human bipedal locomotion is of great interest to the field of lower-body brain computer interfaces (BCIs) for rehabilitation of gait. While the feasibility of a closed-loop BCI system for the control of a lower body exoskeleton has been recently shown, multi-day closed-loop neural decoding of human gait in a virtual reality (BCI-VR) environment has yet to be demonstrated. In this study, we propose a real-time closed-loop BCI that decodes lower limb joint angles from scalp electroencephalography (EEG) during treadmill walking to control the walking movements of a virtual avatar. Moreover, virtual kinematic perturbations resulting in asymmetric walking gait patterns of the avatar were also introduced to investigate gait adaptation using the closed-loop BCI-VR system over a period of eight days. Our results demonstrate the feasibility of using a closed-loop BCI to learn to control a walking avatar under normal and altered visuomotor perturbations, which involved cortical adaptations. These findings have implications for the development of BCI-VR systems for gait rehabilitation after stroke and for understanding cortical plasticity induced by a closed-loop BCI system. PMID:27713915

  12. A reductionist approach to the analysis of learning in brain-computer interfaces.

    PubMed

    Danziger, Zachary

    2014-04-01

    The complexity and scale of brain-computer interface (BCI) studies limit our ability to investigate how humans learn to use BCI systems. It also limits our capacity to develop adaptive algorithms needed to assist users with their control. Adaptive algorithm development is forced offline and typically uses static data sets. But this is a poor substitute for the online, dynamic environment where algorithms are ultimately deployed and interact with an adapting user. This work evaluates a paradigm that simulates the control problem faced by human subjects when controlling a BCI, but which avoids the many complications associated with full-scale BCI studies. Biological learners can be studied in a reductionist way as they solve BCI-like control problems, and machine learning algorithms can be developed and tested in closed loop with the subjects before being translated to full BCIs. The method is to map 19 joint angles of the hand (representing neural signals) to the position of a 2D cursor which must be piloted to displayed targets (a typical BCI task). An investigation is presented on how closely the joint angle method emulates BCI systems; a novel learning algorithm is evaluated, and a performance difference between genders is discussed.

  13. Development of Single-Channel Hybrid BCI System Using Motor Imagery and SSVEP.

    PubMed

    Ko, Li-Wei; Ranga, S S K; Komarov, Oleksii; Chen, Chung-Chiang

    2017-01-01

    Numerous EEG-based brain-computer interface (BCI) systems that are being developed focus on novel feature extraction algorithms, classification methods and combining existing approaches to create hybrid BCIs. Several recent studies demonstrated various advantages of hybrid BCI systems in terms of an improved accuracy or number of commands available for the user. But still, BCI systems are far from realization for daily use. Having high performance with less number of channels is one of the challenging issues that persists, especially with hybrid BCI systems, where multiple channels are necessary to record information from two or more EEG signal components. Therefore, this work proposes a single-channel (C3 or C4) hybrid BCI system that combines motor imagery (MI) and steady-state visually evoked potential (SSVEP) approaches. This study demonstrates that besides MI features, SSVEP features can also be captured from C3 or C4 channel. The results show that due to rich feature information (MI and SSVEP) at these channels, the proposed hybrid BCI system outperforms both MI- and SSVEP-based systems having an average classification accuracy of 85.6 ± 7.7% in a two-class task.

  14. A visual parallel-BCI speller based on the time-frequency coding strategy.

    PubMed

    Xu, Minpeng; Chen, Long; Zhang, Lixin; Qi, Hongzhi; Ma, Lan; Tang, Jiabei; Wan, Baikun; Ming, Dong

    2014-04-01

    Spelling is one of the most important issues in brain-computer interface (BCI) research. This paper is to develop a visual parallel-BCI speller system based on the time-frequency coding strategy in which the sub-speller switching among four simultaneously presented sub-spellers and the character selection are identified in a parallel mode. The parallel-BCI speller was constituted by four independent P300+SSVEP-B (P300 plus SSVEP blocking) spellers with different flicker frequencies, thereby all characters had a specific time-frequency code. To verify its effectiveness, 11 subjects were involved in the offline and online spellings. A classification strategy was designed to recognize the target character through jointly using the canonical correlation analysis and stepwise linear discriminant analysis. Online spellings showed that the proposed parallel-BCI speller had a high performance, reaching the highest information transfer rate of 67.4 bit min(-1), with an average of 54.0 bit min(-1) and 43.0 bit min(-1) in the three rounds and five rounds, respectively. The results indicated that the proposed parallel-BCI could be effectively controlled by users with attention shifting fluently among the sub-spellers, and highly improved the BCI spelling performance.

  15. Effects of Continuous Kinaesthetic Feedback Based on Tendon Vibration on Motor Imagery BCI Performance.

    PubMed

    Barsotti, Michele; Leonardis, Daniele; Vanello, Nicola; Bergamasco, Massimo; Frisoli, Antonio

    2018-01-01

    Feedback plays a crucial role for using brain computer interface systems. This paper proposes the use of vibration-evoked kinaesthetic illusions as part of a novel multisensory feedback for a motor imagery (MI)-based BCI and investigates its contributions in terms of BCI performance and electroencephalographic (EEG) correlates. sixteen subjects performed two different right arm MI-BCI sessions: with the visual feedback only and with both visual and vibration-evoked kinaesthetic feedback, conveyed by the stimulation of the biceps brachi tendon. In both conditions, the sensory feedback was driven by the MI-BCI. The rich and more natural multisensory feedback was expected to facilitate the execution of MI, and thus to improve the performance of the BCI. The EEG correlates of the proposed feedback were also investigated with and without the performing of MI. the contribution of vibration-evoked kinaesthetic feedback led to statistically higher BCI performance (Anova, F (1,14) = 18.1, p < .01) and more stable EEG event-related-desynchronization. Obtained results suggest promising application of the proposed method in neuro-rehabilitation scenarios: the advantage of an improved usability could make the MI-BCIs more applicable for those patients having difficulties in performing kinaesthetic imagery.

  16. PTSD-Related Behavioral Traits in a Rat Model of Blast-Induced mTBI Are Reversed by the mGluR2/3 Receptor Antagonist BCI-838.

    PubMed

    Perez-Garcia, Georgina; De Gasperi, Rita; Gama Sosa, Miguel A; Perez, Gissel M; Otero-Pagan, Alena; Tschiffely, Anna; McCarron, Richard M; Ahlers, Stephen T; Elder, Gregory A; Gandy, Sam

    2018-01-01

    Battlefield blast exposure related to improvised explosive devices (IEDs) has become the most common cause of traumatic brain injury (TBI) in the recent conflicts in Iraq and Afghanistan. Mental health problems are common after TBI. A striking feature in the most recent veterans has been the frequency with which mild TBI (mTBI) and posttraumatic stress disorder (PTSD) have appeared together, in contrast to the classical situations in which the presence of mTBI has excluded the diagnosis of PTSD. However, treatment of PTSD-related symptoms that follow blast injury has become a significant problem. BCI-838 (MGS0210) is a Group II metabotropic glutamate receptor (mGluR2/3) antagonist prodrug, and its active metabolite BCI-632 (MGS0039) has proneurogenic, procognitive, and antidepressant activities in animal models. In humans, BCI-838 is currently in clinical trials for refractory depression and suicidality. The aim of the current study was to determine whether BCI-838 could modify the anxiety response and reverse PTSD-related behaviors in rats exposed to a series of low-level blast exposures designed to mimic a human mTBI or subclinical blast exposure. BCI-838 treatment reversed PTSD-related behavioral traits improving anxiety and fear-related behaviors as well as long-term recognition memory. Treatment with BCI-838 also increased neurogenesis in the dentate gyrus (DG) of blast-exposed rats. The safety profile of BCI-838 together with the therapeutic activities reported here, make BCI-838 a promising drug for the treatment of former battlefield Warfighters suffering from PTSD-related symptoms following blast-induced mTBI.

  17. CSP-TSM: Optimizing the performance of Riemannian tangent space mapping using common spatial pattern for MI-BCI.

    PubMed

    Kumar, Shiu; Mamun, Kabir; Sharma, Alok

    2017-12-01

    Classification of electroencephalography (EEG) signals for motor imagery based brain computer interface (MI-BCI) is an exigent task and common spatial pattern (CSP) has been extensively explored for this purpose. In this work, we focused on developing a new framework for classification of EEG signals for MI-BCI. We propose a single band CSP framework for MI-BCI that utilizes the concept of tangent space mapping (TSM) in the manifold of covariance matrices. The proposed method is named CSP-TSM. Spatial filtering is performed on the bandpass filtered MI EEG signal. Riemannian tangent space is utilized for extracting features from the spatial filtered signal. The TSM features are then fused with the CSP variance based features and feature selection is performed using Lasso. Linear discriminant analysis (LDA) is then applied to the selected features and finally classification is done using support vector machine (SVM) classifier. The proposed framework gives improved performance for MI EEG signal classification in comparison with several competing methods. Experiments conducted shows that the proposed framework reduces the overall classification error rate for MI-BCI by 3.16%, 5.10% and 1.70% (for BCI Competition III dataset IVa, BCI Competition IV Dataset I and BCI Competition IV Dataset IIb, respectively) compared to the conventional CSP method under the same experimental settings. The proposed CSP-TSM method produces promising results when compared with several competing methods in this paper. In addition, the computational complexity is less compared to that of TSM method. Our proposed CSP-TSM framework can be potentially used for developing improved MI-BCI systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Predicting Mental Imagery-Based BCI Performance from Personality, Cognitive Profile and Neurophysiological Patterns.

    PubMed

    Jeunet, Camille; N'Kaoua, Bernard; Subramanian, Sriram; Hachet, Martin; Lotte, Fabien

    2015-01-01

    Mental-Imagery based Brain-Computer Interfaces (MI-BCIs) allow their users to send commands to a computer using their brain-activity alone (typically measured by ElectroEncephaloGraphy-EEG), which is processed while they perform specific mental tasks. While very promising, MI-BCIs remain barely used outside laboratories because of the difficulty encountered by users to control them. Indeed, although some users obtain good control performances after training, a substantial proportion remains unable to reliably control an MI-BCI. This huge variability in user-performance led the community to look for predictors of MI-BCI control ability. However, these predictors were only explored for motor-imagery based BCIs, and mostly for a single training session per subject. In this study, 18 participants were instructed to learn to control an EEG-based MI-BCI by performing 3 MI-tasks, 2 of which were non-motor tasks, across 6 training sessions, on 6 different days. Relationships between the participants' BCI control performances and their personality, cognitive profile and neurophysiological markers were explored. While no relevant relationships with neurophysiological markers were found, strong correlations between MI-BCI performances and mental-rotation scores (reflecting spatial abilities) were revealed. Also, a predictive model of MI-BCI performance based on psychometric questionnaire scores was proposed. A leave-one-subject-out cross validation process revealed the stability and reliability of this model: it enabled to predict participants' performance with a mean error of less than 3 points. This study determined how users' profiles impact their MI-BCI control ability and thus clears the way for designing novel MI-BCI training protocols, adapted to the profile of each user.

  19. PTSD-Related Behavioral Traits in a Rat Model of Blast-Induced mTBI Are Reversed by the mGluR2/3 Receptor Antagonist BCI-838

    PubMed Central

    Perez-Garcia, Georgina; De Gasperi, Rita; Gama Sosa, Miguel A.; Perez, Gissel M.; Otero-Pagan, Alena; Tschiffely, Anna; McCarron, Richard M.; Ahlers, Stephen T.

    2018-01-01

    Battlefield blast exposure related to improvised explosive devices (IEDs) has become the most common cause of traumatic brain injury (TBI) in the recent conflicts in Iraq and Afghanistan. Mental health problems are common after TBI. A striking feature in the most recent veterans has been the frequency with which mild TBI (mTBI) and posttraumatic stress disorder (PTSD) have appeared together, in contrast to the classical situations in which the presence of mTBI has excluded the diagnosis of PTSD. However, treatment of PTSD-related symptoms that follow blast injury has become a significant problem. BCI-838 (MGS0210) is a Group II metabotropic glutamate receptor (mGluR2/3) antagonist prodrug, and its active metabolite BCI-632 (MGS0039) has proneurogenic, procognitive, and antidepressant activities in animal models. In humans, BCI-838 is currently in clinical trials for refractory depression and suicidality. The aim of the current study was to determine whether BCI-838 could modify the anxiety response and reverse PTSD-related behaviors in rats exposed to a series of low-level blast exposures designed to mimic a human mTBI or subclinical blast exposure. BCI-838 treatment reversed PTSD-related behavioral traits improving anxiety and fear-related behaviors as well as long-term recognition memory. Treatment with BCI-838 also increased neurogenesis in the dentate gyrus (DG) of blast-exposed rats. The safety profile of BCI-838 together with the therapeutic activities reported here, make BCI-838 a promising drug for the treatment of former battlefield Warfighters suffering from PTSD-related symptoms following blast-induced mTBI. PMID:29387781

  20. Predicting Mental Imagery-Based BCI Performance from Personality, Cognitive Profile and Neurophysiological Patterns

    PubMed Central

    Jeunet, Camille; N’Kaoua, Bernard; Subramanian, Sriram; Hachet, Martin; Lotte, Fabien

    2015-01-01

    Mental-Imagery based Brain-Computer Interfaces (MI-BCIs) allow their users to send commands to a computer using their brain-activity alone (typically measured by ElectroEncephaloGraphy—EEG), which is processed while they perform specific mental tasks. While very promising, MI-BCIs remain barely used outside laboratories because of the difficulty encountered by users to control them. Indeed, although some users obtain good control performances after training, a substantial proportion remains unable to reliably control an MI-BCI. This huge variability in user-performance led the community to look for predictors of MI-BCI control ability. However, these predictors were only explored for motor-imagery based BCIs, and mostly for a single training session per subject. In this study, 18 participants were instructed to learn to control an EEG-based MI-BCI by performing 3 MI-tasks, 2 of which were non-motor tasks, across 6 training sessions, on 6 different days. Relationships between the participants’ BCI control performances and their personality, cognitive profile and neurophysiological markers were explored. While no relevant relationships with neurophysiological markers were found, strong correlations between MI-BCI performances and mental-rotation scores (reflecting spatial abilities) were revealed. Also, a predictive model of MI-BCI performance based on psychometric questionnaire scores was proposed. A leave-one-subject-out cross validation process revealed the stability and reliability of this model: it enabled to predict participants’ performance with a mean error of less than 3 points. This study determined how users’ profiles impact their MI-BCI control ability and thus clears the way for designing novel MI-BCI training protocols, adapted to the profile of each user. PMID:26625261

  1. Enhanced Motor Imagery-Based BCI Performance via Tactile Stimulation on Unilateral Hand.

    PubMed

    Shu, Xiaokang; Yao, Lin; Sheng, Xinjun; Zhang, Dingguo; Zhu, Xiangyang

    2017-01-01

    Brain-computer interface (BCI) has attracted great interests for its effectiveness in assisting disabled people. However, due to the poor BCI performance, this technique is still far from daily-life applications. One of critical issues confronting BCI research is how to enhance BCI performance. This study aimed at improving the motor imagery (MI) based BCI accuracy by integrating MI tasks with unilateral tactile stimulation (Uni-TS). The effects were tested on both healthy subjects and stroke patients in a controlled study. Twenty-two healthy subjects and four stroke patients were recruited and randomly divided into a control-group and an enhanced-group. In the control-group, subjects performed two blocks of conventional MI tasks (left hand vs. right hand), with 80 trials in each block. In the enhanced-group, subjects also performed two blocks of MI tasks, but constant tactile stimulation was applied on the non-dominant/paretic hand during MI tasks in the second block. We found the Uni-TS significantly enhanced the contralateral cortical activations during MI of the stimulated hand, whereas it had no influence on activation patterns during MI of the non-stimulated hand. The two-class BCI decoding accuracy was significantly increased from 72.5% (MI without Uni-TS) to 84.7% (MI with Uni-TS) in the enhanced-group ( p < 0.001, paired t -test). Moreover, stroke patients in the enhanced-group achieved an accuracy >80% during MI with Uni-TS. This novel approach complements the conventional methods for BCI enhancement without increasing source information or complexity of signal processing. This enhancement via Uni-TS may facilitate clinical applications of MI-BCI.

  2. Personalized Offline and Pseudo-Online BCI Models to Detect Pedaling Intent

    PubMed Central

    Rodríguez-Ugarte, Marisol; Iáñez, Eduardo; Ortíz, Mario; Azorín, Jose M.

    2017-01-01

    The aim of this work was to design a personalized BCI model to detect pedaling intention through EEG signals. The approach sought to select the best among many possible BCI models for each subject. The choice was between different processing windows, feature extraction algorithms and electrode configurations. Moreover, data was analyzed offline and pseudo-online (in a way suitable for real-time applications), with a preference for the latter case. A process for selecting the best BCI model was described in detail. Results for the pseudo-online processing with the best BCI model of each subject were on average 76.7% of true positive rate, 4.94 false positives per minute and 55.1% of accuracy. The personalized BCI model approach was also found to be significantly advantageous when compared to the typical approach of using a fixed feature extraction algorithm and electrode configuration. The resulting approach could be used to more robustly interface with lower limb exoskeletons in the context of the rehabilitation of stroke patients. PMID:28744212

  3. A self-paced brain-computer interface for controlling a robot simulator: an online event labelling paradigm and an extended Kalman filter based algorithm for online training.

    PubMed

    Tsui, Chun Sing Louis; Gan, John Q; Roberts, Stephen J

    2009-03-01

    Due to the non-stationarity of EEG signals, online training and adaptation are essential to EEG based brain-computer interface (BCI) systems. Self-paced BCIs offer more natural human-machine interaction than synchronous BCIs, but it is a great challenge to train and adapt a self-paced BCI online because the user's control intention and timing are usually unknown. This paper proposes a novel motor imagery based self-paced BCI paradigm for controlling a simulated robot in a specifically designed environment which is able to provide user's control intention and timing during online experiments, so that online training and adaptation of the motor imagery based self-paced BCI can be effectively investigated. We demonstrate the usefulness of the proposed paradigm with an extended Kalman filter based method to adapt the BCI classifier parameters, with experimental results of online self-paced BCI training with four subjects.

  4. Breast Cancer Incidence in a Cohort of U.S. Flight Attendants

    PubMed Central

    Schubauer-Berigan, Mary K.; Anderson, Jeri L.; Hein, Misty J.; Little, Mark P.; Sigurdson, Alice J.; Pinkerton, Lynne E.

    2015-01-01

    Background Flight attendants may have elevated breast cancer incidence (BCI). We evaluated BCI’s association with cosmic radiation dose and circadian rhythm disruption among 6,093 female former U.S. flight attendants. Methods We collected questionnaire data on BCI and risk factors for breast cancer from 2002–2005. We conducted analyses to evaluate (i) BCI in the cohort compared to the U.S. population; and (ii) exposure-response relations. We applied an indirect adjustment to estimate whether parity and age at first birth (AFB) differences between the cohort and U.S. population could explain BCI that differed from expectation. Results BCI was elevated but may be explained by lower parity and older AFB in the cohort than among U.S. women. BCI was not associated with exposure metrics in the cohort overall. Significant positive associations with both were observed only among women with parity of three or more. Conclusions Future cohort analyses may be informative on the role of these occupational exposures and non-occupational risk factors. PMID:25678455

  5. A cell-phone-based brain-computer interface for communication in daily life

    NASA Astrophysics Data System (ADS)

    Wang, Yu-Te; Wang, Yijun; Jung, Tzyy-Ping

    2011-04-01

    Moving a brain-computer interface (BCI) system from a laboratory demonstration to real-life applications still poses severe challenges to the BCI community. This study aims to integrate a mobile and wireless electroencephalogram (EEG) system and a signal-processing platform based on a cell phone into a truly wearable and wireless online BCI. Its practicality and implications in a routine BCI are demonstrated through the realization and testing of a steady-state visual evoked potential (SSVEP)-based BCI. This study implemented and tested online signal processing methods in both time and frequency domains for detecting SSVEPs. The results of this study showed that the performance of the proposed cell-phone-based platform was comparable, in terms of the information transfer rate, with other BCI systems using bulky commercial EEG systems and personal computers. To the best of our knowledge, this study is the first to demonstrate a truly portable, cost-effective and miniature cell-phone-based platform for online BCIs.

  6. Asynchronous steady-state visual evoked potential based BCI control of a 2-DoF artificial upper limb.

    PubMed

    Horki, Petar; Neuper, Christa; Pfurtscheller, Gert; Müller-Putz, Gernot

    2010-12-01

    A brain-computer interface (BCI) provides a direct connection between the human brain and a computer. One type of BCI can be realized using steady-state visual evoked potentials (SSVEPs), resulting from repetitive stimulation. The aim of this study was the realization of an asynchronous SSVEP-BCI, based on canonical correlation analysis, suitable for the control of a 2-degrees of freedom (DoF) hand and elbow neuroprosthesis. To determine whether this BCI is suitable for the control of 2-DoF neuroprosthetic devices, online experiments with a virtual and a robotic limb feedback were conducted with eight healthy subjects and one tetraplegic patient. All participants were able to control the artificial limbs with the BCI. In the online experiments, the positive predictive value (PPV) varied between 69% and 83% and the false negative rate (FNR) varied between 1% and 17%. The spinal cord injured patient achieved PPV and FNR values within one standard deviation of the mean for all healthy subjects.

  7. A cell-phone-based brain-computer interface for communication in daily life.

    PubMed

    Wang, Yu-Te; Wang, Yijun; Jung, Tzyy-Ping

    2011-04-01

    Moving a brain-computer interface (BCI) system from a laboratory demonstration to real-life applications still poses severe challenges to the BCI community. This study aims to integrate a mobile and wireless electroencephalogram (EEG) system and a signal-processing platform based on a cell phone into a truly wearable and wireless online BCI. Its practicality and implications in a routine BCI are demonstrated through the realization and testing of a steady-state visual evoked potential (SSVEP)-based BCI. This study implemented and tested online signal processing methods in both time and frequency domains for detecting SSVEPs. The results of this study showed that the performance of the proposed cell-phone-based platform was comparable, in terms of the information transfer rate, with other BCI systems using bulky commercial EEG systems and personal computers. To the best of our knowledge, this study is the first to demonstrate a truly portable, cost-effective and miniature cell-phone-based platform for online BCIs.

  8. Personalized Offline and Pseudo-Online BCI Models to Detect Pedaling Intent.

    PubMed

    Rodríguez-Ugarte, Marisol; Iáñez, Eduardo; Ortíz, Mario; Azorín, Jose M

    2017-01-01

    The aim of this work was to design a personalized BCI model to detect pedaling intention through EEG signals. The approach sought to select the best among many possible BCI models for each subject. The choice was between different processing windows, feature extraction algorithms and electrode configurations. Moreover, data was analyzed offline and pseudo-online (in a way suitable for real-time applications), with a preference for the latter case. A process for selecting the best BCI model was described in detail. Results for the pseudo-online processing with the best BCI model of each subject were on average 76.7% of true positive rate, 4.94 false positives per minute and 55.1% of accuracy. The personalized BCI model approach was also found to be significantly advantageous when compared to the typical approach of using a fixed feature extraction algorithm and electrode configuration. The resulting approach could be used to more robustly interface with lower limb exoskeletons in the context of the rehabilitation of stroke patients.

  9. Attention and P300-based BCI performance in people with amyotrophic lateral sclerosis

    PubMed Central

    Riccio, Angela; Simione, Luca; Schettini, Francesca; Pizzimenti, Alessia; Inghilleri, Maurizio; Belardinelli, Marta Olivetti; Mattia, Donatella; Cincotti, Febo

    2013-01-01

    The purpose of this study was to investigate the support of attentional and memory processes in controlling a P300-based brain-computer interface (BCI) in people with amyotrophic lateral sclerosis (ALS). Eight people with ALS performed two behavioral tasks: (i) a rapid serial visual presentation (RSVP) task, screening the temporal filtering capacity and the speed of the update of the attentive filter, and (ii) a change detection task, screening the memory capacity and the spatial filtering capacity. The participants were also asked to perform a P300-based BCI spelling task. By using correlation and regression analyses, we found that only the temporal filtering capacity in the RSVP task was a predictor of both the P300-based BCI accuracy and of the amplitude of the P300 elicited performing the BCI task. We concluded that the ability to keep the attentional filter active during the selection of a target influences performance in BCI control. PMID:24282396

  10. Removal of proprioception by BCI raises a stronger body ownership illusion in control of a humanlike robot

    PubMed Central

    Alimardani, Maryam; Nishio, Shuichi; Ishiguro, Hiroshi

    2016-01-01

    Body ownership illusions provide evidence that our sense of self is not coherent and can be extended to non-body objects. Studying about these illusions gives us practical tools to understand the brain mechanisms that underlie body recognition and the experience of self. We previously introduced an illusion of body ownership transfer (BOT) for operators of a very humanlike robot. This sensation of owning the robot’s body was confirmed when operators controlled the robot either by performing the desired motion with their body (motion-control) or by employing a brain-computer interface (BCI) that translated motor imagery commands to robot movement (BCI-control). The interesting observation during BCI-control was that the illusion could be induced even with a noticeable delay in the BCI system. Temporal discrepancy has always shown critical weakening effects on body ownership illusions. However the delay-robustness of BOT during BCI-control raised a question about the interaction between the proprioceptive inputs and delayed visual feedback in agency-driven illusions. In this work, we compared the intensity of BOT illusion for operators in two conditions; motion-control and BCI-control. Our results revealed a significantly stronger BOT illusion for the case of BCI-control. This finding highlights BCI’s potential in inducing stronger agency-driven illusions by building a direct communication between the brain and controlled body, and therefore removing awareness from the subject’s own body. PMID:27654174

  11. An exploration of EEG features during recovery following stroke - implications for BCI-mediated neurorehabilitation therapy.

    PubMed

    Leamy, Darren J; Kocijan, Juš; Domijan, Katarina; Duffin, Joseph; Roche, Richard Ap; Commins, Sean; Collins, Ronan; Ward, Tomas E

    2014-01-28

    Brain-Computer Interfaces (BCI) can potentially be used to aid in the recovery of lost motor control in a limb following stroke. BCIs are typically used by subjects with no damage to the brain therefore relatively little is known about the technical requirements for the design of a rehabilitative BCI for stroke. 32-channel electroencephalogram (EEG) was recorded during a finger-tapping task from 10 healthy subjects for one session and 5 stroke patients for two sessions approximately 6 months apart. An off-line BCI design based on Filter Bank Common Spatial Patterns (FBCSP) was implemented to test and compare the efficacy and accuracy of training a rehabilitative BCI with both stroke-affected and healthy data. Stroke-affected EEG datasets have lower 10-fold cross validation results than healthy EEG datasets. When training a BCI with healthy EEG, average classification accuracy of stroke-affected EEG is lower than the average for healthy EEG. Classification accuracy of the late session stroke EEG is improved by training the BCI on the corresponding early stroke EEG dataset. This exploratory study illustrates that stroke and the accompanying neuroplastic changes associated with the recovery process can cause significant inter-subject changes in the EEG features suitable for mapping as part of a neurofeedback therapy, even when individuals have scored largely similar with conventional behavioural measures. It appears such measures can mask this individual variability in cortical reorganization. Consequently we believe motor retraining BCI should initially be tailored to individual patients.

  12. Using Recent BCI Literature to Deepen our Understanding of Clinical Neurofeedback: A Short Review.

    PubMed

    Jeunet, Camille; Lotte, Fabien; Batail, Jean-Marie; Philip, Pierre; Micoulaud Franchi, Jean-Arthur

    2018-05-15

    In their recent paper, Alkoby et al. (2017) provide the readership with an extensive and very insightful review of the factors influencing NeuroFeedback (NF) performance. These factors are drawn from both the NF literature and the Brain-Computer Interface (BCI) literature. Our short review aims to complement Alkoby et al.'s review by reporting recent additions to the BCI literature. The object of this paper is to highlight this literature and discuss its potential relevance and usefulness to better understand the processes underlying NF and further improve the design of clinical trials assessing NF efficacy. Indeed, we are convinced that while NF and BCI are fundamentally different in many ways, both the BCI and NF communities could reach compelling achievements by building upon one another. By reviewing the recent BCI literature, we identified three types of factors that influence BCI performance: task-specific, cognitive/motivational and technology-acceptance-related factors. Since BCIs and NF share a common goal (i.e., learning to modulate specific neurophysiological patterns), similar cognitive and neurophysiological processes are likely to be involved during the training process. Thus, the literature on BCI training may help (1) to deepen our understanding of neurofeedback training processes and (2) to understand the variables that influence the clinical efficacy of NF. This may help to properly assess and/or control the influence of these variables during randomized controlled trials. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.

  13. Generating visual flickers for eliciting robust steady-state visual evoked potentials at flexible frequencies using monitor refresh rate.

    PubMed

    Nakanishi, Masaki; Wang, Yijun; Wang, Yu-Te; Mitsukura, Yasue; Jung, Tzyy-Ping

    2014-01-01

    In the study of steady-state visual evoked potentials (SSVEPs), it remains a challenge to present visual flickers at flexible frequencies using monitor refresh rate. For example, in an SSVEP-based brain-computer interface (BCI), it is difficult to present a large number of visual flickers simultaneously on a monitor. This study aims to explore whether or how a newly proposed frequency approximation approach changes signal characteristics of SSVEPs. At 10 Hz and 12 Hz, the SSVEPs elicited using two refresh rates (75 Hz and 120 Hz) were measured separately to represent the approximation and constant-period approaches. This study compared amplitude, signal-to-noise ratio (SNR), phase, latency, scalp distribution, and frequency detection accuracy of SSVEPs elicited using the two approaches. To further prove the efficacy of the approximation approach, this study implemented an eight-target BCI using frequencies from 8-15 Hz. The SSVEPs elicited by the two approaches were found comparable with regard to all parameters except amplitude and SNR of SSVEPs at 12 Hz. The BCI obtained an averaged information transfer rate (ITR) of 95.0 bits/min across 10 subjects with a maximum ITR of 120 bits/min on two subjects, the highest ITR reported in the SSVEP-based BCIs. This study clearly showed that the frequency approximation approach can elicit robust SSVEPs at flexible frequencies using monitor refresh rate and thereby can largely facilitate various SSVEP-related studies in neural engineering and visual neuroscience.

  14. Soft translations and soft extensions of BCI/BCK-algebras.

    PubMed

    Sultana, Nazra; Rani, Nazia; Ali, Muhammad Irfan; Hussain, Azhar

    2014-01-01

    The concept of soft translations of soft subalgebras and soft ideals over BCI/BCK-algebras is introduced and some related properties are studied. Notions of Soft extensions of soft subalgebras and soft ideals over BCI/BCK-algebras are also initiated. Relationships between soft translations and soft extensions are explored.

  15. Review of the BCI Competition IV

    PubMed Central

    Tangermann, Michael; Müller, Klaus-Robert; Aertsen, Ad; Birbaumer, Niels; Braun, Christoph; Brunner, Clemens; Leeb, Robert; Mehring, Carsten; Miller, Kai J.; Müller-Putz, Gernot R.; Nolte, Guido; Pfurtscheller, Gert; Preissl, Hubert; Schalk, Gerwin; Schlögl, Alois; Vidaurre, Carmen; Waldert, Stephan; Blankertz, Benjamin

    2012-01-01

    The BCI competition IV stands in the tradition of prior BCI competitions that aim to provide high quality neuroscientific data for open access to the scientific community. As experienced already in prior competitions not only scientists from the narrow field of BCI compete, but scholars with a broad variety of backgrounds and nationalities. They include high specialists as well as students. The goals of all BCI competitions have always been to challenge with respect to novel paradigms and complex data. We report on the following challenges: (1) asynchronous data, (2) synthetic, (3) multi-class continuous data, (4) session-to-session transfer, (5) directionally modulated MEG, (6) finger movements recorded by ECoG. As after past competitions, our hope is that winning entries may enhance the analysis methods of future BCIs. PMID:22811657

  16. Workshops of the Fifth International Brain-Computer Interface Meeting: Defining the Future.

    PubMed

    Huggins, Jane E; Guger, Christoph; Allison, Brendan; Anderson, Charles W; Batista, Aaron; Brouwer, Anne-Marie A-M; Brunner, Clemens; Chavarriaga, Ricardo; Fried-Oken, Melanie; Gunduz, Aysegul; Gupta, Disha; Kübler, Andrea; Leeb, Robert; Lotte, Fabien; Miller, Lee E; Müller-Putz, Gernot; Rutkowski, Tomasz; Tangermann, Michael; Thompson, David Edward

    2014-01-01

    The Fifth International Brain-Computer Interface (BCI) Meeting met June 3-7 th , 2013 at the Asilomar Conference Grounds, Pacific Grove, California. The conference included 19 workshops covering topics in brain-computer interface and brain-machine interface research. Topics included translation of BCIs into clinical use, standardization and certification, types of brain activity to use for BCI, recording methods, the effects of plasticity, special interest topics in BCIs applications, and future BCI directions. BCI research is well established and transitioning to practical use to benefit people with physical impairments. At the same time, new applications are being explored, both for people with physical impairments and beyond. Here we provide summaries of each workshop, illustrating the breadth and depth of BCI research and high-lighting important issues for future research and development.

  17. Investigating the feasibility of a BCI-driven robot-based writing agent for handicapped individuals

    NASA Astrophysics Data System (ADS)

    Syan, Chanan S.; Harnarinesingh, Randy E. S.; Beharry, Rishi

    2014-07-01

    Brain-Computer Interfaces (BCIs) predominantly employ output actuators such as virtual keyboards and wheelchair controllers to enable handicapped individuals to interact and communicate with their environment. However, BCI-based assistive technologies are limited in their application. There is minimal research geared towards granting disabled individuals the ability to communicate using written words. This is a drawback because involving a human attendant in writing tasks can entail a breach of personal privacy where the task entails sensitive and private information such as banking matters. BCI-driven robot-based writing however can provide a safeguard for user privacy where it is required. This study investigated the feasibility of a BCI-driven writing agent using the 3 degree-of- freedom Phantom Omnibot. A full alphanumerical English character set was developed and validated using a teach pendant program in MATLAB. The Omnibot was subsequently interfaced to a P300-based BCI. Three subjects utilised the BCI in the online context to communicate words to the writing robot over a Local Area Network (LAN). The average online letter-wise classification accuracy was 91.43%. The writing agent legibly constructed the communicated letters with minor errors in trajectory execution. The developed system therefore provided a feasible platform for BCI-based writing.

  18. Robotic and Virtual Reality BCIs Using Spatial Tactile and Auditory Oddball Paradigms.

    PubMed

    Rutkowski, Tomasz M

    2016-01-01

    The paper reviews nine robotic and virtual reality (VR) brain-computer interface (BCI) projects developed by the author, in collaboration with his graduate students, within the BCI-lab research group during its association with University of Tsukuba, Japan. The nine novel approaches are discussed in applications to direct brain-robot and brain-virtual-reality-agent control interfaces using tactile and auditory BCI technologies. The BCI user intentions are decoded from the brainwaves in realtime using a non-invasive electroencephalography (EEG) and they are translated to a symbiotic robot or virtual reality agent thought-based only control. A communication protocol between the BCI output and the robot or the virtual environment is realized in a symbiotic communication scenario using an user datagram protocol (UDP), which constitutes an internet of things (IoT) control scenario. Results obtained from healthy users reproducing simple brain-robot and brain-virtual-agent control tasks in online experiments support the research goal of a possibility to interact with robotic devices and virtual reality agents using symbiotic thought-based BCI technologies. An offline BCI classification accuracy boosting method, using a previously proposed information geometry derived approach, is also discussed in order to further support the reviewed robotic and virtual reality thought-based control paradigms.

  19. Preprocessing and meta-classification for brain-computer interfaces.

    PubMed

    Hammon, Paul S; de Sa, Virginia R

    2007-03-01

    A brain-computer interface (BCI) is a system which allows direct translation of brain states into actions, bypassing the usual muscular pathways. A BCI system works by extracting user brain signals, applying machine learning algorithms to classify the user's brain state, and performing a computer-controlled action. Our goal is to improve brain state classification. Perhaps the most obvious way to improve classification performance is the selection of an advanced learning algorithm. However, it is now well known in the BCI community that careful selection of preprocessing steps is crucial to the success of any classification scheme. Furthermore, recent work indicates that combining the output of multiple classifiers (meta-classification) leads to improved classification rates relative to single classifiers (Dornhege et al., 2004). In this paper, we develop an automated approach which systematically analyzes the relative contributions of different preprocessing and meta-classification approaches. We apply this procedure to three data sets drawn from BCI Competition 2003 (Blankertz et al., 2004) and BCI Competition III (Blankertz et al., 2006), each of which exhibit very different characteristics. Our final classification results compare favorably with those from past BCI competitions. Additionally, we analyze the relative contributions of individual preprocessing and meta-classification choices and discuss which types of BCI data benefit most from specific algorithms.

  20. A visual parallel-BCI speller based on the time-frequency coding strategy

    NASA Astrophysics Data System (ADS)

    Xu, Minpeng; Chen, Long; Zhang, Lixin; Qi, Hongzhi; Ma, Lan; Tang, Jiabei; Wan, Baikun; Ming, Dong

    2014-04-01

    Objective. Spelling is one of the most important issues in brain-computer interface (BCI) research. This paper is to develop a visual parallel-BCI speller system based on the time-frequency coding strategy in which the sub-speller switching among four simultaneously presented sub-spellers and the character selection are identified in a parallel mode. Approach. The parallel-BCI speller was constituted by four independent P300+SSVEP-B (P300 plus SSVEP blocking) spellers with different flicker frequencies, thereby all characters had a specific time-frequency code. To verify its effectiveness, 11 subjects were involved in the offline and online spellings. A classification strategy was designed to recognize the target character through jointly using the canonical correlation analysis and stepwise linear discriminant analysis. Main results. Online spellings showed that the proposed parallel-BCI speller had a high performance, reaching the highest information transfer rate of 67.4 bit min-1, with an average of 54.0 bit min-1 and 43.0 bit min-1 in the three rounds and five rounds, respectively. Significance. The results indicated that the proposed parallel-BCI could be effectively controlled by users with attention shifting fluently among the sub-spellers, and highly improved the BCI spelling performance.

  1. An Auditory BCI System for Assisting CRS-R Behavioral Assessment in Patients with Disorders of Consciousness

    NASA Astrophysics Data System (ADS)

    Xiao, Jun; Xie, Qiuyou; He, Yanbin; Yu, Tianyou; Lu, Shenglin; Huang, Ningmeng; Yu, Ronghao; Li, Yuanqing

    2016-09-01

    The Coma Recovery Scale-Revised (CRS-R) is a consistent and sensitive behavioral assessment standard for disorders of consciousness (DOC) patients. However, the CRS-R has limitations due to its dependence on behavioral markers, which has led to a high rate of misdiagnosis. Brain-computer interfaces (BCIs), which directly detect brain activities without any behavioral expression, can be used to evaluate a patient’s state. In this study, we explored the application of BCIs in assisting CRS-R assessments of DOC patients. Specifically, an auditory passive EEG-based BCI system with an oddball paradigm was proposed to facilitate the evaluation of one item of the auditory function scale in the CRS-R - the auditory startle. The results obtained from five healthy subjects validated the efficacy of the BCI system. Nineteen DOC patients participated in the CRS-R and BCI assessments, of which three patients exhibited no responses in the CRS-R assessment but were responsive to auditory startle in the BCI assessment. These results revealed that a proportion of DOC patients who have no behavioral responses in the CRS-R assessment can generate neural responses, which can be detected by our BCI system. Therefore, the proposed BCI may provide more sensitive results than the CRS-R and thus assist CRS-R behavioral assessments.

  2. Context-aware adaptive spelling in motor imagery BCI

    NASA Astrophysics Data System (ADS)

    Perdikis, S.; Leeb, R.; Millán, J. d. R.

    2016-06-01

    Objective. This work presents a first motor imagery-based, adaptive brain-computer interface (BCI) speller, which is able to exploit application-derived context for improved, simultaneous classifier adaptation and spelling. Online spelling experiments with ten able-bodied users evaluate the ability of our scheme, first, to alleviate non-stationarity of brain signals for restoring the subject’s performances, second, to guide naive users into BCI control avoiding initial offline BCI calibration and, third, to outperform regular unsupervised adaptation. Approach. Our co-adaptive framework combines the BrainTree speller with smooth-batch linear discriminant analysis adaptation. The latter enjoys contextual assistance through BrainTree’s language model to improve online expectation-maximization maximum-likelihood estimation. Main results. Our results verify the possibility to restore single-sample classification and BCI command accuracy, as well as spelling speed for expert users. Most importantly, context-aware adaptation performs significantly better than its unsupervised equivalent and similar to the supervised one. Although no significant differences are found with respect to the state-of-the-art PMean approach, the proposed algorithm is shown to be advantageous for 30% of the users. Significance. We demonstrate the possibility to circumvent supervised BCI recalibration, saving time without compromising the adaptation quality. On the other hand, we show that this type of classifier adaptation is not as efficient for BCI training purposes.

  3. An Auditory BCI System for Assisting CRS-R Behavioral Assessment in Patients with Disorders of Consciousness.

    PubMed

    Xiao, Jun; Xie, Qiuyou; He, Yanbin; Yu, Tianyou; Lu, Shenglin; Huang, Ningmeng; Yu, Ronghao; Li, Yuanqing

    2016-09-13

    The Coma Recovery Scale-Revised (CRS-R) is a consistent and sensitive behavioral assessment standard for disorders of consciousness (DOC) patients. However, the CRS-R has limitations due to its dependence on behavioral markers, which has led to a high rate of misdiagnosis. Brain-computer interfaces (BCIs), which directly detect brain activities without any behavioral expression, can be used to evaluate a patient's state. In this study, we explored the application of BCIs in assisting CRS-R assessments of DOC patients. Specifically, an auditory passive EEG-based BCI system with an oddball paradigm was proposed to facilitate the evaluation of one item of the auditory function scale in the CRS-R - the auditory startle. The results obtained from five healthy subjects validated the efficacy of the BCI system. Nineteen DOC patients participated in the CRS-R and BCI assessments, of which three patients exhibited no responses in the CRS-R assessment but were responsive to auditory startle in the BCI assessment. These results revealed that a proportion of DOC patients who have no behavioral responses in the CRS-R assessment can generate neural responses, which can be detected by our BCI system. Therefore, the proposed BCI may provide more sensitive results than the CRS-R and thus assist CRS-R behavioral assessments.

  4. Context-aware adaptive spelling in motor imagery BCI.

    PubMed

    Perdikis, S; Leeb, R; Millán, J D R

    2016-06-01

    This work presents a first motor imagery-based, adaptive brain-computer interface (BCI) speller, which is able to exploit application-derived context for improved, simultaneous classifier adaptation and spelling. Online spelling experiments with ten able-bodied users evaluate the ability of our scheme, first, to alleviate non-stationarity of brain signals for restoring the subject's performances, second, to guide naive users into BCI control avoiding initial offline BCI calibration and, third, to outperform regular unsupervised adaptation. Our co-adaptive framework combines the BrainTree speller with smooth-batch linear discriminant analysis adaptation. The latter enjoys contextual assistance through BrainTree's language model to improve online expectation-maximization maximum-likelihood estimation. Our results verify the possibility to restore single-sample classification and BCI command accuracy, as well as spelling speed for expert users. Most importantly, context-aware adaptation performs significantly better than its unsupervised equivalent and similar to the supervised one. Although no significant differences are found with respect to the state-of-the-art PMean approach, the proposed algorithm is shown to be advantageous for 30% of the users. We demonstrate the possibility to circumvent supervised BCI recalibration, saving time without compromising the adaptation quality. On the other hand, we show that this type of classifier adaptation is not as efficient for BCI training purposes.

  5. The effect of multimodal and enriched feedback on SMR-BCI performance.

    PubMed

    Sollfrank, T; Ramsay, A; Perdikis, S; Williamson, J; Murray-Smith, R; Leeb, R; Millán, J D R; Kübler, A

    2016-01-01

    This study investigated the effect of multimodal (visual and auditory) continuous feedback with information about the uncertainty of the input signal on motor imagery based BCI performance. A liquid floating through a visualization of a funnel (funnel feedback) provided enriched visual or enriched multimodal feedback. In a between subject design 30 healthy SMR-BCI naive participants were provided with either conventional bar feedback (CB), or visual funnel feedback (UF), or multimodal (visual and auditory) funnel feedback (MF). Subjects were required to imagine left and right hand movement and were trained to control the SMR based BCI for five sessions on separate days. Feedback accuracy varied largely between participants. The MF feedback lead to a significantly better performance in session 1 as compared to the CB feedback and could significantly enhance motivation and minimize frustration in BCI use across the five training sessions. The present study demonstrates that the BCI funnel feedback allows participants to modulate sensorimotor EEG rhythms. Participants were able to control the BCI with the funnel feedback with better performance during the initial session and less frustration compared to the CB feedback. The multimodal funnel feedback provides an alternative to the conventional cursorbar feedback for training subjects to modulate their sensorimotor rhythms. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  6. Pre-frontal control of closed-loop limbic neurostimulation by rodents using a brain-computer interface

    NASA Astrophysics Data System (ADS)

    Widge, Alik S.; Moritz, Chet T.

    2014-04-01

    Objective. There is great interest in closed-loop neurostimulators that sense and respond to a patient's brain state. Such systems may have value for neurological and psychiatric illnesses where symptoms have high intraday variability. Animal models of closed-loop stimulators would aid preclinical testing. We therefore sought to demonstrate that rodents can directly control a closed-loop limbic neurostimulator via a brain-computer interface (BCI). Approach. We trained rats to use an auditory BCI controlled by single units in prefrontal cortex (PFC). The BCI controlled electrical stimulation in the medial forebrain bundle, a limbic structure involved in reward-seeking. Rigorous offline analyses were performed to confirm volitional control of the neurostimulator. Main results. All animals successfully learned to use the BCI and neurostimulator, with closed-loop control of this challenging task demonstrated at 80% of PFC recording locations. Analysis across sessions and animals confirmed statistically robust BCI control and specific, rapid modulation of PFC activity. Significance. Our results provide a preliminary demonstration of a method for emotion-regulating closed-loop neurostimulation. They further suggest that activity in PFC can be used to control a BCI without pre-training on a predicate task. This offers the potential for BCI-based treatments in refractory neurological and mental illness.

  7. Eyes-closed hybrid brain-computer interface employing frontal brain activation.

    PubMed

    Shin, Jaeyoung; Müller, Klaus-Robert; Hwang, Han-Jeong

    2018-01-01

    Brain-computer interfaces (BCIs) have been studied extensively in order to establish a non-muscular communication channel mainly for patients with impaired motor functions. However, many limitations remain for BCIs in clinical use. In this study, we propose a hybrid BCI that is based on only frontal brain areas and can be operated in an eyes-closed state for end users with impaired motor and declining visual functions. In our experiment, electroencephalography (EEG) and near-infrared spectroscopy (NIRS) were simultaneously measured while 12 participants performed mental arithmetic (MA) and remained relaxed (baseline state: BL). To evaluate the feasibility of the hybrid BCI, we classified MA- from BL-related brain activation. We then compared classification accuracies using two unimodal BCIs (EEG and NIRS) and the hybrid BCI in an offline mode. The classification accuracy of the hybrid BCI (83.9 ± 10.3%) was shown to be significantly higher than those of unimodal EEG-based (77.3 ± 15.9%) and NIRS-based BCI (75.9 ± 6.3%). The analytical results confirmed performance improvement with the hybrid BCI, particularly for only frontal brain areas. Our study shows that an eyes-closed hybrid BCI approach based on frontal areas could be applied to neurodegenerative patients who lost their motor functions, including oculomotor functions.

  8. Improvement of Information Transfer Rates Using a Hybrid EEG-NIRS Brain-Computer Interface with a Short Trial Length: Offline and Pseudo-Online Analyses.

    PubMed

    Shin, Jaeyoung; Kim, Do-Won; Müller, Klaus-Robert; Hwang, Han-Jeong

    2018-06-05

    Electroencephalography (EEG) and near-infrared spectroscopy (NIRS) are non-invasive neuroimaging methods that record the electrical and metabolic activity of the brain, respectively. Hybrid EEG-NIRS brain-computer interfaces (hBCIs) that use complementary EEG and NIRS information to enhance BCI performance have recently emerged to overcome the limitations of existing unimodal BCIs, such as vulnerability to motion artifacts for EEG-BCI or low temporal resolution for NIRS-BCI. However, with respect to NIRS-BCI, in order to fully induce a task-related brain activation, a relatively long trial length (≥10 s) is selected owing to the inherent hemodynamic delay that lowers the information transfer rate (ITR; bits/min). To alleviate the ITR degradation, we propose a more practical hBCI operated by intuitive mental tasks, such as mental arithmetic (MA) and word chain (WC) tasks, performed within a short trial length (5 s). In addition, the suitability of the WC as a BCI task was assessed, which has so far rarely been used in the BCI field. In this experiment, EEG and NIRS data were simultaneously recorded while participants performed MA and WC tasks without preliminary training and remained relaxed (baseline; BL). Each task was performed for 5 s, which was a shorter time than previous hBCI studies. Subsequently, a classification was performed to discriminate MA-related or WC-related brain activations from BL-related activations. By using hBCI in the offline/pseudo-online analyses, average classification accuracies of 90.0 ± 7.1/85.5 ± 8.1% and 85.8 ± 8.6/79.5 ± 13.4% for MA vs. BL and WC vs. BL, respectively, were achieved. These were significantly higher than those of the unimodal EEG- or NIRS-BCI in most cases. Given the short trial length and improved classification accuracy, the average ITRs were improved by more than 96.6% for MA vs. BL and 87.1% for WC vs. BL, respectively, compared to those reported in previous studies. The suitability of implementing a more practical hBCI based on intuitive mental tasks without preliminary training and with a shorter trial length was validated when compared to previous studies.

  9. Does despotic behavior or food search explain the occurrence of problem brown bears in Europe?

    PubMed Central

    Elfström, Marcus; Zedrosser, Andreas; Jerina, Klemen; Støen, Ole-Gunnar; Kindberg, Jonas; Budic, Lara; Jonozovič, Marko; Swenson, Jon E

    2014-01-01

    Bears foraging near human developments are often presumed to be responding to food shortage, but this explanation ignores social factors, in particular despotism in bears. We analyzed the age distribution and body condition index (BCI) of shot brown bears in relation to densities of bears and people, and whether the shot bears were killed by managers (i.e., problem bears; n = 149), in self-defense (n = 51), or were hunter-killed nonproblem bears (n = 1,896) during 1990–2010. We compared patterns between areas with (Slovenia) and without supplemental feeding (Sweden) of bears relative to 2 hypotheses. The food-search/food-competition hypothesis predicts that problem bears should have a higher BCI (e.g., exploiting easily accessible and/or nutritious human-derived foods) or lower BCI (e.g., because of food shortage) than nonproblem bears, that BCI and human density should have a positive correlation, and problem bear occurrence and seasonal mean BCI of nonproblem bears should have a negative correlation (i.e., more problem bears during years of low food availability). Food competition among bears additionally predicts an inverse relationship between BCI and bear density. The safety-search/naivety hypothesis (i.e., avoiding other bears or lack of human experience) predicts no relationship between BCI and human density, provided no dietary differences due to spatiotemporal habitat use among bears, no relationship between problem bear occurrence and seasonal mean BCI of nonproblem bears, and does not necessarily predict a difference between BCI for problem/nonproblem bears. If food competition or predation avoidance explained bear occurrence near settlements, we predicted younger problem than nonproblem bears and a negative correlation between age and human density. However, if only food search explained bear occurrence near settlements, we predicted no relation between age and problem or nonproblem bear status, or between age and human density. We found no difference in BCI or its variability between problem and nonproblem bears, no relation between BCI and human density, and no correlation between numbers of problem bears shot and seasonal mean BCI for either country. The peak of shot problem bears occurred from April to June in Slovenia and in June in Sweden (i.e., during the mating period when most intraspecific predation occurs and before fall hyperphagia). Problem bears were younger than nonproblem bears, and both problem and nonproblem bears were younger in areas of higher human density. These age differences, in combination with similarities in BCI between problem and nonproblem bears and lack of correlation between BCI and human density, suggested safety-search and naïve dispersal to be the primary mechanisms responsible for bear occurrence near settlements. Younger bears are less competitive, more vulnerable to intraspecific predation, and lack human experience, compared to adults. Body condition was inversely related to the bear density index in Sweden, whereas we found no correlation in Slovenia, suggesting that supplemental feeding may have reduced food competition, in combination with high bear harvest rates. Bears shot in self-defense were older and their BCI did not differ from that of nonproblem bears. Reasons other than food shortage apparently explained why most bears were involved in encounters with people or viewed as problematic near settlements in our study. PMID:25253909

  10. Gait adaptation to visual kinematic perturbations using a real-time closed-loop brain computer interface to a virtual reality avatar

    PubMed Central

    Luu, Trieu Phat; He, Yongtian; Brown, Samuel; Nakagame, Sho; Contreras-Vidal, Jose L.

    2017-01-01

    Objective The control of human bipedal locomotion is of great interest to the field of lower-body brain computer interfaces (BCIs) for gait rehabilitation. While the feasibility of closed-loop BCI systems for the control of a lower body exoskeleton has been recently shown, multi-day closed-loop neural decoding of human gait in a BCI virtual reality (BCI-VR) environment has yet to be demonstrated. BCI-VR systems provide valuable alternatives for movement rehabilitation when wearable robots are not desirable due to medical conditions, cost, accessibility, usability, or patient preferences. Approach In this study, we propose a real-time closed-loop BCI that decodes lower limb joint angles from scalp electroencephalography (EEG) during treadmill walking to control a walking avatar in a virtual environment. Fluctuations in the amplitude of slow cortical potentials of EEG in the delta band (0.1 – 3 Hz) were used for prediction; thus, the EEG features correspond to time-domain amplitude modulated (AM) potentials in the delta band. Virtual kinematic perturbations resulting in asymmetric walking gait patterns of the avatar were also introduced to investigate gait adaptation using the closed-loop BCI-VR system over a period of eight days. Main results Our results demonstrate the feasibility of using a closed-loop BCI to learn to control a walking avatar under normal and altered visuomotor perturbations, which involved cortical adaptations. The average decoding accuracies (Pearson’s r values) in real-time BCI across all subjects increased from (Hip: 0.18 ± 0.31; Knee: 0.23 ± 0.33; Ankle: 0.14 ± 0.22) on Day 1 to (Hip: 0.40 ± 0.24; Knee: 0.55 ± 0.20; Ankle: 0.29 ± 0.22) on Day 8. Significance These findings have implications for the development of a real-time closed-loop EEG-based BCI-VR system for gait rehabilitation after stroke and for understanding cortical plasticity induced by a closed-loop BCI-VR system. PMID:27064824

  11. Gait adaptation to visual kinematic perturbations using a real-time closed-loop brain-computer interface to a virtual reality avatar.

    PubMed

    Luu, Trieu Phat; He, Yongtian; Brown, Samuel; Nakagame, Sho; Contreras-Vidal, Jose L

    2016-06-01

    The control of human bipedal locomotion is of great interest to the field of lower-body brain-computer interfaces (BCIs) for gait rehabilitation. While the feasibility of closed-loop BCI systems for the control of a lower body exoskeleton has been recently shown, multi-day closed-loop neural decoding of human gait in a BCI virtual reality (BCI-VR) environment has yet to be demonstrated. BCI-VR systems provide valuable alternatives for movement rehabilitation when wearable robots are not desirable due to medical conditions, cost, accessibility, usability, or patient preferences. In this study, we propose a real-time closed-loop BCI that decodes lower limb joint angles from scalp electroencephalography (EEG) during treadmill walking to control a walking avatar in a virtual environment. Fluctuations in the amplitude of slow cortical potentials of EEG in the delta band (0.1-3 Hz) were used for prediction; thus, the EEG features correspond to time-domain amplitude modulated potentials in the delta band. Virtual kinematic perturbations resulting in asymmetric walking gait patterns of the avatar were also introduced to investigate gait adaptation using the closed-loop BCI-VR system over a period of eight days. Our results demonstrate the feasibility of using a closed-loop BCI to learn to control a walking avatar under normal and altered visuomotor perturbations, which involved cortical adaptations. The average decoding accuracies (Pearson's r values) in real-time BCI across all subjects increased from (Hip: 0.18 ± 0.31; Knee: 0.23 ± 0.33; Ankle: 0.14 ± 0.22) on Day 1 to (Hip: 0.40 ± 0.24; Knee: 0.55 ± 0.20; Ankle: 0.29 ± 0.22) on Day 8. These findings have implications for the development of a real-time closed-loop EEG-based BCI-VR system for gait rehabilitation after stroke and for understanding cortical plasticity induced by a closed-loop BCI-VR system.

  12. Percutaneous versus transcutaneous bone conduction implant system: a feasibility study on a cadaver head.

    PubMed

    Håkansson, Bo; Eeg-Olofsson, Måns; Reinfeldt, Sabine; Stenfelt, Stefan; Granström, Gösta

    2008-12-01

    Percutaneous bone-anchored hearing aid (BAHA) is an important rehabilitation alternative for patients who have conductive or mixed hearing loss. However, these devices use a percutaneous and bone-anchored implant that has some drawbacks reported. A transcutaneous bone conduction implant system (BCI) is proposed as an alternative to the percutaneous system because it leaves the skin intact. The BCI transmits the signal to a permanently implanted transducer with an induction loop system through the intact skin. The aim of this study was to compare the electroacoustic performance of the BAHA Classic-300 with a full-scale BCI on a cadaver head in a sound field. The BCI comprised the audio processor of the vibrant sound bridge connected to a balanced vibration transducer (balanced electromagnetic separation transducer). Implants with snap abutments were placed in the parietal bone (Classic-300) and 15-mm deep in the temporal bone (BCI). The vibration responses at the ipsilateral and contralateral cochlear promontories were measured with a laser Doppler vibrometer, with the beam aimed through the ear canal. Results show that the BCI produces approximately 5 dB higher maximum output level and has a slightly lower distortion than the Classic-300 at the ipsilateral promontorium at speech frequencies. At the contralateral promontorium, the maximum output level was considerably lower for the BCI than for the Classic-300 except in the 1-2 kHz range, where it was similar. Present results support the proposal that a BCI system can be a realistic alternative to a BAHA.

  13. Enhancing clinical communication assessments using an audiovisual BCI for patients with disorders of consciousness

    NASA Astrophysics Data System (ADS)

    Wang, Fei; He, Yanbin; Qu, Jun; Xie, Qiuyou; Lin, Qing; Ni, Xiaoxiao; Chen, Yan; Pan, Jiahui; Laureys, Steven; Yu, Ronghao; Li, Yuanqing

    2017-08-01

    Objective. The JFK coma recovery scale-revised (JFK CRS-R), a behavioral observation scale, is widely used in the clinical diagnosis/assessment of patients with disorders of consciousness (DOC). However, the JFK CRS-R is associated with a high rate of misdiagnosis (approximately 40%) because DOC patients cannot provide sufficient behavioral responses. A brain-computer interface (BCI) that detects command/intention-specific changes in electroencephalography (EEG) signals without the need for behavioral expression may provide an alternative method. Approach. In this paper, we proposed an audiovisual BCI communication system based on audiovisual ‘yes’ and ‘no’ stimuli to supplement the JFK CRS-R for assessing the communication ability of DOC patients. Specifically, patients were given situation-orientation questions as in the JFK CRS-R and instructed to select the answers using the BCI. Main results. Thirteen patients (eight vegetative state (VS) and five minimally conscious state (MCS)) participated in our experiments involving both the BCI- and JFK CRS-R-based assessments. One MCS patient who received a score of 1 in the JFK CRS-R achieved an accuracy of 86.5% in the BCI-based assessment. Seven patients (four VS and three MCS) obtained unresponsive results in the JFK CRS-R-based assessment but responsive results in the BCI-based assessment, and 4 of those later improved scores in the JFK CRS-R-based assessment. Five patients (four VS and one MCS) obtained usresponsive results in both assessments. Significance. The experimental results indicated that the audiovisual BCI could provide more sensitive results than the JFK CRS-R and therefore supplement the JFK CRS-R.

  14. Toward a hybrid brain-computer interface based on imagined movement and visual attention

    NASA Astrophysics Data System (ADS)

    Allison, B. Z.; Brunner, C.; Kaiser, V.; Müller-Putz, G. R.; Neuper, C.; Pfurtscheller, G.

    2010-04-01

    Brain-computer interface (BCI) systems do not work for all users. This article introduces a novel combination of tasks that could inspire BCI systems that are more accurate than conventional BCIs, especially for users who cannot attain accuracy adequate for effective communication. Subjects performed tasks typically used in two BCI approaches, namely event-related desynchronization (ERD) and steady state visual evoked potential (SSVEP), both individually and in a 'hybrid' condition that combines both tasks. Electroencephalographic (EEG) data were recorded across three conditions. Subjects imagined moving the left or right hand (ERD), focused on one of the two oscillating visual stimuli (SSVEP), and then simultaneously performed both tasks. Accuracy and subjective measures were assessed. Offline analyses suggested that half of the subjects did not produce brain patterns that could be accurately discriminated in response to at least one of the two tasks. If these subjects produced comparable EEG patterns when trying to use a BCI, these subjects would not be able to communicate effectively because the BCI would make too many errors. Results also showed that switching to a different task used in BCIs could improve accuracy in some of these users. Switching to a hybrid approach eliminated this problem completely, and subjects generally did not consider the hybrid condition more difficult. Results validate this hybrid approach and suggest that subjects who cannot use a BCI should consider switching to a different BCI approach, especially a hybrid BCI. Subjects proficient with both approaches might combine them to increase information throughput by improving accuracy, reducing selection time, and/or increasing the number of possible commands.

  15. Describing different brain computer interface systems through a unique model: a UML implementation.

    PubMed

    Quitadamo, Lucia Rita; Marciani, Maria Grazia; Cardarilli, Gian Carlo; Bianchi, Luigi

    2008-01-01

    All the protocols currently implemented in brain computer interface (BCI) experiments are characterized by different structural and temporal entities. Moreover, due to the lack of a unique descriptive model for BCI systems, there is not a standard way to define the structure and the timing of a BCI experimental session among different research groups and there is also great discordance on the meaning of the most common terms dealing with BCI, such as trial, run and session. The aim of this paper is to provide a unified modeling language (UML) implementation of BCI systems through a unique dynamic model which is able to describe the main protocols defined in the literature (P300, mu-rhythms, SCP, SSVEP, fMRI) and demonstrates to be reasonable and adjustable according to different requirements. This model includes a set of definitions of the typical entities encountered in a BCI, diagrams which explain the structural correlations among them and a detailed description of the timing of a trial. This last represents an innovation with respect to the models already proposed in the literature. The UML documentation and the possibility of adapting this model to the different BCI systems built to date, make it a basis for the implementation of new systems and a mean for the unification and dissemination of resources. The model with all the diagrams and definitions reported in the paper are the core of the body language framework, a free set of routines and tools for the implementation, optimization and delivery of cross-platform BCI systems.

  16. Coherent Activity in Bilateral Parieto-Occipital Cortices during P300-BCI Operation.

    PubMed

    Takano, Kouji; Ora, Hiroki; Sekihara, Kensuke; Iwaki, Sunao; Kansaku, Kenji

    2014-01-01

    The visual P300 brain-computer interface (BCI), a popular system for electroencephalography (EEG)-based BCI, uses the P300 event-related potential to select an icon arranged in a flicker matrix. In earlier studies, we used green/blue (GB) luminance and chromatic changes in the P300-BCI system and reported that this luminance and chromatic flicker matrix was associated with better performance and greater subject comfort compared with the conventional white/gray (WG) luminance flicker matrix. To highlight areas involved in improved P300-BCI performance, we used simultaneous EEG-fMRI recordings and showed enhanced activities in bilateral and right lateralized parieto-occipital areas. Here, to capture coherent activities of the areas during P300-BCI, we collected whole-head 306-channel magnetoencephalography data. When comparing functional connectivity between the right and left parieto-occipital channels, significantly greater functional connectivity in the alpha band was observed under the GB flicker matrix condition than under the WG flicker matrix condition. Current sources were estimated with a narrow-band adaptive spatial filter, and mean imaginary coherence was computed in the alpha band. Significantly greater coherence was observed in the right posterior parietal cortex under the GB than under the WG condition. Re-analysis of previous EEG-based P300-BCI data showed significant correlations between the power of the coherence of the bilateral parieto-occipital cortices and their performance accuracy. These results suggest that coherent activity in the bilateral parieto-occipital cortices plays a significant role in effectively driving the P300-BCI.

  17. Enhancing clinical communication assessments using an audiovisual BCI for patients with disorders of consciousness.

    PubMed

    Wang, Fei; He, Yanbin; Qu, Jun; Xie, Qiuyou; Lin, Qing; Ni, Xiaoxiao; Chen, Yan; Pan, Jiahui; Laureys, Steven; Yu, Ronghao; Li, Yuanqing

    2017-08-01

    The JFK coma recovery scale-revised (JFK CRS-R), a behavioral observation scale, is widely used in the clinical diagnosis/assessment of patients with disorders of consciousness (DOC). However, the JFK CRS-R is associated with a high rate of misdiagnosis (approximately 40%) because DOC patients cannot provide sufficient behavioral responses. A brain-computer interface (BCI) that detects command/intention-specific changes in electroencephalography (EEG) signals without the need for behavioral expression may provide an alternative method. In this paper, we proposed an audiovisual BCI communication system based on audiovisual 'yes' and 'no' stimuli to supplement the JFK CRS-R for assessing the communication ability of DOC patients. Specifically, patients were given situation-orientation questions as in the JFK CRS-R and instructed to select the answers using the BCI. Thirteen patients (eight vegetative state (VS) and five minimally conscious state (MCS)) participated in our experiments involving both the BCI- and JFK CRS-R-based assessments. One MCS patient who received a score of 1 in the JFK CRS-R achieved an accuracy of 86.5% in the BCI-based assessment. Seven patients (four VS and three MCS) obtained unresponsive results in the JFK CRS-R-based assessment but responsive results in the BCI-based assessment, and 4 of those later improved scores in the JFK CRS-R-based assessment. Five patients (four VS and one MCS) obtained usresponsive results in both assessments. The experimental results indicated that the audiovisual BCI could provide more sensitive results than the JFK CRS-R and therefore supplement the JFK CRS-R.

  18. Soft Translations and Soft Extensions of BCI/BCK-Algebras

    PubMed Central

    Sultana, Nazra; Rani, Nazia; Ali, Muhammad Irfan

    2014-01-01

    The concept of soft translations of soft subalgebras and soft ideals over BCI/BCK-algebras is introduced and some related properties are studied. Notions of Soft extensions of soft subalgebras and soft ideals over BCI/BCK-algebras are also initiated. Relationships between soft translations and soft extensions are explored. PMID:25298968

  19. Effects of brain-computer interface-based functional electrical stimulation on balance and gait function in patients with stroke: preliminary results

    PubMed Central

    Chung, EunJung; Park, Sang-In; Jang, Yun-Yung; Lee, Byoung-Hee

    2015-01-01

    [Purpose] The purpose of this study was to determine the effects of brain-computer interface (BCI)-based functional electrical stimulation (FES) on balance and gait function in patients with stroke. [Subjects] Subjects were randomly allocated to a BCI-FES group (n=5) and a FES group (n=5). [Methods] The BCI-FES group received ankle dorsiflexion training with FES according to a BCI-based program for 30 minutes per day for 5 days. The FES group received ankle dorsiflexion training with FES for the same duration. [Results] Following the intervention, the BCI-FES group showed significant differences in Timed Up and Go test value, cadence, and step length on the affected side. The FES group showed no significant differences after the intervention. However, there were no significant differences between the 2 groups after the intervention. [Conclusion] The results of this study suggest that BCI-based FES training is a more effective exercise for balance and gait function than FES training alone in patients with stroke. PMID:25729205

  20. Brain-Computer Interface for Clinical Purposes: Cognitive Assessment and Rehabilitation.

    PubMed

    Carelli, Laura; Solca, Federica; Faini, Andrea; Meriggi, Paolo; Sangalli, Davide; Cipresso, Pietro; Riva, Giuseppe; Ticozzi, Nicola; Ciammola, Andrea; Silani, Vincenzo; Poletti, Barbara

    2017-01-01

    Alongside the best-known applications of brain-computer interface (BCI) technology for restoring communication abilities and controlling external devices, we present the state of the art of BCI use for cognitive assessment and training purposes. We first describe some preliminary attempts to develop verbal-motor free BCI-based tests for evaluating specific or multiple cognitive domains in patients with Amyotrophic Lateral Sclerosis, disorders of consciousness, and other neurological diseases. Then we present the more heterogeneous and advanced field of BCI-based cognitive training, which has its roots in the context of neurofeedback therapy and addresses patients with neurological developmental disorders (autism spectrum disorder and attention-deficit/hyperactivity disorder), stroke patients, and elderly subjects. We discuss some advantages of BCI for both assessment and training purposes, the former concerning the possibility of longitudinally and reliably evaluating cognitive functions in patients with severe motor disabilities, the latter regarding the possibility of enhancing patients' motivation and engagement for improving neural plasticity. Finally, we discuss some present and future challenges in the BCI use for the described purposes.

  1. Classification of the intention to generate a shoulder versus elbow torque by means of a time frequency synthesized spatial patterns BCI algorithm

    NASA Astrophysics Data System (ADS)

    Deng, Jie; Yao, Jun; Dewald, Julius P. A.

    2005-12-01

    In this paper, we attempt to determine a subject's intention of generating torque at the shoulder or elbow, two neighboring joints, using scalp electroencephalogram signals from 163 electrodes for a brain-computer interface (BCI) application. To achieve this goal, we have applied a time-frequency synthesized spatial patterns (TFSP) BCI algorithm with a presorting procedure. Using this method, we were able to achieve an average recognition rate of 89% in four healthy subjects, which is comparable to the highest rates reported in the literature but now for tasks with much closer spatial representations on the motor cortex. This result demonstrates, for the first time, that the TFSP BCI method can be applied to separate intentions between generating static shoulder versus elbow torque. Furthermore, in this study, the potential application of this BCI algorithm for brain-injured patients was tested in one chronic hemiparetic stroke subject. A recognition rate of 76% was obtained, suggesting that this BCI method can provide a potential control signal for neural prostheses or other movement coordination improving devices for patients following brain injury.

  2. Classification of unconscious like/dislike decisions: First results towards a novel application for BCI technology.

    PubMed

    Wriessnegger, S C; Hackhofer, D; Muller-Putz, G R

    2015-01-01

    More and more applications for BCI technology emerge that are not restricted to communication or control, like gaming, rehabilitation, Neuro-IS research, neuro-economics or security. In this context a so called passive BCI, a system that derives its outputs from arbitrary brain activity for enriching a human-machine interaction with implicit information on the actual user state will be used. Concretely EEG-based BCI technology enables the use of signals related to attention, intentions and mental state, without relying on indirect measures based on overt behavior or other physiological signals which is an important point e.g. in Neuromarketing research. The scope of this pilot EEG-study was to detect like/dislike decisions on car stimuli just by means of ERP analysis. Concretely to define user preferences concerning different car designs by implementing an offline BCI based on shrinkage LDA classification. Although classification failed in the majority of participants the elicited early (sub) conscious ERP components reflect user preferences for cars. In a broader sense this study should pave the way towards a "product design BCI" suitable for neuromarketing research.

  3. Effects of brain-computer interface-based functional electrical stimulation on balance and gait function in patients with stroke: preliminary results.

    PubMed

    Chung, EunJung; Park, Sang-In; Jang, Yun-Yung; Lee, Byoung-Hee

    2015-02-01

    [Purpose] The purpose of this study was to determine the effects of brain-computer interface (BCI)-based functional electrical stimulation (FES) on balance and gait function in patients with stroke. [Subjects] Subjects were randomly allocated to a BCI-FES group (n=5) and a FES group (n=5). [Methods] The BCI-FES group received ankle dorsiflexion training with FES according to a BCI-based program for 30 minutes per day for 5 days. The FES group received ankle dorsiflexion training with FES for the same duration. [Results] Following the intervention, the BCI-FES group showed significant differences in Timed Up and Go test value, cadence, and step length on the affected side. The FES group showed no significant differences after the intervention. However, there were no significant differences between the 2 groups after the intervention. [Conclusion] The results of this study suggest that BCI-based FES training is a more effective exercise for balance and gait function than FES training alone in patients with stroke.

  4. Turning Shortcomings into Challenges: Brain-Computer Interfaces for Games

    NASA Astrophysics Data System (ADS)

    Nijholt, Anton; Reuderink, Boris; Oude Bos, Danny

    In recent years we have seen a rising interest in brain-computer interfacing for human-computer interaction and potential game applications. Until now, however, we have almost only seen attempts where BCI is used to measure the affective state of the user or in neurofeedback games. There have hardly been any attempts to design BCI games where BCI is considered to be one of the possible input modalities that can be used to control the game. One reason may be that research still follows the paradigms of the traditional, medically oriented, BCI approaches. In this paper we discuss current BCI research from the viewpoint of games and game design. It is hoped that this survey will make clear that we need to design different games than we used to, but that such games can nevertheless be interesting and exciting.

  5. Workshops of the Fifth International Brain-Computer Interface Meeting: Defining the Future

    PubMed Central

    Huggins, Jane E.; Guger, Christoph; Allison, Brendan; Anderson, Charles W.; Batista, Aaron; Brouwer, Anne-Marie (A.-M.); Brunner, Clemens; Chavarriaga, Ricardo; Fried-Oken, Melanie; Gunduz, Aysegul; Gupta, Disha; Kübler, Andrea; Leeb, Robert; Lotte, Fabien; Miller, Lee E.; Müller-Putz, Gernot; Rutkowski, Tomasz; Tangermann, Michael; Thompson, David Edward

    2014-01-01

    The Fifth International Brain-Computer Interface (BCI) Meeting met June 3–7th, 2013 at the Asilomar Conference Grounds, Pacific Grove, California. The conference included 19 workshops covering topics in brain-computer interface and brain-machine interface research. Topics included translation of BCIs into clinical use, standardization and certification, types of brain activity to use for BCI, recording methods, the effects of plasticity, special interest topics in BCIs applications, and future BCI directions. BCI research is well established and transitioning to practical use to benefit people with physical impairments. At the same time, new applications are being explored, both for people with physical impairments and beyond. Here we provide summaries of each workshop, illustrating the breadth and depth of BCI research and high-lighting important issues for future research and development. PMID:25485284

  6. BciD Is a Radical S-Adenosyl-l-methionine (SAM) Enzyme That Completes Bacteriochlorophyllide e Biosynthesis by Oxidizing a Methyl Group into a Formyl Group at C-7.

    PubMed

    Thweatt, Jennifer L; Ferlez, Bryan H; Golbeck, John H; Bryant, Donald A

    2017-01-27

    Green bacteria are chlorophotorophs that synthesize bacteriochlorophyll (BChl) c, d, or e, which assemble into supramolecular, nanotubular structures in large light-harvesting structures called chlorosomes. The biosynthetic pathways of these chlorophylls are known except for one reaction. Null mutants of bciD, which encodes a putative radical S-adenosyl-l-methionine (SAM) protein, are unable to synthesize BChl e but accumulate BChl c; however, it is unknown whether BciD is sufficient to convert BChl c (or its precursor, bacteriochlorophyllide (BChlide) c) into BChl e (or BChlide e). To determine the function of BciD, we expressed the bciD gene of Chlorobaculum limnaeum strain DSMZ 1677 T in Escherichia coli and purified the enzyme under anoxic conditions. Electron paramagnetic resonance spectroscopy of BciD indicated that it contains a single [4Fe-4S] cluster. In assays containing SAM, BChlide c or d, and sodium dithionite, BciD catalyzed the conversion of SAM into 5'-deoxyadenosine and BChlide c or d into BChlide e or f, respectively. Our analyses also identified intermediates that are proposed to be 7 1 -OH-BChlide c and d Thus, BciD is a radical SAM enzyme that converts the methyl group of BChlide c or d into the formyl group of BChlide e or f This probably occurs by a mechanism involving consecutive hydroxylation reactions of the C-7 methyl group to form a geminal diol intermediate, which spontaneously dehydrates to produce the final products, BChlide e or BChlide f The demonstration that BciD is sufficient to catalyze the conversion of BChlide c into BChlide e completes the biosynthetic pathways for all "Chlorobium chlorophylls." © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Dose-response relationships using brain–computer interface technology impact stroke rehabilitation

    PubMed Central

    Young, Brittany M.; Nigogosyan, Zack; Walton, Léo M.; Remsik, Alexander; Song, Jie; Nair, Veena A.; Tyler, Mitchell E.; Edwards, Dorothy F.; Caldera, Kristin; Sattin, Justin A.; Williams, Justin C.; Prabhakaran, Vivek

    2015-01-01

    Brain–computer interfaces (BCIs) are an emerging novel technology for stroke rehabilitation. Little is known about how dose-response relationships for BCI therapies affect brain and behavior changes. We report preliminary results on stroke patients (n = 16, 11 M) with persistent upper extremity motor impairment who received therapy using a BCI system with functional electrical stimulation of the hand and tongue stimulation. We collected MRI scans and behavioral data using the Action Research Arm Test (ARAT), 9-Hole Peg Test (9-HPT), and Stroke Impact Scale (SIS) before, during, and after the therapy period. Using anatomical and functional MRI, we computed Laterality Index (LI) for brain activity in the motor network during impaired hand finger tapping. Changes from baseline LI and behavioral scores were assessed for relationships with dose, intensity, and frequency of BCI therapy. We found that gains in SIS Strength were directly responsive to BCI therapy: therapy dose and intensity correlated positively with increased SIS Strength (p ≤ 0.05), although no direct relationships were identified with ARAT or 9-HPT scores. We found behavioral measures that were not directly sensitive to differences in BCI therapy administration but were associated with concurrent brain changes correlated with BCI therapy administration parameters: therapy dose and intensity showed significant (p ≤ 0.05) or trending (0.05 < p < 0.1) negative correlations with LI changes, while therapy frequency did not affect LI. Reductions in LI were then correlated (p ≤ 0.05) with increased SIS Activities of Daily Living scores and improved 9-HPT performance. Therefore, some behavioral changes may be reflected by brain changes sensitive to differences in BCI therapy administration, while others such as SIS Strength may be directly responsive to BCI therapy administration. Data preliminarily suggest that when using BCI in stroke rehabilitation, therapy frequency may be less important than dose and intensity. PMID:26157378

  8. A P300-based Brain-Computer Interface with Stimuli on Moving Objects: Four-Session Single-Trial and Triple-Trial Tests with a Game-Like Task Design

    PubMed Central

    Ganin, Ilya P.; Shishkin, Sergei L.; Kaplan, Alexander Y.

    2013-01-01

    Brain-computer interfaces (BCIs) are tools for controlling computers and other devices without using muscular activity, employing user-controlled variations in signals recorded from the user’s brain. One of the most efficient noninvasive BCIs is based on the P300 wave of the brain’s response to stimuli and is therefore referred to as the P300 BCI. Many modifications of this BCI have been proposed to further improve the BCI’s characteristics or to better adapt the BCI to various applications. However, in the original P300 BCI and in all of its modifications, the spatial positions of stimuli were fixed relative to each other, which can impose constraints on designing applications controlled by this BCI. We designed and tested a P300 BCI with stimuli presented on objects that were freely moving on a screen at a speed of 5.4°/s. Healthy participants practiced a game-like task with this BCI in either single-trial or triple-trial mode within four sessions. At each step, the participants were required to select one of nine moving objects. The mean online accuracy of BCI-based selection was 81% in the triple-trial mode and 65% in the single-trial mode. A relatively high P300 amplitude was observed in response to targets in most participants. Self-rated interest in the task was high and stable over the four sessions (the medians in the 1st/4th sessions were 79/84% and 76/71% in the groups practicing in the single-trial and triple-trial modes, respectively). We conclude that the movement of stimulus positions relative to each other may not prevent the efficient use of the P300 BCI by people controlling their gaze, e.g., in robotic devices and in video games. PMID:24302977

  9. Comparison of tactile, auditory, and visual modality for brain-computer interface use: a case study with a patient in the locked-in state.

    PubMed

    Kaufmann, Tobias; Holz, Elisa M; Kübler, Andrea

    2013-01-01

    This paper describes a case study with a patient in the classic locked-in state, who currently has no means of independent communication. Following a user-centered approach, we investigated event-related potentials (ERP) elicited in different modalities for use in brain-computer interface (BCI) systems. Such systems could provide her with an alternative communication channel. To investigate the most viable modality for achieving BCI based communication, classic oddball paradigms (1 rare and 1 frequent stimulus, ratio 1:5) in the visual, auditory and tactile modality were conducted (2 runs per modality). Classifiers were built on one run and tested offline on another run (and vice versa). In these paradigms, the tactile modality was clearly superior to other modalities, displaying high offline accuracy even when classification was performed on single trials only. Consequently, we tested the tactile paradigm online and the patient successfully selected targets without any error. Furthermore, we investigated use of the visual or tactile modality for different BCI systems with more than two selection options. In the visual modality, several BCI paradigms were tested offline. Neither matrix-based nor so-called gaze-independent paradigms constituted a means of control. These results may thus question the gaze-independence of current gaze-independent approaches to BCI. A tactile four-choice BCI resulted in high offline classification accuracies. Yet, online use raised various issues. Although performance was clearly above chance, practical daily life use appeared unlikely when compared to other communication approaches (e.g., partner scanning). Our results emphasize the need for user-centered design in BCI development including identification of the best stimulus modality for a particular user. Finally, the paper discusses feasibility of EEG-based BCI systems for patients in classic locked-in state and compares BCI to other AT solutions that we also tested during the study.

  10. Decoding of intended saccade direction in an oculomotor brain-computer interface

    NASA Astrophysics Data System (ADS)

    Jia, Nan; Brincat, Scott L.; Salazar-Gómez, Andrés F.; Panko, Mikhail; Guenther, Frank H.; Miller, Earl K.

    2017-08-01

    Objective. To date, invasive brain-computer interface (BCI) research has largely focused on replacing lost limb functions using signals from the hand/arm areas of motor cortex. However, the oculomotor system may be better suited to BCI applications involving rapid serial selection from spatial targets, such as choosing from a set of possible words displayed on a computer screen in an augmentative and alternative communication (AAC) application. Here we aimed to demonstrate the feasibility of a BCI utilizing the oculomotor system. Approach. We developed a chronic intracortical BCI in monkeys to decode intended saccadic eye movement direction using activity from multiple frontal cortical areas. Main results. Intended saccade direction could be decoded in real time with high accuracy, particularly at contralateral locations. Accurate decoding was evident even at the beginning of the BCI session; no extensive BCI experience was necessary. High-frequency (80-500 Hz) local field potential magnitude provided the best performance, even over spiking activity, thus simplifying future BCI applications. Most of the information came from the frontal and supplementary eye fields, with relatively little contribution from dorsolateral prefrontal cortex. Significance. Our results support the feasibility of high-accuracy intracortical oculomotor BCIs that require little or no practice to operate and may be ideally suited for ‘point and click’ computer operation as used in most current AAC systems.

  11. Probing command following in patients with disorders of consciousness using a brain-computer interface.

    PubMed

    Lulé, Dorothée; Noirhomme, Quentin; Kleih, Sonja C; Chatelle, Camille; Halder, Sebastian; Demertzi, Athena; Bruno, Marie-Aurélie; Gosseries, Olivia; Vanhaudenhuyse, Audrey; Schnakers, Caroline; Thonnard, Marie; Soddu, Andrea; Kübler, Andrea; Laureys, Steven

    2013-01-01

    To determine if brain-computer interfaces (BCIs) could serve as supportive tools for detecting consciousness in patients with disorders of consciousness by detecting response to command and communication. We tested a 4-choice auditory oddball EEG-BCI paradigm on 16 healthy subjects and 18 patients in a vegetative state/unresponsive wakefulness syndrome, in a minimally conscious state (MCS), and in locked-in syndrome (LIS). Subjects were exposed to 4 training trials and 10 -12 questions. Thirteen healthy subjects and one LIS patient were able to communicate using the BCI. Four of those did not present with a P3. One MCS patient showed command following with the BCI while no behavioral response could be detected at bedside. All other patients did not show any response to command and could not communicate with the BCI. The present study provides evidence that EEG based BCI can detect command following in patients with altered states of consciousness and functional communication in patients with locked-in syndrome. However, BCI approaches have to be simplified to increase sensitivity. For some patients without any clinical sign of consciousness, a BCI might bear the potential to employ a "yes-no" spelling device offering the hope of functional interactive communication. Copyright © 2012 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  12. Investigating the effects of visual distractors on the performance of a motor imagery brain-computer interface.

    PubMed

    Emami, Zahra; Chau, Tom

    2018-06-01

    Brain-computer interfaces (BCIs) allow users to operate a device or application by means of cognitive activity. This technology will ultimately be used in real-world environments which include the presence of distractors. The purpose of the study was to determine the effect of visual distractors on BCI performance. Sixteen able-bodied participants underwent neurofeedback training to achieve motor imagery-guided BCI control in an online paradigm using electroencephalography (EEG) to measure neural signals. Participants then completed two sessions of the motor imagery EEG-BCI protocol in the presence of infrequent, small visual distractors. BCI performance was determined based on classification accuracy. The presence of distractors was found to affect motor imagery-specific patterns in mu and beta power. However, the distractors did not significantly affect the BCI classification accuracy; across participants, the mean classification accuracy was 81.5 ± 14% for non-distractor trials, and 78.3 ± 17% for distractor trials. This minimal consequence suggests that the BCI was robust to distractor effects, despite motor imagery-related brain activity being attenuated amid distractors. A BCI system that mitigates distraction-related effects may improve the ease of its use and ultimately facilitate the effective translation of the technology from the lab to the home. Copyright © 2018 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  13. Clinical evaluation of BrainTree, a motor imagery hybrid BCI speller

    NASA Astrophysics Data System (ADS)

    Perdikis, S.; Leeb, R.; Williamson, J.; Ramsay, A.; Tavella, M.; Desideri, L.; Hoogerwerf, E.-J.; Al-Khodairy, A.; Murray-Smith, R.; Millán, J. d. R.

    2014-06-01

    Objective. While brain-computer interfaces (BCIs) for communication have reached considerable technical maturity, there is still a great need for state-of-the-art evaluation by the end-users outside laboratory environments. To achieve this primary objective, it is necessary to augment a BCI with a series of components that allow end-users to type text effectively. Approach. This work presents the clinical evaluation of a motor imagery (MI) BCI text-speller, called BrainTree, by six severely disabled end-users and ten able-bodied users. Additionally, we define a generic model of code-based BCI applications, which serves as an analytical tool for evaluation and design. Main results. We show that all users achieved remarkable usability and efficiency outcomes in spelling. Furthermore, our model-based analysis highlights the added value of human-computer interaction techniques and hybrid BCI error-handling mechanisms, and reveals the effects of BCI performances on usability and efficiency in code-based applications. Significance. This study demonstrates the usability potential of code-based MI spellers, with BrainTree being the first to be evaluated by a substantial number of end-users, establishing them as a viable, competitive alternative to other popular BCI spellers. Another major outcome of our model-based analysis is the derivation of a 80% minimum command accuracy requirement for successful code-based application control, revising upwards previous estimates attempted in the literature.

  14. Effects of Soft Drinks on Resting State EEG and Brain-Computer Interface Performance.

    PubMed

    Meng, Jianjun; Mundahl, John; Streitz, Taylor; Maile, Kaitlin; Gulachek, Nicholas; He, Jeffrey; He, Bin

    2017-01-01

    Motor imagery-based (MI based) brain-computer interface (BCI) using electroencephalography (EEG) allows users to directly control a computer or external device by modulating and decoding the brain waves. A variety of factors could potentially affect the performance of BCI such as the health status of subjects or the environment. In this study, we investigated the effects of soft drinks and regular coffee on EEG signals under resting state and on the performance of MI based BCI. Twenty-six healthy human subjects participated in three or four BCI sessions with a resting period in each session. During each session, the subjects drank an unlabeled soft drink with either sugar (Caffeine Free Coca-Cola), caffeine (Diet Coke), neither ingredient (Caffeine Free Diet Coke), or a regular coffee if there was a fourth session. The resting state spectral power in each condition was compared; the analysis showed that power in alpha and beta band after caffeine consumption were decreased substantially compared to control and sugar condition. Although the attenuation of powers in the frequency range used for the online BCI control signal was shown, group averaged BCI online performance after consuming caffeine was similar to those of other conditions. This work, for the first time, shows the effect of caffeine, sugar intake on the online BCI performance and resting state brain signal.

  15. Towards psychologically adaptive brain-computer interfaces

    NASA Astrophysics Data System (ADS)

    Myrden, A.; Chau, T.

    2016-12-01

    Objective. Brain-computer interface (BCI) performance is sensitive to short-term changes in psychological states such as fatigue, frustration, and attention. This paper explores the design of a BCI that can adapt to these short-term changes. Approach. Eleven able-bodied individuals participated in a study during which they used a mental task-based EEG-BCI to play a simple maze navigation game while self-reporting their perceived levels of fatigue, frustration, and attention. In an offline analysis, a regression algorithm was trained to predict changes in these states, yielding Pearson correlation coefficients in excess of 0.45 between the self-reported and predicted states. Two means of fusing the resultant mental state predictions with mental task classification were investigated. First, single-trial mental state predictions were used to predict correct classification by the BCI during each trial. Second, an adaptive BCI was designed that retrained a new classifier for each testing sample using only those training samples for which predicted mental state was similar to that predicted for the current testing sample. Main results. Mental state-based prediction of BCI reliability exceeded chance levels. The adaptive BCI exhibited significant, but practically modest, increases in classification accuracy for five of 11 participants and no significant difference for the remaining six despite a smaller average training set size. Significance. Collectively, these findings indicate that adaptation to psychological state may allow the design of more accurate BCIs.

  16. Clinical usefulness of brain-computer interface-controlled functional electrical stimulation for improving brain activity in children with spastic cerebral palsy: a pilot randomized controlled trial.

    PubMed

    Kim, Tae-Woo; Lee, Byoung-Hee

    2016-09-01

    [Purpose] Evaluating the effect of brain-computer interface (BCI)-based functional electrical stimulation (FES) training on brain activity in children with spastic cerebral palsy (CP) was the aim of this study. [Subjects and Methods] Subjects were randomized into a BCI-FES group (n=9) and a functional electrical stimulation (FES) control group (n=9). Subjects in the BCI-FES group received wrist and hand extension training with FES for 30 minutes per day, 5 times per week for 6 weeks under the BCI-based program. The FES group received wrist and hand extension training with FES for the same amount of time. Sensorimotor rhythms (SMR) and middle beta waves (M-beta) were measured in frontopolar regions 1 and 2 (Fp1, Fp2) to determine the effects of BCI-FES training. [Results] Significant improvements in the SMR and M-beta of Fp1 and Fp2 were seen in the BCI-FES group. In contrast, significant improvement was only seen in the SMR and M-beta of Fp2 in the control group. [Conclusion] The results of the present study suggest that BCI-controlled FES training may be helpful in improving brain activity in patients with cerebral palsy and may be applied as effectively as traditional FES training.

  17. EEG correlates of P300-based brain-computer interface (BCI) performance in people with amyotrophic lateral sclerosis

    NASA Astrophysics Data System (ADS)

    Mak, Joseph N.; McFarland, Dennis J.; Vaughan, Theresa M.; McCane, Lynn M.; Tsui, Phillippa Z.; Zeitlin, Debra J.; Sellers, Eric W.; Wolpaw, Jonathan R.

    2012-04-01

    The purpose of this study was to identify electroencephalography (EEG) features that correlate with P300-based brain-computer interface (P300 BCI) performance in people with amyotrophic lateral sclerosis (ALS). Twenty people with ALS used a P300 BCI spelling application in copy-spelling mode. Three types of EEG features were found to be good predictors of P300 BCI performance: (1) the root-mean-square amplitude and (2) the negative peak amplitude of the event-related potential to target stimuli (target ERP) at Fz, Cz, P3, Pz, and P4; and (3) EEG theta frequency (4.5-8 Hz) power at Fz, Cz, P3, Pz, P4, PO7, PO8 and Oz. A statistical prediction model that used a subset of these features accounted for >60% of the variance in copy-spelling performance (p < 0.001, mean R2 = 0.6175). The correlations reflected between-subject, rather than within-subject, effects. The results enhance understanding of performance differences among P300 BCI users. The predictors found in this study might help in: (1) identifying suitable candidates for long-term P300 BCI operation; (2) assessing performance online. Further work on within-subject effects needs to be done to establish whether P300 BCI user performance could be improved by optimizing one or more of these EEG features.

  18. Clinical evaluation of BrainTree, a motor imagery hybrid BCI speller.

    PubMed

    Perdikis, S; Leeb, R; Williamson, J; Ramsay, A; Tavella, M; Desideri, L; Hoogerwerf, E-J; Al-Khodairy, A; Murray-Smith, R; Millán, J D R

    2014-06-01

    While brain-computer interfaces (BCIs) for communication have reached considerable technical maturity, there is still a great need for state-of-the-art evaluation by the end-users outside laboratory environments. To achieve this primary objective, it is necessary to augment a BCI with a series of components that allow end-users to type text effectively. This work presents the clinical evaluation of a motor imagery (MI) BCI text-speller, called BrainTree, by six severely disabled end-users and ten able-bodied users. Additionally, we define a generic model of code-based BCI applications, which serves as an analytical tool for evaluation and design. We show that all users achieved remarkable usability and efficiency outcomes in spelling. Furthermore, our model-based analysis highlights the added value of human-computer interaction techniques and hybrid BCI error-handling mechanisms, and reveals the effects of BCI performances on usability and efficiency in code-based applications. This study demonstrates the usability potential of code-based MI spellers, with BrainTree being the first to be evaluated by a substantial number of end-users, establishing them as a viable, competitive alternative to other popular BCI spellers. Another major outcome of our model-based analysis is the derivation of a 80% minimum command accuracy requirement for successful code-based application control, revising upwards previous estimates attempted in the literature.

  19. Evaluate the Feasibility of Using Frontal SSVEP to Implement an SSVEP-Based BCI in Young, Elderly and ALS Groups.

    PubMed

    Hsu, Hao-Teng; Lee, I-Hui; Tsai, Han-Ting; Chang, Hsiang-Chih; Shyu, Kuo-Kai; Hsu, Chuan-Chih; Chang, Hsiao-Huang; Yeh, Ting-Kuang; Chang, Chun-Yen; Lee, Po-Lei

    2016-05-01

    This paper studies the amplitude-frequency characteristic of frontal steady-state visual evoked potential (SSVEP) and its feasibility as a control signal for brain computer interface (BCI). SSVEPs induced by different stimulation frequencies, from 13 ~ 31 Hz in 2 Hz steps, were measured in eight young subjects, eight elders and seven ALS patients. Each subject was requested to participate in a calibration study and an application study. The calibration study was designed to find the amplitude-frequency characteristics of SSVEPs recorded from Oz and Fpz positions, while the application study was designed to test the feasibility of using frontal SSVEP to control a two-command SSVEP-based BCI. The SSVEP amplitude was detected by an epoch-average process which enables artifact-contaminated epochs can be removed. The seven ALS patients were severely impaired, and four patients, who were incapable of completing our BCI task, were excluded from calculation of BCI performance. The averaged accuracies, command transfer intervals and information transfer rates in operating frontal SSVEP-based BCI were 96.1%, 3.43 s/command, and 14.42 bits/min in young subjects; 91.8%, 6.22 s/command, and 6.16 bits/min in elders; 81.2%, 12.14 s/command, and 1.51 bits/min in ALS patients, respectively. The frontal SSVEP could be an alternative choice to design SSVEP-based BCI.

  20. Long-Term Stable Control of Motor-Imagery BCI by a Locked-In User Through Adaptive Assistance.

    PubMed

    Saeedi, Sareh; Chavarriaga, Ricardo; Millan, Jose Del R

    2017-04-01

    Performance variation is one of the main challenges that BCIs are confronted with, when being used over extended periods of time. Shared control techniques could partially cope with such a problem. In this paper, we propose a taxonomy of shared control approaches used for BCIs and we review some of the recent studies at the light of these approaches. We posit that the level of assistance provided to the BCI user should be adjusted in real time in order to enhance BCI reliability over time. This approach has not been extensively studied in the recent literature on BCIs. In addition, we investigate the effectiveness of providing online adaptive assistance in a motor-imagery BCI for a tetraplegic end-user with an incomplete locked-in syndrome in a longitudinal study lasting 11 months. First, we report a reliable estimation of the BCI performance (in terms of command delivery time) using only a window of 1 s in the beginning of trials (AUC ≈ 0.8 ). Second, we demonstrate how adaptive shared control can exploit the output of the performance estimator to adjust online the level of assistance in a BCI game by regulating its speed. In particular, online adaptive assistance was superior to a fixed condition in terms of success rate ( ). Remarkably, the results exhibited a stable performance over severalmonths without recalibration of the BCI classifier or the performance estimator.

  1. Inferring imagined speech using EEG signals: a new approach using Riemannian manifold features

    NASA Astrophysics Data System (ADS)

    Nguyen, Chuong H.; Karavas, George K.; Artemiadis, Panagiotis

    2018-02-01

    Objective. In this paper, we investigate the suitability of imagined speech for brain-computer interface (BCI) applications. Approach. A novel method based on covariance matrix descriptors, which lie in Riemannian manifold, and the relevance vector machines classifier is proposed. The method is applied on electroencephalographic (EEG) signals and tested in multiple subjects. Main results. The method is shown to outperform other approaches in the field with respect to accuracy and robustness. The algorithm is validated on various categories of speech, such as imagined pronunciation of vowels, short words and long words. The classification accuracy of our methodology is in all cases significantly above chance level, reaching a maximum of 70% for cases where we classify three words and 95% for cases of two words. Significance. The results reveal certain aspects that may affect the success of speech imagery classification from EEG signals, such as sound, meaning and word complexity. This can potentially extend the capability of utilizing speech imagery in future BCI applications. The dataset of speech imagery collected from total 15 subjects is also published.

  2. Electroencephalogy (EEG) Feedback in Decision-Making

    DTIC Science & Technology

    2015-08-26

    19   Variability  in  individual  subject   BCI  classification...approach traditionally used in single-trial BCI (Brain-Computer Interface) tasks suggested a similar effect-size and scalp distribution. However...situation. Although nearly all BCI paradigms have used a variant of the RSVP technique, there was no indication in the literature as to why this was

  3. Performance Assessment of a Custom, Portable, and Low-Cost Brain-Computer Interface Platform.

    PubMed

    McCrimmon, Colin M; Fu, Jonathan Lee; Wang, Ming; Lopes, Lucas Silva; Wang, Po T; Karimi-Bidhendi, Alireza; Liu, Charles Y; Heydari, Payam; Nenadic, Zoran; Do, An Hong

    2017-10-01

    Conventional brain-computer interfaces (BCIs) are often expensive, complex to operate, and lack portability, which confines their use to laboratory settings. Portable, inexpensive BCIs can mitigate these problems, but it remains unclear whether their low-cost design compromises their performance. Therefore, we developed a portable, low-cost BCI and compared its performance to that of a conventional BCI. The BCI was assembled by integrating a custom electroencephalogram (EEG) amplifier with an open-source microcontroller and a touchscreen. The function of the amplifier was first validated against a commercial bioamplifier, followed by a head-to-head comparison between the custom BCI (using four EEG channels) and a conventional 32-channel BCI. Specifically, five able-bodied subjects were cued to alternate between hand opening/closing and remaining motionless while the BCI decoded their movement state in real time and provided visual feedback through a light emitting diode. Subjects repeated the above task for a total of 10 trials, and were unaware of which system was being used. The performance in each trial was defined as the temporal correlation between the cues and the decoded states. The EEG data simultaneously acquired with the custom and commercial amplifiers were visually similar and highly correlated ( ρ = 0.79). The decoding performances of the custom and conventional BCIs averaged across trials and subjects were 0.70 ± 0.12 and 0.68 ± 0.10, respectively, and were not significantly different. The performance of our portable, low-cost BCI is comparable to that of the conventional BCIs. Platforms, such as the one developed here, are suitable for BCI applications outside of a laboratory.

  4. A Collaborative Brain-Computer Interface for Improving Human Performance

    PubMed Central

    Wang, Yijun; Jung, Tzyy-Ping

    2011-01-01

    Electroencephalogram (EEG) based brain-computer interfaces (BCI) have been studied since the 1970s. Currently, the main focus of BCI research lies on the clinical use, which aims to provide a new communication channel to patients with motor disabilities to improve their quality of life. However, the BCI technology can also be used to improve human performance for normal healthy users. Although this application has been proposed for a long time, little progress has been made in real-world practices due to technical limits of EEG. To overcome the bottleneck of low single-user BCI performance, this study proposes a collaborative paradigm to improve overall BCI performance by integrating information from multiple users. To test the feasibility of a collaborative BCI, this study quantitatively compares the classification accuracies of collaborative and single-user BCI applied to the EEG data collected from 20 subjects in a movement-planning experiment. This study also explores three different methods for fusing and analyzing EEG data from multiple subjects: (1) Event-related potentials (ERP) averaging, (2) Feature concatenating, and (3) Voting. In a demonstration system using the Voting method, the classification accuracy of predicting movement directions (reaching left vs. reaching right) was enhanced substantially from 66% to 80%, 88%, 93%, and 95% as the numbers of subjects increased from 1 to 5, 10, 15, and 20, respectively. Furthermore, the decision of reaching direction could be made around 100–250 ms earlier than the subject's actual motor response by decoding the ERP activities arising mainly from the posterior parietal cortex (PPC), which are related to the processing of visuomotor transmission. Taken together, these results suggest that a collaborative BCI can effectively fuse brain activities of a group of people to improve the overall performance of natural human behavior. PMID:21655253

  5. A brain-computer interface with vibrotactile biofeedback for haptic information.

    PubMed

    Chatterjee, Aniruddha; Aggarwal, Vikram; Ramos, Ander; Acharya, Soumyadipta; Thakor, Nitish V

    2007-10-17

    It has been suggested that Brain-Computer Interfaces (BCI) may one day be suitable for controlling a neuroprosthesis. For closed-loop operation of BCI, a tactile feedback channel that is compatible with neuroprosthetic applications is desired. Operation of an EEG-based BCI using only vibrotactile feedback, a commonly used method to convey haptic senses of contact and pressure, is demonstrated with a high level of accuracy. A Mu-rhythm based BCI using a motor imagery paradigm was used to control the position of a virtual cursor. The cursor position was shown visually as well as transmitted haptically by modulating the intensity of a vibrotactile stimulus to the upper limb. A total of six subjects operated the BCI in a two-stage targeting task, receiving only vibrotactile biofeedback of performance. The location of the vibration was also systematically varied between the left and right arms to investigate location-dependent effects on performance. Subjects are able to control the BCI using only vibrotactile feedback with an average accuracy of 56% and as high as 72%. These accuracies are significantly higher than the 15% predicted by random chance if the subject had no voluntary control of their Mu-rhythm. The results of this study demonstrate that vibrotactile feedback is an effective biofeedback modality to operate a BCI using motor imagery. In addition, the study shows that placement of the vibrotactile stimulation on the biceps ipsilateral or contralateral to the motor imagery introduces a significant bias in the BCI accuracy. This bias is consistent with a drop in performance generated by stimulation of the contralateral limb. Users demonstrated the capability to overcome this bias with training.

  6. Case report: post-stroke interventional BCI rehabilitation in an individual with preexisting sensorineural disability.

    PubMed

    Young, Brittany M; Nigogosyan, Zack; Nair, Veena A; Walton, Léo M; Song, Jie; Tyler, Mitchell E; Edwards, Dorothy F; Caldera, Kristin; Sattin, Justin A; Williams, Justin C; Prabhakaran, Vivek

    2014-01-01

    Therapies involving new technologies such as brain-computer interfaces (BCI) are being studied to determine their potential for interventional rehabilitation after acute events such as stroke produce lasting impairments. While studies have examined the use of BCI devices by individuals with disabilities, many such devices are intended to address a specific limitation and have been studied when this limitation or disability is present in isolation. Little is known about the therapeutic potential of these devices for individuals with multiple disabilities with an acquired impairment overlaid on a secondary long-standing disability. We describe a case in which a male patient with congenital deafness suffered a right pontine ischemic stroke, resulting in persistent weakness of his left hand and arm. This patient volunteer completed four baseline assessments beginning at 4 months after stroke onset and subsequently underwent 6 weeks of interventional rehabilitation therapy using a closed-loop neurofeedback BCI device with visual, functional electrical stimulation, and tongue stimulation feedback modalities. Additional assessments were conducted at the midpoint of therapy, upon completion of therapy, and 1 month after completing all BCI therapy. Anatomical and functional MRI scans were obtained at each assessment, along with behavioral measures including the Stroke Impact Scale (SIS) and the Action Research Arm Test (ARAT). Clinically significant improvements in behavioral measures were noted over the course of BCI therapy, with more than 10 point gains in both the ARAT scores and scores for the SIS hand function domain. Neuroimaging during finger tapping of the impaired hand also showed changes in brain activation patterns associated with BCI therapy. This case study demonstrates the potential for individuals who have preexisting disability or possible atypical brain organization to learn to use a BCI system that may confer some rehabilitative benefit.

  7. Case report: post-stroke interventional BCI rehabilitation in an individual with preexisting sensorineural disability

    PubMed Central

    Young, Brittany M.; Nigogosyan, Zack; Nair, Veena A.; Walton, Léo M.; Song, Jie; Tyler, Mitchell E.; Edwards, Dorothy F.; Caldera, Kristin; Sattin, Justin A.; Williams, Justin C.; Prabhakaran, Vivek

    2014-01-01

    Therapies involving new technologies such as brain-computer interfaces (BCI) are being studied to determine their potential for interventional rehabilitation after acute events such as stroke produce lasting impairments. While studies have examined the use of BCI devices by individuals with disabilities, many such devices are intended to address a specific limitation and have been studied when this limitation or disability is present in isolation. Little is known about the therapeutic potential of these devices for individuals with multiple disabilities with an acquired impairment overlaid on a secondary long-standing disability. We describe a case in which a male patient with congenital deafness suffered a right pontine ischemic stroke, resulting in persistent weakness of his left hand and arm. This patient volunteer completed four baseline assessments beginning at 4 months after stroke onset and subsequently underwent 6 weeks of interventional rehabilitation therapy using a closed-loop neurofeedback BCI device with visual, functional electrical stimulation, and tongue stimulation feedback modalities. Additional assessments were conducted at the midpoint of therapy, upon completion of therapy, and 1 month after completing all BCI therapy. Anatomical and functional MRI scans were obtained at each assessment, along with behavioral measures including the Stroke Impact Scale (SIS) and the Action Research Arm Test (ARAT). Clinically significant improvements in behavioral measures were noted over the course of BCI therapy, with more than 10 point gains in both the ARAT scores and scores for the SIS hand function domain. Neuroimaging during finger tapping of the impaired hand also showed changes in brain activation patterns associated with BCI therapy. This case study demonstrates the potential for individuals who have preexisting disability or possible atypical brain organization to learn to use a BCI system that may confer some rehabilitative benefit. PMID:25009491

  8. Implantable brain computer interface: challenges to neurotechnology translation.

    PubMed

    Konrad, Peter; Shanks, Todd

    2010-06-01

    This article reviews three concepts related to implantable brain computer interface (BCI) devices being designed for human use: neural signal extraction primarily for motor commands, signal insertion to restore sensation, and technological challenges that remain. A significant body of literature has occurred over the past four decades regarding motor cortex signal extraction for upper extremity movement or computer interface. However, little is discussed regarding postural or ambulation command signaling. Auditory prosthesis research continues to represent the majority of literature on BCI signal insertion. Significant hurdles continue in the technological translation of BCI implants. These include developing a stable neural interface, significantly increasing signal processing capabilities, and methods of data transfer throughout the human body. The past few years, however, have provided extraordinary human examples of BCI implant potential. Despite technological hurdles, proof-of-concept animal and human studies provide significant encouragement that BCI implants may well find their way into mainstream medical practice in the foreseeable future.

  9. Embodiment and Estrangement: Results from a First-in-Human "Intelligent BCI" Trial.

    PubMed

    Gilbert, F; Cook, M; O'Brien, T; Illes, J

    2017-11-11

    While new generations of implantable brain computer interface (BCI) devices are being developed, evidence in the literature about their impact on the patient experience is lagging. In this article, we address this knowledge gap by analysing data from the first-in-human clinical trial to study patients with implanted BCI advisory devices. We explored perceptions of self-change across six patients who volunteered to be implanted with artificially intelligent BCI devices. We used qualitative methodological tools grounded in phenomenology to conduct in-depth, semi-structured interviews. Results show that, on the one hand, BCIs can positively increase a sense of the self and control; on the other hand, they can induce radical distress, feelings of loss of control, and a rupture of patient identity. We conclude by offering suggestions for the proactive creation of preparedness protocols specific to intelligent-predictive and advisory-BCI technologies essential to prevent potential iatrogenic harms.

  10. Soft drink effects on sensorimotor rhythm brain computer interface performance and resting-state spectral power.

    PubMed

    Mundahl, John; Jianjun Meng; He, Jeffrey; Bin He

    2016-08-01

    Brain-computer interface (BCI) systems allow users to directly control computers and other machines by modulating their brain waves. In the present study, we investigated the effect of soft drinks on resting state (RS) EEG signals and BCI control. Eight healthy human volunteers each participated in three sessions of BCI cursor tasks and resting state EEG. During each session, the subjects drank an unlabeled soft drink with either sugar, caffeine, or neither ingredient. A comparison of resting state spectral power shows a substantial decrease in alpha and beta power after caffeine consumption relative to control. Despite attenuation of the frequency range used for the control signal, caffeine average BCI performance was the same as control. Our work provides a useful characterization of caffeine, the world's most popular stimulant, on brain signal frequencies and their effect on BCI performance.

  11. Performance variation in motor imagery brain-computer interface: a brief review.

    PubMed

    Ahn, Minkyu; Jun, Sung Chan

    2015-03-30

    Brain-computer interface (BCI) technology has attracted significant attention over recent decades, and has made remarkable progress. However, BCI still faces a critical hurdle, in that performance varies greatly across and even within subjects, an obstacle that degrades the reliability of BCI systems. Understanding the causes of these problems is important if we are to create more stable systems. In this short review, we report the most recent studies and findings on performance variation, especially in motor imagery-based BCI, which has found that low-performance groups have a less-developed brain network that is incapable of motor imagery. Further, psychological and physiological states influence performance variation within subjects. We propose a possible strategic approach to deal with this variation, which may contribute to improving the reliability of BCI. In addition, the limitations of current work and opportunities for future studies are discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Binaural enhancement for bilateral cochlear implant users.

    PubMed

    Brown, Christopher A

    2014-01-01

    Bilateral cochlear implant (BCI) users receive limited binaural cues and, thus, show little improvement to speech intelligibility from spatial cues. The feasibility of a method for enhancing the binaural cues available to BCI users is investigated. This involved extending interaural differences of levels, which typically are restricted to high frequencies, into the low-frequency region. Speech intelligibility was measured in BCI users listening over headphones and with direct stimulation, with a target talker presented to one side of the head in the presence of a masker talker on the other side. Spatial separation was achieved by applying either naturally occurring binaural cues or enhanced cues. In this listening configuration, BCI patients showed greater speech intelligibility with the enhanced binaural cues than with naturally occurring binaural cues. In some situations, it is possible for BCI users to achieve greater speech intelligibility when binaural cues are enhanced by applying interaural differences of levels in the low-frequency region.

  13. Brain-computer interface after nervous system injury.

    PubMed

    Burns, Alexis; Adeli, Hojjat; Buford, John A

    2014-12-01

    Brain-computer interface (BCI) has proven to be a useful tool for providing alternative communication and mobility to patients suffering from nervous system injury. BCI has been and will continue to be implemented into rehabilitation practices for more interactive and speedy neurological recovery. The most exciting BCI technology is evolving to provide therapeutic benefits by inducing cortical reorganization via neuronal plasticity. This article presents a state-of-the-art review of BCI technology used after nervous system injuries, specifically: amyotrophic lateral sclerosis, Parkinson's disease, spinal cord injury, stroke, and disorders of consciousness. Also presented is transcending, innovative research involving new treatment of neurological disorders. © The Author(s) 2014.

  14. Quadcopter control using a BCI

    NASA Astrophysics Data System (ADS)

    Rosca, S.; Leba, M.; Ionica, A.; Gamulescu, O.

    2018-01-01

    The paper presents how there can be interconnected two ubiquitous elements nowadays. On one hand, the drones, which are increasingly present and integrated into more and more fields of activity, beyond the military applications they come from, moving towards entertainment, real-estate, delivery and so on. On the other hand, unconventional man-machine interfaces, which are generous topics to explore now and in the future. Of these, we chose brain computer interface (BCI), which allows human-machine interaction without requiring any moving elements. The research consists of mathematical modeling and numerical simulation of a drone and a BCI. Then there is presented an application using a Parrot mini-drone and an Emotiv Insight BCI.

  15. Prediction of P300 BCI Aptitude in Severe Motor Impairment

    PubMed Central

    Halder, Sebastian; Ruf, Carolin Anne; Furdea, Adrian; Pasqualotto, Emanuele; De Massari, Daniele; van der Heiden, Linda; Bogdan, Martin; Rosenstiel, Wolfgang; Birbaumer, Niels; Kübler, Andrea; Matuz, Tamara

    2013-01-01

    Brain-computer interfaces (BCIs) provide a non-muscular communication channel for persons with severe motor impairments. Previous studies have shown that the aptitude with which a BCI can be controlled varies from person to person. A reliable predictor of performance could facilitate selection of a suitable BCI paradigm. Eleven severely motor impaired participants performed three sessions of a P300 BCI web browsing task. Before each session auditory oddball data were collected to predict the BCI aptitude of the participants exhibited in the current session. We found a strong relationship of early positive and negative potentials around 200 ms (elicited with the auditory oddball task) with performance. The amplitude of the P2 (r  =  −0.77) and of the N2 (r  =  −0.86) had the strongest correlations. Aptitude prediction using an auditory oddball was successful. The finding that the N2 amplitude is a stronger predictor of performance than P3 amplitude was reproduced after initially showing this effect with a healthy sample of BCI users. This will reduce strain on the end-users by minimizing the time needed to find suitable paradigms and inspire new approaches to improve performance. PMID:24204597

  16. A novel BCI based on ERP components sensitive to configural processing of human faces

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Zhao, Qibin; Jing, Jin; Wang, Xingyu; Cichocki, Andrzej

    2012-04-01

    This study introduces a novel brain-computer interface (BCI) based on an oddball paradigm using stimuli of facial images with loss of configural face information (e.g., inversion of face). To the best of our knowledge, till now the configural processing of human faces has not been applied to BCI but widely studied in cognitive neuroscience research. Our experiments confirm that the face-sensitive event-related potential (ERP) components N170 and vertex positive potential (VPP) have reflected early structural encoding of faces and can be modulated by the configural processing of faces. With the proposed novel paradigm, we investigate the effects of ERP components N170, VPP and P300 on target detection for BCI. An eight-class BCI platform is developed to analyze ERPs and evaluate the target detection performance using linear discriminant analysis without complicated feature extraction processing. The online classification accuracy of 88.7% and information transfer rate of 38.7 bits min-1 using stimuli of inverted faces with only single trial suggest that the proposed paradigm based on the configural processing of faces is very promising for visual stimuli-driven BCI applications.

  17. Motivation modulates the P300 amplitude during brain-computer interface use.

    PubMed

    Kleih, S C; Nijboer, F; Halder, S; Kübler, A

    2010-07-01

    This study examined the effect of motivation as a possible psychological influencing variable on P300 amplitude and performance in a brain-computer interface (BCI) controlled by event-related potentials (ERP). Participants were instructed to copy spell a sentence by attending to cells of a randomly flashing 7*7 matrix. Motivation was manipulated by monetary reward. In two experimental groups participants received 25 (N=11) or 50 (N=11) Euro cent for each correctly selected character; the control group (N=11) was not rewarded. BCI performance was defined as the overall percentage of correctly selected characters (correct response rate=CRR). Participants performed at an average of 99%. At electrode location Cz the P300 amplitude was positively correlated to self-rated motivation. The P300 amplitude of the most motivated participants was significantly higher than that of the least motivated participants. Highly motivated participants were able to communicate correctly faster with the ERP-BCI than less motivated participants. Motivation modulates the P300 amplitude in an ERP-BCI. Motivation may contribute to variance in BCI performance and should be monitored in BCI settings. Copyright 2010 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  18. A novel BCI based on ERP components sensitive to configural processing of human faces.

    PubMed

    Zhang, Yu; Zhao, Qibin; Jin, Jing; Wang, Xingyu; Cichocki, Andrzej

    2012-04-01

    This study introduces a novel brain-computer interface (BCI) based on an oddball paradigm using stimuli of facial images with loss of configural face information (e.g., inversion of face). To the best of our knowledge, till now the configural processing of human faces has not been applied to BCI but widely studied in cognitive neuroscience research. Our experiments confirm that the face-sensitive event-related potential (ERP) components N170 and vertex positive potential (VPP) have reflected early structural encoding of faces and can be modulated by the configural processing of faces. With the proposed novel paradigm, we investigate the effects of ERP components N170, VPP and P300 on target detection for BCI. An eight-class BCI platform is developed to analyze ERPs and evaluate the target detection performance using linear discriminant analysis without complicated feature extraction processing. The online classification accuracy of 88.7% and information transfer rate of 38.7 bits min(-1) using stimuli of inverted faces with only single trial suggest that the proposed paradigm based on the configural processing of faces is very promising for visual stimuli-driven BCI applications.

  19. A sLORETA study for gaze-independent BCI speller.

    PubMed

    Xingwei An; Jinwen Wei; Shuang Liu; Dong Ming

    2017-07-01

    EEG-based BCI (brain-computer-interface) speller, especially gaze-independent BCI speller, has become a hot topic in recent years. It provides direct spelling device by non-muscular method for people with severe motor impairments and with limited gaze movement. Brain needs to conduct both stimuli-driven and stimuli-related attention in fast presented BCI paradigms for such BCI speller applications. Few researchers studied the mechanism of brain response to such fast presented BCI applications. In this study, we compared the distribution of brain activation in visual, auditory, and audio-visual combined stimuli paradigms using sLORETA (standardized low-resolution brain electromagnetic tomography). Between groups comparisons showed the importance of visual and auditory stimuli in audio-visual combined paradigm. They both contribute to the activation of brain regions, with visual stimuli being the predominate stimuli. Visual stimuli related brain region was mainly located at parietal and occipital lobe, whereas response in frontal-temporal lobes might be caused by auditory stimuli. These regions played an important role in audio-visual bimodal paradigms. These new findings are important for future study of ERP speller as well as the mechanism of fast presented stimuli.

  20. Comparison of carcass yields and meat quality between Baicheng-You chickens and Arbor Acres broilers.

    PubMed

    Sarsenbek, A; Wang, T; Zhao, J K; Jiang, W

    2013-10-01

    This study examined carcass yields and meat quality traits between Baicheng-You (BCY) chickens and Arbor Acres (AA) broilers. Thirty birds for each strain were selected and slaughtered at market ages of 49 d for AA broilers and 120 d for BCY. The results showed that BCY chickens had lower dressing (2.99%), semi-evisceration (5.10%), breast muscle (5.80%), and abdominal fat (1.55%) than those for AA broilers (P < 0.05). However, the leg muscle (%) of BCY chickens was greater (3.14%) than that of AA broilers (P < 0.05). The meat pH45min and pH24h value variations of these 2 breeds were within the normal range (5.53-6.70). The meat color density (optical density, OD) of thigh muscle was darker than breast muscles in both strains (P < 0.05). The cooking loss (%) of breast and thigh muscles of BCY chickens (18.81 and 20.20%, respectively) was also significantly lower (P < 0.05) than that of same muscles of AA broilers (26.41 and 27.33%, respectively). The shear force of breast meat in both breeds was lower (P < 0.05) than that of their thigh meat. The moisture of breast muscle of BCY chickens (72.93%) was lower (P < 0.05) than breast muscles of AA broilers (74.43%). The CP content of breast muscles was greater (P < 0.05) than its thigh muscles of same strain, but it had no significant (P > 0.05) difference of CP content in the same muscles of the 2 strains. The intramuscular fat (IMF) content was greater (P < 0.05) in thigh muscles of BCY chickens (6.80%) than those of AA broilers (4.28%), and inosine-5'-monophosphate (IMP) content was greater (P < 0.05) in breast and thigh muscles of BCY chickens (IMP: 3.79 and 1.47 mg/g) than same muscles in AA broilers (1.42 and 0.47 mg/g). In this study, muscle from 120-d-old BCY chickens was judged to have better quality traits with regard to cooking loss, drip loss, contents of IMF, and IMP compared with meat from 42-d-old AA broilers. At the same time, greater carcass yields, greater thigh pH24, and lower IMF content were observed in AA broilers compared with the BCY chickens.

  1. The Role of the Interplay between Stimulus Type and Timing in Explaining BCI-Illiteracy for Visual P300-Based Brain-Computer Interfaces

    PubMed Central

    Carabalona, Roberta

    2017-01-01

    Visual P300-based Brain-Computer Interface (BCI) spellers enable communication or interaction with the environment by flashing elements in a matrix and exploiting consequent changes in end-user's brain activity. Despite research efforts, performance variability and BCI-illiteracy still are critical issues for real world applications. Moreover, there is a quite unaddressed kind of BCI-illiteracy, which becomes apparent when the same end-user operates BCI-spellers intended for different applications: our aim is to understand why some well performers can become BCI-illiterate depending on speller type. We manipulated stimulus type (factor STIM: either characters or icons), color (factor COLOR: white, green) and timing (factor SPEED: fast, slow). Each BCI session consisted of training (without feedback) and performance phase (with feedback), both in copy-spelling. For fast flashing spellers, we observed a performance worsening for white icon-speller. Our findings are consistent with existing results reported on end-users using identical white×fast spellers, indicating independence of worsening trend from users' group. The use of slow stimulation timing shed a new light on the perceptual and cognitive phenomena related to the use of a BCI-speller during both the training and the performance phase. We found a significant STIM main effect for the N1 component on Pz and PO7 during the training phase and on PO8 during the performance phase, whereas in both phases neither the STIM×COLOR interaction nor the COLOR main effect was statistically significant. After collapsing data for factor COLOR, it emerged a statistically significant modulation of N1 amplitude depending to the phase of BCI session: N1 was more negative for icons than for characters both on Pz and PO7 (training), whereas the opposite modulation was observed for PO8 (performance). Results indicate that both feedback and expertise with respect to the stimulus type can modulate the N1 component and that icons require more perceptual analysis. Therefore, fast flashing is likely to be more detrimental for end-users' performance in case of icon-spellers. In conclusion, the interplay between stimulus type and timing seems relevant for a satisfactory and efficient end-user's BCI-experience. PMID:28713233

  2. The Role of the Interplay between Stimulus Type and Timing in Explaining BCI-Illiteracy for Visual P300-Based Brain-Computer Interfaces.

    PubMed

    Carabalona, Roberta

    2017-01-01

    Visual P300-based Brain-Computer Interface (BCI) spellers enable communication or interaction with the environment by flashing elements in a matrix and exploiting consequent changes in end-user's brain activity. Despite research efforts, performance variability and BCI-illiteracy still are critical issues for real world applications. Moreover, there is a quite unaddressed kind of BCI-illiteracy, which becomes apparent when the same end-user operates BCI-spellers intended for different applications: our aim is to understand why some well performers can become BCI-illiterate depending on speller type. We manipulated stimulus type (factor STIM: either characters or icons), color (factor COLOR: white, green) and timing (factor SPEED: fast, slow). Each BCI session consisted of training (without feedback) and performance phase (with feedback), both in copy-spelling. For fast flashing spellers, we observed a performance worsening for white icon-speller. Our findings are consistent with existing results reported on end-users using identical white×fast spellers, indicating independence of worsening trend from users' group. The use of slow stimulation timing shed a new light on the perceptual and cognitive phenomena related to the use of a BCI-speller during both the training and the performance phase. We found a significant STIM main effect for the N1 component on P z and PO 7 during the training phase and on PO 8 during the performance phase, whereas in both phases neither the STIM×COLOR interaction nor the COLOR main effect was statistically significant. After collapsing data for factor COLOR, it emerged a statistically significant modulation of N1 amplitude depending to the phase of BCI session: N1 was more negative for icons than for characters both on P z and PO 7 (training), whereas the opposite modulation was observed for PO 8 (performance). Results indicate that both feedback and expertise with respect to the stimulus type can modulate the N1 component and that icons require more perceptual analysis. Therefore, fast flashing is likely to be more detrimental for end-users' performance in case of icon-spellers. In conclusion, the interplay between stimulus type and timing seems relevant for a satisfactory and efficient end-user's BCI-experience.

  3. Audio-visual feedback improves the BCI performance in the navigational control of a humanoid robot

    PubMed Central

    Tidoni, Emmanuele; Gergondet, Pierre; Kheddar, Abderrahmane; Aglioti, Salvatore M.

    2014-01-01

    Advancement in brain computer interfaces (BCI) technology allows people to actively interact in the world through surrogates. Controlling real humanoid robots using BCI as intuitively as we control our body represents a challenge for current research in robotics and neuroscience. In order to successfully interact with the environment the brain integrates multiple sensory cues to form a coherent representation of the world. Cognitive neuroscience studies demonstrate that multisensory integration may imply a gain with respect to a single modality and ultimately improve the overall sensorimotor performance. For example, reactivity to simultaneous visual and auditory stimuli may be higher than to the sum of the same stimuli delivered in isolation or in temporal sequence. Yet, knowledge about whether audio-visual integration may improve the control of a surrogate is meager. To explore this issue, we provided human footstep sounds as audio feedback to BCI users while controlling a humanoid robot. Participants were asked to steer their robot surrogate and perform a pick-and-place task through BCI-SSVEPs. We found that audio-visual synchrony between footsteps sound and actual humanoid's walk reduces the time required for steering the robot. Thus, auditory feedback congruent with the humanoid actions may improve motor decisions of the BCI's user and help in the feeling of control over it. Our results shed light on the possibility to increase robot's control through the combination of multisensory feedback to a BCI user. PMID:24987350

  4. Feasibility of an ultra-low power digital signal processor platform as a basis for a fully implantable brain-computer interface system.

    PubMed

    Wang, Po T; Gandasetiawan, Keulanna; McCrimmon, Colin M; Karimi-Bidhendi, Alireza; Liu, Charles Y; Heydari, Payam; Nenadic, Zoran; Do, An H

    2016-08-01

    A fully implantable brain-computer interface (BCI) can be a practical tool to restore independence to those affected by spinal cord injury. We envision that such a BCI system will invasively acquire brain signals (e.g. electrocorticogram) and translate them into control commands for external prostheses. The feasibility of such a system was tested by implementing its benchtop analogue, centered around a commercial, ultra-low power (ULP) digital signal processor (DSP, TMS320C5517, Texas Instruments). A suite of signal processing and BCI algorithms, including (de)multiplexing, Fast Fourier Transform, power spectral density, principal component analysis, linear discriminant analysis, Bayes rule, and finite state machine was implemented and tested in the DSP. The system's signal acquisition fidelity was tested and characterized by acquiring harmonic signals from a function generator. In addition, the BCI decoding performance was tested, first with signals from a function generator, and subsequently using human electroencephalogram (EEG) during eyes opening and closing task. On average, the system spent 322 ms to process and analyze 2 s of data. Crosstalk (<;-65 dB) and harmonic distortion (~1%) were minimal. Timing jitter averaged 49 μs per 1000 ms. The online BCI decoding accuracies were 100% for both function generator and EEG data. These results show that a complex BCI algorithm can be executed on an ULP DSP without compromising performance. This suggests that the proposed hardware platform may be used as a basis for future, fully implantable BCI systems.

  5. Asynchronous brain-computer interface for cognitive assessment in people with cerebral palsy

    NASA Astrophysics Data System (ADS)

    Alcaide-Aguirre, R. E.; Warschausky, S. A.; Brown, D.; Aref, A.; Huggins, J. E.

    2017-12-01

    Objective. Typically, clinical measures of cognition require motor or speech responses. Thus, a significant percentage of people with disabilities are not able to complete standardized assessments. This situation could be resolved by employing a more accessible test administration method, such as a brain-computer interface (BCI). A BCI can circumvent motor and speech requirements by translating brain activity to identify a subject’s response. By eliminating the need for motor or speech input, one could use a BCI to assess an individual who previously did not have access to clinical tests. Approach. We developed an asynchronous, event-related potential BCI-facilitated administration procedure for the peabody picture vocabulary test (PPVT-IV). We then tested our system in typically developing individuals (N  =  11), as well as people with cerebral palsy (N  =  19) to compare results to the standardized PPVT-IV format and administration. Main results. Standard scores on the BCI-facilitated PPVT-IV, and the standard PPVT-IV were highly correlated (r  =  0.95, p  <  0.001), with a mean difference of 2.0  ±  6.4 points, which is within the standard error of the PPVT-IV. Significance. Thus, our BCI-facilitated PPVT-IV provided comparable results to the standard PPVT-IV, suggesting that populations for whom standardized cognitive tests are not accessible could benefit from our BCI-facilitated approach.

  6. Beyond intuitive anthropomorphic control: recent achievements using brain computer interface technologies

    NASA Astrophysics Data System (ADS)

    Pohlmeyer, Eric A.; Fifer, Matthew; Rich, Matthew; Pino, Johnathan; Wester, Brock; Johannes, Matthew; Dohopolski, Chris; Helder, John; D'Angelo, Denise; Beaty, James; Bensmaia, Sliman; McLoughlin, Michael; Tenore, Francesco

    2017-05-01

    Brain-computer interface (BCI) research has progressed rapidly, with BCIs shifting from animal tests to human demonstrations of controlling computer cursors and even advanced prosthetic limbs, the latter having been the goal of the Revolutionizing Prosthetics (RP) program. These achievements now include direct electrical intracortical microstimulation (ICMS) of the brain to provide human BCI users feedback information from the sensors of prosthetic limbs. These successes raise the question of how well people would be able to use BCIs to interact with systems that are not based directly on the body (e.g., prosthetic arms), and how well BCI users could interpret ICMS information from such devices. If paralyzed individuals could use BCIs to effectively interact with such non-anthropomorphic systems, it would offer them numerous new opportunities to control novel assistive devices. Here we explore how well a participant with tetraplegia can detect infrared (IR) sources in the environment using a prosthetic arm mounted camera that encodes IR information via ICMS. We also investigate how well a BCI user could transition from controlling a BCI based on prosthetic arm movements to controlling a flight simulator, a system with different physical dynamics than the arm. In that test, the BCI participant used environmental information encoded via ICMS to identify which of several upcoming flight routes was the best option. For both tasks, the BCI user was able to quickly learn how to interpret the ICMSprovided information to achieve the task goals.

  7. [The P300 based brain-computer interface: effect of stimulus position in a stimulus train].

    PubMed

    Ganin, I P; Shishkin, S L; Kochetova, A G; Kaplan, A Ia

    2012-01-01

    The P300 brain-computer interface (BCI) is currently the most efficient BCI. This interface is based on detection of the P300 wave of the brain potentials evoked when a symbol related to the intended input is highlighted. To increase operation speed of the P300 BCI, reduction of the number of stimuli repetitions is needed. This reduction leads to increase of the relative contribution to the input symbol detection from the reaction to the first target stimulus. It is known that the event-related potentials (ERP) to the first stimulus presentations can be different from the ERP to stimuli presented latter. In particular, the amplitude of responses to the first stimulus presentations is often increased, which is beneficial for their recognition by the BCI. However, this effect was not studied within the BCI framework. The current study examined the ERP obtained from healthy participants (n = 14) in the standard P300 BCI paradigm using 10 trials, as well as in the modified P300 BCI with stimuli presented on moving objects in triple-trial (n = 6) and single-trial (n = 6) stimulation modes. Increased ERP amplitude was observed in response to the first target stimuli in both conditions, as well as in the single-trial mode comparing to triple-trial. We discuss the prospects of using the specific features of the ERP to first stimuli and the single-trial ERP for optimizing the high-speed modes in the P300 BCIs.

  8. EEG datasets for motor imagery brain-computer interface.

    PubMed

    Cho, Hohyun; Ahn, Minkyu; Ahn, Sangtae; Kwon, Moonyoung; Jun, Sung Chan

    2017-07-01

    Most investigators of brain-computer interface (BCI) research believe that BCI can be achieved through induced neuronal activity from the cortex, but not by evoked neuronal activity. Motor imagery (MI)-based BCI is one of the standard concepts of BCI, in that the user can generate induced activity by imagining motor movements. However, variations in performance over sessions and subjects are too severe to overcome easily; therefore, a basic understanding and investigation of BCI performance variation is necessary to find critical evidence of performance variation. Here we present not only EEG datasets for MI BCI from 52 subjects, but also the results of a psychological and physiological questionnaire, EMG datasets, the locations of 3D EEG electrodes, and EEGs for non-task-related states. We validated our EEG datasets by using the percentage of bad trials, event-related desynchronization/synchronization (ERD/ERS) analysis, and classification analysis. After conventional rejection of bad trials, we showed contralateral ERD and ipsilateral ERS in the somatosensory area, which are well-known patterns of MI. Finally, we showed that 73.08% of datasets (38 subjects) included reasonably discriminative information. Our EEG datasets included the information necessary to determine statistical significance; they consisted of well-discriminated datasets (38 subjects) and less-discriminative datasets. These may provide researchers with opportunities to investigate human factors related to MI BCI performance variation, and may also achieve subject-to-subject transfer by using metadata, including a questionnaire, EEG coordinates, and EEGs for non-task-related states. © The Authors 2017. Published by Oxford University Press.

  9. Assessing the feasibility of online SSVEP decoding in human walking using a consumer EEG headset.

    PubMed

    Lin, Yuan-Pin; Wang, Yijun; Jung, Tzyy-Ping

    2014-08-09

    Bridging the gap between laboratory brain-computer interface (BCI) demonstrations and real-life applications has gained increasing attention nowadays in translational neuroscience. An urgent need is to explore the feasibility of using a low-cost, ease-of-use electroencephalogram (EEG) headset for monitoring individuals' EEG signals in their natural head/body positions and movements. This study aimed to assess the feasibility of using a consumer-level EEG headset to realize an online steady-state visual-evoked potential (SSVEP)-based BCI during human walking. This study adopted a 14-channel Emotiv EEG headset to implement a four-target online SSVEP decoding system, and included treadmill walking at the speeds of 0.45, 0.89, and 1.34 meters per second (m/s) to initiate the walking locomotion. Seventeen participants were instructed to perform the online BCI tasks while standing or walking on the treadmill. To maintain a constant viewing distance to the visual targets, participants held the hand-grip of the treadmill during the experiment. Along with online BCI performance, the concurrent SSVEP signals were recorded for offline assessment. Despite walking-related attenuation of SSVEPs, the online BCI obtained an information transfer rate (ITR) over 12 bits/min during slow walking (below 0.89 m/s). SSVEP-based BCI systems are deployable to users in treadmill walking that mimics natural walking rather than in highly-controlled laboratory settings. This study considerably promotes the use of a consumer-level EEG headset towards the real-life BCI applications.

  10. Prediction of Auditory and Visual P300 Brain-Computer Interface Aptitude

    PubMed Central

    Halder, Sebastian; Hammer, Eva Maria; Kleih, Sonja Claudia; Bogdan, Martin; Rosenstiel, Wolfgang; Birbaumer, Niels; Kübler, Andrea

    2013-01-01

    Objective Brain-computer interfaces (BCIs) provide a non-muscular communication channel for patients with late-stage motoneuron disease (e.g., amyotrophic lateral sclerosis (ALS)) or otherwise motor impaired people and are also used for motor rehabilitation in chronic stroke. Differences in the ability to use a BCI vary from person to person and from session to session. A reliable predictor of aptitude would allow for the selection of suitable BCI paradigms. For this reason, we investigated whether P300 BCI aptitude could be predicted from a short experiment with a standard auditory oddball. Methods Forty healthy participants performed an electroencephalography (EEG) based visual and auditory P300-BCI spelling task in a single session. In addition, prior to each session an auditory oddball was presented. Features extracted from the auditory oddball were analyzed with respect to predictive power for BCI aptitude. Results Correlation between auditory oddball response and P300 BCI accuracy revealed a strong relationship between accuracy and N2 amplitude and the amplitude of a late ERP component between 400 and 600 ms. Interestingly, the P3 amplitude of the auditory oddball response was not correlated with accuracy. Conclusions Event-related potentials recorded during a standard auditory oddball session moderately predict aptitude in an audiory and highly in a visual P300 BCI. The predictor will allow for faster paradigm selection. Significance Our method will reduce strain on patients because unsuccessful training may be avoided, provided the results can be generalized to the patient population. PMID:23457444

  11. Local and Remote Cooperation With Virtual and Robotic Agents: A P300 BCI Study in Healthy and People Living With Spinal Cord Injury.

    PubMed

    Tidoni, Emmanuele; Abu-Alqumsan, Mohammad; Leonardis, Daniele; Kapeller, Christoph; Fusco, Gabriele; Guger, Cristoph; Hintermuller, Cristoph; Peer, Angelika; Frisoli, Antonio; Tecchia, Franco; Bergamasco, Massimo; Aglioti, Salvatore Maria

    2017-09-01

    The development of technological applications that allow people to control and embody external devices within social interaction settings represents a major goal for current and future brain-computer interface (BCI) systems. Prior research has suggested that embodied systems may ameliorate BCI end-user's experience and accuracy in controlling external devices. Along these lines, we developed an immersive P300-based BCI application with a head-mounted display for virtual-local and robotic-remote social interactions and explored in a group of healthy participants the role of proprioceptive feedback in the control of a virtual surrogate (Study 1). Moreover, we compared the performance of a small group of people with spinal cord injury (SCI) to a control group of healthy subjects during virtual and robotic social interactions (Study 2), where both groups received a proprioceptive stimulation. Our attempt to combine immersive environments, BCI technologies and neuroscience of body ownership suggests that providing realistic multisensory feedback still represents a challenge. Results have shown that healthy and people living with SCI used the BCI within the immersive scenarios with good levels of performance (as indexed by task accuracy, optimizations calls and Information Transfer Rate) and perceived control of the surrogates. Proprioceptive feedback did not contribute to alter performance measures and body ownership sensations. Further studies are necessary to test whether sensorimotor experience represents an opportunity to improve the use of future embodied BCI applications.

  12. Circadian course of the P300 ERP in patients with amyotrophic lateral sclerosis - implications for brain-computer interfaces (BCI).

    PubMed

    Erlbeck, Helena; Mochty, Ursula; Kübler, Andrea; Real, Ruben G L

    2017-01-07

    Accidents or neurodegenerative diseases like amyotrophic lateral sclerosis (ALS) can lead to progressing, extensive, and complete paralysis leaving patients aware but unable to communicate (locked-in state). Brain-computer interfaces (BCI) based on electroencephalography represent an important approach to establish communication with these patients. The most common BCI for communication rely on the P300, a positive deflection arising in response to rare events. To foster broader application of BCIs for restoring lost function, also for end-users with impaired vision, we explored whether there were specific time windows during the day in which a P300 driven BCI should be preferably applied. The present study investigated the influence of time of the day and modality (visual vs. auditory) on P300 amplitude and latency. A sample of 14 patients (end-users) with ALS and 14 healthy age matched volunteers participated in the study and P300 event-related potentials (ERP) were recorded at four different times (10, 12 am, 2, & 4 pm) during the day. Results indicated no differences in P300 amplitudes or latencies between groups (ALS patients v. healthy participants) or time of measurement. In the auditory condition, latencies were shorter and amplitudes smaller as compared to the visual condition. Our findings suggest applicability of EEG/BCI sessions in patients with ALS throughout normal waking hours. Future studies using actual BCI systems are needed to generalize these findings with regard to BCI effectiveness/efficiency and other times of day.

  13. A Multifunctional Brain-Computer Interface Intended for Home Use: An Evaluation with Healthy Participants and Potential End Users with Dry and Gel-Based Electrodes

    PubMed Central

    Käthner, Ivo; Halder, Sebastian; Hintermüller, Christoph; Espinosa, Arnau; Guger, Christoph; Miralles, Felip; Vargiu, Eloisa; Dauwalder, Stefan; Rafael-Palou, Xavier; Solà, Marc; Daly, Jean M.; Armstrong, Elaine; Martin, Suzanne; Kübler, Andrea

    2017-01-01

    Current brain-computer interface (BCIs) software is often tailored to the needs of scientists and technicians and therefore complex to allow for versatile use. To facilitate home use of BCIs a multifunctional P300 BCI with a graphical user interface intended for non-expert set-up and control was designed and implemented. The system includes applications for spelling, web access, entertainment, artistic expression and environmental control. In addition to new software, it also includes new hardware for the recording of electroencephalogram (EEG) signals. The EEG system consists of a small and wireless amplifier attached to a cap that can be equipped with gel-based or dry contact electrodes. The system was systematically evaluated with a healthy sample, and targeted end users of BCI technology, i.e., people with a varying degree of motor impairment tested the BCI in a series of individual case studies. Usability was assessed in terms of effectiveness, efficiency and satisfaction. Feedback of users was gathered with structured questionnaires. Two groups of healthy participants completed an experimental protocol with the gel-based and the dry contact electrodes (N = 10 each). The results demonstrated that all healthy participants gained control over the system and achieved satisfactory to high accuracies with both gel-based and dry electrodes (average error rates of 6 and 13%). Average satisfaction ratings were high, but certain aspects of the system such as the wearing comfort of the dry electrodes and design of the cap, and speed (in both groups) were criticized by some participants. Six potential end users tested the system during supervised sessions. The achieved accuracies varied greatly from no control to high control with accuracies comparable to that of healthy volunteers. Satisfaction ratings of the two end-users that gained control of the system were lower as compared to healthy participants. The advantages and disadvantages of the BCI and its applications are discussed and suggestions are presented for improvements to pave the way for user friendly BCIs intended to be used as assistive technology by persons with severe paralysis. PMID:28588442

  14. A Multifunctional Brain-Computer Interface Intended for Home Use: An Evaluation with Healthy Participants and Potential End Users with Dry and Gel-Based Electrodes.

    PubMed

    Käthner, Ivo; Halder, Sebastian; Hintermüller, Christoph; Espinosa, Arnau; Guger, Christoph; Miralles, Felip; Vargiu, Eloisa; Dauwalder, Stefan; Rafael-Palou, Xavier; Solà, Marc; Daly, Jean M; Armstrong, Elaine; Martin, Suzanne; Kübler, Andrea

    2017-01-01

    Current brain-computer interface (BCIs) software is often tailored to the needs of scientists and technicians and therefore complex to allow for versatile use. To facilitate home use of BCIs a multifunctional P300 BCI with a graphical user interface intended for non-expert set-up and control was designed and implemented. The system includes applications for spelling, web access, entertainment, artistic expression and environmental control. In addition to new software, it also includes new hardware for the recording of electroencephalogram (EEG) signals. The EEG system consists of a small and wireless amplifier attached to a cap that can be equipped with gel-based or dry contact electrodes. The system was systematically evaluated with a healthy sample, and targeted end users of BCI technology, i.e., people with a varying degree of motor impairment tested the BCI in a series of individual case studies. Usability was assessed in terms of effectiveness, efficiency and satisfaction. Feedback of users was gathered with structured questionnaires. Two groups of healthy participants completed an experimental protocol with the gel-based and the dry contact electrodes ( N = 10 each). The results demonstrated that all healthy participants gained control over the system and achieved satisfactory to high accuracies with both gel-based and dry electrodes (average error rates of 6 and 13%). Average satisfaction ratings were high, but certain aspects of the system such as the wearing comfort of the dry electrodes and design of the cap, and speed (in both groups) were criticized by some participants. Six potential end users tested the system during supervised sessions. The achieved accuracies varied greatly from no control to high control with accuracies comparable to that of healthy volunteers. Satisfaction ratings of the two end-users that gained control of the system were lower as compared to healthy participants. The advantages and disadvantages of the BCI and its applications are discussed and suggestions are presented for improvements to pave the way for user friendly BCIs intended to be used as assistive technology by persons with severe paralysis.

  15. From Innovative Programs to Systemic Education Reform: Lesson from Five Communities. The Final Report of the Benchmark Communities Initiative.

    ERIC Educational Resources Information Center

    DeSalvatore, Larry; Goldberger, Susan; Steinberg, Adria

    This document presents the lessons of Jobs for the Future's Benchmark Communities Initiative (BCI), a 5-year systemic educational reform initiative launched in 1994 in five communities. Before joining the BCI, the five Benchmark communities had each begun a school-to-career effort. Five key findings from the BCI are outlined: (1) students engaged…

  16. EDITORIAL: Special section on gaze-independent brain-computer interfaces Special section on gaze-independent brain-computer interfaces

    NASA Astrophysics Data System (ADS)

    Treder, Matthias S.

    2012-08-01

    Restoring the ability to communicate and interact with the environment in patients with severe motor disabilities is a vision that has been the main catalyst of early brain-computer interface (BCI) research. The past decade has brought a diversification of the field. BCIs have been examined as a tool for motor rehabilitation and their benefit in non-medical applications such as mental-state monitoring for improved human-computer interaction and gaming has been confirmed. At the same time, the weaknesses of some approaches have been pointed out. One of these weaknesses is gaze-dependence, that is, the requirement that the user of a BCI system voluntarily directs his or her eye gaze towards a visual target in order to efficiently operate a BCI. This not only contradicts the main doctrine of BCI research, namely that BCIs should be independent of muscle activity, but it can also limit its real-world applicability both in clinical and non-medical settings. It is only in a scenario devoid of any motor activity that a BCI solution is without alternative. Gaze-dependencies have surfaced at two different points in the BCI loop. Firstly, a BCI that relies on visual stimulation may require users to fixate on the target location. Secondly, feedback is often presented visually, which implies that the user may have to move his or her eyes in order to perceive the feedback. This special section was borne out of a BCI workshop on gaze-independent BCIs held at the 2011 Society for Applied Neurosciences (SAN) Conference and has then been extended with additional contributions from other research groups. It compiles experimental and methodological work that aims toward gaze-independent communication and mental-state monitoring. Riccio et al review the current state-of-the-art in research on gaze-independent BCIs [1]. Van der Waal et al present a tactile speller that builds on the stimulation of the fingers of the right and left hand [2]. H¨ohne et al analyze the ergonomic aspects of stimuli and systematic class confusions in auditory BCIs [3]. Andersson et al use fMRI for online-decoding of covert shifts of visual attention [4]. Thurlings et al show that multi-sensory integration of tactile and visual information can enhance the amplitude of ERP components [5]. Schaeff et al investigate the use of motion VEPs in gaze-independent visual BCIs [6]. Wilson et al substitute visual feedback by mapping the screen's cursor onto a tactor grid that stimulates the tongue [7]. Brouwer et al explore the use of ERP features and spectral features for estimating mental workload in an n-back task [8]. Falzon et al extend the Common Spatial Patterns (CSP) method to the complex plane, taking into account both amplitude and phase relationships [9]. Eliseyev et al present a method for the sparse sub-selection of electrodes for classification [10]. Tonin et al demonstrate that the classification of covert attention shifts is improved by considering sub-bands of the alpha band [11]. Aloise et al investigate effects of classification scheme and decimation on the performance of a gaze-independent BCI [12]. References [1] Riccio A et al 2012 J. Neural Eng. 9 045001 [2] van der Waal M et al 2012 J. Neural Eng. 9 045002 [3] Höhne J et al 2012 J. Neural Eng. 9 045003 [4] Andersson P et al 2012 J. Neural Eng. 9 045004 [5] Thurlings M E et al 2012 J. Neural Eng. 9 045005 [6] Schaeff S et al 2012 J. Neural Eng. 9 045006 [7] Wilson J A et al 2012 J. Neural Eng. 9 045007 [8] Brouwer A-M et al 2012 J. Neural Eng. 9 045008 [9] Falzon O et al 2012 J. Neural Eng. 9 045009 [10] Eliseyev A et al 2012 J. Neural Eng. 9 045010 [11] Tonin L et al 2012 J. Neural Eng. 9 045011 [12] Aloise F et al 2012 J. Neural Eng. 9 045012

  17. A UML model for the description of different brain-computer interface systems.

    PubMed

    Quitadamo, Lucia Rita; Abbafati, Manuel; Saggio, Giovanni; Marciani, Maria Grazia; Cardarilli, Gian Carlo; Bianchi, Luigi

    2008-01-01

    BCI research lacks a universal descriptive language among labs and a unique standard model for the description of BCI systems. This results in a serious problem in comparing performances of different BCI processes and in unifying tools and resources. In such a view we implemented a Unified Modeling Language (UML) model for the description virtually of any BCI protocol and we demonstrated that it can be successfully applied to the most common ones such as P300, mu-rhythms, SCP, SSVEP, fMRI. Finally we illustrated the advantages in utilizing a standard terminology for BCIs and how the same basic structure can be successfully adopted for the implementation of new systems.

  18. Simple communication using a SSVEP-based BCI

    NASA Astrophysics Data System (ADS)

    Sanchez, Guillermo; Diez, Pablo F.; Avila, Enrique; Laciar Leber, Eric

    2011-12-01

    Majority of Brain-Computer Interface (BCI) for communication purposes are speller, i.e., the user has to select letter by letter. In this work, is proposed a different approach where the user can select words from a word set designed in order to answer a wide range of questions. The word selection process is commanded by a Steady-state visual evoked potential (SSVEP) based-BCI that allows selecting a word in an average time of 26 s with accuracies of 92% on average. This BCI is focus in the first stages on rehabilitation or even in first moments of some diseases (such as stroke), when the person is eager to communicate with family and doctors.

  19. Noninvasive Electroencephalogram Based Control of a Robotic Arm for Reach and Grasp Tasks

    NASA Astrophysics Data System (ADS)

    Meng, Jianjun; Zhang, Shuying; Bekyo, Angeliki; Olsoe, Jaron; Baxter, Bryan; He, Bin

    2016-12-01

    Brain-computer interface (BCI) technologies aim to provide a bridge between the human brain and external devices. Prior research using non-invasive BCI to control virtual objects, such as computer cursors and virtual helicopters, and real-world objects, such as wheelchairs and quadcopters, has demonstrated the promise of BCI technologies. However, controlling a robotic arm to complete reach-and-grasp tasks efficiently using non-invasive BCI has yet to be shown. In this study, we found that a group of 13 human subjects could willingly modulate brain activity to control a robotic arm with high accuracy for performing tasks requiring multiple degrees of freedom by combination of two sequential low dimensional controls. Subjects were able to effectively control reaching of the robotic arm through modulation of their brain rhythms within the span of only a few training sessions and maintained the ability to control the robotic arm over multiple months. Our results demonstrate the viability of human operation of prosthetic limbs using non-invasive BCI technology.

  20. How stimulation speed affects Event-Related Potentials and BCI performance.

    PubMed

    Höhne, Johannes; Tangermann, Michael

    2012-01-01

    In most paradigms for Brain-Computer Interfaces (BCIs) that are based on Event-Related Potentials (ERPs), stimuli are presented with a pre-defined and constant speed. In order to boost BCI performance by optimizing the parameters of stimulation, this offline study investigates the impact of the stimulus onset asynchrony (SOA) on ERPs and the resulting classification accuracy. The SOA is defined as the time between the onsets of two consecutive stimuli, which represents a measure for stimulation speed. A simple auditory oddball paradigm was tested in 14 SOA conditions with a SOA between 50 ms and 1000 ms. Based on an offline ERP analysis, the BCI performance (quantified by the Information Transfer Rate, ITR in bits/min) was simulated. A great variability in the simulated BCI performance was observed within subjects (N=11). This indicates a potential increase in BCI performance (≥ 1.6 bits/min) for ERP-based paradigms, if the stimulation speed is specified for each user individually.

  1. A novel BCI-controlled pneumatic glove system for home-based neurorehabilitation.

    PubMed

    Coffey, Aodhán L; Leamy, Darren J; Ward, Tomás E

    2014-01-01

    Commercially available devices for Brain-Computer Interface (BCI)-controlled robotic stroke rehabilitation are prohibitively expensive for many researchers who are interested in the topic and physicians who would utilize such a device. Additionally, they are cumbersome and require a technician to operate, increasing the inaccessibility of such devices for home-based robotic stroke rehabilitation therapy. Presented here is the design, implementation and test of an inexpensive, portable and adaptable BCI-controlled hand therapy device. The system utilizes a soft, flexible, pneumatic glove which can be used to deflect the subject's wrist and fingers. Operation is provided by a custom-designed pneumatic circuit. Air flow is controlled by an embedded system, which receives serial port instruction from a PC running real-time BCI software. System tests demonstrate that glove control can be successfully driven by a real-time BCI. A system such as the one described here may be used to explore closed loop neurofeedback rehabilitation in stroke relatively inexpensively and potentially in home environments.

  2. Short progressive muscle relaxation or motor coordination training does not increase performance in a brain-computer interface based on sensorimotor rhythms (SMR).

    PubMed

    Botrel, L; Acqualagna, L; Blankertz, B; Kübler, A

    2017-11-01

    Brain computer interfaces (BCIs) allow for controlling devices through modulation of sensorimotor rhythms (SMR), yet a profound number of users is unable to achieve sufficient accuracy. Here, we investigated if visuo-motor coordination (VMC) training or Jacobsen's progressive muscle relaxation (PMR) prior to BCI use would increase later performance compared to a control group who performed a reading task (CG). Running the study in two different BCI-labs, we achieved a joint sample size of N=154 naïve participants. No significant effect of either intervention (VMC, PMR, control) was found on resulting BCI performance. Relaxation level and visuo-motor performance were associated with later BCI performance in one BCI-lab but not in the other. These mixed results do not indicate a strong potential of VMC or PMR for boosting performance. Yet further research with different training parameters or experimental designs is needed to complete the picture. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Assessment of the Prognostic and Treatment-Predictive Performance of the Combined HOXB13:IL17BR-MGI Gene Expression Signature in the Trans-ATAC Cohort

    DTIC Science & Technology

    2013-12-01

    documentation. REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to...and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of...three BCI-L groups identified two risk populations for both early and late DR with 84% (556/665) of patients having low risk for early DR, and a smaller

  4. Prediction of late distant recurrence in patients with oestrogen-receptor-positive breast cancer: a prospective comparison of the breast-cancer index (BCI) assay, 21-gene recurrence score, and IHC4 in the TransATAC study population.

    PubMed

    Sgroi, Dennis C; Sestak, Ivana; Cuzick, Jack; Zhang, Yi; Schnabel, Catherine A; Schroeder, Brock; Erlander, Mark G; Dunbier, Anita; Sidhu, Kally; Lopez-Knowles, Elena; Goss, Paul E; Dowsett, Mitch

    2013-10-01

    Biomarkers to improve the risk-benefit of extended adjuvant endocrine therapy for late recurrence in patients with oestrogen-receptor-positive breast cancer would be clinically valuable. We compared the prognostic ability of the breast-cancer index (BCI) assay, 21-gene recurrence score (Oncotype DX), and an immunohistochemical prognostic model (IHC4) for both early and late recurrence in patients with oestrogen-receptor-positive, node-negative (N0) disease who took part in the Arimidex, Tamoxifen, Alone or in Combination (ATAC) clinical trial. In this prospective comparison study, we obtained archival tumour blocks from the TransATAC tissue bank from all postmenopausal patients with oestrogen-receptor-positive breast cancer from whom the 21-gene recurrence score and IHC4 values had already been derived. We did BCI analysis in matched samples with sufficient residual RNA using two BCI models-cubic (BCI-C) and linear (BCI-L)-using previously validated cutoffs. We assessed prognostic ability of BCI for distant recurrence over 10 years (the primary endpoint) and compared it with that of the 21-gene recurrence score and IHC4. We also tested the ability of the assays to predict early (0-5 years) and late (5-10 years) distant recurrence. To assess the ability of the biomarkers to predict recurrence beyond standard clinicopathological variables, we calculated the change in the likelihood-ratio χ(2) (LR-Δχ(2)) from Cox proportional hazards models. Suitable tissue was available from 665 patients with oestrogen-receptor-positive, N0 breast cancer for BCI analysis. The primary analysis showed significant differences in risk of distant recurrence over 10 years in the categorical BCI-C risk groups (p<0·0001) with 6·8% (95% CI 4·4-10·0) of patients in the low-risk group, 17·3% (12·0-24·7) in the intermediate group, and 22·2% (15·3-31·5) in the high-risk group having distant recurrence. The secondary analysis showed that BCI-L was a much stronger predictor for overall (0-10 year) distant recurrence compared with BCI-C (interquartile HR 2·30 [95% CI 1·62-3·27]; LR-Δχ(2)=22·69; p<0·0001). When compared with BCI-L, the 21-gene recurrence score was less predictive (HR 1·48 [95% CI 1·22-1·78]; LR-Δχ(2)=13·68; p=0·0002) and IHC4 was similar (HR 1·69 [95% CI 1·51-2·56]; LR-Δχ(2)=22·83; p<0·0001). All further analyses were done with the BCI-L model. In a multivariable analysis, all assays had significant prognostic ability for early distant recurrence (BCI-L HR 2·77 [95% CI 1·63-4·70], LR-Δχ(2)=15·42, p<0·0001; 21-gene recurrence score HR 1·80 [1·42-2·29], LR-Δχ(2)=18·48, p<0·0001; IHC4 HR 2·90 [2·01-4·18], LR-Δχ(2)=29·14, p<0·0001); however, only BCI-L was significant for late distant recurrence (BCI-L HR 1·95 [95% CI 1·22-3·14], LR-Δχ(2)=7·97, p=0·0048; 21-gene recurrence score HR 1·13 [0·82-1·56], LR-Δχ(2)=0·48, p=0·47; IHC4 HR 1·30 [0·88-1·94], LR-Δχ(2)=1·59, p=0·20). BCI-L was the only significant prognostic test for risk of both early and late distant recurrence and identified two risk populations for each timeframe. It could help to identify patients at high risk for late distant recurrence who might benefit from extended endocrine or other therapy. Avon Foundation, National Institutes of Health, Breast Cancer Foundation, US Department of Defense Breast Cancer Research Program, Susan G Komen for the Cure, Breakthrough Breast Cancer through the Mary-Jean Mitchell Green Foundation, AstraZeneca, Cancer Research UK, and the National Institute for Health Research Biomedical Research Centre at the Royal Marsden (London, UK). Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. A self-paced motor imagery based brain-computer interface for robotic wheelchair control.

    PubMed

    Tsui, Chun Sing Louis; Gan, John Q; Hu, Huosheng

    2011-10-01

    This paper presents a simple self-paced motor imagery based brain-computer interface (BCI) to control a robotic wheelchair. An innovative control protocol is proposed to enable a 2-class self-paced BCI for wheelchair control, in which the user makes path planning and fully controls the wheelchair except for the automatic obstacle avoidance based on a laser range finder when necessary. In order for the users to train their motor imagery control online safely and easily, simulated robot navigation in a specially designed environment was developed. This allowed the users to practice motor imagery control with the core self-paced BCI system in a simulated scenario before controlling the wheelchair. The self-paced BCI can then be applied to control a real robotic wheelchair using a protocol similar to that controlling the simulated robot. Our emphasis is on allowing more potential users to use the BCI controlled wheelchair with minimal training; a simple 2-class self paced system is adequate with the novel control protocol, resulting in a better transition from offline training to online control. Experimental results have demonstrated the usefulness of the online practice under the simulated scenario, and the effectiveness of the proposed self-paced BCI for robotic wheelchair control.

  6. Evaluating brain-computer interface performance using color in the P300 checkerboard speller.

    PubMed

    Ryan, D B; Townsend, G; Gates, N A; Colwell, K; Sellers, E W

    2017-10-01

    Current Brain-Computer Interface (BCI) systems typically flash an array of items from grey to white (GW). The objective of this study was to evaluate BCI performance using uniquely colored stimuli. In addition to the GW stimuli, the current study tested two types of color stimuli (grey to color [GC] and color intensification [CI]). The main hypotheses were that in a checkboard paradigm, unique color stimuli will: (1) increase BCI performance over the standard GW paradigm; (2) elicit larger event-related potentials (ERPs); and, (3) improve offline performance with an electrode selection algorithm (i.e., Jumpwise). Online results (n=36) showed that GC provides higher accuracy and information transfer rate than the CI and GW conditions. Waveform analysis showed that GC produced higher amplitude ERPs than CI and GW. Information transfer rate was improved by the Jumpwise-selected channel locations in all conditions. Unique color stimuli (GC) improved BCI performance and enhanced ERPs. Jumpwise-selected electrode locations improved offline performance. These results show that in a checkerboard paradigm, unique color stimuli increase BCI performance, are preferred by participants, and are important to the design of end-user applications; thus, could lead to an increase in end-user performance and acceptance of BCI technology. Copyright © 2017 International Federation of Clinical Neurophysiology. All rights reserved.

  7. Robust artifactual independent component classification for BCI practitioners.

    PubMed

    Winkler, Irene; Brandl, Stephanie; Horn, Franziska; Waldburger, Eric; Allefeld, Carsten; Tangermann, Michael

    2014-06-01

    EEG artifacts of non-neural origin can be separated from neural signals by independent component analysis (ICA). It is unclear (1) how robustly recently proposed artifact classifiers transfer to novel users, novel paradigms or changed electrode setups, and (2) how artifact cleaning by a machine learning classifier impacts the performance of brain-computer interfaces (BCIs). Addressing (1), the robustness of different strategies with respect to the transfer between paradigms and electrode setups of a recently proposed classifier is investigated on offline data from 35 users and 3 EEG paradigms, which contain 6303 expert-labeled components from two ICA and preprocessing variants. Addressing (2), the effect of artifact removal on single-trial BCI classification is estimated on BCI trials from 101 users and 3 paradigms. We show that (1) the proposed artifact classifier generalizes to completely different EEG paradigms. To obtain similar results under massively reduced electrode setups, a proposed novel strategy improves artifact classification. Addressing (2), ICA artifact cleaning has little influence on average BCI performance when analyzed by state-of-the-art BCI methods. When slow motor-related features are exploited, performance varies strongly between individuals, as artifacts may obstruct relevant neural activity or are inadvertently used for BCI control. Robustness of the proposed strategies can be reproduced by EEG practitioners as the method is made available as an EEGLAB plug-in.

  8. Control-display mapping in brain-computer interfaces.

    PubMed

    Thurlings, Marieke E; van Erp, Jan B F; Brouwer, Anne-Marie; Blankertz, Benjamin; Werkhoven, Peter

    2012-01-01

    Event-related potential (ERP) based brain-computer interfaces (BCIs) employ differences in brain responses to attended and ignored stimuli. When using a tactile ERP-BCI for navigation, mapping is required between navigation directions on a visual display and unambiguously corresponding tactile stimuli (tactors) from a tactile control device: control-display mapping (CDM). We investigated the effect of congruent (both display and control horizontal or both vertical) and incongruent (vertical display, horizontal control) CDMs on task performance, the ERP and potential BCI performance. Ten participants attended to a target (determined via CDM), in a stream of sequentially vibrating tactors. We show that congruent CDM yields best task performance, enhanced the P300 and results in increased estimated BCI performance. This suggests a reduced availability of attentional resources when operating an ERP-BCI with incongruent CDM. Additionally, we found an enhanced N2 for incongruent CDM, which indicates a conflict between visual display and tactile control orientations. Incongruency in control-display mapping reduces task performance. In this study, brain responses, task and system performance are related to (in)congruent mapping of command options and the corresponding stimuli in a brain-computer interface (BCI). Directional congruency reduces task errors, increases available attentional resources, improves BCI performance and thus facilitates human-computer interaction.

  9. Online adaptation of a c-VEP Brain-computer Interface(BCI) based on error-related potentials and unsupervised learning.

    PubMed

    Spüler, Martin; Rosenstiel, Wolfgang; Bogdan, Martin

    2012-01-01

    The goal of a Brain-Computer Interface (BCI) is to control a computer by pure brain activity. Recently, BCIs based on code-modulated visual evoked potentials (c-VEPs) have shown great potential to establish high-performance communication. In this paper we present a c-VEP BCI that uses online adaptation of the classifier to reduce calibration time and increase performance. We compare two different approaches for online adaptation of the system: an unsupervised method and a method that uses the detection of error-related potentials. Both approaches were tested in an online study, in which an average accuracy of 96% was achieved with adaptation based on error-related potentials. This accuracy corresponds to an average information transfer rate of 144 bit/min, which is the highest bitrate reported so far for a non-invasive BCI. In a free-spelling mode, the subjects were able to write with an average of 21.3 error-free letters per minute, which shows the feasibility of the BCI system in a normal-use scenario. In addition we show that a calibration of the BCI system solely based on the detection of error-related potentials is possible, without knowing the true class labels.

  10. Near infrared spectroscopy based brain-computer interface

    NASA Astrophysics Data System (ADS)

    Ranganatha, Sitaram; Hoshi, Yoko; Guan, Cuntai

    2005-04-01

    A brain-computer interface (BCI) provides users with an alternative output channel other than the normal output path of the brain. BCI is being given much attention recently as an alternate mode of communication and control for the disabled, such as patients suffering from Amyotrophic Lateral Sclerosis (ALS) or "locked-in". BCI may also find applications in military, education and entertainment. Most of the existing BCI systems which rely on the brain's electrical activity use scalp EEG signals. The scalp EEG is an inherently noisy and non-linear signal. The signal is detrimentally affected by various artifacts such as the EOG, EMG, ECG and so forth. EEG is cumbersome to use in practice, because of the need for applying conductive gel, and the need for the subject to be immobile. There is an urgent need for a more accessible interface that uses a more direct measure of cognitive function to control an output device. The optical response of Near Infrared Spectroscopy (NIRS) denoting brain activation can be used as an alternative to electrical signals, with the intention of developing a more practical and user-friendly BCI. In this paper, a new method of brain-computer interface (BCI) based on NIRS is proposed. Preliminary results of our experiments towards developing this system are reported.

  11. Single-trial effective brain connectivity patterns enhance discriminability of mental imagery tasks

    NASA Astrophysics Data System (ADS)

    Rathee, Dheeraj; Cecotti, Hubert; Prasad, Girijesh

    2017-10-01

    Objective. The majority of the current approaches of connectivity based brain-computer interface (BCI) systems focus on distinguishing between different motor imagery (MI) tasks. Brain regions associated with MI are anatomically close to each other, hence these BCI systems suffer from low performances. Our objective is to introduce single-trial connectivity feature based BCI system for cognition imagery (CI) based tasks wherein the associated brain regions are located relatively far away as compared to those for MI. Approach. We implemented time-domain partial Granger causality (PGC) for the estimation of the connectivity features in a BCI setting. The proposed hypothesis has been verified with two publically available datasets involving MI and CI tasks. Main results. The results support the conclusion that connectivity based features can provide a better performance than a classical signal processing framework based on bandpass features coupled with spatial filtering for CI tasks, including word generation, subtraction, and spatial navigation. These results show for the first time that connectivity features can provide a reliable performance for imagery-based BCI system. Significance. We show that single-trial connectivity features for mixed imagery tasks (i.e. combination of CI and MI) can outperform the features obtained by current state-of-the-art method and hence can be successfully applied for BCI applications.

  12. Classification of brain signals associated with imagination of hand grasping, opening and reaching by means of wavelet-based common spatial pattern and mutual information.

    PubMed

    Amanpour, Behzad; Erfanian, Abbas

    2013-01-01

    An important issue in designing a practical brain-computer interface (BCI) is the selection of mental tasks to be imagined. Different types of mental tasks have been used in BCI including left, right, foot, and tongue motor imageries. However, the mental tasks are different from the actions to be controlled by the BCI. It is desirable to select a mental task to be consistent with the desired action to be performed by BCI. In this paper, we investigated the detecting the imagination of the hand grasping, hand opening, and hand reaching in one hand using electroencephalographic (EEG) signals. The results show that the ERD/ERS patterns, associated with the imagination of hand grasping, opening, and reaching are different. For classification of brain signals associated with these mental tasks and feature extraction, a method based on wavelet packet, regularized common spatial pattern (CSP), and mutual information is proposed. The results of an offline analysis on five subjects show that the two-class mental tasks can be classified with an average accuracy of 77.6% using proposed method. In addition, we examine the proposed method on datasets IVa from BCI Competition III and IIa from BCI Competition IV.

  13. A Discussion of Possibility of Reinforcement Learning Using Event-Related Potential in BCI

    NASA Astrophysics Data System (ADS)

    Yamagishi, Yuya; Tsubone, Tadashi; Wada, Yasuhiro

    Recently, Brain computer interface (BCI) which is a direct connecting pathway an external device such as a computer or a robot and a human brain have gotten a lot of attention. Since BCI can control the machines as robots by using the brain activity without using the voluntary muscle, the BCI may become a useful communication tool for handicapped persons, for instance, amyotrophic lateral sclerosis patients. However, in order to realize the BCI system which can perform precise tasks on various environments, it is necessary to design the control rules to adapt to the dynamic environments. Reinforcement learning is one approach of the design of the control rule. If this reinforcement leaning can be performed by the brain activity, it leads to the attainment of BCI that has general versatility. In this research, we paid attention to P300 of event-related potential as an alternative signal of the reward of reinforcement learning. We discriminated between the success and the failure trials from P300 of the EEG of the single trial by using the proposed discrimination algorithm based on Support vector machine. The possibility of reinforcement learning was examined from the viewpoint of the number of discriminated trials. It was shown that there was a possibility to be able to learn in most subjects.

  14. Effect of a combination of flip and zooming stimuli on the performance of a visual brain-computer interface for spelling.

    PubMed

    Cheng, Jiao; Jin, Jing; Daly, Ian; Zhang, Yu; Wang, Bei; Wang, Xingyu; Cichocki, Andrzej

    2018-02-13

    Brain-computer interface (BCI) systems can allow their users to communicate with the external world by recognizing intention directly from their brain activity without the assistance of the peripheral motor nervous system. The P300-speller is one of the most widely used visual BCI applications. In previous studies, a flip stimulus (rotating the background area of the character) that was based on apparent motion, suffered from less refractory effects. However, its performance was not improved significantly. In addition, a presentation paradigm that used a "zooming" action (changing the size of the symbol) has been shown to evoke relatively higher P300 amplitudes and obtain a better BCI performance. To extend this method of stimuli presentation within a BCI and, consequently, to improve BCI performance, we present a new paradigm combining both the flip stimulus with a zooming action. This new presentation modality allowed BCI users to focus their attention more easily. We investigated whether such an action could combine the advantages of both types of stimuli presentation to bring a significant improvement in performance compared to the conventional flip stimulus. The experimental results showed that the proposed paradigm could obtain significantly higher classification accuracies and bit rates than the conventional flip paradigm (p<0.01).

  15. Stimulus specificity of a steady-state visual-evoked potential-based brain-computer interface.

    PubMed

    Ng, Kian B; Bradley, Andrew P; Cunnington, Ross

    2012-06-01

    The mechanisms of neural excitation and inhibition when given a visual stimulus are well studied. It has been established that changing stimulus specificity such as luminance contrast or spatial frequency can alter the neuronal activity and thus modulate the visual-evoked response. In this paper, we study the effect that stimulus specificity has on the classification performance of a steady-state visual-evoked potential-based brain-computer interface (SSVEP-BCI). For example, we investigate how closely two visual stimuli can be placed before they compete for neural representation in the cortex and thus influence BCI classification accuracy. We characterize stimulus specificity using the four stimulus parameters commonly encountered in SSVEP-BCI design: temporal frequency, spatial size, number of simultaneously displayed stimuli and their spatial proximity. By varying these quantities and measuring the SSVEP-BCI classification accuracy, we are able to determine the parameters that provide optimal performance. Our results show that superior SSVEP-BCI accuracy is attained when stimuli are placed spatially more than 5° apart, with size that subtends at least 2° of visual angle, when using a tagging frequency of between high alpha and beta band. These findings may assist in deciding the stimulus parameters for optimal SSVEP-BCI design.

  16. Stimulus specificity of a steady-state visual-evoked potential-based brain-computer interface

    NASA Astrophysics Data System (ADS)

    Ng, Kian B.; Bradley, Andrew P.; Cunnington, Ross

    2012-06-01

    The mechanisms of neural excitation and inhibition when given a visual stimulus are well studied. It has been established that changing stimulus specificity such as luminance contrast or spatial frequency can alter the neuronal activity and thus modulate the visual-evoked response. In this paper, we study the effect that stimulus specificity has on the classification performance of a steady-state visual-evoked potential-based brain-computer interface (SSVEP-BCI). For example, we investigate how closely two visual stimuli can be placed before they compete for neural representation in the cortex and thus influence BCI classification accuracy. We characterize stimulus specificity using the four stimulus parameters commonly encountered in SSVEP-BCI design: temporal frequency, spatial size, number of simultaneously displayed stimuli and their spatial proximity. By varying these quantities and measuring the SSVEP-BCI classification accuracy, we are able to determine the parameters that provide optimal performance. Our results show that superior SSVEP-BCI accuracy is attained when stimuli are placed spatially more than 5° apart, with size that subtends at least 2° of visual angle, when using a tagging frequency of between high alpha and beta band. These findings may assist in deciding the stimulus parameters for optimal SSVEP-BCI design.

  17. Effect of biased feedback on motor imagery learning in BCI-teleoperation system.

    PubMed

    Alimardani, Maryam; Nishio, Shuichi; Ishiguro, Hiroshi

    2014-01-01

    Feedback design is an important issue in motor imagery BCI systems. Regardless, to date it has not been reported how feedback presentation can optimize co-adaptation between a human brain and such systems. This paper assesses the effect of realistic visual feedback on users' BCI performance and motor imagery skills. We previously developed a tele-operation system for a pair of humanlike robotic hands and showed that BCI control of such hands along with first-person perspective visual feedback of movements can arouse a sense of embodiment in the operators. In the first stage of this study, we found that the intensity of this ownership illusion was associated with feedback presentation and subjects' performance during BCI motion control. In the second stage, we probed the effect of positive and negative feedback bias on subjects' BCI performance and motor imagery skills. Although the subject specific classifier, which was set up at the beginning of experiment, detected no significant change in the subjects' online performance, evaluation of brain activity patterns revealed that subjects' self-regulation of motor imagery features improved due to a positive bias of feedback and a possible occurrence of ownership illusion. Our findings suggest that in general training protocols for BCIs, manipulation of feedback can play an important role in the optimization of subjects' motor imagery skills.

  18. Near-infrared spectroscopy (NIRS)-based eyes-closed brain-computer interface (BCI) using prefrontal cortex activation due to mental arithmetic

    PubMed Central

    Shin, Jaeyoung; Müller, Klaus-R; Hwang, Han-Jeong

    2016-01-01

    We propose a near-infrared spectroscopy (NIRS)-based brain-computer interface (BCI) that can be operated in eyes-closed (EC) state. To evaluate the feasibility of NIRS-based EC BCIs, we compared the performance of an eye-open (EO) BCI paradigm and an EC BCI paradigm with respect to hemodynamic response and classification accuracy. To this end, subjects performed either mental arithmetic or imagined vocalization of the English alphabet as a baseline task with very low cognitive loading. The performances of two linear classifiers were compared; resulting in an advantage of shrinkage linear discriminant analysis (LDA). The classification accuracy of EC paradigm (75.6 ± 7.3%) was observed to be lower than that of EO paradigm (77.0 ± 9.2%), which was statistically insignificant (p = 0.5698). Subjects reported they felt it more comfortable (p = 0.057) and easier (p < 0.05) to perform the EC BCI tasks. The different task difficulty may become a cause of the slightly lower classification accuracy of EC data. From the analysis results, we could confirm the feasibility of NIRS-based EC BCIs, which can be a BCI option that may ultimately be of use for patients who cannot keep their eyes open consistently. PMID:27824089

  19. Robotic and Virtual Reality BCIs Using Spatial Tactile and Auditory Oddball Paradigms

    PubMed Central

    Rutkowski, Tomasz M.

    2016-01-01

    The paper reviews nine robotic and virtual reality (VR) brain–computer interface (BCI) projects developed by the author, in collaboration with his graduate students, within the BCI–lab research group during its association with University of Tsukuba, Japan. The nine novel approaches are discussed in applications to direct brain-robot and brain-virtual-reality-agent control interfaces using tactile and auditory BCI technologies. The BCI user intentions are decoded from the brainwaves in realtime using a non-invasive electroencephalography (EEG) and they are translated to a symbiotic robot or virtual reality agent thought-based only control. A communication protocol between the BCI output and the robot or the virtual environment is realized in a symbiotic communication scenario using an user datagram protocol (UDP), which constitutes an internet of things (IoT) control scenario. Results obtained from healthy users reproducing simple brain-robot and brain-virtual-agent control tasks in online experiments support the research goal of a possibility to interact with robotic devices and virtual reality agents using symbiotic thought-based BCI technologies. An offline BCI classification accuracy boosting method, using a previously proposed information geometry derived approach, is also discussed in order to further support the reviewed robotic and virtual reality thought-based control paradigms. PMID:27999538

  20. Near-infrared spectroscopy (NIRS)-based eyes-closed brain-computer interface (BCI) using prefrontal cortex activation due to mental arithmetic.

    PubMed

    Shin, Jaeyoung; Müller, Klaus-R; Hwang, Han-Jeong

    2016-11-08

    We propose a near-infrared spectroscopy (NIRS)-based brain-computer interface (BCI) that can be operated in eyes-closed (EC) state. To evaluate the feasibility of NIRS-based EC BCIs, we compared the performance of an eye-open (EO) BCI paradigm and an EC BCI paradigm with respect to hemodynamic response and classification accuracy. To this end, subjects performed either mental arithmetic or imagined vocalization of the English alphabet as a baseline task with very low cognitive loading. The performances of two linear classifiers were compared; resulting in an advantage of shrinkage linear discriminant analysis (LDA). The classification accuracy of EC paradigm (75.6 ± 7.3%) was observed to be lower than that of EO paradigm (77.0 ± 9.2%), which was statistically insignificant (p = 0.5698). Subjects reported they felt it more comfortable (p = 0.057) and easier (p < 0.05) to perform the EC BCI tasks. The different task difficulty may become a cause of the slightly lower classification accuracy of EC data. From the analysis results, we could confirm the feasibility of NIRS-based EC BCIs, which can be a BCI option that may ultimately be of use for patients who cannot keep their eyes open consistently.

  1. An online EEG BCI based on covert visuospatial attention in absence of exogenous stimulation

    NASA Astrophysics Data System (ADS)

    Tonin, L.; Leeb, R.; Sobolewski, A.; Millán, J. del R.

    2013-10-01

    Objective. In this work we present—for the first time—the online operation of an electroencephalogram (EEG) brain-computer interface (BCI) system based on covert visuospatial attention (CVSA), without relying on any evoked responses. Electrophysiological correlates of pure top-down CVSA have only recently been proposed as a control signal for BCI. Such systems are expected to share the ease of use of stimulus-driven BCIs (e.g. P300, steady state visually evoked potential) with the autonomy afforded by decoding voluntary modulations of ongoing activity (e.g. motor imagery). Approach. Eight healthy subjects participated in the study. EEG signals were acquired with an active 64-channel system. The classification method was based on a time-dependent approach tuned to capture the most discriminant spectral features of the temporal evolution of attentional processes. The system was used by all subjects over two days without retraining, to verify its robustness and reliability. Main results. We report a mean online accuracy across the group of 70.6 ± 1.5%, and 88.8 ± 5.8% for the best subject. Half of the participants produced stable features over the entire duration of the study. Additionally, we explain drops in performance in subjects showing stable features in terms of known electrophysiological correlates of fatigue, suggesting the prospect of online monitoring of mental states in BCI systems. Significance. This work represents the first demonstration of the feasibility of an online EEG BCI based on CVSA. The results achieved suggest the CVSA BCI as a promising alternative to standard BCI modalities.

  2. Speaking and cognitive distractions during EEG-based brain control of a virtual neuroprosthesis-arm.

    PubMed

    Foldes, Stephen T; Taylor, Dawn M

    2013-12-21

    Brain-computer interface (BCI) systems have been developed to provide paralyzed individuals the ability to command the movements of an assistive device using only their brain activity. BCI systems are typically tested in a controlled laboratory environment were the user is focused solely on the brain-control task. However, for practical use in everyday life people must be able to use their brain-controlled device while mentally engaged with the cognitive responsibilities of daily activities and while compensating for any inherent dynamics of the device itself. BCIs that use electroencephalography (EEG) for movement control are often assumed to require significant mental effort, thus preventing users from thinking about anything else while using their BCI. This study tested the impact of cognitive load as well as speaking on the ability to use an EEG-based BCI. Six participants controlled the two-dimensional (2D) movements of a simulated neuroprosthesis-arm under three different levels of cognitive distraction. The two higher cognitive load conditions also required simultaneously speaking during BCI use. On average, movement performance declined during higher levels of cognitive distraction, but only by a limited amount. Movement completion time increased by 7.2%, the percentage of targets successfully acquired declined by 11%, and path efficiency declined by 8.6%. Only the decline in percentage of targets acquired and path efficiency were statistically significant (p < 0.05). People who have relatively good movement control of an EEG-based BCI may be able to speak and perform other cognitively engaging activities with only a minor drop in BCI-control performance.

  3. Control of a nursing bed based on a hybrid brain-computer interface.

    PubMed

    Nengneng Peng; Rui Zhang; Haihua Zeng; Fei Wang; Kai Li; Yuanqing Li; Xiaobin Zhuang

    2016-08-01

    In this paper, we propose an intelligent nursing bed system which is controlled by a hybrid brain-computer interface (BCI) involving steady-state visual evoked potential (SSVEP) and P300. Specifically, the hybrid BCI includes an asynchronous brain switch based on SSVEP and P300, and a P300-based BCI. The brain switch is used to turn on/off the control system of the electric nursing bed through idle/control state detection, whereas the P300-based BCI is for operating the nursing bed. At the beginning, the user may focus on one group of flashing buttons in the graphic user interface (GUI) of the brain switch, which can simultaneously evoke SSVEP and P300, to switch on the control system. Here, the combination of SSVEP and P300 is used for improving the performance of the brain switch. Next, the user can control the nursing bed using the P300-based BCI. The GUI of the P300-based BCI includes 10 flashing buttons, which correspond to 10 functional operations, namely, left-side up, left-side down, back up, back down, bedpan open, bedpan close, legs up, legs down, right-side up, and right-side down. For instance, he/she can focus on the flashing button "back up" in the GUI of the P300-based BCI to activate the corresponding control such that the nursing bed is adjusted up. Eight healthy subjects participated in our experiment, and obtained an average accuracy of 93.75% and an average false positive rate (FPR) of 0.15 event/min. The effectiveness of our system was thus demonstrated.

  4. An improved P300 pattern in BCI to catch user’s attention

    NASA Astrophysics Data System (ADS)

    Jin, Jing; Zhang, Hanhan; Daly, Ian; Wang, Xingyu; Cichocki, Andrzej

    2017-06-01

    Objective. Brain-computer interfaces (BCIs) can help patients who have lost control over most muscles but are still conscious and able to communicate or interact with the environment. One of the most popular types of BCI is the P300-based BCI. With this BCI, users are asked to count the number of appearances of target stimuli in an experiment. To date, the majority of visual P300-based BCI systems developed have used the same character or picture as the target for every stimulus presentation, which can bore users. Consequently, users attention may decrease or be negatively affected by adjacent stimuli. Approach. In this study, a new stimulus is presented to increase user concentration. Honeycomb-shaped figures with 1-3 red dots were used as stimuli. The number and the positions of the red dots in the honeycomb-shaped figure were randomly changed during BCI control. The user was asked to count the number of the dots presented in each flash instead of the number of times they flashed. To assess the performance of this new stimulus, another honeycomb-shaped stimulus, without red dots, was used as a control condition. Main results. The results showed that the honeycomb-shaped stimuli with red dots obtained significantly higher classification accuracies and information transfer rates (p  <  0.05) compared to the honeycomb-shaped stimulus without red dots. Significance. The results indicate that this proposed method can be a promising approach to improve the performance of the BCI system and can be an efficient method in daily application.

  5. A new brain-computer interface design using fuzzy ARTMAP.

    PubMed

    Palaniappan, Ramaswamy; Paramesran, Raveendran; Nishida, Shogo; Saiwaki, Naoki

    2002-09-01

    This paper proposes a new brain-computer interface (BCI) design using fuzzy ARTMAP (FA) neural network, as well as an application of the design. The objective of this BCI-FA design is to classify the best three of the five available mental tasks for each subject using power spectral density (PSD) values of electroencephalogram (EEG) signals. These PSD values are extracted using the Wiener-Khinchine and autoregressive methods. Ten experiments employing different triplets of mental tasks are studied for each subject. The findings show that the average BCI-FA outputs for four subjects gave less than 6% of error using the best triplets of mental tasks identified from the classification performances of FA. This implies that the BCI-FA can be successfully used with a tri-state switching device. As an application, a proposed tri-state Morse code scheme could be utilized to translate the outputs of this BCI-FA design into English letters. In this scheme, the three BCI-FA outputs correspond to a dot and a dash, which are the two basic Morse code alphabets and a space to denote the end (or beginning) of a dot or a dash. The construction of English letters using this tri-state Morse code scheme is determined only by the sequence of mental tasks and is independent of the time duration of each mental task. This is especially useful for constructing letters that are represented as multiple dots or dashes. This combination of BCI-FA design and the tri-state Morse code scheme could be developed as a communication system for paralyzed patients.

  6. A survey of the dummy face and human face stimuli used in BCI paradigm.

    PubMed

    Chen, Long; Jin, Jing; Zhang, Yu; Wang, Xingyu; Cichocki, Andrzej

    2015-01-15

    It was proved that the human face stimulus were superior to the flash only stimulus in BCI system. However, human face stimulus may lead to copyright infringement problems and was hard to be edited according to the requirement of the BCI study. Recently, it was reported that facial expression changes could be done by changing a curve in a dummy face which could obtain good performance when it was applied to visual-based P300 BCI systems. In this paper, four different paradigms were presented, which were called dummy face pattern, human face pattern, inverted dummy face pattern and inverted human face pattern, to evaluate the performance of the dummy faces stimuli compared with the human faces stimuli. The key point that determined the value of dummy faces in BCI systems were whether dummy faces stimuli could obtain as good performance as human faces stimuli. Online and offline results of four different paradigms would have been obtained and comparatively analyzed. Online and offline results showed that there was no significant difference among dummy faces and human faces in ERPs, classification accuracy and information transfer rate when they were applied in BCI systems. Dummy faces stimuli could evoke large ERPs and obtain as high classification accuracy and information transfer rate as the human faces stimuli. Since dummy faces were easy to be edited and had no copyright infringement problems, it would be a good choice for optimizing the stimuli of BCI systems. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. A Stimulus-Independent Hybrid BCI Based on Motor Imagery and Somatosensory Attentional Orientation.

    PubMed

    Yao, Lin; Sheng, Xinjun; Zhang, Dingguo; Jiang, Ning; Mrachacz-Kersting, Natalie; Zhu, Xiangyang; Farina, Dario

    2017-09-01

    Distinctive EEG signals from the motor and somatosensory cortex are generated during mental tasks of motor imagery (MI) and somatosensory attentional orientation (SAO). In this paper, we hypothesize that a combination of these two signal modalities provides improvements in a brain-computer interface (BCI) performance with respect to using the two methods separately, and generate novel types of multi-class BCI systems. Thirty two subjects were randomly divided into a Control-Group and a Hybrid-Group. In the Control-Group, the subjects performed left and right hand motor imagery (i.e., L-MI and R-MI). In the Hybrid-Group, the subjects performed the four mental tasks (i.e., L-MI, R-MI, L-SAO, and R-SAO). The results indicate that combining two of the tasks in a hybrid manner (such as L-SAO and R-MI) resulted in a significantly greater classification accuracy than when using two MI tasks. The hybrid modality reached 86.1% classification accuracy on average, with a 7.70% increase with respect to MI ( ), and 7.21% to SAO ( ) alone. Moreover, all 16 subjects in the hybrid modality reached at least 70% accuracy, which is considered the threshold for BCI illiteracy. In addition to the two-class results, the classification accuracy was 68.1% and 54.1% for the three-class and four-class hybrid BCI. Combining the induced brain signals from motor and somatosensory cortex, the proposed stimulus-independent hybrid BCI has shown improved performance with respect to individual modalities, reducing the portion of BCI-illiterate subjects, and provided novel types of multi-class BCIs.

  8. An improved P300 pattern in BCI to catch user's attention.

    PubMed

    Jin, Jing; Zhang, Hanhan; Daly, Ian; Wang, Xingyu; Cichocki, Andrzej

    2017-06-01

    Brain-computer interfaces (BCIs) can help patients who have lost control over most muscles but are still conscious and able to communicate or interact with the environment. One of the most popular types of BCI is the P300-based BCI. With this BCI, users are asked to count the number of appearances of target stimuli in an experiment. To date, the majority of visual P300-based BCI systems developed have used the same character or picture as the target for every stimulus presentation, which can bore users. Consequently, users attention may decrease or be negatively affected by adjacent stimuli. In this study, a new stimulus is presented to increase user concentration. Honeycomb-shaped figures with 1-3 red dots were used as stimuli. The number and the positions of the red dots in the honeycomb-shaped figure were randomly changed during BCI control. The user was asked to count the number of the dots presented in each flash instead of the number of times they flashed. To assess the performance of this new stimulus, another honeycomb-shaped stimulus, without red dots, was used as a control condition. The results showed that the honeycomb-shaped stimuli with red dots obtained significantly higher classification accuracies and information transfer rates (p  <  0.05) compared to the honeycomb-shaped stimulus without red dots. The results indicate that this proposed method can be a promising approach to improve the performance of the BCI system and can be an efficient method in daily application.

  9. A validation of 11 body-condition indices in a giant snake species that exhibits positive allometry.

    PubMed

    Falk, Bryan G; Snow, Ray W; Reed, Robert N

    2017-01-01

    Body condition is a gauge of the energy stores of an animal, and though it has important implications for fitness, survival, competition, and disease, it is difficult to measure directly. Instead, body condition is frequently estimated as a body condition index (BCI) using length and mass measurements. A desirable BCI should accurately reflect true body condition and be unbiased with respect to size (i.e., mean BCI estimates should not change across different length or mass ranges), and choosing the most-appropriate BCI is not straightforward. We evaluated 11 different BCIs in 248 Burmese pythons (Python bivittatus), organisms that, like other snakes, exhibit simple body plans well characterized by length and mass. We found that the length-mass relationship in Burmese pythons is positively allometric, where mass increases rapidly with respect to length, and this allowed us to explore the effects of allometry on BCI verification. We employed three alternative measures of 'true' body condition: percent fat, scaled fat, and residual fat. The latter two measures mostly accommodated allometry in true body condition, but percent fat did not. Our inferences of the best-performing BCIs depended heavily on our measure of true body condition, with most BCIs falling into one of two groups. The first group contained most BCIs based on ratios, and these were associated with percent fat and body length (i.e., were biased). The second group contained the scaled mass index and most of the BCIs based on linear regressions, and these were associated with both scaled and residual fat but not body length (i.e., were unbiased). Our results show that potential differences in measures of true body condition should be explored in BCI verification studies, particularly in organisms undergoing allometric growth. Furthermore, the caveats of each BCI and similarities to other BCIs are important to consider when determining which BCI is appropriate for any particular taxon.

  10. Classification of binary intentions for individuals with impaired oculomotor function: ‘eyes-closed’ SSVEP-based brain-computer interface (BCI)

    NASA Astrophysics Data System (ADS)

    Lim, Jeong-Hwan; Hwang, Han-Jeong; Han, Chang-Hee; Jung, Ki-Young; Im, Chang-Hwan

    2013-04-01

    Objective. Some patients suffering from severe neuromuscular diseases have difficulty controlling not only their bodies but also their eyes. Since these patients have difficulty gazing at specific visual stimuli or keeping their eyes open for a long time, they are unable to use the typical steady-state visual evoked potential (SSVEP)-based brain-computer interface (BCI) systems. In this study, we introduce a new paradigm for SSVEP-based BCI, which can be potentially suitable for disabled individuals with impaired oculomotor function. Approach. The proposed electroencephalography (EEG)-based BCI system allows users to express their binary intentions without needing to open their eyes. A pair of glasses with two light emitting diodes flickering at different frequencies was used to present visual stimuli to participants with their eyes closed, and we classified the recorded EEG patterns in the online experiments conducted with five healthy participants and one patient with severe amyotrophic lateral sclerosis (ALS). Main results. Through offline experiments performed with 11 participants, we confirmed that human SSVEP could be modulated by visual selective attention to a specific light stimulus penetrating through the eyelids. Furthermore, the recorded EEG patterns could be classified with accuracy high enough for use in a practical BCI system. After customizing the parameters of the proposed SSVEP-based BCI paradigm based on the offline analysis results, binary intentions of five healthy participants were classified in real time. The average information transfer rate of our online experiments reached 10.83 bits min-1. A preliminary online experiment conducted with an ALS patient showed a classification accuracy of 80%. Significance. The results of our offline and online experiments demonstrated the feasibility of our proposed SSVEP-based BCI paradigm. It is expected that our ‘eyes-closed’ SSVEP-based BCI system can be potentially used for communication of disabled individuals with impaired oculomotor function.

  11. A validation of 11 body-condition indices in a giant snake species that exhibits positive allometry

    USGS Publications Warehouse

    Falk, Bryan; Snow, Ray W.; Reed, Robert N.

    2017-01-01

    Body condition is a gauge of the energy stores of an animal, and though it has important implications for fitness, survival, competition, and disease, it is difficult to measure directly. Instead, body condition is frequently estimated as a body condition index (BCI) using length and mass measurements. A desirable BCI should accurately reflect true body condition and be unbiased with respect to size (i.e., mean BCI estimates should not change across different length or mass ranges), and choosing the most-appropriate BCI is not straightforward. We evaluated 11 different BCIs in 248 Burmese pythons (Python bivittatus), organisms that, like other snakes, exhibit simple body plans well characterized by length and mass. We found that the length-mass relationship in Burmese pythons is positively allometric, where mass increases rapidly with respect to length, and this allowed us to explore the effects of allometry on BCI verification. We employed three alternative measures of ‘true’ body condition: percent fat, scaled fat, and residual fat. The latter two measures mostly accommodated allometry in true body condition, but percent fat did not. Our inferences of the best-performing BCIs depended heavily on our measure of true body condition, with most BCIs falling into one of two groups. The first group contained most BCIs based on ratios, and these were associated with percent fat and body length (i.e., were biased). The second group contained the scaled mass index and most of the BCIs based on linear regressions, and these were associated with both scaled and residual fat but not body length (i.e., were unbiased). Our results show that potential differences in measures of true body condition should be explored in BCI verification studies, particularly in organisms undergoing allometric growth. Furthermore, the caveats of each BCI and similarities to other BCIs are important to consider when determining which BCI is appropriate for any particular taxon.

  12. Cybathlon experiences of the Graz BCI racing team Mirage91 in the brain-computer interface discipline.

    PubMed

    Statthaler, Karina; Schwarz, Andreas; Steyrl, David; Kobler, Reinmar; Höller, Maria Katharina; Brandstetter, Julia; Hehenberger, Lea; Bigga, Marvin; Müller-Putz, Gernot

    2017-12-28

    In this work, we share our experiences made at the world-wide first CYBATHLON, an event organized by the Eidgenössische Technische Hochschule Zürich (ETH Zürich), which took place in Zurich in October 2016. It is a championship for severely motor impaired people using assistive prototype devices to compete against each other. Our team, the Graz BCI Racing Team MIRAGE91 from Graz University of Technology, participated in the discipline "Brain-Computer Interface Race". A brain-computer interface (BCI) is a device facilitating control of applications via the user's thoughts. Prominent applications include assistive technology such as wheelchairs, neuroprostheses or communication devices. In the CYBATHLON BCI Race, pilots compete in a BCI-controlled computer game. We report on setting up our team, the BCI customization to our pilot including long term training and the final BCI system. Furthermore, we describe CYBATHLON participation and analyze our CYBATHLON result. We found that our pilot was compliant over the whole time and that we could significantly reduce the average runtime between start and finish from initially 178 s to 143 s. After the release of the final championship specifications with shorter track length, the average runtime converged to 120 s. We successfully participated in the qualification race at CYBATHLON 2016, but performed notably worse than during training, with a runtime of 196 s. We speculate that shifts in the features, due to the nonstationarities in the electroencephalogram (EEG), but also arousal are possible reasons for the unexpected result. Potential counteracting measures are discussed. The CYBATHLON 2016 was a great opportunity for our student team. We consolidated our theoretical knowledge and turned it into practice, allowing our pilot to play a computer game. However, further research is required to make BCI technology invariant to non-task related changes of the EEG.

  13. A general method for assessing brain-computer interface performance and its limitations

    NASA Astrophysics Data System (ADS)

    Hill, N. Jeremy; Häuser, Ann-Katrin; Schalk, Gerwin

    2014-04-01

    Objective. When researchers evaluate brain-computer interface (BCI) systems, we want quantitative answers to questions such as: How good is the system’s performance? How good does it need to be? and: Is it capable of reaching the desired level in future? In response to the current lack of objective, quantitative, study-independent approaches, we introduce methods that help to address such questions. We identified three challenges: (I) the need for efficient measurement techniques that adapt rapidly and reliably to capture a wide range of performance levels; (II) the need to express results in a way that allows comparison between similar but non-identical tasks; (III) the need to measure the extent to which certain components of a BCI system (e.g. the signal processing pipeline) not only support BCI performance, but also potentially restrict the maximum level it can reach. Approach. For challenge (I), we developed an automatic staircase method that adjusted task difficulty adaptively along a single abstract axis. For challenge (II), we used the rate of information gain between two Bernoulli distributions: one reflecting the observed success rate, the other reflecting chance performance estimated by a matched random-walk method. This measure includes Wolpaw’s information transfer rate as a special case, but addresses the latter’s limitations including its restriction to item-selection tasks. To validate our approach and address challenge (III), we compared four healthy subjects’ performance using an EEG-based BCI, a ‘Direct Controller’ (a high-performance hardware input device), and a ‘Pseudo-BCI Controller’ (the same input device, but with control signals processed by the BCI signal processing pipeline). Main results. Our results confirm the repeatability and validity of our measures, and indicate that our BCI signal processing pipeline reduced attainable performance by about 33% (21 bits min-1). Significance. Our approach provides a flexible basis for evaluating BCI performance and its limitations, across a wide range of tasks and task difficulties.

  14. Classification of binary intentions for individuals with impaired oculomotor function: 'eyes-closed' SSVEP-based brain-computer interface (BCI).

    PubMed

    Lim, Jeong-Hwan; Hwang, Han-Jeong; Han, Chang-Hee; Jung, Ki-Young; Im, Chang-Hwan

    2013-04-01

    Some patients suffering from severe neuromuscular diseases have difficulty controlling not only their bodies but also their eyes. Since these patients have difficulty gazing at specific visual stimuli or keeping their eyes open for a long time, they are unable to use the typical steady-state visual evoked potential (SSVEP)-based brain-computer interface (BCI) systems. In this study, we introduce a new paradigm for SSVEP-based BCI, which can be potentially suitable for disabled individuals with impaired oculomotor function. The proposed electroencephalography (EEG)-based BCI system allows users to express their binary intentions without needing to open their eyes. A pair of glasses with two light emitting diodes flickering at different frequencies was used to present visual stimuli to participants with their eyes closed, and we classified the recorded EEG patterns in the online experiments conducted with five healthy participants and one patient with severe amyotrophic lateral sclerosis (ALS). Through offline experiments performed with 11 participants, we confirmed that human SSVEP could be modulated by visual selective attention to a specific light stimulus penetrating through the eyelids. Furthermore, the recorded EEG patterns could be classified with accuracy high enough for use in a practical BCI system. After customizing the parameters of the proposed SSVEP-based BCI paradigm based on the offline analysis results, binary intentions of five healthy participants were classified in real time. The average information transfer rate of our online experiments reached 10.83 bits min(-1). A preliminary online experiment conducted with an ALS patient showed a classification accuracy of 80%. The results of our offline and online experiments demonstrated the feasibility of our proposed SSVEP-based BCI paradigm. It is expected that our 'eyes-closed' SSVEP-based BCI system can be potentially used for communication of disabled individuals with impaired oculomotor function.

  15. User's Self-Prediction of Performance in Motor Imagery Brain-Computer Interface.

    PubMed

    Ahn, Minkyu; Cho, Hohyun; Ahn, Sangtae; Jun, Sung C

    2018-01-01

    Performance variation is a critical issue in motor imagery brain-computer interface (MI-BCI), and various neurophysiological, psychological, and anatomical correlates have been reported in the literature. Although the main aim of such studies is to predict MI-BCI performance for the prescreening of poor performers, studies which focus on the user's sense of the motor imagery process and directly estimate MI-BCI performance through the user's self-prediction are lacking. In this study, we first test each user's self-prediction idea regarding motor imagery experimental datasets. Fifty-two subjects participated in a classical, two-class motor imagery experiment and were asked to evaluate their easiness with motor imagery and to predict their own MI-BCI performance. During the motor imagery experiment, an electroencephalogram (EEG) was recorded; however, no feedback on motor imagery was given to subjects. From EEG recordings, the offline classification accuracy was estimated and compared with several questionnaire scores of subjects, as well as with each subject's self-prediction of MI-BCI performance. The subjects' performance predictions during motor imagery task showed a high positive correlation ( r = 0.64, p < 0.01). Interestingly, it was observed that the self-prediction became more accurate as the subjects conducted more motor imagery tasks in the Correlation coefficient (pre-task to 2nd run: r = 0.02 to r = 0.54, p < 0.01) and root mean square error (pre-task to 3rd run: 17.7% to 10%, p < 0.01). We demonstrated that subjects may accurately predict their MI-BCI performance even without feedback information. This implies that the human brain is an active learning system and, by self-experiencing the endogenous motor imagery process, it can sense and adopt the quality of the process. Thus, it is believed that users may be able to predict MI-BCI performance and results may contribute to a better understanding of low performance and advancing BCI.

  16. MindEdit: A P300-based text editor for mobile devices.

    PubMed

    Elsawy, Amr S; Eldawlatly, Seif; Taher, Mohamed; Aly, Gamal M

    2017-01-01

    Practical application of Brain-Computer Interfaces (BCIs) requires that the whole BCI system be portable. The mobility of BCI systems involves two aspects: making the electroencephalography (EEG) recording devices portable, and developing software applications with low computational complexity to be able to run on low computational-power devices such as tablets and smartphones. This paper addresses the development of MindEdit; a P300-based text editor for Android-based devices. Given the limited resources of mobile devices and their limited computational power, a novel ensemble classifier is utilized that uses Principal Component Analysis (PCA) features to identify P300 evoked potentials from EEG recordings. PCA computations in the proposed method are channel-based as opposed to concatenating all channels as in traditional feature extraction methods; thus, this method has less computational complexity compared to traditional P300 detection methods. The performance of the method is demonstrated on data recorded from MindEdit on an Android tablet using the Emotiv wireless neuroheadset. Results demonstrate the capability of the introduced PCA ensemble classifier to classify P300 data with maximum average accuracy of 78.37±16.09% for cross-validation data and 77.5±19.69% for online test data using only 10 trials per symbol and a 33-character training dataset. Our analysis indicates that the introduced method outperforms traditional feature extraction methods. For a faster operation of MindEdit, a variable number of trials scheme is introduced that resulted in an online average accuracy of 64.17±19.6% and a maximum bitrate of 6.25bit/min. These results demonstrate the efficacy of using the developed BCI application with mobile devices. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Prediction of subjective ratings of emotional pictures by EEG features

    NASA Astrophysics Data System (ADS)

    McFarland, Dennis J.; Parvaz, Muhammad A.; Sarnacki, William A.; Goldstein, Rita Z.; Wolpaw, Jonathan R.

    2017-02-01

    Objective. Emotion dysregulation is an important aspect of many psychiatric disorders. Brain-computer interface (BCI) technology could be a powerful new approach to facilitating therapeutic self-regulation of emotions. One possible BCI method would be to provide stimulus-specific feedback based on subject-specific electroencephalographic (EEG) responses to emotion-eliciting stimuli. Approach. To assess the feasibility of this approach, we studied the relationships between emotional valence/arousal and three EEG features: amplitude of alpha activity over frontal cortex; amplitude of theta activity over frontal midline cortex; and the late positive potential over central and posterior mid-line areas. For each feature, we evaluated its ability to predict emotional valence/arousal on both an individual and a group basis. Twenty healthy participants (9 men, 11 women; ages 22-68) rated each of 192 pictures from the IAPS collection in terms of valence and arousal twice (96 pictures on each of 4 d over 2 weeks). EEG was collected simultaneously and used to develop models based on canonical correlation to predict subject-specific single-trial ratings. Separate models were evaluated for the three EEG features: frontal alpha activity; frontal midline theta; and the late positive potential. In each case, these features were used to simultaneously predict both the normed ratings and the subject-specific ratings. Main results. Models using each of the three EEG features with data from individual subjects were generally successful at predicting subjective ratings on training data, but generalization to test data was less successful. Sparse models performed better than models without regularization. Significance. The results suggest that the frontal midline theta is a better candidate than frontal alpha activity or the late positive potential for use in a BCI-based paradigm designed to modify emotional reactions.

  18. Spatial Brain Control Interface using Optical and Electrophysiological Measures

    DTIC Science & Technology

    2013-08-27

    appropriate for implementing a reliable brain-computer interface ( BCI ). The LSVM method 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND SUBTITLE 27-08-2013 13...Machine (LSVM) was the most appropriate for implementing a reliable brain-computer interface ( BCI ). The LSVM method was applied to the imaging data...local field potentials proved to be fast and strongly tuned for the spatial parameters of the task. Thus, a reliable BCI that can predict upcoming

  19. Should the parameters of a BCI translation algorithm be continually adapted?

    PubMed

    McFarland, Dennis J; Sarnacki, William A; Wolpaw, Jonathan R

    2011-07-15

    People with or without motor disabilities can learn to control sensorimotor rhythms (SMRs) recorded from the scalp to move a computer cursor in one or more dimensions or can use the P300 event-related potential as a control signal to make discrete selections. Data collected from individuals using an SMR-based or P300-based BCI were evaluated offline to estimate the impact on performance of continually adapting the parameters of the translation algorithm during BCI operation. The performance of the SMR-based BCI was enhanced by adaptive updating of the feature weights or adaptive normalization of the features. In contrast, P300 performance did not benefit from either of these procedures. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Brain-computer interface on the basis of EEG system Encephalan

    NASA Astrophysics Data System (ADS)

    Maksimenko, Vladimir; Badarin, Artem; Nedaivozov, Vladimir; Kirsanov, Daniil; Hramov, Alexander

    2018-04-01

    We have proposed brain-computer interface (BCI) for the estimation of the brain response on the presented visual tasks. Proposed BCI is based on the EEG recorder Encephalan-EEGR-19/26 (Medicom MTD, Russia) supplemented by a special home-made developed acquisition software. BCI is tested during experimental session while subject is perceiving the bistable visual stimuli and classifying them according to the interpretation. We have subjected the participant to the different external conditions and observed the significant decrease in the response, associated with the perceiving the bistable visual stimuli, during the presence of distraction. Based on the obtained results we have proposed possibility to use of BCI for estimation of the human alertness during solving the tasks required substantial visual attention.

  1. Write, read and answer emails with a dry 'n' wireless brain-computer interface system.

    PubMed

    Pinegger, Andreas; Deckert, Lisa; Halder, Sebastian; Barry, Norbert; Faller, Josef; Käthner, Ivo; Hintermüller, Christoph; Wriessnegger, Selina C; Kübler, Andrea; Müller-Putz, Gernot R

    2014-01-01

    Brain-computer interface (BCI) users can control very complex applications such as multimedia players or even web browsers. Therefore, different biosignal acquisition systems are available to noninvasively measure the electrical activity of the brain, the electroencephalogram (EEG). To make BCIs more practical, hardware and software are nowadays designed more user centered and user friendly. In this paper we evaluated one of the latest innovations in the area of BCI: A wireless EEG amplifier with dry electrode technology combined with a web browser which enables BCI users to use standard webmail. With this system ten volunteers performed a daily life task: Write, read and answer an email. Experimental results of this study demonstrate the power of the introduced BCI system.

  2. Brain oscillatory signatures of motor tasks

    PubMed Central

    Birbaumer, Niels

    2015-01-01

    Noninvasive brain-computer-interfaces (BCI) coupled with prosthetic devices were recently introduced in the rehabilitation of chronic stroke and other disorders of the motor system. These BCI systems and motor rehabilitation in general involve several motor tasks for training. This study investigates the neurophysiological bases of an EEG-oscillation-driven BCI combined with a neuroprosthetic device to define the specific oscillatory signature of the BCI task. Controlling movements of a hand robotic orthosis with motor imagery of the same movement generates sensorimotor rhythm oscillation changes and involves three elements of tasks also used in stroke motor rehabilitation: passive and active movement, motor imagery, and motor intention. We recorded EEG while nine healthy participants performed five different motor tasks consisting of closing and opening of the hand as follows: 1) motor imagery without any external feedback and without overt hand movement, 2) motor imagery that moves the orthosis proportional to the produced brain oscillation change with online proprioceptive and visual feedback of the hand moving through a neuroprosthetic device (BCI condition), 3) passive and 4) active movement of the hand with feedback (seeing and feeling the hand moving), and 5) rest. During the BCI condition, participants received contingent online feedback of the decrease of power of the sensorimotor rhythm, which induced orthosis movement and therefore proprioceptive and visual information from the moving hand. We analyzed brain activity during the five conditions using time-frequency domain bootstrap-based statistical comparisons and Morlet transforms. Activity during rest was used as a reference. Significant contralateral and ipsilateral event-related desynchronization of sensorimotor rhythm was present during all motor tasks, largest in contralateral-postcentral, medio-central, and ipsilateral-precentral areas identifying the ipsilateral precentral cortex as an integral part of motor regulation. Changes in task-specific frequency power compared with rest were similar between motor tasks, and only significant differences in the time course and some narrow specific frequency bands were observed between motor tasks. We identified EEG features representing active and passive proprioception (with and without muscle contraction) and active intention and passive involvement (with and without voluntary effort) differentiating brain oscillations during motor tasks that could substantially support the design of novel motor BCI-based rehabilitation therapies. The BCI task induced significantly different brain activity compared with the other motor tasks, indicating neural processes unique to the use of body actuators control in a BCI context. PMID:25810484

  3. Transferring brain-computer interfaces beyond the laboratory: successful application control for motor-disabled users.

    PubMed

    Leeb, Robert; Perdikis, Serafeim; Tonin, Luca; Biasiucci, Andrea; Tavella, Michele; Creatura, Marco; Molina, Alberto; Al-Khodairy, Abdul; Carlson, Tom; Millán, José D R

    2013-10-01

    Brain-computer interfaces (BCIs) are no longer only used by healthy participants under controlled conditions in laboratory environments, but also by patients and end-users, controlling applications in their homes or clinics, without the BCI experts around. But are the technology and the field mature enough for this? Especially the successful operation of applications - like text entry systems or assistive mobility devices such as tele-presence robots - requires a good level of BCI control. How much training is needed to achieve such a level? Is it possible to train naïve end-users in 10 days to successfully control such applications? In this work, we report our experiences of training 24 motor-disabled participants at rehabilitation clinics or at the end-users' homes, without BCI experts present. We also share the lessons that we have learned through transferring BCI technologies from the lab to the user's home or clinics. The most important outcome is that 50% of the participants achieved good BCI performance and could successfully control the applications (tele-presence robot and text-entry system). In the case of the tele-presence robot the participants achieved an average performance ratio of 0.87 (max. 0.97) and for the text entry application a mean of 0.93 (max. 1.0). The lessons learned and the gathered user feedback range from pure BCI problems (technical and handling), to common communication issues among the different people involved, and issues encountered while controlling the applications. The points raised in this paper are very widely applicable and we anticipate that they might be faced similarly by other groups, if they move on to bringing the BCI technology to the end-user, to home environments and towards application prototype control. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Brain-computer interface based on intermodulation frequency

    NASA Astrophysics Data System (ADS)

    Chen, Xiaogang; Chen, Zhikai; Gao, Shangkai; Gao, Xiaorong

    2013-12-01

    Objective. Most recent steady-state visual evoked potential (SSVEP)-based brain-computer interface (BCI) systems have used a single frequency for each target, so that a large number of targets require a large number of stimulus frequencies and therefore a wider frequency band. However, human beings show good SSVEP responses only in a limited range of frequencies. Furthermore, this issue is especially problematic if the SSVEP-based BCI takes a PC monitor as a stimulator, which is only capable of generating a limited range of frequencies. To mitigate this issue, this study presents an innovative coding method for SSVEP-based BCI by means of intermodulation frequencies. Approach. Simultaneous modulations of stimulus luminance and color at different frequencies were utilized to induce intermodulation frequencies. Luminance flickered at relatively large frequency (10, 12, 15 Hz), while color alternated at low frequency (0.5, 1 Hz). An attractive feature of the proposed method was that it would substantially increase the number of targets at a single flickering frequency by altering color modulated frequencies. Based on this method, the BCI system presented in this study realized eight targets merely using three flickering frequencies. Main results. The online results obtained from 15 subjects (14 healthy and 1 with stroke) revealed that an average classification accuracy of 93.83% and information transfer rate (ITR) of 33.80 bit min-1 were achieved using our proposed SSVEP-based BCI system. Specifically, 5 out of the 15 subjects exhibited an ITR of 40.00 bit min-1 with a classification accuracy of 100%. Significance. These results suggested that intermodulation frequencies could be adopted as steady responses in BCI, for which our system could be used as a practical BCI system.

  5. Increasing BCI communication rates with dynamic stopping towards more practical use: an ALS study

    NASA Astrophysics Data System (ADS)

    Mainsah, B. O.; Collins, L. M.; Colwell, K. A.; Sellers, E. W.; Ryan, D. B.; Caves, K.; Throckmorton, C. S.

    2015-02-01

    Objective. The P300 speller is a brain-computer interface (BCI) that can possibly restore communication abilities to individuals with severe neuromuscular disabilities, such as amyotrophic lateral sclerosis (ALS), by exploiting elicited brain signals in electroencephalography (EEG) data. However, accurate spelling with BCIs is slow due to the need to average data over multiple trials to increase the signal-to-noise ratio (SNR) of the elicited brain signals. Probabilistic approaches to dynamically control data collection have shown improved performance in non-disabled populations; however, validation of these approaches in a target BCI user population has not occurred. Approach. We have developed a data-driven algorithm for the P300 speller based on Bayesian inference that improves spelling time by adaptively selecting the number of trials based on the acute SNR of a user’s EEG data. We further enhanced the algorithm by incorporating information about the user’s language. In this current study, we test and validate the algorithms online in a target BCI user population, by comparing the performance of the dynamic stopping (DS) (or early stopping) algorithms against the current state-of-the-art method, static data collection, where the amount of data collected is fixed prior to online operation. Main results. Results from online testing of the DS algorithms in participants with ALS demonstrate a significant increase in communication rate as measured in bits/min (100-300%), and theoretical bit rate (100-550%), while maintaining selection accuracy. Participants also overwhelmingly preferred the DS algorithms. Significance. We have developed a viable BCI algorithm that has been tested in a target BCI population which has the potential for translation to improve BCI speller performance towards more practical use for communication.

  6. Effect of Different Movement Speed Modes on Human Action Observation: An EEG Study.

    PubMed

    Luo, Tian-Jian; Lv, Jitu; Chao, Fei; Zhou, Changle

    2018-01-01

    Action observation (AO) generates event-related desynchronization (ERD) suppressions in the human brain by activating partial regions of the human mirror neuron system (hMNS). The activation of the hMNS response to AO remains controversial for several reasons. Therefore, this study investigated the activation of the hMNS response to a speed factor of AO by controlling the movement speed modes of a humanoid robot's arm movements. Since hMNS activation is reflected by ERD suppressions, electroencephalography (EEG) with BCI analysis methods for ERD suppressions were used as the recording and analysis modalities. Six healthy individuals were asked to participate in experiments comprising five different conditions. Four incremental-speed AO tasks and a motor imagery (MI) task involving imaging of the same movement were presented to the individuals. Occipital and sensorimotor regions were selected for BCI analyses. The experimental results showed that hMNS activation was higher in the occipital region but more robust in the sensorimotor region. Since the attended information impacts the activations of the hMNS during AO, the pattern of hMNS activations first rises and subsequently falls to a stable level during incremental-speed modes of AO. The discipline curves suggested that a moderate speed within a decent inter-stimulus interval (ISI) range produced the highest hMNS activations. Since a brain computer/machine interface (BCI) builds a path-way between human and computer/mahcine, the discipline curves will help to construct BCIs made by patterns of action observation (AO-BCI). Furthermore, a new method for constructing non-invasive brain machine brain interfaces (BMBIs) with moderate AO-BCI and motor imagery BCI (MI-BCI) was inspired by this paper.

  7. Increasing BCI communication rates with dynamic stopping towards more practical use: an ALS study.

    PubMed

    Mainsah, B O; Collins, L M; Colwell, K A; Sellers, E W; Ryan, D B; Caves, K; Throckmorton, C S

    2015-02-01

    The P300 speller is a brain-computer interface (BCI) that can possibly restore communication abilities to individuals with severe neuromuscular disabilities, such as amyotrophic lateral sclerosis (ALS), by exploiting elicited brain signals in electroencephalography (EEG) data. However, accurate spelling with BCIs is slow due to the need to average data over multiple trials to increase the signal-to-noise ratio (SNR) of the elicited brain signals. Probabilistic approaches to dynamically control data collection have shown improved performance in non-disabled populations; however, validation of these approaches in a target BCI user population has not occurred. We have developed a data-driven algorithm for the P300 speller based on Bayesian inference that improves spelling time by adaptively selecting the number of trials based on the acute SNR of a user's EEG data. We further enhanced the algorithm by incorporating information about the user's language. In this current study, we test and validate the algorithms online in a target BCI user population, by comparing the performance of the dynamic stopping (DS) (or early stopping) algorithms against the current state-of-the-art method, static data collection, where the amount of data collected is fixed prior to online operation. Results from online testing of the DS algorithms in participants with ALS demonstrate a significant increase in communication rate as measured in bits/min (100-300%), and theoretical bit rate (100-550%), while maintaining selection accuracy. Participants also overwhelmingly preferred the DS algorithms. We have developed a viable BCI algorithm that has been tested in a target BCI population which has the potential for translation to improve BCI speller performance towards more practical use for communication.

  8. A high performance sensorimotor beta rhythm-based brain computer interface associated with human natural motor behavior

    NASA Astrophysics Data System (ADS)

    Bai, Ou; Lin, Peter; Vorbach, Sherry; Floeter, Mary Kay; Hattori, Noriaki; Hallett, Mark

    2008-03-01

    To explore the reliability of a high performance brain-computer interface (BCI) using non-invasive EEG signals associated with human natural motor behavior does not require extensive training. We propose a new BCI method, where users perform either sustaining or stopping a motor task with time locking to a predefined time window. Nine healthy volunteers, one stroke survivor with right-sided hemiparesis and one patient with amyotrophic lateral sclerosis (ALS) participated in this study. Subjects did not receive BCI training before participating in this study. We investigated tasks of both physical movement and motor imagery. The surface Laplacian derivation was used for enhancing EEG spatial resolution. A model-free threshold setting method was used for the classification of motor intentions. The performance of the proposed BCI was validated by an online sequential binary-cursor-control game for two-dimensional cursor movement. Event-related desynchronization and synchronization were observed when subjects sustained or stopped either motor execution or motor imagery. Feature analysis showed that EEG beta band activity over sensorimotor area provided the largest discrimination. With simple model-free classification of beta band EEG activity from a single electrode (with surface Laplacian derivation), the online classifications of the EEG activity with motor execution/motor imagery were: >90%/~80% for six healthy volunteers, >80%/~80% for the stroke patient and ~90%/~80% for the ALS patient. The EEG activities of the other three healthy volunteers were not classifiable. The sensorimotor beta rhythm of EEG associated with human natural motor behavior can be used for a reliable and high performance BCI for both healthy subjects and patients with neurological disorders. Significance: The proposed new non-invasive BCI method highlights a practical BCI for clinical applications, where the user does not require extensive training.

  9. Increasing BCI Communication Rates with Dynamic Stopping Towards More Practical Use: An ALS Study

    PubMed Central

    Mainsah, B. O.; Collins, L. M.; Colwell, K. A.; Sellers, E. W.; Ryan, D. B.; Caves, K.; Throckmorton, C. S.

    2015-01-01

    Objective The P300 speller is a brain-computer interface (BCI) that can possibly restore communication abilities to individuals with severe neuromuscular disabilities, such as amyotrophic lateral sclerosis (ALS), by exploiting elicited brain signals in electroencephalography data. However, accurate spelling with BCIs is slow due to the need to average data over multiple trials to increase the signal-to-noise ratio of the elicited brain signals. Probabilistic approaches to dynamically control data collection have shown improved performance in non-disabled populations; however, validation of these approaches in a target BCI user population has not occurred. Approach We have developed a data-driven algorithm for the P300 speller based on Bayesian inference that improves spelling time by adaptively selecting the number of trials based on the acute signal-to-noise ratio of a user’s electroencephalography data. We further enhanced the algorithm by incorporating information about the user’s language. In this current study, we test and validate the algorithms online in a target BCI user population, by comparing the performance of the dynamic stopping (or early stopping) algorithms against the current state-of-the-art method, static data collection, where the amount of data collected is fixed prior to online operation. Main Results Results from online testing of the dynamic stopping algorithms in participants with ALS demonstrate a significant increase in communication rate as measured in bits/sec (100-300%), and theoretical bit rate (100-550%), while maintaining selection accuracy. Participants also overwhelmingly preferred the dynamic stopping algorithms. Significance We have developed a viable BCI algorithm that has been tested in a target BCI population which has the potential for translation to improve BCI speller performance towards more practical use for communication. PMID:25588137

  10. Geometry aware Stationary Subspace Analysis

    DTIC Science & Technology

    2016-11-22

    approach to handling non-stationarity is to remove or minimize it before attempting to analyze the data. In the context of brain computer interface ( BCI ...context of brain computer interface ( BCI ) data analysis, two such note-worthy methods are stationary subspace analysis (SSA) (von Bünau et al., 2009a... BCI systems, is sCSP. Its goal is to project the data onto a subspace in which the various data classes are more separable. The sCSP method directs

  11. Evaluating the ergonomics of BCI devices for research and experimentation.

    PubMed

    Ekandem, Joshua I; Davis, Timothy A; Alvarez, Ignacio; James, Melva T; Gilbert, Juan E

    2012-01-01

    The use of brain computer interface (BCI) devices in research and applications has exploded in recent years. Applications such as lie detectors that use functional magnetic resonance imaging (fMRI) to video games controlled using electroencephalography (EEG) are currently in use. These developments, coupled with the emergence of inexpensive commercial BCI headsets, such as the Emotiv EPOC ( http://emotiv.com/index.php ) and the Neurosky MindWave, have also highlighted the need of performing basic ergonomics research since such devices have usability issues, such as comfort during prolonged use, and reduced performance for individuals with common physical attributes, such as long or coarse hair. This paper examines the feasibility of using consumer BCIs in scientific research. In particular, we compare user comfort, experiment preparation time, signal reliability and ease of use in light of individual differences among subjects for two commercially available hardware devices, the Emotiv EPOC and the Neurosky MindWave. Based on these results, we suggest some basic considerations for selecting a commercial BCI for research and experimentation. STATEMENT OF RELEVANCE: Despite increased usage, few studies have examined the usability of commercial BCI hardware. This study assesses usability and experimentation factors of two commercial BCI models, for the purpose of creating basic guidelines for increased usability. Finding that more sensors can be less comfortable and accurate than devices with fewer sensors.

  12. The extraction of motion-onset VEP BCI features based on deep learning and compressed sensing.

    PubMed

    Ma, Teng; Li, Hui; Yang, Hao; Lv, Xulin; Li, Peiyang; Liu, Tiejun; Yao, Dezhong; Xu, Peng

    2017-01-01

    Motion-onset visual evoked potentials (mVEP) can provide a softer stimulus with reduced fatigue, and it has potential applications for brain computer interface(BCI)systems. However, the mVEP waveform is seriously masked in the strong background EEG activities, and an effective approach is needed to extract the corresponding mVEP features to perform task recognition for BCI control. In the current study, we combine deep learning with compressed sensing to mine discriminative mVEP information to improve the mVEP BCI performance. The deep learning and compressed sensing approach can generate the multi-modality features which can effectively improve the BCI performance with approximately 3.5% accuracy incensement over all 11 subjects and is more effective for those subjects with relatively poor performance when using the conventional features. Compared with the conventional amplitude-based mVEP feature extraction approach, the deep learning and compressed sensing approach has a higher classification accuracy and is more effective for subjects with relatively poor performance. According to the results, the deep learning and compressed sensing approach is more effective for extracting the mVEP feature to construct the corresponding BCI system, and the proposed feature extraction framework is easy to extend to other types of BCIs, such as motor imagery (MI), steady-state visual evoked potential (SSVEP)and P300. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Evaluating true BCI communication rate through mutual information and language models.

    PubMed

    Speier, William; Arnold, Corey; Pouratian, Nader

    2013-01-01

    Brain-computer interface (BCI) systems are a promising means for restoring communication to patients suffering from "locked-in" syndrome. Research to improve system performance primarily focuses on means to overcome the low signal to noise ratio of electroencephalogric (EEG) recordings. However, the literature and methods are difficult to compare due to the array of evaluation metrics and assumptions underlying them, including that: 1) all characters are equally probable, 2) character selection is memoryless, and 3) errors occur completely at random. The standardization of evaluation metrics that more accurately reflect the amount of information contained in BCI language output is critical to make progress. We present a mutual information-based metric that incorporates prior information and a model of systematic errors. The parameters of a system used in one study were re-optimized, showing that the metric used in optimization significantly affects the parameter values chosen and the resulting system performance. The results of 11 BCI communication studies were then evaluated using different metrics, including those previously used in BCI literature and the newly advocated metric. Six studies' results varied based on the metric used for evaluation and the proposed metric produced results that differed from those originally published in two of the studies. Standardizing metrics to accurately reflect the rate of information transmission is critical to properly evaluate and compare BCI communication systems and advance the field in an unbiased manner.

  14. A hybrid NIRS-EEG system for self-paced brain computer interface with online motor imagery.

    PubMed

    Koo, Bonkon; Lee, Hwan-Gon; Nam, Yunjun; Kang, Hyohyeong; Koh, Chin Su; Shin, Hyung-Cheul; Choi, Seungjin

    2015-04-15

    For a self-paced motor imagery based brain-computer interface (BCI), the system should be able to recognize the occurrence of a motor imagery, as well as the type of the motor imagery. However, because of the difficulty of detecting the occurrence of a motor imagery, general motor imagery based BCI studies have been focusing on the cued motor imagery paradigm. In this paper, we present a novel hybrid BCI system that uses near infrared spectroscopy (NIRS) and electroencephalography (EEG) systems together to achieve online self-paced motor imagery based BCI. We designed a unique sensor frame that records NIRS and EEG simultaneously for the realization of our system. Based on this hybrid system, we proposed a novel analysis method that detects the occurrence of a motor imagery with the NIRS system, and classifies its type with the EEG system. An online experiment demonstrated that our hybrid system had a true positive rate of about 88%, a false positive rate of 7% with an average response time of 10.36 s. As far as we know, there is no report that explored hemodynamic brain switch for self-paced motor imagery based BCI with hybrid EEG and NIRS system. From our experimental results, our hybrid system showed enough reliability for using in a practical self-paced motor imagery based BCI. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Usage of drip drops as stimuli in an auditory P300 BCI paradigm.

    PubMed

    Huang, Minqiang; Jin, Jing; Zhang, Yu; Hu, Dewen; Wang, Xingyu

    2018-02-01

    Recently, many auditory BCIs are using beeps as auditory stimuli, while beeps sound unnatural and unpleasant for some people. It is proved that natural sounds make people feel comfortable, decrease fatigue, and improve the performance of auditory BCI systems. Drip drop is a kind of natural sounds that makes humans feel relaxed and comfortable. In this work, three kinds of drip drops were used as stimuli in an auditory-based BCI system to improve the user-friendness of the system. This study explored whether drip drops could be used as stimuli in the auditory BCI system. The auditory BCI paradigm with drip-drop stimuli, which was called the drip-drop paradigm (DP), was compared with the auditory paradigm with beep stimuli, also known as the beep paradigm (BP), in items of event-related potential amplitudes, online accuracies and scores on the likability and difficulty to demonstrate the advantages of DP. DP obtained significantly higher online accuracy and information transfer rate than the BP ( p  < 0.05, Wilcoxon signed test; p  < 0.05, Wilcoxon signed test). Besides, DP obtained higher scores on the likability with no significant difference on the difficulty ( p  < 0.05, Wilcoxon signed test). The results showed that the drip drops were reliable acoustic materials as stimuli in an auditory BCI system.

  16. Brain-computer interface (BCI) evaluation in people with amyotrophic lateral sclerosis.

    PubMed

    McCane, Lynn M; Sellers, Eric W; McFarland, Dennis J; Mak, Joseph N; Carmack, C Steve; Zeitlin, Debra; Wolpaw, Jonathan R; Vaughan, Theresa M

    2014-06-01

    Brain-computer interfaces (BCIs) might restore communication to people severely disabled by amyotrophic lateral sclerosis (ALS) or other disorders. We sought to: 1) define a protocol for determining whether a person with ALS can use a visual P300-based BCI; 2) determine what proportion of this population can use the BCI; and 3) identify factors affecting BCI performance. Twenty-five individuals with ALS completed an evaluation protocol using a standard 6 × 6 matrix and parameters selected by stepwise linear discrimination. With an 8-channel EEG montage, the subjects fell into two groups in BCI accuracy (chance accuracy 3%). Seventeen averaged 92 (± 3)% (range 71-100%), which is adequate for communication (G70 group). Eight averaged 12 (± 6)% (range 0-36%), inadequate for communication (L40 subject group). Performance did not correlate with disability: 11/17 (65%) of G70 subjects were severely disabled (i.e. ALSFRS-R < 5). All L40 subjects had visual impairments (e.g. nystagmus, diplopia, ptosis). P300 was larger and more anterior in G70 subjects. A 16-channel montage did not significantly improve accuracy. In conclusion, most people severely disabled by ALS could use a visual P300-based BCI for communication. In those who could not, visual impairment was the principal obstacle. For these individuals, auditory P300-based BCIs might be effective.

  17. The Role of Audio-Visual Feedback in a Thought-Based Control of a Humanoid Robot: A BCI Study in Healthy and Spinal Cord Injured People.

    PubMed

    Tidoni, Emmanuele; Gergondet, Pierre; Fusco, Gabriele; Kheddar, Abderrahmane; Aglioti, Salvatore M

    2017-06-01

    The efficient control of our body and successful interaction with the environment are possible through the integration of multisensory information. Brain-computer interface (BCI) may allow people with sensorimotor disorders to actively interact in the world. In this study, visual information was paired with auditory feedback to improve the BCI control of a humanoid surrogate. Healthy and spinal cord injured (SCI) people were asked to embody a humanoid robot and complete a pick-and-place task by means of a visual evoked potentials BCI system. Participants observed the remote environment from the robot's perspective through a head mounted display. Human-footsteps and computer-beep sounds were used as synchronous/asynchronous auditory feedback. Healthy participants achieved better placing accuracy when listening to human footstep sounds relative to a computer-generated sound. SCI people demonstrated more difficulty in steering the robot during asynchronous auditory feedback conditions. Importantly, subjective reports highlighted that the BCI mask overlaying the display did not limit the observation of the scenario and the feeling of being in control of the robot. Overall, the data seem to suggest that sensorimotor-related information may improve the control of external devices. Further studies are required to understand how the contribution of residual sensory channels could improve the reliability of BCI systems.

  18. [The P300-based brain-computer interface: presentation of the complex "flash + movement" stimuli].

    PubMed

    Ganin, I P; Kaplan, A Ia

    2014-01-01

    The P300 based brain-computer interface requires the detection of P300 wave of brain event-related potentials. Most of its users learn the BCI control in several minutes and after the short classifier training they can type a text on the computer screen or assemble an image of separate fragments in simple BCI-based video games. Nevertheless, insufficient attractiveness for users and conservative stimuli organization in this BCI may restrict its integration into real information processes control. At the same time initial movement of object (motion-onset stimuli) may be an independent factor that induces P300 wave. In current work we checked the hypothesis that complex "flash + movement" stimuli together with drastic and compact stimuli organization on the computer screen may be much more attractive for user while operating in P300 BCI. In 20 subjects research we showed the effectiveness of our interface. Both accuracy and P300 amplitude were higher for flashing stimuli and complex "flash + movement" stimuli compared to motion-onset stimuli. N200 amplitude was maximal for flashing stimuli, while for "flash + movement" stimuli and motion-onset stimuli it was only a half of it. Similar BCI with complex stimuli may be embedded into compact control systems requiring high level of user attention under impact of negative external effects obstructing the BCI control.

  19. Effects of Brain-Computer Interface-controlled Functional Electrical Stimulation Training on Shoulder Subluxation for Patients with Stroke: A Randomized Controlled Trial.

    PubMed

    Jang, Yun Young; Kim, Tae Hoon; Lee, Byoung Hee

    2016-06-01

    The purpose of this study was to investigate the effects of brain-computer interface (BCI)-controlled functional electrical stimulation (FES) training on shoulder subluxation of patients with stroke. Twenty subjects were randomly divided into two groups: the BCI-FES group (n = 10) and the FES group (n = 10). Patients in the BCI-FES group were administered conventional therapy with the BCI-FES on the shoulder subluxation area of the paretic upper extremity, five times per week during 6 weeks, while the FES group received conventional therapy with FES only. All patients were assessed for shoulder subluxation (vertical distance, VD; horizontal distance, HD), pain (visual analogue scale, VAS) and the Manual Function Test (MFT) at the time of recruitment to the study and after 6 weeks of the intervention. The BCI-FES group demonstrated significant improvements in VD, HD, VAS and MFT after the intervention period, while the FES group demonstrated significant improvements in HD, VAS and MFT. There were also significant differences in the VD and two items (shoulder flexion and abduction) of the MFT between the two groups. The results of this study suggest that BCI-FES training may be effective in improving shoulder subluxation of patients with stroke by facilitating motor recovery. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  20. Enrichment of Human-Computer Interaction in Brain-Computer Interfaces via Virtual Environments

    PubMed Central

    Víctor Rodrigo, Mercado-García

    2017-01-01

    Tridimensional representations stimulate cognitive processes that are the core and foundation of human-computer interaction (HCI). Those cognitive processes take place while a user navigates and explores a virtual environment (VE) and are mainly related to spatial memory storage, attention, and perception. VEs have many distinctive features (e.g., involvement, immersion, and presence) that can significantly improve HCI in highly demanding and interactive systems such as brain-computer interfaces (BCI). BCI is as a nonmuscular communication channel that attempts to reestablish the interaction between an individual and his/her environment. Although BCI research started in the sixties, this technology is not efficient or reliable yet for everyone at any time. Over the past few years, researchers have argued that main BCI flaws could be associated with HCI issues. The evidence presented thus far shows that VEs can (1) set out working environmental conditions, (2) maximize the efficiency of BCI control panels, (3) implement navigation systems based not only on user intentions but also on user emotions, and (4) regulate user mental state to increase the differentiation between control and noncontrol modalities. PMID:29317861

  1. Tensor-based classification of an auditory mobile BCI without a subject-specific calibration phase

    NASA Astrophysics Data System (ADS)

    Zink, Rob; Hunyadi, Borbála; Van Huffel, Sabine; De Vos, Maarten

    2016-04-01

    Objective. One of the major drawbacks in EEG brain-computer interfaces (BCI) is the need for subject-specific training of the classifier. By removing the need for a supervised calibration phase, new users could potentially explore a BCI faster. In this work we aim to remove this subject-specific calibration phase and allow direct classification. Approach. We explore canonical polyadic decompositions and block term decompositions of the EEG. These methods exploit structure in higher dimensional data arrays called tensors. The BCI tensors are constructed by concatenating ERP templates from other subjects to a target and non-target trial and the inherent structure guides a decomposition that allows accurate classification. We illustrate the new method on data from a three-class auditory oddball paradigm. Main results. The presented approach leads to a fast and intuitive classification with accuracies competitive with a supervised and cross-validated LDA approach. Significance. The described methods are a promising new way of classifying BCI data with a forthright link to the original P300 ERP signal over the conventional and widely used supervised approaches.

  2. Tensor-based classification of an auditory mobile BCI without a subject-specific calibration phase.

    PubMed

    Zink, Rob; Hunyadi, Borbála; Huffel, Sabine Van; Vos, Maarten De

    2016-04-01

    One of the major drawbacks in EEG brain-computer interfaces (BCI) is the need for subject-specific training of the classifier. By removing the need for a supervised calibration phase, new users could potentially explore a BCI faster. In this work we aim to remove this subject-specific calibration phase and allow direct classification. We explore canonical polyadic decompositions and block term decompositions of the EEG. These methods exploit structure in higher dimensional data arrays called tensors. The BCI tensors are constructed by concatenating ERP templates from other subjects to a target and non-target trial and the inherent structure guides a decomposition that allows accurate classification. We illustrate the new method on data from a three-class auditory oddball paradigm. The presented approach leads to a fast and intuitive classification with accuracies competitive with a supervised and cross-validated LDA approach. The described methods are a promising new way of classifying BCI data with a forthright link to the original P300 ERP signal over the conventional and widely used supervised approaches.

  3. Neuroprosthetic-enabled control of graded arm muscle contraction in a paralyzed human.

    PubMed

    Friedenberg, David A; Schwemmer, Michael A; Landgraf, Andrew J; Annetta, Nicholas V; Bockbrader, Marcia A; Bouton, Chad E; Zhang, Mingming; Rezai, Ali R; Mysiw, W Jerry; Bresler, Herbert S; Sharma, Gaurav

    2017-08-21

    Neuroprosthetics that combine a brain computer interface (BCI) with functional electrical stimulation (FES) can restore voluntary control of a patients' own paralyzed limbs. To date, human studies have demonstrated an "all-or-none" type of control for a fixed number of pre-determined states, like hand-open and hand-closed. To be practical for everyday use, a BCI-FES system should enable smooth control of limb movements through a continuum of states and generate situationally appropriate, graded muscle contractions. Crucially, this functionality will allow users of BCI-FES neuroprosthetics to manipulate objects of different sizes and weights without dropping or crushing them. In this study, we present the first evidence that using a BCI-FES system, a human with tetraplegia can regain volitional, graded control of muscle contraction in his paralyzed limb. In addition, we show the critical ability of the system to generalize beyond training states and accurately generate wrist flexion states that are intermediate to training levels. These innovations provide the groundwork for enabling enhanced and more natural fine motor control of paralyzed limbs by BCI-FES neuroprosthetics.

  4. Effects of brain-computer interface-based functional electrical stimulation on brain activation in stroke patients: a pilot randomized controlled trial.

    PubMed

    Chung, EunJung; Kim, Jung-Hee; Park, Dae-Sung; Lee, Byoung-Hee

    2015-03-01

    [Purpose] This study sought to determine the effects of brain-computer interface-based functional electrical stimulation (BCI-FES) on brain activation in patients with stroke. [Subjects] The subjects were randomized to in a BCI-FES group (n=5) and a functional electrical stimulation (FES) group (n=5). [Methods] Patients in the BCI-FES group received ankle dorsiflexion training with FES for 30 minutes per day, 5 times under the brain-computer interface-based program. The FES group received ankle dorsiflexion training with FES for the same amount of time. [Results] The BCI-FES group demonstrated significant differences in the frontopolar regions 1 and 2 attention indexes, and frontopolar 1 activation index. The FES group demonstrated no significant differences. There were significant differences in the frontopolar 1 region activation index between the two groups after the interventions. [Conclusion] The results of this study suggest that BCI-FES training may be more effective in stimulating brain activation than only FES training in patients recovering from stroke.

  5. A two-class self-paced BCI to control a robot in four directions.

    PubMed

    Ron-Angevin, Ricardo; Velasco-Alvarez, Francisco; Sancha-Ros, Salvador; da Silva-Sauer, Leandro

    2011-01-01

    In this work, an electroencephalographic analysis-based, self-paced (asynchronous) brain-computer interface (BCI) is proposed to control a mobile robot using four different navigation commands: turn right, turn left, move forward and move back. In order to reduce the probability of misclassification, the BCI is to be controlled with only two mental tasks (relaxed state versus imagination of right hand movements), using an audio-cued interface. Four healthy subjects participated in the experiment. After two sessions controlling a simulated robot in a virtual environment (which allowed the user to become familiar with the interface), three subjects successfully moved the robot in a real environment. The obtained results show that the proposed interface enables control over the robot, even for subjects with low BCI performance. © 2011 IEEE

  6. Neurofeedback Training for BCI Control

    NASA Astrophysics Data System (ADS)

    Neuper, Christa; Pfurtscheller, Gert

    Brain-computer interface (BCI) systems detect changes in brain signals that reflect human intention, then translate these signals to control monitors or external devices (for a comprehensive review, see [1]). BCIs typically measure electrical signals resulting from neural firing (i.e. neuronal action potentials, Electroencephalogram (ECoG), or Electroencephalogram (EEG)). Sophisticated pattern recognition and classification algorithms convert neural activity into the required control signals. BCI research has focused heavily on developing powerful signal processing and machine learning techniques to accurately classify neural activity [2-4].

  7. Polyfibroblast: A Self-Healing and Galvanic Protection Additive

    DTIC Science & Technology

    2013-09-25

    Specifically we looked at emulsifier (Gum Arabic vs. SiC^), polymer-forming monomer (IPDI vs. BCI ), silane molecular weight (C12 vs. C18 vs. C8-C18...le+6J tu ie+4- le+2 U le+0 ■ Coating ■ Scratch BCI IPDI Isocyanate Type ICoating |Scratch Figure 3: A) Corrosion resistance of the...surprising. The type of monomer also did not appear to matter in these measurements. Whether polymerized from IPDI or BCI , the extent of self-healing

  8. Classification of Non-Time-Locked Rapid Serial Visual Presentation Events for Brain-Computer Interaction Using Deep Learning

    DTIC Science & Technology

    2014-07-08

    internction ( BCI ) system allows h uman subjects to communicate with or control an extemal device with their brain signals [1], or to use those brain...signals to interact with computers, environments, or even other humans [2]. One application of BCI is to use brnin signals to distinguish target...images within a large collection of non-target images [2]. Such BCI -based systems can drastically increase the speed of target identification in

  9. Effective DQE (eDQE) for monoscopic and stereoscopic chest radiography imaging systems with the incorporation of anatomical noise.

    PubMed

    Boyce, Sarah J; Choudhury, Kingshuk Roy; Samei, Ehsan

    2013-09-01

    Stereoscopic chest biplane correlation imaging (stereo∕BCI) has been proposed as an alternative modality to single view chest x-ray (CXR). The metrics effective modulation transfer function (eMTF), effective normalized noise power spectrum (eNNPS), and effective detective quantum efficiency (eDQE) have been proposed as clinically relevant metrics for assessing clinical system performance taking into consideration the magnification and scatter effects. This study compared the metrics eMTF, eNNPS, eDQE, and detectability index for stereo∕BCI and single view CXR under isodose conditions at two magnifications for two anthropomorphic phantoms of differing sizes. Measurements for the eMTF were taken for two phantom sizes with an opaque edge test device using established techniques. The eNNPS was measured at two isodose conditions for two phantoms using established techniques. The scatter was measured for two phantoms using an established beam stop method. All measurements were also taken at two different magnifications with two phantoms. A geometrical phantom was used for comparison with prior results for CXR although the results for an anatomy free phantom are not expected to vary for BCI. Stereo∕BCI resulted in improved metrics compared to single view CXR. Results indicated that magnification can potentially improve the detection performance primarily due to the air gap which reduced scatter by ∼20%. For both phantoms, at isodose, eDQE(0) for stereo∕BCI was ∼100 times higher than that for CXR. Magnification at isodose improved eDQE(0) by ∼10 times for stereo∕BCI. Increasing the dose did not improve eDQE. The detectability index for stereo∕BCI was ∼100 times better than single view CXR for all conditions. The detectability index was also not improved with increased dose. The findings indicate that stereo∕BCI with magnification may improve detectability of subtle lung nodules compared to single view CXR. Results were improved with magnification for the smaller phantom but not for the larger phantom. The effective DQE and the detectability index did not improve with increasing dose.

  10. Motor priming in virtual reality can augment motor-imagery training efficacy in restorative brain-computer interaction: a within-subject analysis.

    PubMed

    Vourvopoulos, Athanasios; Bermúdez I Badia, Sergi

    2016-08-09

    The use of Brain-Computer Interface (BCI) technology in neurorehabilitation provides new strategies to overcome stroke-related motor limitations. Recent studies demonstrated the brain's capacity for functional and structural plasticity through BCI. However, it is not fully clear how we can take full advantage of the neurobiological mechanisms underlying recovery and how to maximize restoration through BCI. In this study we investigate the role of multimodal virtual reality (VR) simulations and motor priming (MP) in an upper limb motor-imagery BCI task in order to maximize the engagement of sensory-motor networks in a broad range of patients who can benefit from virtual rehabilitation training. In order to investigate how different BCI paradigms impact brain activation, we designed 3 experimental conditions in a within-subject design, including an immersive Multimodal Virtual Reality with Motor Priming (VRMP) condition where users had to perform motor-execution before BCI training, an immersive Multimodal VR condition, and a control condition with standard 2D feedback. Further, these were also compared to overt motor-execution. Finally, a set of questionnaires were used to gather subjective data on Workload, Kinesthetic Imagery and Presence. Our findings show increased capacity to modulate and enhance brain activity patterns in all extracted EEG rhythms matching more closely those present during motor-execution and also a strong relationship between electrophysiological data and subjective experience. Our data suggest that both VR and particularly MP can enhance the activation of brain patterns present during overt motor-execution. Further, we show changes in the interhemispheric EEG balance, which might play an important role in the promotion of neural activation and neuroplastic changes in stroke patients in a motor-imagery neurofeedback paradigm. In addition, electrophysiological correlates of psychophysiological responses provide us with valuable information about the motor and affective state of the user that has the potential to be used to predict MI-BCI training outcome based on user's profile. Finally, we propose a BCI paradigm in VR, which gives the possibility of motor priming for patients with low level of motor control.

  11. Assessing motor imagery in brain-computer interface training: Psychological and neurophysiological correlates.

    PubMed

    Vasilyev, Anatoly; Liburkina, Sofya; Yakovlev, Lev; Perepelkina, Olga; Kaplan, Alexander

    2017-03-01

    Motor imagery (MI) is considered to be a promising cognitive tool for improving motor skills as well as for rehabilitation therapy of movement disorders. It is believed that MI training efficiency could be improved by using the brain-computer interface (BCI) technology providing real-time feedback on person's mental attempts. While BCI is indeed a convenient and motivating tool for practicing MI, it is not clear whether it could be used for predicting or measuring potential positive impact of the training. In this study, we are trying to establish whether the proficiency in BCI control is associated with any of the neurophysiological or psychological correlates of motor imagery, as well as to determine possible interrelations among them. For that purpose, we studied motor imagery in a group of 19 healthy BCI-trained volunteers and performed a correlation analysis across various quantitative assessment metrics. We examined subjects' sensorimotor event-related EEG events, corticospinal excitability changes estimated with single-pulse transcranial magnetic stimulation (TMS), BCI accuracy and self-assessment reports obtained with specially designed questionnaires and interview routine. Our results showed, expectedly, that BCI performance is dependent on the subject's capability to suppress EEG sensorimotor rhythms, which in turn is correlated with the idle state amplitude of those oscillations. Neither BCI accuracy nor the EEG features associated with MI were found to correlate with the level of corticospinal excitability increase during motor imagery, and with assessed imagery vividness. Finally, a significant correlation was found between the level of corticospinal excitability increase and kinesthetic vividness of imagery (KVIQ-20 questionnaire). Our results suggest that two distinct neurophysiological mechanisms might mediate possible effects of motor imagery: the non-specific cortical sensorimotor disinhibition and the focal corticospinal excitability increase. Acquired data suggests that BCI-based approach is unreliable in assessing motor imagery due to its high dependence on subject's innate EEG features (e.g. resting mu-rhythm amplitude). Therefore, employment of additional assessment protocols, such as TMS and psychological testing, is required for more comprehensive evaluation of the subject's motor imagery training efficiency. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Analysis of the mechanism of activation of cAMP-dependent protein kinase through the study of mutants of the yeast regulatory subunit.

    PubMed

    Zaremberg, V; Moreno, S

    1996-04-01

    Spontaneous mutations in the gene which encodes the regulatory subunit of cAMP-dependent protein kinase (PKA) of Saccharomyces cerevisiae (BCY1) have been isolated previously [Cannon, J. F., Gibbs, J. B. & Tatchell, K. (1986) Genetics 113, 247-264] by selection of ras2::LEU2 revertants that grew on non-fermentable carbon sources. The revertants were placed into groups of increasing severity based on the number of PKA-dependent traits affected [Cannon, J. F., Gitan, R. & Tatchell, K. (1990) J. Biol. Chem. 265, 11897-11904]. In this work the ras2 mutation has been crossed out in each bcy1 allele and the phenotypes of these mutants have been assessed. The order of severity of the mutants in both genetic backgrounds is maintained but the severity of each mutant in the normal background is higher than in the ras2::LEU2 background. Total catalytic-subunit and regulatory-subunit activities were measured in crude extracts of the bcy1 ras2::LEU2 mutants. With one exception (bcy1-6) the calculated regulatory subunit/catalytic subunit ratios of the bcy1 mutants relative to that of wild-type cells were greater than one. The dependence of PKA activity on cAMP was measured in permeabilized cells. The strains show an activity ratio in the absence and presence of cAMP in the range 0.5-1 for Kemptide phosphorylation. Overexpression of the high-affinity cAMP phosphodiesterase gene (PDE2) in the bcy1 ras2::LEU2 strains did not alter their PKA-dependent phenotypes. However, transformants were not observed from the parental ras2::LEU2 strain and the bcy1-6 ras2::LEU2 strain. The results are discussed with respect to a hypothesis for the molecular mechanism of the differential reversal of ras2 phenotypes by the bcy1 alleles. Mutations in the regulatory subunit are predicted to affect the structure of the holoenzyme such that the catalytic subunit is capable of maintaining an active catalytic state, without the need to dissociate from the regulatory subunit.

  13. Effective DQE (eDQE) for monoscopic and stereoscopic chest radiography imaging systems with the incorporation of anatomical noise

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyce, Sarah J.; Choudhury, Kingshuk Roy; Samei, Ehsan

    2013-09-15

    Purpose: Stereoscopic chest biplane correlation imaging (stereo/BCI) has been proposed as an alternative modality to single view chest x-ray (CXR). The metrics effective modulation transfer function (eMTF), effective normalized noise power spectrum (eNNPS), and effective detective quantum efficiency (eDQE) have been proposed as clinically relevant metrics for assessing clinical system performance taking into consideration the magnification and scatter effects. This study compared the metrics eMTF, eNNPS, eDQE, and detectability index for stereo/BCI and single view CXR under isodose conditions at two magnifications for two anthropomorphic phantoms of differing sizes.Methods: Measurements for the eMTF were taken for two phantom sizes withmore » an opaque edge test device using established techniques. The eNNPS was measured at two isodose conditions for two phantoms using established techniques. The scatter was measured for two phantoms using an established beam stop method. All measurements were also taken at two different magnifications with two phantoms. A geometrical phantom was used for comparison with prior results for CXR although the results for an anatomy free phantom are not expected to vary for BCI.Results: Stereo/BCI resulted in improved metrics compared to single view CXR. Results indicated that magnification can potentially improve the detection performance primarily due to the air gap which reduced scatter by ∼20%. For both phantoms, at isodose, eDQE(0) for stereo/BCI was ∼100 times higher than that for CXR. Magnification at isodose improved eDQE(0) by ∼10 times for stereo/BCI. Increasing the dose did not improve eDQE. The detectability index for stereo/BCI was ∼100 times better than single view CXR for all conditions. The detectability index was also not improved with increased dose.Conclusions: The findings indicate that stereo/BCI with magnification may improve detectability of subtle lung nodules compared to single view CXR. Results were improved with magnification for the smaller phantom but not for the larger phantom. The effective DQE and the detectability index did not improve with increasing dose.« less

  14. A Study of the Effects of Electrode Number and Decoding Algorithm on Online EEG-Based BCI Behavioral Performance

    PubMed Central

    Meng, Jianjun; Edelman, Bradley J.; Olsoe, Jaron; Jacobs, Gabriel; Zhang, Shuying; Beyko, Angeliki; He, Bin

    2018-01-01

    Motor imagery–based brain–computer interface (BCI) using electroencephalography (EEG) has demonstrated promising applications by directly decoding users' movement related mental intention. The selection of control signals, e.g., the channel configuration and decoding algorithm, plays a vital role in the online performance and progressing of BCI control. While several offline analyses report the effect of these factors on BCI accuracy for a single session—performance increases asymptotically by increasing the number of channels, saturates, and then decreases—no online study, to the best of our knowledge, has yet been performed to compare for a single session or across training. The purpose of the current study is to assess, in a group of forty-five subjects, the effect of channel number and decoding method on the progression of BCI performance across multiple training sessions and the corresponding neurophysiological changes. The 45 subjects were divided into three groups using Laplacian Filtering (LAP/S) with nine channels, Common Spatial Pattern (CSP/L) with 40 channels and CSP (CSP/S) with nine channels for online decoding. At the first training session, subjects using CSP/L displayed no significant difference compared to CSP/S but a higher average BCI performance over those using LAP/S. Despite the average performance when using the LAP/S method was initially lower, but LAP/S displayed improvement over first three sessions, whereas the other two groups did not. Additionally, analysis of the recorded EEG during BCI control indicates that the LAP/S produces control signals that are more strongly correlated with the target location and a higher R-square value was shown at the fifth session. In the present study, we found that subjects' average online BCI performance using a large EEG montage does not show significantly better performance after the first session than a smaller montage comprised of a common subset of these electrodes. The LAP/S method with a small EEG montage allowed the subjects to improve their skills across sessions, but no improvement was shown for the CSP method. PMID:29681792

  15. A Single-Session Preliminary Evaluation of an Affordable BCI-Controlled Arm Exoskeleton and Motor-Proprioception Platform.

    PubMed

    Elnady, Ahmed Mohamed; Zhang, Xin; Xiao, Zhen Gang; Yong, Xinyi; Randhawa, Bubblepreet Kaur; Boyd, Lara; Menon, Carlo

    2015-01-01

    Traditional, hospital-based stroke rehabilitation can be labor-intensive and expensive. Furthermore, outcomes from rehabilitation are inconsistent across individuals and recovery is hard to predict. Given these uncertainties, numerous technological approaches have been tested in an effort to improve rehabilitation outcomes and reduce the cost of stroke rehabilitation. These techniques include brain-computer interface (BCI), robotic exoskeletons, functional electrical stimulation (FES), and proprioceptive feedback. However, to the best of our knowledge, no studies have combined all these approaches into a rehabilitation platform that facilitates goal-directed motor movements. Therefore, in this paper, we combined all these technologies to test the feasibility of using a BCI-driven exoskeleton with FES (robotic training device) to facilitate motor task completion among individuals with stroke. The robotic training device operated to assist a pre-defined goal-directed motor task. Because it is hard to predict who can utilize this type of technology, we considered whether the ability to adapt skilled movements with proprioceptive feedback would predict who could learn to control a BCI-driven robotic device. To accomplish this aim, we developed a motor task that requires proprioception for completion to assess motor-proprioception ability. Next, we tested the feasibility of robotic training system in individuals with chronic stroke (n = 9) and found that the training device was well tolerated by all the participants. Ability on the motor-proprioception task did not predict the time to completion of the BCI-driven task. Both participants who could accurately target (n = 6) and those who could not (n = 3), were able to learn to control the BCI device, with each BCI trial lasting on average 2.47 min. Our results showed that the participants' ability to use proprioception to control motor output did not affect their ability to use the BCI-driven exoskeleton with FES. Based on our preliminary results, we show that our robotic training device has potential for use as therapy for a broad range of individuals with stroke.

  16. A Study of the Effects of Electrode Number and Decoding Algorithm on Online EEG-Based BCI Behavioral Performance.

    PubMed

    Meng, Jianjun; Edelman, Bradley J; Olsoe, Jaron; Jacobs, Gabriel; Zhang, Shuying; Beyko, Angeliki; He, Bin

    2018-01-01

    Motor imagery-based brain-computer interface (BCI) using electroencephalography (EEG) has demonstrated promising applications by directly decoding users' movement related mental intention. The selection of control signals, e.g., the channel configuration and decoding algorithm, plays a vital role in the online performance and progressing of BCI control. While several offline analyses report the effect of these factors on BCI accuracy for a single session-performance increases asymptotically by increasing the number of channels, saturates, and then decreases-no online study, to the best of our knowledge, has yet been performed to compare for a single session or across training. The purpose of the current study is to assess, in a group of forty-five subjects, the effect of channel number and decoding method on the progression of BCI performance across multiple training sessions and the corresponding neurophysiological changes. The 45 subjects were divided into three groups using Laplacian Filtering (LAP/S) with nine channels, Common Spatial Pattern (CSP/L) with 40 channels and CSP (CSP/S) with nine channels for online decoding. At the first training session, subjects using CSP/L displayed no significant difference compared to CSP/S but a higher average BCI performance over those using LAP/S. Despite the average performance when using the LAP/S method was initially lower, but LAP/S displayed improvement over first three sessions, whereas the other two groups did not. Additionally, analysis of the recorded EEG during BCI control indicates that the LAP/S produces control signals that are more strongly correlated with the target location and a higher R-square value was shown at the fifth session. In the present study, we found that subjects' average online BCI performance using a large EEG montage does not show significantly better performance after the first session than a smaller montage comprised of a common subset of these electrodes. The LAP/S method with a small EEG montage allowed the subjects to improve their skills across sessions, but no improvement was shown for the CSP method.

  17. Linguistic and psychometric validation of the Malaysian version of Diabetes Quality of Life-Brief Clinical Inventory (DQoL-BCI).

    PubMed

    Samah, Syamimi; Neoh, Chin Fen; Wong, Yuet Yen; Hassali, Mohamed Azmi; Shafie, Asrul Akmal; Lim, Siong Meng; Ramasamy, Kalavathy; Mat Nasir, Nafiza; Han, Yung Wen; Burroughs, Thomas

    2017-11-01

    Quality of life (QoL) assessment provides valuable outcome to support clinical decision-making, particularly for patients with chronic diseases that are incurable. A brief, 15-item diabetes-specific tool [i.e. Diabetes Quality of Life-Brief Clinical Inventory (DQoL-BCI)] is known to be developed in English and validated for use in clinical practice. This simplified tool, however, is not readily available for use in the Malaysian setting. To translate the DQoL-BCI into a Malaysian version and to assess its construct validity (factorial validity, convergent validity and discriminant validity), reliability (internal consistency) and floor and ceiling effects among the Malaysian diabetic population. A forward-backward translation, involving professional translators and experts with vast experience in translation of patient reported outcome measures, was conducted. A total of 202 patients with Type 2 diabetes mellitus (T2DM) who fulfilled the inclusion criteria were invited to complete the translated DQoL-BCI. Data were analysed using SPSS for exploratory factor analysis (EFA), convergent and discriminant validity, reliability and test-retest, and AMOS software for confirmatory factor analysis (CFA). Findings from EFA indicated that the 4-factor structure of the Malaysian version of DQoL-BCI was optimal and explained 50.9% of the variance; CFA confirmed the 4-factor model fit. There was negative, moderate correlation between the scores of DQoL-BCI (Malaysian version) and EQ-5D-3L utility score (r = -0.329, p = 0.003). Patients with higher glycated haemoglobin levels (p = 0.008), diabetes macrovascular (p = 0.017) and microvascular (p = 0.013) complications reported poorer QoL. Cronbach's alpha coefficient and intraclass coefficient correlations (range) obtained were 0.703 and 0.86 (0.734-0.934), indicating good reliability and stability of the translated DQoL-BCI. This study had validated the linguistic and psychometric properties of DQoL-BCI (Malaysian version), thus providing a valid and reliable brief tool for assessing the QoL of Malaysian T2DM patients. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. A Single-Session Preliminary Evaluation of an Affordable BCI-Controlled Arm Exoskeleton and Motor-Proprioception Platform

    PubMed Central

    Elnady, Ahmed Mohamed; Zhang, Xin; Xiao, Zhen Gang; Yong, Xinyi; Randhawa, Bubblepreet Kaur; Boyd, Lara; Menon, Carlo

    2015-01-01

    Traditional, hospital-based stroke rehabilitation can be labor-intensive and expensive. Furthermore, outcomes from rehabilitation are inconsistent across individuals and recovery is hard to predict. Given these uncertainties, numerous technological approaches have been tested in an effort to improve rehabilitation outcomes and reduce the cost of stroke rehabilitation. These techniques include brain–computer interface (BCI), robotic exoskeletons, functional electrical stimulation (FES), and proprioceptive feedback. However, to the best of our knowledge, no studies have combined all these approaches into a rehabilitation platform that facilitates goal-directed motor movements. Therefore, in this paper, we combined all these technologies to test the feasibility of using a BCI-driven exoskeleton with FES (robotic training device) to facilitate motor task completion among individuals with stroke. The robotic training device operated to assist a pre-defined goal-directed motor task. Because it is hard to predict who can utilize this type of technology, we considered whether the ability to adapt skilled movements with proprioceptive feedback would predict who could learn to control a BCI-driven robotic device. To accomplish this aim, we developed a motor task that requires proprioception for completion to assess motor-proprioception ability. Next, we tested the feasibility of robotic training system in individuals with chronic stroke (n = 9) and found that the training device was well tolerated by all the participants. Ability on the motor-proprioception task did not predict the time to completion of the BCI-driven task. Both participants who could accurately target (n = 6) and those who could not (n = 3), were able to learn to control the BCI device, with each BCI trial lasting on average 2.47 min. Our results showed that the participants’ ability to use proprioception to control motor output did not affect their ability to use the BCI-driven exoskeleton with FES. Based on our preliminary results, we show that our robotic training device has potential for use as therapy for a broad range of individuals with stroke. PMID:25870554

  19. Functional source separation and hand cortical representation for a brain–computer interface feature extraction

    PubMed Central

    Tecchio, Franca; Porcaro, Camillo; Barbati, Giulia; Zappasodi, Filippo

    2007-01-01

    A brain–computer interface (BCI) can be defined as any system that can track the person's intent which is embedded in his/her brain activity and, from it alone, translate the intention into commands of a computer. Among the brain signal monitoring systems best suited for this challenging task, electroencephalography (EEG) and magnetoencephalography (MEG) are the most realistic, since both are non-invasive, EEG is portable and MEG could provide more specific information that could be later exploited also through EEG signals. The first two BCI steps require set up of the appropriate experimental protocol while recording the brain signal and then to extract interesting features from the recorded cerebral activity. To provide information useful in these BCI stages, our aim is to provide an overview of a new procedure we recently developed, named functional source separation (FSS). As it comes from the blind source separation algorithms, it exploits the most valuable information provided by the electrophysiological techniques, i.e. the waveform signal properties, remaining blind to the biophysical nature of the signal sources. FSS returns the single trial source activity, estimates the time course of a neuronal pool along different experimental states on the basis of a specific functional requirement in a specific time period, and uses the simulated annealing as the optimization procedure allowing the exploit of functional constraints non-differentiable. Moreover, a minor section is included, devoted to information acquired by MEG in stroke patients, to guide BCI applications aiming at sustaining motor behaviour in these patients. Relevant BCI features – spatial and time-frequency properties – are in fact altered by a stroke in the regions devoted to hand control. Moreover, a method to investigate the relationship between sensory and motor hand cortical network activities is described, providing information useful to develop BCI feedback control systems. This review provides a description of the FSS technique, a promising tool for the BCI community for online electrophysiological feature extraction, and offers interesting information to develop BCI applications to sustain hand control in stroke patients. PMID:17331989

  20. Single-trial detection of visual evoked potentials by common spatial patterns and wavelet filtering for brain-computer interface.

    PubMed

    Tu, Yiheng; Huang, Gan; Hung, Yeung Sam; Hu, Li; Hu, Yong; Zhang, Zhiguo

    2013-01-01

    Event-related potentials (ERPs) are widely used in brain-computer interface (BCI) systems as input signals conveying a subject's intention. A fast and reliable single-trial ERP detection method can be used to develop a BCI system with both high speed and high accuracy. However, most of single-trial ERP detection methods are developed for offline EEG analysis and thus have a high computational complexity and need manual operations. Therefore, they are not applicable to practical BCI systems, which require a low-complexity and automatic ERP detection method. This work presents a joint spatial-time-frequency filter that combines common spatial patterns (CSP) and wavelet filtering (WF) for improving the signal-to-noise (SNR) of visual evoked potentials (VEP), which can lead to a single-trial ERP-based BCI.

  1. P300 Chinese input system based on Bayesian LDA.

    PubMed

    Jin, Jing; Allison, Brendan Z; Brunner, Clemens; Wang, Bei; Wang, Xingyu; Zhang, Jianhua; Neuper, Christa; Pfurtscheller, Gert

    2010-02-01

    A brain-computer interface (BCI) is a new communication channel between humans and computers that translates brain activity into recognizable command and control signals. Attended events can evoke P300 potentials in the electroencephalogram. Hence, the P300 has been used in BCI systems to spell, control cursors or robotic devices, and other tasks. This paper introduces a novel P300 BCI to communicate Chinese characters. To improve classification accuracy, an optimization algorithm (particle swarm optimization, PSO) is used for channel selection (i.e., identifying the best electrode configuration). The effects of different electrode configurations on classification accuracy were tested by Bayesian linear discriminant analysis offline. The offline results from 11 subjects show that this new P300 BCI can effectively communicate Chinese characters and that the features extracted from the electrodes obtained by PSO yield good performance.

  2. A survey of signal processing algorithms in brain-computer interfaces based on electrical brain signals.

    PubMed

    Bashashati, Ali; Fatourechi, Mehrdad; Ward, Rabab K; Birch, Gary E

    2007-06-01

    Brain-computer interfaces (BCIs) aim at providing a non-muscular channel for sending commands to the external world using the electroencephalographic activity or other electrophysiological measures of the brain function. An essential factor in the successful operation of BCI systems is the methods used to process the brain signals. In the BCI literature, however, there is no comprehensive review of the signal processing techniques used. This work presents the first such comprehensive survey of all BCI designs using electrical signal recordings published prior to January 2006. Detailed results from this survey are presented and discussed. The following key research questions are addressed: (1) what are the key signal processing components of a BCI, (2) what signal processing algorithms have been used in BCIs and (3) which signal processing techniques have received more attention?

  3. TOPICAL REVIEW: A survey of signal processing algorithms in brain computer interfaces based on electrical brain signals

    NASA Astrophysics Data System (ADS)

    Bashashati, Ali; Fatourechi, Mehrdad; Ward, Rabab K.; Birch, Gary E.

    2007-06-01

    Brain computer interfaces (BCIs) aim at providing a non-muscular channel for sending commands to the external world using the electroencephalographic activity or other electrophysiological measures of the brain function. An essential factor in the successful operation of BCI systems is the methods used to process the brain signals. In the BCI literature, however, there is no comprehensive review of the signal processing techniques used. This work presents the first such comprehensive survey of all BCI designs using electrical signal recordings published prior to January 2006. Detailed results from this survey are presented and discussed. The following key research questions are addressed: (1) what are the key signal processing components of a BCI, (2) what signal processing algorithms have been used in BCIs and (3) which signal processing techniques have received more attention?

  4. Estimating the mutual information of an EEG-based Brain-Computer Interface.

    PubMed

    Schlögl, A; Neuper, C; Pfurtscheller, G

    2002-01-01

    An EEG-based Brain-Computer Interface (BCI) could be used as an additional communication channel between human thoughts and the environment. The efficacy of such a BCI depends mainly on the transmitted information rate. Shannon's communication theory was used to quantify the information rate of BCI data. For this purpose, experimental EEG data from four BCI experiments was analyzed off-line. Subjects imaginated left and right hand movements during EEG recording from the sensorimotor area. Adaptive autoregressive (AAR) parameters were used as features of single trial EEG and classified with linear discriminant analysis. The intra-trial variation as well as the inter-trial variability, the signal-to-noise ratio, the entropy of information, and the information rate were estimated. The entropy difference was used as a measure of the separability of two classes of EEG patterns.

  5. A hybrid brain-computer interface-based mail client.

    PubMed

    Yu, Tianyou; Li, Yuanqing; Long, Jinyi; Li, Feng

    2013-01-01

    Brain-computer interface-based communication plays an important role in brain-computer interface (BCI) applications; electronic mail is one of the most common communication tools. In this study, we propose a hybrid BCI-based mail client that implements electronic mail communication by means of real-time classification of multimodal features extracted from scalp electroencephalography (EEG). With this BCI mail client, users can receive, read, write, and attach files to their mail. Using a BCI mouse that utilizes hybrid brain signals, that is, motor imagery and P300 potential, the user can select and activate the function keys and links on the mail client graphical user interface (GUI). An adaptive P300 speller is employed for text input. The system has been tested with 6 subjects, and the experimental results validate the efficacy of the proposed method.

  6. A Hybrid Brain-Computer Interface-Based Mail Client

    PubMed Central

    Yu, Tianyou; Li, Yuanqing; Long, Jinyi; Li, Feng

    2013-01-01

    Brain-computer interface-based communication plays an important role in brain-computer interface (BCI) applications; electronic mail is one of the most common communication tools. In this study, we propose a hybrid BCI-based mail client that implements electronic mail communication by means of real-time classification of multimodal features extracted from scalp electroencephalography (EEG). With this BCI mail client, users can receive, read, write, and attach files to their mail. Using a BCI mouse that utilizes hybrid brain signals, that is, motor imagery and P300 potential, the user can select and activate the function keys and links on the mail client graphical user interface (GUI). An adaptive P300 speller is employed for text input. The system has been tested with 6 subjects, and the experimental results validate the efficacy of the proposed method. PMID:23690880

  7. Rehabilitation of hand in subacute tetraplegic patients based on brain computer interface and functional electrical stimulation: a randomised pilot study

    NASA Astrophysics Data System (ADS)

    Osuagwu, Bethel C. A.; Wallace, Leslie; Fraser, Mathew; Vuckovic, Aleksandra

    2016-12-01

    Objective. To compare neurological and functional outcomes between two groups of hospitalised patients with subacute tetraplegia. Approach. Seven patients received 20 sessions of brain computer interface (BCI) controlled functional electrical stimulation (FES) while five patients received the same number of sessions of passive FES for both hands. The neurological assessment measures were event related desynchronization (ERD) during movement attempt, Somatosensory evoked potential (SSEP) of the ulnar and median nerve; assessment of hand function involved the range of motion (ROM) of wrist and manual muscle test. Main results. Patients in both groups initially had intense ERD during movement attempt that was not restricted to the sensory-motor cortex. Following the treatment, ERD cortical activity restored towards the activity in able-bodied people in BCI-FES group only, remaining wide-spread in FES group. Likewise, SSEP returned in 3 patients in BCI-FES group, having no changes in FES group. The ROM of the wrist improved in both groups. Muscle strength significantly improved for both hands in BCI-FES group. For FES group, a significant improvement was noticed for right hand flexor muscles only. Significance. Combined BCI-FES therapy results in better neurological recovery and better improvement of muscle strength than FES alone. For spinal cord injured patients, BCI-FES should be considered as a therapeutic tool rather than solely a long-term assistive device for the restoration of a lost function.

  8. Investigating the Effect of Social Changes on Age-Specific Gun-Related Homicide Rates in New York City During the 1990s

    PubMed Central

    Messner, Steven F.; Tracy, Melissa; Vlahov, David; Goldmann, Emily; Tardiff, Kenneth J.; Galea, Sandro

    2010-01-01

    Objectives. We assessed whether New York City's gun-related homicide rates in the 1990s were associated with a range of social determinants of homicide rates. Methods. We used cross-sectional time-series data for 74 New York City police precincts from 1990 through 1999, and we estimated Bayesian hierarchical models with a spatial error term. Homicide rates were estimated separately for victims aged 15–24 years (youths), 25–34 years (young adults), and 35 years or older (adults). Results. Decreased cocaine consumption was associated with declining homicide rates in youths (posterior median [PM] = 0.25; 95% Bayesian confidence interval [BCI] = 0.07, 0.45) and adults (PM = 0.07; 95% BCI = 0.02, 0.12), and declining alcohol consumption was associated with fewer homicides in young adults (PM = 0.14; 95% BCI = 0.02, 0.25). Receipt of public assistance was associated with fewer homicides for young adults (PM = –104.20; 95% BCI = –182.0, –26.14) and adults (PM = –28.76; 95% BCI = –52.65, –5.01). Misdemeanor policing was associated with fewer homicides in adults (PM = –0.01; 95% BCI = –0.02, –0.001). Conclusions. Substance use prevention policies and expansion of the social safety net may be able to cause major reductions in homicide among age groups that drive city homicide trends. PMID:20395590

  9. Structure analysis of BaCe{sub 0.8}Y{sub 0.2}O{sub 3−δ} in dry and wet atmospheres by high-temperature X-ray diffraction measurement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Donglin, E-mail: han.donglin.8n@kyoto-u.ac.jp; Majima, Masatoshi; Uda, Tetsuya, E-mail: materials_process@aqua.mtl.kyoto-u.ac.jp

    2013-09-15

    High temperature X-ray diffraction measurements were performed under dry and wet atmospheres to investigate phase behavior of BaCe{sub 0.8}Y{sub 0.2}O{sub 3−δ} (BCY20). In the temperature range of 30–400 °C, BCY20 was identified to be rhombohedral and monoclinic structures in dry and wet atmospheres, respectively. Larger lattice volumes were obtained in a wet atmosphere due to a chemical expansion induced by water incorporation. A gradual change in diffraction peak shape due to a phase transformation from rhombohedral to monoclinic was observed at 300 °C when moisture was introduced into the atmosphere. These results indicated clearly the dependence of phase behavior ofmore » BCY20 on partial pressure of water vapor in atmosphere. - Graphical abstract: A BaCe{sub 0.8}Y{sub 0.2}O{sub 3−δ} rhombohedral phase transited to a monoclinic phase at 300 °C when moisture was introduced into the atmosphere. Display Omitted - Highlights: • Different structures for hydrated and dehydrated BaCe{sub 0.8}Y{sub 0.2}O{sub 3−δ} (BCY20). • Slow phase transition from rhombohedral to monoclinic at 300 °C in wet atmosphere. • Chemical expansion of BCY20 in wet atmosphere. • Importance of considering moisture when discussing phase behavior of BCY20.« less

  10. An automated and fast approach to detect single-trial visual evoked potentials with application to brain-computer interface.

    PubMed

    Tu, Yiheng; Hung, Yeung Sam; Hu, Li; Huang, Gan; Hu, Yong; Zhang, Zhiguo

    2014-12-01

    This study aims (1) to develop an automated and fast approach for detecting visual evoked potentials (VEPs) in single trials and (2) to apply the single-trial VEP detection approach in designing a real-time and high-performance brain-computer interface (BCI) system. The single-trial VEP detection approach uses common spatial pattern (CSP) as a spatial filter and wavelet filtering (WF) a temporal-spectral filter to jointly enhance the signal-to-noise ratio (SNR) of single-trial VEPs. The performance of the joint spatial-temporal-spectral filtering approach was assessed in a four-command VEP-based BCI system. The offline classification accuracy of the BCI system was significantly improved from 67.6±12.5% (raw data) to 97.3±2.1% (data filtered by CSP and WF). The proposed approach was successfully implemented in an online BCI system, where subjects could make 20 decisions in one minute with classification accuracy of 90%. The proposed single-trial detection approach is able to obtain robust and reliable VEP waveform in an automatic and fast way and it is applicable in VEP based online BCI systems. This approach provides a real-time and automated solution for single-trial detection of evoked potentials or event-related potentials (EPs/ERPs) in various paradigms, which could benefit many applications such as BCI and intraoperative monitoring. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  11. Sensorimotor rhythm-based brain-computer interface training: the impact on motor cortical responsiveness

    NASA Astrophysics Data System (ADS)

    Pichiorri, F.; De Vico Fallani, F.; Cincotti, F.; Babiloni, F.; Molinari, M.; Kleih, S. C.; Neuper, C.; Kübler, A.; Mattia, D.

    2011-04-01

    The main purpose of electroencephalography (EEG)-based brain-computer interface (BCI) technology is to provide an alternative channel to support communication and control when motor pathways are interrupted. Despite the considerable amount of research focused on the improvement of EEG signal detection and translation into output commands, little is known about how learning to operate a BCI device may affect brain plasticity. This study investigated if and how sensorimotor rhythm-based BCI training would induce persistent functional changes in motor cortex, as assessed with transcranial magnetic stimulation (TMS) and high-density EEG. Motor imagery (MI)-based BCI training in naïve participants led to a significant increase in motor cortical excitability, as revealed by post-training TMS mapping of the hand muscle's cortical representation; peak amplitude and volume of the motor evoked potentials recorded from the opponens pollicis muscle were significantly higher only in those subjects who develop a MI strategy based on imagination of hand grasping to successfully control a computer cursor. Furthermore, analysis of the functional brain networks constructed using a connectivity matrix between scalp electrodes revealed a significant decrease in the global efficiency index for the higher-beta frequency range (22-29 Hz), indicating that the brain network changes its topology with practice of hand grasping MI. Our findings build the neurophysiological basis for the use of non-invasive BCI technology for monitoring and guidance of motor imagery-dependent brain plasticity and thus may render BCI a viable tool for post-stroke rehabilitation.

  12. Language Model Applications to Spelling with Brain-Computer Interfaces

    PubMed Central

    Mora-Cortes, Anderson; Manyakov, Nikolay V.; Chumerin, Nikolay; Van Hulle, Marc M.

    2014-01-01

    Within the Ambient Assisted Living (AAL) community, Brain-Computer Interfaces (BCIs) have raised great hopes as they provide alternative communication means for persons with disabilities bypassing the need for speech and other motor activities. Although significant advancements have been realized in the last decade, applications of language models (e.g., word prediction, completion) have only recently started to appear in BCI systems. The main goal of this article is to review the language model applications that supplement non-invasive BCI-based communication systems by discussing their potential and limitations, and to discern future trends. First, a brief overview of the most prominent BCI spelling systems is given, followed by an in-depth discussion of the language models applied to them. These language models are classified according to their functionality in the context of BCI-based spelling: the static/dynamic nature of the user interface, the use of error correction and predictive spelling, and the potential to improve their classification performance by using language models. To conclude, the review offers an overview of the advantages and challenges when implementing language models in BCI-based communication systems when implemented in conjunction with other AAL technologies. PMID:24675760

  13. Analysis of User Interaction with a Brain-Computer Interface Based on Steady-State Visually Evoked Potentials: Case Study of a Game

    PubMed Central

    de Carvalho, Sarah Negreiros; Costa, Thiago Bulhões da Silva; Attux, Romis; Hornung, Heiko Horst; Arantes, Dalton Soares

    2018-01-01

    This paper presents a systematic analysis of a game controlled by a Brain-Computer Interface (BCI) based on Steady-State Visually Evoked Potentials (SSVEP). The objective is to understand BCI systems from the Human-Computer Interface (HCI) point of view, by observing how the users interact with the game and evaluating how the interface elements influence the system performance. The interactions of 30 volunteers with our computer game, named “Get Coins,” through a BCI based on SSVEP, have generated a database of brain signals and the corresponding responses to a questionnaire about various perceptual parameters, such as visual stimulation, acoustic feedback, background music, visual contrast, and visual fatigue. Each one of the volunteers played one match using the keyboard and four matches using the BCI, for comparison. In all matches using the BCI, the volunteers achieved the goals of the game. Eight of them achieved a perfect score in at least one of the four matches, showing the feasibility of the direct communication between the brain and the computer. Despite this successful experiment, adaptations and improvements should be implemented to make this innovative technology accessible to the end user. PMID:29849549

  14. Development of a Novel Motor Imagery Control Technique and Application in a Gaming Environment.

    PubMed

    Li, Ting; Zhang, Jinhua; Xue, Tao; Wang, Baozeng

    2017-01-01

    We present a methodology for a hybrid brain-computer interface (BCI) system, with the recognition of motor imagery (MI) based on EEG and blink EOG signals. We tested the BCI system in a 3D Tetris and an analogous 2D game playing environment. To enhance player's BCI control ability, the study focused on feature extraction from EEG and control strategy supporting Game-BCI system operation. We compared the numerical differences between spatial features extracted with common spatial pattern (CSP) and the proposed multifeature extraction. To demonstrate the effectiveness of 3D game environment at enhancing player's event-related desynchronization (ERD) and event-related synchronization (ERS) production ability, we set the 2D Screen Game as the comparison experiment. According to a series of statistical results, the group performing MI in the 3D Tetris environment showed more significant improvements in generating MI-associated ERD/ERS. Analysis results of game-score indicated that the players' scores presented an obvious uptrend in 3D Tetris environment but did not show an obvious downward trend in 2D Screen Game. It suggested that the immersive and rich-control environment for MI would improve the associated mental imagery and enhance MI-based BCI skills.

  15. Ark and Archive: Making a Place for Long-Term Research on Barro Colorado Island, Panama.

    PubMed

    Raby, Megan

    2015-12-01

    Barro Colorado Island (BCI), Panama, may be the most studied tropical forest in the world. A 1,560-hectare island created by the flooding of the Panama Canal, BCI became a nature reserve and biological research station in 1923. Contemporaries saw the island as an "ark" preserving a sample of primeval tropical nature for scientific study. BCI was not simply "set aside," however. The project of making it a place for science significantly reshaped the island through the twentieth century. This essay demonstrates that BCI was constructed specifically to allow long-term observation of tropical organisms--their complex behaviors, life histories, population dynamics, and changing species composition. An evolving system of monitoring and information technology transformed the island into a living scientific "archive," in which the landscape became both an object and a repository of scientific knowledge. As a research site, BCI enabled a long-term, place-based form of collective empiricism, focused on the study of the ecology of a single tropical island. This essay articulates tropical ecology as a "science of the archive" in order to examine the origins of practices of environmental surveillance that have become central to debates about global change and conservation.

  16. An optical brain computer interface for environmental control.

    PubMed

    Ayaz, Hasan; Shewokis, Patricia A; Bunce, Scott; Onaral, Banu

    2011-01-01

    A brain computer interface (BCI) is a system that translates neurophysiological signals detected from the brain to supply input to a computer or to control a device. Volitional control of neural activity and its real-time detection through neuroimaging modalities are key constituents of BCI systems. The purpose of this study was to develop and test a new BCI design that utilizes intention-related cognitive activity within the dorsolateral prefrontal cortex using functional near infrared (fNIR) spectroscopy. fNIR is a noninvasive, safe, portable and affordable optical technique with which to monitor hemodynamic changes, in the brain's cerebral cortex. Because of its portability and ease of use, fNIR is amenable to deployment in ecologically valid natural working environments. We integrated a control paradigm in a computerized 3D virtual environment to augment interactivity. Ten healthy participants volunteered for a two day study in which they navigated a virtual environment with keyboard inputs, but were required to use the fNIR-BCI for interaction with virtual objects. Results showed that participants consistently utilized the fNIR-BCI with an overall success rate of 84% and volitionally increased their cerebral oxygenation level to trigger actions within the virtual environment.

  17. Analysis of User Interaction with a Brain-Computer Interface Based on Steady-State Visually Evoked Potentials: Case Study of a Game.

    PubMed

    Leite, Harlei Miguel de Arruda; de Carvalho, Sarah Negreiros; Costa, Thiago Bulhões da Silva; Attux, Romis; Hornung, Heiko Horst; Arantes, Dalton Soares

    2018-01-01

    This paper presents a systematic analysis of a game controlled by a Brain-Computer Interface (BCI) based on Steady-State Visually Evoked Potentials (SSVEP). The objective is to understand BCI systems from the Human-Computer Interface (HCI) point of view, by observing how the users interact with the game and evaluating how the interface elements influence the system performance. The interactions of 30 volunteers with our computer game, named "Get Coins," through a BCI based on SSVEP, have generated a database of brain signals and the corresponding responses to a questionnaire about various perceptual parameters, such as visual stimulation, acoustic feedback, background music, visual contrast, and visual fatigue. Each one of the volunteers played one match using the keyboard and four matches using the BCI, for comparison. In all matches using the BCI, the volunteers achieved the goals of the game. Eight of them achieved a perfect score in at least one of the four matches, showing the feasibility of the direct communication between the brain and the computer. Despite this successful experiment, adaptations and improvements should be implemented to make this innovative technology accessible to the end user.

  18. An Efficient ERP-Based Brain-Computer Interface Using Random Set Presentation and Face Familiarity

    PubMed Central

    Müller, Klaus-Robert; Lee, Seong-Whan

    2014-01-01

    Event-related potential (ERP)-based P300 spellers are commonly used in the field of brain-computer interfaces as an alternative channel of communication for people with severe neuro-muscular diseases. This study introduces a novel P300 based brain-computer interface (BCI) stimulus paradigm using a random set presentation pattern and exploiting the effects of face familiarity. The effect of face familiarity is widely studied in the cognitive neurosciences and has recently been addressed for the purpose of BCI. In this study we compare P300-based BCI performances of a conventional row-column (RC)-based paradigm with our approach that combines a random set presentation paradigm with (non-) self-face stimuli. Our experimental results indicate stronger deflections of the ERPs in response to face stimuli, which are further enhanced when using the self-face images, and thereby improving P300-based spelling performance. This lead to a significant reduction of stimulus sequences required for correct character classification. These findings demonstrate a promising new approach for improving the speed and thus fluency of BCI-enhanced communication with the widely used P300-based BCI setup. PMID:25384045

  19. Prototype of an auto-calibrating, context-aware, hybrid brain-computer interface.

    PubMed

    Faller, J; Torrellas, S; Miralles, F; Holzner, C; Kapeller, C; Guger, C; Bund, J; Müller-Putz, G R; Scherer, R

    2012-01-01

    We present the prototype of a context-aware framework that allows users to control smart home devices and to access internet services via a Hybrid BCI system of an auto-calibrating sensorimotor rhythm (SMR) based BCI and another assistive device (Integra Mouse mouth joystick). While there is extensive literature that describes the merit of Hybrid BCIs, auto-calibrating and co-adaptive ERD BCI training paradigms, specialized BCI user interfaces, context-awareness and smart home control, there is up to now, no system that includes all these concepts in one integrated easy-to-use framework that can truly benefit individuals with severe functional disabilities by increasing independence and social inclusion. Here we integrate all these technologies in a prototype framework that does not require expert knowledge or excess time for calibration. In a first pilot-study, 3 healthy volunteers successfully operated the system using input signals from an ERD BCI and an Integra Mouse and reached average positive predictive values (PPV) of 72 and 98% respectively. Based on what we learned here we are planning to improve the system for a test with a larger number of healthy volunteers so we can soon bring the system to benefit individuals with severe functional disability.

  20. Spatial-temporal discriminant analysis for ERP-based brain-computer interface.

    PubMed

    Zhang, Yu; Zhou, Guoxu; Zhao, Qibin; Jin, Jing; Wang, Xingyu; Cichocki, Andrzej

    2013-03-01

    Linear discriminant analysis (LDA) has been widely adopted to classify event-related potential (ERP) in brain-computer interface (BCI). Good classification performance of the ERP-based BCI usually requires sufficient data recordings for effective training of the LDA classifier, and hence a long system calibration time which however may depress the system practicability and cause the users resistance to the BCI system. In this study, we introduce a spatial-temporal discriminant analysis (STDA) to ERP classification. As a multiway extension of the LDA, the STDA method tries to maximize the discriminant information between target and nontarget classes through finding two projection matrices from spatial and temporal dimensions collaboratively, which reduces effectively the feature dimensionality in the discriminant analysis, and hence decreases significantly the number of required training samples. The proposed STDA method was validated with dataset II of the BCI Competition III and dataset recorded from our own experiments, and compared to the state-of-the-art algorithms for ERP classification. Online experiments were additionally implemented for the validation. The superior classification performance in using few training samples shows that the STDA is effective to reduce the system calibration time and improve the classification accuracy, thereby enhancing the practicability of ERP-based BCI.

  1. Multiresolution analysis over graphs for a motor imagery based online BCI game.

    PubMed

    Asensio-Cubero, Javier; Gan, John Q; Palaniappan, Ramaswamy

    2016-01-01

    Multiresolution analysis (MRA) over graph representation of EEG data has proved to be a promising method for offline brain-computer interfacing (BCI) data analysis. For the first time we aim to prove the feasibility of the graph lifting transform in an online BCI system. Instead of developing a pointer device or a wheel-chair controller as test bed for human-machine interaction, we have designed and developed an engaging game which can be controlled by means of imaginary limb movements. Some modifications to the existing MRA analysis over graphs for BCI have also been proposed, such as the use of common spatial patterns for feature extraction at the different levels of decomposition, and sequential floating forward search as a best basis selection technique. In the online game experiment we obtained for three classes an average classification rate of 63.0% for fourteen naive subjects. The application of a best basis selection method helps significantly decrease the computing resources needed. The present study allows us to further understand and assess the benefits of the use of tailored wavelet analysis for processing motor imagery data and contributes to the further development of BCI for gaming purposes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Neuromuscular electrical stimulation induced brain patterns to decode motor imagery.

    PubMed

    Vidaurre, C; Pascual, J; Ramos-Murguialday, A; Lorenz, R; Blankertz, B; Birbaumer, N; Müller, K-R

    2013-09-01

    Regardless of the paradigm used to implement a brain-computer interface (BCI), all systems suffer from BCI-inefficiency. In the case of patients the inefficiency can be high. Some solutions have been proposed to overcome this problem, however they have not been completely successful yet. EEG from 10 healthy users was recorded during neuromuscular electrical stimulation (NMES) of hands and feet and during motor imagery (MI) of the same limbs. Features and classifiers were computed using part of these data to decode MI. Offline analyses showed that it was possible to decode MI using a classifier based on afferent patterns induced by NMES and even infer a better model than with MI data. Afferent NMES motor patterns can support the calibration of BCI systems and be used to decode MI. This finding might be a new way to train sensorimotor rhythm (SMR) based BCI systems for healthy users having difficulties to attain BCI control. It might also be an alternative to train MI-based BCIs for users who cannot perform real movements but have remaining afferents (ALS, stroke patients). Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  3. An efficient ERP-based brain-computer interface using random set presentation and face familiarity.

    PubMed

    Yeom, Seul-Ki; Fazli, Siamac; Müller, Klaus-Robert; Lee, Seong-Whan

    2014-01-01

    Event-related potential (ERP)-based P300 spellers are commonly used in the field of brain-computer interfaces as an alternative channel of communication for people with severe neuro-muscular diseases. This study introduces a novel P300 based brain-computer interface (BCI) stimulus paradigm using a random set presentation pattern and exploiting the effects of face familiarity. The effect of face familiarity is widely studied in the cognitive neurosciences and has recently been addressed for the purpose of BCI. In this study we compare P300-based BCI performances of a conventional row-column (RC)-based paradigm with our approach that combines a random set presentation paradigm with (non-) self-face stimuli. Our experimental results indicate stronger deflections of the ERPs in response to face stimuli, which are further enhanced when using the self-face images, and thereby improving P300-based spelling performance. This lead to a significant reduction of stimulus sequences required for correct character classification. These findings demonstrate a promising new approach for improving the speed and thus fluency of BCI-enhanced communication with the widely used P300-based BCI setup.

  4. Concept of software interface for BCI systems

    NASA Astrophysics Data System (ADS)

    Svejda, Jaromir; Zak, Roman; Jasek, Roman

    2016-06-01

    Brain Computer Interface (BCI) technology is intended to control external system by brain activity. One of main part of such system is software interface, which carries about clear communication between brain and either computer or additional devices connected to computer. This paper is organized as follows. Firstly, current knowledge about human brain is briefly summarized to points out its complexity. Secondly, there is described a concept of BCI system, which is then used to build an architecture of proposed software interface. Finally, there are mentioned disadvantages of sensing technology discovered during sensing part of our research.

  5. SSVEP-BCI implementation for 37-40 Hz frequency range.

    PubMed

    Müller, Sandra Mara Torres; Diez, Pablo F; Bastos-Filho, Teodiano Freire; Sarcinelli-Filho, Mário; Mut, Vicente; Laciar, Eric

    2011-01-01

    This work presents a Brain-Computer Interface (BCI) based on Steady State Visual Evoked Potentials (SSVEP), using higher stimulus frequencies (>30 Hz). Using a statistical test and a decision tree, the real-time EEG registers of six volunteers are analyzed, with the classification result updated each second. The BCI developed does not need any kind of settings or adjustments, which makes it more general. Offline results are presented, which corresponds to a correct classification rate of up to 99% and a Information Transfer Rate (ITR) of up to 114.2 bits/min.

  6. Classifying BCI signals from novice users with extreme learning machine

    NASA Astrophysics Data System (ADS)

    Rodríguez-Bermúdez, Germán; Bueno-Crespo, Andrés; José Martinez-Albaladejo, F.

    2017-07-01

    Brain computer interface (BCI) allows to control external devices only with the electrical activity of the brain. In order to improve the system, several approaches have been proposed. However it is usual to test algorithms with standard BCI signals from experts users or from repositories available on Internet. In this work, extreme learning machine (ELM) has been tested with signals from 5 novel users to compare with standard classification algorithms. Experimental results show that ELM is a suitable method to classify electroencephalogram signals from novice users.

  7. A Low-Cost EEG System-Based Hybrid Brain-Computer Interface for Humanoid Robot Navigation and Recognition

    PubMed Central

    Choi, Bongjae; Jo, Sungho

    2013-01-01

    This paper describes a hybrid brain-computer interface (BCI) technique that combines the P300 potential, the steady state visually evoked potential (SSVEP), and event related de-synchronization (ERD) to solve a complicated multi-task problem consisting of humanoid robot navigation and control along with object recognition using a low-cost BCI system. Our approach enables subjects to control the navigation and exploration of a humanoid robot and recognize a desired object among candidates. This study aims to demonstrate the possibility of a hybrid BCI based on a low-cost system for a realistic and complex task. It also shows that the use of a simple image processing technique, combined with BCI, can further aid in making these complex tasks simpler. An experimental scenario is proposed in which a subject remotely controls a humanoid robot in a properly sized maze. The subject sees what the surrogate robot sees through visual feedback and can navigate the surrogate robot. While navigating, the robot encounters objects located in the maze. It then recognizes if the encountered object is of interest to the subject. The subject communicates with the robot through SSVEP and ERD-based BCIs to navigate and explore with the robot, and P300-based BCI to allow the surrogate robot recognize their favorites. Using several evaluation metrics, the performances of five subjects navigating the robot were quite comparable to manual keyboard control. During object recognition mode, favorite objects were successfully selected from two to four choices. Subjects conducted humanoid navigation and recognition tasks as if they embodied the robot. Analysis of the data supports the potential usefulness of the proposed hybrid BCI system for extended applications. This work presents an important implication for the future work that a hybridization of simple BCI protocols provide extended controllability to carry out complicated tasks even with a low-cost system. PMID:24023953

  8. Remapping cortical modulation for electrocorticographic brain-computer interfaces: a somatotopy-based approach in individuals with upper-limb paralysis

    NASA Astrophysics Data System (ADS)

    Degenhart, Alan D.; Hiremath, Shivayogi V.; Yang, Ying; Foldes, Stephen; Collinger, Jennifer L.; Boninger, Michael; Tyler-Kabara, Elizabeth C.; Wang, Wei

    2018-04-01

    Objective. Brain-computer interface (BCI) technology aims to provide individuals with paralysis a means to restore function. Electrocorticography (ECoG) uses disc electrodes placed on either the surface of the dura or the cortex to record field potential activity. ECoG has been proposed as a viable neural recording modality for BCI systems, potentially providing stable, long-term recordings of cortical activity with high spatial and temporal resolution. Previously we have demonstrated that a subject with spinal cord injury (SCI) could control an ECoG-based BCI system with up to three degrees of freedom (Wang et al 2013 PLoS One). Here, we expand upon these findings by including brain-control results from two additional subjects with upper-limb paralysis due to amyotrophic lateral sclerosis and brachial plexus injury, and investigate the potential of motor and somatosensory cortical areas to enable BCI control. Approach. Individuals were implanted with high-density ECoG electrode grids over sensorimotor cortical areas for less than 30 d. Subjects were trained to control a BCI by employing a somatotopic control strategy where high-gamma activity from attempted arm and hand movements drove the velocity of a cursor. Main results. Participants were capable of generating robust cortical modulation that was differentiable across attempted arm and hand movements of their paralyzed limb. Furthermore, all subjects were capable of voluntarily modulating this activity to control movement of a computer cursor with up to three degrees of freedom using the somatotopic control strategy. Additionally, for those subjects with electrode coverage of somatosensory cortex, we found that somatosensory cortex was capable of supporting ECoG-based BCI control. Significance. These results demonstrate the feasibility of ECoG-based BCI systems for individuals with paralysis as well as highlight some of the key challenges that must be overcome before such systems are translated to the clinical realm. ClinicalTrials.gov Identifier: NCT01393444.

  9. A low-cost EEG system-based hybrid brain-computer interface for humanoid robot navigation and recognition.

    PubMed

    Choi, Bongjae; Jo, Sungho

    2013-01-01

    This paper describes a hybrid brain-computer interface (BCI) technique that combines the P300 potential, the steady state visually evoked potential (SSVEP), and event related de-synchronization (ERD) to solve a complicated multi-task problem consisting of humanoid robot navigation and control along with object recognition using a low-cost BCI system. Our approach enables subjects to control the navigation and exploration of a humanoid robot and recognize a desired object among candidates. This study aims to demonstrate the possibility of a hybrid BCI based on a low-cost system for a realistic and complex task. It also shows that the use of a simple image processing technique, combined with BCI, can further aid in making these complex tasks simpler. An experimental scenario is proposed in which a subject remotely controls a humanoid robot in a properly sized maze. The subject sees what the surrogate robot sees through visual feedback and can navigate the surrogate robot. While navigating, the robot encounters objects located in the maze. It then recognizes if the encountered object is of interest to the subject. The subject communicates with the robot through SSVEP and ERD-based BCIs to navigate and explore with the robot, and P300-based BCI to allow the surrogate robot recognize their favorites. Using several evaluation metrics, the performances of five subjects navigating the robot were quite comparable to manual keyboard control. During object recognition mode, favorite objects were successfully selected from two to four choices. Subjects conducted humanoid navigation and recognition tasks as if they embodied the robot. Analysis of the data supports the potential usefulness of the proposed hybrid BCI system for extended applications. This work presents an important implication for the future work that a hybridization of simple BCI protocols provide extended controllability to carry out complicated tasks even with a low-cost system.

  10. The Impact of Different Visual Feedbacks in User Training on Motor Imagery Control in BCI.

    PubMed

    Zapała, Dariusz; Francuz, Piotr; Zapała, Ewelina; Kopiś, Natalia; Wierzgała, Piotr; Augustynowicz, Paweł; Majkowski, Andrzej; Kołodziej, Marcin

    2018-03-01

    The challenges of research into brain-computer interfaces (BCI) include significant individual differences in learning pace and in the effective operation of BCI devices. The use of neurofeedback training is a popular method of improving the effectiveness BCI operation. The purpose of the present study was to determine to what extent it is possible to improve the effectiveness of operation of sensorimotor rhythm-based brain-computer interfaces (SMR-BCI) by supplementing user training with elements modifying the characteristics of visual feedback. Four experimental groups had training designed to reinforce BCI control by: visual feedback in the form of dummy faces expressing emotions (Group 1); flashing the principal elements of visual feedback (Group 2) and giving both visual feedbacks in one condition (Group 3). The fourth group participated in training with no modifications (Group 4). Training consisted of a series of trials where the subjects directed a ball into a basket located to the right or left side of the screen. In Group 1 a schematic image a face, placed on the controlled object, showed various emotions, depending on the accuracy of control. In Group 2, the cue and targets were flashed with different frequency (4 Hz) than the remaining elements visible on the monitor. Both modifications were also used simultaneously in Group 3. SMR activity during the task was recorded before and after the training. In Group 3 there was a significant improvement in SMR control, compared to subjects in Group 2 and 4 (control). Differences between subjects in Groups 1, 2 and 4 (control) were insignificant. This means that relatively small changes in the training procedure may significantly impact the effectiveness of BCI control. Analysis of behavioural data acquired from all participants at training showed greater effectiveness in directing the object towards the right side of the screen. Subjects with the greatest improvement in SMR control showed a significantly lower difference in the accuracy of rightward and leftward movement than others.

  11. A Tumor Cell-Selective Inhibitor of Mitogen-Activated Protein Kinase Phosphatases Sensitizes Breast Cancer Cells to Lymphokine-Activated Killer Cell Activity

    PubMed Central

    Kaltenmeier, Christof T.; Vollmer, Laura L.; Vernetti, Lawrence A.; Caprio, Lindsay; Davis, Keanu; Korotchenko, Vasiliy N.; Day, Billy W.; Tsang, Michael; Hulkower, Keren I.; Lotze, Michael T.

    2017-01-01

    Dual specificity mitogen-activated protein kinase (MAPK) phosphatases [dual specificity phosphatase/MAP kinase phosphatase (DUSP-MKP)] have been hypothesized to maintain cancer cell survival by buffering excessive MAPK signaling caused by upstream activating oncogenic products. A large and diverse body of literature suggests that genetic depletion of DUSP-MKPs can reduce tumorigenicity, suggesting that hyperactivating MAPK signaling by DUSP-MKP inhibitors could be a novel strategy to selectively affect the transformed phenotype. Through in vivo structure-activity relationship studies in transgenic zebrafish we recently identified a hyperactivator of fibroblast growth factor signaling [(E)-2-benzylidene-5-bromo-3-(cyclohexylamino)-2,3-dihydro-1H-inden-1-one (BCI-215)] that is devoid of developmental toxicity and restores defective MAPK activity caused by overexpression of DUSP1 and DUSP6 in mammalian cells. Here, we hypothesized that BCI-215 could selectively affect survival of transformed cells. In MDA-MB-231 human breast cancer cells, BCI-215 inhibited cell motility, caused apoptosis but not primary necrosis, and sensitized cells to lymphokine-activated killer cell activity. Mechanistically, BCI-215 induced rapid and sustained phosphorylation of extracellular signal-regulated kinase (ERK), p38, and c-Jun N-terminal kinase (JNK) in the absence of reactive oxygen species, and its toxicity was partially rescued by inhibition of p38 but not JNK or ERK. BCI-215 also hyperactivated MKK4/SEK1, suggesting activation of stress responses. Kinase phosphorylation profiling documented BCI-215 selectively activated MAPKs and their downstream substrates, but not receptor tyrosine kinases, SRC family kinases, AKT, mTOR, or DNA damage pathways. Our findings support the hypothesis that BCI-215 causes selective cancer cell cytotoxicity in part through non-redox-mediated activation of MAPK signaling, and the findings also identify an intersection with immune cell killing that is worthy of further exploration. PMID:28154014

  12. Effects of Action Observational Training Plus Brain-Computer Interface-Based Functional Electrical Stimulation on Paretic Arm Motor Recovery in Patient with Stroke: A Randomized Controlled Trial.

    PubMed

    Kim, TaeHoon; Kim, SeongSik; Lee, ByoungHee

    2016-03-01

    The purpose of this study was to investigate whether action observational training (AOT) plus brain-computer interface-based functional electrical stimulation (BCI-FES) has a positive influence on motor recovery of paretic upper extremity in patients with stroke. This was a hospital-based, randomized controlled trial with a blinded assessor. Thirty patients with a first-time stroke were randomly allocated to one of two groups: the BCI-FES group (n = 15) and the control group (n = 15). The BCI-FES group administered to AOT plus BCI-FES on the paretic upper extremity five times per week during 4 weeks while both groups received conventional therapy. The primary outcomes were the Fugl-Meyer Assessment of the Upper Extremity, Motor Activity Log (MAL), Modified Barthel Index and range of motion of paretic arm. A blinded assessor evaluated the outcomes at baseline and 4 weeks. All baseline outcomes did not differ significantly between the two groups. After 4 weeks, the Fugl-Meyer Assessment of the Upper Extremity sub-items (total, shoulder and wrist), MAL (MAL-Activity of Use and Quality of Movement), Modified Barthel Index and wrist flexion range of motion were significantly higher in the BCI-FES group (p < 0.05). AOT plus BCI-based FES is effective in paretic arm rehabilitation by improving the upper extremity performance. The motor improvements suggest that AOT plus BCI-based FES can be used as a therapeutic tool for stroke rehabilitation. The limitations of the study are that subjects had a certain limited level of upper arm function, and the sample size was comparatively small; hence, it is recommended that future large-scale trials should consider stratified and lager populations according to upper arm function. Copyright © 2015 John Wiley & Sons, Ltd.

  13. DTU BCI speller: an SSVEP-based spelling system with dictionary support.

    PubMed

    Vilic, Adnan; Kjaer, Troels W; Thomsen, Carsten E; Puthusserypady, S; Sorensen, Helge B D

    2013-01-01

    In this paper, a new brain computer interface (BCI) speller, named DTU BCI speller, is introduced. It is based on the steady-state visual evoked potential (SSVEP) and features dictionary support. The system focuses on simplicity and user friendliness by using a single electrode for the signal acquisition and displays stimuli on a liquid crystal display (LCD). Nine healthy subjects participated in writing full sentences after a five minutes introduction to the system, and obtained an information transfer rate (ITR) of 21.94 ± 15.63 bits/min. The average amount of characters written per minute (CPM) is 4.90 ± 3.84 with a best case of 8.74 CPM. All subjects reported systematically on different user friendliness measures, and the overall results indicated the potentials of the DTU BCI Speller system. For subjects with high classification accuracies, the introduced dictionary approach greatly reduced the time it took to write full sentences.

  14. fMRI Brain-Computer Interface: A Tool for Neuroscientific Research and Treatment

    PubMed Central

    Sitaram, Ranganatha; Caria, Andrea; Veit, Ralf; Gaber, Tilman; Rota, Giuseppina; Kuebler, Andrea; Birbaumer, Niels

    2007-01-01

    Brain-computer interfaces based on functional magnetic resonance imaging (fMRI-BCI) allow volitional control of anatomically specific regions of the brain. Technological advancement in higher field MRI scanners, fast data acquisition sequences, preprocessing algorithms, and robust statistical analysis are anticipated to make fMRI-BCI more widely available and applicable. This noninvasive technique could potentially complement the traditional neuroscientific experimental methods by varying the activity of the neural substrates of a region of interest as an independent variable to study its effects on behavior. If the neurobiological basis of a disorder (e.g., chronic pain, motor diseases, psychopathy, social phobia, depression) is known in terms of abnormal activity in certain regions of the brain, fMRI-BCI can be targeted to modify activity in those regions with high specificity for treatment. In this paper, we review recent results of the application of fMRI-BCI to neuroscientific research and psychophysiological treatment. PMID:18274615

  15. Neural correlates of learning in an electrocorticographic motor-imagery brain-computer interface

    PubMed Central

    Blakely, Tim M.; Miller, Kai J.; Rao, Rajesh P. N.; Ojemann, Jeffrey G.

    2014-01-01

    Human subjects can learn to control a one-dimensional electrocorticographic (ECoG) brain-computer interface (BCI) using modulation of primary motor (M1) high-gamma activity (signal power in the 75–200 Hz range). However, the stability and dynamics of the signals over the course of new BCI skill acquisition have not been investigated. In this study, we report 3 characteristic periods in evolution of the high-gamma control signal during BCI training: initial, low task accuracy with corresponding low power modulation in the gamma spectrum, followed by a second period of improved task accuracy with increasing average power separation between activity and rest, and a final period of high task accuracy with stable (or decreasing) power separation and decreasing trial-to-trial variance. These findings may have implications in the design and implementation of BCI control algorithms. PMID:25599079

  16. An online BCI game based on the decoding of users' attention to color stimulus.

    PubMed

    Yang, Lingling; Leung, Howard

    2013-01-01

    Studies have shown that statistically there are differences in theta, alpha and beta band powers when people look at blue and red colors. In this paper, a game has been developed to test whether these statistical differences are good enough for online Brain Computer Interface (BCI) application. We implemented a two-choice BCI game in which the subject makes the choice by looking at a color option and our system decodes the subject's intention by analyzing the EEG signal. In our system, band power features of the EEG data were used to train a support vector machine (SVM) classification model. An online mechanism was adopted to update the classification model during the training stage to account for individual differences. Our results showed that an accuracy of 70%-80% could be achieved and it provided evidence for the possibility in applying color stimuli to BCI applications.

  17. Approximation-based common principal component for feature extraction in multi-class brain-computer interfaces.

    PubMed

    Hoang, Tuan; Tran, Dat; Huang, Xu

    2013-01-01

    Common Spatial Pattern (CSP) is a state-of-the-art method for feature extraction in Brain-Computer Interface (BCI) systems. However it is designed for 2-class BCI classification problems. Current extensions of this method to multiple classes based on subspace union and covariance matrix similarity do not provide a high performance. This paper presents a new approach to solving multi-class BCI classification problems by forming a subspace resembled from original subspaces and the proposed method for this approach is called Approximation-based Common Principal Component (ACPC). We perform experiments on Dataset 2a used in BCI Competition IV to evaluate the proposed method. This dataset was designed for motor imagery classification with 4 classes. Preliminary experiments show that the proposed ACPC feature extraction method when combining with Support Vector Machines outperforms CSP-based feature extraction methods on the experimental dataset.

  18. Improved Neural Signal Classification in a Rapid Serial Visual Presentation Task Using Active Learning.

    PubMed

    Marathe, Amar R; Lawhern, Vernon J; Wu, Dongrui; Slayback, David; Lance, Brent J

    2016-03-01

    The application space for brain-computer interface (BCI) technologies is rapidly expanding with improvements in technology. However, most real-time BCIs require extensive individualized calibration prior to use, and systems often have to be recalibrated to account for changes in the neural signals due to a variety of factors including changes in human state, the surrounding environment, and task conditions. Novel approaches to reduce calibration time or effort will dramatically improve the usability of BCI systems. Active Learning (AL) is an iterative semi-supervised learning technique for learning in situations in which data may be abundant, but labels for the data are difficult or expensive to obtain. In this paper, we apply AL to a simulated BCI system for target identification using data from a rapid serial visual presentation (RSVP) paradigm to minimize the amount of training samples needed to initially calibrate a neural classifier. Our results show AL can produce similar overall classification accuracy with significantly less labeled data (in some cases less than 20%) when compared to alternative calibration approaches. In fact, AL classification performance matches performance of 10-fold cross-validation (CV) in over 70% of subjects when training with less than 50% of the data. To our knowledge, this is the first work to demonstrate the use of AL for offline electroencephalography (EEG) calibration in a simulated BCI paradigm. While AL itself is not often amenable for use in real-time systems, this work opens the door to alternative AL-like systems that are more amenable for BCI applications and thus enables future efforts for developing highly adaptive BCI systems.

  19. A fresh look at functional link neural network for motor imagery-based brain-computer interface.

    PubMed

    Hettiarachchi, Imali T; Babaei, Toktam; Nguyen, Thanh; Lim, Chee P; Nahavandi, Saeid

    2018-05-04

    Artificial neural networks (ANNs) are one of the widely used classifiers in the brain-computer interface (BCI) systems-based on noninvasive electroencephalography (EEG) signals. Among the different ANN architectures, the most commonly applied for BCI classifiers is the multilayer perceptron (MLP). When appropriately designed with optimal number of neuron layers and number of neurons per layer, the ANN can act as a universal approximator. However, due to the low signal-to-noise ratio of EEG signal data, overtraining problem may become an inherent issue, causing these universal approximators to fail in real-time applications. In this study we introduce a higher order neural network, namely the functional link neural network (FLNN) as a classifier for motor imagery (MI)-based BCI systems, to remedy the drawbacks in MLP. We compare the proposed method with competing classifiers such as linear decomposition analysis, naïve Bayes, k-nearest neighbours, support vector machine and three MLP architectures. Two multi-class benchmark datasets from the BCI competitions are used. Common spatial pattern algorithm is utilized for feature extraction to build classification models. FLNN reports the highest average Kappa value over multiple subjects for both the BCI competition datasets, under similarly preprocessed data and extracted features. Further, statistical comparison results over multiple subjects show that the proposed FLNN classification method yields the best performance among the competing classifiers. Findings from this study imply that the proposed method, which has less computational complexity compared to the MLP, can be implemented effectively in practical MI-based BCI systems. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Feasibility of approaches combining sensor and source features in brain-computer interface.

    PubMed

    Ahn, Minkyu; Hong, Jun Hee; Jun, Sung Chan

    2012-02-15

    Brain-computer interface (BCI) provides a new channel for communication between brain and computers through brain signals. Cost-effective EEG provides good temporal resolution, but its spatial resolution is poor and sensor information is blurred by inherent noise. To overcome these issues, spatial filtering and feature extraction techniques have been developed. Source imaging, transformation of sensor signals into the source space through source localizer, has gained attention as a new approach for BCI. It has been reported that the source imaging yields some improvement of BCI performance. However, there exists no thorough investigation on how source imaging information overlaps with, and is complementary to, sensor information. Information (visible information) from the source space may overlap as well as be exclusive to information from the sensor space is hypothesized. Therefore, we can extract more information from the sensor and source spaces if our hypothesis is true, thereby contributing to more accurate BCI systems. In this work, features from each space (sensor or source), and two strategies combining sensor and source features are assessed. The information distribution among the sensor, source, and combined spaces is discussed through a Venn diagram for 18 motor imagery datasets. Additional 5 motor imagery datasets from the BCI Competition III site were examined. The results showed that the addition of source information yielded about 3.8% classification improvement for 18 motor imagery datasets and showed an average accuracy of 75.56% for BCI Competition data. Our proposed approach is promising, and improved performance may be possible with better head model. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Imaging in blunt cardiac injury: Computed tomographic findings in cardiac contusion and associated injuries.

    PubMed

    Hammer, Mark M; Raptis, Demetrios A; Cummings, Kristopher W; Mellnick, Vincent M; Bhalla, Sanjeev; Schuerer, Douglas J; Raptis, Constantine A

    2016-05-01

    Blunt cardiac injury (BCI) may manifest as cardiac contusion or, more rarely, as pericardial or myocardial rupture. Computed tomography (CT) is performed in the vast majority of blunt trauma patients, but the imaging features of cardiac contusion are not well described. To evaluate CT findings and associated injuries in patients with clinically diagnosed BCI. We identified 42 patients with blunt cardiac injury from our institution's electronic medical record. Clinical parameters, echocardiography results, and laboratory tests were recorded. Two blinded reviewers analyzed chest CTs performed in these patients for myocardial hypoenhancement and associated injuries. CT findings of severe thoracic trauma are commonly present in patients with severe BCI; 82% of patients with ECG, cardiac enzyme, and echocardiographic evidence of BCI had abnormalities of the heart or pericardium on CT; 73% had anterior rib fractures, and 64% had pulmonary contusions. Sternal fractures were only seen in 36% of such patients. However, myocardial hypoenhancement on CT is poorly sensitive for those patients with cardiac contusion: 0% of right ventricular contusions and 22% of left ventricular contusions seen on echocardiography were identified on CT. CT signs of severe thoracic trauma are frequently present in patients with severe BCI and should be regarded as indirect evidence of potential BCI. Direct CT findings of myocardial contusion, i.e. myocardial hypoenhancement, are poorly sensitive and should not be used as a screening tool. However, some left ventricular contusions can be seen on CT, and these patients could undergo echocardiography or cardiac MRI to evaluate for wall motion abnormalities. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Visual modifications on the P300 speller BCI paradigm

    NASA Astrophysics Data System (ADS)

    Salvaris, M.; Sepulveda, F.

    2009-08-01

    The best known P300 speller brain-computer interface (BCI) paradigm is the Farwell and Donchin paradigm. In this paper, various changes to the visual aspects of this protocol are explored as well as their effects on classification. Changes to the dimensions of the symbols, the distance between the symbols and the colours used were tested. The purpose of the present work was not to achieve the highest possible accuracy results, but to ascertain whether these simple modifications to the visual protocol will provide classification differences between them and what these differences will be. Eight subjects were used, with each subject carrying out a total of six different experiments. In each experiment, the user spelt a total of 39 characters. Two types of classifiers were trained and tested to determine whether the results were classifier dependant. These were a support vector machine (SVM) with a radial basis function (RBF) kernel and Fisher's linear discriminant (FLD). The single-trial classification results and multiple-trial classification results were recorded and compared. Although no visual protocol was the best for all subjects, the best performances, across both classifiers, were obtained with the white background (WB) visual protocol. The worst performance was obtained with the small symbol size (SSS) visual protocol.

  3. Validating Biomarkers for PTSD

    DTIC Science & Technology

    2015-04-01

    Recall Participants by Site Recruitment Site Procedure Q1 Q2 Q3 Q4 Year 1 Total NYUMC BCI * 6 5 4 6 21 Blood draw 0 8 4 4 16 Self-report 0 7 4 4...15 Brain imaging 1 8 5 0 14 NCT** 0 7 4 4 15 JJPVAMC/MMSM BCI * 2 4 6 3 15 Blood draw 1 4 4 2 11 Self-report 2 2 5 1 10 Brain imaging 1 2 2 0 5...NCT** 0 4 5 1 10 * BCI = Baseline Clinical Interview **NCT = Neurocognitive Testing Table 3. Completed Procedures for Validating Biomarkers New

  4. Robot Control Through Brain Computer Interface For Patterns Generation

    NASA Astrophysics Data System (ADS)

    Belluomo, P.; Bucolo, M.; Fortuna, L.; Frasca, M.

    2011-09-01

    A Brain Computer Interface (BCI) system processes and translates neuronal signals, that mainly comes from EEG instruments, into commands for controlling electronic devices. This system can allow people with motor disabilities to control external devices through the real-time modulation of their brain waves. In this context an EEG-based BCI system that allows creative luminous artistic representations is here presented. The system that has been designed and realized in our laboratory interfaces the BCI2000 platform performing real-time analysis of EEG signals with a couple of moving luminescent twin robots. Experiments are also presented.

  5. Driving a Semiautonomous Mobile Robotic Car Controlled by an SSVEP-Based BCI.

    PubMed

    Stawicki, Piotr; Gembler, Felix; Volosyak, Ivan

    2016-01-01

    Brain-computer interfaces represent a range of acknowledged technologies that translate brain activity into computer commands. The aim of our research is to develop and evaluate a BCI control application for certain assistive technologies that can be used for remote telepresence or remote driving. The communication channel to the target device is based on the steady-state visual evoked potentials. In order to test the control application, a mobile robotic car (MRC) was introduced and a four-class BCI graphical user interface (with live video feedback and stimulation boxes on the same screen) for piloting the MRC was designed. For the purpose of evaluating a potential real-life scenario for such assistive technology, we present a study where 61 subjects steered the MRC through a predetermined route. All 61 subjects were able to control the MRC and finish the experiment (mean time 207.08 s, SD 50.25) with a mean (SD) accuracy and ITR of 93.03% (5.73) and 14.07 bits/min (4.44), respectively. The results show that our proposed SSVEP-based BCI control application is suitable for mobile robots with a shared-control approach. We also did not observe any negative influence of the simultaneous live video feedback and SSVEP stimulation on the performance of the BCI system.

  6. [Brain-Computer Interface: the First Clinical Experience in Russia].

    PubMed

    Mokienko, O A; Lyukmanov, R Kh; Chernikova, L A; Suponeva, N A; Piradov, M A; Frolov, A A

    2016-01-01

    Motor imagery is suggested to stimulate the same plastic mechanisms in the brain as a real movement. The brain-computer interface (BCI) controls motor imagery by converting EEG during this process into the commands for an external device. This article presents the results of two-stage study of the clinical use of non-invasive BCI in the rehabilitation of patients with severe hemiparesis caused by focal brain damage. It was found that the ability to control BCI did not depend on the duration of a disease, brain lesion localization and the degree of neurological deficit. The first step of the study involved 36 patients; it showed that the efficacy of rehabilitation was higher in the group with the use of BCI (the score on the Action Research Arm Test (ARAT) improved from 1 [0; 2] to 5 [0; 16] points, p = 0.012; no significant improvement was observed in control group). The second step of the study involved 19 patients; the complex BCI-exoskeleton (i.e. with the kinesthetic feedback) was used for motor imagery trainings. The improvement of the motor function of hands was proved by ARAT (the score improved from 2 [0; 37] to 4 [1; 45:5] points, p = 0.005) and Fugl-Meyer scale (from 72 [63; 110 ] to 79 [68; 115] points, p = 0.005).

  7. EEG Classification for Hybrid Brain-Computer Interface Using a Tensor Based Multiclass Multimodal Analysis Scheme

    PubMed Central

    Ji, Hongfei; Li, Jie; Lu, Rongrong; Gu, Rong; Cao, Lei; Gong, Xiaoliang

    2016-01-01

    Electroencephalogram- (EEG-) based brain-computer interface (BCI) systems usually utilize one type of changes in the dynamics of brain oscillations for control, such as event-related desynchronization/synchronization (ERD/ERS), steady state visual evoked potential (SSVEP), and P300 evoked potentials. There is a recent trend to detect more than one of these signals in one system to create a hybrid BCI. However, in this case, EEG data were always divided into groups and analyzed by the separate processing procedures. As a result, the interactive effects were ignored when different types of BCI tasks were executed simultaneously. In this work, we propose an improved tensor based multiclass multimodal scheme especially for hybrid BCI, in which EEG signals are denoted as multiway tensors, a nonredundant rank-one tensor decomposition model is proposed to obtain nonredundant tensor components, a weighted fisher criterion is designed to select multimodal discriminative patterns without ignoring the interactive effects, and support vector machine (SVM) is extended to multiclass classification. Experiment results suggest that the proposed scheme can not only identify the different changes in the dynamics of brain oscillations induced by different types of tasks but also capture the interactive effects of simultaneous tasks properly. Therefore, it has great potential use for hybrid BCI. PMID:26880873

  8. The Role of Visual Noise in Influencing Mental Load and Fatigue in a Steady-State Motion Visual Evoked Potential-Based Brain-Computer Interface.

    PubMed

    Xie, Jun; Xu, Guanghua; Luo, Ailing; Li, Min; Zhang, Sicong; Han, Chengcheng; Yan, Wenqiang

    2017-08-14

    As a spatial selective attention-based brain-computer interface (BCI) paradigm, steady-state visual evoked potential (SSVEP) BCI has the advantages of high information transfer rate, high tolerance to artifacts, and robust performance across users. However, its benefits come at the cost of mental load and fatigue occurring in the concentration on the visual stimuli. Noise, as a ubiquitous random perturbation with the power of randomness, may be exploited by the human visual system to enhance higher-level brain functions. In this study, a novel steady-state motion visual evoked potential (SSMVEP, i.e., one kind of SSVEP)-based BCI paradigm with spatiotemporal visual noise was used to investigate the influence of noise on the compensation of mental load and fatigue deterioration during prolonged attention tasks. Changes in α , θ , θ + α powers, θ / α ratio, and electroencephalography (EEG) properties of amplitude, signal-to-noise ratio (SNR), and online accuracy, were used to evaluate mental load and fatigue. We showed that presenting a moderate visual noise to participants could reliably alleviate the mental load and fatigue during online operation of visual BCI that places demands on the attentional processes. This demonstrated that noise could provide a superior solution to the implementation of visual attention controlling-based BCI applications.

  9. Development of a Novel Motor Imagery Control Technique and Application in a Gaming Environment

    PubMed Central

    Xue, Tao

    2017-01-01

    We present a methodology for a hybrid brain-computer interface (BCI) system, with the recognition of motor imagery (MI) based on EEG and blink EOG signals. We tested the BCI system in a 3D Tetris and an analogous 2D game playing environment. To enhance player's BCI control ability, the study focused on feature extraction from EEG and control strategy supporting Game-BCI system operation. We compared the numerical differences between spatial features extracted with common spatial pattern (CSP) and the proposed multifeature extraction. To demonstrate the effectiveness of 3D game environment at enhancing player's event-related desynchronization (ERD) and event-related synchronization (ERS) production ability, we set the 2D Screen Game as the comparison experiment. According to a series of statistical results, the group performing MI in the 3D Tetris environment showed more significant improvements in generating MI-associated ERD/ERS. Analysis results of game-score indicated that the players' scores presented an obvious uptrend in 3D Tetris environment but did not show an obvious downward trend in 2D Screen Game. It suggested that the immersive and rich-control environment for MI would improve the associated mental imagery and enhance MI-based BCI skills. PMID:28572817

  10. Rapid prototyping of an EEG-based brain-computer interface (BCI).

    PubMed

    Guger, C; Schlögl, A; Neuper, C; Walterspacher, D; Strein, T; Pfurtscheller, G

    2001-03-01

    The electroencephalogram (EEG) is modified by motor imagery and can be used by patients with severe motor impairments (e.g., late stage of amyotrophic lateral sclerosis) to communicate with their environment. Such a direct connection between the brain and the computer is known as an EEG-based brain-computer interface (BCI). This paper describes a new type of BCI system that uses rapid prototyping to enable a fast transition of various types of parameter estimation and classification algorithms to real-time implementation and testing. Rapid prototyping is possible by using Matlab, Simulink, and the Real-Time Workshop. It is shown how to automate real-time experiments and perform the interplay between on-line experiments and offline analysis. The system is able to process multiple EEG channels on-line and operates under Windows 95 in real-time on a standard PC without an additional digital signal processor (DSP) board. The BCI can be controlled over the Internet, LAN or modem. This BCI was tested on 3 subjects whose task it was to imagine either left or right hand movement. A classification accuracy between 70% and 95% could be achieved with two EEG channels after some sessions with feedback using an adaptive autoregressive (AAR) model and linear discriminant analysis (LDA).

  11. Reaching and Grasping a Glass of Water by Locked-In ALS Patients through a BCI-Controlled Humanoid Robot

    PubMed Central

    Spataro, Rossella; Chella, Antonio; Allison, Brendan; Giardina, Marcello; Sorbello, Rosario; Tramonte, Salvatore; Guger, Christoph; La Bella, Vincenzo

    2017-01-01

    Locked-in Amyotrophic Lateral Sclerosis (ALS) patients are fully dependent on caregivers for any daily need. At this stage, basic communication and environmental control may not be possible even with commonly used augmentative and alternative communication devices. Brain Computer Interface (BCI) technology allows users to modulate brain activity for communication and control of machines and devices, without requiring a motor control. In the last several years, numerous articles have described how persons with ALS could effectively use BCIs for different goals, usually spelling. In the present study, locked-in ALS patients used a BCI system to directly control the humanoid robot NAO (Aldebaran Robotics, France) with the aim of reaching and grasping a glass of water. Four ALS patients and four healthy controls were recruited and trained to operate this humanoid robot through a P300-based BCI. A few minutes training was sufficient to efficiently operate the system in different environments. Three out of the four ALS patients and all controls successfully performed the task with a high level of accuracy. These results suggest that BCI-operated robots can be used by locked-in ALS patients as an artificial alter-ego, the machine being able to move, speak and act in his/her place. PMID:28298888

  12. Driving a Semiautonomous Mobile Robotic Car Controlled by an SSVEP-Based BCI

    PubMed Central

    2016-01-01

    Brain-computer interfaces represent a range of acknowledged technologies that translate brain activity into computer commands. The aim of our research is to develop and evaluate a BCI control application for certain assistive technologies that can be used for remote telepresence or remote driving. The communication channel to the target device is based on the steady-state visual evoked potentials. In order to test the control application, a mobile robotic car (MRC) was introduced and a four-class BCI graphical user interface (with live video feedback and stimulation boxes on the same screen) for piloting the MRC was designed. For the purpose of evaluating a potential real-life scenario for such assistive technology, we present a study where 61 subjects steered the MRC through a predetermined route. All 61 subjects were able to control the MRC and finish the experiment (mean time 207.08 s, SD 50.25) with a mean (SD) accuracy and ITR of 93.03% (5.73) and 14.07 bits/min (4.44), respectively. The results show that our proposed SSVEP-based BCI control application is suitable for mobile robots with a shared-control approach. We also did not observe any negative influence of the simultaneous live video feedback and SSVEP stimulation on the performance of the BCI system. PMID:27528864

  13. Goal selection versus process control in a brain-computer interface based on sensorimotor rhythms.

    PubMed

    Royer, Audrey S; He, Bin

    2009-02-01

    In a brain-computer interface (BCI) utilizing a process control strategy, the signal from the cortex is used to control the fine motor details normally handled by other parts of the brain. In a BCI utilizing a goal selection strategy, the signal from the cortex is used to determine the overall end goal of the user, and the BCI controls the fine motor details. A BCI based on goal selection may be an easier and more natural system than one based on process control. Although goal selection in theory may surpass process control, the two have never been directly compared, as we are reporting here. Eight young healthy human subjects participated in the present study, three trained and five naïve in BCI usage. Scalp-recorded electroencephalograms (EEG) were used to control a computer cursor during five different paradigms. The paradigms were similar in their underlying signal processing and used the same control signal. However, three were based on goal selection, and two on process control. For both the trained and naïve populations, goal selection had more hits per run, was faster, more accurate (for seven out of eight subjects) and had a higher information transfer rate than process control. Goal selection outperformed process control in every measure studied in the present investigation.

  14. On robust parameter estimation in brain-computer interfacing

    NASA Astrophysics Data System (ADS)

    Samek, Wojciech; Nakajima, Shinichi; Kawanabe, Motoaki; Müller, Klaus-Robert

    2017-12-01

    Objective. The reliable estimation of parameters such as mean or covariance matrix from noisy and high-dimensional observations is a prerequisite for successful application of signal processing and machine learning algorithms in brain-computer interfacing (BCI). This challenging task becomes significantly more difficult if the data set contains outliers, e.g. due to subject movements, eye blinks or loose electrodes, as they may heavily bias the estimation and the subsequent statistical analysis. Although various robust estimators have been developed to tackle the outlier problem, they ignore important structural information in the data and thus may not be optimal. Typical structural elements in BCI data are the trials consisting of a few hundred EEG samples and indicating the start and end of a task. Approach. This work discusses the parameter estimation problem in BCI and introduces a novel hierarchical view on robustness which naturally comprises different types of outlierness occurring in structured data. Furthermore, the class of minimum divergence estimators is reviewed and a robust mean and covariance estimator for structured data is derived and evaluated with simulations and on a benchmark data set. Main results. The results show that state-of-the-art BCI algorithms benefit from robustly estimated parameters. Significance. Since parameter estimation is an integral part of various machine learning algorithms, the presented techniques are applicable to many problems beyond BCI.

  15. EEG Classification for Hybrid Brain-Computer Interface Using a Tensor Based Multiclass Multimodal Analysis Scheme.

    PubMed

    Ji, Hongfei; Li, Jie; Lu, Rongrong; Gu, Rong; Cao, Lei; Gong, Xiaoliang

    2016-01-01

    Electroencephalogram- (EEG-) based brain-computer interface (BCI) systems usually utilize one type of changes in the dynamics of brain oscillations for control, such as event-related desynchronization/synchronization (ERD/ERS), steady state visual evoked potential (SSVEP), and P300 evoked potentials. There is a recent trend to detect more than one of these signals in one system to create a hybrid BCI. However, in this case, EEG data were always divided into groups and analyzed by the separate processing procedures. As a result, the interactive effects were ignored when different types of BCI tasks were executed simultaneously. In this work, we propose an improved tensor based multiclass multimodal scheme especially for hybrid BCI, in which EEG signals are denoted as multiway tensors, a nonredundant rank-one tensor decomposition model is proposed to obtain nonredundant tensor components, a weighted fisher criterion is designed to select multimodal discriminative patterns without ignoring the interactive effects, and support vector machine (SVM) is extended to multiclass classification. Experiment results suggest that the proposed scheme can not only identify the different changes in the dynamics of brain oscillations induced by different types of tasks but also capture the interactive effects of simultaneous tasks properly. Therefore, it has great potential use for hybrid BCI.

  16. Cognitive assessment in Amyotrophic Lateral Sclerosis by means of P300-Brain Computer Interface: a preliminary study.

    PubMed

    Poletti, Barbara; Carelli, Laura; Solca, Federica; Lafronza, Annalisa; Pedroli, Elisa; Faini, Andrea; Zago, Stefano; Ticozzi, Nicola; Meriggi, Paolo; Cipresso, Pietro; Lulé, Dorothée; Ludolph, Albert C; Riva, Giuseppe; Silani, Vincenzo

    To investigate the use of P300-based Brain Computer Interface (BCI) technology for the administration of motor-verbal free cognitive tests in Amyotrophic Lateral Sclerosis (ALS). We recruited 15 ALS patients and 15 age- and education-matched healthy subjects. All participants underwent a BCI-based neuropsychological assessment, together with two standard cognitive screening tools (FAB, MoCA), two psychological questionnaires (BDI, STAI-Y) and a usability questionnaire. For patients, clinical and respiratory examinations were also performed, together with a behavioural assessment (FBI). Correlations were observed between standard cognitive and BCI-based neuropsychological assessment, mainly concerning execution times in the ALS group. Moreover, patients provided positive rates concerning the BCI perceived usability and subjective experience. Finally, execution times at the BCI-based neuropsychological assessment were useful to discriminate patients from controls, with patients achieving lower processing speed than controls regarding executive functions. The developed motor-verbal free neuropsychological battery represents an innovative approach, that could provide relevant information for clinical practice and ethical issues. Its use for cognitive evaluation throughout the course of ALS, currently not available by means of standard assessment, must be addressed in further longitudinal validation studies. Further work will be aimed at refining the developed system and enlarging the cognitive spectrum investigated.

  17. SSVEP-based BCI for manipulating three-dimensional contents and devices

    NASA Astrophysics Data System (ADS)

    Mun, Sungchul; Cho, Sungjin; Whang, Mincheol; Ju, Byeong-Kwon; Park, Min-Chul

    2012-06-01

    Brain Computer Interface (BCI) studies have been done to help people manipulate electronic devices in a 2D space but less has been done for a vigorous 3D environment. The purpose of this study was to investigate the possibility of applying Steady State Visual Evoked Potentials (SSVEPs) to a 3D LCD display. Eight subjects (4 females) ranging in age between 20 to 26 years old participated in the experiment. They performed simple navigation tasks on a simple 2D space and virtual environment with/without 3D flickers generated by a Flim-Type Patterned Retarder (FPR). The experiments were conducted in a counterbalanced order. The results showed that 3D stimuli enhanced BCI performance, but no significant effects were found due to the small number of subjects. Visual fatigue that might be evoked by 3D stimuli was negligible in this study. The proposed SSVEP BCI combined with 3D flickers can allow people to control home appliances and other equipment such as wheelchairs, prosthetics, and orthotics without encountering dangerous situations that may happen when using BCIs in real world. 3D stimuli-based SSVEP BCI would motivate people to use 3D displays and vitalize the 3D related industry due to its entertainment value and high performance.

  18. Neurofeedback training with a motor imagery-based BCI: neurocognitive improvements and EEG changes in the elderly.

    PubMed

    Gomez-Pilar, Javier; Corralejo, Rebeca; Nicolas-Alonso, Luis F; Álvarez, Daniel; Hornero, Roberto

    2016-11-01

    Neurofeedback training (NFT) has shown to be promising and useful to rehabilitate cognitive functions. Recently, brain-computer interfaces (BCIs) were used to restore brain plasticity by inducing brain activity with an NFT. In our study, we hypothesized that an NFT with a motor imagery-based BCI (MI-BCI) could enhance cognitive functions related to aging effects. To assess the effectiveness of our MI-BCI application, 63 subjects (older than 60 years) were recruited. This novel application was used by 31 subjects (NFT group). Their Luria neuropsychological test scores were compared with the remaining 32 subjects, who did not perform NFT (control group). Electroencephalogram changes measured by relative power (RP) endorsed cognitive potential findings under study: visuospatial, oral language, memory, intellectual and attention functions. Three frequency bands were selected to assess cognitive changes: 12, 18, and 21 Hz (bandwidth 3 Hz). Significant increases (p < 0.01) in the RP of these frequency bands were found. Moreover, results from cognitive tests showed significant improvements (p < 0.01) in four cognitive functions after performing five NFT sessions: visuospatial, oral language, memory, and intellectual. This established evidence in the association between NFT performed by a MI-BCI and enhanced cognitive performance. Therefore, it could be a novel approach to help elderly people.

  19. Double ErrP Detection for Automatic Error Correction in an ERP-Based BCI Speller.

    PubMed

    Cruz, Aniana; Pires, Gabriel; Nunes, Urbano J

    2018-01-01

    Brain-computer interface (BCI) is a useful device for people with severe motor disabilities. However, due to its low speed and low reliability, BCI still has a very limited application in daily real-world tasks. This paper proposes a P300-based BCI speller combined with a double error-related potential (ErrP) detection to automatically correct erroneous decisions. This novel approach introduces a second error detection to infer whether wrong automatic correction also elicits a second ErrP. Thus, two single-trial responses, instead of one, contribute to the final selection, improving the reliability of error detection. Moreover, to increase error detection, the evoked potential detected as target by the P300 classifier is combined with the evoked error potential at a feature-level. Discriminable error and positive potentials (response to correct feedback) were clearly identified. The proposed approach was tested on nine healthy participants and one tetraplegic participant. The online average accuracy for the first and second ErrPs were 88.4% and 84.8%, respectively. With automatic correction, we achieved an improvement around 5% achieving 89.9% in spelling accuracy for an effective 2.92 symbols/min. The proposed approach revealed that double ErrP detection can improve the reliability and speed of BCI systems.

  20. Classification of motor imagery tasks for BCI with multiresolution analysis and multiobjective feature selection.

    PubMed

    Ortega, Julio; Asensio-Cubero, Javier; Gan, John Q; Ortiz, Andrés

    2016-07-15

    Brain-computer interfacing (BCI) applications based on the classification of electroencephalographic (EEG) signals require solving high-dimensional pattern classification problems with such a relatively small number of training patterns that curse of dimensionality problems usually arise. Multiresolution analysis (MRA) has useful properties for signal analysis in both temporal and spectral analysis, and has been broadly used in the BCI field. However, MRA usually increases the dimensionality of the input data. Therefore, some approaches to feature selection or feature dimensionality reduction should be considered for improving the performance of the MRA based BCI. This paper investigates feature selection in the MRA-based frameworks for BCI. Several wrapper approaches to evolutionary multiobjective feature selection are proposed with different structures of classifiers. They are evaluated by comparing with baseline methods using sparse representation of features or without feature selection. The statistical analysis, by applying the Kolmogorov-Smirnoff and Kruskal-Wallis tests to the means of the Kappa values evaluated by using the test patterns in each approach, has demonstrated some advantages of the proposed approaches. In comparison with the baseline MRA approach used in previous studies, the proposed evolutionary multiobjective feature selection approaches provide similar or even better classification performances, with significant reduction in the number of features that need to be computed.

  1. A Wearable Home BCI system: preliminary results with SSVEP protocol.

    PubMed

    Piccini, Luca; Parini, Sergio; Maggi, Luca; Andreoni, Giuseppe

    2005-01-01

    This paper presents and discusses the realization and the performances of a wearable system for EEG-based BCI applications. The system (called Kimera) consists of a two-layer hardware architecture (the wireless acquisition and transmission board based on a Bluetooth ® ARM chip, and a low power miniaturized biosignal acquisition analog front end) together with a software suite (called Bellerophonte) for the Graphic User Interface management, protocol execution, data recording, transmission and processing. The implemented BCI system was based on the SSVEP protocol, applied to a two state selection by using standards display/monitor with a couple of high efficiency LEDs. The frequency features of the signal were computed and used in the intention detection. The BCI algorithm is based on a supervised classifier implemented through a multi-class Canonical Discriminant Analysis (CDA) with a continuous realtime feedback based on the mahalanobis distance parameter. Five healthy subjects participated in the first phase for a preliminary device validation. The obtained results are very interesting and promising, being lined out to the most recent performance reported in literature with a significant improvement both in system and in classification capabilities. The user-friendliness and low cost of the Kimera& Bellerophonte platform make it suitable for the development of home BCI applications.

  2. Biased Cyclical Electrical Field-Flow Fractionation for Separation of Submicron Particles

    PubMed Central

    Ornthai, Mathuros; Siripinyanond, Atitaya; Gale, Bruce K.

    2015-01-01

    The potential of biased cyclical electrical field flow fractionation (BCyElFFF), which applies the positive cycle voltage longer than the negative cycle voltage, for characterization of submicron particles, was investigated. Parameters affecting separation and retention such as voltage, frequency, and duty cycle were examined. The results suggest that the separation mechanism in BCyElFFF in many cases is more related to the size of particles, as is the case with normal ElFFF, in the studied conditions, than the electrophoretic mobility, which is what the theory predicts for CyElFFF. However, better resolution was obtained when separating using BCyElFFF mode than when using normal CyElFFF. BCyElFFF was able to demonstrate simultaneous baseline separations of a mixture of 0.04, 0.1, and 0.2 μm particles and near separation of 0.5 μm particles. This study has shown the applicability of the BCyElFFF for separation and characterization of submicron particles greater than 0.1 μm in size, which had not been demonstrated previously. The separation and retention results suggest that for particles of this size, retention is based more on particle size than on electrophoretic mobility, which is contrary to existing theory for CyElFFF. PMID:26612733

  3. Biased cyclical electrical field-flow fractionation for separation of submicron particles.

    PubMed

    Ornthai, Mathuros; Siripinyanond, Atitaya; Gale, Bruce K

    2016-01-01

    The potential of biased cyclical electrical field-flow fractionation (BCyElFFF), which applies the positive cycle voltage longer than the negative cycle voltage, for characterization of submicron particles, was investigated. Parameters affecting separation and retention such as voltage, frequency, and duty cycle were examined. The results suggest that the separation mechanism in BCyElFFF in many cases is more related to the size of particles, as is the case with normal ElFFF, in the studied conditions, than the electrophoretic mobility, which is what the theory predicts for CyElFFF. However, better resolution was obtained when separating using BCyElFFF mode than when using normal CyElFFF. BCyElFFF was able to demonstrate simultaneous baseline separations of a mixture of 0.04-, 0.1-, and 0.2-μm particles and near separation of 0.5-μm particles. This study has shown the applicability of BCyElFFF for separation and characterization of submicron particles greater than 0.1-μm in size, which had not been demonstrated previously. The separation and retention results suggest that for particles of this size, retention is based more on particle size than on electrophoretic mobility, which is contrary to existing theory for CyElFFF.

  4. A whole brain atlas with sub-parcellation of cortical gyri using resting fMRI

    NASA Astrophysics Data System (ADS)

    Joshi, Anand A.; Choi, Soyoung; Sonkar, Gaurav; Chong, Minqi; Gonzalez-Martinez, Jorge; Nair, Dileep; Shattuck, David W.; Damasio, Hanna; Leahy, Richard M.

    2017-02-01

    The new hybrid-BCI-DNI atlas is a high-resolution MPRAGE, single-subject atlas, constructed using both anatomical and functional information to guide the parcellation of the cerebral cortex. Anatomical labeling was performed manually on coronal single-slice images guided by sulcal and gyral landmarks to generate the original (non-hybrid) BCI-DNI atlas. Functional sub-parcellations of the gyral ROIs were then generated from 40 minimally preprocessed resting fMRI datasets from the HCP database. Gyral ROIs were transferred from the BCI-DNI atlas to the 40 subjects using the HCP grayordinate space as a reference. For each subject, each gyral ROI was subdivided using the fMRI data by applying spectral clustering to a similarity matrix computed from the fMRI time-series correlations between each vertex pair. The sub-parcellations were then transferred back to the original cortical mesh to create the subparcellated hBCI-DNI atlas with a total of 67 cortical regions per hemisphere. To assess the stability of the gyral subdivisons, a separate set of 60 HCP datasets were processed as follows: 1) coregistration of the structural scans to the hBCI-DNI atlas; 2) coregistration of the anatomical BCI-DNI atlas without functional subdivisions, followed by sub-parcellation of each subject's resting fMRI data as described above. We then computed consistency between the anatomically-driven delineation of each gyral subdivision and that obtained per subject using individual fMRI data. The gyral sub-parcellations generated by atlas-based registration show variable but generally good overlap of the confidence intervals with the resting fMRI-based subdivisions. These consistency measures will provide a quantitative measure of reliability of each subdivision to users of the atlas.

  5. Affective SSVEP BCI to effectively control 3D objects by using a prism array-based display

    NASA Astrophysics Data System (ADS)

    Mun, Sungchul; Park, Min-Chul

    2014-06-01

    3D objects with depth information can provide many benefits to users in education, surgery, and interactions. In particular, many studies have been done to enhance sense of reality in 3D interaction. Viewing and controlling stereoscopic 3D objects with crossed or uncrossed disparities, however, can cause visual fatigue due to the vergenceaccommodation conflict generally accepted in 3D research fields. In order to avoid the vergence-accommodation mismatch and provide a strong sense of presence to users, we apply a prism array-based display to presenting 3D objects. Emotional pictures were used as visual stimuli in control panels to increase information transfer rate and reduce false positives in controlling 3D objects. Involuntarily motivated selective attention by affective mechanism can enhance steady-state visually evoked potential (SSVEP) amplitude and lead to increased interaction efficiency. More attentional resources are allocated to affective pictures with high valence and arousal levels than to normal visual stimuli such as white-and-black oscillating squares and checkerboards. Among representative BCI control components (i.e., eventrelated potentials (ERP), event-related (de)synchronization (ERD/ERS), and SSVEP), SSVEP-based BCI was chosen in the following reasons. It shows high information transfer rates and takes a few minutes for users to control BCI system while few electrodes are required for obtaining reliable brainwave signals enough to capture users' intention. The proposed BCI methods are expected to enhance sense of reality in 3D space without causing critical visual fatigue to occur. In addition, people who are very susceptible to (auto) stereoscopic 3D may be able to use the affective BCI.

  6. Brain-computer interfaces for post-stroke motor rehabilitation: a meta-analysis.

    PubMed

    Cervera, María A; Soekadar, Surjo R; Ushiba, Junichi; Millán, José Del R; Liu, Meigen; Birbaumer, Niels; Garipelli, Gangadhar

    2018-05-01

    Brain-computer interfaces (BCIs) can provide sensory feedback of ongoing brain oscillations, enabling stroke survivors to modulate their sensorimotor rhythms purposefully. A number of recent clinical studies indicate that repeated use of such BCIs might trigger neurological recovery and hence improvement in motor function. Here, we provide a first meta-analysis evaluating the clinical effectiveness of BCI-based post-stroke motor rehabilitation. Trials were identified using MEDLINE, CENTRAL, PEDro and by inspection of references in several review articles. We selected randomized controlled trials that used BCIs for post-stroke motor rehabilitation and provided motor impairment scores before and after the intervention. A random-effects inverse variance method was used to calculate the summary effect size. We initially identified 524 articles and, after removing duplicates, we screened titles and abstracts of 473 articles. We found 26 articles corresponding to BCI clinical trials, of these, there were nine studies that involved a total of 235 post-stroke survivors that fulfilled the inclusion criterion (randomized controlled trials that examined motor performance as an outcome measure) for the meta-analysis. Motor improvements, mostly quantified by the upper limb Fugl-Meyer Assessment (FMA-UE), exceeded the minimal clinically important difference (MCID=5.25) in six BCI studies, while such improvement was reached only in three control groups. Overall, the BCI training was associated with a standardized mean difference of 0.79 (95% CI: 0.37 to 1.20) in FMA-UE compared to control conditions, which is in the range of medium to large summary effect size. In addition, several studies indicated BCI-induced functional and structural neuroplasticity at a subclinical level. This suggests that BCI technology could be an effective intervention for post-stroke upper limb rehabilitation. However, more studies with larger sample size are required to increase the reliability of these results.

  7. User Experience May be Producing Greater Heart Rate Variability than Motor Imagery Related Control Tasks during the User-System Adaptation in Brain-Computer Interfaces

    PubMed Central

    Alonso-Valerdi, Luz M.; Gutiérrez-Begovich, David A.; Argüello-García, Janet; Sepulveda, Francisco; Ramírez-Mendoza, Ricardo A.

    2016-01-01

    Brain-computer interface (BCI) is technology that is developing fast, but it remains inaccurate, unreliable and slow due to the difficulty to obtain precise information from the brain. Consequently, the involvement of other biosignals to decode the user control tasks has risen in importance. A traditional way to operate a BCI system is via motor imagery (MI) tasks. As imaginary movements activate similar cortical structures and vegetative mechanisms as a voluntary movement does, heart rate variability (HRV) has been proposed as a parameter to improve the detection of MI related control tasks. However, HR is very susceptible to body needs and environmental demands, and as BCI systems require high levels of attention, perceptual processing and mental workload, it is important to assess the practical effectiveness of HRV. The present study aimed to determine if brain and heart electrical signals (HRV) are modulated by MI activity used to control a BCI system, or if HRV is modulated by the user perceptions and responses that result from the operation of a BCI system (i.e., user experience). For this purpose, a database of 11 participants who were exposed to eight different situations was used. The sensory-cognitive load (intake and rejection tasks) was controlled in those situations. Two electrophysiological signals were utilized: electroencephalography and electrocardiography. From those biosignals, event-related (de-)synchronization maps and event-related HR changes were respectively estimated. The maps and the HR changes were cross-correlated in order to verify if both biosignals were modulated due to MI activity. The results suggest that HR varies according to the experience undergone by the user in a BCI working environment, and not because of the MI activity used to operate the system. PMID:27458384

  8. Motor imagery for severely motor-impaired patients: evidence for brain-computer interfacing as superior control solution.

    PubMed

    Höhne, Johannes; Holz, Elisa; Staiger-Sälzer, Pit; Müller, Klaus-Robert; Kübler, Andrea; Tangermann, Michael

    2014-01-01

    Brain-Computer Interfaces (BCIs) strive to decode brain signals into control commands for severely handicapped people with no means of muscular control. These potential users of noninvasive BCIs display a large range of physical and mental conditions. Prior studies have shown the general applicability of BCI with patients, with the conflict of either using many training sessions or studying only moderately restricted patients. We present a BCI system designed to establish external control for severely motor-impaired patients within a very short time. Within only six experimental sessions, three out of four patients were able to gain significant control over the BCI, which was based on motor imagery or attempted execution. For the most affected patient, we found evidence that the BCI could outperform the best assistive technology (AT) of the patient in terms of control accuracy, reaction time and information transfer rate. We credit this success to the applied user-centered design approach and to a highly flexible technical setup. State-of-the art machine learning methods allowed the exploitation and combination of multiple relevant features contained in the EEG, which rapidly enabled the patients to gain substantial BCI control. Thus, we could show the feasibility of a flexible and tailorable BCI application in severely disabled users. This can be considered a significant success for two reasons: Firstly, the results were obtained within a short period of time, matching the tight clinical requirements. Secondly, the participating patients showed, compared to most other studies, very severe communication deficits. They were dependent on everyday use of AT and two patients were in a locked-in state. For the most affected patient a reliable communication was rarely possible with existing AT.

  9. Classification of mouth movements using 7 T fMRI.

    PubMed

    Bleichner, M G; Jansma, J M; Salari, E; Freudenburg, Z V; Raemaekers, M; Ramsey, N F

    2015-12-01

    A brain-computer interface (BCI) is an interface that uses signals from the brain to control a computer. BCIs will likely become important tools for severely paralyzed patients to restore interaction with the environment. The sensorimotor cortex is a promising target brain region for a BCI due to the detailed topography and minimal functional interference with other important brain processes. Previous studies have shown that attempted movements in paralyzed people generate neural activity that strongly resembles actual movements. Hence decodability for BCI applications can be studied in able-bodied volunteers with actual movements. In this study we tested whether mouth movements provide adequate signals in the sensorimotor cortex for a BCI. The study was executed using fMRI at 7 T to ensure relevance for BCI with cortical electrodes, as 7 T measurements have been shown to correlate well with electrocortical measurements. Twelve healthy volunteers executed four mouth movements (lip protrusion, tongue movement, teeth clenching, and the production of a larynx activating sound) while in the scanner. Subjects performed a training and a test run. Single trials were classified based on the Pearson correlation values between the activation patterns per trial type in the training run and single trials in the test run in a 'winner-takes-all' design. Single trial mouth movements could be classified with 90% accuracy. The classification was based on an area with a volume of about 0.5 cc, located on the sensorimotor cortex. If voxels were limited to the surface, which is accessible for electrode grids, classification accuracy was still very high (82%). Voxels located on the precentral cortex performed better (87%) than the postcentral cortex (72%). The high reliability of decoding mouth movements suggests that attempted mouth movements are a promising candidate for BCI in paralyzed people.

  10. An embedded implementation based on adaptive filter bank for brain-computer interface systems.

    PubMed

    Belwafi, Kais; Romain, Olivier; Gannouni, Sofien; Ghaffari, Fakhreddine; Djemal, Ridha; Ouni, Bouraoui

    2018-07-15

    Brain-computer interface (BCI) is a new communication pathway for users with neurological deficiencies. The implementation of a BCI system requires complex electroencephalography (EEG) signal processing including filtering, feature extraction and classification algorithms. Most of current BCI systems are implemented on personal computers. Therefore, there is a great interest in implementing BCI on embedded platforms to meet system specifications in terms of time response, cost effectiveness, power consumption, and accuracy. This article presents an embedded-BCI (EBCI) system based on a Stratix-IV field programmable gate array. The proposed system relays on the weighted overlap-add (WOLA) algorithm to perform dynamic filtering of EEG-signals by analyzing the event-related desynchronization/synchronization (ERD/ERS). The EEG-signals are classified, using the linear discriminant analysis algorithm, based on their spatial features. The proposed system performs fast classification within a time delay of 0.430 s/trial, achieving an average accuracy of 76.80% according to an offline approach and 80.25% using our own recording. The estimated power consumption of the prototype is approximately 0.7 W. Results show that the proposed EBCI system reduces the overall classification error rate for the three datasets of the BCI-competition by 5% compared to other similar implementations. Moreover, experiment shows that the proposed system maintains a high accuracy rate with a short processing time, a low power consumption, and a low cost. Performing dynamic filtering of EEG-signals using WOLA increases the recognition rate of ERD/ERS patterns of motor imagery brain activity. This approach allows to develop a complete prototype of a EBCI system that achieves excellent accuracy rates. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. The Butterflies of Barro Colorado Island, Panama: Local Extinction since the 1930s.

    PubMed

    Basset, Yves; Barrios, Héctor; Segar, Simon; Srygley, Robert B; Aiello, Annette; Warren, Andrew D; Delgado, Francisco; Coronado, James; Lezcano, Jorge; Arizala, Stephany; Rivera, Marleny; Perez, Filonila; Bobadilla, Ricardo; Lopez, Yacksecari; Ramirez, José Alejandro

    2015-01-01

    Few data are available about the regional or local extinction of tropical butterfly species. When confirmed, local extinction was often due to the loss of host-plant species. We used published lists and recent monitoring programs to evaluate changes in butterfly composition on Barro Colorado Island (BCI, Panama) between an old (1923-1943) and a recent (1993-2013) period. Although 601 butterfly species have been recorded from BCI during the 1923-2013 period, we estimate that 390 species are currently breeding on the island, including 34 cryptic species, currently only known by their DNA Barcode Index Number. Twenty-three butterfly species that were considered abundant during the old period could not be collected during the recent period, despite a much higher sampling effort in recent times. We consider these species locally extinct from BCI and they conservatively represent 6% of the estimated local pool of resident species. Extinct species represent distant phylogenetic branches and several families. The butterfly traits most likely to influence the probability of extinction were host growth form, wing size and host specificity, independently of the phylogenetic relationships among butterfly species. On BCI, most likely candidates for extinction were small hesperiids feeding on herbs (35% of extinct species). However, contrary to our working hypothesis, extinction of these species on BCI cannot be attributed to loss of host plants. In most cases these host plants remain extant, but they probably subsist at lower or more fragmented densities. Coupled with low dispersal power, this reduced availability of host plants has probably caused the local extinction of some butterfly species. Many more bird than butterfly species have been lost from BCI recently, confirming that small preserves may be far more effective at conserving invertebrates than vertebrates and, therefore, should not necessarily be neglected from a conservation viewpoint.

  12. Does the 'P300' speller depend on eye gaze?

    NASA Astrophysics Data System (ADS)

    Brunner, P.; Joshi, S.; Briskin, S.; Wolpaw, J. R.; Bischof, H.; Schalk, G.

    2010-10-01

    Many people affected by debilitating neuromuscular disorders such as amyotrophic lateral sclerosis, brainstem stroke or spinal cord injury are impaired in their ability to, or are even unable to, communicate. A brain-computer interface (BCI) uses brain signals, rather than muscles, to re-establish communication with the outside world. One particular BCI approach is the so-called 'P300 matrix speller' that was first described by Farwell and Donchin (1988 Electroencephalogr. Clin. Neurophysiol. 70 510-23). It has been widely assumed that this method does not depend on the ability to focus on the desired character, because it was thought that it relies primarily on the P300-evoked potential and minimally, if at all, on other EEG features such as the visual-evoked potential (VEP). This issue is highly relevant for the clinical application of this BCI method, because eye movements may be impaired or lost in the relevant user population. This study investigated the extent to which the performance in a 'P300' speller BCI depends on eye gaze. We evaluated the performance of 17 healthy subjects using a 'P300' matrix speller under two conditions. Under one condition ('letter'), the subjects focused their eye gaze on the intended letter, while under the second condition ('center'), the subjects focused their eye gaze on a fixation cross that was located in the center of the matrix. The results show that the performance of the 'P300' matrix speller in normal subjects depends in considerable measure on gaze direction. They thereby disprove a widespread assumption in BCI research, and suggest that this BCI might function more effectively for people who retain some eye-movement control. The applicability of these findings to people with severe neuromuscular disabilities (particularly in eye-movements) remains to be determined.

  13. Motor Imagery for Severely Motor-Impaired Patients: Evidence for Brain-Computer Interfacing as Superior Control Solution

    PubMed Central

    Höhne, Johannes; Holz, Elisa; Staiger-Sälzer, Pit; Müller, Klaus-Robert; Kübler, Andrea; Tangermann, Michael

    2014-01-01

    Brain-Computer Interfaces (BCIs) strive to decode brain signals into control commands for severely handicapped people with no means of muscular control. These potential users of noninvasive BCIs display a large range of physical and mental conditions. Prior studies have shown the general applicability of BCI with patients, with the conflict of either using many training sessions or studying only moderately restricted patients. We present a BCI system designed to establish external control for severely motor-impaired patients within a very short time. Within only six experimental sessions, three out of four patients were able to gain significant control over the BCI, which was based on motor imagery or attempted execution. For the most affected patient, we found evidence that the BCI could outperform the best assistive technology (AT) of the patient in terms of control accuracy, reaction time and information transfer rate. We credit this success to the applied user-centered design approach and to a highly flexible technical setup. State-of-the art machine learning methods allowed the exploitation and combination of multiple relevant features contained in the EEG, which rapidly enabled the patients to gain substantial BCI control. Thus, we could show the feasibility of a flexible and tailorable BCI application in severely disabled users. This can be considered a significant success for two reasons: Firstly, the results were obtained within a short period of time, matching the tight clinical requirements. Secondly, the participating patients showed, compared to most other studies, very severe communication deficits. They were dependent on everyday use of AT and two patients were in a locked-in state. For the most affected patient a reliable communication was rarely possible with existing AT. PMID:25162231

  14. Alpha neurofeedback training improves SSVEP-based BCI performance.

    PubMed

    Wan, Feng; da Cruz, Janir Nuno; Nan, Wenya; Wong, Chi Man; Vai, Mang I; Rosa, Agostinho

    2016-06-01

    Steady-state visual evoked potential (SSVEP)-based brain-computer interfaces (BCIs) can provide relatively easy, reliable and high speed communication. However, the performance is still not satisfactory, especially in some users who are not able to generate strong enough SSVEP signals. This work aims to strengthen a user's SSVEP by alpha down-regulating neurofeedback training (NFT) and consequently improve the performance of the user in using SSVEP-based BCIs. An experiment with two steps was designed and conducted. The first step was to investigate the relationship between the resting alpha activity and the SSVEP-based BCI performance, in order to determine the training parameter for the NFT. Then in the second step, half of the subjects with 'low' performance (i.e. BCI classification accuracy <80%) were randomly assigned to a NFT group to perform a real-time NFT, and the rest half to a non-NFT control group for comparison. The first step revealed a significant negative correlation between the BCI performance and the individual alpha band (IAB) amplitudes in the eyes-open resting condition in a total of 33 subjects. In the second step, it was found that during the IAB down-regulating NFT, on average the subjects were able to successfully decrease their IAB amplitude over training sessions. More importantly, the NFT group showed an average increase of 16.5% in the SSVEP signal SNR (signal-to-noise ratio) and an average increase of 20.3% in the BCI classification accuracy, which was significant compared to the non-NFT control group. These findings indicate that the alpha down-regulating NFT can be used to improve the SSVEP signal quality and the subjects' performance in using SSVEP-based BCIs. It could be helpful to the SSVEP related studies and would contribute to more effective SSVEP-based BCI applications.

  15. Optimizing the Detection of Wakeful and Sleep-Like States for Future Electrocorticographic Brain Computer Interface Applications.

    PubMed

    Pahwa, Mrinal; Kusner, Matthew; Hacker, Carl D; Bundy, David T; Weinberger, Kilian Q; Leuthardt, Eric C

    2015-01-01

    Previous studies suggest stable and robust control of a brain-computer interface (BCI) can be achieved using electrocorticography (ECoG). Translation of this technology from the laboratory to the real world requires additional methods that allow users operate their ECoG-based BCI autonomously. In such an environment, users must be able to perform all tasks currently performed by the experimenter, including manually switching the BCI system on/off. Although a simple task, it can be challenging for target users (e.g., individuals with tetraplegia) due to severe motor disability. In this study, we present an automated and practical strategy to switch a BCI system on or off based on the cognitive state of the user. Using a logistic regression, we built probabilistic models that utilized sub-dural ECoG signals from humans to estimate in pseudo real-time whether a person is awake or in a sleep-like state, and subsequently, whether to turn a BCI system on or off. Furthermore, we constrained these models to identify the optimal anatomical and spectral parameters for delineating states. Other methods exist to differentiate wake and sleep states using ECoG, but none account for practical requirements of BCI application, such as minimizing the size of an ECoG implant and predicting states in real time. Our results demonstrate that, across 4 individuals, wakeful and sleep-like states can be classified with over 80% accuracy (up to 92%) in pseudo real-time using high gamma (70-110 Hz) band limited power from only 5 electrodes (platinum discs with a diameter of 2.3 mm) located above the precentral and posterior superior temporal gyrus.

  16. A Fuzzy Integral Ensemble Method in Visual P300 Brain-Computer Interface.

    PubMed

    Cavrini, Francesco; Bianchi, Luigi; Quitadamo, Lucia Rita; Saggio, Giovanni

    2016-01-01

    We evaluate the possibility of application of combination of classifiers using fuzzy measures and integrals to Brain-Computer Interface (BCI) based on electroencephalography. In particular, we present an ensemble method that can be applied to a variety of systems and evaluate it in the context of a visual P300-based BCI. Offline analysis of data relative to 5 subjects lets us argue that the proposed classification strategy is suitable for BCI. Indeed, the achieved performance is significantly greater than the average of the base classifiers and, broadly speaking, similar to that of the best one. Thus the proposed methodology allows realizing systems that can be used by different subjects without the need for a preliminary configuration phase in which the best classifier for each user has to be identified. Moreover, the ensemble is often capable of detecting uncertain situations and turning them from misclassifications into abstentions, thereby improving the level of safety in BCI for environmental or device control.

  17. BCI Performance and Brain Metabolism Profile in Severely Brain-Injured Patients Without Response to Command at Bedside.

    PubMed

    Annen, Jitka; Blandiaux, Séverine; Lejeune, Nicolas; Bahri, Mohamed A; Thibaut, Aurore; Cho, Woosang; Guger, Christoph; Chatelle, Camille; Laureys, Steven

    2018-01-01

    Detection and interpretation of signs of "covert command following" in patients with disorders of consciousness (DOC) remains a challenge for clinicians. In this study, we used a tactile P3-based BCI in 12 patients without behavioral command following, attempting to establish "covert command following." These results were then confronted to cerebral metabolism preservation as measured with glucose PET (FDG-PET). One patient showed "covert command following" (i.e., above-threshold BCI performance) during the active tactile paradigm. This patient also showed a higher cerebral glucose metabolism within the language network (presumably required for command following) when compared with the other patients without "covert command-following" but having a cerebral glucose metabolism indicative of minimally conscious state. Our results suggest that the P3-based BCI might probe "covert command following" in patients without behavioral response to command and therefore could be a valuable addition in the clinical assessment of patients with DOC.

  18. Heading for new shores! Overcoming pitfalls in BCI design

    PubMed Central

    Chavarriaga, Ricardo; Fried-Oken, Melanie; Kleih, Sonja; Lotte, Fabien; Scherer, Reinhold

    2017-01-01

    Research in brain-computer interfaces has achieved impressive progress towards implementing assistive technologies for restoration or substitution of lost motor capabilities, as well as supporting technologies for able-bodied subjects. Notwithstanding this progress, effective translation of these interfaces from proof-of concept prototypes into reliable applications remains elusive. As a matter of fact, most of the current BCI systems cannot be used independently for long periods of time by their intended end-users. Multiple factors that impair achieving this goal have already been identified. However, it is not clear how do they affect the overall BCI performance or how they should be tackled. This is worsened by the publication bias where only positive results are disseminated, preventing the research community from learning from its errors. This paper is the result of a workshop held at the 6th International BCI meeting in Asilomar. We summarize here the discussion on concrete research avenues and guidelines that may help overcoming common pitfalls and make BCIs become a useful alternative communication device. PMID:29629393

  19. Control of a brain-computer interface using stereotactic depth electrodes in and adjacent to the hippocampus

    NASA Astrophysics Data System (ADS)

    Krusienski, D. J.; Shih, J. J.

    2011-04-01

    A brain-computer interface (BCI) is a device that enables severely disabled people to communicate and interact with their environments using their brain waves. Most research investigating BCI in humans has used scalp-recorded electroencephalography or intracranial electrocorticography. The use of brain signals obtained directly from stereotactic depth electrodes to control a BCI has not previously been explored. In this study, event-related potentials (ERPs) recorded from bilateral stereotactic depth electrodes implanted in and adjacent to the hippocampus were used to control a P300 Speller paradigm. The ERPs were preprocessed and used to train a linear classifier to subsequently predict the intended target letters. The classifier was able to predict the intended target character at or near 100% accuracy using fewer than 15 stimulation sequences in the two subjects tested. Our results demonstrate that ERPs from hippocampal and hippocampal adjacent depth electrodes can be used to reliably control the P300 Speller BCI paradigm.

  20. Utilizing gamma band to improve mental task based brain-computer interface design.

    PubMed

    Palaniappan, Ramaswamy

    2006-09-01

    A common method for designing brain-computer Interface (BCI) is to use electroencephalogram (EEG) signals extracted during mental tasks. In these BCI designs, features from EEG such as power and asymmetry ratios from delta, theta, alpha, and beta bands have been used in classifying different mental tasks. In this paper, the performance of the mental task based BCI design is improved by using spectral power and asymmetry ratios from gamma (24-37 Hz) band in addition to the lower frequency bands. In the experimental study, EEG signals extracted during five mental tasks from four subjects were used. Elman neural network (ENN) trained by the resilient backpropagation algorithm was used to classify the power and asymmetry ratios from EEG into different combinations of two mental tasks. The results indicated that ((1) the classification performance and training time of the BCI design were improved through the use of additional gamma band features; (2) classification performances were nearly invariant to the number of ENN hidden units or feature extraction method.

  1. Heading for new shores! Overcoming pitfalls in BCI design.

    PubMed

    Chavarriaga, Ricardo; Fried-Oken, Melanie; Kleih, Sonja; Lotte, Fabien; Scherer, Reinhold

    2017-01-01

    Research in brain-computer interfaces has achieved impressive progress towards implementing assistive technologies for restoration or substitution of lost motor capabilities, as well as supporting technologies for able-bodied subjects. Notwithstanding this progress, effective translation of these interfaces from proof-of concept prototypes into reliable applications remains elusive. As a matter of fact, most of the current BCI systems cannot be used independently for long periods of time by their intended end-users. Multiple factors that impair achieving this goal have already been identified. However, it is not clear how do they affect the overall BCI performance or how they should be tackled. This is worsened by the publication bias where only positive results are disseminated, preventing the research community from learning from its errors. This paper is the result of a workshop held at the 6th International BCI meeting in Asilomar. We summarize here the discussion on concrete research avenues and guidelines that may help overcoming common pitfalls and make BCIs become a useful alternative communication device.

  2. Performance improvement of ERP-based brain-computer interface via varied geometric patterns.

    PubMed

    Ma, Zheng; Qiu, Tianshuang

    2017-12-01

    Recently, many studies have been focusing on optimizing the stimulus of an event-related potential (ERP)-based brain-computer interface (BCI). However, little is known about the effectiveness when increasing the stimulus unpredictability. We investigated a new stimulus type of varied geometric pattern where both complexity and unpredictability of the stimulus are increased. The proposed and classical paradigms were compared in within-subject experiments with 16 healthy participants. Results showed that the BCI performance was significantly improved for the proposed paradigm, with an average online written symbol rate increasing by 138% comparing with that of the classical paradigm. Amplitudes of primary ERP components, such as N1, P2a, P2b, N2, were also found to be significantly enhanced with the proposed paradigm. In this paper, a novel ERP BCI paradigm with a new stimulus type of varied geometric pattern is proposed. By jointly increasing the complexity and unpredictability of the stimulus, the performance of an ERP BCI could be considerably improved.

  3. P300 brain computer interface: current challenges and emerging trends

    PubMed Central

    Fazel-Rezai, Reza; Allison, Brendan Z.; Guger, Christoph; Sellers, Eric W.; Kleih, Sonja C.; Kübler, Andrea

    2012-01-01

    A brain-computer interface (BCI) enables communication without movement based on brain signals measured with electroencephalography (EEG). BCIs usually rely on one of three types of signals: the P300 and other components of the event-related potential (ERP), steady state visual evoked potential (SSVEP), or event related desynchronization (ERD). Although P300 BCIs were introduced over twenty years ago, the past few years have seen a strong increase in P300 BCI research. This closed-loop BCI approach relies on the P300 and other components of the ERP, based on an oddball paradigm presented to the subject. In this paper, we overview the current status of P300 BCI technology, and then discuss new directions: paradigms for eliciting P300s; signal processing methods; applications; and hybrid BCIs. We conclude that P300 BCIs are quite promising, as several emerging directions have not yet been fully explored and could lead to improvements in bit rate, reliability, usability, and flexibility. PMID:22822397

  4. The brain-computer interface cycle.

    PubMed

    van Gerven, Marcel; Farquhar, Jason; Schaefer, Rebecca; Vlek, Rutger; Geuze, Jeroen; Nijholt, Anton; Ramsey, Nick; Haselager, Pim; Vuurpijl, Louis; Gielen, Stan; Desain, Peter

    2009-08-01

    Brain-computer interfaces (BCIs) have attracted much attention recently, triggered by new scientific progress in understanding brain function and by impressive applications. The aim of this review is to give an overview of the various steps in the BCI cycle, i.e., the loop from the measurement of brain activity, classification of data, feedback to the subject and the effect of feedback on brain activity. In this article we will review the critical steps of the BCI cycle, the present issues and state-of-the-art results. Moreover, we will develop a vision on how recently obtained results may contribute to new insights in neurocognition and, in particular, in the neural representation of perceived stimuli, intended actions and emotions. Now is the right time to explore what can be gained by embracing real-time, online BCI and by adding it to the set of experimental tools already available to the cognitive neuroscientist. We close by pointing out some unresolved issues and present our view on how BCI could become an important new tool for probing human cognition.

  5. Motor imagery based brain-computer interfaces: An emerging technology to rehabilitate motor deficits.

    PubMed

    Alonso-Valerdi, Luz Maria; Salido-Ruiz, Ricardo Antonio; Ramirez-Mendoza, Ricardo A

    2015-12-01

    When the sensory-motor integration system is malfunctioning provokes a wide variety of neurological disorders, which in many cases cannot be treated with conventional medication, or via existing therapeutic technology. A brain-computer interface (BCI) is a tool that permits to reintegrate the sensory-motor loop, accessing directly to brain information. A potential, promising and quite investigated application of BCI has been in the motor rehabilitation field. It is well-known that motor deficits are the major disability wherewith the worldwide population lives. Therefore, this paper aims to specify the foundation of motor rehabilitation BCIs, as well as to review the recent research conducted so far (specifically, from 2007 to date), in order to evaluate the suitability and reliability of this technology. Although BCI for post-stroke rehabilitation is still in its infancy, the tendency is towards the development of implantable devices that encompass a BCI module plus a stimulation system. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Toward a Model-Based Predictive Controller Design in Brain–Computer Interfaces

    PubMed Central

    Kamrunnahar, M.; Dias, N. S.; Schiff, S. J.

    2013-01-01

    A first step in designing a robust and optimal model-based predictive controller (MPC) for brain–computer interface (BCI) applications is presented in this article. An MPC has the potential to achieve improved BCI performance compared to the performance achieved by current ad hoc, nonmodel-based filter applications. The parameters in designing the controller were extracted as model-based features from motor imagery task-related human scalp electroencephalography. Although the parameters can be generated from any model-linear or non-linear, we here adopted a simple autoregressive model that has well-established applications in BCI task discriminations. It was shown that the parameters generated for the controller design can as well be used for motor imagery task discriminations with performance (with 8–23% task discrimination errors) comparable to the discrimination performance of the commonly used features such as frequency specific band powers and the AR model parameters directly used. An optimal MPC has significant implications for high performance BCI applications. PMID:21267657

  7. Design of an EEG-based brain-computer interface (BCI) from standard components running in real-time under Windows.

    PubMed

    Guger, C; Schlögl, A; Walterspacher, D; Pfurtscheller, G

    1999-01-01

    An EEG-based brain-computer interface (BCI) is a direct connection between the human brain and the computer. Such a communication system is needed by patients with severe motor impairments (e.g. late stage of Amyotrophic Lateral Sclerosis) and has to operate in real-time. This paper describes the selection of the appropriate components to construct such a BCI and focuses also on the selection of a suitable programming language and operating system. The multichannel system runs under Windows 95, equipped with a real-time Kernel expansion to obtain reasonable real-time operations on a standard PC. Matlab controls the data acquisition and the presentation of the experimental paradigm, while Simulink is used to calculate the recursive least square (RLS) algorithm that describes the current state of the EEG in real-time. First results of the new low-cost BCI show that the accuracy of differentiating imagination of left and right hand movement is around 95%.

  8. Toward a model-based predictive controller design in brain-computer interfaces.

    PubMed

    Kamrunnahar, M; Dias, N S; Schiff, S J

    2011-05-01

    A first step in designing a robust and optimal model-based predictive controller (MPC) for brain-computer interface (BCI) applications is presented in this article. An MPC has the potential to achieve improved BCI performance compared to the performance achieved by current ad hoc, nonmodel-based filter applications. The parameters in designing the controller were extracted as model-based features from motor imagery task-related human scalp electroencephalography. Although the parameters can be generated from any model-linear or non-linear, we here adopted a simple autoregressive model that has well-established applications in BCI task discriminations. It was shown that the parameters generated for the controller design can as well be used for motor imagery task discriminations with performance (with 8-23% task discrimination errors) comparable to the discrimination performance of the commonly used features such as frequency specific band powers and the AR model parameters directly used. An optimal MPC has significant implications for high performance BCI applications.

  9. Using Fractal and Local Binary Pattern Features for Classification of ECOG Motor Imagery Tasks Obtained from the Right Brain Hemisphere.

    PubMed

    Xu, Fangzhou; Zhou, Weidong; Zhen, Yilin; Yuan, Qi; Wu, Qi

    2016-09-01

    The feature extraction and classification of brain signal is very significant in brain-computer interface (BCI). In this study, we describe an algorithm for motor imagery (MI) classification of electrocorticogram (ECoG)-based BCI. The proposed approach employs multi-resolution fractal measures and local binary pattern (LBP) operators to form a combined feature for characterizing an ECoG epoch recording from the right hemisphere of the brain. A classifier is trained by using the gradient boosting in conjunction with ordinary least squares (OLS) method. The fractal intercept, lacunarity and LBP features are extracted to classify imagined movements of either the left small finger or the tongue. Experimental results on dataset I of BCI competition III demonstrate the superior performance of our method. The cross-validation accuracy and accuracy is 90.6% and 95%, respectively. Furthermore, the low computational burden of this method makes it a promising candidate for real-time BCI systems.

  10. Holodeck Testbed Project

    NASA Technical Reports Server (NTRS)

    Arias, Adriel (Inventor)

    2016-01-01

    The main objective of the Holodeck Testbed is to create a cost effective, realistic, and highly immersive environment that can be used to train astronauts, carry out engineering analysis, develop procedures, and support various operations tasks. Currently, the Holodeck testbed allows to step into a simulated ISS (International Space Station) and interact with objects; as well as, perform Extra Vehicular Activities (EVA) on the surface of the Moon or Mars. The Holodeck Testbed is using the products being developed in the Hybrid Reality Lab (HRL). The HRL is combining technologies related to merging physical models with photo-realistic visuals to create a realistic and highly immersive environment. The lab also investigates technologies and concepts that are needed to allow it to be integrated with other testbeds; such as, the gravity offload capability provided by the Active Response Gravity Offload System (ARGOS). My main two duties were to develop and animate models for use in the HRL environments and work on a new way to interface with computers using Brain Computer Interface (BCI) technology. On my first task, I was able to create precise computer virtual tool models (accurate down to the thousandths or hundredths of an inch). To make these tools even more realistic, I produced animations for these tools so they would have the same mechanical features as the tools in real life. The computer models were also used to create 3D printed replicas that will be outfitted with tracking sensors. The sensor will allow the 3D printed models to align precisely with the computer models in the physical world and provide people with haptic/tactile feedback while wearing a VR (Virtual Reality) headset and interacting with the tools. Getting close to the end of my internship the lab bought a professional grade 3D Scanner. With this, I was able to replicate more intricate tools at a much more time-effective rate. The second task was to investigate the use of BCI to control objects inside the hybrid reality ISS environment. This task looked at using an Electroencephalogram (EEG) headset to collect brain state data that could be mapped to commands that a computer could execute. On this Task, I had a setback with the hardware, which stopped working and was returned to the vendor for repair. However, I was still able to collect some data, was able to process it, and started to create correlation algorithms between the electrical patterns in the brain and the commands we wanted the computer to carry out. I also carried out a test to investigate the comfort of the headset if it is worn for a long time. The knowledge gained will benefit me in my future career. I learned how to use various modeling and programming tools that included Blender, Maya, Substance Painter, Artec Studio, Github, and Unreal Engine 4. I learned how to use a professional grade 3D scanner and 3D printer. On the BCI Project I learned about data mining and how to create correlation algorithms. I also supported various demos including a live demo of the hybrid reality lab capabilities at ComicPalooza. This internship has given me a good look into engineering at NASA. I developed a more thorough understanding of engineering and my overall confidence has grown. I have also realized that any problem can be fixed, if you try hard enough, and as an engineer it is your job to not only fix problems but to embrace coming up with solutions to those problems.

  11. The Brain Is Faster than the Hand in Split-Second Intentions to Respond to an Impending Hazard: A Simulation of Neuroadaptive Automation to Speed Recovery to Perturbation in Flight Attitude.

    PubMed

    Callan, Daniel E; Terzibas, Cengiz; Cassel, Daniel B; Sato, Masa-Aki; Parasuraman, Raja

    2016-01-01

    The goal of this research is to test the potential for neuroadaptive automation to improve response speed to a hazardous event by using a brain-computer interface (BCI) to decode perceptual-motor intention. Seven participants underwent four experimental sessions while measuring brain activity with magnetoencephalograpy. The first three sessions were of a simple constrained task in which the participant was to pull back on the control stick to recover from a perturbation in attitude in one condition and to passively observe the perturbation in the other condition. The fourth session consisted of having to recover from a perturbation in attitude while piloting the plane through the Grand Canyon constantly maneuvering to track over the river below. Independent component analysis was used on the first two sessions to extract artifacts and find an event related component associated with the onset of the perturbation. These two sessions were used to train a decoder to classify trials in which the participant recovered from the perturbation (motor intention) vs. just passively viewing the perturbation. The BCI-decoder was tested on the third session of the same simple task and found to be able to significantly distinguish motor intention trials from passive viewing trials (mean = 69.8%). The same BCI-decoder was then used to test the fourth session on the complex task. The BCI-decoder significantly classified perturbation from no perturbation trials (73.3%) with a significant time savings of 72.3 ms (Original response time of 425.0-352.7 ms for BCI-decoder). The BCI-decoder model of the best subject was shown to generalize for both performance and time savings to the other subjects. The results of our off-line open loop simulation demonstrate that BCI based neuroadaptive automation has the potential to decode motor intention faster than manual control in response to a hazardous perturbation in flight attitude while ignoring ongoing motor and visual induced activity related to piloting the airplane.

  12. Enhancing Performance and Bit Rates in a Brain-Computer Interface System With Phase-to-Amplitude Cross-Frequency Coupling: Evidences From Traditional c-VEP, Fast c-VEP, and SSVEP Designs.

    PubMed

    Dimitriadis, Stavros I; Marimpis, Avraam D

    2018-01-01

    A brain-computer interface (BCI) is a channel of communication that transforms brain activity into specific commands for manipulating a personal computer or other home or electrical devices. In other words, a BCI is an alternative way of interacting with the environment by using brain activity instead of muscles and nerves. For that reason, BCI systems are of high clinical value for targeted populations suffering from neurological disorders. In this paper, we present a new processing approach in three publicly available BCI data sets: (a) a well-known multi-class ( N = 6) coded-modulated Visual Evoked potential (c-VEP)-based BCI system for able-bodied and disabled subjects; (b) a multi-class ( N = 32) c-VEP with slow and fast stimulus representation; and (c) a steady-state Visual Evoked potential (SSVEP) multi-class ( N = 5) flickering BCI system. Estimating cross-frequency coupling (CFC) and namely δ-θ [δ: (0.5-4 Hz), θ: (4-8 Hz)] phase-to-amplitude coupling (PAC) within sensor and across experimental time, we succeeded in achieving high classification accuracy and Information Transfer Rates (ITR) in the three data sets. Our approach outperformed the originally presented ITR on the three data sets. The bit rates obtained for both the disabled and able-bodied subjects reached the fastest reported level of 324 bits/min with the PAC estimator. Additionally, our approach outperformed alternative signal features such as the relative power (29.73 bits/min) and raw time series analysis (24.93 bits/min) and also the original reported bit rates of 10-25 bits/min . In the second data set, we succeeded in achieving an average ITR of 124.40 ± 11.68 for the slow 60 Hz and an average ITR of 233.99 ± 15.75 for the fast 120 Hz. In the third data set, we succeeded in achieving an average ITR of 106.44 ± 8.94. Current methodology outperforms any previous methodologies applied to each of the three free available BCI datasets.

  13. The Brain Is Faster than the Hand in Split-Second Intentions to Respond to an Impending Hazard: A Simulation of Neuroadaptive Automation to Speed Recovery to Perturbation in Flight Attitude

    PubMed Central

    Callan, Daniel E.; Terzibas, Cengiz; Cassel, Daniel B.; Sato, Masa-aki; Parasuraman, Raja

    2016-01-01

    The goal of this research is to test the potential for neuroadaptive automation to improve response speed to a hazardous event by using a brain-computer interface (BCI) to decode perceptual-motor intention. Seven participants underwent four experimental sessions while measuring brain activity with magnetoencephalograpy. The first three sessions were of a simple constrained task in which the participant was to pull back on the control stick to recover from a perturbation in attitude in one condition and to passively observe the perturbation in the other condition. The fourth session consisted of having to recover from a perturbation in attitude while piloting the plane through the Grand Canyon constantly maneuvering to track over the river below. Independent component analysis was used on the first two sessions to extract artifacts and find an event related component associated with the onset of the perturbation. These two sessions were used to train a decoder to classify trials in which the participant recovered from the perturbation (motor intention) vs. just passively viewing the perturbation. The BCI-decoder was tested on the third session of the same simple task and found to be able to significantly distinguish motor intention trials from passive viewing trials (mean = 69.8%). The same BCI-decoder was then used to test the fourth session on the complex task. The BCI-decoder significantly classified perturbation from no perturbation trials (73.3%) with a significant time savings of 72.3 ms (Original response time of 425.0–352.7 ms for BCI-decoder). The BCI-decoder model of the best subject was shown to generalize for both performance and time savings to the other subjects. The results of our off-line open loop simulation demonstrate that BCI based neuroadaptive automation has the potential to decode motor intention faster than manual control in response to a hazardous perturbation in flight attitude while ignoring ongoing motor and visual induced activity related to piloting the airplane. PMID:27199710

  14. Conducted-Susceptibility Testing as an Alternative Approach to Unit-Level Radiated-Susceptibility Verifications

    NASA Astrophysics Data System (ADS)

    Badini, L.; Grassi, F.; Pignari, S. A.; Spadacini, G.; Bisognin, P.; Pelissou, P.; Marra, S.

    2016-05-01

    This work presents a theoretical rationale for the substitution of radiated-susceptibility (RS) verifications defined in current aerospace standards with an equivalent conducted-susceptibility (CS) test procedure based on bulk current injection (BCI) up to 500 MHz. Statistics is used to overcome the lack of knowledge about uncontrolled or uncertain setup parameters, with particular reference to the common-mode impedance of equipment. The BCI test level is properly investigated so to ensure correlation of currents injected in the equipment under test via CS and RS. In particular, an over-testing probability quantifies the severity of the BCI test with respect to the RS test.

  15. A brain computer interface-based explorer.

    PubMed

    Bai, Lijuan; Yu, Tianyou; Li, Yuanqing

    2015-04-15

    In recent years, various applications of brain computer interfaces (BCIs) have been studied. In this paper, we present a hybrid BCI combining P300 and motor imagery to operate an explorer. Our system is mainly composed of a BCI mouse, a BCI speller and an explorer. Through this system, the user can access his computer and manipulate (open, close, copy, paste, and delete) files such as documents, pictures, music, movies and so on. The system has been tested with five subjects, and the experimental results show that the explorer can be successfully operated according to subjects' intentions. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Fusion with Language Models Improves Spelling Accuracy for ERP-based Brain Computer Interface Spellers

    PubMed Central

    Orhan, Umut; Erdogmus, Deniz; Roark, Brian; Purwar, Shalini; Hild, Kenneth E.; Oken, Barry; Nezamfar, Hooman; Fried-Oken, Melanie

    2013-01-01

    Event related potentials (ERP) corresponding to a stimulus in electroencephalography (EEG) can be used to detect the intent of a person for brain computer interfaces (BCI). This paradigm is widely utilized to build letter-by-letter text input systems using BCI. Nevertheless using a BCI-typewriter depending only on EEG responses will not be sufficiently accurate for single-trial operation in general, and existing systems utilize many-trial schemes to achieve accuracy at the cost of speed. Hence incorporation of a language model based prior or additional evidence is vital to improve accuracy and speed. In this paper, we study the effects of Bayesian fusion of an n-gram language model with a regularized discriminant analysis ERP detector for EEG-based BCIs. The letter classification accuracies are rigorously evaluated for varying language model orders as well as number of ERP-inducing trials. The results demonstrate that the language models contribute significantly to letter classification accuracy. Specifically, we find that a BCI-speller supported by a 4-gram language model may achieve the same performance using 3-trial ERP classification for the initial letters of the words and using single trial ERP classification for the subsequent ones. Overall, fusion of evidence from EEG and language models yields a significant opportunity to increase the word rate of a BCI based typing system. PMID:22255652

  17. Feasibility of an EEG-based brain-computer interface in the intensive care unit.

    PubMed

    Chatelle, Camille; Spencer, Camille A; Cash, Sydney S; Hochberg, Leigh R; Edlow, Brian L

    2018-05-09

    We tested the feasibility of deploying a commercially available EEG-based brain-computer interface (BCI) in the intensive care unit (ICU) to detect consciousness in patients with acute disorders of consciousness (DoC) or locked-in syndrome (LIS). Ten patients (9 DoC, 1 LIS) and 10 healthy subjects (HS) were enrolled. The BCI utilized oddball auditory evoked potentials, vibrotactile evoked potentials (VTP) and motor imagery (MoI) to assess consciousness. We recorded the assessment completion rate and the time required for assessment, and we calculated the sensitivity and specificity of each paradigm for detecting behavioral signs of consciousness. All 10 patients completed the assessment, 9 of whom required less than 1 h. The LIS patient reported fatigue before the end of the session. The HS and LIS patient showed more consistent BCI responses than DoC patients, but overall there was no association between BCI responses and behavioral signs of consciousness. The system is feasible to deploy in the ICU and may confirm consciousness in acute LIS, but it was unreliable in acute DoC. The accuracy of the paradigms for detecting consciousness must be improved and the duration of the protocol should be shortened before this commercially available BCI is ready for clinical implementation in the ICU in patients with acute DoC. Copyright © 2018 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  18. Deep learning for hybrid EEG-fNIRS brain-computer interface: application to motor imagery classification.

    PubMed

    Chiarelli, Antonio Maria; Croce, Pierpaolo; Merla, Arcangelo; Zappasodi, Filippo

    2018-06-01

    Brain-computer interface (BCI) refers to procedures that link the central nervous system to a device. BCI was historically performed using electroencephalography (EEG). In the last years, encouraging results were obtained by combining EEG with other neuroimaging technologies, such as functional near infrared spectroscopy (fNIRS). A crucial step of BCI is brain state classification from recorded signal features. Deep artificial neural networks (DNNs) recently reached unprecedented complex classification outcomes. These performances were achieved through increased computational power, efficient learning algorithms, valuable activation functions, and restricted or back-fed neurons connections. By expecting significant overall BCI performances, we investigated the capabilities of combining EEG and fNIRS recordings with state-of-the-art deep learning procedures. We performed a guided left and right hand motor imagery task on 15 subjects with a fixed classification response time of 1 s and overall experiment length of 10 min. Left versus right classification accuracy of a DNN in the multi-modal recording modality was estimated and it was compared to standalone EEG and fNIRS and other classifiers. At a group level we obtained significant increase in performance when considering multi-modal recordings and DNN classifier with synergistic effect. BCI performances can be significantly improved by employing multi-modal recordings that provide electrical and hemodynamic brain activity information, in combination with advanced non-linear deep learning classification procedures.

  19. Toward brain-computer interface based wheelchair control utilizing tactually-evoked event-related potentials

    PubMed Central

    2014-01-01

    Background People with severe disabilities, e.g. due to neurodegenerative disease, depend on technology that allows for accurate wheelchair control. For those who cannot operate a wheelchair with a joystick, brain-computer interfaces (BCI) may offer a valuable option. Technology depending on visual or auditory input may not be feasible as these modalities are dedicated to processing of environmental stimuli (e.g. recognition of obstacles, ambient noise). Herein we thus validated the feasibility of a BCI based on tactually-evoked event-related potentials (ERP) for wheelchair control. Furthermore, we investigated use of a dynamic stopping method to improve speed of the tactile BCI system. Methods Positions of four tactile stimulators represented navigation directions (left thigh: move left; right thigh: move right; abdomen: move forward; lower neck: move backward) and N = 15 participants delivered navigation commands by focusing their attention on the desired tactile stimulus in an oddball-paradigm. Results Participants navigated a virtual wheelchair through a building and eleven participants successfully completed the task of reaching 4 checkpoints in the building. The virtual wheelchair was equipped with simulated shared-control sensors (collision avoidance), yet these sensors were rarely needed. Conclusion We conclude that most participants achieved tactile ERP-BCI control sufficient to reliably operate a wheelchair and dynamic stopping was of high value for tactile ERP classification. Finally, this paper discusses feasibility of tactile ERPs for BCI based wheelchair control. PMID:24428900

  20. Effects of training pre-movement sensorimotor rhythms on behavioral performance

    NASA Astrophysics Data System (ADS)

    McFarland, Dennis J.; Sarnacki, William A.; Wolpaw, Jonathan R.

    2015-12-01

    Objective. Brain-computer interface (BCI) technology might contribute to rehabilitation of motor function. This speculation is based on the premise that modifying the electroencephalographic (EEG) activity will modify behavior, a proposition for which there is limited empirical data. The present study asked whether learned modulation of pre-movement sensorimotor rhythm (SMR) activity can affect motor performance in normal human subjects. Approach. Eight individuals first performed a joystick-based cursor-movement task with variable warning periods. Targets appeared randomly on a video monitor and subjects moved the cursor to the target and pressed a select button within 2 s. SMR features in the pre-movement EEG that correlated with performance speed and accuracy were identified. The subjects then learned to increase or decrease these features to control a two-target BCI task. Following successful BCI training, they were asked to increase or decrease SMR amplitude in order to initiate the joystick task. Main results. After BCI training, pre-movement SMR amplitude was correlated with performance in subjects with initial poor performance: lower amplitude was associated with faster and more accurate movement. The beneficial effect on performance of lower SMR amplitude was greater in subjects with lower initial performance levels. Significance. These results indicate that BCI-based SMR training can affect a standard motor behavior. They provide a rationale for studies that integrate such training into rehabilitation protocols and examine its capacity to enhance restoration of useful motor function.

  1. Virtual and Actual Humanoid Robot Control with Four-Class Motor-Imagery-Based Optical Brain-Computer Interface

    PubMed Central

    Kim, Youngmoo E.

    2017-01-01

    Motor-imagery tasks are a popular input method for controlling brain-computer interfaces (BCIs), partially due to their similarities to naturally produced motor signals. The use of functional near-infrared spectroscopy (fNIRS) in BCIs is still emerging and has shown potential as a supplement or replacement for electroencephalography. However, studies often use only two or three motor-imagery tasks, limiting the number of available commands. In this work, we present the results of the first four-class motor-imagery-based online fNIRS-BCI for robot control. Thirteen participants utilized upper- and lower-limb motor-imagery tasks (left hand, right hand, left foot, and right foot) that were mapped to four high-level commands (turn left, turn right, move forward, and move backward) to control the navigation of a simulated or real robot. A significant improvement in classification accuracy was found between the virtual-robot-based BCI (control of a virtual robot) and the physical-robot BCI (control of the DARwIn-OP humanoid robot). Differences were also found in the oxygenated hemoglobin activation patterns of the four tasks between the first and second BCI. These results corroborate previous findings that motor imagery can be improved with feedback and imply that a four-class motor-imagery-based fNIRS-BCI could be feasible with sufficient subject training. PMID:28804712

  2. A Multi-purpose Brain-Computer Interface Output Device

    PubMed Central

    Thompson, David E; Huggins, Jane E

    2012-01-01

    While brain-computer interfaces (BCIs) are a promising alternative access pathway for individuals with severe motor impairments, many BCI systems are designed as standalone communication and control systems, rather than as interfaces to existing systems built for these purposes. While an individual communication and control system may be powerful or flexible, no single system can compete with the variety of options available in the commercial assistive technology (AT) market. BCIs could instead be used as an interface to these existing AT devices and products, which are designed for improving access and agency of people with disabilities and are highly configurable to individual user needs. However, interfacing with each AT device and program requires significant time and effort on the part of researchers and clinicians. This work presents the Multi-Purpose BCI Output Device (MBOD), a tool to help researchers and clinicians provide BCI control of many forms of AT in a plug-and-play fashion, i.e. without the installation of drivers or software on the AT device, and a proof-of-concept of the practicality of such an approach. The MBOD was designed to meet the goals of target device compatibility, BCI input device compatibility, convenience, and intuitive command structure. The MBOD was successfully used to interface a BCI with multiple AT devices (including two wheelchair seating systems), as well as computers running Windows (XP and 7), Mac and Ubuntu Linux operating systems. PMID:22208120

  3. A multi-purpose brain-computer interface output device.

    PubMed

    Thompson, David E; Huggins, Jane E

    2011-10-01

    While brain-computer interfaces (BCIs) are a promising alternative access pathway for individuals with severe motor impairments, many BCI systems are designed as stand-alone communication and control systems, rather than as interfaces to existing systems built for these purposes. An individual communication and control system may be powerful or flexible, but no single system can compete with the variety of options available in the commercial assistive technology (AT) market. BCls could instead be used as an interface to these existing AT devices and products, which are designed for improving access and agency of people with disabilities and are highly configurable to individual user needs. However, interfacing with each AT device and program requires significant time and effort on the part of researchers and clinicians. This work presents the Multi-Purpose BCI Output Device (MBOD), a tool to help researchers and clinicians provide BCI control of many forms of AT in a plug-and-play fashion, i.e., without the installation of drivers or software on the AT device, and a proof-of-concept of the practicality of such an approach. The MBOD was designed to meet the goals of target device compatibility, BCI input device compatibility, convenience, and intuitive command structure. The MBOD was successfully used to interface a BCI with multiple AT devices (including two wheelchair seating systems), as well as computers running Windows (XP and 7), Mac and Ubuntu Linux operating systems.

  4. Control of a 7-DOF Robotic Arm System With an SSVEP-Based BCI.

    PubMed

    Chen, Xiaogang; Zhao, Bing; Wang, Yijun; Xu, Shengpu; Gao, Xiaorong

    2018-04-12

    Although robot technology has been successfully used to empower people who suffer from motor disabilities to increase their interaction with their physical environment, it remains a challenge for individuals with severe motor impairment, who do not have the motor control ability to move robots or prosthetic devices by manual control. In this study, to mitigate this issue, a noninvasive brain-computer interface (BCI)-based robotic arm control system using gaze based steady-state visual evoked potential (SSVEP) was designed and implemented using a portable wireless electroencephalogram (EEG) system. A 15-target SSVEP-based BCI using a filter bank canonical correlation analysis (FBCCA) method allowed users to directly control the robotic arm without system calibration. The online results from 12 healthy subjects indicated that a command for the proposed brain-controlled robot system could be selected from 15 possible choices in 4[Formula: see text]s (i.e. 2[Formula: see text]s for visual stimulation and 2[Formula: see text]s for gaze shifting) with an average accuracy of 92.78%, resulting in a 15 commands/min transfer rate. Furthermore, all subjects (even naive users) were able to successfully complete the entire move-grasp-lift task without user training. These results demonstrated an SSVEP-based BCI could provide accurate and efficient high-level control of a robotic arm, showing the feasibility of a BCI-based robotic arm control system for hand-assistance.

  5. High Frequency SSVEP-BCI With Hardware Stimuli Control and Phase-Synchronized Comb Filter.

    PubMed

    Chabuda, Anna; Durka, Piotr; Zygierewicz, Jaroslaw

    2018-02-01

    We present an efficient implementation of brain-computer interface (BCI) based on high-frequency steady state visually evoked potentials (SSVEP). Individual shape of the SSVEP response is extracted by means of a feedforward comb filter, which adds delayed versions of the signal to itself. Rendering of the stimuli is controlled by specialized hardware (BCI Appliance). Out of 15 participants of the study, nine were able to produce stable response in at least eight out of ten frequencies from the 30-39 Hz range. They achieved on average 96±4% accuracy and 47±5 bit/min information transfer rate (ITR) for an optimized simple seven-letter speller, while generic full-alphabet speller allowed in this group for 89±9% accuracy and 36±9 bit/min ITR. These values exceed the performances of high-frequency SSVEP-BCI systems reported to date. Classical approach to SSVEP parameterization by relative spectral power in the frequencies of stimulation, implemented on the same data, resulted in significantly lower performance. This suggests that specific shape of the response is an important feature in classification. Finally, we discuss the differences in SSVEP responses of the participants who were able or unable to use the interface, as well as the statistically significant influence of the layout of the speller on the speed of BCI operation.

  6. Exploring Cognitive Flexibility With a Noninvasive BCI Using Simultaneous Steady-State Visual Evoked Potentials and Sensorimotor Rhythms.

    PubMed

    Edelman, Bradley J; Meng, Jianjun; Gulachek, Nicholas; Cline, Christopher C; He, Bin

    2018-05-01

    EEG-based brain-computer interface (BCI) technology creates non-biological pathways for conveying a user's mental intent solely through noninvasively measured neural signals. While optimizing the performance of a single task has long been the focus of BCI research, in order to translate this technology into everyday life, realistic situations, in which multiple tasks are performed simultaneously, must be investigated. In this paper, we explore the concept of cognitive flexibility, or multitasking, within the BCI framework by utilizing a 2-D cursor control task, using sensorimotor rhythms (SMRs), and a four-target visual attention task, using steady-state visual evoked potentials (SSVEPs), both individually and simultaneously. We found no significant difference between the accuracy of the tasks when executing them alone (SMR-57.9% ± 15.4% and SSVEP-59.0% ± 14.2%) and simultaneously (SMR-54.9% ± 17.2% and SSVEP-57.5% ± 15.4%). These modest decreases in performance were supported by similar, non-significant changes in the electrophysiology of the SSVEP and SMR signals. In this sense, we report that multiple BCI tasks can be performed simultaneously without a significant deterioration in performance; this finding will help drive these systems toward realistic daily use in which a user's cognition will need to be involved in multiple tasks at once.

  7. Brain computer interfaces, a review.

    PubMed

    Nicolas-Alonso, Luis Fernando; Gomez-Gil, Jaime

    2012-01-01

    A brain-computer interface (BCI) is a hardware and software communications system that permits cerebral activity alone to control computers or external devices. The immediate goal of BCI research is to provide communications capabilities to severely disabled people who are totally paralyzed or 'locked in' by neurological neuromuscular disorders, such as amyotrophic lateral sclerosis, brain stem stroke, or spinal cord injury. Here, we review the state-of-the-art of BCIs, looking at the different steps that form a standard BCI: signal acquisition, preprocessing or signal enhancement, feature extraction, classification and the control interface. We discuss their advantages, drawbacks, and latest advances, and we survey the numerous technologies reported in the scientific literature to design each step of a BCI. First, the review examines the neuroimaging modalities used in the signal acquisition step, each of which monitors a different functional brain activity such as electrical, magnetic or metabolic activity. Second, the review discusses different electrophysiological control signals that determine user intentions, which can be detected in brain activity. Third, the review includes some techniques used in the signal enhancement step to deal with the artifacts in the control signals and improve the performance. Fourth, the review studies some mathematic algorithms used in the feature extraction and classification steps which translate the information in the control signals into commands that operate a computer or other device. Finally, the review provides an overview of various BCI applications that control a range of devices.

  8. Virtual and Actual Humanoid Robot Control with Four-Class Motor-Imagery-Based Optical Brain-Computer Interface.

    PubMed

    Batula, Alyssa M; Kim, Youngmoo E; Ayaz, Hasan

    2017-01-01

    Motor-imagery tasks are a popular input method for controlling brain-computer interfaces (BCIs), partially due to their similarities to naturally produced motor signals. The use of functional near-infrared spectroscopy (fNIRS) in BCIs is still emerging and has shown potential as a supplement or replacement for electroencephalography. However, studies often use only two or three motor-imagery tasks, limiting the number of available commands. In this work, we present the results of the first four-class motor-imagery-based online fNIRS-BCI for robot control. Thirteen participants utilized upper- and lower-limb motor-imagery tasks (left hand, right hand, left foot, and right foot) that were mapped to four high-level commands (turn left, turn right, move forward, and move backward) to control the navigation of a simulated or real robot. A significant improvement in classification accuracy was found between the virtual-robot-based BCI (control of a virtual robot) and the physical-robot BCI (control of the DARwIn-OP humanoid robot). Differences were also found in the oxygenated hemoglobin activation patterns of the four tasks between the first and second BCI. These results corroborate previous findings that motor imagery can be improved with feedback and imply that a four-class motor-imagery-based fNIRS-BCI could be feasible with sufficient subject training.

  9. Deep learning for hybrid EEG-fNIRS brain–computer interface: application to motor imagery classification

    NASA Astrophysics Data System (ADS)

    Chiarelli, Antonio Maria; Croce, Pierpaolo; Merla, Arcangelo; Zappasodi, Filippo

    2018-06-01

    Objective. Brain–computer interface (BCI) refers to procedures that link the central nervous system to a device. BCI was historically performed using electroencephalography (EEG). In the last years, encouraging results were obtained by combining EEG with other neuroimaging technologies, such as functional near infrared spectroscopy (fNIRS). A crucial step of BCI is brain state classification from recorded signal features. Deep artificial neural networks (DNNs) recently reached unprecedented complex classification outcomes. These performances were achieved through increased computational power, efficient learning algorithms, valuable activation functions, and restricted or back-fed neurons connections. By expecting significant overall BCI performances, we investigated the capabilities of combining EEG and fNIRS recordings with state-of-the-art deep learning procedures. Approach. We performed a guided left and right hand motor imagery task on 15 subjects with a fixed classification response time of 1 s and overall experiment length of 10 min. Left versus right classification accuracy of a DNN in the multi-modal recording modality was estimated and it was compared to standalone EEG and fNIRS and other classifiers. Main results. At a group level we obtained significant increase in performance when considering multi-modal recordings and DNN classifier with synergistic effect. Significance. BCI performances can be significantly improved by employing multi-modal recordings that provide electrical and hemodynamic brain activity information, in combination with advanced non-linear deep learning classification procedures.

  10. Novel Features for Brain-Computer Interfaces

    PubMed Central

    Woon, W. L.; Cichocki, A.

    2007-01-01

    While conventional approaches of BCI feature extraction are based on the power spectrum, we have tried using nonlinear features for classifying BCI data. In this paper, we report our test results and findings, which indicate that the proposed method is a potentially useful addition to current feature extraction techniques. PMID:18364991

  11. Software platform for rapid prototyping of NIRS brain computer interfacing techniques.

    PubMed

    Matthews, Fiachra; Soraghan, Christopher; Ward, Tomas E; Markham, Charles; Pearlmutter, Barak A

    2008-01-01

    This paper describes the control system of a next-generation optical brain-computer interface (BCI). Using functional near-infrared spectroscopy (fNIRS) as a BCI modality is a relatively new concept, and research has only begun to explore approaches for its implementation. It is necessary to have a system by which it is possible to investigate the signal processing and classification techniques available in the BCI community. Most importantly, these techniques must be easily testable in real-time applications. The system we describe was built using LABVIEW, a graphical programming language designed for interaction with National Instruments hardware. This platform allows complete configurability from hardware control and regulation, testing and filtering in a graphical interface environment.

  12. An experimental model of an indigenous BCI based system to help disabled people to communicate

    NASA Astrophysics Data System (ADS)

    Kabir, Kazi Sadman; Rahman, Chowdhury M. Abid; Farayez, Araf; Ferdous, Mahbuba

    2017-12-01

    In this paper a Brain Computer Interface (BCI) system has been proposed to help patients suffering from motor disease, paralysis or locked in syndrome to communicate via eye blinking. In this proposed BCI system EEG data is fetched by NeuroSky Headset and then analyzed by the help of WPF (Windows Presentation Foundation) based serial monitor to detect the EEG signal when the eye gives a blink. This detection of eye blinking can be used to select predefined texts and those texts can be converted to speech. The experimental result shows that this system can be used as an effective and efficient tool to communicate through brain.

  13. Designing Guiding Systems for Brain-Computer Interfaces

    PubMed Central

    Kosmyna, Nataliya; Lécuyer, Anatole

    2017-01-01

    Brain–Computer Interface (BCI) community has focused the majority of its research efforts on signal processing and machine learning, mostly neglecting the human in the loop. Guiding users on how to use a BCI is crucial in order to teach them to produce stable brain patterns. In this work, we explore the instructions and feedback for BCIs in order to provide a systematic taxonomy to describe the BCI guiding systems. The purpose of our work is to give necessary clues to the researchers and designers in Human–Computer Interaction (HCI) in making the fusion between BCIs and HCI more fruitful but also to better understand the possibilities BCIs can provide to them. PMID:28824400

  14. Brain-computer interfacing under distraction: an evaluation study

    NASA Astrophysics Data System (ADS)

    Brandl, Stephanie; Frølich, Laura; Höhne, Johannes; Müller, Klaus-Robert; Samek, Wojciech

    2016-10-01

    Objective. While motor-imagery based brain-computer interfaces (BCIs) have been studied over many years by now, most of these studies have taken place in controlled lab settings. Bringing BCI technology into everyday life is still one of the main challenges in this field of research. Approach. This paper systematically investigates BCI performance under 6 types of distractions that mimic out-of-lab environments. Main results. We report results of 16 participants and show that the performance of the standard common spatial patterns (CSP) + regularized linear discriminant analysis classification pipeline drops significantly in this ‘simulated’ out-of-lab setting. We then investigate three methods for improving the performance: (1) artifact removal, (2) ensemble classification, and (3) a 2-step classification approach. While artifact removal does not enhance the BCI performance significantly, both ensemble classification and the 2-step classification combined with CSP significantly improve the performance compared to the standard procedure. Significance. Systematically analyzing out-of-lab scenarios is crucial when bringing BCI into everyday life. Algorithms must be adapted to overcome nonstationary environments in order to tackle real-world challenges.

  15. The Evaluations of Hydrogen Permeation and Life Cycle Assessment on Nanocrystallined TiN-BCY Hydrogen Membrane.

    PubMed

    Lee, Soo-Sun; Hong, Tae-Whan

    2016-02-01

    Recently, Membrane technologies are used for the separation of mixtures in various industries. The promising method to reduce the CO2 emission and production of H2 from the coal based power plants is membrane separation with polymer, metal, ceramic and cermet materials. In this study, TiN ceramic material was selected, that is much less expensive than Pd. Also it has resistance to acids and chemically steady. Yttrium doped barium cerate (BCY) is a proton conductor. This perovskite exhibit both high proton conductivity and thermodynamic stability. But its chemical stability is very low under real operating environments. Thus, TiN-BCY may provide'a new membrane material for application. Life cycle assessment (LCA) based on fabrication of membrane and it was carried out to evaluate the energy demand and environmental impact. The analysis is performed according to the recommendations of ISO norms 14040 and obtained using the Gabi 6 software. This LCA will contribute to optimizing the eco-design, reducing the energy consumption and pollutant emissions during the eco-profiles of the TiN-BCY membrane.

  16. Performance predictors of brain-computer interfaces in patients with amyotrophic lateral sclerosis

    NASA Astrophysics Data System (ADS)

    Geronimo, A.; Simmons, Z.; Schiff, S. J.

    2016-04-01

    Objective. Patients with amyotrophic lateral sclerosis (ALS) may benefit from brain-computer interfaces (BCI), but the utility of such devices likely will have to account for the functional, cognitive, and behavioral heterogeneity of this neurodegenerative disorder. Approach. In this study, a heterogeneous group of patients with ALS participated in a study on BCI based on the P300 event related potential and motor-imagery. Results. The presence of cognitive impairment in these patients significantly reduced the quality of the control signals required to use these communication systems, subsequently impairing performance, regardless of progression of physical symptoms. Loss in performance among the cognitively impaired was accompanied by a decrease in the signal-to-noise ratio of task-relevant EEG band power. There was also evidence that behavioral dysfunction negatively affects P300 speller performance. Finally, older participants achieved better performance on the P300 system than the motor-imagery system, indicating a preference of BCI paradigm with age. Significance. These findings highlight the importance of considering the heterogeneity of disease when designing BCI augmentative and alternative communication devices for clinical applications.

  17. A hybrid brain-computer interface based on the fusion of electroencephalographic and electromyographic activities

    NASA Astrophysics Data System (ADS)

    Leeb, Robert; Sagha, Hesam; Chavarriaga, Ricardo; Millán, José del R.

    2011-04-01

    Hybrid brain-computer interfaces (BCIs) are representing a recent approach to develop practical BCIs. In such a system disabled users are able to use all their remaining functionalities as control possibilities in parallel with the BCI. Sometimes these people have residual activity of their muscles. Therefore, in the presented hybrid BCI framework we want to explore the parallel usage of electroencephalographic (EEG) and electromyographic (EMG) activity, whereby the control abilities of both channels are fused. Results showed that the participants could achieve a good control of their hybrid BCI independently of their level of muscular fatigue. Thereby the multimodal fusion approach of muscular and brain activity yielded better and more stable performance compared to the single conditions. Even in the case of an increasing muscular fatigue a good control (moderate and graceful degradation of the performance compared to the non-fatigued case) and a smooth handover could be achieved. Therefore, such systems allow the users a very reliable hybrid BCI control although they are getting more and more exhausted or fatigued during the day.

  18. The advantages of the surface Laplacian in brain-computer interface research.

    PubMed

    McFarland, Dennis J

    2015-09-01

    Brain-computer interface (BCI) systems frequently use signal processing methods, such as spatial filtering, to enhance performance. The surface Laplacian can reduce spatial noise and aid in identification of sources. In BCI research, these two functions of the surface Laplacian correspond to prediction accuracy and signal orthogonality. In the present study, an off-line analysis of data from a sensorimotor rhythm-based BCI task dissociated these functions of the surface Laplacian by comparing nearest-neighbor and next-nearest neighbor Laplacian algorithms. The nearest-neighbor Laplacian produced signals that were more orthogonal while the next-nearest Laplacian produced signals that resulted in better accuracy. Both prediction and signal identification are important for BCI research. Better prediction of user's intent produces increased speed and accuracy of communication and control. Signal identification is important for ruling out the possibility of control by artifacts. Identifying the nature of the control signal is relevant both to understanding exactly what is being studied and in terms of usability for individuals with limited motor control. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Motor cortical activity changes during neuroprosthetic-controlled object interaction.

    PubMed

    Downey, John E; Brane, Lucas; Gaunt, Robert A; Tyler-Kabara, Elizabeth C; Boninger, Michael L; Collinger, Jennifer L

    2017-12-05

    Brain-computer interface (BCI) controlled prosthetic arms are being developed to restore function to people with upper-limb paralysis. This work provides an opportunity to analyze human cortical activity during complex tasks. Previously we observed that BCI control became more difficult during interactions with objects, although we did not quantify the neural origins of this phenomena. Here, we investigated how motor cortical activity changed in the presence of an object independently of the kinematics that were being generated using intracortical recordings from two people with tetraplegia. After identifying a population-wide increase in neural firing rates that corresponded with the hand being near an object, we developed an online scaling feature in the BCI system that operated without knowledge of the task. Online scaling increased the ability of two subjects to control the robotic arm when reaching to grasp and transport objects. This work suggests that neural representations of the environment, in this case the presence of an object, are strongly and consistently represented in motor cortex but can be accounted for to improve BCI performance.

  20. Multi-class ERP-based BCI data analysis using a discriminant space self-organizing map.

    PubMed

    Onishi, Akinari; Natsume, Kiyohisa

    2014-01-01

    Emotional or non-emotional image stimulus is recently applied to event-related potential (ERP) based brain computer interfaces (BCI). Though the classification performance is over 80% in a single trial, a discrimination between those ERPs has not been considered. In this research we tried to clarify the discriminability of four-class ERP-based BCI target data elicited by desk, seal, spider images and letter intensifications. A conventional self organizing map (SOM) and newly proposed discriminant space SOM (ds-SOM) were applied, then the discriminabilites were visualized. We also classify all pairs of those ERPs by stepwise linear discriminant analysis (SWLDA) and verify the visualization of discriminabilities. As a result, the ds-SOM showed understandable visualization of the data with a shorter computational time than the traditional SOM. We also confirmed the clear boundary between the letter cluster and the other clusters. The result was coherent with the classification performances by SWLDA. The method might be helpful not only for developing a new BCI paradigm, but also for the big data analysis.

  1. Wheelchair control by elderly participants in a virtual environment with a brain-computer interface (BCI) and tactile stimulation.

    PubMed

    Herweg, Andreas; Gutzeit, Julian; Kleih, Sonja; Kübler, Andrea

    2016-12-01

    Tactile event-related potential (ERP) are rarely used as input signal to control brain-computer-interfaces (BCI) due to their low accuracy and speed (information transfer rate, ITR). Age-related loss of tactile sensibility might further decrease their viability for the target population of BCI. In this study we investigated whether training improves tactile ERP-BCI performance within a virtual wheelchair navigation task. Elderly subjects participated in 5 sessions and tactors were placed at legs, abdomen and back. Mean accuracy and ITR increased from 88.43%/4.5bitsmin -1 in the 1st to 92.56%/4.98bitsmin -1 in the last session. The mean P300 amplitude increased from 5.46μV to 9.22μV. In an optional task participants achieved an accuracy of 95,56% and a mean ITR of 20,73bitsmin -1 which is the highest ever achieved with tactile stimulation. Our sample of elderly people further contributed to the external validity of our results. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Workload measurement in a communication application operated through a P300-based brain-computer interface

    NASA Astrophysics Data System (ADS)

    Riccio, A.; Leotta, F.; Bianchi, L.; Aloise, F.; Zickler, C.; Hoogerwerf, E.-J.; Kübler, A.; Mattia, D.; Cincotti, F.

    2011-04-01

    Advancing the brain-computer interface (BCI) towards practical applications in technology-based assistive solutions for people with disabilities requires coping with problems of accessibility and usability to increase user acceptance and satisfaction. The main objective of this study was to introduce a usability-oriented approach in the assessment of BCI technology development by focusing on evaluation of the user's subjective workload and satisfaction. The secondary aim was to compare two applications for a P300-based BCI. Eight healthy subjects were asked to use an assistive technology solution which integrates the P300-based BCI with commercially available software under two conditions—visual stimuli needed to evoke the P300 response were either overlaid onto the application's graphical user interface or presented on a separate screen. The two conditions were compared for effectiveness (level of performance), efficiency (subjective workload measured by means of NASA-TXL) and satisfaction of the user. Although no significant difference in usability could be detected between the two conditions, the methodology proved to be an effective tool to highlight weaknesses in the technical solution.

  3. Brain Computer Interfaces, a Review

    PubMed Central

    Nicolas-Alonso, Luis Fernando; Gomez-Gil, Jaime

    2012-01-01

    A brain-computer interface (BCI) is a hardware and software communications system that permits cerebral activity alone to control computers or external devices. The immediate goal of BCI research is to provide communications capabilities to severely disabled people who are totally paralyzed or ‘locked in’ by neurological neuromuscular disorders, such as amyotrophic lateral sclerosis, brain stem stroke, or spinal cord injury. Here, we review the state-of-the-art of BCIs, looking at the different steps that form a standard BCI: signal acquisition, preprocessing or signal enhancement, feature extraction, classification and the control interface. We discuss their advantages, drawbacks, and latest advances, and we survey the numerous technologies reported in the scientific literature to design each step of a BCI. First, the review examines the neuroimaging modalities used in the signal acquisition step, each of which monitors a different functional brain activity such as electrical, magnetic or metabolic activity. Second, the review discusses different electrophysiological control signals that determine user intentions, which can be detected in brain activity. Third, the review includes some techniques used in the signal enhancement step to deal with the artifacts in the control signals and improve the performance. Fourth, the review studies some mathematic algorithms used in the feature extraction and classification steps which translate the information in the control signals into commands that operate a computer or other device. Finally, the review provides an overview of various BCI applications that control a range of devices. PMID:22438708

  4. Synthesis of nano-sized crystalline oxide ion conducting fluorite-type Y 2O 3-doped CeO 2 using perovskite-like BaCe 0.9Y 0.1O 2.95 (BCY) and study of CO 2 capture properties of BCY

    NASA Astrophysics Data System (ADS)

    Sneha, B. R.; Thangadurai, V.

    2007-10-01

    Formation of nano-sized Y 2O 3-doped CeO 2 (YCO) was observed in the chemical reaction between proton conducting Y 2O 3-doped BaCeO 3 (BCY) and CO 2 in the temperature range 700-1000 °C, which is generally prepared by wet-chemical methods that include sol-gel, hydrothermal, polymerization, combustion, and precipitation reactions. BCY can capture CO 2 of 0.13 g per ceramic gram at 700 °C, which is comparable to that of the well-known Li 2ZrO 3 (0.15 g per ceramic gram at 600 °C). Powder X-ray diffraction (PXRD), energy dispersive X-ray analysis (EDX), laser particle size analysis (LPSA), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and ac impedance spectroscopy were employed to characterize the reaction product obtained from reaction between BCY and CO 2 and subsequent acid washing. PXRD study reveals presence of fluorite-like CeO 2 ( a=5.410 (1) Å) structure and BaCO 3 in reaction products. TEM investigation of the acid washed product showed the formation of nano-sized material with particle sizes of about 50 nm. The electrical conductivity of acid washed product (YCO) in air was found to be about an order higher than the undoped CeO 2 reported in the literature.

  5. Integrating dynamic stopping, transfer learning and language models in an adaptive zero-training ERP speller.

    PubMed

    Kindermans, Pieter-Jan; Tangermann, Michael; Müller, Klaus-Robert; Schrauwen, Benjamin

    2014-06-01

    Most BCIs have to undergo a calibration session in which data is recorded to train decoders with machine learning. Only recently zero-training methods have become a subject of study. This work proposes a probabilistic framework for BCI applications which exploit event-related potentials (ERPs). For the example of a visual P300 speller we show how the framework harvests the structure suitable to solve the decoding task by (a) transfer learning, (b) unsupervised adaptation, (c) language model and (d) dynamic stopping. A simulation study compares the proposed probabilistic zero framework (using transfer learning and task structure) to a state-of-the-art supervised model on n = 22 subjects. The individual influence of the involved components (a)-(d) are investigated. Without any need for a calibration session, the probabilistic zero-training framework with inter-subject transfer learning shows excellent performance--competitive to a state-of-the-art supervised method using calibration. Its decoding quality is carried mainly by the effect of transfer learning in combination with continuous unsupervised adaptation. A high-performing zero-training BCI is within reach for one of the most popular BCI paradigms: ERP spelling. Recording calibration data for a supervised BCI would require valuable time which is lost for spelling. The time spent on calibration would allow a novel user to spell 29 symbols with our unsupervised approach. It could be of use for various clinical and non-clinical ERP-applications of BCI.

  6. A novel hybrid BCI speller based on the incorporation of SSVEP into the P300 paradigm

    NASA Astrophysics Data System (ADS)

    Yin, Erwei; Zhou, Zongtan; Jiang, Jun; Chen, Fanglin; Liu, Yadong; Hu, Dewen

    2013-04-01

    Objective. Although extensive studies have shown improvement in spelling accuracy, the conventional P300 speller often exhibits errors, which occur in almost the same row or column relative to the target. To address this issue, we propose a novel hybrid brain-computer interface (BCI) approach by incorporating the steady-state visual evoked potential (SSVEP) into the conventional P300 paradigm. Approach. We designed a periodic stimuli mechanism and superimposed it onto the P300 stimuli to increase the difference between the symbols in the same row or column. Furthermore, we integrated the random flashings and periodic flickers to simultaneously evoke the P300 and SSVEP, respectively. Finally, we developed a hybrid detection mechanism based on the P300 and SSVEP in which the target symbols are detected by the fusion of three-dimensional, time-frequency features. Main results. The results obtained from 12 healthy subjects show that an online classification accuracy of 93.85% and information transfer rate of 56.44 bit/min were achieved using the proposed BCI speller in only a single trial. Specifically, 5 of the 12 subjects exhibited an information transfer rate of 63.56 bit/min with an accuracy of 100%. Significance. The pilot studies suggested that the proposed BCI speller could achieve a better and more stable system performance compared with the conventional P300 speller, and it is promising for achieving quick spelling in stimulus-driven BCI applications.

  7. Integrating dynamic stopping, transfer learning and language models in an adaptive zero-training ERP speller

    NASA Astrophysics Data System (ADS)

    Kindermans, Pieter-Jan; Tangermann, Michael; Müller, Klaus-Robert; Schrauwen, Benjamin

    2014-06-01

    Objective. Most BCIs have to undergo a calibration session in which data is recorded to train decoders with machine learning. Only recently zero-training methods have become a subject of study. This work proposes a probabilistic framework for BCI applications which exploit event-related potentials (ERPs). For the example of a visual P300 speller we show how the framework harvests the structure suitable to solve the decoding task by (a) transfer learning, (b) unsupervised adaptation, (c) language model and (d) dynamic stopping. Approach. A simulation study compares the proposed probabilistic zero framework (using transfer learning and task structure) to a state-of-the-art supervised model on n = 22 subjects. The individual influence of the involved components (a)-(d) are investigated. Main results. Without any need for a calibration session, the probabilistic zero-training framework with inter-subject transfer learning shows excellent performance—competitive to a state-of-the-art supervised method using calibration. Its decoding quality is carried mainly by the effect of transfer learning in combination with continuous unsupervised adaptation. Significance. A high-performing zero-training BCI is within reach for one of the most popular BCI paradigms: ERP spelling. Recording calibration data for a supervised BCI would require valuable time which is lost for spelling. The time spent on calibration would allow a novel user to spell 29 symbols with our unsupervised approach. It could be of use for various clinical and non-clinical ERP-applications of BCI.

  8. A Wearable Channel Selection-Based Brain-Computer Interface for Motor Imagery Detection.

    PubMed

    Lo, Chi-Chun; Chien, Tsung-Yi; Chen, Yu-Chun; Tsai, Shang-Ho; Fang, Wai-Chi; Lin, Bor-Shyh

    2016-02-06

    Motor imagery-based brain-computer interface (BCI) is a communication interface between an external machine and the brain. Many kinds of spatial filters are used in BCIs to enhance the electroencephalography (EEG) features related to motor imagery. The approach of channel selection, developed to reserve meaningful EEG channels, is also an important technique for the development of BCIs. However, current BCI systems require a conventional EEG machine and EEG electrodes with conductive gel to acquire multi-channel EEG signals and then transmit these EEG signals to the back-end computer to perform the approach of channel selection. This reduces the convenience of use in daily life and increases the limitations of BCI applications. In order to improve the above issues, a novel wearable channel selection-based brain-computer interface is proposed. Here, retractable comb-shaped active dry electrodes are designed to measure the EEG signals on a hairy site, without conductive gel. By the design of analog CAR spatial filters and the firmware of EEG acquisition module, the function of spatial filters could be performed without any calculation, and channel selection could be performed in the front-end device to improve the practicability of detecting motor imagery in the wearable EEG device directly or in commercial mobile phones or tablets, which may have relatively low system specifications. Finally, the performance of the proposed BCI is investigated, and the experimental results show that the proposed system is a good wearable BCI system prototype.

  9. Enhancing performance of a motor imagery based brain-computer interface by incorporating electrical stimulation-induced SSSEP

    NASA Astrophysics Data System (ADS)

    Yi, Weibo; Qiu, Shuang; Wang, Kun; Qi, Hongzhi; Zhao, Xin; He, Feng; Zhou, Peng; Yang, Jiajia; Ming, Dong

    2017-04-01

    Objective. We proposed a novel simultaneous hybrid brain-computer interface (BCI) by incorporating electrical stimulation into a motor imagery (MI) based BCI system. The goal of this study was to enhance the overall performance of an MI-based BCI. In addition, the brain oscillatory pattern in the hybrid task was also investigated. Approach. 64-channel electroencephalographic (EEG) data were recorded during MI, selective attention (SA) and hybrid tasks in fourteen healthy subjects. In the hybrid task, subjects performed MI with electrical stimulation which was applied to bilateral median nerve on wrists simultaneously. Main results. The hybrid task clearly presented additional steady-state somatosensory evoked potential (SSSEP) induced by electrical stimulation with MI-induced event-related desynchronization (ERD). By combining ERD and SSSEP features, the performance in the hybrid task was significantly better than in both MI and SA tasks, achieving a ~14% improvement in total relative to the MI task alone and reaching ~89% in mean classification accuracy. On the contrary, there was no significant enhancement obtained in performance while separate ERD feature was utilized in the hybrid task. In terms of the hybrid task, the performance using combined feature was significantly better than using separate ERD or SSSEP feature. Significance. The results in this work validate the feasibility of our proposed approach to form a novel MI-SSSEP hybrid BCI outperforming a conventional MI-based BCI through combing MI with electrical stimulation.

  10. Body size and condition influence migration timing of juvenile Arctic grayling

    USGS Publications Warehouse

    Heim, Kurt C.; Wipfli, Mark S.; Whitman, Matthew S.; Seitz, Andrew C.

    2016-01-01

    Freshwater fishes utilising seasonally available habitats within annual migratory circuits time movements out of such habitats with changing hydrology, although individual attributes of fish may also mediate the behavioural response to environmental conditions. We tagged juvenile Arctic grayling in a seasonally flowing stream on the Arctic Coastal Plain in Alaska and recorded migration timing towards overwintering habitat. We examined the relationship between individual migration date, and fork length (FL) and body condition index (BCI) for fish tagged in June, July and August in three separate models. Larger fish migrated earlier; however, only the August model suggested a significant relationship with BCI. In this model, 42% of variability in migration timing was explained by FL and BCI, and fish in better condition were predicted to migrate earlier than those in poor condition. Here, the majority (33%) of variability was captured by FL with an additional 9% attributable to BCI. We also noted strong seasonal trends in BCI reflecting overwinter mass loss and subsequent growth within the study area. These results are interpreted in the context of size and energetic state-specific risks of overwinter starvation and mortality (which can be very high in the Arctic), which may influence individuals at greater risk to extend summer foraging in a risky, yet prey rich, habitat. Our research provides further evidence that heterogeneity among individuals within a population can influence migratory behaviour and identifies potential risks to late season migrants in Arctic beaded stream habitats influenced by climate change and petroleum development.

  11. A mechanical mounting system for functional near-infrared spectroscopy brain imaging studies

    NASA Astrophysics Data System (ADS)

    Coyle, Shirley; Markham, Charles; Lanigan, William; Ward, Tomas

    2005-06-01

    In this work a mechanical optode mounting system for functional brain imaging with light is presented. The particular application here is a non-invasive optical brain computer interface (BCI) working in the near-infrared range. A BCI is a device that allows a user to interact with their environment through thought processes alone. Their most common use is as a communication aid for the severely disabled. We have recently pioneered the use of optical techniques for such BCI systems rather than the usual electrical modality. Our optical BCI detects characteristic changes in the cerebral haemodynamic responses that occur during motor imagery tasks. On detection of features of the optical response, resulting from localised haemodynamic changes, the BCI translates such responses and provides visual feedback to the user. While signal processing has a large part to play in terms of optimising performance we have found that it is the mechanical mounting of the optical sources and detectors (optodes) that has the greatest bearing on the performance of the system and indeed presents many interesting and novel challenges with regard to sensor placement, depth of penetration, signal intensity, artifact reduction and robustness of measurement. Here a solution is presented that accommodates the range of experimental parameters required for the application as well as meeting many of the challenges outlined above. This is the first time that a concerted study on optode mounting systems for optical BCIs has been attempted and it is hoped this paper may stimulate further research in this area.

  12. BCILAB: a platform for brain-computer interface development

    NASA Astrophysics Data System (ADS)

    Kothe, Christian Andreas; Makeig, Scott

    2013-10-01

    Objective. The past two decades have seen dramatic progress in our ability to model brain signals recorded by electroencephalography, functional near-infrared spectroscopy, etc., and to derive real-time estimates of user cognitive state, response, or intent for a variety of purposes: to restore communication by the severely disabled, to effect brain-actuated control and, more recently, to augment human-computer interaction. Continuing these advances, largely achieved through increases in computational power and methods, requires software tools to streamline the creation, testing, evaluation and deployment of new data analysis methods. Approach. Here we present BCILAB, an open-source MATLAB-based toolbox built to address the need for the development and testing of brain-computer interface (BCI) methods by providing an organized collection of over 100 pre-implemented methods and method variants, an easily extensible framework for the rapid prototyping of new methods, and a highly automated framework for systematic testing and evaluation of new implementations. Main results. To validate and illustrate the use of the framework, we present two sample analyses of publicly available data sets from recent BCI competitions and from a rapid serial visual presentation task. We demonstrate the straightforward use of BCILAB to obtain results compatible with the current BCI literature. Significance. The aim of the BCILAB toolbox is to provide the BCI community a powerful toolkit for methods research and evaluation, thereby helping to accelerate the pace of innovation in the field, while complementing the existing spectrum of tools for real-time BCI experimentation, deployment and use.

  13. Operation of a P300-based brain-computer interface by individuals with cervical spinal cord injury.

    PubMed

    Ikegami, Shiro; Takano, Kouji; Saeki, Naokatsu; Kansaku, Kenji

    2011-05-01

    This study evaluates the efficacy of a P300-based brain-computer interface (BCI) with green/blue flicker matrices for individuals with cervical spinal cord injury (SCI). Ten individuals with cervical SCI (age 26-53, all male) and 10 age- and sex-matched able-bodied controls (age 27-52, all male) with no prior BCI experience were asked to input hiragana (Japanese alphabet) characters using the P300 BCI with two distinct types of visual stimuli, white/gray and green/blue, in an 8×10 flicker matrix. Both online and offline performance were evaluated. The mean online accuracy of the SCI subjects was 88.0% for the white/gray and 90.7% for the green/blue flicker matrices. The accuracy of the control subjects was 77.3% and 86.0% for the white/gray and green/blue, respectively. There was a significant difference in online accuracy between the two types of flicker matrix. SCI subjects performed with greater accuracy than controls, but the main effect was not significant. Individuals with cervical SCI successfully controlled the P300 BCI, and the green/blue flicker matrices were associated with significantly higher accuracy than the white/gray matrices. The P300 BCI with the green/blue flicker matrices is effective for use not only in able-bodied subjects, but also in individuals with cervical SCI. Copyright © 2010 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  14. Single Versus Multiple Events Error Potential Detection in a BCI-Controlled Car Game With Continuous and Discrete Feedback.

    PubMed

    Kreilinger, Alex; Hiebel, Hannah; Müller-Putz, Gernot R

    2016-03-01

    This work aimed to find and evaluate a new method for detecting errors in continuous brain-computer interface (BCI) applications. Instead of classifying errors on a single-trial basis, the new method was based on multiple events (MEs) analysis to increase the accuracy of error detection. In a BCI-driven car game, based on motor imagery (MI), discrete events were triggered whenever subjects collided with coins and/or barriers. Coins counted as correct events, whereas barriers were errors. This new method, termed ME method, combined and averaged the classification results of single events (SEs) and determined the correctness of MI trials, which consisted of event sequences instead of SEs. The benefit of this method was evaluated in an offline simulation. In an online experiment, the new method was used to detect erroneous MI trials. Such MI trials were discarded and could be repeated by the users. We found that, even with low SE error potential (ErrP) detection rates, feasible accuracies can be achieved when combining MEs to distinguish erroneous from correct MI trials. Online, all subjects reached higher scores with error detection than without, at the cost of longer times needed for completing the game. Findings suggest that ErrP detection may become a reliable tool for monitoring continuous states in BCI applications when combining MEs. This paper demonstrates a novel technique for detecting errors in online continuous BCI applications, which yields promising results even with low single-trial detection rates.

  15. A Real-Time Magnetoencephalography Brain-Computer Interface Using Interactive 3D Visualization and the Hadoop Ecosystem.

    PubMed

    McClay, Wilbert A; Yadav, Nancy; Ozbek, Yusuf; Haas, Andy; Attias, Hagaii T; Nagarajan, Srikantan S

    2015-09-30

    Ecumenically, the fastest growing segment of Big Data is human biology-related data and the annual data creation is on the order of zetabytes. The implications are global across industries, of which the treatment of brain related illnesses and trauma could see the most significant and immediate effects. The next generation of health care IT and sensory devices are acquiring and storing massive amounts of patient related data. An innovative Brain-Computer Interface (BCI) for interactive 3D visualization is presented utilizing the Hadoop Ecosystem for data analysis and storage. The BCI is an implementation of Bayesian factor analysis algorithms that can distinguish distinct thought actions using magneto encephalographic (MEG) brain signals. We have collected data on five subjects yielding 90% positive performance in MEG mid- and post-movement activity. We describe a driver that substitutes the actions of the BCI as mouse button presses for real-time use in visual simulations. This process has been added into a flight visualization demonstration. By thinking left or right, the user experiences the aircraft turning in the chosen direction. The driver components of the BCI can be compiled into any software and substitute a user's intent for specific keyboard strikes or mouse button presses. The BCI's data analytics OPEN ACCESS Brain. Sci. 2015, 5 420 of a subject's MEG brainwaves and flight visualization performance are stored and analyzed using the Hadoop Ecosystem as a quick retrieval data warehouse.

  16. BCI Control of Heuristic Search Algorithms

    PubMed Central

    Cavazza, Marc; Aranyi, Gabor; Charles, Fred

    2017-01-01

    The ability to develop Brain-Computer Interfaces (BCI) to Intelligent Systems would offer new perspectives in terms of human supervision of complex Artificial Intelligence (AI) systems, as well as supporting new types of applications. In this article, we introduce a basic mechanism for the control of heuristic search through fNIRS-based BCI. The rationale is that heuristic search is not only a basic AI mechanism but also one still at the heart of many different AI systems. We investigate how users’ mental disposition can be harnessed to influence the performance of heuristic search algorithm through a mechanism of precision-complexity exchange. From a system perspective, we use weighted variants of the A* algorithm which have an ability to provide faster, albeit suboptimal solutions. We use recent results in affective BCI to capture a BCI signal, which is indicative of a compatible mental disposition in the user. It has been established that Prefrontal Cortex (PFC) asymmetry is strongly correlated to motivational dispositions and results anticipation, such as approach or even risk-taking, and that this asymmetry is amenable to Neurofeedback (NF) control. Since PFC asymmetry is accessible through fNIRS, we designed a BCI paradigm in which users vary their PFC asymmetry through NF during heuristic search tasks, resulting in faster solutions. This is achieved through mapping the PFC asymmetry value onto the dynamic weighting parameter of the weighted A* (WA*) algorithm. We illustrate this approach through two different experiments, one based on solving 8-puzzle configurations, and the other on path planning. In both experiments, subjects were able to speed up the computation of a solution through a reduction of search space in WA*. Our results establish the ability of subjects to intervene in heuristic search progression, with effects which are commensurate to their control of PFC asymmetry: this opens the way to new mechanisms for the implementation of hybrid cognitive systems. PMID:28197092

  17. Feedback control policies employed by people using intracortical brain-computer interfaces.

    PubMed

    Willett, Francis R; Pandarinath, Chethan; Jarosiewicz, Beata; Murphy, Brian A; Memberg, William D; Blabe, Christine H; Saab, Jad; Walter, Benjamin L; Sweet, Jennifer A; Miller, Jonathan P; Henderson, Jaimie M; Shenoy, Krishna V; Simeral, John D; Hochberg, Leigh R; Kirsch, Robert F; Ajiboye, A Bolu

    2017-02-01

    When using an intracortical BCI (iBCI), users modulate their neural population activity to move an effector towards a target, stop accurately, and correct for movement errors. We call the rules that govern this modulation a 'feedback control policy'. A better understanding of these policies may inform the design of higher-performing neural decoders. We studied how three participants in the BrainGate2 pilot clinical trial used an iBCI to control a cursor in a 2D target acquisition task. Participants used a velocity decoder with exponential smoothing dynamics. Through offline analyses, we characterized the users' feedback control policies by modeling their neural activity as a function of cursor state and target position. We also tested whether users could adapt their policy to different decoder dynamics by varying the gain (speed scaling) and temporal smoothing parameters of the iBCI. We demonstrate that control policy assumptions made in previous studies do not fully describe the policies of our participants. To account for these discrepancies, we propose a new model that captures (1) how the user's neural population activity gradually declines as the cursor approaches the target from afar, then decreases more sharply as the cursor comes into contact with the target, (2) how the user makes constant feedback corrections even when the cursor is on top of the target, and (3) how the user actively accounts for the cursor's current velocity to avoid overshooting the target. Further, we show that users can adapt their control policy to decoder dynamics by attenuating neural modulation when the cursor gain is high and by damping the cursor velocity more strongly when the smoothing dynamics are high. Our control policy model may help to build better decoders, understand how neural activity varies during active iBCI control, and produce better simulations of closed-loop iBCI movements.

  18. Proprioceptive feedback and brain computer interface (BCI) based neuroprostheses.

    PubMed

    Ramos-Murguialday, Ander; Schürholz, Markus; Caggiano, Vittorio; Wildgruber, Moritz; Caria, Andrea; Hammer, Eva Maria; Halder, Sebastian; Birbaumer, Niels

    2012-01-01

    Brain computer interface (BCI) technology has been proposed for motor neurorehabilitation, motor replacement and assistive technologies. It is an open question whether proprioceptive feedback affects the regulation of brain oscillations and therefore BCI control. We developed a BCI coupled on-line with a robotic hand exoskeleton for flexing and extending the fingers. 24 healthy participants performed five different tasks of closing and opening the hand: (1) motor imagery of the hand movement without any overt movement and without feedback, (2) motor imagery with movement as online feedback (participants see and feel their hand, with the exoskeleton moving according to their brain signals, (3) passive (the orthosis passively opens and closes the hand without imagery) and (4) active (overt) movement of the hand and rest. Performance was defined as the difference in power of the sensorimotor rhythm during motor task and rest and calculated offline for different tasks. Participants were divided in three groups depending on the feedback receiving during task 2 (the other tasks were the same for all participants). Group 1 (n = 9) received contingent positive feedback (participants' sensorimotor rhythm (SMR) desynchronization was directly linked to hand orthosis movements), group 2 (n = 8) contingent "negative" feedback (participants' sensorimotor rhythm synchronization was directly linked to hand orthosis movements) and group 3 (n = 7) sham feedback (no link between brain oscillations and orthosis movements). We observed that proprioceptive feedback (feeling and seeing hand movements) improved BCI performance significantly. Furthermore, in the contingent positive group only a significant motor learning effect was observed enhancing SMR desynchronization during motor imagery without feedback in time. Furthermore, we observed a significantly stronger SMR desynchronization in the contingent positive group compared to the other groups during active and passive movements. To summarize, we demonstrated that the use of contingent positive proprioceptive feedback BCI enhanced SMR desynchronization during motor tasks.

  19. An online brain-computer interface based on shifting attention to concurrent streams of auditory stimuli

    PubMed Central

    Hill, N J; Schölkopf, B

    2012-01-01

    We report on the development and online testing of an EEG-based brain-computer interface (BCI) that aims to be usable by completely paralysed users—for whom visual or motor-system-based BCIs may not be suitable, and among whom reports of successful BCI use have so far been very rare. The current approach exploits covert shifts of attention to auditory stimuli in a dichotic-listening stimulus design. To compare the efficacy of event-related potentials (ERPs) and steady-state auditory evoked potentials (SSAEPs), the stimuli were designed such that they elicited both ERPs and SSAEPs simultaneously. Trial-by-trial feedback was provided online, based on subjects’ modulation of N1 and P3 ERP components measured during single 5-second stimulation intervals. All 13 healthy subjects were able to use the BCI, with performance in a binary left/right choice task ranging from 75% to 96% correct across subjects (mean 85%). BCI classification was based on the contrast between stimuli in the attended stream and stimuli in the unattended stream, making use of every stimulus, rather than contrasting frequent standard and rare “oddball” stimuli. SSAEPs were assessed offline: for all subjects, spectral components at the two exactly-known modulation frequencies allowed discrimination of pre-stimulus from stimulus intervals, and of left-only stimuli from right-only stimuli when one side of the dichotic stimulus pair was muted. However, attention-modulation of SSAEPs was not sufficient for single-trial BCI communication, even when the subject’s attention was clearly focused well enough to allow classification of the same trials via ERPs. ERPs clearly provided a superior basis for BCI. The ERP results are a promising step towards the development of a simple-to-use, reliable yes/no communication system for users in the most severely paralysed states, as well as potential attention-monitoring and -training applications outside the context of assistive technology. PMID:22333135

  20. The Butterflies of Barro Colorado Island, Panama: Local Extinction since the 1930s

    PubMed Central

    Basset, Yves; Barrios, Héctor; Segar, Simon; Srygley, Robert B.; Aiello, Annette; Warren, Andrew D.; Delgado, Francisco; Coronado, James; Lezcano, Jorge; Arizala, Stephany; Rivera, Marleny; Perez, Filonila; Bobadilla, Ricardo; Lopez, Yacksecari; Ramirez, José Alejandro

    2015-01-01

    Few data are available about the regional or local extinction of tropical butterfly species. When confirmed, local extinction was often due to the loss of host-plant species. We used published lists and recent monitoring programs to evaluate changes in butterfly composition on Barro Colorado Island (BCI, Panama) between an old (1923–1943) and a recent (1993–2013) period. Although 601 butterfly species have been recorded from BCI during the 1923–2013 period, we estimate that 390 species are currently breeding on the island, including 34 cryptic species, currently only known by their DNA Barcode Index Number. Twenty-three butterfly species that were considered abundant during the old period could not be collected during the recent period, despite a much higher sampling effort in recent times. We consider these species locally extinct from BCI and they conservatively represent 6% of the estimated local pool of resident species. Extinct species represent distant phylogenetic branches and several families. The butterfly traits most likely to influence the probability of extinction were host growth form, wing size and host specificity, independently of the phylogenetic relationships among butterfly species. On BCI, most likely candidates for extinction were small hesperiids feeding on herbs (35% of extinct species). However, contrary to our working hypothesis, extinction of these species on BCI cannot be attributed to loss of host plants. In most cases these host plants remain extant, but they probably subsist at lower or more fragmented densities. Coupled with low dispersal power, this reduced availability of host plants has probably caused the local extinction of some butterfly species. Many more bird than butterfly species have been lost from BCI recently, confirming that small preserves may be far more effective at conserving invertebrates than vertebrates and, therefore, should not necessarily be neglected from a conservation viewpoint. PMID:26305111

Top