Science.gov

Sample records for bcr-abl mediante rt-pcr

  1. RT-PCR is a more accurate diagnostic tool for detection of BCR-ABL rearrangement

    SciTech Connect

    Zehnbauer, B.A.; Allen, A.P.; McGrath, S.D.

    1994-09-01

    Detection of the Philadelphia chromosome (Ph1) or genomic Southern hybridization for clonal gene rearrangement (GSH-R) has provided very specific identification of BCR-ABL gene rearrangement. Reverse transcriptase-polymerase chain reaction (RT-PCR) is diagnostic for patterns of BCR-ABL expression which are undetected by GSH-R and/or Ph1 and provides increased sensitivity both at diagnosis and in detection of minimal residual leukemia. Fifty-three specimens (of 150 tested from 119 consecutive leukemia patients) were RT-PCR positive for BCR-ABL gene expression confirmed by hybridization of PCR products with b{sub 3}a{sub 2}, b{sub 2}a{sub 2}, or e{sub 1}a{sub 2} junction-specific oligonucleotides. In 6 cases of CML with GSH-R{sup {minus}}at diagnosis, RT-PCR provided specific BCR-ABL identification. Deletion of BCR regions, low mitotic index, or e{sub 1}a{sub 2} expression caused failure to detect GSH-R or Ph1 translocation.

  2. Simple multiplex RT-PCR for identifying common fusion BCR-ABL transcript types and evaluation of molecular response of the a2b2 and a2b3 transcripts to Imatinib resistance in north Indian chronic myeloid leukemia patients.

    PubMed

    Mir, Rashid; Ahmad, I; Javid, J; Zuberi, M; Yadav, P; Shazia, R; Masroor, M; Guru, S; Ray, P C; Gupta, N; Saxena, A

    2015-01-01

    Chronic myeloid leukemia (CML) is characterized by the Philadelphia chromosome, an abnormally shortened chromosome 22. It is the result of a reciprocal translocation of chromosomes 9 and 22, creating BCR-ABL fusion transcripts, b3a2, b2a2, and e1a2. The aim of our study was to determine the type of BCR-ABL fusion transcripts for molecular diagnosis and investigate the frequency of BCR-ABL fusion transcripts in CML patients by multiplex RT-PCR in CML. A single reaction with multiple primers multiplex PCR was used to detect and investigate the type and frequency in 200 CML patients among which 116, 33, and 51 were in CP, AP, and BC phase, respectively. The study included 200 CML patients, among whom breakpoints in b3a2, b2a2 transcripts were detected in 68% and 24%, respectively, while 8% of the patients showed both b3a2/b2a2. A statistically significant difference was seen between frequency of BCR-ABL fusion transcripts and gender (P = 0.03), molecular response (P = 0.04), and hematological response (P = 0.05). However, there was no correlation found between frequencies of BCR-/ABL fusion transcripts and other clinicopathological parameters like age, type of therapy, thrombocytopenia, and white blood cell count. Multiplex reverse transcriptase-polymerase chain reaction is useful and saves time in the detection of BCR-ABL variants; the occurrence of these transcripts associated with CML can assist in prognosis and treatment of disease.

  3. Comparison of competitive-nested PCR and real-time PCR in detecting BCR-ABL fusion transcripts in chronic myeloid leukemia patients.

    PubMed

    Guo, J Q; Lin, H; Kantarjian, H; Talpaz, M; Champlin, R; Andreeff, M; Glassman, A; Arlinghaus, R B

    2002-12-01

    Real-time RT-PCR has great advantages for estimating transcript levels in a variety of situations. These include relative rapid assay times (hours), reliability and ease of performing replicate analyses. In contrast, competitive PCR is a very labor-intensive procedure requiring a few days to generate useful data. We compared the same samples from CML patients by both methods. Importantly, we used the Bcr-Abl junction plasmid DNA, which is used as a competitor in the manual competitive PCR assay, to generate a standard curve for the real-time assay. This permitted reporting the real-time data as the number of BCR-ABL transcripts per microg of total RNA, which is the same format used for the competitive PCR assay. In this study, a total of 435 peripheral blood and marrow samples from 285 CML patients were analyzed by RT-PCR; these patients were undergoing therapy by STI-571, interferon, and bone marrow transplantation treatment. Most samples also had assay values for the Philadelphia chromosome (Ph), FISH and Western blotting for the Bcr-Abl oncoprotein. Our findings indicated that the real-time assay was less sensitive than the manual competitive RT-PCR assay (t = 5.118; P < 0.001). Of interest, the transcript levels in cell line mixtures with various ratios of K562/KG-1 (BCR-ABL positive/negative) cells were also significantly higher with the competitive RT-PCR assays than real-time RT-PCR, except for levels of BCR-ABL below 200 transcripts per microg of RNA. In both patient and cell line experiments, dividing the BCR-ABL transcripts by the total ABL transcripts virtually eliminated the difference between real-time BCR-ABL transcript values and quantitative competitive BCR-ABL transcript values, indicating that both BCR-ABL and ABL transcripts were underestimated by the real-time assay. In addition, the increased sensitivity of the nested, competitive RT-PCR was readily apparent in patients with minimal residual disease, which by the real-time were negative in the

  4. Frequency of BCR-ABL Transcript Types in Syrian CML Patients

    PubMed Central

    Farhat-Maghribi, Sulaf; Habbal, Wafa; Monem, Fawza

    2016-01-01

    Background. In Syria, CML patients are started on tyrosine kinase inhibitors (TKIs) and monitored until complete molecular response is achieved. BCR-ABL mRNA transcript type is not routinely identified, contrary to the recommendations. In this study we aimed to identify the frequency of different BCR-ABL transcripts in Syrian CML patients and highlight their significance on monitoring and treatment protocols. Methods. CML patients positive for BCR-ABL transcripts by quantitative RT-PCR were enrolled. BCR-ABL transcript types were investigated using a home-made PCR method that was adapted from published protocols and optimized. The transcript types were then confirmed using a commercially available research kit. Results. Twenty-four transcripts were found in 21 patients. The most common was b2a2, followed by b3a2, b3a3, and e1a3 present solely in 12 (57.1%), 3 (14.3%), 2 (9.5%), and 1 (4.8%), respectively. Three samples (14.3%) contained dual transcripts. While b3a2 transcript was apparently associated with warning molecular response to imatinib treatment, b2a2, b3a3, and e1a3 transcripts collectively proved otherwise (P = 0.047). Conclusion. It might be advisable to identify the BCR-ABL transcript type in CML patients at diagnosis, using an empirically verified method, in order to link the detected transcript with the clinical findings, possible resistance to treatment, and appropriate monitoring methods. PMID:27313614

  5. Evaluation of a new flow cytometry based method for detection of BCR-ABL1 fusion protein in chronic myeloid leukemia.

    PubMed

    Dasgupta, Swati; Ray, Ujjal K; Mitra, Arpita Ghosh; Bhattacharyya, Deboshree M; Mukhopadhyay, Ashis; Das, Priyabrata; Gangopadhyay, Sudeshna; Roy, Sudip; Mukhopadhyay, Soma

    2017-06-01

    Philadelphia chromosome, a hallmark of chronic myeloid leukemia (CML), plays a key role in disease pathogenesis. It reflects a balanced reciprocal translocation between long arms of chromosomes 9 and 22 involving BCR and ABL1 genes, respectively. An accurate and reliable detection of BCR-ABL fusion gene is necessary for the diagnosis and monitoring of CML. Previously, many technologies, most of which are laborious and time consuming, have been developed to detect BCR-ABL chimeric gene or chromosome. A new flow cytometric immunobead assay was used for detection of BCR-ABL fusion proteins and applicability, sensitivity, reliability, efficacy and rapidity of this method was evaluated. From February 2009 to January 2014, a total 648 CML patients were investigated for the status of BCR-ABL1 protein. Among them, 83 patients were enrolled for comparative study of BCR-ABL1 positivity by three routinely used procedures like karyotyping, and quantitative real time PCR (RT-PCR) as well as immunobead flow cytometry assay. BCR-ABL protein analysis was found consistent, more sensitive (17% greater sensitivity) and reliable than the conventional cytogenetics, as flow cytometry showed 95% concordance rate to RT-PCR. BCR-ABL fusion protein assay using a new flow cytometric immunobead might be useful in the diagnosis and monitoring CML patients.

  6. Quantification of BCR-ABL mRNA in plasma/serum of patients with chronic myelogenous leukemia.

    PubMed

    Narita, Miwako; Saito, Anri; Kojima, Aya; Iwabuchi, Minami; Satoh, Naoya; Uchiyama, Takayoshi; Yamahira, Akie; Furukawa, Tatsuo; Sone, Hirohito; Takahashi, Masuhiro

    2012-01-01

    Quantification of tumor-associated mRNA extracted from blood cells/tissues containing tumor cells is used for evaluation of treatment efficacy or residual tumor cell burden in tumors including leukemia. However, this method using tumor cell-containing blood/tissue is difficult to evaluate the whole tumor cell burden in the body. In order to establish an efficient method to evaluate the whole tumor cell burden in the body, we tried to quantify tumor-associated mRNA existing in plasma/serum instead of leukemia cell-containing blood cells in patients with chronic myelogenous leukemia (CML) and compared the levels of BCR-ABL mRNA between plasma/serum and peripheral blood cells. mRNA of BCR-ABL, WT1 or GAPDH (control molecule) was detected by real-time RT-PCR using RNA extracted from plasma/serum of almost all the patients with CML. Copy numbers of BCR-ABL mRNA were significantly correlated between plasma/serum and peripheral blood cells. However, levels of BCR-ABL mRNA extracted from serum were low compared with those extracted with peripheral blood cells. The present findings suggest that although real-time RT-PCR of mRNA existing in plasma/serum could be used for evaluating the whole tumor cell burden in the body, it's required to establish an efficient method to quantify plasma/serum mRNA by nature without degrading during the procedure.

  7. Detection of BCR-ABL Fusion mRNA Using Reverse Transcriptase Loop-mediated Isothermal Amplification

    SciTech Connect

    Dugan, L C; Hall, S; Kohlgruber, A; Urbin, S; Torres, C; Wilson, P

    2011-12-08

    RT-PCR is commonly used for the detection of Bcr-Abl fusion transcripts in patients diagnosed with chronic myelogenous leukemia, CML. Two fusion transcripts predominate in CML, Br-Abl e13a2 and e14a2. They have developed reverse transcriptase isothermal loop-mediated amplification (RT-LAMP) assays to detect these two fusion transcripts along with the normal Bcr transcript.

  8. A novel BCR-ABL1 fusion gene identified by next-generation sequencing in chronic myeloid leukemia.

    PubMed

    Lyu, Xiaodong; Yang, Jingke; Wang, Xianwei; Hu, Jieying; Liu, Bing; Zhao, Yu; Guo, Zhen; Liu, Bingshan; Fan, Ruihua; Song, Yongping

    2016-01-01

    BCR-ABL1 fusion proteins contain constitutively active tyrosine kinases that are potential candidates for targeted therapy with tyrosine kinase inhibitors such as imatinib in chronic myeloid leukemia (CML). However, uncharacterized BCR-ABL1 fusion genes can be missed by quantitative RT-PCR (qRT-PCR)-based routine screening methods, causing adverse effect on drug selection and treatment outcome. In this study, we demonstrated that the next-generation sequencing (NGS) can be employed to overcome this obstacle. Through NGS, we identified a novel BCR-ABL1 fusion gene with breakpoints in the BCR intron 14 and the ABL1 intron 2, respectively, in a rare case of CML. Its mRNA with an e14a3 junction was then detected using customized RT-PCR followed by Sanger sequencing. Subsequently, the patient received targeted medicine imatinib initially at 400 mg/day, and later 300 mg/day due to intolerance reactions. With this personalized treatment, the patient's condition was significantly improved. Interestingly, this novel fusion gene encodes a fusion protein containing a compromised SH3 domain, which is usually intact in the majority of CML cases, suggesting that dysfunctional SH3 domain may be associated with altered drug response and unique clinicopathological manifestations observed in this patient. We identified a novel BCR-ABL1 fusion gene using NGS in a rare case of CML while routine laboratory procedures were challenged, demonstrating the power of NGS as a diagnostic tool for detecting novel genetic mutations. Moreover, our new finding regarding the novel fusion variant will provide useful insights to improve the spectrum of the genomic abnormalities recognizable by routine molecular screening.

  9. Adherence to BCR-ABL Inhibitors: Issues for CML Therapy

    PubMed Central

    Jabbour, Elias; Saglio, Giuseppe; Radich, Jerald; Kantarjian, Hagop

    2015-01-01

    Treatment for chronic myeloid leukemia (CML) has improved substantially in the last 20 years, especially since the introduction of oral BCR-ABL inhibitors a decade ago. However, for patients to reap the benefits of BCR-ABL inhibitors, they must likely be on therapy for the remainder of their lives. In this situation, adherence to medication becomes a concern. Adherence to therapy for chronic health conditions, including CML, has been demonstrated to be poor. Studies have shown nonadherence in CML to be common in one-third or more of patients, and 100% adherence is rare. Furthermore, evidence suggests that reduced adherence to BCR-ABL inhibitors is associated with reduced efficacy and increased healthcare costs. Factors that can cause nonadherence, including dose, toxicity, time from diagnosis to prescription, and the number of concomitant medications, should be addressed and monitored by the physician. To maximize adherence, CML treatment should be individualized to the patient and simplified as appropriate. PMID:22633166

  10. BCR-ABL-transformed GMP as myeloid leukemic stem cells

    PubMed Central

    Minami, Yosuke; Stuart, Scott A.; Ikawa, Tomokatsu; Jiang, Yong; Banno, Asoka; Hunton, Irina C.; Young, Dennis J.; Naoe, Tomoki; Murre, Cornelis; Jamieson, Catriona H. M.; Wang, Jean Y. J.

    2008-01-01

    During blast crisis of chronic myelogenous leukemia (CML), abnormal granulocyte macrophage progenitors (GMP) with nuclear β-catenin acquire self-renewal potential and may function as leukemic stem cells (Jamieson et al. N Engl J Med, 2004). To develop a mouse model for CML-initiating GMP, we expressed p210BCR-ABL in an established line of E2A-knockout mouse BM cells that retain pluripotency in ex vivo culture. Expression of BCR-ABL in these cells reproducibly stimulated myeloid expansion in culture and generated leukemia-initiating cells specifically in the GMP compartment. The leukemogenic GMP displayed higher levels of β-catenin activity than either the nontransformed GMP or the transformed nonGMP, both in culture and in transplanted mouse BM. Although E2A-deficiency may have contributed to the formation of leukemogenic GMP, restoration of E2A-function did not reverse BCR-ABL-induced transformation. These results provide further evidence that BCR-ABL-transformed GMP with abnormal β-catenin activity can function as leukemic stem cells. PMID:19004799

  11. Quantification of BCR-ABL mRNA in Plasma/Serum of Patients with Chronic Myelogenous Leukemia

    PubMed Central

    Narita, Miwako; Saito, Anri; Kojima, Aya; Iwabuchi, Minami; Satoh, Naoya; Uchiyama, Takayoshi; Yamahira, Akie; Furukawa, Tatsuo; Sone, Hirohito; Takahashi, Masuhiro

    2012-01-01

    Quantification of tumor-associated mRNA extracted from blood cells/tissues containing tumor cells is used for evaluation of treatment efficacy or residual tumor cell burden in tumors including leukemia. However, this method using tumor cell-containing blood/tissue is difficult to evaluate the whole tumor cell burden in the body. In order to establish an efficient method to evaluate the whole tumor cell burden in the body, we tried to quantify tumor-associated mRNA existing in plasma/serum instead of leukemia cell-containing blood cells in patients with chronic myelogenous leukemia (CML) and compared the levels of BCR-ABL mRNA between plasma/serum and peripheral blood cells. mRNA of BCR-ABL, WT1 or GAPDH (control molecule) was detected by real-time RT-PCR using RNA extracted from plasma/serum of almost all the patients with CML. Copy numbers of BCR-ABL mRNA were significantly correlated between plasma/serum and peripheral blood cells. However, levels of BCR-ABL mRNA extracted from serum were low compared with those extracted with peripheral blood cells. The present findings suggest that although real-time RT-PCR of mRNA existing in plasma/serum could be used for evaluating the whole tumor cell burden in the body, it's required to establish an efficient method to quantify plasma/serum mRNA by nature without degrading during the procedure. PMID:23155364

  12. Zebrafish Models of BCR-ABL-Induced Leukemogenesis

    DTIC Science & Technology

    2005-10-01

    ORGANIZATION: Dana-Farber Cancer Institute Boston, MA 02115 REPORT DATE: October 2005 TYPE OF REPORT: Final PREPARED FOR: U.S. Army Medical Research...NUMBER Sf. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER Dana-Farber Cancer Institute...stable transgenic zebrafish models for BCR-ABL induced leukemia will establish the necessary groundwork that will be valuable in conducting future

  13. Frequency of p190 and p210 BCR-ABL rearrangements and survival in Brazilian adult patients with acute lymphoblastic leukemia

    PubMed Central

    de França Azevedo, Ilana; da Silva Júnior, Rui Milton Patrício; de Vasconcelos, Audrey Violeta Martins; das Neves, Washington Batista; de Barros Correia Melo, Fárida Coeli; Melo, Raul Antônio Morais

    2014-01-01

    Objective This study investigated the occurrence of the p190 and p210 breakpoint cluster region-Abelson (BCR-ABL) rearrangements in adults with acute lymphoblastic leukemia and possible associations with clinical and laboratory characteristics and survival. Methods Forty-one over 18-year-old patients with acute lymphoblastic leukemia of both genders followed-up between January 2008 and May 2012 were included in this study. Clinical and laboratory data were obtained from the medical charts of the patients. Reverse transcription polymerase chain reaction (RT-PCR) using specific primers was employed to identify molecular rearrangements. Results At diagnosis, the median age was 33 years, and there was a predominance of males (61%). The most common immunophenotype was B lineage (76%). BCR-ABL rearrangements was detected in 14 (34%) patients with the following distribution: p190 (28%), p210 (50%) and double positive (22%). Overall survival of patients with a mean/median of 331/246 days of follow up was 39%, respectively, negative BCR-ABL (44%) and positive BCR-ABL (28%). Conclusion These results confirm the high frequency of BCR-ABL rearrangements and the low survival rate of adult Brazilian patients with acute lymphoblastic leukemia. PMID:25305168

  14. Nilotinib first-line therapy in patients with Philadelphia chromosome-negative/BCR-ABL-positive chronic myeloid leukemia in chronic phase: ENEST1st sub-analysis.

    PubMed

    Hochhaus, Andreas; Mahon, Franҫois-Xavier; le Coutre, Philipp; Petrov, Ljubomir; Janssen, Jeroen J W M; Cross, Nicholas C P; Rea, Delphine; Castagnetti, Fausto; Hellmann, Andrzej; Rosti, Gianantonio; Gattermann, Norbert; Coronel, Maria Liz Paciello; Gutierrez, Maria Asuncion Echeveste; Garcia-Gutierrez, Valentin; Vincenzi, Beatrice; Dezzani, Luca; Giles, Francis J

    2017-07-01

    The ENEST1st sub-analysis presents data based on Philadelphia chromosome (Ph) status, i.e., Ph+ and Ph-/BCR-ABL1 + chronic myeloid leukemia. Patients received nilotinib 300 mg twice daily, up to 24 months. At screening, 983 patients were identified as Ph+ and 30 patients as Ph-/BCR-ABL + based on cytogenetic and RT-PCR assessment; 76 patients had unknown karyotype (excluded from this sub-analysis). In the Ph-/BCR-ABL1 + subgroup, no additional chromosomal aberrations were reported. In the Ph+ subgroup, 952 patients had safety and molecular assessments. In the Ph-/BCR-ABL1 + subgroup, 30 patients had safety assessments and 28 were followed up for molecular assessments. At 18 months, the molecular response (MR) 4 rate [MR(4); BCR-ABL1 ≤0.01% on International Scale (IS)] was similar in the Ph-/BCR-ABL1+ (39.3%) and Ph+ subgroups (38.1%). By 24 months, the cumulative rates of major molecular response (BCR-ABL1(IS) ≤0.1%;), MR(4), and MR(4.5) (BCR-ABL1(IS) ≤0.0032%) were 85.7, 60.7, and 50.0%, respectively, in the Ph-/BCR-ABL1 + subgroup, and 80.3, 54.7, and 38.3%, respectively, in the Ph+ subgroup. In both Ph-/BCR-ABL1 + and Ph+ subgroups, rash (20 and 22%), pruritus (16.7 and 16.7%), nasopharyngitis (13.3 and 10.4%), fatigue (10 and 14.2%), headache (10 and 15.8%), and nausea (6.7 vs 11.4%) were frequent non-hematologic adverse events, whereas hypophosphatemia (23.3 and 6.8%), anemia (10 and 6.5%), and thrombocytopenia (3.3 and 10.2%) were the common hematologic/biochemical laboratory events. Based on similar molecular response and safety results in both subgroups, we conclude that Ph-/BCR-ABL1 + patients benefit from nilotinib in the same way as Ph+ patients.

  15. A BCR-ABL Kinase Activity-Independent Signaling Pathway in Chronic Myelogenous Leukemia

    DTIC Science & Technology

    2008-02-01

    myeloproliferative disease in mice receiving P210 bcr/abl-transduced bone marrow. Blood. 1998;92:3780-3792. 17. Zhang X, Ren R. Bcr-Abl efficiently induces a... myeloproliferative disease and production of excess interleukin-3 and granulocyte-macrophage colony-stimulating factor in mice: a novel model for chronic...Xu L, et al. Efficient and rapid induction of a chronic myelogenous leukemia-like myeloproliferative disease in mice receiving P210 bcr/abl-transduced

  16. Combination of bortezomib and mitotic inhibitors down-modulate Bcr-Abl and efficiently eliminates tyrosine-kinase inhibitor sensitive and resistant Bcr-Abl-positive leukemic cells.

    PubMed

    Bucur, Octavian; Stancu, Andreea Lucia; Goganau, Ioana; Petrescu, Stefana Maria; Pennarun, Bodvael; Bertomeu, Thierry; Dewar, Rajan; Khosravi-Far, Roya

    2013-01-01

    Emergence of resistance to Tyrosine-Kinase Inhibitors (TKIs), such as imatinib, dasatinib and nilotinib, in Chronic Myelogenous Leukemia (CML) demands new therapeutic strategies. We and others have previously established bortezomib, a selective proteasome inhibitor, as an important potential treatment in CML. Here we show that the combined regimens of bortezomib with mitotic inhibitors, such as the microtubule-stabilizing agent Paclitaxel and the PLK1 inhibitor BI2536, efficiently kill TKIs-resistant and -sensitive Bcr-Abl-positive leukemic cells. Combined treatment activates caspases 8, 9 and 3, which correlate with caspase-induced PARP cleavage. These effects are associated with a marked increase in activation of the stress-related MAP kinases p38MAPK and JNK. Interestingly, combined treatment induces a marked decrease in the total and phosphorylated Bcr-Abl protein levels, and inhibits signaling pathways downstream of Bcr-Abl: downregulation of STAT3 and STAT5 phosphorylation and/or total levels and a decrease in phosphorylation of the Bcr-Abl-associated proteins CrkL and Lyn. Moreover, we found that other mitotic inhibitors (Vincristine and Docetaxel), in combination with bortezomib, also suppress the Bcr-Abl-induced pro-survival signals and result in caspase 3 activation. These results open novel possibilities for the treatment of Bcr-Abl-positive leukemias, especially in the imatinib, dasatinib and nilotinib-resistant CML cases.

  17. Combination of Bortezomib and Mitotic Inhibitors Down-Modulate Bcr-Abl and Efficiently Eliminates Tyrosine-Kinase Inhibitor Sensitive and Resistant Bcr-Abl-Positive Leukemic Cells

    PubMed Central

    Goganau, Ioana; Petrescu, Stefana Maria; Pennarun, Bodvael; Bertomeu, Thierry; Dewar, Rajan; Khosravi-Far, Roya

    2013-01-01

    Emergence of resistance to Tyrosine-Kinase Inhibitors (TKIs), such as imatinib, dasatinib and nilotinib, in Chronic Myelogenous Leukemia (CML) demands new therapeutic strategies. We and others have previously established bortezomib, a selective proteasome inhibitor, as an important potential treatment in CML. Here we show that the combined regimens of bortezomib with mitotic inhibitors, such as the microtubule-stabilizing agent Paclitaxel and the PLK1 inhibitor BI2536, efficiently kill TKIs-resistant and -sensitive Bcr-Abl-positive leukemic cells. Combined treatment activates caspases 8, 9 and 3, which correlate with caspase-induced PARP cleavage. These effects are associated with a marked increase in activation of the stress-related MAP kinases p38MAPK and JNK. Interestingly, combined treatment induces a marked decrease in the total and phosphorylated Bcr-Abl protein levels, and inhibits signaling pathways downstream of Bcr-Abl: downregulation of STAT3 and STAT5 phosphorylation and/or total levels and a decrease in phosphorylation of the Bcr-Abl-associated proteins CrkL and Lyn. Moreover, we found that other mitotic inhibitors (Vincristine and Docetaxel), in combination with bortezomib, also suppress the Bcr-Abl-induced pro-survival signals and result in caspase 3 activation. These results open novel possibilities for the treatment of Bcr-Abl-positive leukemias, especially in the imatinib, dasatinib and nilotinib-resistant CML cases. PMID:24155950

  18. Optimization of dot blot method to detect bcr/abl transcripts in chronic myeloid leukemia

    SciTech Connect

    Tharapel, S.A.; Zhao, J.

    1994-09-01

    Detection of abl-bcr fusion transcripts using molecular methodologies is becoming an attractive alternative (or supplement) to traditional cytogenetics in identifying the Philadelphia (Ph) chromosome. Among these methods, RT-PCR technique has provided an extremely powerful tool for improving the detection of bcr/abl translocations through enzymatic amplification of the reverse-transcribed cDNA. The analysis of PCR products can be accomplished by a number of techniques including dot blot following liquid-phase hybridization. In order to render the detection of PCR products more simple, accurate and efficient, and therefore more amenable for the clinical laboratory routine use, we optimized several parameters of the procedure. (1) We discovered that with the starting material of 1 ug of total RNA, the amount of the final PCR amplified products was linear to the PCR cycles between 20 to 30 cycles. Since the dot blot procedure does not separate the amplified products according to their sizes, increased background would increase the false positive rate. (2) If a detection sensitivity of 1 in 10{sup 3} cells is sufficient, then the nested or a second PCR amplification is not necessary. (3) Starting material more than 5 ug of total RNA would decrease the amplification efficiency and therefore compromise the sensitivity. (4) Ten minutes of hybridization gave equal signal intensity as 24 hours. (5) The ionic strength and temperature in the washing step were also tested. Upon optimization of each parameter, the detection procedure was tested on 18 clinical samples. Compared to the procedures that are currently available, our optimized procedure is less time consuming, has higher sensitivity and lower false positive rate. This method has the potential to be automated and therefore can be used as a screening method for Ph chromosome in high volume settings.

  19. Bcr-Abl-Mediated Protection from Apoptosis Downstream of Mitochondrial Cytochrome c Release

    PubMed Central

    Deming, Paula B.; Schafer, Zachary T.; Tashker, Jessica S.; Potts, Malia B.; Deshmukh, Mohanish; Kornbluth, Sally

    2004-01-01

    Bcr-Abl, activated in chronic myelogenous leukemias, is a potent cell death inhibitor. Previous reports have shown that Bcr-Abl prevents apoptosis through inhibition of mitochondrial cytochrome c release. We report here that Bcr-Abl also inhibits caspase activation after the release of cytochrome c. Bcr-Abl inhibited caspase activation by cytochrome c added to cell-free lysates and prevented apoptosis when cytochrome c was microinjected into intact cells. Bcr-Abl acted posttranslationally to prevent the cytochrome c-induced binding of Apaf-1 to procaspase 9. Although Bcr-Abl prevented interaction of endogenous Apaf-1 with the recombinant prodomain of caspase 9, it did not affect the association of endogenous caspase 9 with the isolated Apaf-1 caspase recruitment domain (CARD) or Apaf-1 lacking WD-40 repeats. These data suggest that Apaf-1 recruitment of caspase 9 is faulty in the presence of Bcr-Abl and that cytochrome c/dATP-induced exposure of the Apaf-1 CARD is likely defective. These data provide a novel locus of Bcr-Abl antiapoptotic action and suggest a distinct mechanism of apoptosomal inhibition. PMID:15542838

  20. [Construction of Eukaryotic Expression Vector of siRNA Specific for BCR/ABL Fusion Gene and Its Effects on K562 Cells].

    PubMed

    Li, Ming; Wang, Bao-Lin; Wang, Li-Na; Xi, Ya-Ming

    2016-12-01

    To construct eukaryotic expression vector of siRNA specific for BCR/ABL and to investigate the effect of recombinant plasmid on BCR/ABL and P210 protein expression in K562 cells. siRNA(small interfering RNA)was designed according to the Tuschl's principle of Ai-based medicine, and was converted into cDNA coding expression of shRNA(small hairpin RNAs)of siRNA for BCR/ABL fusion gene. The cDNA was synthesized and inserted into plasmid pTER. The pTER117 and pTER363 of recombinant plasmid being eukaryotic expression vector was controlled by the H1 promoter of RNA polymerase III, and identified by the restriction map and the sequence analysis. The recombinant plasmid did not only have the screening resisting antibiotics, its expression but also are induced by tetracycline (tet). After steadily transfection into K562 cells by Lipofectamine, their positive mono-cell clones being resistant to Zeocin were isolated. TaqMan real-time quantitative RT-PCR (RQ-PCR) and Western blot respectively detected expression of BCR/ABL mRNA and P210 protein. Trypaum blue dying was used to analyze the proliferation of K562 cells. Cell apoptosis was observed by flow cytometer. the recombinant plasmid was steadily transfected into K562 cells by Lipofectamine 2000, Their positive mono-cell clones being resistant to Zeocin were isolated. The proliferation of K562 cells were remarkably inhibited by the recombinant plasmid induced gene expression by tetracycline. Tetracycline induced its expression for 48 h and 72 h. pTER117, pTER363 decreased the mRNA level of BCR/ABL 90%, 82% and 91.5%, 84%, respectively, P210 protein were almost measured in K562 cells. FCM analysis showed that the recombinant plasmid induced apoptosis in K562 cells, the apoptosis rate were respectively 34.4%, 58.1% in K562 cells treated by pTER117 for 48 h and 72 h, apoptosis rate were 31.8%, 54.6% by pTER363, but the control groups did not show these effects on K562 cells. The siRNA eukaryotic expression vector against BCR/ABL

  1. BCR: a new target in resistance mediated by BCR/ABL-315I?

    PubMed Central

    Haberbosch, Isabella; Rafiei, Anahita; Oancea, Claudia; Ottmann, Gerhart Oliver; Ruthardt, Martin; Mian, Afsar Ali

    2016-01-01

    Targeting BCR/ABL with Tyrosine kinase inhibitors (TKIs) is a proven concept for the treatment of Philadelphia chromosome-positive (Ph+) leukemias but the “gatekeeper” mutation T315I confers resistance against all approved TKIs, with the only exception of ponatinib, a multi-targeted kinase inhibitor. Besides resistance to TKIs, T315I also confers additional features to the leukemogenic potential of BCR/ABL, involving endogenous BCR. Therefore we studied the role of BCR on BCR/ABL mutants lacking functional domains indispensable for the oncogenic activity of BCR/ABL. We used the factor independent growth of murine myeloid progenitor 32D cells and the transformation of Rat-1 fibroblasts both mediated by BCR/ABL. Here we report that T315I restores the capacity to mediate factor-independent growth and transformation potential of loss-of-function mutants of BCR/ABL. Targeting endogenous Bcr abrogated the capacity of oligomerization deficient mutant of BCR/ABL-T315I to mediate factor independent growth of 32D cells and strongly reduced their transformation potential in Rat-1 cells, as well as led to the up-regulation of mitogen activated protein kinase (MAPK) pathway. Our data show that the T315I restores the capacity of loss-of-function mutants to transform cells which is dependent on the transphosphorylation of endogenous Bcr, which becomes a putative therapeutic target to overcome resistance by T315I. PMID:27014420

  2. Expression of BCR/ABL and BCL-2 in myeloid progenitors leads to myeloid leukemias

    PubMed Central

    Jaiswal, Siddhartha; Traver, David; Miyamoto, Toshihiro; Akashi, Koichi; Lagasse, Eric; Weissman, Irving L.

    2003-01-01

    Chronic myelogenous leukemia is a myeloproliferative disorder (MPD) that, over time, progresses to acute leukemia. Both processes are closely associated with the t(9;22) chromosomal translocation that creates the BCR/ABL fusion gene in hematopoietic stem cells (HSCs) and their progeny. Chronic myelogenous leukemia is therefore classified as an HSC disorder in which a clone of multipotent HSCs is likely to be malignantly transformed, although direct evidence for malignant t(9;22)+ HSCs is lacking. To test whether HSC malignancy is required, we generated hMRP8p210BCR/ABL transgenic mice in which expression of BCR/ABL is absent in HSCs and targeted exclusively to myeloid progenitors and their myelomonocytic progeny. Four of 13 BCR/ABL transgenic founders developed a chronic MPD, but only one progressed to blast crisis. To address whether additional oncogenic events are required for progression to acute disease, we crossed hMRP8p210BCR/ABL mice to apoptosis-resistant hMRP8BCL-2 mice. Of 18 double-transgenic animals, 9 developed acute myeloid leukemias that were transplantable to wild-type recipients. Taken together, these data indicate that a MPD can arise in mice without expression of BCR/ABL in HSCs and that additional mutations inhibiting programmed cell death may be critical in the transition of this disease to blast-crisis leukemia. PMID:12890867

  3. Comparison of different antisense oligonucleotides against the BCR/ABL junction in chronic myelogenous leukemia.

    PubMed

    Kaebisch, A; Seay, U; Wicker, S; Weber, C; Lohmeyer, J; Ortigao, J; Pralle, H

    1996-05-01

    The activity of the BCR/ABL hybrid gene is associated with a growth advantage of the chronic myelogenous leukemia (CML) stem cell. Suppression of BCR/ABL hybrid gene expression can be a valuable tool for leukemic cell purging. Antisense oligonucleotides (ODNs) have the capacity to specifically downregulate gene expression. Data reported on the effect they have on BCR/ABL hybrid gene expression are controversial. We present data illustrating that prolongation of ODN half-life by means of chemical or sequence modification has only limited specific growth suppressive effect on BCR/ABL-positive clonogenic cells in vitro. Compared to unmodified phosphodiester ODNs (PO-ODNs) spanning the BCR/ABL junctions, modified ODNs with either a 3'-GC-clamp (GC-ODNs) or ODNs with one 3'-inverted nucleotide (3'-3' ODNs) to prevent 3'-exonuclease degradation, showed significantly prolonged extra- and intracellular half lives and different subcellular distributions in CML cell lines. In clonogenic assays from patients with CML, the modified ODNs were to some extent able to reduce colonies expressing BCR/ABL (GC-ODNs >3'-3'-ODNs >PO-ODNs). This difference did not become significant statistically. We demonstrate a substantially diminished hybridization efficacy of the modified antisense ODNs used, which may serve as a possible explanation for the failure to augment the leukemic cell purging efficacy.

  4. Charting the molecular network of the drug target Bcr-Abl

    PubMed Central

    Brehme, Marc; Hantschel, Oliver; Colinge, Jacques; Kaupe, Ines; Planyavsky, Melanie; Köcher, Thomas; Mechtler, Karl; Bennett, Keiryn L.; Superti-Furga, Giulio

    2009-01-01

    The tyrosine kinase Bcr-Abl causes chronic myeloid leukemia and is the cognate target of tyrosine kinase inhibitors like imatinib. We have charted the protein–protein interaction network of Bcr-Abl by a 2-pronged approach. Using a monoclonal antibody we have first purified endogenous Bcr-Abl protein complexes from the CML K562 cell line and characterized the set of most tightly-associated interactors by MS. Nine interactors were subsequently subjected to tandem affinity purifications/MS analysis to obtain a molecular interaction network of some hundred cellular proteins. The resulting network revealed a high degree of interconnection of 7 “core” components around Bcr-Abl (Grb2, Shc1, Crk-I, c-Cbl, p85, Sts-1, and SHIP-2), and their links to different signaling pathways. Quantitative proteomics analysis showed that tyrosine kinase inhibitors lead to a disruption of this network. Certain components still appear to interact with Bcr-Abl in a phosphotyrosine-independent manner. We propose that Bcr-Abl and other drug targets, rather than being considered as single polypeptides, can be considered as complex protein assemblies that remodel upon drug action. PMID:19380743

  5. p185BCR/ABL has a lower sensitivity than p210BCR/ABL to the allosteric inhibitor GNF-2 in Philadelphia chromosome-positive acute lymphatic leukemia

    PubMed Central

    Mian, Afsar A.; Metodieva, Anna; Najajreh, Yousef; Ottmann, Oliver G.; Mahajna, Jamal; Ruthardt, Martin

    2012-01-01

    Background The t(9;22) translocation leads to the formation of the chimeric breakpoint cluster region/c-abl oncogene 1 (BCR/ABL) fusion gene on der22, the Philadelphia chromosome. The p185BCR/ABL or the p210BCR/ABL fusion proteins are encoded as a result of the translocation, depending on whether a “minor” or “major” breakpoint occurs, respectively. Both p185BCR/ABL and p210BCR/ABL exhibit constitutively activated ABL kinase activity. Through fusion to BCR the ABL kinase in p185BCR/ABL and p210BCR/ABL “escapes” the auto-inhibition mechanisms of c-ABL, such as allosteric inhibition. A novel class of compounds including GNF-2 restores allosteric inhibition of the kinase activity and the transformation potential of BCR/ABL. Here we investigated whether there are differences between p185BCR/ABL and p210BCR/ABL regarding their sensitivity towards allosteric inhibition by GNF-2 in models of Philadelphia chromosome-positive acute lymphatic leukemia. Design and Methods We investigated the anti-proliferative activity of GNF-2 in different Philadelphia chromosome-positive acute lymphatic leukemia models, such as cell lines, patient-derived long-term cultures and factor-dependent lymphatic Ba/F3 cells expressing either p185BCR/ABL or p210BCR/ABL and their resistance mutants. Results The inhibitory effects of GNF-2 differed constantly between p185BCR/ABL and p210BCR/ABL expressing cells. In all three Philadelphia chromosome-positive acute lymphatic leukemia models, p210BCR/ABL-transformed cells were more sensitive to GNF-2 than were p185BCR/ABL-positive cells. Similar results were obtained for p185BCR/ABL and the p210BCR/ABL harboring resistance mutations. Conclusions Our data provide the first evidence of a differential response of p185BCR/ABL- and p210BCR/ABL- transformed cells to allosteric inhibition by GNF-2, which is of importance for the treatment of patients with Philadelphia chromosome-positive acute lymphatic leukemia. PMID:22058195

  6. Targeting the SH2-Kinase Interface in Bcr-Abl Inhibits Leukemogenesis

    SciTech Connect

    Grebien, Florian; Hantschel, Oliver; Wojcik, John; Kaupe, Ines; Kovacic, Boris; Wyrzucki, Arkadiusz M.; Gish, Gerald D.; Cerny-Reiterer, Sabine; Koide, Akiko; Beug, Hartmut; Pawson, Tony; Valent, Peter; Koide, Shohei; Superti-Furga, Giulio

    2012-10-25

    Chronic myelogenous leukemia (CML) is caused by the constitutively active tyrosine kinase Bcr-Abl and treated with the tyrosine kinase inhibitor (TKI) imatinib. However, emerging TKI resistance prevents complete cure. Therefore, alternative strategies targeting regulatory modules of Bcr-Abl in addition to the kinase active site are strongly desirable. Here, we show that an intramolecular interaction between the SH2 and kinase domains in Bcr-Abl is both necessary and sufficient for high catalytic activity of the enzyme. Disruption of this interface led to inhibition of downstream events critical for CML signaling and, importantly, completely abolished leukemia formation in mice. Furthermore, disruption of the SH2-kinase interface increased sensitivity of imatinib-resistant Bcr-Abl mutants to TKI inhibition. An engineered Abl SH2-binding fibronectin type III monobody inhibited Bcr-Abl kinase activity both in vitro and in primary CML cells, where it induced apoptosis. This work validates the SH2-kinase interface as an allosteric target for therapeutic intervention.

  7. PAK-dependent STAT5 serine phosphorylation is required for BCR-ABL-induced leukemogenesis

    PubMed Central

    Berger, A; Hoelbl-Kovacic, A; Bourgeais, J; Hoefling, L; Warsch, W; Grundschober, E; Uras, I Z; Menzl, I; Putz, E M; Hoermann, G; Schuster, C; Fajmann, S; Leitner, E; Kubicek, S; Moriggl, R; Gouilleux, F; Sexl, V

    2014-01-01

    The transcription factor STAT5 (signal transducer and activator of transcription 5) is frequently activated in hematological malignancies and represents an essential signaling node downstream of the BCR-ABL oncogene. STAT5 can be phosphorylated at three positions, on a tyrosine and on the two serines S725 and S779. We have investigated the importance of STAT5 serine phosphorylation for BCR-ABL-induced leukemogenesis. In cultured bone marrow cells, expression of a STAT5 mutant lacking the S725 and S779 phosphorylation sites (STAT5SASA) prohibits transformation and induces apoptosis. Accordingly, STAT5SASA BCR-ABL+ cells display a strongly reduced leukemic potential in vivo, predominantly caused by loss of S779 phosphorylation that prevents the nuclear translocation of STAT5. Three distinct lines of evidence indicate that S779 is phosphorylated by group I p21-activated kinase (PAK). We show further that PAK-dependent serine phosphorylation of STAT5 is unaffected by BCR-ABL tyrosine kinase inhibitor treatment. Interfering with STAT5 phosphorylation could thus be a novel therapeutic approach to target BCR-ABL-induced malignancies. PMID:24263804

  8. Gadd45a deficiency accelerates BCR-ABL driven chronic myelogenous leukemia.

    PubMed

    Mukherjee, Kaushiki; Sha, Xiaojin; Magimaidas, Andrew; Maifrede, Silvia; Skorski, Tomasz; Bhatia, Ravi; Hoffman, Barbara; Liebermann, Dan A

    2017-01-10

    The Gadd45a stress sensor gene is a member in the Gadd45 family of genes that includes Gadd45b & Gadd45g. To investigate the effect of GADD45A in the development of CML, syngeneic wild type lethally irradiated mice were reconstituted with either wild type or Gadd45a null myeloid progenitors transduced with a retroviral vector expressing the 210-kD BCR-ABL fusion oncoprotein. Loss of Gadd45a was observed to accelerate BCR-ABL driven CML resulting in the development of a more aggressive disease, a significantly shortened median mice survival time, and increased BCR-ABL expressing leukemic stem/progenitor cells (GFP+Lin- cKit+Sca+). GADD45A deficient progenitors expressing BCR-ABL exhibited increased proliferation and decreased apoptosis relative to WT counterparts, which was associated with enhanced PI3K-AKT-mTOR-4E-BP1 signaling, upregulation of p30C/EBPα expression, and hyper-activation of p38 and Stat5. Furthermore, Gadd45a expression in samples obtained from CML patients was upregulated in more indolent chronic phase CML samples and down regulated in aggressive accelerated phase CML and blast crisis CML. These results provide novel evidence that Gadd45a functions as a suppressor of BCR/ABL driven leukemia and may provide a unique prognostic marker of CML progression.

  9. Activation of a novel Bcr/Abl destruction pathway by WP1130 induces apoptosis of chronic myelogenous leukemia cells.

    PubMed

    Bartholomeusz, Geoffrey A; Talpaz, Moshe; Kapuria, Vaibhav; Kong, Ling Yuan; Wang, Shimei; Estrov, Zeev; Priebe, Waldemar; Wu, Ji; Donato, Nicholas J

    2007-04-15

    Imatinib mesylate (Gleevec) is effective therapy against Philadelphia chromosome-positive leukemia, but resistance develops in all phases of the disease. Bcr/Abl point mutations and other alterations reduce the kinase inhibitory activity of imatinib mesylate; thus, agents that target Bcr/Abl through unique mechanisms may be needed. Here we describe the activity of WP1130, a small molecule that specifically and rapidly down-regulates both wild-type and mutant Bcr/Abl protein without affecting bcr/abl gene expression in chronic myelogenous leukemia (CML) cells. Loss of Bcr/Abl protein correlated with the onset of apoptosis and reduced phosphorylation of Bcr/Abl substrates. WP1130 did not affect Hsp90/Hsp70 ratios within the cells and did not require the participation of the proteasomal pathway for loss of Bcr/Abl protein. WP1130 was more effective in reducing leukemic versus normal hematopoietic colony formation and strongly inhibited colony formation of cells derived from patients with T315I mutant Bcr/Abl-expressing CML in blast crisis. WP1130 suppressed the growth of K562 heterotransplanted tumors as well as both wild-type Bcr/Abl and T315I mutant Bcr/Abl-expressing BaF/3 cells transplanted into nude mice. Collectively, our results demonstrate that WP1130 reduces wild-type and T315I mutant Bcr/Abl protein levels in CML cells through a unique mechanism and may be useful in treating CML.

  10. An accurate and rapid flow cytometric diagnosis of BCR-ABL positive acute lymphoblastic leukemia

    PubMed Central

    Raponi, Sara; De Propris, Maria Stefania; Wai, Hobert; Intoppa, Stefania; Elia, Loredana; Diverio, Daniela; Vitale, Antonella; Foà, Robin; Guarini, Anna

    2009-01-01

    Tyrosine kinase inhibitors have profoundly modified the treatment and prognosis of chronic myeloid leukemia and Ph+ acute lymphoblastic leukemia. A rapid and accurate detection of the BCR-ABL fusion protein is paramount today for an optimal management of Ph+ acute lymphoblastic leukemia. We have utilized a recently described and commercialized immunoassay that identifies qualitatively the presence of the BCR-ABL protein in leukemic cell lysates. The BCR-ABL fusion protein is captured and detected by a cytometric bead assay and analyzed by flow cytometry. The assay was applied to 101 primary patient samples (94 acute leukemias and 7 chronic myeloid leukemia blast crisis) and the results of the immunoassay were concordant with those obtained by conventional molecular techniques. The method proved reliable, reproducible, of simple execution and it was successfully completed within four hours. This flow cytometric immunoassay has important implications for perfecting the management of Ph+ acute lymphoblastic leukemia patients worldwide. PMID:19608682

  11. The Interface between BCR-ABL-Dependent and -Independent Resistance Signaling Pathways in Chronic Myeloid Leukemia

    PubMed Central

    Nestal de Moraes, Gabriela; Souza, Paloma Silva; Costas, Fernanda Casal de Faria; Vasconcelos, Flavia Cunha; Reis, Flaviana Ruade Souza; Maia, Raquel Ciuvalschi

    2012-01-01

    Chronic myeloid leukemia (CML) is a clonal hematopoietic disorder characterized by the presence of the Philadelphia chromosome which resulted from the reciprocal translocation between chromosomes 9 and 22. The pathogenesis of CML involves the constitutive activation of the BCR-ABL tyrosine kinase, which governs malignant disease by activating multiple signal transduction pathways. The BCR-ABL kinase inhibitor, imatinib, is the front-line treatment for CML, but the emergence of imatinib resistance and other tyrosine kinase inhibitors (TKIs) has called attention for additional resistance mechanisms and has led to the search for alternative drug treatments. In this paper, we discuss our current understanding of mechanisms, related or unrelated to BCR-ABL, which have been shown to account for chemoresistance and treatment failure. We focus on the potential role of the influx and efflux transporters, the inhibitor of apoptosis proteins, and transcription factor-mediated signals as feasible molecular targets to overcome the development of TKIs resistance in CML. PMID:23259070

  12. Essential role for telomerase in chronic myeloid leukemia induced by BCR-ABL in mice

    PubMed Central

    Vicente-Dueñas, Carolina; Barajas-Diego, Marcos; Romero-Camarero, Isabel; González-Herrero, Inés; Flores, Teresa; Sánchez-García, Isidro

    2012-01-01

    The telomerase protein is constitutively activated in malignant cells from many patients with cancer, including the chronic myeloid leukemia (CML), but whether telomerase is essential for the pathogenesis of this disease is not known. Here, we used telomerase deficient mice to determine the requirement for telomerase in CML induced by BCR-ABL in mouse models of CML. Loss of one telomerase allele or complete deletion of telomerase prevented the development of leukemia induced by BCR-ABL. However, BCR-ABL was expressed and active in telomerase heterozygous and null leukemic hematopoietic stem cells. These results demonstrate that telomerase is essential for oncogene-induced reprogramming of hematopoietic stem cells in CML development and validate telomerase and the genes it regulates as targets for therapy in CML. PMID:22408137

  13. Bcr-Abl and inhibition of apoptosis in chronic myelogenous leukemia cells.

    PubMed

    Fernandez-Luna, J L

    2000-10-01

    Chronic myelogenous leukemia (CML) cells are highly resistant to apoptosis induced by chemotherapeutic drugs. The observation that production of Bcr-Abl is the initiating event in CML has focussed attention on the survival signals triggered by this oncogene. A number of signal transducers and transcription factors have been associated with the antiapoptotic phenotype of CML cells, some of which lead to the expression and/or activation of members of the Bcl-2 family of apoptosis modulators, such as Bcl-xL and Bad. In this article, recent advances in understanding the antiapoptotic pathways triggered by Bcr-Abl in CML cells, are discussed.

  14. Liposomal bortezomib is active against chronic myeloid leukemia by disrupting the Sp1-BCR/ABL axis

    PubMed Central

    Shen, Na; Yan, Fei; Wu, Lai-Chu; Al-Kali, Aref; Litzow, Mark R.; Peng, Yong; Lee, Robert J.; Liu, Shujun

    2016-01-01

    The abundance of the BCR/ABL protein critically contributes to CML pathogenesis and drug resistance. However, understanding of molecular mechanisms underlying BCR/ABL gene regulation remains incomplete. While BCR/ABL kinase inhibitors have shown unprecedented efficacy in the clinic, most patients relapse. In this study, we demonstrated that the Sp1 oncogene functions as a positive regulator for BCR/ABL expression. Inactivation of Sp1 by genetic and pharmacological approaches abrogated BCR/ABL expression, leading to suppression of BCR/ABL kinase signaling and CML cell proliferation. Because of potential adverse side effects of bortezomib (BORT) in imatinib-refractory CML patients, we designed a transferrin (Tf)-targeted liposomal formulation (Tf-L-BORT) for BORT delivery. Cellular uptake assays showed that BORT was efficiently delivered into K562 cells, with the highest efficacy obtained in Tf-targeted group. After administered into mice, L-BORT exhibited slower clearance with less toxicity compared to free BORT. Furthermore, L-BORT exposure significantly blocked BCR/ABL kinase activities and sensitized CML cell lines, tumor cells and doxorubicin (DOX) resistant cells to DOX. This occurred through the more pronounced inhibition of BCR/ABL activity by L-BORT and DOX. Collectively, these findings highlight the therapeutic relevance of disrupting BCR/ABL protein expression and strongly support the utilization of L-BORT alone or in combination with DOX to treat CML patients with overexpressing BCR/ABL. PMID:27144331

  15. Oridonin Triggers Chaperon-mediated Proteasomal Degradation of BCR-ABL in Leukemia

    PubMed Central

    Huang, Huilin; Weng, Hengyou; Dong, Bowen; Zhao, Panpan; Zhou, Hui; Qu, Lianghu

    2017-01-01

    Inducing degradation of oncoproteins by small molecule compounds has the potential to avoid drug resistance and therefore deserves to be exploited for new therapies. Oridonin is a natural compound with promising antitumor efficacy that can trigger the degradation of oncoproteins; however, the direct cellular targets and underlying mechanisms remain unclear. Here we report that oridonin depletes BCR-ABL through chaperon-mediated proteasomal degradation in leukemia. Mechanistically, oridonin poses oxidative stress in cancer cells and directly binds to cysteines of HSF1, leading to the activation of this master regulator of the chaperone system. The resulting induction of HSP70 and ubiquitin proteins and the enhanced binding to CHIP E3 ligase hence target BCR-ABL for ubiquitin-proteasome degradation. Both wild-type and mutant forms of BCR-ABL can be efficiently degraded by oridonin, supporting its efficacy observed in cultured cells as well as mouse tumor xenograft assays with either imatinib-sensitive or -resistant cells. Collectively, our results identify a novel mechanism by which oridonin induces rapid degradation of BCR-ABL as well as a novel pharmaceutical activator of HSF1 that represents a promising treatment for leukemia. PMID:28128329

  16. Cantharidin Overcomes Imatinib Resistance by Depleting BCR-ABL in Chronic Myeloid Leukemia

    PubMed Central

    Sun, Xiaoyan; Cai, Xueting; Yang, Jie; Chen, Jiao; Guo, Caixia; Cao, Peng

    2016-01-01

    Cantharidin (CTD) is an active compound isolated from the traditional Chinese medicine blister beetle and displayed anticancer properties against various types of cancer cells. However, little is known about its effect on human chronic myeloid leukemia (CML) cells, including imatinib-resistant CML cells. The objective of this study was to investigate whether CTD could overcome imatinib resistance in imatinib-resistant CML cells and to explore the possible underlying mechanisms associated with the effect. Our results showed that CTD strongly inhibited the growth of both imatinib-sensitive and imatinib-resistant CML cells. CTD induced cell cycle arrest at mitotic phase and triggered DNA damage in CML cells. The ATM/ATR inhibitor CGK733 abrogated CTD-induced mitotic arrest but promoted the cytotoxic effects of CTD. In addition, we demonstrated that CTD downregulated the expression of the BCR-ABL protein and suppressed its downstream signal transduction. Real-time quantitative PCR revealed that CTD inhibited BCR-ABL at transcriptional level. Knockdown of BCR-ABL increased the cell-killing effects of CTD in K562 cells. These findings indicated that CTD overcomes imatinib resistance through depletion of BCR-ABL. Taken together, CTD is an important new candidate agent for CML therapy. PMID:27989101

  17. Role of treatment in the appearance and selection of BCR-ABL1 kinase domain mutations.

    PubMed

    Razga, Filip; Jurcek, Tomas; Zackova, Daniela; Dvorakova, Dana; Toskova, Martina; Jeziskova, Ivana; Mayer, Jiri; Racil, Zdenek

    2012-08-01

    The availability of different tyrosine kinase inhibitors (TKIs) with distinct anti-leukemic potency enables optimization of current therapeutic regimens; however, some patients lose their therapy response and acquire TKI resistance. In this study, we describe a single-center experience of monitoring BCR-ABL1 kinase domain (KD) mutations and discuss the impact of treatment on mutation selection. Chronic myelogenous leukemia (CML) patients treated with TKIs at the Department of Internal Medicine-Hematology and Oncology, Masaryk University and University Hospital Brno during 2003-2011 were included in this study. A total number of 100 patients who did not achieve an optimal therapy response or who lost their therapy response were screened for the presence of BCR-ABL1 KD mutations, using direct sequencing. Our data show that pretreatment with non-specific non-TKI drugs prior to TKI therapy does not preferentially select for initial BCR-ABL1 KD mutations, in contrast to first-line imatinib therapy, which shows a clear predominance of T315I or P-loop mutations compared with mutations located in other KD regions. In addition, the median time to detection of P-loop mutations was substantially shorter in patients treated with first-line imatinib than in those pretreated with non-TKI drugs. Furthermore, analysis of CML patients who had recurrent resistance to TKI therapy revealed possible therapy-driven selection of BCR-ABL1 KD mutations. Finally, we confirm the previously described poor prognosis of CML patients with mutations in the BCR-ABL1 KD, since 40.0% of our CML patients who harbored a BCR-ABL1 KD mutation died from CML while receiving TKI treatment. Moreover, among the patients who are still on treatment, 27.8% have already progressed. Our data also confirm the unique position of the T315I mutation with respect to its strong resistance to currently approved TKIs. On the basis of the 'real-life' data described in this study, it is possible that the therapy itself

  18. Activity of the Aurora kinase inhibitor VX-680 against Bcr/Abl-positive acute lymphoblastic leukemias.

    PubMed

    Fei, Fei; Stoddart, Sonia; Groffen, John; Heisterkamp, Nora

    2010-05-01

    The emergence of resistance to tyrosine kinase inhibitors due to point mutations in Bcr/Abl is a challenging problem for Philadelphia chromosome-positive (Ph-positive) acute lymphoblastic leukemia (ALL) patients, especially for those with the T315I mutation, against which neither nilotinib or dasatinib shows significant activity. VX-680 is a pan-Aurora kinase inhibitor active against all Bcr/Abl proteins but has not been extensively examined in preclinical models of Ph-positive ALL. Here, we have tested VX-680 for the treatment of Bcr/Abl-positive ALL when leukemic cells are protected by the presence of stroma. Under these conditions, VX-680 showed significant effects on primary human Ph-positive ALL cells both with and without the T315I mutation, including ablation of tyrosine phosphorylation downstream of Bcr/Abl, decreased viability, and induction of apoptosis. However, drug treatment of human Ph-positive ALL cells for 3 days followed by drug removal allowed the outgrowth of abnormal cells 21 days later, and on culture of mouse Bcr/Abl ALL cells on stroma with lower concentrations of VX-680, drug-resistant cells emerged. Combined treatment of human ALL cells lacking the T315I mutation with both VX-680 and dasatinib caused significantly more cytotoxicity than each drug alone. We suggest that use of VX-680 together with a second effective drug as first-line treatment for Ph-positive ALL is likely to be safer and more useful than second-line treatment with VX-680 as monotherapy for drug-resistant T315I Ph-positive ALL.

  19. Different BCR/Abl protein suppression patterns as a converging trait of chronic myeloid leukemia cell adaptation to energy restriction.

    PubMed

    Bono, Silvia; Lulli, Matteo; D'Agostino, Vito Giuseppe; Di Gesualdo, Federico; Loffredo, Rosa; Cipolleschi, Maria Grazia; Provenzani, Alessandro; Rovida, Elisabetta; Dello Sbarba, Persio

    2016-12-20

    BCR/Abl protein drives the onset and progression of Chronic Myeloid Leukemia (CML). We previously showed that BCR/Abl protein is suppressed in low oxygen, where viable cells retain stem cell potential. This study addressed the regulation of BCR/Abl protein expression under oxygen or glucose shortage, characteristic of the in vivo environment where cells resistant to tyrosine kinase inhibitors (TKi) persist. We investigated, at transcriptional, translational and post-translational level, the mechanisms involved in BCR/Abl suppression in K562 and KCL22 CML cells. BCR/abl mRNA steady-state analysis and ChIP-qPCR on BCR promoter revealed that BCR/abl transcriptional activity is reduced in K562 cells under oxygen shortage. The SUnSET assay showed an overall reduction of protein synthesis under oxygen/glucose shortage in both cell lines. However, only low oxygen decreased polysome-associated BCR/abl mRNA significantly in KCL22 cells, suggesting a decreased BCR/Abl translation. The proteasome inhibitor MG132 or the pan-caspase inhibitor z-VAD-fmk extended BCR/Abl expression under oxygen/glucose shortage in K562 cells. Glucose shortage induced autophagy-dependent BCR/Abl protein degradation in KCL22 cells. Overall, our results showed that energy restriction induces different cell-specific BCR/Abl protein suppression patterns, which represent a converging route to TKi-resistance of CML cells. Thus, the interference with BCR/Abl expression in environment-adapted CML cells may become a useful implement to current therapy.

  20. PALATAL DYSMORPHOGENESIS: QUANTITATIVE RT-PCR

    EPA Science Inventory

    ABSTRACT

    Palatal Dysmorphogenesis : Quantitative RT-PCR

    Gary A. Held and Barbara D. Abbott

    Reverse transcription PCR (RT-PCR) is a very sensitive method for detecting mRNA in tissue samples. However, as it is usually performed it is does not yield quantitativ...

  1. PALATAL DYSMORPHOGENESIS: QUANTITATIVE RT-PCR

    EPA Science Inventory

    ABSTRACT

    Palatal Dysmorphogenesis : Quantitative RT-PCR

    Gary A. Held and Barbara D. Abbott

    Reverse transcription PCR (RT-PCR) is a very sensitive method for detecting mRNA in tissue samples. However, as it is usually performed it is does not yield quantitativ...

  2. A longitudinal evaluation of performance of automated BCR-ABL1 quantitation using cartridge-based detection system

    PubMed Central

    Enjeti, Anoop; Granter, Neil; Ashraf, Asma; Fletcher, Linda; Branford, Susan; Rowlings, Philip; Dooley, Susan

    2015-01-01

    SummaryAn automated cartridge-based detection system (GeneXpert; Cepheid) is being widely adopted in low throughput laboratories for monitoring BCR-ABL1 transcript in chronic myelogenous leukaemia. This Australian study evaluated the longitudinal performance specific characteristics of the automated system. The automated cartridge-based system was compared prospectively with the manual qRT-PCR-based reference method at SA Pathology, Adelaide, over a period of 2.5 years. A conversion factor determination was followed by four re-validations. Peripheral blood samples (n = 129) with international scale (IS) values within detectable range were selected for assessment. The mean bias, proportion of results within specified fold difference (2-, 3- and 5-fold), the concordance rate of major molecular remission (MMR) and concordance across a range of IS values on paired samples were evaluated. The initial conversion factor for the automated system was determined as 0.43. Except for the second re-validation, where a negative bias of 1.9-fold was detected, all other biases fell within desirable limits. A cartridge-specific conversion factor and efficiency value was introduced and the conversion factor was confirmed to be stable in subsequent re-validation cycles. Concordance with the reference method/laboratory at >0.1–≤10 IS was 78.2% and at ≤0.001 was 80%, compared to 86.8% in the >0.01–≤0.1 IS range. The overall and MMR concordance were 85.7% and 94% respectively, for samples that fell within ± 5-fold of the reference laboratory value over the entire period of study. Conversion factor and performance specific characteristics for the automated system were longitudinally stable in the clinically relevant range, following introduction by the manufacturer of lot specific efficiency values. PMID:26166664

  3. The background, discovery and clinical development of BCR-ABL inhibitors.

    PubMed

    Lambert, Gemma K; Duhme-Klair, Anne-Kathrin; Morgan, Trevor; Ramjee, Manoj K

    2013-10-01

    The story of the inhibition of BCR-ABL as a treatment for chronic myelogenous leukaemia serves to illustrate key aspects of the kinase drug discovery and development process. Firstly, elucidation of the disease mechanism enabled identification of the molecular target(s) which catalysed pharmaceutical research and resulted in Gleevec(®) (Novartis) as the first FDA approved BCR-ABL inhibitor. However, clinical success was soon tempered by the emergence of drug resistance through various mechanisms. Using rational drug design, several hypotheses were devised to overcome resistance issues leading to the development of second generation inhibitors, providing clinicians and patients with greater therapeutic choice. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. A BCR-ABL Kinase Activity-Independent Signaling Pathway in Chronic Myelogenous Leukemia

    DTIC Science & Technology

    2007-02-01

    leukemia (CML), but does not cure mice with BCR-ABL-induced acute lymphoblastic leukemia (ALL), similar to CML lymphoid blast crisis. The inability... leukemia or Ph-positive acute lymphoblastic leukemia who develop imatinib (STI571) resistance. Blood. 2002;99:3472-3475. 9. von Bubnoff N, Schneller F...the blast crisis of chronic myeloid leukemia and acute lymphoblastic leukemia with the Philadelphia chromosome. N Engl J Med. 2001;344:1038-1042. 11

  5. BCR-ABL1-like acute lymphoblastic leukaemia: From bench to bedside.

    PubMed

    Boer, Judith M; den Boer, Monique L

    2017-09-01

    Acute lymphoblastic leukaemia (ALL) occurs in approximately 1:1500 children and is less frequently found in adults. The most common immunophenotype of ALL is the B cell lineage and within B cell precursor ALL, specific genetic aberrations define subtypes with distinct biological and clinical characteristics. With more advanced genetic analysis methods such as whole genome and transcriptome sequencing, novel genetic subtypes have recently been discovered. One novel class of genetic aberrations comprises tyrosine kinase-activating lesions, including translocations and rearrangements of tyrosine kinase and cytokine receptor genes. These newly discovered genetic aberrations are harder to detect by standard diagnostic methods such as karyotyping, fluorescent in situ hybridisation (FISH) or polymerase chain reaction (PCR) because they are diverse and often cryptic. These lesions involve one of several tyrosine kinase genes (among others, v-abl Abelson murine leukaemia viral oncogene homologue 1 (ABL1), v-abl Abelson murine leukaemia viral oncogene homologue 2 (ABL2), platelet-derived growth factor receptor beta polypeptide (PDGFRB)), each of which can be fused to up to 15 partner genes. Together, they compose 2-3% of B cell precursor ALL (BCP-ALL), which is similar in size to the well-known fusion gene BCR-ABL1 subtype. These so-called BCR-ABL1-like fusions are mutually exclusive with the sentinel translocations in BCP-ALL (BCR-ABL1, ETV6-RUNX1, TCF3-PBX1, and KMT2A (MLL) rearrangements) and have the promising prospect to be sensitive to tyrosine kinase inhibitors similar to BCR-ABL1. In this review, we discuss the types of tyrosine kinase-activating lesions discovered, and the preclinical and clinical evidence for the use of tyrosine kinase inhibitors in the treatment of this novel subtype of ALL. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Frequency of rare BCR-ABL1 fusion transcripts in chronic myeloid leukemia patients.

    PubMed

    Arun, A K; Senthamizhselvi, A; Mani, S; Vinodhini, K; Janet, N B; Lakshmi, K M; Abraham, A; George, B; Srivastava, A; Srivastava, V M; Mathews, V; Balasubramanian, P

    2017-06-01

    The hallmark of chronic myeloid leukemia (CML) is the presence of Philadelphia chromosome, its resultant fusion transcript (BCR-ABL1), and fusion protein (p210). Alternate breakpoints in BCR (m-bcr, μ-bcr, and others) or ABL1 result in the expression of few rare fusion transcripts (e19a2, e1a2, e13a3, e14a3) and fusion proteins (p190, p200, p225) whose exact clinical significance remains to be determined. Our study was designed to determine the type and frequency of BCR-ABL1 fusion transcripts in 1260 CML patients and to analyze the prognosis and treatment response in patients harboring rare BCR-ABL1 fusion transcripts. The frequency of various BCR-ABL1 fusion transcripts was as follows: e14a2 (60%), e13a2 (34.3%), e1a2 (1.2%), e1a2 + e13a2 (2.0%), e1a2 + e14a2 (1.8%), e19a2 (0.3%), and e14a3 (0.3%). CML patients with e1a2 transcripts had higher rates of disease progression, resistance, or suboptimal response to imatinib and failed to achieve major molecular response. Characterization of the specific fusion transcript in CML patients is important owing to the difference in prognosis and response to therapy in addition to the conventional need for monitoring treatment response. CML patients with e1a2 transcripts have to be closely monitored due to the high incidence of disease progression and treatment resistance/failure. © 2016 John Wiley & Sons Ltd.

  7. Stat5 is indispensable for the maintenance of bcr/abl-positive leukaemia

    PubMed Central

    Hoelbl, Andrea; Schuster, Christian; Kovacic, Boris; Zhu, Bingmei; Wickre, Mark; Hoelzl, Maria A; Fajmann, Sabine; Grebien, Florian; Warsch, Wolfgang; Stengl, Gabriele; Hennighausen, Lothar; Poli, Valeria; Beug, Hartmut; Moriggl, Richard; Sexl, Veronika

    2010-01-01

    Tumourigenesis caused by the Bcr/Abl oncoprotein is a multi-step process proceeding from initial to tumour-maintaining events and finally results in a complex tumour-supporting network. A key to successful cancer therapy is the identification of critical functional nodes in an oncogenic network required for disease maintenance. So far, the transcription factors Stat3 and Stat5a/b have been implicated in bcr/abl-induced initial transformation. However, to qualify as a potential drug target, a signalling pathway must be required for the maintenance of the leukaemic state. Data on the roles of Stat3 or Stat5a/b in leukaemia maintenance are elusive. Here, we show that both, Stat3 and Stat5 are necessary for initial transformation. However, Stat5- but not Stat3-deletion induces G0/G1 cell cycle arrest and apoptosis of imatinib-sensitive and imatinib-resistant stable leukaemic cells in vitro. Accordingly, Stat5-abrogation led to effective elimination of myeloid and lymphoid leukaemia maintenance in vivo. Hence, we identified Stat5 as a vulnerable point in the oncogenic network downstream of Bcr/Abl representing a case of non-oncogene addiction (NOA). PMID:20201032

  8. Association of HLA antigens and BCR-ABL transcripts in leukemia patients with the Philadelphia chromosome

    PubMed Central

    de Carvalho, Daiana Landenberger; Barbosa, Cristian Dias; de Carvalho, André Luiz; Beck, Sandra Trevisan

    2012-01-01

    Objective This study aimed to verify the association between human leukocyte antigens and the bcr-abl fusion protein resulting from t(9;22)(q34;q11) in chronic leukemia myeloid and acute lymphoblastic leukemia patients. Methods Forty-seven bcr-abl positive individuals were evaluated. Typing was performed bymicrolymphocytotoxicity and molecular biological methods (human leukocyte antigens Class I and Class II). A control group was obtained from the data of potential bone marrow donors registered in the Brazilian Bone Marrow Donor Registry (REDOME). Results Positive associations with HLA-A25 and HLA-B18 were found for the b2a2 transcript, as well as a tendency towards a positive association with HLA-B40 and a negative association with HLA-A68. The b3a2 transcript showed positive associations with HLA-B40 and HLA-DRB1*3. Conclusion The negative association between human leukocyte antigens and the BCR-ABL transcript suggests that binding and presentation of peptides derived from the chimeric protein are effective to increase a cytotoxic T lymphocyte response appropriate for the destruction of leukemic cells. PMID:23049441

  9. Development of resistance to dasatinib in Bcr/Abl-positive acute lymphoblastic leukemia

    PubMed Central

    Fei, Fei; Stoddart, Sonia; Müschen, Markus; Kim, Yong-mi; Groffen, John; Heisterkamp, Nora

    2010-01-01

    Dasatinib is a potent dual Abl/Src inhibitor approved for treatment of Ph-positive leukemias. At a once-daily dose and a relatively short half-life of 3-5 hours, tyrosine kinase inhibition is not sustained. However, transient inhibition of K562 leukemia cells with a high-dose pulse of dasatinib or long-term treatment with a lower dose was reported to irreversibly induce apoptosis. Here, the effect of dasatinib on treatment of Bcr/Abl-positive acute lymphoblastic leukemia (ALL) cells was evaluated in the presence of stromal support. Dasatinib eradicated Bcr/Abl ALL cells, caused significant apoptosis and eliminated tyrosine phosphorylation on Bcr/Abl, Src, Crkl and Stat-5. However, treatment of mouse ALL cells with lower doses of dasatinib over an extended period of time allowed the emergence of viable drug-resistant cells. Interestingly, dasatinib treatment increased cell surface expression of CXCR4, which is important for survival of B-lineage cells, but this did not promote survival. Combined treatment of cells with dasatinib and a CXCR4 inhibitor resulted in enhanced cell death. These results do not support the concept that long-term treatment with low dose dasatinib monotherapy will be effective in causing irreversible apoptosis in Ph-positive ALL, but suggest that combined treatment with dasatinib and drugs such as AMD3100 may be effective. PMID:20111071

  10. Vav3 collaborates with p190-BCR-ABL in lymphoid progenitor leukemogenesis, proliferation, and survival

    PubMed Central

    Chang, Kyung Hee; Sanchez-Aguilera, Abel; Shen, Shuhong; Sengupta, Amitava; Madhu, Malav N.; Ficker, Ashley M.; Dunn, Susan K.; Kuenzi, Ashley M.; Arnett, Jorden L.; Santho, Rebecca A.; Agirre, Xabier; Perentesis, John P.; Deininger, Michael W.; Zheng, Yi; Bustelo, Xose R.; Williams, David A.

    2012-01-01

    Despite the introduction of tyrosine kinase inhibitor therapy, the prognosis for p190-BCR-ABL+ acute lymphoblastic leukemia remains poor. In the present study, we present the cellular and molecular roles of the Rho GTPase guanine nucleotide exchange factor Vav in lymphoid leukemogenesis and explore the roles of Vav proteins in BCR-ABL–dependent signaling. We show that genetic deficiency of the guanine nucleotide exchange factor Vav3 delays leukemogenesis by p190-BCR-ABL and phenocopies the effect of Rac2 deficiency, a downstream effector of Vav3. Compensatory up-regulation of expression and activation of Vav3 in Vav1/Vav2–deficient B-cell progenitors increases the transformation ability of p190-BCR-ABL. Vav3 deficiency induces apoptosis of murine and human leukemic lymphoid progenitors, decreases the activation of Rho GTPase family members and p21-activated kinase, and is associated with increased Bad phosphorylation and up-regulation of Bax, Bak, and Bik. Finally, Vav3 activation only partly depends on ABL TK activity, and Vav3 deficiency collaborates with tyrosine kinase inhibitors to inhibit CrkL activation and impair leukemogenesis in vitro and in vivo. We conclude that Vav3 represents a novel specific molecular leukemic effector for multitarget therapy in p190-BCR-ABL–expressng acute lymphoblastic leukemia. PMID:22692505

  11. International reporting scale of BCR-ABL1 fusion transcript in chronic myeloid leukemia: first report from India.

    PubMed

    Balasubramanian, Poonkuzhali; Chendamarai, Ezhilarasi; Markose, Preetha; Fletcher, Linda; Branford, Susan; George, Biju; Mathews, Vikram; Chandy, Mammen; Srivastava, Alok

    2012-01-01

    Achieving a major molecular response (MMR) is an important predictor of progression-free survival in chronic myeloid leukemia patients treated with imatinib. This requires accurate measurement of BCR-ABL1 transcripts normalized to a control gene, as well as defining a level (BCR-ABL1/control gene ratio) that will correlate with sustained clinical response. To make these measurements comparable between laboratories, an international scale (IS) is necessary. A BCR-ABL1/control gene ratio of 0.10% represents MMR in the IS. In collaboration with an international reference laboratory in Adelaide, S.A., Australia, we have established and validated a lab-specific conversion factor for expressing BCR-ABL1 transcript levels in the IS. In this report, we explain the process and steps involved in obtaining a valid lab-specific conversion factor for expressing BCR-ABL1 transcript levels in the IS. Copyright © 2012 S. Karger AG, Basel.

  12. Signal Transducer and Activator of  Transcription (STAT)5 Activation by BCR/ABL Is Dependent on Intact Src Homology (SH)3 and SH2 Domains of BCR/ABL and Is Required for Leukemogenesis

    PubMed Central

    Nieborowska-Skorska, Malgorzata; Wasik, Mariusz A.; Slupianek, Artur; Salomoni, Paolo; Kitamura, Toshio; Calabretta, Bruno; Skorski, Tomasz

    1999-01-01

    Signal transducer and activator of transcription (STAT)5 is constitutively activated in BCR/ ABL-expressing cells, but the mechanisms and functional consequences of such activation are unknown. We show here that BCR/ABL induces phosphorylation and activation of STAT5 by a mechanism that requires the BCR/ABL Src homology (SH)2 domain and the proline-rich binding site of the SH3 domain. Upon expression in 32Dcl3 growth factor–dependent myeloid precursor cells, STAT5 activation–deficient BCR/ABL SH3+SH2 domain mutants functioned as tyrosine kinase and activated Ras, but failed to protect from apoptosis induced by withdrawal of interleukin 3 and/or serum and did not induce leukemia in severe combined immunodeficiency mice. In complementation assays, expression of a dominant-active STAT5B mutant (STAT5B-DAM), but not wild-type STAT5B (STAT5B-WT), in 32Dcl3 cells transfected with STAT5 activation–deficient BCR/ABL SH3+SH2 mutants restored protection from apoptosis, stimulated growth factor–independent cell cycle progression, and rescued the leukemogenic potential in mice. Moreover, expression of a dominant-negative STAT5B mutant (STAT5B-DNM) in 32Dcl3 cells transfected with wild-type BCR/ABL inhibited apoptosis resistance, growth factor–independent proliferation, and the leukemogenic potential of these cells. In retrovirally infected mouse bone marrow cells, expression of STAT5B-DNM inhibited BCR/ABL-dependent transformation. Moreover, STAT5B-DAM, but not STAT5B-WT, markedly enhanced the ability of STAT5 activation–defective BCR/ABL SH3+SH2 mutants to induce growth factor–independent colony formation of primary mouse bone marrow progenitor cells. However, STAT5B-DAM did not rescue the growth factor–independent colony formation of kinase-deficient K1172R BCR/ABL or the triple mutant Y177F+R522L+ Y793F BCR/ABL, both of which also fail to activate STAT5. Together, these data demonstrate that STAT5 activation by BCR/ABL is dependent on signaling from more

  13. The human leukemia oncogene bcr-abl abrogates the anchorage requirement but not the growth factor requirement for proliferation.

    PubMed Central

    Renshaw, M W; McWhirter, J R; Wang, J Y

    1995-01-01

    Proliferation of normal cells in a multicellular organism requires not only growth factors but also the proper attachment to the extracellular matrix. A hallmark of neoplastic transformation is the loss of anchorage dependence which usually accompanies the loss of growth factor requirement. The Bcr-Abl tyrosine kinase of human leukemias is shown here to abrogate only the anchorage, not the growth factor, requirement. Bcr-Abl-transformed cells grow in soft agar but do not proliferate in serum-free media. Bcr-Abl does not activate the mitogenic pathway, as indicated by its inability to induce enhancers such as the serum response element or the tetradecanoyl phorbol acetate response element (TRE). However, Bcr-Abl can alleviate the anchorage requirement for the induction of the TRE enhancer; i.e., it allows serum to activate the TRE in detached cells. This activity is dependent on the association of an active Bcr-Abl tyrosine kinase with the actin filaments. Despite its association with the adapter protein Grb2, Bcr-Abl's effect on the TRE enhancer is not blocked by dominant negative Ras or Raf. The finding that Bcr-Abl tyrosine kinase abrogates only anchorage dependence may have important implications on the pathogenesis of chronic myelogenous leukemia. PMID:7862122

  14. Antileukemia effects of xanthohumol in Bcr/Abl-transformed cells involve nuclear factor-kappaB and p53 modulation.

    PubMed

    Monteghirfo, Stefano; Tosetti, Francesca; Ambrosini, Claudia; Stigliani, Sara; Pozzi, Sarah; Frassoni, Francesco; Fassina, Gianfranco; Soverini, Simona; Albini, Adriana; Ferrari, Nicoletta

    2008-09-01

    The oncogenic Bcr-Abl tyrosine kinase activates various signaling pathways including phosphoinositide 3-kinase/Akt and nuclear factor-kappaB that mediate proliferation, transformation, and apoptosis resistance in Bcr-Abl+ myeloid leukemia cells. The hop flavonoid xanthohumol inhibits tumor growth by targeting the nuclear factor-kappaB and Akt pathways and angiogenesis. Here, we show that xanthohumol has in vitro activity against Bcr-Abl+ cells and clinical samples and retained its cytotoxicity when imatinib mesylate-resistant K562 cells were examined. Xanthohumol inhibition of K562 cell viability was associated with induction of apoptosis, increased p21 and p53 expression, and decreased survivin levels. We show that xanthohumol strongly inhibited Bcr-Abl expression at both mRNA and protein levels and show that xanthohumol caused elevation of intracellular reactive oxygen species and that the antioxidant N-acetylcysteine blunted xanthohumol-induced events. Further, we observed that xanthohumol inhibits leukemia cell invasion, metalloprotease production, and adhesion to endothelial cells, potentially preventing in vivo life-threatening complications of leukostasis and tissue infiltration by leukemic cells. As structural mutations and/or gene amplification in Bcr-Abl can circumvent an otherwise potent anticancer drug such as imatinib, targeting Bcr-Abl expression as well as its kinase activity could be a novel additional therapeutic approach for the treatment of Bcr-Abl+ myeloid leukemia.

  15. p210 Bcr-Abl confers overexpression of inosine monophosphate dehydrogenase : an intrinsic pathway to drug resistance mediated by oncogene.

    SciTech Connect

    Gharehbaghi, K.; Burgess, G. S.; Collart, F. R.; Litz-Jackson, S.; Huberman, E.; Jayaram, H. N.; Boswell, H. S.; Center for Mechanistic Biology and Biotechnology; Lab. for Experimental Oncology; Indiana Univ. School of Medicine

    1994-01-01

    The p210 bcr-abl fusion protein tyrosine kinase oncogene has been implicated in the pathogenesis of chronic granulocytic leukemia (CGL). Specific intracellular functions performed by p210 bcr-abl have recently been delineated. We considered the possibility that p210 bcr-abl may also regulate the abundance of inosine 5'-monophosphate dehydrogenase (IMPDH) which is a rate-limiting enzyme for de novo guanylate synthesis. We performed studies of the inhibition of IMPDH by tiazofurin, which acts as a competitive inhibitor through its active species that mimics nicotinamide adenine dinucleotide (NAD), i.e. thiazole-4-carboxamide adenine dinucleotide (TAD). The mean inhibitory concentration (IC50) of tiazofurin for cellular proliferation inhibition was 2.3-2.8-fold greater in cells expressing p210 bcr-abl than in their corresponding parent cells proliferating under the influence of growth factors or in growth factor-independent derivative cells not expressing detectable p210 bcr-abl. IMPDH activity was 1.5-2.3-fold greater within cells expressing p210 bcr-abl than in their parent cells. This increase in enzyme activity was a result of 2-fold increased IMPDH protein as determined by immunoblotting. In addition, an increase in the Km value for NAD utilization by IMPDH was observed in p210 bcr-abl transformed cells, but this increase was within the range of resident NAD concentrations observed in the cells. Increased IMPDH protein in p210 bcr-abl transformed cells was traced to an increased level of IMP dehydrogenase II messenger RNA. Thus, regulation of IMPDH gene expression is mediated at least in part by the bcr-abl gene product and may therefore be indicative of a specific mechanism of intrinsic resistance to tiazofurin.

  16. Hematopoietic stem cell involvement in BCR-ABL1-positive ALL as potential mechanism of resistance to blinatumomab therapy.

    PubMed

    Nagel, Inga; Bartels, Marius; Duell, Johannes; Oberg, Hans-Heinrich; Ussat, Sandra; Bruckmueller, Henrike; Ottmann, Oliver; Pfeifer, Heike; Trautmann, Heiko; Gökbuget, Nicola; Caliebe, Almuth; Kabelitz, Dieter; Kneba, Michael; Horst, Heinz-August; Hoelzer, Dieter; Topp, Max S; Cascorbi, Ingolf; Siebert, Reiner; Brüggemann, Monika

    2017-08-21

    The bispecific T-cell engager blinatumomab targeting CD19 can induce complete remission in relapsed or refractory B-cell precursor acute lymphoblastic leukemia (BCP-ALL). However, some patients ultimately relapse with loss of CD19-antigen on leukemic cells which has been established as a novel escape mechanism to CD19-specific immunotherapies. Here, we provide evidence that CD19-negative relapse after CD19-directed therapy in BCP-ALL may be due to selection of preexisting CD19-negative malignant progenitor cells. We present two BCR-ABL1-fusion-positive BCP-ALL patients with CD19-negative myeloid lineage relapse after blinatumomab therapy and show BCR-ABL1-positivity in their hematopoietic stem cell (HSC)/progenitor/myeloid compartments at initial diagnosis by fluorescence in situ hybridization after cell sorting. Using the same approach in 25 additional diagnostic samples of patients with BCR-ABL1-positive BCP-ALL, HSC involvement was identified in 40% of the patients. Patients with major-BCR-ABL1 transcript encoding P210(BCR-ABL1) mainly showed HSC involvement (6/8), whereas in most of the patients with minor-BCR-ABL1 transcript encoding P190(BCR-ABL1) only the CD19-positive leukemia compartments were BCR-ABL1-positive (9/12) (p=0.02). Our data are of clinical importance, because they indicate that not only CD19-positive cells, but also CD19-negative precursors should be targeted to avoid CD19-negative relapses in patients with BCR-ABL1-positive ALL. Copyright © 2017 American Society of Hematology.

  17. Factors influencing the false positive and negative rates of BCR-ABL fluorescence in situ hybridization.

    PubMed

    Chase, A; Grand, F; Zhang, J G; Blackett, N; Goldman, J; Gordon, M

    1997-04-01

    BCR-ABL fluorescence in situ hybridization has a useful role to play in experimental and clinical investigations of chronic myeloid leukaemia. However, the interpretation of results is complicated by variability in the false positive rate (FPR) and false negative rate (FNR). We therefore examined the effects on FNR and FPR of three factors, namely, the criteria used for defining a fusion signal, nucleus size, and the genomic position of the ABL breakpoint. We established two different criteria for BCR-ABL positivity: by criterion A cells were scored as positive when BCR and ABL signals were overlapping or touching and by criterion B cells were positive if they satisfied criterion A or if the signals were separated by up to one signal diameter. We measured nucleus size and Philadelphia (Ph) positivity in 573 cells from normal persons and 787 cells from the Ph+ SD-1 cell line and related results to FNRs and FPRs. We also assessed the FNR in Ph+ CFU-GM colonies from five patients with different ABL breakpoints. We showed that each of these factors influenced the FNR and FPR. The less strict criterion (B) for Ph positivity increased the FPR but reduced the FNR, the FPR increased as the nucleus size decreased, and the FNR was greatest in CML cells with a 5' ABL breakpoint. We conclude that these factors should be considered when evaluating the results of FISH studies to detect the BCR-ABL fusion gene and that analogous factors may influence results of FISH studies directed at other fusion genes.

  18. The impact of multiple low-level BCR-ABL1 mutations on response to ponatinib

    PubMed Central

    Yeung, David T. O.; Yeoman, Alexandra L.; Altamura, Haley K.; Jamison, Bronte A.; Field, Chani R.; Hodgson, J. Graeme; Lustgarten, Stephanie; Rivera, Victor M.; Hughes, Timothy P.; Branford, Susan

    2016-01-01

    The third-generation tyrosine kinase inhibitor (TKI) ponatinib shows activity against all common BCR-ABL1 single mutants, including the highly resistant BCR-ABL1-T315I mutant, improving outcome for patients with refractory chronic myeloid leukemia (CML). However, responses are variable, and causal baseline factors have not been well-studied. The type and number of low-level BCR-ABL1 mutations present after imatinib resistance has prognostic significance for subsequent treatment with nilotinib or dasatinib as second-line therapy. We therefore investigated the impact of low-level mutations detected by sensitive mass-spectrometry before ponatinib initiation (baseline) on treatment response in 363 TKI-resistant patients enrolled in the PONATINIB for Chronic Myeloid Leukemia Evaluation and Ph+ Acute Lymphoblastic Leukemia trial, including 231 patients in chronic phase (CP-CML). Low-level mutations were detected in 53 patients (15%, including low-level T315I in 14 patients); most, however, did not undergo clonal expansion during ponatinib treatment and, moreover, no specific individual mutations were associated with inferior outcome. We demonstrate however, that the number of mutations detectable by mass spectrometry after TKI resistance is associated with response to ponatinib treatment and could be used to refine the therapeutic approach. Although CP-CML patients with T315I (63/231, 27%) had superior responses overall, those with multiple mutations detectable by mass spectrometry (20, 32%) had substantially inferior responses compared with those with T315I as the sole mutation detected (43, 68%). In contrast, for CP-CML patients without T315I, the inferior responses previously observed with nilotinib/dasatinib therapy for imatinib-resistant patients with multiple mutations were not seen with ponatinib treatment, suggesting that ponatinib may prove to be particularly advantageous for patients with multiple mutations detectable by mass spectrometry after TKI resistance

  19. Biodegradable charged polyester-based vectors (BCPVs) as an efficient non-viral transfection nanoagent for gene knockdown of the BCR-ABL hybrid oncogene in a human chronic myeloid leukemia cell line

    NASA Astrophysics Data System (ADS)

    Yang, Chengbin; Panwar, Nishtha; Wang, Yucheng; Zhang, Butian; Liu, Maixian; Toh, Huiting; Yoon, Ho Sup; Tjin, Swee Chuan; Chong, Peter Han Joo; Law, Wing-Cheung; Chen, Chih-Kuang; Yong, Ken-Tye

    2016-04-01

    First-line therapy of chronic myelogenous leukemia (CML) has always involved the use of BCR-ABL tyrosine-kinase inhibitors which is associated with an abnormal chromosome called Philadelphia chromosome. Although the overall survival rate has been improved by the current therapeutic regime, the presence of resistance has resulted in limited efficacy. In this study, an RNA interference (RNAi)-based therapeutic regime is proposed with the aim to knockdown the BCR-ABL hybrid oncogene using small interfering RNA (siRNA). The siRNA transfection rates have usually been limited due to the declining contact probability among polyplexes and the non-adherent nature of leukemic cells. Our work aims at addressing this limitation by using a biodegradable charged polyester-based vector (BCPV) as a nanocarrier for the delivery of BCR-ABL-specific siRNA to the suspension culture of a K562 CML cell line. BCR-ABL siRNAs were encapsulated in the BCPVs by electrostatic force. Cell internalization was facilitated by the BCPV and assessed by confocal microscopy and flow cytometry. The regulation of the BCR-ABL level in K562 cells as a result of RNAi was analyzed by real-time polymerase chain reaction (RT-PCR). We observed that BCPV was able to form stable nanoplexes with siRNA molecules, even in the presence of fetal bovine serum (FBS), and successfully assisted in vitro siRNA transfection in the non-adherent K562 cells. As a consequence of downregulation of BCR-ABL, BCPV-siRNA nanoplexes inhibited cell proliferation and promoted cell apoptosis. All results were compared with a commercial transfection reagent, Lipofectamine2000™, which served as a positive control. More importantly, this class of non-viral vector exhibits biodegradable features and negligible cytotoxicity, thus providing a versatile platform to deliver siRNA to non-adherent leukemia cells with high transfection efficiency by effectively overcoming extra- and intra-cellular barriers. Due to the excellent in vitro

  20. Biodegradable charged polyester-based vectors (BCPVs) as an efficient non-viral transfection nanoagent for gene knockdown of the BCR-ABL hybrid oncogene in a human chronic myeloid leukemia cell line.

    PubMed

    Yang, Chengbin; Panwar, Nishtha; Wang, Yucheng; Zhang, Butian; Liu, Maixian; Toh, Huiting; Yoon, Ho Sup; Tjin, Swee Chuan; Chong, Peter Han Joo; Law, Wing-Cheung; Chen, Chih-Kuang; Yong, Ken-Tye

    2016-04-28

    First-line therapy of chronic myelogenous leukemia (CML) has always involved the use of BCR-ABL tyrosine-kinase inhibitors which is associated with an abnormal chromosome called Philadelphia chromosome. Although the overall survival rate has been improved by the current therapeutic regime, the presence of resistance has resulted in limited efficacy. In this study, an RNA interference (RNAi)-based therapeutic regime is proposed with the aim to knockdown the BCR-ABL hybrid oncogene using small interfering RNA (siRNA). The siRNA transfection rates have usually been limited due to the declining contact probability among polyplexes and the non-adherent nature of leukemic cells. Our work aims at addressing this limitation by using a biodegradable charged polyester-based vector (BCPV) as a nanocarrier for the delivery of BCR-ABL-specific siRNA to the suspension culture of a K562 CML cell line. BCR-ABL siRNAs were encapsulated in the BCPVs by electrostatic force. Cell internalization was facilitated by the BCPV and assessed by confocal microscopy and flow cytometry. The regulation of the BCR-ABL level in K562 cells as a result of RNAi was analyzed by real-time polymerase chain reaction (RT-PCR). We observed that BCPV was able to form stable nanoplexes with siRNA molecules, even in the presence of fetal bovine serum (FBS), and successfully assisted in vitro siRNA transfection in the non-adherent K562 cells. As a consequence of downregulation of BCR-ABL, BCPV-siRNA nanoplexes inhibited cell proliferation and promoted cell apoptosis. All results were compared with a commercial transfection reagent, Lipofectamine2000™, which served as a positive control. More importantly, this class of non-viral vector exhibits biodegradable features and negligible cytotoxicity, thus providing a versatile platform to deliver siRNA to non-adherent leukemia cells with high transfection efficiency by effectively overcoming extra- and intra-cellular barriers. Due to the excellent in vitro

  1. Inverse regulation of bridging integrator 1 and BCR-ABL1 in chronic myeloid leukemia.

    PubMed

    Trino, Stefania; De Luca, Luciana; Simeon, Vittorio; Laurenzana, Ilaria; Morano, Annalisa; Caivano, Antonella; La Rocca, Francesco; Pietrantuono, Giuseppe; Bianchino, Gabriella; Grieco, Vitina; Signorino, Elisabetta; Fragasso, Alberto; Bochicchio, Maria Teresa; Venturi, Claudia; Rosti, Gianantonio; Martinelli, Giovanni; Del Vecchio, Luigi; Cilloni, Daniela; Musto, Pellegrino

    2016-01-01

    Endocytosis is the major regulator process of tyrosine kinase receptor (RTK) functional activities. Bridging integrator 1 (BIN1) is a key protein involved in RTK intracellular trafficking. Here, we report, by studying 34 patients with chronic myeloid leukemia (CML) at diagnosis, that BIN1 gene is downregulated in CML as compared to healthy controls, suggesting an altered endocytosis of RTKs. Rab interactor 1 (RIN1), an activator of BIN1, displayed a similar behavior. Treatment of 57 patients by tyrosine kinase inhibitors caused, along with BCR-ABL1 inactivation, an increase of BIN1 and RIN1 expression, potentially restoring endocytosis. There was a significant inverse correlation between BIN1-RIN1 and BCR-ABL1 expression. In vitro experiments on both CML and nontumorigenic cell lines treated with Imatinib confirmed these results. In order to provide another proof in favor of BIN1 and RIN1 endocytosis function in CML, we demonstrated that Imatinib induced, in K562 cell line, BIN1-RIN1 upregulation accompanied by a parallel AXL receptor internalization into cytoplasmic compartment. This study shows a novel deregulated mechanism in CML patients, indicating BIN1 and RIN1 as players in the maintenance of the abnormal RTK signaling in this hematological disease.

  2. Janus kinase 2 mutations in cases with BCR-ABL-negative chronic myeloproliferative disorders from Turkey

    PubMed Central

    Yildiz, Ismail; Yokuş, Osman; Gedik, Habip

    2017-01-01

    Objective: We aimed to investigate the frequency of Janus kinase 2 (JAK2) mutations in cases with chronic myeloproliferative disorders (CMDs), and the relationship between the presence of JAK2 mutation and leukocytosis and splenomegaly, retrospectively. Materials and Methods: Patients, who were diagnosed with BCR-ABL-negative CMDs according to diagnosis criteria of the World Health Organization and followed up at the hematology clinic between 2013 and 2015, were investigated in terms of the frequency of JAK2 mutation in cases with CMDs, and the relationship between the presence of JAK2 mutation and leukocytosis and splenomegaly, retrospectively. Results: In total, 100 patients, who were diagnosed with BCR-ABL-negative CMDs, were evaluated retrospectively. The mean age of the patients with JAK2 positivity was significantly higher compared to patients with negative. JAK2-positivity rates in the age groups were significantly different. Gender, diagnosis, splenomegaly, and leukocytosis were not statistically different for JAK2 positivity between the groups. Conclusion: JAK2 V617F mutation is more commonly seen in older age as a risk for complications related to CDMS. Splenomegaly and leukocytosis are not associated with JAK2 V617F mutation. PMID:28182037

  3. A Cell-Based Assay for Measuring Endogenous BcrAbl Kinase Activity and Inhibitor Resistance

    PubMed Central

    Ouellette, Steven B.; Noel, Brett M.; Parker, Laurie L.

    2016-01-01

    Kinase enzymes are an important class of drug targets, particularly in cancer. Cell-based kinase assays are needed to understand how potential kinase inhibitors act on their targets in a physiologically relevant context. Current cell-based kinase assays rely on antibody-based detection of endogenous substrates, inaccurate disease models, or indirect measurements of drug action. Here we expand on previous work from our lab to introduce a 96-well plate compatible approach for measuring cell-based kinase activity in disease-relevant human chronic myeloid leukemia cell lines using an exogenously added, multi-functional peptide substrate. Our cellular models natively express the BcrAbl oncogene and are either sensitive or have acquired resistance to well-characterized BcrAbl tyrosine kinase inhibitors. This approach measures IC50 values comparable to established methods of assessing drug potency, and its robustness indicates that it can be employed in drug discovery applications. This medium-throughput assay could bridge the gap between single target focused, high-throughput in vitro assays and lower-throughput cell-based follow-up experiments. PMID:27598410

  4. Improved FRET Biosensor for the Measurement of BCR-ABL Activity in Chronic Myeloid Leukemia Cells.

    PubMed

    Horiguchi, Mika; Fujioka, Mari; Kondo, Takeshi; Fujioka, Yoichiro; Li, Xinxin; Horiuchi, Kosui; O Satoh, Aya; Nepal, Prabha; Nishide, Shinya; Nanbo, Asuka; Teshima, Takanori; Ohba, Yusuke

    2017-02-02

    Although the co-development of companion diagnostics with molecular targeted drugs is desirable, truly efficient diagnostics are limited to diseases in which chromosomal translocations or overt mutations are clearly correlated with drug efficacy. Moreover, even for such diseases, few methods are available to predict whether drug administration is effective for each individual patient whose disease is expected to respond to the drug(s). We have previously developed a biosensor based on the principle of Förster resonance energy transfer to measure the activity of the tyrosine kinase BCR-ABL and its response to drug treatment in patient-derived chronic myeloid leukemia cells. The biosensor harbors CrkL, one of the major substrates of BCR-ABL, and is therefore named Pickles after phosphorylation indicator of CrkL en substrate. The efficacy of this technique as a clinical test has been demonstrated, but the number of cells available for analysis is limited in a case-dependent manner, owing to the cleavage of the biosensor in patient-derived leukemia cells. Here, we describe an improved biosensor with an amino acid substitution and a nuclear export signal being introduced. Of the two predicted cleavage positions in CrkL, the mutations inhibited one cleavage completely and the other cleavage partially, thus collectively increasing the number of cells available for drug evaluation. This improved version of the biosensor holds promise in the future development of companion diagnostics to predict responses to tyrosine kinase inhibitors in patients with chronic myeloid leukemia.

  5. A Non-ATP Competitive Inhibitor of BCR-ABL for the Therapy of Imatinib-Resistant Cmls

    DTIC Science & Technology

    2008-05-01

    Network. Further studies are needed to determine the actual cause of Network destruction. STAT3 inhibitor Ursolic acid 16 reduced STAT3 and HSP90...STAT3 were decreased in a dose-dependent manner by Ursolic acid . The disappearance of Bcr-Abl and Jak2 argues that the Network was disrupted as a... Ursolic acid also induces extensive apoptosis induction, as we showed that it induces more than 90% of the Bcr-Abl cells to undergo late state

  6. Gene expression analysis of BCR/ABL1-dependent transcriptional response reveals enrichment for genes involved in negative feedback regulation.

    PubMed

    Håkansson, Petra; Nilsson, Björn; Andersson, Anna; Lassen, Carin; Gullberg, Urban; Fioretos, Thoas

    2008-04-01

    Philadelphia (Ph) chromosome-positive leukemia is characterized by the BCR/ABL1 fusion protein that affects a wide range of signal transduction pathways. The knowledge about its downstream target genes is, however, still quite limited. To identify novel BCR/ABL1-regulated genes we used global gene expression profiling of several Ph-positive and Ph-negative cell lines treated with imatinib. Following imatinib treatment, the Ph-positive cells showed decreased growth, viability, and reduced phosphorylation of BCR/ABL1 and STAT5. In total, 142 genes were identified as being dependent on BCR/ABL1-mediated signaling, mainly including genes involved in signal transduction, e.g. the JAK/STAT, MAPK, TGFB, and insulin signaling pathways, and in regulation of metabolism. Interestingly, BCR/ABL1 was found to activate several genes involved in negative feedback regulation (CISH, SOCS2, SOCS3, PIM1, DUSP6, and TNFAIP3), which may act to indirectly suppress the tumor promoting effects exerted by BCR/ABL1. In addition, several genes identified as deregulated upon BCR/ABL1 expression could be assigned to the TGFB and NFkB signaling pathways, as well as to reflect the metabolic adjustments needed for rapidly growing cells. Apart from providing important pathogenetic insights into BCR/ABL1-mediated leukemogenesis, the present study also provides a number of pathways/individual genes that may provide attractive targets for future development of targeted therapies. This article contains Supplementary Material available at http://www.interscience.wiley.com/jpages/1045-2257/suppmat.

  7. Monoubiquitinated Fanconi anemia D2 (FANCD2-Ub) is required for BCR-ABL1 kinase-induced leukemogenesis.

    PubMed

    Koptyra, M; Stoklosa, T; Hoser, G; Glodkowska-Mrowka, E; Seferynska, I; Klejman, A; Blasiak, J; Skorski, T

    2011-08-01

    Fanconi D2 (FANCD2) is monoubiquitinated on K561 (FANCD2-Ub) in response to DNA double-strand breaks (DSBs) to stimulate repair of these potentially lethal DNA lesions. FANCD2-Ub was upregulated in CD34+ chronic myeloid leukemia (CML) cells and in BCR-ABL1 kinase-positive cell lines in response to elevated levels of reactive oxygen species (ROS) and DNA cross-linking agent mitomycin C. Downregulation of FANCD2 and inhibition of FANCD2-Ub reduced the clonogenic potential of CD34+ CML cells and delayed BCR-ABL1 leukemogenesis in mice. Retarded proliferation of BCR-ABL1 positive FANCD2-/- leukemia cells could be rescued by FANCD2 expression. BCR-ABL1 positive FANCD2-/- cells accumulated more ROS-induced DSBs in comparison with BCR-ABL1 positive FANCD2+/+ cells. Antioxidants diminished the number of DSBs and enhanced proliferation of BCR-ABL1 positive FANCD2-/- cells. Expression of wild-type FANCD2 and FANCD2(S222A) phosphorylation-defective mutant (deficient in stimulation of intra-S phase checkpoint, but proficient in DSB repair), but not FANCD2(K561R) monoubiquitination-defective mutant (proficient in stimulation of intra-S phase checkpoint, but deficient in DSB repair) reduced the number of DSBs and facilitated proliferation of BCR-ABL1 positive FANCD2-/- cells. We hypothesize that FANCD2-Ub has an important role in BCR-ABL1 leukemogenesis because of its ability to facilitate the repair of numerous ROS-induced DSBs.

  8. Monoubiquitinated Fanconi Anemia D2 (FANCD2-Ub) Is Required for BCR-ABL1 Kinase -Induced Leukemogenesis

    PubMed Central

    Koptyra, Mateusz; Stoklosa, Tomasz; Hoser, Grazyna; Glodkowska-Mrowka, Eliza; Seferynska, Ilona; Klejman, Agata; Blasiak, Janusz; Skorski, Tomasz

    2011-01-01

    Fanconi D2 (FANCD2) is monoubiquitinated on K561 (FANCD2-Ub) in response to DNA double-strand breaks (DSBs) to stimulate repair of these potentially lethal DNA lesions. FANCD2-Ub was upregulated in CD34+ chronic myeloid leukemia (CML) cells and in BCR-ABL1 kinase –positive cell lines in response to elevated levels of reactive oxygen species (ROS) and DNA cross-linking agent mitomycin C. Downregulation of FANCD2 and inhibition of FANCD2-Ub reduced the clonogenic potential of CD34+ CML cells and delayed BCR-ABL1 leukemogenesis in mice. Retarded proliferation of BCR-ABL1 -positive FANCD2−/− leukemia cells could be rescued by FANCD2 expression. BCR-ABL1 –positive FANCD2−/− cells accumulated more ROS-induced DSBs in comparison to BCR-ABL1 –positive FANCD2+/+ cells. Antioxidants diminished the number of DSBs and enhanced proliferation of BCR-ABL1 –positive FANCD2−/− cells. Expression of wild-type FANCD2 and FANCD2(S222A) phosphorylation-defective mutant (deficient in stimulation of intra-S phase checkpoint but proficient in DSB repair), but not FANCD2(K561R) monoubiquitination-defective mutant (proficient in stimulation of intra-S phase checkpoint but deficient in DSB repair) reduced the number of DSBs and facilitated proliferation of BCR-ABL1 –positive FANCD2−/− cells. We hypothesize that FANCD2-Ub plays an important role in BCR-ABL1 leukemogenesis due to its ability to facilitate the repair of numerous ROS-induced DSBs. PMID:21519342

  9. Hypoxia-Like Signatures Induced by BCR-ABL Potentially Alter the Glutamine Uptake for Maintaining Oxidative Phosphorylation

    PubMed Central

    Sontakke, Pallavi; Koczula, Katarzyna M.; Jaques, Jennifer; Wierenga, Albertus T. J.; Brouwers-Vos, Annet Z.; Pruis, Maurien; Günther, Ulrich L.; Vellenga, Edo; Schuringa, Jan Jacob

    2016-01-01

    The Warburg effect is probably the most prominent metabolic feature of cancer cells, although little is known about the underlying mechanisms and consequences. Here, we set out to study these features in detail in a number of leukemia backgrounds. The transcriptomes of human CB CD34+ cells transduced with various oncogenes, including BCR-ABL, MLL-AF9, FLT3-ITD, NUP98-HOXA9, STAT5A and KRASG12V were analyzed in detail. Our data indicate that in particular BCR-ABL, KRASG12V and STAT5 could impose hypoxic signaling under normoxic conditions. This coincided with an upregulation of glucose importers SLC2A1/3, hexokinases and HIF1 and 2. NMR-based metabolic profiling was performed in CB CD34+ cells transduced with BCR-ABL versus controls, both cultured under normoxia and hypoxia. Lactate and pyruvate levels were increased in BCR-ABL-expressing cells even under normoxia, coinciding with enhanced glutaminolysis which occurred in an HIF1/2-dependent manner. Expression of the glutamine importer SLC1A5 was increased in BCR-ABL+ cells, coinciding with an increased susceptibility to the glutaminase inhibitor BPTES. Oxygen consumption rates also decreased upon BPTES treatment, indicating a glutamine dependency for oxidative phosphorylation. The current study suggests that BCR-ABL-positive cancer cells make use of enhanced glutamine metabolism to maintain TCA cell cycle activity in glycolytic cells. PMID:27055152

  10. shRNA library screening identifies nucleocytoplasmic transport as a mediator of BCR-ABL1 kinase-independent resistance

    PubMed Central

    Khorashad, Jamshid S.; Eiring, Anna M.; Mason, Clinton C.; Gantz, Kevin C.; Bowler, Amber D.; Redwine, Hannah M.; Yu, Fan; Kraft, Ira L.; Pomicter, Anthony D.; Reynolds, Kimberly R.; Iovino, Anthony J.; Zabriskie, Matthew S.; Heaton, William L.; Tantravahi, Srinivas K.; Kauffman, Michael; Shacham, Sharon; Chenchik, Alex; Bonneau, Kyle; Ullman, Katharine S.; O’Hare, Thomas

    2015-01-01

    The mechanisms underlying tyrosine kinase inhibitor (TKI) resistance in chronic myeloid leukemia (CML) patients lacking explanatory BCR-ABL1 kinase domain mutations are incompletely understood. To identify mechanisms of TKI resistance that are independent of BCR-ABL1 kinase activity, we introduced a lentiviral short hairpin RNA (shRNA) library targeting ∼5000 cell signaling genes into K562R, a CML cell line with BCR-ABL1 kinase-independent TKI resistance expressing exclusively native BCR-ABL1. A customized algorithm identified genes whose shRNA-mediated knockdown markedly impaired growth of K562R cells compared with TKI-sensitive controls. Among the top candidates were 2 components of the nucleocytoplasmic transport complex, RAN and XPO1 (CRM1). shRNA-mediated RAN inhibition or treatment of cells with the XPO1 inhibitor, KPT-330 (Selinexor), increased the imatinib sensitivity of CML cell lines with kinase-independent TKI resistance. Inhibition of either RAN or XPO1 impaired colony formation of CD34+ cells from newly diagnosed and TKI-resistant CML patients in the presence of imatinib, without effects on CD34+ cells from normal cord blood or from a patient harboring the BCR-ABL1T315I mutant. These data implicate RAN in BCR-ABL1 kinase-independent imatinib resistance and show that shRNA library screens are useful to identify alternative pathways critical to drug resistance in CML. PMID:25573989

  11. Bcr-Abl ubiquitination and Usp9x inhibition block kinase signaling and promote CML cell apoptosis.

    PubMed

    Sun, Hanshi; Kapuria, Vaibhav; Peterson, Luke F; Fang, Dexing; Bornmann, William G; Bartholomeusz, Geoffrey; Talpaz, Moshe; Donato, Nicholas J

    2011-03-17

    Although chronic myelogenous leukemia (CML) is effectively controlled by Bcr-Abl kinase inhibitors, resistance to inhibitors, progressive disease, and incomplete eradication of Bcr-Abl-expressing cells are concerns for the long-term control and suppression of this disease. We describe a novel approach to targeting key proteins in CML cells with a ubiquitin-cycle inhibitor, WP1130. Bcr-Abl is rapidly modified with K63-linked ubiquitin polymers in WP1130-treated CML cells, resulting in its accumulation in aggresomes, where is it unable to conduct signal transduction. Induction of apoptosis because of aggresomal compartmentalization of Bcr-Abl was observed in both imatinib-sensitive and -resistant cells. WP1130, but not Bcr-Abl kinase inhibitors, directly inhibits Usp9x deubiquitinase activity, resulting in the down-regulation of the prosurvival protein Mcl-1 and facilitating apoptosis. These results demonstrate that ubiquitin-cycle inhibition represents a novel and effective approach to blocking Bcr-Abl kinase signaling and reducing Mcl-1 levels to engage CML cell apoptosis. This approach may be a therapeutic option for kinase inhibitor-resistant CML patients.

  12. shRNA library screening identifies nucleocytoplasmic transport as a mediator of BCR-ABL1 kinase-independent resistance.

    PubMed

    Khorashad, Jamshid S; Eiring, Anna M; Mason, Clinton C; Gantz, Kevin C; Bowler, Amber D; Redwine, Hannah M; Yu, Fan; Kraft, Ira L; Pomicter, Anthony D; Reynolds, Kimberly R; Iovino, Anthony J; Zabriskie, Matthew S; Heaton, William L; Tantravahi, Srinivas K; Kauffman, Michael; Shacham, Sharon; Chenchik, Alex; Bonneau, Kyle; Ullman, Katharine S; O'Hare, Thomas; Deininger, Michael W

    2015-03-12

    The mechanisms underlying tyrosine kinase inhibitor (TKI) resistance in chronic myeloid leukemia (CML) patients lacking explanatory BCR-ABL1 kinase domain mutations are incompletely understood. To identify mechanisms of TKI resistance that are independent of BCR-ABL1 kinase activity, we introduced a lentiviral short hairpin RNA (shRNA) library targeting ∼5000 cell signaling genes into K562(R), a CML cell line with BCR-ABL1 kinase-independent TKI resistance expressing exclusively native BCR-ABL1. A customized algorithm identified genes whose shRNA-mediated knockdown markedly impaired growth of K562(R) cells compared with TKI-sensitive controls. Among the top candidates were 2 components of the nucleocytoplasmic transport complex, RAN and XPO1 (CRM1). shRNA-mediated RAN inhibition or treatment of cells with the XPO1 inhibitor, KPT-330 (Selinexor), increased the imatinib sensitivity of CML cell lines with kinase-independent TKI resistance. Inhibition of either RAN or XPO1 impaired colony formation of CD34(+) cells from newly diagnosed and TKI-resistant CML patients in the presence of imatinib, without effects on CD34(+) cells from normal cord blood or from a patient harboring the BCR-ABL1(T315I) mutant. These data implicate RAN in BCR-ABL1 kinase-independent imatinib resistance and show that shRNA library screens are useful to identify alternative pathways critical to drug resistance in CML.

  13. Cytoprotective effect of imatinib mesylate in non-BCR-ABL-expressing cells along with autophagosome formation

    SciTech Connect

    Ohtomo, Tadashi; Miyazawa, Keisuke; Naito, Munekazu; Moriya, Shota; Kuroda, Masahiko; Itoh, Masahiro; Tomoda, Akio

    2010-01-01

    Treatment with imatinib mesylate (IM) results in an increased viable cell number of non-BCR-ABL-expressing cell lines by inhibiting spontaneous apoptosis. Electron microscopy revealed an increase of autophagosomes in response to IM. IM attenuated the cytotoxic effect of cytosine arabinoside, as well as inhibiting cell death with serum-deprived culture. Cytoprotection with autophagosome formation by IM was observed in various leukemia and cancer cell lines as well as normal murine embryonic fibroblasts (MEFs). Complete inhibition of autophagy by knockdown of atg5 in the Tet-off atg5{sup -/-} MEF system attenuated the cytoprotective effect of IM, indicating that the effect is partially dependent on autophagy. However, cytoprotection by IM was not mediated through suppression of ROS production via mitophagy, ER stress via ribophagy, or proapoptotic function of ABL kinase. Although the target tyrosine kinase(s) of IM remains unclear, our data provide novel therapeutic possibilities of using IM for cytoprotection.

  14. Modular PROTAC Design for the Degradation of Oncogenic BCR-ABL

    PubMed Central

    Lai, Ashton C.; Toure, Momar; Hellerschmied, Doris; Salami, Jemilat; Jaime-Figueroa, Saul; Ko, Eunhwa; Hines, John

    2016-01-01

    Proteolysis Targeting Chimera (PROTAC) technology is a rapidly emerging alternative therapeutic strategy with the potential to address many of the challenges currently faced in modern drug development programs. PROTAC technology employs small molecules that recruit target proteins for ubiquitination and removal by the proteasome. The synthesis of PROTAC compounds that mediate the degradation of c-ABL and BCR-ABL by recruiting either Cereblon or Von Hippel Lindau E3 ligases is reported. During the course of their development, we discovered that the capacity of a PROTAC to induce degradation involves more than just target binding: the identity of the inhibitor warhead and the recruited E3 ligase largely determine the degradation profiles of the compounds; thus, as a starting point for PROTAC development, both the target ligand and the recruited E3 ligase should be varied to rapidly generate a PROTAC with the desired degradation profile. PMID:26593377

  15. Modular PROTAC Design for the Degradation of Oncogenic BCR-ABL.

    PubMed

    Lai, Ashton C; Toure, Momar; Hellerschmied, Doris; Salami, Jemilat; Jaime-Figueroa, Saul; Ko, Eunhwa; Hines, John; Crews, Craig M

    2016-01-11

    Proteolysis Targeting Chimera (PROTAC) technology is a rapidly emerging alternative therapeutic strategy with the potential to address many of the challenges currently faced in modern drug development programs. PROTAC technology employs small molecules that recruit target proteins for ubiquitination and removal by the proteasome. The synthesis of PROTAC compounds that mediate the degradation of c-ABL and BCR-ABL by recruiting either Cereblon or Von Hippel Lindau E3 ligases is reported. During the course of their development, we discovered that the capacity of a PROTAC to induce degradation involves more than just target binding: the identity of the inhibitor warhead and the recruited E3 ligase largely determine the degradation profiles of the compounds; thus, as a starting point for PROTAC development, both the target ligand and the recruited E3 ligase should be varied to rapidly generate a PROTAC with the desired degradation profile.

  16. A long noncoding RNA critically regulates Bcr-Abl-mediated cellular transformation by acting as a competitive endogenous RNA.

    PubMed

    Guo, G; Kang, Q; Zhu, X; Chen, Q; Wang, X; Chen, Y; Ouyang, J; Zhang, L; Tan, H; Chen, R; Huang, S; Chen, J-L

    2015-04-02

    Aberrant expression of long noncoding RNAs (lncRNAs) is associated with various human cancers. However, the role of lncRNAs in Bcr-Abl-mediated chronic myeloid leukemia (CML) is unknown. In this study, we performed a comprehensive analysis of lncRNAs in human CML cells using an lncRNA cDNA microarray and identified an lncRNA termed lncRNA-BGL3 that acted as a key regulator of Bcr-Abl-mediated cellular transformation. Notably, we observed that lncRNA-BGL3 was highly induced in response to disruption of Bcr-Abl expression or by inhibiting Bcr-Abl kinase activity in K562 cells and leukemic cells derived from CML patients. Ectopic expression of lncRNA-BGL3 sensitized leukemic cells to undergo apoptosis and inhibited Bcr-Abl-induced tumorigenesis. Furthermore, transgenic (TG) mice expressing lncRNA-BGL3 were generated. We found that TG expression of lncRNA-BGL3 alone in mice was sufficient to impair primary bone marrow transformation by Bcr-Abl. Interestingly, we identified that lncRNA-BGL3 was a target of miR-17, miR-93, miR-20a, miR-20b, miR-106a and miR-106b, microRNAs that repress mRNA of phosphatase and tensin homolog (PTEN). Further experiments demonstrated that lncRNA-BGL3 functioned as a competitive endogenous RNA for binding these microRNAs to cross-regulate PTEN expression. Additionally, our experiments have begun to address the mechanism of how lncRNA-BGL3 is regulated in the leukemic cells and showed that Bcr-Abl repressed lncRNA-BGL3 expression through c-Myc-dependent DNA methylation. Taken together, these results reveal that Bcr-Abl-mediated cellular transformation critically requires silence of tumor-suppressor lncRNA-BGL3 and suggest a potential strategy for the treatment of Bcr-Abl-positive leukemia.

  17. Targeting wild-type and T315I Bcr-Abl by combining allosteric with ATP-site inhibitors

    PubMed Central

    Zhang, Jianming; Adrián, Francisco J.; Jahnke, Wolfgang; Cowan-Jacob, Sandra W.; Li, Allen G.; Iacob, Roxana E.; Sim, Taebo; Powers, John; Dierks, Christine; Sun, Fangxian; Guo, Gui-Rong; Ding, Qiang; Okram, Barun; Choi, Yongmun; Wojciechowski, Amy; Deng, Xianming; Liu, Guoxun; Fendrich, Gabriele; Strauss, Andre; Vajpai, Navratna; Grzesiek, Stephan; Tuntland, Tove; Liu, Yi; Bursulaya, Badry; Azam, Mohammad; Manley, Paul W.; Engen, John R.; Daley, George Q.; Warmuth, Markus; Gray, Nathanael S.

    2010-01-01

    SUMMARY In an effort to find new pharmacological modalities to overcome resistance to ATP-site inhibitors of Bcr-Abl, we recently reported the discovery of GNF-2, a selective allosteric Bcr-Abl inhibitor. Here, using solution NMR, X-ray crystallography, mutagenesis and hydrogen exchange mass spectrometry we demonstrate that GNF-2 binds to the myristate binding site of Abl, leading to changes in the structural dynamics of the ATP-binding site. GNF-5, an analog of GNF-2 having improved pharmacokinetic properties, when utilized in combination with the ATP-competitive inhibitors imatinib or nilotinib, suppressed the emergence of resistance mutations in vitro, displayed additive inhibitory activity in biochemical and cellular assays against T315I Bcr-Abl and displayed in vivo efficacy against the recalcitrant T315I Bcr-Abl mutant in a murine bone-marrow transplantation model. These results demonstrate that therapeutically relevant inhibition of Bcr-Abl activity can be achieved using inhibitors that bind to the myristate binding site and that combining allosteric and ATP-competitive inhibitors can overcome resistance to either agent alone. PMID:20072125

  18. Direct in situ rt-PCR.

    PubMed

    Lossi, Laura; Gambino, Graziana; Salio, Chiara; Merighi, Adalberto

    2011-01-01

    In situ polymerase chain reaction (PCR) is a histological technique that exploits the advantages of PCR for detection of mRNA directly in tissue sections. It somehow conjugates together PCR and in situ hybridization that is more traditionally employed for mRNA localization in cell organelles, intact cells, or tissue sections. This chapter describes the application of in situ PCR for neuropeptide mRNA localization. We provide here a detailed protocol for direct in situ reverse transcription (RT) PCR (RT-PCR) with nonradioactive probes after fixation and paraffin embedding or cryosectioning. Digoxigenin-labeled nucleotides (digoxigenin-11-dUTP) are incorporated in the PCR product after RT and subsequently detected with an anti-digoxigenin antibody conjugated with alkaline phosphatase. The procedure can be modified for use with fluorescent probes and employed in combination with enzyme/fluorescence immunocytochemical labeling.

  19. Rt-PCR method for diagnosis and follow-up of hematological malignancies: first approach in Bangladesh.

    PubMed

    Sultana, Tanvira Afroze; Abdul Mottalib, Md; Islam, Sirazul; Khan, Mohiuddin Ahmed; Choudhury, Subhagata

    2008-04-01

    Nested reverse-transcriptase polymerase chain reaction (rt-PCR) was performed on 58 leukemia patients at BIRDEM Laboratory, as a pioneering work in Bangladesh. Thirty of themwere examined for the presence of BCR-ABL being clinically and morphologically diagnosed as chronic myeloid leukemia (CML) and 28 for PML-RARalpha fusion transcripts being clinically and morphologically diagnosed as acute promyelocytic leukemia (APL/ AML M3). The cases were selected for targeted therapy with imatinib mesylate and all-Trans retinoic acid (ATRA) to treat CML and APL respectively. Samples were received either before commencement or during therapy. In the positive cases, amplified DNA products were visible after gel electrophoresis and were reported accordingly. In case of BCR-ABL, positive results were found for five out of six (83.33%) untreated cases and 11 out of 24 (45.83%) treated cases. Positive results for PML-RARalpha were found for 12 out of 14 (85.70%) untreated cases and 11 out of 16 (68.75%) treated cases. A strong positive correlation was found between duration of treatment and negativity of PCR results in both the cases. In present times, the detection of minimal residual disease in patients undergoing treatment for hematological malignancies has become an important goal, not only to monitor the effectiveness of therapy but also to detect an impending relapse. This is the first time in Bangladesh that rt-PCR method is being employed to detect or monitor the presence of abnormal fusion genes in hematological malignancies.

  20. Expression of BCR-ABL1 oncogene relative to ABL1 gene changes overtime in chronic myeloid leukemia

    SciTech Connect

    Gupta, Manu; Milani, Lili; Hermansson, Monica; Simonsson, Bengt; Markevaern, Berit; Syvaenen, Ann Christine; Barbany, Gisela

    2008-02-15

    Using a quantitative single nucleotide polymorphism (SNP) assay we have investigated the changes in the expression of the BCR-ABL1 oncogene relative to the wild-type ABL1 and BCR alleles in cells from chronic myeloid leukemia (CML) patients not responding to therapy. The results show a progressive increase in the BCR-ABL1 oncogene expression at the expense of decreased expression of the ABL1 allele, not involved in the fusion. No relative changes in the expression of the two BCR alleles were found. These results demonstrate that allele-specific changes in gene expression, with selective, progressive silencing of the wild-type ABL1 allele in favor of the oncogenic BCR-ABL1 allele occur in CML patients with therapy-resistant disease.

  1. The targetable role of herpes virus-associated ubiquitin-specific protease (HAUSP) in p190 BCR-ABL leukemia

    PubMed Central

    Carrà, Giovanna; Panuzzo, Cristina; Crivellaro, Sabrina; Morena, Deborah; Taulli, Riccardo; Guerrasio, Angelo; Saglio, Giuseppe; Morotti, Alessandro

    2016-01-01

    Philadelphia chromosome-positive (Ph+) acute lymphoblastic leukemia (ALL) is driven by the p190 breakpoint cluster region (BCR)-ABL isoform. Although effectively targeted by BCR-ABL tyrosine kinase inhibitors (TKIs), ALL is associated with a less effective response to TKIs compared with chronic myeloid leukemia. Therefore, the identification of additional genes required for ALL maintenance may provide possible therapeutic targets to aid the eradication of this cancer. The present study demonstrated that p190 BCR-ABL is able to interact with the deubiquitinase herpesvirus-associated ubiquitin-specific protease (HAUSP), which in turn affects p53 protein stability. Notably, the inhibition of HAUSP with small molecule inhibitors promoted the upregulation of p53 protein levels. These results suggest that HAUSP inhibitors may harbor clinically relevant implications in the treatment of Ph+ ALL. PMID:27899971

  2. Recent developments in the third generation inhibitors of Bcr-Abl for overriding T315I mutation.

    PubMed

    Lu, X Y; Cai, Q; Ding, K

    2011-01-01

    In the treatment of chronic myeloid leukemia (CML) with Bcr-Abl kinase inhibitors, the T315I gatekeeper mutant has emerged as resistant to all currently approved agents, such as imatinib, nilotinib and dasatinib, by discrupting important contact interactions between the inhibitors and the enzyme. To overcome this particular resistance, several different strategies have been explored and many molecules have been investigated as capable of potently inhibiting Bcr-Abl T315I. Herein, this review reports on some predominant examples of third generation inhibitors of Bcr-Abl active against the T315I mutation, and special attentions are paid to the "hybrid-design" strategy for creating type-II class ATP-competitive inhibitors.

  3. BCR-ABL mutations in chronic myeloid leukemia treated with tyrosine kinase inhibitors and impact on survival.

    PubMed

    Pagnano, Katia Borgia Barbosa; Bendit, Israel; Boquimpani, Carla; De Souza, Carmino Antonio; Miranda, Eliana C M; Zalcberg, Ilana; Larripa, Irene; Nardinelli, Luciana; Silveira, Rosana Antunes; Fogliatto, Laura; Spector, Nelson; Funke, Vaneuza; Pasquini, Ricardo; Hungria, Vania; Chiattone, Carlos Sérgio; Clementino, Nelma; Conchon, Monika; Moiraghi, Elena Beatriz; Lopez, Jose Luis; Pavlovsky, Carolina; Pavlovsky, Miguel A; Cervera, Eduardo E; Meillon, Luis Antonio; Simões, Belinda; Hamerschlak, Nelson; Bozzano, Alicia Helena Magarinos; Mayta, Ernesto; Cortes, Jorge; Bengió, Raquel M

    2015-01-01

    This is the largest Latin American study of BCR-ABL mutations in chronic myeloid leukemia (CML) patients, resistant to imatinib (IM). In 195/467 (41%) patients, mutations were detected. The most frequent mutation was T315I (n = 31, 16%). Progression-free (PFS) and overall survival (OS) at 5 years were lower in patients with BCR-ABL mutations (43% vs. 65%, p = 0.07 and 47% vs. 72%, p = 0.03, respectively) and in those with the T315I mutation (p = 0.003 and p = 0.03). OS and PFS were superior in subgroup who switched to second generation inhibitors (SGIs) after IM failure (OS: 50% vs. 39% p = 0.01; PFS: 48% vs. 30% p = 0.02). BCR-ABL mutations conferred a significant poor prognosis in CML patients.

  4. BCR/ABL can promote CD19+ cell growth but not render them long-term stemness

    PubMed Central

    Li, Donghe; Zhao, Xuemei; Zhang, Ruihong; Jiao, Bo

    2016-01-01

    Background Cancer stem cells are a subpopulation of malignant cells that have the capacity of both self-renewal and reconstitution of the cancer. Eradication of cancer stem cells is crucial for curing the malignant disease. Previous studies in hematopoietic malignancies showed that leukemia stem cells (LSCs) in chronic myelogenous leukemia (CML) chronic phase are originated from a hematopoietic stem cell (HSC), while LSCs in acute myeloid leukemia (AML) can either be derived from HSCs or be transformed from myeloid progenitors. But in B-cell acute lymphoblastic leukemia (B-ALL), the origin of leukemia stem cells is not clear. In this study, we tested whether BCR/ABL could transform B-lineage committed CD19+ cells to LSCs. Methods The B-cell lymphoblastic leukemia mouse model was generated by transplanting BCR/ABL-containing retrovirus infected bone marrow (BM) cells or CD19+ cells into recipient mice. In the secondary or tertiary transplantation experiment, the GFP+ cells (leukemic cells) were isolated from primary or secondary B-ALL mice. In addition, the frequency of leukemia stem cells was determined by limited dilution assay. Results We found that transducing BCR/ABL in CD19+ cells can promote their colony formation in vitro and induce B-ALL like disease in vivo. However, only BCR/ABL transduced whole BM cells can be transplanted multiple times in recipient mice, and the frequency of long-term LSCs from the latter ranges from 1/135 to 1/629. Conclusions These studies suggest that BCR/ABL is unable to confer the long-term stemness to committed B-lymphoid progenitors and imply that CD19 chimeric antigen receptor (CAR) modified T cell therapy may not be effective in eradicating LSCs in BCR/ABL+ B-ALL. PMID:28066787

  5. Molecular monitoring of the treatment of patients with BCR/ABL (+) chronic myelogenous leukemia.

    PubMed

    Ruiz-Argüelles, G J; López-Martínez, B; Ramírez-Cabrera, J M; Reyes-Núñez, V; Rodríguez-Cedeño, H M; Garcés-Eisele, J

    2001-01-01

    The molecular follow-up of patients with chronic myelogenous leukemia (CML) has been described as useful in other countries, but there are not data reported in Mexico. All patients studied at Laboratories Clínicos de Puebla/Centro de Hematología y Medicina Interna de Puebla in which the BCR-ABL hybrid gene was identified by means of polymerase chain reaction were analyzed. In 22 individuals the molecular marker of the disease was studied at diagnosis and in different instances afterwards; these patients were treated with chemotherapy, interferon, autologous or allogeneic bone marrow transplantation. Only the six patients that were allografted from HLA-identical siblings cleared the molecular marker of the disease; the rest of them did not achieve molecular remissions. The median survival (SV) of the whole group has not been reached, whereas the 53-month SV is 68%. One of the allografted patients died as a result of complications of graft versus-host disease. We have found useful the molecular monitoring of the treatment of patients with CML. Using this approach, we found that molecular remissions can be accomplished only with allografting; however, other therapeutic approaches may also result in long-lasting hematologic remissions.

  6. Activation-induced cytidine deaminase accelerates clonal evolution in BCR-ABL1-driven B cell lineage acute lymphoblastic leukemia

    PubMed Central

    Gruber, Tanja Andrea; Chang, Mi Sook; Sposto, Richard; Müschen, Markus

    2010-01-01

    Activation-Induced Cytidine Deaminase (AID) is required for somatic hypermutation and immunoglobulin (Ig) class switch recombination in germinal center B cells. Occasionally, AID can target non-Ig genes and thereby promote GC B cell lymphomagenesis. We recently demonstrated that the oncogenic BCR-ABL1 kinase induces aberrant expression of AID in pre-B acute lymphoblastic leukemia (ALL) and lymphoid CML blast crisis. To elucidate the biological significance of aberrant AID expression, we studied loss of AID function in a murine model of BCR-ABL1 ALL. Mice transplanted with BCR-ABL1-transduced AID-/- bone marrow had prolonged survival as compared to mice transplanted with leukemia cells generated from AID+/+ bone marrow. Consistent with a causative role of AID in genetic instability, AID-/- leukemia had a lower frequency of amplifications, deletions and a lower frequency of mutations in non-Ig genes including Pax5 and Rhoh as compared to AID+/+ leukemias. AID-/- and AID+/+ ALL cells showed a markedly distinct gene expression pattern and AID-/- ALL cells failed to downregulate a number of tumor suppressor genes including Rhoh, Cdkn1a (p21), and Blnk (SLP65). We conclude that AID accelerates clonal evolution in BCR-ABL1 ALL by enhancing genetic instability, aberrant somatic hypermutation, and by negative regulation of tumor suppressor genes. PMID:20876806

  7. FoxO Tumor Suppressors and BCR-ABL-Induced Leukemia: A Matter of Evasion of Apoptosis

    PubMed Central

    Jagani, Zainab; Singh, Amrik; Khosravi-Far, Roya

    2008-01-01

    Numerous studies have revealed that the BCR-ABL oncoprotein abnormally engages a multitude of signaling pathways, some of which may be important for its leukemogenic properties. Central to this has been the determination that the tyrosine kinase function of BCR-ABL is mainly responsible for its transforming potential, and can be targeted with small molecule inhibitors, such as imatinib mesylate (Gleevec, STI-571). Despite this apparent success, the development of clinical resistance to imatinib therapy, and the inability of imatinib to eradicate BCR-ABL-positive malignant hematopoietic progenitors demand detailed investigations of additional effector pathways that can be targeted for CML treatment. The promotion of cellular survival via the suppression of apoptotic pathways is a fundamental characteristic of tumor cells that enables resistance to anti-cancer therapies. As substrates of survival kinases such as Akt, the FoxO family of transcription factors, particularly FoxO3a, has emerged as playing an important role in the cell cycle arrest and apoptosis of hematopoietic cells. This review will discuss our current understanding of BCR-ABL signaling with a focus on apoptotic suppressive mechanisms and alternative approaches to CML therapy, as well as the potential for FoxO transcription factors as novel therapeutic targets. PMID:17980712

  8. Development and evaluation of a secondary reference panel for BCR-ABL1 quantification on the International Scale

    PubMed Central

    Cross, N C P; White, H E; Ernst, T; Welden, L; Dietz, C; Saglio, G; Mahon, F-X; Wong, C C; Zheng, D; Wong, S; Wang, S-S; Akiki, S; Albano, F; Andrikovics, H; Anwar, J; Balatzenko, G; Bendit, I; Beveridge, J; Boeckx, N; Cerveira, N; Cheng, S-M; Colomer, D; Czurda, S; Daraio, F; Dulucq, S; Eggen, L; El Housni, H; Gerrard, G; Gniot, M; Izzo, B; Jacquin, D; Janssen, J J W M; Jeromin, S; Jurcek, T; Kim, D-W; Machova-Polakova, K; Martinez-Lopez, J; McBean, M; Mesanovic, S; Mitterbauer-Hohendanner, G; Mobtaker, H; Mozziconacci, M-J; Pajič, T; Pallisgaard, N; Panagiotidis, P; Press, R D; Qin, Y-Z; Radich, J; Sacha, T; Touloumenidou, T; Waits, P; Wilkinson, E; Zadro, R; Müller, M C; Hochhaus, A; Branford, S

    2016-01-01

    Molecular monitoring of chronic myeloid leukemia patients using robust BCR-ABL1 tests standardized to the International Scale (IS) is key to proper disease management, especially when treatment cessation is considered. Most laboratories currently use a time-consuming sample exchange process with reference laboratories for IS calibration. A World Health Organization (WHO) BCR-ABL1 reference panel was developed (MR1–MR4), but access to the material is limited. In this study, we describe the development of the first cell-based secondary reference panel that is traceable to and faithfully replicates the WHO panel, with an additional MR4.5 level. The secondary panel was calibrated to IS using digital PCR with ABL1, BCR and GUSB as reference genes and evaluated by 44 laboratories worldwide. Interestingly, we found that >40% of BCR-ABL1 assays showed signs of inadequate optimization such as poor linearity and suboptimal PCR efficiency. Nonetheless, when optimized sample inputs were used, >60% demonstrated satisfactory IS accuracy, precision and/or MR4.5 sensitivity, and 58% obtained IS conversion factors from the secondary reference concordant with their current values. Correlation analysis indicated no significant alterations in %BCR-ABL1 results caused by different assay configurations. More assays achieved good precision and/or sensitivity than IS accuracy, indicating the need for better IS calibration mechanisms. PMID:27109508

  9. Growth Arrest of BCR-ABL Positive Cells with a Sequence-Specific Polyamide-Chlorambucil Conjugate

    PubMed Central

    Chou, C. James; O'Hare, Thomas; Lefebvre, Sophie; Alvarez, David; Tyner, Jeffrey W.; Eide, Christopher A.; Druker, Brian J.; Gottesfeld, Joel M.

    2008-01-01

    Chronic myeloid leukemia (CML) is characterized by the presence of a constitutively active Abl kinase, which is the product of a chimeric BCR-ABL gene, caused by the genetic translocation known as the Philadelphia chromosome. Imatinib, a selective inhibitor of the Bcr-Abl tyrosine kinase, has significantly improved the clinical outcome of patients with CML. However, subsets of patients lose their response to treatment through the emergence of imatinib-resistant cells, and imatinib treatment is less durable for patients with late stage CML. Although alternative Bcr-Abl tyrosine kinase inhibitors have been developed to overcome drug resistance, a cocktail therapy of different kinase inhibitors and additional chemotherapeutics may be needed for complete remission of CML in some cases. Chlorambucil has been used for treatment of B cell chronic lymphocytic leukemia, non-Hodgkin's and Hodgkin's disease. Here we report that a DNA sequence-specific pyrrole-imidazole polyamide-chlorambucil conjugate, 1R-Chl, causes growth arrest of cells harboring both unmutated BCR-ABL and three imatinib resistant strains. 1R-Chl also displays selective toxicities against activated lymphocytes and a high dose tolerance in a murine model. PMID:18974832

  10. Flow Cytometric Measurement of Blood Cells with BCR-ABL1 Fusion Protein in Chronic Myeloid Leukemia.

    PubMed

    Löf, Liza; Arngården, Linda; Olsson-Strömberg, Ulla; Siart, Benjamin; Jansson, Mattias; Dahlin, Joakim S; Thörn, Ingrid; Christiansson, Lisa; Hermansson, Monica; Larsson, Anders; Ahlstrand, Erik; Wålinder, Göran; Söderberg, Ola; Rosenquist, Richard; Landegren, Ulf; Kamali-Moghaddam, Masood

    2017-04-04

    Chronic myeloid leukemia (CML) is characterized in the majority of cases by a t(9;22)(q34;q11) translocation, also called the Philadelphia chromosome, giving rise to the BCR-ABL1 fusion protein. Current treatment with tyrosine kinase inhibitors is directed against the constitutively active ABL1 domain of the fusion protein, and minimal residual disease (MRD) after therapy is monitored by real-time quantitative PCR (RQ-PCR) of the fusion transcript. Here, we describe a novel approach to detect and enumerate cells positive for the BCR-ABL1 fusion protein by combining the in situ proximity ligation assay with flow cytometry as readout (PLA-flow). By targeting of the BCR and ABL1 parts of the fusion protein with one antibody each, and creating strong fluorescent signals through rolling circle amplification, PLA-flow allowed sensitive detection of cells positive for the BCR-ABL1 fusion at frequencies as low as one in 10,000. Importantly, the flow cytometric results correlated strongly to those of RQ-PCR, both in diagnostic testing and for MRD measurements over time. In summary, we believe this flow cytometry-based method can serve as an attractive approach for routine measurement of cells harboring BCR-ABL1 fusions, also allowing simultaneously assessment of other cell surface markers as well as sensitive longitudinal follow-up.

  11. WT1-mediated repression of the proapoptotic transcription factor ZNF224 is triggered by the BCR-ABL oncogene

    PubMed Central

    Montano, Giorgia; Vidovic, Karina; Palladino, Chiara; Cesaro, Elena; Sodaro, Gaetano; Quintarelli, Concetta; De Angelis, Biagio; Errichiello, Santa; Pane, Fabrizio; Izzo, Paola; Grosso, Michela; Gullberg, Urban; Costanzo, Paola

    2015-01-01

    The Kruppel-like protein ZNF224 is a co-factor of the Wilms’ tumor 1 protein, WT1. We have previously shown that ZNF224 exerts a specific proapoptotic role in chronic myelogenous leukemia (CML) K562 cells and contributes to cytosine arabinoside-induced apoptosis, by modulating WT1-dependent transcription of apoptotic genes. Here we demonstrate that ZNF224 gene expression is down-regulated both in BCR-ABL positive cell lines and in primary CML samples and is restored after imatinib and second generation tyrosine kinase inhibitors treatment. We also show that WT1, whose expression is positively regulated by BCR-ABL, represses transcription of the ZNF224 gene. Finally, we report that ZNF224 is significantly down-regulated in patients with BCR-ABL positive chronic phase-CML showing poor response or resistance to imatinib treatment as compared to high-responder patients. Taken as a whole, our data disclose a novel pathway activated by BCR-ABL that leads to inhibition of apoptosis through the ZNF224 repression. ZNF224 could thus represent a novel promising therapeutic target in CML. PMID:26320177

  12. ATRA-Induced Cellular Differentiation and CD38 Expression Inhibits Acquisition of BCR-ABL Mutations for CML Acquired Resistance

    PubMed Central

    Wu, Xiwei; Chu, Su; Wang, Jinhui; Yuan, Hongfeng; Roth, Mendel; Yuan, Yate-Ching; Bhatia, Ravi; Chen, WenYong

    2014-01-01

    Acquired resistance through genetic mutations is a major obstacle in targeted cancer therapy, but the underlying mechanisms are poorly understood. Here we studied mechanisms of acquired resistance of chronic myeloid leukemia (CML) to tyrosine kinase inhibitors (TKIs) by examining genome-wide gene expression changes in KCL-22 CML cells versus their resistant KCL-22M cells that acquire T315I BCR-ABL mutation following TKI exposure. Although T315I BCR-ABL is sufficient to confer resistance to TKIs in CML cells, surprisingly we found that multiple drug resistance pathways were activated in KCL-22M cells along with reduced expression of a set of myeloid differentiation genes. Forced myeloid differentiation by all-trans-retinoic acid (ATRA) effectively blocked acquisition of BCR-ABL mutations and resistance to the TKIs imatinib, nilotinib or dasatinib in our previously described in vitro models of acquired TKI resistance. ATRA induced robust expression of CD38, a cell surface marker and cellular NADase. High levels of CD38 reduced intracellular nicotinamide adenine dinucleotide (NAD+) levels and blocked acquired resistance by inhibiting the activity of the NAD+-dependent SIRT1 deacetylase that we have previously shown to promote resistance in CML cells by facilitating error-prone DNA damage repair. Consequently, ATRA treatment decreased DNA damage repair and suppressed acquisition of BCR-ABL mutations. This study sheds novel insight into mechanisms underlying acquired resistance in CML, and suggests potential benefit of combining ATRA with TKIs in treating CML, particularly in advanced phases. PMID:24967705

  13. ATRA-induced cellular differentiation and CD38 expression inhibits acquisition of BCR-ABL mutations for CML acquired resistance.

    PubMed

    Wang, Zhiqiang; Liu, Zheng; Wu, Xiwei; Chu, Su; Wang, Jinhui; Yuan, Hongfeng; Roth, Mendel; Yuan, Yate-Ching; Bhatia, Ravi; Chen, WenYong

    2014-06-01

    Acquired resistance through genetic mutations is a major obstacle in targeted cancer therapy, but the underlying mechanisms are poorly understood. Here we studied mechanisms of acquired resistance of chronic myeloid leukemia (CML) to tyrosine kinase inhibitors (TKIs) by examining genome-wide gene expression changes in KCL-22 CML cells versus their resistant KCL-22M cells that acquire T315I BCR-ABL mutation following TKI exposure. Although T315I BCR-ABL is sufficient to confer resistance to TKIs in CML cells, surprisingly we found that multiple drug resistance pathways were activated in KCL-22M cells along with reduced expression of a set of myeloid differentiation genes. Forced myeloid differentiation by all-trans-retinoic acid (ATRA) effectively blocked acquisition of BCR-ABL mutations and resistance to the TKIs imatinib, nilotinib or dasatinib in our previously described in vitro models of acquired TKI resistance. ATRA induced robust expression of CD38, a cell surface marker and cellular NADase. High levels of CD38 reduced intracellular nicotinamide adenine dinucleotide (NAD+) levels and blocked acquired resistance by inhibiting the activity of the NAD+-dependent SIRT1 deacetylase that we have previously shown to promote resistance in CML cells by facilitating error-prone DNA damage repair. Consequently, ATRA treatment decreased DNA damage repair and suppressed acquisition of BCR-ABL mutations. This study sheds novel insight into mechanisms underlying acquired resistance in CML, and suggests potential benefit of combining ATRA with TKIs in treating CML, particularly in advanced phases.

  14. AP24534, a Pan-BCR-ABL Inhibitor for Chronic Myeloid Leukemia, Potently Inhibits the T315I Mutant and Overcomes Mutation-Based Resistance

    SciTech Connect

    O’Hare, Thomas; Shakespeare, William C.; Zhu, Xiaotian; Eide, Christopher A.; Rivera, Victor M.; Wang, Frank; Adrian, Lauren T.; Zhou, Tianjun; Huang, Wei-Sheng; Xu, Qihong; Metcalf, III, Chester A.; Tyner, Jeffrey W.; Loriaux, Marc M.; Corbin, Amie S.; Wardwell, Scott; Ning, Yaoyu; Keats, Jeffrey A.; Wang, Yihan; Sundaramoorthi, Raji; Thomas, Mathew; Zhou, Dong; Snodgrass, Joseph; Commodore, Lois; Sawyer, Tomi K.; Dalgarno, David C.; Deininger, Michael W.N.; Druker, Brian J.; Clackson, Tim

    2010-09-07

    Inhibition of BCR-ABL by imatinib induces durable responses in many patients with chronic myeloid leukemia (CML), but resistance attributable to kinase domain mutations can lead to relapse and a switch to second-line therapy with nilotinib or dasatinib. Despite three approved therapeutic options, the cross-resistant BCR-ABL{sup T315I} mutation and compound mutants selected on sequential inhibitor therapy remain major clinical challenges. We report design and preclinical evaluation of AP24534, a potent, orally available multitargeted kinase inhibitor active against T315I and other BCR-ABL mutants. AP24534 inhibited all tested BCR-ABL mutants in cellular and biochemical assays, suppressed BCR-ABL{sup T315I}-driven tumor growth in mice, and completely abrogated resistance in cell-based mutagenesis screens. Our work supports clinical evaluation of AP24534 as a pan-BCR-ABL inhibitor for treatment of CML.

  15. Discovery of 2-Acylaminothiophene-3-Carboxamides as Multitarget Inhibitors for BCR-ABL Kinase and Microtubules.

    PubMed

    Cao, Ran; Wang, Yanli; Huang, Niu

    2015-11-23

    The emergence of drug resistance of the BCR-ABL kinase inhibitor imatinib, especially toward the T315I gatekeeper mutation, poses a great challenge to targeted therapy in treating chronic myeloid leukemia (CML) patients. To discover novel inhibitors against drug-resistant CML bearing T315I mutation, we applied a physics-based hierarchical virtual screening approach to dock a large chemical library against ATP binding pockets of both wild-type (WT) and T315I mutant ABL kinases in a combinatorial fashion. This strategy automatically resulted in 87 compounds satisfying structural and energetic criteria of both WT and T315I mutant kinases. Among them, nine compounds, which share a common thiophene-based scaffold and adopt similar binding poses, were chosen for experimental testing and one of them was shown to have low micromolar inhibition activities against both WT and mutant ABL kinases. Structure-activity relationship analysis with a series of structural modifications based on 2-acylaminothiophene-3-carboxamide scaffold supports our predicted binding mode. Interestingly, the same chemical scaffold was also enriched in our previous virtual screening campaign against colchicine site of microtubules using the same computational protocol, which suggests our virtual screening strategy is capable of discovering small-molecule ligands targeting distinct protein binding sites without sharing any sequential and structural similarity. Furthermore, the multitarget inhibition activity of this class of compounds was assessed in cellular experiments. We expect that the 2-acylaminothiophene-3-carboxamide scaffold may serve as a promising starting point for developing multitarget inhibitors in cancer treatment by targeting both kinases and microtubules.

  16. Deregulated expression of Cdc6 as BCR/ABL-dependent survival factor in chronic myeloid leukemia cells.

    PubMed

    Zhang, Jia-Hua; He, Yan-Li; Zhu, Rui; Du, Wen; Xiao, Jun-Hua

    2017-06-01

    Chronic myeloid leukemia is characterized by the presence of the reciprocal translocation t(9;22) and the BCR/ABL oncogene. The BCR/ABL oncogene activates multiple signaling pathways and involves the dysregulation of oncogenes during the progression of chronic myeloid leukemia. The cell division cycle protein 6, an essential regulator of DNA replication, is elevated in some human cancer cells. However, the expression of cell division cycle protein 6 in chronic myeloid leukemia and the underlying regulatory mechanism remain to be elucidated. In this study, our data showed that cell division cycle protein 6 expression was significantly upregulated in primary chronic myeloid leukemia cells and the chronic myeloid leukemia cell line K562 cells, as compared to the normal bone marrow mononuclear cells. BCR/ABL kinase inhibitor STI571 or BCR/ABL small interfering RNA could significantly downregulate cell division cycle protein 6 messenger RNA expression in K562 cells. Moreover, phosphoinositide 3-kinase/AKT pathway inhibitor LY294002 and Janus kinase/signal transducer and activator of transcription pathway inhibitor AG490 could downregulate cell division cycle protein 6 expression in K562 cells, but not RAS/mitogen-activated protein kinase pathway inhibitor PD98059 had such effect. Cell division cycle protein 6 gene silencing by small interfering RNA effectively resulted in decrease of proliferation, increase of apoptosis, and arrest of cell cycle in K562 cells. These findings have demonstrated that cell division cycle protein 6 overexpression may contribute to the high proliferation and low apoptosis in chronic myeloid leukemia cells and can be regulated by BCR/ABL signal transduction through downstream phosphoinositide 3-kinase/Akt and Janus kinase/signal transducer and activator of transcription pathways, suggesting cell division cycle protein 6 as a potential therapeutic target in chronic myeloid leukemia.

  17. Conversion, correction, and International Scale standardization: results From a Multicenter External Quality Assessment Study for BCR-ABL1 testing.

    PubMed

    Griffiths, Michael; Patton, Simon J; Grossi, Alberto; Clark, Jordan; Paz, Maria Fe; Labourier, Emmanuel

    2015-04-01

    Monitoring BCR-ABL1 expression levels relative to clinically validated response criteria on the International Scale (IS) is vital in the optimal management of patients with chronic myeloid leukemia, yet significant variability remains across laboratories worldwide. To assess method performance, interlaboratory precision, and different IS standardization modalities in representative laboratories performing routine BCR-ABL1 testing. Fifteen blinded test specimens with 5-level nominal BCR-ABL1 to ABL1 IS percentage ratios ranging from 5% to 0.0005% and 4-level secondary IS reference panels, the ARQ IS Calibrator Panels, were tested by relative quantitative polymerase chain reaction in 15 laboratories in 5 countries. Both raw and IS percentage ratios calculated by using local conversion factors (CFs) or analytic correction parameters (CPs) were collected and analyzed. A total of 670 valid positive results were generated. BCR-ABL1 detection was associated with variable ABL1 quality metric passing rates (P < .001) and reached at least 0.01% in 13 laboratories. Intralaboratory precision was within 2.5-fold for all sample levels combined with a relative mean difference greater than 5-fold across laboratories. International Scale accuracy was increased by using both the CF and CP standardization methods. Classification agreement for major molecular response status was 90% after CF conversion and 93% after CP correction, with precision improved by 3-fold for the CP method. Despite preanalytic and analytic differences between laboratories, conversion and correction are effective IS standardization methods. Validated secondary reference materials can facilitate global diffusion of the IS without the need to perform sample exchange and improve the accuracy and precision of BCR-ABL1 quantitative measurements, including at low levels of residual disease.

  18. Changes in the proteome associated with the action of Bcr-Abl tyrosine kinase are not related to transcriptional regulation.

    PubMed

    Smith, Duncan L; Evans, Caroline A; Pierce, Andrew; Gaskell, Simon J; Whetton, Anthony D

    2002-11-01

    Chronic myeloid leukemia (CML) is a hematopoietic stem cell disease, the hallmark of which is the Bcr-Abl protein tyrosine kinase (PTK). Without intervention the disease progresses from a benign chronic phase to a rapidly fatal blast crisis. To identify the molecular mechanisms underlying disease progression we used two-dimensional gel electrophoresis on a model we have previously described using the expression of a conditional mutant of Bcr-Abl PTK in a multipotent stem cell line, FDCP-Mix. Long term exposure of FDCP-Mix cells to Bcr-Abl mimics disease progression in CML. Four major differences were observed as a consequence of long term exposure to the Bcr-Abl PTK compared with cells exposed short term. The proteins were identified using matrix-assisted laser desorption ionization-time of flight mass spectrometry-generated peptide mass fingerprint data and liquid chromatography-tandem mass spectrometry-generated sequence information. Leukotriene A4 hydrolase, an enzyme known to be deregulated in CML, was found to be up-regulated. Annexin VI, vacuolar ATP synthase catalytic subunit A, and mortalin were found to be down-regulated. Poly(A) PCR cDNA analysis showed there was no correlation between the protein expression changes and mRNA levels. Western blot analysis also indicated no change in the levels of mortalin or leukotriene A4 hydrolase, indicating that post-translational events may modify protein content of the specific spots. Leukotriene B4 levels (product of leukotriene A4 hydrolase) were, however, reduced in cells exposed long term to Bcr-Abl activity. This study demonstrates the potential of proteomic analysis to define novel effects of oncogenes.

  19. Combined STAT3 and BCR-ABL1 Inhibition Induces Synthetic Lethality in Therapy-Resistant Chronic Myeloid Leukemia

    PubMed Central

    Mason, Clinton C.; Vellore, Nadeem A.; Resetca, Diana; Zabriskie, Matthew S.; Zhang, Tian Y.; Khorashad, Jamshid S.; Engar, Alexander J.; Reynolds, Kimberly R.; Anderson, David J.; Senina, Anna; Pomicter, Anthony D.; Arpin, Carolynn C.; Ahmad, Shazia; Heaton, William L.; Tantravahi, Srinivas K.; Todic, Aleksandra; Moriggl, Richard; Wilson, Derek J.; Baron, Riccardo

    2014-01-01

    Mutations in the BCR-ABL1 kinase domain are an established mechanism of tyrosine kinase inhibitor (TKI) resistance in Philadelphia chromosome-positive leukemia, but fail to explain many cases of clinical TKI failure. In contrast, it is largely unknown why some patients fail TKI therapy despite continued suppression of BCR-ABL1 kinase activity, a situation termed BCRABL1 kinase-independent TKI resistance. Here, we identified activation of signal transducer and activator of transcription 3 (STAT3) by extrinsic or intrinsic mechanisms as an essential feature of BCR-ABL1 kinase-independent TKI resistance. By combining synthetic chemistry, in vitro reporter assays, and molecular dynamics-guided rational inhibitor design and high-throughput screening, we discovered BP-5-087, a potent and selective STAT3 SH2 domain inhibitor that reduces STAT3 phosphorylation and nuclear transactivation. Computational simulations, fluorescence polarization assays, and hydrogen-deuterium exchange assays establish direct engagement of STAT3 by BP-5-087 and provide a high-resolution view of the STAT3 SH2 domain/BP-5-087 interface. In primary cells from CML patients with BCR-ABL1 kinase-independent TKI resistance, BP-5-087 (1.0 μM) restored TKI sensitivity to therapy-resistant CML progenitor cells, including leukemic stem cells (LSCs). Our findings implicate STAT3 as a critical signaling node in BCR-ABL1 kinase-independent TKI resistance, and suggest that BP-5-087 has clinical utility for treating malignancies characterized by STAT3 activation. PMID:25134459

  20. SGX393 inhibits the CML mutant Bcr-Abl[superscript T315I] and preempts in vitro resistance when combined with nilotinib or dasatinib

    SciTech Connect

    O'Hare, Thomas; Eide, Christopher A.; Tyner, Jeffrey W.; Corbin, Amie S.; Wong, Matthew J.; Buchanan, Sean; Holme, Kevin; Jessen, Katayoun A.; Tang, Crystal; Lewis, Hal A.; Romero, Richard D.; Burley, Stephen K.; Deininger, Michael W.

    2010-01-12

    Imatinib inhibits Bcr-Abl, the oncogenic tyrosine kinase that causes chronic myeloid leukemia. The second-line inhibitors nilotinib and dasatinib are effective in patients with imatinib resistance resulting from Bcr-Abl kinase domain mutations. Bcr-Abl{sup T315I}, however, is resistant to all Abl kinase inhibitors in clinical use and is emerging as the most frequent cause of salvage therapy failure. SGX393 is a potent inhibitor of native and T315I-mutant Bcr-Abl kinase that blocks the growth of leukemia cell lines and primary hematopoietic cells expressing Bcr-Abl{sup T315I}, with minimal toxicity against Bcr-Abl-negative cell lines or normal bone marrow. A screen for Bcr-Abl mutants emerging in the presence of SGX393 revealed concentration-dependent reduction in the number and range of mutations. Combining SGX393 with nilotinib or dasatinib preempted emergence of resistant subclones, including Bcr-Abl{sup T315I}. These findings suggest that combination of a T315I inhibitor with the current clinically used inhibitors may be useful for reduction of Bcr-Abl mutants in Philadelphia chromosome-positive leukemia.

  1. Cytogenetic and Molecular Analyses of Philadelphia Chromosome Variants in CML (chronic myeloid leukemia) Patients from Sindh using Karyotyping and RT-PCR

    PubMed Central

    Ujjan, Ikram Din; Akhund, Anwar Ali; Saboor, Muhammad; Qureshi, Muhammad Asif; Khan, Saeed

    2015-01-01

    Objective: To determine the frequency of Philadelphia chromosome (Ph) and its variants in chronic myeloid leukemia (CML) cases at a tertiary care hospital of Sindh. Methods: The study was conducted at the Department of Pathology, Liaquat University of Medical and Health Sciences, Jamshoro and Isra University Hospital, Hyderabad during May-to-September 2014. Bone marrow and peripheral blood samples from a total of 145 diagnosed cases of CML were collected. Cytogenetic analyses were performed using karyotyping as per the International System for Human Cytogenetic Nomenclature guidelines. All karyotypic images were analyzed using the Cytovision software. In order to identify BCR-ABL transcripts, RT-PCR was performed. Statistical analysis of the data was done using SPSS-version-21.0. Results: Of the 145 samples, a total of 133 (91.7%) were positive for the Ph (Ph+) while 12 (8.3%) were negative for the Ph (Ph-). Of the 133 Ph+ samples, standard karyotypes were noted in 121 (91%), simple variants in 9 (6.7%) and complex variants in 3 (2.3%) of the samples. All the Ph+ samples (n=133) showed BCR-ABL positivity. Of the 12 Ph- samples, a total of 7 (58.3%) were BCR-ABL-positive and 5 (41.6%) were BCR-ABL-negative. Conclusion: Frequency of the Ph was found to be of 90.9% in CML patients using a highly sensitive technique, the RT-PCR. Cytogenetic abnormalities were at a lower frequency. Cytogenetic and molecular studies must be conducted for better management of CML cases. These findings could be very useful in guiding the appropriate therapeutic options for CML patients. PMID:26430433

  2. Inhibition of Aurora kinase B is important for biologic activity of the dual inhibitors of BCR-ABL and Aurora kinases R763/AS703569 and PHA-739358 in BCR-ABL transformed cells.

    PubMed

    Illert, Anna L; Seitz, Anna K; Rummelt, Christoph; Kreutmair, Stefanie; Engh, Richard A; Goodstal, Samantha; Peschel, Christian; Duyster, Justus; von Bubnoff, Nikolas

    2014-01-01

    ABL tyrosine kinase inhibitors (TKI) like Imatinib, Dasatinib and Nilotinib are the gold standard in conventional treatment of CML. However, the emergence of resistance remains a major problem. Alternative therapeutic strategies of ABL TKI-resistant CML are urgently needed. We asked whether dual inhibition of BCR-ABL and Aurora kinases A-C could overcome resistance mediated by ABL kinase mutations. We therefore tested the dual ABL and Aurora kinase inhibitors PHA-739358 and R763/AS703569 in Ba/F3- cells ectopically expressing wild type (wt) or TKI-resistant BCR-ABL mutants. We show that both compounds exhibited strong anti-proliferative and pro-apoptotic activity in ABL TKI resistant cell lines including cells expressing the strongly resistant T315I mutation. Cell cycle analysis indicated polyploidisation, a consequence of continued cell cycle progression in the absence of cell division by Aurora kinase inhibition. Experiments using drug resistant variants of Aurora B indicated that PHA-739358 acts on both, BCR-ABL and Aurora Kinase B, whereas Aurora kinase B inhibition might be sufficient for the anti-proliferative activity observed with R763/AS703569. Taken together, our data demonstrate that dual ABL and Aurora kinase inhibition might be used to overcome ABL TKI resistant CML.

  3. Inhibition of Aurora Kinase B Is Important for Biologic Activity of the Dual Inhibitors of BCR-ABL and Aurora Kinases R763/AS703569 and PHA-739358 in BCR-ABL Transformed Cells

    PubMed Central

    Illert, Anna L.; Seitz, Anna K.; Rummelt, Christoph; Kreutmair, Stefanie; Engh, Richard A.; Goodstal, Samantha; Peschel, Christian; Duyster, Justus; von Bubnoff, Nikolas

    2014-01-01

    ABL tyrosine kinase inhibitors (TKI) like Imatinib, Dasatinib and Nilotinib are the gold standard in conventional treatment of CML. However, the emergence of resistance remains a major problem. Alternative therapeutic strategies of ABL TKI-resistant CML are urgently needed. We asked whether dual inhibition of BCR-ABL and Aurora kinases A-C could overcome resistance mediated by ABL kinase mutations. We therefore tested the dual ABL and Aurora kinase inhibitors PHA-739358 and R763/AS703569 in Ba/F3- cells ectopically expressing wild type (wt) or TKI-resistant BCR-ABL mutants. We show that both compounds exhibited strong anti-proliferative and pro-apoptotic activity in ABL TKI resistant cell lines including cells expressing the strongly resistant T315I mutation. Cell cycle analysis indicated polyploidisation, a consequence of continued cell cycle progression in the absence of cell division by Aurora kinase inhibition. Experiments using drug resistant variants of Aurora B indicated that PHA-739358 acts on both, BCR-ABL and Aurora Kinase B, whereas Aurora kinase B inhibition might be sufficient for the anti-proliferative activity observed with R763/AS703569. Taken together, our data demonstrate that dual ABL and Aurora kinase inhibition might be used to overcome ABL TKI resistant CML. PMID:25426931

  4. Hsp90 N- and C-terminal double inhibition synergistically suppresses Bcr-Abl-positive human leukemia cells.

    PubMed

    Chen, Chun; Zhuang, Yingting; Chen, Xianling; Chen, Xiaole; Li, Ding; Fan, Yingjuan; Xu, Jianhua; Chen, Yuanzhong; Wu, Lixian

    2017-02-07

    Heat shock protein 90 (Hsp90) contains amino (N)-terminal domain, carboxyl(C)-terminal domain, and middle domains, which activate Hsp90 chaperone function cooperatively in tumor cells. One terminal occupancy might influence another terminal binding with inhibitor. The Bcr-Abl kinase is one of the Hsp90 clients implicated in the pathogenesis of chronic myeloid leukemia (CML). Present studies demonstrate that double inhibition of the N- and C-terminal termini can disrupt Hsp90 chaperone function synergistically, but not antagonistically, in Bcr-Abl-positive human leukemia cells. Furthermore, both the N-terminal inhibitor 17-AAG and the C-terminal inhibitor cisplatin (CP) have the capacity to suppress progenitor cells; however, only CP is able to inhibit leukemia stem cells (LSCs) significantly, which implies that the combinational treatment is able to suppress human leukemia in different mature states.

  5. ON012380: A Non-ATP Competitive Inhibitor of BCR-ABL for the Therapy of Imatinib-Resistant CMLs

    DTIC Science & Technology

    2010-05-01

    applications including monosomy 7 MDS, imatinib-resistant CML, and myeloproliferative neoplasms that develop resistance to ATP-competitive agents. Keywords JAK2...and myeloproliferative neoplasms where JAK2 is aberrantly activated. In the past few years, several cases have been reported in which both the BCR...found to be dual inhibitors of BCR-ABL and JAK-2, 8 which makes them ideal agents for the treatment of other myeloproliferative diseases in addition

  6. Measurement of adherence to BCR-ABL inhibitor therapy in chronic myeloid leukemia: current situation and future challenges

    PubMed Central

    Noens, Lucien; Hensen, Marja; Kucmin-Bemelmans, Izabela; Lofgren, Christina; Gilloteau, Isabelle; Vrijens, Bernard

    2014-01-01

    BCR-ABL inhibitors for treating chronic myeloid leukemia in chronic phase have transformed a previously incurable malignancy into a manageable condition. However, suboptimal medication adherence has been observed with these agents affecting clinical outcomes and healthcare costs. In order to raise awareness of the problem of adherence, and before developing pragmatic strategies to enhance medication adherence, a deep understanding of the best approaches for measuring adherence in chronic myeloid leukemia patients and identifying non-adherence is required. A systematic literature review on the prevalence, measurement methods, consequences and risk factors for non-adherence to BCR-ABL inhibitors and adherence-enhancing interventions was performed and critically appraised. Of the 19 included articles, 9 were retrospective. Average adherence varied from 19% to almost 100% of the proportion of prescribed drug taken, but it was measured through various different methods and within different study groups. Suboptimal adherence was associated with a negative impact on both clinical and economic outcomes. There is a lack of supportive evidence demonstrating a difference in adherence across BCR-ABL inhibitors and even contradictory results between the 2nd generation inhibitors. Drug-related adverse events and forgetfulness were common reasons for intentional and unintentional non-adherence, respectively, but further research is required to identify additional reasons behind non-adherence or patients at risk of non-adherence. Non-adherence in chronic myeloid leukemia patients treated with BCR-ABL inhibitors is common and associated with critical outcomes. However, this review highlights important existing gaps, reveals inconsistent definitions, and a lack of standardized methods for measuring adherence in chronic myeloid leukemia. All require further investigation. PMID:24598855

  7. BCR/ABL alters the function of NK cells and the acquisition of killer immunoglobulin-like receptors (KIRs).

    PubMed

    Chiorean, Elena G; Dylla, Scott J; Olsen, Krista; Lenvik, Todd; Soignier, Yvette; Miller, Jeffrey S

    2003-05-01

    Natural killer (NK) cells decrease in function during chronic myelogenous leukemia (CML) progression from chronic phase to blast crisis, and they can become BCR/ABL(+) late in the disease course. To study this altered function, NK92 cells were transduced with the BCR/ABL oncogene. In contrast to the parental cells, which died when deprived of interleukin 2 (IL-2), p210(+) NK92 cells proliferated and survived indefinitely in the absence of IL-2. BCR/ABL also decreased the natural cytotoxicity of NK92 cells against K562 targets, without affecting IL-2, interferon gamma (IFN-gamma), or tumor necrosis factor alpha (TNF-alpha) production. Although the ABL-specific tyrosine kinase inhibitor imatinib mesylate (STI-571) had no effect on parental NK92 cells, it markedly decreased the growth and survival of IL-2-independent p210(+) NK92 cells. In contrast to the parental cell line, serial analysis of p210(+) NK92 cells detected small populations that clonally expressed one or more killer immunoglobulin-like receptors (KIRs). Unlike the decreased natural cytotoxicity, the function of the activating CD158j receptor remained intact. Southern blotting and hybridization with an enhanced green fluorescence protein (eGFP) probe showed that KIR(-) and KIR(+) NK92 cells were all derived from the same clone, suggesting that KIR acquisition remains dynamic at the maturational stage represented by the NK92 cell line. When tested in primary CD56(+bright) NK cells, p210 induced partial IL-2-independent growth and increased KIR expression similar to findings in NK92 cells. This is the first study to show that BCR/ABL, well known for its effects on the myeloid lineage, can alter the function of lymphoid cells, which may be associated with the defect in innate immunity associated with CML progression.

  8. TAT-CC fusion protein depresses the oncogenicity of BCR-ABL in vitro and in vivo through interrupting its oligomerization.

    PubMed

    Huang, Zheng-Lan; Gao, Miao; Ji, Mao-Sheng; Tao, Kun; Xiao, Qing; Zhong, Liang; Zeng, Jian-Ming; Feng, Wen-Li

    2013-02-01

    Chronic myeloid leukemia (CML) is a clonal hematologic malignancy characterized by the BCR-ABL protein. BCR-ABL is a constitutively active tyrosine kinase and plays a critical role in the pathogenesis of CML. Imatinib mesylate, a selective tyrosine kinase inhibitor, is effective in CML, but drug resistance and relapse occur. The coiled-coil (CC) domain located in BCR(1-72) mediates BCR-ABL tetramerization, which is essential for the activation of tyrosine kinase and transformation potential of BCR-ABL. CC domain is supposed to be a therapeutic target for CML. We purified a TAT-CC protein competively binding with the endogenous CC domain to reduce BCR-ABL kinase activity. We found that TAT-CC co-located and interacted with BCR-ABL in Ba/F3-p210 and K562 cells. It induced apoptosis and inhibited proliferation in these cells. It increased the sensitivity of these cells to imatinib and reduced the phosphorylation of BCR-ABL, CRKL and STAT5. We confirmed that TAT-CC could attenuate the oncogenicity of Ba/F3-p210 cells and diminish the volume of K562 solid tumor in mice. We conclude targeting the CC may provide a complementary therapy to inhibit BCR-ABL oncogenicity.

  9. Structural Mechanism of the Pan-BCR-ABL Inhibitor Ponatinib (AP24534): Lessons for Overcoming Kinase Inhibitor Resistance

    SciTech Connect

    Zhou, Tianjun; Commodore, Lois; Huang, Wei-Sheng; Wang, Yihan; Thomas, Mathew; Keats, Jeff; Xu, Qihong; Rivera, Victor M.; Shakespeare, William C.; Clackson, Tim; Dalgarno, David C.; Zhu, Xiaotian

    2012-01-20

    The BCR-ABL inhibitor imatinib has revolutionized the treatment of chronic myeloid leukemia. However, drug resistance caused by kinase domain mutations has necessitated the development of new mutation-resistant inhibitors, most recently against the T315I gatekeeper residue mutation. Ponatinib (AP24534) inhibits both native and mutant BCR-ABL, including T315I, acting as a pan-BCR-ABL inhibitor. Here, we undertook a combined crystallographic and structure-activity relationship analysis on ponatinib to understand this unique profile. While the ethynyl linker is a key inhibitor functionality that interacts with the gatekeeper, virtually all other components of ponatinib play an essential role in its T315I inhibitory activity. The extensive network of optimized molecular contacts found in the DFG-out binding mode leads to high potency and renders binding less susceptible to disruption by single point mutations. The inhibitory mechanism exemplified by ponatinib may have broad relevance to designing inhibitors against other kinases with mutated gatekeeper residues.

  10. The BCR-ABL/NF-κB signal transduction network: a long lasting relationship in Philadelphia positive Leukemias

    PubMed Central

    Carrà, Giovanna; Torti, Davide; Crivellaro, Sabrina; Panuzzo, Cristina; Taulli, Riccardo; Cilloni, Daniela; Guerrasio, Angelo; Saglio, Giuseppe; Morotti, Alessandro

    2016-01-01

    The Nuclear Factor-kappa B (NF-κB) family of transcription factors plays a key role in cancer pathogenesis due to the ability to promote cellular proliferation and survival, to induce resistance to chemotherapy and to mediate invasion and metastasis. NF-κB is recruited through different mechanisms involving either canonical (RelA/p50) or non-canonical pathways (RelB/p50 or RelB/p52), which transduce the signals originated from growth-factors, cytokines, oncogenic stress and DNA damage, bacterial and viral products or other stimuli. The pharmacological inhibition of the NF-κB pathway has clearly been associated with significant clinical activity in different cancers. Almost 20 years ago, NF-κB was described as an essential modulator of BCR-ABL signaling in Chronic Myeloid Leukemia and Philadelphia-positive Acute Lymphoblastic Leukemia. This review summarizes the role of NF-κB in BCR-ABL-mediated leukemogenesis and provides new insights on the long lasting BCR-ABL/NF-κB connection. PMID:27563822

  11. CALR, JAK2 and MPL mutation status in Argentinean patients with BCR-ABL1- negative myeloproliferative neoplasms.

    PubMed

    Ojeda, Mara Jorgelina; Bragós, Irma Margarita; Calvo, Karina Lucrecia; Williams, Gladis Marcela; Carbonell, María Magdalena; Pratti, Arianna Flavia

    2017-10-09

    To establish the frequency of JAK2, MPL and CALR mutations in Argentinean patients with BCR-ABL1-negative  myeloproliferative neoplasms (MPN) and to compare their clinical and haematological features. Mutations of JAK2V617F, JAK2 exon 12, MPL W515L/K and CALR were analysed in 439 Argentinean patients with BCR-ABL1-negative MPN, including 176 polycythemia vera (PV), 214 essential thrombocythemia (ET) and 49 primary myelofibrosis (PMF). In 94.9% of PV, 85.5% ET and 85.2% PMF, we found mutations in JAK2, MPL or CALR. 74.9% carried JAK2V617F, 12.3% CALR mutations, 2.1% MPL mutations and 10.7% were triple negative. In ET, nine types of CALR mutations were identified, four of which were novel. PMF patients were limited to types 1 and 2, type 2 being more frequent. In ET, patients with CALR mutation were younger and had higher platelet counts than those with JAK2V617F and triple negative. In addition, JAK2V617F patients had high leucocyte and haemoglobin values compared with CALR-mutated and triple-negative patients. In PMF, patients with mutant CALR were associated with higher platelet counts. Our study underscores the importance of JAK2, MPL and CALR genotyping for accurate diagnosis of patients with BCR-ABL1-negative MPN.

  12. [Detection of BCR-ABL1 chimeric gene-positive neutrophils in a patient with mixed phenotype acute leukemia].

    PubMed

    Nagasawa, Fusako; Nakamura, Yukitsugu; Tokita, Katsuya; Takahashi, Wataru; Iso, Hisako; Arai, Honoka; Tsurumi, Shigeharu; Handa, Tomoyuki; Nakamura, Yuko; Nakamura, Yuka; Sasaki, Ko; Mitani, Kinuko

    2013-11-01

    We experienced two patients with mixed phenotype acute leukemia with t(9;22)(q34;q11.2); BCR-ABL1 according to the WHO classification 2008. The type of BCR/ABL1 was major in both patients, and the chimeric gene was also detected in neutrophils from peripheral blood by the fluorescence in situ hybridization technique. Patient 1 was a 59-year-old Japanese woman, and patient 2 a 45-year-old Japanese man. They had both developed leukemia suddenly. Their leukemic blasts expressed B cell and myeloid cell antigens, but concomitantly in patient 1 (biphenotypic) and separately in patient 2 (biclonal). Percentages of BCR-ABL1-positive neutrophils were 98% and 89%, respectively. Both patients received an imatinib (600 mg/day)-combined Hyper-CVAD regimen as induction therapy, followed by treatment with dasatinib (140 mg/day). MEC therapy was also applied between these two treatments in patient 2. At present, patient 1 has obtained complete molecular remission quantitatively and qualitatively, and patient 2 only quantitatively. Considering their acute onsets with no prior history of chronic myelocytic leukemia (CML), they were both diagnosed as having acute leukemia with Ph1, but not blastic crisis of CML. In this tyrosine kinase inhibitor era, it has become more difficult to differentiate these two types of Ph1-positive leukemia development.

  13. Combined Targeting of BCL-2 and BCR-ABL Tyrosine Kinase Eradicates Chronic Myeloid Leukemia Stem Cells

    PubMed Central

    Mak, Po Yee; Mu, Hong; Zhou, Hongsheng; Mak, Duncan H.; Schober, Wendy; Leverson, Joel D.; Zhang, Bin; Bhatia, Ravi; Huang, Xuelin; Cortes, Jorge; Kantarjian, Hagop; Konopleva, Marina

    2016-01-01

    BCR-ABL tyrosine kinase inhibitors (TKIs) are effective against chronic myeloid leukemia (CML), but they rarely eliminate CML stem cells. Disease relapse is common upon therapy cessation, even in patients with complete molecular responses. Furthermore, once CML progresses to blast crisis (BC), treatment outcomes are dismal. We hypothesized that concomitant targeting of BCL-2 and BCR-ABL tyrosine kinase could overcome these limitations. We demonstrate increased BCL-2 expression at the protein level in bone marrow cells, particularly in Lin−Sca-1+cKit+ cells of inducible CML in mice as determined by CyTOF mass cytometry. Further, selective inhibition of BCL-2, aided by TKI-mediated MCL-1 and BCL-XL inhibition, markedly decreased leukemic Lin−Sca-1+cKit+ cell numbers and long-term stem cell frequency, and prolonged survival in a murine CML model. Additionally, this combination effectively eradicated CD34+CD38−, CD34+CD38+, and quiescent stem/progenitor CD34+ cells from BC CML patient samples. Our results suggest that BCL-2 is a key survival factor for CML stem/progenitor cells and that combined inhibition of BCL-2 and BCR-ABL tyrosine kinase has the potential to significantly improve depth of response and cure rates of chronic phase and BC CML. PMID:27605552

  14. Stat3 contributes to resistance toward BCR-ABL inhibitors in a bone marrow microenvironment model of drug resistance

    PubMed Central

    Bewry, Nadine N.; Nair, Rajesh R.; Emmons, Michael F.; Boulware, David; Pinilla-Ibarz, Javier; Hazlehurst, Lori A.

    2009-01-01

    Imatinib mesylate is a potent, molecularly targeted therapy against the oncogenic tyrosine kinase BCR-ABL. Although imatinib mesylate has considerable efficacy against chronic myeloid leukemia (CML), advanced-stage CML patients frequently become refractory to this agent. The bone marrow is the predominant microenvironment of CML and is a rich source of both soluble factors and extracellular matrices, which may influence drug response. To address the influence of the bone marrow microenvironment on imatinib mesylate sensitivity, we used an in vitro coculture bone marrow stroma model. Our data show culturing K562 cells, in bone marrow stroma-derived conditioned medium (CM), is sufficient to cause resistance to BCR-ABL inhibitors. Drug resistance correlated with increased pTyrStat3, whereas no increases in pTyrStat5 were noted. Moreover, resistance was associated with increased levels of the Stat3 target genes Bcl-xl, Mcl-1, and survivin. Finally, reducing Stat3 levels with small interfering RNA sensitized K562 cells cultured in CM to imatinib mesylate-induced cell death. Importantly, Stat3 dependency was specific for cells grown in CM, as reducing Stat3 levels in regular growth conditions had no effect on imatinib mesylate sensitivity. Together, these data support a novel mechanism of BCR-ABL-independent imatinib mesylate resistance and provide preclinical rationale for using Stat3 inhibitors to increase the efficacy of imatinib mesylate within the context of the bone marrow microenvironment. PMID:18852120

  15. Development of BCR-ABL degradation inducers via the conjugation of an imatinib derivative and a cIAP1 ligand.

    PubMed

    Demizu, Yosuke; Shibata, Norihito; Hattori, Takayuki; Ohoka, Nobumichi; Motoi, Hiromi; Misawa, Takashi; Shoda, Takuji; Naito, Mikihiko; Kurihara, Masaaki

    2016-10-15

    The manipulation of protein stability with small molecules has great potential as a technique for aiding the development of clinical therapies, including treatments for cancer. In this study, BCR-ABL protein degradation inducers called SNIPER(ABL) (Specific and Non-genetic inhibitors of apoptosis protein [IAP]-dependent Protein Erasers) were developed. The designed molecules contained two biologically active scaffolds: one was an imatinib derivative that binds to BCL-ABL and the other was a methyl bestatin that binds to cellular IAP 1 (cIAP1). The hybrid molecules, SNIPER(ABL), were expected to recruit BCR-ABL to cIAP1 for removal by proteasomes. In fact, SNIPER(ABL) induced the degradation of BCR-ABL protein and a subsequent reduction in cell growth. Thus, the degradation of BCR-ABL by SNIPER(ABL) is one potential strategy for treating BCR-ABL driven chronic myelogenous leukemia.

  16. BCR-ABL1 compound mutations combining key kinase domain positions confer clinical resistance to ponatinib in Ph chromosome-positive leukemia.

    PubMed

    Zabriskie, Matthew S; Eide, Christopher A; Tantravahi, Srinivas K; Vellore, Nadeem A; Estrada, Johanna; Nicolini, Franck E; Khoury, Hanna J; Larson, Richard A; Konopleva, Marina; Cortes, Jorge E; Kantarjian, Hagop; Jabbour, Elias J; Kornblau, Steven M; Lipton, Jeffrey H; Rea, Delphine; Stenke, Leif; Barbany, Gisela; Lange, Thoralf; Hernández-Boluda, Juan-Carlos; Ossenkoppele, Gert J; Press, Richard D; Chuah, Charles; Goldberg, Stuart L; Wetzler, Meir; Mahon, Francois-Xavier; Etienne, Gabriel; Baccarani, Michele; Soverini, Simona; Rosti, Gianantonio; Rousselot, Philippe; Friedman, Ran; Deininger, Marie; Reynolds, Kimberly R; Heaton, William L; Eiring, Anna M; Pomicter, Anthony D; Khorashad, Jamshid S; Kelley, Todd W; Baron, Riccardo; Druker, Brian J; Deininger, Michael W; O'Hare, Thomas

    2014-09-08

    Ponatinib is the only currently approved tyrosine kinase inhibitor (TKI) that suppresses all BCR-ABL1 single mutants in Philadelphia chromosome-positive (Ph(+)) leukemia, including the recalcitrant BCR-ABL1(T315I) mutant. However, emergence of compound mutations in a BCR-ABL1 allele may confer ponatinib resistance. We found that clinically reported BCR-ABL1 compound mutants center on 12 key positions and confer varying resistance to imatinib, nilotinib, dasatinib, ponatinib, rebastinib, and bosutinib. T315I-inclusive compound mutants confer high-level resistance to TKIs, including ponatinib. In vitro resistance profiling was predictive of treatment outcomes in Ph(+) leukemia patients. Structural explanations for compound mutation-based resistance were obtained through molecular dynamics simulations. Our findings demonstrate that BCR-ABL1 compound mutants confer different levels of TKI resistance, necessitating rational treatment selection to optimize clinical outcome.

  17. BCR/ABL mRNA targeting small interfering RNA effects on proliferation and apoptosis in chronic myeloid leukemia.

    PubMed

    Zhu, Xi-Shan; Lin, Zi-Ying; Du, Jing; Cao, Guang-Xin; Liu, Gang

    2014-01-01

    To investigate the effects of small interference RNA (siRNA) targeting BCR/ABL mRNA on proliferation and apoptosis in the K562 human chronic myeloid leukemia (CML) cell line and to provide a theoretical rationale and experimental evidence for its potential clinical application for anti-CML treatment. The gene sequence for BCR/ABL mRNA was found from the GeneBank. The target gene site on the BCR/ABL mRNA were selected according to Max-Planck-Institute (MPI) and rational siRNA design rules, the secondary structure of the candidate targeted mRNA was predicted, the relevant thermodynamic parameters were analyzed, and the targeted gene sequences were compared with BLAST to eliminate any sequences with significant homology. Inhibition of proliferation was evaluated by MTT assay and colony-formation inhibiting test. Apoptosis was determined by flow cytometry (FCM) and the morphology of apoptotic cells was identified by Giemsa-Wright staining. Western blotting was used to analyze the expression of BCR/ABL fusion protein in K562 cells after siRNA treatment. The mRNA local secondary structure calculated by RNA structure software, and the optimal design of specific siRNA were contributed by bioinformatics rules. Five sequences of BCR/ABL siRNAs were designed and synthesized in vitro. Three sequences, siRNA1384, siRNA1276 and siRNA1786, which showed the most effective inhibition of K562 cell growth, were identified among the five candidate siRNAs, with a cell proliferative inhibitory rate nearly 50% after exposure to 12.5 nmol/L~50 nmol/L siRNA1384 for 24,48 and 72 hours. The 50% inhibitory concentrations (IC50) of siRNA1384, siRNA1276 and siRNA1786 for 24 hours were 46.6 nmol/L, 59.3 nmol/L and 62.6 nmol/L, respectively, and 65.668 nmol/L, 76.6 nmol/L, 74.4 nmol/L for 72 hours. The colony-formation inhibiting test also indicated that, compared with control, cell growth of siRNA treated group was inhibited. FCM results showed that the rate of cell apoptosis increased 24 hours

  18. Optimal Molecular Methods in Detecting p190BCR-ABL Fusion Variants in Hematologic Malignancies: A Case Report and Review of the Literature

    PubMed Central

    Sonu, Rebecca J.; Jonas, Brian A.; Dwyre, Denis M.; Gregg, Jeffrey P.; Rashidi, Hooman H.

    2015-01-01

    Patients with BCR-ABL1 positive hematologic malignancies and Philadelphia-like B-lymphoblastic leukemia (B-ALL) are potential candidates for targeted therapy with tyrosine kinase inhibitors (TKI). Before TKIs, patients with B-ALL had a much worse prognosis and current treatments with targeted TKI therapy have improved outcomes. Thus, the detection of BCR-ABL1 is crucial and a false negative BCR-ABL1 result may adversely affect patient care. We report a case of a 76-year-old male with a new diagnosis of B-ALL who was initially found to be BCR-ABL1 negative by quantitative polymerase chain reaction (PCR). A concurrent qualitative PCR was performed which detected a positive BCR-ABL1 result that was confirmed by a next generation sequencing (NGS) based assay and identified as the rare fusion variant e1a3 of p190BCR-ABL. Based on this result, the patient was placed on dasatinib as a targeted therapy. In the era of molecular diagnostic medicine and targeted therapy, it is essential to have an understanding of the limitations of molecular assays and to follow a comprehensive diagnostic approach in order to detect common abnormalities and rare variants. Incorporating NGS methods in an algorithmic manner into the standard diagnostic PCR-based approach for BCR-ABL1 will aid in minimizing false negative results. PMID:25949834

  19. CCR7 is involved in BCR-ABL/STAP-2-mediated cell growth in hematopoietic Ba/F3 cells.

    PubMed

    Kubo, Kaori; Iwakami, Masashi; Muromoto, Ryuta; Inagaki, Takuya; Kitai, Yuichi; Kon, Shigeyuki; Sekine, Yuichi; Oritani, Kenji; Matsuda, Tadashi

    2015-08-07

    Chronic myeloid leukemia is a clonal disease characterized by the presence of the Philadelphia chromosome and its oncogenic product, BCR-ABL, which activates multiple pathways involved in cell survival, growth promotion, and disease progression. We previously reported that in murine hematopoietic Ba/F3 cells, signal transducing adaptor protein-2 (STAP-2) binds to BCR-ABL and up-regulates BCR-ABL phosphorylation, leading to enhanced activation of its downstream signaling molecules. The binding of STAP-2 to BCR-ABL also influenced the expression levels of chemokine receptors, such as CXCR4 and CCR7. For the induction of CCR7 expression, signals mediated by the MAPK/ERK pathway were critical in Ba/F3 cells expressing BCR-ABL and STAP-2. In addition, STAP-2 cooperated with BCR-ABL to induce the production of CCR7 ligands, CCL19 and CCL21. Our results demonstrate a contribution of CCR7 to STAP-2-dependent enhancement of BCR-ABL-mediated cell growth in Ba/F3 cells.

  20. A screening-based approach to circumvent tumor microenvironment-driven intrinsic resistance to BCR-ABL+ inhibitors in Ph+ acute lymphoblastic leukemia.

    PubMed

    Singh, Harpreet; Shelat, Anang A; Singh, Amandeep; Boulos, Nidal; Williams, Richard T; Guy, R Kiplin

    2014-01-01

    Signaling by the BCR-ABL fusion kinase drives Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph+ ALL) and chronic myelogenous leukemia (CML). Despite their clinical activity in many patients with CML, the BCR-ABL kinase inhibitors (BCR-ABL-KIs) imatinib, dasatinib, and nilotinib provide only transient leukemia reduction in patients with Ph+ ALL. While host-derived growth factors in the leukemia microenvironment have been invoked to explain this drug resistance, their relative contribution remains uncertain. Using genetically defined murine Ph+ ALL cells, we identified interleukin 7 (IL-7) as the dominant host factor that attenuates response to BCR-ABL-KIs. To identify potential combination drugs that could overcome this IL-7-dependent BCR-ABL-KI-resistant phenotype, we screened a small-molecule library including Food and Drug Administration-approved drugs. Among the validated hits, the well-tolerated antimalarial drug dihydroartemisinin (DHA) displayed potent activity in vitro and modest in vivo monotherapy activity against engineered murine BCR-ABL-KI-resistant Ph+ ALL. Strikingly, cotreatment with DHA and dasatinib in vivo strongly reduced primary leukemia burden and improved long-term survival in a murine model that faithfully captures the BCR-ABL-KI-resistant phenotype of human Ph+ ALL. This cotreatment protocol durably cured 90% of treated animals, suggesting that this cell-based screening approach efficiently identified drugs that could be rapidly moved to human clinical testing.

  1. A screening based approach to circumvent tumor microenvironment-driven intrinsic resistance to BCR-ABL+ inhibitors in Ph+ acute lymphoblastic leukemia

    PubMed Central

    Singh, Harpreet; Shelat, Anang A.; Singh, Amandeep; Boulos, Nidal; Williams, Richard T.; Guy, R. Kiplin

    2014-01-01

    Signaling by the BCR-ABL fusion kinase drives Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph+ ALL) and chronic myelogenous leukemia (CML). Despite their clinical activity in many patients with CML, the BCR-ABL kinase inhibitors (BCR-ABL-KIs) imatinib, dasatinib, and nilotinib provide only transient leukemia reduction in patients in Ph+ ALL. While host-derived growth factors present in the leukemia microenvironment have been invoked to explain this drug resistance, their relative contribution remains uncertain. Using genetically-defined murine Ph+ ALL cells, we identified Interleukin 7 (IL-7) as the dominant host-factor that attenuates response to BCR-ABL-KIs. To identify potential combination drugs that could overcome this IL-7-dependent BCR-ABL-KI-resistant phenotype, we screened a small molecule library including FDA-approved drugs. Among the validated hits, the well-tolerated anti-malarial drug dihydroartemisinin (DHA) displayed potent activity in vitro and modest in vivo monotherapy activity against engineered murine BCR-ABL-KI–resistant Ph+ ALL. Strikingly, co-treatment with DHA and dasatinib in vivo strongly reduced primary leukemia burden and improved long-term survival in a murine model that faithfully captures the BCR-ABL-KI-resistant phenotype of human Ph+ ALL. This co-treatment protocol durably cured 90% of treated animals, suggesting that this cell-based screening approach efficiently identified drugs that could be rapidly moved to human clinical testing PMID:23989453

  2. BCR-ABL fusion transcript types and levels and their interaction with secondary genetic changes in determining the phenotype of Philadelphia chromosome–positive leukemias

    PubMed Central

    Luthra, Rajyalakshmi; Cortes, Jorge; Thomas, Deborah; O'Brien, Susan; Bueso-Ramos, Carlos; Hai, Seema; Ravandi, Farhad; de Lima, Marcos; Kantarjian, Hagop; Jorgensen, Jeffrey L.

    2008-01-01

    It remains unresolved how different BCR-ABL transcripts differentially drive lymphoid and myeloid proliferation in Philadelphia chromosome–positive (Ph+) leukemias. We compared BCR-ABL transcript type and level with kinase domain (KD) mutation status, genotype, and phenotype in 1855 Ph+ leukemias. Compared with e1a2/p190 BCR-ABL cases, de novo e13-e14a2/p210 Ph+ lymphoid leukemia more frequently showed CML-type background, had higher blast-normalized BCR-ABL transcript levels, and more frequent persistent BCR-ABL transcript in the absence of detectable lymphoblasts. Secondary lymphoid blast transformation of CML was exclusively due to e13/e14a2/p210 BCR-ABL but was associated, at a much higher level than p210 myeloid transformation, with acquisition of new KD mutations and/or Ph genomic amplification. In contrast, myeloid blast transformation was more frequently accompanied by new acquisition of acute myeloid leukemia-type chromosomal aberrations, particularly involving the EVI1 and RUNX1 loci. Therefore, higher kinase activity by mutation, transcriptional up-regulation or gene amplification appears required for lymphoid transformation by p210 BCR-ABL. PMID:18809762

  3. Independent prognostic value of BCR-ABL1-like signature and IKZF1 deletion, but not high CRLF2 expression, in children with B-cell precursor ALL

    PubMed Central

    van der Veer, Arian; Waanders, Esmé; Pieters, Rob; Willemse, Marieke E.; Van Reijmersdal, Simon V.; Russell, Lisa J.; Harrison, Christine J.; Evans, William E.; van der Velden, Vincent H. J.; Hoogerbrugge, Peter M.; Van Leeuwen, Frank; Escherich, Gabriele; Horstmann, Martin A.; Mohammadi Khankahdani, Leila; Rizopoulos, Dimitris; De Groot-Kruseman, Hester A.; Sonneveld, Edwin; Kuiper, Roland P.

    2013-01-01

    Most relapses in childhood B-cell precursor acute lymphoblastic leukemia (BCP-ALL) are not predicted using current prognostic features. Here, we determined the co-occurrence and independent prognostic relevance of 3 recently identified prognostic features: BCR-ABL1-like gene signature, deletions in IKZF1, and high CRLF2 messenger RNA expression (CRLF2-high). These features were determined in 4 trials representing 1128 children with ALL: DCOG ALL-8, ALL9, ALL10, and Cooperative ALL (COALL)-97/03. BCR-ABL1-like, IKZF1-deleted, and CRLF2-high cases constitute 33.7% of BCR-ABL1–negative, MLL wild-type BCP-ALL cases, of which BCR-ABL1-like and IKZF1 deletion (co)occurred most frequently. Higher cumulative incidence of relapse was found for BCR-ABL1-like and IKZF1-deleted, but not CRLF2-high, cases relative to remaining BCP-ALL cases, reflecting the observations in each of the cohorts analyzed separately. No relapses occurred among cases with CRLF2-high as single feature, whereas 62.9% of all relapses in BCR-ABL1–negative, MLL wild-type BCP-ALL occurred in cases with BCR-ABL1-like signature and/or IKZF1 deletion. Both the BCR-ABL1-like signature and IKZF1 deletions were prognostic features independent of conventional prognostic markers in a multivariate model, and both remained prognostic among cases with intermediate minimal residual disease. The BCR-ABL1-like signature and an IKZF1 deletion, but not CRLF2-high, are prognostic factors and are clinically of importance to identify high-risk patients who require more intensive and/or alternative therapies. PMID:23974192

  4. Mcl-1 downregulation leads to the heightened sensitivity exhibited by BCR-ABL positive ALL to induction of energy and ER-stress.

    PubMed

    Leclerc, Guy J; DeSalvo, Joanna; Du, Jianfeng; Gao, Ningguo; Leclerc, Gilles M; Lehrman, Mark A; Lampidis, Theodore J; Barredo, Julio C

    2015-08-20

    BCR-ABL positive (+) acute lymphoblastic leukemia (ALL) accounts for ∼30% of cases of ALL. We recently demonstrated that 2-deoxy-d-glucose (2-DG), a dual energy (glycolysis inhibition) and ER-stress (N-linked-glycosylation inhibition) inducer, leads to cell death in ALL via ER-stress/UPR-mediated apoptosis. Among ALL subtypes, BCR-ABL+ ALL cells exhibited the highest sensitivity to 2-DG suggesting BCR-ABL expression may be linked to this increased vulnerability. To confirm the role of BCR-ABL, we constructed a NALM6/BCR-ABL stable cell line and found significant increase in 2-DG-induced apoptosis compared to control. We found that Mcl-1 was downregulated by agents inducing ER-stress and Mcl-1 levels correlated with ALL sensitivity. In addition, we showed that Mcl-1 expression is positively regulated by the MEK/ERK pathway, dependent on BCR-ABL, and further downregulated by combining ER-stressors with TKIs. We determined that energy/ER stressors led to translational repression of Mcl-1 via the AMPK/mTOR and UPR/PERK/eIF2α pathways. Taken together, our data indicate that BCR-ABL+ ALL exhibits heightened sensitivity to induction of energy and ER-stress through inhibition of the MEK/ERK pathway, and translational repression of Mcl-1 expression via AMPK/mTOR and UPR/PERK/eIF2α pathways. This study supports further consideration of strategies combining energy/ER-stress inducers with BCR-ABL TKIs for future clinical translation in BCR-ABL+ ALL patients. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Pristimerin induces apoptosis in imatinib-resistant chronic myelogenous leukemia cells harboring T315I mutation by blocking NF-κB signaling and depleting Bcr-Abl

    PubMed Central

    2010-01-01

    Background Chronic myelogenous leukemia (CML) is characterized by the chimeric tyrosine kinase Bcr-Abl. Bcr-Abl-T315I is the notorious point mutation that causes resistance to imatinib and the second generation tyrosine kinase inhibitors, leading to poor prognosis. CML blasts have constitutive p65 (RelA NF-κB) transcriptional activity, and NF-κB may be a potential target for molecular therapies in CML that may also be effective against CML cells with Bcr-Abl-T315I. Results In this report, we discovered that pristimerin, a quinonemethide triterpenoid isolated from Celastraceae and Hippocrateaceae, inhibited growth and induced apoptosis in CML cells, including the cells harboring Bcr-Abl-T315I mutation. Additionally, pristimerin inhibited the growth of imatinib-resistant Bcr-Abl-T315I xenografts in nude mice. Pristimerin blocked the TNFα-induced IκBα phosphorylation, translocation of p65, and expression of NF-κB-regulated genes. Pristimerin inhibited two steps in NF-κB signaling: TAK1→IKK and IKK→IκBα. Pristimerin potently inhibited two pairs of CML cell lines (KBM5 versus KBM5-T315I, 32D-Bcr-Abl versus 32D-Bcr-Abl-T315I) and primary cells from a CML patient with acquired resistance to imatinib. The mRNA and protein levels of Bcr-Abl in imatinib-sensitive (KBM5) or imatinib-resistant (KBM5-T315I) CML cells were reduced after pristimerin treatment. Further, inactivation of Bcr-Abl by imatinib pretreatment did not abrogate the TNFα-induced NF-κB activation while silencing p65 by siRNA did not affect the levels of Bcr-Abl, both results together indicating that NF-κB inactivation and Bcr-Abl inhibition may be parallel independent pathways. Conclusion To our knowledge, this is the first report to show that pristimerin is effective in vitro and in vivo against CML cells, including those with the T315I mutation. The mechanisms may involve inhibition of NF-κB and Bcr-Abl. We concluded that pristimerin could be a lead compound for further drug development to

  6. Molecular monitoring of BCR-ABL transcripts in patients with chronic myelogenous leukemia: is high sensitivity of clinical value?

    PubMed

    Norkin, Maxim; Schiffer, Charles A

    2010-04-01

    Monitoring of disease response during treatment with tyrosine kinase inhibitors of patients with chronic myelogenous leukemia dramatically changed after the introduction of real-time PCR, which allows quantification of BCR-ABL transcript levels with high sensitivity and precision. However, its role in patients who have achieved complete cytogenetic response is not entirely clear; incorrect interpretation of results could lead to unnecessary changes from an effective treatment. This review discusses the current evidence regarding the benefits, uncertainties, and potential drawbacks of molecular monitoring in patients with chronic myelogenous leukemia in chronic phase.

  7. High frequency and poor prognosis of late childhood BCR-ABL-positive and MLL-AF4-positive ALL define the need for advanced molecular diagnostics and improved therapeutic strategies in pediatric B-ALL in Pakistan.

    PubMed

    Iqbal, Zafar; Akhtar, Tanveer; Awan, Tashfin; Aleem, Aamer; Sabir, Noreen; Rasool, Mahmood; Absar, Muhammad; Akram, Afia M; Shammas, Masood A; Shah, Ijaz H; Khalid, Muhammad; Taj, Abid S; Jameel, Abid; Alanazi, Abdullah; Gill, Ammara T; Hashmi, Jamil Amjad; Hussain, Akhtar; Sabar, Muhammad Farooq; Khalid, Ahmad M; Qazi, Mehmood Hussain; Karim, Sajjad; Siddiqi, Muhammad Hassan; Mahmood, Aamir; Iqbal, Mudassar; Saeed, Anjum; Irfan, Muhammad Imran

    2015-10-01

    Fusion oncogenes (FOs) resulting from chromosomal abnormalities have an important role in leukemogenesis in pediatric B cell acute lymphoblastic leukemia (ALL). The most common FOs are BCR-ABL, MLL-AF4, ETV6-RUNX1, and TCF3-PBX1, all of which have important prognostic and drug selection implications. Moreover, frequencies of FOs have ethnic variations. We studied Pakistani frequencies of FOs, clinical pattern, and outcome in pediatric B-ALL. FOs were studied in 188 patients at diagnosis using reverse transcriptase-polymerase chain reaction (RT-PCR) and interphase fluorescent in situ hybridization (FISH). Data were analyzed using SPSS version 17 (SPSS Inc., Chicago, IL, USA). FOs were detected in 87.2 % of patients. Mean overall survival was 70.9 weeks, 3-year survival was 31.9 %, and 3-year relapse-free survival was 18.1 %. Four patients died of drug toxicities. ETV6-RUNX1 (19.14 %) had better survival (110.9 weeks; p = 0.03); TCF3-PBX1 (2.1 %) was associated with inferior outcome and higher central nervous system (CNS) relapse risk; MLL-AF4 (18.1 %) was more common in the 8- to 15-year age group (24/34; p = 0.001) and was associated with organomegaly, low platelet count, and poor survival; and BCR-ABL (47.9 %) was associated with older age (7-15 years, 52/90), lower remission rates, shorter survival (43.73 ± 4.24 weeks) and higher white blood cell count. Overall, MLL-AF4 and BCR-ABL were detected in 66 % of B-ALL, presented in later childhood, and were associated with poor prognosis and inferior survival. This study reports the highest ethnic frequency of BCR-ABL FO in pediatric ALL, and is consistent with previous reports from our region. Poor prognosis BCR-ABL and MLL-AF4 was detected in two-thirds of pediatric B-ALL and is likely to be the reason for the already reported poor survival of childhood ALL in South-East Asia. Furthermore, MLL-AF4, usually most common in infants, presented in later childhood in most of the ALL patients, which was

  8. Biosensing of BCR/ABL fusion gene using an intensity-interrogation surface plasmon resonance imaging system

    NASA Astrophysics Data System (ADS)

    Wu, Jiangling; Huang, Yu; Bian, Xintong; Li, DanDan; Cheng, Quan; Ding, Shijia

    2016-10-01

    In this work, a custom-made intensity-interrogation surface plasmon resonance imaging (SPRi) system has been developed to directly detect a specific sequence of BCR/ABL fusion gene in chronic myelogenous leukemia (CML). The variation in the reflected light intensity detected from the sensor chip composed of gold islands array is proportional to the change of refractive index due to the selective hybridization of surface-bound DNA probes with target ssDNA. SPRi measurements were performed with different concentrations of synthetic target DNA sequence. The calibration curve of synthetic target sequence shows a good relationship between the concentration of synthetic target and the change of reflected light intensity. The detection limit of this SPRi measurement could approach 10.29 nM. By comparing SPRi images, the target ssDNA and non-complementary DNA sequence are able to be distinguished. This SPRi system has been applied for assay of BCR/ABL fusion gene extracted from real samples. This nucleic acid-based SPRi biosensor therefore offers an alternative high-effective, high-throughput label-free tool for DNA detection in biomedical research and molecular diagnosis.

  9. c-Fos and Dusp1 confer non-oncogene addiction in BCR-ABL induced leukemia

    PubMed Central

    Kesarwani, Meenu; Kincaid, Zachary; Gomaa, Ahmed; Huber, Erika; Rohrabaugh, Sara; Siddiqui, Zain; Bouso, Muhammad F.; Latif, Tahir; Xu, Ming; Komurov, Kakajan; Mulloy, James C.; Cancelas, Jose A.; Grimes, H. Leighton; Azam, Mohammad

    2017-01-01

    Tyrosine kinase inhibitor (TKI) therapy for human cancers is not curative, with relapse due to the continuing presence of tumor cells, referred to as minimal residual disease (MRD) cells. MRD stem or progenitor cells survival in the absence of oncogenic kinase signaling, a phenomenon referred to as intrinsic resistance, depends on diverse growth factors. Here, we report that oncogenic kinase and growth factor signaling converge to induce the expression of the signaling proteins c-Fos and Dusp1. Genetic deletion of c-Fos and Dusp1 suppressed tumor growth in a BCR-ABL-induced mouse model of chronic myeloid leukemia (CML). Pharmacological inhibition of c-Fos, Dusp1 and BCR-ABL eradicated MRD in multiple in vivo models, as well as in primary CML patient xenotransplanted mice. Growth factor signaling also conferred TKI resistance and induced c-FOS and DUSP1 expression in tumor cells modeling other types of kinase-driven leukemias. Our data demonstrate that c-Fos and Dusp1 expression levels determine the threshold of TKI efficacy, such that growth factor-induced expression of c-Fos and Dusp1 confers intrinsic resistance to TKI therapy in a wide-ranging set of leukemias, and may represent a unifying Achilles heel of kinase-driven cancers. PMID:28319094

  10. Activity of dual SRC-ABL inhibitors highlights the role of BCR/ABL kinase dynamics in drug resistance

    PubMed Central

    Azam, Mohammad; Nardi, Valentina; Shakespeare, William C.; Metcalf, Chester A.; Bohacek, Regine S.; Wang, Yihan; Sundaramoorthi, Raji; Sliz, Piotr; Veach, Darren R.; Bornmann, William G.; Clarkson, Bayard; Dalgarno, David C.; Sawyer, Tomi K.; Daley, George Q.

    2006-01-01

    Mutation in the ABL kinase domain is the principal mechanism of imatinib resistance in patients with chronic myelogenous leukemia. Many mutations favor active kinase conformations that preclude imatinib binding. Because the active forms of ABL and SRC resemble one another, we tested two dual SRC-ABL kinase inhibitors, AP23464 and PD166326, against 58 imatinib-resistant (IMR) BCR/ABL kinase variants. Both compounds potently inhibit most IMR variants, and in vitro drug selection demonstrates that active (AP23464) and open (PD166326) conformation-specific compounds are less susceptible to resistance than imatinib. Combinations of inhibitors suppressed essentially all resistance mutations, with the notable exception of T315I. Guided by mutagenesis studies and molecular modeling, we designed a series of AP23464 analogues to target T315I. The analogue AP23846 inhibited both native and T315I variants of BCR/ABL with submicromolar potency but showed nonspecific cellular toxicity. Our data illustrate how conformational dynamics of the ABL kinase accounts for the activity of dual SRC-ABL inhibitors against IMR-mutants and provides a rationale for combining conformation specific inhibitors to suppress resistance. PMID:16754879

  11. BCR/ABL1 fusion transcripts generated from alternative splicing: implications for future targeted therapies in Ph+ leukaemias.

    PubMed

    Chiarella, P; Summa, V; De Santis, S; Signori, E; Picardi, E; Pesole, G; Saglio, G; Fazio, V M

    2012-06-01

    Philadelphia (Ph+) positive leukaemias are an example of haematological malignant diseases where different chromosomal rearrangements involving both BCR and ABL1 genes generate a variety of chimeric proteins (BCR/ABL1 p210, p190 and p230) which are considered pathological "biomarkers". In addition to these three, there is a variety of fusion transcripts whose origin may depend either on diverse genetic rearrangement or on alternative/atypical splicing of the main mRNAs or on the occurrence of single-point mutations. Although the therapy of Ph+ leukaemias based on Imatinib represents a triumph of medicine, not all patients benefit from such drug and may show resistance and intolerance. Furthermore, interruption of Imatinib administration is often followed by clinical relapse, suggesting a failure in the eradication of residual leukaemic stem cells. Therefore, while the targeted therapy is searching for new and implemented pharmacological inhibitors covering all the possible mutations in the kinase domain, there is urge to identify alternative molecular targets to develop other specific and effective therapeutic approaches. In this review we discuss the importance of recent advances based on the discovery of novel BCR/ABL1 variants and their potential role as new targets/biomarkers of Ph+ leukaemias in the light of the current therapeutic trends. The limits of the pharmacological inhibitors used for treating the disease can be overcome by considering other targets than the kinase enzyme. Our evaluations highlight the potential of alternative perspectives in the therapy of Ph+ leukaemias.

  12. Allelic Expression Imbalance of JAK2 V617F Mutation in BCR-ABL Negative Myeloproliferative Neoplasms

    PubMed Central

    Kim, Yeo-Kyeoung; Kim, Hyeoung-Joon; Shin, Jong-Hee; Suh, Soon-Pal; Ryang, Dong-Wook; Shin, Myung-Geun

    2013-01-01

    The discovery of a single point mutation in the JAK2 gene in patients with BCR/ABL-negative myeloproliferative neoplasms (MPNs) has not only brought new insights and pathogenesis, but also has made the diagnosis of MPNs much easier. Although, to date, several mechanisms for the contribution of single JAK2V617F point mutation to phenotypic diversity of MPNs have been suggested in multiple studies, but it is not clear how a unique mutation can cause the phenotypic diversity of MPNs. In this study, our results show that allelic expression imbalance of JAK2 V617F mutant frequently occurs and contributes to phenotypic diversity of BCR-ABL-negative MPNs. The proportion of JAK2 V617F mutant allele was significantly augmented in RNA levels as compared with genomic DNA differently by distinct MPNs subtypes. In detail, preferential expression of JAK2 mutant allele showed threefold increase from the cDNA compared with the genomic DNA from patients with essential thrombocythemia and twofold increase in polycythemia vera. In conclusion, allelic expression imbalance of JAK2 V617F mutant proposes another plausible mechanism for the contribution of single JAK2 point mutation to phenotypic diversity of MPNs. PMID:23349688

  13. Implication of the Autologous Immune System in BCR-ABL Transcript Variations in Chronic Myelogenous Leukemia Patients Treated with Imatinib.

    PubMed

    Clapp, Geoffrey D; Lepoutre, Thomas; El Cheikh, Raouf; Bernard, Samuel; Ruby, Jérémy; Labussière-Wallet, Hélène; Nicolini, Franck E; Levy, Doron

    2015-10-01

    Imatinib and other tyrosine kinase inhibitors (TKI) have improved treatment of chronic myelogenous leukemia (CML); however, most patients are not cured. Deeper mechanistic understanding may improve TKI combination therapies to better control the residual leukemic cell population. In analyzing our patients' data, we found that many patients who otherwise responded well to imatinib therapy still showed variations in their BCR-ABL transcripts. To investigate this phenomenon, we applied a mathematical model that integrates CML and an autologous immune response to the patients' data. We define an immune window or a range of leukemic loads for which the autologous immune system induces an improved response. Our modeling results suggest that, at diagnosis, a patient's leukemic load is able to partially or fully suppress the autologous immune response developed in a majority of patients, toward the CML clone(s). Imatinib therapy drives the leukemic population into the "immune window," allowing the patient's autologous immune cells to expand and eventually mount an efficient recognition of the residual leukemic burden. This response drives the leukemic load below this immune window, allowing the leukemic population to partially recover until another weaker immune response is initiated. Thus, the autologous immune response may explain the oscillations in BCR-ABL transcripts regularly observed in patients on imatinib.

  14. AP24534, a Pan-BCR-ABL Inhibitor for Chronic Myeloid Leukemia, Potently Inhibits the T315I Mutant and Overcomes Mutation-Based Resistance

    PubMed Central

    O’Hare, Thomas; Shakespeare, William C.; Zhu, Xiaotian; Eide, Christopher A.; Rivera, Victor M.; Wang, Frank; Adrian, Lauren T.; Zhou, Tianjun; Huang, Wei-Sheng; Xu, Qihong; Metcalf, Chester A.; Tyner, Jeffrey W.; Loriaux, Marc M.; Corbin, Amie S.; Wardwell, Scott; Ning, Yaoyu; Keats, Jeffrey A.; Wang, Yihan; Sundaramoorthi, Raji; Thomas, Mathew; Zhou, Dong; Snodgrass, Joseph; Commodore, Lois; Sawyer, Tomi K.; Dalgarno, David C.; Deininger, Michael W.N.; Druker, Brian J.; Clackson, Tim

    2009-01-01

    SUMMARY Inhibition of BCR-ABL by imatinib induces durable responses in many patients with chronic myeloid leukemia (CML), but resistance attributable to kinase domain mutations can lead to relapse and a switch to second-line therapy with nilotinib or dasatinib. Despite three approved therapeutic options, the cross-resistant BCR-ABLT315I mutation and compound mutants selected on sequential inhibitor therapy remain major clinical challenges. We report design and pre-clinical evaluation of AP24534, a potent, orally available multi-targeted kinase inhibitor active against T315I and other BCR-ABL mutants. AP24534 inhibited all tested BCR-ABL mutants in cellular and biochemical assays, suppressed BCR-ABLT315I-driven tumor growth in mice, and completely abrogated resistance in cell-based mutagenesis screens. Our work supports clinical evaluation of AP24534 as a pan-BCR-ABL inhibitor for treatment of CML. PMID:19878872

  15. High-risk acute lymphoblastic leukemia cells with bcr-abl and INK4A/ARF mutations retain susceptibility to alloreactive T cells.

    PubMed

    Young, Faith M; Campbell, Andrew; Emo, Kris Lambert; Jansson, Johan; Wang, Pin-Yi; Jordan, Craig T; Mullen, Craig A

    2008-06-01

    INK4A/ARF mutations are acquired in bcr/abl(+) lymphoid blast phase chronic myelogenous leukemia (CML) and bcr/abl(+) acute lymphoblastic leukemia (ALL). Donor lymphocyte infusion and graft-versus-leukemia (GVL) are generally ineffective in such ALLs, whereas GVL is highly active against bcr/abl(+) CML, which does not have a lesion in the INK4A/ARF locus. The mechanisms for the ineffectiveness of GVL are not fully known, and it is possible that intrinsic resistance of acute lymphoid leukemias to immune effectors associated with allogeneic GVL may contribute to ineffectiveness. This work tested the hypothesis that INK4A/ARF mutations that are associated with transformation of bcr/abl(+) CML to an ALL phenotype, and that are associated with increased resistance to apoptosis render ALL cells insensitive to allogeneic immune responses to minor histocompatibility antigens (mHA). Murine acute pre-B ALLs were induced by transfer of the human p210 bcr/abl gene into bone marrow of INK4A/ARF null mice. These ALL lines were then studied in a murine model of MHC-matched, mHA-mismatched allogeneic BMT. In vivo growth of these ALLs was inhibited in allogeneic transplants characterized by active allogeneic immune responses compared to their behavior in syngeneic transplants. In vitro ALLs with INK4A/ARF, p210 bcr/abl, or p190 bcr/abl mutations remained sensitive to anti-mHA cytolytic T cells. In addition, the ALLs were capable of inducing primary immune responses to mHAs in vivo. Thus, ALLs with INK4A/ARF or bcr/abl mutations are not intrinsically resistant to allogeneic T cell responses, suggesting that active immunotherapies against mHA have the potential to control such acute lymphoblastic leukemias.

  16. High risk acute lymphoblastic leukemia cells with bcr-abl and INK4A/ARF mutations retain susceptibility to alloreactive T cells

    PubMed Central

    Young, Faith M.; Campbell, Andrew; Emo, Kris Lambert; Jansson, Johan; Wang, Pin-Yi; Jordan, Craig T.; Mullen, Craig A.

    2008-01-01

    INK4A/ARF mutations are acquired in bcr/abl+ lymphoid blast phase chronic myelogenous leukemia (CML) and bcr/abl+ acute lymphoblastic leukemia (ALL). Donor lymphocyte infusion and graft versus leukemia are generally ineffective in such ALL’s, while GVL is highly active against bcr/abl+ CML that does not have a lesion in the INK4A/ARF locus. The mechanisms for the ineffectiveness of GVL are not fully known and it is possible that intrinsic resistance of acute lymphoid leukemias to immune effectors associated with allogeneic GVL may contribute to ineffectiveness. This work tested the hypothesis that INK4A/ARF mutations that are associated with transformation of bcr/abl+ CML to an ALL phenotype and that are associated with increased resistance to apoptosis render ALL cells insensitive to allogeneic immune responses to minor histocompatibility antigens (mHA). Murine acute pre-B ALL’s were induced by transfer of the human p210 bcr/abl gene into bone marrow of INK4A/ARF null mice. These ALL lines were then studied in a murine model of MHC-matched, mHA-mismatched allogeneic BMT. In vivo growth of these ALL’s was inhibited in allogeneic transplants characterized by active allogeneic immune responses compared to their behavior in syngeneic transplants. In vitro ALL’s with INK4A/ARF, p210 bcr/abl, or p190 bcr/abl mutations remained sensitive to anti-mHA cytolytic T cells. In addition, the ALL’s were capable of inducing primary immune responses to mHA’s in vivo. Thus, ALL’s with INK4A/ARF or bcr/abl mutations are not intrinsically resistant to allogeneic T cell responses suggesting that active immunotherapies against mHA have potential to control such acute lymphoblastic leukemias. PMID:18489987

  17. Myeloid Neoplasms with Concurrent BCR-ABL1 and CBFB Rearrangements: A Series of 10 Cases of a Clinically Aggressive Neoplasm.

    PubMed

    Salem, Alireza; Loghavi, Sanam; Tang, Guilin; Huh, Yang O; Jabbour, Elias J; Kantarjian, Hagop; Wang, Wei; Hu, Shimin; Luthra, Rajyalakshmi; Medeiros, L Jeffrey; Khoury, Joseph D

    2017-03-02

    Chronic myeloid leukemia (CML) is defined by the presence of t(9;22)(q34;q11.2)/BCR-ABL1. Additional chromosomal abnormalities confer an adverse prognosis and are particularly common in the blast phase of CML (CML-BP). CBFB rearrangement, particularly CBFB-MYH11 fusion resulting from inv(16)(p13.1q22) or t(16;16)(p13.1;q22), is an acute myeloid leukemia (AML)-defining alteration that is associated with a favorable outcome. The co-occurrence of BCR-ABL1 and CBFB rearrangement is extremely rare, and the significance of this finding remains unclear. We identified 10 patients with myeloid neoplasms harboring BCR-ABL1 and CBFB rearrangement. The study group included 6 men and 4 women with a median age of 51 years (range, 20-71 years). The sequence of molecular alterations could be determined in 9 cases: BCR-ABL1 preceded CBFB rearrangement in 7, CBFB rearrangement preceded BCR-ABL1 in 2, and both alterations were discovered simultaneously in 1 patient. BCR-ABL1 encoded for p210 kD in all cases in which BCR-ABL1 preceded CBFB rearrangement; a p190 kD was identified in the other 3 cases. Two patients were treated with the FLAG-IDA regimen (fludarabine, cytarabine, idarubicin and G-CSF) and tyrosine kinase inhibitors (TKI); 7 with other cytarabine-based regimens and TKIs, and one with ponatinib alone. At last follow up (median, 16 months; range 2-85), 7 of 10 patients had died. The co-existence of BCR-ABL1 and CBFB rearrangement is associated with poor outcome and a clinical course similar to that of CML-BP, and unlike de novo AML with CBFB rearrangement, suggesting that high-intensity chemotherapy with TKI should be considered in these patients. This article is protected by copyright. All rights reserved.

  18. Predicting Gene Structures from Multiple RT-PCR Tests

    NASA Astrophysics Data System (ADS)

    Kováč, Jakub; Vinař, Tomáš; Brejová, Broňa

    It has been demonstrated that the use of additional information such as ESTs and protein homology can significantly improve accuracy of gene prediction. However, many sources of external information are still being omitted from consideration. Here, we investigate the use of product lengths from RT-PCR experiments in gene finding. We present hardness results and practical algorithms for several variants of the problem and apply our methods to a real RT-PCR data set in the Drosophila genome. We conclude that the use of RT-PCR data can improve the sensitivity of gene prediction and locate novel splicing variants.

  19. p210(BCR-ABL) reprograms transformed and normal human megakaryocytic progenitor cells into erythroid cells and suppresses FLI-1 transcription.

    PubMed

    Buet, D; Raslova, H; Geay, J-F; Jarrier, P; Lazar, V; Turhan, A; Morlé, F; Vainchenker, W; Louache, F

    2007-05-01

    The BCR-ABL oncoprotein exhibits deregulated protein tyrosine kinase activity and is implicated in the pathogenesis of Philadelphia chromosome (Ph)-positive human leukemias. Here, we report that ectopic expression of p210(BCR-ABL) in the megakaryoblastic Mo7e cell line and in primary human CD34(+) progenitors trigger erythroid differentiation at the expense of megakaryocyte (MK) differentiation. Clonal culture of purified CD41(+)CD42(-) cells, a population highly enriched in MK progenitors, combined with the conditional expression of p210(BCR-ABL) tyrosine kinase activity by imatinib identified a true lineage reprogramming. In both Mo7e or CD41(+)CD42(-) cells transduced with p210(BCR-ABL), lineage switching was associated with a downregulation of the friend leukemia Integration 1 (FLI-1) transcription factor. Re-expression of FLI-1 in p210(BCR-ABL)-transduced Mo7e cells rescued the megakaryoblastic phenotype. Altogether, these results demonstrate that alteration of signal transduction via p210(BCR-ABL) reprograms MK cells into erythroid cells by a downregulation of FLI-1. In addition, our findings underscore the role of kinases in lineage choice and infidelity in pathology and suggest that downregulation of FLI-1 may have important implications in CML pathogenesis.

  20. Transposon-mediated generation of BCR-ABL1-expressing transgenic cell lines for unbiased sensitivity testing of tyrosine kinase inhibitors

    PubMed Central

    Berkowitsch, Bettina; Koenig, Margit; Haas, Oskar A.; Hoermann, Gregor; Valent, Peter; Lion, Thomas

    2016-01-01

    Point mutations in the ABL1 kinase domain are an important mechanism of resistance to tyrosine kinase inhibitors (TKI) in BCR-ABL1-positive and, as recently shown, BCR-ABL1-like leukemias. The cell line Ba/F3 lentivirally transduced with mutant BCR-ABL1 constructs is widely used for in vitro sensitivity testing and response prediction to tyrosine kinase inhibitors. The transposon-based Sleeping Beauty system presented offers several advantages over lentiviral transduction including the absence of biosafety issues, faster generation of transgenic cell lines, and greater efficacy in introducing large gene constructs. Nevertheless, both methods can mediate multiple insertions in the genome. Here we show that multiple BCR-ABL1 insertions result in elevated IC50 levels for individual TKIs, thus overestimating the actual resistance of mutant subclones. We have therefore established flow-sorting-based fractionation of BCR-ABL1-transformed Ba/F3 cells facilitating efficient enrichment of cells carrying single-site insertions, as demonstrated by FISH-analysis. Fractions of unselected Ba/F3 cells not only showed a greater number of BCR-ABL1 hybridization signals, but also revealed higher IC50 values for the TKIs tested. The data presented highlight the need to carefully select transfected cells by flow-sorting, and to control the insertion numbers by FISH and real-time PCR to permit unbiased in vitro testing of drug resistance. PMID:27801667

  1. P210 and P190(BCR/ABL) induce the tyrosine phosphorylation and DNA binding activity of multiple specific STAT family members.

    PubMed

    Ilaria, R L; Van Etten, R A

    1996-12-06

    The products of the Philadelphia chromosome translocation, P210 and P190(BCR/ABL), are cytoplasmic protein tyrosine kinases that share the ability to transform hematopoietic cytokine-dependent cell lines to cytokine independence but differ in the spectrum of leukemia induced in vivo. We have analyzed the Janus kinase (JAK) and signal transducer and activator of transcription (STAT) pathways in hematopoietic cells transformed by Bcr/Abl. STAT5 and, to a lesser extent, STATs 1 and 3 were constitutively activated by tyrosine phosphorylation and induction of DNA binding activity in both P210 and P190(BCR/ABL)-transformed cells, but P190 differed in that it also prominently activated STAT6. There was low level tyrosine phosphorylation of JAKs 1, 2, and 3 in Bcr/Abl-transformed cells, but no detectable complex formation with Bcr/Abl, and activation of STAT5 by P210 was not blocked by two different dominant-negative JAK mutants. These results suggest that P210 and P190(BCR/ABL) directly activate specific STAT family members and may help explain their overlapping yet distinct roles in leukemogenesis.

  2. Developmental origins and impact of BCR-ABL1 fusion and IKZF1 deletions in monozygotic twins with Ph+ acute lymphoblastic leukemia

    PubMed Central

    van Delft, Frederik W.; Lo Nigro, Luca; Ford, Anthony M.; Score, Joannah; Iacobucci, Ilaria; Mirabile, Elena; Taj, Mary; Colman, Susan M.; Biondi, Andrea

    2011-01-01

    The timing and developmental sequence of events for BCR-ABL1+ acute lymphoblastic leukemia (ALL), usually associated with IKAROS (IKZF1) deletions, are unknown. We assessed the status of BCR-ABL1 and IKZF1 genes in 2 pairs of monozygotic twins, one pair concordant, the other discordant for Philadelphia chromosome positive (Ph+) ALL. The twin pair concordant for ALL shared identical BCR-ABL1 genomic sequence indicative of monoclonal, in utero origin. One twin had IKZF1 deletion and died after transplantation. The other twin had hyperdiploidy, no IKZF1 deletion, and is still in remission 8 years after transplantation. In the twin pair discordant for ALL, neonatal blood spots from both twins harbored the same clonotypic BCR-ABL1 sequence. Low level BCR-ABL1+ cells were present in the healthy co-twin but lacked the IKZF1 deletion present in the other twin's leukemic cells. The twin with ALL relapsed and died after transplantation. The co-twin remains healthy and leukemia free. These data show that in childhood Ph+ ALL, BCR-ABL1 gene fusion can be a prenatal and possibly initiating genetic event. In the absence of additional, secondary changes, the leukemic clone remains clinically silent. IKZF1 is a secondary and probable postnatal mutation in these cases, and as a recurrent but alternative copy number change is associated with poor prognosis. PMID:21960589

  3. HSP90 inhibitor AUY922 induces cell death by disruption of the Bcr-Abl, Jak2 and HSP90 signaling network complex in leukemia cells.

    PubMed

    Tao, Wenjing; Chakraborty, Sandip N; Leng, Xiaohong; Ma, Helen; Arlinghaus, Ralph B

    2015-01-01

    The Bcr-Abl protein is an important client protein of heat shock protein 90 (HSP90). We evaluated the inhibitory effects of the HSP90 ATPase inhibitor AUY922 on 32D mouse hematopoietic cells expressing wild-type Bcr-Abl (b3a2, 32Dp210) and mutant Bcr-Abl imatinib (IM)-resistant cell lines. Western blotting results of fractions from gel filtration column chromatography of 32Dp210 cells showed that HSP90 together with Bcr-Abl, Jak2 Stat3 and several other proteins co-eluted in peak column fractions of a high molecular weight network complex (HMWNC). Co-IP results showed that HSP90 directly bound to Bcr-Abl, Jak2, Stat 3 and Akt. The associations between HSP90 and Bcr-Abl or Bcr-Abl kinase domain mutants (T315I and E255K) were interrupted by AUY922 treatment. Tyrosine phosphorylation of Bcr-Abl showed a dose-dependent decrease in 32Dp210T315I following AUY922 treatment for 16h. AUY922 also markedly inhibited cell proliferation of both IM-sensitive 32Dp210 (IC50 =6 nM) and IM-resistant 32Dp210T315I cells (IC50 ≈6 nM) and human KBM-5R/KBM-7R cell lines (IC50 =50 nM). AUY922 caused significant G1 arrest in 32Dp210 cells but not in T315I or E255K cells. AUY922 efficiently induced apoptosis in 32Dp210 (IC50 =10 nM) and T315I or E255K lines with IC50 around 20 to 50 nM. Our results showed that Bcr-Abl and Jak2 form HMWNC with HSP90 in CML cells. Inhibition of HSP90 by AUY922 disrupted the structure of HMWNC, leading to Bcr-Abl degradation, nhibiting cell proliferation and inducing apoptosis. Thus, inhibition of HSP90 is a powerful way to inhibit not only IM-sensitive CML cells but also IM-resistant CML cells.

  4. BCR-ABL tyrosine kinase inhibitor pharmacophore model derived from a series of phenylaminopyrimidine-based (PAP) derivatives.

    PubMed

    Cui, Jing; Fu, Rao; Zhou, Li-Hua; Chen, Sheng-Ping; Li, Guang-Wu; Qian, Shen-Xian; Liu, Shu

    2013-04-15

    To reveal novel insights into the inhibition of BCR-ABL tyrosine kinase, pharmacophore mapping studies were performed for a series of phenylaminopyrimidine-based (PAP) derivatives, including imatinib (Gleevec). A seven-point pharmacophore model with one hydrophobic group (H), two hydrogen bond donors (D) and four aromatic rings (R) was developed using phase (pharmacophore alignment & scoring engine). The pharmacophore hypothesis yielded a statistically significant 3D-QSAR model, with a correlation coefficient of 0.886 and a survival score of 4.97 for training set molecules. The model showed excellent predictive power, with a correlation coefficient of Q(2)=0.768 for an external test set of ten molecules. The results obtained from our studies provide a valuable tool for designing new lead molecules with potent activity.

  5. Suppression of E-protein activity interferes with the development of BCR-ABL-mediated myeloproliferative disease.

    PubMed

    Ko, Jinkyung; Patel, Nihal; Ikawa, Tomokatsu; Kawamoto, Hiroshi; Frank, Oliver; Rivera, Richard R; Van Etten, Richard A; Murre, Cornelis

    2008-09-02

    E-proteins are a class of helix-loop-helix (HLH) proteins, which play multiple roles throughout lymphoid development. The DNA binding activities of the E-proteins are regulated by a distinct class of antagonistic HLH proteins, named Id1-4. Here we demonstrate that Id2 deficient mice in a C57BL/6 genetic background exhibit increased cellularity in the granulocyte/myeloid progenitor compartment and show significantly higher numbers of maturing neutrophils. Within 6 months of age, Id2 deficient mice succumbed from overwhelming granulocytosis. The disease closely mimicked the distinctive features of human chronic myeloid leukemia: leukocytosis with maturing neutrophils, splenomegaly, hepatomegaly, and myeloid infiltration into peripheral tissues, including spleen, liver, and lungs. Strikingly, forced Id2 expression in murine bone marrow cells substantially delayed the onset of myeloproliferative disease (MPD). Collectively, these studies show that suppression of E-protein activity interferes with the development of BCR-ABL-mediated MPD.

  6. Perturbation of energy metabolism by fatty-acid derivative AIC-47 and imatinib in BCR-ABL-harboring leukemic cells.

    PubMed

    Shinohara, Haruka; Kumazaki, Minami; Minami, Yosuke; Ito, Yuko; Sugito, Nobuhiko; Kuranaga, Yuki; Taniguchi, Kohei; Yamada, Nami; Otsuki, Yoshinori; Naoe, Tomoki; Akao, Yukihiro

    2016-02-01

    In Ph-positive leukemia, imatinib brought marked clinical improvement; however, further improvement is needed to prevent relapse. Cancer cells efficiently use limited energy sources, and drugs targeting cellular metabolism improve the efficacy of therapy. In this study, we characterized the effects of novel anti-cancer fatty-acid derivative AIC-47 and imatinib, focusing on cancer-specific energy metabolism in chronic myeloid leukemia cells. AIC-47 and imatinib in combination exhibited a significant synergic cytotoxicity. Imatinib inhibited only the phosphorylation of BCR-ABL; whereas AIC-47 suppressed the expression of the protein itself. Both AIC-47 and imatinib modulated the expression of pyruvate kinase M (PKM) isoforms from PKM2 to PKM1 through the down-regulation of polypyrimidine tract-binding protein 1 (PTBP1). PTBP1 functions as alternative splicing repressor of PKM1, resulting in expression of PKM2, which is an inactive form of pyruvate kinase for the last step of glycolysis. Although inactivation of BCR-ABL by imatinib strongly suppressed glycolysis, compensatory fatty-acid oxidation (FAO) activation supported glucose-independent cell survival by up-regulating CPT1C, the rate-limiting FAO enzyme. In contrast, AIC-47 inhibited the expression of CPT1C and directly fatty-acid metabolism. These findings were also observed in the CD34(+) fraction of Ph-positive acute lymphoblastic leukemia cells. These results suggest that AIC-47 in combination with imatinib strengthened the attack on cancer energy metabolism, in terms of both glycolysis and compensatory activation of FAO. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  7. Rapid reduction of BCR-ABL1 transcript predicts deep molecular response in dasatinib-treated chronic-phase chronic myeloid leukaemia patients.

    PubMed

    Murai, Kazunori; Yamaguchi, Kohei; Ito, Shigeki; Miyagishima, Takuto; Shindo, Motohiro; Wakasa, Kentaro; Inomata, Mitsue; Nagashima, Takahiro; Kondo, Takeshi; Fujimoto, Nozomu; Yamamoto, Satoshi; Yonezumi, Masakatsu; Oyake, Tatsuo; Shugo, Kowata; Tsukushi, Yasuhiko; Mine, Takahiro; Meguro, Kuniaki; Ikeda, Kazuhiko; Watanabe, Reiko; Saito, Souichi; Sato, Shinji; Tajima, Katsushi; Chou, Takaaki; Kubo, Kohmei; Oba, Koji; Sakamoto, Junichi; Ishida, Yoji

    2017-09-12

    We conducted a phase-II study to evaluate the efficacy and safety of dasatinib in patients newly diagnosed with chronic-phase chronic myeloid leukaemia (CML-CP) in Japan (IMIDAS PART 2 study). Seventy-nine patients were administered 100 mg dasatinib once daily. We examined pre-treatment and post-treatment influences of various factors. The BCR-ABL1 international scale (IS), halving time (HT), and reduction rate of BCR-ABL1 transcript within the initial 1 or 3 months of therapy (RR-BCR-ABL11m,3m ) were the post-treatment factors investigated to predict the molecular response. The estimated major molecular response (MMR), molecular response 4.0 (MR4.0), and molecular response 4.5 (MR4.5) rates were 77.2%, 49.4%, and 35.4%, respectively, at 12 months. Grade 3/4 non-haematologic adverse events were infrequent. Multivariate analysis showed that age >65 years was significantly correlated with MR4.0 and MR4.5 (deep molecular response: DMR) at 12 months. All post-treatment factors at 3 months predicted DMR by univariate analysis. However, RR-BCR-ABL13m was the only significant landmark for predicting DMR by multivariate analysis. Primary treatment of CML-CP with dasatinib enabled early achievement of MMR and DMR, particularly in elderly patients, with high safety. Furthermore, RR-BCR-ABL13m was found to be a more useful predictor of DMR than HT-BCR-ABL1 and BCR-ABL1 IS. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  8. Purification of TAT-CC-HA protein under native condition, and its transduction analysis and biological effects on BCR-ABL positive cells.

    PubMed

    Huang, Zhenglan; Ji, Maosheng; Peng, Zhi; Huang, Shifeng; Xiao, Qing; Li, Chunli; Zeng, Jianming; Gao, Miao; Feng, Wenli

    2011-06-01

    BCR-ABL oncoprotein is the cause of chronic myeloid leukemia. The homologous oligomerization of BCR-ABL protein mediated by BCR coiled-coil (CC) domain plays an important role in ABL kinase activation. The HIV-1 TAT peptide has been used extensively for the introduction of proteins into cells. We recombinated a TAT-CC-HA protein to interrupt the homologous oligomerization of BCR-ABL. The expression conditions for TAT-CC-HA were optimized. The TAT-CC-HA fusion protein was purified with Ni+-NTA resin. TAT-CC-HA fusion protein was added into the cultures of Ba/F3-p210, 32D-p210, K562, KU812, Ba/F3, 32D, and HL-60 cells. It was found that TAT-CC-HA could transduce into these cells. It was confirmed that TAT-CC-HA fusion protein was internalized by Ba/F3-p210, K562, and Ba/F3 cells and located in the cytoplasm observed by confocal laser scanning fluorescence microscope. The transduction of TAT-CC-HA fusion protein into K562 cells was in a dose-dependent and time-dependent manner. The result of coimmunoprecipitation assay indicated that TAT-CC-HA could interact with BCR-ABL in K562 cells. The effects of TAT-CC-HA fusion protein on cell growth and apoptosis were detected by MTT test and flow cytometry. Our findings suggested that TAT-CC-HA fusion protein could specifically inhibit the growth of BCR-ABL positive cells, and specifically induce apoptosis of BCR-ABL positive cells, while not affect the growth and apoptosis of BCR-ABL negative cells.

  9. Proposed algorithm for the best detection of different bcr-abl gene fusion transcripts in molecular diagnostics laboratories: experience of a major referral center.

    PubMed

    Hoteit, Rouba; Mahfouz, Rami

    2011-04-01

    Detection of bcr-abl transcripts is important both in diagnosis as well as in prognostication and treatment modalities of different types of leukemia, both chronic and acute. However, the techniques employed are variable and different among laboratories. Our aim was to share with other labs a strategy/algorithm that we find highly useful for implementation to best detect all bcr-abl fusion transcripts for proper patient management. We have used two techniques for the detection of bcr-abl transcripts, an in-house developed polymerase chain reaction and a real-time quantitative commercial polymerase chain reaction (PCR) kit and tested 849 patients referred for initial screening for bcr-abl. Out of 849 cases, 146 (17.2%) were positive for bcr-abl. Around 92.11% of the total bcr-abl positive cases (N=76) detected by the real-time quantitative technique were also positive by the gel-based PCR assay; however, six cases (around 7.89%) were missed by the real-time assay and detected by the other technique in chronic myelogenous leukemia-proven cases. We highly encourage other laboratories to perform testing using a simple and inexpensive gel-based PCR screening assay followed by a real-time quantitative assay for a baseline bcr-abl expression level. This combination will enable laboratories to detect all the reported fusion transcripts in accordance with the clinical presentation of the patient as well as other laboratory tests for the best use of this genetic test in patient management and care.

  10. Negative regulation of p120GAP GTPase promoting activity by p210bcr/abl: implication for RAS-dependent Philadelphia chromosome positive cell growth

    PubMed Central

    1994-01-01

    The p210bcr/abl tyrosine kinase appears to be responsible for initiating and maintaining the leukemic phenotype in chronic myelogenous leukemia (CML) patients. p21ras-p120GAP interactions play a central role in transducing mitogenic signals. Therefore, we investigated whether p21ras and p120GAP are regulated by p210bcr/abl, and whether this activation is functionally significant for CML cell proliferation. We report that transient expression of p210bcr/abl in fibroblast-like cells induces simultaneous activation of p21ras and inhibition of GTPase-promoting activity of p120GAP, and confirm these data showing that downregulation of p210bcr/abl expression in CML cells with bcr/abl antisense oligodeoxynucleotides induces both inhibition of p21ras activation and stimulation of GTPase-promoting activity of p120GAP. Tyrosine phosphorylation of two p120GAP-associated proteins, p190 and p62, which may affect p120GAP activity, also depends on p210bcr/abl tyrosine kinase expression. Direct dependence of these effects on the kinase activity is proven in experiments in which expression of c-MYB protein in fibroblast-like cells or downregulation of c-MYB expression resulting in analogous inhibition of CML cell proliferation does not result in the same changes. Use of specific antisense oligodeoxynucleotides to downregulate p21ras expression revealed a requirement for functional p21ras in the proliferation of Philadelphia chromosome-positive CML primary cells. Thus, the p210bcr/abl-dependent regulation of p120GAP activity is responsible, in part, for the maintenance of p21ras in the active GTP-bound form, a crucial requirement for CML cell proliferation. PMID:8195713

  11. Identification of novel tyrosine kinase inhibitors for drug resistant T315I mutant BCR-ABL: a virtual screening and molecular dynamics simulations study

    PubMed Central

    Banavath, Hemanth Naick; Sharma, Om Prakash; Kumar, Muthuvel Suresh; Baskaran, R.

    2014-01-01

    BCR-ABL tyrosine kinase plays a major role in the pathogenesis of chronic myeloid leukemia (CML) and is a proven target for drug development. Currently available drugs in the market are effective against CML; however, side-effects and drug-resistant mutations in BCR-ABL limit their full potential. Using high throughput virtual screening approach, we have screened several small molecule databases and docked against wild-type and drug resistant T315I mutant BCR-ABL. Drugs that are currently available, such as imatinib and ponatinib, were also docked against BCR-ABL protein to set a cutoff value for our screening. Selected lead compounds were further evaluated for chemical reactivity employing density functional theory approach, all selected ligands shows HLG value > 0.09900 and the binding free energy between protein-ligand complex interactions obtained was rescored using MM-GBSA. The selected compounds showed least ΔG score −71.53 KJ/mol to maximum −126.71 KJ/mol in both wild type and drug resistant T315I mutant BCR-ABL. Following which, the stability of the docking complexes were evaluated by molecular dynamics simulation (MD) using GROMACS4.5.5. Results uncovered seven lead molecules, designated with Drug-Bank and PubChem ids as DB07107, DB06977, ST013616, DB04200, ST007180 ST019342, and DB01172, which shows docking scores higher than imatinib and ponatinib. PMID:25382104

  12. Identification of novel tyrosine kinase inhibitors for drug resistant T315I mutant BCR-ABL: a virtual screening and molecular dynamics simulations study

    NASA Astrophysics Data System (ADS)

    Banavath, Hemanth Naick; Sharma, Om Prakash; Kumar, Muthuvel Suresh; Baskaran, R.

    2014-11-01

    BCR-ABL tyrosine kinase plays a major role in the pathogenesis of chronic myeloid leukemia (CML) and is a proven target for drug development. Currently available drugs in the market are effective against CML; however, side-effects and drug-resistant mutations in BCR-ABL limit their full potential. Using high throughput virtual screening approach, we have screened several small molecule databases and docked against wild-type and drug resistant T315I mutant BCR-ABL. Drugs that are currently available, such as imatinib and ponatinib, were also docked against BCR-ABL protein to set a cutoff value for our screening. Selected lead compounds were further evaluated for chemical reactivity employing density functional theory approach, all selected ligands shows HLG value > 0.09900 and the binding free energy between protein-ligand complex interactions obtained was rescored using MM-GBSA. The selected compounds showed least ΔG score -71.53 KJ/mol to maximum -126.71 KJ/mol in both wild type and drug resistant T315I mutant BCR-ABL. Following which, the stability of the docking complexes were evaluated by molecular dynamics simulation (MD) using GROMACS4.5.5. Results uncovered seven lead molecules, designated with Drug-Bank and PubChem ids as DB07107, DB06977, ST013616, DB04200, ST007180 ST019342, and DB01172, which shows docking scores higher than imatinib and ponatinib.

  13. BCR-ABL Testing by Polymerase Chain Reaction in Patients With Neutrophilia: The William Beaumont Hospital Experience and the Case for Rational Laboratory Test Requests.

    PubMed

    Ogunleye, Foluso; Ibrahim, Mohammed; Allen, Emily; Brennan, Neil; Huang, James; Yu, Zhou; Huben, Marianne; Jaiyesimi, Ishmael

    2016-12-01

    Chronic myeloid leukemia (CML) is a myeloproliferative neoplasm resulting from the fusion of the BCR-ABL genes, forming the Philadelphia chromosome. The diagnosis is often suspected when there is leukocytosis with left shift and basophilia. Confirmation of the diagnosis requires a demonstration of BCR-ABL by polymerase chain reaction. Using data from the William Beaumont laboratory data registry, we conducted a retrospective review of all the orders for BCR-ABL tests sent to the clinical pathology laboratory between March 11, 2014 and September 12, 2014. We concluded that the presence of concurrent neutrophilia and basophilia has a sensitivity of 100% (95% CI, 69.15% to 100%) and specificity of 100% (95% CI, 93.15% to 100%) in the initial diagnosis of CML. Our results suggest that the presence of both neutrophilia and basophilia should be used as a threshold for the placement of orders for BCR-ABL in the initial diagnosis of CML in patients with leukocytosis with left shift and provide a basis for a reduction in health care spending. Restricting BCR-ABL tests to this population would save approximately $198 million annually in national health care spending.

  14. Flow Cytometric Immunobead Assay for Detection of BCR-ABL1 Fusion Proteins in Chronic Myleoid Leukemia: Comparison with FISH and PCR Techniques.

    PubMed

    Recchia, Anna Grazia; Caruso, Nadia; Bossio, Sabrina; Pellicanò, Mariavaleria; De Stefano, Laura; Franzese, Stefania; Palummo, Angela; Abbadessa, Vincenzo; Lucia, Eugenio; Gentile, Massimo; Vigna, Ernesto; Caracciolo, Clementina; Agostino, Antolino; Galimberti, Sara; Levato, Luciano; Stagno, Fabio; Molica, Stefano; Martino, Bruno; Vigneri, Paolo; Di Raimondo, Francesco; Morabito, Fortunato

    2015-01-01

    Chronic Myeloid Leukemia (CML) is characterized by a balanced translocation juxtaposing the Abelson (ABL) and breakpoint cluster region (BCR) genes. The resulting BCR-ABL1 oncogene leads to increased proliferation and survival of leukemic cells. Successful treatment of CML has been accompanied by steady improvements in our capacity to accurately and sensitively monitor therapy response. Currently, measurement of BCR-ABL1 mRNA transcript levels by real-time quantitative PCR (RQ-PCR) defines critical response endpoints. An antibody-based technique for BCR-ABL1 protein recognition could be an attractive alternative to RQ-PCR. To date, there have been no studies evaluating whether flow-cytometry based assays could be of clinical utility in evaluating residual disease in CML patients. Here we describe a flow-cytometry assay that detects the presence of BCR-ABL1 fusion proteins in CML lysates to determine the applicability, reliability, and specificity of this method for both diagnosis and monitoring of CML patients for initial response to therapy. We show that: i) CML can be properly diagnosed at onset, (ii) follow-up assessments show detectable fusion protein (i.e. relative mean fluorescent intensity, rMFI%>1) when BCR-ABL1IS transcripts are between 1-10%, and (iii) rMFI% levels predict CCyR as defined by FISH analysis. Overall, the FCBA assay is a rapid technique, fully translatable to the routine management of CML patients.

  15. Dasatinib treatment can overcome imatinib and nilotinib resistance in CML patient carrying F359I mutation of BCR-ABL oncogene.

    PubMed

    Barańska, Marta; Lewandowski, Krzysztof; Gniot, Michał; Iwoła, Małgorzata; Lewandowska, Maria; Komarnicki, Mieczysław

    2008-01-01

    Point mutations of bcr-abl tyrosine kinase are the most frequent causes of imatinib resistance in chronic myeloid leukaemia (CML) patients. In most CML cases with BCR-ABL mutations leading to imatinib resistance the second generation of tyrosine kinase inhibitors (TKI- e.g. nilotinib or dasatinib) may be effective. Here, we report a case of a CML patient who during imatinib treatment did not obtain clinical and cytogenetic response within 12 months of therapy. The sequencing of BCR-ABL kinase domains was performed and revealed the presence of a F359I point mutation (TTC-to-ATC nucleotide change leading to Phe-to-Ile amino acid substitution). After 1 month of nilotinib therapy a rapid progression of clinical symptoms was observed. In the presence of the F359I point mutation only dasatinib treatment overcame imatinib and nilotinib resistance.

  16. Nilotinib significantly induces apoptosis in imatinib-resistant K562 cells with wild-type BCR-ABL, as effectively as in parental sensitive counterparts.

    PubMed

    Ekiz, Huseyin Atakan; Can, Geylani; Gunduz, Ufuk; Baran, Yusuf

    2010-02-01

    Chronic myeloid leukemia (CML) is a hematological malignancy characterized by high levels of immature white blood cells. CML is caused by the translocation between chromosomes 9 and 22 (which results in the formation of the Philadelphia chromosome) creating BCR-ABL fusion protein. Imatinib and nilotinib are chemotherapeutic drugs which specifically bind to the BCR-ABL and inhibit cancer cells. Nilotinib is more effective in this respect than imatinib. We have shown that nilotinib induces apoptosis in imatinib-resistant K562 CML cells which have the wild-type BCR-ABL fusion gene almost to the same extent as it does in the parental sensitive cells by the increase in caspase-3 enzyme activity and the decrease in mitochondrial membrane potential. This effect of nilotinib, even in low concentrations, may indicate the efficacy of the usage of nilotinib in imatinib-resistant CML with less risk of undesired cytotoxic effects in the remaining cells of the body.

  17. [Detection of influenza virus (RT-PCR assay and others)].

    PubMed

    Matsuzaki, Yoko

    2003-11-01

    Viral isolation is the conventional method for influenza virus diagnosis but it is less useful for immediate patient management. RT-PCR is the sensitive and rapid assay for the detection of respiratory viruses. Single step and multiplex RT-PCR is able to detect several viruses simultaneously in a single reaction. Real time PCR(TaqMan method) is able to detect the amplicon directly by release of a fluorescent reporter of the probe during the amplification reactions. This procedure can save time since it eliminates post-PCR processing steps. These RT-PCR methods should be useful for the accurate and rapid diagnosis of influenza virus infection, especially severe cases such as pneumonia and encephalopathy.

  18. TLS/FUS, a pro-oncogene involved in multiple chromosomal translocations, is a novel regulator of BCR/ABL-mediated leukemogenesis.

    PubMed Central

    Perrotti, D; Bonatti, S; Trotta, R; Martinez, R; Skorski, T; Salomoni, P; Grassilli, E; Lozzo, R V; Cooper, D R; Calabretta, B

    1998-01-01

    The leukemogenic potential of BCR/ABL oncoproteins depends on their tyrosine kinase activity and involves the activation of several downstream effectors, some of which are essential for cell transformation. Using electrophoretic mobility shift assays and Southwestern blot analyses with a double-stranded oligonucleotide containing a zinc finger consensus sequence, we identified a 68 kDa DNA-binding protein specifically induced by BCR/ABL. The peptide sequence of the affinity-purified protein was identical to that of the RNA-binding protein FUS (also called TLS). Binding activity of FUS required a functional BCR/ABL tyrosine kinase necessary to induce PKCbetaII-dependent FUS phosphorylation. Moreover, suppression of PKCbetaII activity in BCR/ABL-expressing cells by treatment with the PKCbetaII inhibitor CGP53353, or by expression of a dominant-negative PKCbetaII, markedly impaired the ability of FUS to bind DNA. Suppression of FUS expression in myeloid precursor 32Dcl3 cells transfected with a FUS antisense construct was associated with upregulation of the granulocyte-colony stimulating factor receptor (G-CSFR) and downregulation of interleukin-3 receptor (IL-3R) beta-chain expression, and accelerated G-CSF-stimulated differentiation. Downregulation of FUS expression in BCR/ABL-expressing 32Dcl3 cells was associated with suppression of growth factor-independent colony formation, restoration of G-CSF-induced granulocytic differentiation and reduced tumorigenic potential in vivo. Together, these results suggest that FUS might function as a regulator of BCR/ABL leukemogenesis, promoting growth factor independence and preventing differentiation via modulation of cytokine receptor expression. PMID:9687511

  19. Curcumin affects components of the chromosomal passenger complex and induces mitotic catastrophe in apoptosis-resistant Bcr-Abl-expressing cells.

    PubMed

    Wolanin, Kamila; Magalska, Adriana; Mosieniak, Grazyna; Klinger, Rut; McKenna, Sharon; Vejda, Susanne; Sikora, Ewa; Piwocka, Katarzyna

    2006-07-01

    The Bcr-Abl oncoprotein plays a major role in the development and progression of chronic myeloid leukemia and is a determinant of chemotherapy resistance occurring during the blast crisis phase of the disease. The aim of this article was to investigate the possibility of combating the resistance to apoptosis caused by Bcr-Abl by inducing an alternative cell death process. As a model of chronic myeloid leukemia, we employed Bcr-Abl-transfected mouse progenitor 32D cells with low and high Bcr-Abl expression levels corresponding to drug-sensitive and drug-resistant cells, respectively. The drug curcumin (diferuloylmethane), a known potent inducer of cell death in many cancer cells, was investigated for efficacy with Bcr-Abl-expressing cells. Curcumin strongly inhibited cell proliferation and affected cell viability by inducing apoptotic symptoms in all tested cells; however, apoptosis was a relatively late event. G(2)-M cell cycle arrest, together with increased mitotic index and cellular and nuclear morphology resembling those described for mitotic catastrophe, was observed and preceded caspase-3 activation and DNA fragmentation. Mitosis-arrested cells displayed abnormal chromatin organization, multipolar chromosome segregation, aberrant cytokinesis, and multinucleated cells-morphologic changes typical of mitotic catastrophe. We found that the mitotic cell death symptoms correlated with attenuated expression of survivin, a member of the chromosomal passenger complex, and mislocalization of Aurora B, the partner of survivin in the chromosomal passenger complex. Inhibition of survivin expression with small interfering RNA exhibited similar mitotic disturbances, thus implicating survivin as a major, albeit not the only, target for curcumin action. This study shows that curcumin can overcome the broad resistance to cell death caused by expression of Bcr-Abl and suggests that curcumin may be a promising agent for new combination regimens for drug-resistant chronic myeloid

  20. The Functional Interplay Between the t(9;22)-Associated Fusion Proteins BCR/ABL and ABL/BCR in Philadelphia Chromosome-Positive Acute Lymphatic Leukemia

    PubMed Central

    Rafiei, Anahita; Mian, Afsar Ali; Döring, Claudia; Metodieva, Anna; Oancea, Claudia; Thalheimer, Frederic B.; Hansmann, Martin Leo; Ottmann, Oliver Gerhard; Ruthardt, Martin

    2015-01-01

    The hallmark of Philadelphia chromosome positive (Ph+) leukemia is the BCR/ABL kinase, which is successfully targeted by selective ATP competitors. However, inhibition of BCR/ABL alone is unable to eradicate Ph+ leukemia. The t(9;22) is a reciprocal translocation which encodes not only for the der22 (Philadelphia chromosome) related BCR/ABL, but also for der9 related ABL/BCR fusion proteins, which can be detected in 65% of patients with chronic myeloid leukemia (CML) and 100% of patients with Ph+ acute lymphatic leukemia (ALL). ABL/BCRs are oncogenes able to influence the lineage commitment of hematopoietic progenitors. Aim of this study was to further disclose the role of p96ABL/BCR for the pathogenesis of Ph+ ALL. The co-expression of p96ABL/BCR enhanced the kinase activity and as a consequence, the transformation potential of p185BCR/ABL. Targeting p96ABL/BCR by RNAi inhibited growth of Ph+ ALL cell lines and Ph+ ALL patient-derived long-term cultures (PD-LTCs). Our in vitro and in vivo stem cell studies further revealed a functional hierarchy of p96ABL/BCR and p185BCR/ABL in hematopoietic stem cells. Co-expression of p96ABL/BCR abolished the capacity of p185BCR/ABL to induce a CML-like disease and led to the induction of ALL. Taken together our here presented data reveal an important role of p96ABL/BCR for the pathogenesis of Ph+ ALL. PMID:25919613

  1. The role of mitochondrial DNA damage and repair in the resistance of BCR/ABL-expressing cells to tyrosine kinase inhibitors.

    PubMed

    Glowacki, Sylwester; Synowiec, Ewelina; Blasiak, Janusz

    2013-08-07

    Chronic myeloid leukemia (CML) is a hematological malignancy that arises from the transformation of stem hematopoietic cells by the fusion oncogene BCR/ABL and subsequent clonal expansion of BCR/ABL-positive progenitor leukemic cells. The BCR/ABL protein displays a constitutively increased tyrosine kinase activity that alters many regulatory pathways, leading to uncontrolled growth, impaired differentiation and increased resistance to apoptosis featured by leukemic cells. Current CML therapy is based on tyrosine kinase inhibitors (TKIs), primarily imatinib, which induce apoptosis in leukemic cells. However, some patients show primary resistance to TKIs while others develop it in the course of therapy. In both cases, resistance may be underlined by perturbations in apoptotic signaling in leukemic cells. As mitochondria may play an important role in such signaling, alteration in mitochondrial metabolism may change resistance to pro-apoptotic action of TKIs in BCR/ABL-positive cells. Because BCR/ABL may induce reactive oxygen species and unfaithful DNA repair, it may affect the stability of mitochondrial DNA, influencing mitochondrial apoptotic signaling and in this way change the sensitivity of CML cells to TKIs. Moreover, cancer cells, including BCR/ABL-positive cells, show an increased level of glucose metabolism, resulting from the shift from oxidative phosphorylation to glycolysis to supply ATP for extensive proliferation. Enhanced level of glycolysis may be associated with TKI resistance and requires change in the expression of several genes regulated mostly by hypoxia-inducible factor-1α, HIF-1α. Such regulation may be associated with the impaired mitochondrial respiratory system in CML cells. In summary, mitochondria and mitochondria-associated molecules and pathways may be attractive targets to overcome TKI resistance in CML.

  2. Early BCR-ABL1 Transcript Decline after 1 Month of Tyrosine Kinase Inhibitor Therapy as an Indicator for Treatment Response in Chronic Myeloid Leukemia.

    PubMed

    El Missiry, Mohamed; Hjorth-Hansen, Henrik; Richter, Johan; Olson-Strömberg, Ulla; Stenke, Leif; Porkka, Kimmo; Kreutzman, Anna; Mustjoki, Satu

    2017-01-01

    In chronic myeloid leukemia (CML), early treatment prediction is important to identify patients with inferior overall outcomes. We examined the feasibility of using reductions in BCR-ABL1 transcript levels after 1 month of tyrosine kinase inhibitor (TKI) treatment to predict therapy response. Fifty-two first-line TKI-treated CML patients were included (imatinib n = 26, dasatinib n = 21, nilotinib n = 5), and BCR-ABL1 transcript levels were measured at diagnosis (dg) and 1, 3, 6, 12, 18, 24, and 36 months. The fold change of the BCR-ABL1 transcripts at 1 month compared to initial BCR-ABL1 transcript levels was used to indicate early therapy response. In our cohort, 21% of patients had no decrease in BCR-ABL1 transcript levels after 1 month and were classified as poor responders. Surprisingly, these patients had lower BCR-ABL1 transcript levels at dg compared to responders (31% vs. 48%, p = 0.0083). Poor responders also significantly more often had enlarged spleen (55% vs. 15%; p<0.01) and a higher percentage of Ph+ CD34+CD38- cells in the bone marrow (91% vs. 75%, p<0.05). The major molecular response rates were inferior in the poor responders (at 12m 18% vs. 64%, p<0.01; 18m 27% vs. 75%, p<0.01; 24m 55% vs. 87%, p<0.01). In conclusion, early treatment response analysis defines a biologically distinct patient subgroup with inferior long-term outcomes.

  3. RT-PCR detection of HIV in Republic of Macedonia.

    PubMed

    Bosevska, Golubinka; Panovski, Nikola; Dokić, Eleni; Grunevska, Violeta

    2008-11-01

    The aim of the study was to detect HIV RNA in seropositive patients using RT-PCR method and thus, to establish PCR methodology in the routine laboratory works. The total of 33 examined persons were divided in two groups: 1) 13 persons seropositive for HIV; and 2) 20 healthy persons - randomly selected blood donors that made the case control group. The subjects age was between 25 and 52 years (average 38,5). ELFA test for combined detection of HIV p24 antigen and anti HIV-1+2 IgG and ELISA test for detection of antibodies against HIV-1 and HIV-2, were performed for each examined person. RNA from the whole blood was extracted using a commercial kit based on salt precipitation. Detection of HIV RNA was performed using RT-PCR kit. Following nested PCR, the product was separated by electrophoresis in 1,5 % agarose gel. The result was scored positive if the band of 210bp was visible regardless of intensity. Measures of precaution were taken during all the steps of the work and HIV infected materials were disposed of accordingly. In the group of blood donors ELFA, ELISA and RT-PCR were negative. Assuming that prevalence of HIV infection is zero, the clinical specificity of RT-PCR is 100 %. The analytical specificity of RT-PCR method was tested against Hepatitis C and B, Human Papiloma Virus, Cytomegalovirus, Herpes Simplex Virus, Rubella Virus, Mycobacterium tuberculosis, Chlamydia trachomatis. None of these templates yielded amplicon. In the group of 13 seropositive persons, 33 samples were analyzed. HIV RNA was detected in 15 samples. ELISA and ELFA test were positive in all samples. Different aliquots of the samples were tested independently and showed the same results. After different periods of storing the RNA samples at -70 masculineC, RT-PCR reaction was identical to the one performed initially. The obtained amplicons were maintained frozen at -20 masculineC for a week and the subsequently performed electrophoresis was identical to the previous one. The reaction is

  4. BCR-ABL tyrosine kinase inhibitors in chronic myeloid leukemia: using guidelines to make rational treatment choices.

    PubMed

    Kantarjian, Hagop; Cortes, Jorge

    2008-03-01

    The success of the BCR-ABL tyrosine kinase inhibitor (TKI) imatinib in improving prognosis in chronic myeloid leukemia (CML) has led to its wide use as first-line therapy at a standard dose of 400 mg daily. As more patients have undergone therapy, the development of molecular and clinical resistance to imatinib has raised further therapeutic challenges. The 2 main approaches to overcoming resistance are imatinib dose escalation and the use of alternative more potent TKIs, such as dasatinib or nilotinib. The phase II SRC/ABL Tyrosine Kinase Inhibition Activity Research Trials (START) of dasatinib have established dasatinib as potent and effective in overcoming imatinib resistance or intolerance in all phases of CML. The most recent treatment guidelines by the National Comprehensive Cancer Network now contain recommendations for using dasatinib in this setting. The issue of when to change from imatinib to an alternative agent in preference to imatinib dose escalation is keenly debated, particularly as new clinical evidence emerges, which highlights the importance of achieving early cytogenetic and molecular responses for a good long-term outcome. Identifying patients in whom a change to dasatinib or nilotinib is more appropriate than imatinib dose escalation is therefore important.

  5. [Minor bcr/abl positive acute lymphoblastic leukemia preceded by knee joint pain due to bone marrow necrosis].

    PubMed

    Sato, Kazuya; Mori, Masaki; Meguro, Akiko; Miyoshi, Takuji; Nagai, Tadashi; Muroi, Kazuo; Komatsu, Norio; Ozawa, Keiya

    2004-11-01

    A 16-year-old male was referred to our hospital in April 2003 due to severe knee joint pain from five months previously. Lymphoblasts were identified in his peripheral blood, resulting in a diagnosis of acute lymphoblastic leukemia (ALL). Bone marrow examination revealed massive necrosis with clusters of lymphoblasts and the bcr/abl fusion gene. Magnetic resonance imaging (MRI) of the knee joint showed low signal intensity on T1-weighted images, and peripheral rim enhancement on Gd-DTPA enhanced fat suppression images, which was compatible with bone marrow necrosis. After the patient achieved complete remission (CR), the knee joint pain has disappeared. He was treated with an allogeneic bone marrow transplantation (BMT) from an HLA-identical unrelated donor and has been in CR for 26 months after the diagnosis of ALL. In the knee joint, the replacement of fatty marrow after BMT has been confirmed with MRI. Hematological malignancies including ALL should be considered in the cases of bone marrow necrosis and adequate treatment may improve necrosis.

  6. Electrochemical determination of BCR/ABL fusion gene based on in situ synthesized gold nanoparticles and cerium dioxide nanoparticles.

    PubMed

    Li, Shenfeng; Wang, Li; Li, Yajuan; Zhu, Xiaoying; Zhong, Liang; Lu, Lingsong; Zhang, Wei; Liu, Bei; Xie, Guoming; Feng, Wenli

    2013-12-01

    An efficient DNA electrochemical biosensor, based on the gold nanoparticles (GNPs) in situ synthesized at the surface of multiwalled carbon nanotubes (MWCNTs), cerium dioxide (CeO2) and chitosan (Chits) composite membrane, was developed for the detection of BCR/ABL fusion gene in chronic myelogenous leukemia (CML). The capture probe was attached onto the nanocomposite membrane modified glassy carbon electrode (GCE) through the conjugated structure. Owing to the synergistic effects of CeO2 nanoparticles with a strong adsorption ability and MWCNTs with a large surface area and excellent electron transfer ability, the prepared composite membrane was demonstrated an efficient electron transfer ability. The biosensor was electrochemically characterized by cyclic voltammogram (CV) and differential pulse voltammetry (DPV), and the decrease of the peak currents upon hybridization was observed using methylene blue (MB) as the electroactive indicator. Under the optimized conditions, peak currents were linear over the range from 1 × 10(-9) M to 1 × 10(-)(12) M, with a detection limit of 5 × 10(-)(13) M (based on the 3σ). And the proposed method was successfully applied for the detection of PCR real samples with satisfactory results. Furthermore, the developed DNA biosensor was demonstrated a good selectivity, a reasonable stability and a favorable reproducibility, which could be regenerated easily.

  7. Galangin increases the cytotoxic activity of imatinib mesylate in imatinib-sensitive and imatinib-resistant Bcr-Abl expressing leukemia cells.

    PubMed

    Tolomeo, Manlio; Grimaudo, Stefania; Di Cristina, Antonietta; Pipitone, Rosaria M; Dusonchet, Luisa; Meli, Maria; Crosta, Lucia; Gebbia, Nicola; Invidiata, Francesco Paolo; Titone, Lucina; Simoni, Daniele

    2008-07-08

    Resistance to imatinib mesylate is an emergent problem in the treatment of Bcr-Abl expressing myelogenous leukemias and additional therapeutic strategies are required. We observed that galangin, a non-toxic, naturally occurring flavonoid was effective as anti-proliferative, and apoptotic agent in Bcr-Abl expressing K562 and KCL22 cells and in imatinib mesylate resistant K562-R and KCL22-R cells. Galangin induced an arrest of cells in G0-G1phase of cell cycle and a decrease in pRb, cdk4, cdk1, cycline B levels; moreover, it was able to induce a monocytic differentiation of leukemic Bcr-Abl+ cells. Of note, galangin caused a decrease in Bcl-2 levels and markedly increased the apoptotic activity of imatinib both in sensitive or imatinib-resistant Bcr-Abl+ cell lines. In contrast, flavonoids unable to modify the Bcl-2 intracellular levels, such as fisetin and chrysin, did not increase the apoptotic effect of imatinib. These data suggest that galangin is an interesting candidate for a combination therapy in the treatment of imatinib-resistant leukemias.

  8. Chemotherapeutic agents circumvent emergence of dasatinib-resistant BCR-ABL kinase mutations in a precise mouse model of Philadelphia chromosome-positive acute lymphoblastic leukemia.

    PubMed

    Boulos, Nidal; Mulder, Heather L; Calabrese, Christopher R; Morrison, Jeffrey B; Rehg, Jerold E; Relling, Mary V; Sherr, Charles J; Williams, Richard T

    2011-03-31

    The introduction of cultured p185(BCR-ABL)-expressing (p185+) Arf (-/-) pre-B cells into healthy syngeneic mice induces aggressive acute lymphoblastic leukemia (ALL) that genetically and phenotypically mimics the human disease. We adapted this high-throughput Philadelphia chromosome-positive (Ph(+)) ALL animal model for in vivo luminescent imaging to investigate disease progression, targeted therapeutic response, and ALL relapse in living mice. Mice bearing high leukemic burdens (simulating human Ph(+) ALL at diagnosis) entered remission on maximally intensive, twice-daily dasatinib therapy, but invariably relapsed with disseminated and/or central nervous system disease. Although relapse was frequently accompanied by the eventual appearance of leukemic clones harboring BCR-ABL kinase domain (KD) mutations that confer drug resistance, their clonal emergence required prolonged dasatinib exposure. KD P-loop mutations predominated in mice receiving less intensive therapy, whereas high-dose treatment selected for T315I "gatekeeper" mutations resistant to all 3 Food and Drug Administration-approved BCR-ABL kinase inhibitors. The addition of dexamethasone and/or L-asparaginase to reduced-intensity dasatinib therapy improved long-term survival of the majority of mice that received all 3 drugs. Although non-tumor-cell-autonomous mechanisms can prevent full eradication of dasatinib-refractory ALL in this clinically relevant model, the emergence of resistance to BCR-ABL kinase inhibitors can be effectively circumvented by the addition of "conventional" chemotherapeutic agents with alternate antileukemic mechanisms of action.

  9. In vitro and in vivo activity of SKI-606, a novel Src-Abl inhibitor, against imatinib-resistant Bcr-Abl+ neoplastic cells.

    PubMed

    Puttini, Miriam; Coluccia, Addolorata Maria Luce; Boschelli, Frank; Cleris, Loredana; Marchesi, Edoardo; Donella-Deana, Arianna; Ahmed, Shaheen; Redaelli, Sara; Piazza, Rocco; Magistroni, Vera; Andreoni, Federica; Scapozza, Leonardo; Formelli, Franca; Gambacorti-Passerini, Carlo

    2006-12-01

    Resistance to imatinib represents an important scientific and clinical issue in chronic myelogenous leukemia. In the present study, the effects of the novel inhibitor SKI-606 on various models of resistance to imatinib were studied. SKI-606 proved to be an active inhibitor of Bcr-Abl in several chronic myelogenous leukemia cell lines and transfectants, with IC(50) values in the low nanomolar range, 1 to 2 logs lower than those obtained with imatinib. Cells expressing activated forms of KIT or platelet-derived growth factor receptor (PDGFR), two additional targets of imatinib, were unaffected by SKI-606, whereas activity was found against PIM2. SKI-606 retained activity in cells where resistance to imatinib was caused by BCR-ABL gene amplification and in three of four Bcr-Abl point mutants tested. In vivo experiments confirmed SKI-606 activity in models where resistance was not caused by mutations as well as in cells carrying the Y253F, E255K, and D276G mutations. Modeling considerations attribute the superior activity of SKI-606 to its ability to bind a conformation of Bcr-Abl different from imatinib.

  10. p62(dok), a negative regulator of Ras and mitogen-activated protein kinase (MAPK) activity, opposes leukemogenesis by p210(bcr-abl).

    PubMed

    Di Cristofano, A; Niki, M; Zhao, M; Karnell, F G; Clarkson, B; Pear, W S; Van Aelst, L; Pandolfi, P P

    2001-08-06

    p62(dok) has been identified as a substrate of many oncogenic tyrosine kinases such as the chronic myelogenous leukemia (CML) chimeric p210(bcr-abl) oncoprotein. It is also phosphorylated upon activation of many receptors and cytoplamic tyrosine kinases. However, the biological functions of p62(dok) in normal cell signaling as well as in p210(bcr-abl) leukemogenesis are as yet not fully understood. Here we show, in hemopoietic and nonhemopoietic cells derived from p62(dok)-(/)- mice, that the loss of p62(dok) results in increased cell proliferation upon growth factor treatment. Moreover, Ras and mitogen-activated protein kinase (MAPK) activation is markedly sustained in p62(dok)-(/)- cells after the removal of growth factor. However, p62(dok) inactivation does not affect DNA damage and growth factor deprivation-induced apoptosis. Furthermore, p62(dok) inactivation causes a significant shortening in the latency of the fatal myeloproliferative disease induced by retroviral-mediated transduction of p210(bcr-abl) in bone marrow cells. These data indicate that p62(dok) acts as a negative regulator of growth factor-induced cell proliferation, at least in part through downregulating Ras/MAPK signaling pathway, and that p62(dok) can oppose leukemogenesis by p210(bcr-abl).

  11. [Detection of minimal residual disease in Ph+/bcr-abl+ acute lymphoblast leukemia by cytogenetic analysis, nested-PCR and flow cytometry].

    PubMed

    Xue, Fang; Dong, Zuo-Ren; Zhang, Bing; Gao, Li-Xia

    2003-08-01

    To explore a simple and sensitive method to detect minimal residual disease (MRD) in Ph(+)/bcr-abl(+) ALL patients, the bone marrow samples from 84 de novo ALL patients were detected by cytogenetic analysis, nested-PCR and flow cytometry (FCM). Cytogenetic analysis method is used to detect Ph chromosome, nested-PCR and FCM are used to detect bcr/abl mRNA and an abnormal B-cell differentiation pattern in de novo and complete remission (CR) patients, respectively. The results showed that Ph chromosome has not been found in 14 cases of CR; bcr/abl fusion gene was detected in 11 of 14 CR patients by nested-PCR (78.57%) and bcr/abl fusion gene was positive in 5 of 14 in CR patients (35.71%) by FCM. The sensitivity of nested-PCR was 10(-6)-10(-7), and that of FCM was 10(-4)- 10(-5). It is concluded that the cytogenetic analysis is not sensitive for MRD detection, and the sensitivity of nested-PCR is higher than that of FCM in detecting MRD.

  12. Unexpected heterogeneity of BCR-ABL fusion mRNA detected by polymerase chain reaction in Philadelphia chromosome-positive acute lymphoblastic leukemia

    SciTech Connect

    Hooberman, A.L.; Carrino, J.J.; Leibowitz, D.; Rowley, J.D.; Le Beau, M.M.; Arlin, Z.A.; Westbrook, C.A. )

    1989-06-01

    The Philadelphia (Ph{sup 1}) chromosome results in a fusion of portions of the BCR gene from chromosome 22 and the ABL gene from chromosome 9, producing a chimeric BCR-ABL mRNA and protein. In lymphoblastic leukemias, there are two molecular subtypes of the Ph{sup 1} chromosome, one with a rearrangement of the breakpoint cluster region (bcr) of the BCR gene, producing the same 8.5-kilobase BCR-ABL fusion mRNA seen in chronic myelogenous leukemia (CML), and the other, without a bcr rearrangement, producing a 7.0-kilobase BCR-ABL fusion mRNA that is seen only in acute lymphoblastic leukemia (ALL). The authors studied the molecular subtype of the Ph{sup 1} chromosome in 11 cases of Ph{sup 1}-positive ALL, including 2 with a previous diagnosis of CML, using a sensitive method to analyze the mRNA species based on the polymerase chain reaction (PCR). They observed unexpected heterogeneity in BCR-ABL mRNA in this population. They conclude that the PCR gives additional information about the Ph{sup 1} chromosome gene products that cannot be obtained by genomic analysis, but that it cannot be used as the sole means of detection of this chromosomal abnormality in ALL because of the high incidence of false negative results.

  13. Rapid and sensitive allele-specific (AS)-RT-PCR assay for detection of T315I mutation in chronic myeloid leukemia patients treated with tyrosine-kinase inhibitors.

    PubMed

    Manrique Arechavaleta, Gonzalo; Scholl, Vanesa; Pérez, Verónica; Bittencourt, Roberta; Moellmann, Arthur; Hassan, Rocio; Seuánez, Héctor N; Dobbin, Jane; Martinez, Lem; Renault, Ilana Zalcberg; Uriarte, Rosario

    2011-03-01

    Point mutations in the kinase domain of BCR-ABL were described in 40-90% of patients with chronic myeloid leukemia (CML) resistant to Imatinib. We herein describe the development of a rapid allele-specific (AS)-RT-PCR assay to identify the T315I mutation, which confers full resistance to all available tyrosine-kinase inhibitors (TKI). The mutation status of 65 patients with resistant CML was evaluated, and the T315I was detected in 3/65 (4.6%). Comparisons between sequencing and AS-RT-PCR results, as well as serial dilutions experiments proved that the method is specific and reproducible, with maximum sensitivity of 1 × 10(-3). The developed assay is a convenient and easy tool to be used in research of CML resistance for rapid mutation screening and, together with sequencing, may be included in efficient strategies for early detection of TKI resistance in patients with CML.

  14. miR-29b suppresses CML cell proliferation and induces apoptosis via regulation of BCR/ABL1 protein

    SciTech Connect

    Li, Yajuan; Wang, Haixia; Tao, Kun; Xiao, Qing; Huang, Zhenglan; Zhong, Liang; Cao, Weixi; Wen, Jianping; Feng, Wenli

    2013-05-01

    MicroRNAs (miRNAs) are small RNAs that regulate gene expression posttranscriptionally and are critical for many cellular pathways. Recent evidence has shown that aberrant miRNA expression profiles and unique miRNA signaling pathways are present in many cancers. Here, we demonstrate that miR-29b is markedly lower expressed in CML patient samples. Bioinformatics analysis reveals a conserved target site for miR-29b in the 3′-untranslated region (UTR) of ABL1. miR-29b significantly suppresses the activity of a luciferase reporter containing ABL1-3′UTR and this activity is not observed in cells transfected with mutated ABL1-3′UTR. Enforced expression of miR-29b in K562 cells inhibits cell growth and colony formation ability thereby inducing apoptosis through cleavage of procaspase 3 and PARP. Furthermore, K562 cells transfected with a siRNA targeting ABL1 show similar growth and apoptosis phenotypes as cells overexpression of miR-29b. Collectively, our results suggest that miR-29b may function as a tumor suppressor by targeting ABL1 and BCR/ABL1. - Highlights: ► miR-29b expression was downregulated in CML patients. ► ABL1 was identified as a direct target gene of miR-29b. ► Enforced expression of miR-29b inhibits cell proliferation and induces apoptosis. ► miR-29b might be a therapeutic target to CML.

  15. A Non-ATP-Competitive Dual Inhibitor of JAK2 and BCR-ABL Kinases: Elucidation of a Novel Therapeutic Spectrum Based on Substrate Competitive Inhibition.

    PubMed

    Jatiani, Shashidhar S; Cosenza, Stephen C; Reddy, M V Ramana; Ha, Ji Hee; Baker, Stacey J; Samanta, Ajoy K; Olnes, Matthew J; Pfannes, Loretta; Sloand, Elaine M; Arlinghaus, Ralph B; Reddy, E Premkumar

    2010-04-01

    Here we report the discovery of ON044580, an α-benzoyl styryl benzyl sulfide that possesses potent inhibitory activity against two unrelated kinases, JAK2 and BCR-ABL, and exhibits cytotoxicity to human tumor cells derived from chronic myelogenous leukemia (CML) and myelodysplasia (MDS) patients or cells harboring a mutant JAK2 kinase. This novel spectrum of activity is explained by the non-ATP-competitive inhibition of JAK2 and BCR-ABL kinases. ON044580 inhibits mutant JAK2 kinase and the proliferation of JAK2(V617F)-positive leukemic cells and blocks the IL-3-mediated phosphorylation of JAK2 and STAT5. Interestingly, this compound also directly inhibits the kinase activity of both wild-type and imatinib-resistant (T315I) forms of the BCR-ABL kinase. Finally, ON044580 effectively induces apoptosis of imatinib-resistant CML patient cells. The apparently unrelated JAK2 and BCR-ABL kinases share a common substrate, STAT5, and such substrate competitive inhibitors represent an alternative therapeutic strategy for development of new inhibitors. The novel mechanism of kinase inhibition exhibited by ON044580 renders it effective against mutant forms of kinases such as the BCR-ABL(T315I) and JAK2(V617F). Importantly, ON044580 selectively reduces the number of aneuploid cells in primary bone marrow samples from monosomy 7 MDS patients, suggesting another regulatory cascade amenable to this agent in these aberrant cells. Data presented suggest that this compound could have multiple therapeutic applications including monosomy 7 MDS, imatinib-resistant CML, and myeloproliferative neoplasms that develop resistance to ATP-competitive agents.

  16. Presence of novel compound BCR-ABL mutations in late chronic and advanced phase imatinib sensitive CML patients indicates their possible role in CML progression.

    PubMed

    Akram, Afia Muhammad; Iqbal, Zafar; Akhtar, Tanveer; Khalid, Ahmed Mukhtar; Sabar, Muhammad Farooq; Qazi, Mahmood Hussain; Aziz, Zeba; Sajid, Nadia; Aleem, Aamer; Rasool, Mahmood; Asif, Muhammad; Aloraibi, Saleh; Aljamaan, Khaled; Iqbal, Mudassar

    2017-02-21

    BCR-ABL kinase domain (KD) mutations are well known for causing resistance against tyrosine kinase inhibitors (TKIs) and disease progression in chronic myeloid leukemia (CML). In recent years, compound BCR-ABL mutations have emerged as a new threat to CML patients by causing higher degrees of resistance involving multiple TKIs, including ponatinib. However, there are limited reports about association of compound BCR-ABL mutations with disease progression in imatinib (IM) sensitive CML patients. Therefore, we investigated presence of ABL-KD mutations in chronic phase (n = 41), late chronic phase (n = 33) and accelerated phase (n = 16) imatinib responders. Direct sequencing analysis was employed for this purpose. Eleven patients (12.22%) in late-CP CML were detected having total 24 types of point mutations, out of which eight (72.72%) harbored compound mutated sites. SH2 contact site mutations were dominant in our study cohort, with E355G (3.33%) being the most prevalent. Five patients (45%) all having compound mutated sites, progressed to advanced phases of disease during follow up studies. Two novel silent mutations G208G and E292E/E were detected in combination with other mutants, indicating limited tolerance for BCR-ABL1 kinase domain for missense mutations. However, no patient in early CP of disease manifested mutated ABL-KD. Occurrence of mutations was found associated with elevated platelet count (p = 0.037) and patients of male sex (p = 0.049). The median overall survival and event free survival of CML patients (n = 90) was 6.98 and 5.8 years respectively. The compound missense mutations in BCR-ABL kinase domain responsible to elicit disease progression, drug resistance or disease relapse in CML, can be present in yet Imatinib sensitive patients. Disease progression observed here, emphasizes the need of ABL-KD mutation screening in late chronic phase CML patients for improved clinical management of disease.

  17. Downregulation of BRCA1 protein in BCR-ABL1 leukemia cells depends on stress-triggered TIAR-mediated suppression of translation.

    PubMed

    Podszywalow-Bartnicka, Paulina; Wolczyk, Magdalena; Kusio-Kobialka, Monika; Wolanin, Kamila; Skowronek, Krzysztof; Nieborowska-Skorska, Margaret; Dasgupta, Yashodhara; Skorski, Tomasz; Piwocka, Katarzyna

    2014-01-01

    BRCA1 tumor suppressor regulates crucial cellular processes involved in DNA damage repair and cell cycle control. We showed that expression of BCR-ABL1 correlates with decreased level of BRCA1 protein, which promoted aberrant mitoses and aneuploidy as well as altered DNA damage response. Using polysome profiling and luciferase-BRCA1 3'UTR reporter system here we demonstrate that downregulation of BRCA1 protein in CML is caused by inhibition of BRCA1 mRNA translation, but not by increased protein degradation or reduction of mRNA level and half-life. We investigated 2 mRNA-binding proteins - HuR and TIAR showing specificity to AU-Rich Element (ARE) sites in 3'UTR of mRNA. BCR-ABL1 promoted cytosolic localization of TIAR and HuR, their binding to BRCA1 mRNA and formation of the TIAR-HuR complex. HuR protein positively regulated BRCA1 mRNA stability and translation, conversely TIAR negatively regulated BRCA1 translation and was found localized predominantly in the cytosolic stress granules in CML cells. TIAR-dependent downregulation of BRCA1 protein level was a result of ER stress, which is activated in BCR-ABL1 expressing cells, as we previously shown. Silencing of TIAR in CML cells strongly elevated BRCA1 level. Altogether, we determined that TIAR-mediated repression of BRCA1 mRNA translation is responsible for downregulation of BRCA1 protein level in BCR-ABL1 -positive leukemia cells. This mechanism may contribute to genomic instability and provide justification for targeting PARP1 and/or RAD52 to induce synthetic lethality in "BRCAness" CML and BCR-ABL1 -positive ALL cells.

  18. Blockade of Y177 and Nuclear Translocation of Bcr-Abl Inhibits Proliferation and Promotes Apoptosis in Chronic Myeloid Leukemia Cells

    PubMed Central

    Li, Qianyin; Huang, Zhenglan; Gao, Miao; Cao, Weixi; Xiao, Qin; Luo, Hongwei; Feng, Wenli

    2017-01-01

    The gradual emerging of resistance to imatinib urgently calls for the development of new therapy for chronic myeloid leukemia (CML). The fusion protein Bcr-Abl, which promotes the malignant transformation of CML cells, is mainly located in the cytoplasm, while the c-Abl protein which is expressed in the nucleus can induce apoptosis. Based on the hetero-dimerization of FKBP (the 12-kDa FK506- and rapamycin-binding protein) and FRB (the FKBP-rapamycin binding domain of the protein kinase, mTOR) mediated by AP21967, we constructed a nuclear transport system to induce cytoplasmic Bcr-Abl into nuclear. In this study, we reported the construction of the nuclear transport system, and we demonstrated that FN3R (three nuclear localization signals were fused to FRBT2098L with a FLAG tag), HF2S (two FKBP domains were in tandem and fused to the SH2 domain of Grb2 with an HA tag) and Bcr-Abl form a complexus upon AP21967. Bcr-Abl was imported into the nucleus successfully by the nuclear transport system. The nuclear transport system inhibited CML cell proliferation through mitogen-activated protein kinase (MAPK) and signal transducer and activator of transcription 5 (STAT5) pathways mainly by HF2S. It was proven that nuclear located Bcr-Abl induced CML cell (including imatinib-resistant K562G01 cells) apoptosis by activation of p73 and its downstream molecules. In summary, our study provides a new targeted therapy for the CML patients even with Tyrosine Kinase Inhibitor (TKI)-resistance. PMID:28257089

  19. Blockade of Y177 and Nuclear Translocation of Bcr-Abl Inhibits Proliferation and Promotes Apoptosis in Chronic Myeloid Leukemia Cells.

    PubMed

    Li, Qianyin; Huang, Zhenglan; Gao, Miao; Cao, Weixi; Xiao, Qin; Luo, Hongwei; Feng, Wenli

    2017-03-02

    The gradual emerging of resistance to imatinib urgently calls for the development of new therapy for chronic myeloid leukemia (CML). The fusion protein Bcr-Abl, which promotes the malignant transformation of CML cells, is mainly located in the cytoplasm, while the c-Abl protein which is expressed in the nucleus can induce apoptosis. Based on the hetero-dimerization of FKBP (the 12-kDa FK506- and rapamycin-binding protein) and FRB (the FKBP-rapamycin binding domain of the protein kinase, mTOR) mediated by AP21967, we constructed a nuclear transport system to induce cytoplasmic Bcr-Abl into nuclear. In this study, we reported the construction of the nuclear transport system, and we demonstrated that FN3R (three nuclear localization signals were fused to FRBT2098L with a FLAG tag), HF2S (two FKBP domains were in tandem and fused to the SH2 domain of Grb2 with an HA tag) and Bcr-Abl form a complexus upon AP21967. Bcr-Abl was imported into the nucleus successfully by the nuclear transport system. The nuclear transport system inhibited CML cell proliferation through mitogen-activated protein kinase (MAPK) and signal transducer and activator of transcription 5 (STAT5) pathways mainly by HF2S. It was proven that nuclear located Bcr-Abl induced CML cell (including imatinib-resistant K562G01 cells) apoptosis by activation of p73 and its downstream molecules. In summary, our study provides a new targeted therapy for the CML patients even with Tyrosine Kinase Inhibitor (TKI)-resistance.

  20. Genomic amplification of BCR/ABL1 and a region downstream of ABL1 in chronic myeloid leukaemia: a FISH mapping study of CML patients and cell lines

    PubMed Central

    2010-01-01

    Background Chronic myeloid leukaemia (CML) is characterized by the expression of the BCR/ABL1 fusion gene, a constitutively activated tyrosine kinase that commonly results from the formation of the Philadelphia (Ph) chromosome after a t(9;22)(q34;q11) or variant rearrangement. The duplication of the Ph chromosome is a recurring abnormality acquired during disease progression, whereas intrachromosomal amplification of BCR/ABL1 is a rare phenomenon and has been associated with imatinib therapy resistance. Archival bone marrow chromosome suspensions from 19 CML patients known to carry more than 1 copy of BCR/ABL1 and 10 CML cell lines were analyzed by fluorescent in situ hybridization with a panel of probes from 9q34.1-qter to investigate whether they carried two identical copies of the Ph chromosome or, instead, one or both Ph contained cryptic imbalances of some regions. Results A duplication of the entire Ph chromosome with no further events involving the derivative 22 was found in 12 patients. In contrast, a sideline with either 1 or 2 isochromosomes of the Ph chromosome was identified in 6 patients but none of the cell lines. In one of the patients a translocation between the distal end of one arm of the isoderivative chromosome 22 and a third chromosome was revealed. 2 patients were found to carry marker structures harbouring high copy number gains of BCR/ABL1 fusion along with a variable part of 9q34 region downstream of ABL1 breakpoint, similarly to the markers present in the imatinib resistant cell line K562. We identified the following regions of amplification: 9q34.1 → q34.2 and 9q34.1 → qter, with a common minimum amplified region of 682 Kb. One of the patients had 5 BCR/ABL1 positive clones with variable level of 9q34 amplifications on a variety of structures, from an isoderivative 22 to tandem duplications. Conclusions These data confirm that the intrachromosomal genomic amplification of BCR/ABL1 that occurs in some CML patients during disease

  1. Type A influenza virus detection from horses by real-time RT-PCR and insulated isothermal RT-PCR.

    PubMed

    Balasuriya, Udeni B R

    2014-01-01

    Equine influenza (EI) is a highly contagious disease of horses caused by the equine influenza virus (EIV) H3N8 subtype. EI is the most important respiratory virus infection of horses and can disrupt major equestrian events and cause significant economic losses to the equine industry worldwide. Influenza H3N8 virus spreads rapidly in susceptible horses and can result in very high morbidity within 24-48 h after exposure to the virus. Therefore, rapid and accurate diagnosis of EI is critical for implementation of prevention and control measures to avoid the spread of EIV and to reduce the economic impact of the disease. The probe-based real-time reverse transcriptase polymerase chain reaction (rRT-PCR) assays targeting various EIV genes are reported to be highly sensitive and specific compared to the Directigen Flu A(®) test and virus isolation in embryonated hens' eggs. Recently, a TaqMan(®) probe-based insulated isothermal RT-PCR (iiRT-PCR) assay for the detection of EIV H3N8 subtype has been described. These molecular based diagnostic assays provide a fast and reliable means of EIV detection and disease surveillance.

  2. Discovery of 5-(arenethynyl) hetero-monocyclic derivatives as potent inhibitors of BCR-ABL including the T315I gatekeeper mutant.

    PubMed

    Thomas, Mathew; Huang, Wei-Sheng; Wen, David; Zhu, Xiaotian; Wang, Yihan; Metcalf, Chester A; Liu, Shuangying; Chen, Ingrid; Romero, Jan; Zou, Dong; Sundaramoorthi, Raji; Li, Feng; Qi, Jiwei; Cai, Lisi; Zhou, Tianjun; Commodore, Lois; Xu, Qihong; Keats, Jeff; Wang, Frank; Wardwell, Scott; Ning, Yaoyu; Snodgrass, Joseph T; Broudy, Marc I; Russian, Karin; Iuliucci, John; Rivera, Victor M; Sawyer, Tomi K; Dalgarno, David C; Clackson, Tim; Shakespeare, William C

    2011-06-15

    Ponatinib (AP24534) was previously identified as a pan-BCR-ABL inhibitor that potently inhibits the T315I gatekeeper mutant, and has advanced into clinical development for the treatment of refractory or resistant CML. In this study, we explored a novel series of five and six membered monocycles as alternate hinge-binding templates to replace the 6,5-fused imidazopyridazine core of ponatinib. Like ponatinib, these monocycles are tethered to pendant toluanilides via an ethynyl linker. Several compounds in this series displayed excellent in vitro potency against both native BCR-ABL and the T315I mutant. Notably, a subset of inhibitors exhibited desirable PK and were orally active in a mouse model of T315I-driven CML.

  3. A derivative of epigallocatechin-3-gallate induces apoptosis via SHP-1-mediated suppression of BCR-ABL and STAT3 signalling in chronic myelogenous leukaemia

    PubMed Central

    Jung, Ji Hoon; Yun, Miyong; Choo, Eun-Jeong; Kim, Sun-Hee; Jeong, Myoung-Seok; Jung, Deok-Beom; Lee, Hyemin; Kim, Eun-Ok; Kato, Nobuo; Kim, Bonglee; Srivastava, Sanjay K; Kaihatsu, Kunihiro; Kim, Sung-Hoon

    2015-01-01

    Background and Purpose Epigallocatechin-3-gallate (EGCG) is a component of green tea known to have chemo-preventative effects on several cancers. However, EGCG has limited clinical application, which necessitates the development of a more effective EGCG prodrug as an anticancer agent. Experimental Approach Derivatives of EGCG were evaluated for their stability and anti-tumour activity in human chronic myeloid leukaemia (CML) K562 and KBM5 cells. Key Results EGCG-mono-palmitate (EGCG-MP) showed most prolonged stability compared with other EGCG derivatives. EGCG-MP exerted greater cytotoxicity and apoptosis in K562 and KBM5 cells than the other EGCG derivatives. EGCG-MP induced Src-homology 2 domain-containing tyrosine phosphatase 1 (SHP-1) leading decreased oncogenic protein BCR-ABL and STAT3 phosphorylation in CML cells, compared with treatment with EGCG. Furthermore, EGCG-MP reduced phosphorylation of STAT3 and survival genes in K562 cells, compared with EGCG. Conversely, depletion of SHP-1 or application of the tyrosine phosphatase inhibitor pervanadate blocked the ability of EGCG-MP to suppress phosphorylation of BCR-ABL and STAT3, and the expression of survival genes downstream of STAT3. In addition, EGCG-MP treatment more effectively suppressed tumour growth in BALB/c athymic nude mice compared with untreated controls or EGCG treatment. Immunohistochemistry revealed increased caspase 3 and SHP-1 activity and decreased phosphorylation of BCR-ABL in the EGCG-MP-treated group relative to that in the EGCG-treated group. Conclusions and Implications EGCG-MP induced SHP-1-mediated inhibition of BCR-ABL and STAT3 signalling in vitro and in vivo more effectively than EGCG. This derivative may be a potent chemotherapeutic agent for CML treatment. PMID:25825203

  4. A certified plasmid reference material for the standardisation of BCR-ABL1 mRNA quantification by real-time quantitative PCR.

    PubMed

    White, H; Deprez, L; Corbisier, P; Hall, V; Lin, F; Mazoua, S; Trapmann, S; Aggerholm, A; Andrikovics, H; Akiki, S; Barbany, G; Boeckx, N; Bench, A; Catherwood, M; Cayuela, J-M; Chudleigh, S; Clench, T; Colomer, D; Daraio, F; Dulucq, S; Farrugia, J; Fletcher, L; Foroni, L; Ganderton, R; Gerrard, G; Gineikienė, E; Hayette, S; El Housni, H; Izzo, B; Jansson, M; Johnels, P; Jurcek, T; Kairisto, V; Kizilors, A; Kim, D-W; Lange, T; Lion, T; Polakova, K M; Martinelli, G; McCarron, S; Merle, P A; Milner, B; Mitterbauer-Hohendanner, G; Nagar, M; Nickless, G; Nomdedéu, J; Nymoen, D A; Leibundgut, E O; Ozbek, U; Pajič, T; Pfeifer, H; Preudhomme, C; Raudsepp, K; Romeo, G; Sacha, T; Talmaci, R; Touloumenidou, T; Van der Velden, V H J; Waits, P; Wang, L; Wilkinson, E; Wilson, G; Wren, D; Zadro, R; Ziermann, J; Zoi, K; Müller, M C; Hochhaus, A; Schimmel, H; Cross, N C P; Emons, H

    2015-02-01

    Serial quantification of BCR-ABL1 mRNA is an important therapeutic indicator in chronic myeloid leukaemia, but there is a substantial variation in results reported by different laboratories. To improve comparability, an internationally accepted plasmid certified reference material (CRM) was developed according to ISO Guide 34:2009. Fragments of BCR-ABL1 (e14a2 mRNA fusion), BCR and GUSB transcripts were amplified and cloned into pUC18 to yield plasmid pIRMM0099. Six different linearised plasmid solutions were produced with the following copy number concentrations, assigned by digital PCR, and expanded uncertainties: 1.08±0.13 × 10(6), 1.08±0.11 × 10(5), 1.03±0.10 × 10(4), 1.02±0.09 × 10(3), 1.04±0.10 × 10(2) and 10.0±1.5 copies/μl. The certification of the material for the number of specific DNA fragments per plasmid, copy number concentration of the plasmid solutions and the assessment of inter-unit heterogeneity and stability were performed according to ISO Guide 35:2006. Two suitability studies performed by 63 BCR-ABL1 testing laboratories demonstrated that this set of 6 plasmid CRMs can help to standardise a number of measured transcripts of e14a2 BCR-ABL1 and three control genes (ABL1, BCR and GUSB). The set of six plasmid CRMs is distributed worldwide by the Institute for Reference Materials and Measurements (Belgium) and its authorised distributors (https://ec.europa.eu/jrc/en/reference-materials/catalogue/; CRM code ERM-AD623a-f).

  5. Targeting of heme oxygenase-1 attenuates the negative impact of Ikaros isoform 6 in adult BCR-ABL1-positive B-ALL.

    PubMed

    Lin, Xiaojing; Zou, Xingli; Wang, Ziming; Fang, Qin; Chen, Shuya; Huang, Jun; Zhe, Nana; Yu, Meisheng; Zhang, Yaming; Wang, Jishi

    2016-08-16

    The correlation between Heme oxygenase-1 (HO-1) and dominant-negative Ikaros isoform 6 (IK6) is unclear. Firstly, we detected that IK6 existed in 20 of 42 (47.6%) adult BCR-ABL1-positive B-lineage acute lymphoblastic leukemia (BCR-ABL1-positive B-ALL) by using reverse transcribed polymerase chain reaction (PCR) and nucleotide sequencing. IK6-positive patients had an unfavorable outcome compared with IK6-negative ones. Further study showed that the level of HO-1 expression was higher in IK6-positive patients' samples than that in IK6-negative ones. And there was a strong correlation between the expression of IK6 and HO-1. The growth of primary CD34+ leukemic cells derived from our IK6-positive patients' pool was prohibited by silencing HO-1, further promoting their apoptosis. Furthermore, primary CD34+ leukemic cells derived from IK6-positive patients shown poor responses to imatinib in comparison with wild-type (IK1) patients, suggesting that the expression of IK6 resisted to imatinib in adult BCR-ABL1-positive B-ALL. Importantly, inhibition of HO-1 also increased their sensitivity to tyrosine kinase inhibitors (TKIs). Finally, we found that IK6 activated downstream STAT5, and HO-1 was one of the downstream target genes of STAT5. In conclusion, HO-1 is an essential survival factor in BCR-ABL1-positive B-ALL with IK6, and targeting HO-1 can attenuate the negative impact of IK6.

  6. Efficacy and safety of radotinib in chronic phase chronic myeloid leukemia patients with resistance or intolerance to BCR-ABL1 tyrosine kinase inhibitors.

    PubMed

    Kim, Sung-Hyun; Menon, Hari; Jootar, Saengsuree; Saikia, Tapan; Kwak, Jae-Yong; Sohn, Sang-Kyun; Park, Joon Seong; Jeong, Seong Hyun; Kim, Hyeoung Joon; Kim, Yeo-Kyeoung; Oh, Suk Joong; Kim, Hawk; Zang, Dae Young; Chung, Joo Seop; Shin, Ho Jin; Do, Young Rok; Kim, Jeong-A; Kim, Dae-Young; Choi, Chul Won; Park, Sahee; Park, Hye Lin; Lee, Gong Yeal; Cho, Dae Jin; Shin, Jae Soo; Kim, Dong-Wook

    2014-07-01

    Radotinib (IY5511HCL), a novel and selective BCR-ABL1 tyrosine kinase inhibitor, has shown pre-clinical and phase I activity and safety in chronic myeloid leukemia. This phase II study investigated the efficacy and safety of radotinib in Philadelphia chromosome-positive chronic phase-chronic myeloid leukemia patients with resistance and/or intolerance to BCR-ABL1 tyrosine kinase inhibitors. Patients received radotinib 400 mg twice daily for 12 cycles based on results from the phase I trial. The primary end point was rate of major cytogenetic response by 12 months. A total of 77 patients were enrolled. Major cytogenetic response was achieved in 50 (65%; cumulative 75%) patients, including 36 (47%) patients with complete cytogenetic response by 12 months. Median time to major cytogenetic response and complete cytogenetic response were 85 days and 256 days, respectively. Major cytogenetic response and complete cytogenetic response rates were similar between imatinib-resistant and imatinib-intolerant patients, but were higher in patients without BCR-ABL1 mutations. Overall and progression-free survival rates at 12 months were 96.1% and 86.3%, respectively. All newly-occurring or worsening grade 3/4 hematologic abnormalities included thrombocytopenia (24.7%) and anemia (5.2%); grade 3/4 drug-related non-hematologic adverse events included fatigue (3.9%), asthenia (3.9%), and nausea (2.6%). The most common biochemistry abnormality was hyperbilirubinemia (grade 3/4 23.4%), and 12 of 18 cases were managed with dose modification. Study findings suggest radotinib is effective and well tolerated in chronic phase-chronic myeloid leukemia patients with resistance and/or intolerance to BCR-ABL1 tyrosine kinase inhibitors and may represent a promising alternative for these patients. (clinicaltrials.gov identifier: 01602952).

  7. UV Differentially Induces Oxidative Stress, DNA Damage and Apoptosis in BCR-ABL1-Positive Cells Sensitive and Resistant to Imatinib.

    PubMed

    Synowiec, Ewelina; Hoser, Grazyna; Wojcik, Katarzyna; Pawlowska, Elzbieta; Skorski, Tomasz; Błasiak, Janusz

    2015-08-05

    Chronic myeloid leukemia (CML) cells express the active BCR-ABL1 protein, which has been targeted by imatinib in CML therapy, but resistance to this drug is an emerging problem. BCR-ABL1 induces endogenous oxidative stress promoting genomic instability and imatinib resistance. In the present work, we investigated the extent of oxidative stress, DNA damage, apoptosis and expression of apoptosis-related genes in BCR-ABL1 cells sensitive and resistant to imatinib. The resistance resulted either from the Y253H mutation in the BCR-ABL1 gene or incubation in increasing concentrations of imatinib (AR). UV irradiation at a dose rate of 0.12 J/(m2 · s) induced more DNA damage detected by the T4 pyrimidine dimers glycosylase and hOGG1, recognizing oxidative modifications to DNA bases in imatinib-resistant than -sensitive cells. The resistant cells displayed also higher susceptibility to UV-induced apoptosis. These cells had lower native mitochondrial membrane potential than imatinib-sensitive cells, but UV-irradiation reversed that relationship. We observed a significant lowering of the expression of the succinate dehydrogenase (SDHB) gene, encoding a component of the complex II of the mitochondrial respiratory chain, which is involved in apoptosis sensing. Although detailed mechanism of imatinib resistance in AR cells in unknown, we detected the presence of the Y253H mutation in a fraction of these cells. In conclusion, imatinib-resistant cells may display a different extent of genome instability than their imatinib-sensitive counterparts, which may follow their different reactions to both endogenous and exogenous DNA-damaging factors, including DNA repair and apoptosis.

  8. A 41-kilodalton protein is a potential substrate for the p210bcr-abl protein-tyrosine kinase in chronic myelogenous leukemia cells.

    PubMed Central

    Freed, E; Hunter, T

    1992-01-01

    Chronic myelogenous leukemia (CML) is characterized by a translocation involving the c-abl protein-tyrosine kinase gene. A chimeric mRNA is formed containing sequences from a chromosome 22 gene (bcr) at its 5' end and all but the variable exon 1 of c-abl sequence. The product of this mRNA, p210bcr-abl, has constitutively high protein-tyrosine kinase activity. We examined K562 cells and other lines established from CML patients for the presence of phosphotyrosine (P-Tyr)-containing proteins which might be p210bcr-abl substrates. Two-dimensional gel separation of 32P-labeled proteins followed by phosphoamino acid analysis of 25 phosphoproteins, which comprised the major alkali-stable phosphoproteins, indicated that three related proteins of 41 kDa are the most prominent P-Tyr-containing proteins detected by this method. The 41-kDa phosphoproteins are found in two other CML lines that we examined but not in lines of similar lineage isolated from patients with distinct leukemic disease. A protein that comigrates with the major form of pp41 (pp41A) and contains P-Tyr is also found in murine fibroblasts and B-lymphoid cells transformed by Abelson murine leukemia virus, which encodes the v-abl protein, and in platelet-derived growth factor-treated fibroblasts, in which it has been described previously. We analyzed three pairs of Epstein-Barr virus-immortalized B-cell lines from individual CML patients and found that only the lines in which active p210bcr-abl was present contained detectable pp41. We also performed immunoblotting with anti-P-Tyr antibodies on the same CML cell lines and detected at least four other putative substrates of p210bcr-abl, which were undetected with use of the two-dimensional gel technique. Images PMID:1545812

  9. Bcr-abl regulates Stat5 through Shp2, the interferon consensus sequence binding protein (Icsbp/Irf8), growth arrest specific 2 (Gas2) and calpain

    PubMed Central

    Hjort, Elizabeth E.; Huang, Weiqi; Hu, Liping; Eklund, Elizabeth A.

    2016-01-01

    Icsbp/Irf8 is an interferon regulatory transcription factor that functions as a suppressor of myeloid leukemias. Consistent with this activity, Icsbp represses a set of genes encoding proteins that promote cell proliferation/survival. One such gene encodes Gas2, a calpain inhibitor. We previously found that increased Gas2-expression in Bcr-abl+ cells stabilized βcatenin; a Calpain substrate. This was of interest, because βcatenin contributes to disease progression in chronic myeloid leukemia (CML). Calpain has additional substrates implicated in leukemogenesis, including Stat5. In the current study, we hypothesized that Stat5 activity in CML is regulated by Gas2/Calpain. We found that Bcr-abl-induced, Shp2-dependent dephosphorylation of Icsbp impaired repression of GAS2 by this transcription factor. The consequent decrease in Calpain activity stabilized Stat5 protein; increasing the absolute abundance of both phospho and total Stat5. This enhanced repression of the IRF8 promoter by Stat5 in a manner dependent on Icsbp, Gas2 and Calpain, but not Stat5 tyrosine phosphorylation. During normal myelopoiesis, increased expression and phosphorylation of Icsbp inhibits Calpain. In contrast, constitutive activation of Shp2 in Bcr-abl+ cells impairs regulation of Gas2/Calpain by Icsbp, aberrantly stabilizing Stat5 and enhancing IRF8 repression. This novel feedback mechanism enhances leukemogenesis by increasing Stat5 and decreasing Icsbp. Bcr-abl targeted tyrosine kinase inhibitors (TKIs) provide long term disease control, but CML is not cured by these agents. Our studies suggest targeting Calpain might be a rational therapeutic approach to decrease persistent leukemia stem cells (LSCs) during TKI-treatment. PMID:27769062

  10. Modeling the influence of stromal microenvironment in the selection of ENU-induced BCR-ABL1 mutants by tyrosine kinase inhibitors.

    PubMed

    Aggoune, Djamel; Tosca, Lucie; Sorel, Nathalie; Bonnet, Marie-Laure; Dkhissi, Fatima; Tachdjian, Gérard; Bennaceur-Griscelli, Annelise; Chomel, Jean-Claude; Turhan, Ali G

    2014-01-01

    Tyrosine kinase inhibitors (TKIs) have profoundly changed the natural history of chronic myeloid leukemia (CML). However, acquired resistance to imatinib, dasatinib or nilotinib (1(st) and 2(nd) generation TKIs), due in part to BCR-ABL1 kinase mutations, has been largely described. These drugs are ineffective on the T315I gatekeeper substitution, which remains sensitive to 3(rd) generation TKI ponatinib. It has recently been suggested that the hematopoietic niche could protect leukemic cells from targeted therapy. In order to investigate the role of a stromal niche in mutation-related resistance, we developed a niche-based cell mutagenesis assay. For this purpose, ENU (N-ethyl-N-nitrosourea)-exposed UT-7 cells expressing non-mutated or T315I-mutated BCR-ABL1 were cultured with or without murine MS-5 stromal cells and in the presence of imatinib, dasatinib, nilotinib, or ponatinib. In the assays relative to 1(st) and 2(nd) generation TKIs, which were performed on non-mutated BCR-ABL1 cells, our data highlighted the increasing efficacy of the latter, but did not reveal any substantial effect of the niche. In ponatinib assays performed on both non-mutated and T315I-mutated BCR-ABL1 cells, an increased number of resistant clones were observed in the presence of MS-5. Present data suggested that T315I mutants need either compound mutations (e.g. E255K/T315I) or a stromal niche to escape from ponatinib. Using array-comparative genomic hybridization experiments, we found an increased number of variations (involving some recurrent chromosome regions) in clones cultured on MS-5 feeder. Overall, our study suggests that the hematopoietic niche could play a crucial role in conferring resistance to ponatinib, by providing survival signals and favoring genetic instability.

  11. Modeling the influence of stromal microenvironment in the selection of ENU-induced BCR-ABL1 mutants by tyrosine kinase inhibitors

    PubMed Central

    Aggoune, Djamel; Tosca, Lucie; Sorel, Nathalie; Bonnet, Marie-Laure; Dkhissi, Fatima; Tachdjian, Gérard; Bennaceur-Griscelli, Annelise; Chomel, Jean-Claude; Turhan, Ali G

    2014-01-01

    Tyrosine kinase inhibitors (TKIs) have profoundly changed the natural history of chronic myeloid leukemia (CML). However, acquired resistance to imatinib, dasatinib or nilotinib (1st and 2nd generation TKIs), due in part to BCR-ABL1 kinase mutations, has been largely described. These drugs are ineffective on the T315I gatekeeper substitution, which remains sensitive to 3rd generation TKI ponatinib. It has recently been suggested that the hematopoietic niche could protect leukemic cells from targeted therapy. In order to investigate the role of a stromal niche in mutation-related resistance, we developed a niche-based cell mutagenesis assay. For this purpose, ENU (N-ethyl-N-nitrosourea)-exposed UT-7 cells expressing non-mutated or T315I-mutated BCR-ABL1 were cultured with or without murine MS-5 stromal cells and in the presence of imatinib, dasatinib, nilotinib, or ponatinib. In the assays relative to 1st and 2nd generation TKIs, which were performed on non-mutated BCR-ABL1 cells, our data highlighted the increasing efficacy of the latter, but did not reveal any substantial effect of the niche. In ponatinib assays performed on both non-mutated and T315I–mutated BCR-ABL1 cells, an increased number of resistant clones were observed in the presence of MS-5. Present data suggested that T315I mutants need either compound mutations (e.g. E255K/T315I) or a stromal niche to escape from ponatinib. Using array-comparative genomic hybridization experiments, we found an increased number of variations (involving some recurrent chromosome regions) in clones cultured on MS-5 feeder. Overall, our study suggests that the hematopoietic niche could play a crucial role in conferring resistance to ponatinib, by providing survival signals and favoring genetic instability. PMID:25593988

  12. Identification of common inhibitors of wild-type and T315I mutant of BCR-ABL through the parallel structure-based virtual screening

    NASA Astrophysics Data System (ADS)

    Park, Hwangseo; Hong, Seunghee; Hong, Sungwoo

    2012-08-01

    Although the constitutively activated break-point cluster region-Abelson (BCR-ABL) tyrosine kinase was well known to be responsible for chronic myelogenous leukemia (CML), the existence of drug-resistant mutants of BCR-ABL has made it difficult to develop effective anti-CML drugs. Here, we report the first example for a successful application of the structure-based virtual screening to identify two common inhibitors equipotent for the wild type and the most drug-resistant T315I mutant of BCR-ABL. Because both inhibitors were screened for having desirable physicochemical properties as a drug candidate and revealed micromolar inhibitory activities, they deserve consideration for further development by structure-activity relationship (SAR) studies to optimize the anti-CML activity. We also address the structural features relevant to the stabilizations of the identified inhibitors in the ATP-binding sites. The results indicate that the inhibitors should be less stabilized by the hydrogen-bond interactions with the change of the receptor from the wild type to T315I mutant due to the replacement of the hydroxy group with the ethyl moiety in the ATP-binding site. Nonetheless, the inhibitors are found to be capable of maintaining the potency for the mutant through the strengthening of hydrophobic interactions to the extent sufficient to compensate for the loss of some hydrogen bonds. This differential binding mode may serve as key information for designing new common inhibitors of the wild type and T315I mutant of BCR-ABL.

  13. Design, synthesis, and biological evaluation of 3-(1H-1,2,3-triazol-1-yl)benzamide derivatives as Potent Pan Bcr-Abl inhibitors including the threonine(315)→isoleucine(315) mutant.

    PubMed

    Li, Yupeng; Shen, Mengjie; Zhang, Zhang; Luo, Jinfeng; Pan, Xiaofen; Lu, Xiaoyun; Long, Huoyou; Wen, Donghai; Zhang, Fengxiang; Leng, Fang; Li, Yingjun; Tu, Zhengchao; Ren, Xiaomei; Ding, Ke

    2012-11-26

    A series of 3-(1H-1,2,3-triazol-1-yl)benzamide derivatives were designed and synthesized as new Bcr-Abl inhibitors by using combinational strategies of bioisosteric replacement, scaffold hopping, and conformational constraint. The compounds displayed significant inhibition against a broad spectrum of Bcr-Abl mutants including the gatekeeper T315I and p-loop mutations, which are associated with disease progression in CML. The most potent compounds 6q and 6qo strongly inhibited the kinase activities of Bcr-Abl(WT) and Bcr-Abl(T315I) with IC(50) values of 0.60, 0.36 and 1.12, 0.98 nM, respectively. They also potently suppressed the proliferation of K562, KU812 human CML cells, and a panel of murine Ba/F3 cells ectopically expressing either Bcr-Abl(WT) or any of a panel of other Bcr-Abl mutants that have been shown to contribute to clinical acquired resistance, including Bcr-Abl(T315I), with IC(50) values in low nanomolar ranges. These compounds may serve as lead compounds for further development of new Bcr-Abl inhibitors capable of overcoming clinical acquired resistance against imatinib.

  14. Clinical characteristics of patients with central nervous system relapse in BCR-ABL1-positive acute lymphoblastic leukemia: the importance of characterizing ABL1 mutations in cerebrospinal fluid.

    PubMed

    Sanchez, Ricardo; Ayala, Rosa; Alonso, Rafael Alberto; Martínez, María Pilar; Ribera, Jordi; García, Olga; Sanchez-Pina, José; Mercadal, Santiago; Montesinos, Pau; Martino, Rodrigo; Barba, Pere; González-Campos, José; Barrios, Manuel; Lavilla, Esperanza; Gil, Cristina; Bernal, Teresa; Escoda, Lourdes; Abella, Eugenia; Amigo, Ma Luz; Moreno, Ma José; Bravo, Pilar; Guàrdia, Ramón; Hernández-Rivas, Jesús-María; García-Guiñón, Antoni; Piernas, Sonia; Ribera, José-María; Martínez-López, Joaquín

    2017-07-01

    We investigated the frequency, predictors, and evolution of acute lymphoblastic leukemia (ALL) in patients with CNS relapse and introduced a novel method for studying BCR-ABL1 protein variants in cDNA from bone marrow (BM) and cerebrospinal fluid (CSF) blast cells. A total of 128 patients were analyzed in two PETHEMA clinical trials. All achieved complete remission after imatinib treatment. Of these, 30 (23%) experienced a relapse after achieving complete remission, and 13 (10%) had an isolated CNS relapse or combined CNS and BM relapses. We compared the characteristics of patients with and without CNS relapse and further analyzed CSF and BM samples from two of the 13 patients with CNS relapse. In both patients, classical sequencing analysis of the kinase domain of BCR-ABL1 from the cDNA of CSF blasts revealed the pathogenic variant p.L387M. We also performed ultra-deep next-generation sequencing (NGS) in three samples from one of the relapsed patients. We did not find the mutation in the BM sample, but we did find it in CSF blasts with 45% of reads at the time of relapse. These data demonstrate the feasibility of detecting BCR-ABL1 mutations in CSF blasts by NGS and highlight the importance of monitoring clonal evolution over time.

  15. Bis-three-way junction nanostructure and DNA machineries for ultrasensitive and specific detection of BCR/ABL fusion gene by chemiluminescence imaging

    PubMed Central

    Xu, Yongjie; Bian, Xintong; Sang, Ye; Li, Yujian; Li, Dandan; Cheng, Wei; Yin, Yibing; Ju, Huangxian; Ding, Shijia

    2016-01-01

    A novel G-quadruplex DNAzyme-driven chemiluminescence (CL) imaging method has been developed for ultrasensitive and specific detection of BCR/ABL fusion gene based on bis-three-way junction (bis-3WJ) nanostructure and cascade DNA machineries. Bis-3WJ probes are designed logically to recognize BCR/ABL fusion gene, which forms the stable bis-3WJ nanostructure for the activation of polymerase/nicking enzyme machineries in cascade, resulting in synthesis of DNAzyme subunits. These DNAzyme subunits can form integrated DNAzyme by self-assembly to catalyze CL substrate, thus providing an amplified signal for the sensing events or outputs for AND logic operation. The imaging method achieved ultrasensitive detection of BCR/ABL fusion gene with a low detection limit down to 23 fM. And this method exhibited wide linear ranges over seven orders of magnitude and excellent discrimination ability toward target. In addition, an acceptable recovery was obtained in complex matrix. It is notable that this biosensing strategy possesses merits of homogenous, isothermal and label-free assay system. Therefore, these merits endow the developed imaging method with a potential tool for CML diagnosis. PMID:27577607

  16. Low Expression of miR-196b Enhances the Expression of BCR-ABL1 and HOXA9 Oncogenes in Chronic Myeloid Leukemogenesis

    PubMed Central

    Liu, Yue; Zheng, Wenling; Song, Yanbin; Ma, Wenli; Yin, Hong

    2013-01-01

    MicroRNAs (miRNAs) can function as tumor suppressors or oncogene promoters during tumor development. In this study, low levels of expression of miR-196b were detected in patients with chronic myeloid leukemia. Bisulfite genomic sequencing PCR and methylation-specific PCR were used to examine the methylation status of the CpG islands in the miR-196b promoter in K562 cells, patients with leukemia and healthy individuals. The CpG islands showed more methylation in patients with chronic myeloid leukemia compared with healthy individuals (P<0.05), which indicated that low expression of miR-196b may be associated with an increase in the methylation of CpG islands. The dual-luciferase reporter assay system demonstrated that BCR-ABL1 and HOXA9 are the target genes of miR-196b, which was consistent with predictions from bioinformatics software analyses. Further examination of cell function indicated that miR-196b acts to reduce BCR-ABL1 and HOXA9 protein levels, decrease cell proliferation rate and retard the cell cycle. A low level of expression of miR-196b can cause up-regulation of BCR-ABL1 and HOXA9 expression, which leads to the development of chronic myeloid leukemia. MiR-196b may represent an effective target for chronic myeloid leukemia therapy. PMID:23894305

  17. Avian influenza virus detection and quantitation by real-time RT-PCR

    USDA-ARS?s Scientific Manuscript database

    Real-time RT-PCR (rRT-PCR) has been used for avian influenza virus (AIV) detection since the early 2000’s for routine surveillance, during outbreaks and for research. Some of the advantages of rRT-PCR are: high sensitivity, high specificity, rapid time-to-result, scalability, cost, and its inherentl...

  18. New alternative splicing BCR/ABL-OOF shows an oncogenic role by lack of inhibition of BCR GTPase activity and an increased of persistence of Rac activation in chronic myeloid leukemia

    PubMed Central

    Panuzzo, Cristina; Volpe, Gisella; Rocchietti, Elisa Cibrario; Casnici, Claudia; Crotta, Katia; Crivellaro, Sabrina; Carrà, Giovanna; Lorenzatti, Roberta; Peracino, Barbara; Torti, Davide; Morotti, Alessandro; Camacho-Leal, Maria Pilar; Defilippi, Paola; Marelli, Ornella; Saglio, Giuseppe

    2015-01-01

    In Chronic Myeloid Leukemia 80% of patients present alternative splice variants involving BCR exons 1, 13 or 14 and ABL exon 4, with a consequent impairment in the reading frame of the ABL gene. Therefore BCR/ABL fusion proteins (BCR/ABL-OOF) are characterized by an in-frame BCR portion followed by an amino acids sequence arising from the out of frame (OOF) reading of the ABL gene. The product of this new transcript contains the characteristic BCR domains while lacking the COOH-terminal Rho GTPase GAP domain. The present work aims to characterize the protein functionality in terms of cytoskeleton (re-)modelling, adhesion and activation of canonical oncogenic signalling pathways. Here, we show that BCR/ABL-OOF has a peculiar endosomal localization which affects EGF receptor activation and turnover. Moreover, we demonstrate that BCR/ABL-OOF expression leads to aberrant cellular adhesion due to the activation of Rac GTPase, increase in cellular proliferation, migration and survival. When overexpressed in a BCR/ABL positive cell line, BCR/ABL-OOF induces hyperactivation of Rac signaling axis offering a therapeutic window for Rac-targeted therapy. Our data support a critical role of BCR/ABL-OOF in leukemogenesis and identify a subset of patients that may benefit from Rac-targeted therapies. PMID:26682280

  19. Novel pathway in Bcr-Abl signal transduction involves Akt-independent, PLC-gamma1-driven activation of mTOR/p70S6-kinase pathway.

    PubMed

    Markova, B; Albers, C; Breitenbuecher, F; Melo, J V; Brümmendorf, T H; Heidel, F; Lipka, D; Duyster, J; Huber, C; Fischer, T

    2010-02-04

    In chronic myeloid leukemia, activation of the phosphoinositide 3-kinase (PI3K)/Akt pathway is crucial for survival and proliferation of leukemic cells. Essential downstream molecules involve mammalian target of rapamycin (mTOR) and S6-kinase. Here, we present a comprehensive analysis of the molecular events involved in activation of these key signaling pathways. We provide evidence for a previously unrecognized phospholipase C-gamma1 (PLC-gamma1)-controlled mechanism of mTOR/p70S6-kinase activation, which operates in parallel to the classical Akt-dependent machinery. Short-term imatinib treatment of Bcr-Abl-positive cells caused dephosphorylation of p70S6-K and S6-protein without inactivation of Akt. Suppression of Akt activity alone did not affect phosphorylation of p70-S6K and S6. These results suggested the existence of an alternative mechanism for mTOR/p70S6-K activation. In Bcr-Abl-expressing cells, we detected strong PLC-gamma1 activation, which was suppressed by imatinib. Pharmacological inhibition and siRNA knockdown of PLC-gamma1 blocked p70S6-K and S6 phosphorylation. By inhibiting the Ca-signaling, CaMK and PKCs we demonstrated participation of these molecules in the pathway. Suppression of PLC-gamma1 led to inhibition of cell proliferation and enhanced apoptosis. The novel pathway proved to be essential for survival and proliferation of leukemic cells and almost complete cell death was observed upon combined PLC-gamma1 and Bcr-Abl inhibition. The pivotal role of PLC-gamma1 was further confirmed in a mouse leukemogenesis model.

  20. Attomolar electrochemical detection of the BCR/ABL fusion gene based on an amplifying self-signal metal nanoparticle-conducting polymer hybrid composite.

    PubMed

    Avelino, Karen Y P S; Frias, Isaac A M; Lucena-Silva, Norma; Gomes, Renan G; de Melo, Celso P; Oliveira, Maria D L; Andrade, César A S

    2016-12-01

    In the last ten years, conjugated polymers started to be used in the immobilization of nucleic acids via non-covalent interactions. In the present study, we describe the construction and use of an electrochemical DNA biosensor based on a nanostructured polyaniline-gold composite, specifically developed for the detection of the BCR/ABL chimeric oncogene. This chromosome translocation is used as a biomarker to confirm the clinical diagnosis of both chronic myelogenous leukemia (CML) and acute lymphocytic leukemia (ALL). The working principle of the biosensor rests on measuring the conductivity resulting from the non-covalent interactions between the hybrid nanocomposite and the DNA probe. The nanostructured platform exhibits a large surface area that enhances the conductivity. Positive cases, which result from the hybridization between DNA probe and targeted gene, induce changes in the amperometric current and in the charge transfer resistance (RCT) responses. Atomic force microscopy (AFM) images showed changes in the genosensor surface after exposure to cDNA sample of patient with leukemia, evidencing the hybridization process. This new hybrid sensing-platform displayed high specificity and selectivity, and its detection limit is estimated to be as low as 69.4 aM. The biosensor showed excellent analytical performance for the detection of the BCR/ABL oncogene in clinical samples of patients with leukemia. Hence, this electrochemical sensor appears as a simple and attractive tool for the molecular diagnosis of the BCR/ABL oncogene even in early-stage cases of leukemia and for the monitoring of minimum levels of residual disease.

  1. The CRISPR/Cas9 system efficiently reverts the tumorigenic ability of BCR/ABL in vitro and in a xenograft model of chronic myeloid leukemia.

    PubMed

    García-Tuñón, Ignacio; Hernández-Sánchez, María; Ordoñez, José Luis; Alonso-Pérez, Veronica; Álamo-Quijada, Miguel; Benito, Rocio; Guerrero, Carmen; Hernández-Rivas, Jesús María; Sánchez-Martín, Manuel

    2017-02-09

    CRISPR/Cas9 technology was used to abrogate p210 oncoprotein expression in the Boff-p210 cell line, a pro-B line derived from interlukin-3-dependent Baf/3, that shows IL-3-independence arising from the constitutive expression of BCR-ABL p210. Using this approach, pools of Boff-p210-edited cells and single edited cell-derived clones were obtained and functionally studied in vitro. The loss of p210 expression in Boff-p210 cells resulted in the loss of ability to grow in the absence of IL-3, as the Baf/3 parental line, showing significantly increased apoptosis levels. Notably, in a single edited cell-derived clone carrying a frame-shift mutation that prevents p210 oncoprotein expression, the effects were even more drastic, resulting in cell death. These edited cells were injected subcutaneously in immunosuppressed mice and tumor growth was followed for three weeks. BCR/ABL-edited cells developed smaller tumors than those originating from unedited Boff-p210 parental cells. Interestingly, the single edited cell-derived clone was unable to develop tumors, similar to what is observed with the parental Baf/3 cell line.CRISPR/Cas9 genomic editing technology allows the ablation of the BCR/ABL fusion gene, causing an absence of oncoprotein expression, and blocking its tumorigenic effects in vitro and in the in vivo xenograft model of CML. The future application of this approach in in vivo models of CML will allow us to more accurately assess the value of CRISPR/Cas9 technology as a new therapeutic tool that overcomes resistance to the usual treatments for CML patients.

  2. [Application of Real-time Quantitative PCR in Detecting Atypical BCR/ABL mRNA Transcripts in Chronic Myelocytic Leukemia].

    PubMed

    Zou, Yuan; DU, Cui; Chen, Hong-Mei; Guo, Fu-Xiao; Cheng, Jian-Bing; Tang, Yuan-Yan; Wu, Wei; Xia, Cheng-Qing

    2017-08-01

    To detect atypical BCR/ABL mRNA transcript by real-time quantitative PCR in CML patients without e13a2/e14a2,e19a2 or e1a2 transcripts, and investigate its value of clinical application. Twelve cases of CML with positive for t(9;22) translocation, but negative for common major and minor breakpoint cluster regions comfirmed by chromosome karyotyping or FISH analysis, were collected from July 2012 to December 2015. These 12 cases were then detected for b2a3(e13a3), b3a3(e14a3), e6a2, e8a2 and e1a3 fusion variants by real-time quantitative PCR. Among 12 cases 4 variant transcripts were detected, including e1a3 in 1 case (8.33%), e8a2 in 2 cases (16.67%), b2a3 in 5 cases (41.67%) and b3a3 in 4 cases (33.33%), with total positivity of 100%, moreover b2a3 and b3a3 were predominant. The detecting atypical BCR/ABL mRNA transcripts by real-time quantitative PCR is suitable for the diagnosis of CML negative for P210, P190 and P230 by standard real-time PCR test, and this detection is still the standard and economic method for monitoring minimal residual disease in CML patients with variants of BCR/ABL fusion gene.

  3. Subclones with the t(9;22)/BCR-ABL1 rearrangement occur in AML and seem to cooperate with distinct genetic alterations.

    PubMed

    Bacher, Ulrike; Haferlach, Torsten; Alpermann, Tamara; Zenger, Melanie; Hochhaus, Andreas; Beelen, Dietrich W; Uppenkamp, Michael; Rummel, Mathias; Kern, Wolfgang; Schnittger, Susanne; Haferlach, Claudia

    2011-03-01

    In AML, cooperation of mutations suppressing differentiation ('class-II-mutations') with 'class-I-mutations' increasing cell proliferation is frequent. In rare cases of myeloid malignancies, the BCR-ABL1 fusion was reported to cooperate as class-I-mutation with class-II-mutations, but most cases had to be classified as blast phase of chronic myeloid leukaemia (CML). We identified five cases of Philadelphia positive subclones in AML occurring in coincidence with other genetic lesions: 1:220 patients with inv(16)/CBFB-MYH11 (0·5%), 2:272 AML cases with t(8;21)/RUNX1-RUNX1T1 (0·7%), 1:1029 NPM1-mutated AML (0·1%), and one patient with s-AML following MDS with a 5q-deletion. Four patients had m-BCR (e1a2) BCR-ABL1 transcripts; one case only had an M-BCR (b3a2) breakpoint. These cases allow some interesting conclusions: The BCR-ABL1 rearrangement apparently can cooperate with the NPM1 mutation similar to other class-I-mutations. The identification of Philadelphia positive subclones in <1% of patients with CBF-leukaemias fits well with previous observations that most CBF-AML are accompanied by activating mutations in genes enhancing proliferation. Since we observed the occurrence of the Philadelphia positive subclones at diagnosis, at relapse, or throughout the disease, the time point of the emergence of Philadelphia subclones seems variable in AML. Clinical research should further concentrate on Philadelphia positive subclones in AML to assess the clinical impact.

  4. In-silico identification of inhibitors against mutated BCR-ABL protein of chronic myeloid leukemia: a virtual screening and molecular dynamics simulation study.

    PubMed

    Kumar, Himansu; Raj, Utkarsh; Gupta, Saurabh; Varadwaj, Pritish Kumar

    2016-10-01

    Aberrant and proliferative expression of the oncogene BCR-ABL in the bone marrow cells had been proven as the prime cause of chronic myeloid leukemia (CML). It has been established that tyrosine kinase domain of BCR-ABL protein is a potential therapeutic target for the treatment of CML. Imatinib is considered as a first-generation drug that can inhibit the enzymatic action by inhibiting the ATP binding with BCR-ABL protein. Later on, insensitivity of CML cells towards Imatinib has been observed may be due to mutation in tyrosine kinase domain of the ABL receptor. Subsequently, some other second-generation drugs have also been reported viz. Baustinib, Nilotinib, Dasatinib, Ponatinib, Bafetinib, etc., which can able to combat against mutated domain of ABL tyrosine kinase protein. By taking into account of bioavailability and resistance developed, there is an utmost need to find some more inhibitors for the mutated ABL tyrosine kinase protein. For virtual screening, a data-set has been generated by collecting the all available drug like natural compounds from ZINC and Drug Bank databases. Comparative docking analysis was also carried out on the active site of ABL tyrosine kinase receptor with reported reference inhibitors. Molecular dynamics simulation of the best screened interacting complex was done for 50 ns to validate the stability of the system. These selected inhibitors were further validated and analyzed through pharmacokinetics properties and series of ADMET parameters by in silico methods. Considering the above said parameters proposed molecules are concluded as potential leads for drug designing pipeline against CML.

  5. Aerobic glycolysis suppresses p53 activity to provide selective protection from apoptosis upon loss of growth signals or inhibition of BCR-Abl

    PubMed Central

    Mason, Emily F.; Zhao, Yuxing; Goraksha-Hicks, Pankuri; Coloff, Jonathan L.; Gannon, Hugh; Jones, Stephen N.; Rathmell, Jeffrey C.

    2010-01-01

    Unlike the growth factor-dependence of normal cells, cancer cells can maintain growth factor-independent glycolysis and survival through expression of oncogenic kinases, such as BCR-Abl. While targeted kinase inhibition can promote cancer cell death, therapeutic resistance develops frequently and further mechanistic understanding is needed. Cell metabolism may be central to this cell death pathway, as we have shown that growth factor deprivation leads to decreased glycolysis that promotes apoptosis via p53 activation and induction of the pro-apoptotic protein Puma. Here, we extend these findings to demonstrate that elevated glucose metabolism, characteristic of cancer cells, can suppress PKCδ-dependent p53 activation to maintain cell survival after growth factor withdrawal. In contrast, DNA damage-induced p53 activation was PKCδ-independent and was not metabolically sensitive. Both stresses required p53 serine 18 phosphorylation for maximal activity but led to unique patterns of p53 target gene expression, demonstrating distinct activation and response pathways for p53 that were differentially regulated by metabolism. Consistent with oncogenic kinases acting to replace growth factors, treatment of BCR-Abl-expressing cells with the kinase inhibitor imatinib led to reduced metabolism and p53- and Puma-dependent cell death. Accordingly, maintenance of glucose uptake inhibited p53 activation and promoted imatinib resistance. Furthermore, inhibition of glycolysis enhanced imatinib sensitivity in BCR-Abl-expressing cells with wild type p53 but had little effect on p53 null cells. These data demonstrate that distinct pathways regulate p53 after DNA damage and metabolic stress and that inhibiting glucose metabolism may enhance the efficacy of and overcome resistance to targeted molecular cancer therapies. PMID:20876800

  6. Inhibition of PI3K/mTOR overcomes nilotinib resistance in BCR-ABL1 positive leukemia cells through translational down-regulation of MDM2.

    PubMed

    Ding, Jie; Romani, Julia; Zaborski, Margarete; MacLeod, Roderick A F; Nagel, Stefan; Drexler, Hans G; Quentmeier, Hilmar

    2013-01-01

    Chronic myeloid leukemia (CML) is a cytogenetic disorder resulting from formation of the Philadelphia chromosome (Ph), that is, the t(9;22) chromosomal translocation and the formation of the BCR-ABL1 fusion protein. Tyrosine kinase inhibitors (TKI), such as imatinib and nilotinib, have emerged as leading compounds with which to treat CML. t(9;22) is not restricted to CML, 20-30% of acute lymphoblastic leukemia (ALL) cases also carry the Ph. However, TKIs are not as effective in the treatment of Ph+ ALL as in CML. In this study, the Ph+ cell lines JURL-MK2 and SUP-B15 were used to investigate TKI resistance mechanisms and the sensitization of Ph+ tumor cells to TKI treatment. The annexin V/PI (propidium iodide) assay revealed that nilotinib induced apoptosis in JURL-MK2 cells, but not in SUP-B15 cells. Since there was no mutation in the tyrosine kinase domain of BCR-ABL1 in cell line SUP-B15, the cells were not generally unresponsive to TKI, as evidenced by dephosphorylation of the BCR-ABL1 downstream targets, Crk-like protein (CrkL) and Grb-associated binder-2 (GAB2). Resistance to apoptosis after nilotinib treatment was accompanied by the constitutive and nilotinib unresponsive activation of the phosphoinositide 3-kinase (PI3K) pathway. Treatment of SUP-B15 cells with the dual PI3K/mammalian target of rapamycin (mTOR) inhibitor BEZ235 alone induced apoptosis in a low percentage of cells, while combining nilotinib and BEZ235 led to a synergistic effect. The main role of PI3K/mTOR inhibitor BEZ235 and the reason for apoptosis in the nilotinib-resistant cells was the block of the translational machinery, leading to the rapid downregulation of the anti-apoptotic protein MDM2 (human homolog of the murine double minute-2). These findings highlight MDM2 as a potential therapeutic target to increase TKI-mediated apoptosis and imply that the combination of PI3K/mTOR inhibitor and TKI might form a novel strategy to combat TKI-resistant BCR-ABL1 positive leukemia.

  7. Inhibition of PI3K/mTOR Overcomes Nilotinib Resistance in BCR-ABL1 Positive Leukemia Cells through Translational Down-Regulation of MDM2

    PubMed Central

    Ding, Jie; Romani, Julia; Zaborski, Margarete; MacLeod, Roderick A. F.; Nagel, Stefan; Drexler, Hans G.; Quentmeier, Hilmar

    2013-01-01

    Chronic myeloid leukemia (CML) is a cytogenetic disorder resulting from formation of the Philadelphia chromosome (Ph), that is, the t(9;22) chromosomal translocation and the formation of the BCR-ABL1 fusion protein. Tyrosine kinase inhibitors (TKI), such as imatinib and nilotinib, have emerged as leading compounds with which to treat CML. t(9;22) is not restricted to CML, 20-30% of acute lymphoblastic leukemia (ALL) cases also carry the Ph. However, TKIs are not as effective in the treatment of Ph+ ALL as in CML. In this study, the Ph+ cell lines JURL-MK2 and SUP-B15 were used to investigate TKI resistance mechanisms and the sensitization of Ph+ tumor cells to TKI treatment. The annexin V/PI (propidium iodide) assay revealed that nilotinib induced apoptosis in JURL-MK2 cells, but not in SUP-B15 cells. Since there was no mutation in the tyrosine kinase domain of BCR-ABL1 in cell line SUP-B15, the cells were not generally unresponsive to TKI, as evidenced by dephosphorylation of the BCR-ABL1 downstream targets, Crk-like protein (CrkL) and Grb-associated binder-2 (GAB2). Resistance to apoptosis after nilotinib treatment was accompanied by the constitutive and nilotinib unresponsive activation of the phosphoinositide 3-kinase (PI3K) pathway. Treatment of SUP-B15 cells with the dual PI3K/mammalian target of rapamycin (mTOR) inhibitor BEZ235 alone induced apoptosis in a low percentage of cells, while combining nilotinib and BEZ235 led to a synergistic effect. The main role of PI3K/mTOR inhibitor BEZ235 and the reason for apoptosis in the nilotinib-resistant cells was the block of the translational machinery, leading to the rapid downregulation of the anti-apoptotic protein MDM2 (human homolog of the murine double minute-2). These findings highlight MDM2 as a potential therapeutic target to increase TKI-mediated apoptosis and imply that the combination of PI3K/mTOR inhibitor and TKI might form a novel strategy to combat TKI-resistant BCR-ABL1 positive leukemia. PMID

  8. Comparison of the conventional multiplex RT-PCR, real time RT-PCR and Luminex xTAG® RVP fast assay for the detection of respiratory viruses.

    PubMed

    Choudhary, Manohar L; Anand, Siddharth P; Tikhe, Shamal A; Walimbe, Atul M; Potdar, Varsha A; Chadha, Mandeep S; Mishra, Akhilesh C

    2016-01-01

    Detection of respiratory viruses using polymerase chain reaction (PCR) is sensitive, specific and cost effective, having huge potential for patient management. In this study, the performance of an in-house developed conventional multiplex RT-PCR (mRT-PCR), real time RT-PCR (rtRT-PCR) and Luminex xTAG(®) RVP fast assay (Luminex Diagnostics, Toronto, Canada) for the detection of respiratory viruses was compared. A total 310 respiratory clinical specimens predominantly from pediatric patients, referred for diagnosis of influenza A/H1N1pdm09 from August 2009 to March 2011 were tested to determine performance characteristic of the three methods. A total 193 (62.2%) samples were detected positive for one or more viruses by mRT-PCR, 175 (56.4%) samples by real time monoplex RT-PCR, and 138 (44.5%) samples by xTAG(®) RVP fast assay. The overall sensitivity of mRT-PCR was 96.9% (95% CI: 93.5, 98.8), rtRT-PCR 87.9% (95% CI: 82.5, 92.1) and xTAG(®) RVP fast was 68.3% (95% CI: 61.4, 74.6). Rhinovirus was detected most commonly followed by respiratory syncytial virus group B and influenza A/H1N1pdm09. The monoplex real time RT-PCR and in-house developed mRT-PCR are more sensitive, specific and cost effective than the xTAG(®) RVP fast assay.

  9. Inhibition of heat shock protein 90 prolongs survival of mice with BCR-ABL-T315I–induced leukemia and suppresses leukemic stem cells

    PubMed Central

    Peng, Cong; Brain, Julia; Hu, Yiguo; Goodrich, Ami; Kong, Linghong; Grayzel, David; Pak, Roger; Read, Margaret

    2007-01-01

    Development of kinase domain mutations is a major drug-resistance mechanism for tyrosine kinase inhibitors (TKIs) in cancer therapy. A particularly challenging example is found in Philadelphia chromosome–positive chronic myelogenous leukemia (CML) where all available kinase inhibitors in clinic are ineffective against the BCR-ABL mutant, T315I. As an alternative approach to kinase inhibition, an orally administered heat shock protein 90 (Hsp90) inhibitor, IPI-504, was evaluated in a murine model of CML. Treatment with IPI-504 resulted in BCR-ABL protein degradation, decreased numbers of leukemia stem cells, and prolonged survival of leukemic mice bearing the T315I mutation. Hsp90 inhibition more potently suppressed T315I-expressing leukemia clones relative to the wild-type (WT) clones in mice. Combination treatment with IPI-504 and imatinib was more effective than either treatment alone in prolonging survival of mice simultaneously bearing both WT and T315I leukemic cells. These results provide a rationale for use of an Hsp90 inhibitor as a first-line treatment in CML by inhibiting leukemia stem cells and preventing the emergence of imatinib-resistant clones in patients. Rather than inhibiting kinase activity, elimination of mutant kinases provides a new therapeutic strategy for treating BCR-ABL–induced leukemia as well as other cancers resistant to treatment with tyrosine kinase inhibitors. PMID:17395781

  10. Detection of bcr/abl fusion and duplication of abl in a Ph-negative CML patient by the dual-color FISH method

    SciTech Connect

    Zhao, L.; Liang, J.C.

    1994-09-01

    We report here the use of the fluorescence in situ hybridization (FISH) method to detect duplication of the abl gene and fusion of bcr/abl in a Ph-negative CML patient. The patient was in clinical remission when studied. Conventional cytogenetic analysis revealed an apparent normal diploid karyotype. Using a metaphase-FISH method previously described for detecting residual leukemic cells in CML patients in clinical remission, we failed to detect any gross abnormality involving chromsomes 9 and 22. However, using the dual-color bcr and abl probes (Oncor), we found that in 55% of the interphases, fusion of these two genes was detectable. More interestingly, in those cells in which fusion of the bcr and abl genes occurred, we observed an extra abl signal. Further examination of bcr and abl hybridization signals on metaphases revealed that the bcr/abl fusion occurred on a chromosome that resembled chromosome 22. The two abl signals were on two chromosomes that resembled chromosome 9s and one bcr signal could be found on another chromosome 22. Thus the bcr and abl dual-color probes allow us to detect a rare form of gene fusion and duplication that is not detectable by karyotyping or chromosome painting.

  11. Immunologic evaluation of peptides derived from BCR/ABL-out-of-frame fusion protein in HLA A2.1 transgenic mice.

    PubMed

    Casnici, Claudia; Volpe, Gisella; Crotta, Katia; Lattuada, Donatella; Saglio, Giuseppe; Marelli, Ornella

    2012-05-01

    Philadelphia chromosome-positive chronic myelogenous leukemia and acute lymphocytic leukemia express, besides the main BCR/ABL transcripts, novel BCR/ABL transcripts derived from alternative splicing between BCR exons 1, 13, or 14 with ABL exons 4 and 5. Their translational products present at C-terminus an amino acid portion derived from out-of-frame (OOF) reading of the ABL gene. The presence of OOF-peptide-specific T cells in chronic myelogenous leukemia patients was demonstrated and a first study in in vivo model demonstrated that OOF ABL portion was immunogenic in human leukcocyte antigen (HLA)-A2.1 transgenic mice. Here we immunized HLA A2.1 mice with novel peptides designed on the ABL OOF sequence, containing epitopes with high affinity for HLA A2.1 molecule. The specific immune response, cellular and humoral, obtained ex vivo against HLA A2.1-positive human chronic myelogenous leukemia cells using peptide 22-53 and the cytotoxic activity induced by peptide 32mer confirm the possibility to use the ABL OOF portion as target to evoke a specific and multiple immune response in Philadelphia positive leukemic patients in cytogenetic remission.

  12. Sensitivity of imatinib-resistant T315I BCR-ABL CML to a synergistic combination of ponatinib and forskolin treatment.

    PubMed

    Oaxaca, Derrick M; Yang-Reid, Sun Ah; Ross, Jeremy A; Rodriguez, Georgialina; Staniswalis, Joan G; Kirken, Robert A

    2016-09-01

    Tyrosine kinase inhibitors (TKIs) have dramatically improved the life expectancy of patients suffering from chronic myeloid leukemia (CML); however, patients will eventually develop resistance to TKI therapy or adverse side effects due to secondary off-target mechanisms associated with TKIs. CML patients exhibiting TKI resistance are at greater risk of developing an aggressive and drug-insensitive disease. Drug-resistant CML typically arises in response to spontaneous mutations within the drug binding sites of the targeted oncoproteins. To better understand the mechanism of drug resistance in TKI-resistant CML patients, the BCR-ABL transformed cell line KCL22 was grown with increasing concentrations of imatinib for a period of 6 weeks. Subsequently, a drug-resistant derivative of the parental KCL22 cell line harboring the T315I gatekeeper mutation was isolated and investigated for TKI drug sensitivity via multi-agent drug screens. A synergistic combination of ponatinib- and forskolin-reduced cell viability was identified in this clinically relevant imatinib-resistant CML cell line, which also proved efficacious in other CML cell lines. In summary, this study provides new insight into the biological underpinnings of BCR-ABL-driven CML and potential rationale for investigating novel treatment strategies for patients with T315I CML.

  13. Synergism between bosutinib (SKI-606) and the Chk1 inhibitor (PF-00477736) in highly imatinib-resistant BCR/ABL+ leukemia cells

    PubMed Central

    Nguyen, Tri; Hawkins, Elisa; Kolluri, Akhil; Kmieciak, Maciej; Park, Haeseong; Lin, Hui; Grant, Steven

    2015-01-01

    Interactions between the dual BCR/ABL and Src inhibitor bosutinib and the Chk1 inhibitor PF-00477736 were examined in BCR/ABL+ leukemia cells, particularly imatinib-resistant cells, including those with the T315I mutation. Bosutinib blocked PF-00477736-induced ERK1/2 activation and sharply increased apoptosis in association with Mcl-1 inhibition, p34(cdc2) dephosphorylation, BimEL up-regulation, and DNA damage in imatinib-resistant CML or Ph+ ALL cell lines. Inhibition of Src or MEK1 by shRNA singnificantly enhanced PF-0047736 lethality. Bosutinib/PF-00477736 co-treatment also potentiated cell death in CD34+ CML patient samples, including dasatinib-resistant blast crisis cells exhibiting both T315I and E355G mutations, but was minimally toxic to normal CD34+ cells. Finally, combined in vivo treatment significantly suppressed BaF3/T315I tumor growth and prolonged survival in an allogeneic mouse model. Together, these findings suggest that this targeted combination strategy warrants attention in IM-resistant CML or Ph+ALL. PMID:25465126

  14. Gold nanoparticle-based RT-PCR and real-time quantitative RT-PCR assays for detection of Japanese encephalitis virus

    NASA Astrophysics Data System (ADS)

    Huang, Su-Hua; Yang, Tsuey-Ching; Tsai, Ming-Hong; Tsai, I.-Shou; Lu, Huang-Chih; Chuang, Pei-Hsin; Wan, Lei; Lin, Ying-Ju; Lai, Chih-Ho; Lin, Cheng-Wen

    2008-10-01

    Virus isolation and antibody detection are routinely used for diagnosis of Japanese encephalitis virus (JEV) infection, but the low level of transient viremia in some JE patients makes JEV isolation from clinical and surveillance samples very difficult. We describe the use of gold nanoparticle-based RT-PCR and real-time quantitative RT-PCR assays for detection of JEV from its RNA genome. We tested the effect of gold nanoparticles on four different PCR systems, including conventional PCR, reverse-transcription PCR (RT-PCR), and SYBR green real-time PCR and RT-PCR assays for diagnosis in the acute phase of JEV infection. Gold nanoparticles increased the amplification yield of the PCR product and shortened the PCR time compared to the conventional reaction. In addition, nanogold-based real-time RT-PCR showed a linear relationship between Ct and template amount using ten-fold dilutions of JEV. The nanogold-based RT-PCR and real-time quantitative RT-PCR assays were able to detect low levels (1-10 000 copies) of the JEV RNA genomes extracted from culture medium or whole blood, providing early diagnostic tools for the detection of low-level viremia in the acute-phase infection. The assays described here were simple, sensitive, and rapid approaches for detection and quantitation of JEV in tissue cultured samples as well as clinical samples.

  15. Diagnosis of Kyasanur forest disease by nested RT-PCR, real-time RT-PCR and IgM capture ELISA.

    PubMed

    Mourya, Devendra T; Yadav, Pragya D; Mehla, Rajeev; Barde, Pradip V; Yergolkar, Prasanna N; Kumar, Sandeep R P; Thakare, Jyotsna P; Mishra, Akhilesh C

    2012-12-01

    Kyasanur forest disease (KFD) is a zoonotic viral disease caused by infection by a Flavivirus, a member of the family Flaviviridae. KFD is a public health concern in the Karnataka State in southern India. Available conventional diagnostic tests such as virus isolation and serological tests, such as haemagglutination inhibition and complement fixation tests are time consuming. This study reports the development of a nested RT-PCR [nRT-PCR] and a TaqMan-based real-time RT-PCR and IgM antibodies capture ELISA [MAC-ELISA] for rapid and accurate diagnosis of suspected KFD cases. The nRT-PCR and the TaqMan-based real-time RT-PCR assays were developed using gene sequences of the NS-5/non-coding region. Both the assays detected KFD viral RNA in acute phase human serum samples and can provide early diagnosis of infection. Real-time RT-PCR was found to be more sensitive than nRT-PCR, which could detect 38 copies of KFDV RNA. MAC-ELISA was developed for the detection of recent infections. Although real-time RT-PCR and nRT-PCR require expensive reagents, expensive equipment and trained personnel, the developed MAC-ELISA can be used easily in the affected areas. These tests add to the existing diagnosis arsenal against haemorrhagic viruses that are prevalent in India. These assays will also help to extend our knowledge of the pathology of KFD virus and its associated clinical features, by measuring the viral titre during infection and at the time of seroconversion. Information, which is not available currently because of the lack of appropriate diagnostic methods. In addition, early laboratory diagnosis of KFDV infection will help in the application of appropriate control measures and management of KFD cases.

  16. PF-114, a potent and selective inhibitor of native and mutated BCR/ABL is active against Philadelphia chromosome-positive (Ph+) leukemias harboring the T315I mutation.

    PubMed

    Mian, A A; Rafiei, A; Haberbosch, I; Zeifman, A; Titov, I; Stroylov, V; Metodieva, A; Stroganov, O; Novikov, F; Brill, B; Chilov, G; Hoelzer, D; Ottmann, O G; Ruthardt, M

    2015-05-01

    Targeting BCR/ABL with tyrosine kinase inhibitors (TKIs) is a proven concept for the treatment of Philadelphia chromosome-positive (Ph+) leukemias. Resistance attributable to either kinase mutations in BCR/ABL or nonmutational mechanisms remains the major clinical challenge. With the exception of ponatinib, all approved TKIs are unable to inhibit the 'gatekeeper' mutation T315I. However, a broad spectrum of kinase inhibition increases the off-target effects of TKIs and may be responsible for cardiovascular issues of ponatinib. Thus, there is a need for more selective options for the treatment of resistant Ph+ leukemias. PF-114 is a novel TKI developed with the specifications of (i) targeting T315I and other resistance mutations in BCR/ABL; (ii) achieving a high selectivity to improve safety; and (iii) overcoming nonmutational resistance in Ph+ leukemias. PF-114 inhibited BCR/ABL and clinically important mutants including T315I at nanomolar concentrations. It suppressed primary Ph+ acute lymphatic leukemia-derived long-term cultures that either displayed nonmutational resistance or harbor the T315I. In BCR/ABL- or BCR/ABL-T315I-driven murine leukemia as well as in xenograft models of primary Ph+ leukemia harboring the T315I, PF-114 significantly prolonged survival to a similar extent as ponatinib. Our work supports clinical evaluation of PF-114 for the treatment of resistant Ph+ leukemia.

  17. Monitoring CML patients responding to treatment with tyrosine kinase inhibitors: review and recommendations for harmonizing current methodology for detecting BCR-ABL transcripts and kinase domain mutations and for expressing results

    PubMed Central

    Hughes, Timothy; Deininger, Michael; Hochhaus, Andreas; Branford, Susan; Radich, Jerald; Kaeda, Jaspal; Baccarani, Michele; Cortes, Jorge; Cross, Nicholas C. P.; Druker, Brian J.; Gabert, Jean; Grimwade, David; Hehlmann, Rüdiger; Kamel-Reid, Suzanne; Lipton, Jeffrey H.; Longtine, Janina; Martinelli, Giovanni; Saglio, Giuseppe; Soverini, Simona; Stock, Wendy; Goldman, John M.

    2006-01-01

    The introduction in 1998 of imatinib mesylate (IM) revolutionized management of patients with chronic myeloid leukemia (CML) and the second generation of tyrosine kinase inhibitors may prove superior to IM. Real-time quantitative polymerase chain reaction (RQ-PCR) provides an accurate measure of the total leukemiacell mass and the degree to which BCR-ABL transcripts are reduced by therapy correlates with progression-free survival. Because a rising level of BCR-ABL is an early indication of loss of response and thus the need to reassess therapeutic strategy, regular molecular monitoring of individual patients is clearly desirable. Here we summarize the results of a consensus meeting that took place at the National Institutes of Health (NIH) in Bethesda in October 2005. We make suggestions for (1) harmonizing the differing methodologies for measuring BCR-ABL transcripts in patients with CML undergoing treatment and using a conversion factor whereby individual laboratories can express BCR-ABL transcript levels on an internationally agreed scale; (2) using serial RQ-PCR results rather than bone marrow cytogenetics or fluorescence in situ hybridization (FISH) for the BCR-ABL gene to monitor individual patients responding to treatment; and (3) detecting and reporting Philadelphia (Ph) chromosome-positive subpopulations bearing BCR-ABL kinase domain mutations. We recognize that our recommendations are provisional and will require revision as new evidence emerges. (Blood. 2006;108:28-37) PMID:16522812

  18. Inhibition of phosphotyrosine phosphatase 1B causes resistance in BCR-ABL-positive leukemia cells to the ABL kinase inhibitor STI571.

    PubMed

    Koyama, Noriko; Koschmieder, Steffen; Tyagi, Sandhya; Portero-Robles, Ignacio; Chromic, Jörg; Myloch, Silke; Nürnberger, Heike; Rossmanith, Tanja; Hofmann, Wolf-Karsten; Hoelzer, Dieter; Ottmann, Oliver Gerhard

    2006-04-01

    Protein tyrosine phosphatase 1B (PTP1B) is a negative regulator of BCR-ABL-mediated transformation in vitro and in vivo. To investigate whether PTP1B modulates the biological effects of the abl kinase inhibitor STI571 in BCR-ABL-positive cells, we transfected Philadelphia chromosome-positive (Ph+) chronic myeloid leukemia cell-derived K562 cells with either wild-type PTP1B (K562/PTP1B), a substrate-trapping dominant-negative mutant PTP1B (K562/D181A), or empty vector (K562/mock). Cells were cultured with or without STI571 and analyzed for its effects on proliferation, differentiation, and apoptosis. In both K562/mock and K562/PTP1B cells, 0.25 to 1 mumol/L STI571 induced dose-dependent growth arrest and apoptosis, as measured by a decrease of cell proliferation and an increase of Annexin V-positive cells and/or of cells in the sub-G(1) apoptotic phase. Western blot analysis showed increased protein levels of activated caspase-3 and caspase-8 and induction of poly(ADP-ribose) polymerase cleavage. Low concentrations of STI571 promoted erythroid differentiation of these cells. Conversely, K562/D181A cells displayed significantly lower PTP1B-specific tyrosine phosphatase activity and were significantly less sensitive to STI571-induced growth arrest, apoptosis, and erythroid differentiation. Pharmacologic inhibition of PTP1B activity in wild-type K562 cells, using bis(N,N-dimethylhydroxamido)hydroxooxovanadate, attenuated STI571-induced apoptosis. Lastly, comparison of the STI571-sensitive Ph+ acute lymphoblastic leukemia cell line SupB15 with a STI571-resistant subline revealed significantly decreased PTP1B activity and enhanced BCR-ABL phosphorylation in the STI571-resistant SupB15 cells. In conclusion, functional PTP1B is involved in STI571-induced growth and cell cycle arrest, apoptosis, and differentiation, and attenuation of PTP1B function may contribute to resistance towards STI571.

  19. BCR-ABL-specific CD4(+) T-helper cells promote the priming of antigen-specific cytotoxic T cells via dendritic cells.

    PubMed

    Ueda, Norihiro; Zhang, Rong; Tatsumi, Minako; Liu, Tian-Yi; Kitayama, Shuichi; Yasui, Yutaka; Sugai, Shiori; Iwama, Tatsuaki; Senju, Satoru; Okada, Seiji; Nakatsura, Tetsuya; Kuzushima, Kiyotaka; Kiyoi, Hitoshi; Naoe, Tomoki; Kaneko, Shin; Uemura, Yasushi

    2016-05-16

    The advent of tyrosine kinase inhibitor (TKI) therapy markedly improved the outcome of patients with chronic-phase chronic myeloid leukemia (CML). However, the poor prognosis of patients with advanced-phase CML and the lifelong dependency on TKIs are remaining challenges; therefore, an effective therapeutic has been sought. The BCR-ABL p210 fusion protein's junction region represents a leukemia-specific neoantigen and is thus an attractive target for antigen-specific T-cell immunotherapy. BCR-ABL p210 fusion-region-specific CD4(+) T-helper (Th) cells possess antileukemic potential, but their function remains unclear. In this study, we established a BCR-ABL p210 b3a2 fusion-region-specific CD4(+) Th-cell clone (b3a2-specific Th clone) and examined its dendritic cell (DC)-mediated antileukemic potential. The b3a2-specific Th clone recognized the b3a2 peptide in the context of HLA-DRB1*09:01 and exhibited a Th1 profile. Activation of this clone through T-cell antigen receptor stimulation triggered DC maturation, as indicated by upregulated production of CD86 and IL-12p70 by DCs, which depended on CD40 ligation by CD40L expressed on b3a2-specific Th cells. Moreover, in the presence of HLA-A*24:02-restricted Wilms tumor 1 (WT1)235-243 peptide, DCs conditioned by b3a2-specific Th cells efficiently stimulated the primary expansion of WTI-specific cytotoxic T lymphocytes (CTLs). The expanded CTLs were cytotoxic toward WT1235-243-peptide-loaded HLA-A*24:02-positive cell lines and exerted a potent antileukemic effect in vivo. However, the b3a2-specific Th-clone-mediated antileukemic CTL responses were strongly inhibited by both TKIs and interferon-α. Our findings indicate a crucial role of b3a2-specific Th cells in leukemia antigen-specific CTL-mediated immunity and provide an experimental basis for establishing novel CML immunotherapies.Cellular & Molecular Immunology advance online publication, 16 May 2016; doi:10.1038/cmi.2016.7.

  20. Rapid detection of equine influenza virus H3N8 subtype by insulated isothermal RT-PCR (iiRT-PCR) assay using the POCKIT™ Nucleic Acid Analyzer.

    PubMed

    Balasuriya, Udeni B R; Lee, Pei-Yu Alison; Tiwari, Ashish; Skillman, Ashley; Nam, Bora; Chambers, Thomas M; Tsai, Yun-Long; Ma, Li-Juan; Yang, Pai-Chun; Chang, Hsiao-Fen Grace; Wang, Hwa-Tang Thomas

    2014-10-01

    Equine influenza (EI) is an acute, highly contagious viral respiratory disease of equids. Currently, equine influenza virus (EIV) subtype H3N8 continues to be the most important respiratory pathogen of horses in many countries around the world. The need to achieve a rapid diagnosis and to implement effective quarantine and movement restrictions is critical in controlling the spread of EIV. In this study, a novel, inexpensive and user-friendly assay based on an insulated isothermal RT-PCR (iiRT-PCR) method on the POCKIT™, a field-deployable device, was described and validated for point-of-need detection of EIV-H3N8 in clinical samples. The newly established iiRT-PCR assay targeting the EIV HA3 gene was evaluated for its sensitivity using in vitro transcribed (IVT) RNA, as well as ten-fold serial dilutions of RNA extracted from the prototype H3N8 strain A/equine/Miami/1/63. Inclusivity and exclusivity panels were tested for specificity evaluation. Published real-time RT-PCR (rRT-PCR) assays targeting the NP and HA3 genes were used as the reference standards for comparison of RNA extracted from field strains and from nasal swab samples collected from experimentally infected horses, respectively. Limit of detection with a 95% probability (LoD95%) was estimated to be 11copies of IVT RNA. Clinical sensitivity analysis using RNA prepared from serial dilutions of a prototype EIV (Miami 1/63/H3N8) showed that the iiRT-PCR assay was about 100-fold more sensitive than the rRT-PCR assay targeting the NP gene of EIV subtype H3N8. The iiRT-PCR assay identified accurately fifteen EIV H3N8 strains and two canine influenza virus (CIV) H3N8 strains, and did not cross-react with H6N2, H7N7, H1N1 subtypes or any other equine respiratory viral pathogens. Finally, 100% agreement was found between the iiRT-PCR assay and the universal influenza virus type A rRT-PCR assay in detecting the EIV A/equine/Kentucky/7/07 strain in 56 nasal swab samples collected from experimentally inoculated

  1. Conformational control inhibition of the BCR-ABL1 tyrosine kinase, including the gatekeeper T315I mutant, by the switch-control inhibitor DCC-2036

    PubMed Central

    Chan, Wayne W.; Wise, Scott C.; Kaufman, Michael D.; Ahn, Yu Mi; Ensinger, Carol L.; Haack, Torsten; Hood, Molly M.; Jones, Jennifer; Lord, John W.; Lu, Wei Ping; Miller, David; Patt, William C.; Smith, Bryan D.; Petillo, Peter A.; Rutkoski, Thomas J.; Telikepalli, Hanumaiah; Vogeti, Lakshminarayana; Yao, Tony; Chun, Lawrence; Clark, Robin; Evangelista, Peter; Gavrilescu, L. Cristina; Lazarides, Katherine; Zaleskas, Virginia M.; Stewart, Lance J.; Van Etten, Richard A.; Flynn, Daniel L.

    2011-01-01

    Summary Acquired resistance to ABL1 tyrosine kinase inhibitors (TKIs) through ABL1 kinase domain mutations, particularly the gatekeeper mutant T315I, is a significant problem for chronic myeloid leukemia (CML) patients. Using structure-based drug design, we developed compounds that bind to residues (Arg386/Glu282) ABL1 uses to switch between inactive and active conformations. The lead “switch-control” inhibitor, DCC-2036, potently inhibits both unphosphorylated and phosphorylated ABL1 by inducing a type II inactive conformation, and retains efficacy against the majority of clinically relevant CML resistance mutants, including T315I. DCC-2036 inhibits BCR-ABL1T315I-expressing cell lines, prolongs survival in mouse models of T315I-mutant CML and B-lymphoblastic leukemia, and inhibits primary patient leukemia cells expressing T315I in vitro and in vivo, supporting its clinical development in TKI-resistant Ph+ leukemia. PMID:21481795

  2. Patan hospital experience in treating philadelphia chromosome/BCR-ABL1 positive chronic myeloid leukemia patients with gleevec (imatinib mesylate); the first generation specific tyrosine kinase inhibitor

    PubMed Central

    2010-01-01

    Background Chronic Myeloid Leukemia (CML) is caused by the abnormal fusion protein BCR-ABL1, a constitutively active tyrosine kinase and product of the Philadelphia chromosome. Gleevec (Imatinib mesylate) is a selective inhibitor of this kinase. Treatment with this agent is known to result in hematologic, cytogenetic, and molecular responses. Patan hospital (Patan, Nepal) is one of the Gleevec International Patient Assistance Program (GIPAP) centers for patients with CML. Methods A total of 106 Philadelphia positive CML patients were enrolled in our center between Feb 2003 and Jun 2008, and 103 of them were eligible for cytogenetic and/or hematologic response analyses. Results Out of 103 patients, 27% patients underwent cytogenetic analysis. Imatinib induced major cytogenetic responses in 89% and complete hematologic responses in almost 100% of the patients with confirmed CML. After a mean follow up of 27 months, an estimated 90% of the patients on imatinib remained in hematologic remission and more than 90% of the patients are still alive. About 30% of patients developed some form of manageable myelosuppression. A few patients developed non-hematologic toxic side effects such as edema and hepatotoxicity. Conclusions Our study demonstrates that imatinib is safe to use in a developing country. Furthermore, we demonstrate that imatinib is very effective and induced long lasting responses in a high proportion of patients with Ph chromosome/BCR-ABL1 positive CML. Imatinib is well tolerated by our patients. The lack of cytogenetic analysis in the majority of our patients hindered our ability to detect inadequate responses to imatinib and adjust therapy appropriately. PMID:21138592

  3. Modeling BCR-ABL and MLL-AF9 leukemia in a human bone marrow-like scaffold-based xenograft model.

    PubMed

    Sontakke, P; Carretta, M; Jaques, J; Brouwers-Vos, A Z; Lubbers-Aalders, L; Yuan, H; de Bruijn, J D; Martens, A C M; Vellenga, E; Groen, R W J; Schuringa, J J

    2016-10-01

    Although NOD-SCID IL2Rγ(-/-) (NSG) xenograft mice are currently the most frequently used model to study human leukemia in vivo, the absence of a human niche severely hampers faithful recapitulation of the disease. We used NSG mice in which ceramic scaffolds seeded with human mesenchymal stromal cells were implanted to generate a human bone marrow (huBM-sc)-like niche. We observed that, in contrast to the murine bone marrow (mBM) niche, the expression of BCR-ABL or MLL-AF9 was sufficient to induce both primary acute myeloid leukemia (AML) and acute lymphocytic leukemia (ALL). Stemness was preserved within the human niches as demonstrated by serial transplantation assays. Efficient engraftment of AML MLL-AF9 and blast-crisis chronic myeloid leukemia patient cells was also observed, whereby the immature blast-like phenotype was maintained in the huBM-sc niche but to a much lesser extent in mBM niches. We compared transcriptomes of leukemias derived from mBM niches versus leukemias from huBM-like scaffold-based niches, which revealed striking differences in the expression of genes associated with hypoxia, mitochondria and metabolism. Finally, we utilized the huBM-sc MLL-AF9 B-ALL model to evaluate the efficacy of the I-BET151 inhibitor in vivo. In conclusion, we have established human niche models in which the myeloid and lymphoid features of BCR-ABL(+) and MLL-AF9(+) leukemias can be studied in detail.

  4. Discovery and characterization of a novel potent type II native and mutant BCR-ABL inhibitor (CHMFL-074) for Chronic Myeloid Leukemia (CML).

    PubMed

    Liu, Feiyang; Wang, Beilei; Wang, Qiang; Qi, Ziping; Chen, Cheng; Kong, Lu-Lu; Chen, Ji-Yun; Liu, Xiaochuan; Wang, Aoli; Hu, Chen; Wang, Wenchao; Wang, Huiping; Wu, Fan; Ruan, Yanjie; Qi, Shuang; Liu, Juan; Zou, Fengming; Hu, Zhenquan; Wang, Wei; Wang, Li; Zhang, Shanchun; Yun, Cai-Hong; Zhai, Zhimin; Liu, Jing; Liu, Qingsong

    2016-07-19

    BCR gene fused ABL kinase is the critical driving force for the Philadelphia Chromosome positive (Ph+) Chronic Myeloid Leukemia (CML) and has been extensively explored as a drug target. With a structure-based drug design approach we have discovered a novel inhibitor CHMFL-074, that potently inhibits both the native and a variety of clinically emerged mutants of BCR-ABL kinase. The X-ray crystal structure of CHMFL-074 in complex with ABL1 kinase (PDB ID: 5HU9) revealed a typical type II binding mode (DFG-out) but relatively rare hinge binding. Kinome wide selectivity profiling demonstrated that CHMFL-074 bore a high selectivity (S score(1) = 0.03) and potently inhibited ABL1 kinase (IC50: 24 nM) and PDGFR α/β (IC50: 71 nM and 88 nM). CHMFL-074 displayed strong anti-proliferative efficacy against BCR-ABL-driven CML cell lines such as K562 (GI50: 56 nM), MEG-01 (GI50: 18 nM) and KU812 (GI50: 57 nM). CHMFL-074 arrested cell cycle into the G0/G1 phase and induced apoptosis in the Ph+ CML cell lines. In addition, it potently inhibited the CML patient primary cell's proliferation but did not affect the normal bone marrow cells. In the CML cell K562 inoculated xenograft mouse model, oral administration of 100 mg/kg/d of CHMFL-074 achieved a tumor growth inhibition (TGI) of 65% without exhibiting apparent toxicity. As a potential drug candidate for fighting CML, CHMFL-074 is under extensive preclinical safety evaluation now.

  5. Fitness Conferred by BCR-ABL Kinase Domain Mutations Determines the Risk of Pre-Existing Resistance in Chronic Myeloid Leukemia

    PubMed Central

    Skaggs, Brian; Gorre, Mercedes; Sawyers, Charles L.; Michor, Franziska

    2011-01-01

    Chronic myeloid leukemia (CML) is the first human malignancy to be successfully treated with a small molecule inhibitor, imatinib, targeting a mutant oncoprotein (BCR-ABL). Despite its successes, acquired resistance to imatinib leads to reduced drug efficacy and frequent progression of disease. Understanding the characteristics of pre-existing resistant cells is important for evaluating the benefits of first-line combination therapy with second generation inhibitors. However, due to limitations of assay sensitivity, determining the existence and characteristics of resistant cell clones at the start of therapy is difficult. Here we combined a mathematical modeling approach using branching processes with experimental data on the fitness changes (i.e., changes in net reproductive rate) conferred by BCR-ABL kinase domain mutations to investigate the likelihood, composition, and diversity of pre-existing resistance. Furthermore, we studied the impact of these factors on the response to tyrosine kinase inhibitors. Our approach predicts that in most patients, there is at most one resistant clone present at the time of diagnosis of their disease. Interestingly, patients are no more likely to harbor the most aggressive, pan-resistant T315I mutation than any other resistance mutation; however, T315I cells on average establish larger-sized clones at the time of diagnosis. We established that for patients diagnosed late, the relative benefit of combination therapy over monotherapy with imatinib is significant, while this benefit is modest for patients with a typically early diagnosis time. These findings, after pre-clinical validation, will have implications for the clinical management of CML: we recommend that patients with advanced-phase disease be treated with combination therapy with at least two tyrosine kinase inhibitors. PMID:22140458

  6. A BCR-ABL1 cutoff of 1.5% at 3 months, determined by the GeneXpert system, predicts an optimal response in patients with chronic myeloid leukemia.

    PubMed

    García-Gutiérrez, Valentín; Gómez-Casares, María T; Puerta, José M; Alonso-Domínguez, Juan M; Osorio, Santiago; Hernández-Boluda, Juan C; Collado, Rosa; Ramírez, María J; Ibáñez, Fátima; Martín, María L; Rodríguez-Gambarte, Juan D; Martínez-Laperche, Carolina; Gómez, Montse; Fiallo, Dolly V; Redondo, Sara; Rodríguez, Alicia; Ruiz-Nuño, Concepción; Steegmann, Juan L; Jiménez-Velasco, Antonio

    2017-01-01

    In chronic myeloid leukemia (CML) patients, 3-month BCR-ABL1 levels have consistently been correlated with further outcomes. Monitoring molecular responses in CML using the GeneXpert (Cepheid) platform has shown an optimal correlation with standardized RQ-PCR (IS) when measuring BCR-ABL1 levels lower than 10%, as it is not accurate for values over 10%. The aim of the present study was to determine the predictive molecular value at three months on different outcome variables using the Xpert BCR-ABL1 MonitorTM assay (Xpert BCR-ABL1). We monitored 125 newly diagnosed consecutive CML patients in the chronic phase (CML-CP) using an automated method: Xpert BCR-ABL1. Only 5% of patients did not achieve an optimal response at 3 months, and the 10% BCR-ABL1 cutoff defined by RQ-PCR (IS) methods was unable to identify significant differences in the probabilities of achieving a complete cytogenetic response (CCyR) (50% vs. 87%, p = 0.1) or a major molecular response (MMR) (60% vs. 80%, p = 0.29) by 12 months. In contrast, a cutoff of 1.5% more accurately identified differences in the probabilities of achieving CCyR (98% vs. 54%, p<0.001) and MMR (88% vs. 56%, p<0.001) by 12 months, as well as probabilities of treatment changes (p = 0.005). Therefore, when using the Xpert BCR-ABL1 assay, a cutoff of 1.5% at 3 months could with high probability identify patients able to achieve an optimal response at 12 months.

  7. A BCR-ABL1 cutoff of 1.5% at 3 months, determined by the GeneXpert system, predicts an optimal response in patients with chronic myeloid leukemia

    PubMed Central

    García-Gutiérrez, Valentín; Gómez-Casares, María T.; Puerta, José M.; Alonso-Domínguez, Juan M.; Osorio, Santiago; Hernández-Boluda, Juan C.; Collado, Rosa; Ramírez, María J.; Ibáñez, Fátima; Martín, María L.; Rodríguez-Gambarte, Juan D.; Martínez-Laperche, Carolina; Gómez, Montse; Fiallo, Dolly V.; Redondo, Sara; Rodríguez, Alicia; Ruiz-Nuño, Concepción; Steegmann, Juan L.

    2017-01-01

    In chronic myeloid leukemia (CML) patients, 3-month BCR-ABL1 levels have consistently been correlated with further outcomes. Monitoring molecular responses in CML using the GeneXpert (Cepheid) platform has shown an optimal correlation with standardized RQ-PCR (IS) when measuring BCR-ABL1 levels lower than 10%, as it is not accurate for values over 10%. The aim of the present study was to determine the predictive molecular value at three months on different outcome variables using the Xpert BCR-ABL1 MonitorTM assay (Xpert BCR-ABL1). We monitored 125 newly diagnosed consecutive CML patients in the chronic phase (CML-CP) using an automated method: Xpert BCR-ABL1. Only 5% of patients did not achieve an optimal response at 3 months, and the 10% BCR-ABL1 cutoff defined by RQ-PCR (IS) methods was unable to identify significant differences in the probabilities of achieving a complete cytogenetic response (CCyR) (50% vs. 87%, p = 0.1) or a major molecular response (MMR) (60% vs. 80%, p = 0.29) by 12 months. In contrast, a cutoff of 1.5% more accurately identified differences in the probabilities of achieving CCyR (98% vs. 54%, p<0.001) and MMR (88% vs. 56%, p<0.001) by 12 months, as well as probabilities of treatment changes (p = 0.005). Therefore, when using the Xpert BCR-ABL1 assay, a cutoff of 1.5% at 3 months could with high probability identify patients able to achieve an optimal response at 12 months. PMID:28278193

  8. Evaluation of reference genes in Vibrio parahaemolyticus for gene expression analysis using quantitative RT-PCR

    USDA-ARS?s Scientific Manuscript database

    Vibrio parahaemolyticus is a significant human pathogen capable of causing foodborne gastroenteritis associated with the consumption of contaminated raw or undercooked seafood. Quantitative RT-PCR (qRT-PCR) is a useful tool for studying gene expression in V. parahaemolyticus to characterize the viru...

  9. Development of a multiplex RT-PCR-ELISA to identify four distinct species of tospovirus.

    PubMed

    Charoenvilaisiri, Saengsoon; Seepiban, Channarong; Bhunchoth, Anjana; Warin, Nuchnard; Luxananil, Plearnpis; Gajanandana, Oraprapai

    2014-06-01

    In this study, a multiplex RT-PCR-ELISA was developed to detect and differentiate four tospovirus species found in Thailand, namely Capsicum chlorosis virus (CaCV), Melon yellow spot virus (MYSV), Tomato necrotic ringspot virus (TNRV), and Watermelon silver mottle virus (WSMoV). In this system, nucleocapsid (N) gene fragments of four tospoviruses were simultaneously amplified and labeled with digoxigenin (DIG) in a single RT-PCR reaction using a pair of degenerate primers binding to the same conserved regions in all four tospovirus N genes. The DIG-labeled amplicons were distinguished into species by four parallel hybridizations to species-specific biotinylated probes in streptavidin-coated microtiter wells followed by ELISA detection using a peroxidase-conjugated anti-DIG antibody. Results indicated that the multiplex RT-PCR-ELISA assay could specifically identify each of these four tospoviruses without cross-reactivity between species or reactivity to healthy plant negative controls. Assay sensitivity was 10- to 1000-fold higher than conventional RT-PCR. When applied to naturally infected plants, all samples yielded concordant results between RT-PCR-ELISA and the reference RT-PCR. In conclusion, the multiplex RT-PCR-ELISA developed in this study has superior specificity, sensitivity, and high-throughput capacity compared to conventional RT-PCR and is an attractive alternative for the identification of different tospovirus species.

  10. Pharmacophore modeling of nilotinib as an inhibitor of ATP-binding cassette drug transporters and BCR-ABL kinase using a three-dimensional quantitative structure-activity relationship approach.

    PubMed

    Shukla, Suneet; Kouanda, Abdul; Silverton, Latoya; Talele, Tanaji T; Ambudkar, Suresh V

    2014-07-07

    Nilotinib (Tasigna) is a tyrosine kinase inhibitor approved by the FDA to treat chronic phase chronic myeloid leukemia patients. It is also a transport substrate of the ATP-binding cassette (ABC) drug efflux transporters ABCB1 (P-glycoprotein, P-gp) and ABCG2 (BCRP), which may have an effect on the pharmacokinetics and toxicity of this drug. The goal of this study was to identify pharmacophoric features of nilotinib in order to potentially develop specific inhibitors of BCR-ABL kinase with minimal interactions with ABC drug transporters. Three-dimensional pharmacophore modeling and quantitative structure-activity relationship (QSAR) studies were carried out on a series of nilotinib analogues to identify chemical features that contribute to inhibitory activity of nilotinib against BCR-ABL kinase activity, P-gp, and ABCG2. Twenty-five derivatives of nilotinib were synthesized and were then tested to measure their activity to inhibit BCR-ABL kinase and to inhibit the function of ABC drug transporters. A set of in vitro experiments including kinase activity and cell-based transport assays and photolabeling of P-gp and ABCG2 with a transport substrate, [(125)I]-iodoarylazido-prazosin (IAAP), were carried out in isolated membranes to evaluate the potency of the derivatives to inhibit the function of ABC drug transporters and BCR-ABL kinase. Sixteen, fourteen, and ten compounds were selected as QSAR data sets, respectively, to generate PHASE v3.1 pharmacophore models for BCR-ABL kinase, ABCG2, and P-gp inhibitors. The IC50 values of these derivatives against P-gp, ABCG2, or BCR-ABL kinase were used to generate pharmacophore features required for optimal interactions with these targets. A seven-point pharmacophore (AADDRRR) for BCR-ABL kinase inhibitory activity, a six-point pharmacophore (ADHRRR) for ABCG2 inhibitory activity, and a seven-point pharmacophore (AADDRRR) for P-gp inhibitory activity were generated. The derived models clearly demonstrate high predictive power

  11. Pharmacophore Modeling of Nilotinib as an Inhibitor of ATP-Binding Cassette Drug Transporters and BCR-ABL Kinase Using a Three-Dimensional Quantitative Structure–Activity Relationship Approach

    PubMed Central

    2015-01-01

    Nilotinib (Tasigna) is a tyrosine kinase inhibitor approved by the FDA to treat chronic phase chronic myeloid leukemia patients. It is also a transport substrate of the ATP-binding cassette (ABC) drug efflux transporters ABCB1 (P-glycoprotein, P-gp) and ABCG2 (BCRP), which may have an effect on the pharmacokinetics and toxicity of this drug. The goal of this study was to identify pharmacophoric features of nilotinib in order to potentially develop specific inhibitors of BCR-ABL kinase with minimal interactions with ABC drug transporters. Three-dimensional pharmacophore modeling and quantitative structure–activity relationship (QSAR) studies were carried out on a series of nilotinib analogues to identify chemical features that contribute to inhibitory activity of nilotinib against BCR-ABL kinase activity, P-gp, and ABCG2. Twenty-five derivatives of nilotinib were synthesized and were then tested to measure their activity to inhibit BCR-ABL kinase and to inhibit the function of ABC drug transporters. A set of in vitro experiments including kinase activity and cell-based transport assays and photolabeling of P-gp and ABCG2 with a transport substrate, [125I]-iodoarylazido-prazosin (IAAP), were carried out in isolated membranes to evaluate the potency of the derivatives to inhibit the function of ABC drug transporters and BCR-ABL kinase. Sixteen, fourteen, and ten compounds were selected as QSAR data sets, respectively, to generate PHASE v3.1 pharmacophore models for BCR-ABL kinase, ABCG2, and P-gp inhibitors. The IC50 values of these derivatives against P-gp, ABCG2, or BCR-ABL kinase were used to generate pharmacophore features required for optimal interactions with these targets. A seven-point pharmacophore (AADDRRR) for BCR-ABL kinase inhibitory activity, a six-point pharmacophore (ADHRRR) for ABCG2 inhibitory activity, and a seven-point pharmacophore (AADDRRR) for P-gp inhibitory activity were generated. The derived models clearly demonstrate high predictive power

  12. Kinase domain mutations of BCR-ABL frequently precede imatinib-based therapy and give rise to relapse in patients with de novo Philadelphia-positive acute lymphoblastic leukemia (Ph+ ALL).

    PubMed

    Pfeifer, Heike; Wassmann, Barbara; Pavlova, Anna; Wunderle, Lydia; Oldenburg, Johannes; Binckebanck, Anja; Lange, Thoralf; Hochhaus, Andreas; Wystub, Silvia; Brück, Patrick; Hoelzer, Dieter; Ottmann, Oliver G

    2007-07-15

    Acquired imatinib resistance in advanced Philadelphia-positive acute lymphoblastic leukemia (Ph(+) ALL) has been associated with mutations in the kinase domain (KD) of BCR-ABL. We examined the prevalence of KD mutations in newly diagnosed and imatinib-naive Ph(+) ALL patients and assessed their clinical relevance in the setting of uniform frontline therapy with imatinib in combination with chemotherapy. Patients enrolled in the German Multicenter Study Group for Adult Acute Lymphoblastic Leukemia (GMALL) trial ADE10 for newly diagnosed elderly Ph(+) ALL were retrospectively examined for the presence of BCR-ABL KD mutations by denaturing high-performance liquid chromatography (D-HPLC), cDNA sequencing, and allele-specific polymerase chain reaction (PCR). A KD mutation was detected in a minor subpopulation of leukemic cells in 40% of newly diagnosed and imatinib-naive patients. At relapse, the dominant cell clone harbored an identical mutation in 90% of cases, the overall prevalence of mutations at relapse was 80%. P-loop mutations predominated and were not associated with an inferior hematologic or molecular remission rate or shorter remission duration compared with unmutated BCR-ABL. BCR-ABL mutations conferring high-level imatinib resistance are present in a substantial proportion of patients with de novo Ph(+) ALL and eventually give rise to relapse. This provides a rationale for the frontline use of kinase inhibitors active against these BCR-ABL mutants.

  13. Comparative detection of rotavirus RNA by conventional RT-PCR, TaqMan RT-PCR and real-time nucleic acid sequence-based amplification.

    PubMed

    Mo, Qiu-Hua; Wang, Hai-Bo; Tan, Hua; Wu, Bi-Mei; Feng, Zi-Li; Wang, Qi; Lin, Ji-Can; Yang, Ze

    2015-03-01

    Rotavirus is one of the major viral pathogens leading to diarrhea. Diagnosis has been conducted by either traditional cultural, serological methods or molecular biology techniques, which include RT-PCR and nucleic acid sequence-based amplification (NASBA). However, their differences regarding accuracy and sensitivity remain unknown. In this study, an in-house conventional RT-PCR assay and more importantly, an in-house real-time NASBA (RT-NASBA) were established, and compared with a commercial TaqMan RT-PCR assay. The results showed that all of these methods were able to detect and distinguish rotavirus from other diarrhea viruses with a 100% concordance rate during the course of an evaluation on 20 clinical stool samples. However, RT-NASBA was much quicker than the other two methods. More importantly, the limit of detection of RT-NASBA could reach seven copies per reaction and was one to two logs lower than that of conventional RT-PCR and TaqMan RT-PCR. These results indicate that this in-house assay was more sensitive, and thus could be used as an efficient diagnosis tool for rotavirus. To the best of our knowledge, this is the first direct comparison among three different assays for the detection of rotavirus. These findings would provide implication for the rational selection of diagnosis tool for rotavirus.

  14. BCR-ABL1: Test

    MedlinePlus

    ... BCR is almost always in the major breakpoint cluster region (M-BCR), leading to the production of ... is called p210). Breaks in the minor breakpoint cluster region (m-BCR) leads to a shorter fusion ...

  15. Clonal Evolution and Blast Crisis Correlate with Enhanced Proteolytic Activity of Separase in BCR-ABL b3a2 Fusion Type CML under Imatinib Therapy

    PubMed Central

    Haaß, Wiltrud; Kleiner, Helga; Weiß, Christel; Haferlach, Claudia; Schlegelberger, Brigitte; Müller, Martin C.; Hehlmann, Rüdiger; Hofmann, Wolf-Karsten; Fabarius, Alice; Seifarth, Wolfgang

    2015-01-01

    Unbalanced (major route) additional cytogenetic aberrations (ACA) at diagnosis of chronic myeloid leukemia (CML) indicate an increased risk of progression and shorter survival. Moreover, newly arising ACA under imatinib treatment and clonal evolution are considered features of acceleration and define failure of therapy according to the European LeukemiaNet (ELN) recommendations. On the basis of 1151 Philadelphia chromosome positive chronic phase patients of the randomized CML-study IV, we examined the incidence of newly arising ACA under imatinib treatment with regard to the p210BCR-ABL breakpoint variants b2a2 and b3a2. We found a preferential acquisition of unbalanced ACA in patients with b3a2 vs. b2a2 fusion type (ratio: 6.3 vs. 1.6, p = 0.0246) concurring with a faster progress to blast crisis for b3a2 patients (p = 0.0124). ESPL1/Separase, a cysteine endopeptidase, is a key player in chromosomal segregation during mitosis. Separase overexpression and/or hyperactivity has been reported from a wide range of cancers and cause defective mitotic spindles, chromosome missegregation and aneuploidy. We investigated the influence of p210BCR-ABL breakpoint variants and imatinib treatment on expression and proteolytic activity of Separase as measured with a specific fluorogenic assay on CML cell lines (b2a2: KCL-22, BV-173; b3a2: K562, LAMA-84). Despite a drop in Separase protein levels an up to 5.4-fold increase of Separase activity under imatinib treatment was observed exclusively in b3a2 but not in b2a2 cell lines. Mimicking the influence of imatinib on BV-173 and LAMA-84 cells by ESPL1 silencing stimulated Separase proteolytic activity in both b3a2 and b2a2 cell lines. Our data suggest the existence of a fusion type-related feedback mechanism that posttranslationally stimulates Separase proteolytic activity after therapy-induced decreases in Separase protein levels. This could render b3a2 CML cells more prone to aneuploidy and clonal evolution than b2a2 progenitors

  16. Clonal Evolution and Blast Crisis Correlate with Enhanced Proteolytic Activity of Separase in BCR-ABL b3a2 Fusion Type CML under Imatinib Therapy.

    PubMed

    Haaß, Wiltrud; Kleiner, Helga; Weiß, Christel; Haferlach, Claudia; Schlegelberger, Brigitte; Müller, Martin C; Hehlmann, Rüdiger; Hofmann, Wolf-Karsten; Fabarius, Alice; Seifarth, Wolfgang

    2015-01-01

    Unbalanced (major route) additional cytogenetic aberrations (ACA) at diagnosis of chronic myeloid leukemia (CML) indicate an increased risk of progression and shorter survival. Moreover, newly arising ACA under imatinib treatment and clonal evolution are considered features of acceleration and define failure of therapy according to the European LeukemiaNet (ELN) recommendations. On the basis of 1151 Philadelphia chromosome positive chronic phase patients of the randomized CML-study IV, we examined the incidence of newly arising ACA under imatinib treatment with regard to the p210BCR-ABL breakpoint variants b2a2 and b3a2. We found a preferential acquisition of unbalanced ACA in patients with b3a2 vs. b2a2 fusion type (ratio: 6.3 vs. 1.6, p = 0.0246) concurring with a faster progress to blast crisis for b3a2 patients (p = 0.0124). ESPL1/Separase, a cysteine endopeptidase, is a key player in chromosomal segregation during mitosis. Separase overexpression and/or hyperactivity has been reported from a wide range of cancers and cause defective mitotic spindles, chromosome missegregation and aneuploidy. We investigated the influence of p210BCR-ABL breakpoint variants and imatinib treatment on expression and proteolytic activity of Separase as measured with a specific fluorogenic assay on CML cell lines (b2a2: KCL-22, BV-173; b3a2: K562, LAMA-84). Despite a drop in Separase protein levels an up to 5.4-fold increase of Separase activity under imatinib treatment was observed exclusively in b3a2 but not in b2a2 cell lines. Mimicking the influence of imatinib on BV-173 and LAMA-84 cells by ESPL1 silencing stimulated Separase proteolytic activity in both b3a2 and b2a2 cell lines. Our data suggest the existence of a fusion type-related feedback mechanism that posttranslationally stimulates Separase proteolytic activity after therapy-induced decreases in Separase protein levels. This could render b3a2 CML cells more prone to aneuploidy and clonal evolution than b2a2 progenitors

  17. The PAX5 gene is frequently rearranged in BCR-ABL1-positive acute lymphoblastic leukemia but is not associated with outcome. A report on behalf of the GIMEMA Acute Leukemia Working Party

    PubMed Central

    Iacobucci, Ilaria; Lonetti, Annalisa; Paoloni, Francesca; Papayannidis, Cristina; Ferrari, Anna; Storlazzi, Clelia Tiziana; Vignetti, Marco; Cilloni, Daniela; Messa, Francesca; Guadagnuolo, Viviana; Paolini, Stefania; Elia, Loredana; Messina, Monica; Vitale, Antonella; Meloni, Giovanna; Soverini, Simona; Pane, Fabrizio; Baccarani, Michele; Foà, Robin; Martinelli, Giovanni

    2010-01-01

    Background Recently, in genome-wide analyses of DNA copy number abnormalities using single nucleotide polymorphism microarrays, genetic alterations targeting PAX5 were identified in over 30% of pediatric patients with acute lymphoblastic leukemia. So far the occurrence of PAX5 alterations and their clinical correlation have not been investigated in adults with BCR-ABL1-positive acute lymphoblastic leukemia. Design and Methods The aim of this study was to characterize the rearrangements on 9p involving PAX5 and their clinical significance in adults with BCR-ABL1-positive acute lymphoblastic leukemia. Eighty-nine adults with de novo BCR-ABL1-positive acute lymphoblastic leukemia were enrolled into institutional (n=15) or GIMEMA (Gruppo Italiano Malattie EMatologiche dell’Adulto) (n=74) clinical trials and, after obtaining informed consent, their genome was analyzed by single nucleotide polymorphism arrays (Affymetrix 250K NspI and SNP 6.0), genomic polymerase chain reaction analysis and re-sequencing. Results PAX5 genomic deletions were identified in 29 patients (33%) with the extent of deletions ranging from a complete loss of chromosome 9 to the loss of a subset of exons. In contrast to BCR-ABL1-negative acute lymphoblastic leukemia, no point mutations were found, suggesting that deletions are the main mechanism of inactivation of PAX5 in BCR-ABL1-positive acute lymphoblastic leukemia. The deletions were predicted to result in PAX5 haploinsufficiency or expression of PAX5 isoforms with impaired DNA-binding. Deletions of PAX5 were not significantly correlated with overall survival, disease-free survival or cumulative incidence of relapse, suggesting that PAX5 deletions are not associated with outcome. Conclusions PAX5 deletions are frequent in adult BCR-ABL1-positive acute lymphoblastic leukemia and are not associated with a poor outcome. PMID:20534699

  18. Simultaneous detection of three lily viruses using Triplex IC-RT-PCR.

    PubMed

    Zhang, Yubao; Wang, Yajun; Xie, Zhongkui; Yang, Guo; Guo, Zhihong; Wang, Le

    2017-08-25

    Viruses commonly infecting lily (Lilium spp.) include: Lily symptomless virus (LSV), Cucumber mosaic virus (CMV) and Lily mottle virus (LMoV). These viruses usually co-infect lilies causing severe economic losses in terms of quantity and quality of flower and bulb production around the world. Reliable and precise detection systems need to be developed for virus identification. We describe the development of a triplex immunocapture (IC) reverse transcription (RT) polymerase chain reaction (PCR) assay for the simultaneous detection of LSV, CMV and LMoV. The triplex IC-RT-PCR was compared with a quadruplex RT-PCR assay. Relative to the quadruplex RT-PCR, the specificity of the triplex IC-RT-PCR system for LSV, CMV and LMoV was 100% for field samples. The sensitivity of the triplex IC-RT-PCR system was 99.4%, 81.4% and 98.7% for LSV, CMV and LMoV, respectively. Agreement (κ) between the results obtained from the two tests was 0.968, 0.844 and 0.984 for LSV, CMV and LMoV, respectively. This is the first report of the simultaneous detection of LSV, CMV and LMoV in a triplex IC-RT-PCR assay. In particular we believe this convenient and reliable triplex IC-RT-PCR method could be used routinely for large-scale field surveys or crop health monitoring of lily. Copyright © 2017. Published by Elsevier B.V.

  19. RT-PCR and Electrospray Ionization Mass Spectrometry (RT-PCR/ESI-MS) for Identifying Acute Viral Upper Respiratory Tract Infections

    PubMed Central

    Chen, Kuan-Fu; Blyn, Lawrence; Rothman, Richard E.; Ramachandran, Padmini; Valsamakis, Alexandra; Ecker, David; Sampath, Rangarajan; Gaydos, Charlotte A.

    2010-01-01

    Diagnosis of respiratory viruses traditionally relies on culture or antigen detection.We aimed to demonstrate capacity of the RT-PCR/ESI-MS platform to identify clinical relevant respiratory viruses in nasopharyngeal aspirate (NPA) samples and compare the diagnostic performance characteristics relative to conventional culture- and antigen-based methods. A RT-PCR/ESI-MS respiratory virus surveillance kit designed to detect respiratory syncytial virus, influenza A and B, parainfluenza types 1-4, adenoviridae types A-F, coronaviridae, human bocavirus, and human metapneumovirus was evaluated using both mock-ups and frozen archived NPA (N=280), 95 of which were positive by clinical virology methods. RT-PCR/ESI-MS detected 74/95 (77.9%) known positive samples and identified an additional 13/185 (7%) from culture negative samples. Viruses that are non-detectable with conventional methods were also identified. Viral load was semi-quantifiable and ranged from 2,400 to >320,000copies/ml. Time to results was 8hrs. RT-PCR/ESI-MS showed promise in rapid detection of respiratory viruses, merits further evaluation for use in clinical settings. PMID:21251562

  20. DEVELOPMENT OF HOMOLOGOUS VIRAL INTERNAL CONTROLS FOR USE IN RT-PCR ASSAYS OF WATERBORNE ENTERIC VIRUSES

    EPA Science Inventory

    Enteric viruses often contaminate water sources causing frequent outbreaks of gastroenteritis. Reverse transcription-polymerase chain reaction (RT-PCR) assays are commonly used for detection of human enteric viruses in environmental and drinking water samples. RT-PCR provides ...

  1. DEVELOPMENT OF HOMOLOGOUS VIRAL INTERNAL CONTROLS FOR USE IN RT-PCR ASSAYS OF WATERBORNE ENTERIC VIRUSES

    EPA Science Inventory

    Enteric viruses often contaminate water sources causing frequent outbreaks of gastroenteritis. Reverse transcription-polymerase chain reaction (RT-PCR) assays are commonly used for detection of human enteric viruses in environmental and drinking water samples. RT-PCR provides ...

  2. Characterization of the CDR3 structure of the Vβ21 T cell clone in patients with P210(BCR-ABL)-positive chronic myeloid leukemia and B-cell acute lymphoblastic leukemia.

    PubMed

    Zha, Xianfeng; Chen, Shaohua; Yang, Lijian; Li, Bo; Chen, Yu; Yan, Xiaojuan; Li, Yangqiu

    2011-10-01

    The clonally expanded T cells identified in most cancer patients that respond to tumor-associated antigen such as P210(BCR-ABL) protein have definite, specific antitumor cytotoxicity. T cell receptor (TCR) Vβ CDR3 repertoire diversity was analyzed in patients with chronic myeloid leukemia (CML) and BCR-ABL(+) B-cell acute lymphoblastic leukemia (B-ALL) by GeneScan. A high frequency of oligoclonal expansion of the TCR Vβ21 subfamily was observed in the peripheral blood of CML and B-ALL patients. These clonally expanded Vβ21 T cells were correlated with the pathophysiologic process of CML. A conserved amino acid motif (SLxxV) was observed within the CDR3 region in only 3 patients with CML. Preferential usage of the Jβ segments was also observed in a minority of patients. The 3-dimensional structures of the CDR3 region containing the same motif or using the same Jβ segment displayed low similarity; on the contrary, the conformation of the CDR3 region containing no conserved motif in some T cell clones was highly similar. In conclusion, our findings indicate a high frequency of TCR Vβ21 subfamily expansion in p210(BCR-ABL)-positive CML and B-ALL patients. The characterization of the CDR3 structure was complex. Regrettably, at this time it was not possible to confirm that the Vβ21 T cell clones were derived from the stimulation of p210(BCR-ABL) protein.

  3. Selection of reliable reference genes for quantitative real-time RT-PCR in alfalfa.

    PubMed

    Wang, Xuemin; Fu, Yuanyuan; Ban, Liping; Wang, Zan; Feng, Guangyan; Li, Jun; Gao, Hongwen

    2015-01-01

    Real-time quantitative RT-PCR (qRT-PCR) is the most commonly used method for accurately detecting gene expression patterns. As part of qRT-PCR analysis, normalization of the data requires internal control gene(s) that display uniform expression under different biological conditions. However, no invariable internal control gene exists, and therefore more than one reference gene is needed to normalize RT-PCR results. In this study, we assessed the expression of eight candidate internal control genes, namely 18S ribosomal RNA (18S rRNA), elongation factor-1alpha, β-Actin, E2 ubiquitin-conjugating enzyme, β-Tubulin (TUB), ACTIN2, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and Msc27 of unknown function, in a diverse set of 16 alfalfa (Medicago sativa) samples representing different tissues and abiotic stress challenges, using geNorm and BestKeeper software. The results revealed that the eight candidate genes are inconsistently expressed under different experimental conditions. Msc27 and 18S rRNA are suitable reference genes for comparing different tissue types. Under different abscisic acid and NaCl conditions, three reference genes are necessary. Finally, GAPDH, TUB and β-Actin are unsuitable for normalization of qRT-PCR data under these given conditions in alfalfa. The relative expression level of MsWRKY33 was analyzed using selected reference genes. These results provide an experimental guideline for future research on gene expression in alfalfa using qRT-PCR.

  4. Red blood cells in cerebrospinal fluid as possible inhibitory factor for enterovirus RT-PCR.

    PubMed

    Almeida, Sérgio Monteiro de; Raboni, Sônia Mara; Nogueira, Meri Bordignon; Vidal, Luine R Renaud

    2016-10-01

    The presence of hemoglobin in samples are considered an important inhibitory factor for polymerase chain reaction (PCR). The aim of this study was to examine the influence of red blood cells (RBC)s in cerebrospinal fluid (CSF) as an inhibitory factor to reverse transcription polymerase chain reaction (RT-PCR) for enteroviruses (EV). Forty-four CSF samples from patients showing characteristics of viral meningitis were assessed for EV by RT-PCR. Viral RNA extracted with guanidine isothyocianate buffer and virus detection was performed by in-house nested PCR. Positivity for EV RT-PCR was higher in CSF samples without RBCs than in samples with RBCs: 13(26%) and 36(9.2%), p = 0.001. In the group with positive EV RT-PCR, the mean + SD CSF RBC was 37 ± 183 cell/mm3; the group with negative results had 580 + 2,890 cell/mm3 (p = 0.007). The acceptable upper limit for CSF RBCs that could not influence RT-PCR was 108 cells/mm3. CSF samples with negative results for EV RT-PCR have more erythrocytes.

  5. Simultaneous detection and differentiation of three viruses in pear plants by a multiplex RT-PCR.

    PubMed

    Yao, Bingyu; Wang, Guoping; Ma, Xiaofang; Liu, Wenbin; Tang, Huihui; Zhu, Hui; Hong, Ni

    2014-02-01

    A multiplex RT-PCR (mRT-PCR) assay was developed for detection and differentiation of the Apple stem pitting virus (ASPV), Apple stem grooving virus (ASGV) and Apple chlorotic leaf spot virus (ACLSV), which are viruses frequently occurring in pear trees. Different combinations of mixed primer pairs were tested for their specificity and sensitivity for the simultaneous detection of the three viruses. Three primer pairs were used to amplify their fragments of 247bp, 358bp and 500bp, respectively. The primer pair for ASPV was designed in this work, while the primer pairs for ACLSV and ASGV were from previous reports. The sensitivity and specificity of the mRT-PCR assay for the three viruses were comparable to that of each uniplex RT-PCR. The mRT-PCR was applied successfully for the detection of three viruses in leaves of pear and apple plants, but was unreliable in the detection of ASGV in dormant barks. In conclusion, this mRT-PCR provides a useful tool for the routine and rapid detection and the differentiation of three pear viruses.

  6. SPR Detection and Discrimination of the Oligonucleotides Related to the Normal and the Hybrid bcr-abl Genes by Two Stringency Control Strategies

    NASA Astrophysics Data System (ADS)

    Matsishin, M. J.; Ushenin, Iu. V.; Rachkov, A. E.; Solatkin, A. P.

    2016-01-01

    In this study, we applied two stringency control strategies for surface plasmon resonance (SPR) detection of DNA hybridization and discrimination of completely and partially complementary 24-mer sequences. These sequences are specific to the human normal bcr and the hybrid bcr-abl genes, protein products of which are responsible for some leukemia. SPR sensors based on resonance phenomena in nanoscale gold films are well suited for label-free, real-time investigations of the macromolecule interactions. Thermodynamic parameters obtained using the web server DINAMelt allowed supposing the possibility for realization (a) stringency control based on the ionic strength of the hybridization buffer and (b) stringency control based on the temperature elevation. The first one resulted in that the discrimination index of completely complementary and partially complementary oligonucleotides depending on the target concentration varied from 1.3 to 1.8 in 2 × SSC and from 2.0 to 2.9 in 0.5 × SSC. For implementation of the second stringency control strategy, SPR spectrometer measuring flow cell with built-in high-precision temperature control and regulation as well as corresponding software was created. It is shown that the duplexes formed by the immobilized probes mod-Ph and completely complementary oligonucleotides P1 remained without significant changes until ~50 °C, while the duplexes formed with partially complementary oligonucleotide Bcrex14 almost entirely disrupted at 40 °C. Thus, the absolutely effective thermodiscrimination of this pair of oligonucleotides was achieved in this temperature range (40-50 °C).

  7. Leptin Reverts Pro-Apoptotic and Antiproliferative Effects of α-Linolenic Acids in BCR-ABL Positive Leukemic Cells: Involvement of PI3K Pathway

    PubMed Central

    Beaulieu, Aurore; Poncin, Géraldine; Belaid-Choucair, Zakia; Humblet, Chantal; Bogdanovic, Gordana; Lognay, Georges; Boniver, Jacques; Defresne, Marie-Paule

    2011-01-01

    It is suspected that bone marrow (BM) microenvironmental factors may influence the evolution of chronic myeloid leukaemia (CML). In this study, we postulated that adipocytes and lipids could be involved in the progression of CML. To test this hypothesis, adipocytes were co-cultured with two BCR-ABL positive cell lines (PCMDS and K562). T cell (Jurkat) and stroma cell (HS-5) lines were used as controls. In the second set of experiments, leukemic cell lines were treated with stearic, oleic, linoleic or α-linolenic acids in presence or absence of leptin. Survival, proliferation, leptin production, OB-R isoforms (OB-Ra and OB-Rb), phosphoinositide 3-kinase (PI3k) and BCL-2 expression have been tested after 24h, 48h and 72h of treatment. Our results showed that adipocytes induced a decrease of CML proliferation and an increase in lipid accumulation in leukemic cells. In addition, CML cell lines induced adipocytes cell death. Chromatography analysis showed that BM microenvironment cells were full of saturated (SFA) and monounsaturated (MUFA) fatty acids, fatty acids that protect tumor cells against external agents. Stearic acid increased Bcl-2 expression in PCMDS, whereas oleic and linoleic acids had no effects. In contrast, α-linolenic acid decreased the proliferation and the survival of CML cell lines as well as BCL-2 and OB-R expression. The effect of α-linolenic acids seemed to be due to PI3K pathway and Bcl-2 inhibition. Leptin production was detected in the co-culture medium. In the presence of leptin, the effect of α-linolenic acid on proliferation, survival, OB-R and BCl-2 expression was reduced. PMID:21991326

  8. Discovery and characterization of a novel potent type II native and mutant BCR-ABL inhibitor (CHMFL-074) for Chronic Myeloid Leukemia (CML)

    PubMed Central

    Chen, Ji-Yun; Liu, Xiaochuan; Wang, Aoli; Hu, Chen; Wang, Wenchao; Wang, Huiping; Wu, Fan; Ruan, Yanjie; Qi, Shuang; Liu, Juan; Zou, Fengming; Hu, Zhenquan; Wang, Wei; Wang, Li; Zhang, Shanchun; Yun, Cai-Hong; Zhai, Zhimin; Liu, Jing; Liu, Qingsong

    2016-01-01

    BCR gene fused ABL kinase is the critical driving force for the Philadelphia Chromosome positive (Ph+) Chronic Myeloid Leukemia (CML) and has been extensively explored as a drug target. With a structure-based drug design approach we have discovered a novel inhibitor CHMFL-074, that potently inhibits both the native and a variety of clinically emerged mutants of BCR-ABL kinase. The X-ray crystal structure of CHMFL-074 in complex with ABL1 kinase (PDB ID: 5HU9) revealed a typical type II binding mode (DFG-out) but relatively rare hinge binding. Kinome wide selectivity profiling demonstrated that CHMFL-074 bore a high selectivity (S score(1) = 0.03) and potently inhibited ABL1 kinase (IC50: 24 nM) and PDGFR α/β (IC50: 71 nM and 88 nM). CHMFL-074 displayed strong anti-proliferative efficacy against BCR-ABL–driven CML cell lines such as K562 (GI50: 56 nM), MEG-01 (GI50: 18 nM) and KU812 (GI50: 57 nM). CHMFL-074 arrested cell cycle into the G0/G1 phase and induced apoptosis in the Ph+ CML cell lines. In addition, it potently inhibited the CML patient primary cell's proliferation but did not affect the normal bone marrow cells. In the CML cell K562 inoculated xenograft mouse model, oral administration of 100 mg/kg/d of CHMFL-074 achieved a tumor growth inhibition (TGI) of 65% without exhibiting apparent toxicity. As a potential drug candidate for fighting CML, CHMFL-074 is under extensive preclinical safety evaluation now. PMID:27322145

  9. Real-time RT-PCR for the detection and quantitative analysis of equine rhinitis viruses.

    PubMed

    Quinlivan, M; Maxwell, G; Lyons, P; Arkins, S; Cullinane, A

    2010-03-01

    Equine rhinitis viruses (ERV) cause respiratory disease and loss of performance in horses. It has been suggested that the economic significance of these viruses may have been underestimated due to insensitive methods of detection. To develop a sensitive, rapid, real-time RT-PCR (rRT-PCR) assay suitable for the routine diagnosis and epidemiological surveillance of the A and B variants of ERV. TaqMan primer probe sets for ERAV and ERBV were designed from conserved regions of the 5' UTR of the ERV genome. Over 400 samples from both clinically affected and asymptomatic horses were employed for validation of the assays. ERAV samples positive by rRT-PCR were verified by virus isolation and ERBV positive samples were verified by rRT-PCR using a different set of primers. The detection limit of the rRT-PCR for both viruses was 10-100 genome copies. Of 250 archival nasal swabs submitted for diagnostic testing over a 7 year period, 29 were ERAV positive and 3 were ERBV positive with an average incidence rate per year of 10 and 1.5%, respectively. There was evidence of co-circulation of ERAV and ERBV with equine influenza virus (EIV). Of 100 post race urine samples tested, 29 were ERAV positive by rRT-PCR. Partial sequencing of 2 ERBV positive samples demonstrated that one was 100% identical to ERBV1 from a 270 bp sequence and the other was more closely related to ERBV2 than ERBV1 (95% compared to 90% nucleotide identity in 178 bp). The rRT-PCR assays described here are specific and more sensitive than virus isolation. They have good reproducibility and are suitable for the routine diagnosis of ERAV and ERBV. These assays should be useful for investigating the temporal association between clinical signs and rhinitis virus shedding.

  10. RT-PCR for Detecting ALK Translocations in Cytology Samples from Lung Cancer Patients.

    PubMed

    Nakamichi, Shinji; Seike, Masahiro; Miyanaga, Akihiko; Chiba, Mika; Matsuda, Kuniko; Kobayashi, Kenichi; Takahashi, Akiko; Takeuchi, Susumu; Minegishi, Yuji; Kubota, Kaoru; Gemma, Akihiko

    2017-06-01

    We evaluated the usefulness of reverse transcription-polymerase chain reaction (RT-PCR) for detecting anaplastic lymphoma kinase (ALK) translocations using cytology samples from lung cancer patients. We analyzed ALK translocations by RT-PCR in cytology samples from lung cancer patients diagnosed at the Nippon Medical School Hospital between 2013 and 2015. Immunochemistry (IHC) and break-apart fluorescence in situ hybridization (FISH) were also performed on available tissue samples. A total of 155 cytology samples were analyzed in our study. We obtained 115 (68%) samples from bronchial lavage. We were able to determine 153 (99%) results by RT-PCR with 4 (3%) positive samples. The four samples positive by RT-PCR were also positive by IHC and FISH performed on the tissue samples collected simultaneously. RT-PCR is a suitable method for detecting ALK translocations using cytology samples from patients with primary lung cancer, especially when tissue samples are not available. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  11. Molecular analysis of dolphin morbillivirus: A new sensitive detection method based on nested RT-PCR.

    PubMed

    Centelleghe, Cinzia; Beffagna, Giorgia; Zanetti, Rossella; Zappulli, Valentina; Di Guardo, Giovanni; Mazzariol, Sandro

    2016-09-01

    Cetacean Morbillivirus (CeMV) has been identified as the most pathogenic virus for cetaceans. Over the past three decades, this RNA virus has caused several outbreaks of lethal disease in odontocetes and mysticetes worldwide. Isolation and identification of CeMV RNA is very challenging in whales because of the poor preservation status frequently shown by tissues from stranded animals. Nested reverse transcription polymerase chain reaction (nested RT-PCR) is used instead of conventional RT-PCR when it is necessary to increase the sensitivity and the specificity of the reaction. This study describes a new nested RT-PCR technique useful to amplify small amounts of the cDNA copy of Cetacean morbillivirus (CeMV) when it is present in scant quantity in whales' biological specimens. This technique was used to analyze different tissues (lung, brain, spleen and other lymphoid tissues) from one under human care seal and seven cetaceans stranded along the Italian coastline between October 2011 and September 2015. A well-characterized, 200 base pair (bp) fragment of the dolphin Morbillivirus (DMV) haemagglutinin (H) gene, obtained by nested RT-PCR, was sequenced and used to confirm DMV positivity in all the eight marine mammals under study. In conclusion, this nested RT-PCR protocol can represent a sensitive detection method to identify CeMV-positive, poorly preserved tissue samples. Furthermore, this is also a rather inexpensive molecular technique, relatively easy to apply. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Prognostic Value of RT-PCR Tyrosinase Detection in Peripheral Blood of Melanoma Patients

    PubMed Central

    Carrillo, Esmeralda; Prados, José; Marchal, Juan Antonio; Boulaiz, Houria; Martínez, Antonio; Rodríguez-Serrano, Fernando; Caba, Octavio; Serrano, Salvio; Aránega, Antonia

    2006-01-01

    Malignant melanoma (MM) prognosis has been related to tumour thickness and clinical stage and metastasis risk has been associated with presence of tumour cells in peripheral blood. The aim of this study was to determine the relationship between presence of tyrosinase in peripheral blood of MM patients and their clinical prognosis. Blood samples from 58 MM patients (stage I–IV) were analysed, using RT-PCR assay to detect tyrosinase mRNA. The results showed that positive RT-PCR assay for tyrosinase were significantly associated with clinical status and tumour thickness. After a median follow-up of 24 months, RT-PCR results were found to be significant correlated with recurrence (p < 0.05) and clinical stage III (p < 0.05). Separate analysis of stage III tumours to determine the prognostic value of tyrosinase presence in peripheral blood showed an overall 24-month survival rate of 70% in the RT-PCR negative group versus 10% in the positive group (p < 0.02). These results suggest that detection of circulating melanoma cells may be especially relevant in stage III patients, in whom RT-PCR positivity defines a subpopulation at high risk of recurrence. PMID:16788251

  13. Modeling qRT-PCR dynamics with application to cancer biomarker quantification.

    PubMed

    Chervoneva, Inna; Freydin, Boris; Hyslop, Terry; Waldman, Scott A

    2017-01-01

    Quantitative reverse transcription polymerase chain reaction (qRT-PCR) is widely used for molecular diagnostics and evaluating prognosis in cancer. The utility of mRNA expression biomarkers relies heavily on the accuracy and precision of quantification, which is still challenging for low abundance transcripts. The critical step for quantification is accurate estimation of efficiency needed for computing a relative qRT-PCR expression. We propose a new approach to estimating qRT-PCR efficiency based on modeling dynamics of polymerase chain reaction amplification. In contrast, only models for fluorescence intensity as a function of polymerase chain reaction cycle have been used so far for quantification. The dynamics of qRT-PCR efficiency is modeled using an ordinary differential equation model, and the fitted ordinary differential equation model is used to obtain effective polymerase chain reaction efficiency estimates needed for efficiency-adjusted quantification. The proposed new qRT-PCR efficiency estimates were used to quantify GUCY2C (Guanylate Cyclase 2C) mRNA expression in the blood of colorectal cancer patients. Time to recurrence and GUCY2C expression ratios were analyzed in a joint model for survival and longitudinal outcomes. The joint model with GUCY2C quantified using the proposed polymerase chain reaction efficiency estimates provided clinically meaningful results for association between time to recurrence and longitudinal trends in GUCY2C expression.

  14. In chronic myeloid leukemia patients on second-line tyrosine kinase inhibitor therapy, deep sequencing of BCR-ABL1 at the time of warning may allow sensitive detection of emerging drug-resistant mutants.

    PubMed

    Soverini, Simona; De Benedittis, Caterina; Castagnetti, Fausto; Gugliotta, Gabriele; Mancini, Manuela; Bavaro, Luana; Machova Polakova, Katerina; Linhartova, Jana; Iurlo, Alessandra; Russo, Domenico; Pane, Fabrizio; Saglio, Giuseppe; Rosti, Gianantonio; Cavo, Michele; Baccarani, Michele; Martinelli, Giovanni

    2016-08-02

    Imatinib-resistant chronic myeloid leukemia (CML) patients receiving second-line tyrosine kinase inhibitor (TKI) therapy with dasatinib or nilotinib have a higher risk of disease relapse and progression and not infrequently BCR-ABL1 kinase domain (KD) mutations are implicated in therapeutic failure. In this setting, earlier detection of emerging BCR-ABL1 KD mutations would offer greater chances of efficacy for subsequent salvage therapy and limit the biological consequences of full BCR-ABL1 kinase reactivation. Taking advantage of an already set up and validated next-generation deep amplicon sequencing (DS) assay, we aimed to assess whether DS may allow a larger window of detection of emerging BCR-ABL1 KD mutants predicting for an impending relapse. a total of 125 longitudinal samples from 51 CML patients who had acquired dasatinib- or nilotinib-resistant mutations during second-line therapy were analyzed by DS from the time of failure and mutation detection by conventional sequencing backwards. BCR-ABL1/ABL1%(IS) transcript levels were used to define whether the patient had 'optimal response', 'warning' or 'failure' at the time of first mutation detection by DS. DS was able to backtrack dasatinib- or nilotinib-resistant mutations to the previous sample(s) in 23/51 (45 %) pts. Median mutation burden at the time of first detection by DS was 5.5 % (range, 1.5-17.5 %); median interval between detection by DS and detection by conventional sequencing was 3 months (range, 1-9 months). In 5 cases, the mutations were detectable at baseline. In the remaining cases, response level at the time mutations were first detected by DS could be defined as 'Warning' (according to the 2013 ELN definitions of response to 2nd-line therapy) in 13 cases, as 'Optimal response' in one case, as 'Failure' in 4 cases. No dasatinib- or nilotinib-resistant mutations were detected by DS in 15 randomly selected patients with 'warning' at various timepoints, that later turned into optimal

  15. Quantitative RT-PCR gene expression analysis of laser microdissected tissue samples

    PubMed Central

    Erickson, Heidi S.; Albert, Paul S.; Gillespie, John W.; Rodriguez-Canales, Jaime; Linehan, W. Marston; Pinto, Peter A.; Chuaqui, Rodrigo F.; Emmert-Buck, Michael R.

    2009-01-01

    Quantitative reverse transcription polymerase chain reaction (qRT-PCR) is a valuable tool for measuring gene expression in biological samples. However, unique challenges are encountered when studies are performed on cells microdissected from tissues derived from animal models or the clinic, including specimen related issues, variability of RNA template quality and quantity, and normalization. qRT-PCR using small amounts of mRNA derived from dissected cell populations requires adaptation of standard methods to allow meaningful comparisons across sample sets. The protocol described here presents the rationale, technical steps, normalization strategy, and data analysis necessary to generate reliable gene expression measurements of transcripts from dissected samples. The entire protocol from tissue microdissection through qRT-PCR analysis requires approximately 16 hours. PMID:19478806

  16. Detection and identification of infectious bronchitis virus by RT-PCR in Iran.

    PubMed

    Homayounimehr, Alireza; Pakbin, Ahmad; Momayyez, Reza; Fatemi, Seyyedeh Mahsa Rastegar

    2016-06-01

    Infectious bronchitis virus (IBV) causes severe diseases in poultry with significant economic consequences to the poultry industry in Iran. The aim of this study was the detection and identification of IBV by reverse transcription(RT)-PCR in Iran. Ten IB virus strains were detected by testing trachea, cecal tonsil, and kidney tissues collected from broiler and layer farms in Iran. In order to detect infectious bronchitis virus, an optimized RT-PCR was used. Primers targeting the conserved region of known IBV serotypes were used in the RT-PCR assay. Primers selectively detecting Massachusetts and 793/B type IB viruses were designed to amplify the S1 gene of the virus and used in the nested PCR test. Our findings indicate the circulation of at least three genotypes of IB viruses (Massachusetts, 793/B, and variant 2) among poultry flocks.

  17. Quantitative RT-PCR for titration of replication-defective recombinant Semliki Forest virus.

    PubMed

    Puglia, Ana L P; Rezende, Alexandre G; Jorge, Soraia A C; Wagner, Renaud; Pereira, Carlos A; Astray, Renato M

    2013-11-01

    Virus titration may constitute a drawback in the development and use of replication-defective viral vectors like Semliki Forest virus (SFV). The standardization and validation of a reverse transcription quantitative PCR (qRT-PCR) method for SFV titration is presented here. The qRT-PCR target is located within the nsp1 gene of the non-structural polyprotein SFV region (SFV RNA), which allows the strategy to be used for several different recombinant SFV constructs. Titer determinations were carried out by performing virus titration and infection assays with SFVs containing an RNA coding region for the rabies virus glycoprotein (RVGP) or green fluorescent protein (GFP). Results showed that the standardized qRT-PCR is applicable for different SFV constructs, and showed good reproducibility. To evaluate the correlation between the amount of functional SFV RNA in a virus lot and its infectivity in BHK-21 cell cultures, a temperature mediated titer decrease was performed and successfully quantitated by qRT-PCR. When used for cell infection at the same multiplicity of infection (MOI), the temperature treated SFV-RVGP samples induced the same levels of RVGP expression. Similarly, when different SFV-GFP lots with different virus titers, as accessed by qRT-PCR, were used for cell infection at the same MOI, the cultures showed comparable amounts of fluorescent cells. The data demonstrate a good correlation between the amount of virus used for infection, as measured by its SFV RNA, and the protein synthesis in the cells. In conclusion, the qRT-PCR method developed here is accurate and enables the titration of replication-defective SFV vectors, an essential aid for viral vector development as well as for establishment of production bioprocesses.

  18. [Detection and subgrouping of respiratory syncytial virus RNA by real-time RT-PCR].

    PubMed

    Yokoi, Hajime; Tanaka, Toshimitsu; Mizumura, Ayano; Kitahashi, Tomoko

    2012-09-01

    The TaqMan-based quantitative real-time RT-PCR assay we developed uses specific probes to identify respiratory syncytial virus (RSV) and to distinguish RSV subgroups A (RSV-A) and B (RSV-B). We selected conserved regions of the F gene as assay targets and designed new primers and TaqMan MGB probes to detect RSV-A and B. RSV-A and B control plasmids confirmed real-time reverse transcription polymerase chain reaction (RT-PCR) reactivity whose efficiency was 2.5 x 10(1) to 2.5 x 10(7) copies/tube. The assay detection limit was 10 to 10(2) times higher than that of the conventional RT-PCR assay and was equal to the nested PCR assay. No cross-reactions occurred against other respiratory viruses, including influenza virus, metapneumovirus, measles virus, coxsackievirus, enterovirus, echovirus, mumps virus, parainfluenza virus, and rhinovirus. Of 154 clinical specimens derived from subjects with acute respiratory infection and tested by using both real-time RT-PCR and nested PCR, 40 were RSV-positive in both assays. Of these, 25 were identified as RSV-A and 15 as RSV-B by both assays. There was 100% concordance in RSV subgroup identification between real-time RT-PCR and nested PCR assays. These results indicate that our real-time RT-PCR assay can be used for rapid detection, quantitative analysis and subgrouping of RSV-A and RSV-B.

  19. Real-Time PCR (RT-PCR) Assays for Burkholderia mallei and B. pseudomallei

    DTIC Science & Technology

    2005-10-01

    1 Real - time PCR (RT-PCR) Assays for Burkholderia mallei and B. pseudomallei Vipin K. Rastogi1, Tu-chen Cheng1, Lisa Collins1 and Jennifer Bagley2 1...A 3. DATES COVERED - 4. TITLE AND SUBTITLE Real - time PCR (RT-PCR) Assays for Burkholderia mallei and B.pseudomallei 5a. CONTRACT NUMBER 5b...risk. There is currently no real - time PCR assay for detection of both of these pathogens. Primers and probes corresponding to specific genomic regions

  20. Which method better evaluates the molecular response in newly diagnosed chronic phase chronic myeloid leukemia patients with imatinib treatment, BCR-ABL(IS) or log reduction from the baseline level?

    PubMed

    Qin, Ya-Zhen; Jiang, Qian; Jiang, Hao; Li, Jin-Lan; Li, Ling-Di; Zhu, Hong-Hu; Lai, Yue-Yun; Lu, Xi-Jing; Liu, Yan-Rong; Jiang, Bin; Huang, Xiao-Jun

    2013-09-01

    The molecular response of chronic myeloid leukemia (CML) patients to tyrosine kinase inhibitor treatment can be evaluated either by BCR-ABL mRNA levels on international scale (IS) or by log reduction from the baseline level of the laboratory. Both methods were compared in 248 newly diagnosed chronic phase CML patients treated with imatinib. The major molecular responses (MMR) obtained by both methods predict progression-free survival (PFS, all P<0.0001). Thirty-six patients, who were identified as MMR patients by the IS method but as non-MMR patients by the log reduction method, had the same PFS as MMR patients identified by both methods. The molecular responses of patients at 3 and 6 months, as evaluated by the two methods, have similar predictive values on their cytogenetic responses at 12 months and on their molecular responses at 18 months. Both ≤ 10%(IS) and ≥ 1 log reduction at 3 months and ≤ 1%(IS) at 6 months were significantly associated with PFS (P=0.0011, 0.0090, and 0.0064). The percentages of patients with BCR-ABL(IS) of ≤ 1%, >1-10%, and of >10% at 3 months and 6 months in the German CML Study IV were similar with those with corresponding BCR-ABL(IS) in our center, but was significantly different with those evaluated by the log reduction method. Therefore, the molecular response evaluated by BCR-ABL(IS) has similar trends in PFS and in response prediction, but can better differentiate patients than that by the log reduction method. Furthermore, the IS method allows comparison among molecular response results from different laboratories.

  1. Characterization of a reference material for BCR-ABL (M-BCR) mRNA quantitation by real-time amplification assays: towards new standards for gene expression measurements.

    PubMed

    Saldanha, J; Silvy, M; Beaufils, N; Arlinghaus, R; Barbany, G; Branford, S; Cayuela, J-M; Cazzaniga, G; Gonzalez, M; Grimwade, D; Kairisto, V; Miyamura, K; Lawler, M; Lion, T; Macintyre, E; Mahon, F-X; Muller, M C; Ostergaard, M; Pfeifer, H; Saglio, G; Sawyers, C; Spinelli, O; van der Velden, V H J; Wang, J Q; Zoi, K; Patel, V; Phillips, P; Matejtschuk, P; Gabert, J

    2007-07-01

    Monitoring of BCR-ABL transcripts has become established practice in the management of chronic myeloid leukemia. However, nucleic acid amplification techniques are prone to variations which limit the reliability of real-time quantitative PCR (RQ-PCR) for clinical decision making, highlighting the need for standardization of assays and reporting of minimal residual disease (MRD) data. We evaluated a lyophilized preparation of a leukemic cell line (K562) as a potential quality control reagent. This was found to be relatively stable, yielding comparable respective levels of ABL, GUS and BCR-ABL transcripts as determined by RQ-PCR before and after accelerated degradation experiments as well as following 5 years storage at -20 degrees C. Vials of freeze-dried cells were sent at ambient temperature to 22 laboratories on four continents, with RQ-PCR analyses detecting BCR-ABL transcripts at levels comparable to those observed in primary patient samples. Our results suggest that freeze-dried cells can be used as quality control reagents with a range of analytical instrumentations and could enable the development of urgently needed international standards simulating clinically relevant levels of MRD.

  2. Successful treatment of Philadelphia chromosome-positive mixed phenotype acute leukemia by appropriate alternation of second-generation tyrosine kinase inhibitors according to BCR-ABL1 mutation status.

    PubMed

    Kawajiri, Chika; Tanaka, Hiroaki; Hashimoto, Shinichiro; Takeda, Yusuke; Sakai, Shio; Takagi, Toshiyuki; Takeuchi, Masahiro; Ohwada, Chikako; Sakaida, Emiko; Shimizu, Naomi; Nakaseko, Chiaki

    2014-04-01

    Philadelphia chromosome-positive mixed phenotype acute leukemia (Ph(+)MPAL) is a rare type of acute leukemia having myeloid and lymphoid features. In the present study, we describe the successful treatment of a 71-year-old Japanese female patient with Ph(+)MPAL by the alternation of second-generation tyrosine kinase inhibitors according to BCR-ABL1 mutations. The patient survived in her third complete remission (CR) for over 4 years. In her first CR, the patient was treated with multiple-agent chemotherapy and underwent maintenance therapy with imatinib and monthly vincristine and prednisolone (VP). At the first relapse, an examination of the bone marrow revealed a transformation into acute lymphoblastic leukemia and an F317L mutation in BCR-ABL1 gene, which responded preferentially to nilotinib over dasatinib. She achieved second CR, and nilotinib with VP therapy was selected for maintenance treatment. At second relapse, BCR-ABL1 mutational analysis revealed Y253H mutation instead of F317L mutation, resulting in resistance to nilotinib. The patient achieved third CR with dasatinib and VP therapy, and maintained CR with this treatment. This suggests that appropriate alternation of TKIs may contribute to long-term survival in elderly patients with Ph(+)MPAL.

  3. The effect of the additional cytogenetic abnormalities on major molecular response and BCR-ABL kinase domain mutations in long-term follow-up chronic myeloid leukemia patients, a cross sectional study.

    PubMed

    Savasoglu, Kaan; Payzin, Kadriye Bahriye; Ozdemirkiran, Fusun; Subasioglu, Asli; Yilmaz, Asu Fergun

    2017-08-01

    The aim of the study was to examine the relation between additional chromosomal aberrations (ACAs) with major molecular response (MMR) and BCR-ABL kinase domain (KD) mutations in the long-term follow-up of the chronic myeloid leukemia (CML) disease. The study design was cross-sectional observational and used the CML patients' data of Izmir Ataturk Education and Research Hospital from 2011 to 2015. Conventional cytogenetic, fluorescence in situ hybridization (FISH), quantitative real-time polymerase chain reaction (RQ-PCR) test results from 89 CML patients' and pyrosequencing analysis results from 17 patients' were set up for comparison analysis. The chi-square test was used in statistical analysis of the experimental data. There were no statistically significant correlations between ACAs and MMR (p = .361, p > .05) groups or BCR-ABL KD mutations (p = .576, p > .05) groups observed in the study. This study has revealed that MMR and BCR-ABL KD mutations did not correlate with ACAs.

  4. Synergistic effects of p53 activation via MDM2 inhibition in combination with inhibition of Bcl-2 or Bcr-Abl in CD34+ proliferating and quiescent chronic myeloid leukemia blast crisis cells.

    PubMed

    Carter, Bing Z; Mak, Po Yee; Mak, Duncan H; Ruvolo, Vivian R; Schober, Wendy; McQueen, Teresa; Cortes, Jorge; Kantarjian, Hagop M; Champlin, Richard E; Konopleva, Marina; Andreeff, Michael

    2015-10-13

    The Bcr-Abl tyrosine kinase regulates several Bcl-2 family proteins that confer resistance to apoptosis in chronic myeloid leukemia (CML) cells. Given p53's ability to modulate the expression and activity of Bcl-2 family members, we hypothesized that targeting Bcr-Abl, Bcl-2, and p53 concomitantly could have therapeutic benefits in blast crisis (BC) CML and in quiescent CML CD34+ cells that are insensitive to tyrosine kinase inhibitors (TKI). We examined the effects of the MDM2 inhibitor nutlin3a and its combination with the dual Bcl-2 and Bcl-xL inhibitor ABT-737, and the Bcr-Abl inhibitor nilotinib on BC CML patient samples. We found that in quiescent CD34+ progenitors, p53 expression is significantly lower, and MDM2 is higher, compared to their proliferating counterparts. Treatment with nutlin3a induced apoptosis in bulk and CD34+CD38- cells, and in both proliferating and quiescent CD34+ progenitor CML cells. Nutlin3a synergized with ABT-737 and nilotinib, in part by inducing pro-apoptotic, and suppressing anti-apoptotic, Bcl-2 proteins. Nilotinib inhibited the expression of Bcl-xL and Mcl-1 in BC CML cells. These results demonstrate that p53 activation by MDM2 blockade can sensitize BC CML cells, including quiescent CD34+ cells, to Bcl-2 inhibitor- and TKI-induced apoptosis. This novel strategy could be useful in the therapy of BC CML.

  5. Establishment and characterization of A novel Philadelphia-chromosome positive chronic myeloid leukemia cell line, TCC-S, expressing P210 and P190 BCR/ABL transcripts but missing normal ABL gene.

    PubMed

    Van, Phan Nguyen Thanh; Xinh, Phan Thi; Kano, Yasuhiko; Tokunaga, Katsushi; Sato, Yuko

    2005-03-01

    A novel Philadelphia-chromosome positive (Ph+) cell line, TCC-S, has been established from a patient with Ph+ chronic myeloid leukemia (CML) in the blastic crisis. TCC-S cells were shown to express both P210 and P190 BCR/ABL transcripts by reverse transcriptase-polymerase chain reaction (PCR), although quantitative-PCR revealed that TCC-S cells mainly expressed P210 BCR/ABL transcript. Karyotype analysis revealed several triploid clones which constantly harbored two der(9)del(9) (p12)t(9;22) (q34;qll)s and two del(9) (q21)s. The der(9)del(9) (p12)t(9;22) (q34;q11) is rarely found in other CML cell lines. Moreover, to the best of our knowledge, del(9) (q21) resulting in missing of a restrict region including normal ABL gene has not been found among CML cell lines previously described. Thus, TCC-S cells with only BCR/ABL gene and no normal ABL gene may be a useful tool for functional study of ABL in Ph+ CML.

  6. RT-PCR and real-time RT-PCR methods for the detection of potato virus Y in potato leaves and tubers.

    PubMed

    MacKenzie, Tyler D B; Nie, Xianzhou; Singh, Mathuresh

    2015-01-01

    Potato virus Y (PVY) is a major threat to potato crops around the world. It is an RNA virus of the family Potyviridae, exhibiting many different strains that cause a range of symptoms in potato. ELISA detection of viral proteins has traditionally been used to quantify virus incidence in a crop or seed lot. ELISA, however, cannot reliably detect the virus directly in dormant tubers, requiring several weeks of sprouting tubers to produce detectable levels of virus. Nor can ELISA fully discriminate between the wide range of strains of the virus. Several techniques for directly detecting the viral RNA have been developed which allow rapid detection of PVY in leaf or tuber tissue, and that can be used to easily distinguish between different strains of the virus. Described in this chapter are several protocols for the extraction of RNA from leaf and tuber tissues, and three detection methods based upon reverse-transcription-PCR (RT-PCR). First described is a traditional two-step protocol with separate reverse transcription of viral RNA into cDNA, then PCR to amplify the viral cDNA fragment. Second described is a one-step RT-PCR protocol combining the cDNA production and PCR in one tube and one step, which greatly reduces material and labor costs for PVY detection. The third protocol is a real-time RT-PCR procedure which not only saves on labor but also allows for more precise quantification of PVY titre. The three protocols are described in detail, and accompanied with a discussion of their relative advantages, costs, and possibilities for cost-saving modifications. While these techniques have primarily been developed for large-scale screening of many samples for determining viral incidence in commercial fields or seed lots, they are also amenable to use in smaller-scale research applications.

  7. Salmonella detection from chicken rinsate with surface enhanced Raman spectroscopy and RT-PCR validation

    USDA-ARS?s Scientific Manuscript database

    Optical detection of bacteria has been approached in recent years as a bacteria detection method that can counter time restraints of traditional plating or the high reoccurring cost of real-time polymerase chain reaction (RT-PCR). The goal of optical detection is to identify bacteria with spectral s...

  8. Simultaneous detection of three fish rhabdoviruses using multiplex real-time quantitative RT-PCR assay.

    PubMed

    Liu, Zongxiao; Teng, Yong; Liu, Hong; Jiang, Yulin; Xie, Xiayang; Li, Huifang; Lv, Jiangqiang; Gao, Longying; He, Junqiang; Shi, Xiujie; Tian, Feiyan; Yang, Jingshun; Xie, Congxin

    2008-04-01

    Spring viremia of carp virus (SVCV), infectious hematopoietic necrosis virus (IHNV) and viral hemorrhagic septicemia virus (VHSV) are three important fish rhabdoviruses, causing serious Office International des Epizooties (OIE) classified diseases in wild and farmed fish. Here, a new multiplex real-time quantitative RT-PCR (mqRT-PCR) assay was developed for simultaneous detection, identification and quantification of these three rhabdoviruses. The sets of primers and probes were targeted to conserved regions of glycoprotein (G) gene of SVCV, nucleoprotein (N) gene of IHNV and G gene of VHSV and used to amplify. The sensitivity, specificity and interference test of mqRT-PCR assay was analyzed. It was shown that the detection levels of 100 copies of SVCV, 220 copies of IHNV and 140 copies of VHSV were achieved, and there was no non-specific amplification and cross-reactivity using RNA of pike fry rhabdovirus (PFRV), infectious pancreatic necrosis virus (IPNV) and grass carp reovirus (GCRV). A total of 80 clinical fish samples were tested using the mqRT-PCR assay and the results were confirmed by antigen-capture ELISA and cell culture assay. This assay has the potential to be used for both research applications and diagnosis.

  9. Real-time RT-PCR assay for detection and differentiation of Citrus tristeza virus isolates

    USDA-ARS?s Scientific Manuscript database

    For universal detection of Citrus tristeza virus (CTV) strains by real time RT-PCR, a protocol was developed based on a set of primers and a Cy5-labeled TaqMan probe. This test included primers and a TET-labeled TaqMan probe selected on the mitochondrial nad5 gene for the simultaneous detection of ...

  10. Detecting the Presence of Nora Virus in "Drosophila" Utilizing Single Fly RT-PCR

    ERIC Educational Resources Information Center

    Munn, Bethany; Ericson, Brad; Carlson, Darby J.; Carlson, Kimberly A.

    2015-01-01

    A single fly RT-PCR protocol has recently been developed to detect the presence of the persistent, horizontally transmitted Nora virus in "Drosophila." Wild-caught flies from Ohio were tested for the presence of the virus, with nearly one-fifth testing positive. The investigation presented can serve as an ideal project for biology…

  11. Identification and evaluation of reference genes for qRT-PCR normalization in Ganoderma lucidum.

    PubMed

    Xu, Jiang; Xu, ZhiChao; Zhu, YingJie; Luo, HongMei; Qian, Jun; Ji, AiJia; Hu, YuanLei; Sun, Wei; Wang, Bo; Song, JingYuan; Sun, Chao; Chen, ShiLin

    2014-01-01

    Quantitative real-time reverse transcription PCR (qRT-PCR) is a rapid, sensitive, and reliable technique for gene expression studies. The accuracy and reliability of qRT-PCR results depend on the stability of the reference genes used for gene normalization. Therefore, a systematic process of reference gene evaluation is needed. Ganoderma lucidum is a famous medicinal mushroom in East Asia. In the current study, 10 potential reference genes were selected from the G. lucidum genomic data. The sequences of these genes were manually curated, and primers were designed following strict criteria. The experiment was conducted using qRT-PCR, and the stability of each candidate gene was assessed using four commonly used statistical programs-geNorm, NormFinder, BestKeeper, and RefFinder. According to our results, PP2A was expressed at the most stable levels under different fermentation conditions, and RPL4 was the most stably expressed gene in different tissues. RPL4, PP2A, and β-tubulin are the most commonly recommended reference genes for normalizing gene expression in the entire sample set. The current study provides a foundation for the further use of qRT-PCR in G. lucidum gene analysis.

  12. Molecular detection of Papaya meleira virus in the latex of Carica papaya by RT-PCR.

    PubMed

    Araújo, Marília Mendes Melo de; Tavares, Eder Torres; Silva, Felipe Rodrigues da; Marinho, Vera Lúcia de Almeida; Júnior, Manoel Teixeira Souza

    2007-12-01

    A RT-PCR assay was developed for early and accurate detection of Papaya meleira virus (PMeV) in the latex from infected papayas. The meleira disease is characterized by an excessive exudation of more fluidic latex from fruits, leaves and stems. This latex oxidises and gives the fruit a "sticky" texture. In the field, disease symptoms are seen almost exclusively on fruit. However, infected plants can be a source of virus for dissemination by insects. Primers specific for PMeV were designed based on nucleotide sequences of the viral dsRNA obtained using a RT-RAPD approach. When tested for RT-PCR amplification, one of these primers (C05-3') amplified a 669-nucleotide fragment using dsRNA obtained from purified virus particles as a template. The translated sequence of this DNA fragment showed a certain degree of similarity to the amino acid sequence of RNA-dependent RNA polymerases from other dsRNA viruses. When used as the single primer in two RT-PCR kits available commercially, primer C05-3' also amplified the DNA fragment from papaya latex of infected, but not from healthy plants. The RT-PCR-based method developed in this study could simplify early plant disease diagnosis, assist in monitoring the dissemination of the pathogen within and between fields, and assist in guiding plant disease management.

  13. [Detection of tobacco mosaic virus (TMV) in Rehmannia glutinosa f. hueichingensis by IC-RT-PCR].

    PubMed

    Du, Lin; Xiang, Jin-Le; Fan, Jin-Ling; Li, Xin; Luo, Lei

    2013-07-01

    To establish a rapid, sensitive and efficient detection method for tobacco mosaic virus (TMV), and provide technical support of TMV detection of Rehmannia glutinosa f. hueichingensis. The virus-free plantlets could be produced on a large scale to ameliorate breed degeneration caused by viral disease. Specific primers were designed based on the conserved region of coat protein(CP) gene of TMV. Immunocapture RT-PCR (IC-RT-PCR) was employed to detect TMV and the sequence of the products was detected. The expected nucleotide acid fragments were amplified by IC-RT-PCR. The homology of nucleotide acid sequence and amino acid sequence were 95.29% and 96.7% between the PCR products and the CP gene of TMV (accession number AY555269). The method was established for the detection of TMV in R. glutinosa f. hueichingensis by IC-RT-PCR. This detection combined molecular biology technology with immunology, was convenient for a quick, sensitive and simple detection of TMV.

  14. DETECTION OF HUMAN ENTERIC VIRUSES IN STREAM WATER WITH RT-PCR AND CELL CULTURE

    EPA Science Inventory

    A multiplex RT-PCR method was used to measure virus occurrence at five stream water sites that span a range of hydroclimatic, water-quality, and land-use characteristics. The performance of the molecular method was evaluated in comparison to traditional cell culture and Escherich...

  15. DETECTION OF HUMAN ENTERIC VIRUSES IN STREAM WATER WITH RT-PCR AND CELL CULTURE

    EPA Science Inventory

    A multiplex RT-PCR method was used to measure virus occurrence at five stream water sites that span a range of hydroclimatic, water-quality, and land-use characteristics. The performance of the molecular method was evaluated in comparison to traditional cell culture and Escherich...

  16. Detection of Zika virus by SYBR green one-step real-time RT-PCR.

    PubMed

    Xu, Ming-Yue; Liu, Si-Qing; Deng, Cheng-Lin; Zhang, Qiu-Yan; Zhang, Bo

    2016-10-01

    The ongoing Zika virus (ZIKV) outbreak has rapidly spread to new areas of Americas, which were the first transmissions outside its traditional endemic areas in Africa and Asia. Due to the link with newborn defects and neurological disorder, numerous infected cases throughout the world and various mosquito vectors, the virus has been considered to be an international public health emergency. In the present study, we developed a SYBR Green based one-step real-time RT-PCR assay for rapid detection of ZIKV. Our results revealed that the real-time assay is highly specific and sensitive in detection of ZIKV in cell samples. Importantly, the replication of ZIKV at different time points in infected cells could be rapidly monitored by the real-time RT-PCR assay. Specifically, the real-time RT-PCR showed acceptable performance in measurement of infectious ZIKV RNA. This assay could detect ZIKV at a titer as low as 1PFU/mL. The real-time RT-PCR assay could be a useful tool for further virology surveillance and diagnosis of ZIKV.

  17. Generic RT-PCR tests for detection and identification of tospoviruses.

    PubMed

    Hassani-Mehraban, A; Westenberg, M; Verhoeven, J T J; van de Vossenberg, B T L H; Kormelink, R; Roenhorst, J W

    2016-07-01

    A set of tests for generic detection and identification of tospoviruses has been developed. Based on a multiple sequence alignment of the nucleocapsid gene and its 5' upstream untranslated region sequence from 28 different species, primers were designed for RT-PCR detection of tospoviruses from all recognized clades, i.e. the American, Asian and Eurasian clades, and from the small group of distinct and floating species. Pilot experiments on isolates from twenty different species showed that the designed primer sets successfully detected all species by RT-PCR, as confirmed by nucleotide sequence analysis of the amplicons. In a final optimized design, the primers were applied in a setting of five RT-PCR tests. Seven different tospoviruses were successfully identified from diagnostic samples and in addition a non-described tospovirus species from alstroemeria plants. The results demonstrate that the newly developed generic RT-PCR tests provide a relevant tool for broad detection and identification of tospoviruses in plant quarantine and diagnostic laboratories.

  18. Padlock probe-mediated qRT-PCR for DNA computing answer determination

    PubMed Central

    Xiong, Fusheng; Frasch, Wayne D.

    2011-01-01

    Padlock probe-mediated quantitative real time PCR (PLP-qRT-PCR) was adapted to quantify the abundance of sequential 10mer DNA sequences for use in DNA computing to identify optimal answers of traveling salesman problems. The protocol involves: (i) hybridization of a linear PLP with a target DNA sequence; (ii) PLP circularization through enzymatic ligation; and (iii) qRT-PCR amplification of the circularized PLP after removal of non-circularized templates. The linear PLP was designed to consist of two 10-mer sequence-detection arms at the 5′ and 3′ ends separated by a core sequence composed of universal PCR primers, and a qRT-PCR reporter binding site. Circularization of each PLP molecule is dependent upon hybridization with target sequence and high-fidelity ligation. Thus, the number of PLP circularized is determined by the abundance of target in solution. The amplification efficiency of the PLP was 98.7% within a 0.2 pg–20 ng linear detection range between thermal cycle threshold (Ct value) and target content. The Ct values derived from multiplex qRT-PCR upon three targets did not differ significantly from those obtained with singleplex assays. The protocol provides a highly sensitive and efficient means for the simultaneous quantification of multiple short nucleic acid sequences that has a wide range of applications in biotechnology. PMID:21691417

  19. Identification of Reference Genes for qRT-PCR Analysis in Yesso Scallop Patinopecten yessoensis

    PubMed Central

    Feng, Liying; Yu, Qian; Li, Xue; Ning, Xianhui; Wang, Jing; Zou, Jiajun; Zhang, Lingling; Wang, Shi; Hu, Jingjie; Hu, Xiaoli; Bao, Zhenmin

    2013-01-01

    Background Bivalves comprise around 30,000 extant species and have received much attention for their importance in ecosystems, aquaculture and evolutionary studies. Despite the increasing application of real-time quantitative reverse transcription PCR (qRT-PCR) in gene expression studies on bivalve species, little research has been conducted on reference gene selection which is critical for reliable and accurate qRT-PCR analysis. For scallops, systematic evaluation of reference genes that can be used among tissues or embryo/larva stages is lacking, and β-actin (ACT) is most frequently used as qRT-PCR reference gene without validation. Results In this study, 12 commonly used candidate reference genes were selected from the transcriptome data of Yesso scallop (Patinopecten yessoensis) for suitable qRT-PCR reference genes identification. The expression of these genes in 36 tissue samples and 15 embryo/larva samples under normal physiological conditions was examined by qRT-PCR, and their expression stabilities were evaluated using three statistic algorithms, geNorm, NormFinder, and comparative ∆Ct method. Similar results were obtained by the three approaches for the most and the least stably expressed genes. Final comprehensive ranking for the 12 genes combing the results from the three programs showed that, for different tissues, DEAD-box RNA helicase (HELI), ubiquitin (UBQ), and 60S ribosomal protein L16 (RPL16) were the optimal reference genes combination, while for different embryo/larva stages, gene set containing Cytochrome B (CB), Cytochrome C (CC), Histone H3.3 (His3.3), and Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) were recommended for qRT-PCR normalization. ACT was among the least stable genes for both adult tissues and embryos/larvae. Conclusions This work constitutes the first systematic analysis on reference genes selection for qRT-PCR normalization in scallop under normal conditions. The suitable reference genes we recommended will be useful for

  20. Serogrouping of United States and some African serotypes of bluetongue virus using RT-PCR.

    PubMed

    Aradaib, Imadeldin E; Mohamed, Mohamed E H; Abdalla, Tamadour M; Sarr, Joesph; Abdalla, Mohamed A; Yousof, Mohamed A M; Hassan, Yahia A; Karrar, Abdel Rahim E

    2005-12-20

    The diagnostic potential of RT-PCR for detection of bluetongue virus (BTV) ribonucleic acid (RNA) sequence in cell culture and tissue samples from infected ruminants from United States, Sudan, South Africa and Senegal, was evaluated. The non structural protein 1 (NS1) gene of North American BTV serotype 11 was targeted for PCR amplification. The United States BTV serotypes 2, 10, 11, 13 and 17 and the Sudanese BTV serotypes 1, 2, 4 and 16 and BTV serotype 4 from South Africa and BTV serotype 2 from Senegal were studied. RNAs from all BTV field isolates used in this study, propagated in cell cultures, were detected by the described RT-PCR-based assay. The first specific 790bp BTV PCR products were amplified using a pair of outer primers (BTV1 and BTV2). Specificity of the PCR products was confirmed by a nested amplification of a 520bp PCR product using a pair of internal (nested) primers (BTV3 and BTV4). The BTV PCR products were visualized on ethidium bromide-stained agarose gels. Amplification products were not detected when the RT-PCR-based assay was applied to RNAs from closely related orbiviruses including, epizootic hemorrhagic disease virus (EHDV) prototypes serotypes 1, 2, 4; RNA from Sudanese isolate of palyam orbiviruses serogroup and total nucleic acid extracts from uninfected Vero cells. Application of the nested BTV RT-PCR to clinical samples resulted in amplification of BTV RNA from blood and serum samples from goats experimentally infected with BTV4 and from naturally infected sheep, goats, cattle and deer. The results of this study indicated that this RT-PCR assay could be applied for rapid detection of BTV, in cell culture and clinical samples from susceptible ruminants during an outbreak of the disease, in the United States and African.

  1. A comparison of in situ hybridisation, reverse transcriptase-polymerase chain reaction (RT-PCR) and in situ-RT-PCR for the detection of canine distemper virus RNA in Paget's disease.

    PubMed

    Hoyland, Judith A; Dixon, Janet A; Berry, Jacqueline L; Davies, Michael; Selby, Peter L; Mee, Andrew P

    2003-05-01

    Previous evidence implicating Paramyxoviruses in the aetiopathology of Paget's disease of bone has proved controversial. Whilst several groups have demonstrated Paramyxoviruses using techniques such as in situ hybridisation (ISH), reverse transcriptase-polymerase chain reaction (RT-PCR), and in situ-RT-PCR (IS-RT-PCR), others have found no evidence of viruses using only RT-PCR. To investigate this latter finding, we have now compared detection of canine distemper virus by ISH, RT-PCR (three different methods) and IS-RT-PCR, in 10 patients with Paget's disease, and samples of non-diseased bone from four patients. Canine distemper virus was detectable in six of the samples by ISH, but only in five of the samples by RT-PCR, using one of the methods. Neither of the other RT-PCR methods detected canine distemper virus. IS-RT-PCR demonstrated canine distemper virus in all 10 samples. There was no evidence of virus in the control samples. We have shown that the ability to detect canine distemper virus in bone is dependent on the technique used. IS-RT-PCR clearly showed that canine distemper virus was present in 100% of Pagetic samples, whereas canine distemper virus was only found in 60% by ISH and in 50% using one particular RT-PCR method. These results provide conclusive evidence that canine distemper virus is present within Pagetic bone, and provide a possible explanation for the failure of some groups to detect Paramyxovirus sequences. These findings also have wider implications for other studies investigating viral expression.

  2. Detection of Banana mild mosaic virus and Banana virus X by polyvalent degenerate oligonucleotide RT-PCR (PDO-RT-PCR).

    PubMed

    Teycheney, Pierre-Yves; Acina, Isabelle; Lockhart, Benham E L; Candresse, Thierry

    2007-06-01

    Viruses are important constraints to the movement and propagation of plant germplasm, especially for vegetatively propagated crops such as banana and plantain. Their control relies primarily on the use of virus-free plant material, whose production and certification requires sensitive and reliable detection methods. An existing polyvalent degenerate oligonucleotide RT-PCR (PDO-RT-PCR) assay was adapted to the detection of Banana mild mosaic virus (BanMMV) and Banana virus X, two Flexiviridae infecting Musa spp. PDO inosine-containing primers were found to be well suited to the detection of BanMMV, despite its high molecular diversity, but not to that of the highly conserved BVX, for which species-specific primers were designed. Sampling and sample processing steps were optimized in order to avoid nucleic acid purification prior to the reverse transcription step. A polyclonal anti-BanMMV antiserum was raised and successfully used for the immunocapture (IC) of BanMMV viral particles from leaf extracts, leading to the development of a PDO-IC-RT-nested PCR assay. Although the anti-BanMMV antiserum could to some extent recognize BVX viral particles, direct binding (DB) was shown to be a more efficient method for processing BVX-infected samples and a PDO-DB-RT-nested PCR assay was developed for the detection of BVX from leaf extracts.

  3. Comparative Evaluation of Norovirus Infection in Children with Acute Gastroenteritis by Rapid Immunochromatographic Test, RT-PCR and Real-time RT-PCR.

    PubMed

    Kumthip, Kattareeya; Khamrin, Pattara; Saikruang, Wilaiporn; Supadej, Kanittapon; Ushijima, Hiroshi; Maneekarn, Niwat

    2017-03-02

    Immunochromatographic (IC) test for norovirus detection is a rapid and simple detection method. This study evaluated the sensitivity and specificity of a recent version of R-Biopharm RIDA®QUICK Norovirus IC assay for norovirus detection in fecal specimens from children hospitalized with acute gastroenteritis. Fecal specimens were tested by IC kit in comparison with gold standard reverse transcription polymerase chain reaction (RT-PCR) and real-time RT-PCR. The IC kit showed high sensitivity and specificity comparable with PCR-based methods. None of false positive and false negative was found and the assay did not cross-react with other gastroenteritis viruses. The IC assay could detect genogroup I.5 (GI.5) and a wide range of genotypes in the GII noroviruses including GII.3, GII.4, GII.6, GII.7, GII.14, GII.15, GII.21, and also newly emerging GII.17 norovirus. In conclusion, this norovirus IC kit could be an alternative choice for rapid screening or a quick diagnostic tool for norovirus detection in fecal specimens of acute gastroenteritis patients.

  4. Comparison and evaluation of conventional RT-PCR, SYBR green I and TaqMan real-time RT-PCR assays for the detection of porcine epidemic diarrhea virus.

    PubMed

    Zhou, Xinrong; Zhang, Tiansheng; Song, Deping; Huang, Tao; Peng, Qi; Chen, Yanjun; Li, Anqi; Zhang, Fanfan; Wu, Qiong; Ye, Yu; Tang, Yuxin

    2017-06-01

    Porcine epidemic diarrhea (PED) caused by porcine epidemic diarrhea virus (PEDV) is a highly contagious intestinal disease, resulting in substantial economic losses to the swine industry worldwide. In this study, three assays, namely a conventional reverse transcription-polymerase chain reaction (RT-PCR), a SYBR Green I real-time RT-PCR and a TaqMan real-time RT-PCR targeting the highly conserved M gene of PEDV, were developed and evaluated. Then, the analytical specificity, sensitivity and reproducibility of these assays were determined and compared. The TaqMan real-time RT-PCR was 100-fold and 10,000-fold more sensitive than that of the SYBR Green I real-time RT-PCR and the conventional RT-PCR, respectively. The analytical sensitivity of TaqMan real-time RT-PCR was 10 copies/μl of target gene and no cross amplification with other viruses tested was observed. With the features of high specificity, sensitivity, and reproducibility, the TaqMan real-time RT-PCR established in this study could be a useful tool for clinical diagnosis, epidemiological surveys and outbreak investigations of PED. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Identification of duchenne muscular dystrophy female carriers by fluorescence in situ hybridization and RT-PCR.

    PubMed

    Velázquez-Wong, Ana Claudia; Hernández-Huerta, César; Márquez-Calixto, Areli; Hernández-Aguilar, Fidel Omar; Rodríguez-Cruz, Maricela; Salamanca-Gómez, Fabio; Coral-Vázquez, Ramón

    2008-06-01

    Duchenne muscular dystrophy (DMD) is an X-linked recessive neuromuscular disorder caused by mutations in the dystrophin DMD gene located at Xp21.1 region. Up to 65% of the patients present dystrophin gene deletions. Mothers of DMD patients have a two-thirds chance of carrying a dystrophin mutation. The female carrier will transmit the disease gene to half of her sons and half of her daughters. As the recurrence risk for the disease is extremely high, it is very important to detect carrier status among female relatives of the patients to bring an adequate genetic counseling. In this work, results from two methods to identify female carriers are presented. One method is a multicolor fluorescence in situ hybridization (FISH) assay, and the other is reverse transcriptase-polymerase chain reaction (RT-PCR). We showed that FISH is an efficient, sensitive method that brings confident results to detect DMD female carriers as compared to RT-PCR.

  6. Highly Specific Detection of Five Exotic Quarantine Plant Viruses using RT-PCR

    PubMed Central

    Choi, Hoseong; Cho, Won Kyong; Yu, Jisuk; Lee, Jong-Seung; Kim, Kook-Hyung

    2013-01-01

    To detect five plant viruses (Beet black scorch virus, Beet necrotic yellow vein virus, Eggplant mottled dwarf virus, Pelargonium zonate spot virus, and Rice yellow mottle virus) for quarantine purposes, we designed 15 RT-PCR primer sets. Primer design was based on the nucleotide sequence of the coat protein gene, which is highly conserved within species. All but one primer set successfully amplified the targets, and gradient PCRs indicated that the optimal temperature for the 14 useful primer sets was 51.9°C. Some primer sets worked well regardless of annealing temperature while others required a very specific annealing temperature. A primer specificity test using plant total RNAs and cDNAs of other plant virus-infected samples demonstrated that the designed primer sets were highly specific and generated reproducible results. The newly developed RT-PCR primer sets would be useful for quarantine inspections aimed at preventing the entry of exotic plant viruses into Korea. PMID:25288934

  7. Multiplex RT-PCR detection of three common viruses infecting orchids.

    PubMed

    Ali, Raymond N; Dann, Alison L; Cross, Peter A; Wilson, Calum R

    2014-11-01

    A multiplex reverse transcription polymerase chain reaction (RT-PCR) assay was developed for simultaneous detection of three orchid viruses: cymbidium mosaic virus (CymMV), odontoglossum ringspot virus (ORSV), and orchid fleck virus (OFV). Primers were used to amplify nucleocapsid protein gene fragments of 845 bp (ORSV), 505 bp (CymMV) and 160 bp (OFV). A 60-bp amplicon of plant glyceraldehyde-3-phophate dehydrogenase mRNA was included as an internal control against false negatives. The assay was validated against 31 collected plants from six orchid genera and compared with results obtained by transmission electron microscopy (TEM). The RT-PCR assay proved more sensitive than TEM for detection of OFV.

  8. A host-based RT-PCR gene expression signature to identify acute respiratory viral infection.

    PubMed

    Zaas, Aimee K; Burke, Thomas; Chen, Minhua; McClain, Micah; Nicholson, Bradly; Veldman, Timothy; Tsalik, Ephraim L; Fowler, Vance; Rivers, Emanuel P; Otero, Ronny; Kingsmore, Stephen F; Voora, Deepak; Lucas, Joseph; Hero, Alfred O; Carin, Lawrence; Woods, Christopher W; Ginsburg, Geoffrey S

    2013-09-18

    Improved ways to diagnose acute respiratory viral infections could decrease inappropriate antibacterial use and serve as a vital triage mechanism in the event of a potential viral pandemic. Measurement of the host response to infection is an alternative to pathogen-based diagnostic testing and may improve diagnostic accuracy. We have developed a host-based assay with a reverse transcription polymerase chain reaction (RT-PCR) TaqMan low-density array (TLDA) platform for classifying respiratory viral infection. We developed the assay using two cohorts experimentally infected with influenza A H3N2/Wisconsin or influenza A H1N1/Brisbane, and validated the assay in a sample of adults presenting to the emergency department with fever (n = 102) and in healthy volunteers (n = 41). Peripheral blood RNA samples were obtained from individuals who underwent experimental viral challenge or who presented to the emergency department and had microbiologically proven viral respiratory infection or systemic bacterial infection. The selected gene set on the RT-PCR TLDA assay classified participants with experimentally induced influenza H3N2 and H1N1 infection with 100 and 87% accuracy, respectively. We validated this host gene expression signature in a cohort of 102 individuals arriving at the emergency department. The sensitivity of the RT-PCR test was 89% [95% confidence interval (CI), 72 to 98%], and the specificity was 94% (95% CI, 86 to 99%). These results show that RT-PCR-based detection of a host gene expression signature can classify individuals with respiratory viral infection and sets the stage for prospective evaluation of this diagnostic approach in a clinical setting.

  9. Multiple gene detection by in situ RT-PCR in isolated plant cells and tissues.

    PubMed

    Pesquet, Edouard; Barbier, Odile; Ranocha, Philippe; Jauneau, Alain; Goffner, Deborah

    2004-09-01

    With the number of functional genomic approaches in plant biology increasing daily, the demand for rapid and reliable RNA localization techniques for gene characterization is being felt. We present herein a novel, liquid phase in situ RT-PCR (IS-RT-PCR) protocol using a combination of gene-specific fluorescent primers and spectral confocal microscopy to localize target RNA in epicotyl sections and xylogenic suspension cultures of Zinnia elegans. Potential sources of artefacts from fixation to gene detection were systematically eliminated using both fluorescent primers and nucleotides for 18S rRNA gene detection, resulting in a set of optimal parameters for IS-RT-PCR that may be readily adapted to any target gene. By judiciously choosing fluorescent primers with non-overlapping fluorochromes, we have shown that our technique is readily adapted to multiplex IS-RT-PCR, enabling the simultaneous localization of more than one gene within a complex tissue or heterogeneous cell population. A 6-carboxy-2',4,4',5',7,7'-hexachlorofluorescein (6-HEX)-labelled primer and a tetrachloro-6-carboxy-fluorescein (TET)-labelled primer were designed for two marker genes associated with programmed cell death in tracheary elements (TEs): an endonuclease (Zen1) and a cysteine protease (ZcP4), respectively. An additional Cyan5 (Cy5)-labelled primer was used to monitor 18SrRNA expression. As expected, the 18S signal was constitutively expressed throughout epicotyls sections and living cells in xylogenic in vitro cultures, whereas Zen1 and ZcP4 were co-localized in forming TEs both in planta and in vitro. Analogous to clustering analysis of gene expression using microarrays to elucidate common metabolic pathways and developmental processes, this novel technique is perfectly adapted to gaining a better understanding of gene function via the coordinated expression of genes in specific cell types of complex tissues and cell populations.

  10. Detection of Schmallenberg virus in different Culicoides spp. by real-time RT-PCR.

    PubMed

    De Regge, N; Deblauwe, I; De Deken, R; Vantieghem, P; Madder, M; Geysen, D; Smeets, F; Losson, B; van den Berg, T; Cay, A B

    2012-12-01

    To identify possible vectors of Schmallenberg virus (SBV), we tested pools containing heads of biting midges (Culicoides) that were caught during the summer and early autumn of 2011 at several places in Belgium by real-time RT-PCR. Pools of heads originating from following species: C. obsoletus complex, C. dewulfi and C. chiopterus were found positive, strongly indicating that these species are relevant vectors for SBV.

  11. Utility of Linearly Amplified RNA for RT-PCR Detection of Chromosomal Translocations

    PubMed Central

    Schumacher, Jonathan A.; Jenson, Stephen D.; Elenitoba-Johnson, Kojo S. J.; Lim, Megan S.

    2004-01-01

    The requirement for sufficient quantities of starting RNA has limited the ability to evaluate multiple transcripts using reverse transcriptase-polymerase chain reaction (RT-PCR). In this study, we demonstrate the utility of linear RNA amplification for RT-PCR analysis of multiple gene transcripts including a chromosomal translocation, using the t(2;5)(p23;q35) as a model. RNA from the t(2;5)-positive cell line, SU-DHL-1, and the t(2;5)-negative cell line, HUT-78, was extracted and exposed to two rounds of linear amplification. RT-PCR using cDNA from the resultant amplified (a) RNA and total RNA resulted in the 177 bp NPM-ALK fusion gene product from the SU-DHL-1 cell line, but not from aRNA or total RNA from the HUT-78 cell line. DNA sequencing of the RT-PCR products from total and aRNA of SU-DHL-1 cells demonstrated identical sequences corresponding to the NPM-ALK fusion gene. Evaluation of 25 snap-frozen tissue samples, including eight NPM-ALK-positive ALCLs demonstrated 100% concordance of t(2;5) detection between cDNA from total RNA and that from aRNA. Our results show that linear amplification of RNA can enhance starting RNA greater than 200-fold and can be used for rapid and specific detection of multiplex gene expression from a variety of sources. This method can generate a renewable archive of representative cDNA, which can be used for retrospective screening of stored samples as well as positive controls for the clinical molecular diagnostic laboratory. PMID:14736822

  12. MPT0B169, a New Antitubulin Agent, Inhibits Bcr-Abl Expression and Induces Mitochondrion-Mediated Apoptosis in Nonresistant and Imatinib-Resistant Chronic Myeloid Leukemia Cells.

    PubMed

    Wong, Shuit-Mun; Liu, Fu-Hwa; Lee, Yueh-Lun; Huang, Huei-Mei

    2016-01-01

    Chronic myeloid leukemia (CML) is a clonal disorder of hematopoietic stem/progenitor cells that is caused by the Bcr-Abl oncoprotein. Clinical resistance to the Bcr-Abl inhibitor imatinib is a critical problem in treating CML. This study investigated the antitumor effect and mechanism of MPT0B169, a new antitubulin agent, in K562 CML cells and their derived imatinib-resistant cells, IMR2 and IMR3. IMR2 and IMR3 cells showed complete resistance to imatinib-induced growth inhibition and apoptosis. Resistance involved ERK1/2 overactivation and MDR1 overexpression. MPT0B169 inhibited the growth of K562, IMR2, and IMR3 cells in a dose- and time-dependent manner. MPT0B169 substantially inhibited the mRNA and protein levels of Bcr-Abl, followed by its downstream pathways including Akt, ERK1/2, and STAT3 in these cells. MPT0B169 treatment resulted in a decrease in the polymer form of tubulin according to Western blot analysis. It triggered cell cycle arrest at the G2/M phase before apoptosis, which was related to the upregulation of the mitotic marker MPM2 and the cyclin B1 level, and a change in the phosphorylation of Cdk1. MPT0B169 induced apoptosis in nonresistant and imatinib-resistant cells via a mitochondrion-mediated caspase pathway. Further study showed that the agent led to a decrease in the antiapoptotic proteins Bcl-2, Bcl-xL, and Mcl-1 and an increase in the apoptotic protein Bax. Taken together, our results suggest that MPT0B169 might be a promising agent for overcoming imatinib resistance in CML cells.

  13. Proteasome inhibitor MG-132 enhances histone deacetylase inhibitor SAHA-induced cell death of chronic myeloid leukemia cells by an ROS-mediated mechanism and downregulation of the Bcr-Abl fusion protein

    PubMed Central

    ZHOU, WENJING; ZHU, WEIWEI; MA, LIYA; XIAO, FENG; QIAN, WENBIN

    2015-01-01

    Recently, there has been progress in the treatment of chronic myeloid leukemia (CML). However, novel therapeutic strategies are required in order to address the emerging problem of imatinib resistance. Histone deacetylase inhibitors (HDACi) and proteasome inhibitors are promising alternatives, and may be amenable to integration with current therapeutic approaches. However, the mechanisms underlying the interaction between these two agents remain unclear. The present study assessed the cytotoxic effect of the HDACi, suberoylanilide hydroxamic acid (SAHA), in combination with the proteasome inhibitor, MG-132, in imatinib-sensitive K562 and imatinib-resistant K562G cells, and investigated the mechanism underlying this effect. Cell viability was measured using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide method and protein expression levels were determined by western blotting. Reactive oxygen species (ROS) generation levels were observed under a fluorescence microscope The results indicated that SAHA and MG-132 act in a synergistic manner to induce cell death in K562 and K562G cells. This effect was associated with Bcr-Abl downregulation and the production of ROS. Notably, the ROS scavenger, N-acetyl-L-cysteine, almost fully reversed the cell death and Bcr-Abl downregulation that was induced by the combination of SAHA and MG-132. By contrast, the pan-caspase inhibitor, z-VAD-fmk, only partially reversed the cell death induced by these two drugs in CML cells. These results indicated that increased intracellular ROS levels are important in the induction of cell death and the downregulation of Bcr-Abl. In conclusion, the present results suggested that combined SAHA and MG-132 may be a promising treatment for CML. PMID:26722260

  14. Early landmark analysis of imatinib treatment in CML chronic phase: less than 10% BCR-ABL by FISH at 3 months associated with improved long-term clinical outcome.

    PubMed

    Ohm, Lotta; Arvidsson, Ingrid; Barbany, Gisela; Hast, Robert; Stenke, Leif

    2012-08-01

    Imatinib has dramatically improved the clinical outcome in chronic myeloid leukemia, chronic phase (CMLcp), but a risk of resistance and serious disease progression still prevails. We have studied 45 newly diagnosed CMLcp patients initiated on imatinib, assessing treatment responses by interphase extral signal (ES)-fluorescence in situ hybridization (FISH), quantitative real-time (q-RT) polymerase chain reaction (PCR), and chromosome banding analysis. In a landmark analysis, an early favorable response, defined as less than 10% BCR-ABL-positive cells by FISH after 3 months of treatment, was identified as a predictive marker of an improved long-term clinical outcome. Of evaluable patients, 51% achieved this response. A large majority, 95% of such responders reached complete cytogenetic responses (CCyR) within 12 months and 100% event-free survival (EFS) at 48 months, when compared with 67 and 65%, respectively, of patients with higher breakpoint cluster region - Abelson (BCR-ABL) positivity at 3 months (P = 0.04; P = 0.006). No similar, significant correlations were noted between early disease assessments with PCR of BCR-ABL mRNA transcripts or of cytogenetics versus a 12-month CCyR or long-term EFS. Our data, based on a limited patient cohort, indicate that (i) FISH can effectively be used in the early assessment of remaining Ph-positive cells to identify patients at risk for a long-term nonoptimal response to imatinib and that (ii) FISH may be more useful than PCR for this purpose. Copyright © 2012 Wiley Periodicals, Inc.

  15. Investigation of Reference Genes in Vibrio parahaemolyticus for Gene Expression Analysis Using Quantitative RT-PCR.

    PubMed

    Ma, Yue-Jiao; Sun, Xiao-Hong; Xu, Xiao-Yan; Zhao, Yong; Pan, Ying-Jie; Hwang, Cheng-An; Wu, Vivian C H

    2015-01-01

    Vibrio parahaemolyticus is a significant human pathogen capable of causing foodborne gastroenteritis associated with the consumption of contaminated raw or undercooked seafood. Quantitative RT-PCR (qRT-PCR) is a useful tool for studying gene expression in V. parahaemolyticus to characterize its virulence factors and understand the effect of environmental conditions on its pathogenicity. However, there is not a stable gene in V. parahaemolyticus that has been identified for use as a reference gene for qRT-PCR. This study evaluated the stability of 6 reference genes (16S rRNA, recA, rpoS, pvsA, pvuA, and gapdh) in 5 V. parahaemolyticus strains (O3:K6-clinical strain-tdh+, ATCC33846-tdh+, ATCC33847-tdh+, ATCC17802-trh+, and F13-environmental strain-tdh+) cultured at 4 different temperatures (15, 25, 37 and 42°C). Stability values were calculated using GeNorm, NormFinder, BestKeeper, and Delta CT algorithms. The results indicated that recA was the most stably expressed gene in the V. parahaemolyticus strains cultured at different temperatures. This study examined multiple V. parahaemolyticus strains and growth temperatures, hence the finding provided stronger evidence that recA can be used as a reference gene for gene expression studies in V. parahaemolyticus.

  16. Real-Time RT-PCR for the Detection of Lyssavirus Species

    PubMed Central

    Deubelbeiss, A.; Zahno, M.-L.; Zanoni, M.; Bruegger, D.; Zanoni, R.

    2014-01-01

    The causative agents of rabies are single-stranded, negative-sense RNA viruses in the genus Lyssavirus of Rhabdoviridae, consisting of twelve classified and three as yet unclassified species including classical rabies virus (RABV). Highly neurotropic RABV causes rapidly progressive encephalomyelitis with nearly invariable fatal outcome. Rapid and reliable diagnosis of rabies is highly relevant for public and veterinary health. Due to growing variety of the genus Lyssavirus observed, the development of suitable molecular assays for diagnosis and differentiation is challenging. This work focused on the establishment of a suitable real-time RT-PCR technique for rabies diagnosis as a complement to fluorescent antibody test and rabies tissue culture infection test as gold standard for diagnosis and confirmation. The real-time RT-PCR was adapted with the goal to detect the whole spectrum of lyssavirus species, for nine of which synthesized DNA fragments were used. For the detection of species, seven probes were developed. Serial dilutions of the rabies virus strain CVS-11 showed a 100-fold higher sensitivity of real-time PCR compared to heminested RT-PCR. Using a panel of thirty-one lyssaviruses representing four species, the suitability of the protocol could be shown. Phylogenetic analysis of the sequences obtained by heminested PCR allowed correct classification of all viruses used. PMID:26464934

  17. Investigation of Reference Genes in Vibrio parahaemolyticus for Gene Expression Analysis Using Quantitative RT-PCR

    PubMed Central

    Ma, Yue-jiao; Sun, Xiao-hong; Xu, Xiao-yan; Zhao, Yong; Pan, Ying-jie; Hwang, Cheng-An; Wu, Vivian C. H.

    2015-01-01

    Vibrio parahaemolyticus is a significant human pathogen capable of causing foodborne gastroenteritis associated with the consumption of contaminated raw or undercooked seafood. Quantitative RT-PCR (qRT-PCR) is a useful tool for studying gene expression in V. parahaemolyticus to characterize its virulence factors and understand the effect of environmental conditions on its pathogenicity. However, there is not a stable gene in V. parahaemolyticus that has been identified for use as a reference gene for qRT-PCR. This study evaluated the stability of 6 reference genes (16S rRNA, recA, rpoS, pvsA, pvuA, and gapdh) in 5 V. parahaemolyticus strains (O3:K6-clinical strain-tdh+, ATCC33846-tdh+, ATCC33847-tdh+, ATCC17802-trh+, and F13-environmental strain-tdh+) cultured at 4 different temperatures (15, 25, 37 and 42°C). Stability values were calculated using GeNorm, NormFinder, BestKeeper, and Delta CT algorithms. The results indicated that recA was the most stably expressed gene in the V. parahaemolyticus strains cultured at different temperatures. This study examined multiple V. parahaemolyticus strains and growth temperatures, hence the finding provided stronger evidence that recA can be used as a reference gene for gene expression studies in V. parahaemolyticus. PMID:26659406

  18. Analytical and clinical performance of a Chikungunya qRT-PCR for Central and South America.

    PubMed

    Edwards, Thomas; Del Carmen Castillo Signor, Leticia; Williams, Christopher; Larcher, Clément; Espinel, Mauricio; Theaker, Jane; Donis, Evelin; Cuevas, Luis E; Adams, Emily R

    2017-09-01

    Chikungunya was introduced into the Americas in 2015 causing a pandemic across the continent. Testing during the acute phase of infection relies on qRT-PCR, but available assays have a number of limitations. A qRT-PCR assay specific to the chikungunya E1 gene was designed using sequence data from contemporary strains. A probit analysis established the 95% limit of detection as 19.6 copies per reaction. We compared the assay with a US Centers for Disease Control (CDC) chikungunya qRT-PCR as the reference standard. The assay had a sensitivity and specificity of 98.4% and 100% in 90 samples retrospectively collected in Guatemala. In a further 74 febrile samples prospectively collected in Ecuador and Guatemala the test had a sensitivity and specificity of 100% and 98.4%, respectively. Sequencing the nsp4 gene of the discordant positive sample indicated the presence of chikungunya RNA, and mismatches to the primer binding sites of the CDC assay. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Detection of morbillivirus infection by RT-PCR RFLP analysis in cetaceans and carnivores.

    PubMed

    Verna, Federica; Giorda, Federica; Miceli, Ilaria; Rizzo, Giovanna; Pautasso, Alessandra; Romano, Angelo; Iulini, Barbara; Pintore, Maria Domenica; Mignone, Walter; Grattarola, Carla; Bozzetta, Elena; Varello, Katia; Dondo, Alessandro; Casalone, Cristina; Goria, Maria

    2017-09-01

    Morbillivirus genus comprises several members related to specific hosts, such as canine distemper virus (CDV) and cetacean morbillivirus (CeMV) in which the dolphin morbillivirus (DMV) is included. Both CDV and DMV are able to cause serious outbreak associated with high morbidity and mortality representing an important conservation threat for terrestrial and aquatic mammalian species. This paper describes a new RT-PCR RFLP technique based on a RT-PCR with degenerate primers targeting a 287 bp fragment located on the conserved N terminus of the morbillivirus NP gene, followed by MseI RFLP, in order both to confirm the detection of the virus and to distinguish DMV from CDV. Both carnivores and cetaceans tissues (brain, lung and lymph node) presenting evidence of morbillivirus infection (MI) were analyzed. RT-PCR positive samples were typed by RFLP analysis and then sequenced to confirm the RFLP results. This method was applied during the last morbillivirus cetacean die-off occurred in the Mediterranean basin in 2013, when there was the urgent need of a rapid and economic method to investigate among causes of death on stranded cetaceans. This new technique has proved to be a valuable, reliable, simple and relatively inexpensive diagnostic tool easily applicable also in limited-resource laboratories. Copyright © 2017. Published by Elsevier B.V.

  20. Validation of reference genes for real-time quantitative RT-PCR studies in Talaromyces marneffei.

    PubMed

    Dankai, Wiyada; Pongpom, Monsicha; Vanittanakom, Nongnuch

    2015-11-01

    Talaromyces marneffei (or Penicillium marneffei) is an opportunistic pathogen that can cause disseminated disease in human immunodeficiency virus (HIV)-infected patients, especially in Southeast Asia. T. marneffei is a thermally dimorphic fungus. Typically, T. marneffei has an adaptive morphology. It grows in a filamentous form (mould) at 25°C and can differentiate to produce asexual spores (conidia). In contrast, at 37°C, it grows as yeast cells that divide by fission. This study aimed to validate a quantitative reverse-transcription polymerase chain reaction (qRT-PCR) for gene expression analysis in T. marneffei. Analysis of relative gene expression by qRT-PCR requires normalization of data using a proper reference gene. However, suitable reference genes have not been identified in gene expression studies across different cell types or under different experimental conditions in T. marneffei. In this study, four housekeeping genes were selected for analysis: β-actin (act); glyceraldehyde-3-phosphate dehydrogenase (gapdh); β-tubulin (benA) and 18S rRNA. Two analysis programs; BestKeeper and geNorm software tools were used to validate the expression of the candidate normalized genes. The results indicated that the actin gene was the one which was most stably expressed and was recommended for use as the endogenous control for gene expression analysis of all growth forms in T. marneffei by qRT-PCR under normal and stress conditions. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Liquid phase fluorescence in situ RT-PCR analysis for gene expression analysis in woody stems.

    PubMed

    Gray-Mitsumune, M; Abe, H; Takahashi, J; Sundberg, B; Mellerowicz, E J

    2004-01-01

    We explore a rapid in situ RT-PCR protocol for gene expression studies in woody stem tissues. In situ RT-PCR was performed using fluorescent dye-conjugated nucleic acid and the fluorescence signals derived from target RNAs were detected using confocal laser scanning microscopy. The signal to background ratio was greatly enhanced by performing two rounds of PCR reactions, first without the fluorescent dye and second with the dye. Using this protocol, we obtained strong gene-specific signals in secondary stem tissues. The signals were PCR-dependent, as shown by the lack of cytoplasmic signals in the tissue sections in which either DNA polymerase or primers were omitted from PCR reactions, and were RNA-dependent, as shown by great reduction of cytoplasmic signals when sections were treated with RNase before RT reactions. To verify our protocol, transcript localization of the rbcS gene was examined in secondary stems of hybrid aspen ( Populus tremula L. x tremuloides Michx.) and compared to the chlorophyll autofluorescence signal. The in situ RT-PCR signals form the rbcS gene and chlorophyll autofluorescence co-localized in the same cell types. The signal was also confirmed by Northern blot analysis of isolated RNA from the cambium and developing xylem, thus confirming the validity of the protocol. Some difficulties of in situ transcript localization and the interpretation of the signal distribution in the secondary tissues are discussed.

  2. Mass scale screening of common arboviral infections by an affordable, cost effective RT-PCR method

    PubMed Central

    Taraphdar, Debjani; Sarkar, Arindam; Chatterjee, Shyamalendu

    2012-01-01

    Objective To develop a rapid, cost effective RT-PCR method for the mass scale diagnosis of such diseases at the viremia stage to find out the actual disease burden in that area. Methods For this purpose, cases with the history of only short febrile illness were considered. Thus 157 samples with the history of dengue/chikungunya like illness and only 58 samples with a history of acute encephalitis syndrome (AES) were selected. Results Out of 157 samples, 42 and 74 were detected as dengue and chikungunya, respectively and out of 58 AES cases only 23 could be detected as Japanese encephalitis by this RT-PCR method. Conclusions This cost effective RT-PCR method can detect the total positive cases that remain undetected by ELISA method. Moreover, this method is capable to detect the viral RNA from patients' sera even after the appearance of IgM antibody at one fifth costs as compared with the other commercially available kits. PMID:23569876

  3. Introduction of a novel parechovirus RT-PCR clinical test in a regional medical center.

    PubMed

    Renaud, Christian; Kuypers, Jane; Ficken, Elle; Cent, Anne; Corey, Lawrence; Englund, Janet A

    2011-05-01

    Although data documenting the severity and frequency of human parechovirus (HPeV) infections have been published, detection of HPeV is not routinely performed in most clinical virology laboratories. To describe diagnostic yield, epidemiology and clinical characteristics of patients infected with HPeV during the first year using a new HPeV reverse transcription (RT)-PCR. We introduced an HPeV RT-PCR for the routine testing of cerebrospinal fluid (CSF) and blood samples submitted to our clinical laboratory for detection of human enteroviruses (HEV). Prospective testing of samples with retrospective analysis of medical charts was performed. Of the 499 clinical samples received between May, 2009 and May, 2010, 9.6% (46 patients) had HEV detected and 3.4% (15 patients) had HPeV detected. All patients infected by HPeV were <3 months old, hospitalized between June and October 2009, and all typed viruses were HPeV3. Clinical characteristics of HPeV and HEV infected infants were similar. However, patients infected with HPeV were more likely to have a normal leukocyte count in their CSF (p<0.001). One HPeV3-infected infant developed encephalitis and another developed hepatitis. In our institution, the HPeV RT-PCR was useful to diagnose a novel pathogen in infants with sepsis-like disease. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. How Many Microorganisms Are Present? Quantitative Reverse Transcription PCR (qRT-PCR)

    NASA Astrophysics Data System (ADS)

    Price, Andy; Álvarez, Laura Acuña; Whitby, Corinne; Larsen, Jan

    Quantitative reverse transcription PCR (qRT-PCR) is a variation of conventional quantitative or real-time PCR, whereby mRNA is first converted into the complementary DNA (cDNA) by reverse transcription, the cDNA is then subsequently quantified by qPCR. The use of mRNA as the initial template allows the quantification of gene transcripts, rather than gene copy numbers. mRNA is only produced by actively metabolising cells and is produced by its corresponding gene to provide a 'blueprint' in order for a cell to manufacture a specific protein. Conventional qPCR detects not only DNA present in actively metabolising cells but also inactive and dead cells. qRT-PCR has the advantage that only actively metabolising cells are detected, hence provides a more reliable measure of microbial activity in oilfield samples. When qRT-PCR is combined with primers and probes for specific genes, the activity of microbial processes important in the oilfield, such as sulphate reduction, methanogenesis and nitrate reduction can be monitored.

  5. C3G forms complexes with Bcr-Abl and p38α MAPK at the focal adhesions in chronic myeloid leukemia cells: implication in the regulation of leukemic cell adhesion

    PubMed Central

    2013-01-01

    Background Previous studies by our group and others have shown that C3G interacts with Bcr-Abl through its SH3-b domain. Results In this work we show that C3G and Bcr-Abl form complexes with the focal adhesion (FA) proteins CrkL, p130Cas, Cbl and Abi1 through SH3/SH3-b interactions. The association between C3G and Bcr-Abl decreased upon Abi1 or p130Cas knock-down in K562 cells, which suggests that Abi1 and p130Cas are essential partners in this interaction. On the other hand, C3G, Abi1 or Cbl knock-down impaired adhesion to fibronectin, while p130Cas silencing enhanced it. C3G, Cbl and p130Cas-SH3-b domains interact directly with common proteins involved in the regulation of cell adhesion and migration. Immunoprecipitation and immunofluorescence studies revealed that C3G form complexes with the FA proteins paxillin and FAK and their phosphorylated forms. Additionally, C3G, Abi1, Cbl and p130Cas regulate the expression and phosphorylation of paxillin and FAK. p38α MAPK also participates in the regulation of adhesion in chronic myeloid leukemia cells. It interacts with C3G, CrkL, FAK and paxillin and regulates the expression of paxillin, CrkL and α5 integrin, as well as paxillin phosphorylation. Moreover, double knock-down of C3G/p38α decreased adhesion to fibronectin, similarly to the single silencing of one of these genes, either C3G or p38α. These suggest that C3G and p38α MAPK are acting through a common pathway to regulate cell adhesion in K562 cells, as previously described for the regulation of apoptosis. Conclusions Our results indicate that C3G-p38αMAPK pathway regulates K562 cell adhesion through the interaction with FA proteins and Bcr-Abl, modulating the formation of different protein complexes at FA. PMID:23343344

  6. Real Time Polymerase Chain Reaction (rt-PCR): A New Patent to Diagnostic Purposes for Paracoccidioidomycosis.

    PubMed

    Rocha-Silva, Fabiana; Gomes, Luciana I; Gracielle-Melo, Cidiane; Goes, Alfredo M; Caligiorne, Rachel B

    2017-01-01

    Paracoccidioidomycosis (PCM) is a systemic mycosis caused by dimorphic fungi Paracoccidioides brasiliensis and Paracoccidioides lutzii. It is prevalent in Latin American, mainly in Brazil. Therefore, PCM has fundamental impact on the Brazilian global economy, especially in public health system, since it is affecting economical active population in different country regions. The present study aimed to standardize the Real Time-Polymerase Chain Reaction (rt-PCR) for an efficient and safe PCM diagnosis amplifying the recombinant protein PB27 gene, only expressed by specimens of Paracoccidioides genus. To standardize a methodology of rt-PCR using species-specific primers and probe designed for annealing in this specific region of the fungi´s genome, amplifying the recombinant protein PB27 gene, only expressed by specimens of Paracoccidioides genus. Followed by design in silico, experiments were performed in vitro to determine rt-PCR specificity, efficiency and genome detection limit. The primers and probe sequences were deposited in Brazilian Coordination of Technological Innovation and Transfer (CTIT), under patent reference number BR1020160078830. The present study demonstrated the rt-PCR applicability for support on diagnosis of paracoccidioidomycosis, presenting low cost, which makes it affordable for public health services in developing countries as Brazil. It is noteworthy that it is necessary to validate this methodology using clinical samples before to use as a safe method of diagnosis. A review of all patents related to this topic was performed and it was shown that, to date, there are no records of patent on kits for paracoccidioidomycosis´s diagnostic. Indeed, there is still a lot to go to reach this goal. The reaction developed was standardized and patented, opening perspectives to molecular diagnosis development for paracoccidioidomycosis, since rt-PCR can be applied to a broad spectrum of infectious diseases. It would need to be tested in biological

  7. Universal Single-Probe RT-PCR Assay for Diagnosis of Dengue Virus Infections

    PubMed Central

    Alm, Erik; Lesko, Birgitta; Lindegren, Gunnel; Ahlm, Clas; Söderholm, Sandra; Falk, Kerstin I.; Lagerqvist, Nina

    2014-01-01

    Background Dengue is a mosquito-borne viral disease that has become more prevalent in the last few decades. Most patients are viremic when they present with symptoms, and early diagnosis of dengue is important in preventing severe clinical complications associated with this disease and also represents a key factor in differential diagnosis. Here, we designed and validated a hydrolysis-probe-based one-step real-time RT-PCR assay that targets the genomes of dengue virus serotypes 1–4. Methodology/Principal Findings The primers and probe used in our RT-PCR assay were designed to target the 3′ untranslated region of all complete genome sequences of dengue virus available in GenBank (n = 3,305). Performance of the assay was evaluated using in vitro transcribed RNA, laboratory-adapted virus strains, external control panels, and clinical specimens. The linear dynamic range was found to be 104–1011 GCE/mL, and the detection limit was between 6.0×102 and 1.1×103 GCE/mL depending on target sequence. The assay did not cross-react with human RNA, nor did it produce false-positive results for other human pathogenic flaviviruses or clinically important etiological agents of febrile illnesses. We used clinical serum samples obtained from returning travelers with dengue-compatible symptomatology (n = 163) to evaluate the diagnostic relevance of our assay, and laboratory diagnosis performed by the RT-PCR assay had 100% positive agreement with diagnosis performed by NS1 antigen detection. In a retrospective evaluation including 60 archived serum samples collected from confirmed dengue cases 1–9 days after disease onset, the RT-PCR assay detected viral RNA up to 9 days after appearance of symptoms. Conclusions/Significance The validation of the RT-PCR assay presented here indicates that this technique can be a reliable diagnostic tool, and hence we suggest that it be introduced as the method of choice during the first 5 days of dengue symptoms. PMID:25522325

  8. Development and implementation of the quality control panel of RT-PCR and real-time RT-PCR for avian influenza A (H5N1) surveillance network in mainland China

    PubMed Central

    2011-01-01

    Background Reverse transcription PCR (RT-PCR) and real time RT-PCR (rRT-PCR) have been indispensable methods for influenza surveillance, especially for determination of avian influenza. The movement of testing beyond reference lab introduced the need of quality control, including the implementation of an evaluation system for validating personal training and sample proficiency testing. Methods We developed a panel with lysates of seasonal influenza virus (H1N1, H3N2 and B), serials of diluted H5N1 virus lysates, and in-vitro transcribed H5 hemaglutinin (HA) and an artificial gene RNAs for RT-PCR and rRT-PCR quality control assessment. The validations of stability and reproducibility were performed on the panel. Additionally, the panel was implemented to assess the detection capability of Chinese human avian influenza networks. Results The panel has relatively high stability and good reproducibility demonstrated by kappa's tests. In the implementation of panel on Chinese human avian influenza networks, the results suggested that there were a relatively low number of discrepancies for both concise and reproducibility in Chinese avian influenza virus net works. Conclusions A quality control panel of RT-PCR and real-time RT-PCR for avian influenza A (H5N1) surveillance network was developed. An availably statistical data, which are used to assess the detection capability of networks on avian influenza virus (H5N1), can be obtained relatively easily through implementation of the panel on networks. PMID:21406119

  9. Frequency of the ETV6-RUNX1, BCR-ABL1, TCF3-PBX1, and MLL-AFF1 fusion genes in Guatemalan pediatric acute lymphoblastic leukemia patients and their ethnic associations.

    PubMed

    Carranza, Claudia; Granados, Lilian; Morales, Oneida; Jo, Wendy; Villagran, Swuanny; Tinti, Damaris; Villegas, Mauricio; Antillón, Federico; Torselli, Silvana; Silva, Gabriel

    2013-06-01

    Fusion genes involved in acute lymphoblastic leukemia (ALL) occur mostly due to genetic and environmental factors, and only a limited number of studies have reported any ethnic influence. This study assesses whether an ethnic influence has an effect on the frequency of any of the four fusion genes: BCR-ABL1, ETV6-RUNX1, TCF3-PBX1, and MLL-AFF1 found in ALL. To study this ethnic influence, mononuclear cells were obtained from bone marrow samples from 143 patients with ALL. We performed RNA extraction and reverse transcription, then assessed the quality of the cDNA by amplifying the ABL1 control gene, and finally evaluated the presence of the four transcripts by multiplex polymerase chain reaction. We found 10 patients who had the BCR-ABL1 fusion gene (7%); 3 patients (2%) were TCF3-PBX1 positive; and 6 patients (4.5%) were ETV6-RUNX1 positive. The incidence of this last fusion gene is quite low when compared to the values reported in most countries. The low incidence of the ETV6-RUNX1 fusion gene found in Guatemala matches the incidence rates that have been reported in Spain and Indian Romani. Since it is known that an ethnic resemblance exists among these three populations, as shown by ancestral marker studies, the ALL data suggests an ethnic influence on the occurrence and frequency of this particular fusion gene. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Molecular genetic tests for JAK2V617F, Exon12_JAK2 and MPLW515K/L are highly informative in the evaluation of patients suspected to have BCR-ABL1-negative myeloproliferative neoplasms

    PubMed Central

    dos Santos, Marcos Tadeu; Mitne-Neto, Miguel; Miyashiro, Kozue; Chauffaille, Maria de Lourdes L Ferrari; Rizzatti, Edgar Gil

    2014-01-01

    Polycythaemia vera (PV), essential thrombocythemia (ET) and idiopathic myelofibrosis (MF), are the most common myeloproliferative neoplasms (MPN) in patients without the BCR-ABL1 gene rearrangement. They are caused by clonal expansion of haematopoietic stem cells and share, as a diagnostic criterion, the identification of JAK2V617F mutation. Classically, when other clinical criteria are present, a JAK2V617F negative case requires the analysis of Exon12_JAK2 for the diagnosis of PV, and of MPL515K/L mutations for the diagnosis of ET and MF. Here, we evaluated 78 samples from Brazilian patients suspected to have MPN, without stratification for PV, ET or MF. We found that 28 (35.9%) are JAK2V617F carriers; from the 50 remaining samples, one (2%) showed an Exon12_JAK2 mutation, and another (2%) was positive for MPLW515L mutation. In summary, the investigation of JAK2V617F, Exon12_JAK2 and MPLW515K/L was relevant for the diagnosis of 38.4% of patients suspected to have BCR-ABL1-negative MPN, suggesting that molecular genetic tests are useful for a quick and unequivocal diagnosis of MPN. PMID:23986553

  11. A one-step multiplex RT-PCR assay for simultaneous detection of four viruses that infect peach.

    PubMed

    Yu, Y; Zhao, Z; Jiang, D; Wu, Z; Li, S

    2013-10-01

    A multiplex reverse transcription polymerase chain reaction (mRT-PCR) assay was developed to enable the simultaneous detection and differentiation of four viruses that infect peach, namely Apple chlorotic leaf spot virus (ACLSV), Cherry green ring mottle virus (CGRMV), Prunus necrotic ringspot virus (PNRSV) and Apricot pseudo-chlorotic leaf spot virus (APCLSV). In this study, four pairs of primers, one specific for each virus, were designed; the corresponding PCR products were 632, 439, 346 and 282 bp in length for ACLSV, CGRMV, PNRSV and APCLSV, respectively, and the fragments could be distinguished clearly by agarose gel electrophoresis. The sensitivity and specificity of the method were tested using individual RT-PCR and enzyme-linked immunosorbent assay (ELISA), and the identity of the RT-PCR amplification products was also confirmed by DNA sequencing. The results of RT-PCR and ELISA, along with batch detection using samples collected from peach orchards, revealed that this rapid and simple technique is an effective way to identify the four viruses simultaneously. The mRT-PCR assay described in this study was developed for the simultaneous detection of four peach viruses from infected peach samples is reliable and sensitive. In contrast to conventional uniplex RT-PCR, mRT-PCR is more efficient, reducing costs, time and handling when testing large numbers of samples. This rapid and simple method is useful for large-scale surveys of viruses that infect peach. © 2013 The Society for Applied Microbiology.

  12. Duplex-immunocapture-RT-PCR for detection and discrimination of two distinct potyviruses naturally infecting sugarcane (Saccharum spp. hybrid).

    PubMed

    Reddy, Ch V Subba; Sreenivasulu, P; Sekhar, G

    2011-01-01

    A sensitive duplex-immunocapture-RT-PCR (D-IC-RT-PCR) technique was developed for detection and discrimination of taxonomically distinct Sugarcane streak mosaic virus (SCSMV) and Sugarcane mosaic virus (SCMV) that naturally infect sugarcane. D-IC-RT-PCR was performed using polyclonal antisera for capture of virions. Oligo 5'-d(T)18(AGC)-3' as a common reverse primer for both viruses and virus specific forward primers, 5'-AAGTGGTTAAACGCCTGTGG-3' and 5'-ATGTC(GA)AAGAA(GA)ATGCGCTTGC-3' were used for amplifying approximately 1400 and approximately 900 bp fragments of SCSMV and SCMV genomes, respectively from their 3' termini. To assess the applicability of the developed technique, 67 mosaic affected sugarcane samples were initially screened by direct antigen coating-enzyme-linked immunosorbent assay (DAC-ELISA) followed by D-IC-RT-PCR. In DAC-ELISA, approximately 69% of tested samples were shown to be positive for presence of SCSMV, approximately 28% for SCMV and approximately 10% for both viruses. In D-IC-RT-PCR both viruses were detected up to the dilution of 10(-4). In D-IC-RT-PCR, approximately 76% of tested samples were found to be positive for SCSMV, approximately 37% for SCMV and approximately 16% for both viruses. The sequence analyses of D-IC-RT-PCR amplicons of 3 isolates of each virus revealed that the designed primers were virus-specific. The developed technique had potential application for sensitive parallel detection of two viruses in sugarcane.

  13. Comparing protocols for preparation of DNA-free total yeast RNA suitable for RT-PCR

    PubMed Central

    Del Aguila, Eduardo M; Dutra, Marcio B; Silva, Joab T; Paschoalin, Vânia MF

    2005-01-01

    Background Preparation of RNA free from DNA is a critical step before performing RT-PCR assay. Total RNA isolated from several sources, including those obtained from Saccharomyces cerevisiae, using routine methodologies are frequently contaminated with DNA, which can give rise to amplification products that mimic the amplicons expected from the RNA target. Results We investigated the efficiency of two DNase I based protocols for eliminating DNA contaminations from RNA samples obtained from yeast cells. Both procedures are very efficient in eliminating DNA contamination from RNA samples and entail three main steps, which involve treating of RNA samples with DNase I, inhibition of the enzyme by EDTA and its subsequent inactivation at 65°C. The DNase I treated samples were further purified with phenol: chloroform followed by precipitation with ice-cold ethanol (protocol I) or, alternatively, they were directly used in RT-PCR reactions (protocol II). Transcripts from ACT1, PDA1, CNA1, CNA2, TPS1 and TPS2 analyzed after each treatment showed that all mRNAs tested can be amplified if total RNA was extracted and purified after DNase I treatment, however, only TPS1, TPS2 and ACT1 mRNAs were amplified without extraction/purification step. Conclusion Although more laborious and requiring a higher initial amount of material, the inclusion of an extraction and purification step allows to prepare RNA samples that are free from DNA and from low molecular contaminants and can be applied to amplify any Saccharomyces cerevisiae mRNA by RT-PCR. PMID:15833107

  14. A multiplex RT-PCR approach to detect aflatoxigenic strains of Aspergillus flavus.

    PubMed

    Degola, F; Berni, E; Dall'Asta, C; Spotti, E; Marchelli, R; Ferrero, I; Restivo, F M

    2007-08-01

    To develop a multiplex reverse transciption-polymerase chain reaction (RT-PCR) protocol to discriminate aflatoxin-producing from aflatoxin-nonproducing strains of Aspergillus flavus. The protocol was first optimized on a set of strains obtained from laboratory collections and then validated on A. flavus strains isolated from corn grains collected in the fields of the Po Valley (Italy). Five genes of the aflatoxin gene cluster of A. flavus, two regulatory (aflR and aflS) and three structural (aflD, aflO and aflQ), were targeted with specific primers to highlight their expression in mycelia cultivated under inducing conditions for aflatoxins production. 48-h-old cultures expressed the complete set of the genes analysed here whereas 24-h-old ones did not. Genomic PCR (quadruplex PCR) was also performed in parallel using chromosomal DNA extracted from the same set of strains to correlate the integrity of the genes with their expression. We show that a good correlation exists between gene expression of the aflatoxin genes, here analysed by multipex RT-PCR, and aflatoxin production, except for one strain that apparently transcribed all the relevant genes but did not produce aflatoxin in the medium. This is the first example of the application of a combination of multiplex PCR and RT-PCR approaches to screen a population of A. flavus for the presence of aflatoxigenic and nonaflatoxigenic strains. The proposed protocol will be helpful in evaluating the risk posed by A. flavus in natural environments and might also be a useful tool to monitor its presence during the processing steps of food and feed commodities.

  15. Evaluating L1CAM expression in human endometrial cancer using qRT-PCR

    PubMed Central

    Notaro, Sara; Reimer, Daniel; Duggan-Peer, Michaela; Fiegl, Heidi; Wiedermair, Annamarie; Rössler, Julia; Altevogt, Peter; Marth, Christian; Zeimet, Alain Gustave

    2016-01-01

    Background Management of endometrial carcinoma (EC) still needs improvement of risk assessment. Recently, L1CAM immunohistochemical (IHC) evaluation showed a unique value to predict the outcome of early EC. However IHC results are often conflicting for lack of inter-laboratory standardisation. Methods Here, as a proof of concept and to increase reproducibility we assayed eighty-two EC and 26 normal endometrium samples for L1CAM expression (L1CAMEXP) via qRT-PCR. The IHC evaluation was performed in 50 cancer samples. Moreover, we aimed to substantiate the in-vitro findings of L1CAM regulation through its promoter methylation (L1CAMMET), miR-34a expression and miR-34a promoter methylation. DNA methylation was assessed with MethyLight PCR technique. Results High overall concordant results between IHC and RT-PCR evaluations were found. L1CAMEXP was detected in 11% of cancer specimens. These positive cancers exhibited a worse DFS (p=0.032) and OS (p=0.016) in a multivariate COX-regression model. L1CAMEXP predicted distant failure (p=0.007) and L1CAMMET predicted risk-reduction of lymph-node involvement (p=0.005). Inverse correlations between L1CAMEXP and L1CAMMET (p=0.004) and between L1CAMEXP and miR-34a expression (p=0.002) were found. Conclusions In conclusion qRT-PCR analysis is a reliable approach to evaluate L1CAM status in EC and L1CAMEXP was highly predictive for distant failure and poor outcome, confirming the large IHC-based studies. Interestingly, L1CAMMET was able to assess the risk of pelvic lymph-node involvement. Especially the latter finding has to be confirmed in larger prospective series. PMID:27233077

  16. ECC-RT-PCR: a new method to determine the viability and infectivity of Giardia cysts.

    PubMed

    Alum, Absar; Sbai, Basel; Asaad, Hamas; Rubino, Joseph R; Khalid Ijaz, M

    2012-05-01

    Giardia sp is a major cause of diarrheal illness worldwide, and millions of people are infected each year. Rapid methods to determine the infectivity and virulence of isolates are critical for the development of intervention strategies to control the transmission of Giardia sp cysts, which occurs through contaminated surfaces, food, and water. However, determining the viability, infectivity, and virulence of Giardia sp cysts using molecular methods is a technical challenge because of the lack of a cell culture model. This study was designed to evaluate mRNA expression in trophozoites and to assess trophozoite attachment to cell monolayer and changes in transcellular resistance as an indicator of Giardia sp viability and infectivity. Heat shock mRNA in Giardia cysts and variant-specific protein (VSP) mRNA in trophozoites were quantified by reverse transcription polymerase chain reaction (RT-PCR). C2bb (Caco-2) cells were grown on transwell chambers to study the attachment of trophozoites, changes in transcellular resistance, and expression of VSP in trophozoites. The results of these molecular and cell culture studies indicate a direct linear correlation between the viability and infectivity of fresh stocks of Giardia sp cysts. The attachment of trophozoites to cell monolayer, expression of VSP, and change in the transcellular resistance was directly correlated with their infectivity in neonatal mice. PCR was successfully combined with the electrophysiological analysis of cell culture (ECC-RT-PCR) post-trophozoite attachment. This study shows that the ECC-RT-PCR, a new integrated cell culture assay, can be used as a rapid and cost-effective tool for assessing the viability and infectivity of environmental isolates of Giardia sp cysts. Copyright © 2012 International Society for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  17. Survey of six bee viruses using RT-PCR in Northern Thailand.

    PubMed

    Sanpa, Sirikarn; Chantawannakul, Panuwan

    2009-02-01

    Six honey bee viruses were surveyed using RT-PCR in Northern Thailand where about 80% of Thai apiaries are located. Tested samples were found to be positive for deformed wing virus (DWV), acute bee paralysis virus (ABPV), sacbrood virus (SBV) and Kashmir bee virus (KBV). In the collected samples, neither chronic bee paralysis virus nor black queen cell virus nucleic acids could be detected. It was found that DWV was the most widespread and ABPV was the second most prevalent. Kashmir bee virus was found only in the Lampang province where high infestation of Varroa destructor mite occurred. Tropilaelaps, European foulbrood, and Chalkbrood diseases were found in some apiaries.

  18. Application of RT-PCR and MALDI-TOF MS for the detection of RNA luteovirus.

    PubMed

    Kajiwara, Hideyuki; Murakami, Ritsuko

    2017-10-06

    There is a need for rapid and less expensive methods to identify RNA viruses, including luteoviruses, for practical use in agriculture and quarantine. The mass spectrometric cleaved amplified polymorphic sequence (MS-CAPS) method, which detects enzymatically cleaved amplicons by matrix-assisted laser desorption/ionization mass spectrometry, was herein used together with a short RT-PCR to detect luteovirus in only 90 min. In addition, the matrixes 2',4',6'-trihydroxyacetophene and 3-hydroxypicolinic acid were compared for their effectiveness in the analysis of short single-stranded biotinylated DNA obtained by a MS-CAPS reaction. Copyright © 2017. Published by Elsevier Inc.

  19. A new method to synthesize competitor RNAs for accurate analyses by competitive RT-PCR.

    PubMed

    Ishibashi, O

    1997-12-03

    A method to synthesize competitor RNAs as internal standards for competitive RT-PCR is improved by using the long accurate PCR (LA-PCR) technique. Competitor templates synthesized by the new method are almost the same in length, and possibly in secondary structure, as target mRNAs to be quantified except that they include the short deletion within the segments to be amplified. This allows the reverse transcription to be achieved with almost the same efficiency from both target mRNAs and competitor RNAs. Therefore, more accurate quantification can be accomplished by using such competitor RNAs.

  20. Monitoring of wild birds for Newcastle disease virus in Switzerland using real time RT-PCR.

    PubMed

    Camenisch, Glauco; Bandli, Risch; Hoop, Richard

    2008-07-01

    Wild birds are considered to be the natural reservoir of the Newcastle disease virus (NDV; avian paramyxovirus-1) causing New-castle disease, and are often suspected to be involved in outbreaks in domesticated birds. To assess the epidemiologic status of wild birds living, or overwintering, in Switzerland, 3,049 cloacal swabs covering the period 2003-2006 were screened for NDV, using real time RT-PCR. All samples were negative. This result seems in contrast with previously performed serologic screenings of wild birds.

  1. Comparison of electron microscopy, ELISA, real time RT-PCR and insulated isothermal RT-PCR for the detection of Rotavirus group A (RVA) in feces of different animal species.

    PubMed

    Soltan, Mohamed A; Tsai, Yun-Long; Lee, Pei-Yu A; Tsai, Chuan-Fu; Chang, Hsiao-Fen G; Wang, Hwa-Tang T; Wilkes, Rebecca P

    2016-09-01

    There is no gold standard for detection of Rotavirus Group A (RVA), one of the main causes of diarrhea in neonatal animals. Sensitive and specific real-time RT-PCR (rtRT-PCR) assays are available for RVA but require submission of the clinical samples to diagnostic laboratories. Patient-side immunoassays for RVA protein detection have shown variable results, particularly with samples from unintended species. A sensitive and specific test for detection of RVA on the farm would facilitate rapid management decisions. The insulated isothermal RT-PCR (RT-iiPCR) assay works in a portable machine to allow sensitive and specific on-site testing. The aim of this investigation was to evaluate a commercially available RT-iiPCR assay for RVA detection in feces from different animal species. This assay was compared to an in-house rtRT-PCR assay and a commercially available rtRT-PCR kit, as well as an ELISA and EM for RVA detection. All three PCR assays targeted the well-conserved NSP5 gene. Clinical fecal samples from 108 diarrheic animals (mainly cattle and horses) were tested. The percentage of positive samples by ELISA, EM, in-house rtRT-PCR, commercial rtRT-PCR, and RT-iiPCR was 29.4%, 31%, 36.7%, 51.4%, 56.9%, respectively. The agreement between different assays was high (81.3-100%) in samples containing high viral loads. The sensitivity of the RT-iiPCR assay appeared to be higher than the commercially available rtRT-PCR assay, with a limit of detection (95% confidence index) of 3-4 copies of in vitro transcribed dsRNA. In conclusion, the user-friendly, field-deployable RT-iiPCR system holds substantial promise for on-site detection of RVA.

  2. Improved Serotype-Specific Dengue Virus Detection in Trinidad and Tobago using a Multiplex, Real-Time RT-PCR

    PubMed Central

    Waggoner, Jesse J.; Sahadeo, Nikita S. D.; Brown, Arianne; Mohamed-Hadley, Alisha; Hadley, Dexter; Carrington, Leslie; Carrington, Christine V. F.; Pinsky, Benjamin A.

    2014-01-01

    Dengue virus (DENV) transmission occurs throughout the Caribbean, though laboratory confirmation and epidemiologic surveillance is limited by the availability of serotype-specific molecular diagnostics. In this study, we show that a serotype-specific DENV multiplex, real-time RT-PCR detected DENV RNA in significantly more samples (82/182) than a reference hemi-nested RT-PCR (57/182; p=0.01). PMID:25533614

  3. A novel DANP-coupled hairpin RT-PCR for rapid detection of Chikungunya virus.

    PubMed

    Chen, Huixin; Takei, Fumie; Koay, Evelyn Siew-Chuan; Nakatani, Kazuhiko; Chu, Justin Jang Hann

    2013-03-01

    Chikungunya has re-emerged as an important arboviral infection of global health significance. Because of lack of a vaccine and effective treatment, rapid diagnosis plays an important role in early clinical management of patients. In this study, we have developed a novel molecular diagnostic platform that ensures a rapid and cost-effective one-step RT-PCR assay, with high sensitivity and specificity, for the early detection of the Chikungunya virus (CHIKV). It uses 2,7-diamino-1,8-naphthyridine derivative (DANP)-labeled cytosine-bulge hairpin primers to amplify the nsP2 region of the CHIKV genome, followed by measurement of the fluorescence emitted from DANP-primer complexes after PCRs. The detection limit of our assay was 0.01 plaque-forming units per reaction of CHIKV. Furthermore, the HP-nsP2 primers were highly specific in detecting CHIKV, without any cross-reactivity with the panel of RNA viruses validated in this study. The feasibility of the DANP-coupled hairpin RT-PCR for clinical diagnosis was evaluated using clinical serum samples from CHIKV-infected patients, and the specificity and sensitivity were 100% (95% CI, 80.0% to 100%) and 95.5% (95% CI, 75.1% to 99.8%), respectively. These findings confirmed its potential as a point-of-care clinical molecular diagnostic assay for CHIKV in acute-phase patient serum samples.

  4. Establishment of a multiplex RT-PCR assay for the rapid detection of fish cytokines.

    PubMed

    Kono, Tomoya; Takayama, Hiroaki; Nagamine, Ryusuke; Korenaga, Hiroki; Sakai, Masahiro

    2013-01-15

    To monitor the expression of cytokine genes in Japanese pufferfish, a novel platform for quantitative multiplexed analysis was developed. This custom-designed multiplex RT-PCR assay was used to analyze the expression profiles of 19 cytokine genes, including pro-inflammatory (IL-1β, IL-6, IL-17A/F3, IL-18, TNF-α, TNF-N), anti-inflammatory (IL-4/13A, IL-4/13B, IL-10), T-cell proliferation/differentiation (IL-2, IL-15, IL-21, TGF-β1), B-cell activation/differentiation (IL-7, IL-6, IL-4/13A, IL-4/13B), NK cell stimulation (IL-12p35 and IL-12p40), induction of anti-viral activity (I-IFN-1 and IFN-γ), and monocyte/macrophage progenitor cell proliferation (M-CSF1b) cytokines in head kidney cells under immune stimulatory conditions. The expression profiles were dissimilar in the unstimulated control and immune-stimulated cells. Moreover, increased expression profile was observed due to different stimulations for IL-1β, IL-6, IL-10, IL-12p35, IL-12p40, IL-21, TNF-α, TNF-N, I-IFN-1 and IFN-γ genes. These results suggest that cytokine genes could be used as biomarkers to know the immune status of fish. The constructed multiplex RT-PCR assay will enhance understanding on immune regulation by cytokines in fish.

  5. Protocol: a highly sensitive RT-PCR method for detection and quantification of microRNAs

    PubMed Central

    Varkonyi-Gasic, Erika; Wu, Rongmei; Wood, Marion; Walton, Eric F; Hellens, Roger P

    2007-01-01

    MicroRNAs (miRNAs) are a class of small non-coding RNAs with a critical role in development and environmental responses. Efficient and reliable detection of miRNAs is an essential step towards understanding their roles in specific cells and tissues. However, gel-based assays currently used to detect miRNAs are very limited in terms of throughput, sensitivity and specificity. Here we provide protocols for detection and quantification of miRNAs by RT-PCR. We describe an end-point and real-time looped RT-PCR procedure and demonstrate detection of miRNAs from as little as 20 pg of plant tissue total RNA and from total RNA isolated from as little as 0.1 μl of phloem sap. In addition, we have developed an alternative real-time PCR assay that can further improve specificity when detecting low abundant miRNAs. Using this assay, we have demonstrated that miRNAs are differentially expressed in the phloem sap and the surrounding vascular tissue. This method enables fast, sensitive and specific miRNA expression profiling and is suitable for facilitation of high-throughput detection and quantification of miRNA expression. PMID:17931426

  6. High quality RNA extraction of the mammalian cochlea for qRT-PCR and transcriptome analyses.

    PubMed

    Vikhe Patil, Kim; Canlon, Barbara; Cederroth, Christopher R

    2015-07-01

    Molecular investigations of the hearing organ, the cochlea, have been hampered due to the difficulty of isolating pure RNA and in quantities sufficient enough for quantitative real-time RT-PCR or microarray analysis. The complex architecture of the cochlea, the presence of liquids, bone and cartilage tissue, are a major hurdle in obtaining contamination-free RNA to a level that does not affect downstream applications. Here, we present a protocol to extract RNA from the mouse cochlea, with yields and quality suitable for real-time RT-PCR or Affymetrix labeling. In contrast to current methods, such as TRIZOL or column-based extraction, this protocol combines the two and, within 4 h, yields a 2 μg of total RNA from a single pair of adult mouse cochleae. This protocol allows the isolation of RNA molecules from the mammalian cochlea providing access to whole-transcript expression analyses. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. RT-PCR and cell culture infectivity assay to detect enteroviruses during drinking water treatment processes.

    PubMed

    Ali, M A; El-Esnawy, N A; Shoaeb, A R; Ibraheim, M; El-Hawaary, S E

    1999-01-01

    In this study, 62 water samples were collected from two water treatment plants (WTPs) in Suez Canal cities (Port Said and Ismaillia) and one plant in Cairo (Giza WTP) in addition to the beginning of the two Nile river branches (Rosetta and Damietta). Viruses were concentrated by adsorption-elution ethod sing 142 mm-diameter nitrocellulose membrane of 0.45 microm pore size and eluted with 3% beef extract at pH 9.5. The concentrated samples were inoculated for 3 successive passages in three cell culture types (Vero, BGM and RD). Enterovirus RNAs in CPE-induced samples were extracted by guanidinium thiocyanate/ phenol/chloroform and heat shock methods and detected by RT-PCR and neutralization test. The results showed that eight samples [14.5% (8/62)] contained enteroviruses most of them were polioviruses [87.5% (7/8)] and coxsackievirus type B2 [12.5% (1/8)]. The three cell cultures were of the same sensitivity to detect the isolated viruses. Also, RT-PCR followed by neutralization assay facilitates and accelerate the results. The guanidinium thiocyanate extraction method was more sensitive than heat shock method. The results turned our attention to review our technology of water treatment and disinfection step in addition to the selection of suitable intake for the drinking water treatment plants.

  8. Evaluation of the efficacy of disinfectants against Puumala hantavirus by real-time RT-PCR.

    PubMed

    Maes, Piet; Li, Sandra; Verbeeck, Jannick; Keyaerts, Els; Clement, Jan; Van Ranst, Marc

    2007-04-01

    Puumala virus, a hantavirus belonging to the Bunyaviridae family, causes a human disease known as nephropathia epidemica, a mild form of hemorrhagic fever with renal syndrome. The implementation of effective decontamination procedures is critical in hantavirus research to minimize the risk of personnel exposure. This study investigated the efficacy of Clidox((R)), Dettol((R)), ethanol, Halamid-d((R)), peracetic acid, sodium hypochloride and Virkon((R))S for inactivating Puumala virus. A real-time quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) was used to quantify Puumala virus before and after treatment with these products. Inactivation of Puumala virus was effective after 10min with all products except ethanol. Inactivation with absolute ethanol was effective only after 30min. Using the qRT-PCR method, this study has shown that the commercially available products Clidox((R)), Halamid-d((R)) and Virkon((R))S in particular represent a rapid and safe way to decontaminate surfaces with possible Puumala virus contamination. These products can be used in solutions of 1-2%, with contact times greater than 10min, for inactivating effectively Puumala virus.

  9. Endometrial cancer cells can express fibrinogen: Immunohistochemistry and RT-PCR analysis.

    PubMed

    Uccella, S; Cromi, A; Vigetti, D; Cimetti, L; Deleonibus, S; Casarin, J; Passi, A; Riva, C; Ghezzi, F

    2016-01-01

    We investigated whether endometrial cancer (EC) cells can express fibrinogen. Consecutive patients treated for EC were enrolled (cases). A control group of women who had hysterectomy for benign conditions was identified in a case:control ratio of 4:1. Immunohistochemistry and reverse transcription polymerase chain reaction (RT-PCR) were performed to identify the presence of fibrinogen and the mRNA of its three chains (α, β, γ) in the tissue specimens from both cases and controls. Sixteen EC cases and 4 benign controls were included. Immunohistochemistry failed in one case of EC. In 12/15 (80%) cases versus 0 controls, a moderate-to-intense positivity for fibrinogen was observed (p = 0.09; OR: 32.1; 95%CI: 1.4-752.9). Six (37.5%) women among the cases versus 0 controls expressed RNA for at least one chain of fibrinogen (p = 0.25). All the cases (6/6, 100%) with positive RT-PCR had moderate-to-intense positive immunohistochemistry. Molecular and immunohistochemistry show that some cases of EC have the capability to express fibrinogen and the mRNA of at least one of its chains.

  10. A novel real-time RT-PCR assay for influenza C tested in Peruvian children.

    PubMed

    Howard, Leigh M; Johnson, Monika; Gil, Ana I; Pekosz, Andrew; Griffin, Marie R; Edwards, Kathryn M; Lanata, Claudio F; Grijalva, Carlos G; Williams, John V

    2017-09-01

    Influenza C virus (ICV) is associated with acute respiratory illness. Yet ICV remains under recognized, with most previous studies using only culture to identify cases. To develop a sensitive and specific real-time RT-PCR assay for ICV that allows for rapid and accurate detection in a clinical or research setting. Multiple ICV sequences obtained from GenBank were analyzed, including 141 hemagglutinin-esterase (HE), 106 matrix (M), and 97 nucleoprotein (NP) sequences. Primers and probes were designed based on conserved regions. Multiple primer-probe sets were tested against multiple ICV strains. The ICV M and NP genes offered the most conserved sequence regions. Primers and probes based on newer sequence data offered enhanced detection of ICV, especially for low titer specimens. An NP-targeted assay yielded the best performance and was capable of detecting 10-100 RNA copies per reaction. The NP assay detected multiple clinical isolates of ICV collected in a field epidemiology study conducted in Peru. We report a new real-time RT-PCR assay for ICV with high sensitivity and specificity. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Development of a SYBR Green real-time RT-PCR assay for the detection of avian encephalomyelitis virus.

    PubMed

    Liu, Qingtian; Yang, Zengqi; Hao, Huafang; Cheng, Shenli; Fan, Wentao; Du, Enqi; Xiao, Sa; Wang, Xinglong; Zhang, Shuxia

    2014-09-01

    Avian encephalomyelitis virus (AEV) causes epidemic diseases in poultry worldwide. A SYBR Green real-time reverse transcription-polymerase chain reaction (rRT-PCR) assay was developed for the rapid detection and quantitation of AEV in this study. A pair of specific primers was designed in the highly conserved VP1 gene of this virus. When comparing this assay with conventional RT-PCR, the rRT-PCR assay was 100 times more sensitive and could detect levels as low as 10 standard DNA copies of the AEV SX strain. The specificity of this technique was evaluated in five other avian pathogens. The AEV RNA was detected as early as three days post-infection in chicken embryos. All 18 clinical chicken brains collected from an AEV outbreak in Northwestern China were detected to be positive (100%) using the rRT-PCR assay. However, only 5 of the 18 samples were positive (28%) using the conventional RT-PCR. The results were confirmed by virus isolation in chicken embryos. This high sensitivity, specificity, and simplicity of the SYBR Green rRT-PCR approach can be a more effective method than the conventional one for AEV diagnosis and surveillance.

  12. Development of a real-time quantitative RT-PCR to detect REV contamination in live vaccine.

    PubMed

    Luan, Huaibiao; Wang, Yixin; Li, Yang; Cui, Zhizhong; Chang, Shuang; Zhao, Peng

    2016-09-01

    Based on the published Avian reticuloendotheliosis virus (REV) whole genome sequence, primers and TaqMan probes were designed and synthesized, and the TaqMan probe fluorescence real-time quantitative RT-PCR (qRT-PCR) method for detecting the REV pol gene was established by optimizing the reaction conditions. Sensitivity analysis showed that the qRT-PCR method had a sensitivity that was 1,000-fold higher than conventional PCR. Additionally, no amplification signals were obtained when we attempted to detect DNA or cDNA of ALV-A/B/J, MDV, CIAV, IBDV, ARV, NDV, AIV, or other viruses, suggesting a high specificity for our method. Various titers of REV were artificially "spiked" into the FPV and MDV vaccines to simulate REV contamination in attenuated vaccines to validate this qRT-PCR method. Our findings indicated that this qRT-PCR method could detect REV contamination at a dose of 1 TCID50/1,000 feathers, which was 10,000-fold more sensitive than the regular RT-PCR detection (10(4) TCID50/1000 feathers). © 2016 Poultry Science Association Inc.

  13. Detection of 22 common leukemic fusion genes using a single-step multiplex qRT-PCR-based assay.

    PubMed

    Lyu, Xiaodong; Wang, Xianwei; Zhang, Lina; Chen, Zhenzhu; Zhao, Yu; Hu, Jieying; Fan, Ruihua; Song, Yongping

    2017-07-25

    Fusion genes generated from chromosomal translocation play an important role in hematological malignancies. Detection of fusion genes currently employ use of either conventional RT-PCR methods or fluorescent in situ hybridization (FISH), where both methods involve tedious methodologies and require prior characterization of chromosomal translocation events as determined by cytogenetic analysis. In this study, we describe a real-time quantitative reverse transcription PCR (qRT-PCR)-based multi-fusion gene screening method with the capacity to detect 22 fusion genes commonly found in leukemia. This method does not require pre-characterization of gene translocation events, thereby facilitating immediate diagnosis and therapeutic management. We performed fluorescent qRT-PCR (F-qRT-PCR) using a commercially-available multi-fusion gene detection kit on a patient cohort of 345 individuals comprising 108 cases diagnosed with acute myeloid leukemia (AML) for initial evaluation; remaining patients within the cohort were assayed for confirmatory diagnosis. Results obtained by F-qRT-PCR were compared alongside patient analysis by cytogenetic characterization. Gene translocations detected by F-qRT-PCR in AML cases were diagnosed in 69.4% of the patient cohort, which was comparatively similar to 68.5% as diagnosed by cytogenetic analysis, thereby demonstrating 99.1% concordance. Overall gene fusion was detected in 53.7% of the overall patient population by F-qRT-PCR, 52.9% by cytogenetic prediction in leukemia, and 9.1% in non-leukemia patients by both methods. The overall concordance rate was calculated to be 99.0%. Fusion genes were detected by F-qRT-PCR in 97.3% of patients with CML, followed by 69.4% with AML, 33.3% with acute lymphoblastic leukemia (ALL), 9.1% with myelodysplastic syndromes (MDS), and 0% with chronic lymphocytic leukemia (CLL). We describe the use of a F-qRT-PCR-based multi-fusion gene screening method as an efficient one-step diagnostic procedure as an

  14. Detection of dermcidin for sweat identification by real-time RT-PCR and ELISA.

    PubMed

    Sakurada, Koichi; Akutsu, Tomoko; Fukushima, Hisayo; Watanabe, Ken; Yoshino, Mineo

    2010-01-30

    We evaluated the performance of real-time RT-PCR and ELISA assays for detection of dermcidin (DCD) in sweat and body-fluid stains. DCD, a small antibiotic peptide secreted into human sweat, was detected by real-time RT-PCR in 7-day-old stains containing as small as 10 microL of sweat, and the assay showed high specificity when testing 7-day-old stains containing 30 microL of other body-fluid. ELISA using anti-human dermcidin mouse monoclonal antibody detected DCD sweat diluted up to approximately 10,000-fold and could specifically detect DCD in 10 microL of body-fluid stains. The performance of the two assays was tested during winter on samples that simulated forensic case samples: an undershirt and a sock worn for 20 h, a handkerchief used to wipe the brow several times within 12h, a cap and a cotton glove worn for 4h, and a white robe worn at intervals for 2 years. The result showed that the former assay detected DCD in all sites of the undershirt examined (armpit, back, and breast), and the latter gave a relatively high OD value in the armpit among the three sites. For the socks, although the latter assay gave very high OD values in both the center and toe of the foot sole, the former could not detect DCD in both of them. These results indicate that highly damp conditions, such as inside a shoe, might promote the degradation of mRNA in samples such as socks. In the other case samples, sweat was adequately detected by both assays. This study is the first demonstration of the use of real-time RT-PCR to sensitively identify sweat among body-fluid stains, and it confirmed that dermcidin was an excellent marker for sweat identification. In addition, the usefulness of ELISA was also verified. Positive sweat identification using these assays is expected to assist forensic practice. 2009 Elsevier Ireland Ltd. All rights reserved.

  15. Development of reverse transcription (RT)-PCR and real-time RT-PCR assays for rapid detection and quantification of viable yeasts and molds contaminating yogurts and pasteurized food products.

    PubMed

    Bleve, Gianluca; Rizzotti, Lucia; Dellaglio, Franco; Torriani, Sandra

    2003-07-01

    Reverse transcriptase PCR (RT-PCR) and real-time RT-PCR assays have been used to detect and quantify actin mRNA from yeasts and molds. Universal primers were designed based on the available fungal actin sequences, and by RT-PCR they amplified a specific 353-bp fragment from fungal species involved in food spoilage. From experiments on heat-treated cells, actin mRNA was a good indicator of cell viability: viable cells and cells in a nonculturable state were detected, while no signal was observed from dead cells. The optimized RT-PCR assay was able to detect 10 CFU of fungi ml(-1) in pure culture and 10(3) and 10(2) CFU ml(-1) in artificially contaminated yogurts and pasteurized fruit-derived products, respectively. Real-time RT-PCR, performed on a range of spoiled commercial food products, validated the suitability of actin mRNA detection for the quantification of naturally contaminating fungi. The specificity and sensitivity of the procedure, combined with its speed, its reliability, and the potential automation of the technique, offer several advantages to routine analysis programs that assess the presence and viability of fungi in food commodities.

  16. Development of Reverse Transcription (RT)-PCR and Real-Time RT-PCR Assays for Rapid Detection and Quantification of Viable Yeasts and Molds Contaminating Yogurts and Pasteurized Food Products

    PubMed Central

    Bleve, Gianluca; Rizzotti, Lucia; Dellaglio, Franco; Torriani, Sandra

    2003-01-01

    Reverse transcriptase PCR (RT-PCR) and real-time RT-PCR assays have been used to detect and quantify actin mRNA from yeasts and molds. Universal primers were designed based on the available fungal actin sequences, and by RT-PCR they amplified a specific 353-bp fragment from fungal species involved in food spoilage. From experiments on heat-treated cells, actin mRNA was a good indicator of cell viability: viable cells and cells in a nonculturable state were detected, while no signal was observed from dead cells. The optimized RT-PCR assay was able to detect 10 CFU of fungi ml−1 in pure culture and 103 and 102 CFU ml−1 in artificially contaminated yogurts and pasteurized fruit-derived products, respectively. Real-time RT-PCR, performed on a range of spoiled commercial food products, validated the suitability of actin mRNA detection for the quantification of naturally contaminating fungi. The specificity and sensitivity of the procedure, combined with its speed, its reliability, and the potential automation of the technique, offer several advantages to routine analysis programs that assess the presence and viability of fungi in food commodities. PMID:12839789

  17. MicroRNA profiling in plasma or serum using quantitative RT-PCR.

    PubMed

    Costa, Marina C; Leitão, Ana Lúcia; Enguita, Francisco J

    2014-01-01

    MicroRNAs (miRNAs) are important cellular modulators that regulate gene expression at the posttranscriptional level. Circulating miRNAs present in human plasma or serum have recently become an emerging field in biomedical research, mostly due to its potential applications in the diagnosis and prognosis of several diseases. Although miRNA profiling in biofluids holds great promise, there are several challenges to overcome. Here, we present an experimental procedure for profiling miRNA in plasma or serum with high sensitivity and specificity using qRT-PCR. This method is also suitable for studying miRNAs in other body fluids or clinical samples that also contain low amounts of RNA.

  18. Seasonal variation in transcript abundance in cork tissue analyzed by real time RT-PCR.

    PubMed

    Soler, Marçal; Serra, Olga; Molinas, Marisa; García-Berthou, Emili; Caritat, Antònia; Figueras, Mercè

    2008-05-01

    The molecular processes underlying cork biosynthesis and differentiation are mostly unknown. Recently, a list of candidate genes for cork biosynthesis and regulation was made available opening new possibilities for molecular studies in cork oak (Quercus suber L.). Based on this list, we analyzed the seasonal variation in mRNA abundance in cork tissue of selected genes by real time reverse-transcriptase polymerase chain reaction (RT-PCR). Relative transcript abundance was evaluated by principal component analysis and genes were clustered in several functional subgroups. Structural genes of suberin pathways such as CYP86A1, GPAT and HCBT, and regulatory genes of the NAM and WRKY families showed highest transcript accumulation in June, a crucial month for cork development. Other cork structural genes, such as FAT and F5H, were significantly correlated with temperature and relative humidity. The stress genes HSP17.4 and ANN were strongly positively correlated to temperature, in accord with their protective role.

  19. [RT-PCR-based methods for identification and typing of infectious hemopoietic necrosis virus in salmons].

    PubMed

    Popova, A G; Oreshkova, S F; Zhchelkunov, I S; Rudakova, S L; Zhchelkunova, T I; Tikunova, N V; Blinova, N N; Il'ichev, A A

    2008-01-01

    A RT-PCR method has been developed to diagnose infectious hemopoietic necrosis virus (IHNV) in salmons. The authors show it possible to use the method for viral shedding in both a cell culture and a clinical sample from infected fishes. Genotyping of IHNV strains originating from North America, Europe, and Russia, by using the restriction fragment length polymerase analysis, has revealed that 10 of them belong to 3 existing genogroups (U, M, and L). Three Russian isolates are assigned into a separate subgroup. Phylogenetic analysis of several isolates has confirmed that viral strains from Katchatka belong to the North American U-genogroup whereas 3 Russian isolates from the continental zone of the country make up a separate subgroup within the same genogroup.

  20. Identification and characterization of a novel tospovirus species using a new RT-PCR approach.

    PubMed

    Cortez, I; Saaijer, J; Wongjkaew, K S; Pereira, A M; Goldbach, R; Peters, D; Kormelink, R

    2001-01-01

    A novel tospovirus serologically distinct from all established tospovirus species was found in Thailand in Physalis minima L. The S RNA of this virus was cloned by a new RT-PCR approach revealing a nucleotide sequence of 3257 nucleotides. The ambisense RNA segment encoded a nonstructural protein (NSs) of 469 amino acids, with a predicted Mr of 53.2 kDa, and a nucleoprotein (N) of 279 amino acids and a Mr of 31.0 kDa, so far the largest N protein known for any tospovirus species. N protein sequence comparisons revealed closet relationship to the species Watermelon bud necrosis virus (58% identity), Watermelon silver mottle virus and Peanut bud necrosis virus (57%) and a distant relationship to Peanut yellow spot virus (23%) and Peanut chlorotic fanspot virus (22%).

  1. Emulating a crowded intracellular environment in vitro dramatically improves RT-PCR performance

    SciTech Connect

    Lareu, Ricky R.; Harve, Karthik S.; Raghunath, Michael

    2007-11-09

    The polymerase chain reaction's (PCR) phenomenal success in advancing fields as diverse as Medicine, Agriculture, Conservation, or Paleontology is based on the ability of using isolated prokaryotic thermostable DNA polymerases in vitro to copy DNA irrespective of origin. This process occurs intracellularly and has evolved to function efficiently under crowded conditions, namely in an environment packed with macromolecules. However, current in vitro practice ignores this important biophysical parameter of life. In order to more closely emulate conditions of intracellular biochemistry in vitro we added inert macromolecules into reverse transcription (RT) and PCR. We show dramatic improvements in all parameters of RT-PCR including 8- to 10-fold greater sensitivity, enhanced polymerase processivity, higher specific amplicon yield, greater primer annealing and specificity, and enhanced DNA polymerase thermal stability. The faster and more efficient reaction kinetics was a consequence of the cumulative molecular and thermodynamic effects of the excluded volume effect created by macromolecular crowding.

  2. Multiplex RT-PCR for Simultaneous Surveillance of Influenza A and B Viruses.

    PubMed

    Zhou, Bin; Deng, Yi-Mo; Barnes, John R; Sessions, October; Chou, Tsui-Wen; Wilson, Malania; Stark, Thomas J; Volk, Michelle; Spirason, Natalie; Halpin, Rebecca A; Kamaraj, Uma Sangumathi; Ding, Tao; Stockwell, Timothy B; Salvatore, Mirella; Ghedin, Elodie; Barr, Ian G; Wentworth, David E

    2017-10-04

    Influenza A and B viruses are the causative agents of annual influenza epidemics that can be severe; influenza A viruses intermittently cause pandemics. Sequence information from influenza genomes is instrumental in determining mechanisms underpinning antigenic evolution and antiviral resistance. However, due to sequence diversity and the dynamics of influenza evolution, rapid and high-throughput sequencing of influenza viruses remains a challenge. We developed a single-reaction FluA/B Multiplex RT-PCR method that amplifies the most critical genomic segments (HA, NA, and M) of seasonal influenza A and B viruses for next-generation sequencing, regardless of viral types, subtypes, or lineages. Herein we demonstrate that the strategy is highly sensitive and robust. The strategy was validated on thousands of seasonal influenza A and B virus positive specimens using multiple next-generation sequencing platforms. Copyright © 2017 American Society for Microbiology.

  3. Discrimination of infectious hepatitis A viruses by propidium monoazide real-time RT-PCR.

    PubMed

    Sánchez, Gloria; Elizaquível, Patricia; Aznar, Rosa

    2012-03-01

    The discrimination of infectious and inactivated viruses remains a key obstacle when using quantitative RT-PCR (RT-qPCR) to quantify enteric viruses. In this study, propidium monoazide (PMA) and RNase pretreatments were evaluated for the detection and quantification of infectious hepatitis A virus (HAV). For thermally inactivated HAV, PMA treatment was more effective than RNase treatment for differentiating infectious and inactivated viruses, with HAV titers reduced by more than 2.4 log(10) units. Results showed that combining 50 μM of PMA and RT-qPCR selectively quantify infectious HAV in media suspensions. Therefore, PMA treatment previous to RT-qPCR detection is a promising alternative to assess HAV infectivity.

  4. Multiplex RT-PCR for rapid detection of viruses commonly causing diarrhea in pediatric patients.

    PubMed

    Thongprachum, Aksara; Khamrin, Pattara; Pham, Ngan Thi Kim; Takanashi, Sayaka; Okitsu, Shoko; Shimizu, Hiroyuki; Maneekarn, Niwat; Hayakawa, Satoshi; Ushijima, Hiroshi

    2017-05-01

    Multiplex RT-PCR method using five sets of panel primers was developed for the detection of diarrheal viruses, including rotavirus A, B, and C, adenovirus, astrovirus, norovirus GI and GII, sapovirus, Aichi virus, parechovirus, enterovirus, cosavirus, bocavirus, and Saffold virus. The sensitivity of the method was evaluated and tested with 751 fecal specimens collected from Japanese children with acute diarrhea. Several kinds of viruses were detected in 528 out of 751 (70.3%) fecal specimens. Mixed-infection with different viruses in clinical specimens could also be effectively detected. The method proved to be reliable with highly sensitive and specific and useful for routine diagnosis. J. Med. Virol. 89:818-824, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  5. Picoinjection Enables Digital Detection of RNA with Droplet RT-PCR

    PubMed Central

    Abate, Adam R.

    2013-01-01

    The ability to add reagents to drops in a sequential fashion is necessary for numerous applications of microfluidics in biology. An important method for accomplishing this is picoinjection, a technique in which reagents are injected into aqueous drops using an electric field. While picoinjection has been shown to allow the precise addition of reagents to drops, its compatibility with biological reactions is yet to be thoroughly demonstrated. Here, we investigate the compatibility of picoinjection with digital RT-PCR Taqman assays, reactions that incorporate nucleic acids, enzymes, and other common biological reagents. We find that picoinjection is compatible with this assay and enables the detection of RNA transcripts at rates comparable to workflows not incorporating picoinjection. We also find that picoinjection results in negligible transfer of material between drops and that the drops faithfully retain their compartmentalization. PMID:23658657

  6. Evaluation of disinfectant efficacy against hepatitis C virus using a RT-PCR-based method.

    PubMed

    Charrel, R N; de Chesse, R; Decaudin, A; De Micco, P; de Lamballerie, X

    2001-10-01

    The methods traditionally used to evaluate the antiviral activity of antiseptics and disinfectants are based on cell cultures. However, such methods are not applicable to non-cultivable viruses such as hepatitis C (HCV). Therefore, in this case, virucidal activity is normally tested using surrogate viruses able to grow in cell culture. This paper describes a RT-PCR method for testing antiseptic/disinfectant activity against HCV, as a model for non-cultivable viruses. A chlorine-based agent used for skin and tissues, and a 2% glutaraldehyde solution used for endoscope disinfection, were the test materials. The results are discussed in the light of the use of these agents. The method is simple, fast and inexpensive, and could be used for tests on other viruses with minor modification. Copyright 2001 The Hospital Infection Society.

  7. Reference gene selection for qRT-PCR in Caragana korshinskii Kom. under different stress conditions.

    PubMed

    Yang, Qi; Yin, Jiajia; Li, Gao; Qi, Liwang; Yang, Feiyun; Wang, Ruigang; Li, Guojing

    2014-01-01

    Caragana korshinskii Kom., which is widely distributed in the northwest China and Mongolia, is an important forage bush belonging to the legume family with high economic and ecological value. Strong tolerance ability to various stresses makes C. korshinskii Kom. a valuable species for plant stress research. In this study, suitable reference genes for quantitative real-time reverse transcription PCR (qRT-PCR) were screened from 11 candidate reference genes, including ACT, GAPDH, EF1α, UBQ, TUA, CAP, TUB, TUB3, SKIP1, SKIP5-1 and SKIP5-2. A total of 129 samples under drought, heat, cold, salt, ABA and high pH treatment were profiled, and software such as geNORM, NormFinder and BestKeeper were used for reference gene evaluation and selection. Different suitable reference genes were selected under different stresses. Across all 129 samples, GAPDH, EF1α and SKIP5-1 were found to be the most stable reference genes, and EF1α+SKIP5-1 is the most stable reference gene combination. Conversely, TUA, TUB and SKIP1 were not suitable for using as reference genes owing to their great expression variation under some stress conditions. The relative expression levels of CkWRKY1 were detected using the stable and unstable reference genes and their applicability was confirmed. These results provide some stable reference genes and reference gene combinations for qRT-PCR under different stresses in C. korshinskii Kom. for future research work, and indicate that CkWRKY1 plays essential roles in response to stresses in C. korshinskii.

  8. Quantitative Evaluation and Selection of Reference Genes for Quantitative RT-PCR in Mouse Acute Pancreatitis

    PubMed Central

    Yan, Zhaoping; Gao, Jinhang; Lv, Xiuhe; Yang, Wenjuan; Wen, Shilei; Tong, Huan; Tang, Chengwei

    2016-01-01

    The analysis of differences in gene expression is dependent on normalization using reference genes. However, the expression of many of these reference genes, as evaluated by quantitative RT-PCR, is upregulated in acute pancreatitis, so they cannot be used as the standard for gene expression in this condition. For this reason, we sought to identify a stable reference gene, or a suitable combination, for expression analysis in acute pancreatitis. The expression stability of 10 reference genes (ACTB, GAPDH, 18sRNA, TUBB, B2M, HPRT1, UBC, YWHAZ, EF-1α, and RPL-13A) was analyzed using geNorm, NormFinder, and BestKeeper software and evaluated according to variations in the raw Ct values. These reference genes were evaluated using a comprehensive method, which ranked the expression stability of these genes as follows (from most stable to least stable): RPL-13A, YWHAZ > HPRT1 > GAPDH > UBC > EF-1α > 18sRNA > B2M > TUBB > ACTB. RPL-13A was the most suitable reference gene, and the combination of RPL-13A and YWHAZ was the most stable group of reference genes in our experiments. The expression levels of ACTB, TUBB, and B2M were found to be significantly upregulated during acute pancreatitis, whereas the expression level of 18sRNA was downregulated. Thus, we recommend the use of RPL-13A or a combination of RPL-13A and YWHAZ for normalization in qRT-PCR analyses of gene expression in mouse models of acute pancreatitis. PMID:27069927

  9. No Control Genes Required: Bayesian Analysis of qRT-PCR Data

    PubMed Central

    Matz, Mikhail V.; Wright, Rachel M.; Scott, James G.

    2013-01-01

    Background Model-based analysis of data from quantitative reverse-transcription PCR (qRT-PCR) is potentially more powerful and versatile than traditional methods. Yet existing model-based approaches cannot properly deal with the higher sampling variances associated with low-abundant targets, nor do they provide a natural way to incorporate assumptions about the stability of control genes directly into the model-fitting process. Results In our method, raw qPCR data are represented as molecule counts, and described using generalized linear mixed models under Poisson-lognormal error. A Markov Chain Monte Carlo (MCMC) algorithm is used to sample from the joint posterior distribution over all model parameters, thereby estimating the effects of all experimental factors on the expression of every gene. The Poisson-based model allows for the correct specification of the mean-variance relationship of the PCR amplification process, and can also glean information from instances of no amplification (zero counts). Our method is very flexible with respect to control genes: any prior knowledge about the expected degree of their stability can be directly incorporated into the model. Yet the method provides sensible answers without such assumptions, or even in the complete absence of control genes. We also present a natural Bayesian analogue of the “classic” analysis, which uses standard data pre-processing steps (logarithmic transformation and multi-gene normalization) but estimates all gene expression changes jointly within a single model. The new methods are considerably more flexible and powerful than the standard delta-delta Ct analysis based on pairwise t-tests. Conclusions Our methodology expands the applicability of the relative-quantification analysis protocol all the way to the lowest-abundance targets, and provides a novel opportunity to analyze qRT-PCR data without making any assumptions concerning target stability. These procedures have been implemented as the MCMC

  10. [Investigation of West Nile virus RNA in blood donors by real-time RT-PCR].

    PubMed

    Sahiner, Fatih; Avcı, Ismail Yaşar; Bedir, Orhan; Koru, Ozgür; Sener, Kenan; Yapar, Mehmet; Kubar, Ayhan

    2012-07-01

    West Nile virus (WNV), a member of Flaviviridae family, is an enveloped, icosahedral symmetric RNA virus. Primary reservoir hosts of WNV are birds, but the virus can cause various infections in humans and other mammals. The most common and natural transmission way of WNV infections is mosquito bites, however, humans can be infected by different routes. The most important non-mosquito transmission route is contaminated blood and blood products. In this study, we aimed to investigate the risk of WNV transmission through blood and blood products in Ankara, Turkey. The presence of WNV RNA was investigated by in house real-time reverse transcriptase-polymerase chain reaction (RT-PCR) in serum samples obtained from 729 healthy blood donors (mean age: 27.7 years; 711 were male), regardless of the donor's seropositivity status since the virus can be transmitted at the early stages of infection when seroconversion has not yet developed. Serum samples were collected in August-September 2009, the period when these infections are more frequent due to mosquito activity. The vast majority of donors (n= 702, 96.3%) have been inhabiting in Ankara and 569 (78%) of donors have had risk factors for arboviral infections (e.g. outdoor activity, mosquito and tick bites). WNV RNA was not detected by real-time RT-PCR analysis in any serum sample included in this study. According to the results of our study, it can be said that the risk of WNV transmission through blood and blood products is low in Ankara. However, WNV seropositivity was detected within the range of 0.56 to 2.4% among blood donors in previous studies and probable and confirmed WNV infections have been reported in our region. In addition, WNV outbreaks have emerged in some countries neighbouring Turkey recently. Thus, the risk of WNV transmission through blood and blood products should not be ignored and blood donor questionnaires should be evaluated in detail.

  11. Specific detection of chikungunya virus using a RT-PCR/nested PCR combination.

    PubMed

    Pfeffer, M; Linssen, B; Parke, M D; Kinney, R M

    2002-02-01

    Chikungunya (CHIK) virus is enzootic in many countries in Asia and throughout tropical Africa. In Asia the virus is transmitted from primates to humans almost exclusively by Aedes aegypti, while various aedine mosquito species are responsible for human infections in Africa. The clinical picture is characterized by a sudden onset of fever, rash and severe pain in the joints which may persist in a small proportion of cases. Although not listed as a haemorrhagic fever virus, illness caused by CHIK virus can be confused with diseases such as dengue or yellow fever, based on the similarity of the symptoms. Thus, laboratory confirmation of suspected cases is required to launch control measures during an epidemic. CHIK virus diagnosis based on virus isolation is very sensitive, yet requires at least a week in conjunction with virus identification using monovalent sera. We developed a reverse transcription-polymerase chain reaction (RT-PCR) assay which amplifies a 427-bp fragment of the E2 gene. Specificity was confirmed by testing representative strains of all known alphavirus species. To verify further the viral origin of the amplicon and to enhance sensitivity, a nested PCR was performed subsequently. This RT-PCR/nested PCR combination was able to amplify a CHIK virus-specific 172-bp amplicon from a sample containing as few as 10 genome equivalents. This assay was successfully applied to four CHIK virus isolates from Asia and Africa as well as to a vaccine strain developed by USAMRIID. Our method can be completed in less than two working days and may serve as a sensitive alternative in CHIK virus diagnosis.

  12. Development and Validation of a qRT-PCR Classifier for Lung Cancer Prognosis

    PubMed Central

    Chen, Guoan; Kim, Sinae; Taylor, Jeremy MG; Wang, Zhuwen; Lee, Oliver; Ramnath, Nithya; Reddy, Rishindra M; Lin, Jules; Chang, Andrew C; Orringer, Mark B; Beer, David G

    2011-01-01

    Purpose This prospective study aimed to develop a robust and clinically-applicable method to identify high-risk early stage lung cancer patients and then to validate this method for use in future translational studies. Patients and Methods Three published Affymetrix microarray data sets representing 680 primary tumors were used in the survival-related gene selection procedure using clustering, Cox model and random survival forest (RSF) analysis. A final set of 91 genes was selected and tested as a predictor of survival using a qRT-PCR-based assay utilizing an independent cohort of 101 lung adenocarcinomas. Results The RSF model built from 91 genes in the training set predicted patient survival in an independent cohort of 101 lung adenocarcinomas, with a prediction error rate of 26.6%. The mortality risk index (MRI) was significantly related to survival (Cox model p < 0.00001) and separated all patients into low, medium, and high-risk groups (HR = 1.00, 2.82, 4.42). The MRI was also related to survival in stage 1 patients (Cox model p = 0.001), separating patients into low, medium, and high-risk groups (HR = 1.00, 3.29, 3.77). Conclusions The development and validation of this robust qRT-PCR platform allows prediction of patient survival with early stage lung cancer. Utilization will now allow investigators to evaluate it prospectively by incorporation into new clinical trials with the goal of personalized treatment of lung cancer patients and improving patient survival. PMID:21792073

  13. Quantitative RT-PCR analysis of estrogen receptor gene expression in laser microdissected prostate cancer tissue.

    PubMed

    Walton, Thomas J; Li, Geng; McCulloch, Thomas A; Seth, Rashmi; Powe, Desmond G; Bishop, Michael C; Rees, Robert C

    2009-06-01

    Real-time quantitative RT-PCR analysis of laser microdissected tissue is considered the most accurate technique for determining tissue gene expression. The discovery of estrogen receptor beta (ERbeta) has focussed renewed interest on the role of estrogen receptors in prostate cancer, yet few studies have utilized the technique to analyze estrogen receptor gene expression in prostate cancer. Fresh tissue was obtained from 11 radical prostatectomy specimens and from 6 patients with benign prostate hyperplasia. Pure populations of benign and malignant prostate epithelium were laser microdissected, followed by RNA isolation and electrophoresis. Quantitative RT-PCR was performed using primers for androgen receptor (AR), estrogen receptor beta (ERbeta), estrogen receptor alpha (ERalpha), progesterone receptor (PGR) and prostate specific antigen (PSA), with normalization to two housekeeping genes. Differences in gene expression were analyzed using the Mann-Whitney U-test. Correlation coefficients were analyzed using Spearman's test. Significant positive correlations were seen when AR and AR-dependent PSA, and ERalpha and ERalpha-dependent PGR were compared, indicating a representative population of RNA transcripts. ERbeta gene expression was significantly over-expressed in the cancer group compared with benign controls (P < 0.01). In contrast, PGR expression was significantly down-regulated in the cancer group (P < 0.05). There were no significant differences in AR, ERalpha or PSA expression between the groups. This study represents the first to show an upregulation of ERbeta gene expression in laser microdissected prostate cancer specimens. In concert with recent studies the findings suggest differential production of ERbeta splice variants, which may play important roles in the genesis of prostate cancer. (c) 2009 Wiley-Liss, Inc.

  14. Single-Reaction, Multiplex, Real-Time RT-PCR for the Detection, Quantitation, and Serotyping of Dengue Viruses

    PubMed Central

    Waggoner, Jesse J.; Abeynayake, Janaki; Sahoo, Malaya K.; Gresh, Lionel; Tellez, Yolanda; Gonzalez, Karla; Ballesteros, Gabriela; Pierro, Anna M.; Gaibani, Paolo; Guo, Frances P.; Sambri, Vittorio; Balmaseda, Angel; Karunaratne, Kumudu; Harris, Eva; Pinsky, Benjamin A.

    2013-01-01

    Background Dengue fever results from infection with one or more of four different serotypes of dengue virus (DENV). Despite the widespread nature of this infection, available molecular diagnostics have significant limitations. The aim of this study was to develop a multiplex, real-time, reverse transcriptase-PCR (rRT-PCR) for the detection, quantitation, and serotyping of dengue viruses in a single reaction. Methodology/Principal Findings An rRT-PCR assay targeting the 5′ untranslated region and capsid gene of the DENV genome was designed using molecular beacons to provide serotype specificity. Using reference DENV strains, the assay was linear from 7.0 to 1.0 log10 cDNA equivalents/µL for each serotype. The lower limit of detection using genomic RNA was 0.3, 13.8, 0.8, and 12.4 cDNA equivalents/µL for serotypes 1–4, respectively, which was 6- to 275-fold more analytically sensitive than a widely used hemi-nested RT-PCR. Using samples from Nicaragua collected within the first five days of illness, the multiplex rRT-PCR was positive in 100% (69/69) of specimens that were positive by the hemi-nested assay, with full serotype agreement. Furthermore, the multiplex rRT-PCR detected DENV RNA in 97.2% (35/36) of specimens from Sri Lanka positive for anti-DENV IgM antibodies compared to just 44.4% (16/36) by the hemi-nested RT-PCR. No amplification was observed in 80 clinical samples sent for routine quantitative hepatitis C virus testing or when genomic RNA from other flaviviruses was tested. Conclusions/Significance This single-reaction, quantitative, multiplex rRT-PCR for DENV serotyping demonstrates superior analytical and clinical performance, as well as simpler workflow compared to the hemi-nested RT-PCR reference. In particular, this multiplex rRT-PCR detects viral RNA and provides serotype information in specimens collected more than five days after fever onset and from patients who had already developed anti-DENV IgM antibodies. The implementation of this

  15. Development of real-time RT-PCR for the detection of low concentrations of Rift Valley fever virus.

    PubMed

    Maquart, Marianne; Temmam, Sarah; Héraud, Jean-Michel; Leparc-Goffart, Isabelle; Cêtre-Sossah, Catherine; Dellagi, Koussay; Cardinale, Eric; Pascalis, Hervé

    2014-01-01

    In recent years, Madagascar and the Comoros archipelago have been affected by epidemics of Rift Valley fever (RVF), however detection of Rift Valley fever virus (RVFV) in zebu, sheep and goats during the post epidemic periods was frequently unsuccessful. Thus, a highly sensitive real-time RT-PCR assay was developed for the detection of RVFV at low viral loads. A new RVF SYBR Green RT-PCR targeting the M segment was tested on serum from different RVF seronegative ruminant species collected from May 2010 to August 2011 in Madagascar and the Comoros archipelago and compared with a RVF specific quantitative real time RT-PCR technique, which is considered as the reference technique. The specificity was tested on a wide range of arboviruses or other viruses giving RVF similar clinical signs. A total of 38 out of 2756 serum samples tested positive with the new RT-PCR, whereas the reference technique only detected 5 out of the 2756. The described RT-PCR is an efficient diagnostic tool for the investigation of enzootic circulation of the RVF virus. It allows the detection of low viral RNA loads adapted for the investigations of reservoirs or specific epidemiological situations such as inter-epizootic periods.

  16. Identification of circulating tumour cells in early stage breast cancer patients using multi marker immunobead RT-PCR

    PubMed Central

    Raynor, Michael P; Stephenson, Sally-Anne; Pittman, Kenneth B; Walsh, David CA; Henderson, Michael A; Dobrovic, Alexander

    2009-01-01

    Introduction The ability to screen blood of early stage operable breast cancer patients for circulating tumour cells is of potential importance for identifying patients at risk of developing distant relapse. We present the results of a study of the efficacy of the immunobead RT-PCR method in identifying patients with circulating tumour cells. Results Immunomagnetic enrichment of circulating tumour cells followed by RT-PCR (immunobead RT-PCR) with a panel of five epithelial specific markers (ELF3, EPHB4, EGFR, MGB1 and TACSTD1) was used to screen for circulating tumour cells in the peripheral blood of 56 breast cancer patients. Twenty patients were positive for two or more RT-PCR markers, including seven patients who were node negative by conventional techniques. Significant increases in the frequency of marker positivity was seen in lymph node positive patients, in patients with high grade tumours and in patients with lymphovascular invasion. A strong trend towards improved disease free survival was seen for marker negative patients although it did not reach significance (p = 0.08). Conclusion Multi-marker immunobead RT-PCR analysis of peripheral blood is a robust assay that is capable of detecting circulating tumour cells in early stage breast cancer patients. PMID:19500345

  17. Comparison of the immunofluorescence assay with RT-PCR and nested PCR in the diagnosis of canine distemper.

    PubMed

    Jóźwik, A; Frymus, T

    2005-05-01

    Two pairs of primers were prepared, both localized within the sequences of the nucleoprotein gene (NP) of canine distemper virus (CDV). A number of experiments were done to optimize the conditions of RT-PCR and nested PCR methods. The nucleic acids of the Onderstepoort, Rockborn, Snyder Hill and Lederle strains of CDV could be detected with these primers. However, they did not react with the sequences of the Edmonston strain of the measles virus. The detection limit for RT-PCR was 10 TCID50 and for nested PCR 0.1 TCID50 of CDV. The RT-PCR was able to demonstrate the nucleic acid of CDV in the blood of all seven puppies vaccinated with a modified live virus. Blood samples of 23 dogs clinically suspected of distemper were examined by RT-PCR combined with nested PCR, and the results were compared with the detection of the CDV antigen in the smears from the mucous membranes by the direct immunofluorescence (IF) test. Of the 23 dogs, 12 were positive in nested PCR, six in the IF assay, and only two in single RT-PCR. It is concluded that nested PCR seems to be the most sensitive method for ante-mortem diagnosis of canine distemper, especially in its subacute or chronic forms.

  18. Antemortem diagnosis of CDV infection by RT-PCR in distemper dogs with neurological deficits without the typical clinical presentation.

    PubMed

    Amude, A M; Alfieri, A A; Alfieri, A F

    2006-08-01

    In dogs with neurological disturbances without myoclonus and extraneural signs, the clinical diagnosis of distemper is difficult perform. Considering the great infectious potential of the disease, the possibility of carrying out an antemortem diagnosis of distemper is important, particularly in hospitalized patients with neurological disease. The present study was carried out to evaluate RT-PCR for antemortem CDV detection in hospitalized dogs with neurological disturbances without the typical findings of distemper. We investigated five dogs with canine distemper virus (CDV) encephalomyelitis, in which the clinical diagnosis was not performed owing to the absence of characteristic signs of the disease, such as myoclonus and systemic signs. We observed an apparent high sensitivity of RT-PCR in urine samples for detection of CDV: four out of five urine samples were RT-PCR positive. The results of the present study suggest that urine is a good biological sample for antemortem CDV detection by RT-PCR in dogs with distemper encephalomyelitis in which the clinical diagnosis is likely to be difficult owing to the absence of suggestive distemper signs. The use of two different body fluids (urine and CSF) may increase the RT-PCR sensitivity for antemortem diagnosis of distemper in such cases.

  19. qRT-PCR quantification of the biological control agent Trichoderma harzianum in peat and compost-based growing media.

    PubMed

    Beaulieu, Robert; López-Mondéjar, Rubén; Tittarelli, Fabio; Ros, Margarita; Pascual, José Antonio

    2011-02-01

    To ensure proper use of Trichoderma harzianum in agriculture, accurate data must be obtained in population monitoring. The effectiveness of qRT-PCR to quantify T. harzianum in different growing media was compared to the commonly used techniques of colony counting and qPCR. Results showed that plate counting and qPCR offered similar T. harzianum quantification patterns of an initial rapid increase in fungal population that decreased over time. However, data from qRT-PCR showed a population curve of active T. harzianum with a delayed onset of initial growth which then increased throughout the experiment. Results demonstrated that T. harzianum can successfully grow in these media and that qRT-PCR can offer a more distinct representation of active T. harzianum populations. Additionally, compost amended with T. harzianum exhibited a lower Fusarium oxysporum infection rate (67%) and lower percentage of fresh weight loss (11%) in comparison to amended peat (90% infection rate, 23% fresh weight loss).

  20. Genome-Wide Identification and Validation of Reference Genes in Infected Tomato Leaves for Quantitative RT-PCR Analyses

    PubMed Central

    Müller, Oliver A.; Grau, Jan; Thieme, Sabine; Prochaska, Heike; Adlung, Norman; Sorgatz, Anika; Bonas, Ulla

    2015-01-01

    The Gram-negative bacterium Xanthomonas campestris pv. vesicatoria (Xcv) causes bacterial spot disease of pepper and tomato by direct translocation of type III effector proteins into the plant cell cytosol. Once in the plant cell the effectors interfere with host cell processes and manipulate the plant transcriptome. Quantitative RT-PCR (qRT-PCR) is usually the method of choice to analyze transcriptional changes of selected plant genes. Reliable results depend, however, on measuring stably expressed reference genes that serve as internal normalization controls. We identified the most stably expressed tomato genes based on microarray analyses of Xcv-infected tomato leaves and evaluated the reliability of 11 genes for qRT-PCR studies in comparison to four traditionally employed reference genes. Three different statistical algorithms, geNorm, NormFinder and BestKeeper, concordantly determined the superiority of the newly identified reference genes. The most suitable reference genes encode proteins with homology to PHD finger family proteins and the U6 snRNA-associated protein LSm7. In addition, we identified pepper orthologs and validated several genes as reliable normalization controls for qRT-PCR analysis of Xcv-infected pepper plants. The newly identified reference genes will be beneficial for future qRT-PCR studies of the Xcv-tomato and Xcv-pepper pathosystems, as well as for the identification of suitable normalization controls for qRT-PCR studies of other plant-pathogen interactions, especially, if related plant species are used in combination with bacterial pathogens. PMID:26313760

  1. Genome-Wide Identification and Validation of Reference Genes in Infected Tomato Leaves for Quantitative RT-PCR Analyses.

    PubMed

    Müller, Oliver A; Grau, Jan; Thieme, Sabine; Prochaska, Heike; Adlung, Norman; Sorgatz, Anika; Bonas, Ulla

    2015-01-01

    The Gram-negative bacterium Xanthomonas campestris pv. vesicatoria (Xcv) causes bacterial spot disease of pepper and tomato by direct translocation of type III effector proteins into the plant cell cytosol. Once in the plant cell the effectors interfere with host cell processes and manipulate the plant transcriptome. Quantitative RT-PCR (qRT-PCR) is usually the method of choice to analyze transcriptional changes of selected plant genes. Reliable results depend, however, on measuring stably expressed reference genes that serve as internal normalization controls. We identified the most stably expressed tomato genes based on microarray analyses of Xcv-infected tomato leaves and evaluated the reliability of 11 genes for qRT-PCR studies in comparison to four traditionally employed reference genes. Three different statistical algorithms, geNorm, NormFinder and BestKeeper, concordantly determined the superiority of the newly identified reference genes. The most suitable reference genes encode proteins with homology to PHD finger family proteins and the U6 snRNA-associated protein LSm7. In addition, we identified pepper orthologs and validated several genes as reliable normalization controls for qRT-PCR analysis of Xcv-infected pepper plants. The newly identified reference genes will be beneficial for future qRT-PCR studies of the Xcv-tomato and Xcv-pepper pathosystems, as well as for the identification of suitable normalization controls for qRT-PCR studies of other plant-pathogen interactions, especially, if related plant species are used in combination with bacterial pathogens.

  2. Enhancing the sensitivity of Dengue virus serotype detection by RT-PCR among infected children in India.

    PubMed

    Ahamed, Syed Fazil; Vivek, Rosario; Kotabagi, Shalini; Nayak, Kaustuv; Chandele, Anmol; Kaja, Murali-Krishna; Shet, Anita

    2017-02-27

    Dengue surveillance relies on reverse transcription-polymerase chain reaction (RT-PCR), for confirmation of dengue virus (DENV) serotypes. We compared efficacies of published and modified primer sets targeting envelope (Env) and capsid-premembrane (C-prM) genes for detection of circulating DENV serotypes in southern India. Acute samples from children with clinically-diagnosed dengue were used for RT-PCR testing. All samples were also subjected to dengue serology (NS1 antigen and anti-dengue-IgM/IgG rapid immunochromatographic assay). Nested RT-PCR was performed on viral RNA using three methods targeting 654bp C-prM, 511bp C-prM and 641bp Env regions, respectively. RT-PCR-positive samples were validated by population sequencing. Among 171 children with suspected dengue, 121 were dengue serology-positive and 50 were dengue serology-negative. Among 121 serology-positives, RT-PCR detected 91 (75.2%) by CprM654, 72 (59.5%) by CprM511, and 74 (61.1%) by Env641. Among 50 serology-negatives, 10 (20.0%) were detected by CprM654, 12 (24.0%) by CprM511, and 11 (22.0%) by Env641. Overall detection rate using three methods sequentially was 82.6% (100/121) among serology-positive and 40.0% (20/50) among serology-negative samples; 6.6% (8/120) had co-infection with multiple DENV serotypes. We conclude that detection of acute dengue was enhanced by a modified RT-PCR method targeting the 654bp C-prM region, and further improved by using all three methods sequentially.

  3. Analytical and clinical performance of the CDC real time RT-PCR assay for detection and typing of dengue virus.

    PubMed

    Santiago, Gilberto A; Vergne, Edgardo; Quiles, Yashira; Cosme, Joan; Vazquez, Jesus; Medina, Juan F; Medina, Freddy; Colón, Candimar; Margolis, Harold; Muñoz-Jordán, Jorge L

    2013-01-01

    Dengue is an acute illness caused by the positive-strand RNA dengue virus (DENV). There are four genetically distinct DENVs (DENV-1-4) that cause disease in tropical and subtropical countries. Most patients are viremic when they present with symptoms; therefore, RT-PCR has been increasingly used in dengue diagnosis. The CDC DENV-1-4 RT-PCR Assay has been developed as an in-vitro diagnostic platform and was recently approved by the US Food and Drug Administration (FDA) for detection of dengue in patients with signs or symptoms of mild or severe dengue. The primers and probes of this test have been designed to detect currently circulating strains of DENV-1-4 from around the world at comparable sensitivity. In a retrospective study with 102 dengue cases confirmed by IgM anti-DENV seroconversion in the convalescent sample, the RT-PCR Assay detected DENV RNA in 98.04% of the paired acute samples. Using sequencing as a positive indicator, the RT-PCR Assay had a 97.92% positive agreement in 86 suspected dengue patients with a single acute serum sample. After extensive validations, the RT-PCR Assay performance was highly reproducible when evaluated across three independent testing sites, did not produce false positive results for etiologic agents of other febrile illnesses, and was not affected by pathological levels of potentially interfering biomolecules. These results indicate that the CDC DENV-1-4 RT-PCR Assay provides a reliable diagnostic platform capable for confirming dengue in suspected cases.

  4. Analytical and Clinical Performance of the CDC Real Time RT-PCR Assay for Detection and Typing of Dengue Virus

    PubMed Central

    Santiago, Gilberto A.; Vergne, Edgardo; Quiles, Yashira; Cosme, Joan; Vazquez, Jesus; Medina, Juan F.; Medina, Freddy; Colón, Candimar; Margolis, Harold; Muñoz-Jordán, Jorge L.

    2013-01-01

    Dengue is an acute illness caused by the positive-strand RNA dengue virus (DENV). There are four genetically distinct DENVs (DENV-1–4) that cause disease in tropical and subtropical countries. Most patients are viremic when they present with symptoms; therefore, RT-PCR has been increasingly used in dengue diagnosis. The CDC DENV-1–4 RT-PCR Assay has been developed as an in-vitro diagnostic platform and was recently approved by the US Food and Drug Administration (FDA) for detection of dengue in patients with signs or symptoms of mild or severe dengue. The primers and probes of this test have been designed to detect currently circulating strains of DENV-1–4 from around the world at comparable sensitivity. In a retrospective study with 102 dengue cases confirmed by IgM anti-DENV seroconversion in the convalescent sample, the RT-PCR Assay detected DENV RNA in 98.04% of the paired acute samples. Using sequencing as a positive indicator, the RT-PCR Assay had a 97.92% positive agreement in 86 suspected dengue patients with a single acute serum sample. After extensive validations, the RT-PCR Assay performance was highly reproducible when evaluated across three independent testing sites, did not produce false positive results for etiologic agents of other febrile illnesses, and was not affected by pathological levels of potentially interfering biomolecules. These results indicate that the CDC DENV-1–4 RT-PCR Assay provides a reliable diagnostic platform capable for confirming dengue in suspected cases. PMID:23875046

  5. Patterns of recurrence in patients with melanoma and histologically negative but RT-PCR-positive sentinel lymph nodes.

    PubMed

    Goydos, James S; Patel, Kapal N; Shih, Weichung Joe; Lu, Shou-En; Yudd, Anthony P; Kempf, Jack S; Bancila, Edita; Germino, F Joseph

    2003-02-01

    We studied the patterns of recurrence of patients with only reverse transcriptase-polymerase chain reaction (RT-PCR) evidence of regional nodal spread to see whether or not proposed treatment interventions are likely to be effective. One hundred seventy-five patients who underwent selective lymphadenectomy for clinical stage I and II melanomas were included in this analysis. We preserved a portion of each sentinel lymph node (SLN) in liquid nitrogen in the operating room and performed RT-PCR on the specimens to detect the melanoma/melanocyte-specific marker tyrosinase. We then compared the pattern of recurrence (regional dermal metastases, regional nodal recurrence, or distant metastatic spread) of the patients with histologically positive SLNs to that of patients who had histologically negative SLNs. The mean followup time of the 175 patients was 33.83 months (SD = 15.94, median = 34.17, maximum = 62.95, minimum = 6.21). Thirty-four patients had at least one histologically positive SLN, and 17 of these patients had a recurrence (50%). Of the 141 patients that had histologically negative SLNs, 73 had SLNs that were also negative for tyrosinase by RT-PCR, and none of these patients had a recurrence. Of the 68 patients that had histologically negative but RT-PCR-positive SLNs, 14 had a recurrence (20.6%). Because the pattern of recurrence of patients with only RT-PCR evidence of melanoma in SLNs was identical to that in patients who had histologically evident melanoma in the SLN and underwent subsequent completion lymphadenectomy, we conclude that completion lymphadenectomy might be ineffective in decreasing the recurrence rate of patients with only RT-PCR evidence of melanoma in SLNs.

  6. Assessment of HER-2 gene overexpression in Isfahan province breast cancer patients using Real Time RT-PCR and immunohistochemistry.

    PubMed

    Tabatabaeian, Hosein; Hojati, Zohreh

    2013-11-15

    Overexpression of proto-oncogene HER-2 is one of the main molecular markers of breast cancer involved in prognosis and diagnosis and also in trastuzumab therapy. Thus, a request for the evaluation of HER-2 status in breast cancer has been increasing. The aim of our study was assessment of HER-2 overexpression in malignant and benign breast cancer specimens by Real Time RT-PCR technique and comparison of its results with IHC outcomes. Twenty benign and sixty malignant breast cancers in addition to fifteen normal breast tissue specimens were analyzed by Real Time RT-PCR method. Fresh tissue samples were disrupted by mortar and pestle. A syringe and a needle were used for complete homogenization of the tissues. The RNA was then isolated from the samples and converted to cDNA. A standard curve was initially plotted using BioEasy SYBR Green I and then all 95 specimens were studied by Real Time RT-PCR using 2(-ΔΔCt) method. 23.3% of 60 malignant specimens showed HER-2 overexpression, while all of the benign samples represented the normal expression level of HER-2 gene. The concordance rate between the results of Real Time RT-PCR and IHC was 86.6%. Real Time RT-PCR method is an almost reliable technique and at least can be used as a complementary method for confirming IHC results. This is emanated from relatively high rate of concordance between outcomes of IHC test, as a routine method of detecting the HER-2 gene expression status, and Real Time RT-PCR technique. © 2013 Elsevier B.V. All rights reserved.

  7. Evaluation of real-time RT-PCR assays for detection and quantification of norovirus genogroups I and II.

    PubMed

    Rupprom, Kitwadee; Chavalitshewinkoon-Petmitr, Porntip; Diraphat, Pornphan; Kittigul, Leera

    2017-02-20

    Noroviruses are the leading cause of acute gastroenteritis in humans. Real-time reverse transcription-polymerase chain reaction (real-time RT-PCR) is a promising molecular method for the detection of noroviruses. In this study, the performance of three TaqMan real-time RT-PCR assays was assessed, which were one commercially available real-time RT-PCR kit (assay A: Norovirus Real Time RT-PCR kit) and two in-house real-time RT-PCR assays (assay B: LightCycler RNA Master Hybprobe and assay C: RealTime ready RNA Virus Master). Assays A and B showed higher sensitivity than assay C for norovirus GI, while they all had the same sensitivity (10(3) DNA copies/mL) for GII DNA standard controls. Assay B had the highest efficiency for both genogroups. No cross-reactivity was observed among GI and GII noroviruses, rotavirus, hepatitis A virus, and poliovirus. The detection rates of these assays in GI and GII norovirus-positive fecal samples were not significantly different. However, the mean quantification cycle (Cq) value of assay B for GII was lower than assays A and C with statistical significance (P-value, 0.000). All three real-time RT-PCR assays could detect a variety of noroviruses including GI.2, GII.2, GII.3, GII.4, GII.6, GII.12, GII.17, and GII.21. This study suggests assay B as a suitable assay for the detection and quantification of noroviruses GI and GII due to good analytical sensitivity and higher performance to amplify norovirus on DNA standard controls and clinical samples.

  8. Preamplification techniques for real-time RT-PCR analyses of endomyocardial biopsies

    PubMed Central

    Noutsias, Michel; Rohde, Maria; Block, Andrea; Klippert, Katrin; Lettau, Olga; Blunert, Katja; Hummel, Michael; Kühl, Uwe; Lehmkuhl, Hans; Hetzer, Roland; Rauch, Ursula; Poller, Wolfgang; Pauschinger, Matthias; Schultheiss, Heinz P; Volk, Hans D; Kotsch, Katja

    2008-01-01

    Background Due to the limited RNA amounts from endomyocardial biopsies (EMBs) and low expression levels of certain genes, gene expression analyses by conventional real-time RT-PCR are restrained in EMBs. We applied two preamplification techniques, the TaqMan® PreAmp Master Mix (T-PreAmp) and a multiplex preamplification following a sequence specific reverse transcription (SSRT-PreAmp). Results T-PreAmp encompassing 92 gene assays with 14 cycles resulted in a mean improvement of 7.24 ± 0.33 Ct values. The coefficients for inter- (1.89 ± 0.48%) and intra-assay variation (0.85 ± 0.45%) were low for all gene assays tested (<4%). The PreAmp uniformity values related to the reference gene CDKN1B for 91 of the investigated gene assays (except for CD56) were -0.38 ± 0.33, without significant differences between self-designed and ABI inventoried Taqman® gene assays. Only two of the tested Taqman® ABI inventoried gene assays (HPRT-ABI and CD56) did not maintain PreAmp uniformity levels between -1.5 and +1.5. In comparison, the SSRT-PreAmp tested on 8 self-designed gene assays yielded higher Ct improvement (9.76 ± 2.45), however was not as robust regarding the maintenance of PreAmp uniformity related to HPRT-CCM (-3.29 ± 2.40; p < 0.0001), and demonstrated comparable intra-assay CVs (1.47 ± 0.74), albeit higher inter-assay CVs (5.38 ± 2.06; p = 0.01). Comparing EMBs from each 10 patients with dilated cardiomyopathy (DCM) and inflammatory cardiomyopathy (DCMi), T-PreAmp real-time RT-PCR analyses revealed differential regulation regarding 27 (30%) of the investigated 90 genes related to both HPRT-CCM and CDKN1B. Ct values of HPRT and CDKN1B did not differ in equal RNA amounts from explanted DCM and donor hearts. Conclusion In comparison to the SSRT-PreAmp, T-PreAmp enables a relatively simple workflow, and results in a robust PreAmp of multiple target genes (at least 92 gene assays as tested here) by a mean Ct improvement around 7 cycles, and in a lower inter

  9. Association of cucumovirus and potyvirus with betelvine (Piper betle L.) as evidenced by ELISA and RT-PCR.

    PubMed

    Raj, S K; Srivastava, A; Chowdhury, M R; Johri, J K

    2003-03-01

    An attempt was made to detect various viruses of Piper betle grown at Mahoba and Banthara in India. DAC-ELISA and RT-PCR tests were performed in leaf sap samples of betelvine for detection of a cucumovirus (Cucumber mosaic virus) and potyvirus (Bean yellow mosaic virus) using specific antibodies and universal primers of respective viruses. DAC-ELISA could detect only CMV. However, RT-PCR detected both cucumovirus and potyvirus infection in betelvine samples. Association of CMV with betelvine was observed for the first time in the present study.

  10. Real-time TaqMan RT-PCR for detection of maize chlorotic mottle virus in maize seeds.

    PubMed

    Zhang, Yongjiang; Zhao, Wenjun; Li, Mingfu; Chen, Hongjun; Zhu, Shuifang; Fan, Zaifeng

    2011-01-01

    Maize chlorotic mottle virus (MCMV) causes corn lethal necrosis disease, and can be transmitted through infected maize seeds. It remains a challenge to detect this virus in the seeds to prevent its introduction and infection. For this purpose, a real-time TaqMan RT-PCR procedure for efficient detection of MCMV was developed. The sensitivity of the method was 4 fg of total RNA or 25 copies of RNA transcripts, which was approximately ten-fold higher than conventional RT-PCR gel electrophoresis method. The successful detection of MCMV in maize seeds suggested the feasibility of this procedure for routine testing.

  11. Identification and validation of reference genes for quantitative RT-PCR normalization in wheat

    PubMed Central

    Paolacci, Anna R; Tanzarella, Oronzo A; Porceddu, Enrico; Ciaffi, Mario

    2009-01-01

    Background Usually the reference genes used in gene expression analysis have been chosen for their known or suspected housekeeping roles, however the variation observed in most of them hinders their effective use. The assessed lack of validated reference genes emphasizes the importance of a systematic study for their identification. For selecting candidate reference genes we have developed a simple in silico method based on the data publicly available in the wheat databases Unigene and TIGR. Results The expression stability of 32 genes was assessed by qRT-PCR using a set of cDNAs from 24 different plant samples, which included different tissues, developmental stages and temperature stresses. The selected sequences included 12 well-known HKGs representing different functional classes and 20 genes novel with reference to the normalization issue. The expression stability of the 32 candidate genes was tested by the computer programs geNorm and NormFinder using five different data-sets. Some discrepancies were detected in the ranking of the candidate reference genes, but there was substantial agreement between the groups of genes with the most and least stable expression. Three new identified reference genes appear more effective than the well-known and frequently used HKGs to normalize gene expression in wheat. Finally, the expression study of a gene encoding a PDI-like protein showed that its correct evaluation relies on the adoption of suitable normalization genes and can be negatively affected by the use of traditional HKGs with unstable expression, such as actin and α-tubulin. Conclusion The present research represents the first wide screening aimed to the identification of reference genes and of the corresponding primer pairs specifically designed for gene expression studies in wheat, in particular for qRT-PCR analyses. Several of the new identified reference genes outperformed the traditional HKGs in terms of expression stability under all the tested conditions

  12. Comparison of SYBR green I real-time RT-PCR with conventional agarose gel-based RT-PCR for the diagnosis of infectious bronchitis virus infection in chickens in Morocco.

    PubMed

    Fellahi, Siham; El Harrak, Mehdi; Kuhn, Jens H; Sebbar, Ghizlane; Bouaiti, El Arbi; Khataby, Khadija; Fihri, Ouafae Fassi; El Houadfi, Mohammed; Ennaji, My Mustapha

    2016-04-22

    A rapid, sensitive, and specific molecular method for the diagnosis of infectious bronchitis virus (IBV) infection is important in curbing infectious bronchitis outbreaks in Morocco and other countries. In this study, an easy-to-perform SYBR green I real-time reverse transcriptase polymerase chain reaction (RT-PCR) targeting the nucleocapsid gene of IBV was developed and compared with conventional agarose gel-based RT-PCR for the detection of IBV infection. We found that the SYBR green I real-time RT-PCR was at least 10 times more sensitive than the agarose gel electrophoresis detection method. The assay exhibited high specificity for IBV infection. All negative controls, such as Newcastle disease virus, infectious bursal disease virus, and avian influenza virus, were not detected. The SYBR green I real-time RT-PCR test described herein can be used to rapidly distinguish IBV from other respiratory pathogens, which is important for diagnosis and control of infectious bronchitis outbreaks in Morocco. The test is a valuable and useful method as a routine assay for diagnosis of clinical IBV infection in commercial chickens.

  13. Detection of enteroviruses and parechoviruses by a multiplex real-time RT-PCR assay.

    PubMed

    Pabbaraju, Kanti; Wong, Sallene; Wong, Anita A; Tellier, Raymond

    2015-04-01

    Detection of all enteroviruses while excluding cross-detection of rhinoviruses is challenging because of sequence similarities in the commonly used conserved targets for molecular assays. In addition, simultaneous detection and differentiation of enteroviruses and parechoviruses would be beneficial because of a similar clinical picture presented by these viruses. A sensitive and specific real-time RT-PCR protocol that can address these clinical needs would be valuable to molecular diagnostic laboratories. Here we report a multiplex nucleic acid based assay using hydrolysis probes targeting the 5' non-translated region for the detection and differentiation of enteroviruses and parechoviruses without cross-detection of rhinoviruses. This assay has been shown to detect enteroviruses belonging to the different species in a variety of specimen types without detecting the different species of rhinoviruses. Laboratory validation shows the assay to be sensitive, specific, reproducible, easy to set up and uses generic cycling conditions. This assay can be implemented for diagnostic testing of patient samples in a high throughput fashion.

  14. RT-PCR analysis of dystrophin mRNA in DND/BMD patients

    SciTech Connect

    Ciafaloni, E.; Silva, H.A.R. de; Roses, A.D.

    1994-09-01

    Duchenne and Becker muscular dystrophies (DMD, BMD) are X-linked recessive disorders caused by mutations in the dystrophin (dys) gene. The majority of these mutations are intragenic deletions of duplications routinely detected by Southern biots and multiplex PCR. The remainder are very likely, smaller mutations, mostly point-mutations. Detection of these mutations is very difficult due to the size and complexity of the dys gene. We applied RT-PCR to analyse the entire dys mRNA of three DMD patients with no detectable genomic defect. In two unrelated patients, a duplication of the 62 bp exon 2 was identified. This causes a frameshift sufficient to explain the DMD phenotype. In the third patient, who had congenital DMD and severe mental retardation, a complex pattern of aberrant splicing at the 3-prime exons 67-79 was observed. Sural nerve biopsy in this patient showed the complete absence of Dp116. PCR-SSCP studies are presently in progress to identify the mutations responsible for the aberrant splicing patterns.

  15. Quantitative RT-PCR Gene Evaluation and RNA Interference in the Brown Marmorated Stink Bug

    PubMed Central

    Bansal, Raman; Mittapelly, Priyanka; Chen, Yuting; Mamidala, Praveen; Zhao, Chaoyang; Michel, Andy

    2016-01-01

    The brown marmorated stink bug (Halyomorpha halys) has emerged as one of the most important invasive insect pests in the United States. Functional genomics in H. halys remains unexplored as molecular resources in this insect have recently been developed. To facilitate functional genomics research, we evaluated ten common insect housekeeping genes (RPS26, EF1A, FAU, UBE4A, ARL2, ARP8, GUS, TBP, TIF6 and RPL9) for their stability across various treatments in H. halys. Our treatments included two biotic factors (tissues and developmental stages) and two stress treatments (RNAi injection and starvation). Reference gene stability was determined using three software algorithms (geNorm, NormFinder, BestKeeper) and a web-based tool (RefFinder). The qRT-PCR results indicated ARP8 and UBE4A exhibit the most stable expression across tissues and developmental stages, ARL2 and FAU for dsRNA treatment and TBP and UBE4A for starvation treatment. Following the dsRNA treatment, all genes except GUS showed relatively stable expression. To demonstrate the utility of validated reference genes in accurate gene expression analysis and to explore gene silencing in H. halys, we performed RNAi by administering dsRNA of target gene (catalase) through microinjection. A successful RNAi response with over 90% reduction in expression of target gene was observed. PMID:27144586

  16. Multiplex RT-PCR and Automated Microarray for Detection of Eight Bovine Viruses.

    PubMed

    Lung, O; Furukawa-Stoffer, T; Burton Hughes, K; Pasick, J; King, D P; Hodko, D

    2016-11-23

    Microarrays can be a useful tool for pathogen detection as it allow for simultaneous interrogation of the presence of a large number of genetic sequences in a sample. However, conventional microarrays require extensive manual handling and multiple pieces of equipment for printing probes, hybridization, washing and signal detection. In this study, a reverse transcription (RT)-PCR with an accompanying novel automated microarray for simultaneous detection of eight viruses that affect cattle [vesicular stomatitis virus (VSV), bovine viral diarrhoea virus type 1 and type 2, bovine herpesvirus 1, bluetongue virus, malignant catarrhal fever virus, rinderpest virus (RPV) and parapox viruses] is described. The assay accurately identified a panel of 37 strains of the target viruses and identified a mixed infection. No non-specific reactions were observed with a panel of 23 non-target viruses associated with livestock. Vesicular stomatitis virus was detected as early as 2 days post-inoculation in oral swabs from experimentally infected animals. The limit of detection of the microarray assay was as low as 1 TCID50 /ml for RPV. The novel microarray platform automates the entire post-PCR steps of the assay and integrates electrophoretic-driven capture probe printing in a single user-friendly instrument that allows array layout and assay configuration to be user-customized on-site.

  17. Meloidogyne javanica Chorismate Mutase Transcript Expression Profile Using Real-Time Quantitative RT-PCR.

    PubMed

    Painter, Janet E; Lambert, Kris N

    2003-03-01

    A developmental expression profile of the Meloidodgyne javanica esophageal gland gene chorismate mutase-1 (Mj-cm-1) could suggest when in the lifecycle of the nematode the Mj-cm-1 product is functional. This study used real-time quantitative RT-PCR to examine the variation in Mj-cm-1 transcript levels over six timepoints in the nematode lifecycle: egg, infective second-stage juveniles (Inf-J2), 2-day post-inoculation (pi), 7-day pi, 14-day pi, and adult. The Mj-cm-1 mRNA levels peaked at 2-day pi, about 100-fold above levels expressed at the egg and Inf-J2 stages. Some expression of Mj-cm-1 remained during the 7-day pi, 14-day pi, and adult stages. High transcript levels of the beta-actin control gene M. javanica Beta-actin-1 (Mj-ba-1) demonstrated the presence of cDNA at all timepoints. The peak in Mj-cm-1 transcript expression at 2-day pi as well as the previously shown esophageal gland localization of Mj-cm-1 mRNA suggest that the product of this gene may be involved early in the establishment of parasitism.

  18. A simple DNA recombination screening method by RT-PCR as an alternative to Southern blot.

    PubMed

    Albers, Eliene; Sbroggiò, Mauro; Martin-Gonzalez, Javier; Avram, Alexandra; Munk, Stephanie; Lopez-Contreras, Andres J

    2017-01-19

    The generation of genetically engineered mouse models (GEMMs), including knock-out (KO) and knock-in (KI) models, often requires genomic screening of many mouse ES cell (mESC) clones by Southern blot. The use of large targeting constructs facilitates the recombination of exogenous DNA in a specific genomic locus, but limits the detection of its correct genomic integration by standard PCR methods. Genomic Long Range PCR (LR-PCR), using primers adjacent to the homology arms, has been used as an alternative to radioactive-based Southern blot screenings. However, LR-PCRs are often difficult and render many false positive and false negative results. Here, we propose an alternative screening method based on the detection of a genetic modification at the mRNA level, which we successfully optimized in two mouse models. This screening method consists of a reverse-transcription PCR (RT-PCR) using primers that match exons flanking the targeting construct. The detection of the expected modification in this PCR product confirms the integration at the correct genomic location and shows that the mutant mRNA is expressed. This is a simple and sensitive strategy to screen locus-specific recombination of targeting constructs which can also be useful to screen KO and KI mutant mice or cell lines including those generated by CRISPR/Cas9.

  19. Selection and Validation of Reference Genes for qRT-PCR in Cycas elongata

    PubMed Central

    Deng, Tian; Chen, Letian; Wu, Hong; Zhang, Shouzhou

    2016-01-01

    Quantitative reverse transcription PCR (qRT-PCR) is a sensitive technique used in gene expression studies. To achieve a reliable quantification of transcripts, appropriate reference genes are required for comparison of transcripts in different samples. However, few reference genes are available for non-model taxa, and to date, reliable reference genes in Cycas elongata have not been well characterized. In this study, 13 reference genes (ACT7, TUB, UBQ, EIF4, EF1, CLATHRIN1, PP2A, RPB2, GAPC2, TIP41, MAPK, SAMDC and CYP) were chosen from the transcriptome database of C. elongata, and these genes were evaluated in 8 different organ samples. Three software programs, NormFinder, GeNorm and BestKeeper, were used to validate the stability of the potential reference genes. Results obtained from these three programs suggested that CeGAPC2 and CeRPB2 are the most stable reference genes, while CeACT7 is the least stable one among the 13 tested genes. Further confirmation of the identified reference genes was established by the relative expression of AGAMOUSE gene of C. elongata (CeAG). While our stable reference genes generated consistent expression patterns in eight tissues, we note that our results indicate that an inappropriate reference gene might cause erroneous results. Our systematic analysis for stable reference genes of C. elongata facilitates further gene expression studies and functional analyses of this species. PMID:27124298

  20. Real Time RT-PCR Assays for Detection and Typing of African Horse Sickness Virus

    PubMed Central

    Bachanek-Bankowska, Katarzyna; Maan, Sushila; Castillo-Olivares, Javier; Manning, Nicola M.; Maan, Narender Singh; Potgieter, Abraham C.; Di Nardo, Antonello; Sutton, Geoff; Batten, Carrie; Mertens, Peter P. C.

    2014-01-01

    Although African horse sickness (AHS) can cause up to 95% mortality in horses, naïve animals can be protected by vaccination against the homologous AHSV serotype. Genome segment 2 (Seg-2) encodes outer capsid protein VP2, the most variable of the AHSV proteins. VP2 is also a primary target for AHSV specific neutralising antibodies, and consequently determines the identity of the nine AHSV serotypes. In contrast VP1 (the viral polymerase) and VP3 (the sub-core shell protein), encoded by Seg-1 and Seg-3 respectively, are highly conserved, representing virus species/orbivirus-serogroup-specific antigens. We report development and evaluation of real-time RT-PCR assays targeting AHSV Seg-1 or Seg-3, that can detect any AHSV type (virus species/serogroup-specific assays), as well as type-specific assays targeting Seg-2 of the nine AHSV serotypes. These assays were evaluated using isolates of different AHSV serotypes and other closely related orbiviruses, from the ‘Orbivirus Reference Collection’ (ORC) at The Pirbright Institute. The assays were shown to be AHSV virus-species-specific, or type-specific (as designed) and can be used for rapid, sensitive and reliable detection and identification (typing) of AHSV RNA in infected blood, tissue samples, homogenised Culicoides, or tissue culture supernatant. None of the assays amplified cDNAs from closely related heterologous orbiviruses, or from uninfected host animals or cell cultures. PMID:24721971

  1. Gastroenteritis outbreaks associated with Norwalk-like viruses and their investigation by nested RT-PCR

    PubMed Central

    O'Neill, Hugh J; McCaughey, Conall; Wyatt, Dorothy E; Mitchell, Frederick; Coyle, Peter V

    2001-01-01

    Background Norwalk-like viruses are the most common cause of gastroenteritis outbreaks and sporadic cases of vomiting and diarrhoea. In healthy individuals infection is often mild and short-lived but in debilitated patients infection can be severe. It is essential that the virus laboratory can offer a sensitive and specific test, delivered in a timely manner. Methods We have developed a nested reverse transcriptase PCR based on published primers against the RNA polymerase gene and after comparison with electronmicroscopy used the assay to investigate 31 outbreaks of gastroenteritis. These were in diverse situations including nursing homes, small district hospitals, large general hospitals, a ferry ship, hotels, restaurants and staff canteens. Results A positive diagnosis was made in 30/31 outbreaks investigated giving an overall outbreak positive detection rate of 97%. At an individual patient level there was a positive diagnostic rate of 11.5% in a large hospital environment to 100% in smaller outbreak situations. The average patient positive rate was 34%. In addition we investigated 532 control faecal specimens from adults. Of these 530 were negative and 2 were repeatedly positive. Conclusions It is essential that insensitive electronmicroscopy is replaced with the more sensitive reverse transcription PCR assays. These tests should be made available "on call" at weekends and public holidays. It is also important that outbreaks of NLV infection are monitored using sensitive RT-PCR assays so that the laboratory information can be used in ascertaining the spread and duration of the outbreak PMID:11511325

  2. Quantifying Aotus monkey cytokines by real-time quantitative RT-PCR.

    PubMed

    Pico de Coaña, Yago; Barrero, Carlos; Cajiao, Isabela; Mosquera, Catalina; Patarroyo, Manuel Elkin; Patarroyo, Manuel Alfonso

    Aotus spp. monkeys are considered the ideal model for studying the progress of malarial infection and the immune response it elicits. We describe the use of a recently developed technique, real-time quantitative RT-PCR, to quantify several Aotus monkey cytokine mRNAs involved in Th1/Th2 responses (IL-4, IL-10, TNF-beta and IFN-gamma). Specific primers were designed for each cytokine and standard curves were constructed using serial dilutions of pDNA containing each target sequence. Results were normalized to GAPDH housekeeping gene expression levels. Standard curves showed high correlation coefficients and were linear over a wide range of copy numbers. Quantification of Aotus samples showed little intra- and inter-experiment variation, thus, the technique has proven to be highly reproducible and sensitive allowing us to detect as little as 25 copies/microl of target DNA. This technique will allow studying Th1 and Th2 cytokine patterns elicited in response to infection for prospectively evaluating the efficacy of malarial vaccines.

  3. Detection of human enteric viruses in stream water with RT-PCR and cell culture.

    USGS Publications Warehouse

    Denis-Mize, K.; Fout, G.S.; Dahling, D.R.; Francy, D.S.

    2004-01-01

    A multiplex RT-PCR method was used to measure virus occurrence at five stream water sites that span a range of hydroclimatic, water-quality, and land-use characteristics. The performance of the molecular method was evaluated in comparison with traditional cell culture and Escherichia coli membrane filtration assays. The study incorporated multiple quality controls and included a control for virus recovery during the sampling procedure as well as controls to detect potentially false-negative and false-positive data. Poliovirus recovery ranged from 16 to 65% and was variable, even in samples collected within the same stream. All five sites were positive for viruses by both molecular and cell culture-based virus assays. Enteroviruses, reoviruses, rotaviruses, and hepatitis A viruses were detected, but the use of the quality controls proved critical for interpretation of the molecular data. All sites showed evidence of faecal contamination, and culturable viruses were detected in four samples that would have met the US Environmental Protection Agency's recommended E. coli guideline for safe recreational water.

  4. The use of relative quantitative RT-PCR for expression analysis in azalea flower color sports.

    PubMed

    De Keyser, E; De Riek, J; Van Bockstaele, E

    2003-01-01

    The fastest way to create new azalea (Rhododendron simsii hybrids) cultivars is by making use of flower colour sports, which appear spontaneously on azalea plants. Unfortunately, there is still very little known on how bud sport induction occurs. Therefore, genes coding for two key enzymes of the azalea flavonoid biosynthesis pathway, chalcon synthase (chs) and dihydroflavonol 4-reductase (dfr) that were reported before to be apt for modification by the action of bud sporting, were isolated and characterized. The expression of these two flower colour genes in the petals of azalea flowers will be compared between all 'Hellmut Vogel' flower colour sports. To measure the expression levels of both genes, relative quantitative RT-PCR analysis will be worked out on a real-time PCR machine. The expression of housekeeping genes, which is expected to be the same for all sports, will be used to calculate the relative expression level of the two genes of interest. The optimisation of this technique will be discussed.

  5. Identification of Zucchini yellow mosaic potyvirus by RT-PCR and analysis of sequence variability.

    PubMed

    Thomson, K G; Dietzgen, R G; Gibbs, A J; Tang, Y C; Liesack, W; Teakle, D S; Stackebrandt, E

    1995-09-01

    A reverse transcription-polymerase chain reaction (RT-PCR) method was used to identify Zucchini yellow mosaic virus (ZYMV) in leaves of infected cucurbits. Oligonucleotide primers which annealed to regions in the nuclear inclusion body (NIb) and the coat protein (CP) genes, generated a 300-bp product from ZYMV and also from the closely related watermelon mosaic virus type 2 (WMV-2). However, no product was obtained from papaya ringspot potyvirus which also infects cucurbits. ZYMV and WMV-2 were differentiated using a third primer which was complementary to a sequence in the 3'-untranslated region; a 1186-bp amplified product was obtained for ZYMV only. Nucleotide sequence analysis of the 300-bp fragments of Australian ZYMV and WMV-2 strains revealed 93.7-100% sequence identity between ZYMV strains. Multiple sequence alignments indicated that the nucleotide sequence which codes for the N-terminus of the CP was 74-100% identical for different isolates of ZYMV. The Australian isolate of WMV-2 was 43-46% identical to all isolates of ZYMV and was 84.6% identical to a Florida isolate of WMV-2.

  6. Microdroplet Sandwich Real-Time RT-PCR for Detection of Pandemic and Seasonal Influenza Subtypes

    PubMed Central

    Angione, Stephanie L.; Inde, Zintis; Beck, Christina M.; Artenstein, Andrew W.; Opal, Steven M.; Tripathi, Anubhav

    2013-01-01

    As demonstrated by the recent 2012/2013 flu epidemic, the continual emergence of new viral strains highlights the need for accurate medical diagnostics in multiple community settings. If rapid, robust, and sensitive diagnostics for influenza subtyping were available, it would help identify epidemics, facilitate appropriate antiviral usage, decrease inappropriate antibiotic usage, and eliminate the extra cost of unnecessary laboratory testing and treatment. Here, we describe a droplet sandwich platform that can detect influenza subtypes using real-time reverse-transcription polymerase chain reaction (rtRT-PCR). Using clinical samples collected during the 2010/11 season, we effectively differentiate between H1N1p (swine pandemic), H1N1s (seasonal), and H3N2 with an overall assay sensitivity was 96%, with 100% specificity for each subtype. Additionally, we demonstrate the ability to detect viral loads as low as 104 copies/mL, which is two orders of magnitude lower than viral loads in typical infected patients. This platform performs diagnostics in a miniaturized format without sacrificing any sensitivity, and can thus be easily developed into devices which are ideal for small clinics and pharmacies. PMID:24066051

  7. Specific and sensitive quantitative RT-PCR of miRNAs with DNA primers

    PubMed Central

    2011-01-01

    Background MicroRNAs are important regulators of gene expression at the post-transcriptional level and play an important role in many biological processes. Due to the important biological role it is of great interest to quantitatively determine their expression level in different biological settings. Results We describe a PCR method for quantification of microRNAs based on a single reverse transcription reaction for all microRNAs combined with real-time PCR with two, microRNA-specific DNA primers. Primer annealing temperatures were optimized by adding a DNA tail to the primers and could be designed with a success rate of 94%. The method was able to quantify synthetic templates over eight orders of magnitude and readily discriminated between microRNAs with single nucleotide differences. Importantly, PCR with DNA primers yielded significantly higher amplification efficiencies of biological samples than a similar method based on locked nucleic acids-spiked primers, which is in agreement with the observation that locked nucleic acid interferes with efficient amplification of short templates. The higher amplification efficiency of DNA primers translates into higher sensitivity and precision in microRNA quantification. Conclusions MiR-specific quantitative RT-PCR with DNA primers is a highly specific, sensitive and accurate method for microRNA quantification. PMID:21702990

  8. Detection of canine distemper virus in dogs by real-time RT-PCR.

    PubMed

    Elia, Gabriella; Decaro, Nicola; Martella, Vito; Cirone, Francesco; Lucente, Maria Stella; Lorusso, Eleonora; Di Trani, Livia; Buonavoglia, Canio

    2006-09-01

    Canine distemper virus is the etiological agent of a severe disease in dogs and many other carnivores. Clinical diagnosis of canine distemper is difficult due to the broad spectrum of signs that may be confounded with other respiratory and enteric diseases of dogs. Accordingly, a laboratory confirmation is required for suspected cases. In this study a real-time RT-PCR assay was developed for detection and quantitation of canine distemper virus. The assay exhibited high specificity as all the negative controls (no-template-controls and samples from healthy sero-negative dogs) and other canine pathogens were not misdetected. Up to 1 x 10(2) copies of RNA were detected by the TaqMan assay, thus revealing a high sensitivity. Quantitative TaqMan was validated on clinical samples, including various tissues and organs collected from dogs naturally infected by canine distemper virus. Urines, tonsil, conjunctival swabs and whole blood were found to contain high virus loads and therefore proved to be suitable targets for detection of canine distemper virus RNA.

  9. Survey and RT-PCR Based Detection of Cardamom mosaic virus Affecting Small Cardamom in India.

    PubMed

    Biju, C N; Siljo, A; Bhat, A I

    2010-10-01

    Mosaic or marble or katte disease caused by Cardamom mosaic virus (CdMV) is an important production constraint in all cardamom growing regions of the world. In the present study, 84 cardamom plantations in 44 locations of Karnataka and Kerala were surveyed. The incidence of the disease ranged from 0 to 85%. The incidence was highest in Madikeri (Karnataka) while no incidence was recorded in Peermade (Kerala). In general, incidence and severity of the disease was higher in cardamom plantations of Karnataka. A procedure for total RNA isolation from cardamom and detection of CdMV through reverse transcription-polymerase chain reaction (RT-PCR) using primers targeting the conserved region of coat protein was standardized and subsequently validated by testing more than 50 field cardamom samples originating from Karnataka and Kerala states. The method can be used for indexing the planting material and identifying resistant lines/cultivars before either they are further multiplied in large scale or incorporated in breeding.

  10. First Case of Biphenotypic/bilineal (B/myeloid, B/monocytic) Mixed Phenotype Acute Leukemia with t(9;22)(q34;q11.2);BCR-ABL1.

    PubMed

    Kim, Hyeong Nyeon; Hur, Mina; Kim, Hanah; Ji, Misuk; Moon, Hee-Won; Yun, Yeo-Min; Lee, Mark Hong

    2016-07-01

    Mixed phenotype acute leukemia (MPAL) includes biphenotypic leukemia, bilineal leukemia, or its combination by the 2008 WHO classification. A few cases of combined biphenotypic/bilineal MPAL have been reported so far; they all had biphenotypic expressions in only one of the two distinct leukemic populations. A 43-year-old female presented with leukocytosis and bicytopenia. Her complete blood counts were: hemoglobin, 6.9 g/dL; white blood cells, 62.8×10(9)/L; and platelets, 83×10(9)/L. Neither lymphadenopathy nor organomegaly was observed. Blasts and promonocytes/monoblasts were increased in her peripheral blood (42%) and bone marrow (60.1%). Flow cytometric analysis revealed two distinct populations of leukemic cells, which expressed CD11c, CD19, and cytoplasmic CD79a in common. Additionally, the first population expressed CD10 and CD117 (B/myeloid), and the second one expressed CD14 and CD20 (B/monocytic). She had a karyotype of 46,XX,inv(9)(p12q13),t(9;22)(q34;q11.2)[20] and BCR/ABL1 rearrangement. To the best of our knowledge, this is the first reported case of biphenotypic/bilineal MPAL with B/myeloid and B/monocytic expressions. © 2016 by the Association of Clinical Scientists, Inc.

  11. Switching to second-generation tyrosine kinase inhibitor improves the response and outcome of frontline imatinib-treated patients with chronic myeloid leukemia with more than 10% of BCR-ABL/ABL ratio at 3 months

    PubMed Central

    Casado, Luis-Felipe; García-Gutiérrez, José-Valentín; Massagué, Isabel; Giraldo, Pilar; Pérez-Encinas, Manuel; de Paz, Raquel; Martínez-López, Joaquín; Bautista, Guiomar; Osorio, Santiago; Requena, María-José; Palomera, Luis; Peñarrubia, María-Jesús; Calle, Carmen; Hernández-Rivas, José-Ángel; Burgaleta, Carmen; Maestro, Begoña; García-Ormeña, Nuria; Steegmann, Juan-Luis

    2015-01-01

    Chronic myeloid leukemia patients display heterogeneous responses to imatinib. Survival depends on baseline clinical characteristics (including prognostic scoring systems) and on early response (such as >10% BCR-ABL/ABL ratio at 3 months of therapy). The results of switching to second-generation tyrosine kinase inhibitors (2GTKIs) may contain a bias since, in the majority of these studies, patients who switch treatment due to intolerance or failure are censored or excluded. We analyzed the Spanish Registry data on switching in an intention-to-treat analysis of patients in standard clinical practice. Switching to 2GTKIs improves responses from 45% to 75% of complete cytogenetic response (CCyR) and from 15% to 45% of major molecular response (MMR) in the group without molecular response 1 (MR1) at 3 months and from 70% to 87% in CCyR and from 52% to 87% in MMR in the group with MR1. The final response rate is poorer in the group with no MR1 at 3 months. Nevertheless, the differences in the rates of response were not translated into differences in major events (transformations or deaths), and the final progression-free survival and overall survival were similar. PMID:25756742

  12. Switching to second-generation tyrosine kinase inhibitor improves the response and outcome of frontline imatinib-treated patients with chronic myeloid leukemia with more than 10% of BCR-ABL/ABL ratio at 3 months.

    PubMed

    Casado, Luis-Felipe; García-Gutiérrez, José-Valentín; Massagué, Isabel; Giraldo, Pilar; Pérez-Encinas, Manuel; de Paz, Raquel; Martínez-López, Joaquín; Bautista, Guiomar; Osorio, Santiago; Requena, María-José; Palomera, Luis; Peñarrubia, María-Jesús; Calle, Carmen; Hernández-Rivas, José-Ángel; Burgaleta, Carmen; Maestro, Begoña; García-Ormeña, Nuria; Steegmann, Juan-Luis

    2015-07-01

    Chronic myeloid leukemia patients display heterogeneous responses to imatinib. Survival depends on baseline clinical characteristics (including prognostic scoring systems) and on early response (such as >10% BCR-ABL/ABL ratio at 3 months of therapy). The results of switching to second-generation tyrosine kinase inhibitors (2GTKIs) may contain a bias since, in the majority of these studies, patients who switch treatment due to intolerance or failure are censored or excluded. We analyzed the Spanish Registry data on switching in an intention-to-treat analysis of patients in standard clinical practice. Switching to 2GTKIs improves responses from 45% to 75% of complete cytogenetic response (CCyR) and from 15% to 45% of major molecular response (MMR) in the group without molecular response 1 (MR1) at 3 months and from 70% to 87% in CCyR and from 52% to 87% in MMR in the group with MR1. The final response rate is poorer in the group with no MR1 at 3 months. Nevertheless, the differences in the rates of response were not translated into differences in major events (transformations or deaths), and the final progression-free survival and overall survival were similar.

  13. Detection of influenza virus using a lateral flow immunoassay for amplified DNA by a microfluidic RT-PCR chip.

    PubMed

    Nagatani, Naoki; Yamanaka, Keiichiro; Ushijima, Hiromi; Koketsu, Ritsuko; Sasaki, Tadahiro; Ikuta, Kazuyoshi; Saito, Masato; Miyahara, Toshiro; Tamiya, Eiichi

    2012-08-07

    Influenza virus RNA was amplified by a continuous-flow polydimethylsiloxane microfluidic RT-PCR chip within 15-20 min. The amplified influenza virus RNA was observed with the naked eye, as the red color at the test line, using a lateral flow immunoassay within 1 min.

  14. Development of a multiplex immunocapture RT-PCR assay for detection and differentiation of tomato and tobacco mosaic tobamoviruses.

    PubMed

    Jacobi, V; Bachand, G D; Hamelin, R C; Castello, J D

    1998-10-01

    Immunocapture (IC) RT-PCR assays were developed for detection of tomato (ToMV) and tobacco mosaic (TMV) tobamoviruses in spruce and pine extracts. When purified viruses were diluted in root or needle extracts of virus-free conifer seedlings, both IC-RT-PCR assays detected their respective target viruses at concentrations of 10-100 fg ml(-1). This compared to ELISA detection sensitivities of 1 ng ml(-1). Primers were designed from regions of high sequence diversity. Specificity of all primer pairs was confirmed by sequencing of PCR products. PCR distinguished more reliably between the two viruses than ELISA. Moreover, a multiplex IC-RT-PCR assay for the simultaneous detection and differentiation of TMV and ToMV was developed. When root extracts were seeded with both viruses simultaneously, the multiplex assay detected each virus at concentrations of 1-10 pg ml(-1). Six TMV and 18 ToMV isolates from various hosts, water samples and a soil sample were amplified and differentiated by multiplex IC-RT-PCR. No amplifications were observed against pepper mild mottle and ribgrass mosaic tobamoviruses and against six viruses belonging to other taxonomic groups.

  15. Real-time multiplex RT-PCR for the simultaneous detection of the five main grapevine viruses.

    PubMed

    López-Fabuel, Irene; Wetzel, Thierry; Bertolini, Edson; Bassler, Alexandra; Vidal, Eduardo; Torres, Luis B; Yuste, Alberto; Olmos, Antonio

    2013-03-01

    A real-time multiplex RT-PCR has been developed for the simultaneous detection and identification of the major RNA viruses that infect grapevines (Grapevine fanleaf virus, Arabis mosaic virus, Grapevine leafroll-associated virus 1, Grapevine leafroll-associated virus 3 and Grapevine fleck virus). Serial dilutions of infected plant extracts were tested using the new method, and the results were compared with those obtained using a commercially available ELISA and real-time singleplex RT-PCR. The two real-time RT-PCR versions detected up to the same level of dilution and were at least 10,000 times more sensitive than the ELISA. In addition, 158 grapevine plants collected in a survey of the Protected Designation of Origin in Alicante, Spain were compared using the three methods. The results of the molecular methods were very similar, with only four discordant results, and both were able to detect many more infected plants than the ELISA. The high prevalence of Grapevine fleck virus, Grapevine leafroll-associated virus 3 and Grapevine fanleaf virus suggests that the main pathways of viral introduction are infected plant material that has escaped controls and/or uncontrolled traffic of propagating plant material. Real-time multiplex RT-PCR could be used to facilitate a better control of grapevine viruses.

  16. Standardized RT-PCR conditions for detection and identification of eleven viruses of potato and Potato spindle tuber viroid

    USDA-ARS?s Scientific Manuscript database

    Standardized RT-PCR procedures were developed and validated for detection of Alfalfa mosaic virus (AMV), Impatiens necrotic spot virus (INSV), Tobacco rattle virus (TRV), Tomato spotted wilt virus (TSWV), Potato leaf roll virus (PLRV), Potato mop top virus (PMTV), Potato virus A (PVA), Potato viru...

  17. Use of RT-PCR on oral fluid samples to assist the identification of measles cases during an outbreak.

    PubMed Central

    Oliveira, S. A.; Siqueira, M. M.; Camacho, L. A. B.; Castro-Silva, R.; Bruno, B. F.; Cohen, B. J.

    2003-01-01

    This study investigated the occurrence of mild modified measles cases during an outbreak in Niterói, RJ, Brazil by using RT-PCR on oral fluid samples. From August to December 1997 a total of 76 patients with rash were seen at the study sites. Confirmed diagnosis by serology was achieved in 47 cases: measles (39.5%), rubella (13.2%), HHV-6 (3.9%), human parvovirus B19 (3.9%), dengue fever (3%). For 19 of the 29 patients without a conclusive diagnosis paired serum and saliva samples were available for further tests. In four of them, measles virus RNA was detected by RT-PCR in saliva samples in the absence of specific IgM in serum samples. Vaccination histories obtained from three of the RT-PCR positive cases showed that individuals previously immunized can still be infected and contribute to the circulation of measles virus. This study demonstrated the usefulness of RT-PCR on non-invasive clinical samples for the investigation of measles cases. PMID:12613751

  18. Culture and Reverse Transcriptase Polymerase Chain Reaction (RT-PCR) Proven Mycobacterium Tuberculosis Endophthalmitis: A Case Series.

    PubMed

    Rishi, Ekta; Rishi, Pukhraj; Therese, K Lily; Ramasubban, Gayathri; Biswas, Jyotirmay; Sharma, Tarun; Bhende, Pramod; Susvar, Pradeep; Agarwal, Mamta; George, Amala Elizabeth; Delhiwala, Kushal; Sharma, Vishal Rajan

    2016-09-06

    To report early confirmation of Mycobacterium tuberculosis (MTB) endophthalmitis by detection of 85B mRNA in vitreous by a reverse transcriptase polymerase chain reaction (RT-PCR) technique. Retrospective, interventional case series of 5 patients with MTB endogenous endophthalmitis. Vitreous aspirate was subjected to Ziehl-Neelsen (ZN) staining, BACTEC MicroMGIT culture, RT-PCR targeting the 85B gene, real-time PCR targeting the IS6110 region, and nested PCR targeting the MPB64 gene and IS6110 region. Correlation between detection of MTB RNA, culture positivity, and ZN staining was studied. Five patients with endophthalmitis with no history of tuberculosis revealed acid-fast bacilli on ZN staining of vitreous. RT-PCR detected 85B RNA within 24 h. Culture for MTB was positive in 3/5 patients after 1 month. None of the eyes recovered any useful vision. RT-PCR can detect viable MTB RNA and provide evidence of active infection much earlier than culture.

  19. Simultaneous detection of four causal agents of tobacco bushy top disease by a multiplex one-step RT-PCR

    USDA-ARS?s Scientific Manuscript database

    Tobacco bushy top disease is a complex disease caused by mixed infection of Tobacco bushy top virus (TBTV), Tobacco vein distorting virus (TVDV), satellite RNA of TBTV (Sat-TBTV) and Tobacco vein distorting virus associate RNA (TVDVaRNA). A one-tube multiplex reverse transcription-PCR (RT-PCR) assay...

  20. Development and evaluation of ELISA and qRT-PCR for identification of Squash vein yellowing virus in cucurbits

    USDA-ARS?s Scientific Manuscript database

    Enzyme linked-immunosorbent assay (ELISA) and quantitative reverse transcription-PCR (qRT-PCR) assays were developed for identification of Squash vein yellowing virus (SqVYV), the cause of viral watermelon vine decline. Both assays were capable of detecting SqVYV in a wide range of cucurbit hosts. ...

  1. Improved RT-PCR Assay to Quantitate the Pri-, Pre-, and Mature microRNAs with Higher Efficiency and Accuracy.

    PubMed

    Tong, Li; Xue, Huihui; Xiong, Li; Xiao, Junhua; Zhou, Yuxun

    2015-10-01

    Understanding of the functional significance of microRNAs (miRNAs) requires efficient and accurate detection method. In this study, we developed an improved miRNAs quantification system based on quantitative real-time polymerase chain reaction (qRT-PCR). This method showed higher efficiency and accuracy to survey the expression of primary miRNAs (pri-miRNAs), precursor miRNAs (pre-miRNAs), and mature miRNAs. Instead of relative quantification method, we quantified the pri-miRNAs and pre-miRNAs with absolute qRT-PCR based on SYBR Green I fluorescence. This improvement corrected for the inaccuracy caused by the differences in amplicon length and PCR efficiency. We also used SYBR Green method to quantify mature miRNAs based on the stem-loop qRT-PCR method. We extended the pairing part of the stem-loop reverse transcript (RT) primer from 6 to 11 bp, which greatly increased the efficiency of reverse transcription PCR (RT-PCR). The performance of the improved RT primer was tested using synthetic mature miRNAs and tissue RNA samples. Results showed that the improved RT primer demonstrated dynamic range of seven orders of magnitude and sensitivity of detection of hundreds of copies of miRNA molecules.

  2. Simultaneous detection of Cymbidium mosaic virus and Odontoglossum ringspot virus in orchids using multiplex RT-PCR.

    PubMed

    Kim, Su Min; Choi, Sun Hee

    2015-12-01

    A system for simultaneous detection of two orchid-infecting viruses was developed and applied to several orchid species. The detection system involved multiplex reverse transcription-polymerase chain reaction (RT-PCR) and could simultaneously identify Cymbidium mosaic virus (CymMV) and Odontoglossum ringspot virus (ORSV) from the orchid species studied. Multiplex RT-PCR was conducted using two virus-specific primer pairs and an internal control pair of primers to amplify the CymMV and ORSV coat protein regions, and orchid 18S rDNA, respectively. For optimization of multiplex RT-PCR conditions, serial dilutions of total RNA and cDNA were performed and the detection limit of the system was evaluated. The optimized multiplex detection system for CymMV and ORSV was applied to various orchid species, including several cultivars of Doritaenopsis, Cymbidium, Dendrobium, and Phalaenopsis to test the efficacy of this method. Our results indicate that the multiplex RT-PCR detection system will be a rapid, simple, and precise diagnosis tool in a range of orchid species.

  3. The Use of Collagenase to Improve the Detection of Plant Viruses in Vector Nematodes by RT/PCR

    USDA-ARS?s Scientific Manuscript database

    Tomato ringspot virus (ToRSV) Tobacco ringspot virus (TRSV) and Tobacco rattle virus (TRV) are transmitted to healthy plants by viruliferous nematodes in the soil. We developed a method for extraction of genomic viral RNA from virus particles carried within nematodes and a sensitive nested RT/PCR ...

  4. Misidentification of Bordetella bronchiseptica as Bordetella pertussis using a Newly Described RT-PCR Targeting the Pertactin Gene

    USDA-ARS?s Scientific Manuscript database

    Recently a real-time PCR (RT-PCT) assay based on sequence from the gene for pertactin was proposed for identification of Bordetella pertussis. Here we report that the B. pertussis pertactin gene sequence for the region encompassing the RT-PCR probe and primers is nearly identical to that of many B....

  5. Direct sample preparation methods for the detection of Plum pox virus by real-time RT-PCR.

    PubMed

    Capote, Nieves; Bertolini, Edson; Olmos, Antonio; Vidal, Eduardo; Martínez, Maria Carmen; Cambra, Mariano

    2009-03-01

    Direct systems to process plant materials allowed high-throughput testing of Plum pox virus (PPV) by real-time reverse transcription (RT)-PCR without nucleic acids purification. Crude plant extracts were diluted in buffer or spotted on membranes to be used as templates. Alternatively, immobilized PPV targets were amplified from fresh sections of plant tissues printed or squashed onto the same supports, without extract preparation. Spot real-time RT-PCR was validated as a PPV diagnostic method in samples collected during the dormancy period and showed high sensitivity (93.6%), specificity (98.0%), and post-test probability (97.9%) towards sharka disease. In an analysis of 2919 Prunus samples by spot real-time RT-PCR and DASI-ELISA 90.8% of the results coincided, demonstrating high agreement (k = 0.77 +/- 0.01) between the two techniques. These results validate the use of immobilized PPV targets and spot real-time RT-PCR as screening method for largescale analyses.

  6. A Robust Plant RNA Isolation Method for Affymetrix Genechip® Analysis and Quantitative Real-Time RT-PCR

    USDA-ARS?s Scientific Manuscript database

    Microarray analysis and quantitative real-time RT-PCR are the major high-throughput techniques that are used to study transcript profiles. One of the major limitations in these technologies is the isolation maximum yield of highly-pure RNA from plant tissues rich in complex polysaccharides, polyphen...

  7. Characterization of cytokine expression induced by avian influenza virus infection with real-time RT-PCR

    USDA-ARS?s Scientific Manuscript database

    Knowledge of how birds react to infection from avian influenza virus is critical to understanding disease pathogenesis and host response. The use of real-time (R), reverse-transcriptase (RT), PCR to measure innate immunity, including cytokine and interferon gene expression, has become a standard tec...

  8. Sodium sulphite inhibition of potato and cherry polyphenolics in nucleic acid extraction for virus detection by RT-PCR.

    PubMed

    Singh, R P; Nie, X; Singh, M; Coffin, R; Duplessis, P

    2002-01-01

    Phenolic compounds from plant tissues inhibit reverse transcription-polymerase chain reaction (RT-PCR). Multiple-step protocols using several additives to inhibit polyphenolic compounds during nucleic acid extraction are common, but time consuming and laborious. The current research highlights that the inclusion of 0.65 to 0.70% of sodium sulphite in the extraction buffer minimizes the pigmentation of nucleic acid extracts and improves the RT-PCR detection of Potato virus Y (PVY) and Potato leafroll virus (PLRV) in potato (Solanum tuberosum) tubers and Prune dwarf virus (PDV) and Prunus necrotic ringspot virus (PNRSV) in leaves and bark in the sweet cherry (Prunus avium) tree. Substituting sodium sulphite in the nucleic acid extraction buffer eliminated the use of proteinase K during extraction. Reagents phosphate buffered saline (PBS)-Tween 20 and polyvinylpyrrolidone (PVP) were also no longer required during RT or PCR phase. The resultant nucleic acid extracts were suitable for both duplex and multiplex RT-PCR. This simple and less expensive nucleic acid extraction protocol has proved very effective for potato cv. Russet Norkotah, which contains a high amount of polyphenolics. Comparing commercially available RNA extraction kits (Catrimox and RNeasy), the sodium sulphite based extraction protocol yielded two to three times higher amounts of RNA, while maintaining comparable virus detection by RT-PCR. The sodium sulphite based extraction protocol was equally effective in potato tubers, and in leaves and bark from the cherry tree.

  9. Detection of nine respiratory RNA viruses using three multiplex RT-PCR assays incorporating a novel RNA internal control transcript.

    PubMed

    Auburn, Helen; Zuckerman, Mark; Broughton, Simon; Greenough, Anne; Smith, Melvyn

    2011-09-01

    Real-time PCR is a significant improvement over viral isolation and immunofluorescence for routinely detecting respiratory viruses. We developed three real-time internally controlled multiplex RT-PCR assays for detecting nine respiratory viruses. An internal control transcript consisting of a chimeric plasmid was synthesised and incorporated into each multiplex to monitor amplification efficiency, including inhibition. Each multiplex assay was developed on the Rotor-Gene 3000 and evaluated using RNA extracts from 126 nasopharyngeal aspirates from 112 pre-term infants. All 44/126 (35%) samples positive by immunofluorescence were confirmed by multiplex RT-PCR. Additionally, respiratory syncytial virus RNA was detected in 5 samples, influenza A virus RNA in 2 samples and thirteen (10%) dual infections by multiplex RT-PCR were noted. Inclusion of the RNA internal control did not affect the amplification efficiency of the target sequences and only 2 of 1256 (0.2%) samples tested over a 12 month period were inhibitory. Together with the improved sensitivity of the internally controlled multiplex RT-PCR assays over the older technology and the ability to detect co-infections, the internal control monitored the efficiency of both the RT and PCR steps and indicated inhibition, saving time and costs on running duplicate samples with a "spiked" inhibition control. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. OP32A COMBINED STRATEGY FOR THE DETECTION OF BRAF FUSIONS IN PILOCYTIC ASTROCYTOMA USING RT-PCR AND FISH

    PubMed Central

    Faulkner, C.; Shaw, A.; Wragg, C.; Greenslade, M.; Haynes, H.; Williams, H.; Lowis, S.; Williams, M.; Kurian, K.M.

    2014-01-01

    INTRODUCTION: Pilocytic astrocytomas can show a wide morphological spectrum making definitive histological diagnosis challenging. The FISH test for KIAA1549-BRAF fusions is most commonly used, but this is difficult to interpret. We aimed to develop a real-time PCR (RT-PCR) test as a first-line screen for the three most common KIAA1549-BRAF fusion variants. METHOD: A RT-PCR method for detecting KIAA1549-BRAF fusions from formalin-fixed paraffin-embedded (FFPE) brain tumour tissues (pilocytic astrocytoma). The three most common fusion variants are detected using this assay: exon 16 of KIAA1549 fused to exon 9 of BRAF, exon 15 of KIAA1549 fused to exon 9 of BRAF and exon 16 of KIAA1549 fused to exon 11 of BRAF fusion. GAPDH expression was used as a control. RESULTS: The RT-PCR assay was initially validated on 12 samples previously tested by FISH or RT-PCR in a different laboratory. The RT-PCR assay had a sensitivity of 89% (8/9 - one sample tested positive by FISH but negative on RT-PCR) and a specificity of 100% (2/2). The failure rate was 8.3% (1/12). Sensitivity experiments showed that the fusion can be detected when present at a least 5% of the total cDNA content. 51 Neuropathology diagnostic FFPE samples from 42 pilocytic astrocytoma patients were then tested using the BRAF fusion RT-PCR assay. The overall pick-up rate was 54% (20/37 patients) Of the positive patients (20), 55% (11/20) had the 16-9 fusion and 45% (9/20) had the 15-9 fusion. Two patients had multiple fusions (2/20 positive patients, 10%) showing the 16-9 fusion and a low-level 16-11 fusion. No patients exclusively had the 16-11 fusion. CONCLUSION: We propose RTPCR first line for fusion analysis followed by FISH, for pilocytic astrocytoma.

  11. Comparison and optimization of detection methods for noroviruses in frozen strawberries containing different amounts of RT-PCR inhibitors.

    PubMed

    Bartsch, Christina; Szabo, Kathrin; Dinh-Thanh, Mai; Schrader, Christina; Trojnar, Eva; Johne, Reimar

    2016-12-01

    Frozen berries have been repeatedly identified as vehicles for norovirus (NoV) transmission causing large gastroenteritis outbreaks. However, virus detection in berries is often hampered by the presence of RT-PCR-inhibiting substances. Here, several virus extraction methods for subsequent real-time RT-PCR-based NoV-RNA detection in strawberries were compared and optimized. NoV recovery rates (RRs) between 0.21 ± 0.13% and 10.29 ± 6.03% were found when five different artificially contaminated strawberry batches were analyzed by the ISO/TS15216-2 method indicating the presence of different amounts of RT-PCR inhibitors. A comparison of five different virus extraction methods using artificially contaminated strawberries containing high amounts of RT-PCR inhibitors revealed the best NoV RRs for the ISO/TS15216 method. Further improvement of NoV RRs from 2.83 ± 2.92% to 15.28 ± 9.73% was achieved by the additional use of Sephacryl(®)-based columns for RNA purification. Testing of 22 frozen strawberry samples from a batch involved in a gastroenteritis outbreak resulted in 5 vs. 13 NoV GI-positive and in 9 vs. 20 NoV GII-positive samples using the original ISO/TS15216 method vs. the extended protocol, respectively. It can be concluded that the inclusion of an additional RNA purification step can increase NoV detection by the ISO/TS15216-2 method in frozen berries containing high amounts of RT-PCR inhibitors. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. Development of a real-time RT-PCR method for enumeration of viable Bifidobacterium longum cells in different morphologies.

    PubMed

    Reimann, Sebastian; Grattepanche, Franck; Rezzonico, Enea; Lacroix, Christophe

    2010-04-01

    Viability of probiotic bacteria is traditionally assessed by plate counting which has several limitations, including underestimation of cells in aggregates or chains morphology. We describe a quantitative PCR (qPCR)-based method for an accurate enumeration of viable cells of Bifidobacterium longum NCC2705 exhibiting different morphologies by measuring the mRNA levels of cysB and purB, two constitutively expressed housekeeping genes. Three primer-sets targeting short fragments of 57-bp of cysS and purB and one 400-bp fragment of purB were used. Cell quantification of serially diluted samples showed a good correlation coefficient of R(2) 0.984 +/- 0.003 between plate counts and qRT-PCR for all tested primer sets. Loss of viable cells exposed to a lethal heat stress (56 degrees C, 10, 20 and 30 min) was estimated by qRT-PCR and plate counts. No significant difference was observed using qRT-PCR targeting the 400-bp fragment of purB compared to plate counts indicating that this fragment is a suitable marker of cell viability. In contrast, the use of the 57-bp fragments led to a significant overestimation of viable cell counts (18 +/- 3 and 7 +/- 2 fold for cysB and purB, respectively). Decay of the mRNA fragments was studied by treatment of growing cells with rifampicin prior qRT-PCR. The 400-bp fragment of purB was faster degraded than the 57-bp fragments of cysB and purB. The 400-bp fragment of purB was further used to enumerate viable cells in aggregate state. Cell counts were more than 2 log(10) higher using the qRT-PCR method compared to plate counts. Growing interest in probiotic characteristics of aggregating bacteria cells make this technique a valuable tool to accurately quantify viable probiotic bacteria exhibiting heterogeneous morphology.

  13. Development of SYBR Green real-time RT-PCR for rapid detection, quantitation and diagnosis of unclassified bovine enteric calicivirus.

    PubMed

    Park, Sang-Ik; Park, Da-Hae; Saif, Linda J; Jeong, Young-Ju; Shin, Dong-Jun; Chun, Young-Hyun; Park, Su-Jin; Kim, Hyun-Jeong; Hosmillo, Myra; Kwon, Hyung-Jun; Kang, Mun-Il; Cho, Kyoung-Oh

    2009-07-01

    Unclassified bovine enteric calicivirus (BECV) is a newly recognized bovine enteric calicivirus that differs from bovine norovirus, and which causes diarrhea in the small intestines of calves. To date, methods such as real-time reverse transcription-polymerase chain reaction (RT-PCR) have not been developed for the rapid detection, quantitation and diagnosis of BECV. Presently, a BECV-specific SYBR Green real-time RT-PCR assay was evaluated and optimized. Diarrheic specimens (n=118) collected from 2004 to 2005 were subjected to RT-PCR, nested PCR and SYBR Green real-time RT-PCR. By conventional RT-PCR and nested PCR, 9 (7.6%) and 59 (50%) samples tested positive, respectively, whereas the SYBR Green assay detected BECV in 91 (77.1%) samples. Using BECV RNA standards generated by in vitro transcription, the SYBR Green real-time RT-PCR assay sensitively detected BECV RNA to 1.1 x 10(0)copies/microl (correlation coefficiency=0.98). The detection limits of the RT-PCR and nested PCR were 1.1 x 10(5) and 1.1 x 10(2)copies/microl, respectively. These results indicate that the SYBR Green real-time RT-PCR assay is more sensitive than conventional RT-PCR and nested PCR assays, and has potential as a reliable, reproducible, specific, sensitive and rapid tool for the detection, quantitation and diagnosis of unclassified BECV.

  14. [Development and comparison of real-time and conventional RT-PCR assay for detection of human coronavirus NL63 and HKU1].

    PubMed

    Lu, Rou-jian; Zhang, Ling-lin; Tan, Wen-jie; Zhou, Wei-min; Wang, Zhong; Peng, Kun; Ruan, Li

    2008-07-01

    We designed specific primers and fluorescence-labeled probes to develop real-time and conventional RT-PCR assays for detection of human coronavirus NL63 or HKU1. Subsequently, experiments were undertaken to assess diagnostic criteria such as specificity, sensitivity and reproducibility. The detection limit of the real-time RT-PCR assays was 10 RNA copies per reaction mixture. No cross-reactivity was observed between RNA samples derived from designed HCoV and other HCoV or human metapneumovirus. A total of 158 nasopharyngeal swab specimens collected from adult patients with acute respiratory tract infection in Beijing were screened for the presence of human coronavirus NL63 and HKU1 by using real-time RT-PCR and conventional RT-PCR method. The fluorescence quantitative RT-PCR method detected six specimens positive for human coronavirus NL63, five specimens positive for human coronavirus HKU1; and conventional RT-PCR method detected three HCoV-NL63 positive and three HCoV-HKU1 positive, respectively. The convention RT-PCR products of positive samples were obtained and sequence analysis confirmed the reliability of the above methods. In summary, the real-time RT-PCR assay for HCoV- NL63 or HKU1 was more sensitive than conventional RT-PCR and with less time (less than 4 hours) for completion. It may be suitable for molecular epidemiological surveillance and clinical diagnosis for human coronavirus NL63 and HKU1.

  15. Proteomic Analysis and qRT-PCR Verification of Temperature Response to Arthrospira (Spirulina) platensis

    PubMed Central

    Huili, Wang; Xiaokai, Zhao; Meili, Lin; Dahlgren, Randy A.; Wei, Chen; Jaiopeng, Zhou; Chengyang, Xu; Chunlei, Jin; Yi, Xu; Xuedong, Wang; Li, Ding; Qiyu, Bao

    2013-01-01

    Arthrospira (Spirulina) platensis (ASP) is a representative filamentous, non-N2-fixing cyanobacterium that has great potential to enhance the food supply and possesses several valuable physiological features. ASP tolerates high and low temperatures along with highly alkaline and salty environments, and can strongly resist oxidation and irradiation. Based on genomic sequencing of ASP, we compared the protein expression profiles of this organism under different temperature conditions (15°C, 35°Cand 45°C) using 2-DE and peptide mass fingerprinting techniques. A total of 122 proteins having a significant differential expression response to temperature were retrieved. Of the positively expressed proteins, the homologies of 116 ASP proteins were found in Arthrospira (81 proteins in Arthrospira platensis str. Paraca and 35 in Arthrospira maxima CS-328). The other 6 proteins have high homology with other microorganisms. We classified the 122 differentially expressed positive proteins into 14 functions using the COG database, and characterized their respective KEGG metabolism pathways. The results demonstrated that these differentially expressed proteins are mainly involved in post-translational modification (protein turnover, chaperones), energy metabolism (photosynthesis, respiratory electron transport), translation (ribosomal structure and biogenesis) and carbohydrate transport and metabolism. Others proteins were related to amino acid transport and metabolism, cell envelope biogenesis, coenzyme metabolism and signal transduction mechanisms. Results implied that these proteins can perform predictable roles in rendering ASP resistance against low and high temperatures. Subsequently, we determined the transcription level of 38 genes in vivo in response to temperature and identified them by qRT-PCR. We found that the 26 differentially expressed proteins, representing 68.4% of the total target genes, maintained consistency between transcription and translation levels. The

  16. Reference gene validation for quantitative RT-PCR during biotic and abiotic stresses in Vitis vinifera.

    PubMed

    Borges, Alexandre Filipe; Fonseca, Catarina; Ferreira, Ricardo Boavida; Lourenço, Ana Maria; Monteiro, Sara

    2014-01-01

    Grapevine is one of the most cultivated fruit crop worldwide with Vitis vinifera being the species with the highest economical importance. Being highly susceptible to fungal pathogens and increasingly affected by environmental factors, it has become an important agricultural research area, where gene expression analysis plays a fundamental role. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) is currently amongst the most powerful techniques to perform gene expression studies. Nevertheless, accurate gene expression quantification strongly relies on appropriate reference gene selection for sample normalization. Concerning V. vinifera, limited information still exists as for which genes are the most suitable to be used as reference under particular experimental conditions. In this work, seven candidate genes were investigated for their stability in grapevine samples referring to four distinct stresses (Erysiphe necator, wounding and UV-C irradiation in leaves and Phaeomoniella chlamydospora colonization in wood). The expression stability was evaluated using geNorm, NormFinder and BestKeeper. In all cases, full agreement was not observed for the three methods. To provide comprehensive rankings integrating the three different programs, for each treatment, a consensus ranking was created using a non-weighted unsupervised rank aggregation method. According to the last, the three most suitable reference genes to be used in grapevine leaves, regardless of the stress, are UBC, VAG and PEP. For the P. chlamydospora treatment, EF1, CYP and UBC were the best scoring genes. Acquaintance of the most suitable reference genes to be used in grapevine samples can contribute for accurate gene expression quantification in forthcoming studies.

  17. Reference Gene Validation for Quantitative RT-PCR during Biotic and Abiotic Stresses in Vitis vinifera

    PubMed Central

    Borges, Alexandre Filipe; Fonseca, Catarina; Ferreira, Ricardo Boavida; Lourenço, Ana Maria; Monteiro, Sara

    2014-01-01

    Grapevine is one of the most cultivated fruit crop worldwide with Vitis vinifera being the species with the highest economical importance. Being highly susceptible to fungal pathogens and increasingly affected by environmental factors, it has become an important agricultural research area, where gene expression analysis plays a fundamental role. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) is currently amongst the most powerful techniques to perform gene expression studies. Nevertheless, accurate gene expression quantification strongly relies on appropriate reference gene selection for sample normalization. Concerning V. vinifera, limited information still exists as for which genes are the most suitable to be used as reference under particular experimental conditions. In this work, seven candidate genes were investigated for their stability in grapevine samples referring to four distinct stresses (Erysiphe necator, wounding and UV-C irradiation in leaves and Phaeomoniella chlamydospora colonization in wood). The expression stability was evaluated using geNorm, NormFinder and BestKeeper. In all cases, full agreement was not observed for the three methods. To provide comprehensive rankings integrating the three different programs, for each treatment, a consensus ranking was created using a non-weighted unsupervised rank aggregation method. According to the last, the three most suitable reference genes to be used in grapevine leaves, regardless of the stress, are UBC, VAG and PEP. For the P. chlamydospora treatment, EF1, CYP and UBC were the best scoring genes. Acquaintance of the most suitable reference genes to be used in grapevine samples can contribute for accurate gene expression quantification in forthcoming studies. PMID:25340748

  18. A qRT-PCR assay for the expression of all Mal d 1 isoallergen genes

    PubMed Central

    2013-01-01

    Background A considerable number of individuals suffer from oral allergy syndrome (OAS) to apple, resulting in the avoidance of apple consumption. Apple cultivars differ greatly in their allergenic properties, but knowledge of the causes for such differences is incomplete. Mal d 1 is considered the major apple allergen. For Mal d 1, a wide range of isoallergens and variants exist, and they are encoded by a large gene family. To identify the specific proteins/genes that are potentially involved in the allergy, we developed a PCR assay to monitor the expression of each individual Mal d 1 gene. Gene-specific primer pairs were designed for the exploitation of sequence differences among Mal d 1 genes. The specificity of these primers was validated using both in silico and in vitro techniques. Subsequently, this assay was applied to the peel and flesh of fruits from the two cultivars ‘Florina’ and ‘Gala’. Results We successfully developed gene-specific primer pairs for each of the 31 Mal d 1 genes and incorporated them into a qRT-PCR assay. The results from the application of the assay showed that 11 genes were not expressed in fruit. In addition, differential expression was observed among the Mal d 1 genes that were expressed in the fruit. Moreover, the expression levels were tissue and cultivar dependent. Conclusion The assay developed in this study facilitated the first characterisation of the expression levels of all known Mal d 1 genes in a gene-specific manner. Using this assay on different fruit tissues and cultivars, we obtained knowledge concerning gene relevance in allergenicity. This study provides new perspectives for research on both plant breeding and immunotherapy. PMID:23522122

  19. Identification of nasal blood by real-time RT-PCR.

    PubMed

    Sakurada, Koichi; Akutsu, Tomoko; Watanabe, Ken; Yoshino, Mineo

    2012-07-01

    A new approach for the identification of body fluid stains by comparing specific mRNA expression levels has been extensively studied in recent years. Here, we examine whether nasal blood, which is regarded as one of the most difficult types of blood to identify, can be identified by comparing mRNA expression levels of target genes specific to saliva, nasal secretion, and blood. The saliva-specific statherin gene (STATH) was found to be expressed at high levels in not only saliva (dCt value: 1.32±1.39, n=5), but also nasal secretions (dCt value: 0.90±1.14, n=5), while the histatin gene (HTN3) was only expressed at high levels in saliva (dCt value: 1.08±2.35, n=5). We also confirmed that the hemoglobin-beta gene (HBB) showed high expression levels in blood (dCt value: -9.51±0.40, n=5). Four nasal blood stains were found to highly express STATH (dCt value: 5.65±3.98) and HBB (dCt value: -8.79±1.67) but not HTN3, suggesting that the stain samples contained both nasal secretions and blood and can therefore be identified as nasal blood stains. Although menstrual blood showed the same expression pattern as nasal blood, the menstrual blood-specific protein matrix metallopeptidase 7 (MMP7) was not expressed in all nasal blood stain samples. Therefore, its expression levels could be used to discriminate between nasal and menstrual blood. In conclusion, real-time RT-PCR was able to identify nasal blood, although the stability of gene expression in nasal blood stains was low over time, suggesting that this assay may not be effective for older stains. Future work should examine the usefulness of this assay under various environmental conditions.

  20. RT-PCR amplification of the complete NF1 coding sequence

    SciTech Connect

    Ming Hong Shen; Meena Upadhyaya

    1994-09-01

    Neurofibromatosis type 1 (NF1) is a common autosomal dominant disorder. The NF1 gene is a large gene, 350kb in size, with at least 51 exons. It has proved hard to detect mutations in the gene by examining genomic DNA due to the high mutation rate and the large size of the gene. Since the cloning of the gene, only 45 causative mutations have been reported from over 500 unrelated NF1 patients screened. The coding sequence of the NF1 gene is approximately 3% of the genomic sequence; it will therefore be easier to search for unknown mutations by the study of mRNA. We describe a simple RT-PCR-based strategy to amplify the total coding sequence of the NF1 transcript from peripheral blood lymphocyte RNA. This strategy involves an initial cDNA synthesis step utilizing a set of random hexamers, followed by two consecutive rounds of PCR amplifications. The first round of amplification was performed using four NF1-specific nested primer pairs. This amplification allows the construction of overlapping fragments which span a 8694 bp cDNA sequence of the gene. For mutation analysis, the amplified products or their digests were subjected to electrophoresis on Hydrolink gels. Two disease-causing mutations, a 3 bp deletion in exon 17 and a 10 bp deletion in exon 44, originally detected in the genomic DNA from two unrelated NF1 patients, have been confirmed at the RNA level. The combination of this strategy with other established techniques such as SSCP, chemical cleavage of mismatch, protein truncation test (PTT) and quantitative PCR should greatly facilitate mutation and expression analyses in the NF1 gene.

  1. Identification of Reference Genes for Quantitative RT-PCR in Ascending Aortic Aneurysms

    PubMed Central

    Henn, Dominic; Bandner-Risch, Doris; Perttunen, Hilja; Schmied, Wolfram; Porras, Carlos; Ceballos, Francisco; Rodriguez-Losada, Noela; Schäfers, Hans-Joachim

    2013-01-01

    Hypertension and congenital aortic valve malformations are frequent causes of ascending aortic aneurysms. The molecular mechanisms of aneurysm formation under these circumstances are not well understood. Reference genes for gene activity studies in aortic tissue that are not influenced by aortic valve morphology and its hemodynamic consequences, aortic dilatation, hypertension, or antihypertensive medication are not available so far. This study determines genes in ascending aortic tissue that are independent of these parameters. Tissue specimens from dilated and undilated ascending aortas were obtained from 60 patients (age ≤70 years) with different morphologies of the aortic valve (tricuspid undilated n = 24, dilated n = 11; bicuspid undilated n = 6, dilated n = 15; unicuspid dilated n = 4). Of the studied individuals, 36 had hypertension, and 31 received ACE inhibitors or AT1 receptor antagonists. The specimens were obtained intraoperatively from the wall of the ascending aorta. We analyzed the expression levels of 32 candidate reference genes by quantitative RT-PCR (RT-qPCR). Differential expression levels were assessed by parametric statistics. The expression analysis of these 32 genes by RT-qPCR showed that EIF2B1, ELF1, and PPIA remained constant in their expression levels in the different specimen groups, thus being insensitive to aortic valve morphology, aortic dilatation, hypertension, and medication with ACE inhibitors or AT1 receptor antagonists. Unlike many other commonly used reference genes, the genes EIF2B1, ELF1, and PPIA are neither confounded by aortic comorbidities nor by antihypertensive medication and therefore are most suitable for gene expression analysis of ascending aortic tissue. PMID:23326585

  2. Discovery of 3-[2-(imidazo[1,2-b]pyridazin-3-yl)ethynyl]-4-methyl-N-{4-[(4-methylpiperazin-1-yl)methyl]-3-(trifluoromethyl)phenyl}benzamide (AP24534), a potent, orally active pan-inhibitor of breakpoint cluster region-abelson (BCR-ABL) kinase including the T315I gatekeeper mutant.

    PubMed

    Huang, Wei-Sheng; Metcalf, Chester A; Sundaramoorthi, Raji; Wang, Yihan; Zou, Dong; Thomas, R Mathew; Zhu, Xiaotian; Cai, Lisi; Wen, David; Liu, Shuangying; Romero, Jan; Qi, Jiwei; Chen, Ingrid; Banda, Geetha; Lentini, Scott P; Das, Sasmita; Xu, Qihong; Keats, Jeff; Wang, Frank; Wardwell, Scott; Ning, Yaoyu; Snodgrass, Joseph T; Broudy, Marc I; Russian, Karin; Zhou, Tianjun; Commodore, Lois; Narasimhan, Narayana I; Mohemmad, Qurish K; Iuliucci, John; Rivera, Victor M; Dalgarno, David C; Sawyer, Tomi K; Clackson, Tim; Shakespeare, William C

    2010-06-24

    In the treatment of chronic myeloid leukemia (CML) with BCR-ABL kinase inhibitors, the T315I gatekeeper mutant has emerged as resistant to all currently approved agents. This report describes the structure-guided design of a novel series of potent pan-inhibitors of BCR-ABL, including the T315I mutation. A key structural feature is the carbon-carbon triple bond linker which skirts the increased bulk of Ile315 side chain. Extensive SAR studies led to the discovery of development candidate 20g (AP24534), which inhibited the kinase activity of both native BCR-ABL and the T315I mutant with low nM IC(50)s, and potently inhibited proliferation of corresponding Ba/F3-derived cell lines. Daily oral administration of 20g significantly prolonged survival of mice injected intravenously with BCR-ABL(T315I) expressing Ba/F3 cells. These data, coupled with a favorable ADME profile, support the potential of 20g to be an effective treatment for CML, including patients refractory to all currently approved therapies.

  3. A validation study comparing the sensitivity and specificity of the new Dr. KSU H1N1 RT-PCR kit with real-time RT-PCR for diagnosing influenza A (H1N1)

    PubMed Central

    BinSaeed, Abdulaziz A.; Al-Khedhairy, Abdulaziz A.; Mandil, Ahmed M. A.; Shaikh, Shaffi A.; Qureshi, Riaz; Al-Khattaf, Abdulaziz S.; Habib, Hanan A.; Alam, Awatif A.; Al-Ansary, Lubna A.; Al-Omran, Mohammed

    2011-01-01

    BACKGROUND AND OBJECTIVES: A new test (Dr. KSU H1N1 RT-PCR kit) was recently developed to provide a less expensive alternative to real-time reverse transcriptase-polymerase chain reaction (RT-PCR). We report the findings of a validation study designed to assess the diagnostic accuracy, including sensitivity and specificity, of the new kit, as compared to real-time RT-PCR. DESIGN AND SETTING: Cross-sectional validation study conducted from 18-22 November 2009 at a primary care clinic for H1N1 at a tertiary care teaching hospital in Riyadh. PATIENTS AND METHODS: Nasopharyngeal swab samples and data on socio-demographic characteristics and symptoms were collected from 186 patients. Swab samples were sent to the laboratory for testing with both real-time RT-PCR and the new Dr. KSU H1N1 RT-PCR kit. We measured the sensitivity and specificity of the new test across the entire sample size and investigated how these values were affected by patient socio-demographic characteristics and symptoms. RESULTS: The outcomes of the two tests were highly correlated (kappa=0.85; P<.0001). The sensitivity and specificity of the new test were 99.11% and 83.78%, respectively. The sensitivity of the new test was affected only minimally (96%-100%) by patient characteristics and number of symptoms. On the other hand, the specificity of the new test varied depending on how soon patients were tested after onset of symptoms (100% specificity when swabs were taken on the first day of the symptoms, decreasing to 75% when swabs were taken on or after the third day). The specificity of the new test also increased with increasing body temperature. CONCLUSION: The new test seems to provide a cost-effective alternative to real-time RT-PCR for diagnosing H1N1 influenza. However, further testing may be needed to verify the efficacy of the test in different settings and communities. PMID:21808109

  4. Potent, transient inhibition of BCR-ABL with dasatinib 100 mg daily achieves rapid and durable cytogenetic responses and high transformation-free survival rates in chronic phase chronic myeloid leukemia patients with resistance, suboptimal response or intolerance to imatinib

    PubMed Central

    Shah, Neil P.; Kim, Dong-Wook; Kantarjian, Hagop; Rousselot, Philippe; Llacer, Pedro Enrique Dorlhiac; Enrico, Alicia; Vela-Ojeda, Jorge; Silver, Richard T.; Khoury, Hanna Jean; Müller, Martin C.; Lambert, Alexandre; Matloub, Yousif; Hochhaus, Andreas

    2010-01-01

    Background Dasatinib 100 mg once daily achieves intermittent BCR-ABL kinase inhibition and is approved for chronic-phase chronic myeloid leukemia patients resistant or intolerant to imatinib. To better assess durability of response to and tolerability of dasatinib, data from a 2-year minimum follow-up for a dose-optimization study in chronic-phase chronic myeloid leukemia are reported here. Design and Methods In a phase 3 study, 670 chronic-phase chronic myeloid leukemia patients with resistance, intolerance, or suboptimal response to imatinib were randomized to dasatinib 100 mg once-daily, 50 mg twice-daily, 140 mg once-daily, or 70 mg twice-daily. Results Data from a 2-year minimum follow-up demonstrate that dasatinib 100 mg once daily achieves major cytogenetic response and complete cytogenetic response rates comparable to those in the other treatment arms, and reduces the frequency of key side effects. Comparable 2-year progression-free survival and overall survival rates were observed (80% and 91%, respectively, for 100 mg once daily, and 75%–76% and 88%–94%, respectively, in other arms). Complete cytogenetic responses were achieved rapidly, typically by 6 months. In patients treated with dasatinib 100 mg once daily for 6 months without complete cytogenetic response, the likelihood of achieving such a response by 2 years was 50% for patients who had achieved a partial cytogenetic response, and only 8% or less for patients with minor, minimal, or no cytogenetic response. Less than 3% of patients suffered disease transformation to accelerated or blast phase. Conclusions Intermittent kinase inhibition can achieve rapid and durable responses, indistinguishable from those achieved with more continuous inhibition. PMID:20139391

  5. The synthetic heat shock protein 90 (Hsp90) inhibitor EC141 induces degradation of Bcr-Abl p190 protein and apoptosis of Ph-positive acute lymphoblastic leukemia cells.

    PubMed

    Tong, Wei-Gang; Estrov, Zeev; Wang, Yongtao; O'Brien, Susan; Faderl, Stefan; Harris, David M; Van Pham, Quin; Hazan-Halevy, Inbal; Liu, Zhiming; Koch, Patricia; Kantarjian, Hagop; Keating, Michael J; Ferrajoli, Alessandra

    2011-12-01

    The prognosis of patients with Philadelphia chromosome-positive (Ph+) acute lymphoblastic leukemia (ALL) is poor. Chemotherapy is rarely curative and tyrosine kinase inhibitors (TKIs) induce only transient responses. Heat shock protein 90 (Hsp90) is a chaperone protein that is important in signal transduction, cell cycle control, and transcription regulation in both normal and leukemia cells. In the current study, we tested the growth inhibitory and apoptotic effects of a novel Hsp90 inhibitor, EC141 on the Ph+ ALL lines Z-119, Z-181, and Z-33, as well as primary bone marrow-derived blasts from patients with newly diagnosed Ph+ ALL. We found that EC141 inhibited the growth of Ph+ ALL cells in a concentration-dependent manner with IC(50) ranged from 1 to 10 nM. EC141 also inhibited the proliferation of primary bone marrow-derived blasts using the ALL blast colony assay. EC141 down-regulated Hsp90 and up-regulated Hsp70 protein levels, inhibited CrkL phosphorylation, and induced degradation of Bcr-Abl p190 protein through ubiquitin-dependent proteasomal pathway. Furthermore, exposure of Ph+ ALL cells to EC141 resulted in activation of caspase-3, cleavage of poly (ADP-ribose) polymerase (PARP), and induction of apoptosis. In conclusion, our data suggest that EC141 is a potent Hsp90 inhibitor with activity against Ph+ ALL. Further studies to investigate the anticancer effect of EC141 either as a single agent, or in combination in Ph+ ALL and other hematological malignancies are warranted.

  6. Diagnostic evaluation of a multiplexed RT-PCR microsphere array assay for the detection of foot-and-mouth disease virus and look-alike disease viruses

    SciTech Connect

    Hindson, B J; Reid, S M; Baker, B R; Ebert, K; Ferris, N P; Bentley Tammero, L F; Lenhoff, R J; Naraghi-Arani, P; Vitalis, E A; Slezak, T R; Hullinger, P J; King, D P

    2007-07-26

    A high-throughput multiplexed assay was developed for the differential laboratory diagnosis of foot-and-mouth disease virus (FMDV) from viruses which cause clinically similar diseases of livestock. This assay simultaneously screens for five RNA and two DNA viruses using multiplexed reverse transcription PCR (mRT-PCR) amplification coupled with a microsphere hybridization array and flow-cytometric detection. Two of the seventeen primer-probe sets included in this multiplex assay were adopted from previously characterized real-time RT-PCR (rRT-PCR) assays for FMDV. The diagnostic accuracy of the mRT-PCR was evaluated using 287 field samples, including 248 (true positive n= 213, true negative n=34) from suspect cases of foot-and-mouth disease collected from 65 countries between 1965 and 2006 and 39 true negative samples collected from healthy animals. The mRT-PCR assay results were compared with two singleplex rRT-PCR assays, using virus isolation with antigen-ELISA as the reference method. The diagnostic sensitivity of the mRT-PCR assay for FMDV was 93.9% [95% C.I. 89.8-96.4%], compared to 98.1% [95% C.I. 95.3-99.3%] for the two singleplex rRT-PCR assays used in combination. In addition, the assay could reliably differentiate between FMDV and other vesicular viruses such as swine vesicular disease virus and vesicular exanthema of swine virus. Interestingly, the mRT-PCR detected parapoxvirus (n=2) and bovine viral diarrhea virus (n=2) in clinical samples, demonstrating the screening potential of this mRT-PCR assay to identify viruses in FMDV-negative material not previously recognized using focused single-target rRT-PCR assays.

  7. Combination of immunohistochemistry, FISH and RT-PCR shows high incidence of Xp11 translocation RCC: comparison of three different diagnostic methods.

    PubMed

    Lee, Hyun Jung; Shin, Dong Hoon; Noh, Gyu You; Kim, Young Keum; Kim, Ahrong; Shin, Nari; Lee, Jung Hee; Choi, Kyung Un; Kim, Jee Yeon; Lee, Chang Hun; Sol, Mee Young; Rha, Seo Hee; Park, Sung Woo

    2017-05-09

    We evaluated the frequency of translocation renal cell carcinoma (RCC) by reverse transcription polymerase chain reaction (RT-PCR) and how well the TFE3 immunoreactivity is concordant with TFE3 gene translocation status proved by fluorescence in situ hybridization (FISH) assay and RT-PCR. TFE3 and Cathepsin K expression was analyzed by immunohistochemistry in 185 RCC cases, and 48 cases either of more than weak expression of TFE3 or of positivity for Cathepsin K were done for FISH analysis and RT-PCR. All the RT-PCR positive cases were confirmed by cloning and sequencing. Of the 14 cases with strong nuclear TFE3 expression, 12 showed a break-apart signal by FISH. ASPL- and PRCC-TFE3 translocations were detected in 13 and one case, respectively, by RT-PCR. Of 21 cases with weak TFE3 expression, five were translocation-positive by FISH. ASPL-, PRCC-, and PSF-TFE3 translocations were detected by RT-PCR (n=3, 3, and 1, respectively). All 13 TFE3-negative/cathepsin K-positive cases were negative by FISH and two each harbored ASPL- and PRCC-TFE3 translocations that were detected by RT-PCR. A high rate of TFE3 immunoreactivity (8.6%) was confirmed by RT-PCR (13.5%) and FISH (9.7%). Higher translocation rate of RT-PCR means RT-PCR detected translocation in TFE3 weak expression group and only cathepsin K positive group more specifically than FISH. Thus, RT-PCR would complement FISH analysis for detecting translocation RCC with fusion partners.

  8. Selection of reference genes for quantitative RT-PCR studies in striped dolphin (Stenella coeruleoalba) skin biopsies

    PubMed Central

    Spinsanti, Giacomo; Panti, Cristina; Lazzeri, Elisa; Marsili, Letizia; Casini, Silvia; Frati, Francesco; Fossi, Cristina Maria

    2006-01-01

    Background Odontocete cetaceans occupy the top position of the marine food-web and are particularly sensitive to the bioaccumulation of lipophilic contaminants. The effects of environmental pollution on these species are highly debated and various ecotoxicological studies have addressed the impact of xenobiotic compounds on marine mammals, raising conservational concerns. Despite its sensitivity, quantitative real-time PCR (qRT-PCR) has never been used to quantify gene induction caused by exposure of cetaceans to contaminants. A limitation for the application of qRT-PCR is the need for appropriate reference genes which allow the correct quantification of gene expression. A systematic evaluation of potential reference genes in cetacean skin biopsies is presented, in order to validate future qRT-PCR studies aiming at using the expression of selected genes as non-lethal biomarkers. Results Ten commonly used housekeeping genes (HKGs) were partially sequenced in the striped dolphin (Stenella coeruleoalba) and, for each gene, PCR primer pairs were specifically designed and tested in qRT-PCR assays. The expression of these potential control genes was examined in 30 striped dolphin skin biopsy samples, obtained from specimens sampled in the north-western Mediterranean Sea. The stability of selected control genes was determined using three different specific VBA applets (geNorm, NormFinder and BestKeeper) which produce highly comparable results. Glyceraldehyde-3P-dehydrogenase (GAPDH) and tyrosine 3-monooxygenase (YWHAZ) always rank as the two most stably expressed HKGs according to the analysis with geNorm and Normfinder, and are defined as optimal control genes by BestKepeer. Ribosomal protein L4 (RPL4) and S18 (RPS18) also exhibit a remarkable stability of their expression levels. On the other hand, transferrin receptor (TFRC), phosphoglycerate kinase 1 (PGK1), hypoxanthine ribosyltransferase (HPRT1) and β-2-microglobin (B2M) show variable expression among the studied

  9. Respiratory virus multiplex RT-PCR assay sensitivities and influence factors in hospitalized children with lower respiratory tract infections.

    PubMed

    Deng, Jikui; Ma, Zhuoya; Huang, Wenbo; Li, Chengrong; Wang, Heping; Zheng, Yuejie; Zhou, Rong; Tang, Yi-Wei

    2013-04-01

    Multiplex RT-PCR assays have been widely used tools for detection and differentiation of a panel of respiratory viral pathogens. In this study, we evaluated the Qiagen ResPlex II V2.0 kit and explored factors influencing its sensitivity. Nasopharyngeal swab (NPS) specimens were prospectively collected from pediatric inpatients with lower respiratory tract infections at the time of admission in the Shenzhen Children's Hospital from May 2009 to April 2010. Total nucleic acids were extracted using the EZ1 system (Qiagen, Germany) and 17 respiratory viruses and genotypes including influenza A virus (FluA), FluB, parainfluenza virus 1 (PIV1), PIV2, PIV3, PIV4, respiratory syncytial virus (RSV), human metapneumovirus (hMPV), rhinoviruses (RhV), enteroviruses (EnV), human bocaviruses (hBoV), adenoviruses (AdV), four coronaviruses (229E, OC43, NL63 and HKU1), and FluA 2009 pandemic H1N1(H1N1-p) were detected and identified by the ResPlex II kit. In parallel, 16 real-time TaqMan quantitative RT-PCR assays were used to quantitatively detect each virus except for RhV. Influenza and parainfluenza viral cultures were also performed. Among the total 438 NPS specimens collected during the study period, one or more viral pathogens were detected in 274 (62.6%) and 201(45.9%) specimens by monoplex TaqMan RT-PCR and multiplex ResPlex, respectively. When results from monoplex PCR or cell culture were used as the reference standard, the multiplex PCR possessed specificities of 92.9-100.0%. The sensitivity of multiplex PCR for PIV3, hMPV, PIV1 and BoV were 73.1%, 70%, 66.7% and 55.6%, respectively, while low sensitivities (11.1%-40.0%) were observed for FluA, EnV, OC43, RSV and H1N1. Among the seven viruses/genotypes detected with higher frequencies, multiplex PCR sensitivities were correlated significantly with viral loads determined by the TaqMan RT-PCR in FluA, H1N1-p and RSV (p=0.011-0.000). The Qiagen ResPlex II multiplex RT-PCR kit possesses excellent specificity for simultaneous

  10. Methods for recovery of hepatitis A virus (HAV) and other viruses from processed foods and detection of HAV by nested RT-PCR and TaqMan RT-PCR.

    PubMed

    Love, David C; Casteel, Michael J; Meschke, John S; Sobsey, Mark D

    2008-08-15

    Enteric viruses are important agents of foodborne disease. Unfortunately, robust, quantitative methods for sampling and analysis of enteric and other viruses in processed or complex foods are not well-established. As a result, epidemiologically determined etiologies or pathogen sources in foodborne outbreaks are rarely confirmed by virological analysis. In this study, an acid-adsorption elution concentration (AEC) method previously used to monitor virus occurrence and investigate enteric virus outbreaks in shellfish was adapted for examination of processed food items, namely tomato sauce and blended strawberries. Hepatitis A virus (HAV), poliovirus, and coliphage MS2 (MS2) were seeded in 10 or 30 g samples of tomato sauce or blended strawberries, recovered by AEC, and quantified by cell culture infectivity assay. In addition, nested reverse transcription-polymerase chain reaction (RT-PCR) and TaqMan RT-PCR assays were used to detect HAV RNA. Viruses were efficiently adsorbed to foods as an initial concentration step, with infectious HAV and MS2 adsorption of 67% and 93%, respectively, to tomato sauce, and 89% and 99%, respectively, to blended strawberries. Forty-three to 65% of HAV and poliovirus were subsequently eluted and recovered from tomato sauce using 0.5 M threonine, pH 7.2. The lower limits of HAV detection were at initial seeding levels of 14 PFU/g of tomato sauce and 33 PFU/g of blended strawberries. Unlike TaqMan RT-PCR, nested RT-PCR was not inhibited by undiluted final RNA extracts of tomato sauce or blended strawberries. The successful adaptation of the AEC method for enteric and other virus recovery, quantitation and detection in processed foods demonstrates its potential for use in the investigation of foodborne outbreaks of viral etiology and for validation of virus disinfection and sanitary processing procedures used by the food industry.

  11. Methods for Preparation of MS2 Phage-Like Particles and Their Utilization as Process Control Viruses in RT-PCR and qRT-PCR Detection of RNA Viruses From Food Matrices and Clinical Specimens.

    PubMed

    Mikel, P; Vasickova, P; Kralik, P

    2015-02-25

    RNA viruses are pathogenic agents of many serious infectious diseases affecting humans and animals. The detection of pathogenic RNA viruses is based on modern molecular methods, of which the most widely used methods are the reverse transcription polymerase chain reaction (RT-PCR) and the real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR). All steps of RT-PCR and qRT-PCR should be strictly controlled to ensure the validity of obtained results. False-negative results may be caused not only by inhibition of RT or/and PCR steps but also by failure of the nucleic acid extraction step, particularly in the case of viral RNA extraction. The control of nucleic acid extraction generally involves the utilization of a non-pathogenic virus (process control virus) of similar structural properties to those of the target virus. Although in clinical samples the use of such process control virus is only recommended, in other kinds of settings such as food matrices its use is necessary. Currently, several different process control viruses are used for these purposes. Process control viruses can also be constructed artificially using technology for production of MS2 phage-like particles, which have many advantages in comparison with other used controls and are especially suited for controlling the detection and quantification of certain types of RNA viruses. The technology for production of MS2 phage-like particles is theoretically well established, uses the knowledge gained from the study of the familiar bacteriophage MS2 and utilizes many different approaches for the construction of the various process control viruses. Nevertheless, the practical use of MS2 phage-like particles in routine diagnostics is relatively uncommon. The current situation with regard to the use of MS2 phage-like particles as process control viruses in detection of RNA viruses and different methods of their construction, purification and use are summarized and discussed in this

  12. Rapid identification viruses from nasal pharyngeal aspirates in acute viral respiratory infections by RT-PCR and electrospray ionization mass spectrometry.

    PubMed

    Chen, Kuan-Fu; Rothman, Richard E; Ramachandran, Padmini; Blyn, Lawrence; Sampath, Rangarajan; Ecker, David J; Valsamakis, Alexandra; Gaydos, Charlotte A

    2011-04-01

    Diagnosis of the etiologic agent of respiratory viral infection relies traditionally on culture or antigen detection. This pilot evaluation compared performance characteristics of the RT-PCR and electrospray ionization mass spectrometry (RT-PCR/ESI-MS) platform to conventional virologic methods for identifying multiple clinically relevant respiratory viruses in nasopharyngeal aspirates. The RT-PCR/ESI-MS respiratory virus surveillance kit was designed to detect respiratory syncytial virus, influenza A and B, parainfluenza types 1-4, adenoviridae types A-F, coronaviridae, human bocavirus, and human metapneumovirus. Patients (N=192) attending an emergency department during the 2007-2008 respiratory season consented, and "excess" frozen archived nasopharyngeal aspirates were analysed; 46 were positive by conventional virology and 69 by RT-PCR/ESI-MS, among which there were six samples with multiple viral pathogens detected. The sensitivity and specificity of the assay were 89.1% and 80.3%, respectively. Additional viruses that were not identified by conventional virology assays were detected (4 human bocaviruses and 7 coronaviruses). Samples in which the RT-PCR/ESI-MS results disagreed with conventional virology were sent for analysis by a third method using a commercial RT-PCR-based assay, which can identify viruses not detectable by conventional virologic procedures. Time to first result of RT-PCR/ESI-MS was 8h. RT-PCR/ESI-MS demonstrated capacity to detect respiratory viruses identifiable and unidentifiable by conventional methods rapidly.

  13. VARIATION OF THE EXPRESSION OF ENDOGENOUS "HOUSEKEEPING" GENES IN B[A]P TREATED MOUSE LUNGS MEASURED BY qRT-PCR

    EPA Science Inventory

    Quantitative RT-PCR is frequently used to analyze gene expression in different experimental systems. In this assay, housekeeping genes are frequently used to normalize for the variability between samples (relative quantification). We have examined the utility of using qRT-PCR and...

  14. Development and Preliminary Evaluation of a New Real-Time RT-PCR Assay For Detection of Peste des petits Ruminants Virus Genome.

    PubMed

    Polci, A; Cosseddu, G M; Ancora, M; Pinoni, C; El Harrak, M; Sebhatu, T T; Ghebremeskel, E; Sghaier, S; Lelli, R; Monaco, F

    2015-06-01

    A duplex real-time reverse transcription-polymerase chain reaction (qRT-PCR) assay was developed for a simple and rapid diagnosis of Peste des petits ruminants (PPR). qRT-PCR primers and TaqMan probe were designed on a conserved region of nucleocapsid protein (Np) of PPR virus (PPRV) genome. An in vitro transcript of the target region was constructed and tested to determine analytical sensitivity. Commercial heterologous Armored RNA(®) was used as an internal positive control (IPC) for either RNA isolation or RT-PCR steps. The detection limit of the newly designed duplex real-time RT-PCR (qRT-PCR PPR_Np) was approximately 20 copies/μl with a 95% probability. No amplification signals were recorded when the qRT-PCR PPR_Np was applied to viruses closely related or clinically similar to PPRV- or to PPR-negative blood samples. A preliminary evaluation of the diagnostic performance was carried out by testing a group of 43 clinical specimens collected from distinct geographic areas of Africa and Middle East. qRT-PCR PPR_Np showed higher sensitivity than the conventional gel-based RT-PCR assays, which have been used as reference standards. Internal positive control made it possible to identify the occurrence of 5 false-negative results caused by the amplification failure, thus improving the accuracy of PPRV detection. © 2013 Blackwell Verlag GmbH.

  15. Rapid Identification Viruses from Nasal Pharyngeal Aspirates in Acute Viral Respiratory Infections by RT-PCR and Electrospray Ionization Mass Spectrometry

    PubMed Central

    Chen, Kuan-Fu; Rothman, Richard E.; Ramachandran, Padmini; Blyn, Lawrence; Sampath, Rangarajan; Ecker, David; Valsamakis, Alexandra; Gaydos, Charlotte A.

    2011-01-01

    Diagnosis of the etiologic agent of respiratory viral infection relies traditionally on culture or antigen detection. This pilot was conducted evaluation comparing performance characteristics of the RT-PCR and Electrospray Ionization Mass Spectrometry (RT-PCR/ESI-MS) platform to conventional virological methods for identifying multiple clinically relevant respiratory viruses in nasopharyngeal aspirates. The RT-PCR/ESI-MS respiratory virus surveillance kit was designed to detect respiratory syncytial virus, influenza A and B, parainfluenza types 1-4, adenoviridae types A-F, coronaviridae, human bocavirus, and human metapneumovirus. Patients (N=192) attending an emergency department during the 2007-8 respiratory season consented, and “excess” frozen archived nasopharyngeal aspirates were analysed; 46 were positive by conventional virology and 69 by RT-PCR/ESI-MS, among which there were six samples with multiple viral pathogens detected. The sensitivity and specificity of the assay were 89.1% and 80.3%, respectively. Additional viruses that were not identified by conventional virology assays were detected (4 human bocaviruses and 7 coronaviruses). Samples in which the RT-PCR/ESI-MS results disagreed with conventional virology were sent for analysis by a third method using a commercial RT-PCR-based assay, which can identify viruses not detectable by conventional virologic procedures. Time to first result of RT-PCR/ESI-MS was 8 hours. RT-PCR/ESI-MS demonstrated capacity to detect respiratory viruses identifiable and unidentifiable by conventional methods rapidly. PMID:21256867

  16. VARIATION OF THE EXPRESSION OF ENDOGENOUS "HOUSEKEEPING" GENES IN B[A]P TREATED MOUSE LUNGS MEASURED BY qRT-PCR

    EPA Science Inventory

    Quantitative RT-PCR is frequently used to analyze gene expression in different experimental systems. In this assay, housekeeping genes are frequently used to normalize for the variability between samples (relative quantification). We have examined the utility of using qRT-PCR and...

  17. Evaluation of endogenous reference genes for analysis of gene expression with real-time RT-PCR during planarian regeneration.

    PubMed

    Yuwen, Yan-Qing; Dong, Zi-Mei; Wang, Qing-Hua; Sun, Xiao-Juan; Shi, Chang-Ying; Chen, Guang-Wen

    2011-10-01

    It is important that endogenous reference genes for real-time RT-PCR be empirically evaluated for stability in different cell types, developmental stages, and/or sample treatment. To select the most stable endogenous reference genes during planarian regeneration, three housekeeping genes, 18S rRNA, ACTB and DjEF2, were identified and established expression levels by real-time RT-PCR. The data were analyzed by GeNorm and NormFinder software. Expression levels of the Djsix-1 gene were studied in parallel with ACTB and DjEF2 both or each and 18S rRNA as reference during regeneration. The results showed that ACTB was the most stable expressed reference gene in the planarian regeneration.

  18. Multiplex titration RT-PCR: rapid determination of gene expression patterns for a large number of genes

    NASA Technical Reports Server (NTRS)

    Nebenfuhr, A.; Lomax, T. L.

    1998-01-01

    We have developed an improved method for determination of gene expression levels with RT-PCR. The procedure is rapid and does not require extensive optimization or densitometric analysis. Since the detection of individual transcripts is PCR-based, small amounts of tissue samples are sufficient for the analysis of expression patterns in large gene families. Using this method, we were able to rapidly screen nine members of the Aux/IAA family of auxin-responsive genes and identify those genes which vary in message abundance in a tissue- and light-specific manner. While not offering the accuracy of conventional semi-quantitative or competitive RT-PCR, our method allows quick screening of large numbers of genes in a wide range of RNA samples with just a thermal cycler and standard gel analysis equipment.

  19. Duplex Real-Time RT-PCR Assays for the Detection and Typing of Epizootic Haemorrhagic Disease Virus

    PubMed Central

    Viarouge, Cyril; Breard, Emmanuel; Zientara, Stephan; Vitour, Damien; Sailleau, Corinne

    2015-01-01

    Epizootic haemorrhagic disease virus (EHDV) may cause severe clinical episodes in some species of deer and sometimes in cattle. Laboratory diagnosis provides a basis for the design and timely implementation of disease control measures. There are seven distinct EHDV serotypes, VP2 coding segment 2 being the target for serotype specificity. This paper reports the development and validation of eight duplex real-time RT-PCR assays to simultaneously amplify the EHDV target (S9 for the pan-EHDV real-time RT-PCR assay and S2 for the serotyping assays) and endogenous control gene Beta-actin. Analytical and diagnostic sensitivity and specificity, inter- and intra-assay variation and efficiency were evaluated for each assay. All were shown to be highly specific and sensitive. PMID:26161784

  20. Development of a multiplex real-time RT-PCR assay for simultaneous detection of dengue and chikungunya viruses.

    PubMed

    Cecilia, D; Kakade, M; Alagarasu, K; Patil, J; Salunke, A; Parashar, D; Shah, P S

    2015-01-01

    Dengue and chikungunya viruses co-circulate and cause infections that start with similar symptoms but progress to radically different outcomes. Therefore, an early diagnostic test that can differentiate between the two is needed. A single-step multiplex real-time RT-PCR assay was developed that can simultaneously detect and quantitate RNA of all dengue virus (DENV) serotypes and chikungunya virus (CHIKV). The sensitivity was 100 % for DENV and 95.8 % for CHIKV, whilst the specificity was 100 % for both viruses when compared with conventional RT-PCR. The detection limit ranged from 1 to 50 plaque-forming units. The assay was successfully used for differential diagnosis of dengue and chikungunya in Pune, where the viruses co-circulate.

  1. Rapid detection of lineage IV peste des petits ruminants virus by real-time RT-PCR.

    PubMed

    Li, Lin; Wu, Xiaodong; Liu, Fuxiao; Wang, Zhiliang; Liu, Chunju; Wang, Qinghua; Bao, Jingyue

    2016-09-01

    Peste des petits ruminants virus (PPRV) is the cause agent of peste des petitis ruminants (PPR). A novel lineage IV PPRV has reemerged in China in 2013 and 2014. Mass vaccination was implemented in most provinces in China. In order to detect lineage IV PPRV in clinical samples and to distinguish rapidly it from the other lineages PPRVs, a real-time RT-PCR assay was developed. This assay showed high sensitivity, specificity and efficiency in differentiating the lineage IV PPRV from others. The performance of this assay was evaluated by positive clinical samples of lineage IV viruses. This new real-time RT-PCR assay will facilitate epidemiological investigations and rapid differentiatial diagnosis in areas where lineage IV viruses are circulating. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Multiplex titration RT-PCR: rapid determination of gene expression patterns for a large number of genes

    NASA Technical Reports Server (NTRS)

    Nebenfuhr, A.; Lomax, T. L.

    1998-01-01

    We have developed an improved method for determination of gene expression levels with RT-PCR. The procedure is rapid and does not require extensive optimization or densitometric analysis. Since the detection of individual transcripts is PCR-based, small amounts of tissue samples are sufficient for the analysis of expression patterns in large gene families. Using this method, we were able to rapidly screen nine members of the Aux/IAA family of auxin-responsive genes and identify those genes which vary in message abundance in a tissue- and light-specific manner. While not offering the accuracy of conventional semi-quantitative or competitive RT-PCR, our method allows quick screening of large numbers of genes in a wide range of RNA samples with just a thermal cycler and standard gel analysis equipment.

  3. Validation of reference genes in Penicillium echinulatum to enable gene expression study using real-time quantitative RT-PCR.

    PubMed

    Zampieri, Denise; Nora, Luísa C; Basso, Vanessa; Camassola, Marli; Dillon, Aldo J P

    2014-08-01

    Quantitative reverse-transcription polymerase chain reaction (qRT-PCR) is a methodology that facilitates the quantification of mRNA expression in a given sample. Analysis of relative gene expression by qRT-PCR requires normalization of the data using a reference gene that is expressed at a similar level in all evaluated conditions. Determining an internal control gene is essential for gene expression studies. Gene expression studies in filamentous fungi frequently use the β-actin gene (actb), β-tubulin, and glyceraldehyde-3-phosphate dehydrogenase as reference genes because they are known to have consistent expression levels. Until now, no study has been performed to select an internal control gene for the filamentous fungal species Penicillium echinulatum. The aim of this study was to evaluate and validate internal control genes to enable the study of gene expression in P. echinulatum using qRT-PCR. P. echinulatum strain S1M29 was grown in conditions to either induce (cellulose and sugar cane bagasse) or repress (glucose) gene expression to analyze 23 candidate normalization genes for stable expression. Two software programs, BestKeeper and geNorm, were used to assess the expression of the candidate normalization genes. The results indicate that the actb reference gene is more stably expressed in P. echinulatum. This is the first report in the literature that determines a normalization gene for this fungus. From the results obtained, we recommend the use of the P. echinulatum actb gene as an endogenous control for gene expression studies of cellulases and hemicellulases by qRT-PCR.

  4. Evaluation of Altona Diagnostics RealStar Zika Virus RT-PCR Test Kit for Zika virus PCR testing.

    PubMed

    L'Huillier, Arnaud G; Lombos, Ernesto; Tang, Elaine; Perusini, Stephen; Eshaghi, Alireza; Nagra, Sandeep; Frantz, Christine; Olsha, Romy; Kristjanson, Erik; Dimitrova, Kristina; Safronetz, David; Drebot, Mike; Gubbay, Jonathan B

    2017-03-15

    Background: With the emerging ZIKA virus (ZIKV) epidemic, accessible real-time reverse-transcription PCR (rRT-PCR) assays are needed to streamline testing. The commercial Altona Diagnostics RealStar ZIKV rRT-PCR Test Kit has been approved for Emergency Use Authorization by the FDA. Our aim was to verify Altona-PCR, by comparing it to the CDC-designed dual target ZIKV virus rRT-PCR reference assay (Reference-PCR), and describe demographics of patients tested for ZIKV by rRT-PCR in Ontario, Canada.Methods: A large set of clinical specimens were tested for ZIKV by Altona-PCR and Reference-PCR. Positive or equivocal specimens underwent PCR and Sanger sequencing targeting ZIKV NS5 gene.Results: 671 serum specimens were tested by Reference-PCR: 58 (8.6%) were positive, 193 (28.8%) equivocal and 420 (62.6%) negative. Ninety percent of Reference-PCR positive patients were tested in the first 5 days after symptom onset. Altona-PCR was performed on 284/671 tested specimens by Reference-PCR. Altona-PCR was positive in 53/58 (91%) Reference-PCR positive and 16/193 (8%) Reference-PCR equivocal specimens; ZIKV NS5 PCR was positive in all 68 Altona-PCR positive specimens, and negative in all 181 Altona-PCR negative specimens that underwent NS5 PCR.Conclusion: Most ZIKV PCR positive cases are detected in the first five days of illness. Altona-PCR has very good sensitivity (91%) and specificity (97%) compared to Reference-PCR. Altona-PCR can be used for ZIKV diagnostic testing, with less extensive verification requirements compared to a laboratory developed test.

  5. Increased sensitivity of RT-PCR for Potato virus Y detection using RNA isolated by a procedure with differential centrifugation.

    PubMed

    Zhang, Jianhua; Nie, Xianzhou; Boquel, Sébastien; Al-Daoud, Fadi; Pelletier, Yvan

    2015-12-01

    The sensitivity of reverse transcription-polymerase chain reaction (RT-PCR) for virus detection is influenced by many factors such as specificity of primers and quality of templates. These factors become extremely important for successful detection when virus concentration is low. Total RNA isolated from Potato virus Y (PVY)-infected potato plants using the sodium sulfite RNA isolation method or RNeasy plant mini kit contains a high proportion of host RNA and may also contain trace amount of phenolic and polysaccharide residues, which may inhibit RT-PCR. The goal of this study was to enhance the sensitivity of PVY detection by reducing host RNA in the extract by differential centrifugation followed by extraction using an RNeasy mini kit (DCR method). One-step RT-PCR had relatively low amplification efficiency for PVY RNA when a high proportion of plant RNA was present. SYBR Green-based real time RT-PCR showed that the RNA isolated by the DCR method had a higher cycle threshold value (Ct) for the elongation factor 1-α mRNA (Ef1α) of potato than the Ct value of the RNA extracted using the RNeasy plant mini kit, indicating that the DCR method significantly reduced the proportion of potato RNA in the extract. The detectable amount of RNA extracted using the DCR method was <0.001ng when plant sap from 10 PVY-infected and PVY-free potato leaflets in a 1.5:100 fresh weight ratio was extracted, compared with 0.01 and 0.02ng of RNA using the RNeasy plant mini kit and sodium sulfite RNA isolation methods, respectively.

  6. Galectin-3 and CD44v6 as markers for preoperative diagnosis of thyroid cancer by RT-PCR.

    PubMed

    Samija, Ivan; Mateša, Neven; Lukač, Josip; Kusić, Zvonko

    2011-12-01

    The aim of the study was to determine the diagnostic value of reverse transcriptase polymerase chain reaction (RT-PCR) analysis of galectin-3 and CD44v6 as markers for preoperative diagnosis of malignancy in lesions of the thyroid. RT-PCR analysis of galectin-3 and CD44v6 expression was performed on RNA isolated from fine-needle aspirates of thyroid lesions from 428 patients. The results were evaluated against the postoperative histopathological diagnosis or definitive cytological diagnosis in cases of nodular goiter and Hashimoto thyroiditis. A total of 57 (13%) samples were inadequate for RT-PCR. Galectin-3 and CD44v6 were positive in 167 (45%) and 158 (43%) out of 371 adequate samples, respectively. Galectin-3 and CD44v6 were positive in 56 (86%) and 54 (83%) out of 65 papillary carcinomas, in 16 (29%) and 18 (32%) out of 56 Hashimoto's thyroiditis, in 61 (34%) and 52 (29%) out of 181 nodular goiters, in 23 (43%) and 23 (43%) out of 53 follicular adenomas, in 3 (100%) and 3 (100%) out of 3 follicular carcinomas, and in 8 (62%) and 8 (62%) out of 13 Hurthle cell adenomas, respectively. Specificity, sensitivity, and positive and negative predictive values in discriminating between malignant and benign thyroid nodules were 64, 87, and 35 and 96% for galectin-3; 67, 84, and 36 and 95% for CD44v6; and 79, 82, and 47 and 95% for the analysis of both markers (considered positive only if both galectin-3 and CD44v6 were positive), respectively. Owing to relatively low specificity, the clinical value of galectin-3 and CD44v6 analysis by RT-PCR as a marker for preoperative diagnosis of malignancy in thyroid lesions is limited.

  7. Sequence Optimized Real-Time RT-PCR Assay for Detection of Crimean-Congo Hemorrhagic Fever Virus

    DTIC Science & Technology

    2017-03-21

    characterization of highly pathogenic viruses : application during Crimean-Congo 313 haemorrhagic fever virus outbreaks in Eastern Europe and the Middle East...1 Sequence optimized real-time RT-PCR assay for detection of Crimean-Congo hemorrhagic fever 1 virus 2 3 JW Koehler1, KL Delp1, AT Hall1, SP...Institute of Infectious Diseases, 1425 Porter 9 Street, Fort Detrick, MD, 21702 USA 10 11 12 Abstract 13 14 Crimean-Congo hemorrhagic fever virus

  8. Association of West Nile virus with lymphohistiocytic proliferative cutaneous lesions in American alligators (Alligator mississippiensis) detected by RT-PCR.

    PubMed

    Nevarez, Javier G; Mitchell, Mark A; Morgan, Timothy; Roy, Alma; Johnson, April

    2008-12-01

    West Nile virus (WNV) is known to affect captive populations of alligators and, in some instances, cause significant mortalities. Alligators have been shown to amplify the virus, serve as a reservoir host, and even represent a source of infection for humans. This study describes a cutaneous manifestation of WNV in captive-reared American alligators (Alligator mississippiensis), previously described as lymphohistiocytic proliferative syndrome of alligators (LPSA), based on the findings of gross examination, histopathologic evaluation, WNV antibody testing, and WNV reverse transcriptase polymerase chain reaction (RT-PCR). Forty alligators with LPSA and 41 controls were examined. There was a significant difference (P = 0.01(-21)) in the WNV serostatus between the treatment group (100%) and the control group (0%, 95% CI: 0-7.3%). In the treatment group, 97.5% (39/40) (95% CI: 92.7-102.3%) of the LPSA skin lesions were positive for WNV via RT-PCR. Of the skin sections within the treatment group that had no LPSA lesions, 7.5% (3/40) (95% CI: 0-15.7%) were positive for WNV. In the control group, all of the skin samples were negative for WNV (41/41) (0%; 95% CI: 0-7.3%). The LPSA skin lesions were significantly more likely to be WNV positive by RT-PCR when compared to control animals (P = 0.07(-20)) and normal skin sections from affected animals (P = 0.08(-16)). There was no significant difference in the WNV RT-PCR results between control animals and normal skin sections from affected animals (P = 0.24). These findings suggest that LPSA is a cutaneous manifestation of WNV in alligators.

  9. Detection of viable Cronobacter spp. (Enterobacter sakazakii) by one-step RT-PCR in dry aquatic product.

    PubMed

    Ye, Yingwang; Wu, Qingping; Zhang, Jumei; Jiang, He; Hu, Wang

    2012-11-01

    Cronobacter are opportunistic food-borne pathogens associated with meningitis, sepsis, and necrotizing enterocolitis. Little attempt has focused on detection of viable cell of Cronobacter spp. in dry aquatic products, which were frequently used for raw materials of infant foods due to high nutrition. In this paper, one-step reverse transcription polymerase chain reaction (RT-PCR) was developed for detection of viable Cronobacter spp. in dry aquatic products. Specificity test indicated that clearly expected amplicon in size 469 bp was amplified from RNA of Cronobacter, but not from RNA of negative controls and DNA of Cronobacter strains. The sensitivity was 10(4) CFU/mL of Cronobacter strain in artificially fish meal samples and 10(1) CFU/mL of Cronobacter after 10-h enrichment. In a total of 81 dry aquatic products, 9.8%, 8.6%, and 9.8% of samples were found to be positive for Cronobacter by one-step RT-PCR, U.S. Food and Drug Administration method, and Druggan-Forsythe-Iversen medium, respectively. The results clearly indicated that one-step RT-PCR could avoid the interference of residual DNA of Cronobacter in food samples and be used to specifically detect viable Cronobacter spp. for large-scale monitoring of food samples. The use of rapid and specific detection of food borne pathogens in food samples was most of importance for control and precaution of food borne diseases. In this study, one-step RT-PCR was developed for detection of Cronobacter spp. in aquatic products. A comparison of different methods for detection of Cronobacter indicated that the newly developed method could be widely used to specifically detect Cronobacter spp. in food samples. © 2012 Institute of Food Technologists®

  10. Genome-wide mRNA profiling and multiplex quantitative RT-PCR for forensic body fluid identification.

    PubMed

    Park, Seong-Min; Park, Seong-Yeon; Kim, Jeong-Hwan; Kang, Tae-Wook; Park, Jong-Lyul; Woo, Kwang-Man; Kim, Jong-Sik; Lee, Han-Chul; Kim, Seon-Young; Lee, Seung-Hwan

    2013-01-01

    In forensic science, identifying a tissue where a forensic specimen was originated is one of the principal challenges. Messenger RNA (mRNA) profile clearly reveals tissue-specific gene expression patterns that many attempts have been made to use RNA for forensic tissue identification. To systematically investigate the body-fluid-specific expression of mRNAs and find novel mRNA markers for forensic body fluid identification, we performed DNA microarray experiment with 24 Korean body fluid samples. Shannon entropy and Q-values were calculated for each gene, and 137 body-fluid-specific candidate genes were selected. By applying more stringent criteria, we further selected 28 candidate genes and validated them by RT-PCR and qRT-PCR. As a result, we suggest a novel combination of four body-fluid-specific mRNA makers: PPBP for blood, FDCSP for saliva, MSMB for semen and MSLN for vaginal secretion. Multiplex qRT-PCR assay was designed using the four mRNA markers and DNA/RNA co-extraction method was tested for forensic use. This study will provide a thorough examination of body-fluid-specifically expressed mRNAs, which will enlarge the possibility of practical use of RNA for forensic purpose.

  11. Comparison of MTT assay, flow cytometry, and RT-PCR in the evaluation of cytotoxicity of five prosthodontic materials.

    PubMed

    Wang, Xue; Xia, Yang; Liu, Laikui; Liu, Mei; Gu, Ning; Guang, Hanbing; Zhang, Feimin

    2010-11-01

    In the present study, the cytotoxic effects of five prosthodontic materials on the L929 cell line were assessed by flow cytometry (FCM), reverse transcription PCR (RT-PCR), and MTT (3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazoli-umbromide) assay. The cells were treated with eluates resin (RE), pressable ceramics (PC), Co-Cr alloy-porcelain (CC), Ni-Cr alloy-porcelain (NC), and diatomite ceramics (DC). The cytotoxicity of all the materials tested by the MTT assay was grade 1. By FCM analysis, apoptosis rates of DC and PC were low, with no significant difference from the control (p > 0.05). The rest of the groups induced much higher apoptosis rates (p < 0.05), with the highest in the RE group. The necrotic cell levels of RE was also significantly increased (p < 0.05). Bcl-2 and Bax mRNA expression were determined by RT-PCR, and the Bax/Bcl-2 ratio in the DC and PC groups were not significantly different from the control (p > 0.05), whereas CC, NC, and RE groups showed significant differences (p < 0.05). Taken together, the results suggest that FCM and RT-PCR analyses can supplement the traditional MTT assay in evaluating the cytotoxicity of prosthodontic materials for selecting highly biocompatible materials. © 2010 Wiley Periodicals, Inc.

  12. Evaluation of Clostridium ljungdahlii DSM 13528 reference genes in gene expression studies by qRT-PCR.

    PubMed

    Liu, Juanjuan; Tan, Yang; Yang, Xiaohong; Chen, Xiaohua; Li, Fuli

    2013-10-01

    Clostridium ljungdahlii DSM 13528 is a promising platform organism for biofuel production from syngas. Gene expression analysis permits a better understanding of the important molecular biological characteristics of this organism, such as carbon fixation and solvent adaptation. Normalization is a prerequisite for accurate gene expression analysis, but until now, no valid reference genes have been proposed for quantitative real-time polymerase chain reaction (qRT-PCR) analysis of C. ljungdahlii DSM 13528. In this study, seven candidate reference genes (gyrA, rho, fotl, rpoA, gukl, recA, 16S rRNA) were selected for qRT-PCR quantification of their expression levels in various culture conditions that corresponded to different carbon sources and stresses. Two analytical programs, geNorm and NormFinder, were used to evaluate reference gene stability. The results showed that gyrA, rho and fotl exhibited the most stable expression levels across all tested samples and can be confidently used as reference genes to normalize the transcriptional data of target genes in qRT-PCR analyses of C. ljungdahlii DSM 13528. This study presents the first attempt to explore the validity of candidate reference genes and provide a set of valid reference genes for normalizing C. ljungdahlii DSM 13528 target gene expression and transcriptome analysis.

  13. Detection of Strawberry necrotic shock virus using conventional and TaqMan(®) quantitative RT-PCR.

    PubMed

    Thekke Veetil, Thanuja; Ho, Thien; Moyer, Catalina; Whitaker, Vance M; Tzanetakis, Ioannis E

    2016-09-01

    Graft-indexing of an advanced selection from the University of Florida strawberry breeding program produced virus-like symptoms on Fragaria vesca. However; RT-PCR testing of the material did not detect the presence of any of 16 strawberry virus species or members of virus groups for which strawberries are routinely indexed. Large scale sequencing of the material revealed the presence of an isolate of Strawberry necrotic shock virus. The nucleotide sequence of this isolate from Florida shows a significant number of base changes in the annealing sites of the primers compared to the primers currently in use for the detection of SNSV thereby explaining the most probable reason for the inability to detect the virus in the original screening. RT-PCR and Taqman(®) qPCR assays were developed based on conserved virus sequences identified in this isolate from Florida and other sequences for SNSV currently present in GenBank. The two assays were applied successfully on multiple samples collected from several areas across the United States as well as isolates from around the world. Comparison between the RT-PCR and the qPCR assays revealed that the qPCR assay is at least 100 times more sensitive than conventional PCR.

  14. Single step multiplex real-time RT-PCR for H5N1 influenza A virus detection.

    PubMed

    Payungporn, Sunchai; Chutinimitkul, Salin; Chaisingh, Arunee; Damrongwantanapokin, Sudarat; Buranathai, Chantanee; Amonsin, Alongkorn; Theamboonlers, Apiradee; Poovorawan, Yong

    2006-02-01

    H5N1 influenza A virus causes a rapidly fatal systemic disease in domestic poultry and spreads directly from poultry to mammalian species such as leopards, tigers and humans. The aim of this study was to develop a multiplex real-time RT-PCR for rapid detection of H5N1 influenza A virus. The selected primers and various labeled TaqMan MGB reporter probes corresponding to M, H5 and N1 were used in a single step multiplex real-time RT-PCR to simultaneously detect triple fluorescent signals. In order to validate the method, 75 clinical specimens infected with H5N1 isolated from both poultry and mammals, as well as various specimens of other subtypes and RNA from other viral pathogens of poultry and human were tested. The results showed that the multiplex real-time RT-PCR assays can be applied to detect virus suspensions of H5N1 influenza A virus from a wide host range and demonstrated the sensitivity of the assay amounted to approximately 10(2)-10(3)copies/mul. In conclusion, the highlights of this particular method lie in its rapidity, specificity and sensitivity thus rendering it feasible and effective for large-scale screening at times of H5N1 influenza A virus outbreaks.

  15. Use of chimeric influenza viruses as a novel internal control for diagnostic rRT-PCR assays.

    PubMed

    Wang, Xueliang; Liu, Fen; Jiang, Lingli; Bao, Yun; Xiao, Yanqun; Wang, Hualiang

    2016-02-01

    Real-time quantitative reverse transcriptase polymerase chain reaction (rRT-PCR) is now widely used to detect viral pathogens in various human specimens. The application of internal controls to validate the entire process of these assays is necessary to prevent false-negative results caused by unexpected inhibition or inefficient extraction. In the present study, we describe a strategy to produce a stable internal control for rRT-PCR by packaging foreign RNA into influenza virions using plasmid-based reverse genetics technology. The envelope structure of influenza virus can effectively protect RNA segments from RNase digestion, which provides an advantage for its routine use as an internal control. Utilizing this approach, we successfully generated a recombinant influenza virus (rPR8-HCV) containing the 5′ untranslated region (5′UTR) of the hepatitis C virus (HCV) RNA genome. After inactivation and purification, the rPR8-HCV particles were demonstrated to be RNase resistant and stable at 4 °C for at least 252 days in human plasma, with no degradation even after being frozen and thawed multiple times. These results were reproducible in the COBAS TaqMan HCV test for 164 days. Moreover, the chimeric influenza virus particles could be easily produced in embryonated eggs and were noninfectious after inactivation treatment. Additionally, this strategy could also be adapted for real-time clinical applications of other RNA targets, providing a universal approach with broad clinical applications in rRT-PCR assays.

  16. First generic one step real-time Taqman RT-PCR targeting the RNA1 of betanodaviruses.

    PubMed

    Baud, M; Cabon, J; Salomoni, A; Toffan, A; Panzarin, V; Bigarré, L

    2015-01-01

    The detection of betanodavirus genomic components is a major issue for diagnostics and control of viral nervous necrosis (VNN), a devastating disease affecting fish worldwide. Despite a number of published molecular-based tests, most of them targeting the RNA2 molecule of the virus, diagnostics is still a challenge due to the high genetic diversity within this genus. In the present study, a new one-step real-time RT-PCR (rRT-PCR), targeting RNA1 of most genotypes of betanodaviruses, was proposed and validated. The test detected successfully various isolates of betanodavirus representatives of the four species RGNNV, SJNNV, TPNNV and BFNNV, either produced on cell culture or from clinical samples. It was specific as shown by the absence of signal on samples from healthy sea bass or from field samples of six other fish species without clinical signs of VNN. The assay detected reliably 50-100 copies of plasmids containing the targeted cloned RNA1 region, as well as an infectious dose of virus of 10(2.5)-10(2.85) TCID50/ml. A set of samples was tested by two different laboratories, with similar results, demonstrating the robustness of the test. This is the first one step generic rRT-PCR method for