Song, Lujie; Zhu, Jianqiang; Zhang, Xiong; Cui, Zhiqiang; Fu, Qiang; Huang, Jianwen; Lu, Hongkai
2016-01-01
Erectile dysfunction (ED) continues to be a significant problem for men following radical prostatectomy. We hypothesize that intracavernous injection of BDNF-hypersecreting human umbilical cord blood mesenchymal stem cells (hUCB-MSCs) can ameliorate ED in a rat model of cavernous nerve electrocautery injury (CNEI). Forty-two male Sprague-Dawley rats were randomly divided into four groups: sham + PBS (n = 6), CNEI + PBS (n = 12), CNEI + hUCB-MSCs (n = 12) and CNEI + BDNF-hUCB-MSCs (n = 12). At day 28 post-surgery, erectile function was examined and specimens were harvested for histology. Immunofluorescence staining, Masson's trichrome staining and transmission electron microscopy were performed to determine the structural changes in corpus cavernosum. Cells that are injected into penis were labeled by BrdU and tracked by immunofluorescence staining. Three days post-surgery, the concentration of BDNF protein in penile tissues was measured by Western blotting. Rats intracavernosally injected with BDNF-hUCB-MSCs showed the most significant improvement in the ratio of maximal ICP to MAP (ICP/MAP). Histological examinations showed moderate recovery of nNOS-positive nerve fibers, ratio of smooth muscle to collagen and smooth muscle content in the CNEI + hUCB-MSCs group and remarkable recovery in the CNEI + BDNF-hUCB-MSCs group compared to the CNEI + PBS group. By TEM examination, atrophy of myelinated and non-myelinated nerve fibers was noted in CNEI + PBS group and significant recovery was observed in two treated groups. There were more BrdU-positive cells in the BDNF-hUCB-MSCs group than in the hUCB-MSCs group both in the penis and in the MPG. Three days post-surgery, the concentration of BDNF protein in penile tissues in BDNF-hUCB-MSCs group was much higher than in other groups. Intracavernous injection of BDNF-hypersecreting hUCB-MSCs can enhance the recovery of erectile function, promote the CNs regeneration and inhibit corpus cavernosum fibrosis after CNEI in a rat model.
Bierlein De la Rosa, Metzere; Sharma, Anup D; Mallapragada, Surya K; Sakaguchi, Donald S
2017-11-01
The use of genetically modified mesenchymal stem cells (MSCs) is a rapidly growing area of research targeting delivery of therapeutic factors for neuro-repair. Cells can be programmed to hypersecrete various growth/trophic factors such as brain-derived neurotrophic factor (BDNF), glial cell line-derived neurotrophic factor (GDNF), and nerve growth factor (NGF) to promote regenerative neurite outgrowth. In addition to genetic modifications, MSCs can be subjected to transdifferentiation protocols to generate neural cell types to physically and biologically support nerve regeneration. In this study, we have taken a novel approach by combining these two unique strategies and evaluated the impact of transdifferentiating genetically modified MSCs into a Schwann cell-like phenotype. After 8 days in transdifferentiation media, approximately 30-50% of transdifferentiated BDNF-secreting cells immunolabeled for Schwann cell markers such as S100β, S100, and p75 NTR . An enhancement was observed 20 days after inducing transdifferentiation with minimal decreases in expression levels. BDNF production was quantified by ELISA, and its biological activity tested via the PC12-TrkB cell assay. Importantly, the bioactivity of secreted BDNF was verified by the increased neurite outgrowth of PC12-TrkB cells. These findings demonstrate that not only is BDNF actively secreted by the transdifferentiated BDNF-MSCs, but also that it has the capacity to promote neurite sprouting and regeneration. Given the fact that BDNF production remained stable for over 20 days, we believe that these cells have the capacity to produce sustainable, effective, BDNF concentrations over prolonged time periods and should be tested within an in vivo system for future experiments. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Zhong, Jian-Bin; Li, Xie; Zhong, Si-Ming; Liu, Jiu-Di; Chen, Chi-Bang; Wu, Xiao-Yan
2017-09-27
Brain-derived neurotrophic factor (BDNF) plays an important role in neuronal cell apoptosis. The antisense RNA of brain-derived neurotrophic factor (BDNF-AS) is a natural antisense transcript that is transcribed opposite the gene that encodes BDNF. The aim of this study was to determine whether knockdown of BDNF-AS can suppress hypoxia/reoxygenation (H/R)-induced neuronal cell apoptosis and whether this is mediated by the BDNF-TrkB-PI3K/Akt pathway. We detected the expression of BDNF and BDNF-AS in brain tissue from 20 patients with cerebral infarction and five patients with other diseases (but no cerebral ischemia). We found that BDNF expression was significantly downregulated in patients with cerebral infarction, whereas the expression of BDNF-AS was significantly upregulated. In both human cortical neurons (HCN2) and human astrocytes, H/R significantly induced the expression of BDNF-AS, but significantly decreased BDNF expression. H/R also significantly induced apoptosis and reduced the mitochondrial membrane potential in these cells. Following downregulation of BDNF-AS by siRNA in human cortical neurons and human astrocyte cells, BDNF expression was significantly upregulated and the H/R-induced upregulation of BDNF-AS was significantly attenuated. BDNF-AS siRNA inhibited H/R-induced cell apoptosis and ameliorated the H/R-induced suppression of mitochondrial membrane potential. H/R inhibited the expression of BDNF, p-AKT/AKT, and TrKB, and this inhibition was recovered by BDNF-AS siRNA. In summary, this study indicates that BDNF-AS siRNA induces activation of the BDNF-TrkB-PI3K/Akt pathway following H/R-induced neurotoxicity. These findings will be useful toward the application of BDNF-AS siRNA for the treatment of neurodegenerative diseases.
Xiong, Jing; Zhou, L I; Lim, Yoon; Yang, Miao; Zhu, Yu-Hong; Li, Zhi-Wei; Fu, Deng-Li; Zhou, Xin-Fu
2015-07-01
There are two forms of brain-derived neurotrophic factor (BDNF), precursor of BDNF (proBDNF) and mature BDNF, which each exert opposing effects through two different transmembrane receptor signaling systems, consisting of p75 neurotrophin receptor (p75NTR) and tyrosine receptor kinase B (TrkB). Previous studies have demonstrated that proBDNF promotes cell death and inhibits the growth and migration of C6 glioma cells through p75NTR in vitro , while mature BDNF has opposite effects on C6 glioma cells. It is hypothesized that mature BDNF is essential in the development of malignancy in gliomas. However, histological data obtained in previous studies were unable distinguish mature BDNF from proBDNF due to the lack of specific antibodies. The present study investigated the expression of mature BDNF using a specific sheep monoclonal anti-mature BDNF antibody in 42 human glioma tissues of different grades and 10 control tissues. The correlation between mature BDNF and TrkB was analyzed. Mature BDNF expression was significantly increased in high-grade gliomas, and was positively correlated with the malignancy of the tumor and TrkB receptor expression. The present data have demonstrated that increased levels of mature BDNF contribute markedly to the development of malignancy of human gliomas through the primary BDNF receptor TrkB.
Yan, Bo-jing; Wu, Zhi-zhong; Chong, Wei-hua; Li, Gen-lin
2016-01-01
Several studies have investigated the protective functions of brain-derived neurotrophic factor (BDNF) in retinitis pigmentosa. However, a BDNF-based therapy for retinitis pigmentosa is not yet available. To develop an efficient treatment for fundus disease, an eukaryotic expression plasmid was generated and used to transfect human 293T cells to assess the expression and bioactivity of BDNF on acute retinal pigment epithelial-19 (ARPE-19) cells, a human retinal epithelial cell line. After 96 hours of co-culture in a Transwell chamber, ARPE-19 cells exposed to BDNF secreted by 293T cells were more viable than ARPE-19 cells not exposed to secreted BDNF. Western blot assay showed that Bax levels were downregulated and that Bcl-2 levels were upregulated in human ARPE-19 cells exposed to BDNF. Furthermore, 293T cells transfected with the BDNF gene steadily secreted the protein. The powerful anti-apoptotic function of this BDNF may be useful for the treatment of retinitis pigmentosa and other retinal degenerative diseases. PMID:28197196
Explore the Features of Brain-Derived Neurotrophic Factor in Mood Disorders
Yeh, Fan-Chi; Kao, Chung-Feng; Kuo, Po-Hsiu
2015-01-01
Objectives Brain-derived neurotrophic factor (BDNF) plays important roles in neuronal survival and differentiation; however, the effects of BDNF on mood disorders remain unclear. We investigated BDNF from the perspective of various aspects of systems biology, including its molecular evolution, genomic studies, protein functions, and pathway analysis. Methods We conducted analyses examining sequences, multiple alignments, phylogenetic trees and positive selection across 12 species and several human populations. We summarized the results of previous genomic and functional studies of pro-BDNF and mature-BDNF (m-BDNF) found in a literature review. We identified proteins that interact with BDNF and performed pathway-based analysis using large genome-wide association (GWA) datasets obtained for mood disorders. Results BDNF is encoded by a highly conserved gene. The chordate BDNF genes exhibit an average of 75% identity with the human gene, while vertebrate orthologues are 85.9%-100% identical to human BDNF. No signs of recent positive selection were found. Associations between BDNF and mood disorders were not significant in most of the genomic studies (e.g., linkage, association, gene expression, GWA), while relationships between serum/plasma BDNF level and mood disorders were consistently reported. Pro-BDNF is important in the response to stress; the literature review suggests the necessity of studying both pro- and m-BDNF with regard to mood disorders. In addition to conventional pathway analysis, we further considered proteins that interact with BDNF (I-Genes) and identified several biological pathways involved with BDNF or I-Genes to be significantly associated with mood disorders. Conclusions Systematically examining the features and biological pathways of BDNF may provide opportunities to deepen our understanding of the mechanisms underlying mood disorders. PMID:26091093
Li, Te-Mao; Fong, Yi-Chin; Liu, Shan-Chi; Chen, Po-Chun; Tang, Chih-Hsin
2013-01-01
Chondrosarcoma is a primary malignant bone cancer, with a potent capacity to invade locally and cause distant metastasis; it has a poor prognosis and shows a predilection for metastasis to the lungs. Brain derived neurotrophic factor (BDNF) is a small-molecule protein from the neurotrophin family of growth factors that is associated with the disease status and outcomes of cancers. However, the effect of BDNF on migration activity in human chondrosarcoma cells is mostly unknown. Here, we found that human chondrosarcoma tissues showed significant expression of BDNF, which was higher than that in normal cartilage and primary chondrocytes. We also found that BDNF increased the migration and expression of β5 integrin in human chondrosarcoma cells. In addition, knockdown of BDNF expression markedly inhibited migratory activity. BDNF-mediated migration and β5 integrin up-regulation were attenuated by antibody, inhibitor, or siRNA against the TrkB receptor. Pretreatment of chondrosarcoma cells with PI3K, Akt, and NF-κB inhibitors or mutants also abolished BDNF-promoted migration and integrin expression. The PI3K, Akt, and NF-κB signaling pathway was activated after BDNF treatment. Taken together, our results indicate that BDNF enhances the migration of chondrosarcoma by increasing β5 integrin expression through a signal transduction pathway that involves the TrkB receptor, PI3K, Akt, and NF-κB. BDNF thus represents a promising new target for treating chondrosarcoma metastasis. PMID:23874483
Role of Hypoxia-Induced Brain Derived Neurotrophic Factor in Human Pulmonary Artery Smooth Muscle
Hartman, William; Helan, Martin; Smelter, Dan; Sathish, Venkatachalem; Thompson, Michael; Pabelick, Christina M.; Johnson, Bruce; Prakash, Y. S.
2015-01-01
Background Hypoxia effects on pulmonary artery structure and function are key to diseases such as pulmonary hypertension. Recent studies suggest that growth factors called neurotrophins, particularly brain-derived neurotrophic factor (BDNF), can influence lung structure and function, and their role in the pulmonary artery warrants further investigation. In this study, we examined the effect of hypoxia on BDNF in humans, and the influence of hypoxia-enhanced BDNF expression and signaling in human pulmonary artery smooth muscle cells (PASMCs). Methods and Results 48h of 1% hypoxia enhanced BDNF and TrkB expression, as well as release of BDNF. In arteries of patients with pulmonary hypertension, BDNF expression and release was higher at baseline. In isolated PASMCs, hypoxia-induced BDNF increased intracellular Ca2+ responses to serotonin: an effect altered by HIF1α inhibition or by neutralization of extracellular BDNF via chimeric TrkB-Fc. Enhanced BDNF/TrkB signaling increased PASMC survival and proliferation, and decreased apoptosis following hypoxia. Conclusions Enhanced expression and signaling of the BDNF-TrkB system in PASMCs is a potential mechanism by which hypoxia can promote changes in pulmonary artery structure and function. Accordingly, the BDNF-TrkB system could be a key player in the pathogenesis of hypoxia-induced pulmonary vascular diseases, and thus a potential target for therapy. PMID:26192455
Lin, Chih-Yang; Chang, Sunny Li-Yun; Fong, Yi-Chin; Hsu, Chin-Jung; Tang, Chih-Hsin
2013-01-01
Chondrosarcoma is the primary malignancy of bone that is characterized by a potent capacity to invade locally and cause distant metastasis, and is therefore associated with poor prognoses. Chondrosarcoma further shows a predilection for metastasis to the lungs. The brain-derived neurotrophic factor (BDNF) is a small molecule in the neurotrophin family of growth factors that is associated with the disease status and outcome of cancers. However, the effect of BDNF on cell motility in human chondrosarcoma cells is mostly unknown. Here, we found that human chondrosarcoma cell lines had significantly higher cell motility and BDNF expression compared to normal chondrocytes. We also found that BDNF increased cell motility and expression of matrix metalloproteinase-1 (MMP-1) in human chondrosarcoma cells. BDNF-mediated cell motility and MMP-1 up-regulation were attenuated by Trk inhibitor (K252a), ASK1 inhibitor (thioredoxin), JNK inhibitor (SP600125), and p38 inhibitor (SB203580). Furthermore, BDNF also promoted Sp1 activation. Our results indicate that BDNF enhances the migration and invasion activity of chondrosarcoma cells by increasing MMP-1 expression through a signal transduction pathway that involves the TrkB receptor, ASK1, JNK/p38, and Sp1. BDNF thus represents a promising new target for treating chondrosarcoma metastasis. PMID:23892595
Dalle Molle, R; Portella, A K; Goldani, M Z; Kapczinski, F P; Leistner-Segala, S; Salum, G A; Manfro, G G; Silveira, P P
2012-01-01
Adverse early-life environment is associated with anxiety-like behaviors and disorders. Brain-derived neurotrophic factor (BDNF) is sensitive to this environment and could be a marker of underlying brain changes. We aimed at evaluating the development of anxiety-like behaviors in a rat model of early adversity, as well as the possible association with BDNF levels. Similar associations were investigated in a sample of adolescent humans. For the rat study, Wistar rat litters were divided into: early-life stress (ELS, limited access to nesting material) and control groups. Maternal behavior was observed from days 1 to 9 of life and, as adults, rats were subjected to behavioral testing and BDNF measurements in plasma, hippocampus, amygdala and periaqueductal gray. For the human study, 129 adolescents were evaluated for anxiety symptoms and perceived parental care. Serum BDNF levels and the Val66Met polymorphism of the BDNF gene were investigated. We found that ELS dams showed more pure contact, that is, contact with low care and high control, toward pups, and their adult offspring demonstrated higher anxiety-like behaviors and plasma BDNF. Also the pure contact correlated positively with adult peripheral BDNF. Similarly in humans, there was a positive correlation between maternal overprotection and serum BDNF only in Met carriers. We also found negative correlations between maternal warmth and separation anxiety, social phobia and school phobia. Finally, our translational approach revealed that ELS, mediated through variations in maternal care, is associated with anxiety in both rats and humans and increased peripheral BDNF may be marking these phenomena. PMID:23168995
NASA Technical Reports Server (NTRS)
Schmidt, M. A.; Goodwin, T. J.
2014-01-01
Brain derived neurotrophic factor (BDNF) is the main activity-dependent neurotrophin in the human nervous system. BDNF is implicated in production of new neurons from dentate gyrus stem cells (hippocampal neurogenesis), synapse formation, sprouting of new axons, growth of new axons, sprouting of new dendrites, and neuron survival. Alterations in the amount or activity of BDNF can produce significant detrimental changes to cortical function and synaptic transmission in the human brain. This can result in glial and neuronal dysfunction, which may contribute to a range of clinical conditions, spanning a number of learning, behavioral, and neurological disorders. There is an extensive body of work surrounding the BDNF molecular network, including BDNF gene polymorphisms, methylated BDNF gene promoters, multiple gene transcripts, varied BDNF functional proteins, and different BDNF receptors (whose activation differentially drive the neuron to neurogenesis or apoptosis). BDNF is also closely linked to mitochondrial biogenesis through PGC-1alpha, which can influence brain and muscle metabolic efficiency. BDNF AS A HUMAN SPACE FLIGHT COUNTERMEASURE TARGET Earth-based studies reveal that BDNF is negatively impacted by many of the conditions encountered in the space environment, including oxidative stress, radiation, psychological stressors, sleep deprivation, and many others. A growing body of work suggests that the BDNF network is responsive to a range of diet, nutrition, exercise, drug, and other types of influences. This section explores the BDNF network in the context of 1) protecting the brain and nervous system in the space environment, 2) optimizing neurobehavioral performance in space, and 3) reducing the residual effects of space flight on the nervous system on return to Earth
Kim, Ana; Fagan, Anne M; Goate, Alison M; Benzinger, Tammie LS; Morris, John C; Head, Denise
2015-01-01
Brain-derived neurotrophic factor (BDNF) has been shown to be important for neuronal survival and synaptic plasticity in the hippocampus in non-human animals. The Val66Met polymorphism in the BDNF gene, involving a valine (Val) to methionine (Met) substitution at codon 66, has been associated with lower BDNF secretion in vitro. However, there have been mixed results regarding associations between either circulating BDNF or the BDNF Val66Met polymorphism with hippocampal volume and memory in humans. The current study examined the association of BDNF genotype and plasma BDNF with hippocampal volume and memory in two large independent cohorts of middle-aged and older adults (both cognitively normal and early-stage dementia). Sample sizes ranged from 123 to 649. Measures of the BDNF genotype, plasma BDNF, MRI-based hippocampal volume and memory performance were obtained from the Knight Alzheimer Disease Research Center (ADRC) and the Alzheimer’s Disease Neuroimaging Initiative (ADNI). There were no significant differences between BDNF Met+ and Met- groups on either hippocampal volume or memory in either cohort. In addition, plasma BDNF was not significantly associated with either hippocampal volume or memory in either cohort. Neither age, cognitive status nor gender moderated any of the relationships. Overall, current findings suggest that BDNF genotype and plasma BDNF may not be robust predictors for variance in hippocampal volume and memory in middle age and older adult cohorts. PMID:25784293
Chen, Bo; Liang, Yan; He, Zheng; An, Yunhe; Zhao, Weihong; Wu, Jianqing
2016-01-01
Brain-derived neurotrophic factor (BDNF) is a member of the neurotrophin superfamily, which has been implicated in the pathophysiology of the nervous system. Recently, several studies have suggested that BDNF and/or its receptor, tropomyosin related kinase B (TrkB), are involved in tumor growth and metastasis in several cancers, including prostate cancer, neuroblastoma, pancreatic ductal carcinoma, hepatocellular carcinoma, and lung cancer. Despite the increasing emphasis on BDNF/TrkB signaling in human tumors, how it participates in primary tumors has not yet been determined. Additionally, little is known about the molecular mechanisms that elicit signaling downstream of TrkB in the progression of non-small-cell lung cancer (NSCLC). In this study, we report the significant expression of BDNF in NSCLC samples and show that BDNF stimulation increases the synthesis of BDNF itself through activation of STAT3 in lung cancer cells. The release of BDNF can in turn activate TrkB signaling. The activation of both TrkB and STAT3 contribute to downstream signaling and promote human non-small-cell lung cancer proliferation. PMID:27456333
Bath, Kevin G.; Chuang, Jocelyn; Spencer-Segal, Joanna L.; Amso, Dima; Altemus, Margaret; McEwen, Bruce S.; Lee, Francis S.
2012-01-01
Background Most anxiety and depressive disorders are twice as common in women compared to men and the sex difference in prevalence typically emerges during adolescence. Hormonal changes across the menstrual cycle and during the postpartum and peri-menopausal periods are associated with increased risk for anxiety and depression symptoms. In humans and animals, reduced brain derived neurotrophic factor (BDNF) has been associated with increased expression of affective pathology. Recently, a single nucleotide polymorphism (SNP) in the BDNF gene (BDNF Val66Met), which reduces BDNF bioavailability, has been identified in humans and associated with a variety of neuropsychiatric disorders. Although BDNF expression can be directly influenced by estrogen and progesterone, the potential impact of the BDNF Val66Met SNP on sensitivity to reproductive hormone changes remains an open question. Approach As a predictive model, we used female mice in which the human SNP (BDNF Val66Met) was inserted into the mouse BDNF gene. Using standard behavioral paradigms, we tested the impact of this SNP on age and estrous-cycle specific expression of anxiety-like behaviors. Results Mice homozygous for the BDNF Val66Met SNP begin to exhibit increased anxiety-like behaviors over prepubertal and early adult development, show significant fluctuations in anxiety-like behaviors over the estrous cycle, and as adults differ from wild-type mice by showing significant fluctuations in anxiety-like behaviors over the estrous cycle, specifically more anxiety-like behaviors during the estrus phase. Conclusions These findings have implications regarding the potential role of this SNP in contributing to developmental and reproductive hormone-dependent changes in affective disorders in humans. PMID:22552045
Ieraci, Alessandro; Madaio, Alessandro I; Mallei, Alessandra; Lee, Francis S; Popoli, Maurizio
2016-12-01
Several studies have shown that exercise improves cognitive functions and emotional behaviors. Positive effects of exercise have been associated with enhanced brain plasticity, adult hippocampal neurogenesis, and increased levels of brain-derived neurotrophic factor (BDNF). However, a substantial variability of individual response to exercise has been described, which may be accounted for by individual genetic variants. Here, we have assessed whether and how the common human BDNF Val66Met polymorphism influences the neurobiological effects modulated by exercise in BDNF Val66Met knock-in male mice. Wild-type (BDNF Val/Val ) and homozygous BDNF Val66Met (BDNF Met/Met ) male mice were housed in cages equipped with or without running wheels for 4 weeks. Changes in behavioral phenotype, hippocampal adult neurogenesis, and gene expression were evaluated in exercised and sedentary control mice. We found that exercise reduced the latency to feed in the novelty suppressed feeding and the immobility time in the forced swimming test in BDNF Val/Val but not in BDNF Met/Met mice. Hippocampal neurogenesis was reduced in BDNF Met/Met mice compared with BDNF Val/Val mice. BDNF Met/Met mice had lower basal BDNF protein levels in the hippocampus, which was not recovered following exercise. Moreover, exercise-induced expression of total BDNF, BDNF splice variants 1, 2, 4, 6 and fibronectin type III domain-containing protein 5 (FNDC5) mRNA levels were absent or reduced in the dentate gyrus of BDNF Met/Met mice. Exercise failed to enhance PGC-1α and FNDC5 mRNA levels in the BDNF Met/Met muscle. Overall these results indicate that, in adult male mice, the BDNF Val66Met polymorphism impairs the beneficial behavioral and neuroplasticity effects induced by physical exercise.
Lin, Chih-Yang; Wang, Shih-Wei; Chen, Yen-Ling; Chou, Wen-Yi; Lin, Ting-Yi; Chen, Wei-Cheng; Yang, Chen-Yu; Liu, Shih-Chia; Hsieh, Chia-Chu; Fong, Yi-Chin; Wang, Po-Chuan; Tang, Chih-Hsin
2017-08-03
Chondrosarcoma is the second most common primary malignancy of bone, and one of the most difficult bone tumors to diagnose and treat. It is well known that increased levels of vascular endothelial growth factor-C (VEGF-C) promote active tumor lymphangiogenesis and lymphatic tumor spread to regional lymph nodes. Brain-derived neurotrophic factor (BDNF) is known to promote metastasis in human chondrosarcoma cells. Knowing more about the mechanism of BDNF in VEGF-C expression and lymphangiogenesis in human chondrosarcoma would improve our understanding as how to prevent chondrosarcoma angiogenesis and metastasis, which currently lacks effective adjuvant treatment. Here, we found that BDNF expression was at least 2.5-fold higher in the highly migratory JJ012(S10) cell line as compared with the primordial cell line (JJ012). In addition, VEGF-C expression and secretion was markedly increased in JJ012(S10) cells. Conditioned medium from JJ012(S10) cells significantly promoted migration and tube formation of human lymphatic endothelial cells (LECs), whereas knockdown of BDNF attenuated LEC migration and tube formation by suppressing VEGF-C production in JJ012(S10) cells. Mechanistic investigations indicated that BDNF facilitated VEGF-C-dependent lymphangiogenesis through the MEK/ERK/mTOR signaling pathway. We also showed that microRNA (miR)-624-3p expression was negatively regulated by BDNF via the MEK/ERK/mTOR cascade. Importantly, BDNF knockdown profoundly inhibited tumor-associated lymphangiogenesis in vivo. Further analyses identified that BDNF promoted tumor lymphangiogenesis by downregulating miR-624-3p in human chondrosarcoma tissues. In conclusion, this study is the first to reveal the mechanism underlying BDNF-induced lymphangiogenesis. We suggest that BDNF may serve as a promising therapeutic target for the restriction of VEGF-C-mediated tumor lymphangiogenesis and lymphatic metastasis.
Lin, Chih-Yang; Wang, Shih-Wei; Chen, Yen-Ling; Chou, Wen-Yi; Lin, Ting-Yi; Chen, Wei-Cheng; Yang, Chen-Yu; Liu, Shih-Chia; Hsieh, Chia-Chu; Fong, Yi-Chin; Wang, Po-Chuan; Tang, Chih-Hsin
2017-01-01
Chondrosarcoma is the second most common primary malignancy of bone, and one of the most difficult bone tumors to diagnose and treat. It is well known that increased levels of vascular endothelial growth factor-C (VEGF-C) promote active tumor lymphangiogenesis and lymphatic tumor spread to regional lymph nodes. Brain-derived neurotrophic factor (BDNF) is known to promote metastasis in human chondrosarcoma cells. Knowing more about the mechanism of BDNF in VEGF-C expression and lymphangiogenesis in human chondrosarcoma would improve our understanding as how to prevent chondrosarcoma angiogenesis and metastasis, which currently lacks effective adjuvant treatment. Here, we found that BDNF expression was at least 2.5-fold higher in the highly migratory JJ012(S10) cell line as compared with the primordial cell line (JJ012). In addition, VEGF-C expression and secretion was markedly increased in JJ012(S10) cells. Conditioned medium from JJ012(S10) cells significantly promoted migration and tube formation of human lymphatic endothelial cells (LECs), whereas knockdown of BDNF attenuated LEC migration and tube formation by suppressing VEGF-C production in JJ012(S10) cells. Mechanistic investigations indicated that BDNF facilitated VEGF-C-dependent lymphangiogenesis through the MEK/ERK/mTOR signaling pathway. We also showed that microRNA (miR)-624-3p expression was negatively regulated by BDNF via the MEK/ERK/mTOR cascade. Importantly, BDNF knockdown profoundly inhibited tumor-associated lymphangiogenesis in vivo. Further analyses identified that BDNF promoted tumor lymphangiogenesis by downregulating miR-624-3p in human chondrosarcoma tissues. In conclusion, this study is the first to reveal the mechanism underlying BDNF-induced lymphangiogenesis. We suggest that BDNF may serve as a promising therapeutic target for the restriction of VEGF-C-mediated tumor lymphangiogenesis and lymphatic metastasis. PMID:28771226
BDNF/TrkB signaling protects HT-29 human colon cancer cells from EGFR inhibition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brunetto de Farias, Caroline; Children's Cancer Institute, 90420-140 Porto Alegre, RS; Laboratory of Neuropharmacology and Neural Tumor Biology, Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, 90050-170 Porto Alegre, RS
2012-08-24
Highlights: Black-Right-Pointing-Pointer BDNF protected HT-29 colorectal cancer cells from the antitumor effect of cetuximab. Black-Right-Pointing-Pointer TrkB inhibition potentiated the antitumor effect of cetuximab. Black-Right-Pointing-Pointer BDNF/TrkB signaling might be involved in resistance to anti-EGFR therapy. -- Abstract: The clinical success of targeted treatment of colorectal cancer (CRC) is often limited by resistance to anti-epidermal growth factor receptor (EGFR) therapy. The neurotrophin brain-derived neurotrophic factor (BDNF) and its receptor TrkB have recently emerged as anticancer targets, and we have previously shown increased BDNF levels in CRC tumor samples. Here we report the findings from in vitro experiments suggesting that BDNF/TrkB signaling canmore » protect CRC cells from the antitumor effects of EGFR blockade. The anti-EGFR monoclonal antibody cetuximab reduced both cell proliferation and the mRNA expression of BDNF and TrkB in human HT-29 CRC cells. The inhibitory effect of cetuximab on cell proliferation and survival was counteracted by the addition of human recombinant BDNF. Finally, the Trk inhibitor K252a synergistically enhanced the effect of cetuximab on cell proliferation, and this effect was blocked by BDNF. These results provide the first evidence that increased BDNF/TrkB signaling might play a role in resistance to EGFR blockade. Moreover, it is possible that targeting TrkB could potentiate the anticancer effects of anti-EGFR therapy.« less
Human obesity associated with an intronic SNP in the brain-derived neurotrophic factor locus
USDA-ARS?s Scientific Manuscript database
Brain-derived neurotrophic factor (BDNF) plays a key role in energy balance. In population studies, SNPs of the BDNF locus have been linked to obesity, but the mechanism by which these variants cause weight gain is unknown. Here, we examined human hypothalamic BDNF expression in association with 44 ...
USDA-ARS?s Scientific Manuscript database
In rodents, hypothalamic brain-derived neurotrophic factor (BDNF) expression appears to be regulated by melanocortin-4 receptor (MC4R) activity. The impact of MC4R genetic variation on circulating BDNF in humans is unknown. The objective of this study is to compare BDNF concentrations of subjects wi...
Anxiolytic effect of music exposure on BDNFMet/Met transgenic mice.
Li, Wen-Jing; Yu, Hui; Yang, Jian-Min; Gao, Jing; Jiang, Hong; Feng, Min; Zhao, Yu-Xia; Chen, Zhe-Yu
2010-08-06
Brain-derived neurotrophic factor (BDNF) has been reported to play important roles in the modulation of anxiety, mood stabilizers, and pathophysiology of affective disorders. Recently, a single nucleotide polymorphism (SNP) in the BDNF gene (Val66Met) has been found to be associated with depression and anxiety disorders. The humanized BDNF(Met/Met) knock-in transgenic mice exhibited increased anxiety-related behaviors that were unresponsive to serotonin reuptake inhibitors, fluoxetine. Music is known to be able to elicit emotional changes, including anxiolytic effects. In this study, we found that music treatment could significantly decrease anxiety state in BDNF(Met/Met) mice, but not in BDNF(+/)(-), mice compared with white noise exposure in open field and elevated plus maze test. Moreover, in contrast to white noise exposure, BDNF expression levels in the prefrontal cortex (PFC), amygdala and hippocampus were significantly increased in music-exposed adult BDNF(Met/Met) mice. However, music treatment could not upregulate BDNF levels in the PFC, amygdala, and hippocampus in BDNF(+/)(-) mice, which suggests the essential role of BDNF in the anxiolytic effect of music. Together, our results imply that music may provide an effective therapeutic intervention for anxiety disorders in humans with this genetic BDNF(Met) variant. Copyright 2010 Elsevier B.V. All rights reserved.
Li, Wensheng; Dou, Zhongling; We, Shuguang; Zhu, Zhiyi; Pan, Dong; Jia, Zhaohui; Liu, Hui; Wang, Xiaobin; Yu, Guoqiang
2018-06-01
The underlying molecular mechanisms of prostate cancer (CaP) are largely unknown. We investigated the expression, prognostic value and functional role of long non-coding RNA (lncRNA) brain-derived neurotrophin factor antisense (BDNF-AS) in CaP. Clinical tumor samples were excised from patients with CaP. Their endogenous BDNF-AS expression levels were evaluated by qRT-PCR. Correlations between CaP patients' endogenous BDNF-AS expression and their clinicopathological factors, overall survival were statistically analyzed. BDNF-AS expression levels were also probed in immortal CaP cell lines. In LNCaP and PC-3 cells, BDNF-AS was ectopically overexpressed through lentiviral transduction. The functions of BDNF-AS upregulation on CaP cell development were evaluated both in vitro and in vivo. BDNF-AS was downregulated in human CaP tumors. Low BDNF-AS expression was correlated with CaP patients' poor prognosis and shorter overall survival. BDNF-AS was also found to be lowly expressed in CaP cell lines. In LNCaP and PC-3 cells, lentivirus-driven BDNF-AS overexpression exerted significantly tumor-suppressing effects on hindering cancer cell proliferation and invasion in vitro, and explant growth in vivo. Downregulated BDNF-AS in CaP patients could be a potential prognostic biomarker for predicating poor prognosis and survival. Upregulating BDNF-AS may be a novel molecular intervening target for CaP treatment. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Yu, Hui; Wang, Dong-Dong; Wang, Yue; Liu, Ting; Lee, Francis S.; Chen, Zhe-Yu
2012-01-01
Brain-derived neurotrophic factor (BDNF) plays important roles in cell survival, neural plasticity, learning, and stress regulation. However, whether the recently found human BDNF Val66Met (BDNFMet) polymorphism could alter stress vulnerability remains controversial. More importantly, the molecular and structural mechanisms underlying the interaction between the BDNFMet polymorphism and stress are unclear. We found that heterozygous BDNF+/Met mice displayed hypothalamic-pituitary-adrenal axis hyperreactivity, increased depressive-like and anxiety-like behaviors, and impaired working memory compared with WT mice after 7 d restraint stress. Moreover, BDNF+/Met miceexhibited more prominent changes in BDNF levels and apical dendritic spine density in the prefrontal cortex and amygdala after stress, which correlated with the impaired working memory and elevated anxiety-like behaviors. Finally, the depressive-like behaviors in BDNF+/Met mice could be selectively rescued by acute administration of desipramine but not fluoxetine. These data indicate selective behavioral, molecular, and structural deficits resulting from the interaction between stress and the human genetic BDNFMet polymorphism. Importantly, desipramine but not fluoxetine has antidepressant effects on BDNF+/Met mice, suggesting that specific classes of antidepressant may be a more effective treatment option for depressive symptoms in humans with this genetic variant BDNF. PMID:22442074
Tripp, Adam; Oh, Hyunjung; Guilloux, Jean-Philippe; Martinowich, Keri; Lewis, David A; Sibille, Etienne
2012-11-01
The subgenual anterior cingulate cortex is implicated in the pathology and treatment response of major depressive disorder. Low levels of brain-derived neurotrophic factor (BDNF) and reduced markers for GABA function, including in the amygdala, are reported in major depression, but their contribution to subgenual anterior cingulate cortex dysfunction is not known. Using polymerase chain reaction, we first assessed the degree to which BDNF controls mRNA expression (defined as BDNF dependency) of 15 genes relating to GABA and neuropeptide functions in the cingulate cortex of mice with reduced BDNF function (BDNF-heterozygous [Bdnf(+/-)] mice and BDNF exon-IV knockout [Bdnf(KIV)] mice). Gene expression was then quantified in the subgenual anterior cingulate cortex of 51 postmortem subjects with major depressive disorder and comparison subjects (total subjects, N=102; 49% were women) and compared with previous amygdala results. Based on the results in Bdnf(+/-) and Bdnf(KIV) mice, genes were sorted into high, intermediate, and no BDNF dependency sets. In postmortem human subjects with major depression, BDNF receptor (TRKB) expression, but not BDNF, was reduced. Postmortem depressed subjects exhibited down-regulation in genes with high and intermediate BDNF dependency, including markers of dendritic targeting interneurons (SST, NPY, and CORT) and a GABA synthesizing enzyme (GAD2). Changes extended to BDNF-independent genes (PVALB and GAD1). Changes were greater in men (potentially because of low baseline expression in women), displayed notable differences from prior amygdala results, and were not explained by demographic or clinical factors other than sex. These parallel human/mouse analyses provide direct (low TRKB) and indirect (low expression of BDNF-dependent genes) evidence in support of decreased BDNF signaling in the subgenual anterior cingulate cortex in individuals with major depressive disorder, implicate dendritic targeting GABA neurons and GABA synthesis, and, together, suggest a common BDNF-/GABA-related pathology in major depression with sex- and brain region-specific features.
BDNF is Associated With Age-Related Decline in Hippocampal Volume
Erickson, Kirk I.; Prakash, Ruchika Shaurya; Voss, Michelle W.; Chaddock, Laura; Heo, Susie; McLaren, Molly; Pence, Brandt D.; Martin, Stephen A.; Vieira, Victoria J.; Woods, Jeffrey A.; Kramer, Arthur F.
2010-01-01
Hippocampal volume shrinks in late adulthood, but the neuromolecular factors that trigger hippocampal decay in aging humans remains a matter of speculation. In rodents, brain derived neurotrophic factor (BDNF) promotes the growth and proliferation of cells in the hippocampus and is important in long-term potentiation and memory formation. In humans, circulating levels of BDNF decline with advancing age and a genetic polymorphism for BDNF has been related to gray matter volume loss in old age. In this study, we tested whether age-related reductions in serum levels of BDNF would be related to shrinkage of the hippocampus and memory deficits in older adults. Hippocampal volume was acquired by automated segmentation of magnetic resonance images in 142 older adults without dementia. The caudate nucleus was also segmented and examined in relation to levels of serum BDNF. Spatial memory was tested using a paradigm in which memory load was parametrically increased. We found that increasing age was associated with smaller hippocampal volumes, reduced levels of serum BDNF, and poorer memory performance. Lower levels of BDNF were associated with smaller hippocampi and poorer memory, even when controlling for the variation related to age. In an exploratory mediation analysis, hippocampal volume mediated the age-related decline in spatial memory and BDNF mediated the age-related decline in hippocampal volume. Caudate nucleus volume was unrelated to BDNF levels or spatial memory performance. Our results identify serum BDNF as a significant factor related to hippocampal shrinkage and memory decline in late adulthood. PMID:20392958
Yang, Jin-Wei; Ru, Jin; Ma, Wei; Gao, Yan; Liang, Zhang; Liu, Jia; Guo, Jian-Hui; Li, Li-Yan
2015-12-01
Brain-derived neurotrophic factor (BDNF) plays an important role in neuronal growth; however, the downstream regulatory mechanisms remain unclear. In this study, we investigated whether BDNF exerts its neurotrophic effects through the Wnt/β-catenin signaling pathway in human embryonic spinal cord neurons in vitro. We found that neuronal growth (soma size and average neurite length) was increased by transfection with a BDNF overexpression plasmid. Western blotting and real-time quantitative PCR showed that expression of the BDNF pathway components TrkB, PI3K, Akt and PLC-γ was increased by BDNF overexpression. Furthermore, the Wnt signaling factors Wnt, Frizzled and Dsh and the downstream target β-catenin were upregulated, whereas GSK-3β was downregulated. In contrast, when BDNF signaling was downregulated with BDNF siRNA, the growth of neurons was decreased. Furthermore, BDNF signaling factors, Wnt pathway components and β-catenin were all downregulated, whereas GSK-3β was upregulated. This suggests that BDNF affects the growth of neurons in vitro through crosstalk with Wnt signaling, and that GSK-3β may be a critical factor linking these two pathways. To evaluate this possibility, we treated neurons with 6-bromoindirubin-3'-oxime (BIO), a small molecule GSK-3β inhibitor. BIO reduced the effects of BDNF upregulation/downregulation on soma size and average neurite length, and suppressed the impact of BDNF modulation on the Wnt signaling pathway. Taken together, our findings suggest that BDNF promotes the growth of neurons in vitro through crosstalk with the Wnt/β-catenin signaling pathway, and that this interaction may be mediated by GSK-3β. Copyright © 2015 Elsevier Ltd. All rights reserved.
Amadio, Patrizia; Baldassarre, Damiano; Sandrini, Leonardo; Weksler, Babette B; Tremoli, Elena; Barbieri, Silvia S
2017-01-01
Cigarette smoke (CS) activates platelets, promotes vascular dysfunction, and enhances Tissue Factor (TF) expression in blood monocytes favoring pro-thrombotic states. Brain-derived neurotrophic factor (BDNF), a member of the family of neurotrophins involved in survival, growth, and maturation of neurons, is released by activated platelets (APLTs) and plays a role in the cardiovascular system. The effect of CS on circulating levels of BDNF is controversial and the function of circulating BDNF in atherothrombosis is not fully understood. Here, we have shown that human platelets, treated with an aqueous extract of CS (CSE), released BDNF in a dose-dependent manner. In addition, incubation of human monocytes with BDNF or with the supernatant of platelets activated with CSE increased TF activity by a Tropomyosin receptor kinase B (TrkB)-dependent mechanism. Finally, comparing serum and plasma samples of 12 male never smokers (NS) and 29 male active smokers (AS) we observed a significant increase in microparticle-associated TF activity (MP-TF) as well as BDNF in AS, while in serum, BDNF behaved oppositely. Taken together these findings suggest that platelet-derived BDNF is involved in the regulation of TF activity and that CS plays a role in this pathway by favoring a pro-atherothrombotic state.
Han, Joan C; Thurm, Audrey; Golden Williams, Christine; Joseph, Lisa A; Zein, Wadih M; Brooks, Brian P; Butman, John A; Brady, Sheila M; Fuhr, Shannon R; Hicks, Melanie D; Huey, Amanda E; Hanish, Alyson E; Danley, Kristen M; Raygada, Margarita J; Rennert, Owen M; Martinowich, Keri; Sharp, Stephen J; Tsao, Jack W; Swedo, Susan E
2013-01-01
In animal studies, brain-derived neurotrophic factor (BDNF) is an important regulator of central nervous system development and synaptic plasticity. WAGR (Wilms tumour, Aniridia, Genitourinary anomalies, and mental Retardation) syndrome is caused by 11p13 deletions of variable size near the BDNF locus and can serve as a model for studying human BDNF haploinsufficiency (+/-). We hypothesized that BDNF+/- would be associated with more severe cognitive impairment in subjects with WAGR syndrome. Twenty-eight subjects with WAGR syndrome (6-28 years), 12 subjects with isolated aniridia due to PAX6 mutations/microdeletions (7-54 years), and 20 healthy controls (4-32 years) received neurocognitive assessments. Deletion boundaries for the subjects in the WAGR group were determined by high-resolution oligonucleotide array comparative genomic hybridization. Within the WAGR group, BDNF+/- subjects (n = 15), compared with BDNF intact (+/+) subjects (n = 13), had lower adaptive behaviour (p = .02), reduced cognitive functioning (p = .04), higher levels of reported historical (p = .02) and current (p = .02) social impairment, and higher percentage meeting cut-off score for autism (p = .047) on Autism Diagnostic Interview-Revised. These differences remained nominally significant after adjusting for visual acuity. Using diagnostic measures and clinical judgement, 3 subjects (2 BDNF+/- and 1 BDNF+/+) in the WAGR group (10.7%) were classified with autism spectrum disorder. A comparison group of visually impaired subjects with isolated aniridia had cognitive functioning comparable to that of healthy controls. In summary, among subjects with WAGR syndrome, BDNF+/- subjects had a mean Vineland Adaptive Behaviour Compose score that was 14-points lower and a mean intelligence quotient (IQ) that was 20-points lower than BDNF+/+ subjects. Our findings support the hypothesis that BDNF plays an important role in human neurocognitive development. Published by Elsevier Ltd.
Decreased serum BDNF levels in patients with epileptic and psychogenic nonepileptic seizures
LaFrance, W.C.; Leaver, K.; Stopa, E.G.; Papandonatos, G.D.; Blum, A.S.
2010-01-01
Objective: Neurotrophins promote neurogenesis and help regulate synaptic reorganization. Their dysregulation has been implicated in a number of neurologic and psychiatric disorders. Previous studies have shown decreased levels of brain-derived neurotrophic factor (BDNF) in the serum of patients with psychiatric disorders such as major depressive disorder (MDD) and conversion disorder (CD). In human patients with temporal lobe epilepsy, there is an increase in both BDNF mRNA and protein levels in surgically resected hippocampi compared to controls. One study of children with epilepsy has found normal to increased serum BDNF levels compared to controls. Serum BDNF levels have not been investigated in adult patients with epileptic seizures (ES). We hypothesized that BDNF would differentiate between ES and psychogenic nonepileptic seizures (PNES). Methods: We assessed serum BDNF immunoreactivity in 15 patients with ES, 12 patients with PNES, and 17 healthy volunteers. Serum BDNF levels were measured using an enzyme-linked immunoassay. Results: Healthy controls showed higher BDNF levels (4,289 ± 1,810 pg/mL) compared to patients with PNES (1,033 ± 435 pg/mL) (p < 0.001). However, unexpectedly, healthy controls also showed higher levels of BDNF compared to patients with ES without comorbid MDD (977 ± 565 pg/mL) (p < 0.001). Conclusions: Unlike children, adults with epilepsy appear to have decreased levels of serum BDNF. Reduced serum BDNF levels can be used to differentiate adult patients with ES or PNES from healthy controls. Further human studies are needed to better understand the pathophysiology explaining the decreased serum BDNF levels found in epilepsy and in PNES. GLOSSARY AED = antiepileptic drug; BDI-II = Beck Depression Inventory II; BDNF = brain-derived neurotrophic factor; CD = conversion disorder; ECS = electroconvulsive seizure; ES = epileptic seizure; GTC = generalized tonic-clonic seizure; HC = healthy control; MDD = major depressive disorder; PNES = psychogenic nonepileptic seizure; PRL = prolactin; RIH = Rhode Island Hospital. PMID:20921514
Kambeitz, Joseph P; Bhattacharyya, Sagnik; Kambeitz-Ilankovic, Lana M; Valli, Isabel; Collier, David A; McGuire, Philip
2012-10-01
Brain derived neurotrophic factor (BDNF) is a critical component of the molecular mechanism of memory formation. Variation in the BDNF gene, particularly the rs6265 (val(66)met) single nucleotide polymorphism (SNP), has been linked to variability in human memory performance and to both the structure and physiological response of the hippocampus, which plays a central role in memory processing. However, these effects have not been consistently reported, which may reflect the modest size of the samples studied to date. Employing a meta-analytic approach, we examined the effect of the BDNF val(66)met polymorphism on human memory (5922 subjects) and hippocampal structure (2985 subjects) and physiology (362 subjects). Our results suggest that variations in the rs6265 SNP of the BDNF gene have a significant effect on memory performance, and on both the structure and physiology of the hippocampus, with carriers of the met allele being adversely affected. These results underscore the role of BDNF in moderating variability between individuals in human memory performance and in mediating some of the neurocognitive impairments underlying neuropsychiatric disorders. Copyright © 2012 Elsevier Ltd. All rights reserved.
BNDF methylation in mothers and newborns is associated with maternal exposure to war trauma.
Kertes, Darlene A; Bhatt, Samarth S; Kamin, Hayley S; Hughes, David A; Rodney, Nicole C; Mulligan, Connie J
2017-01-01
The BDNF gene codes for brain-derived neurotrophic factor, a growth factor involved in neural development, cell differentiation, and synaptic plasticity. Present in both the brain and periphery, BDNF plays critical roles throughout the body and is essential for placental and fetal development. Rodent studies show that early life stress, including prenatal stress, broadly alters BDNF methylation, with presumed changes in gene expression. No studies have assessed prenatal exposure to maternal traumatic stress and BDNF methylation in humans. This study examined associations of prenatal exposure to maternal stress and BDNF methylation at CpG sites across the BDNF gene. Among 24 mothers and newborns in the eastern Democratic Republic of Congo, a region with extreme conflict and violence to women, maternal experiences of war trauma and chronic stress were associated with BDNF methylation in umbilical cord blood, placental tissue, and maternal venous blood. Associations of maternal stress and BDNF methylation showed high tissue specificity. The majority of significant associations were observed in putative transcription factor binding regions. This is the first study in humans to examine BDNF methylation in relation to prenatal exposure to maternal stress in three tissues simultaneously and the first in any mammalian species to report associations of prenatal stress and BDNF methylation in placental tissue. The findings add to the growing body of evidence highlighting the importance of considering epigenetic effects when examining the impacts of trauma and stress, not only for adults but also for offspring exposed via effects transmitted before birth.
A meta-analytic review of the effects of exercise on brain-derived neurotrophic factor.
Szuhany, Kristin L; Bugatti, Matteo; Otto, Michael W
2015-01-01
Consistent evidence indicates that exercise improves cognition and mood, with preliminary evidence suggesting that brain-derived neurotrophic factor (BDNF) may mediate these effects. The aim of the current meta-analysis was to provide an estimate of the strength of the association between exercise and increased BDNF levels in humans across multiple exercise paradigms. We conducted a meta-analysis of 29 studies (N = 1111 participants) examining the effect of exercise on BDNF levels in three exercise paradigms: (1) a single session of exercise, (2) a session of exercise following a program of regular exercise, and (3) resting BDNF levels following a program of regular exercise. Moderators of this effect were also examined. Results demonstrated a moderate effect size for increases in BDNF following a single session of exercise (Hedges' g = 0.46, p < 0.001). Further, regular exercise intensified the effect of a session of exercise on BDNF levels (Hedges' g = 0.59, p = 0.02). Finally, results indicated a small effect of regular exercise on resting BDNF levels (Hedges' g = 0.27, p = 0.005). When analyzing results across paradigms, sex significantly moderated the effect of exercise on BDNF levels, such that studies with more women showed less BDNF change resulting from exercise. Effect size analysis supports the role of exercise as a strategy for enhancing BDNF activity in humans, but indicates that the magnitude of these effects may be lower in females relative to males. Copyright © 2014 Elsevier Ltd. All rights reserved.
A meta-analytic review of the effects of exercise on brain-derived neurotrophic factor
Szuhany, Kristin L.; Bugatti, Matteo; Otto, Michael W.
2014-01-01
Consistent evidence indicates that exercise improves cognition and mood, with preliminary evidence suggesting that brain-derived neurotrophic factor (BDNF) may mediate these effects. The aim of the current meta-analysis was to provide an estimate of the strength of the association between exercise and increased BDNF levels in humans across multiple exercise paradigms. We conducted a meta-analysis of 29 studies (N = 1,111 participants) examining the effect of exercise on BDNF levels in three exercise paradigms: (1) a single session of exercise, (2) a session of exercise following a program of regular exercise, and (3) resting BDNF levels following a program of regular exercise. Moderators of this effect were also examined. Results demonstrated a moderate effect size for increases in BDNF following a single session of exercise (Hedges’ g = 0.46, p < 0.001). Further, regular exercise intensified the effect of a session of exercise on BDNF levels (Hedges’ g = 0.58, p = 0.02). Finally, results indicated a small effect of regular exercise on resting BDNF levels (Hedges’ g = 0.28, p = 0.005). When analyzing results across paradigms, sex significantly moderated the effect of exercise on BDNF levels, such that studies with more women showed less BDNF change resulting from exercise. Effect size analysis supports the role of exercise as a strategy for enhancing BDNF activity in humans, but indicates that the magnitude of these effects may be lower in females relative to males. PMID:25455510
Wang, Peng; Chen, Fei-Xue; Du, Chao; Li, Chang-Qing; Yu, Yan-Bo; Zuo, Xiu-Li; Li, Yan-Qing
2015-05-22
Colonic brain-derived neurotrophic factor (BDNF) plays an essential role in pathogenesis of abdominal pain in diarrhea-predominant irritable bowel syndrome (IBS-D), but regulation on its expression remains unclear. We investigated the role of fecal supernatants (FSN) from IBS-D patients on regulating BDNF expression in colonic epithelial cells of human and mice. Using human Caco-2 cells, we found that IBS-D FSN significantly increased BDNF mRNA and protein levels compared to control FSN, which were remarkably suppressed by the serine protease inhibitor. To further explore the potential mechanisms, we investigated the impact of protease-activated receptor-2 (PAR-2) on BDNF expression. We found a significant increase in PAR-2 expression in Caco-2 after IBS-D FSN stimulation. Knockdown of PAR-2 significantly inhibited IBS-D FSN-induced upregulation of BDNF. Moreover, we found that phosphorylation of p38 MAPK, not NF-κB p65, contributed to PAR-2-mediated BDNF overexpression. To confirm these results, we intracolonically infused IBS-D or control FSN in mice and found that IBS-D FSN significantly elevated colonic BDNF and visceral hypersensitivity in mice, which were both suppressed by the inhibitor of serine protease or antagonist of PAR-2. Together, our data indicate that activation of PAR-2 signaling by IBS-D FSN promotes expression of colonic BDNF, thereby contributing to IBS-like visceral hypersensitivity.
Measuring and Validating the Levels of Brain-Derived Neurotrophic Factor in Human Serum
Naegelin, Yvonne; Dingsdale, Hayley; Säuberli, Katharina; Schädelin, Sabine; Kappos, Ludwig
2018-01-01
Brain-derived neurotrophic factor (BDNF) secreted by neurons is a significant component of synaptic plasticity. In humans, it is also present in blood platelets where it accumulates following its biosynthesis in megakaryocytes. BDNF levels are thus readily detectable in human serum and it has been abundantly speculated that they may somehow serve as an indicator of brain function. However, there is a great deal of uncertainty with regard to the range of BDNF levels that can be considered normal, how stable these values are over time and even whether BDNF levels can be reliably measured in serum. Using monoclonal antibodies and a sandwich ELISA, this study reports on BDNF levels in the serum of 259 volunteers with a mean value of 32.69 ± 8.33 ng/ml (SD). The mean value for the same cohort after 12 months was not significantly different (N = 226, 32.97 ± 8.36 ng/ml SD, p = 0.19). Power analysis of these values indicates that relatively large cohorts are necessary to identify significant differences, requiring a group size of 60 to detect a 20% change. The levels determined by ELISA could be validated by Western blot analyses using a BDNF monoclonal antibody. While no association was observed with gender, a weak, positive correlation was found with age. The overall conclusions are that BDNF levels can be reliably measured in human serum, that these levels are quite stable over one year, and that comparisons between two populations may only be meaningful if cohorts of sufficient sizes are assembled. PMID:29662942
Dalwadi, Dhwanil A.; Kim, Seongcheol; Schetz, John A.
2017-01-01
Glial cells play a critical role in neuronal support which includes the production and release of the neurotrophin brain-derived neurotrophic factor (BDNF). Activation of the sigma-1 receptor (S1R) has been shown to attenuate inflammatory stress-mediated brain injuries, and there is emerging evidence that this may involve a BDNF-dependent mechanism. In this report we studied S1R-mediated BDNF release from human astrocytic glial cells. Astrocytes express the S1R, which mediates BDNF release when stimulated with the prototypical S1R agonists 4-PPBP and (+)-SKF10047. This effect could be antagonized by a selective concentration of the S1R antagonist BD1063. Haloperidol is known to have high affinity interactions with the S1R, yet it was unable to facilitate BDNF release. Remarkably, however, two metabolites of haloperidol, haloperidol I and haloperidol II (reduced haloperidol), were discovered to facilitate BDNF secretion and this effect was antagonized by BD1063. Neither 4-PPBP, nor either of the haloperidol metabolites affected the level of BDNF mRNA as assessed by qPCR. These results demonstrate for the first time that haloperidol metabolites I and II facilitate the secretion of BDNF from astrocytes by acting as functionally selective S1R agonists. PMID:28188803
Chourbaji, Sabine; Hellweg, Rainer; Brandis, Dorothee; Zörner, Björn; Zacher, Christiane; Lang, Undine E; Henn, Fritz A; Hörtnagl, Heide; Gass, Peter
2004-02-05
The "neurotrophin hypothesis" of depression predicts that depressive disorders in humans coincide with a decreased activity and/or expression of brain-derived neurotrophic factor (BDNF) in the brain. Therefore, we investigated whether mice with a reduced BDNF expression due to heterozygous gene disruption demonstrate depression-like neurochemical changes or behavioral symptoms. BNDF protein levels of adult BDNF(+/-) mice were reduced to about 60% in several brain areas investigated, including the hippocampus, frontal cortex, striatum, and hypothalamus. The content of monoamines (serotonin, norepinephrine, and dopamine) as well as of serotonin and dopamine degradation products was unchanged in these brain regions. By contrast, choline acetyltransferase activity was significantly reduced by 19% in the hippocampus of BDNF(+/-) mice, indicating that the cholinergic system of the basal forebrain is critically dependent on sufficient endogenous BDNF levels in adulthood. Moreover, BDNF(+/-) mice exhibited normal corticosterone and adrenocorticotropic hormone (ACTH) serum levels under baseline conditions and following immobilization stress. In a panel of behavioral tests investigating locomotor activity, exploration, anxiety, fear-associated learning, and behavioral despair, BDNF(+/-) mice were indistinguishable from wild-type littermates. Thus, a chronic reduction of BDNF protein content in adult mice is not sufficient to induce neurochemical or behavioral alterations that are reminiscent of depressive symptoms in humans.
Jin, Peng; Andiappan, Anand Kumar; Quek, Jia Min; Lee, Bernett; Au, Bijin; Sio, Yang Yie; Irwanto, Astrid; Schurmann, Claudia; Grabe, Hans Jörgen; Suri, Bani Kaur; Matta, Sri Anusha; Westra, Harm-Jan; Franke, Lude; Esko, Tonu; Sun, Liangdan; Zhang, Xuejun; Liu, Hong; Zhang, Furen; Larbi, Anis; Xu, Xin; Poidinger, Michael; Liu, Jianjun; Chew, Fook Tim; Rotzschke, Olaf; Shi, Li; Wang, De Yun
2015-06-01
Brain-derived neurotrophic factor (BDNF) is a secretory protein that has been implicated in the pathogenesis of allergic rhinitis (AR), atopic asthma, and eczema, but it is currently unknown whether BDNF polymorphisms influence susceptibility to moderate-to-severe AR. We sought to identify disease associations and the functional effect of BDNF genetic variants in patients with moderate-to-severe AR. Tagging single nucleotide polymorphisms (SNPs) spanning the BDNF gene were selected from the human HapMap Han Chinese from Beijing (CHB) data set, and associations with moderate-to-severe AR were assessed in 2 independent cohorts of Chinese patients (2216 from Shandong province and 1239 living in Singapore). The functional effects of the BDNF genetic variants were determined by using both in vitro and ex vivo assays. The tagging SNP rs10767664 was significantly associated with the risk of moderate-to-severe AR in both Singapore Chinese (P = .0017; odds ratio, 1.324) and Shandong Chinese populations (P = .039; odds ratio, 1.180). The coding nonsynonymous SNP rs6265 was in perfect linkage with rs10767664 and conferred increased BDNF protein secretion by a human cell line in vitro. Subjects bearing the AA genotype of rs10767664 exhibited increased risk of moderate-to-severe AR and displayed increased BDNF protein and total IgE levels in plasma. Using a large-scale expression quantitative trait locus study, we demonstrated that BDNF SNPs are significantly associated with altered BDNF concentrations in peripheral blood. A common genetic variant of the BDNF gene is associated with increased risk of moderate-to-severe AR, and the AA genotype is associated with increased BDNF mRNA levels in peripheral blood. Together, these data indicate that functional BDNF gene variants increase the risk of moderate-to-severe AR. Copyright © 2015 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.
Gong, Pingyuan; Zheng, Anyun; Chen, Dongmei; Ge, Wanhua; Lv, Changchao; Zhang, Kejin; Gao, Xiaocai; Zhang, Fuchang
2009-07-01
Cognitive abilities are complex human traits influenced by genetic factors. Brain-derived neurotrophic factor (BDNF), a unique polypeptide growth factor, has an influence on the differentiation and survival of neurons in the nervous system. A single-nucleotide polymorphism (rs6265) in the human gene, resulting in a valine to methionine substitution in the pro-BDNF protein, was thought to associate with psychiatric disorders and might play roles in the individual difference of cognitive abilities. However, the specific roles of the gene in cognition remain unclear. To investigate the relationships between the substitution and cognitive abilities, a healthy population-based study and the PCR-SSCP method were performed. The results showed the substitution was associated with digital working memory (p = 0.02) and spatial localization (p = 0.03), but not with inhibition, shifting, updating, visuo-spatial working memory, long-term memory, and others (p > 0.05) among the compared genotype groups analyzed by general linear model. On the other hand, the participants with BDNF (GG) had higher average performance in digital working memory and spatial localization than the ones with BDNF (AA). The findings of the present work implied that the variation in BDNF might play positive roles in human digital working memory and spatial localization.
Yoshida, Taisuke; Ishikawa, Masatomo; Niitsu, Tomihisa; Nakazato, Michiko; Watanabe, Hiroyuki; Shiraishi, Tetsuya; Shiina, Akihiro; Hashimoto, Tasuku; Kanahara, Nobuhisa; Hasegawa, Tadashi; Enohara, Masayo; Kimura, Atsushi; Iyo, Masaomi; Hashimoto, Kenji
2012-01-01
Meta-analyses have identified serum levels of brain-derived neurotrophic factor (BDNF) as a potential biomarker for major depressive disorder (MDD). However, at the time, commercially available human ELISA kits are unable to distinguish between proBDNF (precursor of BDNF) and mature BDNF because of limited BDNF antibody specificity. In this study, we examined whether serum levels of proBDNF, mature BDNF, and matrix metalloproteinase-9 (MMP-9), which converts proBDNF to mature BDNF, are altered in patients with MDD. Sixty-nine patients with MDD and 78 age- and gender-matched healthy subjects were enrolled. Patients were evaluated using 17 items on the Structured Interview Guide for the Hamilton Depression Rating Scale. Cognitive impairment was evaluated using the CogState battery. Serum levels of proBDNF, mature BDNF, and MMP-9 were measured using ELISA kits. Serum levels of mature BDNF in patients with MDD were significantly lower than those of normal controls. In contrast, there was no difference in the serum levels of proBDNF and MMP-9 between patients and normal controls. While neither proBDNF nor mature BDNF serum levels was associated with clinical variables, there were significant correlations between MMP-9 serum levels and the severity of depression, quality of life scores, and social function scores in patients. These findings suggest that mature BDNF may serve as a biomarker for MDD, and that MMP-9 may play a role in the pathophysiology of MDD. Further studies using larger sample sizes will be needed to investigate these results.
Zheng, Zhaoqing; Keifer, Joyce
2014-01-01
Brain-derived neurotrophic factor (BDNF) is an important regulator of neuronal development and synaptic function. The BDNF gene undergoes significant activity-dependent regulation during learning. Here, we identified the BDNF promoter regions, transcription start sites, and potential regulatory sequences for BDNF exons I–III that may contribute to activity-dependent gene and protein expression in the pond turtle Trachemys scripta elegans (tBDNF). By using transfection of BDNF promoter/luciferase plasmid constructs into human neuroblastoma SHSY5Y cells and mouse embryonic fibroblast NIH3T3 cells, we identified the basal regulatory activity of promoter sequences located upstream of each tBDNF exon, designated as pBDNFI–III. Further, through chromatin immunoprecipitation (ChIP) assays, we detected CREB binding directly to exon I and exon III promoters, while BHLHB2, but not CREB, binds within the exon II promoter. Elucidation of the promoter regions and regulatory protein binding sites in the tBDNF gene is essential for understanding the regulatory mechanisms that control tBDNF gene expression. PMID:24443176
Ambigapathy, Ganesh; Zheng, Zhaoqing; Keifer, Joyce
2014-08-01
Brain-derived neurotrophic factor (BDNF) is an important regulator of neuronal development and synaptic function. The BDNF gene undergoes significant activity-dependent regulation during learning. Here, we identified the BDNF promoter regions, transcription start sites, and potential regulatory sequences for BDNF exons I-III that may contribute to activity-dependent gene and protein expression in the pond turtle Trachemys scripta elegans (tBDNF). By using transfection of BDNF promoter/luciferase plasmid constructs into human neuroblastoma SHSY5Y cells and mouse embryonic fibroblast NIH3T3 cells, we identified the basal regulatory activity of promoter sequences located upstream of each tBDNF exon, designated as pBDNFI-III. Further, through chromatin immunoprecipitation (ChIP) assays, we detected CREB binding directly to exon I and exon III promoters, while BHLHB2, but not CREB, binds within the exon II promoter. Elucidation of the promoter regions and regulatory protein binding sites in the tBDNF gene is essential for understanding the regulatory mechanisms that control tBDNF gene expression.
D’Souza, Deepak Cyril; Pittman, Brian; Perry, Edward; Simen, Arthur
2009-01-01
Background Acute and chronic exposure to cannabinoids has been associated with cognitive deficits, a higher risk for schizophrenia and other drug abuse. However, the precise mechanism underlying such effects is not known. Preclinical studies suggest that cannabinoids modulate brain-derived neurotrophic factor (BDNF). Accordingly, we hypothesized that Δ9-tetrahydrocannabinol (Δ9-THC), the principal active component of cannabis, would alter BDNF levels in humans. Materials and methods Healthy control subjects (n=14) and light users of cannabis (n=9) received intravenous administration of (0.0286 mg/kg) Δ9-THC in a double-blind, fixed order, placebo-controlled, laboratory study. Serum sampled at baseline, after placebo administration, and after Δ9-THC administration was assayed for BDNF using ELISA. Results Δ9-THC increased serum BDNF levels in healthy controls but not light users of cannabis. Further, light users of cannabis had lower basal BDNF levels. Δ9-THC produced psychotomimetic effects, perceptual alterations, and “high” and spatial memory impairments. Implications The effects of socially relevant doses of cannabinoids on BDNF suggest a possible mechanism underlying the consequences of exposure to cannabis. This may be of particular importance for the developing brain and also in disorders believed to involve altered neurodevelopment such as schizophrenia. Larger studies to investigate the effects of cannabinoids on BDNF and other neurotrophins are warranted. PMID:18807247
Dalwadi, Dhwanil A; Kim, Seongcheol; Schetz, John A
2017-05-01
Glial cells play a critical role in neuronal support which includes the production and release of the neurotrophin brain-derived neurotrophic factor (BDNF). Activation of the sigma-1 receptor (S1R) has been shown to attenuate inflammatory stress-mediated brain injuries, and there is emerging evidence that this may involve a BDNF-dependent mechanism. In this report we studied S1R-mediated BDNF release from human astrocytic glial cells. Astrocytes express the S1R, which mediates BDNF release when stimulated with the prototypical S1R agonists 4-PPBP and (+)-SKF10047. This effect could be antagonized by a selective concentration of the S1R antagonist BD1063. Haloperidol is known to have high affinity interactions with the S1R, yet it was unable to facilitate BDNF release. Remarkably, however, two metabolites of haloperidol, haloperidol I and haloperidol II (reduced haloperidol), were discovered to facilitate BDNF secretion and this effect was antagonized by BD1063. Neither 4-PPBP, nor either of the haloperidol metabolites affected the level of BDNF mRNA as assessed by qPCR. These results demonstrate for the first time that haloperidol metabolites I and II facilitate the secretion of BDNF from astrocytes by acting as functionally selective S1R agonists. Copyright © 2017 Elsevier Ltd. All rights reserved.
BDNF and TNF-α polymorphisms in memory.
Yogeetha, B S; Haupt, L M; McKenzie, K; Sutherland, H G; Okolicsyani, R K; Lea, R A; Maher, B H; Chan, R C K; Shum, D H K; Griffiths, L R
2013-09-01
Here, we investigate the genetic basis of human memory in healthy individuals and the potential role of two polymorphisms, previously implicated in memory function. We have explored aspects of retrospective and prospective memory including semantic, short term, working and long-term memory in conjunction with brain derived neurotrophic factor (BDNF) and tumor necrosis factor-alpha (TNF-α). The memory scores for healthy individuals in the population were obtained for each memory type and the population was genotyped via restriction fragment length polymorphism for the BDNF rs6265 (Val66Met) SNP and via pyrosequencing for the TNF-α rs113325588 SNP. Using univariate ANOVA, a significant association of the BDNF polymorphism with visual and spatial memory retention and a significant association of the TNF-α polymorphism was observed with spatial memory retention. In addition, a significant interactive effect between BDNF and TNF-α polymorphisms was observed in spatial memory retention. In practice visual memory involves spatial information and the two memory systems work together, however our data demonstrate that individuals with the Val/Val BDNF genotype have poorer visual memory but higher spatial memory retention, indicating a level of interaction between TNF-α and BDNF in spatial memory retention. This is the first study to use genetic analysis to determine the interaction between BDNF and TNF-α in relation to memory in normal adults and provides important information regarding the effect of genetic determinants and gene interactions on human memory.
Chan, Adeline; Yan, Jun; Csurhes, Peter; Greer, Judith; McCombe, Pamela
2015-09-15
The aim of this study was to measure the levels of circulating BDNF and the frequency of BDNF-producing T cells after acute ischaemic stroke. Serum BDNF levels were measured by ELISA. Flow cytometry was used to enumerate peripheral blood leukocytes that were labelled with antibodies against markers of T cells, T regulatory cells (Tregs), and intracellular BDNF. There was a slight increase in serum BDNF levels after stroke. There was no overall difference between stroke patients and controls in the frequency of CD4(+) and CD8(+) BDNF(+) cells, although a subgroup of stroke patients showed high frequencies of these cells. However, there was an increase in the percentage of BDNF(+) Treg cells in the CD4(+) population in stroke patients compared to controls. Patients with high percentages of CD4(+) BDNF(+) Treg cells had a better outcome at 6months than those with lower levels. These groups did not differ in age, gender or initial stroke severity. Enhancement of BDNF production after stroke could be a useful means of improving neuroprotection and recovery after stroke. Copyright © 2015 Elsevier B.V. All rights reserved.
Papaleo, Francesco; Silverman, Jill L.; Aney, Jordan; Tian, Qingjun; Barkan, Charlotte L.; Chadman, Kathryn K.; Crawley, Jacqueline N.
2011-01-01
BDNF regulates components of cognitive processes and has been implicated in psychiatric disorders. Here we report that genetic overexpression of the BDNF mature isoform (BDNF-tg) in female mice impaired working memory functions while sparing components of fear conditioning. BDNF-tg mice also displayed reduced breeding efficiency, higher anxiety-like scores, high self-grooming, impaired prepulse inhibition, and higher susceptibility to seizures when placed in a new empty cage, as compared with wild-type (WT) littermate controls. Control measures of general health, locomotor activity, motor coordination, depression-related behaviors, and sociability did not differ between genotypes. The present findings, indicating detrimental effects of life-long increased BDNF in mice, may inform human studies evaluating the role of BDNF functional genetic variations on cognitive abilities and vulnerability to psychiatric disorders. PMID:21791566
Chiu, Jen-Hwey; Chen, Fang-Pey; Tsai, Yi-Fang; Lin, Man-Ting; Tseng, Ling-Ming; Shyr, Yi-Ming
2017-08-12
Our previous study demonstrated that an up-regulation of the Brain-Derived Neurotrophic Factor (BDNF) signaling pathway is involved the mechanism causing the recurrence of triple negative breast cancer. The aim of this study is to investigate the effects of commonly used Chinese medicinal herbs on MDA-MB-231 and HUVEC cells and how they interact with BDNF. Human TNBC MDA-MB-231 cells and human endothelial HUVEC cells were used to explore the effect of commonly used Chinese herbal medicines on cancer cells alone, on endothelial cells alone and on cancer cell/endothelial cell interactions; this was done via functional studies, including migration and invasion assays. Furthermore, Western blot analysis and real-time PCR investigations were also used to investigate migration signal transduction, invasion signal transduction, and angiogenic signal transduction in these systems. Finally, the effect of the Chinese medicinal herbs on cancer cell/endothelial cell interactions was assessed using co-culture and ELISA. In terms of autoregulation, BDNF up-regulated TrkB gene expression in both MDA-MB-231 and HUVEC cells. Furthermore, BDNF enhanced migration by MDA-MB-231 cells via Rac, Cdc42 and MMP, while also increasing the migration of HUVEC cells via MMP and COX-2 expression. As measured by ELISA, the Chinese herbal medicinal herbs A. membranaceus, P. lactiflora, L. chuanxiong, P. suffruticosa and L. lucidum increased BDNF secretion by MDA-MB-231 cells. Similarly, using a co-culture system with MDA-MB-231 cells, A. membranaceus and L. lucidum modulated BDNF-TrkB signaling by HUVEC cells. We conclude that BDNF plays an important role in the metastatic interaction between MDA-MB-231 and HUVEC cells. Some Chinese medicinal herbs are able to enhance the BDNF-related metastatic potential of the interaction between cancer cells and endothelial cells. These findings provide important information that should help with the development of integrated medical therapies for breast cancer patients.
Cordeira, Joshua W.; Felsted, Jennifer A.; Teillon, Sarah; Daftary, Shabrine; Panessiti, Micaella; Wirth, Jena; Sena-Esteves, Miguel
2014-01-01
Brain-derived neurotrophic factor (BDNF) and its receptor, TrkB, are critical components of the neural circuitry controlling appetite and body weight. Diminished BDNF signaling in mice results in severe hyperphagia and obesity. In humans, BDNF haploinsufficiency and the functional Bdnf Val66Met polymorphism have been linked to elevated food intake and body weight. The mechanisms underlying this dysfunction are poorly defined. We demonstrate a chief role of α2δ-1, a calcium channel subunit and thrombospondin receptor, in triggering overeating in mice with central BDNF depletion. We show reduced α2δ-1 cell-surface expression in the BDNF mutant ventromedial hypothalamus (VMH), an energy balance-regulating center. This deficit contributes to the hyperphagia exhibited by BDNF mutant mice because selective inhibition of α2δ-1 by gabapentin infusion into wild-type VMH significantly increases feeding and body weight gain. Importantly, viral-mediated α2δ-1 rescue in BDNF mutant VMH significantly mitigates their hyperphagia, obesity, and liver steatosis and normalizes deficits in glucose homeostasis. Whole-cell recordings in BDNF mutant VMH neurons revealed normal calcium currents but reduced frequency of EPSCs. These results suggest calcium channel-independent effects of α2δ-1 on feeding and implicate α2δ-1–thrombospondin interactions known to facilitate excitatory synapse assembly. Our findings identify a central mechanism mediating the inhibitory effects of BDNF on feeding. They also demonstrate a novel and critical role for α2δ-1 in appetite control and suggest a mechanism underlying weight gain in humans treated with gabapentinoid drugs. PMID:24403154
Ambigapathy, Ganesh; Zheng, Zhaoqing; Li, Wei; Keifer, Joyce
2013-01-01
Brain-derived neurotrophic factor (BDNF) has a diverse functional role and complex pattern of gene expression. Alternative splicing of mRNA transcripts leads to further diversity of mRNAs and protein isoforms. Here, we describe the regulation of BDNF mRNA transcripts in an in vitro model of eyeblink classical conditioning and a unique transcript that forms a functionally distinct truncated BDNF protein isoform. Nine different mRNA transcripts from the BDNF gene of the pond turtle Trachemys scripta elegans (tBDNF) are selectively regulated during classical conditioning: exon I mRNA transcripts show no change, exon II transcripts are downregulated, while exon III transcripts are upregulated. One unique transcript that codes from exon II, tBDNF2a, contains a 40 base pair deletion in the protein coding exon that generates a truncated tBDNF protein. The truncated transcript and protein are expressed in the naïve untrained state and are fully repressed during conditioning when full-length mature tBDNF is expressed, thereby having an alternate pattern of expression in conditioning. Truncated BDNF is not restricted to turtles as a truncated mRNA splice variant has been described for the human BDNF gene. Further studies are required to determine the ubiquity of truncated BDNF alternative splice variants across species and the mechanisms of regulation and function of this newly recognized BDNF protein.
Ambigapathy, Ganesh; Zheng, Zhaoqing; Li, Wei; Keifer, Joyce
2013-01-01
Brain-derived neurotrophic factor (BDNF) has a diverse functional role and complex pattern of gene expression. Alternative splicing of mRNA transcripts leads to further diversity of mRNAs and protein isoforms. Here, we describe the regulation of BDNF mRNA transcripts in an in vitro model of eyeblink classical conditioning and a unique transcript that forms a functionally distinct truncated BDNF protein isoform. Nine different mRNA transcripts from the BDNF gene of the pond turtle Trachemys scripta elegans (tBDNF) are selectively regulated during classical conditioning: exon I mRNA transcripts show no change, exon II transcripts are downregulated, while exon III transcripts are upregulated. One unique transcript that codes from exon II, tBDNF2a, contains a 40 base pair deletion in the protein coding exon that generates a truncated tBDNF protein. The truncated transcript and protein are expressed in the naïve untrained state and are fully repressed during conditioning when full-length mature tBDNF is expressed, thereby having an alternate pattern of expression in conditioning. Truncated BDNF is not restricted to turtles as a truncated mRNA splice variant has been described for the human BDNF gene. Further studies are required to determine the ubiquity of truncated BDNF alternative splice variants across species and the mechanisms of regulation and function of this newly recognized BDNF protein. PMID:23825634
Hvid, L G; Nielsen, M K F; Simonsen, C; Andersen, M; Caserotti, P
2017-07-01
Brain-derived neurotrophic factor (BDNF) is a potential important factor involved in neuroplasticity, and may be a mediator for eliciting adaptations in neuromuscular function and physical function in older individuals following physical training. As power training taxes the neural system to a very high extent, it may be particularly effective in terms of eliciting increases in systemic BDNF levels. We examined the effects of 12weeks of power training on mature BDNF (mBDNF) and total BDNF (tBDNF) in mobility-limited older adults from the Healthy Ageing Network of Competence (HANC) study. We included 47 older men and women: n=22 in the training group (TG: progressive high intensity power training, 2 sessions per week; age 82.7±5.4years, 55% women) and n=25 in the control group (CG: no interventions; age 82.2±4.5years, 76% women). Following overnight fasting, basal serum levels of mBDNF and tBDNF were assessed (human ELISA kits) at baseline and post-intervention. At baseline, mBDNF and tBDNF levels were comparable in the two groups, TG and CG. Post-intervention, no significant within-group or between-group changes were observed in mBDNF or tBDNF. Moreover, when divided into responder tertiles based upon changes in mBDNF and tBDNF (i.e. decliners, maintainers, improvers), respectively, comparable findings were observed for TG and CG. Altogether, basal systemic levels of serum mBDNF and tBDNF are not affected in mobility-limited older adults following 12-weeks of power training, and do not appear to be a major mechanistic factor mediating neuroplasticity in mobility-limited older adults. Copyright © 2017 Elsevier Inc. All rights reserved.
Gray, Juliette; Yeo, Giles S.H.; Cox, James J.; Morton, Jenny; Adlam, Anna-Lynne R.; Keogh, Julia M.; Yanovski, Jack A.; El Gharbawy, Areeg; Han, Joan C.; Tung, Y.C. Loraine; Hodges, John R.; Raymond, F. Lucy; O’Rahilly, Stephen; Farooqi, I. Sadaf
2008-01-01
The neurotrophin brain-derived neurotrophic factor (BDNF) inhibits food intake, and rodent models of BDNF disruption all exhibit increased food intake and obesity, as well as hyperactivity. We report an 8-year-old girl with hyperphagia and severe obesity, impaired cognitive function, and hyperactivity who harbored a de novo chromosomal inversion, 46,XX,inv(11)(p13p15.3), a region encompassing the BDNF gene. We have identified the proximal inversion breakpoint that lies 850 kb telomeric of the 5′ end of the BDNF gene. The patient’s genomic DNA was heterozygous for a common coding polymorphism in BDNF, but monoallelic expression was seen in peripheral lymphocytes. Serum concentration of BDNF protein was reduced compared with age- and BMI-matched subjects. Haploinsufficiency for BDNF was associated with increased ad libitum food intake, severe early-onset obesity, hyper-activity, and cognitive impairment. These findings provide direct evidence for the role of the neurotrophin BDNF in human energy homeostasis, as well as in cognitive function, memory, and behavior. PMID:17130481
Zhang, Kexiang; Wu, Song; Li, Zhiyue
2017-01-01
Spinal cord injury (SCI) makes a major contribution to disability and deaths worldwide. Reactive astrogliosis, a typical feature after SCI, which undergoes varying molecular and morphological changes, is ubiquitous but poorly understood. Reactive astrogliosis contributes to glial scar formation that impedes axonal regeneration. Brain-derived neurotrophic factor (BDNF), a well-established neurotrophic factor, exerts neuroprotective and growth-promoting effects on a variety of neuronal populations after injury. In the present study, by using LPS-induced in vitro injury model of astroglial cultures, we observed a high expression of interleukin (IL)-6, IL-1β, and BDNF in LPS-stimulated normal human astrocytes (NHAs). BDNF significantly promoted NHA proliferation. Further, online tools were employed to screen the candidate miRNAs which might directly target BDNF to inhibit its expression. Amongst the candidate miRNAs, miR-211 expression was down-regulated by LPS stimulation in a dose-dependent manner. Through direct targetting, miR-211 inhibited BDNF expression. Ectopic miR-211 expression significantly suppressed NHA proliferation, as well as LPS-induced activation of PI3K/Akt pathway. In contrast, inhibition of miR-211 expression significantly promoted NHA proliferation and LPS-induced activation of PI3K/Akt pathway. Taken together, miR-211/BDNF axis regulates LPS-induced NHA proliferation through PI3K/AKT pathway; miR-211/BDNF might serve as a promising target in the strategy against reactive astrocyte proliferation after SCI. PMID:28790168
Shiohira, Hideo; Kitaoka, Akira; Enjoji, Munechika; Uno, Tsukasa; Nakashima, Manabu
2012-01-01
Am80, a synthetic retinoid, has been used in differentiation therapy for acute promyelocytic leukemia (APL). All-trans retinoic acid (ATRA) as one of natural retinoid has been also used to treat APL. ATRA treatment causes neuronal differentiation by inducing tropomyosin-related kinase B (TrkB) expression and increasing the sensitivity to brain-derived neurotrophic factor (BDNF), a TrkB ligand. In the present study, we investigated the effects of Am80 on neuronal differentiation, BDNF sensitivity and TrkB expression in human neuroblastoma SH-SY5Y cells. Treatment with Am80 induced morphological differentiation of neurite outgrowth and increased the expression of GAP43 mRNA, a neuronal differentiation marker. Additionally, TrkB protein was also increased, and exogenous BDNF stimulation after treatment with Am80 induced greater neurite outgrowth than without BDNF treatment. These results suggest that Am80 induced neuronal differentiation by increasing TrkB expression and BDNF sensitivity.
Val66Met polymorphism of BDNF alters prodomain structure to induce neuronal growth cone retraction.
Anastasia, Agustin; Deinhardt, Katrin; Chao, Moses V; Will, Nathan E; Irmady, Krithi; Lee, Francis S; Hempstead, Barbara L; Bracken, Clay
2013-01-01
A common single-nucleotide polymorphism (SNP) in the human brain-derived neurotrophic factor (BDNF) gene results in a Val66Met substitution in the BDNF prodomain region. This SNP is associated with alterations in memory and with enhanced risk to develop depression and anxiety disorders in humans. Here we show that the isolated BDNF prodomain is detected in the hippocampus and that it can be secreted from neurons in an activity-dependent manner. Using nuclear magnetic resonance spectroscopy and circular dichroism, we find that the prodomain is intrinsically disordered, and the Val66Met substitution induces structural changes. Surprisingly, application of Met66 (but not Val66) BDNF prodomain induces acute growth cone retraction and a decrease in Rac activity in hippocampal neurons. Expression of p75(NTR) and differential engagement of the Met66 prodomain to the SorCS2 receptor are required for this effect. These results identify the Met66 prodomain as a new active ligand, which modulates neuronal morphology.
Val66Met Polymorphism of BDNF Alters Prodomain Structure to Induce Neuronal Growth Cone Retraction
Anastasia, Agustin; Deinhardt, Katrin; Chao, Moses V.; Will, Nathan E.; Irmady, Krithi; Lee, Francis S.; Hempstead, Barbara L.; Bracken, Clay
2013-01-01
A common single-nucleotide polymorphism in the human brain-derived neurotrophic factor (BDNF) gene results in a Val66Met substitution in the BDNF prodomain region. This single-nucleotide polymorphism is associated with alterations in memory and with enhanced risk to develop depression and anxiety disorders in humans. Here we show that the isolated BDNF prodomain is detected in the hippocampus and that it can be secreted from neurons in an activity-dependent manner. Using nuclear magnetic resonance spectroscopy and circular dichroism we find that the prodomain is intrinsically disordered, and the Val66Met substitution induces structural changes. Surprisingly, application of Met66 (but not Val66) BDNF prodomain induces acute growth cone retraction and a decrease in Rac activity in hippocampal neurons. Expression of p75NTR and differential engagement of the Met66 prodomain to the SorCS2 receptor are required for this effect. These results identify the Met66 prodomain as a new active ligand which modulates neuronal morphology. PMID:24048383
Jiao, S-S; Shen, L-L; Zhu, C; Bu, X-L; Liu, Y-H; Liu, C-H; Yao, X-Q; Zhang, L-L; Zhou, H-D; Walker, D G; Tan, J; Götz, J; Zhou, X-F; Wang, Y-J
2016-01-01
Reduced expression of brain-derived neurotrophic factor (BDNF) has a crucial role in the pathogenesis of Alzheimer's disease (AD), which is characterized with the formation of neuritic plaques consisting of amyloid-beta (Aβ) and neurofibrillary tangles composed of hyperphosphorylated tau protein. A growing body of evidence indicates a potential protective effect of BDNF against Aβ-induced neurotoxicity in AD mouse models. However, the direct therapeutic effect of BDNF supplement on tauopathy in AD remains to be established. Here, we found that the BDNF level was reduced in the serum and brain of AD patients and P301L transgenic mice (a mouse model of tauopathy). Intralateral ventricle injection of adeno-associated virus carrying the gene encoding human BDNF (AAV-BDNF) achieved stable expression of BDNF gene and restored the BDNF level in the brains of P301L mice. Restoration of the BDNF level attenuated behavioral deficits, prevented neuron loss, alleviated synaptic degeneration and reduced neuronal abnormality, but did not affect tau hyperphosphorylation level in the brains of P301L mice. Long-term expression of AAV-BDNF in the brain was well tolerated by the mice. These findings suggest that the gene delivery of BDNF is a promising treatment for tau-related neurodegeneration for AD and other neurodegenerative disorders with tauopathy. PMID:27701410
Goldie, Belinda J; Barnett, Michelle M; Cairns, Murray J
2014-01-01
The SH-SY5Y culture system is a convenient neuronal model with the potential to elaborate human/primate-specific transcription networks and pathways related to human cognitive disorders. While this system allows for the exploration of specialized features in the human genome, there is still significant debate about how this model should be implemented, and its appropriateness for answering complex functional questions related to human neural architecture. In view of these questions we sought to characterize the posttranscriptional regulatory structure of the two-stage ATRA differentiation, BDNF maturation protocol proposed by Encinas et al. (2000) using integrative whole-genome gene and microRNA (miRNA) expression analysis. We report that ATRA-BDNF induced significant increases in expression of key synaptic genes, brain-specific miRNA and miRNA biogenesis machinery, and in AChE activity, compared with ATRA alone. Functional annotation clustering associated BDNF more significantly with neuronal terms, and with synaptic terms not found in ATRA-only clusters. While our results support use of SH-SY5Y as a neuronal model, we advocate considered selection of the differentiation agent/s relative to the system being modeled.
Uegaki, Koichi; Kumanogoh, Haruko; Mizui, Toshiyuki; Hirokawa, Takatsugu; Ishikawa, Yasuyuki; Kojima, Masami
2017-01-01
Most growth factors are initially synthesized as precursors then cleaved into bioactive mature domains and pro-domains, but the biological roles of pro-domains are poorly understood. In the present study, we investigated the pro-domain (or pro-peptide) of brain-derived neurotrophic factor (BDNF), which promotes neuronal survival, differentiation and synaptic plasticity. The BDNF pro-peptide is a post-processing product of the precursor BDNF. Using surface plasmon resonance and biochemical experiments, we first demonstrated that the BDNF pro-peptide binds to mature BDNF with high affinity, but not other neurotrophins. This interaction was more enhanced at acidic pH than at neutral pH, suggesting that the binding is significant in intracellular compartments such as trafficking vesicles rather than the extracellular space. The common Val66Met BDNF polymorphism results in a valine instead of a methionine in the pro-domain, which affects human brain functions and the activity-dependent secretion of BDNF. We investigated the influence of this variation on the interaction between BDNF and the pro-peptide. Interestingly, the Val66Met polymorphism stabilized the heterodimeric complex of BDNF and its pro-peptide. Furthermore, compared with the Val-containing pro-peptide, the complex with the Met-type pro-peptide was more stable at both acidic and neutral pH, suggesting that the Val66Met BDNF polymorphism forms a more stable complex. A computational modeling provided an interpretation to the role of the Val66Met mutation in the interaction of BDNF and its pro-peptide. Lastly, we performed electrophysiological experiments, which indicated that the BDNF pro-peptide, when pre-incubated with BDNF, attenuated the ability of BDNF to inhibit hippocampal long-term depression (LTD), suggesting a possibility that the BDNF pro-peptide may interact directly with BDNF and thereby inhibit its availability. It was previously reported that the BDNF pro-domain exerts a chaperone-like function and assists the folding of the BDNF protein. However, our results suggest a new role for the BDNF pro-domain (or pro-peptide) following proteolytic cleave of precursor BDNF, and provide insight into the Val66Met polymorphism. PMID:28498321
A brief primer on the mediational role of BDNF in the exercise-memory link.
Loprinzi, Paul D; Frith, Emily
2018-05-02
One of the most amazing aspects of the human brain is its ability to learn information and use it to change behaviour. A key neurotrophin that influences memory function is brain-derived neurotrophic factor (BDNF). This review briefly discusses the mechanistic role that BDNF may play in facilitating learning and memory. We also describe the role of exercise on this relationship. As discussed herein, BDNF may influence memory via BDNF-induced alterations in membrane receptor expression and translocation, as well as activating several pathways (PLC-y, PI3K, ERK) that act together to facilitate cellular effects that influence synaptic plasticity. Exercise may help to facilitate BDNF expression and its downstream cellular pathways from both direct and indirect mechanisms. © 2018 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.
Expression and methylation of BDNF in the human brain in schizophrenia.
Cheah, Sern-Yih; McLeay, Robert; Wockner, Leesa F; Lawford, Bruce R; Young, Ross McD; Morris, Charles P; Voisey, Joanne
2017-08-01
To examine the combined effect of the BDNF Val66Met (rs6265) polymorphism and BDNF DNA methylation on transcriptional regulation of the BDNF gene. DNA methylation profiles were generated for CpG sites proximal to Val66Met, within BDNF promoter I and exon V for prefrontal cortex samples from 25 schizophrenia and 25 control subjects. Val66Met genotypes and BDNF mRNA expression data were generated by transcriptome sequencing. Expression, methylation and genotype data were correlated and examined for association with schizophrenia. There was 43% more of the BDNF V-VIII-IX transcript in schizophrenia samples. BDNF mRNA expression and DNA methylation of seven CpG sites were not associated with schizophrenia after accounting for age and PMI effects. BDNF mRNA expression and DNA methylation were not altered by Val66Met after accounting for age and PMI effects. DNA methylation of one CpG site had a marginally significant positive correlation with mRNA expression in schizophrenia subjects. Schizophrenia risk was not associated with differential BDNF mRNA expression and DNA methylation. A larger age-matched cohort with comprehensive clinical history is required to accurately identify the effects of genotype, mRNA expression and DNA methylation on schizophrenia risk.
BDNF Variants May Modulate Long-Term Visual Memory Performance in a Healthy Cohort
Avgan, Nesli; Sutherland, Heidi G.; Spriggens, Lauren K.; Yu, Chieh; Ibrahim, Omar; Bellis, Claire; Haupt, Larisa M.; Shum, David H. K.; Griffiths, Lyn R.
2017-01-01
Brain-derived neurotrophic factor (BDNF) is involved in numerous cognitive functions including learning and memory. BDNF plays an important role in synaptic plasticity in humans and rats with BDNF shown to be essential for the formation of long-term memories. We previously identified a significant association between the BDNF Val66Met polymorphism (rs6265) and long-term visual memory (p-value = 0.003) in a small cohort (n = 181) comprised of healthy individuals who had been phenotyped for various aspects of memory function. In this study, we have extended the cohort to 597 individuals and examined multiple genetic variants across both the BDNF and BDNF-AS genes for association with visual memory performance as assessed by the Wechsler Memory Scale—Fourth Edition subtests Visual Reproduction I and II (VR I and II). VR I assesses immediate visual memory, whereas VR II assesses long-term visual memory. Genetic association analyses were performed for 34 single nucleotide polymorphisms genotyped on Illumina OmniExpress BeadChip arrays with the immediate and long-term visual memory phenotypes. While none of the BDNF and BDNF-AS variants were shown to be significant for immediate visual memory, we found 10 variants (including the Val66Met polymorphism (p-value = 0.006)) that were nominally associated, and three variants (two variants in BDNF and one variant in the BDNF-AS locus) that were significantly associated with long-term visual memory. Our data therefore suggests a potential role for BDNF, and its anti-sense transcript BDNF-AS, in long-term visual memory performance. PMID:28304362
BDNF Variants May Modulate Long-Term Visual Memory Performance in a Healthy Cohort.
Avgan, Nesli; Sutherland, Heidi G; Spriggens, Lauren K; Yu, Chieh; Ibrahim, Omar; Bellis, Claire; Haupt, Larisa M; Shum, David H K; Griffiths, Lyn R
2017-03-17
Brain-derived neurotrophic factor (BDNF) is involved in numerous cognitive functions including learning and memory. BDNF plays an important role in synaptic plasticity in humans and rats with BDNF shown to be essential for the formation of long-term memories. We previously identified a significant association between the BDNF Val66Met polymorphism (rs6265) and long-term visual memory ( p -value = 0.003) in a small cohort ( n = 181) comprised of healthy individuals who had been phenotyped for various aspects of memory function. In this study, we have extended the cohort to 597 individuals and examined multiple genetic variants across both the BDNF and BDNF-AS genes for association with visual memory performance as assessed by the Wechsler Memory Scale-Fourth Edition subtests Visual Reproduction I and II (VR I and II). VR I assesses immediate visual memory, whereas VR II assesses long-term visual memory. Genetic association analyses were performed for 34 single nucleotide polymorphisms genotyped on Illumina OmniExpress BeadChip arrays with the immediate and long-term visual memory phenotypes. While none of the BDNF and BDNF-AS variants were shown to be significant for immediate visual memory, we found 10 variants (including the Val66Met polymorphism ( p -value = 0.006)) that were nominally associated, and three variants (two variants in BDNF and one variant in the BDNF-AS locus) that were significantly associated with long-term visual memory. Our data therefore suggests a potential role for BDNF , and its anti-sense transcript BDNF-AS , in long-term visual memory performance.
The Effect of Brain-Derived Neurotrophic Factor on Periodontal Furcation Defects
Jimbo, Ryo; Tovar, Nick; Janal, Malvin N.; Mousa, Ramy; Marin, Charles; Yoo, Daniel; Teixeira, Hellen S.; Anchieta, Rodolfo B.; Bonfante, Estevam A.; Konishi, Akihiro; Takeda, Katsuhiro; Kurihara, Hidemi; Coelho, Paulo G.
2014-01-01
This study aimed to observe the regenerative effect of brain-derived neurotrophic factor (BDNF) in a non-human primate furcation defect model. Class II furcation defects were created in the first and second molars of 8 non-human primates to simulate a clinical situation. The defect was filled with either, Group A: BDNF (500 µg/ml) in high-molecular weight-hyaluronic acid (HMW-HA), Group B: BDNF (50 µg/ml) in HMW-HA, Group C: HMW-HA acid only, Group D: empty defect, or Group E: BDNF (500 µg/ml) in saline. The healing status for all groups was observed at different time-points with micro computed tomography. The animals were euthanized after 11 weeks, and the tooth-bone specimens were subjected to histologic processing. The results showed that all groups seemed to successfully regenerate the alveolar buccal bone, however, only Group A regenerated the entire periodontal tissue, i.e., alveolar bone, cementum and periodontal ligament. It is suggested that the use of BDNF in combination with a scaffold such as the hyaluronic acid in periodontal furcation defects may be an effective treatment option. PMID:24454754
THE SPONTANEOUSLY HYPERTENSIVE RAT: AN EXPERIMENTAL MODEL OF SULFUR DIOXIDE-INDUCED AIRWAYS DISEASE
Chronic obstructive pulmonary disease (COPD) is characterized by airway obstruction, inflammation and mucus hypersecretion; features that capture bronchitis, emphysema and often asthma. However, current rodent models do not reflect this human disease. Because genetically predisp...
Parrini, Martina; Ghezzi, Diego; Deidda, Gabriele; Medrihan, Lucian; Castroflorio, Enrico; Alberti, Micol; Baldelli, Pietro; Cancedda, Laura; Contestabile, Andrea
2017-12-04
Down syndrome (DS) is caused by the triplication of human chromosome 21 and represents the most frequent genetic cause of intellectual disability. The trisomic Ts65Dn mouse model of DS shows synaptic deficits and reproduces the essential cognitive disabilities of the human syndrome. Aerobic exercise improved various neurophysiological dysfunctions in Ts65Dn mice, including hippocampal synaptic deficits, by promoting synaptogenesis and neurotransmission at glutamatergic terminals. Most importantly, the same intervention also prompted the recovery of hippocampal adult neurogenesis and synaptic plasticity and restored cognitive performance in trisomic mice. Additionally, the expression of brain-derived neurotrophic factor (BDNF) was markedly decreased in the hippocampus of patients with DS. Since the positive effect of exercise was paralleled by increased BDNF expression in trisomic mice, we investigated the effectiveness of a BDNF-mimetic treatment with 7,8-dihydroxyflavone at alleviating intellectual disabilities in the DS model. Pharmacological stimulation of BDNF signaling rescued synaptic plasticity and memory deficits in Ts65Dn mice. Based on our findings, Ts65Dn mice benefit from interventions aimed at promoting brain plasticity, and we provide evidence that BDNF signaling represents a potentially new pharmacological target for treatments aimed at rescuing cognitive disabilities in patients with DS.
Activity-Dependent Human Brain Coding/Noncoding Gene Regulatory Networks
Lipovich, Leonard; Dachet, Fabien; Cai, Juan; Bagla, Shruti; Balan, Karina; Jia, Hui; Loeb, Jeffrey A.
2012-01-01
While most gene transcription yields RNA transcripts that code for proteins, a sizable proportion of the genome generates RNA transcripts that do not code for proteins, but may have important regulatory functions. The brain-derived neurotrophic factor (BDNF) gene, a key regulator of neuronal activity, is overlapped by a primate-specific, antisense long noncoding RNA (lncRNA) called BDNFOS. We demonstrate reciprocal patterns of BDNF and BDNFOS transcription in highly active regions of human neocortex removed as a treatment for intractable seizures. A genome-wide analysis of activity-dependent coding and noncoding human transcription using a custom lncRNA microarray identified 1288 differentially expressed lncRNAs, of which 26 had expression profiles that matched activity-dependent coding genes and an additional 8 were adjacent to or overlapping with differentially expressed protein-coding genes. The functions of most of these protein-coding partner genes, such as ARC, include long-term potentiation, synaptic activity, and memory. The nuclear lncRNAs NEAT1, MALAT1, and RPPH1, composing an RNAse P-dependent lncRNA-maturation pathway, were also upregulated. As a means to replicate human neuronal activity, repeated depolarization of SY5Y cells resulted in sustained CREB activation and produced an inverse pattern of BDNF-BDNFOS co-expression that was not achieved with a single depolarization. RNAi-mediated knockdown of BDNFOS in human SY5Y cells increased BDNF expression, suggesting that BDNFOS directly downregulates BDNF. Temporal expression patterns of other lncRNA-messenger RNA pairs validated the effect of chronic neuronal activity on the transcriptome and implied various lncRNA regulatory mechanisms. lncRNAs, some of which are unique to primates, thus appear to have potentially important regulatory roles in activity-dependent human brain plasticity. PMID:22960213
Vaghi, Valentina; Polacchini, Alessio; Baj, Gabriele; Pinheiro, Vera L M; Vicario, Annalisa; Tongiorgi, Enrico
2014-10-03
The neurotrophin brain-derived neurotrophic factor (BDNF) is a key regulator of neuronal development and plasticity. BDNF is a major pharmaceutical target in neurodevelopmental and psychiatric disorders. However, pharmacological modulation of this neurotrophin is challenging because BDNF is generated by multiple, alternatively spliced transcripts with different 5'- and 3'UTRs. Each BDNF mRNA variant is transcribed independently, but translation regulation is unknown. To evaluate the translatability of BDNF transcripts, we developed an in vitro luciferase assay in human neuroblastoma cells. In unstimulated cells, each BDNF 5'- and 3'UTR determined a different basal translation level of the luciferase reporter gene. However, constructs with either a 5'UTR or a 3'UTR alone showed poor translation modulation by BDNF, KCl, dihydroxyphenylglycine, AMPA, NMDA, dopamine, acetylcholine, norepinephrine, or serotonin. Constructs consisting of the luciferase reporter gene flanked by the 5'UTR of one of the most abundant BDNF transcripts in the brain (exons 1, 2c, 4, and 6) and the long 3'UTR responded selectively to stimulation with the different receptor agonists, and only transcripts 2c and 6 were increased by the antidepressants desipramine and mirtazapine. We propose that BDNF mRNA variants represent "a quantitative code" for regulated expression of the protein. Thus, to discriminate the efficacy of drugs in stimulating BDNF synthesis, it is appropriate to use variant-specific in vitro screening tests. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
Niitsu, Tomihisa; Ishima, Tamaki; Yoshida, Taisuke; Hashimoto, Tasuku; Matsuzawa, Daisuke; Shirayama, Yukihiko; Nakazato, Michiko; Shimizu, Eiji; Hashimoto, Kenji; Iyo, Masaomi
2014-02-28
A meta-analysis study reported serum brain-derived neurotrophic factor (BDNF) levels as a potential biomarker for schizophrenia. However, at the time, commercially available human ELISA kits were unable to distinguish between pro-BDNF (precursor BDNF) and mature BDNF, because of limited antibody specificity. Here, we used new ELISA kits, to examine serum levels of mature BDNF and matrix metalloproteinase-9 (MMP-9), which converts pro-BDNF to mature BDNF in schizophrenia. Sixty-three patients with chronic schizophrenia and 52 age- and sex-matched healthy controls were enrolled. Patients were evaluated using the Brief Psychiatry Rating Scale, the Scale for the Assessment of Negative Symptoms (SANS) and neuropsychological tests. Neither serum mature BDNF nor MMP-9 levels differed between patients and controls. In male subgroups, serum MMP-9 levels of smoking patients were higher than those of non-smoking patients, but this was not observed in male controls or the female subgroup. In patients, serum mature BDNF levels were associated with SANS total scores and the Information subtest scores of the Wechsler Adult Intelligence Scale Revised (WAIS-R), while serum MMP-9 levels were associated with smoking and category fluency scores. These findings suggest that neither mature BDNF nor MMP-9 is a suitable biomarker for schizophrenia, although further studies using large samples are needed. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
BDNF contributes to IBS-like colonic hypersensitivity via activating the enteroglia-nerve unit
Wang, Peng; Du, Chao; Chen, Fei-Xue; Li, Chang-Qing; Yu, Yan-Bo; Han, Ting; Akhtar, Suhail; Zuo, Xiu-Li; Tan, Xiao-Di; Li, Yan-Qing
2016-01-01
The over-expressed colonic brain-derived neurotrophic factor (BDNF) has been reported to be associated with abdominal pain in patients with irritable bowel syndrome (IBS). However, the neuropathological mechanism is unclear. We here investigated the involvement of enteroglial cells (EGCs) and enteric nerves in IBS-like visceral hypersensitivity. We showed that glial fibrillary acidic protein (GFAP), tyrosine receptor kinase B (TrkB) and substance P (SP) were significantly increased in the colonic mucosa of IBS patients. The upregulation of those proteins was also observed in the colon of mice with visceral hypersensitivity, but not in the colon of BDNF+/− mice. Functionally, TrkB or EGC inhibitors, or BDNF knockdown significantly suppressed visceral hypersensitivity in mice. Using the EGC cell line, we found that recombinant human BDNF (r-HuBDNF) could directly activate EGCs via the TrkB-phospholipase Cγ1 pathway, thereby inducing a significant upregulation of SP. Moreover, supernatants from r-HuBDNF-activated EGC culture medium, rather than r-HuBDNF alone, triggered markedly augmented discharges in isolated intestinal mesenteric afferent nerves. r-HuBDNF alone could cause mesenteric afferent mechanical hypersensitivity independently, and this effect was synergistically enhanced by activated EGCs. We conclude that EGC-enteric nerve unit may be involved in IBS-like visceral hypersensitivity, and this process is likely initiated by BDNF-TrkB pathway activation. PMID:26837784
Orefice, Lauren L.; Waterhouse, Emily G.; Partridge, John G.; Lalchandani, Rupa R.; Vicini, Stefano
2013-01-01
Dendritic spines undergo the processes of formation, maturation, and pruning during development. Molecular mechanisms controlling spine maturation and pruning remain largely unknown. The gene for brain-derived neurotrophic factor (BDNF) produces two pools of mRNA, with either a short or long 3′ untranslated region (3′ UTR). Our previous results show that short 3′ UTR Bdnf mRNA is restricted to cell bodies, whereas long 3′ UTR Bdnf mRNA is also trafficked to dendrites for local translation. Mutant mice lacking long 3′ UTR Bdnf mRNA display normal spines at 3 weeks of age, but thinner and denser spines in adults compared to wild-type littermates. These observations suggest that BDNF translated from long 3′ UTR Bdnf mRNA, likely in dendrites, is required for spine maturation and pruning. In this study, using rat hippocampal neuronal cultures, we found that knocking down long 3′ UTR Bdnf mRNA blocked spine head enlargement and spine elimination, whereas overexpressing long 3′ UTR Bdnf mRNA had the opposite effect. The effect of long 3′ UTR Bdnf mRNA on spine head enlargement and spine elimination was diminished by a human single-nucleotide polymorphism (SNP, rs712442) in its 3′ UTR that inhibited dendritic localization of Bdnf mRNA. Furthermore, we found that overexpression of either Bdnf mRNA increased spine density at earlier time points. Spine morphological alterations were associated with corresponding changes in density, size, and function of synapses. These results indicate that somatically synthesized BDNF promotes spine formation, whereas dendritically synthesized BDNF is a key regulator of spine head growth and spine pruning. PMID:23843530
Genetically defined fear-induced aggression: Focus on BDNF and its receptors.
Ilchibaeva, Tatiana V; Tsybko, Anton S; Kozhemyakina, Rimma V; Kondaurova, Elena M; Popova, Nina K; Naumenko, Vladimir S
2018-05-02
Brain-derived neurotrophic factor (BDNF), its precursor proBDNF, BDNF pro-peptide, BDNF mRNA levels, as well as TrkB and p75 NTR receptors mRNA and protein levels, were studied in the brain of rats, selectively bred for more than 85 generations for either the high level or the lack of fear-induced aggressive behavior. Furthermore, we have found that rats of aggressive strain demonstrated both high level of aggression toward humans and increased amplitude of acoustic startle response compared to rats selectively bred for the lack of fear-induced aggression. Significant increase in the BDNF mRNA, mature BDNF and proBDNF protein levels in the raphe nuclei (RN), hippocampus (Hc), nucleus accumbens (NAcc), amygdala, striatum and hypothalamus (Ht) of aggressive rats was revealed. The BDNF/proBDNF ratio was significantly reduced in the Hc and NAcc of highly aggressive rats suggesting prevalence of the proBDNF in these structures. In the Hc and frontal cortex (FC) of aggressive rats, the level of the full-length TrkB (TrkB-FL) receptor form was decreased, whereas the truncated TrkB (TrkB-T) protein level was increased in the RN, FC, substantia nigra and Ht. The TrkB-FL/TrkB-T ratio was significantly decreased in highly aggressive rats suggesting TrkB-T is predominant in highly aggressive rats. The p75 NTR expression was slightly changed in majority of studied brain structures of aggressive rats. The data indicate the BDNF system in the brain of aggressive and nonaggressive animals is extremely different at all levels, from transcription to reception, suggesting significant role of BDNF system in the development of highly aggressive phenotype. Copyright © 2018 Elsevier B.V. All rights reserved.
Pattwell, Siobhan S.; Bath, Kevin G.; Perez-Castro, Rosalia; Lee, Francis S.; Chao, Moses V.; Ninan, Ipe
2012-01-01
The brain-derived neurotrophic factor (BDNF) Val66Met polymorphism is a common human single nucleotide polymorphism (SNP) that affects the regulated release of BDNF, and has been implicated in affective disorders and cognitive dysfunction. A decreased activation of the infralimbic medial prefrontal cortex (IL-mPFC), a brain region critical for the regulation of affective behaviors, has been described in BDNFMet carriers. However, it is unclear whether and how the Val66Met polymorphism affects the IL-mPFC synapses. Here we report that spike timing-dependent plasticity (STDP) was absent in the IL-mPFC pyramidal neurons from BDNFMet/Met mice, a mouse that recapitulates the specific phenotypic properties of the human BDNF Val66Met polymorphism. Also, we observed a decrease in N-methyl-D-aspartic acid (NMDA) and γ-aminobutyric acid (GABA) receptor-mediated synaptic transmission in the pyramidal neurons of BDNFMet/Met mice. While BDNF enhanced non-NMDA receptor transmission and depressed GABA receptor transmission in the wild-type mice, both effects were absent in BDNFMet/Met mice after BDNF treatment. Indeed, exogenous BDNF reversed the deficits in STDP and NMDA receptor transmission in BDNFMet/Met neurons. BDNF-mediated selective reversal of the deficit in plasticity and NMDA receptor transmission, but its lack of effect on GABA and non-NMDA receptor transmission in BDNFMet/Met mice, suggests separate mechanisms of Val66Met polymorphism upon synaptic transmission. The effect of the Val66Met polymorphism on synaptic transmission and plasticity in the IL-mPFC represents a mechanism to account for this SNP's impact on affective disorders and cognitive dysfunction. PMID:22396415
Mueller, Karsten; Arelin, Katrin; Möller, Harald E; Sacher, Julia; Kratzsch, Jürgen; Luck, Tobias; Riedel-Heller, Steffi; Villringer, Arno; Schroeter, Matthias L
2016-02-01
Brain-derived neurotrophic factor (BDNF) has been discussed to be involved in plasticity processes in the human brain, in particular during aging. Recently, aging and its (neurodegenerative) diseases have increasingly been conceptualized as disconnection syndromes. Here, connectivity changes in neural networks (the connectome) are suggested to be the most relevant and characteristic features for such processes or diseases. To further elucidate the impact of aging on neural networks, we investigated the interaction between plasticity processes, brain connectivity, and healthy aging by measuring levels of serum BDNF and resting-state fMRI data in 25 young (mean age 24.8 ± 2.7 (SD) years) and 23 old healthy participants (mean age, 68.6 ± 4.1 years). To identify neural hubs most essentially related to serum BDNF, we applied graph theory approaches, namely the new data-driven and parameter-free approach eigenvector centrality (EC) mapping. The analysis revealed a positive correlation between serum BDNF and EC in the premotor and motor cortex in older participants in contrast to young volunteers, where we did not detect any association. This positive relationship between serum BDNF and EC appears to be specific for older adults. Our results might indicate that the amount of physical activity and learning capacities, leading to higher BDNF levels, increases brain connectivity in (pre)motor areas in healthy aging in agreement with rodent animal studies. Pilot results have to be replicated in a larger sample including behavioral data to disentangle the cause for the relationship between BDNF levels and connectivity. Copyright © 2016 Elsevier Inc. All rights reserved.
Ieraci, Alessandro; Madaio, Alessandro I; Mallei, Alessandra; Lee, Francis S; Popoli, Maurizio
2016-01-01
Several studies have shown that exercise improves cognitive functions and emotional behaviors. Positive effects of exercise have been associated with enhanced brain plasticity, adult hippocampal neurogenesis, and increased levels of brain-derived neurotrophic factor (BDNF). However, a substantial variability of individual response to exercise has been described, which may be accounted for by individual genetic variants. Here, we have assessed whether and how the common human BDNF Val66Met polymorphism influences the neurobiological effects modulated by exercise in BDNF Val66Met knock-in male mice. Wild-type (BDNFVal/Val) and homozygous BDNF Val66Met (BDNFMet/Met) male mice were housed in cages equipped with or without running wheels for 4 weeks. Changes in behavioral phenotype, hippocampal adult neurogenesis, and gene expression were evaluated in exercised and sedentary control mice. We found that exercise reduced the latency to feed in the novelty suppressed feeding and the immobility time in the forced swimming test in BDNFVal/Val but not in BDNFMet/Met mice. Hippocampal neurogenesis was reduced in BDNFMet/Met mice compared with BDNFVal/Val mice. BDNFMet/Met mice had lower basal BDNF protein levels in the hippocampus, which was not recovered following exercise. Moreover, exercise-induced expression of total BDNF, BDNF splice variants 1, 2, 4, 6 and fibronectin type III domain-containing protein 5 (FNDC5) mRNA levels were absent or reduced in the dentate gyrus of BDNFMet/Met mice. Exercise failed to enhance PGC-1α and FNDC5 mRNA levels in the BDNFMet/Met muscle. Overall these results indicate that, in adult male mice, the BDNF Val66Met polymorphism impairs the beneficial behavioral and neuroplasticity effects induced by physical exercise. PMID:27388329
Hei, Wei-Hong; Almansoori, Akram A; Sung, Mi-Ae; Ju, Kyung-Won; Seo, Nari; Lee, Sung-Ho; Kim, Bong-Ju; Kim, Soung-Min; Jahng, Jeong Won; He, Hong; Lee, Jong-Ho
2017-03-16
This study was designed toinvestigate the efficacy of adenovirus vector-mediated brain-derived neurotrophic factor (BDNF) ex vivo gene transfer to human umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs) in a rat sciatic nerve crush injury model. BDNF protein and mRNA expression after infection was checked through an enzyme-linked immunosorbent assay (ELISA) and quantitative real-time polymerase chain reaction (qRT-PCR). Male Sprague-Dawley rats (200-250g, 6 weeks old) were distributed into threegroups (n=20 each): the control group, UCB-MSC group, and BDNF-adenovirus infected UCB-MSC (BDNF-Ad+UCB-MSC) group. UCB-MSCs (1×10 6 cells/10μl/rat) or BDNF-Ad+UCB-MSCs (1×10 6 cells/10μl/rat)were transplantedinto the rats at the crush site immediately after sciatic nerve injury. Cell tracking was done with PKH26-labeled UCB-MSCs and BDNF-Ad+UCB-MSCs (1×10 6 cells/10μl/rat). The rats were monitored for 4 weeks post-surgery. Results showed that expression of BDNF at both the protein and mRNA levels was higher inthe BDNF-Ad+UCB-MSC group compared to theUCB-MSC group in vitro.Moreover, BDNF mRNA expression was higher in both UCB-MSC group and BDNF-Ad+ UCB-MSC group compared tothe control group, and BDNF mRNA expression in theBDNF-Ad+UCB-MSC group was higher than inboth other groups 5days after surgeryin vivo. Labeled neurons in the dorsal root ganglia (DRG), axon counts, axon density, and sciatic function index were significantly increased in the UCB-MSC and BDNF-Ad+ UCB-MSCgroupscompared to the controlgroup four weeksaftercell transplantation. Importantly,the BDNF-Ad+UCB-MSCgroup exhibited more peripheral nerve regeneration than the other two groups.Our results indicate thatboth UCB-MSCs and BDNF-Ad+UCB-MSCscan improve rat sciatic nerve regeneration, with BDNF-Ad+UCB-MSCsshowing a greater effectthan UCB-MSCs. Copyright © 2017 Elsevier B.V. All rights reserved.
Whiteman, Andrew; Young, Daniel E.; He, Xuemei; Chen, Tai C.; Wagenaar, Robert C.; Stern, Chantal; Schon, Karin
2013-01-01
Convergent evidence from human and non-human animal studies suggests aerobic exercise and increased aerobic capacity may be beneficial for brain health and cognition. It is thought growth factors may mediate this putative relationship, particularly by augmenting plasticity mechanisms in the hippocampus, a brain region critical for learning and memory. Among these factors, glucocorticoids, brain derived neurotrophic factor (BDNF), insulin-like growth factor-1 (IGF-1), and vascular endothelial growth factor (VEGF), hormones that have considerable and diverse physiological importance, are thought to effect normal and exercise-induced hippocampal plasticity. Despite these predictions, relatively few published human studies have tested hypotheses that relate exercise and fitness to the hippocampus, and none have considered the potential links to all of these hormonal components. Here we present cross-sectional data from a study of recognition memory; serum BDNF, cortisol, IGF-1, and VEGF levels; and aerobic capacity in healthy young adults. We measured circulating levels of these hormones together with performance on a recognition memory task, and a standard graded treadmill test of aerobic fitness. Regression analyses demonstrated BDNF and aerobic fitness predict recognition memory in an interactive manner. In addition, IGF-1 was positively associated with aerobic fitness, but not with recognition memory. Our results may suggest an exercise adaptation-related change in the BDNF dose-response curve that relates to hippocampal memory. PMID:24269495
Buchmann, Arlette F; Hellweg, Rainer; Rietschel, Marcella; Treutlein, Jens; Witt, Stephanie H; Zimmermann, Ulrich S; Schmidt, Martin H; Esser, Günter; Banaschewski, Tobias; Laucht, Manfred; Deuschle, Michael
2013-08-01
Recent studies have emphasized an important role for neurotrophins, such as brain-derived neurotrophic factor (BDNF), in regulating the plasticity of neural circuits involved in the pathophysiology of stress-related diseases. The aim of the present study was to examine the interplay of the BDNF Val⁶⁶Met and the serotonin transporter promoter (5-HTTLPR) polymorphisms in moderating the impact of early-life adversity on BDNF plasma concentration and depressive symptoms. Participants were taken from an epidemiological cohort study following the long-term outcome of early risk factors from birth into young adulthood. In 259 individuals (119 males, 140 females), genotyped for the BDNF Val⁶⁶Met and the 5-HTTLPR polymorphisms, plasma BDNF was assessed at the age of 19 years. In addition, participants completed the Beck Depression Inventory (BDI). Early adversity was determined according to a family adversity index assessed at 3 months of age. Results indicated that individuals homozygous for both the BDNF Val and the 5-HTTLPR L allele showed significantly reduced BDNF levels following exposure to high adversity. In contrast, BDNF levels appeared to be unaffected by early psychosocial adversity in carriers of the BDNF Met or the 5-HTTLPR S allele. While the former group appeared to be most susceptible to depressive symptoms, the impact of early adversity was less pronounced in the latter group. This is the first preliminary evidence indicating that early-life adverse experiences may have lasting sequelae for plasma BDNF levels in humans, highlighting that the susceptibility to this effect is moderated by BDNF Val⁶⁶Met and 5-HTTLPR genotype. Copyright © 2013. Published by Elsevier B.V.
Coelho, Flávia Gomes de Melo; Vital, Thays Martins; Stein, Angelica Miki; Arantes, Franciel José; Rueda, André Veloso; Camarini, Rosana; Teodorov, Elizabeth; Santos-Galduróz, Ruth Ferreira
2014-01-01
Studies indicate the involvement of brain-derived neurotrophic factor (BDNF) in the pathogenesis of Alzheimer's disease (AD). Decreased BDNF levels may constitute a lack of trophic support and contribute to cognitive impairment in AD. The benefits of acute and chronic physical exercise on BDNF levels are well-documented in humans, however, exercise effects on BDNF levels have not been analyzed in older adults with AD. The aim of this study was to investigate the effects of acute aerobic exercise on BDNF levels in older adults with AD and to verify associations among BDNF levels, aerobic fitness, and level of physical activity. Using a controlled design, twenty-one patients with AD (76.3 ± 6.2 years) and eighteen healthy older adults (74.6 ± 4.7 years) completed an acute aerobic exercise. The outcomes included measures of BDNF plasma levels, aerobic fitness (treadmill grade, time to exhaustion, VO2, and maximal lactate) and level of physical activity (Baecke Questionnaire Modified for the Elderly). The independent t-test shows differences between groups with respect to the BDNF plasma levels at baseline (p = 0.04; t = 4.53; df = 37). In two-way ANOVA, a significant effect of time was found (p = 0.001; F = 13.63; df = 37), the aerobic exercise significantly increased BDNF plasma levels in AD patients and healthy controls. A significant correlation (p = 0.04; r = 0.33) was found between BDNF levels and the level of physical activity. The results of our study suggest that aerobic exercise increases BDNF plasma levels in patients with AD and healthy controls. In addition to that, BDNF levels had association with level of physical activity.
Purmessur, Devina; Freemont, Anthony J; Hoyland, Judith A
2008-01-01
Introduction The neurotrophins nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) have been identified in the human intervertebral disc (IVD) and have been implicated in the mechanisms associated with nerve ingrowth and nociception in degeneration of the IVD. The aim of the current study was to investigate an association between neurotrophin expression in the IVD and the severity of disc degeneration, including the effect of disc-related proinflammatory cytokines on neurotrophin and neuropeptide expression in cells derived from the human IVD. Methods Immunohistochemical analysis was performed to examine the expression of NGF, BDNF and their high-affinity receptors Trk-A and Trk-B in human IVD samples, divided into three categories: non-degenerate, moderate degeneration and severe degeneration. In order to study the effect of disc-related cytokines on neurotrophin/neuropeptide gene expression, nucleus pulposus cells derived from non-degenerate and degenerate IVD samples were seeded in alginate and were stimulated with either IL-1β or TNFα for 48 hours. RNA was extracted, cDNA was synthesised and quantitative real-time PCR was performed to examine the expression of NGF, BDNF and substance P. Results Immunohistochemistry showed expression of NGF and BDNF in the native chondrocyte-like cells in all regions of the IVD and in all grades of degeneration. Interestingly only BDNF significantly increased with the severity of degeneration (P < 0.05). Similar expression was observed for Trk-A and Trk-B, although no association with disease severity was demonstrated. In cultured human nucleus pulposus cells, stimulation with IL-1β led to significant increases in NGF and BDNF gene expression (P < 0.05). Treatment with TNFα was associated with an upregulation of substance P expression only. Conclusion Our findings show that both the annulus fibrosus and nucleus pulposus cells of the IVD express the neurotrophins NGF and BDNF, factors that may influence and enhance innervation and pain in the degenerate IVD. Expression of Trk-A and Trk-B by cells of the nondegenerate and degenerate IVD suggests an autocrine role for neurotrophins in regulation of disc cell biology. Furthermore, modulation of neurotrophin expression by IL-1β and modulation of substance P expression by TNFα, coupled with their increased expression in the degenerate IVD, highlights novel roles for these cytokines in regulating nerve ingrowth in the degenerate IVD and associated back pain. PMID:18727839
Greenwood, Benjamin N.; Strong, Paul V.; Foley, Teresa E.; Thompson, Robert; Fleshner, Monika
2007-01-01
Reduced levels of brain-derived neurotrophic factor (BDNF) in the hippocampus have been implicated in human affective disorders and behavioral stress responses. The current studies examined the role of BDNF in the behavioral consequences of inescapable stress, or learned helplessness. Inescapable stress decreased BDNF mRNA and protein in the hippocampus of sedentary rats. Rats allowed voluntary access to running wheels for either 3 or 6 weeks prior to exposure to stress were protected against stress-induced reductions of hippocampal BDNF protein. The observed prevention of stress-induced deceases in BDNF, however, occurred in a time course inconsistent with the prevention of learned helplessness by wheel running, which is evident following 6 weeks, but not 3 weeks, of wheel running. BDNF suppression in physically active rats was produced by administering a single injection of the selective serotonin reuptake inhibitor fluoxetine (10 mg/kg) just prior to stress. Despite reduced levels of hippocampal BDNF mRNA following stress, physically active rats given the combination of fluoxetine and stress remained resistant against learned helplessness. Sedentary rats given both fluoxetine and stress still demonstrated typical learned helplessness behaviors. Fluoxetine by itself reduced BDNF mRNA in sedentary rats only, but did not affect freezing or escape learning 24 hours later. Finally, bilateral injections of BDNF (1 μg) into the dentate gyrus prior to stress prevented stress-induced reductions of hippocampal BDNF but did not prevent learned helplessness in sedentary rats. These data indicate that learned helplessness behaviors are independent of the presence or absence of hippocampal BDNF because blocking inescapable stress-induced BDNF suppression does not always prevent learned helplessness, and learned helplessness does not always occur in the presence of reduced BDNF. Results also suggest that the prevention of stress-induced hippocampal BDNF suppression is not necessary for the protective effect of wheel running against learned helplessness. PMID:17161541
Greenwood, B N; Strong, P V; Foley, T E; Thompson, R S; Fleshner, M
2007-02-23
Reduced levels of brain-derived neurotrophic factor (BDNF) in the hippocampus have been implicated in human affective disorders and behavioral stress responses. The current studies examined the role of BDNF in the behavioral consequences of inescapable stress, or learned helplessness. Inescapable stress decreased BDNF mRNA and protein in the hippocampus of sedentary rats. Rats allowed voluntary access to running wheels for either 3 or 6 weeks prior to exposure to stress were protected against stress-induced reductions of hippocampal BDNF protein. The observed prevention of stress-induced deceases in BDNF, however, occurred in a time course inconsistent with the prevention of learned helplessness by wheel running, which is evident following 6 weeks, but not 3 weeks, of wheel running. BDNF suppression in physically active rats was produced by administering a single injection of the selective serotonin reuptake inhibitor fluoxetine (10 mg/kg) just prior to stress. Despite reduced levels of hippocampal BDNF mRNA following stress, physically active rats given the combination of fluoxetine and stress remained resistant against learned helplessness. Sedentary rats given both fluoxetine and stress still demonstrated typical learned helplessness behaviors. Fluoxetine by itself reduced BDNF mRNA in sedentary rats only, but did not affect freezing or escape learning 24 h later. Finally, bilateral injections of BDNF (1 mug) into the dentate gyrus prior to stress prevented stress-induced reductions of hippocampal BDNF but did not prevent learned helplessness in sedentary rats. These data indicate that learned helplessness behaviors are independent of the presence or absence of hippocampal BDNF because blocking inescapable stress-induced BDNF suppression does not always prevent learned helplessness, and learned helplessness does not always occur in the presence of reduced BDNF. Results also suggest that the prevention of stress-induced hippocampal BDNF suppression is not necessary for the protective effect of wheel running against learned helplessness.
Saucedo Marquez, Cinthia Maria; Vanaudenaerde, Bart; Troosters, Thierry; Wenderoth, Nicole
2015-12-15
Exercise can have a positive effect on the brain by activating brain-derived neurotrophic factor (BDNF)-related processes. In healthy humans there appears to be a linear relationship between exercise intensity and the positive short-term effect of acute exercise on BDNF levels (i.e., the highest BDNF levels are reported after high-intensity exercise protocols). Here we performed two experiments to test the effectiveness of two high-intensity exercise protocols, both known to improve cardiovascular health, to determine whether they have a similar efficacy in affecting BDNF levels. Participants performed a continuous exercise (CON) protocol at 70% of maximal work rate and a high-intensity interval-training (HIT) protocol at 90% of maximal work rate for periods of 1 min alternating with 1 min of rest (both protocols lasted 20 min). We observed similar BDNF kinetics in both protocols, with maximal BDNF concentrations being reached toward the end of training (experiment 1). We then showed that both exercise protocols significantly increase BDNF levels compared with a rest condition (CON P = 0.04; HIT P < 0.001), with HIT reaching higher BDNF levels than CON (P = 0.035) (experiment 2). These results suggest that shorter bouts of high intensity exercise are slightly more effective than continuous high-intensity exercise for elevating serum BDNF. Additionally, 73% of the participants preferred the HIT protocol (P = 0.02). Therefore, we suggest that the HIT protocol might represent an effective and preferred intervention for elevating BDNF levels and potentially promoting brain health. Copyright © 2015 the American Physiological Society.
Barbey, Aron K.; Colom, Roberto; Paul, Erick; Forbes, Chad; Krueger, Frank; Goldman, David; Grafman, Jordan
2014-01-01
Brain-derived neurotrophic factor (BDNF) promotes survival and synaptic plasticity in the human brain. The Val66Met polymorphism of the BDNF gene interferes with intracellular trafficking, packaging, and regulated secretion of this neurotrophin. The human prefrontal cortex (PFC) shows lifelong neuroplastic adaption implicating the Val66Met BDNF polymorphism in the recovery of higher-order executive functions after traumatic brain injury (TBI). In this study, we examined the effect of this BDNF polymorphism on the preservation of general intelligence following TBI. We genotyped a sample of male Vietnam combat veterans (n = 156) consisting of a frontal lobe lesion group with focal penetrating head injuries for the Val66Met BDNF polymorphism. Val/Met did not differ from Val/Val genotypes in general cognitive ability before TBI. However, we found substantial average differences between these groups in general intelligence (≈ half a standard deviation or 8 IQ points), verbal comprehension (6 IQ points), perceptual organization (6 IQ points), working memory (8 IQ points), and processing speed (8 IQ points) after TBI. These results support the conclusion that Val/Met genotypes preserve general cognitive functioning, whereas Val/Val genotypes are largely susceptible to TBI. PMID:24586380
Mouri, Akihiro; Noda, Yukihiro; Niwa, Minae; Matsumoto, Yurie; Mamiya, Takayoshi; Nitta, Atsumi; Yamada, Kiyofumi; Furukawa, Shoei; Iwamura, Tatsunori; Nabeshima, Toshitaka
2017-06-30
3,4-Methylenedioxymethamphetamine (MDMA) is known to induce dependence and psychosis in humans. Brain-derived neurotrophic factor (BDNF) is involved in the synaptic plasticity and neurotrophy in midbrain dopaminergic neurons. This study aimed to investigate the role of BDNF in MDMA-induced dependence and psychosis. A single dose of MDMA (10mg/kg) induced BDNF mRNA expression in the prefrontal cortex, nucleus accumbens, and amygdala, but not in the striatum or the hippocampus. However, repeated MDMA administration for 7 days induced BDNF mRNA expression in the striatum and hippocampus. Both precursor and mature BDNF protein expression increased in the nucleus accumbens, mainly in the neurons. Additionally, rapidly increased extracellular serotonin levels and gradually and modestly increased extracellular dopamine levels were noted within the nucleus accumbens of mice after repeated MDMA administration. Dopamine receptor antagonists attenuated the effect of repeated MDMA administration on BDNF mRNA expression in the nucleus accumbens. To examine the role of endogenous BDNF in the behavioral and neurochemical effects of MDMA, we used mice with heterozygous deletions of the BDNF gene. MDMA-induced place preference, behavioral sensitization, and an increase in the levels of extracellular serotonin and dopamine within the nucleus accumbens, were attenuated in BDNF heterozygous knockout mice. These results suggest that BDNF is implicated in MDMA-induced dependence and psychosis by activating the midbrain serotonergic and dopaminergic neurons. Copyright © 2017 Elsevier B.V. All rights reserved.
Podfigurna-Stopa, Agnieszka; Casarosa, Elena; Luisi, Michele; Czyzyk, Adam; Meczekalski, Blazej; Genazzani, Andrea Riccardo
2013-09-01
Functional hypothalamic amenorrhea (FHA) is a non organic, secondary amenorrhea related to gonadotropin-releasing hormone pulsatile secretion impairment. Brain-derived neurotrophic factor (BDNF), a member of the neurotrophin family of survival-promoting molecules, plays an important role in the growth, development, maintenance and function of several neuronal systems. The aim of the study was the evaluation of plasma BDNF concentrations in patients with the diagnosis of FHA. We studied 85 subjects diagnosed with FHA who were compared with 10 healthy, eumenorrheic controls with normal body mass index. Plasma BDNF and serum luteinizing hormone, follicle-stimulating hormone and estradiol (E2) concentrations were measured by immunoenzymatic method (enzyme-linked immunosorbent assay). Significantly lower concentration of plasma BDNF was found in FHA patients (196.31 ± 35.26 pg/ml) in comparison to healthy controls (407.20 ± 25.71 pg/ml; p < 0.0001). In the control group, there was a strong positive correlation between plasma BDNF and serum E2 concentrations (r = 0.92, p = 0.0001) but in FHA group it was not found. Role of BDNF in FHA is not yet fully understood. There could be found studies concerning plasma BDNF concentrations in humans and animals in the literature. However, our study is one of the first projects which describes decreased plasma BDNF concentration in patients with diagnosed FHA. Therefore, further studies on BDNF in FHA should clarify the role of this peptide.
The role of brain biogenic amines in the control of pituitary-adrenocortical activity
NASA Technical Reports Server (NTRS)
Maickel, R. P.
1975-01-01
It was found that pretreatment of animals with desmethyl imipramine antagonized the reserpine-induced sedation without preventing the decline in brain amines or the hypersecretion of adrenocorticotropic hormone (ACTH). The antagonism of reserpine-induced ACTH hypersecretion by the monoamine oxidose (MAO) inhibitor pargyline (MO 911, N-methyl-N-benzyl-2-propynylamine) was studied. Evidence is presented that this antagonism is related to the level of brain biogenic amines maintained during the course of action of the drug. Pretreatment with MAO inhibitors does not affect the ACTH hypersecretion evoked by exposure to cold or chlorpromazine, lending further support to the hypothesis that reserpine-induced ACTH hypersecretion is related to brain amine changes.
Braun, David J; Kalinin, Sergey; Feinstein, Douglas L
2017-01-01
Damage occurring to noradrenergic neurons in the locus coeruleus (LC) contributes to the evolution of neuroinflammation and neurodegeneration in a variety of conditions and diseases. One cause of LC damage may be loss of neurotrophic support from LC target regions. We tested this hypothesis by conditional unilateral knockout of brain-derived neurotrophic factor (BDNF) in adult mice. To evaluate the consequences of BDNF loss in the context of neurodegeneration, the mice harbored familial mutations for human amyloid precursor protein and presenilin-1. In these mice, BDNF depletion reduced tyrosine hydroxylase staining, a marker of noradrenergic neurons, in the rostral LC. BDNF depletion also reduced noradrenergic innervation in the hippocampus, the frontal cortex, and molecular layer of the cerebellum, assessed by staining for dopamine beta hydroxylase. BDNF depletion led to an increase in cortical amyloid plaque numbers and size but was without effect on plaque numbers in the striatum, a site with minimal innervation from the LC. Interestingly, cortical Iba1 staining for microglia was reduced by BDNF depletion and was correlated with reduced dopamine beta hydroxylase staining. These data demonstrate that reduction of BDNF levels in an LC target region can cause retrograde damage to LC neurons, leading to exacerbation of neuropathology in distinct LC target areas. Methods to reduce BDNF loss or supplement BDNF levels may be of value to reduce neurodegenerative processes normally limited by LC noradrenergic activities.
Polyakova, Maryna; Schlögl, Haiko; Sacher, Julia; Schmidt-Kassow, Maren; Kaiser, Jochen; Stumvoll, Michael; Kratzsch, Jürgen; Schroeter, Matthias L
2017-06-03
Brain-derived neurotrophic factor (BDNF), an important neural growth factor, has gained growing interest in neuroscience, but many influencing physiological and analytical aspects still remain unclear. In this study we assessed the impact of storage time at room temperature, repeated freeze/thaw cycles, and storage at -80 °C up to 6 months on serum and ethylenediaminetetraacetic acid (EDTA)-plasma BDNF. Furthermore, we assessed correlations of serum and plasma BDNF concentrations in two independent sets of samples. Coefficients of variations (CVs) for serum BDNF concentrations were significantly lower than CVs of plasma concentrations ( n = 245, p = 0.006). Mean serum and plasma concentrations at all analyzed time points remained within the acceptable change limit of the inter-assay precision as declared by the manufacturer. Serum and plasma BDNF concentrations correlated positively in both sets of samples and at all analyzed time points of the stability assessment ( r = 0.455 to r s = 0.596; p < 0.004). In summary, when considering the acceptable change limit, BDNF was stable in serum and in EDTA-plasma up to 6 months. Due to a higher reliability, we suggest favoring serum over EDTA-plasma for future experiments assessing peripheral BDNF concentrations.
Xu, Qing; Chen, Ling-Xiu; Ran, Dan-Hua; Xie, Wen-Yue; Li, Qi; Zhou, Xiang-Dong
2017-08-15
Bombesin receptor-activated protein (BRAP) is highly expressed in human bronchial epithelial cells. Recent studies have shown that BRAP reduces oxidative stress, inhibits airway inflammation and suppresses nuclear factor kappaB (NF-κB) activity. Mucus overproduction is an important feature in patients with chronic inflammatory airway diseases. Neutrophil elastase (NE) is a potent inducer of mucin5AC (MUC5AC), which is considered the predominant mucin secreted by human airway epithelial cells. Here, we hypothesize that BRAP may regulate NE-induced MUC5AC hypersecretion in a bronchial epithelial cell line (HBE16). We also investigated the underlying mechanism involved in the process. In this study, we found that BRAP was present in HBE16 human bronchial epithelial cells and was significantly increased by NE. Next, we found that the up-regulation of BRAP by pEGFP-N1-BRAP caused a significant decrease in the increased levels of MUC5AC expression, NF-κB activity, and the phosphorylation of extracellular signal-regulated kinases (ERK) and epidermal growth factor receptor (EGFR) induced by NE. Meanwhile, there was a significant decrease in ROS, interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) levels when BRAP was up-regulated by pEGFP-N1-BRAP. Moreover, when cells were transfected with pEGFP-N1-BRAP and pretreated with NF-κB, ERK or EGFR inhibitors before the NE stimulation, there were further decreased in MUC5AC expression, NF-κB activity, and the phosphorylation of ERK and EGFR. These results suggest that BRAP plays an important role in airway inflammation and its overexpression may regulate NE-induced MUC5AC hypersecretion in HBE16 cells via the EGFR/ERK/NF-κB signaling pathway. Copyright © 2017. Published by Elsevier Inc.
TMEM16A mediates the hypersecretion of mucus induced by Interleukin-13
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Jiachen; Jiang, Youfan; Li, Li
2015-06-10
Previous studies showed that the Ca{sup 2+}-activated Cl{sup −} channel (CaCC) was involved in the pathogenesis of mucus hypersecretion induced by Interleukin-13 (IL-13). However, the mechanisms underlying the process were unknown. Recently, transmembrane protein 16A (TMEM16A) was identified as the channel underlying the CaCC current. The aim of the current study was to investigate whether the TMEM16A channel is part of the mechanism underlying IL-13-induced mucus hypersecretion. We observed that both TMEM16A mRNA and protein expression were significantly up-regulated after treatment with IL-13 in human bronchial epithelial 16 (HBE 16) cells, which correlated with an increase in mucus production. Additionally,more » mucus hypersecretion in rat airways was induced by intratracheal instillation of IL-13 and similar increases were observed in the expression of TMEM16A mRNA and protein in the bronchial epithelium. Niflumic acid (NA), a selective antagonist of CaCC, markedly blocked IL-13-induced mucin (MUC) 5AC mRNA and protein production in vivo and in vitro. Further investigation with HBE16 cells revealed that TMEM16A overexpression clearly promoted mucus production, IκBα phosphorylation, and p65 accumulation in the nucleus. The loss of TMEM16A resulted in inhibition of mucus production, and the TMEM16A-mediated production of MUC5AC was significantly blocked by a nuclear factor-kappa B (NF-κB) inhibitor. Therefore, the TMEM16A channel acts upstream of NF-κB in the regulation of mucus production. This is the first demonstration that the TMEM16A-NF-κB pathway is positively involved in IL-13-induced mucus production, which provides novel insight into the molecular mechanism of mucin overproduction. - Highlights: • TMEM16A acts as downstream events of IL-13 signaling pathway. • Established the link between TMEM16A and mucus hypersecretion. • NF-κB activation might be responsible for TMEM16A mediated mucus secretion.« less
Fear extinction and BDNF: Translating animal models of PTSD to the clinic
Andero, Raül; Ressler, Kerry J
2012-01-01
Brain-derived neurotrophic factor (BDNF) is the most studied neurotrophin involved in synaptic plasticity processes that are required for long-term learning and memory. Specifically, BDNF gene expression and activation of its high-affinity TrkB receptor are necessary in the amygdala, hippocampus and prefrontal cortex for the formation of emotional memories, including fear memories. Among the psychiatric disorders with altered fear processing there is Post-traumatic Stress Disorder (PTSD) which is characterized by an inability to extinguish fear memories. Since BDNF appears to enhance extinction of fear, targeting impaired extinction in anxiety disorders such as PTSD via BDNF signalling may be an important and novel way to enhance treatment efficacy. The aim of this review is to provide a translational point of view that stems from findings in the BDNF regulation of synaptic plasticity and fear extinction. In addition, there are different systems that seem to alter fear extinction through BDNF modulation like the endocannabionoid system and the hypothalamic-pituitary adrenal axis (HPA). Recent work also finds that the pituitary adenylate cyclase-activating polypeptide (PACAP) and PAC1 receptor, which are upstream of BDNF activation, may be implicated in PTSD. Especially interesting are data that exogenous fear extinction enhancers such as antidepressants, histone deacetylases inhibitors (HDACi) and D-cycloserine, a partial NMDA agonist, may act through or in concert with the BDNF-TrkB system. Finally, we review studies where recombinant BDNF and a putative TrkB agonist, 7,8-DHF, may enhance extinction of fear. These approaches may lead to novel agents that improve extinction in animal models and eventually humans. PMID:22530815
Enhanced extinction of cocaine seeking in brain-derived neurotrophic factor Val66Met knock-in mice.
Briand, Lisa A; Lee, Francis S; Blendy, Julie A; Pierce, R Christopher
2012-03-01
The Val66Met polymorphism in the brain-derived neurotropic factor (BDNF) gene results in alterations in fear extinction behavior in both human populations and mouse models. However, it is not clear whether this polymorphism plays a similar role in extinction of appetitive behaviors. Therefore, we examined operant learning and extinction of both food and cocaine self-administration behavior in an inbred genetic knock-in mouse strain expressing the variant Bdnf. These mice provide a unique opportunity to relate alterations in aversive and appetitive extinction learning as well as provide insight into how human genetic variation can lead to differences in behavior. BDNF(Met/Met) mice exhibited a severe deficit in operant learning as demonstrated by an inability to learn the food self-administration task. Therefore, extinction experiments were performed comparing wildtype (BDNF(Val/Val) ) animals to mice heterozygous for the Met allele (BDNF(Val/Met) ), which did not differ in food or cocaine self-administration behavior. In contrast to the deficit in fear extinction previously demonstrated in these mice, we found that BDNF(Val/Met) mice exhibited more rapid extinction of cocaine responding compared to wildtype mice. No differences were found between the genotypes in the extinction of food self-administration behavior or the reinstatement of cocaine seeking, indicating that the effect is specific to extinction of cocaine responding. These results suggest that the molecular mechanisms underlying aversive and appetitive extinction are distinct from one another and BDNF may play opposing roles in the two phenomena. © 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.
Time-Dependent Serum Brain-Derived Neurotrophic Factor Decline During Methamphetamine Withdrawal.
Ren, Wenwei; Tao, Jingyan; Wei, Youdan; Su, Hang; Zhang, Jie; Xie, Ying; Guo, Jun; Zhang, Xiangyang; Zhang, Hailing; He, Jincai
2016-02-01
Methamphetamine (METH) is a widely abused illegal psychostimulant, which is confirmed to be neurotoxic and of great damage to human. Studies on the role of brain-derived neurotrophic factor (BDNF) in human METH addicts are limited and inconsistent. The purposes of this study are to compare the serum BDNF levels between METH addicts and healthy controls during early withdrawal, and explore the changes of serum BDNF levels during the first month after METH withdrawal.179 METH addicts and 90 age- and gender-matched healthy controls were recruited in this study. We measured serum BDNF levels at baseline (both METH addicts and healthy controls) and at 1 month after abstinence of METH (METH addicts only).Serum BDNF levels of METH addicts at baseline were significantly higher than controls (1460.28 ± 490.69 vs 1241.27 ± 335.52 pg/mL; F = 14.51, P < 0.001). The serum BDNF levels of 40 METH addicts were re-examined after 1 month of METH abstinence, which were significantly lower than that at baseline (1363.70 ± 580.59 vs 1621.41 ± 591.07 pg/mL; t = 2.26, P = .03), but showed no differences to the controls (1363.70 ± 580.59 vs 1241.27 ± 335.52 pg/mL; F = 2.29, P = 0.13).Our study demonstrated that serum BDNF levels were higher in METH addicts than controls during early withdrawal, and were time dependent decreased during the first month of abstinence. These findings may provide further evidence that increased serum BDNF levels may be associated with the pathophysiology of METH addiction and withdrawal and may be a protective response against the subsequent METH-induced neurotoxicity. Besides, these findings may also promote the development of medicine in the treatment of METH addiction and withdrawal.
Braun, David J.; Kalinin, Sergey
2017-01-01
Damage occurring to noradrenergic neurons in the locus coeruleus (LC) contributes to the evolution of neuroinflammation and neurodegeneration in a variety of conditions and diseases. One cause of LC damage may be loss of neurotrophic support from LC target regions. We tested this hypothesis by conditional unilateral knockout of brain-derived neurotrophic factor (BDNF) in adult mice. To evaluate the consequences of BDNF loss in the context of neurodegeneration, the mice harbored familial mutations for human amyloid precursor protein and presenilin-1. In these mice, BDNF depletion reduced tyrosine hydroxylase staining, a marker of noradrenergic neurons, in the rostral LC. BDNF depletion also reduced noradrenergic innervation in the hippocampus, the frontal cortex, and molecular layer of the cerebellum, assessed by staining for dopamine beta hydroxylase. BDNF depletion led to an increase in cortical amyloid plaque numbers and size but was without effect on plaque numbers in the striatum, a site with minimal innervation from the LC. Interestingly, cortical Iba1 staining for microglia was reduced by BDNF depletion and was correlated with reduced dopamine beta hydroxylase staining. These data demonstrate that reduction of BDNF levels in an LC target region can cause retrograde damage to LC neurons, leading to exacerbation of neuropathology in distinct LC target areas. Methods to reduce BDNF loss or supplement BDNF levels may be of value to reduce neurodegenerative processes normally limited by LC noradrenergic activities. PMID:28266222
Lee, Seung Hwan; Kim, In Gul; Jung, Ae Ryang; Shrestha, Kshitiz Raj; Lee, Jin Ho; Park, Ki Dong; Chung, Byung Ha; Kim, Sae Woong; Kim, Ki Hean
2014-01-01
Erectile dysfunction (ED) is the most frequent long-term problem after radical prostatectomy. We aimed to evaluate whether the use of combination therapy with basic fibroblast growth factor (bFGF)-hydrogel on corpus cavernosum and with adipose-derived stem cells (ADSCs) and brain-derived neurotrophic factor (BDNF)-immobilized poly-lactic-co-glycolic acid (PLGA) membrane on the cavernous nerve (CN) could improve erectile function in a rat model of bilateral cavernous nerve crush injury (BCNI). Rats were randomly divided into five groups (n=15 per group): a normal group (N group), a group receiving saline application after bilateral cavernous nerve crush injury (BCNI), a group undergoing bFGF-hydrogel injection in the corpus cavernosum after BCNI (bFGF), a group receiving ADSC application covered with BDNF-membrane after BCNI (ADSC/BDNF), and a group undergoing coadministration of bFGF-hydrogel injection and BDNF-membrane with ADSCs after BDNF (bFGF+ADSC/BDNF). Four weeks postoperatively, the erectile function was assessed by detecting the ratio of intracavernous pressure (ICP) to mean arterial pressure (MAP). Smooth muscle and collagen contents were measured using Masson's trichrome staining. Neuronal nitric oxide synthase (nNOS) expression in the dorsal penile nerve was detected by immunostaining. The protein expression of the α-smooth muscle actin (α-SMA) and the cyclic guanosine monophosphate (cGMP) level of the corpus cavernosum were quantified by western blot and cGMP assay, respectively. In the bFGF+ADSC/BDNF group, the erectile function was significantly elevated compared with the BCNI and other treated groups and showed a significantly increased smooth muscle/collagen ratio, nNOS content, α-SMA expression, and cGMP level. In particular, there were no statistical differences in the ICP/MAP ratio, smooth muscle/collagen ratio, and α-SMA and cGMP levels between the bFGF+ADSC/BDNF group and normal group. Application of the BDNF-immobilized PLGA membrane with human ADSC into the CN and bFGF-incorporated hydrogel into the corpus carvernosum improved nearly normal erectile function in a rat model of postprostatectomy ED. This result suggests that a combined application of bFGF+ADSC/BDNF might be a promising treatment for postprostatectomy ED. PMID:24673637
Role of CRF Receptor Signaling in Stress Vulnerability, Anxiety, and Depression
Hauger, Richard L.; Risbrough, Victoria; Oakley, Robert H.; Olivares-Reyes, J. Alberto; Dautzenberg, Frank M.
2011-01-01
Markers of hyperactive central corticotropin releasing factor (CRF) systems and CRF-related single nucleotide polymorphisms (SNPs) have been identified in patients with anxiety and depressive disorders. Designing more effective antagonists may now be guided by data showing that small molecules bind to transmembrane domains. Specifically, CRF1 receptor antagonists have been developed as novel anxiolytic and antidepressant treatments. Because CRF1 receptors become rapidly desensitized by G protein-coupled receptor kinase (GRK) and β-arrestin mechanisms in the presence of high agonist concentrations, neuronal hypersecretion of synaptic CRF alone may be insufficient to account for excessive central CRF neurotransmission in stress-induced affective pathophysiology. In addition to desensitizing receptor function, GRK phosphorylation and β-arrestin binding can shift a G protein-coupled receptor (GPCR) to signal selectively via the extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK-MAPK) or Akt pathways independent of G proteins. Also, Epac-dependent CRF1 receptor signaling via the ERK-MAPK pathway has been found to potentiate brain-derived neurotrophic factor (BDNF)-stimulated TrkB signaling. Thus, genetic or acquired abnormalities in GRK and β-arrestin function may be involved in the pathophysiology of stress-induced anxiety and depression. PMID:19906236
Cochlear implants and ex vivo BDNF gene therapy protect spiral ganglion neurons.
Rejali, Darius; Lee, Valerie A; Abrashkin, Karen A; Humayun, Nousheen; Swiderski, Donald L; Raphael, Yehoash
2007-06-01
Spiral ganglion neurons often degenerate in the deaf ear, compromising the function of cochlear implants. Cochlear implant function can be improved by good preservation of the spiral ganglion neurons, which are the target of electrical stimulation by the implant. Brain derived neurotrophic factor (BDNF) has previously been shown to enhance spiral ganglion survival in experimentally deafened ears. Providing enhanced levels of BDNF in human ears may be accomplished by one of several different methods. The goal of these experiments was to test a modified design of the cochlear implant electrode that includes a coating of fibroblast cells transduced by a viral vector with a BDNF gene insert. To accomplish this type of ex vivo gene transfer, we transduced guinea pig fibroblasts with an adenovirus with a BDNF gene cassette insert, and determined that these cells secreted BDNF. We then attached BDNF-secreting cells to the cochlear implant electrode via an agarose gel, and implanted the electrode in the scala tympani. We determined that the BDNF expressing electrodes were able to preserve significantly more spiral ganglion neurons in the basal turns of the cochlea after 48 days of implantation when compared to control electrodes. This protective effect decreased in the higher cochlear turns. The data demonstrate the feasibility of combining cochlear implant therapy with ex vivo gene transfer for enhancing spiral ganglion neuron survival.
Polycystic ovarian disease: the adrenal connection.
Marouliss, George B; Triantafillidis, Ioannis K
2006-01-01
Polycystic ovarian disease (PCOD) is characterized by hyperandrogenemia, ovulatory dysfunction and polycystic ovaries (PCO). The increased androgen production in PCOD comes primarily from the ovaries. However, in about 40% of patients there is excessive adrenal androgen production (DHEA, DHEA-Sulfate, Androstenedione, Testosterone and Dihydrotestosterone). The contribution of the adrenal in the PCOD is suggested by the presence of adrenal androgen excess in PCO, the presence of PCO in women with enzymatic adrenal hyperplasia as well as in women with adrenal tumors. However, the cause of adrenal androgen hypersecretion is not yet fully understood but it may include endogenous hypersecretion of the zona reticularis of unclear cause, hypersecretion of cortical-androgen-stimulating hormone (CASH), stress, hyperprolactinemia, adrenal enzymatic defects etc. This short review covers the aspects of adrenal androgen hypersecretion in PCOD.
Malikova, Jana; Camats, Núria; Fernández-Cancio, Mónica; Heath, Karen; González, Isabel; Caimarí, María; del Campo, Miguel; Albisu, Marian; Kolouskova, Stanislava; Audí, Laura; Flück, Christa E.
2014-01-01
Context Human NR5A1/SF-1 mutations cause 46,XY disorder of sex development (DSD) with broad phenotypic variability, and rarely cause adrenal insufficiency although SF-1 is an important transcription factor for many genes involved in steroidogenesis. In addition, the Sf-1 knockout mouse develops obesity with age. Obesity might be mediated through Sf-1 regulating activity of brain-derived neurotrophic factor (BDNF), an important regulator of energy balance in the ventromedial hypothalamus. Objective To characterize novel SF-1 gene variants in 4 families, clinical, genetic and functional studies were performed with respect to steroidogenesis and energy balance. Patients 5 patients with 46,XY DSD were found to harbor NR5A1/SF-1 mutations including 2 novel variations. One patient harboring a novel mutation also suffered from adrenal insufficiency. Methods SF-1 mutations were studied in cell systems (HEK293, JEG3) for impact on transcription of genes involved in steroidogenesis (CYP11A1, CYP17A1, HSD3B2) and in energy balance (BDNF). BDNF regulation by SF-1 was studied by promoter assays (JEG3). Results Two novel NR5A1/SF-1 mutations (Glu7Stop, His408Profs*159) were confirmed. Glu7Stop is the 4th reported SF-1 mutation causing DSD and adrenal insufficiency. In vitro studies revealed that transcription of the BDNF gene is regulated by SF-1, and that mutant SF-1 decreased BDNF promoter activation (similar to steroid enzyme promoters). However, clinical data from 16 subjects carrying SF-1 mutations showed normal birth weight and BMI. Conclusions Glu7Stop and His408Profs*159 are novel SF-1 mutations identified in patients with 46,XY DSD and adrenal insufficiency (Glu7Stop). In vitro, SF-1 mutations affect not only steroidogenesis but also transcription of BDNF which is involved in energy balance. However, in contrast to mice, consequences on weight were not found in humans with SF-1 mutations. PMID:25122490
Malikova, Jana; Camats, Núria; Fernández-Cancio, Mónica; Heath, Karen; González, Isabel; Caimarí, María; del Campo, Miguel; Albisu, Marian; Kolouskova, Stanislava; Audí, Laura; Flück, Christa E
2014-01-01
Human NR5A1/SF-1 mutations cause 46,XY disorder of sex development (DSD) with broad phenotypic variability, and rarely cause adrenal insufficiency although SF-1 is an important transcription factor for many genes involved in steroidogenesis. In addition, the Sf-1 knockout mouse develops obesity with age. Obesity might be mediated through Sf-1 regulating activity of brain-derived neurotrophic factor (BDNF), an important regulator of energy balance in the ventromedial hypothalamus. To characterize novel SF-1 gene variants in 4 families, clinical, genetic and functional studies were performed with respect to steroidogenesis and energy balance. 5 patients with 46,XY DSD were found to harbor NR5A1/SF-1 mutations including 2 novel variations. One patient harboring a novel mutation also suffered from adrenal insufficiency. SF-1 mutations were studied in cell systems (HEK293, JEG3) for impact on transcription of genes involved in steroidogenesis (CYP11A1, CYP17A1, HSD3B2) and in energy balance (BDNF). BDNF regulation by SF-1 was studied by promoter assays (JEG3). Two novel NR5A1/SF-1 mutations (Glu7Stop, His408Profs*159) were confirmed. Glu7Stop is the 4th reported SF-1 mutation causing DSD and adrenal insufficiency. In vitro studies revealed that transcription of the BDNF gene is regulated by SF-1, and that mutant SF-1 decreased BDNF promoter activation (similar to steroid enzyme promoters). However, clinical data from 16 subjects carrying SF-1 mutations showed normal birth weight and BMI. Glu7Stop and His408Profs*159 are novel SF-1 mutations identified in patients with 46,XY DSD and adrenal insufficiency (Glu7Stop). In vitro, SF-1 mutations affect not only steroidogenesis but also transcription of BDNF which is involved in energy balance. However, in contrast to mice, consequences on weight were not found in humans with SF-1 mutations.
Qin, Chengchen; Li, Shan; Yan, Qiujin; Wang, Xiuling; Chen, Yatang; Zhou, Ping; Lu, Mengxin; Zhu, Fan
2016-08-03
Human endogenous retrovirus W family (HERV-W) envelope (env) is known to be associated with neurological and psychiatric disorders, such as multiple sclerosis and schizophrenia. Previous studies showed that overexpression of HERV-W env could induce brain-derived neurotrophic factor (BDNF) gene expression. In human and rat cells, BDNF-mediated signal transduction might be modulated by glycogen synthase kinase 3β (GSK3β). Both BDNF and GSK3β are schizophrenia-related genes. In this paper, we investigated whether GSK3β was involved in the HERV-W env-induced expression of BDNF. We found that HERV-W env increased phosphorylation of GSK3β at Ser9 (p-GSK3β (Ser9)) and the ratio of p-GSK3β (Ser9) to total GSK3β (p<0.05) in U251 cells. Overexpression of HERV-W env led to a 36.2% reduction in GSK3β activity compared to control (p<0.05). The levels of β-catenin, cyclin D1 and TSC2 mRNAs were upregulated (p<0.05). These data suggested that overexpression of HERV-W env might activate the GSK3β signaling pathway in U251 cells. Further, knockdown of GSK3β reduced the expression of total GSK3β, p-GSK3β (Ser9), and the ratio of p-GSK3β (Ser9) to total GSK3β by 28.6%, 50.4%, and 30.2%, respectively (p<0.05). Levels of β-catenin, cyclin D1 and TSC2 mRNAs were also reduced (p<0.05). Interestingly, GSK3β activity increased (p<0.05). Knockdown of GSK3β also decreased mRNA and protein expression of BDNF by 49.9% and 48.5% respectively (p<0.05). These results indicated that phosphorylation of GSK3β at Ser9 might be involved in HERV-W env-induced BDNF expression, and will hopefully improve our understanding of the role of HERV-W env in neurological and psychiatric diseases (schizophrenia, etc). Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Effects of BDNF polymorphisms on antidepressant action.
Tsai, Shih-Jen; Hong, Chen-Jee; Liou, Ying-Jay
2010-12-01
Evidence suggests that the down-regulation of the signaling pathway involving brain-derived neurotrophic factor (BDNF), a molecular element known to regulate neuronal plasticity and survival, plays an important role in the pathogenesis of major depression. The restoration of BDNF activity induced by antidepressant treatment has been implicated in the antidepressant therapeutic mechanism. Because there is variability among patients with major depressive disorder in terms of response to antidepressant treatment and since genetic factors may contribute to this inter-individual variability in antidepressant response, pharmacogenetic studies have tested the associations between genetic polymorphisms in candidate genes related to antidepressant therapeutic action. In human BDNF gene, there is a common functional polymorphism (Val66Met) in the pro-region of BDNF, which affects the intracellular trafficking of proBDNF. Because of the potentially important role of BDNF in the antidepressant mechanism, many pharmacogenetic studies have tested the association between this polymorphism and the antidepressant therapeutic response, but they have produced inconsistent results. A recent meta-analysis of eight studies, which included data from 1,115 subjects, suggested that the Val/Met carriers have increased antidepressant response in comparison to Val/Val homozygotes, particularly in the Asian population. The positive molecular heterosis effect (subjects heterozygous for a specific genetic polymorphism show a significantly greater effect) is compatible with animal studies showing that, although BDNF exerts an antidepressant effect, too much BDNF may have a detrimental effect on mood. Several recommendations are proposed for future antidepressant pharmacogenetic studies of BDNF, including the consideration of multiple polymorphisms and a haplotype approach, gene-gene interaction, a single antidepressant regimen, controlling for age and gender interactions, and pharmacogenetic effects on specific depressive symptom-clusters.
Xiao, Yangming; Russell, I Jon; Liu, Ya-Guang
2012-08-01
A common single nucleotide polymorphism (SNP) in the gene of brain-derived neurotrophic factor (BDNF) results from a substitution at position 66 from valine (Val) to methionine (Met) and may predispose to human neuropsychiatric disorders. We proposed to determine whether these BDNF gene SNPs were associated with fibromyalgia syndrome (FMS) and/or any of its typical phenotypes. Patients with FMS (N = 95) and healthy normal controls (HNC, N = 58) were studied. Serum high-sensitivity C-reactive protein (hsCRP) levels were measured using an enzyme-linked immunosorbent assay (ELISA). The BDNF SNPs were determined using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP).The BDNF SNP distribution was 65 (68%) Val/Val, 28 (30%) Val/Met, and 2 (2%) Met/Met for FMS and 40 (69%), 17(29%), and 1 (2%) for HNC, respectively. The serum high-sensitivity C-reactive protein (hsCRP)and body mass index (BMI) in FMS were higher than in HNC. The FMS with BDNF Val66Val had significantly higher mean BMI (P = 0.0001) and hsCRP (P = 0.02) than did FMS carrying the Val66Met genotype. This pattern was not found in HNC. Phenotypic measures of subjective pain, pain threshold, depression, or insomnia did not relate to either of the BDNF SNPs in FMS. The relative distribution BDNF SNPs did not differ between FMS and HNC. The BDNF Val66Met polymorphism is not selective for FMS. The BDNF Val66Val SNP identifies a subgroup of FMS with elevated hsCRP and higher BMI. This is the first study to associate a BDNF polymorphism with a FMS subgroup phenotype.
Brain-Derived Neurotrophic Factor in Patients with Huntington's Disease
Zuccato, Chiara; Mariotti, Caterina; Valenza, Marta; Lahiri, Nayana; Wild, Edward J.; Sassone, Jenny; Ciammola, Andrea; Bachoud-Lèvi, Anne Catherine; Tabrizi, Sarah J.; Di Donato, Stefano; Cattaneo, Elena
2011-01-01
Reduced Brain-Derived Neurotrophic Factor (BDNF) levels have been described in a number of patho-physiological conditions, most notably, in Huntington's disease (HD), a progressive neurodegenerative disorder. Since BDNF is also produced in blood, we have undertaken the measurement of its peripheral levels in the attempt to identify a possible link with HD prognosis and/or its progression. Here we evaluated BDNF level in 398 blood samples including 138 controls, 56 preHD, and 204 HD subjects. We found that BDNF protein levels were not reliably different between groups, whether measured in plasma (52 controls, 26 preHD, 105 HD) or serum (39 controls, 5 preHD, 29 HD). Our experience, and a re-analysis of the literature highlighted that intra-group variability and methodological aspects affect this measurement, especially in serum. We also assessed BDNF mRNA levels in blood samples from 47 controls, 25 preHD, and 70 HD subjects, and found no differences among the groups. We concluded that levels of BDNF in human blood were not informative (mRNA levels or plasma protein level) nor reliable (serum protein levels) as HD biomarkers. We also wish to warn the scientific community in interpreting the significance of changes measured in BDNF protein levels in serum from patients suffering from different conditions. PMID:21857974
Leake, Patricia A.; Hradek, Gary T.; Hetherington, Alexander M.; Stakhovskaya, Olga
2011-01-01
Postnatal development and survival of spiral ganglion (SG) neurons depend upon both neural activity and neurotrophic support. Our previous studies showed that electrical stimulation from a cochlear implant only partly prevents SG degeneration after early deafness. Thus, neurotrophic agents that might be combined with an implant to improve neural survival are of interest. Recent studies reporting that BDNF promotes SG survival after deafness, have been conducted in rodents and limited to relatively short durations. Our study examined longer duration BDNF treatment in deafened cats that may better model the slow progression of SG degeneration in human cochleae and provides the first study of BDNF in the developing auditory system. Kittens were deafened neonatally, implanted at 4-5 weeks with intracochlear electrodes containing a drug-delivery cannula, and BDNF or artificial perilymph was infused for 10 weeks from a mini-osmotic pump. In BDNF-treated cochleae SG cells grew to normal size and were significantly larger than cells on the contralateral side. However, their morphology was not completely normal and many neurons lacked or had thinned perikaryl myelin. Unbiased stereology was employed to estimate SG cell density, independent of cell size. BDNF was effective in promoting significantly improved survival of SG neurons in these developing animals. BDNF treatment also resulted in higher density and larger size of myelinated radial nerve fibers, sprouting of fibers into the scala tympani, and improvement in electrically-evoked auditory brainstem response thresholds. Although BDNF may have potential therapeutic value in the developing auditory system, many serious obstacles currently preclude clinical application. PMID:21452221
Galindo, Cristi L; Soslow, Jonathan H; Brinkmeyer-Langford, Candice L; Gupte, Manisha; Smith, Holly M; Sengsayadeth, Seng; Sawyer, Douglas B; Benson, D Woodrow; Kornegay, Joe N; Markham, Larry W
2016-04-01
In Duchenne muscular dystrophy (DMD), abnormal cardiac function is typically preceded by a decade of skeletal muscle disease. Molecular reasons for differences in onset and progression of these muscle groups are unknown. Human biomarkers are lacking. We analyzed cardiac and skeletal muscle microarrays from normal and golden retriever muscular dystrophy (GRMD) dogs (ages 6, 12, or 47+ mo) to gain insight into muscle dysfunction and to identify putative DMD biomarkers. These biomarkers were then measured using human DMD blood samples. We identified GRMD candidate genes that might contribute to the disparity between cardiac and skeletal muscle disease, focusing on brain-derived neurotropic factor (BDNF) and osteopontin (OPN/SPP1, hereafter indicated as SPP1). BDNF was elevated in cardiac muscle of younger GRMD but was unaltered in skeletal muscle, while SPP1 was increased only in GRMD skeletal muscle. In human DMD, circulating levels of BDNF were inversely correlated with ventricular function and fibrosis, while SPP1 levels correlated with skeletal muscle function. These results highlight gene expression patterns that could account for differences in cardiac and skeletal disease in GRMD. Most notably, animal model-derived data were translated to DMD and support use of BDNF and SPP1 as biomarkers for cardiac and skeletal muscle involvement, respectively.
Géral, Claire; Angelova, Angelina; Lesieur, Sylviane
2013-01-01
Neurodegenerative diseases represent a major public health problem, but beneficial clinical treatment with neurotrophic factors has not been established yet. The therapeutic use of neurotrophins has been restrained by their instability and rapid degradation in biological medium. A variety of strategies has been proposed for the administration of these leading therapeutic candidates, which are essential for the development, survival and function of human neurons. In this review, we describe the existing approaches for delivery of brain-derived neurotrophic factor (BDNF), which is the most abundant neurotrophin in the mammalian central nervous system (CNS). Biomimetic peptides of BDNF have emerged as a promising therapy against neurodegenerative disorders. Polymer-based carriers have provided sustained neurotrophin delivery, whereas lipid-based particles have contributed also to potentiation of the BDNF action. Nanotechnology offers new possibilities for the design of vehicles for neuroprotection and neuroregeneration. Recent developments in nanoscale carriers for encapsulation and transport of BDNF are highlighted. PMID:24300402
Corominas-Roso, Margarida; Roncero, Carlos; Daigre, Constanza; Grau-Lopez, Lara; Ros-Cucurull, Elena; Rodríguez-Cintas, Laia; Sanchez-Mora, Cristina; Lopez, Maria Victoria; Ribases, Marta; Casas, Miguel
2015-02-28
Brain-derived neurotrophic factor (BDNF) is involved in cocaine craving in humans and drug seeking in rodents. Based on this, the aim of this study was to explore the possible role of serum BDNF in cocaine relapse in abstinent addicts. Forty cocaine dependent subjects (DSM-IV criteria) were included in an inpatient 2 weeks abstinence program. Organic and psychiatric co-morbidities were excluded. Two serum samples were collected for each subject at baseline and at after 14 abstinence days. After discharge, all cocaine addicts underwent a 22 weeks follow-up, after which they were classified into early relapsers (ER) (resumed during the first 14 days after discharge,) or late relapsers (LR) (resumed beyond 14 days after discharge). The only clinical differences between groups were the number of consumption days during the last month before detoxification. Serum BDNF levels increased significantly across the 12 days of abstinence in the LR group (p=0.02), whereas in the ER group BDNF remained unchanged. In the ER group, the change of serum BDNF during abstinence negatively correlated with the improvement in depressive symptoms (p=0.02). These results suggest that BDNF has a role in relapse to cocaine consumption in abstinent addicts, although the underlying neurobiological mechanisms remain to be clarified. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Tsai, Yi-Fang; Hsu, Chih-Yi; Yang, Muh-Hwa; Shyr, Yi-Ming
2017-01-01
Aims There is good evidence that the tumor microenvironment plays an important role in cancer metastasis and progression. Our previous studies have shown that brain-derived neurotrophic factor (BDNF) participates in the process of metastasis and in the migration of cancer cells. The aim of this study was to investigate the role of BDNF on the tumor cell microenvironment, namely, the cancer cell-endothelial cell interaction of TNBC cells. Methods We conducted oligoneucleotide microarray analysis of potential biomarkers that are able to differentiate recurrent TNBC from non-recurrent TNBC. The MDA-MB-231 and human endothelial HUVEC lines were used for this study and our approaches included functional studies, such as migration assay, as well as Western blot and real-time PCR analysis of migration and angiogenic signaling. In addition, we analyzed the survival outcome of TNBC breast cancer patients according to their expression level of BDNF using clinical samples. Results The results demonstrated that BDNF was able to bring about autocrinal (MDA-MB-231) and paracrinal (HUVECs) regulation of BDNF-TrkB gene expression and this affected cell migratory activity. The BDNF-induced migratory activity was blocked by inhibitors of ERK, PI3K and TrkB when MDA-MB-231 cells were examined, but only an inhibitor of ERK blocked this activity when HUVEC cells were used. Furthermore, decreased migratory activity was found for △BDNF and △TrkB cell lines. Ingenuity pathway analysis (IPA) of MDA-MB-231 cells showed that BDNF is a key factor that is able to regulate a network made up of metalloproteases and calmodulin. Protein expression levels in a tissue array of tumor slices were found to be correlated with patient prognosis and the results showed that there was significant correlation of TrkB expression, but not of BDNF. expressionwith patient DFS and OS. Conclusion Our study demonstrates that up-regulation of the BDNF signaling pathway seems tobe involved in the mechanism associated with early recurrence in triple negative breast cancer cell. In addition, BDNF can function in either an autocrine or a paracrine manner to increase the migration ability of both MDA-MB-231 cells and HUVEC cells. Finally, overexpression of TrkB, but not of BDNF, is significantly associated with a poor survival outcome for TNBC patients. PMID:28604807
Tsai, Yi-Fang; Tseng, Ling-Ming; Hsu, Chih-Yi; Yang, Muh-Hwa; Chiu, Jen-Hwey; Shyr, Yi-Ming
2017-01-01
There is good evidence that the tumor microenvironment plays an important role in cancer metastasis and progression. Our previous studies have shown that brain-derived neurotrophic factor (BDNF) participates in the process of metastasis and in the migration of cancer cells. The aim of this study was to investigate the role of BDNF on the tumor cell microenvironment, namely, the cancer cell-endothelial cell interaction of TNBC cells. We conducted oligoneucleotide microarray analysis of potential biomarkers that are able to differentiate recurrent TNBC from non-recurrent TNBC. The MDA-MB-231 and human endothelial HUVEC lines were used for this study and our approaches included functional studies, such as migration assay, as well as Western blot and real-time PCR analysis of migration and angiogenic signaling. In addition, we analyzed the survival outcome of TNBC breast cancer patients according to their expression level of BDNF using clinical samples. The results demonstrated that BDNF was able to bring about autocrinal (MDA-MB-231) and paracrinal (HUVECs) regulation of BDNF-TrkB gene expression and this affected cell migratory activity. The BDNF-induced migratory activity was blocked by inhibitors of ERK, PI3K and TrkB when MDA-MB-231 cells were examined, but only an inhibitor of ERK blocked this activity when HUVEC cells were used. Furthermore, decreased migratory activity was found for △BDNF and △TrkB cell lines. Ingenuity pathway analysis (IPA) of MDA-MB-231 cells showed that BDNF is a key factor that is able to regulate a network made up of metalloproteases and calmodulin. Protein expression levels in a tissue array of tumor slices were found to be correlated with patient prognosis and the results showed that there was significant correlation of TrkB expression, but not of BDNF. expressionwith patient DFS and OS. Our study demonstrates that up-regulation of the BDNF signaling pathway seems tobe involved in the mechanism associated with early recurrence in triple negative breast cancer cell. In addition, BDNF can function in either an autocrine or a paracrine manner to increase the migration ability of both MDA-MB-231 cells and HUVEC cells. Finally, overexpression of TrkB, but not of BDNF, is significantly associated with a poor survival outcome for TNBC patients.
Helm, Erin E; Matt, Kathleen S; Kirschner, Kenneth F; Pohlig, Ryan T; Kohl, Dave; Reisman, Darcy S
2017-10-01
Brain-derived neurotrophic factor (BDNF) has been directly related to exercise-enhanced motor performance in the neurologically injured animal model; however literature concerning the role of BDNF in the enhancement of motor learning in the human population is limited. Previous studies in healthy subjects have examined the relationship between intensity of an acute bout of exercise, increases in peripheral BDNF and motor learning of a simple isometric upper extremity task. The current study examined the role of high intensity exercise on upregulation of peripheral BDNF levels as well as the role of high intensity exercise in mediation of motor learning and retention of a novel locomotor task in neurologically intact adults. In addition, the impact of a single nucleotide polymorphism in the BDNF gene (Val66Met) in moderating the relationship between exercise and motor learning was explored. It was hypothesized that participation in high intensity exercise prior to practicing a novel walking task (split-belt treadmill walking) would elicit increases in peripheral BDNF as well as promote an increased rate and magnitude of within session learning and retention on a second day of exposure to the walking task. Within session learning and retention would be moderated by the presence or absence of Val66Met polymorphism. Fifty-four neurologically intact participants participated in two sessions of split-belt treadmill walking. Step length and limb phase were measured to assess learning of spatial and temporal parameters of walking. Serum BDNF was collected prior to and immediately following either high intensity exercise or 5min of quiet rest. The results demonstrated that high intensity exercise provides limited additional benefit to learning of a novel locomotor pattern in neurologically intact adults, despite increases in circulating BDNF. In addition, presence of a single nucleotide polymorphism on the BDNF gene did not moderate the magnitude of serum BDNF increases with high intensity exercise, nor did it moderate the relationship between high intensity exercise and locomotor learning. Copyright © 2017 Elsevier Inc. All rights reserved.
Tsai, Shih-Jen
2017-12-22
Major depressive disorder is a common illness worldwide, but the pathogenesis of the disorder remains incompletely understood. The tissue-type plasminogen activator-plasminogen proteolytic cascade is highly expressed in the brain regions involved in mood regulation and neuroplasticity. Accumulating evidence from animal and human studies suggests that tissue-type plasminogen activator and its chief inhibitor, plasminogen activator inhibitor-1, are related to stress reaction and depression. Furthermore, the neurotrophic hypothesis of depression postulates that compromised neurotrophin brain-derived neurotrophic factor (BDNF) function is directly involved in the pathophysiology of depression. In the brain, the proteolytic cleavage of proBDNF, a BDNF precursor, to mature BDNF through plasmin represents one mechanism that can change the direction of BDNF action. We also discuss the implications of tissue-type plasminogen activator and plasminogen activator inhibitor-1 alterations as biomarkers for major depressive disorder. Using drugs that increase tissue-type plasminogen activator or decrease plasminogen activator inhibitor-1 levels may open new avenues to develop conceptually novel therapeutic strategies for depression treatment.
Effect of brain-derived neurotrophic factor (BDNF) on sperm quality of normozoospermic men.
Safari, Hassan; Khanlarkhani, Neda; Sobhani, Aligholi; Najafi, Atefeh; Amidi, Fardin
2017-07-05
The neurotrophin family of proteins and their receptors act as important proliferative and pro-survival factors in differentiation of nerve cells and are thought to play key roles in the development of reproductive tissues and normal function of spermatozoa. The objective of the present study was to evaluate the effect of Brain-Derived Neurotrophic Factor (BDNF) on the sperm viability and motility, lipid peroxidation (LPO), mitochondrial activity and concentration of leptin, nitric oxide (NO) and insulin in normozoospermic men. Semen samples from 20 normozoospermic men were divided into three groups: (i) control, (ii) BDNF and (iii) BDNF + K252a. BDNF and K252a were added in the dose of 0.133 and 0.1 nM, respectively. Viability was assessed by eosin-nigrosin staining technique, and motility was observed by microscopy. NO concentration and mitochondrial activity were measured with flow cytometry, and LPO was analyzed using enzyme-linked immunosorbent assay (ELISA) kits. Results showed that exogenous BDNF at 0.133 nM could significantly (p < 0.05) influence viability, motility, NO concentration, mitochondrial activity and LPO content. Secretions of insulin and leptin by human sperm were increased in cells exposed to the exogenous BDNF, whereas viability, mitochondrial activity and insulin and leptin secretions were decreased in cells exposed to the K252.
The Impact of the Brain-Derived Neurotrophic Factor Gene on Trauma and Spatial Processing.
Miller, Jessica K; McDougall, Siné; Thomas, Sarah; Wiener, Jan
2017-11-27
The influence of genes and the environment on the development of Post-Traumatic Stress Disorder (PTSD) continues to motivate neuropsychological research, with one consistent focus being the Brain-Derived Neurotrophic Factor (BDNF) gene, given its impact on the integrity of the hippocampal memory system. Research into human navigation also considers the BDNF gene in relation to hippocampal dependent spatial processing. This speculative paper brings together trauma and spatial processing for the first time and presents exploratory research into their interactions with BDNF. We propose that quantifying the impact of BDNF on trauma and spatial processing is critical and may well explain individual differences in clinical trauma treatment outcomes and in navigation performance. Research has already shown that the BDNF gene influences PTSD severity and prevalence as well as navigation behaviour. However, more data are required to demonstrate the precise hippocampal dependent processing mechanisms behind these influences in different populations and environmental conditions. This paper provides insight from recent studies and calls for further research into the relationship between allocentric processing, trauma processing and BDNF. We argue that research into these neural mechanisms could transform PTSD clinical practice and professional support for individuals in trauma-exposing occupations such as emergency response, law enforcement and the military.
Storms, William W; Miller, Judi E
2018-01-01
We report an improvement in symptoms and quality of life with long-term use of guaifenesin for the treatment of mucus-related symptoms in a patient with chronic bronchitis, who presented with mucus hypersecretion, cough and dyspnea.
Ahn, So Yoon; Chang, Yun Sil; Sung, Dong Kyung; Sung, Se In; Ahn, Jee-Yin; Park, Won Soon
2017-01-24
Mesenchymal stem cell (MSC) transplantation protects against neonatal severe intraventricular hemorrhage (IVH)-induced brain injury by a paracrine rather than regenerative mechanism; however, the paracrine factors involved and their roles have not yet been delineated. This study aimed to identify the paracrine mediator(s) and to determine their role in mediating the therapeutic effects of MSCs in severe IVH. We first identified significant upregulation of brain-derived neurotrophic factor (BDNF) in MSCs compared with fibroblasts, in both DNA and antibody microarrays, after thrombin exposure. We then knocked down BDNF in MSCs by transfection with small interfering (si)RNA specific for human BDNF. The therapeutic effects of MSCs with or without BDNF knockdown were evaluated in vitro in rat neuronal cells challenged with thrombin, and in vivo in newborn Sprague-Dawley rats by injecting 200 μl of blood on postnatal day 4 (P4), and transplanting MSCs (1 × 105 cells) intraventricularly on P6. siRNA-induced BDNF knockdown abolished the in vitro benefits of MSCs on thrombin-induced neuronal cell death. BDNF knockdown also abolished the in vivo protective effects against severe IVH-induced brain injuries such as the attenuation of posthemorrhagic hydrocephalus, impaired behavioral test performance, increased astrogliosis, increased number of TUNEL cells, ED-1+ cells, and inflammatory cytokines, and reduced myelin basic protein expression. Our data indicate that BDNF secreted by transplanted MSCs is one of the critical paracrine factors that play a seminal role in attenuating severe IVH-induced brain injuries in newborn rats.
BDNF contributes to the genetic variance of milk fat yield in german holstein cattle.
Zielke, Lea G; Bortfeldt, Ralf H; Tetens, Jens; Brockmann, Gudrun A
2011-01-01
The gene encoding the brain-derived neurotrophic factor (BDNF) has been repeatedly associated with human obesity. As such, it could also contribute to the regulation of energy partitioning and the amount of secreted milk fat during lactation, which plays an important role in milk production in dairy cattle. Therefore, we performed an association study using estimated breeding values (EBVs) of bulls and yield deviations of German Holstein dairy cattle to test the effect of BDNF on milk fat yield (FY). A highly significant effect (corrected p-value = 3.362 × 10(-4)) was identified for an SNP 168 kb up-stream of the BDNF transcription start. The association tests provided evidence for an additive allele effect of 5.13 kg of fat per lactation on the EBV for milk FY in bulls and 6.80 kg of fat of the own production performance in cows explaining 1.72 and 0.60% of the phenotypic variance in the analyzed populations, respectively. The analyses of bulls and cows consistently showed three haplotype groups that differed significantly from each other, suggesting at least two different mutations in the BDNF region affecting the milk FY. The FY increasing alleles also had low but significant positive effects on protein and total milk yield which suggests a general role of the BDNF region in energy partitioning, rather than a specific regulation of fat synthesis. The results obtained in dairy cattle suggest similar effects of BDNF on milk composition in other species, including man.
Kim, Jae-Min; Stewart, Robert; Bae, Kyung-Yeol; Kim, Sung-Wan; Yang, Su-Jin; Park, Kee-Hyung; Shin, Il-Seon; Yoon, Jin-Sang
2011-03-01
Increased physical activity may have beneficial effects on cognitive outcomes; a role of brain-derived neurotrophic factor (BDNF) has been suggested in animal models but not yet tested in humans. This study investigated modification by BDNF val66met polymorphism of the association between physical activity, incident dementia and other cognitive outcomes. Of 732 community elders, 107 had dementia at baseline, and 518 (83%) of the remainder were followed over 2.4 years. Cognitive impairment and decline were defined from Mini-Mental State Examination scores. Self-reported level of physical activity was recorded on a 4-point scale. BDNF val66met and apolipoprotein E genotypes were ascertained. Covariates included age, sex, education, depression, vascular risk factors, and instrumental activities of daily living. Baseline lower physical activity was significantly associated with incident dementia as well as with baseline dementia and cognitive impairment and incident cognitive decline. BDNF val66met polymorphism itself was not associated with any cognitive outcome. However, the strength of association between lower activity and all cognitive outcomes increased incrementally with the number of met alleles, and was strongest in those with the met/met genotype. BDNF×activity interaction terms were stronger for prospective outcomes (incident dementia, cognitive decline) compared to cross-sectional outcomes (prevalent dementia, cognitive impairment no dementia). This study supports a previously suggested neurobiological basis for the effects of physical activity on dementia involving the BDNF system since the met allele is recognised to be associated with lower activity-dependent secretion of BDNF. Copyright © 2010. Published by Elsevier Inc.
Lövdén, Martin; Schaefer, Sabine; Noack, Hannes; Kanowski, Martin; Kaufmann, Jörn; Tempelmann, Claus; Bodammer, Nils Christian; Kühn, Simone; Heinze, Hans-Jochen; Lindenberger, Ulman; Düzel, Emrah; Bäckman, Lars
2011-06-01
Recent evidence indicates experience-dependent brain volume changes in humans, but the functional and histological nature of such changes is unknown. Here, we report that adult men performing a cognitively demanding spatial navigation task every other day over 4 months display increases in hippocampal N-acetylaspartate (NAA) as measured with magnetic resonance spectroscopy. Unlike measures of brain volume, changes in NAA are sensitive to metabolic and functional aspects of neural and glia tissue and unlikely to reflect changes in microvasculature. Training-induced changes in NAA were, however, absent in carriers of the Met substitution in the brain-derived neurotrophic factor (BDNF) gene, which is known to reduce activity-dependent secretion of BDNF. Among BDNF Val homozygotes, increases in NAA were strongly related to the degree of practice-related improvement in navigation performance and normalized to pretraining levels 4 months after the last training session. We conclude that changes in demands on spatial navigation can alter hippocampal NAA concentrations, confirming epidemiological studies suggesting that mental experience may have direct effects on neural integrity and cognitive performance. BDNF genotype moderates these plastic changes, in line with the contention that gene-context interactions shape the ontogeny of complex phenotypes.
The importance of neuronal growth factors in the ovary.
Streiter, S; Fisch, B; Sabbah, B; Ao, A; Abir, R
2016-01-01
The neurotrophin family consists of nerve growth factor (NGF), neurotrophin 3 (NT3) and neurotrophin 4/5 (NT4/5), in addition to brain-derived neurotrophic factor (BDNF) and the neuronal growth factors, glial cell line-derived neurotrophic factor (GDNF) and vasointestinal peptide (VIP). Although there are a few literature reviews, mainly of animal studies, on the importance of neurotrophins in the ovary, we aimed to provide a complete review of neurotrophins as well as neuronal growth factors and their important roles in normal and pathological processes in the ovary. Follicular assembly is probably stimulated by complementary effects of NGF, NT4/5 and BDNF and their receptors. The neurotrophins, GDNF and VIP and their receptors have all been identified in preantral and antral follicles of mammalian species, including humans. Transgenic mice with mutations in the genes encoding for Ngf, Nt4/5 and Bdnf and their tropomyosin-related kinase β receptor showed a reduction in preantral follicles and an abnormal ovarian morphology, whereas NGF, NT3, GDNF and VIP increased the in vitro activation of primordial follicles in rats and goats. Additionally, NGF, NT3 and GDNF promoted follicular cell proliferation; NGF, BDNF and VIP were shown to be involved in ovulation; VIP inhibited follicular apoptosis; NT4/5, BDNF and GDNF promoted oocyte maturation and NGF, NT3 and VIP stimulated steroidogenesis. NGF may also exert a stimulatory effect in ovarian cancer and polycystic ovarian syndrome (PCOS). Low levels of NGF and BDNF in follicular fluid may be associated with diminished ovarian reserve and high levels with endometriosis. More knowledge of the roles of neuronal growth factors in the ovary has important implications for the development of new therapeutic drugs (such as anti-NGF agents) for ovarian cancer and PCOS as well as various infertility problems, warranting further research. © The Author 2015. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Jasińska, Kaja K.; Molfese, Peter J.; Kornilov, Sergey A.; Mencl, W. Einar; Frost, Stephen J.; Lee, Maria; Pugh, Kenneth R.; Grigorenko, Elena L.; Landi, Nicole
2016-01-01
Understanding how genes impact the brain’s functional activation for learning and cognition during development remains limited. We asked whether a common genetic variant in the BDNF gene (the Val66Met polymorphism) modulates neural activation in the young brain during a critical period for the emergence and maturation of the neural circuitry for reading. In animal models, the bdnf variation has been shown to be associated with the structure and function of the developing brain and in humans it has been associated with multiple aspects of cognition, particularly memory, which are relevant for the development of skilled reading. Yet, little is known about the impact of the Val66Met polymorphism on functional brain activation in development, either in animal models or in humans. Here, we examined whether the BDNF Val66Met polymorphism (dbSNP rs6265) is associated with children’s (age 6–10) neural activation patterns during a reading task (n = 81) using functional magnetic resonance imaging (fMRI), genotyping, and standardized behavioral assessments of cognitive and reading development. Children homozygous for the Val allele at the SNP rs6265 of the BDNF gene outperformed Met allele carriers on reading comprehension and phonological memory, tasks that have a strong memory component. Consistent with these behavioral findings, Met allele carriers showed greater activation in reading–related brain regions including the fusiform gyrus, the left inferior frontal gyrus and left superior temporal gyrus as well as greater activation in the hippocampus during a word and pseudoword reading task. Increased engagement of memory and spoken language regions for Met allele carriers relative to Val/Val homozygotes during reading suggests that Met carriers have to exert greater effort required to retrieve phonological codes. PMID:27551971
Jasińska, Kaja K; Molfese, Peter J; Kornilov, Sergey A; Mencl, W Einar; Frost, Stephen J; Lee, Maria; Pugh, Kenneth R; Grigorenko, Elena L; Landi, Nicole
2016-01-01
Understanding how genes impact the brain's functional activation for learning and cognition during development remains limited. We asked whether a common genetic variant in the BDNF gene (the Val66Met polymorphism) modulates neural activation in the young brain during a critical period for the emergence and maturation of the neural circuitry for reading. In animal models, the bdnf variation has been shown to be associated with the structure and function of the developing brain and in humans it has been associated with multiple aspects of cognition, particularly memory, which are relevant for the development of skilled reading. Yet, little is known about the impact of the Val66Met polymorphism on functional brain activation in development, either in animal models or in humans. Here, we examined whether the BDNF Val66Met polymorphism (dbSNP rs6265) is associated with children's (age 6-10) neural activation patterns during a reading task (n = 81) using functional magnetic resonance imaging (fMRI), genotyping, and standardized behavioral assessments of cognitive and reading development. Children homozygous for the Val allele at the SNP rs6265 of the BDNF gene outperformed Met allele carriers on reading comprehension and phonological memory, tasks that have a strong memory component. Consistent with these behavioral findings, Met allele carriers showed greater activation in reading-related brain regions including the fusiform gyrus, the left inferior frontal gyrus and left superior temporal gyrus as well as greater activation in the hippocampus during a word and pseudoword reading task. Increased engagement of memory and spoken language regions for Met allele carriers relative to Val/Val homozygotes during reading suggests that Met carriers have to exert greater effort required to retrieve phonological codes.
Paczkowska, Edyta; Łuczkowska, Karolina; Piecyk, Katarzyna; Rogińska, Dorota; Pius-Sadowska, Ewa; Ustianowski, Przemysław; Cecerska, Elżbieta; Dołęgowska, Barbara; Celewicz, Zbigniew; Machaliński, Bogusław
2015-01-01
Umbilical cord blood (UCB)-derived stem/progenitor cells (SPCs) have demonstrated the potential to improve neurologic function in different experimental models. SPCs can survive after transplantation in the neural microenvironment and indu ce neuroprotection, endogenous neurogenesis by secreting a broad repertoire of trophic and immunomodulatory cytokines. In this study, the influence of brain-derived neurotrophic factor (BDNF) pre-treatment was comprehensively evaluated in a UCB-derived lineage-negative (Lin-) SPC population. UCB-derived Lin- cells were evaluated with respect to the expression of (i) neuronal markers using immunofluorescence staining and (ii) specific (TrkB) receptors for BDNF using flow cytometry. Next, after BDNF pre-treatment, Lin- cells were extensively assessed with respect to apoptosis using Western blotting and proliferation via BrdU incorporation. Furthermore, NT-3 expression levels in Lin- cells using RQ PCR and antioxidative enzyme activities were assessed. We demonstrated neuronal markers as well as TrkB expression in Lin- cells and the activation of the TrkB receptor by BDNF. BDNF pre-treatment diminished apoptosis in Lin- cells and influenced the proliferation of these cells. We observed significant changes in antioxidants as well as in the increased expression of NT-3 in Lin- cells following BDNF exposure. Complex global miRNA and mRNA profiling analyses using microarray technology and GSEA revealed the differential regulation of genes involved in the proliferation, gene expression, biosynthetic processes, translation, and protein targeting. Our results support the hypothesis that pre-treatment of stem/progenitor cells could be beneficial and may be used as an auxiliary strategy for improving the properties of SPCs.
Gomez-Pinilla, F; Zhuang, Y; Feng, J; Ying, Z; Fan, G
2011-02-01
We have evaluated the possibility that the action of voluntary exercise on the regulation of brain-derived neurotrophic factor (BDNF), a molecule important for rat hippocampal learning, could involve mechanisms of epigenetic regulation. We focused the studies on the Bdnf promoter IV, as this region is highly responsive to neuronal activity. We have found that exercise stimulates DNA demethylation in Bdnf promoter IV, and elevates levels of activated methyl-CpG-binding protein 2, as well as BDNF mRNA and protein in the rat hippocampus. Chromatin immunoprecipitation assay showed that exercise increases acetylation of histone H3, and protein assessment showed that exercise elevates the ratio of acetylated :total for histone H3 but had no effects on histone H4 levels. Exercise also reduces levels of the histone deacetylase 5 mRNA and protein implicated in the regulation of the Bdnf gene [N.M. Tsankova et al. (2006)Nat. Neurosci., 9, 519-525], but did not affect histone deacetylase 9. Exercise elevated the phosphorylated forms of calcium/calmodulin-dependent protein kinase II and cAMP response element binding protein, implicated in the pathways by which neural activity influences the epigenetic regulation of gene transcription, i.e. Bdnf. These results showing the influence of exercise on the remodeling of chromatin containing the Bdnf gene emphasize the importance of exercise on the control of gene transcription in the context of brain function and plasticity. Reported information about the impact of a behavior, inherently involved in the daily human routine, on the epigenome opens exciting new directions and therapeutic opportunities in the war against neurological and psychiatric disorders. © 2010 The Authors. European Journal of Neuroscience © 2010 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.
Yuan, Qiang; Yang, Feng; Xiao, Yixin; Tan, Shawn; Husain, Nilofer; Ren, Ming; Hu, Zhonghua; Martinowich, Keri; Ng, Julia S; Kim, Paul J; Han, Weiping; Nagata, Koh-Ichi; Weinberger, Daniel R; Je, H Shawn
2016-08-15
Genetic variations in dystrobrevin binding protein 1 (DTNBP1 or dysbindin-1) have been implicated as risk factors in the pathogenesis of schizophrenia. The encoded protein dysbindin-1 functions in the regulation of synaptic activity and synapse development. Intriguingly, a loss of function mutation in Dtnbp1 in mice disrupted both glutamatergic and gamma-aminobutyric acidergic transmission in the cerebral cortex; pyramidal neurons displayed enhanced excitability due to reductions in inhibitory synaptic inputs. However, the mechanism by which reduced dysbindin-1 activity causes inhibitory synaptic deficits remains unknown. We investigated the role of dysbindin-1 in the exocytosis of brain-derived neurotrophic factor (BDNF) from cortical excitatory neurons, organotypic brain slices, and acute slices from dysbindin-1 mutant mice and determined how this change in BDNF exocytosis transsynaptically affected the number of inhibitory synapses formed on excitatory neurons via whole-cell recordings, immunohistochemistry, and live-cell imaging using total internal reflection fluorescence microscopy. A decrease in dysbindin-1 reduces the exocytosis of BDNF from cortical excitatory neurons, and this reduction in BDNF exocytosis transsynaptically resulted in reduced inhibitory synapse numbers formed on excitatory neurons. Furthermore, application of exogenous BDNF rescued the inhibitory synaptic deficits caused by the reduced dysbindin-1 level in both cultured cortical neurons and slice cultures. Taken together, our results demonstrate that these two genes linked to risk for schizophrenia (BDNF and dysbindin-1) function together to regulate interneuron development and cortical network activity. This evidence supports the investigation of the association between dysbindin-1 and BDNF in humans with schizophrenia. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
Nitsche, Michael A.; Wobrock, Thomas; Bunse, Tilmann; Rein, Bettina; Herrmann, Maximiliane; Schmitt, Andrea; Nieratschker, Vanessa; Witt, Stephanie H.; Rietschel, Marcella; Falkai, Peter; Hasan, Alkomiet
2015-01-01
Background: Brain-derived neurotrophic factor (BDNF) has been shown to be a moderator of neuroplasticity. A frequent BDNF-polymorphism (Val66Met) is associated with impairments of cortical plasticity. In patients with schizophrenia, reduced neuroplastic responses following non-invasive brain stimulation have been reported consistently. Various studies have indicated a relationship between the BDNF-Val66Met-polymorphism and motor-cortical plasticity in healthy individuals, but schizophrenia patients have yet to be investigated. The aim of this proof-of-concept study was, therefore, to test the impact of the BDNF-Val66Met-polymorphism on inhibitory and facilitatory cortical plasticity in schizophrenia patients. Methods: Cortical plasticity was investigated in 22 schizophrenia patients and 35 healthy controls using anodal and cathodal transcranial direct-current stimulation (tDCS) applied to the left primary motor cortex. Animal and human research indicates that excitability shifts following anodal and cathodal tDCS are related to molecular long-term potentiation and long-term depression. To test motor-cortical excitability before and after tDCS, well-established single- and paired-pulse transcranial magnetic stimulation protocols were applied. Results: Our analysis revealed increased glutamate-mediated intracortical facilitation in met-heterozygotes compared to val-homozygotes at baseline. Following cathodal tDCS, schizophrenia met-heterozygotes had reduced gamma-amino-butyric-acid-mediated short-interval intracortical inhibition, whereas healthy met-heterozygotes displayed the opposite effect. The BDNF-Val66Met-polymorphism did not influence single-pulse motor-evoked potential amplitudes after tDCS. Conclusions: These preliminary findings support the notion of an association of the BDNF-Val66Met-polymorphism with observable alterations in plasticity following cathodal tDCS in schizophrenia patients. This indicates a complex interaction between inhibitory intracortical interneuron-networks, cortical plasticity, and the BDNF-Val66Met-polymorphism. Further replication and validation need to be dedicated to this question to confirm this relationship. PMID:25612896
Kron, Miriam; Lang, Min; Adams, Ian T.; Sceniak, Michael; Longo, Frank; Katz, David M.
2014-01-01
Reduced levels of brain-derived neurotrophic factor (BDNF) are thought to contribute to the pathophysiology of Rett syndrome (RTT), a severe neurodevelopmental disorder caused by loss-of-function mutations in the gene encoding methyl-CpG-binding protein 2 (MeCP2). In Mecp2 mutant mice, BDNF deficits have been associated with breathing abnormalities, a core feature of RTT, as well as with synaptic hyperexcitability within the brainstem respiratory network. Application of BDNF can reverse hyperexcitability in acute brainstem slices from Mecp2-null mice, suggesting that therapies targeting BDNF or its receptor, TrkB, could be effective at acute reversal of respiratory abnormalities in RTT. Therefore, we examined the ability of LM22A-4, a small-molecule BDNF loop-domain mimetic and TrkB partial agonist, to modulate synaptic excitability within respiratory cell groups in the brainstem nucleus tractus solitarius (nTS) and to acutely reverse abnormalities in breathing at rest and during behavioral arousal in Mecp2 mutants. Patch-clamp recordings in Mecp2-null brainstem slices demonstrated that LM22A-4 decreases excitability at primary afferent synapses in the nTS by reducing the amplitude of evoked excitatory postsynaptic currents and the frequency of spontaneous and miniature excitatory postsynaptic currents. In vivo, acute treatment of Mecp2-null and -heterozygous mutants with LM22A-4 completely eliminated spontaneous apneas in resting animals, without sedation. Moreover, we demonstrate that respiratory dysregulation during behavioral arousal, a feature of human RTT, is also reversed in Mecp2 mutants by acute treatment with LM22A-4. Together, these data support the hypothesis that reduced BDNF signaling and respiratory dysfunction in RTT are linked, and establish the proof-of-concept that treatment with a small-molecule structural mimetic of a BDNF loop domain and a TrkB partial agonist can acutely reverse abnormal breathing at rest and in response to behavioral arousal in symptomatic RTT mice. PMID:25147297
The Effects of Acute Physical Exercise on Memory, Peripheral BDNF, and Cortisol in Young Adults
Röder, Brigitte; Schmidt-Kassow, Maren
2016-01-01
In animals, physical activity has been shown to induce functional and structural changes especially in the hippocampus and to improve memory, probably by upregulating the release of neurotrophic factors. In humans, results on the effect of acute exercise on memory are inconsistent so far. Therefore, the aim of the present study was to assess the effects of a single bout of physical exercise on memory consolidation and the underlying neuroendocrinological mechanisms in young adults. Participants encoded a list of German-Polish vocabulary before exercising for 30 minutes with either high intensity or low intensity or before a relaxing phase. Retention of the vocabulary was assessed 20 minutes after the intervention as well as 24 hours later. Serum BDNF and salivary cortisol were measured at baseline, after learning, and after the intervention. The high-intensity exercise group showed an increase in BDNF and cortisol after exercising compared to baseline. Exercise after learning did not enhance the absolute number of recalled words. Participants of the high-intensity exercise group, however, forgot less vocabulary than the relaxing group 24 hours after learning. There was no robust relationship between memory scores and the increase in BDNF and cortisol, respectively, suggesting that further parameters have to be taken into account to explain the effects of exercise on memory in humans. PMID:27437149
Kailainathan, Sumangali; Piers, Thomas M.; Yi, Jee Hyun; Choi, Seongmin; Fahey, Mark S.; Borger, Eva; Gunn-Moore, Frank J.; O’Neill, Laurie; Lever, Michael; Whitcomb, Daniel J.; Cho, Kwangwook; Allen, Shelley J.
2016-01-01
This study describes a fundamental functional difference between the two main polymorphisms of the pro-form of brain-derived neurotrophic factor (proBDNF), providing an explanation as to why these forms have such different age-related neurological outcomes. Healthy young carriers of the Met66 form (present in ∼30% Caucasians) have reduced hippocampal volume and impaired hippocampal-dependent memory function, yet the same polymorphic population shows enhanced cognitive recovery after traumatic brain injury, delayed cognitive dysfunction during aging, and lower risk of late-onset Alzheimer’s disease (AD) compared to those with the more common Val66 polymorphism. To examine the differences between the protein polymorphisms in structure, kinetics of binding to proBDNF receptors and in vitro function, we generated purified cleavage-resistant human variants. Intriguingly, we found no statistical differences in those characteristics. As anticipated, exogenous application of proBDNF Val66 to rat hippocampal slices dysregulated synaptic plasticity, inhibiting long-term potentiation (LTP) and facilitating long-term depression (LTD). We subsequently observed that this occurred via the glycogen synthase kinase 3β (GSK3β) activation pathway. However, surprisingly, we found that Met66 had no such effects on either LTP or LTD. These novel findings suggest that, unlike Val66, the Met66 variant does not facilitate synapse weakening signaling, perhaps accounting for its protective effects with aging. PMID:26687096
Kartha, Sonia; Zeeman, Martha E; Baig, Hassam A; Guarino, Benjamin B; Winkelstein, Beth A
2014-09-01
In vivo study defining expression of the neurotrophins, brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF), in cervical intervertebral discs after painful whole-body vibration (WBV). The goal of this study is to determine if BDNF and NGF are expressed in cervical discs after painful WBV in a rat model. WBV is a possible source of neck pain and has been implicated as increasing the risk for disc disorders. Typically, aneural regions of painful human lumbar discs exhibit hyperinnervation, suggesting nerve ingrowth as potentially contributing to disc degeneration and pain. BDNF and NGF are upregulated in painfully degenerate lumbar discs and hypothesized to contribute to this pathology. Male Holtzman rats underwent 7 days of repeated WBV (15 Hz, 30 min/d) or sham exposures, followed by 7 days of rest. Cervical discs were collected for analysis of BDNF and NGF expression through RT-qPCR and Western blot analysis. Immunohistochemistry also evaluated their regional expression in the disc. Vibration significantly increases BDNF messenger ribonucleic acid (mRNA) levels (P=0.036), as well as total-NGF mRNA (P=0.035). Protein expression of both BDNF (P=0.006) and the 75-kDa NGF (P=0.045) increase by nearly 4- and 10-fold, respectively. Both BDNF mRNA (R=0.396; P=0.012) and protein (R=0.280; P=0.035) levels are significantly correlated with the degree of behavioral sensitivity (i.e., pain) at day 14. Total-NGF mRNA is also significantly correlated with the extent of behavioral sensitivity (R=0.276; P=0.044). Both neurotrophins are most increased in the inner annulus fibrosus and nucleus pulposus. The increases in BDNF and NGF in the cervical discs after painful vibration are observed in typically aneural regions of the disc, consistent with reports of its hyperinnervation. Yet, the induction of nerve ingrowth into the disc was not explicitly investigated. Neurotrophin expression also correlates with behavioral sensitivity, suggesting a role for both neurotrophins in the development of disc pain. N/A.
Ilchibaeva, Tatiana V; Kondaurova, Elena M; Tsybko, Anton S; Kozhemyakina, Rimma V; Popova, Nina K; Naumenko, Vladimir S
2015-09-01
The brain-derived neurotrophic factor (BDNF), its precursor (proBDNF) and BDNF mRNA levels were studied in the brain of wild rats selectively bred for more than 70 generations for either high level or for the lack of affective aggressiveness towards man. Significant increase of BDNF mRNA level in the frontal cortex and increase of BDNF level in the hippocampus of aggressive rats was revealed. In the midbrain and hippocampus of aggressive rats proBDNF level was increased, whereas BDNF/proBDNF ratio was reduced suggesting the prevalence and increased influence of proBDNF in highly aggressive rats. In the frontal cortex, proBDNF level in aggressive rats was decreased. Thus, considerable structure-specific differences in BDNF and proBDNF levels as well as in BDNF gene expression between highly aggressive and nonaggressive rats were shown. The data suggested the implication of BDNF and its precursor proBDNF in the mechanism of aggressiveness and in the creation of either aggressive or nonaggressive phenotype. Copyright © 2015 Elsevier B.V. All rights reserved.
Yang, Bangkun; Yang, Chun; Ren, Qian; Zhang, Ji-Chun; Chen, Qian-Xue; Shirayama, Yukihiko; Hashimoto, Kenji
2016-12-01
Using learned helplessness (LH) model of depression, we measured protein expression of brain-derived neurotrophic factor (BDNF) pro-peptide, BDNF precursors (proBDNF and preproBDNF) in the brain regions of LH (susceptible) and non-LH rats (resilience). Expression of preproBDNF, proBDNF and BDNF pro-peptide in the medial prefrontal cortex of LH rats, but not non-LH rats, was significantly higher than control rats, although expression of these proteins in the nucleus accumbens of LH rats was significantly lower than control rats. This study suggests that regional differences in conversion of BDNF precursors into BDNF and BDNF pro-peptide by proteolytic cleavage may contribute to stress resilience.
Sikorra, Stefan; Litschko, Christa; Müller, Carina; Thiel, Nadine; Galli, Thierry; Eichner, Timo; Binz, Thomas
2016-01-29
Botulinum neurotoxins (BoNTs) are highly potent bacterial proteins that block neurotransmitter release at the neuromuscular junction by cleaving SNAREs (soluble N-ethyl maleimide sensitive factor attachment protein receptors). However, their serotype A (BoNT/A) that cleaves SNAP-25 (synaptosomal-associated protein of 25 kDa) has also been an established pharmaceutical for treatment of medical conditions that rely on hyperactivity of cholinergic nerve terminals for 25 years. The expansion of its use to a variety of further medical conditions associated with hypersecretion components is prevented partly because the involved SNARE isoforms are not cleaved. Therefore, we examined by mutational analyses the reason for the resistance of human SNAP-23, an isoform of SNAP-25. We show that replacement of 10 SNAP-23 residues with their SNAP-25 counterparts effects SNAP-25-like cleavability. Conversely, transfer of each of the replaced SNAP-23 residues to SNAP-25 drastically decreased the cleavability of SNAP-25. By means of the existing SNAP-25-toxin co-crystal structure, molecular dynamics simulations, and corroborative mutagenesis studies, the appropriate binding pockets for these residues in BoNT/A were characterized. Systematic mutagenesis of two major BoNT/A binding pockets was conducted in order to adapt these pockets to corresponding amino acids of human SNAP-23. Human SNAP-23 cleaving mutants were isolated using a newly established yeast-based screening system. This method may be useful for engineering novel BoNT/A pharmaceuticals for the treatment of diseases that rely on SNAP-23-mediated hypersecretion. Copyright © 2015 Elsevier Ltd. All rights reserved.
Jiang, H; Chen, S; Li, C; Lu, N; Yue, Y; Yin, Y; Zhang, Y; Zhi, X; Zhang, D; Yuan, Y
2017-04-04
Evidence demonstrates that brain-derived neurotrophic factor (BDNF) has a pivotal role in the pathogenesis of major depressive disorder (MDD). Precursor-BDNF (proBDNF) and mature BDNF (mBDNF) have opposing biological effects in neuroplasticity, and the tissue-type plasminogen activator (tPA)/plasmin system is crucial in the cleavage processing of proBDNF to mBDNF. However, very little is known about the role of the tPA-BDNF pathway in MDD. We examined serum protein concentrations in the tPA-BDNF pathway, including tPA, BDNF, tropomyosin receptor kinase B (TrkB), proBDNF and p75NTR, obtained from 35 drug-free depressed patients before and after 8 weeks of escitalopram (mean 12.5 mg per day) or duloxetine (mean 64 mg per day) treatment and 35 healthy controls using sandwich ELISA (enzyme-linked immunosorbent assay) methods. Serum tPA and BDNF and the ratio of BDNF/proBDNF were significantly lower in the MDD patients than in controls, whereas TrkB, proBDNF and its receptor p75NTR were higher. After 8 weeks of treatment, tPA, BDNF and proBDNF and the BDNF/proBDNF ratio were reversed, but p75NTR was higher than baseline, and TrkB was not significantly changed. tPA, BDNF, TrkB, proBDNF and p75NTR all yielded fairly good or excellent diagnostic performance (area under the receiver operating characteristic curve (AUC) >0.8 or 0.9). Combination of these five proteins demonstrated much better diagnostic effectiveness (AUC: 0.977) and adequate sensitivity and specificity of 88.1% and 92.7%, respectively. Our results suggest that the tPA-BDNF lysis pathway may be implicated in the pathogenesis of MDD and the mechanisms underlying antidepressant therapeutic action. The combination of tPA, BDNF, TrkB, proBDNF and p75NTR may provide a diagnostic biomarker panel for MDD.
NASA Astrophysics Data System (ADS)
Sharma, Anup Dutt
Peripheral nerve regeneration is a complex biological process responsible for regrowth of neural tissue following a nerve injury. The main objective of this project was to enhance peripheral nerve regeneration using interdisciplinary approaches involving polymeric scaffolds, stem cell therapy, drug delivery and high content screening. Biocompatible and biodegradable polymeric materials such as poly (lactic acid) were used for engineering conduits with micropatterns capable of providing mechanical support and orientation to the regenerating axons and polyanhydrides for fabricating nano/microparticles for localized delivery of neurotrophic growth factors and cytokines at the site of injury. Transdifferentiated bone marrow stromal cells or mesenchymal stem cells (MSCs) were used as cellular replacements for lost native Schwann cells (SCs) at the injured nerve tissue. MSCs that have been transdifferentiated into an SC-like phenotype were tested as a substitute for the myelinating SCs. Also, genetically modified MSCs were engineered to hypersecrete brain- derived neurotrophic factor (BDNF) and glial cell line-derived neurotrophic factor (GDNF) to secrete therapeutic factors which Schwann cell secrete. To further enhance the regeneration, nerve growth factor (NGF) and interleukin-4 (IL4) releasing polyanhydrides nano/microparticles were fabricated and characterized in vitro for their efficacy. Synergistic use of these proposed techniques was used for fabricating a multifunctional nerve regeneration conduit which can be used as an efficient tool for enhancing peripheral nerve regeneration.
Lemos, José R; Alves, Cleber R; de Souza, Sílvia B C; Marsiglia, Julia D C; Silva, Michelle S M; Pereira, Alexandre C; Teixeira, Antônio L; Vieira, Erica L M; Krieger, José E; Negrão, Carlos E; Alves, Guilherme B; de Oliveira, Edilamar M; Bolani, Wladimir; Dias, Rodrigo G; Trombetta, Ivani C
2016-02-01
Besides neuronal plasticity, the neurotrophin brain-derived neurotrophic factor (BDNF) is also important in vascular function. The BDNF has been associated with angiogenesis through its specific receptor tropomyosin-related kinase B (TrkB). Additionally, Val66Met polymorphism decreases activity-induced BDNF. Since BDNF and TrkB are expressed in vascular endothelial cells and aerobic exercise training can increase serum BDNF, this study aimed to test the hypotheses: 1) Serum BDNF levels modulate peripheral blood flow; 2) The Val66Met BDNF polymorphism impairs exercise training-induced vasodilation. We genotyped 304 healthy male volunteers (Val66Val, n = 221; Val66Met, n = 83) who underwent intense aerobic exercise training on a running track three times/wk for 4 mo. We evaluated pre- and post-exercise training serum BDNF and proBDNF concentration, heart rate (HR), mean blood pressure (MBP), forearm blood flow (FBF), and forearm vascular resistance (FVR). In the pre-exercise training, BDNF, proBDNF, BDNF/proBDNF ratio, FBF, and FVR were similar between genotypes. After exercise training, functional capacity (V̇o2 peak) increased and HR decreased similarly in both groups. Val66Val, but not Val66Met, increased BDNF (interaction, P = 0.04) and BDNF/proBDNF ratio (interaction, P < 0.001). Interestingly, FBF (interaction, P = 0.04) and the FVR (interaction, P = 0.01) responses during handgrip exercise (HG) improved in Val66Val compared with Val66Met, even with similar responses of HR and MBP. There were association between BDNF/proBDNF ratio and FBF (r = 0.64, P < 0.001) and FVR (r = -0.58, P < 0.001) during HG exercise. These results show that peripheral vascular reactivity and serum BDNF responses to exercise training are impaired by the BDNF Val66Met polymorphism and such responsiveness is associated with serum BDNF concentrations in healthy subjects. Copyright © 2016 the American Physiological Society.
Ventskovska, Olena; Porkka-Heiskanen, Tarja; Karpova, Nina N
2015-04-01
Brain-derived neurotrophic factor (Bdnf) regulates neuronal plasticity, slow wave activity and sleep homeostasis. Environmental stimuli control Bdnf expression through epigenetic mechanisms, but there are no data on epigenetic regulation of Bdnf by sleep or sleep deprivation. Here we investigated whether 5-methylcytosine (5mC) DNA modification at Bdnf promoters p1, p4 and p9 influences Bdnf1, Bdnf4 and Bdnf9a expression during the normal inactive phase or after sleep deprivation (SD) (3, 6 and 12 h, end-times being ZT3, ZT6 and ZT12) in rats in two brain areas involved in sleep regulation, the basal forebrain and cortex. We found a daytime variation in cortical Bdnf expression: Bdnf1 expression was highest at ZT6 and Bdnf4 lowest at ZT12. Such variation was not observed in the basal forebrain. Also Bdnf p1 and p9 methylation levels differed only in the cortex, while Bdnf p4 methylation did not vary in either area. Factorial analysis revealed that sleep deprivation significantly induced Bdnf1 and Bdnf4 with the similar pattern for Bdnf9a in both basal forebrain and cortex; 12 h of sleep deprivation decreased 5mC levels at the cortical Bdnf p4 and p9. Regression analysis between the 5mC promoter levels and the corresponding Bdnf transcript expression revealed significant negative correlations for the basal forebrain Bdnf1 and cortical Bdnf9a transcripts in only non-deprived rats, while these correlations were lost after sleep deprivation. Our results suggest that Bdnf transcription during the light phase of undisturbed sleep-wake cycle but not after SD is regulated at least partially by brain site-specific DNA methylation. © 2014 European Sleep Research Society.
Yang, B; Ren, Q; Zhang, J-C; Chen, Q-X; Hashimoto, K
2017-05-16
Brain-derived neurotrophic factor (BDNF) has a role in the pathophysiology of psychiatric disorders. The precursor proBDNF is converted to mature BDNF and BDNF pro-peptide, the N-terminal fragment of proBDNF; however, the precise function of these proteins in psychiatric disorders is unknown. We sought to determine whether expression of these proteins is altered in the brain and peripheral tissues from patients with psychiatric disorders. We measured protein expression of proBDNF, mature BDNF and BDNF pro-peptide in the parietal cortex, cerebellum, liver and spleen from control, major depressive disorder (MDD), schizophrenia (SZ) and bipolar disorder (BD) groups. The levels of mature BDNF in the parietal cortex from MDD, SZ and BD groups were significantly lower than the control group, whereas the levels of BDNF pro-peptide in this area were significantly higher than controls. In contrast, the levels of proBDNF and BDNF pro-peptide in the cerebellum of MDD, SZ and BD groups were significantly lower than controls. Moreover, the levels of mature BDNF from the livers of MDD, SZ and BD groups were significantly higher than the control group. The levels of mature BDNF in the spleen did not differ among the four groups. Interestingly, there was a negative correlation between mature BDNF in the parietal cortex and mature BDNF in the liver in all the subjects. These findings suggest that abnormalities in the production of mature BDNF and BDNF pro-peptide in the brain and liver might have a role in the pathophysiology of psychiatric disorders, indicating a brain-liver axis in psychiatric disorders.
Chang, Chuan-Chia; Chang, Hsin-An; Chen, Tien-Yu; Fang, Wen-Hui; Huang, San-Yuan
2014-09-01
The Val/Val genotype of the brain-derived neurotrophic factor (BDNF) polymorphism (Val66Met) has been reported to affect human anxiety-related phenotypes. Substantial research has demonstrated that anxiety is associated with sympathetic activation, while sex steroid hormones have been shown to exert differential actions in regulating BDNF expression. Thus, we examined whether the BDNF variant modulates autonomic function in a gender-dependent manner. From 708 adults initially screened for medical and psychiatric illnesses, a final cohort of 583 drug-free healthy Han Chinese (355 males, 228 females; age 34.43±8.42 years) was recruited for BDNF genotyping (Val/Val: 136, 23.3%, Val/Met: 294, 50.4%, and Met/Met: 153, 26.2%). Time- and frequency-domain analyses of heart rate variability (HRV) were used to assess autonomic outflow to the heart. Significant genotype-by-gender interaction effects were found on HRV indices. Even after adjusting for possible confounders, male participants bearing the Val/Val genotype had significant increases in low frequency (LF), LF% and LF/high frequency (HF) ratio, indicating altered sympathovagal balance with increased sympathetic modulation, compared to male Met/Met homozygotes. Females, however, showed an opposite but non-significant pattern. These results suggest that the studied BDNF polymorphism is associated with sympathetic control in a gender-specific way. The findings here support the view that male subjects with the Val/Val genotype have increased risk of anxiety by association with sympathetic activation. Copyright © 2014 Elsevier Ltd. All rights reserved.
Voluntary Exercise Produces Antidepressant and Anxiolytic Behavioral Effects in Mice
Duman, Catharine H.; Schlesinger, Lee; Russell, David S.; Duman, Ronald S.
2008-01-01
Reports of beneficial effects of exercise on psychological health in humans are increasingly supported by basic research studies. Exercise is hypothesized to regulate antidepressant-related mechanisms and we therefore characterized the effects of chronic exercise in mouse behavioral paradigms relevant to antidepressant actions. Mice given free access to running wheels showed antidepressant-like behavior in learned helplessness, forced-swim (FST) and tail suspension paradigms. These responses were similar to responses of antidepressant drug-treated animals. When tested under conditions where locomotor activity was not altered, exercising mice also showed reduced anxiety compared to sedentary control mice. In situ hybridization analysis showed that BDNF mRNA was increased in specific subfields of hippocampus after wheel running. We chose one paradigm, the FST, in which to investigate a functional role for brain-derived neurotrophic factor (BDNF) in the behavioral response to exercise. We tested mice heterozygous for a deletion of the BDNF gene in the FST after wheel-running. Exercising wild-type mice showed the expected antidepressant-like behavioral response in the FST but exercise was ineffective in improving FST performance in heterozygous BDNF knockout mice. A possible functional contribution of a BDNF signaling pathway to FST performance in exercising mice was investigated using the specific MEK inhibitor PD184161 to block the MAPK signaling pathway. Subchronic administration of PD184161 to exercising mice blocked the antidepressant-like behavioral response seen in vehicle-treated exercising mice in the FST. In summary, chronic wheel-running exercise in mice results in antidepressant-like behavioral changes that may involve a BDNF related mechanism similar to that hypothesized for antidepressant drug treatment. PMID:18267317
Mastroeni, Claudia; Bergmann, Til Ole; Rizzo, Vincenzo; Ritter, Christoph; Klein, Christine; Pohlmann, Ines; Brueggemann, Norbert; Quartarone, Angelo; Siebner, Hartwig Roman
2013-01-01
Repetitive transcranial magnetic stimulation (rTMS) of the human motor hand area (M1HAND) can induce lasting changes in corticospinal excitability as indexed by a change in amplitude of the motor-evoked potential. The plasticity-inducing effects of rTMS in M1HAND show substantial inter-individual variability which has been partially attributed to the val(66)met polymorphism in the brain-derived neurotrophic factor (BDNF) gene. Here we used theta burst stimulation (TBS) to examine whether the BDNF val(66)met genotype can be used to predict the expression of TBS-induced homeostatic metaplasticity in human M1HAND. TBS is a patterned rTMS protocol with intermittent TBS (iTBS) usually inducing a lasting increase and continuous TBS (cTBS) a lasting decrease in corticospinal excitability. In three separate sessions, healthy val(66)met (n = 12) and val(66)val (n = 17) carriers received neuronavigated cTBS followed by cTBS (n = 27), cTBS followed by iTBS (n = 29), and iTBS followed by iTBS (n = 28). Participants and examiner were blinded to the genotype at the time of examination. As expected, the first TBS intervention induced a decrease (cTBS) and increase (iTBS) in corticospinal excitability, respectively, at the same time priming the after effects caused by the second TBS intervention in a homeostatic fashion. Critically, val(66)met carriers and val(66)val carriers showed very similar response patterns to cTBS and iTBS regardless of the order of TBS interventions. Since none of the observed TBS effects was modulated by the BDNF val(66)met polymorphism, our results do not support the notion that the BDNF val(66)met genotype is a major player with regard to TBS-induced plasticity and metaplasticity in the human M1HAND.
Rizzo, Vincenzo; Ritter, Christoph; Klein, Christine; Pohlmann, Ines; Brueggemann, Norbert; Quartarone, Angelo; Siebner, Hartwig Roman
2013-01-01
Repetitive transcranial magnetic stimulation (rTMS) of the human motor hand area (M1HAND) can induce lasting changes in corticospinal excitability as indexed by a change in amplitude of the motor-evoked potential. The plasticity-inducing effects of rTMS in M1HAND show substantial inter-individual variability which has been partially attributed to the val66met polymorphism in the brain-derived neurotrophic factor (BDNF) gene. Here we used theta burst stimulation (TBS) to examine whether the BDNF val66met genotype can be used to predict the expression of TBS-induced homeostatic metaplasticity in human M1HAND. TBS is a patterned rTMS protocol with intermittent TBS (iTBS) usually inducing a lasting increase and continuous TBS (cTBS) a lasting decrease in corticospinal excitability. In three separate sessions, healthy val66met (n = 12) and val66val (n = 17) carriers received neuronavigated cTBS followed by cTBS (n = 27), cTBS followed by iTBS (n = 29), and iTBS followed by iTBS (n = 28). Participants and examiner were blinded to the genotype at the time of examination. As expected, the first TBS intervention induced a decrease (cTBS) and increase (iTBS) in corticospinal excitability, respectively, at the same time priming the after effects caused by the second TBS intervention in a homeostatic fashion. Critically, val66met carriers and val66val carriers showed very similar response patterns to cTBS and iTBS regardless of the order of TBS interventions. Since none of the observed TBS effects was modulated by the BDNF val66met polymorphism, our results do not support the notion that the BDNF val66met genotype is a major player with regard to TBS-induced plasticity and metaplasticity in the human M1HAND. PMID:23469118
ERIC Educational Resources Information Center
Dulka, Brooke N.; Ford, Ellen C.; Lee, Melissa A.; Donnell, Nathaniel J.; Goode, Travis D.; Prosser, Rebecca; Cooper, Matthew A.
2016-01-01
Brain-derived neurotrophic factor (BDNF) is essential for memory processes. The present study tested whether proteolytic cleavage of proBDNF into mature BDNF (mBDNF) within the basolateral amygdala (BLA) regulates the consolidation of defeat-related memories. We found that acute social defeat increases the expression of mBDNF, but not proBDNF, in…
Intra-adrenal Aldosterone Secretion: Segmental Adrenal Venous Sampling for Localization.
Satani, Nozomi; Ota, Hideki; Seiji, Kazumasa; Morimoto, Ryo; Kudo, Masataka; Iwakura, Yoshitsugu; Ono, Yoshikiyo; Nezu, Masahiro; Omata, Kei; Ito, Sadayoshi; Satoh, Fumitoshi; Takase, Kei
2016-01-01
To use segmental adrenal venous sampling (AVS) (S-AVS) of effluent tributaries (a version of AVS that, in addition to helping identify aldosterone hypersecretion, also enables the evaluation of intra-adrenal hormone distribution) to detect and localize intra-adrenal aldosterone secretion. The institutional review board approved this study, and all patients provided informed consent. S-AVS was performed in 65 patients with primary aldosteronism (34 men; mean age, 50.9 years ± 11 [standard deviation]). A microcatheter was inserted in first-degree tributary veins. Unilateral aldosterone hypersecretion at the adrenal central vein was determined according to the lateralization index after cosyntropin stimulation. Excess aldosterone secretion at the adrenal tributary vein was considered to be present when the aldosterone/cortisol ratio from this vein exceeded that from the external iliac vein; suppressed secretion was indicated by the opposite pattern. Categoric variables were expressed as numbers and percentages; continuous variables were expressed as means ± standard errors of the mean. The AVS success rate, indicated by a selectivity index of 5 or greater, was 98% (64 of 65). The mean numbers of sampled tributaries on the left and right sides were 2.11 and 1.02, respectively. The following diagnoses were made on the basis of S-AVS results: unilateral aldosterone hypersecretion in 30 patients, bilateral hypersecretion without suppressed segments in 22 patients, and bilateral hypersecretion with at least one suppressed segment in 12 patients. None of the patients experienced severe complications. S-AVS could be used to identify heterogeneous intra-adrenal aldosterone secretion. Patients who have bilateral aldosterone-producing adenomas can be treated with adrenal-sparing surgery or other minimally invasive local therapies if any suppressed segment is identified at S-AVS. © RSNA, 2015.
LTB(4)-induced nasal gland serous cell secretion mediated by neutrophil elastase.
Cardell, L O; Agustí, C; Takeyama, K; Stjärne, P; Nadel, J A
1999-08-01
Local allergen challenge causes nasal hypersecretion and also causes local leukotriene (LT) release, including LTB(4). Because LTB(4) causes leukocyte recruitment, and because neutrophil elastase is a potent secretagogue, we examined the hypothesis that LTB(4) causes nasal hypersecretion via neutrophil elastase. We developed a method for isolating and superfusing a nasal segment in dogs. Instillation of LTB(4) into the nasal segment caused a time-dependent increase in the volume of airway fluid, in lysozyme secretion, and in the recruitment of neutrophils. ICI 200,355, a selective inhibitor of neutrophil elastase, prevented LTB(4)-induced nasal secretion and lysozyme secretion, but it had no effect on neutrophil recruitment. We conclude that LTB(4) causes potent nasal secretion via release of elastase, and therefore LTB(4) may play a major role in allergic nasal hypersecretion.
BDNF rs6265 methylation and genotype interact on risk for schizophrenia.
Ursini, Gianluca; Cavalleri, Tommaso; Fazio, Leonardo; Angrisano, Tiziana; Iacovelli, Luisa; Porcelli, Annamaria; Maddalena, Giancarlo; Punzi, Giovanna; Mancini, Marina; Gelao, Barbara; Romano, Raffaella; Masellis, Rita; Calabrese, Francesca; Rampino, Antonio; Taurisano, Paolo; Di Giorgio, Annabella; Keller, Simona; Tarantini, Letizia; Sinibaldi, Lorenzo; Quarto, Tiziana; Popolizio, Teresa; Caforio, Grazia; Blasi, Giuseppe; Riva, Marco A; De Blasi, Antonio; Chiariotti, Lorenzo; Bollati, Valentina; Bertolino, Alessandro
2016-01-01
Epigenetic mechanisms can mediate gene-environment interactions relevant for complex disorders. The BDNF gene is crucial for development and brain plasticity, is sensitive to environmental stressors, such as hypoxia, and harbors the functional SNP rs6265 (Val(66)Met), which creates or abolishes a CpG dinucleotide for DNA methylation. We found that methylation at the BDNF rs6265 Val allele in peripheral blood of healthy subjects is associated with hypoxia-related early life events (hOCs) and intermediate phenotypes for schizophrenia in a distinctive manner, depending on rs6265 genotype: in ValVal individuals increased methylation is associated with exposure to hOCs and impaired working memory (WM) accuracy, while the opposite is true for ValMet subjects. Also, rs6265 methylation and hOCs interact in modulating WM-related prefrontal activity, another intermediate phenotype for schizophrenia, with an analogous opposite direction in the 2 genotypes. Consistently, rs6265 methylation has a different association with schizophrenia risk in ValVals and ValMets. The relationships of methylation with BDNF levels and of genotype with BHLHB2 binding likely contribute to these opposite effects of methylation. We conclude that BDNF rs6265 methylation interacts with genotype to bridge early environmental exposures to adult phenotypes, relevant for schizophrenia. The study of epigenetic changes in regions containing genetic variation relevant for human diseases may have beneficial implications for the understanding of how genes are actually translated into phenotypes.
Martínez-Levy, G A; Rocha, L; Lubin, F D; Alonso-Vanegas, M A; Nani, A; Buentello-García, R M; Pérez-Molina, R; Briones-Velasco, M; Recillas-Targa, F; Pérez-Molina, A; San-Juan, D; Cienfuegos, J; Cruz-Fuentes, C S
2016-02-09
A putative role of the brain-derived neurotrophic factor (BDNF) in epilepsy has emerged from in vitro and animal models, but few studies have analyzed human samples. We assessed the BDNF expression of transcripts with exons I (BDNFI), II (BDNFII), IV (BDNFIV) and VI (BDNFVI) and methylation levels of promoters 4 and 6 in the hippocampi of patients with pharmaco-resistant temporal lobe epilepsy (TLE) (n=24). Hippocampal sclerosis (HS) and pre-surgical pharmacological treatment were considered as clinical independent variables. A statistical significant increase for the BDNFVI (p<0.05) was observed in TLE patients compared to the autopsy control group (n=8). BDNFVI was also increased in anxiety/depression TLE (N=4) when compared to autopsies or to the remaining group of patients (p<0.05). In contrast, the use of the antiepileptic drug Topiramate (TPM) (N=3) was associated to a decrease in BDNFVI expression (p<0.05) when compared to the remaining group of patients. Methylation levels at the BDNF promoters 4 and 6 were similar between TLE and autopsies and in relation to the use of either Sertraline (SRT) or TPM. These results suggest an up-regulated expression of a specific BDNF transcript in patients with TLE, an effect that seems to be dependent on the use of specific drugs. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.
Yamamori, Hidenaga; Hashimoto, Ryota; Ishima, Tamaki; Kishi, Fukuko; Yasuda, Yuka; Ohi, Kazutaka; Fujimoto, Michiko; Umeda-Yano, Satomi; Ito, Akira; Hashimoto, Kenji; Takeda, Masatoshi
2013-11-27
Brain-derived neurotrophic factor (BDNF) regulates the survival and growth of neurons, and influences synaptic efficiency and plasticity. Peripheral BDNF levels in patients with schizophrenia have been widely reported in the literature. However, it is still controversial whether peripheral levels of BDNF are altered in patients with schizophrenia. The peripheral BDNF levels previously reported in patients with schizophrenia were total BDNF (proBDNF and mature BDNF) as it was unable to specifically measure mature BDNF due to limited BDNF antibody specificity. In this study, we examined whether peripheral levels of mature BDNF were altered in patients with treatment-resistant schizophrenia. Matrix metalloproteinase-9 (MMP-9) levels were also measured, as MMP-9 plays a role in the conversion of proBDNF to mature BDNF. Twenty-two patients with treatment-resistant schizophrenia treated with clozapine and 22 age- and sex-matched healthy controls were enrolled. The plasma levels of mature BDNF and MMP-9 were measured using ELISA kits. No significant difference was observed for mature BDNF however, MMP-9 was significantly increased in patients with schizophrenia. The significant correlation was observed between mature BDNF and MMP-9 plasma levels. Neither mature BDNF nor MMP-9 plasma levels were associated clinical variables. Our results do not support the view that peripheral BDNF levels are associated with schizophrenia. MMP-9 may play a role in the pathophysiology of schizophrenia and serve as a biomarker for schizophrenia. Copyright © 2013 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.
Diniz, Cassiano R A F; Casarotto, Plinio C; Resstel, Leonardo; Joca, Sâmia R L
2018-04-04
Depression and posttraumatic stress disorder are assumed to be maladaptive responses to stress and antidepressants are thought to counteract such responses by increasing BDNF (brain-derived neurotrophic factor) levels. BDNF acts through TrkB (tropomyosin-related receptor kinase B) and plays a central role in neuroplasticity. In contrast, both precursor proBDNF and BDNF propeptide (another metabolic product from proBDNF cleavage) have a high affinity to p75 receptor (p75R) and usually convey apoptosis and neuronal shrinkage. Although BDNF and proBDNF/propeptide apparently act in opposite ways, neuronal turnover and remodeling might be a final common way that both act to promote more effective neuronal networking, avoiding neuronal redundancy and the misleading effects of environmental contingencies. This review aims to provide a brief overview about the BDNF functional role in antidepressant action and about p75R and TrkB signaling to introduce the "continuum-sorting hypothesis." The resulting hypothesis suggests that both BDNF/proBDNF and BDNF/propeptide act as protagonists to fine-tune antidepressant-dependent neuroplasticity in crucial brain structures to modulate behavioral responses to stress. Copyright © 2018 Elsevier Ltd. All rights reserved.
Failla, Michelle D; Conley, Yvette P; Wagner, Amy K
2016-01-01
Older adults have higher mortality rates after severe traumatic brain injury (TBI) compared to younger adults. Brain-derived neurotrophic factor (BDNF) signaling is altered in aging and is important to TBI given its role in neuronal survival/plasticity and autonomic function. Following experimental TBI, acute BDNF administration has not been efficacious. Clinically, genetic variation in BDNF (reduced signaling alleles: rs6265, Met-carriers; rs7124442, C-carriers) can be protective against acute mortality. Postacutely, these genotypes carry lower mortality risk in older adults and greater mortality risk among younger adults. Investigate BDNF levels in mortality/outcome following severe TBI in the context of age and genetic risk. Cerebrospinal fluid (CSF) and serum BDNF were assessed prospectively during the first week following severe TBI (n = 203) and in controls (n = 10). Age, BDNF genotype, and BDNF levels were assessed as mortality/outcome predictors. CSF BDNF levels tended to be higher post-TBI (P = .061) versus controls and were associated with time until death (P = .042). In contrast, serum BDNF levels were reduced post-TBI versus controls (P < .0001). Both gene * BDNF serum and gene * age interactions were mortality predictors post-TBI in the same multivariate model. CSF and serum BDNF tended to be negatively correlated post-TBI (P = .07). BDNF levels predicted mortality, in addition to gene * age interactions, suggesting levels capture additional mortality risk. Higher CSF BDNF post-TBI may be detrimental due to injury and age-related increases in pro-apoptotic BDNF target receptors. Negative CSF and serum BDNF correlations post-TBI suggest blood-brain barrier transit alterations. Understanding BDNF signaling in neuronal survival, plasticity, and autonomic function may inform treatment. © The Author(s) 2015.
Cai, Qian-Ying; Zhang, Heng-Xin; Wang, Chen-Chen; Sun, Hao; Sun, Shu-Qiang; Wang, Yu-Huan; Yan, Hong-Tao; Yang, Xin-Jun
2017-08-01
To measure levels of placental brain derived neurotrophic factor (BDNF) gene expression and umbilical cord blood BDNF in neonates with nondiabetic macrosomia and determine associations between these levels and macrosomia. This case-control study included 58 nondiabetic macrosomic and 59 normal birth weight mother-infant pairs. Data were collected from interviews and our hospital's database. BDNF gene expression was quantified in placental tissues using quantitative real-time polymerase chain reaction (n = 117). Umbilical cord blood BDNF levels were measured by enzyme-linked immunosorbent assay (n = 90). Multivariate logistic regression models were used to evaluate associations between BDNF levels and macrosomia. Placental BDNF gene expression (P = 0.026) and cord blood BDNF (P = 0.008) were lower in neonates with nondiabetic macrosomia than in normal birth weight controls. Cord blood BDNF was significantly lower in vaginally delivered macrosomic neonates than vaginally delivered controls (P = 0.014), but cord BDNF did not differ between vaginal and cesarean section delivery modes in macrosomic neonates. Cord blood BDNF was positively associated with gestational age in control neonates (r = 0.496, P < 0.001), but not in macrosomic neonates. Cord blood BDNF was positively associated with placental BDNF relative expression (r s = 0.245, P = 0.02) in the total group. Higher cord blood BDNF levels were independently associated with protection against nondiabetic macrosomia (adjusted odds ratio 0.992; 95% confidence interval 0.986-0.998). Both placental BDNF gene expression and cord blood BDNF were downregulated in neonates with nondiabetic macrosomia compared with normal birth weight neonates. Cord BDNF may partly derive from BDNF secreted by the placenta. Higher cord plasma BDNF levels protected against nondiabetic macrosomia.
2010-01-01
Background Stress involves alterations of brain functioning that may precipitate to mood disorders. The neurotrophin Brain Derived Neurotrophic Factor (BDNF) has recently been involved in stress-induced adaptation. BDNF is a key regulator of neuronal plasticity and adaptive processes. Regulation of BDNF is complex and may reflect not only stress-specific mechanisms but also hormonal and emotional responses. For this reason we used, as an animal model of stress, a fish whose brain organization is very similar to that of higher vertebrates, but is generally considered free of emotional reactions. Results We provide a comprehensive characterization of BDNF gene in the Dicentrarchus labrax and its transcriptional, translational and post-translational regulation following acute stress. While total BDNF mRNA levels are unchanged, BDNF transcripts 1c and 1d resulted down regulated after acute stress. Acute stress induces also a significant increase in proBDNF levels and reduction in mature BDNF suggesting altered regulation of proBDNF proteolytic processing. Notably, we provide here the first evidence that fishes possess a simplified proteolytic regulation of BDNF since the pro28Kda form, generated by the SKI-1 protease in mammals, is absent in fishes because the cleavage site has first emerged in reptilians. Finally, we show that the proBDNF/totBDNF ratio is a highly predictive novel quantitative biomarker to detect stress in fishes with sensitivity = 100%, specificity = 87%, and Negative Predictive Value = 100%. Conclusion The high predictivity of proBDNF/totBDNF ratio for stress in lower vertebrates indicates that processing of BDNF is a central mechanism in adaptation to stress and predicts that a similar regulation of pro/mature BDNF has likely been conserved throughout evolution of vertebrates from fish to man. PMID:20074340
Tognoli, Chiara; Rossi, Federica; Di Cola, Francesco; Baj, Gabriele; Tongiorgi, Enrico; Terova, Genciana; Saroglia, Marco; Bernardini, Giovanni; Gornati, Rosalba
2010-01-14
Stress involves alterations of brain functioning that may precipitate to mood disorders. The neurotrophin Brain Derived Neurotrophic Factor (BDNF) has recently been involved in stress-induced adaptation. BDNF is a key regulator of neuronal plasticity and adaptive processes. Regulation of BDNF is complex and may reflect not only stress-specific mechanisms but also hormonal and emotional responses. For this reason we used, as an animal model of stress, a fish whose brain organization is very similar to that of higher vertebrates, but is generally considered free of emotional reactions. We provide a comprehensive characterization of BDNF gene in the Dicentrarchus labrax and its transcriptional, translational and post-translational regulation following acute stress. While total BDNF mRNA levels are unchanged, BDNF transcripts 1c and 1d resulted down regulated after acute stress. Acute stress induces also a significant increase in proBDNF levels and reduction in mature BDNF suggesting altered regulation of proBDNF proteolytic processing. Notably, we provide here the first evidence that fishes possess a simplified proteolytic regulation of BDNF since the pro28Kda form, generated by the SKI-1 protease in mammals, is absent in fishes because the cleavage site has first emerged in reptilians. Finally, we show that the proBDNF/totBDNF ratio is a highly predictive novel quantitative biomarker to detect stress in fishes with sensitivity = 100%, specificity = 87%, and Negative Predictive Value = 100%. The high predictivity of proBDNF/totBDNF ratio for stress in lower vertebrates indicates that processing of BDNF is a central mechanism in adaptation to stress and predicts that a similar regulation of pro/mature BDNF has likely been conserved throughout evolution of vertebrates from fish to man.
O'Sullivan, E; Barrett, E; Grenham, S; Fitzgerald, P; Stanton, C; Ross, R P; Quigley, E M M; Cryan, J F; Dinan, T G
2011-09-01
Brain-derived neurotrophic factor (BDNF) is of interest because of its putative role in stress and psychiatric disorders. Maternal separation is used as an animal model of early-life stress and of irritable bowel syndrome (IBS). Animals exposed to the paradigm show altered gut function together with heightened levels of arousal and corticosterone. Some probiotic organisms have been shown to be of benefit in IBS and influence the brain-gut axis. Our objective was to investigate the effects of maternal separation on BDNF under basal conditions and in response to the probiotic Bifidobacterium breve 6330. The study implemented the maternal separation model which we have previously described. Polymerase chain reaction and in situ hybridisation were performed to measure the effect of maternal separation on both BDNF total variants and BDNF splice variant (exon) IV in the hippocampus. Maternally separated and non-separated rats were treated with B. breve 6330, to investigate the effect of this probiotic on BDNF total variant and BDNF exon IV expression. Maternal separation increased BDNF total variants (P<0.01), whilst having no effect on BDNF exon IV. B. breve 6330 increased BDNF total variants (P<0.01), and decreased BDNF splice variant IV, in non-separated rats (P<0.01). B. breve 6330 did not alter BDNF levels in the maternally separated rats. Maternal separation caused a marked increase in BDNF in the hippocampus. While B. breve 6330 influenced BDNF in normal animals, it had no significant effect on BDNF in those which were maternally separated. We have demonstrated that an orally administered probiotic can influence hippocampal BDNF.
Noble, Emily E.; Billington, Charles J.; Kotz, Catherine M.
2011-01-01
Brain-derived neurotrophic factor (BDNF) mediates energy metabolism and feeding behavior. As a neurotrophin, BDNF promotes neuronal differentiation, survival during early development, adult neurogenesis, and neural plasticity; thus, there is the potential that BDNF could modify circuits important to eating behavior and energy expenditure. The possibility that “faulty” circuits could be remodeled by BDNF is an exciting concept for new therapies for obesity and eating disorders. In the hypothalamus, BDNF and its receptor, tropomyosin-related kinase B (TrkB), are extensively expressed in areas associated with feeding and metabolism. Hypothalamic BDNF and TrkB appear to inhibit food intake and increase energy expenditure, leading to negative energy balance. In the hippocampus, the involvement of BDNF in neural plasticity and neurogenesis is important to learning and memory, but less is known about how BDNF participates in energy homeostasis. We review current research about BDNF in specific brain locations related to energy balance, environmental, and behavioral influences on BDNF expression and the possibility that BDNF may influence energy homeostasis via its role in neurogenesis and neural plasticity. PMID:21346243
Zhang, X; Zhu, J; Zhang, K; Liu, T; Zhang, Z
2016-12-30
This study was aimed at investigating the expression of brain-derived neurotrophic factor (BDNF) in mesenchymal stem cells (MSCs) modified with recombinant lentivirus bearing BDNF gene. Lentivirus vectors bearing BDNF gene were constructed. MSCs were isolated from rats and cultured. The lentiviral vectors containing BDNF gene were transfected into the MSCs, and BDNF gene and protein expressions were monitored with enhanced green fluorescent protein (EGFP). RT-PCR and Western blot were used to measure gene and protein expressions, respectibvely in MSCs, MSCs-EGFP and MSCs-EGFP-BDNF groups. Green fluorescence assay confirmed successful transfection of BDNF gene recombinant lentivirus into MSCs. RT-PCR and Western blot revealed that BDNF gene and protein expressions in the MSCs-EGFP-BDNF group were significantly higher than that in MSCs group and MSCs-EGFP group. There were no statistically significant differences in gene expression between MSCs and MSCs-EGFP groups. MSCs can over-express BDNF when transfected with recombinant lentivirus bearing BDNF gene.
Je, H Shawn; Yang, Feng; Ji, Yuanyuan; Potluri, Srilatha; Fu, Xiu-Qing; Luo, Zhen-Ge; Nagappan, Guhan; Chan, Jia Pei; Hempstead, Barbara; Son, Young-Jin; Lu, Bai
2013-06-12
During development, mammalian neuromuscular junctions (NMJs) transit from multiple-innervation to single-innervation through axonal competition via unknown molecular mechanisms. Previously, using an in vitro model system, we demonstrated that the postsynaptic secretion of pro-brain-derived neurotrophic factor (proBDNF) stabilizes or eliminates presynaptic axon terminals, depending on its proteolytic conversion at synapses. Here, using developing mouse NMJs, we obtained in vivo evidence that proBDNF and mature BDNF (mBDNF) play roles in synapse elimination. We observed that exogenous proBDNF promoted synapse elimination, whereas mBDNF infusion substantially delayed synapse elimination. In addition, pharmacological inhibition of the proteolytic conversion of proBDNF to mBDNF accelerated synapse elimination via activation of p75 neurotrophin receptor (p75(NTR)). Furthermore, the inhibition of both p75(NTR) and sortilin signaling attenuated synapse elimination. We propose a model in which proBDNF and mBDNF serve as potential "punishment" and "reward" signals for inactive and active terminals, respectively, in vivo.
Vinberg, Maj; Miskowiak, Kamilla; Hoejman, Pernille; Pedersen, Maria; Kessing, Lars Vedel
2015-01-01
The study aims to investigate the effect of repeated infusions of recombinant erythropoietin (EPO) on plasma brain derived neurotrophic factor (BDNF) levels in patients with affective disorders. In total, 83 patients were recruited: 40 currently depressed patients with treatment-resistant depression (TRD) (Hamilton Depression Rating Scale-17 items (HDRS-17) score >17) (study 1) and 43 patients with bipolar disorder (BD) in partial remission (HDRS-17 and Young Mania Rating Scale (YMRS) ≤ 14) (study 2). In both studies, patients were randomised to receive eight weekly EPO (Eprex; 40,000 IU) or saline (0.9% NaCl) infusions in a double-blind, placebo-controlled, parallel—group design. Plasma BDNF levels were measured at baseline and at weeks 5, 9 and at follow up, week 14. In contrast with our hypothesis, EPO down regulated plasma BDNF levels in patients with TRD (mean reduction at week 9 (95% CI): EPO 10.94 ng/l (4.51-21.41 ng/l); mean increase at week 9: Saline 0.52 ng/l, p=0.04 (-5.88-4.48 ng/l) p=0.04, partial ŋ2=0.12). No significant effects were found on BDNF levels in partially remitted patients with BD (p=0.35). The present effects of EPO on BDNF levels in patients with TRD point to a role of neurotrophic factors in the potential effects of EPO seen in TRD and BD. The neurobiological mechanisms underlying these effects and the interaction between EPO and peripheral levels on BDNF need to be further elucidated in human studies including a broad range of biomarkers. Trial Registration ClinicalTrials.gov: NCT00916552. PMID:26011424
Chen, Shiou-Lan; Lee, Sheng-Yu; Chang, Yun-Hsuan; Wang, Tzu-Yun; Chen, Shih-Heng; Chu, Chun-Hsien; Chen, Po See; Yang, Yen Kuang; Hong, Jau-Shyong; Lu, Ru-Band
2015-02-02
BDNF and its gene polymorphism may be important in synaptic plasticity and neuron survival, and may become a key target in the physiopathology of long-term heroin use. Thus, we investigated the relationships between brain-derived neurotrophic factor (BDNF) plasma concentrations and the BDNF Val66Met nucleotide polymorphism (SNP) in heroin-dependent patients. The pretreatment expression levels of plasma BDNF and the BDNF Val66Met SNP in 172 heroin-dependent patients and 102 healthy controls were checked. BDNF levels were significantly lower in patients (F = 52.28, p < 0.0001), but the distribution of the SNP was not significantly different. Nor were plasma BDNF levels significantly different between Met/Met, Met/Val, and Val/Val carriers in each group, which indicated that the BDNF Val66Met SNP did not affect plasma BDNF levels in our participants. In heroin-dependent patients, plasma BDNF levels were negatively correlated with the length of heroin dependency. Long-term (>15 years) users had significantly lower plasma BDNF levels than did short-term (<5 years) users. We conclude that plasma BDNF concentration in habitual heroin users are not affected by BDNF Val66Met gene variants, but by the length of the heroin dependency.
Chen, Shiou-Lan; Lee, Sheng-Yu; Chang, Yun-Hsuan; Wang, Tzu-Yun; Chen, Shih-Heng; Chu, Chun-Hsien; Chen, Po See; Yang, Yen Kuang; Hong, Jau-Shyong; Lu, Ru-Band
2015-01-01
BDNF and its gene polymorphism may be important in synaptic plasticity and neuron survival, and may become a key target in the physiopathology of long-term heroin use. Thus, we investigated the relationships between brain-derived neurotrophic factor (BDNF) plasma concentrations and the BDNF Val66Met nucleotide polymorphism (SNP) in heroin-dependent patients. The pretreatment expression levels of plasma BDNF and the BDNF Val66Met SNP in 172 heroin-dependent patients and 102 healthy controls were checked. BDNF levels were significantly lower in patients (F = 52.28, p < 0.0001), but the distribution of the SNP was not significantly different. Nor were plasma BDNF levels significantly different between Met/Met, Met/Val, and Val/Val carriers in each group, which indicated that the BDNF Val66Met SNP did not affect plasma BDNF levels in our participants. In heroin-dependent patients, plasma BDNF levels were negatively correlated with the length of heroin dependency. Long-term (>15 years) users had significantly lower plasma BDNF levels than did short-term (<5 years) users. We conclude that plasma BDNF concentration in habitual heroin users are not affected by BDNF Val66Met gene variants, but by the length of the heroin dependency. PMID:25640280
NMR backbone resonance assignments of the prodomain variants of BDNF in the urea denatured state.
Wang, Jing; Bains, Henrietta; Anastasia, Agustin; Bracken, Clay
2018-04-01
Brain derived neurotrophic factor (BDNF) is a member of the neurotrophin family of proteins which plays a central role in neuronal survival, growth, plasticity and memory. A single Val66Met variant has been identified in the prodomain of human BDNF that is associated with anxiety, depression and memory disorders. The structural differences within the full-length prodomain Val66 and Met66 isoforms could shed light on the mechanism of action of the Met66 and its impact on the development of neuropsychiatric-associated disorders. In the present study, we report the backbone 1 H, 13 C, and 15 N NMR assignments of both full-length Val66 and Met66 prodomains in the presence of 2 M urea. These conditions were utilized to suppress residual structure and aid subsequent native state structural investigations aimed at mapping and identifying variant-dependent conformational differences under native-state conditions.
SAXS Study of Sterically Stabilized Lipid Nanocarriers Functionalized by DNA
NASA Astrophysics Data System (ADS)
Angelov, Borislav; Angelova, Angelina; Filippov, Sergey; Karlsson, Göran; Terrill, Nick; Lesieur, Sylviane; Štěpánek, Petr
2012-03-01
The structure of novel spontaneously self-assembled plasmid DNA/lipid complexes is investigated by means of synchrotron radiation small-angle X-ray scattering (SAXS) and Cryo-TEM imaging. Liquid crystalline (LC) hydrated lipid systems are prepared using the non-ionic lipids monoolein and DOPE-PEG2000 and the cationic amphiphile CTAB. The employed plasmid DNA (pDNA) is encoding for the human protein brain-derived neurotrophic factor (BDNF). A coexistence of nanoparticulate objects with different LC inner organizations is established. A transition from bicontinuous membrane sponges, cubosome intermediates and unilamelar liposomes to multilamellar vesicles, functionalized by pDNA, is favoured upon binding and compaction of pBDNF onto the cationic PEGylated lipid nanocarriers. The obtained sterically stabilized multicompartment nanoobjects, with confined supercoiled plasmid DNA (pBDNF), are important in the context of multicompartment lipid nanocarriers of interest for gene therapy of neurodegenerative diseases.
Zhang, Fan; Luo, Jie; Min, Su; Ren, Li; Qin, Peipei
2016-07-01
This study investigated the effects of propofol and electroconvulsive shock (ECS), the analogue of electroconvulsive therapy (ECT) in animals, on tissue plasminogen activator (tPA) and its inhibitor (PAI-1) as well as the precursor of brain-derived neurotrophic factor (proBDNF)/mature BDNF (mBDNF) ratio in depressive rats. ECT is an effective treatment for depression, but can cause cognitive deficit. Some studies have indicated that propofol can ameliorate cognitive decline induced by ECT, but the underlying molecular mechanism is still unclear. Recent evidence has found that mBDNF and its precursor proBDNF are related to depression and cognitive function; they elicit opposite effects on cellular functions. Chronic unpredicted mild stress is widely used to induce depressive behaviors in rodents. This study found that the depression resulted in an increased expression of PAI-1 and upregulation of the proBDNF/mBDNF ratio, together with a decreased level of tPA, long-term potentiation (LTP) impairment, and cognitive decline. The proBDNF/mBDNF ratio was further upregulated after the ECS treatment in depressive rats, resulting in the deterioration of cognitive function and hippocampal LTP. Propofol alone did not reverse the changes in depressive rats, but when co-administered with ECS, it improved the cognitive function, alleviated the impairment of LTP, downregulated the proBDNF/mBDNF ratio, and increased the tPA expression. The results of this study suggest that propofol ameliorates cognitive decline induced by ECT, which was partly by modulating the proBDNF/mBDNF ratio and reversing the excessive changes in hippocampal synaptic plasticity, providing a new evidence for involving the proBDNF/mBDNF system in the progression and treatment of depression. Copyright © 2016 Elsevier B.V. All rights reserved.
Failla, Michelle D.; Conley, Yvette P.; Wagner, Amy K.
2015-01-01
Background Older adults have higher mortality rates after severe traumatic brain injury (TBI) compared to younger adults. Brain derived neurotrophic factor (BDNF) signaling is altered in aging and is important to TBI given its role in neuronal survival/plasticity and autonomic function. Following experimental TBI, acute BDNF administration has not been efficacious. Clinically, genetic variation in BDNF (reduced signaling alleles: rs6265, Met-carriers; rs7124442, C-carriers) were protective in acute mortality. Post-acutely, these genotypes carried lower mortality risk in older adults, and greater mortality risk among younger adults. Objective Investigate BDNF levels in mortality/outcome following severe TBI in the context of age and genetic risk. Methods CSF and serum BDNF were assessed prospectively during the first week following severe TBI (n=203), and in controls (n=10). Age, BDNF genotype, and BDNF levels were assessed as mortality/outcome predictors. Results CSF BDNF levels tended to be higher post-TBI (p=0.061) versus controls and were associated with time until death (p=0.042). In contrast, serum BDNF levels were reduced post-TBI versus controls (p<0.0001). Both gene*BDNF serum and gene*age interactions were mortality predictors post-TBI in the same multivariate model. CSF and serum BDNF tended to be negatively correlated post-TBI (p=0.07). Conclusions BDNF levels predicted mortality, in addition to gene*age interactions, suggesting levels capture additional mortality risk. Higher CSF BDNF post-TBI may be detrimental due to injury and age-related increases in pro-apoptotic BDNF target receptors. Negative CSF and serum BDNF correlations post-TBI suggest blood-brain barrier transit alterations. Understanding BDNF signaling in neuronal survival, plasticity, and autonomic function may inform treatment. PMID:25979196
Lee, Myoung-Hwa; Amin, Niranjana D.; Venkatesan, Arun; Wang, Tongguang; Tyagi, Richa; Pant, Harish C.; Nath, Avindra
2013-01-01
Human immunodeficiency virus (HIV) infection associated neurocognitive disorders (HAND) is accompanied with brain atrophy. In these patients, impairment of adult neurogenesis and neurite outgrowth in the hippocampus may contribute to the cognitive dysfunction. Although running exercises can enhance neurogenesis and normalize neurite outgrowth, the underlying molecular mechanisms are not well understood. The HIV envelope protein, gp120, has been shown to impair neurogenesis. Using a gp120 transgenic mouse model, we demonstrate that exercise stimulated neural progenitor cell (NPC) proliferation in the hippocampal dentate gyrus and increased the survival rate and generation of newborn cells. However sustained exercise activity was necessary since the effects were reversed by detraining. Exercise also normalized dendritic outgrowth of neurons. Furthermore, it also increased the expression of hippocampal brainderived neurotrophic factor (BDNF) and normalized hyperactivation of cyclin-dependent kinase 5 (Cdk5). Hyper-activated Cdk5 or gp120 treatment led to aberrant neurite outgrowth and BDNF treatment normalized the neurite outgrowth in NPC cultures. These results suggest that sustained exercise has trophic activity on the neuronal lineage which is mediated by Cdk5 modulation of the BDNF pathway. PMID:23982957
Chen, Shiou-Lan; Lee, Sheng-Yu; Chang, Yun-Hsuan; Chen, Shih-Heng; Chu, Chun-Hsien; Wang, Tzu-Yun; Chen, Po-See; Lee, I-Hui; Yang, Yen-Kuang; Hong, Jau-Shyong; Lu, Ru-Band
2014-06-03
Brain-derived neurotropic factor (BDNF) is widely distributed in the peripheral and central nervous systems. BDNF and its gene polymorphism may be important in synaptic plasticity and neuron survival, and may become a key target in the physiopathology of several mental illnesses. To elucidate the role of BDNF, we compared the plasma BDNF levels and the BDNF Val66Met gene variants effect in several mental disorders. We enrolled 644 participants: 177 patients with bipolar I disorder (BP-I), 190 with bipolar II disorder (BP-II), 151 with schizophrenia, and 126 healthy controls. Their plasma BDNF levels and BDNF Val66Met single nucleotide polymorphisms (SNP) were checked before pharmacological treatment. Plasma levels of BDNF were significantly lower in patients with schizophrenia than in healthy controls and patients with bipolar disorder (F = 37.667, p<0.001); the distribution of the BDNF Val66Met SNP was not different between groups (χ(2) = 5.289, p = 0.507). Nor were plasma BDNF levels significantly different between Met/Met, Met/Val, and Val/Val carriers in each group, which indicated that the BDNF Val66Met SNP did not influence plasma BDNF levels in our participants. Plasma BDNF levels were, however, significantly negatively correlated with depression scores in patients with bipolar disorder and with negative symptoms in patients with schizophrenia. We conclude that plasma BDNF profiles in different mental disorders are not affected by BDNF Val66Met gene variants, but by the process and progression of the illness itself. Copyright © 2014 Elsevier Inc. All rights reserved.
Cheeran, Binith; Talelli, Penelope; Mori, Francesco; Koch, Giacomo; Suppa, Antonio; Edwards, Mark; Houlden, Henry; Bhatia, Kailash; Greenwood, Richard; Rothwell, John C
2008-12-01
The brain-derived neurotrophic factor gene (BDNF) is one of many genes thought to influence synaptic plasticity in the adult brain and shows a common single nucleotide polymorphism (BDNF Val66Met) in the normal population that is associated with differences in hippocampal volume and episodic memory. It is also thought to influence possible synaptic changes in motor cortex following a simple motor learning task. Here we extend these studies by using new non-invasive transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (TDCS) techniques that directly test the excitability and plasticity of neuronal circuits in human motor cortex in subjects at rest. We investigated whether the susceptibility to TMS probes of plasticity is significantly influenced by the BDNF polymorphism. Val66Met carriers were matched with Val66Val individuals and tested on the following protocols: continuous and intermittent theta burst TMS; median nerve paired associative stimulation; and homeostatic plasticity in the TDCS/1 Hz rTMS model. The response of Met allele carriers differed significantly in all protocols compared with the response of Val66Val individuals. We suggest that this is due to the effect of BNDF on the susceptibility of synapses to undergo LTP/LTD. The circuits tested here are implicated in the pathophysiology of movement disorders such as dystonia and are being assessed as potential new targets in the treatment of stroke. Thus the polymorphism may be one factor that influences the natural response of the brain to injury and disease.
Lee, Mina; Kim, Song E.; Kim, Won Sup; Lee, Jungyeun; Yoo, Hye Kyung; Park, Kee-Duk; Choi, Kyoung-Gyu; Jeong, Seon-Yong; Kim, Byung Gon; Lee, Hyang Woon
2013-01-01
Cortical physiology in human motor cortex is influenced by behavioral motor training (MT) as well as repetitive transcranial magnetic stimulation protocol such as intermittent theta burst stimulation (iTBS). This study aimed to test whether MT and iTBS can interact with each other to produce additive changes in motor cortical physiology. We hypothesized that potential interaction between MT and iTBS would be dependent on BDNF Val66Met polymorphism, which is known to affect neuroplasticity in the human motor cortex. Eighty two healthy volunteers were genotyped for BDNF polymorphism. Thirty subjects were assigned for MT alone, 23 for iTBS alone, and 29 for MT + iTBS paradigms. TMS indices for cortical excitability and motor map areas were measured prior to and after each paradigm. MT alone significantly increased the motor cortical excitability and expanded the motor map areas. The iTBS alone paradigm also enhanced excitability and increased the motor map areas to a slightly greater extent than MT alone. A combination of MT and iTBS resulted in the largest increases in the cortical excitability, and the representational motor map expansion of MT + iTBS was significantly greater than MT or iTBS alone only in Val/Val genotype. As a result, the additive interaction between MT and iTBS was highly dependent on BDNF Val66Met polymorphism. Our results may have clinical relevance in designing rehabilitative strategies that combine therapeutic cortical stimulation and physical exercise for patients with motor disabilities. PMID:23451258
Lee, Mina; Kim, Song E; Kim, Won Sup; Lee, Jungyeun; Yoo, Hye Kyung; Park, Kee-Duk; Choi, Kyoung-Gyu; Jeong, Seon-Yong; Kim, Byung Gon; Lee, Hyang Woon
2013-01-01
Cortical physiology in human motor cortex is influenced by behavioral motor training (MT) as well as repetitive transcranial magnetic stimulation protocol such as intermittent theta burst stimulation (iTBS). This study aimed to test whether MT and iTBS can interact with each other to produce additive changes in motor cortical physiology. We hypothesized that potential interaction between MT and iTBS would be dependent on BDNF Val66Met polymorphism, which is known to affect neuroplasticity in the human motor cortex. Eighty two healthy volunteers were genotyped for BDNF polymorphism. Thirty subjects were assigned for MT alone, 23 for iTBS alone, and 29 for MT + iTBS paradigms. TMS indices for cortical excitability and motor map areas were measured prior to and after each paradigm. MT alone significantly increased the motor cortical excitability and expanded the motor map areas. The iTBS alone paradigm also enhanced excitability and increased the motor map areas to a slightly greater extent than MT alone. A combination of MT and iTBS resulted in the largest increases in the cortical excitability, and the representational motor map expansion of MT + iTBS was significantly greater than MT or iTBS alone only in Val/Val genotype. As a result, the additive interaction between MT and iTBS was highly dependent on BDNF Val66Met polymorphism. Our results may have clinical relevance in designing rehabilitative strategies that combine therapeutic cortical stimulation and physical exercise for patients with motor disabilities.
Asthana, Manish Kumar; Brunhuber, Bettina; Mühlberger, Andreas; Reif, Andreas; Schneider, Simone; Herrmann, Martin J
2016-06-01
Memory reconsolidation is the direct effect of memory reactivation followed by stabilization of newly synthesized proteins. It has been well proven that neural encoding of both newly and reactivated memories requires synaptic plasticity. Brain derived neurotrophic factor (BDNF) has been extensively investigated regarding its role in the formation of synaptic plasticity and in the alteration of fear memories. However, its role in fear reconsolidation is still unclear; hence, the current study has been designed to investigate the role of the BDNF val66met polymorphism (rs6265) in fear memory reconsolidation in humans. An auditory fear-conditioning paradigm was conducted, which comprised of three stages (acquisition, reactivation, and spontaneous recovery). One day after fear acquisition, the experimental group underwent reactivation of fear memory followed by the extinction training (reminder group), whereas the control group (non-reminder group) underwent only extinction training. On day 3, both groups were subjected to spontaneous recovery of earlier learned fearful memories. The treat-elicited defensive response due to conditioned threat was measured by assessing the skin conductance response to the conditioned stimulus. All participants were genotyped for rs6265. The results indicate a diminishing effect of reminder on the persistence of fear memory only in the Met-allele carriers, suggesting a moderating effect of the BDNF polymorphism in fear memory reconsolidation. Our findings suggest a new role for BDNF gene variation in fear memory reconsolidation in humans. © The Author 2016. Published by Oxford University Press on behalf of CINP.
Nagata, Tomoyuki; Kobayashi, Nobuyuki; Shinagawa, Shunichiro; Yamada, Hisashi; Kondo, Kazuhiro; Nakayama, Kazuhiko
2014-04-01
In the present study, we examined whether neuropsychiatric symptoms were correlated with plasma brain-derived neurotrophic factor (BDNF) levels as a state marker or were associated with the BDNF polymorphism Val66Met in patients with amnestic mild cognitive impairment (A-MCI) or Alzheimer disease (AD). One hundred and seventy-six outpatients with AD (n = 129) or A-MCI (n = 47) were selected and their plasma BDNF concentrations measured. Next, we investigated the correlation between the plasma BDNF level and the Behavioral Pathology in Alzheimer Disease (Behave-AD) subscale scores, which reflect neuropsychiatric symptoms. We also compared the plasma BDNF level and the Behave-AD subscale scores among the BDNF Val66Met genotypic groups. Among the seven Behave-AD subscale scores, aggressiveness was positively correlated with the plasma BDNF level (ρ = 0.237, P < 0.005), but did not differ significantly among the three BDNF Val66Met genotypic groups. The Behave-AD total and other subscale scores did not differ significantly among the BDNF Val66Met genotypic groups and were not associated with the plasma BDNF level. Moreover, the plasma BDNF level did not differ significantly among the three BDNF Val66Met genotypic groups or between patients with A-MCI and those with AD. The plasma BDNF level was robustly correlated with aggressiveness, implying that the plasma BDNF level might be useful as a behavioral state marker in patients with AD or A-MCI.
Brain-Derived Neurotrophic Factor in Alzheimer's Disease: Risk, Mechanisms, and Therapy.
Song, Jing-Hui; Yu, Jin-Tai; Tan, Lan
2015-12-01
Brain-derived neurotrophic factor (BDNF) has a neurotrophic support on neuron of central nervous system (CNS) and is a key molecule in the maintenance of synaptic plasticity and memory storage in hippocampus. However, changes of BDNF level and expression have been reported in the CNS as well as blood of Alzheimer's disease (AD) patients in the last decade, which indicates a potential role of BDNF in the pathogenesis of AD. Therefore, this review aims to summarize the latest progress in the field of BDNF and its biological roles in AD pathogenesis. We will discuss the interaction between BDNF and amyloid beta (Aβ) peptide, the effect of BDNF on synaptic repair in AD, and the association between BDNF polymorphism and AD risk. The most important is, enlightening the detailed biological ability and complicated mechanisms of action of BDNF in the context of AD would provide a future BDNF-related remedy for AD, such as increment in the production or release of endogenous BDNF by some drugs or BDNF mimics.
BDNF rs6265 methylation and genotype interact on risk for schizophrenia
Ursini, Gianluca; Cavalleri, Tommaso; Fazio, Leonardo; Angrisano, Tiziana; Iacovelli, Luisa; Porcelli, Annamaria; Maddalena, Giancarlo; Punzi, Giovanna; Mancini, Marina; Gelao, Barbara; Romano, Raffaella; Masellis, Rita; Calabrese, Francesca; Rampino, Antonio; Taurisano, Paolo; Giorgio, Annabella Di; Keller, Simona; Tarantini, Letizia; Sinibaldi, Lorenzo; Quarto, Tiziana; Popolizio, Teresa; Caforio, Grazia; Blasi, Giuseppe; Riva, Marco A.; De Blasi, Antonio; Chiariotti, Lorenzo; Bollati, Valentina; Bertolino, Alessandro
2016-01-01
Abstract Epigenetic mechanisms can mediate gene-environment interactions relevant for complex disorders. The BDNF gene is crucial for development and brain plasticity, is sensitive to environmental stressors, such as hypoxia, and harbors the functional SNP rs6265 (Val66Met), which creates or abolishes a CpG dinucleotide for DNA methylation. We found that methylation at the BDNF rs6265 Val allele in peripheral blood of healthy subjects is associated with hypoxia-related early life events (hOCs) and intermediate phenotypes for schizophrenia in a distinctive manner, depending on rs6265 genotype: in ValVal individuals increased methylation is associated with exposure to hOCs and impaired working memory (WM) accuracy, while the opposite is true for ValMet subjects. Also, rs6265 methylation and hOCs interact in modulating WM-related prefrontal activity, another intermediate phenotype for schizophrenia, with an analogous opposite direction in the 2 genotypes. Consistently, rs6265 methylation has a different association with schizophrenia risk in ValVals and ValMets. The relationships of methylation with BDNF levels and of genotype with BHLHB2 binding likely contribute to these opposite effects of methylation. We conclude that BDNF rs6265 methylation interacts with genotype to bridge early environmental exposures to adult phenotypes, relevant for schizophrenia. The study of epigenetic changes in regions containing genetic variation relevant for human diseases may have beneficial implications for the understanding of how genes are actually translated into phenotypes. PMID:26889735
Naha, Nibedita; Gandhi, D N; Gautam, A K; Prakash, J Ravi
2018-05-01
Nicotine and cigarette smoking (CS) are associated with addiction behavior, drug-seeking, and abuse. However, the mechanisms that mediate this association especially, the role of brain-derived neurotrophic factor (BDNF), dopamine (DA), and nuclear factor erythroid 2-related factor 2 (Nrf2) signaling in the cerebral cortex, are not fully known. Therefore, we hypothesized that overexpression of BDNF and DA, and suppression of Nrf2 contribute to several pathological and behavioral alterations in adult cerebral cortex. Methodology/Principal Observations: We treated Wistar rats with different doses of oral nicotine and passive CS for 4-week (short-term) and 12-week (long-term) duration, where doses closely mimic the human smoking scenario. Our result showed dose-dependent association of anxiogenic and depressive behavior, and cognitive interference with neurodegeneration and DNA damage in the cerebral cortex upon exposure to nicotine/CS as compared to the control. Further, the results are linked to upregulation of oxidative stress, overexpression of BDNF, DA, and DA marker, tyrosine hydroxylase (TH), with concomitant downregulation of ascorbate and Nrf2 expression in the exposed cerebral cortex when compared with the control. Overall, our data strongly suggest that the intervention of DA and BDNF, and depletion of antioxidants are important factors during nicotine/CS-induced cerebral cortex pathological changes leading to neurobehavioral impairments, which could underpin the novel therapeutic approaches targeted at tobacco smoking/nicotine's neuropsychological disorders including cognition and drug addiction.
Jeon, Songhee; Lee, Chia-Hung; Liu, Quan Feng; Kim, Geun Woo; Koo, Byung-Soo; Pak, Sok Cheon
2014-11-28
Literature data indicate that brain-derived neurotrophic factor (BDNF), cyclic-AMP response element-binding protein (CREB) and phospho-CREB (pCREB) may have a place in depression. BDNF belongs to the neurotrophin family that plays an important role in proliferation, survival and differentiation of different cell populations in the mammalian nervous system. The herbal mixture used in the present study consists of Euphoria longana, Houttuynia cordata and Dioscorea japonica. The purpose of the present study was to determine the neuroprotective effect of herbal mixture. We also tested the hypothesis that administration of herbs reverses memory deficits and promotes the protein expression of BDNF in the mouse brain. Mice were randomized into four different treatment groups (n = 10/group). Normal and stress groups received regular lab chow without stress and under stress conditions, respectively, for 3 weeks. The animals in the stress group were immobilized for 4 hours a day for 2 weeks. Different doses of herbal mixture (206 and 618 mg/kg) were administered for 3 weeks to those mice under stress conditions. Mice were analyzed by behavioral tests and immunoblotting examination in the hippocampus and cortex. An additional in vitro investigation was performed to examine whether herbs induce neurotoxicity in a human neuroblastoma cell line, SH-SY5Y cells. No significant toxicity of herbs on human neuroblastoma cells was observed. These herbs demonstrated an inductive effect on the expression of BDNF, pCREB and pAkt. For spatial working memory test, herbal mixture fed mice exhibited an increased level of spontaneous alternation (p < 0.01) compared to those in stress conditions. Moreover, herbal mixture produced highly significant (p < 0.01) reduction in the immobility time in the tail suspension test. Mice in the herbal mixture groups demonstrated lower serum corticosterone concentration than mice in the stress group (p < 0.05). Effects of the oral administration of herbal mixture on protein levels of BDNF in the hippocampi and cortices were significant. Our study showed that herbal mixture administration has antidepressant effects in mice. It is proposed that adverse events such as stress and depression can modulate the expression of molecular players of cellular plasticity in the brain.
Upregulation of blood proBDNF and its receptors in major depression.
Zhou, Li; Xiong, Jing; Lim, Yoon; Ruan, Ye; Huang, Chaohong; Zhu, Yuhong; Zhong, Jin-hua; Xiao, Zhicheng; Zhou, Xin-Fu
2013-09-25
In recent decades, the role of brain-derived neurotrophic factor (BDNF) in depression has received intensive attention. However, the relationship between proBDNF and depression has not been clearly elucidated. Forty drug-free women patients diagnosed with major depression and 50 healthy female controls were enrolled in our study. Peripheral blood was sampled from all the subjects. With the blood samples, we assessed the relationship between BDNF and major depression from following aspects: the levels of BDNF, proBDNF and their receptors in the sera and lymphocytes. The mRNA levels of these factors in lymphocytes were also examined. Furthermore, the correlations between each factor and the severity of major depression were tested. It was found that: (a) the protein and serum levels of proBDNF, sortilin and p75NTR were higher in major depressive patients than in healthy controls while mature BDNF and TrkB levels were lower; (b) the BDNF, TrkB, sortilin and p75NTR mRNA levels changed in line with their protein levels; (c) The levels of mature BDNF and TrkB had negative correlations with the major depression severity, and the levels of proBDNF, p75NTR and sortilin were positively correlated with the scores of HRSD-21; (d) the ratio of proBDNF and mBDNF was imbalanced in major depressive patients. The balance between the proBDNF/p75NTR/sortilin and mBDNF/TrkB signaling pathways appears dysregulated in major depression and both pathways should be considered as biomarkers for the major depression More cases on both genders should be enrolled in our study. And further works on the mechanisms of how BDNF and its receptors are regulated in depression should also be carried out. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.
Prince, Calais S; Maloyan, Alina; Myatt, Leslie
2017-01-01
Obesity is a major clinical problem in obstetrics being associated with adverse pregnancy outcomes and fetal programming. Brain derived neurotrophic factor (BDNF), a validated miR-210 target, is necessary for placental development, fetal growth, glucose metabolism, and energy homeostasis. Plasma BDNF levels are reduced in obese individuals; however, placental BDNF has yet to be studied in the context of maternal obesity. In this study, we investigated the effect of maternal obesity and sexual dimorphism on placental BDNF signaling. BDNF signaling was measured in placentas from lean (pre-pregnancy BMI < 25) and obese (pre-pregnancy BMI>30) women at term without medical complications that delivered via cesarean section without labor. MiRNA-210, BDNF mRNA, proBDNF, and mature BDNF were measured by RT - PCR, ELISA, and Western blot. Downstream signaling via TRKB (BDNF receptor) was measured using Western blot. Maternal obesity was associated with increased miRNA-210 and decreased BDNF mRNA in placentas from female fetuses, and decreased proBDNF in placentas from male fetuses. We also identified decreased mature BDNF in placentas from male fetuses when compared to female fetuses. Mir-210 expression was negatively correlated with mature BDNF protein. TRKB phosphorylated at tyrosine 817, not tyrosine 515, was increased in placentas from obese women. Maternal obesity was associated with increased phosphorylation of MAPK p38 in placentas from male fetuses, but not phosphorylation of ERK p42/44. BDNF regulation is complex and highly regulated. Pre-pregnancy/early maternal obesity adversely affects BDNF/TRKB signaling in the placenta in a sexually dimorphic manner. These data collectively suggest that induction of placental TRKB signaling could ameliorate the placental OB phenotype, thus improving perinatal outcome. Copyright © 2016 Elsevier Ltd. All rights reserved.
Matsuoka, Y; Nishi, D; Tanima, Y; Itakura, M; Kojima, M; Hamazaki, K; Noguchi, H; Hamazaki, T
2015-07-07
Our open-label pilot study showed that supplementation with docosahexaenoic acid (DHA) increased serum brain-derived neurotrophic factor (BDNF) levels and that there might be an association between changes in serum BDNF levels and reduced psychological distress. Animal research has indicated that a DHA-enriched diet increases BDNF in the brain. In this randomized double-blind controlled trial of severely injured patients vulnerable to posttraumatic stress disorder (PTSD) and depression, we examined whether DHA increases serum BDNF levels and whether changes in BDNF levels are associated with subsequent symptoms of PTSD and depression. Patients received 1470 mg per day of DHA plus 147 mg per day of eicosapentaenoic acid (EPA; n = 53) or placebo (n = 57) for 12 weeks. Serum levels of mature BDNF and precursor pro-BDNF at baseline and 12-week follow-up were measured using enzyme-linked immunosorbent assay kits. At 12 weeks, we used the Clinician-Administered PTSD Scale to assess PTSD symptoms and depressive symptoms by the Montgomery-Åsberg Depression Rating Scale. We found a significant increase in serum BDNF levels during the trial in the DHA and placebo groups with no interaction between time and group. Changes in BDNF levels were not associated with PTSD severity but negatively associated with depression severity (Spearman's ρ = -0.257, P = 0.012). Changes in pro-BDNF were also negatively associated with depression severity (Spearman's ρ = -0.253, P = 0.013). We found no specific effects of DHA on increased serum levels of BDNF and pro-BDNF; however, evidence in this study suggests that increased BDNF and pro-BDNF have a protective effect by minimizing depression severity.
Lim, Yen Ying; Rainey-Smith, Stephanie; Lim, Yoon; Laws, Simon M; Gupta, Veer; Porter, Tenielle; Bourgeat, Pierrick; Ames, David; Fowler, Christopher; Salvado, Olivier; Villemagne, Victor L; Rowe, Christopher C; Masters, Colin L; Zhou, Xin Fu; Martins, Ralph N; Maruff, Paul
2017-11-01
The brain-derived neurotrophic factor (BDNF) Val66Met polymorphism Met allele exacerbates amyloid (Aβ) related decline in episodic memory (EM) and hippocampal volume (HV) over 36-54 months in preclinical Alzheimer's disease (AD). However, the extent to which Aβ+ and BDNF Val66Met is related to circulating markers of BDNF (e.g. serum) is unknown. We aimed to determine the effect of Aβ and the BDNF Val66Met polymorphism on levels of serum mBDNF, EM, and HV at baseline and over 18-months. Non-demented older adults (n = 446) underwent Aβ neuroimaging and BDNF Val66Met genotyping. EM and HV were assessed at baseline and 18 months later. Fasted blood samples were obtained from each participant at baseline and at 18-month follow-up. Aβ PET neuroimaging was used to classify participants as Aβ- or Aβ+. At baseline, Aβ+ adults showed worse EM impairment and lower serum mBDNF levels relative to Aβ- adults. BDNF Val66Met polymorphism did not affect serum mBDNF, EM, or HV at baseline. When considered over 18-months, compared to Aβ- Val homozygotes, Aβ+ Val homozygotes showed significant decline in EM and HV but not serum mBDNF. Similarly, compared to Aβ+ Val homozygotes, Aβ+ Met carriers showed significant decline in EM and HV over 18-months but showed no change in serum mBDNF. While allelic variation in BDNF Val66Met may influence Aβ+ related neurodegeneration and memory loss over the short term, this is not related to serum mBDNF. Longer follow-up intervals may be required to further determine any relationships between serum mBDNF, EM, and HV in preclinical AD.
Xin, Jian; Ma, Ling; Zhang, Tian-Yi; Yu, Hui; Wang, Yue; Kong, Liang; Chen, Zhe-Yu
2014-05-21
Brain-derived neurotrophic factor (BDNF) and its receptor, tropomyosin-related kinase receptor B (TrkB), play a critical role in memory extinction. However, the detailed role of BDNF in memory extinction on the basis of neural circuit has not been fully understood. Here, we aim to investigate the role of BDNF signaling circuit in mediating conditioned taste aversion (CTA) memory extinction of the rats. We found region-specific changes in BDNF gene expression during CTA extinction. CTA extinction led to increased BDNF gene expression in the basolateral amygdala (BLA) and infralimbic prefrontal cortex (IL) but not in the central amygdaloid nucleus (CeA) and hippocampus (HIP). Moreover, blocking BDNF signaling or exogenous microinjection of BDNF into the BLA or IL could disrupt or enhance CTA extinction, which suggested that BDNF signaling in the BLA and IL is necessary and sufficient for CTA extinction. Interestingly, we found that microinjection of BDNF-neutralizing antibody into the BLA could abolish the extinction training-induced BDNF mRNA level increase in the IL, but not vice versa, demonstrating that BDNF signaling is transmitted from the BLA to IL during extinction. Finally, the accelerated extinction learning by infusion of exogenous BDNF in the BLA could also be blocked by IL infusion of BDNF-neutralizing antibody rather than vice versa, indicating that the IL, but not BLA, is the primary action site of BDNF in CTA extinction. Together, these data suggest that BLA-IL circuit regulates CTA memory extinction by identifying BDNF as a key regulator. Copyright © 2014 the authors 0270-6474/14/347302-12$15.00/0.
High abundance of BDNF within glutamatergic presynapses of cultured hippocampal neurons
Andreska, Thomas; Aufmkolk, Sarah; Sauer, Markus; Blum, Robert
2014-01-01
In the mammalian brain, the neurotrophin brain-derived neurotrophic factor (BDNF) has emerged as a key factor for synaptic refinement, plasticity and learning. Although BDNF-induced signaling cascades are well known, the spatial aspects of the synaptic BDNF localization remained unclear. Recent data provide strong evidence for an exclusive presynaptic location and anterograde secretion of endogenous BDNF at synapses of the hippocampal circuit. In contrast, various studies using BDNF overexpression in cultured hippocampal neurons support the idea that postsynaptic elements and other dendritic structures are the preferential sites of BDNF localization and release. In this study we used rigorously tested anti-BDNF antibodies and achieved a dense labeling of endogenous BDNF close to synapses. Confocal microscopy showed natural BDNF close to many, but not all glutamatergic synapses, while neither GABAergic synapses nor postsynaptic structures carried a typical synaptic BDNF label. To visualize the BDNF distribution within the fine structure of synapses, we implemented super resolution fluorescence imaging by direct stochastic optical reconstruction microscopy (dSTORM). Two-color dSTORM images of neurites were acquired with a spatial resolution of ~20 nm. At this resolution, the synaptic scaffold proteins Bassoon and Homer exhibit hallmarks of mature synapses and form juxtaposed bars, separated by a synaptic cleft. BDNF imaging signals form granule-like clusters with a mean size of ~60 nm and are preferentially found within the fine structure of the glutamatergic presynapse. Individual glutamatergic presynapses carried up to 90% of the synaptic BDNF immunoreactivity, and only a minor fraction of BDNF molecules was found close to the postsynaptic bars. Our data proof that hippocampal neurons are able to enrich and store high amounts of BDNF in small granules within the mature glutamatergic presynapse, at a principle site of synaptic plasticity. PMID:24782711
Spinal Plasticity and Behavior: BDNF-Induced Neuromodulation in Uninjured and Injured Spinal Cord
Huie, J. Russell
2016-01-01
Brain-derived neurotrophic factor (BDNF) is a member of the neurotrophic factor family of signaling molecules. Since its discovery over three decades ago, BDNF has been identified as an important regulator of neuronal development, synaptic transmission, and cellular and synaptic plasticity and has been shown to function in the formation and maintenance of certain forms of memory. Neural plasticity that underlies learning and memory in the hippocampus shares distinct characteristics with spinal cord nociceptive plasticity. Research examining the role BDNF plays in spinal nociception and pain overwhelmingly suggests that BDNF promotes pronociceptive effects. BDNF induces synaptic facilitation and engages central sensitization-like mechanisms. Also, peripheral injury-induced neuropathic pain is often accompanied with increased spinal expression of BDNF. Research has extended to examine how spinal cord injury (SCI) influences BDNF plasticity and the effects BDNF has on sensory and motor functions after SCI. Functional recovery and adaptive plasticity after SCI are typically associated with upregulation of BDNF. Although neuropathic pain is a common consequence of SCI, the relation between BDNF and pain after SCI remains elusive. This article reviews recent literature and discusses the diverse actions of BDNF. We also highlight similarities and differences in BDNF-induced nociceptive plasticity in naïve and SCI conditions. PMID:27721996
Gaub, Perrine; de Léon, Andrès; Gibon, Julien; Soubannier, Vincent; Dorval, Geneviève; Séguéla, Philippe; Barker, Philip A
2016-01-01
Neurotrophins activate intracellular signaling pathways necessary for neuronal survival, growth and apoptosis. The most abundant neurotrophin in the adult brain, brain-derived neurotrophic factor (BDNF), is first synthesized as a proBDNF precursor and recent studies have demonstrated that proBDNF can be secreted and that it functions as a ligand for a receptor complex containing p75NTR and sortilin. Activation of proBDNF receptors mediates growth cone collapse, reduces synaptic activity, and facilitates developmental apoptosis of motoneurons but the precise signaling cascades have been difficult to discern. To address this, we have engineered, expressed and purified HBpF-proBDNF, an expression construct containing a 6X-HIS tag, a biotin acceptor peptide (BAP) sequence, a PreScission™ Protease cleavage site and a FLAG-tag attached to the N-terminal part of murine proBDNF. Intact HBpF-proBDNF has activities indistinguishable from its wild-type counterpart and can be used to purify proBDNF signaling complexes or to monitor proBDNF endocytosis and retrograde transport. HBpF-proBDNF will be useful for characterizing proBDNF signaling complexes and for deciphering the role of proBDNF in neuronal development, synapse function and neurodegenerative disease.
Epigenetic regulation of BDNF gene transcription in the consolidation of fear memory.
Lubin, Farah D; Roth, Tania L; Sweatt, J David
2008-10-15
Long-term memory formation requires selective changes in gene expression. Here, we determined the contribution of chromatin remodeling to learning-induced changes in brain-derived neurotrophic factor (bdnf) gene expression in the adult hippocampus. Contextual fear learning induced differential regulation of exon-specific bdnf mRNAs (I, IV, VI, IX) that was associated with changes in bdnf DNA methylation and altered local chromatin structure. Infusions of zebularine (a DNA methyltransferase inhibitor) significantly altered bdnf DNA methylation and triggered changes in exon-specific bdnf mRNA levels, indicating that altered DNA methylation is sufficient to drive differential bdnf transcript regulation in the hippocampus. In addition, NMDA receptor blockade prevented memory-associated alterations in bdnf DNA methylation, resulting in a block of altered bdnf gene expression in hippocampus and a deficit in memory formation. These results suggest epigenetic modification of the bdnf gene as a mechanism for isoform-specific gene readout during memory consolidation.
Södersten, Kristoffer; Pålsson, Erik; Ishima, Tamaki; Funa, Keiko; Landén, Mikael; Hashimoto, Kenji; Ågren, Hans
2014-05-01
Early detection and diagnosis of bipolar disorder can be difficult. Tools are needed to help clinicians detect bipolar disorder earlier, which would ameliorate the prognosis. ELISA kits that distinguish between mature brain derived neurotrophic factor (BDNF) and proBDNF, we compared serum levels of mature BDNF, proBDNF, and matrix metalloproteinase-9 (MMP-9) in two independent cohorts (Sahlgrenska cohort and Karolinska cohort) of mood-stabilized bipolar patients and healthy controls. The total sample size in both cohorts consisted of 263 (48+215) bipolar patients and 155 (43+112) healthy controls. Levels of mature BDNF and the ratio mature BDNF/proBDNF were significantly higher in patients than in controls. Serum levels of proBDNF were significantly lower in patients compared to controls. Serum levels of MMP-9 did not differ between the groups but MMP-9 correlated positively and significantly with mature BDNF. Mature BDNF, proBDNF, the ratio of mature BDNF/proBDNF and interactions with MMP-9 explained the diagnostic dichotomy in both cohorts with high significance, using multivariate logistic ANCOVA (gender, age, and BMI were covaried out). The model explained 41% of the diagnostic variance in the Sahlgrenska cohort (p<0.0001) and 15% in the Karolinska cohort (p<0.0001). In both cohorts, the equations provided good power for diagnostic classification. The diagnostic sensitivity was 89% in the Sahlgrenska and 74% in the Karolinska cohort, and specificity 77% and 64%, respectively. The study is cross-sectional with no longitudinal follow up. The cohorts are relatively small with no medication-free patients. There are no "ill patient controls". Abnormalities in the conversion of proBDNF to mature BDNF may be associated with pathogenesis of bipolar disorder. Clinical use of these biomarkers may provide opportunities for earlier detection and correct treatment. Copyright © 2014 Elsevier B.V. All rights reserved.
Shojaei, Shahla; Ghavami, Saeid; Panjehshahin, Mohammad Reza; Owji, Ali Akbar
2015-01-01
We aimed to compare the effects of oral ethanol (Eth) alone or combined with the phytoestrogen resveratrol (Rsv) on the expression of various brain-derived neurotrophic factor (BDNF) transcripts and the encoded protein pro-BDNF in the hippocampus of pregnant and embryonic rats. A low (0.25 g/kg body weight (BW)/day) dose of Eth produced an increase in the expression of BDNF exons I, III and IV and a decrease in that of the exon IX in embryos, but failed to affect BDNF transcript and pro-BDNF protein expression in adults. However, co-administration of Eth 0.25 g/kg·BW/day and Rsv led to increased expression of BDNF exons I, III and IV and to a small but significant increase in the level of pro-BDNF protein in maternal rats. A high (2.5 g/kg·BW/day) dose of Eth increased the expression of BDNF exons III and IV in embryos, but it decreased the expression of exon IX containing BDNF mRNAs in the maternal rats. While the high dose of Eth alone reduced the level of pro-BDNF in adults, it failed to change the levels of pro-BDNF in embryos. Eth differentially affects the expression pattern of BDNF transcripts and levels of pro-BDNF in the hippocampus of both adult and embryonic rats. PMID:26703578
Brain derived neurotrophic factor (BDNF) and autism spectrum disorders (ASD) in childhood.
Bryn, V; Halvorsen, B; Ueland, T; Isaksen, J; Kolkova, K; Ravn, K; Skjeldal, O H
2015-07-01
Neurotrophic factors are essential regulators of neuronal maturation including synaptic synthesis. Among those, Brain derived neurotrophic factor (BDNF) has been in particular focus in the understanding of autism spectrum disorders (ASD). The aim of our study was to investigate whether BNDF could be used as diagnostic/biological marker for ASD. For this purpose we examined the plasma levels of BDNF and the precursors pro- BDNF in patients with ASD and compared it with non-autistic controls; determined whether there was a correlation between the BDNF and proBDNF levels and clinical severity. We also investigated the coding region of BDNF identify for well-variations which could be associated to ASD. The 65 ASD patients (51 boys) were enrolled from a recent completed epidemiological survey covering two counties (Oppland and Hedmark) in Norway. The mean age of the total number of children who participated in this study was 11,7 years. 30 non-autistic children were included as controls, 14 boys and 16 girls. The mean age was 11.3 years. Exclusion criteria for control group were individuals suffering from either neurological, endocrine, or immune insuffiency. Patients with ASD were characterized by moderately but significantly elevated plasma levels of BDNF compared to matched controls. No differences were observed in the proBDNF level between patients and controls. Within the ASD group, children with intellectual disability demonstrated increased BDNF, but not proBDNF levels, while the presence of ADHD had no impact on circulating proBDNF or BDNF. No further associations between plasma proBDNF or BDNF and other clinical demographics were observed. Copyright © 2015 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.
Taste bud-derived BDNF maintains innervation of a subset of TrkB-expressing gustatory nerve fibers
Tang, Tao; Rios-Pilier, Jennifer; Krimm, Robin
2018-01-01
Taste receptor cells transduce different types of taste stimuli and transmit this information to gustatory neurons that carry it to the brain. Taste receptor cells turn over continuously in adulthood, requiring constant new innervation from nerve fibers. Therefore, the maintenance of innervation to taste buds is an active process mediated by many factors, including brain-derived neurotrophic factor (BDNF). Specifically, 40% of taste bud innervation is lost when Bdnf is removed during adulthood. Here we speculated that not all gustatory nerve fibers express the BDNF receptor, TrkB, resulting in subsets of neurons that vary in their response to BDNF. However, it is also possible that the partial loss of innervation occurred because the Bdnf gene was not effectively removed. To test these possibilities, we first determined that not all gustatory nerve fibers express the TrkB receptor in adult mice. We then verified the efficiency of Bdnf removal specifically in taste buds of K14-CreER:Bdnf mice and found that Bdnf expression was reduced to 1%, indicating efficient Bdnf gene recombination. BDNF removal resulted in a 55% loss of TrkB-expressing nerve fibers, which was greater than the loss of P2X3-positive fibers (39%), likely because taste buds were innervated by P2X3+/TrkB− fibers that were unaffected by BDNF removal. We conclude that gustatory innervation consists of both TrkB-positive and TrkB-negative taste fibers and that BDNF is specifically important for maintaining TrkB-positive innervation to taste buds. In addition, although taste bud size was not affected by inducible Bdnf removal, the expression of the γ subunit of the ENaC channel was reduced. So, BDNF may regulate expression of some molecular components of taste transduction pathways. PMID:28600222
BDNF — a key transducer of antidepressant effects
Björkholm, Carl; Monteggia, Lisa M.
2016-01-01
How do antidepressants elicit an antidepressant response? Here, we review accumulating evidence that the neurotrophin brain-derived neurotrophic factor (BDNF) serves as a transducer, acting as the link between the antidepressant drug and the neuroplastic changes that result in the improvement of the depressive symptoms. Over the last decade several studies have consistently highlighted BDNF as a key player in antidepressant action. An increase in hippocampal and cortical expression of BDNF mRNA parallels the antidepressant-like response of conventional antidepressants such as SSRIs. Subsequent studies showed that a single bilateral infusion of BDNF into the ventricles or directly into the hippocampus is sufficient to induce a relatively rapid and sustained antidepressant-like effect. Importantly, the antidepressant-like response to conventional antidepressants is attenuated in mice where the BDNF signaling has been disrupted by genetic manipulations. Low dose ketamine, which has been found to induce a rapid antidepressant effect in patients with treatment-resistant depression, is also dependent on increased BDNF signaling. Ketamine transiently increases BDNF translation in hippocampus, leading to enhanced synaptic plasticity and synaptic strength. Ketamine has been shown to increase BDNF translation by blocking NMDA receptor activity at rest, thereby inhibiting calcium influx and subsequently halting eukaryotic elongation factor 2 (eEF2) kinase leading to a desuppression of protein translation, including BDNF translation. The antidepressant-like response of ketamine is abolished in BDNF and TrkB conditional knockout mice, eEF2 kinase knockout mice, in mice carrying the BDNF met/met allele, and by intra-cortical infusions of BDNF-neutralizing antibodies. In summary, current data suggests that conventional antidepressants and ketamine mediate their antidepressant-like effects by increasing BDNF in forebrain regions, in particular the hippocampus, making BDNF an essential determinant of antidepressant efficacy. PMID:26519901
D’Sa, Carrol; Dileone, Ralph J.; Anderson, George M.; Sinha, Rajita
2013-01-01
Although the effects of alcohol on brain-derived neurotrophic factor (BDNF) have been extensively studied in rodents, BDNF levels have rarely been measured in abstinent, alcohol-dependent (AD) individuals. Interpretation of reported group comparisons of serum BDNF levels is difficult due to limited information regarding analytical variance, biological variability, and the relative contribution of platelet and plasma pools to serum BDNF. Analytical variance (intra- and inter-assay coefficients of variation) of the enzyme-linked immunosorbent assay (ELISA) was characterized. Within- and between-subject variability, and group differences in serum and plasma BDNF, was assessed on three separate days in 16, 4-week abstinent AD individuals (7M/9F) and 16 social drinkers (SDs; 8M/8F). Significantly higher mean (±sd) serum BDNF levels were observed for the AD group compared to the SD (p = 0.003). No significant difference in mean baseline plasma BDNF levels was observed between AD and SD groups. The low analytical variance, high day-to-day within-individual stability and the high degree of individuality demonstrates the potential clinical utility of measuring serum BDNF levels. The low correlations that we observed between plasma and serum levels are congruent with their representing separate pools of BDNF. The observation of higher basal serum BDNF in the AD group without a concomitant elevation in plasma BDNF levels indicates that the elevated serum BDNF in AD patients is not due to greater BDNF exposure. Further research is warranted to fully elucidate mechanisms underlying this alteration and determine the utility of serum BDNF as a predictor or surrogate marker of chronic alcohol abuse. PMID:22364688
Niimi, Masachika; Hashimoto, Kenji; Kakuda, Wataru; Miyano, Satoshi; Momosaki, Ryo; Ishima, Tamaki; Abo, Masahiro
2016-01-01
Repetitive transcranial magnetic stimulation (rTMS) can improve upper limb hemiparesis after stroke but the mechanism underlying its efficacy remains elusive. rTMS seems to alter brain-derived neurotrophic factor (BDNF) and such effect is influenced by BDNF gene polymorphism. To investigate the molecular effects of rTMS on serum levels of BDNF, its precursor proBDNF and matrix metalloproteinase-9 (MMP-9) in poststroke patients with upper limb hemiparesis. Poststroke patients with upper limb hemiparesis were studied. Sixty-two patients underwent rehabilitation plus rTMS combination therapy and 33 patients underwent rehabilitation monotherapy without rTMS for 14 days at our hospital. One Hz rTMS was applied over the motor representation of the first dorsal interosseous muscle on the non-lesional hemisphere. Fugl-Meyer Assessment and Wolf Motor Function (WMFT) were used to evaluate motor function on the affected upper limb before and after intervention. Blood samples were collected for analysis of BDNF polymorphism and measurement of BDNF, proBDNF and MMP-9 levels. Two-week combination therapy increased BDNF and MMP-9 serum levels, but not serum proBDNF. Serum BDNF and MMP-9 levels did not correlate with motor function improvement, though baseline serum proBDNF levels correlated negatively and significantly with improvement in WMFT (ρ = -0.422, p = 0.002). The outcome of rTMS therapy was not altered by BDNF gene polymorphism. The combination therapy of rehabilitation plus low-frequency rTMS seems to improve motor function in the affected limb, by activating BDNF processing. BDNF and its precursor proBDNF could be potentially suitable biomarkers for poststroke motor recovery.
Impaired fear extinction learning in adult heterozygous BDNF knock-out mice.
Psotta, Laura; Lessmann, Volkmar; Endres, Thomas
2013-07-01
Brain-derived neurotrophic factor (BDNF) is a crucial regulator of neuroplasticity, which underlies learning and memory processes in different brain areas. To investigate the role of BDNF in the extinction of amygdala-dependent cued fear memories, we analyzed fear extinction learning in heterozygous BDNF knock-out mice, which possess a reduction of endogenous BDNF protein levels to ~50% of wild-type animals. Since BDNF expression has been shown to decline with aging of animals, we tested the performance in extinction learning of these mice at 2 months (young adults) and 7 months (older adults) of age. The present study shows that older adult heterozygous BDNF knock-out mice, which have a chronic 50% lack of BDNF, also possess a deficit in the acquisition of extinction memory, while extinction learning remains unaffected in young adult heterozygous BDNF knock-out mice. This deficit in extinction learning is accompanied by a reduction of BDNF protein in the hippocampus, amygdala and the prefrontal cortex. Copyright © 2013 Elsevier Inc. All rights reserved.
Genzer, Yoni; Dadon, Maayan; Burg, Chen; Chapnik, Nava; Froy, Oren
2016-07-15
Brain-derived neurotrophic factor (BDNF) is the most abundant neurotrophin in the brain and its decreased levels are associated with the development of obesity and neurodegeneration. Our aim was to test the effect of dietary fat, its timing and the circadian clock on the expression of BDNF and associated signaling pathways in mouse brain and liver. Bdnf mRNA oscillated robustly in brain and liver, but with a 12-h shift between the tissues. Brain and liver Bdnf mRNA showed a 12-h phase shift when fed ketogenic diet (KD) compared with high-fat diet (HFD) or low-fat diet (LFD). Brain or liver Bdnf mRNA did not show the typical phase advance usually seen under time-restricted feeding (RF). Clock knockdown in HT-4 hippocampal neurons led to 86% up-regulation of Bdnf mRNA, whereas it led to 60% down-regulation in AML-12 hepatocytes. Dietary fat in mice or cultured hepatocytes and hippocampal neurons led to increased Bdnf mRNA expression. At the protein level, HFD increased the ratio of the mature BDNF protein (mBDNF) to its precursor (proBDNF). In the liver, RF under LFD or HFD reduced the mBDNF/proBDNF ratio. In the brain, the two signaling pathways related to BDNF, mTOR and AMPK, showed reduced and increased levels, respectively, under timed HFD. In the liver, the reverse was achieved. In summary, Bdnf expression is mediated by the circadian clock and dietary fat. Although RF does not affect its expression phase, in the brain, when combined with high-fat diet, it leads to a unique metabolic state in which AMPK is activated, mTOR is down-regulated and the levels of mBDNF are high. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Seagrave, Jeanclare; Albrecht, Helmut H; Hill, David B; Rogers, Duncan F; Solomon, Gail
2012-10-31
Therapeutic intervention in the pathophysiology of airway mucus hypersecretion is clinically important. Several types of drugs are available with different possible modes of action. We examined the effects of guaifenesin (GGE), N-acetylcysteine (NAC) and ambroxol (Amb) on differentiated human airway epithelial cells stimulated with IL-13 to produce additional MUC5AC. After IL-13 pre-treatment (3 days), the cultures were treated with GGE, NAC or Amb (10-300 μM) in the continued presence of IL-13. Cellular and secreted MUC5AC, mucociliary transport rates (MTR), mucus rheology at several time points, and the antioxidant capacity of the drugs were assessed. IL-13 increased MUC5AC content (~25%) and secretion (~2-fold) and decreased MTR, but only slightly affected the G' (elastic) or G" (viscous) moduli of the secretions. GGE significantly inhibited MUC5AC secretion and content in the IL-13-treated cells in a concentration-dependent manner (IC50s at 24 hr ~100 and 150 μM, respectively). NAC or Amb were less effective. All drugs increased MTR and decreased G' and G" relative to IL-13 alone. Cell viability was not affected and only NAC exhibited antioxidant capacity. Thus, GGE effectively reduces cellular content and secretion of MUC5AC, increases MTR, and alters mucus rheology, and may therefore be useful in treating airway mucus hypersecretion and mucostasis in airway diseases.
2012-01-01
Background Therapeutic intervention in the pathophysiology of airway mucus hypersecretion is clinically important. Several types of drugs are available with different possible modes of action. We examined the effects of guaifenesin (GGE), N-acetylcysteine (NAC) and ambroxol (Amb) on differentiated human airway epithelial cells stimulated with IL-13 to produce additional MUC5AC. Methods After IL-13 pre-treatment (3 days), the cultures were treated with GGE, NAC or Amb (10–300 μM) in the continued presence of IL-13. Cellular and secreted MUC5AC, mucociliary transport rates (MTR), mucus rheology at several time points, and the antioxidant capacity of the drugs were assessed. Results IL-13 increased MUC5AC content (~25%) and secretion (~2-fold) and decreased MTR, but only slightly affected the G’ (elastic) or G” (viscous) moduli of the secretions. GGE significantly inhibited MUC5AC secretion and content in the IL-13-treated cells in a concentration-dependent manner (IC50s at 24 hr ~100 and 150 μM, respectively). NAC or Amb were less effective. All drugs increased MTR and decreased G’ and G” relative to IL-13 alone. Cell viability was not affected and only NAC exhibited antioxidant capacity. Conclusions Thus, GGE effectively reduces cellular content and secretion of MUC5AC, increases MTR, and alters mucus rheology, and may therefore be useful in treating airway mucus hypersecretion and mucostasis in airway diseases. PMID:23113953
Engineered BDNF producing cells as a potential treatment for neurologic disease
Deng, Peter; Anderson, Johnathon D.; Yu, Abigail S.; Annett, Geralyn; Fink, Kyle D.; Nolta, Jan A.
2018-01-01
Introduction Brain-derived neurotrophic factor (BDNF) has been implicated in wide range of neurological diseases and injury. This neurotrophic factor is vital for neuronal health, survival, and synaptic connectivity. Many therapies focus on the restoration or enhancement of BDNF following injury or disease progression. Areas covered The present review will focus on the mechanisms in which BDNF exerts its beneficial functioning, current BDNF therapies, issues and potential solutions for delivery of neurotrophic factors to the central nervous system, and other disease indications that may benefit from overexpression or restoration of BDNF. Expert opinion Due to the role of BDNF in neuronal development, maturation, and health, BDNF is implicated in numerous neurological diseases making it a prime therapeutic agent. Numerous studies have shown the therapeutic potential of BDNF in a number of neurodegenerative disease models and in acute CNS injury, however clinical translation has fallen short due to issues in delivering this molecule. The use of MSC as a delivery platform for BDNF holds great promise for clinical advancement of neurotrophic factor restoration. The ease with which MSC can be engineered opens the door to the possibility of using this cell-based delivery system to advance a BDNF therapy to the clinic. PMID:27159050
Qiao, Hui; An, Shu-Cheng; Xu, Chang; Ma, Xin-Ming
2017-05-15
Major depressive disorder (MDD) is one of the most common psychiatric disorder, but the underlying mechanisms are largely unknown. Increasing evidence shows that brain-derived neurotrophic factor (BDNF) plays an important role in the structural plasticity induced by depression. Considering the opposite effects of BDNF and its precursor proBDNF on neural plasticity, we hypothesized that the balance of BDNF and proBDNF plays a critical role in chronic unpredicted mild stress (CUMS)-induced depressive-like behaviors and structural plasticity in the rodent hippocampus. The aims of this study were to compare the functions of BDNF and proBDNF in the CUMS-induced depressive-like behaviors, and determine the effects of BDNF and proBDNF on expressions of kalirin-7, postsynaptic density protein 95 (PSD95) and NMDA receptor subunit NR2B in the hippocampus of stressed and naïve control rats, respectively. Our results showed that CUMS induced depressive-like behaviors, caused a decrease in the ratio of BDNF/proBDNF in the hippocampus and resulted in a reduction in spine density in hippocampal CA1 pyramidal neurons; these alterations were accompanied by a decrease in the levels of kalirin-7, PSD95 and NR2B in the hippocampus. Injection of exogenous BDNF into the CA1 area of stressed rats reversed CUMS-induced depressive-like behaviors and prevented CUMS-induced spine loss and decrease in kalirin-7, NR2B and PSD95 levels. In contrast, injection of exogenous proBDNF into the CA1 region of naïve rats caused depressive-like behavior and an accompanying decrease in both spine density and the levels of kalirin-7, NR2B and PSD95. Taken together, our results suggest that the ratio of BDNF to proBDNF in the hippocampus plays a key role in CUMS-induced depressive-like behaviors and alterations of dendritic spines in hippocampal CA1 pyramidal neurons. Kalirin-7 may play an important role during this process. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Capacio, B.R.; Shih, T.M.
1991-12-31
The acute effects of the organophosphorus cholinesterase inhibitor soman include hypersecretions, convulsions, and death. The purpose of this study was to evaluate the anticholinergic compounds, aprophen, atropine sulfate, azaprophen, benactyzine, benztropine, biperiden, scopolamine HBr, and trihexyphenidyl for their efficacy in preventing soman-induced hypersecretions and convulsions. Male rats were injected with the oxime HI-6 (125 mg/kg, i.p.), to increase survival time, along with various intramuscular doses of the anticholinergics 30 min prior to a dose of soman that produced 100% convulsions. Signs of intoxication as well as the time-to-onset of convulsions were observed. The calculated anticonvulsant median effective dose values weremore » 0.18, 0.33, 0.36, 0.55, 2.17, 2.30, 2.45, and 31.09 micro mol per kilogram for scopolamine HBr, biperiden, trihexyphenidy, benactyzine, benztropine, azaprophen, aprophen, and atropine sulfate, respectively. The same rank order by potency for inhibition of hypersecretions among these compounds was observed.« less
Factors Regulating Vagal Sensory Development: Potential Role in Obesities of Developmental Origin
Fox, Edward A.; Murphy, Michelle C.
2008-01-01
Contributors to increased obesity in children may include perinatal under- or overnutrition. Humans and rodents raised under these conditions develop obesity, which like obesities of other etiologies has been associated with increased meal size. Since vagal sensory innervation of the gastrointestinal (GI) tract transmits satiation signals that regulate meal size, one mechanism through which abnormal perinatal nutrition could increase meal size is by altering vagal development, possibly by causing changes in the expression of factors that control it. Therefore, we have begun to characterize development of vagal innervation of the GI tract and the expression patterns and functions of the genes involved in this process. Important events in development of mouse vagal GI innervation occurred between midgestation and the second postnatal week, suggesting they could be vulnerable to effects of abnormal nutrition preor postnatally. One gene investigated was brain- derived neurotrophic factor (BDNF), which regulates survival of a subpopulation of vagal sensory neurons. BDNF was expressed in some developing stomach wall tissues innervated by vagal afferents. At birth, mice deficient in BDNF exhibited a 50% reduction of putative intraganglionic laminar ending mechanoreceptor precursors, and a 50% increase in axons that had exited fiber bundles. Additionally, BDNF was required for patterning of individual axons and fiber bundles in the antrum and differentiation of intramuscular array mechanoreceptors in the forestomach. It will be important to determine whether abnormal perinatal environments alter development of vagal sensory innervation of the GI tract, involving effects on expression of BDNF, or other factors regulating vagal development. PMID:18234244
Ehling, Rainer; Di Pauli, Franziska; Lackner, Peter; Rainer, Carolyn; Kraus, Viktoria; Hegen, Harald; Lutterotti, Andreas; Kuenz, Bettina; De Zordo, Tobias; Schocke, Michael; Glatzl, Susanne; Löscher, Wolfgang N; Deisenhammer, Florian; Reindl, Markus; Berger, Thomas
2015-10-15
Data from in vitro and animal studies support a neuroprotective role of glatiramer acetate (GA) in multiple sclerosis (MS). We investigated prospectively whether treatment with GA leads to clinical and paraclinical changes associated with neuroprotection in patients with relapsing-remitting (RR) MS. Primary aim of this clinical study was to determine serum BDNF levels in RR-MS patients who were started on GA as compared to patients who remained therapy-naive throughout 24 months. Secondary outcomes included relapses and EDSS, cognition, quality of life, fatigue and depression, BDNF expression levels on peripheral immune cells (FACS, RT-PCR), serum anti-myelin basic peptide (MBP) antibody status, evoked potential and cerebral MRI studies. While GA treatment did not alter serum levels or expression levels on peripheral immune cells of BDNF over time it resulted in a transient increase of serum IgG antibody response to MBP, mainly due to subtype IgG1 (p<0.05), after 3 months. However, no significant differences were found between GA treated and therapy-naive patients with regard to serum BDNF and intracellular BDNF expression levels, nerve conduction (including median and tibial nerve somatosensory, pattern-shift visual and upper and lower limb motor evoked potentials) or MRI (including volume of hyperintense lesions, volume of hypointense lesions after CE, mean diffusivity and fractional anisotropy) outcome parameters. In conclusion, our findings do not support a major impact of GA treatment on paraclinical markers of neuroprotection in human RR-MS. Copyright © 2015 Elsevier B.V. All rights reserved.
Trkb signaling in pericytes is required for cardiac microvessel stabilization.
Anastasia, Agustin; Deinhardt, Katrin; Wang, Shiyang; Martin, Laura; Nichol, Donna; Irmady, Krithi; Trinh, Jasmine; Parada, Luis; Rafii, Shahin; Hempstead, Barbara L; Kermani, Pouneh
2014-01-01
Pericyte and vascular smooth muscle cell (SMC) recruitment to the developing vasculature is an important step in blood vessel maturation. Brain-derived neurotrophic factor (BDNF), expressed by endothelial cells, activates the receptor tyrosine kinase TrkB to stabilize the cardiac microvasculature in the perinatal period. However, the effects of the BDNF/TrkB signaling on pericytes/SMCs and the mechanisms downstream of TrkB that promote vessel maturation are unknown. To confirm the involvement of TrkB in vessel maturation, we evaluated TrkB deficient (trkb (-/-)) embryos and observed severe cardiac vascular abnormalities leading to lethality in late gestation to early prenatal life. Ultrastructural analysis demonstrates that trkb(-/-) embryos exhibit defects in endothelial cell integrity and perivascular edema. As TrkB is selectively expressed by pericytes and SMCs in the developing cardiac vasculature, we generated mice deficient in TrkB in these cells. Mice with TrkB deficiency in perivascular cells exhibit reduced pericyte/SMC coverage of the cardiac microvasculature, abnormal endothelial cell ultrastructure, and increased vascular permeability. To dissect biological actions and the signaling pathways downstream of TrkB in pericytes/SMCs, human umbilical SMCs were treated with BDNF. This induced membranous protrusions and cell migration, events dependent on myosin light chain phosphorylation. Moreover, inhibition of Rho GTPase and the Rho-associated protein kinase (ROCK) prevented membrane protrusion and myosin light chain phosphorylation in response to BDNF. These results suggest an important role for BDNF in regulating migration of TrkB-expressing pericytes/SMCs to promote cardiac blood vessel ensheathment and functional integrity during development.
Trkb Signaling in Pericytes Is Required for Cardiac Microvessel Stabilization
Wang, Shiyang; Martin, Laura; Nichol, Donna; Irmady, Krithi; Trinh, Jasmine; Parada, Luis; Rafii, Shahin; Hempstead, Barbara L.; Kermani, Pouneh
2014-01-01
Pericyte and vascular smooth muscle cell (SMC) recruitment to the developing vasculature is an important step in blood vessel maturation. Brain-derived neurotrophic factor (BDNF), expressed by endothelial cells, activates the receptor tyrosine kinase TrkB to stabilize the cardiac microvasculature in the perinatal period. However, the effects of the BDNF/TrkB signaling on pericytes/SMCs and the mechanisms downstream of TrkB that promote vessel maturation are unknown. To confirm the involvement of TrkB in vessel maturation, we evaluated TrkB deficient (trkb −/−) embryos and observed severe cardiac vascular abnormalities leading to lethality in late gestation to early prenatal life. Ultrastructural analysis demonstrates that trkb−/− embryos exhibit defects in endothelial cell integrity and perivascular edema. As TrkB is selectively expressed by pericytes and SMCs in the developing cardiac vasculature, we generated mice deficient in TrkB in these cells. Mice with TrkB deficiency in perivascular cells exhibit reduced pericyte/SMC coverage of the cardiac microvasculature, abnormal endothelial cell ultrastructure, and increased vascular permeability. To dissect biological actions and the signaling pathways downstream of TrkB in pericytes/SMCs, human umbilical SMCs were treated with BDNF. This induced membranous protrusions and cell migration, events dependent on myosin light chain phosphorylation. Moreover, inhibition of Rho GTPase and the Rho-associated protein kinase (ROCK) prevented membrane protrusion and myosin light chain phosphorylation in response to BDNF. These results suggest an important role for BDNF in regulating migration of TrkB-expressing pericytes/SMCs to promote cardiac blood vessel ensheathment and functional integrity during development. PMID:24498100
Corticospinal excitability in the non-dominant hand is affected by BDNF genotype.
Chang, Won Hyuk; Hwang, Jung Min; Uhm, Kyeong Eun; Pascual-Leone, Alvaro; Kim, Yun-Hee
2017-02-01
The objective of this study was to assess the functional state of corticospinal projections in the non-dominant hand according to brain-derived neurotrophic factor (BDNF) Val66Met polymorphisms. We investigated this in 34 healthy right-handed individuals (12 men, mean age 27.4 ± 3.4 years) who underwent two experimental sessions consisting of corticospinal excitability measurements with single-pulse transcranial magnetic stimulation (TMS) and hand motor function assessments with a sequential finger motor task of the non-dominant hand. Experimental sessions were separated by periods of at least 2 days to avoid carryover effects. Data were analyzed according to BDNF polymorphism (Val/Val vs. Val/Met vs. Met/Met group). Ten (29.4%), seventeen (50.0%), and seven (20.6%) participants were allocated to the Val/Val, Val/Met, and Met/Met groups, respectively. Motor thresholds to TMS did not differ among groups, but the amplitude of the motor-evoked potentials in the non-dominant hand induced by suprathreshold (120% of MT) TMS was significantly lower in the Met/Met group than in the other two groups (p < 0.05). Movement accuracy and reaction time in the sequential finger motor task showed no significant differences among groups. These results indicate that Met/Met BDNF homozygote status affects corticospinal excitability, and should be controlled for in studies of motor system function using brain stimulation. Our findings may have clinical implications regarding further investigation of the impact of BDNF genotype on the human motor system.
Determinants of brain-derived neurotrophic factor (BDNF) in umbilical cord and maternal serum.
Flöck, A; Weber, S K; Ferrari, N; Fietz, C; Graf, C; Fimmers, R; Gembruch, U; Merz, W M
2016-01-01
Brain-derived neurotrophic factor (BDNF) plays a fundamental role in brain development; additionally, it is involved in various aspects of cerebral function, including neurodegenerative and psychiatric diseases. Involvement of BDNF in parturition has not been investigated. The aim of our study was to analyze determinants of umbilical cord BDNF (UC-BDNF) concentrations of healthy, term newborns and their respective mothers. This cross-sectional prospective study was performed at a tertiary referral center. Maternal venous blood samples were taken on admission to labor ward; newborn venous blood samples were drawn from the umbilical cord (UC), before delivery of the placenta. Analysis was performed with a commercially available immunoassay. Univariate analyses and stepwise multivariate regression models were applied. 120 patients were recruited. UC-BDNF levels were lower than maternal serum concentrations (median 641 ng/mL, IQR 506 vs. median 780 ng/mL, IQR 602). Correlation between UC- and maternal BDNF was low (R=0.251, p=0.01). In univariate analysis, mode of delivery (MoD), gestational age (GA), body mass index at delivery, and gestational diabetes were determinants of UC-BDNF (MoD and smoking for maternal BDNF, respectively). Stepwise multivariate regression analysis revealed a model with MoD and GA as determinants for UC-BDNF (MoD for maternal BDNF). MoD and GA at delivery are determinants of circulating BDNF in the mother and newborn. We hypothesize that BDNF, like other neuroendocrine factors, is involved in the neuroendocrine cascade of delivery. Timing and mode of delivery may exert BDNF-induced effects on the cerebral function of newborns and their mothers. Copyright © 2015 Elsevier Ltd. All rights reserved.
Astrocyte truncated-TrkB mediates BDNF antiapoptotic effect leading to neuroprotection.
Saba, Julieta; Turati, Juan; Ramírez, Delia; Carniglia, Lila; Durand, Daniela; Lasaga, Mercedes; Caruso, Carla
2018-05-31
Astrocytes are glial cells that help maintain brain homeostasis and become reactive in neurodegenerative processes releasing both harmful and beneficial factors. We have demonstrated that brain-derived neurotrophic factor (BDNF) expression is induced by melanocortins in astrocytes but BDNF actions in astrocytes are largely unknown. We hypothesize that BDNF may prevent astrocyte death resulting in neuroprotection. We found that BDNF increased astrocyte viability, preventing apoptosis induced by serum deprivation by decreasing active caspase-3 and p53 expression. The antiapoptotic action of BDNF was abolished by ANA-12 (a specific TrkB antagonist) and by K252a (a general Trk antagonist). Astrocytes only express the BDNF receptor TrkB truncated isoform 1, TrkB-T1. BDNF induced ERK, Akt and Src (a non-receptor tyrosine kinase) activation in astrocytes. Blocking ERK and Akt pathways abolished BDNF protection in serum deprivation-induced cell death. Moreover, BDNF protected astrocytes from death by 3-nitropropionic acid (3-NP), an effect also blocked by ANA-12, K252a, and inhibitors of ERK, calcium and Src. BDNF reduced reactive oxygen species (ROS) levels induced in astrocytes by 3-NP and increased xCT expression and glutathione levels. Astrocyte conditioned media (ACM) from untreated astrocytes partially protected PC12 neurons whereas ACM from BDNF-treated astrocytes completely protected PC12 neurons from 3-NP-induced apoptosis. Both ACM from control and BDNF-treated astrocytes markedly reduced ROS levels induced by 3-NP in PC12 cells. Our results demonstrate that BDNF protects astrocytes from cell death through TrkB-T1 signaling, exerts an antioxidant action, and induces release of neuroprotective factors from astrocytes. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Su, Hang; Tao, Jingyan; Zhang, Jie; Xie, Ying; Wang, Yue; Zhang, Yu; Han, Bin; Lu, Yuling; Sun, Haiwei; Wei, Youdan; Zou, Shengzhen; Wu, Wenxiu; Zhang, Jiajia; Xu, Ke; Zhang, Xiangyang; He, Jincai
2015-10-01
Studies suggest that a functional polymorphism of the brain-derived neurotrophic factor gene (BDNF Val66Met) may contribute to methamphetamine dependence. We hypothesized that this polymorphism had a role in cognitive deficits in methamphetamine-dependent patients and in the relationship of serum BDNF with cognitive impairments. We conducted a case-control study by assessing 194 methamphetamine-dependent patients and 378 healthy volunteers without history of drug use on the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS) and the presence of the BDNF Val66Met polymorphism and serum BDNF levels. We showed no significant differences in genotype and allele distributions between the methamphetamine-dependent patients and controls. Some aspects of cognitive function significantly differed in the 2 groups. The serum BDNF levels in methamphetamine-dependent patients were significantly higher than those of the healthy controls. In the patients, partial correlation analysis showed a significant positive correlation between serum BDNF and the delayed memory index score. The RBANS scores showed statistically significant BDNF level × genotype interaction. Further regression analyses showed a significant positive association between BDNF levels and the RBANS total score, immediate memory or attention index among Val homozygote patients, whereas a significant negative association of BDNF levels with the RBANS total score, visuospatial/constructional, or language index was found among Met/Val heterozygous patients. We demonstrated significant impairment on some aspects of cognitive function and increased BDNF levels in methamphetamine-dependent patients as well as genotypic differences in the relationships between BDNF levels and RBANS scores on the BDNF Val66Met polymorphism only in these patients.
Autocrine action of BDNF on dendrite development of adult-born hippocampal neurons.
Wang, Liang; Chang, Xingya; She, Liang; Xu, Duo; Huang, Wei; Poo, Mu-ming
2015-06-03
Dendrite development of newborn granule cells (GCs) in the dentate gyrus of adult hippocampus is critical for their incorporation into existing hippocampal circuits, but the cellular mechanisms regulating their dendrite development remains largely unclear. In this study, we examined the function of brain-derived neurotrophic factor (BDNF), which is expressed in adult-born GCs, in regulating their dendrite morphogenesis. Using retrovirus-mediated gene transfection, we found that deletion and overexpression of BDNF in adult-born GCs resulted in the reduction and elevation of dendrite growth, respectively. This effect was mainly due to the autocrine rather than paracrine action of BDNF, because deletion of BDNF only in the newborn GCs resulted in dendrite abnormality of these neurons to a similar extent as that observed in conditional knockout (cKO) mice with BDNF deleted in the entire forebrain. Furthermore, selective expression of BDNF in adult-born GCs in BDNF cKO mice fully restored normal dendrite development. The BDNF autocrine action was also required for the development of normal density of spines and normal percentage of spines containing the postsynaptic marker PSD-95, suggesting autocrine BDNF regulation of synaptogenesis. Furthermore, increased dendrite growth of adult-born GCs caused by voluntary exercise was abolished by BDNF deletion specifically in these neurons and elevated dendrite growth due to BDNF overexpression in these neurons was prevented by reducing neuronal activity with coexpression of inward rectifier potassium channels, consistent with activity-dependent autocrine BDNF secretion. Therefore, BDNF expressed in adult-born GCs plays a critical role in dendrite development by acting as an autocrine factor. Copyright © 2015 the authors 0270-6474/15/358384-10$15.00/0.
Manikkam, Mohan; Thompson, Robert C; Herkimer, Carol; Welch, Kathleen B; Flak, Jonathan; Karsch, Fred J; Padmanabhan, Vasantha
2008-04-01
The goal of this study was to explore mechanisms that mediate hypersecretion of LH and progressive loss of cyclicity in female sheep exposed during fetal life to excess testosterone. Our working hypothesis was that prenatal testosterone excess, by its androgenic action, amplifies GnRH-induced LH (but not FSH) secretion and, thus, hypersecretion of LH in adulthood, and that this results from altered developmental gene expression of GnRH and estradiol (E2) receptors, gonadotropin subunits, and paracrine factors that differentially regulate LH and FSH synthesis. We observed that, relative to controls, females exposed during fetal life to excess testosterone, as well as the nor-aromatizable androgen dihydrotestosterone, exhibited enhanced LH but not FSH responses to intermittent delivery of GnRH boluses under conditions in which endogenous LH (GnRH) pulses were suppressed. Luteinizing hormone hypersecretion was more evident in adults than in prepubertal females, and it was associated with development of acyclicity. Measurement of pituitary mRNA concentrations revealed that prenatal testosterone excess induced developmental changes in gene expression of pituitary GnRH and E2 receptors and paracrine modulators of LH and FSH synthesis in a manner consistent with subsequent amplification of LH release. Together, this series of studies suggests that prenatal testosterone excess, by its androgenic action, amplifies GnRH-induced LH response, leading to LH hypersecretion and acyclicity in adulthood, and that this programming involves developmental changes in expression of pituitary genes involved in LH and FSH release.
ERIC Educational Resources Information Center
Papaleo, Francesco; Silverman, Jill L.; Aney, Jordan; Tian, Qingjun; Barkan, Charlotte L.; Chadman, Kathryn K.; Crawley, Jacqueline N.
2011-01-01
BDNF regulates components of cognitive processes and has been implicated in psychiatric disorders. Here we report that genetic overexpression of the BDNF mature isoform (BDNF-tg) in female mice impaired working memory functions while sparing components of fear conditioning. BDNF-tg mice also displayed reduced breeding efficiency, higher…
Sakata, Kazuko; Martinowich, Keri; Woo, Newton H.; Schloesser, Robert J.; Jimenez, Dennisse V.; Ji, Yuanyuan; Shen, Liya; Lu, Bai
2013-01-01
Activity-dependent gene transcription, including that of the brain-derived neurotrophic factor (Bdnf) gene, has been implicated in various cognitive functions. We previously demonstrated that mutant mice with selective disruption of activity-dependent BDNF expression (BDNF-KIV mice) exhibit deficits in GABA-mediated inhibition in the prefrontal cortex (PFC). Here, we show that disruption of activity-dependent BDNF expression impairs BDNF-dependent late-phase long-term potentiation (L-LTP) in CA1, a site of hippocampal output to the PFC. Interestingly, early-phase LTP and conventional L-LTP induced by strong tetanic stimulation were completely normal in BDNF-KIV mice. In parallel, attenuation of activity-dependent BDNF expression significantly impairs spatial memory reversal and contextual memory extinction, two executive functions that require intact hippocampal–PFC circuitry. In contrast, spatial and contextual memory per se were not affected. Thus, activity-dependent BDNF expression in the hippocampus and PFC may contribute to cognitive and behavioral flexibility. These results suggest distinct roles for different forms of L-LTP and provide a link between activity-dependent BDNF expression and behavioral perseverance, a hallmark of several psychiatric disorders. PMID:23980178
Exercise-induced neuroplasticity in human Parkinson's disease: What is the evidence telling us?
Hirsch, Mark A; Iyer, Sanjay S; Sanjak, Mohammed
2016-01-01
While animal models of exercise and PD have pushed the field forward, few studies have addressed exercise-induced neuroplasticity in human PD. As a first step toward promoting greater international collaboration on exercise-induced neuroplasticity in human PD, we present data on 8 human PD studies (published between 2008 and 2015) with 144 adults with PD of varying disease severity (Hoehn and Yahr stage 1 to stage 3), using various experimental (e.g., randomized controlled trial) and quasi-experimental designs on the effects of cognitive and physical activity on brain structure or function in PD. We focus on plasticity mechanisms of intervention-induced increases in maximal corticomotor excitability, exercise-induced changes in voxel-based gray matter volume changes and increases in exercise-induced serum levels of brain derived neurotrophic factor (BDNF). Finally, we provide a future perspective for promoting international, collaborative research on exercise-induced neuroplasticity in human PD. An emerging body of evidence suggests exercise triggers several plasticity related events in the human PD brain including corticomotor excitation, increases and decreases in gray matter volume and changes in BDNF levels. Copyright © 2015 Elsevier Ltd. All rights reserved.
Yoshimura, Reiji; Kishi, Taro; Hori, Hikaru; Atake, Kiyokazu; Katsuki, Asuka; Nakano-Umene, Wakako; Ikenouchi-Sugita, Atsuko; Iwata, Nakao; Nakamura, Jun
2014-01-01
We investigated the association between serum proBDNF, a precursor of brain-derived neurotrophic factor (BDNF), and response to fluvoxamine in patients with major depressive disorder (MDD) using the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, Text Revision (DSM-IV-TR): physically healthy and free of current alcohol or drug abuse, comorbid anxiety, or personality disorders. Fifty-one patients with MDD (M/F, 19:32; age, 38 ± 19 years) and 51 healthy controls (M/F, 22:29; age, 34 ± 17 years) were studied using DSM-IV-TR: physically healthy and free of current alcohol or drug abuse, comorbid anxiety, or personality disorders. Serum levels of proBDNF and MDNF were measured by sandwich enzyme-linked immunosorbent assay (ELISA). Serum mature BDNF levels in the MDD patients were significantly lower than those in the healthy controls (t = 3.046, p = 0.0018). On the other hand, no difference was found in serum proBDNF between the MDD patients and the healthy controls (t = -0.979, p = 0.833). A trend of negative correlation was found between baseline serum BDNF and baseline scores of the 17 items of the Hamilton Rating Scale for Depression (HAMD17) (r = -0.183, p = 0.071). No correlation was however found between HAMD17 scores and proBDNF at baseline (r = 0.092, p = 0.421). Furthermore, no correlation was observed between baseline HAMD17 scores and baseline proBDNF/BDNF (r = -0.130, p = 0.190). No changes were observed in serum levels of proBDNF and BDNF during the treatment periods. These results suggest that there is no association between serum proBDNF/BDNF and fluvoxamine response in MDD patients at least within 4 weeks of the treatment.
Taste bud-derived BDNF maintains innervation of a subset of TrkB-expressing gustatory nerve fibers.
Tang, Tao; Rios-Pilier, Jennifer; Krimm, Robin
2017-07-01
Taste receptor cells transduce different types of taste stimuli and transmit this information to gustatory neurons that carry it to the brain. Taste receptor cells turn over continuously in adulthood, requiring constant new innervation from nerve fibers. Therefore, the maintenance of innervation to taste buds is an active process mediated by many factors, including brain-derived neurotrophic factor (BDNF). Specifically, 40% of taste bud innervation is lost when Bdnf is removed during adulthood. Here we speculated that not all gustatory nerve fibers express the BDNF receptor, TrkB, resulting in subsets of neurons that vary in their response to BDNF. However, it is also possible that the partial loss of innervation occurred because the Bdnf gene was not effectively removed. To test these possibilities, we first determined that not all gustatory nerve fibers express the TrkB receptor in adult mice. We then verified the efficiency of Bdnf removal specifically in taste buds of K14-CreER:Bdnf mice and found that Bdnf expression was reduced to 1%, indicating efficient Bdnf gene recombination. BDNF removal resulted in a 55% loss of TrkB-expressing nerve fibers, which was greater than the loss of P2X3-positive fibers (39%), likely because taste buds were innervated by P2X3+/TrkB- fibers that were unaffected by BDNF removal. We conclude that gustatory innervation consists of both TrkB-positive and TrkB-negative taste fibers and that BDNF is specifically important for maintaining TrkB-positive innervation to taste buds. In addition, although taste bud size was not affected by inducible Bdnf removal, the expression of the γ subunit of the ENaC channel was reduced. So, BDNF may regulate expression of some molecular components of taste transduction pathways. Copyright © 2017. Published by Elsevier Inc.
Lee, Bridgin G; Anastasia, Agustin; Hempstead, Barbara L; Lee, Francis S; Blendy, Julie A
2015-12-01
Nicotine withdrawal is characterized by both affective and cognitive symptoms. Identifying genetic polymorphisms that could affect the symptoms associated with nicotine withdrawal are important in predicting withdrawal sensitivity and identifying personalized cessation therapies. In the current study we used a mouse model of a non-synonymous single nucleotide polymorphism in the translated region of the brain-derived neurotrophic factor (BDNF) gene that substitutes a valine (Val) for a methionine (Met) amino acid (Val66Met) to examine the relationship between the Val66Met single nucleotide polymorphism and nicotine dependence. This study measured proBDNF and the BDNF prodomain levels following nicotine and nicotine withdrawal and examined a mouse model of a common polymorphism in this protein (BDNF(Met/Met)) in three behavioral paradigms: novelty-induced hypophagia, marble burying, and the open-field test. Using the BDNF knock-in mouse containing the BDNF Val66Met polymorphism we found: (1) blunted anxiety-like behavior in BDNF(Met/Met) mice following withdrawal in three behavioral paradigms: novelty-induced hypophagia, marble burying, and the open-field test; (2) the anxiolytic effects of chronic nicotine are absent in BDNF(Met/Met) mice; and (3) an increase in BDNF prodomain in BDNF(Met/Met) mice following nicotine withdrawal. Our study is the first to examine the effect of the BDNF Val66Met polymorphism on the affective symptoms of withdrawal from nicotine in mice. In these mice, a single-nucleotide polymorphism in the translated region of the BDNF gene can result in a blunted withdrawal, as measured by decreased anxiety-like behavior. The significant increase in the BDNF prodomain in BDNF(Met/Met) mice following nicotine cessation suggests a possible role of this ligand in the circuitry remodeling after withdrawal. © The Author 2015. Published by Oxford University Press on behalf of the Society for Research on Nicotine and Tobacco. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Gite, Snehal; Ross, R Paul; Kirke, Dara; Guihéneuf, Freddy; Aussant, Justine; Stengel, Dagmar B; Dinan, Timothy G; Cryan, John F; Stanton, Catherine
2018-01-29
To search for novel compounds that will protect neuronal cells under stressed conditions that may help to restore neuronal plasticity. A model of corticosterone (CORT)-induced stress in human neuroblastoma cells (SH-SY5Y) was used to compare the efficacy of 6 crude extracts and 10 pure compounds (6 polyphenols, 2 carotenoids, 1 amino acid analogue, and 1 known antidepressant drug) to increase neuronal plasticity and to decrease cytotoxicity. Astaxanthin (among pure compounds) and phlorotannin extract of Fucus vesiculosus (among crude extracts) showed a maximum increase in cell viability in the presence of excess CORT. BDNF-VI mRNA expression in SH-SY5Y cells was significantly improved by pretreatment with quercetine, astaxanthin, curcumin, fisetin, and resveratrol. Among crude extracts, xanthohumol, phlorotannin extract (Ecklonia cava), petroleum ether extract (Nannochloropsis oculata), and phlorotannin extract (F. vesiculosus) showed a significant increase in BDNF-VI mRNA expression. CREB1 mRNA expression was significantly improved by astaxanthin, β-carotene, curcumin, and fluoxetine whereas none of the crude extracts caused significant improvement. As an adjunct of fluoxetine, phlorotannin extract (F. vesiculosus), β-carotene, and xanthohumol have resulted in significant improvement in BDNF-VI mRNA expression and CREB1 mRNA expression was significantly improved by phlorotannin extract (F. vesiculosus). Significant improvement in mature BDNF protein expression by phlorotannin extract (F. vesiculosus) and β-carotene as an adjunct of fluoxetine confirm their potential to promote neuronal plasticity against CORT-induced stress. The carotenoids, flavonoids, namely quercetine, curcumin, and low molecular weight phlorotannin-enriched extract of F. vesiculosus may serve as potential neuroprotective agents promoting neuronal plasticity in vitro. Graphical abstract: Cascade of events associated with disturbed homeostatic balance of glucocorticoids and impact of phlorotannin extract (F. vesiculosus) and β-carotene in restoring neuronal plasticity. Abbreviation: TrKB, tropomyosin receptor kinase B; P-ERK, phosphorylated extracellular signal-related kinase; PI3K, phosphatidylinositol 3-kinase; Akt, protein kinase B; Ca++/CaMK, calcium/calmodulin-dependent protein kinase; pCREB, phosphorylated cAMP response element-binding protein; CRE, cAMP response elements, CORT, corticosterone; and BDNF; brain-derived neurotrophic factor.
Enriched environment reduces glioma growth through immune and non-immune mechanisms in mice
Garofalo, Stefano; D’Alessandro, Giuseppina; Chece, Giuseppina; Brau, Frederic; Maggi, Laura; Rosa, Alessandro; Porzia, Alessandra; Mainiero, Fabrizio; Esposito, Vincenzo; Lauro, Clotilde; Benigni, Giorgia; Bernardini, Giovanni; Santoni, Angela; Limatola, Cristina
2015-01-01
Mice exposed to standard (SE) or enriched environment (EE) were transplanted with murine or human glioma cells and differences in tumour development were evaluated. We report that EE exposure affects: (i) tumour size, increasing mice survival; (ii) glioma establishment, proliferation and invasion; (iii) microglia/macrophage (M/Mφ) activation; (iv) natural killer (NK) cell infiltration and activation; and (v) cerebral levels of IL-15 and BDNF. Direct infusion of IL-15 or BDNF in the brain of mice transplanted with glioma significantly reduces tumour growth. We demonstrate that brain infusion of IL-15 increases the frequency of NK cell infiltrating the tumour and that NK cell depletion reduces the efficacy of EE and IL-15 on tumour size and of EE on mice survival. BDNF infusion reduces M/Mφ infiltration and CD68 immunoreactivity in tumour mass and reduces glioma migration inhibiting the small G protein RhoA through the truncated TrkB.T1 receptor. These results suggest alternative approaches for glioma treatment. PMID:25818172
Vidal-Martínez, Guadalupe; Vargas-Medrano, Javier; Gil-Tommee, Carolina; Medina, David; Garza, Nathan T; Yang, Barbara; Segura-Ulate, Ismael; Dominguez, Samantha J; Perez, Ruth G
2016-09-23
Patients with Parkinson's disease (PD) often have aggregated α-synuclein (aSyn) in enteric nervous system (ENS) neurons, which may be associated with the development of constipation. This occurs well before the onset of classic PD motor symptoms. We previously found that aging A53T transgenic (Tg) mice closely model PD-like ENS aSyn pathology, making them appropriate for testing potential PD therapies. Here we show that Tg mice overexpressing mutant human aSyn develop ENS pathology by 4 months. We then evaluated the responses of Tg mice and their WT littermates to the Food and Drug Administration-approved drug FTY720 (fingolimod, Gilenya) or vehicle control solution from 5 months of age. Long term oral FTY720 in Tg mice reduced ENS aSyn aggregation and constipation, enhanced gut motility, and increased levels of brain-derived neurotrophic factor (BDNF) but produced no significant change in WT littermates. A role for BDNF was directly assessed in a cohort of young A53T mice given vehicle, FTY720, the Trk-B receptor inhibitor ANA-12, or FTY720 + ANA-12 from 1 to 4 months of age. ANA-12-treated Tg mice developed more gut aSyn aggregation as well as constipation, whereas FTY720-treated Tg mice had reduced aSyn aggregation and less constipation, occurring in part by increasing both pro-BDNF and mature BDNF levels. The data from young and old Tg mice revealed FTY720-associated neuroprotection and reduced aSyn pathology, suggesting that FTY720 may also benefit PD patients and others with synucleinopathy. Another finding was a loss of tyrosine hydroxylase immunoreactivity in gut neurons with aggregated aSyn, comparable with our prior findings in the CNS. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Burns, Michael L; Malott, Thomas M; Metcalf, Kevin J; Puguh, Arthya; Chan, Jonah R; Shusta, Eric V
2016-03-01
Brain derived neurotrophic factor (BDNF) is a promising therapeutic candidate for a variety of neurological diseases. However, it is difficult to produce as a recombinant protein. In its native mammalian context, BDNF is first produced as a pro-protein with subsequent proteolytic removal of the pro-region to yield mature BDNF protein. Therefore, in an attempt to improve yeast as a host for heterologous BDNF production, the BDNF pro-region was first evaluated for its effects on BDNF surface display and secretion. Addition of the wild-type pro-region to yeast BDNF production constructs improved BDNF folding both as a surface-displayed and secreted protein in terms of binding its natural receptors TrkB and p75, but titers remained low. Looking to further enhance the chaperone-like functions provided by the pro-region, two rounds of directed evolution were performed, yielding mutated pro-regions that further improved the display and secretion properties of BDNF. Subsequent optimization of the protease recognition site was used to control whether the produced protein was in pro- or mature BDNF forms. Taken together, we have demonstrated an effective strategy for improving BDNF compatibility with yeast protein engineering and secretion platforms. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Massey, Kerri A.; Zago, Wagner M.; Berg, Darwin K.
2006-01-01
In the hippocampus, brain-derived neurotrophic factor (BDNF) regulates a number of synaptic components. Among these are nicotinic acetylcholine receptors containing α7 subunits (α7-nAChRs), which are interesting because of their relative abundance in the hippocampus and their high relative calcium permeability. We show here that BDNF elevates surface and intracellular pools of α7-nAChRs on cultured hippocampal neurons and that glutamatergic activity is both necessary and sufficient for the effect. Blocking transmission through NMDA receptors with APV blocked the BDNF effect; increasing spontaneous excitatory activity with the GABAA receptor antagonist bicuculline replicated the BDNF effect. BDNF antibodies blocked the BDNF-mediated increase but not the bicuculline one, consistent with enhanced glutamatergic activity acting downstream from BDNF. Increased α7-nAChR clusters were most prominent on interneuron subtypes known to innervate directly excitatory neurons. The results suggest that BDNF, acting through glutamatergic transmission, can modulate hippocampal output in part by controlling α7-nAChR levels. PMID:17029981
IL-1β impairs retrograde flow of BDNF signaling by attenuating endosome trafficking.
Carlos, Anthony J; Tong, Liqi; Prieto, G Aleph; Cotman, Carl W
2017-02-02
Pro-inflammatory cytokines accumulate in the brain with age and Alzheimer's disease and can impair neuron health and cognitive function. Brain-derived neurotrophic factor (BDNF) is a key neurotrophin that supports neuron health, function, and synaptic plasticity. The pro-inflammatory cytokine interleukin-1β (IL-1β) impairs BDNF signaling but whether it affects BDNF signaling endosome trafficking has not been studied. This study uses an in vitro approach in primary hippocampal neurons to evaluate the effect of IL-1β on BDNF signaling endosome trafficking. Neurons were cultured in microfluidic chambers that separate the environments of the cell body and its axon terminal, enabling us to specifically treat in axon compartments and trace vesicle trafficking in real-time. We found that IL-1β attenuates BDNF signaling endosomes throughout networks in cultures. In IL-1β-treated cells, overall BDNF endosomal density was decreased, and the colocalization of BDNF endosomes with presynaptic terminals was found to be more than two times higher than in control cultures. Selective IL-1β treatment to the presynaptic compartment in microfluidic chamber attenuated BDNF endosome flux, as measured by reduced BDNF-GFP endosome counts in the somal compartment. Further, IL-1β decreased the BDNF-induced phosphorylation of Erk5, a known BDNF retrograde trafficking target. Mechanistically, the deficiency in trafficking was not due to impaired endocytosis of the BDNF-TrkB complex, or impaired transport rate, since BDNF endosomes traveled at the same rate in both control and IL-1β treatment groups. Among the regulators of presynaptic endosome sorting is the post-translational modification, ubiquitination. In support of this possibility, the IL-1β-mediated suppression of BDNF-induced Erk5 phosphorylation can be rescued by exogenous ubiquitin C-terminal hydrolase L1 (UCH-L1), a deubiquitinating enzyme that regulates ubiquitin and endosomal trafficking. We observed a state of neurotrophic resistance whereby, in the prolonged presence of IL-1β, BDNF is not effective in delivering long-distance signaling via the retrograde transport of signaling endosomes. Since IL-1β accumulation is an invariant feature across many neurodegenerative diseases, our study suggest that compromised BDNF retrograde transport-dependent signaling may have important implications in neurodegenerative diseases.
Levels of BDNF Impact Oligodendrocyte Lineage Cells Following a Cuprizone Lesion
VonDran, Melissa W.; Singh, Harmandeep; Honeywell, Jean Z.; Dreyfus, Cheryl F.
2011-01-01
Previous work in culture has shown that basal forebrain (BF) oligodendrocyte (OLG) lineage cells respond to BDNF by increasing DNA synthesis and differentiation. Further, in the BF in vivo, reduced levels of BDNF as seen in BDNF +/− mice result in reduced numbers of NG2+ cells and deficits in myelin proteins throughout development and in the adult, suggesting that BDNF impacts the proliferating population of OLGs as well as differentiation in vivo. In this study, to investigate roles BDNF may play in the repair of a demyelinating lesion, the cuprizone model was used and the corpus callosum was examined. BDNF protein levels were reduced after cuprizone, suggesting that the demyelinating lesion, itself, elicits a decrease in BDNF. To analyze effects of a further reduction of BDNF on OLG lineage cells following cuprizone, BDNF +/− mice were evaluated. These mice exhibited a blunted increase in the NG2 response at 4 and 5 weeks of cuprizone. In addition, BDNF +/− mice exhibited decreased levels of myelin proteins during the demyelination and remyelination processes with no change in the total number of OLGs. These effects appear to be relatively specific to OLG lineage cells as comparable changes in CD11b+ microglia, GFAP+ astrocytes, and SMI32+ injured axons were not observed. These data indicate that BDNF may play a role following a demyelinating lesion, by regulating numbers of progenitors and the abilities of demyelinating and differentiating cells to express myelin proteins. PMID:21976503
Drakopoulos, Panagiotis; Casarosa, Elena; Bucci, Fiorella; Piccinino, Manuela; Wenger, Jean-Marie; Nappi, Rossella Elena; Polyzos, Nicholas; Genazzani, Andrea Riccardo; Pluchino, Nicola
2015-01-01
Brain-derived neurotrophic factor (BDNF) is strongly related to hormonal networks and is modulated by hypothalamic activity. To evaluate plasma BDNF concentration in patients with functional hypothalamic amenorrhea (FHA), with reference to the BDNF circadian rhythm and its relation with the cortisol (F) rhythm, and to assess whether the duration of amenorrhea might influence the BDNF:F ratio in FHA. This was an observational study evaluating 36 amenorrheic and 30 eumenorrheic women. Basal values of BDNF and hormones were examined in blood samples collected from 7:00 to 9:00 h in all the women. Basal BDNF and F levels were determined in blood samples collected in 12 subjects from each group at 8:00, 12:00, 16:00, 20:00, and 24:00 h. BDNF plasma levels are significantly lower in amenorrheic women (p < 0.001) than in the follicular phase of eumenorrheic women. There are no correlations between BDNF values (p > 0.05), sex steroids, and F in FHA. Low plasma BDNF levels in FHA are not significantly correlated with duration of amenorrhea. The 24-hour variation of BDNF in amenorrheic women is significantly lower when compared to the control group, and normal daily variations of BDNF disappeared in FHA patients. F preserved its circadian rhythm in both groups. Interactions between BDNF, the hypothalamus-pituitary-adrenal axis, and sex steroids might be critical in clinical conditions of modified homeostasis/adaptation, such as FHA. © 2015 S. Karger AG, Basel.
Sustar, A; Nikolac Perkovic, M; Nedic Erjavec, G; Svob Strac, D; Pivac, N
2016-08-01
Brain-derived neurotrophic factor (BDNF) is a neurotrophic factor with an important role in the regulation of body weight, body mass index (BMI) and obesity. Increased BMI that leads to obesity is a substantial risk factor for coronary heart disease (CHD). The functional BDNF Val66Met polymorphism (rs6265) has been associated with CHD, obesity and BMI. The aim of the study was to determine the association between BDNF rs6265 polymorphism and CHD and/or BMI in patients with CHD and healthy control subjects. The study included 704 Caucasian subjects: 206 subjects with CHD and 498 healthy control subjects. The BDNF rs6265 genotype frequency was similar in male and female subjects, and there were no differences in the frequency of the BDNF rs6265 genotypes in 206 patients with CHD and in 498 healthy subjects. When study participants were subdivided according to the BMI categories into normal weight, overweight and obese subjects, significantly different BDNF rs6265 genotype frequency was found within healthy subjects, but not within patients with CHD. Healthy subjects, but not patients with CHD, subdivided into carriers of the Met/Met, Met/Val and Val/Val genotype, had different BMI scores. The BDNF rs6265 genotype frequency was similar in male and female subjects, and there were no differences in the frequency of the BDNF rs6265 genotypes in 206 patients with CHD and in 498 healthy subjects. When study participants were subdivided according to the BMI categories into normal weight, overweight and obese subjects, significantly different BDNF rs6265 genotype frequency was found within healthy subjects, but not within patients with CHD. Healthy subjects, but not patients with CHD, subdivided into carriers of the Met/Met, Met/Val and Val/Val genotype, had different BMI scores. BDNF rs6265 polymorphism was not associated with a diagnosis of CHD or with BMI categories among patients with CHD. In contrast, healthy Caucasians, carriers of the BDNF Met/Met genotype, had more frequently normal weight compared to carriers of other BDNF genotypesBDNF rs6265 polymorphism was not associated with a diagnosis of CHD or with BMI categories among patients with CHD. In contrast, healthy Caucasians, carriers of the BDNF Met/Met genotype, had more frequently normal weight compared to carriers of other BDNF genotypes. BDNF rs6265 polymorphism is associated with BMI categories, and the BDNF Met/Met genotype has a protective role in obesity in healthy subjects, while this effect was not present in patients with CHD.
ProBDNF Signaling Regulates Depression-Like Behaviors in Rodents under Chronic Stress.
Bai, Yin-Yin; Ruan, Chun-Sheng; Yang, Chun-Rui; Li, Jia-Yi; Kang, Zhi-Long; Zhou, Li; Liu, Dennis; Zeng, Yue-Qing; Wang, Ting-Hua; Tian, Chang-Fu; Liao, Hong; Bobrovskaya, Larisa; Zhou, Xin-Fu
2016-11-01
Chronic exposure to stressful environment is a key risk factor contributing to the development of depression. However, the mechanisms involved in this process are still unclear. Brain-derived neurotropic factor (BDNF) has long been investigated for its positive role in regulation of mood, although the role of its precursor, proBDNF, in regulation of mood is not known. In this study, using an unpredictable chronic mild stress (UCMS) paradigm we found that the protein levels of proBDNF were increased in the neocortex and hippocampus of stressed mice and this UCMS-induced upregulation of proBDNF was abolished by chronic administration of fluoxetine. We then established a rat model of UCMS and found that the expression of proBDNF/p75 NTR /sortilin was upregulated, whereas the expression of mature BDNF and TrkB was downregulated in both neocortex and hippocampus of chronically stressed rats. Finally, we found that the injection of anti-proBDNF antibody via intracerebroventricular (i.c.v.) and intraperitoneal (i.p.) approaches into the UCMS rats significantly reversed the stress-induced depression-like behavior and restored the exploratory activity and spine growth. Although intramuscular injection of AAV-proBDNF did not exacerbate the UCMS-elicited rat mood-related behavioral or pathological abnormalities, i.c.v. injection of AAV-proBDNF increased the depression-like behavior in naive rats. Our findings suggest that proBDNF plays a role in the development of chronic stress-induced mood disturbances in rodents. Central (i.c.v.) or peripheral (i.p.) inhibition of proBDNF by injecting specific anti-proBDNF antibodies may provide a novel therapeutic approach for the treatment of stress-related mood disorders.
Chao, Yu-Chieh; Xie, Fang; Li, Xueyang; Guo, Ruijuan; Yang, Ning; Zhang, Chen; Shi, Rong; Guan, Yun; Yue, Yun; Wang, Yun
2016-07-01
Repeated administration of morphine may result in opioid-induced hypersensitivity (OIH), which involves altered expression of numerous genes, including brain-derived neurotrophic factor (BDNF) in dorsal root ganglion (DRG) neurons. Yet, it remains unclear how BDNF expression is increased in DRG neurons after repeated morphine treatment. DNA methylation is an important mechanism of epigenetic control of gene expression. In the current study, we hypothesized that the demethylation regulation of certain BDNF gene promoters in DRG neurons may contribute to the development of OIH. Real-time RT-PCR was used to assess changes in the mRNA transcription levels of major BDNF exons including exon I, II, IV, VI, as well as total BDNF mRNA in DRGs from rats after repeated morphine administration. The levels of exon IV and total BDNF mRNA were significantly upregulated by repeated morphine administration, as compared to that in saline control group. Further, ELISA array and immunocytochemistry study revealed a robust upregulation of BDNF protein expression in DRG neurons after repeated morphine exposure. Correspondingly, the methylation levels of BDNF exon IV promoter showed a significant downregulation by morphine treatment. Importantly, intrathecal administration of a BDNF antibody, but not control IgG, significantly inhibited mechanical hypersensitivity that developed in rats after repeated morphine treatment. Conversely, intrathecal administration of an inhibitor of DNA methylation, 5-aza-2'-deoxycytidine (5-aza-dC) markedly upregulated the BDNF protein expression in DRG neurons and enhanced the mechanical allodynia after repeated morphine exposure. Together, our findings suggest that demethylation regulation of BDNF gene promoter may be implicated in the development of OIH through epigenetic control of BDNF expression in DRG neurons. Copyright © 2016 Elsevier Ltd. All rights reserved.
The interplay of stress and sleep impacts BDNF level.
Giese, Maria; Unternaehrer, Eva; Brand, Serge; Calabrese, Pasquale; Holsboer-Trachsler, Edith; Eckert, Anne
2013-01-01
Sleep plays a pivotal role in normal biological functions. Sleep loss results in higher stress vulnerability and is often found in mental disorders. There is evidence that brain-derived neurotrophic factor (BDNF) could be a central player in this relationship. Recently, we could demonstrate that subjects suffering from current symptoms of insomnia exhibited significantly decreased serum BDNF levels compared with sleep-healthy controls. In accordance with the paradigm indicating a link between sleep and BDNF, we aimed to investigate if the stress system influences the association between sleep and BDNF. Participants with current symptoms of insomnia plus a former diagnosis of Restless Legs Syndrome (RLS) and/or Periodic Limb Movement (PLM) and sleep healthy controls were included in the study. They completed questionnaires on sleep (ISI, Insomnia Severity Index) and stress (PSS, Perceived Stress Scale) and provided a blood sample for determination of serum BDNF. We found a significant interaction between stress and insomnia with an impact on serum BDNF levels. Moreover, insomnia severity groups and score on the PSS each revealed a significant main effect on serum BDNF levels. Insomnia severity was associated with increased stress experience affecting serum BDNF levels. Of note, the association between stress and BDNF was only observed in subjects without insomnia. Using a mediation model, sleep was revealed as a mediator of the association between stress experience and serum BDNF levels. This is the first study to show that the interplay between stress and sleep impacts BDNF levels, suggesting an important role of this relationship in the pathogenesis of stress-associated mental disorders. Hence, we suggest sleep as a key mediator at the connection between stress and BDNF. Whether sleep is maintained or disturbed might explain why some individuals are able to handle a certain stress load while others develop a mental disorder.
Rousseaud, Audrey; Delépine, Chloé; Nectoux, Juliette; Billuart, Pierre; Bienvenu, Thierry
2015-08-01
Rett syndrome (RTT) is a severe neurodevelopmental disease caused by mutations in methyl-CpG-binding protein 2 (MECP2), which encodes a transcriptional modulator of many genes including BDNF. BDNF comprises nine distinct promoter regions, each triggering the expression of a specific transcript. The role of this diversity of transcripts remains unknown. MeCP2 being highly expressed in neurons, RTT was initially considered as a neuronal disease. However, recent studies have shown that MeCP2 was also expressed in astrocytes. Though several studies explored Bdnf IV expression in Mecp2-deficient mice, the differential expression of Bdnf isoforms in Mecp2-deficient neurons and astrocytes was never studied. By using TaqMan technology and a mouse model expressing a truncated Mecp2 (Mecp2(308/y)), we firstly showed in neurons that Bdnf transcripts containing exon I, IIb, IIc, IV, and VI are prominently expressed, whereas in astrocytes, Bdnf transcript containing exon VI is preferentially expressed, suggesting a specific regulation of Bdnf expression at the cellular level. Secondly, we confirmed the repressive role of Mecp2 only on the expression of Bdnf VI in neurons. Our data suggested that the truncated Mecp2 protein maintains its function on Bdnf expression regulation in neurons and in astrocytes. Interestingly, we observed that Bdnf transcripts (I and IXA), regulated by neural activity induced by bicuculline in Mecp2(308/y) neurons, were not affected by histone deacetylase inhibition. In contrast, Bdnf transcripts (IIb, IIc, and VI), regulated by histone deacetylation, were not affected by bicuculline treatment in wild-type and Mecp2(308/y) neurons. All these results reflect the complexity of regulation of Bdnf gene.
Nosrat, Irina V; Margolskee, Robert F; Nosrat, Christopher A
2012-05-11
Brain-derived neurotrophic factor (BDNF) is the most potent neurotrophic factor in the peripheral taste system during embryonic development. It is also expressed in adult taste buds. There is a lack of understanding of the role of BDNF in the adult taste system. To address this, we generated novel transgenic mice in which transgene expression was driven by an α-gustducin promoter coupling BDNF expression to the postnatal expression of gustducin in taste cells. Immunohistochemistry revealed significantly stronger BDNF labeling in taste cells of high BDNF-expressing mouse lines compared with controls. We show that taste buds in these mice are significantly larger and have a larger number of taste cells compared with controls. To examine whether innervation was affected in Gust-BDNF mice, we used antibodies to neural cell adhesion molecule (NCAM) and ATP receptor P2X3. The total density of general innervation and specifically the gustatory innervation was markedly increased in high BDNF-expressing mice compared with controls. TrkB and NCAM gene expression in laser capture microdissected taste epithelia were significantly up-regulated in these mice. Up-regulation of TrkB transcripts in taste buds and elevated taste cell-specific TrkB phosphorylation in response to increased BDNF levels indicate that BDNF controls the expression and activation of its high affinity receptor in taste cells. This demonstrates a direct taste cell function for BDNF. BDNF also orchestrates and maintains taste bud innervation. We propose that the Gust-BDNF transgenic mouse models can be employed to further dissect the specific roles of BDNF in the adult taste system.
Nosrat, Irina V.; Margolskee, Robert F.; Nosrat, Christopher A.
2012-01-01
Brain-derived neurotrophic factor (BDNF) is the most potent neurotrophic factor in the peripheral taste system during embryonic development. It is also expressed in adult taste buds. There is a lack of understanding of the role of BDNF in the adult taste system. To address this, we generated novel transgenic mice in which transgene expression was driven by an α-gustducin promoter coupling BDNF expression to the postnatal expression of gustducin in taste cells. Immunohistochemistry revealed significantly stronger BDNF labeling in taste cells of high BDNF-expressing mouse lines compared with controls. We show that taste buds in these mice are significantly larger and have a larger number of taste cells compared with controls. To examine whether innervation was affected in Gust-BDNF mice, we used antibodies to neural cell adhesion molecule (NCAM) and ATP receptor P2X3. The total density of general innervation and specifically the gustatory innervation was markedly increased in high BDNF-expressing mice compared with controls. TrkB and NCAM gene expression in laser capture microdissected taste epithelia were significantly up-regulated in these mice. Up-regulation of TrkB transcripts in taste buds and elevated taste cell-specific TrkB phosphorylation in response to increased BDNF levels indicate that BDNF controls the expression and activation of its high affinity receptor in taste cells. This demonstrates a direct taste cell function for BDNF. BDNF also orchestrates and maintains taste bud innervation. We propose that the Gust-BDNF transgenic mouse models can be employed to further dissect the specific roles of BDNF in the adult taste system. PMID:22442142
Al-Qudah, M.; Alkahtani, R.; Akbarali, H.I.; Murthy, K.S.; Grider, J.R.
2015-01-01
Background Brain-derived neurotrophic factor (BDNF) is a neurotrophin present in the intestine where it participates in survival and growth of enteric neurons, augmentation of enteric circuits, and stimulation of intestinal peristalsis and propulsion. Previous studies largely focused on the role of neural and mucosal BDNF. The expression and release of BDNF from intestinal smooth muscle and the interaction with enteric neuropeptides has not been studied in gut. Methods The expression and secretion of BDNF from smooth muscle cultured from rabbit longitudinal intestinal muscle in response to substance P and pituitary adenylate cyclase activating peptide (PACAP) was measured by western blot and ELISA. BDNF mRNA was measured by rt-PCR. Key Results The expression of BNDF protein and mRNA was greater in smooth muscle cells from the longitudinal muscle than from circular muscle layer. PACAP and substance P increased the expression of BDNF protein and mRNA in cultured longitudinal smooth muscle cells. PACAP and substance P also stimulated the secretion of BDNF from cultured longitudinal smooth muscle cells. Chelation of intracellular calcium with BAPTA prevented substance P-induced increase in BDNF mRNA and protein expression as well as substance P-induced secretion of BDNF. Conclusions & Inferences Neuropeptides known to be present in enteric neurons innervating the longitudinal layer increase the expression of BDNF mRNA and protein in smooth muscle cells and stimulate the release of BDNF. Considering the ability of BDNF to enhance smooth muscle contraction, this autocrine loop may partially explain the characteristic hypercontractility of longitudinal muscle in inflammatory bowel disease. PMID:26088546
Munoz, Miranda J.; Kumar, Raj G.; Oh, Byung-Mo; Conley, Yvette P.; Wang, Zhensheng; Failla, Michelle D.; Wagner, Amy K.
2017-01-01
Distinct regulatory signaling mechanisms exist between cortisol and brain derived neurotrophic factor (BDNF) that may influence secondary injury cascades associated with traumatic brain injury (TBI) and predict outcome. We investigated concurrent CSF BDNF and cortisol relationships in 117 patients sampled days 0–6 after severe TBI while accounting for BDNF genetics and age. We also determined associations between CSF BDNF and cortisol with 6-month mortality. BDNF variants, rs6265 and rs7124442, were used to create a gene risk score (GRS) in reference to previously published hypothesized risk for mortality in “younger patients” (<48 years) and hypothesized BDNF production/secretion capacity with these variants. Group based trajectory analysis (TRAJ) was used to create two cortisol groups (high and low trajectories). A Bayesian estimation approach informed the mediation models. Results show CSF BDNF predicted patient cortisol TRAJ group (P = 0.001). Also, GRS moderated BDNF associations with cortisol TRAJ group. Additionally, cortisol TRAJ predicted 6-month mortality (P = 0.001). In a mediation analysis, BDNF predicted mortality, with cortisol acting as the mediator (P = 0.011), yielding a mediation percentage of 29.92%. Mediation effects increased to 45.45% among younger patients. A BDNF*GRS interaction predicted mortality in younger patients (P = 0.004). Thus, we conclude 6-month mortality after severe TBI can be predicted through a mediation model with CSF cortisol and BDNF, suggesting a regulatory role for cortisol with BDNF's contribution to TBI pathophysiology and mortality, particularly among younger individuals with severe TBI. Based on the literature, cortisol modulated BDNF effects on mortality after TBI may be related to known hormone and neurotrophin relationships to neurological injury severity and autonomic nervous system imbalance. PMID:28337122
Melo, Carlos V.; Silva, Carla G.; Duarte, Carlos B.
2013-01-01
BDNF is a pro-survival protein involved in neuronal development and synaptic plasticity. BDNF strengthens excitatory synapses and contributes to LTP, presynaptically, through enhancement of glutamate release, and postsynaptically, via phosphorylation of neurotransmitter receptors, modulation of receptor traffic and activation of the translation machinery. We examined whether BDNF upregulated vesicular glutamate receptor (VGLUT) 1 and 2 expression, which would partly account for the increased glutamate release in LTP. Cultured rat hippocampal neurons were incubated with 100 ng/ml BDNF, for different periods of time, and VGLUT gene and protein expression were assessed by real-time PCR and immunoblotting, respectively. At DIV7, exogenous application of BDNF rapidly increased VGLUT2 mRNA and protein levels, in a dose-dependent manner. VGLUT1 expression also increased but only transiently. However, at DIV14, BDNF stably increased VGLUT1 expression, whilst VGLUT2 levels remained low. Transcription inhibition with actinomycin-D or α-amanitine, and translation inhibition with emetine or anisomycin, fully blocked BDNF-induced VGLUT upregulation. Fluorescence microscopy imaging showed that BDNF stimulation upregulates the number, integrated density and intensity of VGLUT1 and VGLUT2 puncta in neurites of cultured hippocampal neurons (DIV7), indicating that the neurotrophin also affects the subcellular distribution of the transporter in developing neurons. Increased VGLUT1 somatic signals were also found 3 h after stimulation with BDNF, further suggesting an increased de novo transcription and translation. BDNF regulation of VGLUT expression was specifically mediated by BDNF, as no effect was found upon application of IGF-1 or bFGF, which activate other receptor tyrosine kinases. Moreover, inhibition of TrkB receptors with K252a and PLCγ signaling with U-73122 precluded BDNF-induced VGLUT upregulation. Hippocampal neurons express both isoforms during embryonic and neonatal development in contrast to adult tissue expressing only VGLUT1. These results suggest that BDNF regulates VGLUT expression during development and its effect on VGLUT1 may contribute to enhance glutamate release in LTP. PMID:23326507
Serra-Millàs, Montserrat
2016-01-01
Brain-derived neurotrophic factor (BDNF) plays an important role in central nervous system development, neurogenesis and neuronal plasticity. BDNF is also expressed in several non-neuronal tissues, and it could play an important role in other processes, such as cancer, angiogenesis, etc. Platelets are the major source of peripheral BDNF. However, platelets also contain high amounts of serotonin; they express specific surface receptors during activation, and a multitude of pro-inflammatory and immunomodulatory bioactive compounds are secreted from the granules. Until recently, there was insufficient knowledge regarding the relationship between BDNF and platelets. Recent studies showed that BDNF is present in two distinct pools in platelets, in α-granules and in the cytoplasm, and only the BDNF in the granules is secreted following stimulation, representing 30% of the total BDNF in platelets. BDNF has an important role in the pathophysiology of depression. Low levels of serum BDNF have been described in patients with major depressive disorder, and BDNF levels increased with chronic antidepressant treatment. Interestingly, there is an association between depression and platelet function. This review analyzed studies that evaluated the relationship between BDNF and platelet activation and the effect of treatments on both parameters. Only a few studies consider this possible confounding factor, and it could be very important in diseases such as depression, which show changes in both parameters. PMID:27014600
BDNF Val66Met is Associated with Introversion and Interacts with 5-HTTLPR to Influence Neuroticism
Terracciano, Antonio; Tanaka, Toshiko; Sutin, Angelina R; Deiana, Barbara; Balaci, Lenuta; Sanna, Serena; Olla, Nazario; Maschio, Andrea; Uda, Manuela; Ferrucci, Luigi; Schlessinger, David; Costa, Paul T
2010-01-01
Brain-derived neurotrophic factor (BDNF) regulates synaptic plasticity and neurotransmission, and has been linked to neuroticism, a major risk factor for psychiatric disorders. A recent genome-wide association (GWA) scan, however, found the BDNF Val66Met polymorphism (rs6265) associated with extraversion but not with neuroticism. In this study, we examine the links between BDNF and personality traits, assessed using the Revised NEO Personality Inventory (NEO-PI-R), in a sample from SardiNIA (n=1560) and the Baltimore Longitudinal Study of Aging (BLSA; n=1131). Consistent with GWA results, we found that BDNF Met carriers were more introverted. By contrast, in both samples and in a meta-analysis inclusive of published data (n=15251), we found no evidence for a main effect of BDNF Val66Met on neuroticism. Finally, on the basis of recent reports of an epistatic effect between BDNF and the serotonin transporter, we explored a Val66Met × 5-HTTLPR interaction in a larger SardiNIA sample (n=2333). We found that 5-HTTLPR LL carriers scored lower on neuroticism in the presence of the BDNF Val variant, but scored higher on neuroticism in the presence of the BDNF Met variant. Our findings support the association between the BDNF Met variant and introversion and suggest that BDNF interacts with the serotonin transporter gene to influence neuroticism. PMID:20042999
Lambert, W. Marcus; Xu, Chong-Feng; Neubert, Thomas A.; Chao, Moses V.
2013-01-01
Abnormal glucocorticoid and neurotrophin signaling has been implicated in numerous psychiatric disorders. However, the impact of neurotrophic signaling on glucocorticoid receptor (GR)-dependent gene expression is not understood. We therefore examined the impact of brain-derived neurotrophic factor (BDNF) signaling on GR transcriptional regulatory function by gene expression profiling in primary rat cortical neurons stimulated with the selective GR agonist dexamethasone (Dex) and BDNF, alone or in combination. Simultaneous treatment with BDNF and Dex elicited a unique set of GR-responsive genes associated with neuronal growth and differentiation and also enhanced the induction of a large number of Dex-sensitive genes. BDNF via its receptor TrkB enhanced the transcriptional activity of a synthetic GR reporter, suggesting a direct effect of BDNF signaling on GR function. Indeed, BDNF treatment induces the phosphorylation of GR at serine 155 (S155) and serine 287 (S287). Expression of a nonphosphorylatable mutant (GR S155A/S287A) impaired the induction of a subset of BDNF- and Dex-regulated genes. Mechanistically, BDNF-induced GR phosphorylation increased GR occupancy and cofactor recruitment at the promoter of a BDNF-enhanced gene. GR phosphorylation in vivo is sensitive to changes in the levels of BDNF and TrkB as well as stress. Therefore, BDNF signaling specifies and amplifies the GR transcriptome through a coordinated GR phosphorylation-dependent detection mechanism. PMID:23878391
Mice with altered BDNF signaling as models for mood disorders and antidepressant effects
Lindholm, Jesse S. O.; Castrén, Eero
2014-01-01
Brain-derived neurotrophic factor (BDNF) and its receptor tyrosine kinase TrkB support neuronal survival during development and promote connectivity and plasticity in the adult brain. Decreased BDNF signaling is associated with the pathophysiology of depression and the mechanisms underlying the actions of antidepressant drugs (AD). Several transgenic mouse models with decreases or increases in the amount of BDNF or the activity of TrkB signaling have been created. This review summarizes the studies where various mouse models with increased or decreased BDNF levels or TrkB signaling were used to evaluate the role of BDNF signaling in depression-like behavior. Although a large number of models have been employed and several studies have been published, no clear-cut connections between BDNF levels or signaling and depression-like behavior in mice have emerged. However, it is clear that BDNF plays a critical role in the mechanisms underlying the actions of AD. PMID:24817844
Zhao, Guoqing; Zhang, Chen; Chen, Jun; Su, Yousong; Zhou, Rubai; Wang, Fan; Xia, Weiping; Huang, Jia; Wang, Zuowei; Hu, Yingyan; Cao, Lan; Guo, Xiaoyun; Yuan, Chengmei; Wang, Yong; Yi, Zhenghui; Lu, Weihong; Wu, Yan; Wu, Zhiguo; Hong, Wu; Peng, Daihui; Fang, Yiru
2017-09-01
There is a high rate of misdiagnosis between major depressive disorder (MDD) and bipolar disorder (BD) in clinical practice. Our previous work provided suggestive evidence for brain-derived neurotrophic factor (BDNF) in differentiating BD from MDD. In this study, we aimed to investigate the role of mature BDNF (mBDNF) and its precursor (proBDNF) in distinguishing bipolar depression (BP) from MDD during acute depressive episode. A total of 105 participants, including 44 healthy controls, 37 MDD patients and 24 BP patients, were recruited. Enzyme-linked immunosorbent assay kits were applied to measure plasma mBDNF levels and proBDNF levels of all participants. Plasma mBDNF levels were significantly decreased in BP group than those in MDD group (P = 0.001) and healthy controls (P = 0.002). Significantly higher ratio of mBDNF to proBDNF (M/P) at baseline was showed in MDD group than those in BP group as well as in healthy controls (P = 0.000 and P = 0.000, respectively). The optimal model for discriminating BP was the M/P ratio (area under the ROC curve = 0.858, 95 % CI 0.753-0.963). Furthermore, the M/P ratio was restored to normal levels after antidepressants treatment in MDD group. In summary, our data demonstrated that both plasma mBDNF levels and M/P ratio were lower in BP compared with MDD. These findings further support M/P ratio as a potential differential diagnostic biomarker for BP among patients in depressive episodes.
Control of Spine Maturation and Pruning through ProBDNF Synthesized and Released in Dendrites
Orefice, Lauren L.; Shih, Chien-Cheng; Xu, Haifei; Waterhouse, Emily G.; Xu, Baoji
2015-01-01
Excess synapses formed during early postnatal development are pruned over an extended period, while the remaining synapses mature. Synapse pruning is critical for activity-dependent refinement of neuronal connections and its dysregulation has been found in neurodevelopmental disorders such as autism spectrum disorders; however, the mechanism underlying synapse pruning remains largely unknown. As dendritic spines are the postsynaptic sites for the vast majority of excitatory synapses, spine maturation and pruning are indicators for maturation and elimination of these synapses. Our previous studies have found that dendritically localized mRNA for brain-derived neurotrophic factor (BDNF) regulates spine maturation and pruning. Here we investigated the mechanism by which dendritic Bdnf mRNA, but not somatically restricted Bdnf mRNA, promotes spine maturation and pruning. We found that neuronal activity stimulates both translation of dendritic Bdnf mRNA and secretion of its translation product mainly as proBDNF. The secreted proBDNF promotes spine maturation and pruning, and its effect on spine pruning is in part mediated by the p75NTR receptor via RhoA activation. Furthermore, some proBDNF is extracellularly converted to mature BDNF and then promotes maturation of stimulated spines by activating Rac1 through the TrkB receptor. In contrast, translation of somatic Bdnf mRNA and the release of its translation product mainly as mature BDNF are independent of action potentials. These results not only reveal a biochemical pathway regulating synapse pruning, but also suggest that BDNF synthesized in the soma and dendrites is released through distinct secretory pathways. PMID:26705735
Angart, Phillip A; Carlson, Rebecca J; Thorwall, Sarah; Patrick Walton, S
2017-07-01
Brain-derived neurotrophic factor (BDNF) is a member of the neurotrophin family critical for neuronal cell survival and differentiation, with therapeutic potential for the treatment of neurological disorders and spinal cord injuries. The production of recombinant, bioactive BDNF is not practical in most traditional microbial expression systems because of the inability of the host to correctly form the characteristic cystine-knot fold of BDNF. Here, we investigated Brevibacillus choshinensis as a suitable expression host for bioactive BDNF expression, evaluating the effects of medium type (2SY and TM), temperature (25 and 30 °C), and culture time (48-120 h). Maximal BDNF bioactivity (per unit mass) was observed in cultures grown in 2SY medium at extended times (96 h at 30 °C or >72 h at 25 °C), with resulting bioactivity comparable to that of a commercially available BDNF. For cultures grown in 2SY medium at 25 °C for 72 h, the condition that led to the greatest quantity of biologically active protein in the shortest culture time, we recovered 264 μg/L of BDNF. As with other microbial expression systems, BDNF aggregates did form in all culture conditions, indicating that while we were able to recover biologically active BDNF, further optimization of the expression system could yield still greater quantities of bioactive protein. This study provides confirmation that B. choshinensis is capable of producing biologically active BDNF and that further optimization of culture conditions could prove valuable in increasing BDNF yields.
Coskunoglu, Aysun; Orenay-Boyacioglu, Seda; Deveci, Artuner; Bayam, Mustafa; Onur, Ece; Onan, Arzu; Cam, Fethi S
2017-01-01
Brain-derived neurotrophic factor (BDNF) gene polymorphisms are associated with abnormalities in regulation of BDNF secretion. Studies also linked BDNF polymorphisms with changes in brainstem auditory-evoked response test results. Furthermore, BDNF levels are reduced in tinnitus, psychiatric disorders, depression, dysthymic disorder that may be associated with stress, conversion disorder, and suicide attempts due to crises of life. For this purpose, we investigated whether there is any role of BDNF changes in the pathophysiology of tinnitus. In this study, we examined the possible effects of BDNF variants in individuals diagnosed with tinnitus for more than 3 months. Fifty-two tinnitus subjects between the ages of 18 and 55, and 42 years healthy control subjects in the same age group, who were free of any otorhinolaryngology and systemic disease, were selected for examination. The intensity of tinnitus and depression was measured using the tinnitus handicap inventory, and the differential diagnosis of psychiatric diagnoses made using the Structured Clinical Interview for Fourth Edition of Mental Disorders. BDNF gene polymorphism was analyzed in the genomic deoxyribonucleic acid (DNA) samples extracted from the venous blood, and the serum levels of BDNF were measured. One-way analysis of variance and Chi-squared tests were applied. Serum BDNF level was found lower in the tinnitus patients than controls, and it appeared that there is no correlation between BDNF gene polymorphism and tinnitus. This study suggests neurotrophic factors such as BDNF may have a role in tinnitus etiology. Future studies with larger sample size may be required to further confirm our results.
Coskunoglu, Aysun; Orenay-Boyacioglu, Seda; Deveci, Artuner; Bayam, Mustafa; Onur, Ece; Onan, Arzu; Cam, Fethi S.
2017-01-01
Background: Brain-derived neurotrophic factor (BDNF) gene polymorphisms are associated with abnormalities in regulation of BDNF secretion. Studies also linked BDNF polymorphisms with changes in brainstem auditory-evoked response test results. Furthermore, BDNF levels are reduced in tinnitus, psychiatric disorders, depression, dysthymic disorder that may be associated with stress, conversion disorder, and suicide attempts due to crises of life. For this purpose, we investigated whether there is any role of BDNF changes in the pathophysiology of tinnitus. Materials and Methods: In this study, we examined the possible effects of BDNF variants in individuals diagnosed with tinnitus for more than 3 months. Fifty-two tinnitus subjects between the ages of 18 and 55, and 42 years healthy control subjects in the same age group, who were free of any otorhinolaryngology and systemic disease, were selected for examination. The intensity of tinnitus and depression was measured using the tinnitus handicap inventory, and the differential diagnosis of psychiatric diagnoses made using the Structured Clinical Interview for Fourth Edition of Mental Disorders. BDNF gene polymorphism was analyzed in the genomic deoxyribonucleic acid (DNA) samples extracted from the venous blood, and the serum levels of BDNF were measured. One-way analysis of variance and Chi-squared tests were applied. Results: Serum BDNF level was found lower in the tinnitus patients than controls, and it appeared that there is no correlation between BDNF gene polymorphism and tinnitus. Conclusions: This study suggests neurotrophic factors such as BDNF may have a role in tinnitus etiology. Future studies with larger sample size may be required to further confirm our results. PMID:28615544
Roullet, F I; Wollaston, L; Decatanzaro, D; Foster, J A
2010-10-13
Experiments in rodents have indicated that maternal valproic acid (VPA) exposure has permanent adverse effects upon neurological and behavioral development. In humans, prenatal exposure to VPA can induce fetal valproate syndrome, which has been associated with autism. The present study examined mouse pups exposed in utero to VPA, measuring physical development, olfactory discrimination, and social behavior as well as expression of plasticity-related genes, brain derived neurotrophic factor (BDNF) and NMDA receptor subunits NR2A and NR2B. VPA-exposed mice showed delayed physical development, impaired olfactory discrimination, and dysfunctional pre-weaning social behavior. In situ hybridization experiments revealed lower cortical expression of BDNF mRNA in VPA animals. These results support the validity of the VPA mouse model for human autism and suggest that alterations in plasticity-related genes may contribute to the behavioral phenotype. Copyright 2010 IBRO. Published by Elsevier Ltd. All rights reserved.
Wang, Ying; Teng, Hong-Lin; Gao, Yuan; Zhang, Fan; Ding, Yu-Qiang; Huang, Zhi-Hui
2016-12-01
Olfactory ensheathing cells (OECs) are a unique type of glial cells with axonal growth-promoting properties in the olfactory system. Organized migration of OECs is essential for neural regeneration and olfactory development. However, the molecular mechanism of OEC migration remains unclear. In the present study, we examined the effects of brain-derived neurotrophic factor (BDNF) on OEC migration. Initially, the "scratch" migration assay, the inverted coverslip and Boyden chamber migration assays showed that BDNF could promote the migration of primary cultured OECs. Furthermore, BDNF gradient attracted the migration of OECs in single-cell migration assays. Mechanistically, TrkB receptor expressed in OECs mediated BDNF-induced OEC migration, and BDNF triggered calcium signals in OECs. Finally, transient receptor potential cation channels (TRPCs) highly expressed in OECs were responsible for BDNF-induced calcium signals, and required for BDNF-induced OEC migration. Taken together, these results demonstrate that BDNF promotes the migration of cultured OECs and an unexpected finding is that TRPCs are required for BDNF-induced OEC migration. GLIA 2016;64:2154-2165. © 2016 Wiley Periodicals, Inc.
Plasma BDNF Concentration, Val66Met Genetic Variant, and Depression-Related Personality Traits
Terracciano, Antonio; Martin, Bronwen; Ansari, David; Tanaka, Toshiko; Ferrucci, Luigi; Maudsley, Stuart; Mattson, Mark P.; Costa, Paul T.
2010-01-01
Brain derived neurotrophic factor (BDNF) regulates synaptic plasticity and neurogenesis, and BDNF plasma and serum levels have been associated with depression, Alzheimer's disease, and other psychiatric and neurodegenerative disorders. In a relatively large community sample, drawn from the Baltimore Longitudinal Study of Aging (BLSA), we examine whether BDNF plasma concentration is associated with the Val66Met functional polymorphism of the BDNF gene (n = 335) and with depression-related personality traits assessed with the NEO-PI-R (n = 391). Plasma concentration of BDNF was not associated with the Val66Met variant in either men or women. However, in men, but not in women, BDNF plasma level was associated with personality traits linked to depression. Contrary to the notion that low BDNF is associated with negative outcomes, we found lower plasma levels in men who score lower on depression and vulnerability to stress (two facets of Neuroticism) and higher on Conscientiousness and Extraversion. These findings challenge the prevailing hypothesis that lower peripheral levels of BDNF are a marker of depression. PMID:20345896
Huang, Fei; Wu, Yunfeng; Wang, Hao; Chang, Jun; Ma, Guangwen; Yin, Zongsheng
2016-01-20
This study aimed to examine the effect of controlled release of brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) from collagen gel on rat neural stem cells (NSCs). With three groups of collagen gel, BDNF/collagen gel, and NT-3/collagen gel as controls, BDNF and NT-3 were tested in the BDNF-NT-3/collagen gel group at different time points. The enzyme-linked immunosorbent assay results showed that BDNF and NT-3 were steadily released from collagen gels for 10 days. The cell viability test and the bromodeoxyuridine incorporation assay showed that BDNF-NT-3/collagen gel supported the survival and proliferation of NSCs. The results also showed that the length of processes was markedly longer and differentiation percentage from NSCs into neurons was much higher in the BDNF-NT-3/collagen gel group than those in the collagen gel, BDNF/collagen gel, and NT-3/collagen gel groups. These findings suggest that BDNF-NT-3/collagen gel could significantly improve the ability of NSCs proliferation and differentiation.
Wang, Yuan; Zhang, Haiyin; Li, Ying; Wang, Zhen; Fan, Qing; Yu, Shunying; Lin, Zhiguang; Xiao, Zeping
2015-11-01
Anxiety disorders are a category of mental disorders characterized by feelings of anxiety and fear, which include generalized anxiety disorder (GAD). Obsessive-Compulsive Disorder (OCD) used to be categorized as anxiety disorder in DSM-IV. However OCD was no longer included in anxiety disorders and came into its own category titled as Obsessive-Compulsive and Related Disorders (OCRD) in DSM-5. It will be interesting to explore is there any different biological characteristics between OCD and anxiety disorders. Brain-derived neurotrophic factor (BDNF) was a potential candidate gene in both OCD and GAD. The results of genetic association studies between BDNF and OCD have been inconsistent. BDNF plasma/serum levels in OCD have been found lower than those in healthy controls. However the heritable reason of the lowered BDNF levels was not well elucidated. The amount of studies about BDNF and GAD were relatively small. The aims of this study were to determine whether single nucleotide polymorphism Val66Met of BDNF was associated with OCD and GAD, to examine BDNF plasma levels in OCD and GAD, and to explore whether Val66Met variation influences BDNF plasma levels. We genotyped Val66Met variation in 148 OCD patients, 108 GAD patients and 99 healthy controls. Within the same sample, BDNF plasma levels were determined in 113 OCD patients, 102 GAD patients and 63 healthy controls. Val66Met variation was not associated with OCD or GAD. BDNF plasma levels in OCD and GAD patients were significant lower than those in healthy controls. Val66Met variation had no influence on BDNF plasma levels. No difference was found between OCD and GAD. Results do not change no matter taking OCD and GAD as one group or separated two. First, the sample size for genotyping was relatively small, which leaded to a low statistical power of the genetic part in this study. Second, we genotyped just one SNP in BDNF gene. Third, parts of the participants did not be assayed for BDNF plasma levels. Our findings support the hypothesis that BDNF is involved in the pathophysiology of mental disorders, not only OCD but also GAD. OCD and GAD patients both show lower BDNF plasma levels compared to healthy controls. The BDNF plasma levels are not associated with Val66Met variation. Copyright © 2015 Elsevier B.V. All rights reserved.
Decroix, Lieselot; Tonoli, Cajsa; Soares, Danusa D; Tagougui, Semah; Heyman, Elsa; Meeusen, Romain
2016-12-01
Acute exercise-induced improvements in cognitive function are accompanied by increased (cerebral) blood flow and increased brain-derived neurotrophic factor (BDNF) levels. Acute cocoa flavanol (CF) intake may improve cognitive function, cerebral blood flow (in humans), and BNDF levels (in animals). This study investigated (i) the effect of CF intake in combination with exercise on cognitive function and (ii) cerebral hemodynamics and BDNF in response to CF intake and exercise. Twelve healthy men participated in this randomized, double-blind, crossover study. Participants performed a cognitive task (CT) at 100 min after acute 903-mg CF or placebo (PL) intake, followed by a 30-min time-trial. Immediately after this exercise, the same CT was performed. Prefrontal near-infrared spectroscopy was applied during CT and exercise to measure changes in oxygenated (ΔHbO 2 ), deoxygenated (ΔHHb), and total haemoglobin (ΔHb tot ) and blood samples were drawn and analyzed for BDNF. Reaction time was faster postexercise, but was not influenced by CF. ΔHbO 2 during the resting CT was increased by CF, compared with PL. ΔHbO 2 , ΔHHb, and ΔHb tot increased in response to exercise without any effect of CF. During the postexercise cognitive task, there were no hemodynamic differences between CF or PL. Serum BDNF was increased by exercise, but was not influenced by CF. In conclusion, at rest, CF intake increased cerebral oxygenation, but not BDNF concentrations, and no impact on executive function was detected. This beneficial effect of CF on cerebral oxygenation at rest was overruled by the strong exercise-induced increases in cerebral perfusion and oxygenation.
Strickland, Justin C.; Abel, Jean M.; Lacy, Ryan T.; Beckmann, Joshua S.; Witte, Maryam A.; Lynch, Wendy J.; Smith, Mark A.
2016-01-01
Background Exercise is associated with positive outcomes in drug abusing populations and reduces drug self-administration in laboratory animals. To date, most research has focused on aerobic exercise, and other types of exercise have not been examined. This study examined the effects of resistance exercise (strength training) on cocaine self-administration and BDNF expression, a marker of neuronal activation regulated by aerobic exercise. Methods Female rats were assigned to either exercising or sedentary conditions. Exercising rats climbed a ladder wearing a weighted vest and trained six days/week. Training consisted of a three-set “pyramid” in which the number of repetitions and resistance varied across three sets: eight climbs carrying 70% body weight (BW), six climbs carrying 85% BW, and four climbs carrying 100% BW. Rats were implanted with intravenous catheters and cocaine self-administration was examined. Behavioral economic measures of demand intensity and demand elasticity were derived from the behavioral data. BDNF mRNA expression was measured via qRT-PCR in the nucleus accumbens following behavioral testing. Results Exercising rats self-administered significantly less cocaine than sedentary rats. A behavioral economic analysis revealed that exercise increased demand elasticity for cocaine, reducing consumption at higher unit prices. Exercising rats had lower BDNF expression in the nucleus accumbens core than sedentary rats. Conclusions These data indicate that resistance exercise decreases cocaine self-administration and reduces BDNF expression in the nucleus accumbens after a history of cocaine exposure. Collectively, these findings suggest that strength training reduces the positive reinforcing effects of cocaine and may decrease cocaine use in human populations. PMID:27137405
Association of adenovirus 36 infection with obesity-related gene variants in adolescents.
Dušátková, L; Zamrazilová, H; Aldhoon Hainerová, I; Atkinson, R L; Sedláčková, B; Lee, Z P; Včelák, J; Bendlová, B; Kunešová, M; Hainer, V
2015-01-01
Both, common gene variants and human adenovirus 36 (Adv36) are involved in the pathogenesis of obesity. The potential relationship between these two pathogenic factors has not yet been investigated. The aim of our study was to examine the association of obesity susceptibility loci with Adv36 status. Genotyping of ten gene variants (in/near TMEM18, SH2B1, KCTD15, PCSK1, BDNF, SEC16B, MC4R, FTO) and analysis of Adv36 antibodies was performed in 1,027 Czech adolescents aged 13.0-17.9 years. Variants of two genes (PCSK1 and BDNF) were associated with Adv36 seropositivity. A higher prevalence of Adv36 antibody positivity was observed in obesity risk allele carriers of PCSK1 rs6232, rs6235 and BDNF rs4923461 vs. non-carriers (chi(2)=6.59, p=0.010; chi(2)=7.56, p=0.023 and chi(2)=6.84, p=0.033, respectively). The increased risk of Adv36 positivity was also found in PCSK1 variants: rs6232 (OR=1.67, 95 % CI 1.11-2.49, p=0.016) and rs6235 (OR=1.34, 95 % CI 1.08-1.67, p=0.010). PCSK1 rs6232 and BDNF rs925946 variants were closely associated with Adv36 status in boys and girls, respectively (chi(2)=5.09, p=0.024; chi(2)=7.29, p=0.026). Furthermore, PCSK1 rs6235 risk allele was related to Adv36 seropositivity (chi(2)=6.85, p=0.033) in overweight/obese subgroup. In conclusion, our results suggest that obesity risk variants of PCSK1 and BDNF genes may be related to Adv36 infection.
Gene-activated fat grafts for the repair of spinal cord injury: a pilot study.
Betz, Volker M; Sitoci-Ficici, K Hakan; Uckermann, Ortrud; Leipnitz, Elke; Iltzsche, Anne; Thirion, Christian; Salomon, Michael; Zwipp, Hans; Schackert, Gabriele; Betz, Oliver B; Kirsch, Matthias
2016-02-01
Spinal cord injury (SCI) is a complex disease requiring a concerted multi-target approach. The most appropriate combination of therapeutic gene, cellular vehicle, and space filling scaffold still has to be determined. We present an approach that employs syngeneic adipose tissue serving as a three-dimensional biological implant, source of progenitor cells, and delivery system for therapeutic genes. In this pilot experiment, we evaluated the feasibility and short-term effects using gene-activated autologous fat grafts after SCI. An experimental SCI model was established in syngeneic Fischer 344 rats by a T9-T10 hemimyelonectomy. Fat tissue was harvested from two donor rats. Animals were divided into four groups and treated with either (i) fat grafts activated by an adenoviral vector carrying the human NT-3 cDNA, (ii) or BDNF, (iii) or with untreated fat grafts or (iv) remained untreated. Animals were euthanized either 7 or 21 days after surgery, and spinal cord tissue was investigated by histological and immunohistochemical methods. NT-3 and BDNF were produced by gene-activated fat grafts for at least 21 days in vitro and in vivo. Fat tissue grafts remained stable at the site of implantation at 7 days and at 21 days. Neither BDNF-activated nor NT-3-activated fat graft had a detectable limiting effect on the neuronal degeneration. BDNF recruited microglia to perilesional site and attenuated their inflammatory response. Gene-activated syngeneic fat tissue serves as a three-dimensional biological material delivering therapeutic molecules to the site of SCI over an extended period of time. The BDNF-fat graft attenuated the inflammatory response. Whether these findings translate into functional recovery will require extended observation times.
Stuart, Kimberley; Summers, Mathew James; Valenzuela, Michael J; Vickers, James C
2014-04-01
Cognitive decline is a major factor in lowering the quality of life in older populations, and contributes substantially to social, economic, and health costs. As humans age, cognitive function decreases differentially, and individual differences in cognitive ageing are likely attributed to a range of causes, including environmental and genetic influences. The current study included 360 participants (240 females and 120 males) aged between 50 and 79years from the Tasmanian Healthy Brain Project. The brain-derived neurotrophic factor (BDNF) Val66Met and Catechol-O-Methyltransferase (COMT) Val158Met polymorphisms were examined for their association with visual and auditory episodic memory performance. The polymorphisms were also investigated for their association with reported life-long engagement in complex cognitive activity using a retrospective questionnaire. Relative to the demographic variables, the gene variations were found to have no association with episodic memory performance, with the exception of the COMT polymorphism on a single measure of auditory memory (RAVLT). Several other studies also demonstrated that these polymorphisms have no, small, or inconsistent effects on memory function. The BDNF Val66Met and COMT Val158Met polymorphisms were also found to be of little significance to active engagement in complex cognitive activity throughout most of the lifespan. An association was detected between BDNF Val66Met and engagement in cognitive activity in early life (p=.04, d=.23), however this did not reach significance when adjusted for multiple comparisons. The biological mechanisms that underlie engagement in cognitive activity are elusive, thus the potential relationship between BDNF Val66Met genotype and early life cognitive engagement warrants further investigation. Crown Copyright © 2014. Published by Elsevier Inc. All rights reserved.
Effect of Early-Life Fluoxetine on Anxiety-Like Behaviors in BDNF Val66Met Mice.
Dincheva, Iva; Yang, Jianmin; Li, Anfei; Marinic, Tina; Freilingsdorf, Helena; Huang, Chienchun; Casey, B J; Hempstead, Barbara; Glatt, Charles E; Lee, Francis S; Bath, Kevin G; Jing, Deqiang
2017-12-01
Adolescence is a developmental stage in which the incidence of psychiatric disorders, such as anxiety disorders, peaks. Selective serotonin reuptake inhibitors (SSRIs) are the main class of agents used to treat anxiety disorders. However, the impact of SSRIs on the developing brain during adolescence remains unknown. The authors assessed the impact of developmentally timed SSRI administration in a genetic mouse model displaying elevated anxiety-like behaviors. Knock-in mice containing a common human single-nucleotide polymorphism (Val66Met; rs6265) in brain-derived neurotrophic factor (BDNF), a growth factor implicated in the mechanism of action of SSRIs, were studied based on their established phenotype of increased anxiety-like behavior. Timed administration of fluoxetine was delivered during one of three developmental periods (postnatal days 21-42, 40-61, or 60-81), spanning the transition from childhood to adulthood. Neurochemical and anxiety-like behavioral analyses were performed. We identified a "sensitive period" during periadolescence (postnatal days 21-42) in which developmentally timed fluoxetine administration rescued anxiety-like phenotypes in BDNF Val66Met mice in adulthood. Compared with littermate controls, BDNF Met/Met mice exhibited diminished maturation of serotonergic fibers projecting particularly to the prefrontal cortex, as well as decreased expression of the serotonergic trophic factor S100B in the dorsal raphe. Interestingly, deficient serotonergic innervation, as well as S100B levels, were rescued with fluoxetine administration during periadolescence. These findings suggest that SSRI administration during a "sensitive period" during periadolescence leads to long-lasting anxiolytic effects in a genetic mouse model of elevated anxiety-like behaviors. These persistent effects highlight the role of BDNF in the maturation of the serotonin system and the capacity to enhance its development through a pharmacological intervention.
Strickland, Justin C; Abel, Jean M; Lacy, Ryan T; Beckmann, Joshua S; Witte, Maryam A; Lynch, Wendy J; Smith, Mark A
2016-06-01
Exercise is associated with positive outcomes in drug abusing populations and reduces drug self-administration in laboratory animals. To date, most research has focused on aerobic exercise, and other types of exercise have not been examined. This study examined the effects of resistance exercise (strength training) on cocaine self-administration and BDNF expression, a marker of neuronal activation regulated by aerobic exercise. Female rats were assigned to either exercising or sedentary conditions. Exercising rats climbed a ladder wearing a weighted vest and trained six days/week. Training consisted of a three-set "pyramid" in which the number of repetitions and resistance varied across three sets: eight climbs carrying 70% body weight (BW), six climbs carrying 85% BW, and four climbs carrying 100% BW. Rats were implanted with intravenous catheters and cocaine self-administration was examined. Behavioral economic measures of demand intensity and demand elasticity were derived from the behavioral data. BDNF mRNA expression was measured via qRT-PCR in the nucleus accumbens following behavioral testing. Exercising rats self-administered significantly less cocaine than sedentary rats. A behavioral economic analysis revealed that exercise increased demand elasticity for cocaine, reducing consumption at higher unit prices. Exercising rats had lower BDNF expression in the nucleus accumbens core than sedentary rats. These data indicate that resistance exercise decreases cocaine self-administration and reduces BDNF expression in the nucleus accumbens after a history of cocaine exposure. Collectively, these findings suggest that strength training reduces the positive reinforcing effects of cocaine and may decrease cocaine use in human populations. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Brain-derived neurotrophic factor (BDNF) in children with ASD and their parents: a 3-year follow-up.
Francis, K; Dougali, A; Sideri, K; Kroupis, C; Vasdekis, V; Dima, K; Douzenis, A
2018-05-01
Several lines of evidence point to a probable relationship between brain-derived neurotrophic factor (BDNF) and autism spectrum disorder (ASD), but studies have yielded inconsistent findings on the BDNF serum level in ASD. The study aimed to assess those levels in children with ASD and their families. BDNF serum levels were measured in 45 ASD children without intellectual disability (ID) and allergies, age 30-42 months and age-matched normal controls. BDNF serum levels in the parents of the ASD subjects were compared to normal controls. BDNF serum levels in the ASD subjects were followed up for 3 years and correlated with adaptive functioning changes. BDNF serum levels were measured to be lower in children with ASD and independent of all the major baseline characteristics of the subjects. Having a child with ASD raises the BDNF levels in parents comparing to controls. Prospectively, no correlation between the change of BDNF variables in time and the change of the Vineland scores was found. Our results contradict those from recent published meta-analyses with the age, the presence of ID and allergies being possible contributing factors. The parents' data indeed point to a role of BDNF in the pathophysiology of ASD. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Su, Bo; Ji, Yun-Song; Sun, Xu-lu; Liu, Xiang-Hua; Chen, Zhe-Yu
2014-01-17
Appropriate mitochondrial transport and distribution are essential for neurons because of the high energy and Ca(2+) buffering requirements at synapses. Brain-derived neurotrophic factor (BDNF) plays an essential role in regulating synaptic transmission and plasticity. However, whether and how BDNF can regulate mitochondrial transport and distribution are still unclear. Here, we find that in cultured hippocampal neurons, application of BDNF for 15 min decreased the percentage of moving mitochondria in axons, a process dependent on the activation of the TrkB receptor and its downstream PI3K and phospholipase-Cγ signaling pathways. Moreover, the BDNF-induced mitochondrial stopping requires the activation of transient receptor potential canonical 3 and 6 (TRPC3 and TRPC6) channels and elevated intracellular Ca(2+) levels. The Ca(2+) sensor Miro1 plays an important role in this process. Finally, the BDNF-induced mitochondrial stopping leads to the accumulation of more mitochondria at presynaptic sites. Mutant Miro1 lacking the ability to bind Ca(2+) prevents BDNF-induced mitochondrial presynaptic accumulation and synaptic transmission, suggesting that Miro1-mediated mitochondrial motility is involved in BDNF-induced mitochondrial presynaptic docking and neurotransmission. Together, these data suggest that mitochondrial transport and distribution play essential roles in BDNF-mediated synaptic transmission.
van den Heuvel, Leigh; Suliman, Sharain; Malan-Müller, Stefanie; Hemmings, Sian; Seedat, Soraya
2016-11-01
Alterations in brain-derived neurotrophic factor (BDNF) expression and release may play a role in the pathogenesis of post-traumatic stress disorder (PTSD). This study evaluated road traffic accident (RTA) survivors to determine whether PTSD and trauma-related factors were associated with plasma BDNF levels and BDNF Val66Met carrier status following RTA exposure. One hundred and twenty-three RTA survivors (mean age 33.2 years, SD = 10.6 years; 56.9% male) were assessed 10 (SD = 4.9) days after RTA exposure. Acute stress disorder (ASD), as assessed with the Acute Stress Disorder Scale, was present in 50 (42.0%) of the participants. Plasma BDNF levels were measured with enzyme-linked immunosorbent assay and BDNF Val66Met genotyping was performed. PTSD, as assessed with the Clinician-Administered PTSD Scale, was present in 10 (10.8%) participants at 6 months follow-up. Neither BDNF Val66Met genotype nor plasma BDNF was significantly associated with the presence or severity of ASD or PTSD. Plasma BDNF levels were, however, significantly correlated with the lifetime number of trauma exposures. In RTA survivors, plasma BDNF levels increased with increasing number of prior trauma exposures. Plasma BDNF may, therefore, be a marker of trauma load.
Song, Zhaojun; Ye, Yongjie; Zhang, Zhi; Shen, Jieliang; Hu, Zhenming; Wang, Zhigang; Zheng, Jiazhuang
2018-02-12
Various gene delivery systems have been widely studied for the acute spinal cord injury (SCI) treatment. In the present study, a novel type of brain-derived neurotrophic factor (BDNF)-loaded cationic nanobubbles (CNBs) conjugated with MAP-2 antibody (mAb MAP-2 /BDNF/CNBs) was prepared to provide low-intensity focused ultrasound (LIFU)-targeted gene therapy. In vitro experiments, the ultrasound-targeted tranfection to BDNF overexpressioin in neurons and efficiently inhibition neuronal apoptosis have been demonstrated, and the elaborately designed mAb MAP-2 /BDNF/CNBs can specifically target to the neurons. Furthermore, in a acute SCI rat model, LIFU-mediated mAb MAP-2 /BDNF/CNBs transfection significantly increased BDNF expression, attenuated histological injury, decreased neurons loss, inhibited neuronal apoptosis in injured spinal cords, and increased BBB scores in SCI rats. LIFU-mediated mAb MAP-2 /BDNF/CNBs destruction significantly increase transfection efficiency of BDNF gene both in vitro and in vivo, and has a significant neuroprotective effect on the injured spinal cord. Therefore, the combination of LIFU irradiation and gene therapy through mAb MAP-2 /BDNF/CNBs can be considered as a novel non-invasive and targeted treatment for gene therapy of SCI. Copyright © 2018 Elsevier Inc. All rights reserved.
Choi, Sam-Wook; Shin, Young-Chul; Mok, Jung Yeon; Kim, Dai-Jin; Choi, Jung-Seok; Suk-Hyun Hwang, Samuel
2016-01-01
Background and aims Gambling disorder (GD) shares many similarities with substance use disorders (SUDs) in clinical, neurobiological, and neurocognitive features, including decision-making. We evaluated the relationships among, GD, decision-making, and brain-derived neurotrophic factor (BDNF), as measured by serum BDNF levels. Methods Twenty-one male patients with GD and 21 healthy sex- and age-matched control subjects were evaluated for associations between serum BDNF levels and the Problem Gambling Severity Index (PGSI), as well as between serum BDNF levels and Iowa Gambling Task (IGT) indices. Results The mean serum BDNF levels were significantly increased in patients with GD compared to healthy controls. A significant correlation between serum BDNF levels and PGSI scores was found when controlling for age, depression, and duration of GD. A significant negative correlation was obtained between serum BDNF levels and IGT improvement scores. Discussion These findings support the hypothesis that serum BDNF levels constitute a dual biomarker for the neuroendocrine changes and the severity of GD in patients. Serum BDNF level may serve as an indicator of poor decision-making performance and learning processes in GD and help to identify the common physiological underpinnings between GD and SUDs. PMID:28092195
Choi, Miyeon; Lee, Seung Hoon; Park, Min Hyeop; Kim, Yong-Seok; Son, Hyeon
2017-08-05
Ketamine shows promise as a therapeutic agent for the treatment of depression. The increased expression of brain-derived neurotrophic factor (BDNF) has been associated with the antidepressant-like effects of ketamine, but the mechanism of BDNF induction is not well understood. In the current study, we demonstrate that the treatment of rats with ketamine results in the dose-dependent rapid upregulation of Bdnf promoter IV activity and expression of Bdnf exon IV mRNAs in rat hippocampal neurons. Transfection of histone deacetylase 5 (HDAC5) into rat hippocampal neurons similarly induces Bdnf mRNA expression in response to ketamine, whereas transfection of a HDAC5 phosphorylation-defective mutant (Ser259 and Ser498 replaced by Ala259 and Ala498), results in the suppression of ketamine-mediated BDNF promoter IV transcriptional activity. Viral-mediated hippocampal knockdown of HDAC5 induces Bdnf mRNA and protein expression, and blocks the enhancing effects of ketamine on BDNF expression in both unstressed and stressed rats, and thereby providing evidence for the role of HDAC5 in the regulation of Bdnf expression. Taken together, our findings implicate HDAC5 in the ketamine-induced transcriptional regulation of Bdnf, and suggest that the phosphorylation of HDAC5 regulates the therapeutic actions of ketamine. Copyright © 2017 Elsevier Inc. All rights reserved.
Heitz, Ulrike; Papmeyer, Martina; Studerus, Erich; Egloff, Laura; Ittig, Sarah; Andreou, Christina; Vogel, Tobias; Borgwardt, Stefan; Graf, Marc; Eckert, Anne; Riecher-Rössler, Anita
2018-06-25
Brain-derived neurotrophic factor (BDNF) is involved in numerous cognitive processes. Since cognitive deficits are a core feature of psychotic disorders, the investigation of BDNF levels in psychosis and their correlation with cognition has received increased attention. However, there are no studies investigating BDNF levels in individuals with an at-risk mental state (ARMS) for psychosis. Hence, the aims of the present study were: (1) assessing peripheral BDNF levels across different (potential) stages of psychosis; (2) investigating their association with cognition. Plasma and serum BDNF levels and neuropsychological performance were assessed in 16 ARMS, six first-episode psychosis (FEP), and 11 chronic schizophrenia (CS) patients. Neuropsychological assessment covered intelligence, verbal memory, working memory, attention and executive functioning. Both plasma and serum BDNF levels were highest in CS, intermediate in FEP and lowest in ARMS. Multiple regression analysis revealed a significant positive association of plasma BDNF levels with planning ability across all groups. The lower peripheral BDNF levels in ARMS compared to FEP and CS might point towards an important drop of this neurotrophin prior to the onset of frank psychosis. The associations of peripheral BDNF with planning-abilities match previous findings.
Mercader, J M; Fernández-Aranda, F; Gratacòs, Mònica; Aguera, Zaida; Forcano, Laura; Ribasés, Marta; Villarejo, Cynthia; Estivill, Xavier
2010-04-01
Association studies and rodent models suggest a major role for BDNF (brain-derived neurotrophic factor) in feeding regulation. Altered BDNF blood levels have been associated with eating disorders (ED) and their related psychopathological traits. Since the influence of BDNF on self-reported eating disorder inventory scores (EDI) has not been tested, we investigated the correlation of EDI scales with BDNF plasma levels. BDNF levels were measured by (ELISA), and the EDI questionnaire was administered in a total of 81 ED patients. The relationship between BDNF levels and EDI scores was calculated using a general linear model. After correcting for multiple testing, BDNF plasma levels negatively correlated with the EDI total score (R (2) = 0.26; p = 4.09 x 10(-4)), interoceptive awareness (R (2) = 0.26; p = 1.96 x 10(-4)), and maturity fears (R (2) = 0.13; p = 6.92 x 10(-4)). When subdividing according to the main diagnoses, interoceptive awareness presented significant correlations with BDNF blood levels in both the anorexia nervosa (R (2) = 0.33, p = 0.0026) and bulimia nervosa groups (R (2) = 0.10; p = 0.008). Our data suggest that BDNF levels may influence the severity of the ED by modulating the associated psychopathology, in particular through the impairment of interoceptive awareness.
Lack of promoter IV-driven BDNF transcription results in depression-like behavior.
Sakata, K; Jin, L; Jha, S
2010-10-01
Transcription of Bdnf is controlled by multiple promoters, in which promoter IV contributes significantly to activity-dependent Bdnf transcription. We have generated promoter IV mutant mice [brain-derived neurotrophic factor (BDNF)-KIV] in which promoter IV-driven expression of BDNF is selectively disrupted by inserting a green fluorescent protein (GFP)-STOP cassette within the Bdnf exon IV locus. BDNF-KIV animals exhibited depression-like behavior as shown by the tail suspension test (TST), sucrose preference test (SPT) and learned helplessness test (LHT). In addition, BDNF-KIV mice showed reduced activity in the open field test (OFT) and reduced food intake in the novelty-suppressed feeding test (NSFT). The mutant mice did not display anxiety-like behavior in the light and dark box test and elevated plus maze tests. Interestingly, the mutant mice showed defective response inhibition in the passive avoidance test (PAT) even though their learning ability was intact when measured with the active avoidance test (AAT). These results suggest that promoter IV-dependent BDNF expression plays a critical role in the control of mood-related behaviors. This is the first study that directly addressed the effects of endogenous promoter-driven expression of BDNF in depression-like behavior. © 2010 The Authors. Genes, Brain and Behavior © 2010 Blackwell Publishing Ltd and International Behavioural and Neural Genetics Society.
Bagge, J; Gaida, J E; Danielson, P; Alfredson, H; Forsgren, S
2011-12-01
Physical activity affects the pain symptoms for Achilles tendinosis patients. Brain-derived neurotrophic factor (BDNF), tumor necrosis factor-alpha (TNF-α) and their receptors have been detected in human Achilles tendon. This pilot study aimed to compare serum BDNF and soluble tumor necrosis factor receptor I (sTNFRI) levels in Achilles tendinosis patients and healthy controls and to examine the influence of physical activity, and BMI and gender, on these levels. Physical activity was measured with a validated questionnaire, total physical activity being the parameter analyzed. Physical activity was strongly correlated with BDNF among tendinosis women [Spearman's rho (ρ)=0.90, P<0.01] but not among control women (ρ=-0.08, P=0.83), or among tendinosis and control men. Physical activity was significantly correlated with sTNFRI in the entire tendinosis group and among tendinosis men (ρ=0.65, P=0.01), but not in the entire control group or among control men (ρ=0.04, P=0.91). Thus, the physical activity pattern is related to the TNF and BDNF systems for tendinosis patients but not controls, the relationship being gender dependent. This is new information concerning the relationship between physical activity and Achilles tendinosis, which may be related to pain for the patients. This aspect should be further evaluated using larger patient materials. © 2011 John Wiley & Sons A/S.
Notaras, M; Du, X; Gogos, J; van den Buuse, M; Hill, R A
2017-01-01
The BDNF Val66Met polymorphism has been associated with sensitivity to stress and affective disorders. We therefore sought to model the inter-causality of these relationships under controlled laboratory conditions. We subjected humanized BDNF Val66Met (hBDNFVal66Met) transgenic mice to a history of stress, modeled by chronic late-adolescent corticosterone (CORT) exposure, before evaluating affective-related behavior using the forced-swim test (FST) in adulthood. While hBDNFMet/Met mice had a depression-like phenotype in the FST irrespective of CORT, hBDNFVal/Val wildtype mice had a resilient phenotype but developed an equally robust depressive-like phenotype following CORT. A range of stress-sensitive molecules were studied across the corticohippocampal axis, and where genotype differences occurred following CORT they tended to inversely coincide with the behavior of the hBDNFVal/Val group. Notably, tyrosine hydroxylase was markedly down-regulated in the mPFC of hBDNFVal/Val mice as a result of CORT treatment, which mimicked expression levels of hBDNFMet/Met mice and the FST behavior of both groups. The expression of calretinin, PSD-95, and truncated TrkB were also concomitantly reduced in the mPFC of hBDNFVal/Val mice by CORT. This work establishes BDNFVal66Met genotype as a regulator of behavioral despair, and identifies new biological targets of BDNF genetic variation relevant to stress-inducible disorders such as depression. PMID:28926000
Association of BDNF Polymorphisms with the Risk of Epilepsy: a Multicenter Study.
Sha'ari, Hidayati Mohd; Haerian, Batoul Sadat; Baum, Larry; Tan, Hui Jan; Rafia, Mohd Hanip; Kwan, Patrick; Cherny, Stacey S; Sham, Pak Chung; Gui, Hongsheng; Raymond, Azman Ali; Lim, Kheng Seang; Mohamed, Zahurin
2016-07-01
Epilepsy is a common neurological disease characterized by recurrent unprovoked seizures. Evidence suggested that abnormal activity of brain-derived neurotrophic factor (BDNF) contributes to the pathogenesis of epilepsy. Some previous studies identified association between genetic variants of BDNF and risk of epilepsy. In this study, this association has been examined in the Hong Kong and Malaysian epilepsy cohorts. Genomic DNA of 6047 subjects (1640 patients with epilepsy and 4407 healthy individuals) was genotyped for rs6265, rs11030104, rs7103411, and rs7127507 polymorphisms by using Sequenom MassArray and Illumina HumanHap 610-Quad or 550-Duo BeadChip arrays techniques. Results showed significant association between rs6265 T, rs7103411 C, and rs7127507 T and cryptgenic epilepsy risk (p = 0.00003, p = 0.0002, and p = 0.002, respectively) or between rs6265 and rs7103411 and symptomatic epilepsy risk in Malaysian Indians (TT vs. CC, p = 0.004 and T vs. C, p = 0.0002, respectively) as well as between rs6265 T and risk of cryptogenic epilepsy in Malaysian Chinese (p = 0.005). The Trs6265-Crs7103411-Trs7127507 was significantly associated with cryptogenic epilepsy in Malaysian Indians (p = 0.00005). In conclusion, our results suggest that BDNF polymorphisms might contribute to the risk of epilepsy in Malaysian Indians and Chinese.
BDNF in sleep, insomnia, and sleep deprivation.
Schmitt, Karen; Holsboer-Trachsler, Edith; Eckert, Anne
2016-01-01
The protein brain-derived neurotrophic factor (BDNF) is a member of the neurotrophin family of growth factors involved in plasticity of neurons in several brain regions. There are numerous evidence that BDNF expression is decreased by experiencing psychological stress and that, accordingly, a lack of neurotrophic support causes major depression. Furthermore, disruption in sleep homeostatic processes results in higher stress vulnerability and is often associated with stress-related mental disorders. Recently, we reported, for the first time, a relationship between BDNF and insomnia and sleep deprivation (SD). Using a biphasic stress model as explanation approach, we discuss here the hypothesis that chronic stress might induce a deregulation of the hypothalamic-pituitary-adrenal system. In the long-term it leads to sleep disturbance and depression as well as decreased BDNF levels, whereas acute stress like SD can be used as therapeutic intervention in some insomniac or depressed patients as compensatory process to normalize BDNF levels. Indeed, partial SD (PSD) induced a fast increase in BDNF serum levels within hours after PSD which is similar to effects seen after ketamine infusion, another fast-acting antidepressant intervention, while traditional antidepressants are characterized by a major delay until treatment response as well as delayed BDNF level increase. Key messages Brain-derived neurotrophic factor (BDNF) plays a key role in the pathophysiology of stress-related mood disorders. The interplay of stress and sleep impacts on BDNF level. Partial sleep deprivation (PSD) shows a fast action on BDNF level increase.
Wu, Li-Min; Hu, Mei-Hong; Tong, Xian-Hong; Han, Hui; Shen, Ni; Jin, Ren-Tao; Wang, Wei; Zhou, Gui-Xiang; He, Guo-Ping; Liu, Yu-Sheng
2012-01-01
Brain-derived neurotropic factor (BDNF) was originally described in the nervous system but has been shown to be expressed in ovary tissues recently, acting as a paracrine/autocrine regulator required for developments of follicles and oocytes. Although it is generally accepted that chronic stress impairs female reproduction and decreases the expression of BDNF in limbic structures of central nervous system, which contributes to mood disorder. However, it is not known whether chronic stress affects oocytes developments, nor whether it affects expression of BDNF in ovary. Mice were randomly assigned into control group, stressed group, BDNF-treated group and BDNF-treated stressed group. The chronic unpredictable mild stress model was used to produce psychosocial stress in mice, and the model was verified by open field test and hypothalamic-pituitary-adrenal (HPA) axis activity. The methods of immunohistochemistry and western blotting were used to detect BDNF protein level and distribution. The number of retrieved oocytes, oocyte maturation, embryo cleavage and the rates of blastocyst formation after parthenogenetic activation were evaluated. Chronic unpredictable stress decreased the BDNF expression in antral follicles, but didn't affect the BDNF expression in primordial, primary and secondary follicles. Chronic unpredictable stress also decreased the number of retrieved oocytes and the rate of blastocyst formation, which was rescued by exogenous BDNF treatment. BDNF in mouse ovaries may be related to the decreased number of retrieved oocytes and impaired oocytes developmental potential induced by chronic unpredictable stress.
Tong, Xian-Hong; Han, Hui; Shen, Ni; Jin, Ren-Tao; Wang, Wei; Zhou, Gui-Xiang; He, Guo-Ping; Liu, Yu-Sheng
2012-01-01
Background Brain-derived neurotropic factor (BDNF) was originally described in the nervous system but has been shown to be expressed in ovary tissues recently, acting as a paracrine/autocrine regulator required for developments of follicles and oocytes. Although it is generally accepted that chronic stress impairs female reproduction and decreases the expression of BDNF in limbic structures of central nervous system, which contributes to mood disorder. However, it is not known whether chronic stress affects oocytes developments, nor whether it affects expression of BDNF in ovary. Methods Mice were randomly assigned into control group, stressed group, BDNF-treated group and BDNF-treated stressed group. The chronic unpredictable mild stress model was used to produce psychosocial stress in mice, and the model was verified by open field test and hypothalamic-pituitary-adrenal (HPA) axis activity. The methods of immunohistochemistry and western blotting were used to detect BDNF protein level and distribution. The number of retrieved oocytes, oocyte maturation, embryo cleavage and the rates of blastocyst formation after parthenogenetic activation were evaluated. Results Chronic unpredictable stress decreased the BDNF expression in antral follicles, but didn’t affect the BDNF expression in primordial, primary and secondary follicles. Chronic unpredictable stress also decreased the number of retrieved oocytes and the rate of blastocyst formation, which was rescued by exogenous BDNF treatment. Conclusion BDNF in mouse ovaries may be related to the decreased number of retrieved oocytes and impaired oocytes developmental potential induced by chronic unpredictable stress. PMID:23284991
Carbone, David L.; Handa, Robert J.
2012-01-01
The neurotrophin, brain-derived neurotrophic factor (BDNF), is recognized as a key component in the regulation of central nervous system ontogeny, homeostasis and adult neuroplasticity. The importance of BDNF in central nervous system development and function is well documented by numerous reports from animal studies linking abnormal BDNF signaling to metabolic disturbances and anxiety or depressive-like behavior. Despite the diverse roles for BDNF in nearly all aspects of central nervous system physiology, the regulation of BDNF expression, as well as our understanding of the signaling mechanisms associated with this neurotrophin, remains incomplete. However, links between sex hormones such as estradiol and testosterone, as well as endogenous and synthetic glucocorticoids, have emerged as important mediators of BDNF expression and function. Examples of such regulation include brain region-specific induction of Bdnf mRNA in response to estradiol. Additional studies have also documented regulation of the expression of the high-affinity BDNF receptor TrkB by estradiol, thus implicating sex steroids not only in the regulation of BDNF expression, but on mechanisms of signaling associated with it. In addition to gonadal steroids, further evidence also suggests functional interaction between BDNF and glucocorticoids, such as in the regulation of corticotrophin-releasing hormone and other important neuropeptides. In this review, we provide an overview of the roles played by selected sex or stress hormones in the regulation of BDNF expression and signaling in the central nervous system PMID:23211562
Mansur, R B; Brietzke, E; McIntyre, R S; Cao, B; Lee, Y; Japiassú, L; Chen, K; Lu, R; Lu, W; Li, T; Xu, G; Lin, K
2017-12-01
To compare brain-derived neurotrophic factor (BDNF) levels between offspring of individuals with bipolar disorders (BD) and healthy controls (HCs) and investigate the effects of BDNF levels and body mass index (BMI) on brain structures. Sixty-seven bipolar offspring and 45 HCs were included (ages 8-28). Structural images were acquired using 3.0 Tesla magnetic resonance imaging. Serum BDNF levels were measured using enzyme-linked immunosorbent assay. Multivariate and univariate analyses of covariance were conducted. Significantly higher BDNF levels were observed among bipolar offspring, relative to HCs (P > 0.025). Offspring status moderated the association between BDNF and BMI (F 1 =4.636, P = 0.034). After adjustment for relevant covariates, there was a trend for a significant interaction of group and BDNF on neuroimaging parameters (Wilks'λ F 56,94 =1.463, P = 0.052), with significant effects on cerebellar white matter and superior and middle frontal regions. Brain volume and BDNF were positively correlated among HCs and negatively correlated among bipolar offspring. Interactions between BDNF and BMI on brain volumes were non-significant among HCs (Wilks'λ F 28,2 =2.229, P = 0.357), but significant among bipolar offspring (Wilks'λ F 28,12 =2.899, P = 0.028). Offspring status and BMI moderate the association between BDNF levels and brain structures among bipolar offspring, underscoring BDNF regulation and overweight/obesity as key moderators of BD pathogenesis. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
McCune-Albright syndrome: growth hormone and prolactin hypersecretion.
Christoforidis, Athanasios; Maniadaki, Ilianna; Stanhope, Richard
2006-05-01
McCune-Albright syndrome (MAS) has a special interest for endocrinologists as its pathogenesis results in hypersecretion of hormones in peripheral endocrine tissues. This can be expressed as precocious puberty, mainly in girls, primary hyperthyroidism, growth hormone (GH) and/or prolactin excess, hyperparathyroidism and hypercortisolism. The incidence of GH excess among patients with MAS has been assessed as up to 21%. The pathogenesis of GH hypersecretion in MAS is not completely understood, whereas it seems to be different from the aetiology of acromegaly/gigantism in non-MAS patients. The clinical expression of GH excess can be masked because of precocious puberty or craniofacial fibrous dysplasia, indicating the necessity for screening. Medical treatment is usually the only option in MAS patients with GH excess, as transsphenoidal surgery is usually restricted due to massive thickening of the skull base, whereas radiotherapy is contraindicated due to probable higher predisposition to sarcomatous transformation. The use of bromocriptine, cabergoline and octreotide, or the combination of these, has shown variable results, whereas pegvisomant, a GH receptor antagonist, is a new promising option, although not yet used in patients with MAS.
Johnson, Tamina; Koria, Piyush
2016-04-01
Neural injuries such as spinal cord injuries, traumatic brain injuries, or nerve transection injuries pose a major health problem. Neurotrophins such as nerve growth factor (NGF) or brain-derived neurotrophic factor (BDNF) have been shown to improve the outcome of neural injuries in several pre-clinical models, but their use in clinics is limited by the lack of a robust delivery system that enhances their bioavailability and half-life. We describe two fusion proteins comprising NGF or BDNF fused with elastin-like peptides (ELPs). The aim of this study was to investigate the biological activity of neurotrophin-ELP (N-ELP) fusion proteins via in vitro culture models. NGF and BDNF were cloned in front of an elastin-like polypeptide sequence V40C2. These proteins were expressed in bacteria as inclusion bodies. These fusion proteins underwent solubilization via 8 M urea and purification via inverse transition cycling (ITC). We measured the particle size and the effect of temperature on precipitated particles using dynamic light scattering (DLS). We used western blot analysis to confirm the specificity of NGF-ELP to tropomyosin receptor kinase A (TrkA) antibody and to confirm the specificity of BDNF-ELP to TrkB antibody. PC12 cells were used to perform a neurite outgrowth assay to determine the biological activity of NGF-ELP. Bioactivity of BDNF-ELP was ascertained via transfecting human epithelial kidney (HEK 293-T) cells to express the TrkB receptor. The proteins were successfully purified to high homogeneity by exploiting the phase transition property of ELPs and urea, which solubilize inclusion bodies. Using PC12 neurite outgrowth assay, we further demonstrated that the biological activity of NGF was retained in the fusion. Similarly, BDNF-ELP phosphorylated the TrkB receptor, suggesting the biological activity of BDNF was also retained in the fusion. We further show that owing to the phase transition property of ELPs in the fusion, these proteins self-assembled into nanoparticles at their respective transition temperatures. These fusion proteins are useful for neural regeneration, as they not only retain the biological activity of the neurotrophin but also self-assemble into nanoparticles, thereby simultaneously serving as drug-delivery vehicles. These nanoparticles can serve as drug depots and will increase bioavailability by limiting neurotrophin loss due to diffusion, thereby allowing controlled spatio-temporal delivery of the neurotrophin.
Kerling, A; Kück, M; Tegtbur, U; Grams, L; Weber-Spickschen, S; Hanke, A; Stubbs, B; Kahl, K G
2017-06-01
Brain derived neurotrophic factor (BDNF) has been implicated in the pathogenesis of major depressive disorder (MDD). Existing data on exercise treatment in people with MDD are inconsistent concerning the effect of exercise on BDNF pointing either to increased or unaltered BDNF concentrations. However, studies in non-depressed persons demonstrated a significant effect on resting peripheral BDNF concentrations in aerobic training interventions. Given the lack of clarity mentioned above, the current study aimed at examining the effect of adjunctive exercise on serum BDNF levels in guideline based treated patients with MDD. 42 depressed inpatients were included, and randomized either to a 6 week structured and supervised exercise intervention plus treatment as usual (EXERCISE, n=22), or to treatment as usual (TAU, n=20). BDNF serum concentrations were assessed before and after the intervention in both study groups with established immunoassays. Serum BDNF slightly decreased in the TAU group, whilst there was an increase in BDNF levels in the exercise group. There was a significant time x group effect concerning sBDNF (p=0.030) with repeated ANOVA measures with age and BMI as covariates, suggesting an increase in BDNF concentrations in the EXERCISE group compared to TAU. Though there was no statistic difference in the antidepressant medication between EXERCISE and TAU potential interactions between exercise and medication on the effects of exercise in BDNF cannot be excluded. Gender was not considered as a covariate in ANOVA due to the small number of objects. Exercise training given as adjunct to standard guideline based treatment appears to have additional effects on BDNF serum concentrations in people with MDD. Our results add further evidence to the beneficial effects of exercise in the treatment of MDD. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.
BDNF Expression in Larval and Adult Zebrafish Brain: Distribution and Cell Identification
Cacialli, Pietro; Gueguen, Marie-Madeleine; Coumailleau, Pascal; D’Angelo, Livia; Kah, Olivier; Lucini, Carla; Pellegrini, Elisabeth
2016-01-01
Brain-derived neurotrophic factor (BDNF), a member of the neurotrophin family, has emerged as an active mediator in many essential functions in the central nervous system of mammals. BDNF plays significant roles in neurogenesis, neuronal maturation and/or synaptic plasticity and is involved in cognitive functions such as learning and memory. Despite the vast literature present in mammals, studies devoted to BDNF in the brain of other animal models are scarse. Zebrafish is a teleost fish widely known for developmental genetic studies and is emerging as model for translational neuroscience research. In addition, its brain shows many sites of adult neurogenesis allowing higher regenerative properties after traumatic injuries. To add further knowledge on neurotrophic factors in vertebrate brain models, we decided to determine the distribution of bdnf mRNAs in the larval and adult zebrafish brain and to characterize the phenotype of cells expressing bdnf mRNAs by means of double staining studies. Our results showed that bdnf mRNAs were widely expressed in the brain of 7 days old larvae and throughout the whole brain of mature female and male zebrafish. In adults, bdnf mRNAs were mainly observed in the dorsal telencephalon, preoptic area, dorsal thalamus, posterior tuberculum, hypothalamus, synencephalon, optic tectum and medulla oblongata. By combining immunohistochemistry with in situ hybridization, we showed that bdnf mRNAs were never expressed by radial glial cells or proliferating cells. By contrast, bdnf transcripts were expressed in cells with neuronal phenotype in all brain regions investigated. Our results provide the first demonstration that the brain of zebrafish expresses bdnf mRNAs in neurons and open new fields of research on the role of the BDNF factor in brain mechanisms in normal and brain repairs situations. PMID:27336917
2013-01-01
Background Brain-derived neurotrophic factor (BDNF) has been shown to control microglial responses in neuropathic pain. Since adenosine A2A receptors (A2ARs) control neuroinflammation, as well as the production and function of BDNF, we tested to see if A2AR controls the microglia-dependent secretion of BDNF and the proliferation of microglial cells, a crucial event in neuroinflammation. Methods Murine N9 microglial cells were challenged with lipopolysaccharide (LPS, 100 ng/mL) in the absence or in the presence of the A2AR antagonist, SCH58261 (50 nM), as well as other modulators of A2AR signaling. The BDNF cellular content and secretion were quantified by Western blotting and ELISA, A2AR density was probed by Western blotting and immunocytochemistry and cell proliferation was assessed by BrdU incorporation. Additionally, the A2AR modulation of LPS-driven cell proliferation was also tested in primary cultures of mouse microglia. Results LPS induced time-dependent changes of the intra- and extracellular levels of BDNF and increased microglial proliferation. The maximal LPS-induced BDNF release was time-coincident with an LPS-induced increase of the A2AR density. Notably, removing endogenous extracellular adenosine or blocking A2AR prevented the LPS-mediated increase of both BDNF secretion and proliferation, as well as exogenous BDNF-induced proliferation. Conclusions We conclude that A2AR activation plays a mandatory role controlling the release of BDNF from activated microglia, as well as the autocrine/paracrine proliferative role of BDNF. PMID:23363775
Li, Yixin; Xia, Baijuan; Li, Rongrong; Yin, Dan; Liang, Wenmei
2017-06-09
BACKGROUND The aim of this study was to explore how changes in the expression of BDNF in MLDS change the effect of BDNF on dopamine (DA) neurons, which may have therapeutic implications for heroin addiction. MATERIAL AND METHODS We established a rat model of heroin addiction and observed changes in the expression of BDNF, DA, dopamine receptor (DRD), dopamine transporter (DAT), and other relevant pathways in NAc. We also assessed the effect of BDNF overexpression in the NAc, behavioral changes of heroin-conditioned place preference (CPP), and naloxone withdrawal in rats with high levels of BDNF. We established 5 adult male rat groups: heroin addiction, lentivirus transfection, blank virus, sham operation, and control. The PCR gene chip was used to study gene expression changes. BDNF lentivirus transfection was used for BDNF overexpression. A heroin CPP model and a naloxone withdrawal model of rats were established. RESULTS Expression changes were found in 20 of the 84 DA-associated genes in the NAc of heroin-addicted rats. Weight loss and withdrawal symptoms in the lentivirus group for naloxone withdrawal was less than in the blank virus and the sham operation group. These 2 latter groups also showed significant behavioral changes, but such changes were not observed in the BDNF lentivirus group before or after training. DRD3 and DAT increased in the NAc of the lentivirus group. CONCLUSIONS BDNF and DA in the NAc are involved in heroin addiction. BDNF overexpression in NAc reduces withdrawal symptoms and craving behavior for medicine induced by environmental cues for heroin-addicted rats. BDNF participates in the regulation of the dopamine system by acting on DRD3 and DAT.
Regulation of BDNF Release by ARMS/Kidins220 through Modulation of Synaptotagmin-IV Levels.
López-Benito, Saray; Sánchez-Sánchez, Julia; Brito, Verónica; Calvo, Laura; Lisa, Silvia; Torres-Valle, María; Palko, Mary E; Vicente-García, Cristina; Fernández-Fernández, Seila; Bolaños, Juan P; Ginés, Silvia; Tessarollo, Lino; Arévalo, Juan C
2018-06-06
BDNF is a growth factor with important roles in the nervous system in both physiological and pathological conditions, but the mechanisms controlling its secretion are not completely understood. Here, we show that ARMS/Kidins220 negatively regulates BDNF secretion in neurons from the CNS and PNS. Downregulation of the ARMS/Kidins220 protein in the adult mouse brain increases regulated BDNF secretion, leading to its accumulation in the striatum. Interestingly, two mouse models of Huntington's disease (HD) showed increased levels of ARMS/Kidins220 in the hippocampus and regulated BDNF secretion deficits. Importantly, reduction of ARMS/Kidins220 in hippocampal slices from HD mice reversed the impaired regulated BDNF release. Moreover, there are increased levels of ARMS/Kidins220 in the hippocampus and PFC of patients with HD. ARMS/Kidins220 regulates Synaptotagmin-IV levels, which has been previously observed to modulate BDNF secretion. These data indicate that ARMS/Kidins220 controls the regulated secretion of BDNF and might play a crucial role in the pathogenesis of HD. SIGNIFICANCE STATEMENT BDNF is an important growth factor that plays a fundamental role in the correct functioning of the CNS. The secretion of BDNF must be properly controlled to exert its functions, but the proteins regulating its release are not completely known. Using neuronal cultures and a new conditional mouse to modulate ARMS/Kidins220 protein, we report that ARMS/Kidins220 negatively regulates BDNF secretion. Moreover, ARMS/Kidins220 is overexpressed in two mouse models of Huntington's disease (HD), causing an impaired regulation of BDNF secretion. Furthermore, ARMS/Kidins220 levels are increased in brain samples from HD patients. Future studies should address whether ARMS/Kidins220 has any function on the pathophysiology of HD. Copyright © 2018 the authors 0270-6474/18/385415-14$15.00/0.
Al-Qudah, M.; Anderson, C. D.; Mahavadi, S.; Bradley, Z. L.; Akbarali, H. I.; Murthy, K. S.
2013-01-01
Brain-derived neurotrophic factor (BDNF) belongs to the neurotrophin family of proteins best known for its role in neuronal survival, differentiation, migration, and synaptic plasticity in central and peripheral neurons. BDNF is also widely expressed in nonneuronal tissues including the gastrointestinal tract. The role of BDNF in intestinal smooth muscle contractility is not well defined. The aim of this study was to identify the role of BDNF in carbachol (CCh)- and substance P (SP)-induced contraction of intestinal longitudinal smooth muscle. BDNF, selective tropomyosin-related kinase B (TrkB) receptor agonists, and pharmacological inhibitors of signaling pathways were examined for their effects on contraction of rabbit intestinal longitudinal muscle strips induced by CCh and SP. BDNF activation of intracellular signaling pathways was examined by Western blot in homogenates of muscle strips and isolated muscle cells. One-hour preincubation with BDNF enhanced intestinal muscle contraction induced by CCh but not by SP. The selective synthetic TrkB agonists LM 22A4 and 7,8-dihydroxyflavone produced similar effects to BDNF. The Trk antagonist K-252a, a TrkB antibody but not p75NTR antibody, blocked the effect of BDNF. The enhancement of CCh-induced contraction by BDNF was blocked by the phospholipase C (PLC) antagonist U73122, but not by ERK1/2 or Akt antagonists. Direct measurement in muscle strips and isolated muscle cells showed that BDNF caused phosphorylation of TrkB receptors and PLC-γ, but not ERK1/2 or Akt. We conclude that exogenous BDNF augments the CCh-induced contraction of longitudinal muscle from rabbit intestine by activating TrkB receptors and subsequent PLC activation. PMID:24356881
Al-Qudah, M; Anderson, C D; Mahavadi, S; Bradley, Z L; Akbarali, H I; Murthy, K S; Grider, J R
2014-02-15
Brain-derived neurotrophic factor (BDNF) belongs to the neurotrophin family of proteins best known for its role in neuronal survival, differentiation, migration, and synaptic plasticity in central and peripheral neurons. BDNF is also widely expressed in nonneuronal tissues including the gastrointestinal tract. The role of BDNF in intestinal smooth muscle contractility is not well defined. The aim of this study was to identify the role of BDNF in carbachol (CCh)- and substance P (SP)-induced contraction of intestinal longitudinal smooth muscle. BDNF, selective tropomyosin-related kinase B (TrkB) receptor agonists, and pharmacological inhibitors of signaling pathways were examined for their effects on contraction of rabbit intestinal longitudinal muscle strips induced by CCh and SP. BDNF activation of intracellular signaling pathways was examined by Western blot in homogenates of muscle strips and isolated muscle cells. One-hour preincubation with BDNF enhanced intestinal muscle contraction induced by CCh but not by SP. The selective synthetic TrkB agonists LM 22A4 and 7,8-dihydroxyflavone produced similar effects to BDNF. The Trk antagonist K-252a, a TrkB antibody but not p75NTR antibody, blocked the effect of BDNF. The enhancement of CCh-induced contraction by BDNF was blocked by the phospholipase C (PLC) antagonist U73122, but not by ERK1/2 or Akt antagonists. Direct measurement in muscle strips and isolated muscle cells showed that BDNF caused phosphorylation of TrkB receptors and PLC-γ, but not ERK1/2 or Akt. We conclude that exogenous BDNF augments the CCh-induced contraction of longitudinal muscle from rabbit intestine by activating TrkB receptors and subsequent PLC activation.
Al-Qudah, M; Alkahtani, R; Akbarali, H I; Murthy, K S; Grider, J R
2015-08-01
Brain-derived neurotrophic factor (BDNF) is a neurotrophin present in the intestine where it participates in survival and growth of enteric neurons, augmentation of enteric circuits, and stimulation of intestinal peristalsis and propulsion. Previous studies largely focused on the role of neural and mucosal BDNF. The expression and release of BDNF from intestinal smooth muscle and the interaction with enteric neuropeptides has not been studied in gut. The expression and secretion of BDNF from smooth muscle cultured from the rabbit intestinal longitudinal muscle layer in response to substance P (SP) and pituitary adenylate cyclase-activating peptide (PACAP) was measured by western blot and enzyme-linked immunosorbent assay. BDNF mRNA was measured by reverse-transcription polymerase chain reaction. The expression of BNDF protein and mRNA was greater in smooth muscle cells (SMCs) from the longitudinal muscle than from circular muscle layer. PACAP and SP increased the expression of BDNF protein and mRNA in cultured longitudinal SMCs. PACAP and SP also stimulated the secretion of BDNF from cultured longitudinal SMCs. Chelation of intracellular calcium with BAPTA (1,2-bis-(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid) prevented SP-induced increase in BDNF mRNA and protein expression and SP-induced secretion of BDNF. Neuropeptides known to be present in enteric neurons innervating the longitudinal layer increase the expression of BDNF mRNA and protein in SMCs and stimulate the release of BDNF. Considering the ability of BDNF to enhance smooth muscle contraction, this autocrine loop may partially explain the characteristic hypercontractility of longitudinal muscle in inflammatory bowel disease. © 2015 John Wiley & Sons Ltd.
The effect of enriched environment across ages: A study of anhedonia and BDNF gene induction.
Dong, B E; Xue, Y; Sakata, K
2018-05-02
Enriched environment treatment (EET) is a potential intervention for depression by inducing brain-derived neurotrophic factor (BDNF). However, its age dependency remains unclear. We recently found that EET during early-life development (ED) was effective in increasing exploratory activity and anti-despair behavior, particularly in promoter IV-driven BDNF deficient mice (KIV), with the largest BDNF protein induction in the hippocampus and frontal cortex. Here, we further determined age dependency of EET effects on anhedonia and promoter-specific BDNF transcription, by using the sucrose preference test and qRT-PCR. Wild-type (WT) and KIV mice received 2 months of EET during ED, young-adulthood and old-adulthood (0-2, 2-4 and 12-14 months, respectively). All KIV groups showed reduced sucrose preference, which EET equally reversed regardless of age. EET increased hippocampal BDNF mRNA levels for all ages and genotypes, but increased frontal cortex BDNF mRNA levels only in ED KIV and old WT mice. Transcription by promoters I and IV was age-dependent in the hippocampus of WT mice: more effective induction of exon IV or I during ED or old-adulthood, respectively. Transcription by almost all 9 promoters was age-specific in the frontal cortex, mostly observed in ED KIV mice. After discontinuance of EET, the EET effects on anti-anhedonia and BDNF transcription in both regions persisted only in ED KIV mice. These results suggested that EET was equally effective in reversing anhedonia and inducing hippocampal BDNF transcription, but was more effective during ED in inducing frontal cortex BDNF transcription and for lasting anti-anhedonic and BDNF effects particularly in promoter IV-BDNF deficiency. © 2018 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.
Sigma-1 receptor chaperones regulate the secretion of brain-derived neurotrophic factor
Fujimoto, Michiko; Hayashi, Teruo; Urfer, Roman; Mita, Shiro; Su, Tsung-Ping
2013-01-01
The sigma-1 receptor (Sig-1R) is a novel endoplasmic reticulum (ER) molecular chaperone that regulates protein folding and degradation. The Sig-1R activation by agonists is known to improve memory, promote cell survival, and exert an antidepressant-like action in animals. Cutamesine (SA4503), a selective Sig-1R ligand, was shown to increase BDNF in the hippocampus of rats. How exactly the intracellular chaperone Sig-1R or associated ligand causes the increase of BDNF or any other neurotrophins is unknown. We examined here whether the action of Sig-1Rs may relate to the post-translational processing and release of BDNF in neuroblastoma cell lines. We used in vitro assays and confirmed that cutamesine possesses the bona fide Sig-1R agonist property by causing the dissociation of BiP from Sig-1Rs. The C-terminus of Sig-1Rs exerted robust chaperone activity by completely blocking the aggregation of BDNF and GDNF in vitro. Chronic treatment with cutamesine in rat B104 neuroblastoma caused a time- and dose-dependent potentiation of the secretion of BDNF without affecting the mRNA level of BDNF. Cutamesine decreased the intracellular level of pro-BDNF and mature BDNF whereas increased the extracellular level of mature BDNF. The pulse-chase experiment indicated that the knockdown of Sig-1Rs decreased the secreted mature BDNF in B104 cells without affecting the synthesis of BDNF. Our findings indicate that, in contrast to clinically used antidepressants that promote the transcriptional upregulation of BDNF, the Sig-1R agonist cutamesine potentiates the post-translational processing of neurotrophins. This unique pharmacological profile may provide a novel therapeutic opportunity for the treatment of neuropsychiatric disorders. PMID:22337473
Higher brain BDNF gene expression is associated with slower cognitive decline in older adults.
Buchman, Aron S; Yu, Lei; Boyle, Patricia A; Schneider, Julie A; De Jager, Philip L; Bennett, David A
2016-02-23
We tested whether brain-derived neurotrophic factor (BDNF) gene expression levels are associated with cognitive decline in older adults. Five hundred thirty-five older participants underwent annual cognitive assessments and brain autopsy at death. BDNF gene expression was measured in the dorsolateral prefrontal cortex. Linear mixed models were used to examine whether BDNF expression was associated with cognitive decline adjusting for age, sex, and education. An interaction term was added to determine whether this association varied with clinical diagnosis proximate to death (no cognitive impairment, mild cognitive impairment, or dementia). Finally, we examined the extent to which the association of Alzheimer disease (AD) pathology with cognitive decline varied by BDNF expression. Higher brain BDNF expression was associated with slower cognitive decline (p < 0.001); cognitive decline was about 50% slower with the 90th percentile BDNF expression vs 10th. This association was strongest in individuals with dementia. The level of BDNF expression was lower in individuals with pathologic AD (p = 0.006), but was not associated with macroscopic infarcts, Lewy body disease, or hippocampal sclerosis. BDNF expression remained associated with cognitive decline in a model adjusting for age, sex, education, and neuropathologies (p < 0.001). Furthermore, the effect of AD pathology on cognitive decline varied by BDNF expression such that the effect was strongest for high levels of AD pathology (p = 0.015); thus, in individuals with high AD pathology (90th percentile), cognitive decline was about 40% slower with the 90th percentile BDNF expression vs 10th. Higher brain BDNF expression is associated with slower cognitive decline and may also reduce the deleterious effects of AD pathology on cognitive decline. © 2016 American Academy of Neurology.
Fernandes, Brisa S; Molendijk, Marc L; Köhler, Cristiano A; Soares, Jair C; Leite, Cláudio Manuel G S; Machado-Vieira, Rodrigo; Ribeiro, Thamara L; Silva, Jéssica C; Sales, Paulo M G; Quevedo, João; Oertel-Knöchel, Viola; Vieta, Eduard; González-Pinto, Ana; Berk, Michael; Carvalho, André F
2015-11-30
The neurotrophic hypothesis postulates that mood disorders such as bipolar disorder (BD) are associated with a lower expression of brain-derived neurotrophic factor (BDNF). However, its role in peripheral blood as a biomarker of disease activity and of stage for BD, transcending pathophysiology, is still disputed. In the last few years an increasing number of clinical studies assessing BDNF in serum and plasma have been published. Therefore, it is now possible to analyse the association between BDNF levels and the severity of affective symptoms in BD as well as the effects of acute drug treatment of mood episodes on BDNF levels. We conducted a systematic review and meta-analysis of all studies on serum and plasma BDNF levels in bipolar disorder. Through a series of meta-analyses including a total of 52 studies with 6,481 participants, we show that, compared to healthy controls, peripheral BDNF levels are reduced to the same extent in manic (Hedges' g = -0.57, P = 0.010) and depressive (Hedges' g = -0.93, P = 0.001) episodes, while BDNF levels are not significantly altered in euthymia. In meta-regression analyses, BDNF levels additionally negatively correlate with the severity of both manic and depressive symptoms. We found no evidence for a significant impact of illness duration on BDNF levels. In addition, in plasma, but not serum, peripheral BDNF levels increase after the successful treatment of an acute mania episode, but not of a depressive one. In summary, our data suggest that peripheral BDNF levels, more clearly in plasma than in serum, is a potential biomarker of disease activity in BD, but not a biomarker of stage. We suggest that peripheral BDNF may, in future, be used as a part of a blood protein composite measure to assess disease activity in BD.
Meng, Wei-Dong; Sun, Shao-Jun; Yang, Jie; Chu, Rui-Xue; Tu, Wenjun; Liu, Qiang
2017-03-01
The aim of our study was to illuminate the potential role of brain-derived neurotrophic factor (BDNF) in autism spectrum disorder (ASD). We measured the circulating levels of BDNF in serum and BDNF gene (Val66Met) polymorphisms, in which two indicators were then compared between ASD and normal controls. A total of 82 drug-naïve ASD children and 82 age- and gender-matched normal controls were enrolled in the study. Their serum BDNF levels were detected by the ELISA. BDNF Val66Met polymorphism genotyping was conducted as according to the laboratory's standard protocol in laboratory. The ASD severity assessment was mainly determined by the score of the Childhood Autism Rating Scale (CARS). ELISA assay showed that the mean serum BDNF level of children with ASD was significantly (P < 0.0001) higher than that of the control cases (17.75 ± 5.43 vs. 11.49 ± 2.85 ng/ml; t = 9.236). Besides, the serum BDNF levels and CARS scores (P < 0.0001) were positively related. And, the BDNF genotyping results showed that there was no difference between the ASD cases and the control. Among the children with ASD, the mean serum BDNF level of Met/Met group was lower than other groups. According to the ROC curve generated from our clinical data, the optimal cutoff value of serum BDNF levels, an indicator for diagnosis of ASD, was projected to be 12.50 ng/ml. Thus, it yielded a corresponding sensitivity of 81.7 % and the specificity of 66.9 %. Accordingly, area value under the curve was 0.836 (95 % CI, 0.774-0.897); the positive predictive value (PPV) and the negative predictive value (NPV) were 70.1 and 79.1 %, respectively. These results suggested that rather than Val66Met polymorphism, BDNF was more possible to impact the pathogenesis of ASD.
Lee, I-Te; Wang, Jun-Sing; Fu, Chia-Po; Lin, Shih-Yi; Sheu, Wayne Huey-Herng
2016-10-01
Brain-derived neurotrophic factor (BDNF) plays a role in energy homeostasis. However, the postprandial BDNF change has not been well investigated. We hypothesized that the BDNF increment after oral glucose challenge is associated with body weight.To address this possibility, man adults with obesity in conjunction with metabolic syndrome were compared with normal weight controls at baseline in the initial cross-sectional protocol. The obese subjects then underwent a 12-week program for body-weight reduction in the prospective protocol. The area under the curve (AUC) of serum BDNF was recorded during a 75 g oral glucose tolerant test and the BDNF AUC index was defined as [(AUC of BDNF) - (fasting BDNF2 hours)]/(fasting BDNF2 hours).A total of 25 controls and 36 obese subjects completed the study assessments. In the cross-sectional protocol, the BDNF AUC index was significantly higher in the obese subjects than in the controls (9.0 ± 16.5% vs. - 8.0 ± 22.5%, P = 0.001). After weight reduction (from 97.0 ± 12.5 kg to 88.6 ± 12.9 kg, P < 0.001), the percentage change of body weight was significantly associated with the BDNF AUC index after the study (95% CI between 0.21 and 1.82, P = 0.015). Using 6% weight reduction as a cut-off value, a larger weight reduction was able to reliably predict a negative BDNF AUC index.In conclusion, a high BDNF AUC index was observed for obese men in this study, whereas the index value significantly decreased after body-weight reduction. These findings suggest that postprandial BDNF increment may be associated with obesity.
Xie, Jin; Jin, Bin; Li, Da-Wei; Shen, Bin; Gong, Ning; Zhang, Tian-Zhen; Dong, Pin
2015-01-01
Recurrent laryngeal nerve injury is a common severe complication in neck surgery, which can cause varying degrees of vocal fold paralysis and respiratory tract problems. In present study, the effects of laminin-binding brain derived neurotrophic factor (LBD-BDNF) on recurrent laryngeal nerve regeneration were explored and its possible mechanism was investigated. LBD-BDNF or NAT-BDNF (BDNF without LBD binding) treatment was performed in laryngeal nerve injured rabbits for sixteen weeks. The laryngeal nerve was removed, and histological examination as well as laryngeal electromyography was employed to evaluate its morphology and function of conduction. PC12 cells were cultured to investigate the mechanisms underlying the effects of LBD-BDNF. Neurite outgrowth, proliferation and migration were determined in nerve cells. The expression of miRNAs and protein of mTOR was quantified by real-time PCR and western blotting respectively. In vivo experiments, LBD-BDNF significantly improved the histological structure and function of recurrent laryngeal nerve compared with NAT-BDNF. LBD-BDNF also markedly promoted neurite outgrowth, proliferation and migration in PC12 cells in vitro experiments. The levels of miR-222 and p-mTOR were up-regulated by LBD-BDNF treatment in both in vivo and in vitro experiments. miR-222 inhibitor attenuated the expression of phosphorylated mTOR and miR-222 mimic enhanced its expression in PC12 cells. In addition, the improved nerve conduction by LBD-BDNF was canceled by miR-222 inhibitor, and the mTOR inhibitor reversed the effects of miR-222 inhibitor on LBD-BDNF treated cells. The present study revealed that LBD-BDNF promoted the recurrent laryngeal nerve regeneration in laryngeal nerve injured rabbits. The underlying mechanism was closely related to activation of p-mTOR by miR-222.
Xie, Jin; Jin, Bin; Li, Da-Wei; Shen, Bin; Gong, Ning; Zhang, Tian-Zhen; Dong, Pin
2015-01-01
Background and Aim: Recurrent laryngeal nerve injury is a common severe complication in neck surgery, which can cause varying degrees of vocal fold paralysis and respiratory tract problems. In present study, the effects of laminin-binding brain derived neurotrophic factor (LBD-BDNF) on recurrent laryngeal nerve regeneration were explored and its possible mechanism was investigated. Methods: LBD-BDNF or NAT-BDNF (BDNF without LBD binding) treatment was performed in laryngeal nerve injured rabbits for sixteen weeks. The laryngeal nerve was removed, and histological examination as well as laryngeal electromyography was employed to evaluate its morphology and function of conduction. PC12 cells were cultured to investigate the mechanisms underlying the effects of LBD-BDNF. Neurite outgrowth, proliferation and migration were determined in nerve cells. The expression of miRNAs and protein of mTOR was quantified by real-time PCR and western blotting respectively. Results: In vivo experiments, LBD-BDNF significantly improved the histological structure and function of recurrent laryngeal nerve compared with NAT-BDNF. LBD-BDNF also markedly promoted neurite outgrowth, proliferation and migration in PC12 cells in vitro experiments. The levels of miR-222 and p-mTOR were up-regulated by LBD-BDNF treatment in both in vivo and in vitro experiments. miR-222 inhibitor attenuated the expression of phosphorylated mTOR and miR-222 mimic enhanced its expression in PC12 cells. In addition, the improved nerve conduction by LBD-BDNF was canceled by miR-222 inhibitor, and the mTOR inhibitor reversed the effects of miR-222 inhibitor on LBD-BDNF treated cells. Conclusions: The present study revealed that LBD-BDNF promoted the recurrent laryngeal nerve regeneration in laryngeal nerve injured rabbits. The underlying mechanism was closely related to activation of p-mTOR by miR-222. PMID:26279751
Obuchowicz, Ewa; Nowacka, Marta; Paul-Samojedny, Monika; Bielecka-Wajdman, Anna M; Małecki, Andrzej
2017-02-01
The present study was designed to evaluate, for the first time, the potential sex differences in BDNF and VEGF systems under normal conditions and in response to IL-1β given ip. Peripheral overproduction of this cytokine mediates the pathophysiology of various acute neuroinflammatory states. Until now, the effect of IL-1β on VEGF expression in rat brain structures and its serum level has not been examined. In male and female rats, the BDNF and VEGF mRNA expression, and BDNF level were evaluated in the amygdala, hippocampus, hypothalamus and pituitary gland. The VEGF levels were determined in the pituitary. Serum BDNF and VEGF levels were also measured. The pituitary BDNF mRNA, and BDNF and VEGF levels were higher in females than in male rats whereas in males, the BDNF levels were higher in the other brain structures. The serum BDNF concentration was similar in both groups but VEGF levels were enhanced in females. Following IL-1β (50μg/kg ip.) administration, a higher serum IL-1β level was detected in females than in males. In male rats, IL-1β decreased BDNF mRNA in all the brain structures, except for the pituitary, and VEGF mRNA in the amygdala. In opposite, IL-1β challenge in females increased the pituitary VEGF mRNA and serum BDNF and VEGF levels. These results suggest that in females BDNF and VEGF may play a more important role in the pituitary function. In males, amygdala trophic system seems to be especially sensitive to the enhanced peripheral IL-1β production. Our findings point to the need to consider sex-related differences to be able to draw reliable conclusions about changes in BDNF and VEGF levels during inflammation. Copyright © 2016 Elsevier Ltd. All rights reserved.
Naert, G; Zussy, C; Tran Van Ba, C; Chevallier, N; Tang, Y-P; Maurice, T; Givalois, L
2015-11-01
Brain-derived neurotrophic factor (BDNF) appears to be highly involved in hypothalamic-pituitary-adrenal (HPA) axis regulation during adulthood, playing an important role in homeostasis maintenance. The present study aimed to determine the involvement of BDNF in HPA axis activity under basal and stress conditions via partial inhibition of this endogenous neurotrophin. Experiments were conducted in rats and mice with two complementary approaches: (i) BDNF knockdown with stereotaxic delivery of BDNF-specific small interfering RNA (siRNA) into the lateral ventricle of adult male rats and (ii) genetically induced knockdown (KD) of BDNF expression specifically in the central nervous system during the first ontogenesis in mice (KD mice). Delivery of siRNA in the rat brain decreased BDNF levels in the hippocampus (-31%) and hypothalamus (-35%) but not in the amygdala, frontal cortex and pituitary. In addition, siRNA induced no change of the basal HPA axis activity. BDNF siRNA rats exhibited decreased BDNF levels and concomitant altered adrenocortoctrophic hormone (ACTH) and corticosterone responses to restraint stress, suggesting the involvement of BDNF in the HPA axis adaptive response to stress. In KD mice, BDNF levels in the hippocampus and hypothalamus were decreased by 20% in heterozygous and by 60% in homozygous animals compared to wild-type littermates. Although, in heterozygous KD mice, no significant change was observed in the basal levels of plasma ACTH and corticosterone, both hormones were significantly increased in homozygous KD mice, demonstrating that robust cerebral BDNF inhibition (60%) is necessary to affect basal HPA axis activity. All of these results in both rats and mice demonstrate the involvement and importance of a robust endogenous pool of BDNF in basal HPA axis regulation and the pivotal function of de novo BDNF synthesis in the establishment of an adapted response to stress. © 2015 British Society for Neuroendocrinology.
Wurzelmann, Mary; Romeika, Jennifer; Sun, Dong
2017-01-01
Traumatic brain injury (TBI) is a major health problem worldwide. Following primary mechanical insults, a cascade of secondary injuries often leads to further neural tissue loss. Thus far there is no cure to rescue the damaged neural tissue. Current therapeutic strategies primarily target the secondary injuries focusing on neuroprotection and neuroregeneration. The neurotrophin brain-derived neurotrophic factor (BDNF) has significant effect in both aspects, promoting neuronal survival, synaptic plasticity and neurogenesis. Recently, the flavonoid 7,8-dihydroxyflavone (7,8-DHF), a small TrkB agonist that mimics BDNF function, has shown similar effects as BDNF in promoting neuronal survival and regeneration following TBI. Compared to BDNF, 7,8-DHF has a longer half-life and much smaller molecular size, capable of penetrating the blood-brain barrier, which makes it possible for non-invasive clinical application. In this review, we summarize functions of the BDNF/TrkB signaling pathway and studies examining the potential of BDNF and 7,8-DHF as a therapy for TBI.
NASA Astrophysics Data System (ADS)
Pang, Petti T.; Nagappan, Guhan; Guo, Wei; Lu, Bai
2016-05-01
Although late-phase long-term potentiation (L-LTP) is implicated in long-term memory, its molecular mechanisms are largely unknown. Here we provide evidence that L-LTP can be divided into two stages: an induction stage (I) and a maintenance stage (II). Both stages require mature brain-derived neurotrophic factor (mBDNF), but involve distinct underlying mechanisms. Stage I requires secretion of existing proBDNF followed by extracellular cleavage by tPA/plasmin. Stage II depends on newly synthesized BDNF. Surprisingly, mBDNF at stage II is derived from intracellular cleavage of proBDNF by furin/PC1. Moreover, stage I involves BDNF-TrkB signaling mainly through MAP kinase, whereas all three signaling pathways (phospholipase C-γ, PI3 kinase, and MAP kinase) are required for the maintenance of L-LTP at stage II. These results reveal the molecular basis for two temporally distinct stages in L-LTP, and provide insights on how BDNF modulates this long-lasting synaptic alternation at two critical time windows.
Knorr, Ulla; Koefoed, Pernille; Soendergaard, Mia H Greisen; Vinberg, Maj; Gether, Ulrik; Gluud, Christian; Wetterslev, Jørn; Winkel, Per; Kessing, Lars V
2016-04-01
Brain-derived neurotrophic factor (BDNF) seems to play an important role in the course of depression including the response to antidepressants in patients with depression. We aimed to study the effect of an antidepressant intervention on peripheral BDNF in healthy individuals with a family history of depression. We measured changes in BDNF messenger RNA (mRNA) expression and whole-blood BDNF levels in 80 healthy first-degree relatives of patients with depression randomly allocated to receive daily tablets of escitalopram 10 mg versus placebo for 4 weeks. We found no statistically significant difference between the escitalopram and the placebo group in the change in BDNF mRNA expression and whole-blood BDNF levels. Post hoc analyses showed a statistically significant negative correlation between plasma escitalopram concentration and change in whole-blood BDNF levels in the escitalopram-treated group. The results of this randomised trial suggest that escitalopram 10 mg has no effect on peripheral BDNF levels in healthy individuals.
Aliaga, E; Silhol, M; Bonneau, N; Maurice, T; Arancibia, S; Tapia-Arancibia, L
2010-01-01
Beta-amyloid (Abeta) deposition is one important pathological hallmark in Alzheimer's disease (AD). However, low levels of Abeta may modify critical endogenous protection systems before neurodegeneration occurs. We examined the time-course effect of sublethal concentrations of Abeta on total BDNF (panBDNF), BDNF transcripts (I, II, IV and VI), trkB.FL, trkB.T1 and p75(NGFR) mRNA expression in cultured cortical neurons. We have shown that Abeta exhibited a dual response on BDNF mRNA, i.e. an increase at short times (3-5 h) and a dramatic decrease at longer times (24 or 48 h). The early increase in BDNF expression seems to be driven by increased expression of transcripts I and IV. The BDNF drop was specific since did not occur for other mRNAs examined. The BDNF protein content showed a similar profile but did not follow the dramatic reduction as its encoding mRNA. These observations may help to explain cognitive deficits observed at initial stages of AD.
Yau, S-Y; Lau, B W-M; Zhang, E-D; Lee, J C-D; Li, A; Lee, T M C; Ching, Y-P; Xu, A-M; So, K-F
2012-10-11
Previous studies have shown that a 2-week treatment with 40 mg/kg corticosterone (CORT) in rats suppresses hippocampal neurogenesis and decreases hippocampal brain-derived neurotrophic factor (BDNF) levels and impairs spatial learning, all of which could be counteracted by voluntary wheel running. BDNF and insulin-like growth factor (IGF-1) have been suggested to mediate physical exercise-enhanced hippocampal neurogenesis and cognition. Here we examined whether such running-elicited benefits were accompanied by corresponding changes of peripheral BDNF and IGF-1 levels in a rat model of stress. We examined the effects of acute (5 days) and chronic (4 weeks) treatment with CORT and/or wheel running on (1) hippocampal cell proliferation, (2) spatial learning and memory and (3) plasma levels of BDNF and IGF-1. Acute CORT treatment improved spatial learning without altered cell proliferation compared to vehicle treatment. Acute CORT-treated non-runners showed an increased trend in plasma BDNF levels together with a significant increase in hippocampal BDNF levels. Acute running showed no effect on cognition, cell proliferation and peripheral BDNF and IGF-1 levels. Conversely, chronic CORT treatment in non-runners significantly impaired spatial learning and suppressed cell proliferation in association with a decreased trend in plasma BDNF level and a significant increase in hippocampal BDNF levels. Running counteracted cognitive deficit and restored hippocampal cell proliferation following chronic CORT treatment; but without corresponding changes in plasma BDNF and IGF-1 levels. The results suggest that the beneficial effects of acute stress on cognitive improvement may be mediated by BDNF-enhanced synaptic plasticity that is hippocampal cell proliferation-independent, whereas chronic stress may impair cognition by decreasing hippocampal cell proliferation and BDNF levels. Furthermore, the results indicate a trend in changes of plasma BDNF levels associated with a significant alteration in hippocampal levels, suggesting that treatment with running/CORT for 4 weeks may induce a change in central levels of hippocampal BDNF level, which may not lead to a significant change in peripheral levels. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.
Increased blood BDNF in healthy individuals with a family history of depression.
Knorr, Ulla; Søndergaard, Mia H Greisen; Koefoed, Pernille; Jørgensen, Anders; Faurholt-Jepsen, Maria; Vinberg, Maj; Kessing, Lars Vedel
2017-10-01
The brain-derive neurotrophic factor (BDNF) may play an important role in the course of depression. We aimed to study the associations between peripheral whole blood BDNF levels in healthy individuals with and without a family history of depression. BDNF levels were significantly increased in healthy individuals with (n = 76), compared with healthy individuals without (n = 39) a family history of depression and persisted after adjustment for age and gender differences. Higher BDNF levels were associated with increasing age and seasonality. A family history of depression may contribute to an elevation of peripheral BDNF levels in healthy individuals. Copyright © 2017 Elsevier B.V. All rights reserved.
Sleiman, Sama F; Henry, Jeffrey; Al-Haddad, Rami; El Hayek, Lauretta; Abou Haidar, Edwina; Stringer, Thomas; Ulja, Devyani; Karuppagounder, Saravanan S; Holson, Edward B; Ratan, Rajiv R; Ninan, Ipe; Chao, Moses V
2016-06-02
Exercise induces beneficial responses in the brain, which is accompanied by an increase in BDNF, a trophic factor associated with cognitive improvement and the alleviation of depression and anxiety. However, the exact mechanisms whereby physical exercise produces an induction in brain Bdnf gene expression are not well understood. While pharmacological doses of HDAC inhibitors exert positive effects on Bdnf gene transcription, the inhibitors represent small molecules that do not occur in vivo. Here, we report that an endogenous molecule released after exercise is capable of inducing key promoters of the Mus musculus Bdnf gene. The metabolite β-hydroxybutyrate, which increases after prolonged exercise, induces the activities of Bdnf promoters, particularly promoter I, which is activity-dependent. We have discovered that the action of β-hydroxybutyrate is specifically upon HDAC2 and HDAC3, which act upon selective Bdnf promoters. Moreover, the effects upon hippocampal Bdnf expression were observed after direct ventricular application of β-hydroxybutyrate. Electrophysiological measurements indicate that β-hydroxybutyrate causes an increase in neurotransmitter release, which is dependent upon the TrkB receptor. These results reveal an endogenous mechanism to explain how physical exercise leads to the induction of BDNF.
Sex Differences in Brain-Derived Neurotrophic Factor Signaling and Functions
Chan, Chi Bun; Ye, Keqiang
2016-01-01
Brain derived neurotrophic factor (BDNF) is a member of the neurotrophin family that plays a critical role in numerous neuronal activities. Recent studies report that some functions or action mechanisms of BDNF vary in a sex-dependent manner. In particular, BDNF content in some brain parts and the tendency of developing BDNF-deficient-related diseases like depression is higher in female animals. With the support of other relevant studies, it is suggested that sex hormones or steroids can modulate the activities of BDNF, which may account for its functional discrepancy in different sexes. Indeed, the cross-talk between BDNF and sex steroids has been detected for decades and some sex steroids like estrogen have a positive regulatory effect to BDNF expression and signaling. Thus, the sex of animal models used is critical when studying the functions of BDNF in vivo. In this review, we will summarize our current findings on the difference in expression, signaling, and functions of BDNF between sexes. We will also discuss the potential mechanisms in mediating these differential responses with a specific emphasis on sex steroids. By presenting and discussing these findings, we encourage taking sex influences into consideration when designing experiments, interpreting results and drawing conclusions. PMID:27870419
Plasma BDNF levels following weight recovery in anorexia nervosa.
Phillips, Kathryn E; Jimerson, David C; Pillai, Anilkumar; Wolfe, Barbara E
2016-10-15
Preclinical studies have implicated brain-derived neurotrophic factor (BDNF) in the regulation of eating behavior and body weight. As reviewed in this report, prior studies of BDNF levels in anorexia nervosa have yielded variable results, perhaps reflecting effects of malnutrition and psychiatric comorbidity. The goal of the current report was to assess plasma BDNF as a biomarker in weight-recovered individuals with a history of anorexia nervosa (ANWR). Study groups included women meeting criteria for ANWR and healthy female controls. Participants were in a normal weight range, free of current major psychiatric disorder, and free of medication. Self-ratings included eating disorder symptoms, depression and anxiety. Plasma BDNF levels were measured by enzyme linked immunoassay. Plasma BDNF levels were not significantly different for ANWR and control groups. Plasma BDNF levels were inversely correlated with anxiety ratings in controls (p<0.02) but not in the ANWR group. This report provides new evidence that circulating BDNF concentrations do not differ in healthy controls and ANWR free of psychiatric comorbidity. Additionally, the data provide new information on the relationship between plasma BDNF and anxiety in these two study groups. Copyright © 2016 Elsevier Inc. All rights reserved.
Jiang, Yuhang; Fay, James M; Poon, Chi-Duen; Vinod, Natasha; Zhao, Yuling; Bullock, Kristin; Qin, Si; Manickam, Devika S; Yi, Xiang; Banks, William A; Kabanov, Alexander V
2018-02-07
Brain-derived neurotrophic factor (BDNF) is identified as a potent neuroprotective and neuroregenerative agent for many neurological diseases. Regrettably, its delivery to the brain is hampered by poor serum stability and rapid brain clearance. Here, a novel nanoformulation is reported composed of a bio-compatible polymer, poly(ethylene glycol)- b -poly(L-glutamic acid) (PEG-PLE), that hosts the BDNF molecule in a nanoscale complex, termed here Nano-BDNF. Upon simple mixture, Nano-BDNF spontaneously forms uniform spherical particles with a core-shell structure. Molecular dynamics simulations suggest that binding between BDNF and PEG-PLE is mediated through electrostatic coupling as well as transient hydrogen bonding. The formation of Nano-BDNF complex stabilizes BDNF and protects it from nonspecific binding with common proteins in the body fluid, while allowing it to associate with its receptors. Following intranasal administration, the nanoformulation improves BDNF delivery throughout the brain and displays a more preferable regional distribution pattern than the native protein. Furthermore, intranasally delivered Nano-BDNF results in superior neuroprotective effects in the mouse brain with lipopolysaccharides-induced inflammation, indicating promise for further evaluation of this agent for the therapy of neurologic diseases.
The Role of BDNF in the Development of Fear Learning.
Dincheva, Iva; Lynch, Niccola B; Lee, Francis S
2016-10-01
Brain-derived neurotrophic factor (BDNF) is a growth factor that is dynamically expressed in the brain across postnatal development, regulating neuronal differentiation and synaptic plasticity. The neurotrophic hypothesis of psychiatric mood disorders postulates that in the adult brain, decreased BDNF levels leads to altered neural plasticity, contributing to disease. Although BDNF has been established as a key factor regulating the critical period plasticity in the developing visual system, it has recently been shown to also play a role in fear circuitry maturation, which has implications for the emergence of fear-related mood disorders. This review provides a detailed overview of developmental changes in expression of BDNF isoforms, as well as their receptors across postnatal life. In addition, recent developmental studies utilizing a genetic BDNF single nucleotide polymorphism (Val66Met) knock-in mouse highlight the impact of BDNF on fear learning during a sensitive period spanning the transition into adolescent time frame. We hypothesize that BDNF in the developing brain regulates fear circuit plasticity during a sensitive period in early adolescence, and alterations in BDNF expression (genetic or environmental) have a persistent impact on fear behavior and fear-related disorders. © 2016 Wiley Periodicals, Inc.
Urinary brain-derived neurotrophic factor as a biomarker of executive functioning.
Koven, Nancy S; Collins, Larisa R
2014-01-01
Neurotrophins such as brain-derived neurotrophic factor (BDNF) are vital for neuronal survival and adaptive plasticity. With high BDNF gene expression in the prefrontal cortex, BDNF is a potential regulatory factor for building and maintaining cognitive reserves. Recent studies suggest that individual differences in executive functioning, a broad cognitive domain reliant upon frontal lobe structure and function, are governed in part by variance in BDNF polymorphisms. However, as neurogenetic data are not necessarily indicative of in vivo neurochemistry, this study examines the relationship between executive functioning and the neurotransmitter by measuring peripheral BDNF levels. Fifty-two healthy young adults completed a battery of standardized executive function tests. BDNF levels, adjusted for creatinine, were quantified with enzyme-linked immunosorbent assay of urine samples taken at the time of testing. BDNF concentration was positively associated with cognitive flexibility but had no relationship with working memory, abstract reasoning/planning, self-monitoring/response inhibition, or fluency. These results individuate cognitive flexibility as the specific facet of executive functioning associated with in vivo BDNF levels. This study also validates urinary BDNF as a peripheral biomarker of cognition in healthy adults. © 2014 S. Karger AG, Basel.
Synapsins Are Downstream Players of the BDNF-Mediated Axonal Growth.
Marte, Antonella; Messa, Mirko; Benfenati, Fabio; Onofri, Franco
2017-01-01
Synapsins (Syns) are synaptic vesicle-associated phosphoproteins involved in neuronal development and neurotransmitter release. While Syns are implicated in the regulation of brain-derived neurotrophic factor (BDNF)-induced neurotransmitter release, their role in the BDNF developmental effects has not been fully elucidated. By using primary cortical neurons from Syn I knockout (KO) and Syn I/II/III KO mice, we studied the effects of BDNF and nerve growth factor (NGF) on axonal growth. While NGF had similar effects in all genotypes, BDNF induced significant differences in Syn KO axonal outgrowth compared to wild type (WT), an effect that was rescued by the re-expression of Syn I. Moreover, the significant increase of axonal branching induced by BDNF in WT neurons was not detectable in Syn KO neurons. The expression analysis of BDNF receptors in Syn KO neurons revealed a significant decrease of the full length TrkB receptor and an increase in the levels of the truncated TrkB.t1 isoform and p75 NTR associated with a marked reduction of the BDNF-induced MAPK/Erk activation. By using the Trk inhibitor K252a, we demonstrated that these differences in BDNF effects were dependent on a TrkB/p75 NTR imbalance. The data indicate that Syn I plays a pivotal role in the BDNF signal transduction during axonal growth.
Boger, Heather A.; Mannangatti, Padmanabhan; Samuvel, Devadoss J.; Saylor, Alicia J.; Bender, Tara S.; McGinty, Jacqueline F.; Fortress, Ashley M.; Zaman, Vandana; Huang, Peng; Middaugh, Lawrence D.; Randall, Patrick K.; Jayanthi, Lankupalle D.; Rohrer, Baerbel; Helke, Kristi L.; Granholm, Ann-Charlotte; Ramamoorthy, Sammanda
2010-01-01
Brain-derived neurotrophic factor (BDNF) is critical in synaptic plasticity and in the survival and function of midbrain dopamine neurons. In the present study, we assessed the effects of a partial genetic deletion of BDNF on motor function and dopamine (DA) neurotransmitter measures by comparing (Bdnf+/−) with wildtype mice (WT) at different ages. Bdnf+/ and WT mice had similar body weights until 12 months of age; however, at 21 months, Bdnf+/− mice were significantly heavier than WT mice. Horizontal and vertical motor activity was reduced for Bdnf+/− compared to WT mice; but was not influenced by Age. Performance on an accelerating rotarod declined with age for both genotypes and was exacerbated for Bdnf+/− mice. Body weight did not correlate with any of the three behavioral measures studied. DA neurotransmitter markers indicated no genotypic difference in striatal tyrosine hydroxylase (TH), dopamine transporter (DAT), or vesicular monoamine transporter 2 (VMAT2) immunoreactivity at any age. However, DA transport via DAT (starting at 12 months) and VMAT2 (starting at 3 months) as well as KCl-stimulated DA release were reduced in Bdnf+/− mice and declined with age suggesting an increasingly important role for BDNF in the release and uptake of DA with the aging process. These findings suggest that a BDNF expression deficit becomes more critical to dopaminergic dynamics and related behavioral activities with increasing age. PMID:20860702
Marie, Christine; Pedard, Martin; Quirié, Aurore; Tessier, Anne; Garnier, Philippe; Totoson, Perle; Demougeot, Céline
2018-06-01
Low cerebral levels of brain-derived neurotrophic factor (BDNF), which plays a critical role in many brain functions, have been implicated in neurodegenerative, neurological and psychiatric diseases. Thus, increasing BDNF levels in the brain is considered an attractive possibility for the prevention/treatment of various brain diseases. To date, BDNF-based therapies have largely focused on neurons. However, given the cross-talk between endothelial cells and neurons and recent evidence that BDNF expressed by the cerebral endothelium largely accounts for BDNF levels present in the brain, it is likely that BDNF-based therapies would be most effective if they also targeted the cerebral endothelium. In this review, we summarize the available knowledge about the biology and actions of BDNF derived from endothelial cells of the cerebral microvasculature and we emphasize the remaining gaps and shortcomings.
Frias, Bárbara; Santos, João; Morgado, Marlene; Sousa, Mónica Mendes; Gray, Susannah M.Y.; McCloskey, Karen D.; Allen, Shelley; Cruz, Francisco
2015-01-01
Neurogenic detrusor overactivity (NDO) is a well known consequence of spinal cord injury (SCI), recognizable after spinal shock, during which the bladder is areflexic. NDO emergence and maintenance depend on profound plastic changes of the spinal neuronal pathways regulating bladder function. It is well known that neurotrophins (NTs) are major regulators of such changes. NGF is the best-studied NT in the bladder and its role in NDO has already been established. Another very abundant neurotrophin is BDNF. Despite being shown that, acting at the spinal cord level, BDNF is a key mediator of bladder dysfunction and pain during cystitis, it is presently unclear if it is also important for NDO. This study aimed to clarify this issue. Results obtained pinpoint BDNF as an important regulator of NDO appearance and maintenance. Spinal BDNF expression increased in a time-dependent manner together with NDO emergence. In chronic SCI rats, BDNF sequestration improved bladder function, indicating that, at later stages, BDNF contributes NDO maintenance. During spinal shock, BDNF sequestration resulted in early development of bladder hyperactivity, accompanied by increased axonal growth of calcitonin gene-related peptide-labeled fibers in the dorsal horn. Chronic BDNF administration inhibited the emergence of NDO, together with reduction of axonal growth, suggesting that BDNF may have a crucial role in bladder function after SCI via inhibition of neuronal sprouting. These findings highlight the role of BDNF in NDO and may provide a significant contribution to create more efficient therapies to manage SCI patients. PMID:25653370
Karamustafalioglu, Nesrin; Genc, Abdullah; Kalelioglu, Tevfik; Tasdemir, Akif; Umut, Gokhan; Incir, Said; Akkuş, Mustafa; Emul, Murat
2015-08-01
Inconsistent findings concerning brain-derived neurotrophic factor (BDNF) levels across different episodes in bipolar disorder have been reported, which is also in line with the treatment effects on BDNF levels in acute mania. We aimed to compare plasma BDNF level alterations after pure antipsychotic drug or ECT plus antipsychotic drug treatment in acute mania. Sixty-eight patients with mania were divided into two treatment arms: the antipsychotic treatment arm (AP) and electroconvulsive therapy (ECT)+AP arm. In addition, 30 healthy controls were included in the study. There was no significant statistical difference according to mean age, education level, marital and working status between patients and healthy controls. The initial serum BDNF level in patients with acute mania was significantly lower than healthy controls. The initial BDNF level between the ECT arm and AP arm was not significant. The BDNF level decreased significantly after reaching remission in patients with acute mania. The change in BDNF level in the AP arm was not significant while in the ECT arm it was significant after treatment. In this study, for the first time we revealed a significant decrease in BDNF levels after ECT sessions in acute manic patients. Besides clinical remission after treatment in acute mania, the decrement in BDNF levels does not seem to be related to clinical response. Thus cumulative effects of mood episodes for the ongoing decrease in BDNF levels might be borne in mind despite the achievement of remission and/or more time being required for an increase in BDNF levels after treatment. © The Author(s) 2015.
Mechanism of Hyperphagia Contributing to Obesity in Brain-Derived Neurotrophic Factor Knockout Mice
Fox, Edward A.; Biddinger, Jessica E.; Jones, Kevin R.; McAdams, Jennifer; Worman, Amber
2012-01-01
Global-heterozygous and brain-specific homozygous knockouts (KO's) of brain-derived neurotrophic factor (BDNF) cause late- and early-onset obesity, respectively, both involving hyperphagia. Little is known about the mechanism underlying this hyperphagia or whether BDNF loss from peripheral tissues could contribute to overeating. Since global-homozygous BDNF-KO is perinatal lethal, a BDNF-KO that spared sufficient brainstem BDNF to support normal health was utilized to begin to address these issues. Meal pattern and microstructure analyses suggested overeating of BDNF-KO mice was mediated by deficits in both satiation and satiety that resulted in increased meal size and frequency and implicated a reduction of vagal signaling from gut-to-brain. Meal-induced c-Fos activation in the nucleus of the solitary tract, a more direct measure of vagal afferent signaling, however, was not decreased in BDNF-KO mice, and thus was not consistent with a vagal afferent role. Interestingly though, meal-induced c-Fos activation was increased in the dorsal vagal motor nucleus (DMV) of BDNF-KO mice. This could imply that augmentation of vago-vagal digestive reflexes occurred (e.g., accommodation), which would support increased meal size and possibly increased meal number by reducing the increase in intragastric pressure produced by a given amount of ingesta. Additionally, vagal sensory neuron number in BDNF-KO mice was altered in a manner consistent with the increased meal-induced activation of the DMV. These results suggest reduced BDNF causes satiety and satiation deficits that support hyperphagia, possibly involving augmentation of vago-vagal reflexes mediated by central pathways or vagal afferents regulated by BDNF levels. PMID:23069761
The role of neurotrophins related to stress in saliva and salivary glands.
Saruta, Juri; Sato, Sadao; Tsukinoki, Keiichi
2010-10-01
Nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) are well-studied neurotrophins involved in neurogenesis, differentiation, growth, and maintenance of selected peripheral and central populations of neuronal cells during development and adulthood. Neurotrophins, in concert with the hypothalamic-pituitary-adrenal (HPA) axis, play key roles in modulating brain plasticity and behavioral coping, especially during ontogenetic critical periods, when the developing brain is particularly sensitive to external stimuli. Early life events, such as psychophysical stress, affect NGF and BDNF levels and induce dysregulation of the HPA axis, thereby affecting brain development and contributing to inter-individual differences in vulnerability to stress or psychiatric disorders. Immobilization stress modifies BDNF mRNA expression in some organs. We studied the effect of immobilization stress on BDNF and its receptor tyrosine receptor kinase B (TrkB) in rat submandibular glands, and found increased BDNF expression in duct cells under immobilization stress. Upon further investigation on the influence of salivary glands on plasma BDNF using an acute immobilization stress model, we found that acute immobilization stress lasting 60 min significantly increases the plasma BDNF level. However, plasma BDNF elevation is markedly suppressed in bilaterally sialoadenectomized rats. This suggests that salivary glands may be the primary source of plasma BDNF under acute immobilization stress. This report reviews the structure of salivary glands, the role of neurotrophins in salivary glands, and the significance of BDNF in saliva and salivary glands, followed by a summary of the evidence that indicates the relationship between immobilization stress and BDNF expression within salivary glands.
Ciszowski, Krzysztof; Gomółka, Ewa; Gawlikowski, Tomasz; Szpak, Dorota; Potoczek, Anna; Boba, Magdalena
Neurotrophins are the family of proteins which stimulate and regulate the process of neurogenesis. Several factors belong to the family, mainly nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT 3), and neurotrophin-4/5 (NT-4/5). Acute poisoning with carbon monoxide (CO), which usually is accompanied by neurologic symptoms, can potentially change the secretion profile of neurotrophins. Aim of the study. The main goal of the study is to assess the changes of NGF and BDNF plasma levels during an acute phase of CO poisoning as well as immediately after recovery. Additionally, the relationship among neurotrophin levels and selected aspects of clinical course of CO poisoning were studied. The study group consisted of 18 patients (mean age: 31.8±10.3 years) hospitalized in Toxicology Department of University Hospital in Cracow because of acute CO poisoning. There were 10 women (mean age: 30.2±6.9 years) and 8 men (mean age 33.9±13.7 years) in the group. The levels of NGF and BDNF were evaluated using immunoenzymatic method (ELISA) in plasma samples taken thrice in each patient. The sample 1. was taken during hospital admission, the sample 2. about 12-36 hours after admission, and the sample 3. just before the hospital discharging (usually, on the 3rd-4th day). The clinical data were collected from patients’ anamnesis, physical examination and neuropsychological evaluation. The statistical analysis were performed using tools comprised in STATISTICA 12.0 PL (StatSoft Polska, Cracow, Poland) software. The majority of NGF plasma levels were less than 14 pg/mL (values below the limit of quantification), contrary to the sole case of 34.3 pg/mL. BDNF plasma levels ranged from 4.8 ng/mL to above 48 ng/mL, i.e. they were higher than the upper limit of measurement range for the plasma dilution which had been used. The comparison of NGF and BDNF plasma levels in the study group with their analogues in healthy volunteers taken from the literature indicates that NGF level declines and BDNF level rises in patients with CO poisoning. The profile of BDNF concentrations in the majority of patients formed the characteristic pattern: BDNF sample 1. > BDNF sample 2. < BDNF sample 3. Taking all the values of BDNF higher than 48 ng/mL as equal to 48 ng/ mL, the statistically significant difference among 3 sample series was found according to BDNF levels. Maintaining the above mentioned assumption, the statistically significant negative correlation between the number of higher cognitive functions disturbed in one patient at the same time and the BDNF levels in sample series 2 was discovered, as well as the weak correlations between BDNF level in sample series 1 and carboxyhaemoglobin or lactate level. Moreover, weak but statistically significant correlations were present between the duration of CO exposure and BDNF levels in each sample series. The NGF plasma level is probably declined, while the BDNF plasma level is increased in patients with acute CO poisoning. The concentration–time curve for the plasma BDNF may sometimes undergo fluctuations with two peaks on its course. Plasma BDNF level may serve as a biological marker of disturbed higher cognitive functions in acute CO poisoning. Some clinical aspects of CO poisoning (duration of exposure, HbCO and lactate blood levels) may influence BDNF level.
Ketamine, sleep, and depression: current status and new questions.
Duncan, Wallace C; Zarate, Carlos A
2013-09-01
Ketamine, an N-methyl-D-aspartate (NMDA) receptor antagonist, has well-described rapid antidepressant effects in clinical studies of individuals with treatment-resistant major depressive disorder (MDD). Preclinical studies investigating the effects of ketamine on brain-derived neurotrophic factor (BDNF) and on sleep slow wave activity (SWA) support its use as a prototype for investigating the neuroplastic mechanisms presumably involved in the mechanism of rapidly acting antidepressants. This review discusses human EEG slow wave sleep parameters and plasma BDNF as central and peripheral surrogate markers of plasticity, and their use in assessing ketamine's effects. Acutely, ketamine elevates BDNF levels, as well as early night SWA and high-amplitude slow waves; each of these measures correlates with change in mood in depressed patients who respond to ketamine. The slow wave effects are limited to the first night post-infusion, suggesting that their increase is part of an early cascade of events triggering improved mood. Increased total sleep and decreased waking occur during the first and second night post infusion, suggesting that these measures are associated with the enduring treatment response observed with ketamine.
Adachi, Naoki; Numakawa, Tadahiro; Richards, Misty; Nakajima, Shingo; Kunugi, Hiroshi
2014-01-01
Brain-derived neurotrophic factor (BDNF) attracts increasing attention from both research and clinical fields because of its important functions in the central nervous system. An adequate amount of BDNF is critical to develop and maintain normal neuronal circuits in the brain. Given that loss of BDNF function has been reported in the brains of patients with neurodegenerative or psychiatric diseases, understanding basic properties of BDNF and associated intracellular processes is imperative. In this review, we revisit the gene structure, transcription, translation, transport and secretion mechanisms of BDNF. We also introduce implications of BDNF in several brain-related diseases including Alzheimer’s disease, Huntington’s disease, depression and schizophrenia. PMID:25426265
[BRAIN-DERIVED NEUROTROPHIC FACTOR (BDNF): NEUROBIOLOGY AND MARKER VALUE IN NEUROPSYCHIATRY].
Levada, O A; Cherednichenko, N V
2015-01-01
In this review current publications about neurobiology and marker value of brain derived neurotrophic factor (BDNF) in neuropsychiatry are analyzed. It is shown that BDNF is an important member of the family of neurotrophins which widely represented in various structures of the CNS. In prenatal period BDNF is involved in all stages of neuronal networks formation, and in the postnatal period its main role is maintaining the normal brain architectonics, involvement in the processes of neurogenesis and realization of neuroprotective functions. BDNF plays an important role in learning and memory organization, food and motor behavior. BDNF brain expression decreases with age, as well as in degenerative and vascular dementias, affective, anxiety, and behavioral disorders. The reducing of BDNF serum, level reflects the decreasing of its cerebral expression and could be used as a neurobiological marker of these pathological processes but the rising of its concentration could indicate the therapy effectiveness.
Prefrontal cortical BDNF: A regulatory key in cocaine- and food-reinforced behaviors
Pitts, Elizabeth G.; Taylor, Jane R.; Gourley, Shannon L.
2016-01-01
Brain-derived neurotrophic factor (BDNF) affects synaptic plasticity and neural structure and plays key roles in learning and memory processes. Recent evidence also points to important, yet complex, roles for BDNF in rodent models of cocaine abuse and addiction. Here we examine the role of prefrontal cortical (PFC) BDNF in reward-related decision making and behavioral sensitivity to, and responding for, cocaine. We focus on BDNF within the medial and orbital PFC, its regulation by cocaine during early postnatal development and in adulthood, and how BDNF in turn influences responding for drug reinforcement, including in reinstatement models. When relevant, we draw comparisons and contrasts with experiments using natural (food) reinforcers. We also summarize findings supporting, or refuting, the possibility that BDNF in the medial and orbital PFC regulate the development and maintenance of stimulus-response habits. Further investigation could assist in the development of novel treatment approaches for cocaine use disorders. PMID:26923993
BDNF and its pro-peptide are stored in presynaptic dense core vesicles in brain neurons
Dieni, Sandra; Matsumoto, Tomoya; Dekkers, Martijn; Rauskolb, Stefanie; Ionescu, Mihai S.; Deogracias, Ruben; Gundelfinger, Eckart D.; Kojima, Masami; Nestel, Sigrun; Frotscher, Michael
2012-01-01
Although brain-derived neurotrophic factor (BDNF) regulates numerous and complex biological processes including memory retention, its extremely low levels in the mature central nervous system have greatly complicated attempts to reliably localize it. Using rigorous specificity controls, we found that antibodies reacting either with BDNF or its pro-peptide both stained large dense core vesicles in excitatory presynaptic terminals of the adult mouse hippocampus. Both moieties were ∼10-fold more abundant than pro-BDNF. The lack of postsynaptic localization was confirmed in Bassoon mutants, a seizure-prone mouse line exhibiting markedly elevated levels of BDNF. These findings challenge previous conclusions based on work with cultured neurons, which suggested activity-dependent dendritic synthesis and release of BDNF. They instead provide an ultrastructural basis for an anterograde mode of action of BDNF, contrasting with the long-established retrograde model derived from experiments with nerve growth factor in the peripheral nervous system. PMID:22412021
Xu, Ning; Meng, Hao; Liu, Tianyi; Feng, Yingli; Qi, Yuan; Zhang, Donghuan; Wang, Honglei
2017-01-01
Cerebral venous thrombosis (CVT) often causes human depression, whereas depression-induced low immunity makes the patients susceptible to gastrointestinal infection. Blueberry possesses antidepressant properties which may improve autoimmunity and reduce gastrointestinal infection. Brain-derived neurotrophic factor (BDNF) performs antidepressant function and can be regulated by miR-155, which may be affected by blueberry. To explore the possible molecular mechanism, blueberry compounds were analyzed by high-performance liquid chromatography. Activity of compounds was tested by using HT22 cells. The present study tested 124 patients with CVT-induced mild-to-moderate depressive symptoms (Center for Epidemiologic Studies—Depression Scale [CES-D] ≥16) and gastrointestinal infection. Patients were randomly assigned to blueberry extract group (BG, received 10 mg blueberry extract daily) and placebo group (PG, received 10 mg placebo daily). After 3 months, depression, gastrointestinal infection and lipid profiles were investigated. Serum miR-155 and BDNF were measured using real-time quantitative polymerase chain reaction and or Western Blot. Blueberry treatment improved depressive symptoms and lipid profiles, and also reduced gastrointestinal infection in the BG group (P < 0.05) but those of the PG group (P = 1). These changes were paralleled by increase in serum levels of BDNF and miR-155 (P < 0.05). HPLC analysis showed that blueberry extracts were the main phenolic acids with 0.18, 0.85, 0.26, 0.72, 0.66, 0.4,1, and 1.92 mg/g of gentisic acid, chlorogenic acid, [2]-epicatechin, p-coumaric acid, benzoic acid, p-anisic acid, and quercetin in blueberry extracts, respectively. Phenolics in blueberry are possible causal agents in improving antidepressant activity and reducing gastrointestinal infection. Administration of blueberry increased BDNF expression and miR-155. Blueberry cannot affect BDNF level when miR-155 is overexpressed or inhibited. Phenolics from blueberry reduced gastrointestinal infection of patients with CVT by improving antidepressant activity via upregulation of miR-155-mediated BDNF. PMID:29230173
Kumari, Anita; Singh, Padmanabh; Baghel, Meghraj Singh; Thakur, M K
2016-05-01
Adverse early life experience is prominent risk factors for numerous psychiatric illnesses, including mood and anxiety disorders. It imposes serious long-term costs on the individual as well as health and social systems. Hence, developing therapies that prevent the long-term consequences of early life stress is of utmost importance, and necessitates a better understanding of the mechanisms by which early life stress triggers long-lasting alterations in gene expression and behavior. Post-weaning isolation rearing of rodents models the behavioral consequences of adverse early life experiences in humans and it is reported to cause anxiety like behavior which is more common in case of females. Therefore, in the present study, we have studied the impact of social isolation of young female mice for 8weeks on the anxiety like behavior and the underlying molecular mechanism. Elevated plus maze and open field test revealed that social isolation caused anxiety like behavior. BDNF, a well-known molecule implicated in the anxiety like behavior, was up-regulated both at the message and protein level in cerebral cortex by social isolation. CREB-1 and CBP, which play a crucial role in BDNF transcription, were up-regulated at mRNA level in cerebral cortex by social isolation. HDAC-2, which negatively regulates BDNF expression, was down-regulated at mRNA and protein level in cerebral cortex by social isolation. Furthermore, BDNF acts in concert with Limk-1, miRNA-132 and miRNA-134 for the regulation of structural and morphological plasticity. Social isolation resulted in up-regulation of Limk-1 mRNA and miRNA-132 expression in the cerebral cortex. MiRNA-134, which inhibits the translation of Limk-1, was decreased in cerebral cortex by social isolation. Taken together, our study suggests that social isolation mediated anxiety like behavior is associated with up-regulation of BDNF expression and concomitant increase in the expression of CBP, CREB-1, Limk-1 and miRNA-132, and decrease in the expression of HDAC-2 and miRNA-134 in the cerebral cortex. Copyright © 2016. Published by Elsevier Inc.
Karpova, Nina N; Lindholm, Jesse Saku Olavi; Kulesskaya, Natalia; Onishchenko, Natalia; Vahter, Marie; Popova, Dina; Ceccatelli, Sandra; Castrén, Eero
2014-01-01
Developmental exposure to low dose of methylmercury (MeHg) has a long-lasting effect on memory and attention deficits in humans, as well as cognitive performance, depression-like behavior and the hippocampal levels of the brain-derived neurotrophic factor (Bdnf)in mice. The Bdnf receptor TrkB is a key player of Bdnf signaling. Using transgenic animals, here we analyzed the effect of the full-length TrkB overexpression (TK+) on behavior impairments induced by perinatal MeHg. TK overexpression in the MeHg-exposed mice enhanced generalized anxiety and cue memory in the fear conditioning (FC) test. Early exposure to MeHg induced deficits in reversal spatial memory in the Morris water maze (MWM) test and depression-like behavior in the forced swim test (FST) in only wild-type (WT) mice but did not affect these parameters in TK+ mice. These changes were associated with TK+ effect on the increase in Bdnf 2, 3, 4 and 6 transcription in the hippocampus as well as with interaction of TK+ and MeHg factors for Bdnf 1, 9a and truncated TrkB.T1 transcripts in the prefrontal cortex. However, the MeHg-induced anxiety-like behavior in the elevated plus maze (EPM) and open field (OF) tests was ameliorated by TK+ background only in the OF test. Moreover, TK overexpression in the MeHg mice did not prevent significant stress-induced weight loss during the period of adaptation to individual housing in metabolic cages. These TK genotype-independent changes were primarily accompanied by the MeHg-induced hippocampal deficits in the activity-dependent Bdnf 1, 4 and 9a variants, TrkB.T1, and transcripts for important antioxidant enzymes glyoxalases Glo1 and Glo2 and glutathione reductase Gsr. Our data suggest a role of full-length TrkB in buffering against memory deficits and depression-like behavior in the MeHg mice but propose the involvement of additional pathways, such as the antioxidant system or TrkB.T1 signaling, in stress- or anxiety-related responses induced by developmental MeHg exposure.
Karpova, Nina N.; Lindholm, Jesse Saku Olavi; Kulesskaya, Natalia; Onishchenko, Natalia; Vahter, Marie; Popova, Dina; Ceccatelli, Sandra; Castrén, Eero
2014-01-01
Developmental exposure to low dose of methylmercury (MeHg) has a long-lasting effect on memory and attention deficits in humans, as well as cognitive performance, depression-like behavior and the hippocampal levels of the brain-derived neurotrophic factor (Bdnf)in mice. The Bdnf receptor TrkB is a key player of Bdnf signaling. Using transgenic animals, here we analyzed the effect of the full-length TrkB overexpression (TK+) on behavior impairments induced by perinatal MeHg. TK overexpression in the MeHg-exposed mice enhanced generalized anxiety and cue memory in the fear conditioning (FC) test. Early exposure to MeHg induced deficits in reversal spatial memory in the Morris water maze (MWM) test and depression-like behavior in the forced swim test (FST) in only wild-type (WT) mice but did not affect these parameters in TK+ mice. These changes were associated with TK+ effect on the increase in Bdnf 2, 3, 4 and 6 transcription in the hippocampus as well as with interaction of TK+ and MeHg factors for Bdnf 1, 9a and truncated TrkB.T1 transcripts in the prefrontal cortex. However, the MeHg-induced anxiety-like behavior in the elevated plus maze (EPM) and open field (OF) tests was ameliorated by TK+ background only in the OF test. Moreover, TK overexpression in the MeHg mice did not prevent significant stress-induced weight loss during the period of adaptation to individual housing in metabolic cages. These TK genotype-independent changes were primarily accompanied by the MeHg-induced hippocampal deficits in the activity-dependent Bdnf 1, 4 and 9a variants, TrkB.T1, and transcripts for important antioxidant enzymes glyoxalases Glo1 and Glo2 and glutathione reductase Gsr. Our data suggest a role of full-length TrkB in buffering against memory deficits and depression-like behavior in the MeHg mice but propose the involvement of additional pathways, such as the antioxidant system or TrkB.T1 signaling, in stress- or anxiety-related responses induced by developmental MeHg exposure. PMID:25309367
Gujral, Swathi; Manuck, Stephen B.; Ferrell, Robert E.; Flory, Janine D.; Erickson, Kirk I.
2014-01-01
Background The brain-derived neurotrophic factor (BDNF) Val66Met single nucleotide polymorphism may be associated with clinical and subsyndromal depression, but physical activity improves mood and increases BDNF expression. Aims To examine whether the BDNF polymorphism moderates an effect of physical activity on depressive symptoms. Methods BDNF genotype, physical activity measured by the Paffenbarger Questionnaire, and depressive symptoms using the Center for Epidemiology Depression Scale (CES-D) were collected on 1072 participants (Mean Age=44). Multiple linear regression was used to examine the association between BDNF genotype, physical activity, and depressive symptoms. Results After adjusting for family income, age, and education, depressive symptoms were higher in Met carriers compared to Val homozygotes (p=0.03), but this was only significant in men. Physical activity was associated with fewer depressive symptoms, but only in women (p=0.01). BDNF genotype did not moderate the effect of physical activity on depressive symptoms (p= 0.94). Conclusions In midlife, the BDNF Val66Met polymorphism neither attenuates nor magnifies the effect of physical activity on depressive symptoms. PMID:24745471
Involvement of Brain-Derived Neurotrophic Factor in Late-Life Depression
Dwivedi, Yogesh
2013-01-01
Brain-derived neurotrophic factor (BDNF), one of the major neurotrophic factors, plays an important role in the maintenance and survival of neurons, synaptic integrity, and synaptic plasticity. Evidence suggests that BDNF is involved in major depression, such that the level of BDNF is decreased in depressed patients and that antidepressants reverse this decrease. Stress, a major factor in depression, also modulates BDNF expression. These studies have led to the proposal of the neurotrophin hypothesis of depression. Late-life depression is associated with disturbances in structural and neural plasticity as well as impairments in cognitive behavior. Stress and aging also play a crucial role in late-life depression. Many recent studies have suggested that not only expression of BDNF is decreased in the serum/plasma of patients with late-life depression, but structural abnormalities in the brain of these patients may be associated with a polymorphism in the BDNF gene, and that there is a relationship between a BDNF polymorphism and antidepressant remission rates. This review provides a critical review of the involvement of BDNF in major depression, in general, and in late-life depression, in particular. PMID:23570887
A Positive Autoregulatory BDNF Feedback Loop via C/EBPβ Mediates Hippocampal Memory Consolidation
Bambah-Mukku, Dhananjay; Travaglia, Alessio; Chen, Dillon Y.; Pollonini, Gabriella
2014-01-01
Little is known about the temporal progression and regulation of the mechanisms underlying memory consolidation. Brain-derived-neurotrophic-factor (BDNF) has been shown to mediate the maintenance of memory consolidation, but the mechanisms of this regulation remain unclear. Using inhibitory avoidance (IA) in rats, here we show that a hippocampal BDNF-positive autoregulatory feedback loop via CCAAT-enhancer binding protein β (C/EBPβ) is necessary to mediate memory consolidation. At training, a very rapid, learning-induced requirement of BDNF accompanied by rapid de novo translation controls the induction of a persistent activation of cAMP-response element binding-protein (CREB) and C/EBPβ expression. The latter, in turn, controls an increase in expression of bdnf exon IV transcripts and BDNF protein, both of which are necessary and, together with the initial BDNF requirement, mediate memory consolidation. The autoregulatory loop terminates by 48 h after training with decreased C/EBPβ and pCREB and increased methyl-CpG binding protein-2, histone-deacetylase-2, and switch-independent-3a binding at the bdnf exon IV promoter. PMID:25209292
Huang, Weidong; Meng, Facai; Cao, Jie; Liu, Xiaobin; Zhang, Jie; Li, Min
2017-05-01
Hypoxic-ischemic brain injury is an important cause of neonatal mortality and morbidity. Brain-derived neurotrophic factor (BDNF) has been reported to play a neuroprotective role in hypoxic-ischemic brain injury; however, the specific effects and mechanism of BDNF on hypoxic-hypoglycemic hippocampal neuron injury remains unknown. The current study investigated the action of BDNF in regulating cerebral hypoxic-ischemic injury by simulating hippocampal neuron ischemia and hypoxia. We found that BDNF, p-Trkb, and miR-134 expression levels decreased, and that exogenous BDNF increased survival and reduced apoptosis in hypoxic-hypoglycemic hippocampal neurons. The results also show that BDNF inhibits MiR-134 expression by activating the TrkB pathway. Transfection with TrkB siRNA and pre-miR-134 abrogated the neuroprotective role of BDNF in hypoxic-hypoglycemic hippocampal neurons. Our results suggest that exogenous BDNF alleviates hypoxic-ischemic brain injury through the Trkb/MiR-134 pathway. These findings may help to identify a potential therapeutic agent for the treatment of hypoxic-ischemic brain injury.
Turakitwanakan, Wanpen; Mekseepralard, Chantana; Busarakumtragul, Panaree
2015-11-01
Mindfulness meditation is a method to decrease stress and increase memory. So, mindfulness meditation should increase serum brain-derived neurotrophic factor (BDNF). To study the effect of mindfulness meditation on the serum BDNF of medical students. The study group consisted of 30 male and female second-year medical students that volunteered to participate in the study, aged 19.1 ± 0.55 year olds (range 18-20) from Srinakharinwirot University. Their blood was drawn to measure BDNF before and after a four-day mindfulness meditation programme. The comparison of serum BDNF levels before and after meditation were analysed by paired t-test. The subjects were 66.77%female and 33.33% male. The average serum BDNF level before the meditation was 17.67 ng/ml (SD 3.58). After meditation, there was a decrease in serum BDNF to 17.34 ng/ml, which was however not statistically significant (SD 4.04, p > 0.05). The levels of blood BDNF decreases slightly after practising meditation. We plan to investigate the reason in the future.
Are BDNF and glucocorticoid activities calibrated?
Jeanneteau, Freddy; Chao, Moses V.
2012-01-01
One hypothesis to account for the onset and severity of neurological disorders is the loss of trophic support. Indeed, changes in the levels and activities of brain-derived neurotrophic factor (BDNF) occur in numerous neurodegenerative and neuropsychiatric diseases. A deficit promotes vulnerability whereas a gain of function facilitates recovery by enhancing survival, synapse formation and synaptic plasticity. Implementation of ‘BDNF therapies’, however, faces numerous methodological and pharmacokinetic issues. Identifying BDNF mimetics that activate the BDNF receptor or downstream targets of BDNF signaling represent an alternative approach. One mechanism that shows great promise is to study the interplay of BDNF and glucocorticoid hormones, a major class of natural steroid secreted during stress reactions and in synchrony with circadian rhythms. While small amounts of glucocorticoids support normal brain function, excess stimulation by these steroid hormones precipitate stress-related affective disorders. To date, however, because of the paucity of knowledge of underlying cellular mechanisms, deleterious effects of glucocorticoids are not prevented following extreme stress. In the present review, we will discuss the complementary roles share by BDNF and glucocorticoids in synaptic plasticity, and delineate possible signaling mechanisms mediating these effects. PMID:23022538
Epigenetic alterations of the BDNF gene in combat-related post-traumatic stress disorder.
Kim, T Y; Kim, S J; Chung, H G; Choi, J H; Kim, S H; Kang, J I
2017-02-01
Brain-derived neurotrophic factor (BDNF) plays a crucial role in modulating resilience and vulnerability to stress. The aim of this study was to investigate whether epigenetic regulation of the BDNF gene is a biomarker of post-traumatic stress disorder (PTSD) development among veterans exposed to combat in the Vietnam War. Using the Clinician-Administered PTSD Scale, combat veterans were grouped into those with (n = 126) and without (n = 122) PTSD. DNA methylation levels at four CpG sites within the BDNF promoter I region were quantified in the peripheral blood using pyrosequencing. The effects of BDNF DNA methylation levels and clinical variables on the diagnosis of PTSD were tested using binary logistic regression analysis. Subjects with PTSD showed a higher DNA methylation of four CpG sites at the BDNF promoter compared with those without PTSD. High methylation levels at the BDNF promoter CpG site, high combat exposure, and alcohol problems were significantly associated with PTSD diagnosis. This study demonstrated an association between higher DNA methylation of the BDNF promoter and PTSD diagnosis in combat-exposed individuals. Our findings suggest that altered BDNF methylation may be a valuable biomarker of PTSD after trauma exposure. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Inhibition of NMDA Receptors Prevents the Loss of BDNF Function Induced by Amyloid β.
Tanqueiro, Sara R; Ramalho, Rita M; Rodrigues, Tiago M; Lopes, Luísa V; Sebastião, Ana M; Diógenes, Maria J
2018-01-01
Brain-derived neurotrophic factor (BDNF) plays important functions in cell survival and differentiation, neuronal outgrowth and plasticity. In Alzheimer's disease (AD), BDNF signaling is known to be impaired, partially because amyloid β (Aβ) induces truncation of BDNF main receptor, TrkB-full length (TrkB-FL). We have previously shown that such truncation is mediated by calpains, results in the formation of an intracellular domain (ICD) fragment and causes BDNF loss of function. Since calpains are Ca 2+ -dependent proteases, we hypothesized that excessive intracellular Ca 2+ build-up could be due to dysfunctional N-methyl-d-aspartate receptors (NMDARs) activation. To experimentally address this hypothesis, we investigated whether TrkB-FL truncation by calpains and consequent BDNF loss of function could be prevented by NMDAR blockade. We herein demonstrate that a NMDAR antagonist, memantine, prevented excessive calpain activation and TrkB-FL truncation induced by Aβ 25-35 . When calpains were inhibited by calpastatin, BDNF was able to increase the dendritic spine density of neurons exposed to Aβ 25135 . Moreover, NMDAR inhibition by memantine also prevented Aβ-driven deleterious impact of BDNF loss of function on structural (spine density) and functional outcomes (synaptic potentiation). Collectively, these findings support NMDAR/Ca 2+ /calpains mechanistic involvement in Aβ-triggered BDNF signaling disruption.
Na, Kyoung-Sae; Won, Eunsoo; Kang, June; Chang, Hun Soo; Yoon, Ho-Kyoung; Tae, Woo Suk; Kim, Yong-Ku; Lee, Min-Soo; Joe, Sook-Haeng; Kim, Hyun; Ham, Byung-Joo
2016-02-15
Recent studies have reported that methylation of the brain-derived neurotrophic factor (BDNF) gene promoter is associated with major depressive disorder (MDD). This study aimed to investigate the association between cortical thickness and methylation of BDNF promoters as well as serum BDNF levels in MDD. The participants consisted of 65 patients with recurrent MDD and 65 age- and gender-matched healthy controls. Methylation of BDNF promoters and cortical thickness were compared between the groups. The right medial orbitofrontal, right lingual, right lateral occipital, left lateral orbitofrontal, left pars triangularis, and left lingual cortices were thinner in patients with MDD than in healthy controls. Among the MDD group, right pericalcarine, right medical orbitofrontal, right rostral middle frontal, right postcentral, right inferior temporal, right cuneus, right precuneus, left frontal pole, left superior frontal, left superior temporal, left rostral middle frontal and left lingual cortices had inverse correlations with methylation of BDNF promoters. Higher levels of BDNF promoter methylation may be closely associated with the reduced cortical thickness among patients with MDD. Serum BDNF levels were significantly lower in MDD, and showed an inverse relationship with BDNF methylation only in healthy controls. Particularly the prefrontal and occipital cortices seem to indicate key regions in which BDNF methylation has a significant effect on structure.
Ethanol-BDNF interactions: Still More Questions than Answers
Davis, Margaret I.
2008-01-01
Brain Derived Neurotrophic Factor (BDNF) has emerged as a regulator of development, plasticity and, recently, addiction. Decreased neurotrophic activity may be involved in ethanol-induced neurodegeneration in the adult brain and in the etiology of alcohol-related neurodevelopmental disorders. This can occur through decreased expression of BDNF or through inability of the receptor to transduce signals in the presence of ethanol. In contrast, recent studies implicate region-specific up-regulation of BDNF and associated signaling pathways in anxiety, addiction and homeostasis after ethanol exposure. Anxiety and depression are precipitating factors for substance abuse and these disorders also involve region-specific changes in BDNF in both pathogenesis and response to pharmacotherapy. Polymorphisms in the genes coding for BDNF and its receptor TrkB are linked to affective, substance abuse and appetitive disorders and therefore may play a role in the development of alcoholism. This review summarizes historical and pre-clinical data on BDNF and TrkB as it relates to ethanol toxicity and addiction. Many unresolved questions about region-specific changes in BDNF expression and the precise role of BDNF in neuropsychiatric disorders and addiction remain to be elucidated. Resolution of these questions will require significant integration of the literature on addiction and comorbid psychiatric disorders that contribute to the development of alcoholism. PMID:18394710
Surgical Management of Carney Complex-Associated Pituitary Pathology.
Lonser, Russell R; Mehta, Gautam U; Kindzelski, Bogdan A; Ray-Chaudhury, Abhik; Vortmeyer, Alexander O; Dickerman, Robert; Oldfield, Edward H
2017-05-01
Carney complex (CNC) is a familial neoplasia syndrome that is associated with pituitary-associated hypersecretion of growth hormone (GH) (acromegaly). The underlying cause of pituitary GH hypersecretion and its management have been incompletely defined. To provide biological insight into CNC-associated pituitary pathology and improve management, we analyzed findings in CNC patients who underwent transsphenoidal surgery. Consecutive CNC patients at the National Institutes of Health with acromegaly and imaging evidence of a pituitary adenoma(s) who underwent transsphenoidal resection of tumor(s) were included. Prospectively acquired magnetic resonance imaging and biochemical, surgical, and histological data were analyzed. Seven acromegalic CNC patients (2 male, 5 female) were included. The mean age at surgery was 29.7 years (range, 18-44 years). The mean follow-up was 4.7 years (range, 0.2-129 months). Magnetic resonance imaging revealed a single pituitary adenoma in 4 patients and multiple pituitary adenomas in 3 patients. Whereas patients with single discrete pituitary adenomas underwent selective adenomectomy, patients with multiple adenomas underwent selective adenomectomy of multiple tumors, as well as partial or total hypophysectomy. All adenomas were either GH and prolactin positive or exclusively prolactin positive. Pituitary tissue surrounding the adenomas in patients with multiple adenomas revealed hyperplastic GH- and prolactin-positive tissue. CNC-associated acromegaly results from variable pituitary pathology, including a single GH-secreting adenoma or multiple GH-secreting adenomas and/or GH hypersecretion of the pituitary gland surrounding multiple adenomas. Although selective adenomectomy is the preferred treatment for cases of GH-secreting adenomas, multiple adenomas with associated pituitary gland GH hypersecretion may require partial or complete hypophysectomy to achieve biochemical remission. Copyright © 2017 by the Congress of Neurological Surgeons
Cardoso, Rodolfo C.; Burns, Ashleigh; Moeller, Jacob; Skinner, Donal C.
2016-01-01
Prenatal testosterone (T) treatment recapitulates the reproductive and metabolic phenotypes of polycystic ovary syndrome in female sheep. At the neuroendocrine level, prenatal T treatment results in disrupted steroid feedback on gonadotropin release, increased pituitary sensitivity to GnRH, and subsequent LH hypersecretion. Because prenatal T-treated sheep manifest functional hyperandrogenism and hyperinsulinemia, gonadal steroids and/or insulin may play a role in programming and/or maintaining these neuroendocrine defects. Here, we investigated the effects of prenatal and postnatal treatments with an androgen antagonist (flutamide [F]) or an insulin sensitizer (rosiglitazone [R]) on GnRH-stimulated LH secretion in prenatal T-treated sheep. As expected, prenatal T treatment increased the pituitary responsiveness to GnRH leading to LH hypersecretion. Neither prenatal interventions nor postnatal F treatment normalized the GnRH-stimulated LH secretion. Conversely, postnatal R treatment completely normalized the GnRH-stimulated LH secretion. At the tissue level, gestational T increased pituitary LHβ, androgen receptor, and insulin receptor-β, whereas it reduced estrogen receptor (ER)α protein levels. Although postnatal F normalized pituitary androgen receptor and insulin receptor-β, it failed to prevent an increase in LHβ expression. Contrarily, postnatal R treatment restored ERα and partially normalized LHβ pituitary levels. Immunohistochemical findings confirmed changes in pituitary ERα expression to be specific to gonadotropes. In conclusion, these findings indicate that increased pituitary responsiveness to GnRH in prenatal T-treated sheep is likely a function of reduced peripheral insulin sensitivity. Moreover, results suggest that restoration of ERα levels in the pituitary may be one mechanism by which R prevents GnRH-stimulated LH hypersecretion in this sheep model of polycystic ovary syndrome-like phenotype. PMID:27792406
Cardoso, Rodolfo C; Burns, Ashleigh; Moeller, Jacob; Skinner, Donal C; Padmanabhan, Vasantha
2016-12-01
Prenatal testosterone (T) treatment recapitulates the reproductive and metabolic phenotypes of polycystic ovary syndrome in female sheep. At the neuroendocrine level, prenatal T treatment results in disrupted steroid feedback on gonadotropin release, increased pituitary sensitivity to GnRH, and subsequent LH hypersecretion. Because prenatal T-treated sheep manifest functional hyperandrogenism and hyperinsulinemia, gonadal steroids and/or insulin may play a role in programming and/or maintaining these neuroendocrine defects. Here, we investigated the effects of prenatal and postnatal treatments with an androgen antagonist (flutamide [F]) or an insulin sensitizer (rosiglitazone [R]) on GnRH-stimulated LH secretion in prenatal T-treated sheep. As expected, prenatal T treatment increased the pituitary responsiveness to GnRH leading to LH hypersecretion. Neither prenatal interventions nor postnatal F treatment normalized the GnRH-stimulated LH secretion. Conversely, postnatal R treatment completely normalized the GnRH-stimulated LH secretion. At the tissue level, gestational T increased pituitary LHβ, androgen receptor, and insulin receptor-β, whereas it reduced estrogen receptor (ER)α protein levels. Although postnatal F normalized pituitary androgen receptor and insulin receptor-β, it failed to prevent an increase in LHβ expression. Contrarily, postnatal R treatment restored ERα and partially normalized LHβ pituitary levels. Immunohistochemical findings confirmed changes in pituitary ERα expression to be specific to gonadotropes. In conclusion, these findings indicate that increased pituitary responsiveness to GnRH in prenatal T-treated sheep is likely a function of reduced peripheral insulin sensitivity. Moreover, results suggest that restoration of ERα levels in the pituitary may be one mechanism by which R prevents GnRH-stimulated LH hypersecretion in this sheep model of polycystic ovary syndrome-like phenotype.
Surgical Management of Carney Complex–Associated Pituitary Pathology
Mehta, Gautam U.; Kindzelski, Bogdan A.; Ray-Chaudhury, Abhik; Vortmeyer, Alexander O.; Dickerman, Robert; Oldfield, Edward H.
2017-01-01
Abstract BACKGROUND: Carney complex (CNC) is a familial neoplasia syndrome that is associated with pituitary-associated hypersecretion of growth hormone (GH) (acromegaly). The underlying cause of pituitary GH hypersecretion and its management have been incompletely defined. OBJECTIVE: To provide biological insight into CNC-associated pituitary pathology and improve management, we analyzed findings in CNC patients who underwent transsphenoidal surgery. METHODS: Consecutive CNC patients at the National Institutes of Health with acromegaly and imaging evidence of a pituitary adenoma(s) who underwent transsphenoidal resection of tumor(s) were included. Prospectively acquired magnetic resonance imaging and biochemical, surgical, and histological data were analyzed. RESULTS: Seven acromegalic CNC patients (2 male, 5 female) were included. The mean age at surgery was 29.7 years (range, 18-44 years). The mean follow-up was 4.7 years (range, 0.2-129 months). Magnetic resonance imaging revealed a single pituitary adenoma in 4 patients and multiple pituitary adenomas in 3 patients. Whereas patients with single discrete pituitary adenomas underwent selective adenomectomy, patients with multiple adenomas underwent selective adenomectomy of multiple tumors, as well as partial or total hypophysectomy. All adenomas were either GH and prolactin positive or exclusively prolactin positive. Pituitary tissue surrounding the adenomas in patients with multiple adenomas revealed hyperplastic GH- and prolactin-positive tissue. CONCLUSION: CNC-associated acromegaly results from variable pituitary pathology, including a single GH-secreting adenoma or multiple GH-secreting adenomas and/or GH hypersecretion of the pituitary gland surrounding multiple adenomas. Although selective adenomectomy is the preferred treatment for cases of GH-secreting adenomas, multiple adenomas with associated pituitary gland GH hypersecretion may require partial or complete hypophysectomy to achieve biochemical remission. PMID:27509071
Eyileten, Ceren; Zaremba, Małgorzata; Janicki, Piotr K; Rosiak, Marek; Cudna, Agnieszka; Kapłon-Cieślicka, Agnieszka; Opolski, Grzegorz; Filipiak, Krzysztof J; Kosior, Dariusz A; Mirowska-Guzel, Dagmara; Postula, Marek
2016-01-07
The aim of this study was to investigate the association between serum concentrations of the brain-derived neurotrophic factor (BDNF), platelet reactivity and inflammatory markers, as well as its association with BDNF encoding gene variants in type 2 diabetic patients (T2DM) during acetylsalicylic acid (ASA) therapy. This retrospective, open-label study enrolled 91 patients. Serum BDNF, genotype variants, hematological, biochemical, and inflammatory markers were measured. Blood samples were taken in the morning 2-3 h after the last ASA dose. The BDNF genotypes for selected variants were analyzed by use of the iPLEX Sequenom assay. In multivariate linear regression analysis, CADP-CT >74 sec (p<0.001) and sP-selectin concentration (p=0.03) were predictive of high serum BDNF. In multivariate logistic regression analysis, CADP-CT >74 sec (p=0.02) and IL-6 concentration (p=0.03) were risk factors for serum BDNF above the median. Non-significant differences were observed between intronic SNP rs925946, missense SNP rs6265, and intronic SNP rs4923463 allelic groups and BDNF concentrations in the investigated cohort. Chronic inflammatory condition and enhanced immune system are associated with the production of BDNF, which may be why the serum BDNF level in T2DM patients with high platelet reactivity was higher compared to subjects with normal platelet reactivity in this study.
Czyzyk, Adam; Filipowicz, Dorota; Podfigurna, Agnieszka; Ptas, Paula; Piestrzynska, Malgorzata; Smolarczyk, Roman; Genazzani, Andrea R; Meczekalski, Blazej
2017-05-01
Premature ovarian insufficiency (POI) is defined as a cessation of function of ovaries in women younger than 40 years old. Brain-derived neurotrophic factor (BDNF) is a protein critically involved in neuronal growth and metabolism. BDNF also has been shown to be important regulator of oocyte maturation. Recent data show that BDNF can be potentially involved in POI pathology. The aim of the study was to assess the BDNF plasma concentrations in patients diagnosed with idiopathic POI. 23 women diagnosed with POI (age 31 ± 7 years) and 18 (age 31 ± 3) controls were included to the study, matched according to age and body mass index. The BDNF concentrations were measured using competitive enzyme-linked immunosorbent assay (ELISA). Hormonal and metabolic parameters were measured in all individuals, in controls in late follicular phase. The POI group demonstrated lower mean plasma concentrations of BDNF (429.25 ± 65.52 pg/ml) in comparison to healthy controls (479.75 ± 34.75 pg/ml, p = 0.0345). The BDNF plasma concentration correlated negatively (R = -0.79, p < 0.001) with number of months since last menstrual period. There was a positive correlation between BDNF and progesterone in controls. In conclusion, POI patients show significantly lower BDNF plasma concentration and it correlates with the duration of amenorrhea. This observation brings important potential insights to the pathology of POI.
Jiang, Huili; Zhang, Xuhui; Lu, Jun; Meng, Hong; Sun, Yang; Yang, Xinjing; Zhao, Bingcong; Bao, Tuya
2018-01-01
Sensitive and stable biomarkers that facilitate depression detection and monitor the antidepressant efficiency are currently unavailable. Thus, the objective is to investigate the potential of DNA methylation and histone modifications of brain-derived neurotrophic factor (BDNF) in monitoring severity and antidepressive effects of acupuncture. The depression rat model was imitated by social isolation and chronic unpredicted mild stress (CUMS). The expression of serum BDNF was detected by enzyme-linked immunosorbent assay (ELISA), the hippocampal BDNF, acetylation levels in histone H3 lysine 9 (acH3K9), and HDAC2 by Western blot, the hippocampal mRNA of BDNF by RT-polymerase chain reaction (PCR). The DNA methylation patterns of the promoter I of BDNF was detected by MS-PCR. We investigated that the expression of BDNF in serum and hippocampus were significantly downregulated compared with controls. The same trend was found in mRNA of BDNF. Notably, acupuncture reversed the downregulation of BDNF in serum and hippocampus and mRNA of BDNF compared with model group. Acupuncture reversed the CUMS-induced downregulation of hippocampal acH3K9. On the contrary, the CUMS-induced upregulation of hippocampal HDAC2 in model group was significantly reversed by acupuncture. Collectively, the antidepressant effect of acupuncture might be mediated by regulating the DNA methylation and histone modifications of BDNF, which may represent novel biomaker for detection of depression and monitoring severity and antidepressive effects.
BDNF heightens the sensitivity of motor neurons to excitotoxic insults through activation of TrkB
NASA Technical Reports Server (NTRS)
Hu, Peter; Kalb, Robert G.; Walton, K. D. (Principal Investigator)
2003-01-01
The survival promoting and neuroprotective actions of brain-derived neurotrophic factor (BDNF) are well known but under certain circumstances this growth factor can also exacerbate excitotoxic insults to neurons. Prior exploration of the receptor through which BDNF exerts this action on motor neurons deflects attention away from p75. Here we investigated the possibility that BDNF acts through the receptor tyrosine kinase, TrkB, to confer on motor neurons sensitivity to excitotoxic challenge. We blocked BDNF activation of TrkB using a dominant negative TrkB mutant or a TrkB function blocking antibody, and found that this protected motor neurons against excitotoxic insult in cultures of mixed spinal cord neurons. Addition of a function blocking antibody to BDNF to mixed spinal cord neuron cultures is also neuroprotective indicating that endogenously produced BDNF participates in vulnerability to excitotoxicity. We next examined the intracellular signaling cascades that are engaged upon TrkB activation. Previously we found that inhibition of the phosphatidylinositide-3'-kinase (PI3'K) pathway blocks BDNF-induced excitotoxic sensitivity. Here we show that expression of a constitutively active catalytic subunit of PI3'K, p110, confers excitotoxic sensitivity (ES) upon motor neurons not incubated with BDNF. Parallel studies with purified motor neurons confirm that these events are likely to be occuring specifically within motor neurons. The abrogation of BDNF's capacity to accentuate excitotoxic insults may make it a more attractive neuroprotective agent.
Biddinger, Jessica E; Fox, Edward A
2014-07-30
Brain-derived neurotrophic factor (BDNF) is produced by developing and mature gastrointestinal (GI) tissues that are heavily innervated by autonomic neurons and may therefore control their development or function. To begin investigating this hypothesis, we compared the morphology, distribution, and density of intraganglionic laminar endings (IGLEs), the predominant vagal GI afferent, in mice with reduced intestinal BDNF (INT-BDNF(-/-)) and controls. Contrary to expectations of reduced development, IGLE density and longitudinal axon bundle number in the intestine of INT-BDNF(-/-) mice were increased, but stomach IGLEs were normal. INT-BDNF(-/-) mice also exhibited increased vagal sensory neuron numbers, suggesting that their survival was enhanced. To determine whether increased intestinal IGLE density or other changes to gut innervation in INT-BDNF(-/-) mice altered feeding behavior, meal pattern and microstructural analyses were performed. INT-BDNF(-/-) mice ate meals of much shorter duration than controls, resulting in reduced meal size. Increased suppression of feeding in INT-BDNF(-/-) mice during the late phase of a scheduled meal suggested that increased satiation signaling contributed to reduced meal duration and size. Furthermore, INT-BDNF(-/-) mice demonstrated increases in total daily intermeal interval and satiety ratio, suggesting that satiety signaling was augmented. Compensatory responses maintained normal daily food intake and body weight in INT-BDNF(-/-) mice. These findings suggest a target organ-derived neurotrophin suppresses development of that organ's sensory innervation and sensory neuron survival and demonstrate a role for BDNF produced by peripheral tissues in short-term controls of feeding, likely through its regulation of development or function of gut innervation, possibly including augmented intestinal IGLE innervation. Copyright © 2014 the authors 0270-6474/14/3410379-15$15.00/0.
Shepherd, Robert K.; Coco, Anne; Epp, Stephanie B.; Crook, Jeremy M.
2007-01-01
The development and maintenance of spiral ganglion neurons (SGNs) appears to be supported by both neural activity and neurotrophins. Removal of this support leads to their gradual degeneration. Here, we examine whether the exogenous delivery of the neurotrophin brain-derived neurotrophic factor (BDNF) in concert with electrical stimulation (ES) provides a greater protective effect than delivery of BDNF alone in vivo. The left cochlea of profoundly deafened guinea pigs was implanted with an electrode array and drug delivery system. BDNF or artificial perilymph (AP) was delivered continuously for 28 days. ES induced neural activity in two cohorts (BDNF/ES and AP/ES) while control animals received BDNF or AP without ES (BDNF/- and AP/-). The right cochleae of each animal served as deafened untreated controls. Electrically-evoked auditory brainstem responses (EABRs) were recorded immediately following surgery and at completion of the drug delivery period. AP/ES and AP/- cohorts showed an increase in EABR threshold over the implantation period while both BDNF cohorts exhibited a reduction in threshold (P < 0.001, t-test). Changes in neural sensitivity were complemented by significant differences in both SGN survival and soma area. BDNF cohorts demonstrated a significant trophic or survival advantage and larger soma area compared with AP-treated and deafened control cochleae; this advantage was greatest in the base of the cochlea. Importantly, ES significantly enhanced the survival effects of BDNF throughout the majority of the cochlea (P < 0.05, Bonferroni's test), while there was no evidence of trophic support provided by ES alone. Co-treatment of SGNs with BDNF and ES provide a substantial functional and trophic advantage; this treatment may have important implications for neural prostheses. PMID:15844207
[Over-expression of BDNF inhibits angiotensin II-induced apoptosis of cardiomyocytes in SD rats].
Cao, Jingli; Wu, Yingfeng; Liu, Geming; Li, Zhenlong
2018-03-01
Objective To investigate the role and molecular mechanism of brain-derived neurotrophic factor (BDNF) against the process of cardiomyocyte hypertrophy and apoptosis. Methods Cardiomyocyte hypertrophy were estabolished by angiotensin II (Ang II) in neonatal cardiomyocytes in vitro and incomplete ligature of abdominal aorta of SD rats in vivo. BDNF over-expressing recombinant vector pcDNA5-BDNF was transfected into cardiomyocytes by liposomes. Immunofluorescence staining was used to detect the effect of BDNF transfection on the surface area of myocardial cells. The effect of BDNF transfection on the apoptosis of cardiomyocytes was assayed by flow cytometry. Real-time fluorescent quantitative PCR was performed to detect the effect of over-expression of BDNF on the expressions of atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) mRNAs in cardiomyocytes. Western blot assay was used to observe the changes of BDNF, ANP and BNP, calmodulin kinase 2 (CaMK2) and phosphorylated calmodulin kinase 2 (p-CaMK2), calcineurin (CaN), p-CaN, nuclear factor of activated T cells 3 (NFATC3) and p-NFATC3 protein expressions in the myocardial tissues and cardiomyocytes. Results The expression of BDNF protein increased significantly in cardiac hypertrophy animal and cell models in a time-dependent manner. Compared with the untransfected control cardiomyocytes, the surface area of cardiomyocytes, the rate of apoptosis, the levels of ANP and BNP mRNA and protein expression, the levels of p-CaMK2 and CaN protein in the BDNF over-expressed cardiomyocytes were remarkably reduced, while the level of p-NFATC3 protein rose significantly. Conclusion BDNF inhibits the apoptosis of cardiomyocytes induced by Ang II, and it plays the role by inhibiting CaMK2 and CaN signaling pathways.
Tsiperson, Vladislav; Huang, Yangyang; Bagayogo, Issa; Song, Yeri; VonDran, Melissa W; DiCicco-Bloom, Emanuel
2015-01-01
Brain-derived neurotrophic factor (BDNF) is a member of the neurotrophin family of growth factors that through its neurotrophic tyrosine kinase, receptor, type 2 (TrkB) receptor, increases 5-bromo-2-deoxyuridine incorporation in oligodendrocyte progenitor cells (OPCs) in culture. Roles in vivo are less well understood; however, increases in numbers of OPCs are restricted in BDNF+/− mice following cuprizone-elicited demyelination. Here, we investigate whether these blunted increases in OPCs are associated with changes in proliferation. BDNF+/+ and BDNF+/− mice were fed cuprizone-containing or control feed. To assess effects on OPC numbers, platelet-derived growth factor receptor alpha (PDGFRα)+ or NG2+ cells were counted. To monitor DNA synthesis, 5-ethynyl-2′-deoxyuridine (EdU) was injected intraperitoneally and colocalized with PDGFRα+ cells. Alternatively, proliferating cell nuclear antigen (PCNA) was colocalized with PDGFRα or NG2. Labeling indices were determined in the BDNF+/+ and BDNF+/− animals. After 4 or 5 weeks of control feed, BDNF+/− mice exhibit similar numbers of OPCs compared with BDNF+/+ animals. The labeling indices for EdU and PCNA also were not significantly different, suggesting that neither the DNA synthesis phase (S phase) nor the proliferative pool size was different between genotypes. In contrast, when mice were challenged by cuprizone for 4 or 5 weeks, increases in OPCs observed in BDNF+/+ mice were reduced in the BDNF+/− mice. This difference in elevations in cell number was accompanied by decreases in EdU labeling and PCNA labeling without changes in cell death, indicating a reduction in the DNA synthesis and the proliferative pool. Therefore, levels of BDNF influence the proliferation of OPCs resulting from a demyelinating lesion. PMID:25586993
Yang, Na; Gelaye, Bizu; Zhong, Qiuyue; Rondon, Marta B; Sanchez, Sixto E; Williams, Michelle A
2016-12-01
There is accumulating evidence for the role of brain-derived neurotrophic factor (BDNF) in the pathophysiology of depression. However, the role of BDNF in the pathophysiology of post-traumatic stress disorder (PTSD) remains controversial, and no study has assessed BDNF concentrations among pregnant women with PTSD. We examined early-pregnancy BDNF concentrations among women with PTSD with and without depression. A total of 2928 women attending prenatal care clinics in Lima, Peru, were recruited. Antepartum PTSD and depression were evaluated using PTSD Checklist-Civilian Version (PCL-C) and Patient Health Questionnaire-9 (PHQ-9) scales, respectively. BDNF concentrations were measured in a subset of the cohort (N = 944) using a competitive enzyme-linked immunosorbent assay (ELISA). Logistic regression procedures were used to estimate odds ratios (OR) and 95 % confidence intervals (95 % CI). Antepartum PTSD (37.4 %) and depression (27.6 %) were prevalent in this cohort of low-income pregnant Peruvian women. Approximately 19.9 % of participants had comorbid PTSD-depression. Median serum BDNF concentrations were lower among women with comorbid PTSD-depression as compared with women without either condition (median [interquartile range], 20.44 [16.97-24.30] vs. 21.35 [17.33-26.01] ng/ml; P = 0.06). Compared to the referent group (those without PTSD and depression), women with comorbid PTSD-depression were 1.52-fold more likely to have low (<25.38 ng/ml) BDNF concentrations (OR = 1.52; 95 % CI 1.00-2.31). We observed no evidence of reduced BDNF concentrations among women with isolated PTSD. BDNF concentrations in early pregnancy were only minimally and non-significantly reduced among women with antepartum PTSD. Reductions in BDNF concentrations were more pronounced among women with comorbid PTSD-depression.
Bazovkina, D V; Kondaurova, E M; Tsybko, A S; Kovetskaya, A I; Ilchibaeva, T V; Naumenko, V S
2017-01-01
Brain-derived neurotropic factor (BDNF) plays an important role in mechanisms of depression. Precursor protein of this factor (proBDNF) can initiate apoptosis in the brain, while the mature form of BDNF is involved in neurogenesis. It is known that chronic alcoholization leads to the activation of apoptotic processes, neurodegeneration, brain injury, and cognitive dysfunction. In this work, we have studied the influence of long-term ethanol exposure on the proBDNF and BDNF protein levels, as well as on the expression of genes that encode these proteins in the brain structures of ASC mice with genetic predisposition to depressive-like behavior and in mice from parental nondepressive CBA strain. It was shown that chronic alcoholization results in a reduction of the BDNF level in the hippocampus and an increase in the amount of TrkB and p75 receptors in the frontal cortex of nondepressive CBA mice. At the same time, the long-term alcoholization of depressive ASC mice results in an increase of the proBDNF level in the frontal cortex and a reduction in the p75 protein level in the hippocampus. It has also been shown that, in depressive ASC mice, proBDNF and BDNF levels are significantly lower in the hippocampus and the frontal cortex compared with nondepressive CBA strain. However, no significant differences in the expression of genes encoding the studied proteins were observed. Thus, changes in the expression patterns of proBDNF, BDNF, and their receptors under the influence of alcoholization in the depressive ASC strain and nondepressive CBA strain mice are different.
Yang, Jenq-Lin; Lin, Yu-Ting; Chuang, Pei-Chin; Bohr, Vilhelm A; Mattson, Mark P
2014-03-01
Brain-derived neurotrophic factor (BDNF) promotes the survival and growth of neurons during brain development and mediates activity-dependent synaptic plasticity and associated learning and memory in the adult. BDNF levels are reduced in brain regions affected in Alzheimer's, Parkinson's, and Huntington's diseases, and elevation of BDNF levels can ameliorate neuronal dysfunction and degeneration in experimental models of these diseases. Because neurons accumulate oxidative lesions in their DNA during normal activity and in neurodegenerative disorders, we determined whether and how BDNF affects the ability of neurons to cope with oxidative DNA damage. We found that BDNF protects cerebral cortical neurons against oxidative DNA damage-induced death by a mechanism involving enhanced DNA repair. BDNF stimulates DNA repair by activating cyclic AMP response element-binding protein (CREB), which, in turn, induces the expression of apurinic/apyrimidinic endonuclease 1 (APE1), a key enzyme in the base excision DNA repair pathway. Suppression of either APE1 or TrkB by RNA interference abolishes the ability of BDNF to protect neurons against oxidized DNA damage-induced death. The ability of BDNF to activate CREB and upregulate APE1 expression is abolished by shRNA of TrkB as well as inhibitors of TrkB, PI3 kinase, and Akt kinase. Voluntary running wheel exercise significantly increases levels of BDNF, activates CREB, and upregulates APE1 in the cerebral cortex and hippocampus of mice, suggesting a novel mechanism whereby exercise may protect neurons from oxidative DNA damage. Our findings reveal a previously unknown ability of BDNF to enhance DNA repair by inducing the expression of the DNA repair enzyme APE1.
Huang, Yung-Jen; Lee, Kuan H; Grau, James W
2017-02-01
Noxious stimulation can induce a lasting increase in neural excitability within the spinal cord (central sensitization) that can promote pain and disrupt adaptive function (maladaptive plasticity). Brain-derived neurotrophic factor (BDNF) is known to regulate the development of plasticity and has been shown to impact the development of spinally-mediated central sensitization. The latter effect has been linked to an alteration in GABA-dependent inhibition. Prior studies have shown that, in spinally transected rats, exposure to regular (fixed spaced) stimulation can counter the development of maladaptive plasticity and have linked this effect to an up-regulation of BDNF. Here it is shown that application of the irritant capsaicin to one hind paw induces enhanced mechanical reactivity (EMR) after spinal cord injury (SCI) and that the induction of this effect is blocked by pretreatment with fixed spaced shock. This protective effect was eliminated if rats were pretreated with the BDNF sequestering antibody TrkB-IgG. Intrathecal (i.t.) application of BDNF prevented, but did not reverse, capsaicin-induced EMR. BDNF also attenuated cellular indices (ERK and pERK expression) of central sensitization after SCI. In uninjured rats, i.t. BDNF enhanced, rather than attenuated, capsaicin-induced EMR and ERK/pERK expression. These opposing effects were related to a transformation in GABA function. In uninjured rats, BDNF reduced membrane-bound KCC2 and the inhibitory effect of the GABA A agonist muscimol. After SCI, BDNF increased KCC2 expression, which would help restore GABAergic inhibition. The results suggest that SCI transforms how BDNF affects GABA function and imply that the clinical usefulness of BDNF will depend upon the extent of fiber sparing. Copyright © 2016 Elsevier Inc. All rights reserved.
Zayzafoon, M.; Rymaszewski, M.; Heiny, J.; Rios, M.; Hauschka, P. V.
2012-01-01
Brain-derived neurotrophic factor (BDNF) plays important roles in neuronal differentiation/survival, the regulation of food intake, and the pathobiology of obesity and type 2 diabetes mellitus. BDNF and its receptor are expressed in osteoblasts and chondrocyte. BDNF in vitro has a positive effect on bone; whether central BDNF affects bone mass in vivo is not known. We therefore examined bone mass and energy use in brain-targeted BDNF conditional knockout mice (Bdnf2lox/2lox/93). The deletion of BDNF in the brain led to a metabolic phenotype characterized by hyperphagia, obesity, and increased abdominal white adipose tissue. Central BDNF deletion produces a marked skeletal phenotype characterized by increased femur length, elevated whole bone mineral density, and bone mineral content. The skeletal changes are developmentally regulated and appear concurrently with the metabolic phenotype, suggesting that the metabolic and skeletal actions of BDNF are linked. The increased bone development is evident in both the cortical and trabecular regions. Compared with control, Bdnf2lox/2lox/93 mice show greater trabecular bone volume (+50% for distal femur, P < 0.001; +35% for vertebral body, P < 0.001) and midfemoral cortical thickness (+11 to 17%, P < 0.05), measured at 3 and 6 months of age. The skeletal and metabolic phenotypes were gender dependent, with female being more affected than male mice. However, uncoupling protein-1 expression in brown fat, a marker of sympathetic tone, was not different between genotypes. We show that deletion of central BDNF expression in mice results in increased bone mass and white adipose tissue, with no significant changes in sympathetic signaling or peripheral serotonin, associated with hyperphagia, obesity, and leptin resistance. PMID:23011922
Quan, Xiaojing; Luo, Hesheng; Fan, Han; Tang, Qincai; Chen, Wei; Cui, Ning; Yu, Guang; Xia, Hong
2015-08-01
Brain-derived neurotrophic factor (BDNF) has prokinetic effects on gut motility and is increased in the colonic mucosa of irritable bowel syndrome. We aimed to investigate the possible involvement of BDNF in stress-induced colonic hypermotility. Male Wistar rats were exposed to daily 1-h water avoidance stress (WAS) or sham WAS for 10 consecutive days. The presence of BDNF and substance P (SP) in the colonic mucosa was determined using enzyme immunoassay kits. Immunohistochemistry and western blotting were performed to assess the expression of BDNF and its receptor, TrkB. The contractions of muscle strips were studied in an organ bath system. Repeated WAS increased the fecal pellet expulsion and spontaneous contractile activities of the colonic muscle strips. Both BDNF and SP in the colonic mucosa were elevated following WAS. Immunohistochemistry revealed the presence of BDNF and TrkB in the mucosa and myenteric plexus. BDNF and TrkB were both up-regulated in colon devoid of mucosa and submucosa from the stressed rats compared with the control. BDNF pretreatment caused an enhancement of the SP-induced contraction of the circular muscle (CM) strips. TrkB antibody significantly inhibited the contraction of the colonic muscle strips and attenuated the excitatory effects of SP on contractions of the CM strips. Repeated WAS increased the contractile activities of the CM strips induced by SP after BDNF pretreatment, and this effect was reversed by TrkB antibody. The colonic hypermotility induced by repeated WAS may be associated with the increased expression of endogenous BDNF and TrkB. BDNF may have potential clinical therapeutic use in modulating gut motility.
Mechanism of hyperphagia contributing to obesity in brain-derived neurotrophic factor knockout mice.
Fox, E A; Biddinger, J E; Jones, K R; McAdams, J; Worman, A
2013-01-15
Global-heterozygous and brain-specific homozygous knockouts (KOs) of brain-derived neurotrophic factor (BDNF) cause late- and early-onset obesity, respectively, both involving hyperphagia. Little is known about the mechanism underlying this hyperphagia or whether BDNF loss from peripheral tissues could contribute to overeating. Since global-homozygous BDNF-KO is perinatal lethal, a BDNF-KO that spared sufficient brainstem BDNF to support normal health was utilized to begin to address these issues. Meal pattern and microstructure analyses suggested overeating of BDNF-KO mice was mediated by deficits in both satiation and satiety that resulted in increased meal size and frequency and implicated a reduction of vagal signaling from the gut to the brain. Meal-induced c-Fos activation in the nucleus of the solitary tract, a more direct measure of vagal afferent signaling, however, was not decreased in BDNF-KO mice, and thus was not consistent with a vagal afferent role. Interestingly though, meal-induced c-Fos activation was increased in the dorsal motor nucleus of the vagus nerve (DMV) of BDNF-KO mice. This could imply that augmentation of vago-vagal digestive reflexes occurred (e.g., accommodation), which would support increased meal size and possibly increased meal number by reducing the increase in intragastric pressure produced by a given amount of ingesta. Additionally, vagal sensory neuron number in BDNF-KO mice was altered in a manner consistent with the increased meal-induced activation of the DMV. These results suggest reduced BDNF causes satiety and satiation deficits that support hyperphagia, possibly involving augmentation of vago-vagal reflexes mediated by central pathways or vagal afferents regulated by BDNF levels. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.
Ambrus, Livia; Lindqvist, Daniel; Träskman-Bendz, Lil; Westrin, Åsa
2016-11-01
Both decreased levels of brain-derived neurotrophic factor (BDNF) and hypothalamic-pituitary-adrenal (HPA) axis dysregulation may be involved in the pathophysiology of suicidal behaviour, as well as cognitive symptoms of depression. Pre-clinical and clinical studies have shown interactions between HPA-axis activity and BDNF, but this has not been studied in a clinical cohort of suicidal subjects. The purpose of this study was, therefore, to investigate associations between HPA-axis activity and BDNF in suicide attempters. Furthermore, this study examined the relationship between the HPA-axis, BDNF, and cognitive symptoms in suicidal patients. Since previous data indicate gender-related differences in BDNF and the HPA axis, males and females were examined separately. Seventy-five recent suicide attempters (n = 41 females; n = 34 males) were enrolled in the study. The Dexamethasone Suppression Test (DST) was performed and BDNF in plasma were analysed. Patients were evaluated with the Comprehensive Psychopathological Rating Scale (CPRS) from which items 'Concentration difficulties' and 'Failing memory' were extracted. Only among females, DST non-suppressors had significantly lower BDNF compared to DST suppressors (p = 0.022), and there was a significant correlation between post-DST serum cortisol at 8 a.m. and BDNF (rs = -0.437, p = 0.003). Concentration difficulties correlated significantly with post-DST cortisol in all patients (rs = 0.256, p = 0.035), in females (rs = 0.396, p = 0.015), and with BDNF in females (rs = -0.372, p = 0.020). The findings suggest an inverse relationship between the HPA-axis and BDNF in female suicide attempters. Moreover, concentration difficulties may be associated with low BDNF and DST non-suppression in female suicide attempters.
Schulze, Jennifer; Kaiser, Odett; Paasche, Gerrit; Lamm, Hans; Pich, Andreas; Hoffmann, Andrea; Lenarz, Thomas; Warnecke, Athanasia
2017-01-01
Hyperbaric oxygen therapy (HBOT) is a noninvasive widely applied treatment that increases the oxygen pressure in tissues. In cochlear implant (CI) research, intracochlear application of neurotrophic factors (NTFs) is able to improve survival of spiral ganglion neurons (SGN) after deafness. Cell-based delivery of NTFs such as brain-derived neurotrophic factor (BDNF) may be realized by cell-coating of the surface of the CI electrode. Human mesenchymal stem cells (MSC) secrete a variety of different neurotrophic factors and may be used for the development of a biohybrid electrode in order to release endogenously-derived neuroprotective factors for the protection of residual SGN and for a guided outgrowth of dendrites in the direction of the CI electrode. HBOT could be used to influence cell behaviour after transplantation to the inner ear. The aim of this study was to investigate the effect of HBOT on the proliferation, BDNF-release and secretion of neuroprotective factors. Thus, model cells (an immortalized fibroblast cell line (NIH3T3)-native and genetically modified) and MSCs were repeatedly (3 x - 10 x) exposed to 100% oxygen at different pressures. The effects of HBO on cell proliferation were investigated in relation to normoxic and normobaric conditions (NOR). Moreover, the neuroprotective and neuroregenerative effects of HBO-treated cells were analysed by cultivation of SGN in conditioned medium. Both, the genetically modified NIH3T3/BDNF and native NIH3T3 fibroblasts, showed a highly significant increased proliferation after five days of HBOT in comparison to normoxic controls. By contrast, the number of MSCs was decreased in MSCs treated with 2.0 bar of HBO. Treating SGN cultures with supernatants of fibroblasts and MSCs significantly increased the survival rate of SGN. HBO treatment did not influence (increase / reduce) this effect. Secretome analysis showed that HBO treatment altered the protein expression pattern in MSCs.
Maass, Anne; Düzel, Sandra; Brigadski, Tanja; Goerke, Monique; Becke, Andreas; Sobieray, Uwe; Neumann, Katja; Lövdén, Martin; Lindenberger, Ulman; Bäckman, Lars; Braun-Dullaeus, Rüdiger; Ahrens, Dörte; Heinze, Hans-Jochen; Müller, Notger G; Lessmann, Volkmar; Sendtner, Michael; Düzel, Emrah
2016-05-01
Animal models point towards a key role of brain-derived neurotrophic factor (BDNF), insulin-like growth factor-I (IGF-I) and vascular endothelial growth factor (VEGF) in mediating exercise-induced structural and functional changes in the hippocampus. Recently, also platelet derived growth factor-C (PDGF-C) has been shown to promote blood vessel growth and neuronal survival. Moreover, reductions of these neurotrophic and angiogenic factors in old age have been related to hippocampal atrophy, decreased vascularization and cognitive decline. In a 3-month aerobic exercise study, forty healthy older humans (60 to 77years) were pseudo-randomly assigned to either an aerobic exercise group (indoor treadmill, n=21) or to a control group (indoor progressive-muscle relaxation/stretching, n=19). As reported recently, we found evidence for fitness-related perfusion changes of the aged human hippocampus that were closely linked to changes in episodic memory function. Here, we test whether peripheral levels of BDNF, IGF-I, VEGF or PDGF-C are related to changes in hippocampal blood flow, volume and memory performance. Growth factor levels were not significantly affected by exercise, and their changes were not related to changes in fitness or perfusion. However, changes in IGF-I levels were positively correlated with hippocampal volume changes (derived by manual volumetry and voxel-based morphometry) and late verbal recall performance, a relationship that seemed to be independent of fitness, perfusion or their changes over time. These preliminary findings link IGF-I levels to hippocampal volume changes and putatively hippocampus-dependent memory changes that seem to occur over time independently of exercise. We discuss methodological shortcomings of our study and potential differences in the temporal dynamics of how IGF-1, VEGF and BDNF may be affected by exercise and to what extent these differences may have led to the negative findings reported here. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
ZHANG, H. N.; KO, M. C.
2009-01-01
Chemical-induced seizures up-regulated brain-derived neurotrophic factor (BDNF) mRNA expression. Intracerebroventricular (i.c.v.) administration of endogenous opioids preferentially activating μ opioid receptor (MOR) could also increase BDNF mRNA expression. The aim of this study was to determine to what extent i.c.v. administration of synthetic MOR-selective agonists in rats can modulate both seizure activity and up-regulation of BDNF mRNA expression. Effects and potencies of i.c.v. administration of morphine and [D-Ala2,N-Me-Phe4,Gly5-ol]-enkephalin (DAMGO), were directly investigated by scoring behavioral seizures and measuring BDNF mRNA expression. In addition, effects of the opioid receptor antagonist naloxone and antiepileptic drugs, diazepam, phenobarbital, and valproate, on i.c.v. MOR agonist-induced behavioral seizures and up-regulation of BDNF mRNA expression were determined. A single i.c.v. administration of morphine (10–100 μg) or DAMGO (0.15–1.5 μg) dose-dependently elicited behavioral seizures and increased BDNF mRNA expression in the widespread brain regions. However, subcutaneous administration of MOR agonists neither produced behavioral seizures nor increased BDNF mRNA expression. Pretreatment with naloxone 1 mg/kg significantly reduced behavioral seizure scores and the up-regulation of BDNF mRNA expression elicited by i.c.v. morphine or DAMGO. Similarly, diazepam 10 mg/kg and phenobarbital 40 mg/kg significantly blocked i.c.v. MOR agonist-induced actions. Pretreatment with valproate 300 mg/kg only attenuated behavioral seizures, but it did not affect morphine-induced increase of BDNF mRNA expression. This study provides supporting evidence that seizure activity plays an important role in the up-regulation of BDNF mRNA expression elicited by central MOR activation and that decreased inhibitory action of GABAergic system through the modulation on GABA receptor synaptic function by central MOR activation is involved in its regulation of BDNF mRNA expression. PMID:19303919
Wu, Chia-Lin; Chen, Chien-Hui; Hwang, Chi-Shin; Chen, Shang-Der; Hwang, Wei-Chao; Yang, Ding-I
2017-03-01
Previously, we have reported that pre-conditioning of primary rat cortical neurons with brain-derived neurotrophic factor (BDNF) may exert neuroprotective effects against 3-nitropropionic acid (3-NP), a mitochondrial complex II inhibitor. However, the underlying mechanisms, especially potential involvements of autophagy, remain elusive. In this work, we tested the hypothesis that BDNF may suppress 3-NP-induced autophagy to exert its neuroprotective effects by inducing the expression of p62/sequestosome-1 in primary cortical neurons. We found that 3-NP increased total level of microtubule-associated protein 1A/1B-light chain (LC)-3 as well as the LC3-II/LC3-I ratio, an index of autophagy, in primary cortical neurons. BDNF decreased LC3-II/LC3-I ratio and time-dependently induced expression of p62. Knockdown of p62 by siRNA restored LC3-II/LC3-I ratio and increased total LC3 levels associated with BDNF exposure; p62 knockdown also abolished BDNF-dependent neuroprotection against 3-NP. Upstream of p62, we found that BDNF triggered phosphorylation of mammalian target of rapamycin (mTOR) and its downstream mediator p70S6K; importantly, the mTOR inhibitor rapamycin reduced both BDNF-dependent p62 induction as well as 3-NP resistance. BDNF is known to induce c-Jun in cortical neurons. We found that c-Jun knockdown in part attenuated BDNF-mediated p62 induction, whereas p62 knockdown had no significant effects on c-Jun expression. In addition to suppressing p62 induction, rapamycin also partially suppressed BDNF-induced c-Jun expression, but c-Jun knockdown failed to affect mTOR activation. Together, our results suggested that BDNF inhibits 3-NP-induced autophagy via, at least in part, mTOR/c-Jun-dependent induction of p62 expression, together contributing to neuroprotection against mitochondrial inhibition. © 2016 International Society for Neurochemistry.
Tyrosine triple mutated AAV2-BDNF gene therapy in a rat model of transient IOP elevation
Igarashi, Tsutomu; Kobayashi, Maika; Kameya, Shuhei; Fujimoto, Chiaki; Nakamoto, Kenji; Takahashi, Hisatomo; Igarashi, Toru; Miyake, Noriko; Iijima, Osamu; Hirai, Yukihiko; Shimada, Takashi; Okada, Takashi; Takahashi, Hiroshi
2016-01-01
Purpose We examined the neuroprotective effects of exogenous brain-derived neurotrophic factor (BDNF), which provides protection to retinal ganglion cells (RGCs) in rodents, in a model of transient intraocular pressure (IOP) elevation using a mutant (triple Y-F) self-complementary adeno-associated virus type 2 vector encoding BDNF (tm-scAAV2-BDNF). Methods The tm-scAAV2-BDNF or control vector encoding green fluorescent protein (GFP; tm-scAAV2-GFP) was intravitreally administered to rats, which were then divided into four groups: control, ischemia/reperfusion (I/R) injury only, I/R injury with tm-scAAV2-GFP, and tm-scAAV2-BDNF. I/R injury was then induced by transiently increasing IOP, after which the rats were euthanized to measure the inner retinal thickness and cell counts in the RGC layer. Results Intravitreous injection of tm-scAAV2-BDNF resulted in high levels of BDNF expression in the neural retina. Histological analysis showed that the inner retinal thickness and cell numbers in the RGC layer were preserved after transient IOP elevation in eyes treated with tm-scAAV2-BDNF but not in the other I/R groups. Significantly reduced glial fibrillary acidic protein (GFAP) immunostaining after I/R injury in the rats that received tm-scAAV2-BDNF indicated reduced retinal stress, and electroretinogram (ERG) analysis confirmed preservation of retinal function in the tm-scAAV2-BDNF group. Conclusions These results demonstrate the feasibility and effectiveness of neuroprotective gene therapy using tm-scAAV2-BDNF to protect the inner retina from transiently high intraocular pressure. An in vivo gene therapeutic approach to the clinical management of retinal diseases in conditions such as glaucoma, retinal artery occlusion, hypertensive retinopathy, and diabetic retinopathy thus appears feasible. PMID:27440998
Failla, Michelle D.; Juengst, Shannon B.; Arenth, Patricia; Wagner, Amy K.
2015-01-01
Background Traumatic brain injury (TBI) often leads to mood and cognitive complications, impacting functional recovery. Understanding neurobiological alterations common in post-TBI depression (PTD) and cognition may identify novel biomarkers for TBI complications. Brain-derived neurotrophic factor (BDNF) is a likely target based on evidence of reduced BDNF signaling in experimental TBI and depression models and its role in learning and memory. Objective Evaluate BDNF as a biomarker for PTD, cognitive impairment, and functional cognition in a prospective cohort with severe TBI. Methods Participants with TBI (n=113) were evaluated for PTD (Patient Health Questionnaire-9), cognitive impairment (cognitive composite score) and functional cognition (Functional Independence Measure–Cognition, FIM-Cog). BDNF levels were measured in cerebrospinal fluid (CSF) and serum 0–6 days post-injury and in serum at 6 and 12 months post-injury. Results Serum BDNF was reduced after TBI versus controls at all time-points. Acute serum BDNF positively correlated with Memory composites (6 months: r=0.43, p=0.019, n=30; 12 months: r=0.53, p=0.005, n=26) and FIM-Memory scores (6 months: r=0.35, p=0.019, n=45; 12 months: r=0.38, p=0.018, n=38). Acute serum BDNF negatively correlated with 12 month PHQ-9 scores (r=−0.38, p=0.044, n=29). At 12 months, chronic serum BDNF tended to be lower in participants with PTD (p=0.07) and correlated with PHQ-9 scores (r=−0.41, p=0.019, n=32). Conclusions Acute BDNF associations with memory recovery may implicate hippocampal damage/degeneration. Comparatively, BDNF associations with PTD status were not as strong as associations with PTD severity. Further investigation may delineate longitudinal BDNF patterns, and BDNF responsive treatments, reflecting mood and cognitive recovery following TBI. PMID:26276123
Garcia, N; Santafe, M M; Tomàs, M; Lanuza, M A; Besalduch, N; Tomàs, J
2010-05-15
We use immunohistochemistry to describe the localization of brain-derived neurotrophic factor (BDNF) and its receptors trkB and p75(NTR) in the neuromuscular synapses of postnatal rats (P6-P7) during the synapse elimination period. The receptor protein p75(NTR) is present in the nerve terminal, muscle cell and glial Schwann cell whereas BDNF and trkB proteins can be detected mainly in the pre- and postsynaptic elements. Exogenously applied BDNF (10 nM for 3 hr or 50 nM for 1 hr) increases ACh release from singly and dually innervated synapses. This effect may be specific for BDNF because the neurotrophin NT-4 (2-8 nM) does not modulate release at P6-P7. Blocking the receptors trkB and p75(NTR) (with K-252a and anti-p75-192-IgG, respectively) completely abolishes the potentiating effect of exogenous BDNF. In addition, exogenous BDNF transiently recruits functionally depressed silent terminals, and this effect seems to be mediated by trkB. Calcium ions, the L-type voltage-dependent calcium channels and protein kinase C are involved in BDNF-mediated nerve ending recruitment. Blocking experiments suggest that endogenous BDNF could operate through p75(NTR) receptors coupled to potentiate ACh release in all nerve terminals because the anti-p75-192-IgG reduces release. However, blocking the trkB receptor (K-252a) or neutralizing endogenous BDNF with the trkB-IgG fusion protein reveals a trkB-mediated release inhibition on almost mature strong endings in dual junctions. Taken together these results suggest that a BDNF-induced p75(NTR)-mediated ACh release potentiating mechanism and a BDNF-induced trkB-mediated release inhibitory mechanism may contribute to developmental synapse disconnection. (c) 2009 Wiley-Liss, Inc.
Suliman, Sharain; Hemmings, Sian M. J.; Seedat, Soraya
2013-01-01
Background: Brain-Derived Neurotrophic Factor (BDNF) is a neurotrophin that is involved in the synaptic plasticity and survival of neurons. BDNF is believed to be involved in the pathogenesis of several neuropsychiatric disorders. As findings of BDNF levels in anxiety disorders have been inconsistent, we undertook to conduct a systematic review and meta-analysis of studies that assessed BDNF protein levels in these disorders. Methods: We conducted the review using electronic databases and searched reference lists of relevant articles for any further studies. Studies that measured BDNF protein levels in any anxiety disorder and compared these to a control group were included. Effect sizes of the differences in BDNF levels between anxiety disorder and control groups were calculated. Results: Eight studies with a total of 1179 participants were included. Initial findings suggested that BDNF levels were lower in individuals with any anxiety disorder compared to those without [Standard Mean Difference (SMD) = −0.94 (−1.75, −0.12), p ≤ 0.05]. This was, however, dependent on source of BDNF protein [plasma: SMD = −1.31 (−1.69, −0.92), p ≤ 0.01; serum: SMD = −1.06 (−2.27, 0.16), p ≥ 0.01] and type of anxiety disorder [PTSD: SMD = −0.05 (−1.66, 1.75), p ≥ 0.01; OCD: SMD = −2.33 (−4.21, −0.45), p ≤ 0.01]. Conclusion: Although BDNF levels appear to be reduced in individuals with an anxiety disorder, this is not consistent across the various anxiety disorders and may largely be explained by the significantly lowered BDNF levels found in OCD. Results further appear to be mediated by differences in sampling methods. Findings are, however, limited by the lack of research in this area, and given the potential for BDNF as a biomarker of anxiety disorders, it would be useful to clarify the relationship further. PMID:23908608
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gupta, Vivek, E-mail: vivek.gupta@mq.edu.au; Chitranshi, Nitin; You, Yuyi
2014-11-21
Highlights: • BDNF knockdown leads to activation of GSK3β in the neuronal cells. • BDNF knockdown can induce GSK3β activation beyond TrkB mediated effects. • BDNF impairment in vivo leads to age dependent activation of GSK3β in the retina. • Systemic treatment with TrkB agonist induces inhibition of retinal GSK3β. - Abstract: Glycogen synthase kinase 3β (GSK3β) is involved in several biochemical processes in neurons regulating cellular survival, gene expression, cell fate determination, metabolism and proliferation. GSK3β activity is inhibited through the phosphorylation of its Ser-9 residue. In this study we sought to investigate the role of BDNF/TrkB signalling inmore » the modulation of GSK3β activity. BDNF/TrkB signalling regulates the GSK3β activity both in vivo in the retinal tissue as well as in the neuronal cells under culture conditions. We report here for the first time that BDNF can also regulate GSK3β activity independent of its effects through the TrkB receptor signalling. Knockdown of BDNF lead to a decline in GSK3β phosphorylation without having a detectable effect on the TrkB activity or its downstream effectors Akt and Erk1/2. Treatment with TrkB receptor agonist had a stimulating effect on the GSK3β phosphorylation, but the effect was significantly less pronounced in the cells in which BDNF was knocked down. The use of TrkB receptor antagonist similarly, manifested itself in the form of downregulation of GSK3β phosphorylation, but a combined TrkB inhibition and BDNF knockdown exhibited a much stronger negative effect. In vivo, we observed reduced levels of GSK3β phosphorylation in the retinal tissues of the BDNF{sup +/−} animals implicating critical role of BDNF in the regulation of the GSK3β activity. Concluding, BDNF/TrkB axis strongly regulates the GSK3β activity and BDNF also exhibits GSK3β regulatory effect independent of its actions through the TrkB receptor signalling.« less
Christian, Lisa M; Mitchell, Amanda M; Gillespie, Shannon L; Palettas, Marilly
2016-12-01
Brain-derived neurotrophic factor (BDNF) is implicated as a causal factor in major depression and is critical to placental development during pregnancy. Longitudinal data on BDNF across the perinatal period are lacking. These data are of interest given the potential implications for maternal mood and fetal growth, particularly among Black women who show ∼2-fold greater risk for delivering low birth weight infants. Serum BDNF, serum cortisol, and depressive symptoms (per CES-D) were assessed during each trimester and 4-11 weeks postpartum among 139 women (77 Black, 62 White). Low birth weight (<2500g) was determined via medical record. Serum BDNF declined considerably from 1st through 3rd trimesters (ps≤0.008) and subsequently increased at postpartum (p<0.001). Black women exhibited significantly higher serum BDNF during the 1st trimester, 2nd trimester, and postpartum (ps≤0.032) as well as lower serum cortisol during the 2nd and 3rd trimester (ps≤0.01). Higher serum cortisol was concurrently associated with lower serum BDNF in the 2nd trimester only (p<0.05). Controlling for race, serum BDNF at both the 2nd and 3rd trimester was negatively associated with 3rd trimester depressive symptoms (ps≤0.02). In addition, women delivering low versus healthy weight infants showed significantly lower serum BDNF in the 3rd trimester (p=0.004). Women delivering low versus healthy weight infants did not differ in depressive symptoms at any time point during pregnancy (ps≥0.34). Serum BDNF declines considerably across pregnancy in Black and White women, with overall higher levels in Blacks. Lower serum BDNF in late pregnancy corresponds with higher depressive symptoms and risk for low birth weight in Black and White women. However, the predictive value of serum BDNF in pregnancy is specific to within-race comparisons. Potential links between racial differences in serum BDNF and differential pregnancy-related cortisol adaptation require further investigation. Copyright © 2016 Elsevier Ltd. All rights reserved.
Taniguchi, Nobuaki; Takada, Naoki; Kimura, Fumitaka; Tsumoto, Tadaharu
2000-01-01
To address the question of whether brain-derived neurotrophic factor (BDNF) directly enhances excitatory synaptic transmission, we recorded excitatory postsynaptic currents (EPSCs) from solitary neurones cultured on glial microislands for 7–38 days, and observed changes in EPSCs after the application of BDNF. In this preparation the possible action of BDNF on GABAergic inhibition was not involved, and evoked and spontaneous (miniature) EPSCs were derived from the same group of synapses (autapses). The application of BDNF at a concentration of 200 ng ml−1 rapidly enhanced the frequency of miniature EPSCs (mEPSCs) in almost all the neurones tested. On the other hand, the amplitude of mEPSCs did not change at all, suggesting that the site of BDNF action is presynaptic. In contrast to the enhanced frequency of mEPSCs, evoked EPSCs were not potentiated in 61 % of the cells tested. Most of these BDNF-insensitive EPSCs had a peak amplitude larger than 1 nA, while most of the other BDNF-sensitive EPSCs had a smaller amplitude. The former EPSCs had smaller coefficients of variation (CVs) of amplitude, while the latter had larger CVs, suggesting the possibility that the presynaptic release probability for the former groups of EPSCs might have beeen saturated so that the BDNF action was occluded. To test this possibility we applied a low Ca2+ solution to 17 cells and reduced the amplitude of their evoked EPSCs to less than or near to 1 nA. It was found, however, that BDNF did not enhance these EPSCs. Rather, evoked EPSCs of almost all the cells cultured for less than 15 days were enhanced by BDNF, while those of most of the cells cultured for longer than 16 days were not enhanced. These results suggest that BDNF enhances transmitter release from presynaptic sites through its action on the release machinery, which can be differentiated into a BDNF-insensitive form for evoked release and a BDNF-sensitive form for spontaneous release with maturation of synapses. PMID:10990542
Relationships between serum BDNF and the antidepressant effect of acute exercise in depressed women.
Meyer, Jacob D; Koltyn, Kelli F; Stegner, Aaron J; Kim, Jee-Seon; Cook, Dane B
2016-12-01
Brain-derived neurotrophic factor (BDNF) has recently emerged as one potential mechanism with which exercise improves mood in major depressive disorder (MDD). This study examined the relationship between changes in serum total BDNF and mood following acute exercise in MDD. It was hypothesized that acute exercise would increase BDNF in an intensity-dependent manner and that changes in BDNF would be significantly related to improvement in depressed mood post-exercise. Twenty-four women (age: 38.6±14.0years) with MDD exercised for 30min on a stationary bicycle at light, moderate and hard exercise intensities and performed a quiet rest session using a within-subjects, randomized and counter-balanced design. Before, 10 and 30min after each session, participants completed the profile of mood states (POMS). Blood was drawn before and within 10min after completion of each session and serum total BDNF (sBDNF) was measured by enzyme-linked immunosorbent assay. Acute exercise-induced changes in POMS Depression and sBDNF were analyzed via 4 session (quiet rest, light, moderate, hard) by 2 measurement (pre, post) ANOVA. Secondary analyses examined the effects of baseline mood and antidepressant usage on sBDNF. Exercise resulted in an acute improvement in depressed mood that was not intensity dependent (p>0.05), resulting in significant acute increases in sBDNF (p=0.006) that were also not intensity-dependent (p>0.05). Acute changes in sBDNF were not significantly correlated to changes in POMS depression at 10m (r=-0.171, p=0.161) or 30m (r=-0.151, p=0.215) post-exercise. The fourteen participants taking antidepressant medications exhibited lower post-exercise sBDNF (p=0.015) than the participants not currently taking antidepressants, although mood responses were similar. Acute exercise is an effective mood-enhancing stimulus, although sBDNF does not appear to play a role in this short-term response. Patients who are not currently taking antidepressant medications and those who have greater pre-exercise depression may experience a greater sBDNF response to exercise, but the clinical significance of this is currently unclear. Circulating BDNF levels are unlikely to be altered by steady-state acute exercise in a linear dose-dependent manner. This does not eliminate its potential relevance in the antidepressant response to chronic exercise training, but suggests that other mechanisms are involved in the acute affective response to exercise in depression. Copyright © 2016 Elsevier Ltd. All rights reserved.
Zinc Interactions With Brain-Derived Neurotrophic Factor and Related Peptide Fragments.
Travaglia, A; La Mendola, D
2017-01-01
Brain-derived neurotrophic factor (BDNF) is a neurotrophin essential for neuronal development and survival, synaptic plasticity, and cognitive function. Dysregulation of BDNF signaling is involved in several neurodegenerative disorders, including Alzheimer's disease. Alteration of metal ion homeostasis is observed both in normal aging and in many neurodegenerative diseases. Interestingly, there is a significant overlap between brain areas characterized by metal ion dyshomeostasis and those where BDNF exerts its biological activity. Therefore, it is reasonable to speculate that metal ions, especially zinc, can modulate the activity of BDNF. The synthesis of BDNF peptidomimetic can be helpful both to understand the molecular interaction of BDNF with metal ions and to develop new drugs for neurodegenerative diseases. © 2017 Elsevier Inc. All rights reserved.
Brain-derived neurotrophic factor and Alzheimer's disease: physiopathology and beyond.
Diniz, Breno Satler; Teixeira, Antonio Lucio
2011-12-01
Brain-derived neurotrophic factor (BDNF) is the most widely distributed neurotrophin in the central nervous system where it plays several pivotal roles in synaptic plasticity and neuronal survival. As a consequence, BDNF became a key target in the physiopathology of several neurological and psychiatric diseases. Recent studies have reported altered levels of BDNF in the circulation, i.e. serum or plasma, of patients with Alzheimer's disease (AD), and low BDNF levels in the CSF as predictor of future cognitive decline in healthy older subjects. Altered BDNF circulating levels have also been reported in other neurodegenerative and psychiatric disorders, hampering its use as a specific biomarker for AD. Therefore, BDNF seems to be an unspecific biomarker of neuropsychiatric disorders marked by neurodegenerative changes.
Gassen, Nils C; Fries, Gabriel R; Zannas, Anthony S; Hartmann, Jakob; Zschocke, Jürgen; Hafner, Kathrin; Carrillo-Roa, Tania; Steinbacher, Jessica; Preißinger, S Nicole; Hoeijmakers, Lianne; Knop, Matthias; Weber, Frank; Kloiber, Stefan; Lucae, Susanne; Chrousos, George P; Carell, Thomas; Ising, Marcus; Binder, Elisabeth B; Schmidt, Mathias V; Rüegg, Joëlle; Rein, Theo
2015-11-24
Epigenetic processes, such as DNA methylation, and molecular chaperones, including FK506-binding protein 51 (FKBP51), are independently implicated in stress-related mental disorders and antidepressant drug action. FKBP51 associates with cyclin-dependent kinase 5 (CDK5), which is one of several kinases that phosphorylates and activates DNA methyltransferase 1 (DNMT1). We searched for a functional link between FKBP51 (encoded by FKBP5) and DNMT1 in cells from mice and humans, including those from depressed patients, and found that FKBP51 competed with its close homolog FKBP52 for association with CDK5. In human embryonic kidney (HEK) 293 cells, expression of FKBP51 displaced FKBP52 from CDK5, decreased the interaction of CDK5 with DNMT1, reduced the phosphorylation and enzymatic activity of DNMT1, and diminished global DNA methylation. In mouse embryonic fibroblasts and primary mouse astrocytes, FKBP51 mediated several effects of paroxetine, namely, decreased the protein-protein interactions of DNMT1 with CDK5 and FKBP52, reduced phosphorylation of DNMT1, and decreased the methylation and increased the expression of the gene encoding brain-derived neurotrophic factor (Bdnf). In human peripheral blood cells, FKBP5 expression inversely correlated with both global and BDNF methylation. Peripheral blood cells isolated from depressed patients that were then treated ex vivo with paroxetine revealed that the abundance of BDNF positively correlated and phosphorylated DNMT1 inversely correlated with that of FKBP51 in cells and with clinical treatment success in patients, supporting the relevance of this FKBP51-directed pathway that prevents epigenetic suppression of gene expression. Copyright © 2015, American Association for the Advancement of Science.
Li, Shi-Ting; Pan, Jing; Hua, Xu-Ming; Liu, Hong; Shen, Sa; Liu, Jia-Fu; Li, Bin; Tao, Bang-Bao; Ge, Xiao-Li; Wang, Xu-Hui; Shi, Juan-Hong; Wang, Xiao-Qiang
2014-02-01
Several lines of evidence demonstrated that endothelial nitric oxide synthase (eNOS) confers protective effects during cerebral ischemia. In this study, we explored the underlying cellular and molecular mechanisms of neuroprotection by eNOS. A series of in vivo and in vitro ischemic models were employed to study the role of eNOS in maintaining neuronal survival and to identify the downstream factors. The current data showed that pretreatment with a specific eNOS inhibitor, L-N5-(1-iminoethyl) ornithine (L-NIO), aggravated the neuronal loss in the rat cerebral ischemic model, accompanied by reduction in brain-derived neurotrophic factor (BDNF) level, which was consistent with the findings in an oxygen-glucose deprivation model (OGD) with two neuronal cells: primary rat cortical neurons and human neuroblastoma SH-SY5Y cells. Furthermore, the extensive neuronal loss induced by L-NIO was totally abolished by exogenous BDNF in both in vitro and in vivo models. On the other hand, eNOS overexpression through an adenoviral vector exerted a prominent protective effect on the neuronal cells subject to OGD, and the protective effect was totally abrogated by a neutralizing anti-BDNF antibody. Collectively, our results indicate that the neuroprotection of neuron-derived eNOS against the cerebral ischemia was mediated through the regulation of BDNF secretion. In conclusion, our discovery provides a novel explanation for the neuroprotective effect of eNOS under pathological ischemic conditions such as stroke. © 2014 John Wiley & Sons Ltd.
[The para-clinic investigation of temporo-mandibular joint changes in patients with acromegaly].
Morăraşu, C; Burlui, V; Olaru, C; Boza, C; Bortă, C; Morăraşu, G; Brînză, M
2001-01-01
The Acromegaly is an endocrinological disease determined by the hypersecretion of STH in a certain period of the body evolution and it causes the hypertrophy of bones in general and of mandible and cranio-facial bones, determining a disorder due to this development of bones, associated with troubles in the activity of muscles and of the phospho-calcium metabolism. This study was made on a group of 33 acromegaly patients. Their temporo-mandibular joint was investigated by ortopantomography, tomography, computer tomography and scintigraphy. All of these exams shows the changes in temporo-mandibular joint due to the cells hyperactivity determined by the hypersecretion of STH.
Anttila, L; Koskinen, P; Jaatinen, T A; Erkkola, R; Irjala, K; Ruutiainen, K
1993-08-01
Female hyperandrogenism is often associated with hyperinsulinaemia and insulin resistance. We evaluated the hormone responses in an oral glucose tolerance test to investigate the interactions of gonadotrophins, insulin, C-peptide and androgens in women with polycystic ovarian disease (PCOD). In 28 patients with ultrasonographically diagnosed PCOD, hyperinsulinaemia and insulin resistance were mainly associated with obesity. Both basal and cumulative sum of insulin to C-peptide ratios were high in obese subjects, suggesting decreasing hepatic removal of insulin caused by obesity. Nevertheless, in some lean PCOD women, despite normal fasting insulin concentrations, insulin hypersecretion existed. The mean concentration of testosterone decreased significantly during the oral glucose tolerance test both in PCOD and control women, and of androstenedione in the PCOD patients only. However, an increase in androgen responses was found in a subgroup of PCOD patients, who had both elevated luteinizing hormone (LH) concentrations and hyperinsulinaemic response to oral glucose. In the remaining PCOD patients an inverse correlation between LH and insulin was found. The patients with hyperinsulinaemia together with LH hypersecretion may represent a subgroup of PCOD with deranged regulation of androgen secretion.
Locally Produced BDNF Promotes Sclerotic Change in Alveolar Bone after Nerve Injury
Ida-Yonemochi, Hiroko; Yamada, Yurie; Yoshikawa, Hiroyuki
2017-01-01
Brain-derived neurotrophic factor (BDNF), which is released due to nerve injury, is known to promote the natural healing of injured nerves. It is often observed that damage of mandibular canal induces local sclerotic changes in alveolar bone. We reported that peripheral nerve injury promotes the local production of BDNF; therefore, it was possible to hypothesize that peripheral nerve injury affects sclerotic changes in the alveolar bone. This study aimed to evaluate the effect of BDNF on osteogenesis using in vitro osteoblast-lineage cell culture and an in vivo rat osteotomy model. MC3T3-E1 cells were cultured with BDNF and were examined for cell proliferative activity, chemotaxis and mRNA expression levels of osteoblast differentiation markers. For in vivo study, inferior alveolar nerve (IAN) injury experiments and mandibular cortical osteotomy were performed using a rat model. In the osteotomy model, exogenous BDNF was applied to bone surfaces after corticotomy of the mandible, and we morphologically analyzed the new bone formation. As a result, mRNA expression of osteoblast differentiation marker, osteocalcin, was significantly increased by BDNF, although cell proliferation and migration were not affected. In the in vivo study, osteopontin-positive new bone formation was significantly accelerated in the BDNF-grafted groups, and active bone remodeling, involving trkB-positive osteoblasts and osteocytes, continued after 28 days. In conclusion, BDNF stimulated the differentiation of MC3T3-E1 cells and it promoted new bone formation and maturation. These results suggested that local BDNF produced by peripheral nerve injury contributes to accelerating sclerotic changes in the alveolar bone. PMID:28072837
Generaal, Ellen; Milaneschi, Yuri; Jansen, Rick; Elzinga, Bernet M; Dekker, Joost; Penninx, Brenda W J H
2016-01-01
Brain-derived neurotrophic factor (BDNF) disturbances and life stress, both independently and in interaction, have been hypothesized to induce chronic pain. We examined whether (a) the BDNF pathway (val(66)met genotype, gene expression, and serum levels), (b) early and recent life stress, and (c) their interaction are associated with the presence and severity of chronic multi-site musculoskeletal pain. Cross-sectional data are from 1646 subjects of the Netherlands Study of Depression and Anxiety. The presence and severity of chronic multi-site musculoskeletal pain were determined using the Chronic Pain Grade (CPG) questionnaire. The BDNF val(66)met polymorphism, BDNF gene expression, and BDNF serum levels were measured. Early life stress before the age of 16 was assessed by calculating a childhood trauma index using the Childhood Trauma Interview. Recent life stress was assessed as the number of recent adverse life events using the List of Threatening Events Questionnaire. Compared to val(66)val, BDNF met carriers more often had chronic pain, whereas no differences were found for BDNF gene expression and serum levels. Higher levels of early and recent stress were both associated with the presence and severity of chronic pain (p < 0.001). No interaction effect was found for the BDNF pathway with life stress in the associations with chronic pain presence and severity. This study suggests that the BDNF gene marks vulnerability for chronic pain. Although life stress did not alter the impact of BDNF on chronic pain, it seems an independent factor in the onset and persistence of chronic pain. © The Author(s) 2016.
Glucocorticoid receptor represses brain-derived neurotrophic factor expression in neuron-like cells.
Chen, Hui; Lombès, Marc; Le Menuet, Damien
2017-04-12
Brain-derived neurotrophic factor (BDNF) is involved in many functions such as neuronal growth, survival, synaptic plasticity and memorization. Altered expression levels are associated with many pathological situations such as depression, epilepsy, Alzheimer's, Huntington's and Parkinson's diseases. Glucocorticoid receptor (GR) is also crucial for neuron functions, via binding of glucocorticoid hormones (GCs). GR actions largely overlap those of BDNF. It has been proposed that GR could be a regulator of BDNF expression, however the molecular mechanisms involved have not been clearly defined yet. Herein, we analyzed the effect of a GC agonist dexamethasone (DEX) on BDNF expression in mouse neuronal primary cultures and in the newly characterized, mouse hippocampal BZ cell line established by targeted oncogenesis. Mouse Bdnf gene exhibits a complex genomic structure with 8 untranslated exons (I to VIII) splicing onto one common and unique coding exon IX. We found that DEX significantly downregulated total BDNF mRNA expression by around 30%. Expression of the highly expressed exon IV and VI containing transcripts was also reduced by DEX. The GR antagonist RU486 abolished this effect, which is consistent with specific GR-mediated action. Transient transfection assays allowed us to define a short 275 bp region within exon IV promoter responsible for GR-mediated Bdnf repression. Chromatin immunoprecipitation experiments demonstrated GR recruitment onto this fragment, through unidentified transcription factor tethering. Altogether, GR downregulates Bdnf expression through direct binding to Bdnf regulatory sequences. These findings bring new insights into the crosstalk between GR and BDNF signaling pathways both playing a major role in physiology and pathology of the central nervous system.
Hisaoka-Nakashima, Kazue; Kajitani, Naoto; Kaneko, Masahiro; Shigetou, Takahiro; Kasai, Miho; Matsumoto, Chie; Yokoe, Toshiki; Azuma, Honami; Takebayashi, Minoru; Morioka, Norimitsu; Nakata, Yoshihiro
2016-03-01
A significant role of brain-derived neurotrophic factor (BDNF) has been previously implicated in the therapeutic effect of antidepressants. To ascertain the contribution of specific cell types in the brain that produce BDNF following antidepressant treatment, the effects of the tricyclic antidepressant amitriptyline on rat primary neuronal, astrocytic and microglial cortical cultures were examined. Amitriptyline increased the expression of BDNF mRNA in astrocytic and microglial cultures but not neuronal cultures. Antidepressants with distinct mechanisms of action, such as clomipramine, duloxetine and fluvoxamine, also increased BDNF mRNA expression in astrocytic and microglial cultures. There are multiple BDNF mRNA variants (exon I, IIA, IV and VI) expressed in astrocytes and microglia and the variant induced by antidepressants has yet to be elaborated. Treatment with antidepressants increased the expression of exon I, IV and VI in astrocyte and microglia. Clomipramine alone significantly upregulated expression of exon IIA. The amitriptyline-induced expression of both total and individual BDNF mRNA variants (exon I, IV and VI) were blocked by MEK inhibitor U0126, indicating MEK/ERK signaling is required in the expression of BDNF. These findings indicate that non-neural cells are a significant target of antidepressants and further support the contention that glial production of BDNF is crucial role in the therapeutic effect of antidepressants. The current data suggest that targeting of glial function could lead to the development of antidepressants with a truly novel mechanism of action. Copyright © 2016 Elsevier B.V. All rights reserved.
Association between BDNF levels and suicidal behaviour: a systematic review and meta-analysis.
Eisen, Rebecca B; Perera, Stefan; Banfield, Laura; Anglin, Rebecca; Minuzzi, Luciano; Samaan, Zainab
2015-12-30
Suicidal behaviour is a complex phenomenon with a multitude of risk factors. Brain-derived neurotrophic factor (BDNF), a protein crucial to nervous system function, may be involved in suicide risk. The objective of this systematic review is to evaluate and summarize the literature examining the relationship between BDNF levels and suicidal behaviour. A predefined search strategy was used to search MEDLINE, EMBASE, PsychINFO, and CINAHL from inception to December 2015. Studies were included if they investigated the association between BDNF levels and suicidal behaviours (including completed suicide, attempted suicide, or suicidal ideation) by comparing BDNF levels in groups with and without suicidal behaviour. Only the following observational studies were included: case-control and cohort studies. Both clinical- and community-based samples were included. Screening, data extraction, and risk of bias assessment were conducted in duplicate. Six-hundred thirty-one articles were screened, and 14 were included in the review. Three studies that assessed serum BDNF levels in individuals with suicide attempts and controls were combined in a meta-analysis that showed no significant association between serum BDNF and suicide attempts. The remaining 11 studies were not eligible for the meta-analysis and provided inconsistent findings regarding associations between BDNF and suicidal behaviour. The findings of the meta-analysis indicate that there is no significant association between serum BDNF and attempted suicide. The qualitative review of the literature did not provide consistent support for an association between BDNF levels and suicidal behaviour. The evidence has significant methodological limitations. PROSPERO CRD42015015871.
The influence of aging on the methylation status of brain-derived neurotrophic factor gene in blood.
Ihara, Kazushige; Fuchikami, Manabu; Hashizume, Masahiro; Okada, Satoshi; Kawai, Hisashi; Obuchi, Shuichi; Hirano, Hirohiko; Fujiwara, Yoshinori; Hachisu, Mitsugu; Hongyong, Kim; Morinobu, Shigeru
2018-06-28
Brain-derived neurotrophic factor (BDNF) is involved in the pathophysiology of psychiatric disorders in adults and elderly individuals, and as a result, the DNA methylation (DNAm) of the BDNF gene in peripheral tissues including blood has been extensively examined to develop a useful biomarker for psychiatric disorders. However, studies to date have not previously investigated the effect of age on DNAm of the BDNF gene in blood. In this context, we measured DNAm of 39 CpG units in the CpG island at the promoter of exon I of the BDNF gene. We analyzed genomic DNA from peripheral blood of 105 health Japanese women 20 to 80 years of age to identify aging-associated change in DNAm of the BDNF gene. In addition, we examined the relationship between total MMSE scores, numbers of stressful life events, and serum BDNF levels on DNAm of the BDNF gene. The DNAm rate at each CpG unit was measured using a MassArray ® system (Agena Bioscience), and serum BDNF levels were measured by ELISA. There was a significant correlation between DNAm and age in 13 CpGs. However, there was no significant correlation between DNAm and total MMSE scores, numbers of life events, or serum BDNF levels. Despite the small number of subjects and the inclusion of only female subjects, our results suggest that DNAm of 13 CpGs of the BDNF gene may be an appropriate biomarker for aging and useful for predicting increased susceptibility to age-related psychiatric disorders. © 2018 John Wiley & Sons, Ltd.
Brain-derived neurotrophic factor, impaired glucose metabolism, and bipolar disorder course.
Mansur, Rodrigo B; Santos, Camila M; Rizzo, Lucas B; Asevedo, Elson; Cunha, Graccielle R; Noto, Mariane N; Pedrini, Mariana; Zeni-Graiff, Maiara; Cordeiro, Quirino; Vinberg, Maj; Kapczinski, Flavio; McIntyre, Roger S; Brietzke, Elisa
2016-06-01
The neurotrophin brain-derived neurotrophic factor (BDNF) has been proposed as a potential biomarker in bipolar disorder (BD). However, current evidence is limited and results have been highly heterogeneous. This study aimed to assess the moderating effect of impaired glucose metabolism (IGM) on plasma levels of BDNF in individuals with BD, and on the relationship between BDNF and variables of illness course. We measured and compared the plasma levels of BDNF in individuals with BD (n=57) and healthy controls (n=26). IGM was operationalized as pre-diabetes or type 2 diabetes mellitus. Information related to current and past psychiatric/medical history, as well as prescription of pharmacological treatments was also captured. Individuals with BD had lower levels of BDNF, relative to healthy controls, after adjustment for age, gender, current medications, smoking, alcohol use, and IGM (P=.046). There was no effect of IGM (P=.860) and no interaction between BD diagnosis and IGM (P=.893). Peripheral BDNF levels were positively correlated with lifetime depressive episodes (P<.001), psychiatric hospitalizations (P=.001) and suicide attempts (P=.021). IGM moderated the association between BDNF and the number of previous mood episodes (P<.001), wherein there was a positive correlation in euglycemic participants and a negative correlation in individuals with IGM. BD is independently associated with lower levels of BDNF; IGM may modify the relationship between BDNF and BD course, suggesting an interactive effect of BDNF with metabolic status on illness progression. © 2016 John Wiley & Sons A/S Published by John Wiley & Sons Ltd.
Coelho, F M; Pereira, D S; Lustosa, L P; Silva, J P; Dias, J M D; Dias, R C D; Queiroz, B Z; Teixeira, A L; Teixeira, M M; Pereira, L S M
2012-01-01
Biomarkers are important factors in the identification of the frail elderly (higher risk of developing disease) and in assessing the impact of PTI. On the other hand, BDNF has been related to neuroprotection in a series of central nervous system diseases in older age. The levels of BDNF in groups of elderly women classified according to Fried phenotype (non-frail and pre-frail) were compared. We assessed the impact of a PTI on BDNF levels. A convenience sample of 48 elderly women was randomly selected. The PTI group was composed by 20 elderly women selected from this group. Plasma neurotrophic factors, such as BDNF, glial-derived neutrophic factor (GDNF), and nerve growth factor (NGF) were measured by enzyme-linked immunosorbent assay (ELISA). Timed-up-and-go (TUG) test, hand-grip and work/body weight were evaluated before and after the intervention. Plasma concentrations of BDNF were significantly higher in non-frail in comparison to pre-frail elderly women. After the PTI, higher levels of BDNF were found in elderly women (before 351±68 pg/ml and after 593±79 pg/ml; p<0.001). Both groups had an increase in BDNF levels after the PTI. The low levels of BDNF in pre-frail elderly women suggest that this neurotrophic factor may be a key pathophysiological mediator in the syndrome of frailty. The fact that PTI increased BDNF levels in both groups suggests that it may be possible to modify this phenotype. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
BDNF is required for taste axon regeneration following unilateral chorda tympani nerve section.
Meng, Lingbin; Huang, Tao; Sun, Chengsan; Hill, David L; Krimm, Robin
2017-07-01
Taste nerves readily regenerate to reinnervate denervated taste buds; however, factors required for regeneration have not yet been identified. When the chorda tympani nerve is sectioned, expression of brain-derived neurotrophic factor (BDNF) remains high in the geniculate ganglion and lingual epithelium, despite the loss of taste buds. These observations suggest that BDNF is present in the taste system after nerve section and may support taste nerve regeneration. To test this hypothesis, we inducibly deleted Bdnf during adulthood in mice. Shortly after Bdnf gene recombination, the chorda tympani nerve was unilaterally sectioned causing a loss of both taste buds and neurons, irrespective of BDNF levels. Eight weeks after nerve section, however, regeneration was differentially affected by Bdnf deletion. In control mice, there was regeneration of the chorda tympani nerve and taste buds reappeared with innervation. In contrast, few taste buds were reinnervated in mice lacking normal Bdnf expression such that taste bud number remained low. In all genotypes, taste buds that were reinnervated were normal-sized, but non-innervated taste buds remained small and atrophic. On the side of the tongue contralateral to the nerve section, taste buds for some genotypes became larger and all taste buds remained innervated. Our findings suggest that BDNF is required for nerve regeneration following gustatory nerve section. Copyright © 2017 Elsevier Inc. All rights reserved.
BDNF mediates improvements in executive function following a 1-year exercise intervention
Leckie, Regina L.; Oberlin, Lauren E.; Voss, Michelle W.; Prakash, Ruchika S.; Szabo-Reed, Amanda; Chaddock-Heyman, Laura; Phillips, Siobhan M.; Gothe, Neha P.; Mailey, Emily; Vieira-Potter, Victoria J.; Martin, Stephen A.; Pence, Brandt D.; Lin, Mingkuan; Parasuraman, Raja; Greenwood, Pamela M.; Fryxell, Karl J.; Woods, Jeffrey A.; McAuley, Edward; Kramer, Arthur F.; Erickson, Kirk I.
2014-01-01
Executive function declines with age, but engaging in aerobic exercise may attenuate decline. One mechanism by which aerobic exercise may preserve executive function is through the up-regulation of brain-derived neurotropic factor (BDNF), which also declines with age. The present study examined BDNF as a mediator of the effects of a 1-year walking intervention on executive function in 90 older adults (mean age = 66.82). Participants were randomized to a stretching and toning control group or a moderate intensity walking intervention group. BDNF serum levels and performance on a task-switching paradigm were collected at baseline and follow-up. We found that age moderated the effect of intervention group on changes in BDNF levels, with those in the highest age quartile showing the greatest increase in BDNF after 1-year of moderate intensity walking exercise (p = 0.036). The mediation analyses revealed that BDNF mediated the effect of the intervention on task-switch accuracy, but did so as a function of age, such that exercise-induced changes in BDNF mediated the effect of exercise on task-switch performance only for individuals over the age of 71. These results demonstrate that both age and BDNF serum levels are important factors to consider when investigating the mechanisms by which exercise interventions influence cognitive outcomes, particularly in elderly populations. PMID:25566019
Multiple faces of BDNF in cocaine addiction
Li, Xuan; Wolf, Marina E.
2014-01-01
Brain-derived neurotrophic factor (BDNF) has been found to play roles in many types of plasticity including drug addiction. Here we focus on rodent studies over the past two decades that have demonstrated diverse roles of BDNF in models of cocaine addiction. First, we will provide an overview of studies showing that cocaine exposure alters (and generally increases) BDNF levels in reward-related regions including the ventral tegmental area, nucleus accumbens, prefrontal cortex, and amygdala. Then we will review evidence that BDNF contributes to behavioral changes in animal models of cocaine addiction, focusing on conditioned place preference, behavioral sensitization, maintenance and reinstatement of self-administration, and incubation of cocaine craving. Last, we will review the role of BDNF in synaptic plasticity, particularly as it relates to plasticity of AMPA receptor transmission after cocaine exposure. We conclude that BDNF regulates cocaine-induced behaviors in a highly complex manner that varies depending on the brain region (and even among different cell types within the same brain region), the nature of cocaine exposure, and the “addiction phase” examined (e.g., acquisition vs maintenance; early vs late withdrawal). These complexities make BDNF a daunting therapeutic target for treating cocaine addiction. However, recent clinical evidence suggests that the serum BDNF level may serve as a biomarker in cocaine addicts to predict future relapse, providing an alternative direction for exploring BDNF’s potential relevance to treating cocaine addiction. PMID:25449839
The function of BDNF in the adult auditory system.
Singer, Wibke; Panford-Walsh, Rama; Knipper, Marlies
2014-01-01
The inner ear of vertebrates is specialized to perceive sound, gravity and movements. Each of the specialized sensory organs within the cochlea (sound) and vestibular system (gravity, head movements) transmits information to specific areas of the brain. During development, brain-derived neurotrophic factor (BDNF) orchestrates the survival and outgrowth of afferent fibers connecting the vestibular organ and those regions in the cochlea that map information for low frequency sound to central auditory nuclei and higher-auditory centers. The role of BDNF in the mature inner ear is less understood. This is mainly due to the fact that constitutive BDNF mutant mice are postnatally lethal. Only in the last few years has the improved technology of performing conditional cell specific deletion of BDNF in vivo allowed the study of the function of BDNF in the mature developed organ. This review provides an overview of the current knowledge of the expression pattern and function of BDNF in the peripheral and central auditory system from just prior to the first auditory experience onwards. A special focus will be put on the differential mechanisms in which BDNF drives refinement of auditory circuitries during the onset of sensory experience and in the adult brain. This article is part of the Special Issue entitled 'BDNF Regulation of Synaptic Structure, Function, and Plasticity'. Copyright © 2013 Elsevier Ltd. All rights reserved.
Association of testosterone and BDNF serum levels with craving during alcohol withdrawal.
Heberlein, Annemarie; Lenz, Bernd; Opfermann, Birgitt; Gröschl, Michael; Janke, Eva; Stange, Katrin; Groh, Adrian; Kornhuber, Johannes; Frieling, Helge; Bleich, Stefan; Hillemacher, Thomas
2016-08-01
Preclinical and clinical studies show associations between testosterone and brain-derived neurotrophic growth factor (BDNF) serum levels. BDNF and testosterone have been independently reported to influence alcohol consumption. Therefore, we aimed to investigate a possible interplay of testosterone and BDNF contributing to alcohol dependence. Regarding possible interplay of testosterone and BDNF and the activity of the hypothalamic pituitary axis (HPA), we included cortisol serum levels in our research. We investigated testosterone and BDNF serum levels in a sample of 99 male alcohol-dependent patients during alcohol withdrawal (day 1, 7, and 14) and compared them to a healthy male control group (n = 17). The testosterone serum levels were significantly (p < 0.001) higher in the patients' group than in the control group and decreased significantly during alcohol withdrawal (p < 0.001). The decrease of testosterone serum levels during alcohol withdrawal (days 1-7) was significantly associated with the BDNF serum levels (day 1: p = 0.008). In a subgroup of patients showing high cortisol serum levels (putatively mirroring high HPA activity), we found a significant association of BDNF and testosterone as well as with alcohol craving measured by the Obsessive and Compulsive Drinking Scale (OCDS). Our data suggest a possible association of BDNF and testosterone serum levels, which may be relevant for the symptomatology of alcohol dependence. Further studies are needed to clarify our results. Copyright © 2016 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Olsen, Ditte; Kaas, Mathias; Schwartz, Ole; Nykjaer, Anders; Glerup, Simon
2013-01-01
BDNF-induced signaling is essential for the development of the central nervous system and critical for plasticity in adults. Mature BDNF signals through TrkB, while its precursor proBDNF employs p75[superscript NTR], resulting in activation of signaling cascades with opposite effects on neuronal survival, growth cone decisions, and synaptic…
Beste, Christian; Schneider, Daniel; Epplen, Jörg T; Arning, Larissa
2011-01-01
The brain-derived neurotrophic factor (BDNF), a member of the neurotrophin family, is involved in nerve growth and survival. Especially, a single nucleotide polymorphism (SNP) in the BDNF gene, Val66Met, has gained a lot of attention, because of its effect on activity-dependent BDNF secretion and its link to impaired memory processes. We hypothesize that the BDNF Val66Met polymorphism may have modulatory effects on the visual sensory (iconic) memory performance. Two hundred and eleven healthy German students (106 female and 105 male) were included in the data analysis. Since BDNF is also discussed to be involved in the pathogenesis of depression, we additionally tested for possible interactions with depressive mood. The BDNF Val66Met polymorphism significantly influenced iconic-memory performance, with the combined Val/Met-Met/Met genotype group revealing less time stability of information stored in iconic memory than the Val/Val group. Furthermore, this stability was positively correlated with depressive mood exclusively in the Val/Val genotype group. Thus, these results show that the BDNF Val66Met polymorphism has an effect on pre-attentive visual sensory memory processes. Copyright © 2010 Elsevier Ltd. All rights reserved.
Enhancement of synaptic transmission induced by BDNF in cultured cortical neurons
NASA Astrophysics Data System (ADS)
He, Jun; Gong, Hui; Zeng, Shaoqun; Li, Yanling; Luo, Qingming
2005-03-01
Brain-derived neurotrophic factor (BDNF), like other neurotrophins, has long-term effects on neuronal survival and differentiation; furthermore, BDNF has been reported to exert an acute potentiation of synaptic activity and are critically involved in long-term potentiation (LTP). We found that BDNF rapidly induced potentiation of synaptic activity and an increase in the intracellular Ca2+ concentration in cultured cortical neurons. Within minutes of BDNF application to cultured cortical neurons, spontaneous firing rate was dramatically increased as were the frequency and amplitude of excitatory spontaneous postsynaptic currents (EPSCs). Fura-2 recordings showed that BDNF acutely elicited an increase in intracellular calcium concentration ([Ca2+]c). This effect was partially dependent on [Ca2+]o; The BDNF-induced increase in [Ca2+]c can not be completely blocked by Ca2+-free solution. It was completely blocked by K252a and partially blocked by Cd2+ and TTX. The results demonstrate that BDNF can enhances synaptic transmission and that this effect is accompanied by a rise in [Ca2+]c that requires two route: the release of Ca2+ from intracellular calcium stores and influx of extracellular Ca2+ through voltage-dependent Ca2+ channels in cultured cortical neurons.
Brain-derived neurotrophic factor mediates cognitive improvements following acute exercise.
Borror, Andrew
2017-09-01
The mechanisms causing improved cognition following acute exercise are poorly understood. This article proposes that brain-derived neurotrophic factor (BDNF) is the main factor contributing to improved cognition following exercise. Additionally, it argues that cerebral blood flow (CBF) and oxidative stress explain the release of BDNF from cerebral endothelial cells. One way to test these hypotheses is to block endothelial function and measure the effect on BDNF levels and cognitive performance. The CBF and oxidative stress can also be examined in relationship to BDNF using a multiple linear regression. If these hypotheses are true, there would be a linear relationship between CBF+oxidative stress and BDNF levels as well as between BDNF levels and cognitive performance. The novelty of these hypotheses comes from the emphasis on the cerebral endothelium and the interplay between BDNF, CBF, and oxidative stress. If found to be valid, these hypotheses would draw attention to the cerebral endothelium and provide direction for future research regarding methods to optimize BDNF release and enhance cognition. Elucidating these mechanisms would provide direction for expediting recovery in clinical populations, such as stroke, and maintaining quality of life in the elderly. Copyright © 2017 Elsevier Ltd. All rights reserved.
Strzelecki, Dominik; Kałużyńska, Olga; Wysokiński, Adam
2016-08-30
Finding a relationship between schizophrenia symptoms severity and initial level of BDNF and its changes during augmentation of antipsychotic treatment with sarcosine. 57 individuals with schizophrenia with predominantly negative symptoms completed a 6-month RCT prospective study. The patients received 2g of sarcosine (n=27) or placebo (n=30) daily. At the beginning, after 6 weeks and 6 months BDNF levels were measured. Severity of symptoms was assessed using the Positive and Negative Syndrome Scale (PANSS) and Calgary Depression Scale for Schizophrenia (CDSS). BDNF serum levels were stable after 6 weeks and 6 months in both groups. We noted improvement in negative symptoms, general psychopathology and total PANSS score in sarcosine group comparing to placebo, however there was no correlations between serum BDNF concentrations and PANSS scores in all assessments. Initial serum BDNF concentrations cannot be used as a predictor of the improvement resulting from adding sarcosine. Our results indicate that either BDNF is not involved in the NMDA-dependent mechanism of sarcosine action or global changes in BDNF concentrations induced by amino-acid cannot be detected in blood assessments. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Lawn, Samuel; Krishna, Niveditha; Pisklakova, Alexandra; Qu, Xiaotao; Fenstermacher, David A; Fournier, Michelle; Vrionis, Frank D; Tran, Nam; Chan, Jennifer A; Kenchappa, Rajappa S; Forsyth, Peter A
2015-02-06
Neurotrophins and their receptors are frequently expressed in malignant gliomas, yet their functions are largely unknown. Previously, we have shown that p75 neurotrophin receptor is required for glioma invasion and proliferation. However, the role of Trk receptors has not been examined. In this study, we investigated the importance of TrkB and TrkC in survival of brain tumor-initiating cells (BTICs). Here, we show that human malignant glioma tissues and also tumor-initiating cells isolated from fresh human malignant gliomas express the neurotrophin receptors TrkB and TrkC, not TrkA, and they also express neurotrophins NGF, BDNF, and neurotrophin 3 (NT3). Specific activation of TrkB and TrkC receptors by ligands BDNF and NT3 enhances tumor-initiating cell viability through activation of ERK and Akt pathways. Conversely, TrkB and TrkC knockdown or pharmacologic inhibition of Trk signaling decreases neurotrophin-dependent ERK activation and BTIC growth. Further, pharmacological inhibition of both ERK and Akt pathways blocked BDNF, and NT3 stimulated BTIC survival. Importantly, attenuation of BTIC growth by EGFR inhibitors could be overcome by activation of neurotrophin signaling, and neurotrophin signaling is sufficient for long term BTIC growth as spheres in the absence of EGF and FGF. Our results highlight a novel role for neurotrophin signaling in brain tumor and suggest that Trks could be a target for combinatorial treatment of malignant glioma. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Lawn, Samuel; Krishna, Niveditha; Pisklakova, Alexandra; Qu, Xiaotao; Fenstermacher, David A.; Fournier, Michelle; Vrionis, Frank D.; Tran, Nam; Chan, Jennifer A.; Kenchappa, Rajappa S.; Forsyth, Peter A.
2015-01-01
Neurotrophins and their receptors are frequently expressed in malignant gliomas, yet their functions are largely unknown. Previously, we have shown that p75 neurotrophin receptor is required for glioma invasion and proliferation. However, the role of Trk receptors has not been examined. In this study, we investigated the importance of TrkB and TrkC in survival of brain tumor-initiating cells (BTICs). Here, we show that human malignant glioma tissues and also tumor-initiating cells isolated from fresh human malignant gliomas express the neurotrophin receptors TrkB and TrkC, not TrkA, and they also express neurotrophins NGF, BDNF, and neurotrophin 3 (NT3). Specific activation of TrkB and TrkC receptors by ligands BDNF and NT3 enhances tumor-initiating cell viability through activation of ERK and Akt pathways. Conversely, TrkB and TrkC knockdown or pharmacologic inhibition of Trk signaling decreases neurotrophin-dependent ERK activation and BTIC growth. Further, pharmacological inhibition of both ERK and Akt pathways blocked BDNF, and NT3 stimulated BTIC survival. Importantly, attenuation of BTIC growth by EGFR inhibitors could be overcome by activation of neurotrophin signaling, and neurotrophin signaling is sufficient for long term BTIC growth as spheres in the absence of EGF and FGF. Our results highlight a novel role for neurotrophin signaling in brain tumor and suggest that Trks could be a target for combinatorial treatment of malignant glioma. PMID:25538243
Ni, Junjun; Meng, Jie; Zhu, Aiqin; Zhong, Xin; Wu, Shizheng; Nakanishi, Hiroshi
2017-01-01
Oxidative stress and synapse dysfunction are the major neurodegenerative damage correlated to cognitive impairment in Alzheimer's disease (AD). We have found that Brazilian green propolis (propolis) improves the cognitive functions of mild cognitive impairment patients living at high altitude; however, mechanism underlying the effects of propolis is unknown. In the present study, we investigated the effects of propolis on oxidative stress, expression of brain-derived neurotrophic factor (BDNF), and activity-regulated cytoskeleton-associated protein (Arc), the critical factors of synapse efficacy, using human neuroblastoma SH-SY5Y cells. Pretreatment with propolis significantly ameliorated the hydrogen peroxide- (H2O2-) induced cytotoxicity in SH-SY5Y cells. Furthermore, propolis significantly reduced the H2O2-generated reactive oxygen species (ROS) derived from mitochondria and 8-oxo-2′-deoxyguanosine (8-oxo-dG, the DNA oxidative damage marker) but significantly reversed the fibrillar β-amyloid and IL-1β-impaired BDNF-induced Arc expression in SH-SY5Y cells. Furthermore, propolis significantly upregulated BDNF mRNA expression in time- and dose-dependent manners. In addition, propolis induced Arc mRNA and protein expression via phosphoinositide-3 kinase (PI3K). These observations strongly suggest that propolis protects from the neurodegenerative damage in neurons through the properties of various antioxidants. The present study provides a potential molecular mechanism of Brazilian green propolis in prevention of cognitive impairment in AD as well as aging. PMID:28265338
Ni, Junjun; Wu, Zhou; Meng, Jie; Zhu, Aiqin; Zhong, Xin; Wu, Shizheng; Nakanishi, Hiroshi
2017-01-01
Oxidative stress and synapse dysfunction are the major neurodegenerative damage correlated to cognitive impairment in Alzheimer's disease (AD). We have found that Brazilian green propolis (propolis) improves the cognitive functions of mild cognitive impairment patients living at high altitude; however, mechanism underlying the effects of propolis is unknown. In the present study, we investigated the effects of propolis on oxidative stress, expression of brain-derived neurotrophic factor (BDNF), and activity-regulated cytoskeleton-associated protein (Arc), the critical factors of synapse efficacy, using human neuroblastoma SH-SY5Y cells. Pretreatment with propolis significantly ameliorated the hydrogen peroxide- (H 2 O 2 -) induced cytotoxicity in SH-SY5Y cells. Furthermore, propolis significantly reduced the H 2 O 2 -generated reactive oxygen species (ROS) derived from mitochondria and 8-oxo-2'-deoxyguanosine (8-oxo-dG, the DNA oxidative damage marker) but significantly reversed the fibrillar β -amyloid and IL-1 β -impaired BDNF-induced Arc expression in SH-SY5Y cells. Furthermore, propolis significantly upregulated BDNF mRNA expression in time- and dose-dependent manners. In addition, propolis induced Arc mRNA and protein expression via phosphoinositide-3 kinase (PI3K). These observations strongly suggest that propolis protects from the neurodegenerative damage in neurons through the properties of various antioxidants. The present study provides a potential molecular mechanism of Brazilian green propolis in prevention of cognitive impairment in AD as well as aging.
Wang, Yongdi; Liao, Jinxu; Tang, Shao-Jun; Shu, Jianhong; Zhang, Wenping
2017-06-01
HIV-1 gp120 plays a critical role in the pathogenesis of HIV-associated pain, but the underlying molecular mechanisms are incompletely understood. This study aims to determine the effect and possible mechanism of HIV-1 gp120 on BDNF expression in BV2 cells (a murine-derived microglial cell line). We observed that gp120 (10 ng/ml) activated BV2 cells in cultures and upregulated proBDNF/mBDNF. Furthermore, gp120-treated BV2 also accumulated Wnt3a and β-catenin, suggesting the activation of the Wnt/β-catenin pathway. We demonstrated that activation of the pathway by Wnt3a upregulated BDNF expression. In contrast, inhibition of the Wnt/β-catenin pathway by either DKK1 or IWR-1 attenuated BDNF upregulation induced by gp120 or Wnt3a. These findings collectively suggest that gp120 stimulates BDNF expression in BV2 cells via the Wnt/β-catenin signaling pathway.
Rakofsky, JJ; Ressler, KJ; Dunlop, BW
2013-01-01
Bipolar disorder (BD) and post-traumatic stress disorder (PTSD) frequently co-occur among psychiatric patients, leading to increased morbidity and mortality. Brain-derived neurotrophic factor (BDNF) function is associated with core characteristics of both BD and PTSD. We propose a neurobiological model that underscores the role of reduced BDNF function resulting from several contributing sources, including the met variant of the BDNF val66met (rs6265) single-nucleotide polymorphism, trauma-induced epigenetic regulation and current stress, as a contributor to the onset of both illnesses within the same person. Further studies are needed to evaluate the genetic association between the val66met allele and the BD-PTSD population, along with central/peripheral BDNF levels and epigenetic patterns of BDNF gene regulation within these patients. PMID:21931317
Subedi, Lochan; Huang, Hong; Pant, Amrita; Westgate, Philip M; Bada, Henrietta S; Bauer, John A; Giannone, Peter J; Sithisarn, Thitinart
2017-01-01
Brain-derived neurotrophic factor (BDNF) is a type of growth factor that promotes growth and survival of neurons. Fetal exposure to opiates can lead to postnatal withdrawal syndrome, which is referred as neonatal abstinence syndrome (NAS). Preclinical and clinical studies have shown an association between opiates exposure and alteration in BDNF expression in the brain and serum levels in adult. However, to date, there are no data available on the effects of opiate exposure on BDNF levels in infant who are exposed to opiates in utero and whether BDNF level may correlate with the severity of NAS. To compare plasma BDNF levels among NAS and non-NAS infants and to determine the correlation of BDNF levels and the severity of NAS. This is a prospective cohort study with no intervention involved. Infants ≥35 weeks of gestation were enrolled. BDNF level was measured using enzyme-linked immunosorbent assay technique from blood samples drawn within 48 h of life. The severity of NAS was determined by the length of hospital stay, number of medications required to treat NAS. 67 infants were enrolled, 34 NAS and 33 non-NAS. Mean gestational age did not differ between the two groups. Mean birth weight of NAS infants was significantly lower than the non-NAS infants (3,070 ± 523 vs. 3,340 ± 459 g, p = 0.028). Mean BDNF level in NAS group was 252.2 ± 91.6 ng/ml, significantly higher than 211.3 ± 66.3 ng/ml in the non-NAS group ( p = 0.04). There were no differences in BDNF levels between NAS infants that required one medication vs. more than one medication (254 ± 91 vs. 218 ± 106 ng/ml, p = 0.47). There was no correlation between the BDNF levels and length of hospital stay ( p = 0.68) among NAS infants. Overall, there were no significant correlations between BDNF levels and NAS scores except at around 15 h after admission (correlation 0.35, p = 0.045). Plasma BDNF level was significantly increased in NAS infants during the first 48 h when compared to non-NAS infants. The correlations between plasma BDNF levels and the severity of NAS warrant further study. These results suggest that BDNF may play a neuromodulatory role during withdrawal after in utero opiate exposure.
Johansen, Peter B; Segev, Yael; Landau, Daniel; Phillip, Moshe; Flyvbjerg, Allan
2003-01-01
The growth hormone (GH) and insulin-like growth factor I (IGF-I) axis were studied in streptozotocin (STZ) diabetic and nondiabetic female mice following intravenous (IV) injection of the GH secretagogue (GHS) ipamorelin or saline. On day 14, blood samples were obtained before and 10 minutes after the injection. Livers were removed and frozen for determination of the mRNA expressions of the GH receptor, GH-binding protein, and IGF-I, and hepatic IGF-I peptide. Serum samples were analyzed for GH and IGF-I. Following ipamorelin injection, the GH levels were found to be 150 +/- 35 microg/L and 62 +/- 11 microg/L in the diabetic compared to the nondiabetic mice (P <.05). Serum IGF-I levels were lower in diabetic than in nondiabetic animals, and rose after stimulation only in the nondiabetic animals. Furthermore, hepatic GH resistance and IGF-I mRNA levels and IGF-I peptide were increased in nondiabetic animals in response to GH stimulation, whereas the low levels per se of all these parameters in diabetic mice were unaffected. The study shows that STZ diabetic mice demonstrate a substantial part of the clinical features of type 1 diabetes in humans, including GH hypersecretion and GH resistance. Accordingly, it is proposed that STZ diabetic mice may be a better model of the perturbations of the GH/IGF-I axis in diabetes than STZ diabetic rats.
Akay, Aynur Pekcanlar; Resmi, Halil; Güney, Sevay Alsen; Erkuran, Handan Özek; Özyurt, Gonca; Sargin, Enis; Topuzoglu, Ahmet; Tufan, Ali Evren
2018-01-01
Brain-derived neurotrophic factor (BDNF) is an important neurotrophin in the brain that modulates dopaminergic neurons. In this study, we aimed to investigate the changes in serum BDNF levels of children with attention-deficit/hyperactivity disorder (ADHD) in response to OROS methylphenidate treatment. We also aimed to determine whether there were any pre-post-differences between ADHD subtypes and comorbid psychiatric disorders in serum BDNF levels. Fifty male children with ADHD and 50 male healthy controls within the age range of 6-12 years were recruited to the study. The psychiatric diagnoses were determined by applying a structured interview with Kiddie schedule for affective disorders and schizophrenia for school-age children-present and lifetime version. The symptom severity of ADHD was measured using the Clinical Global Impression ADHD Severity Scale (CGI-S). Physicians completed Du Paul ADHD questionnaires. The levels of serum BDNF were assessed before and after 8 weeks of treatment with effective dosages of OROS methylphenidate. In the present study, the mean serum BDNF levels of boys with ADHD and of the healthy controls were 2626.33 ± 1528.05 and 2989.11 ± 1420.08 pg/mL, respectively. Although there were no statistically significant difference between the ADHD group and healthy controls at baseline (p = 0.22), the increase of serum BDNF was statistically significant from baseline to endpoint in the ADHD group (p = 0.04). The mean serum BDNF levels at baseline and endpoint of the ADHD group were 2626.33 ± 1528.05 and 3255.80 ± 1908.79 pg/mL, respectively. The serum BDNF levels of ADHD-inattentive subtype were significantly lower at baseline (p = 0.02), whereas BDNF levels post-treatment showed no significant difference. The increase of serum BDNF levels with methylphenidate treatment after 8 weeks was significantly higher in the inattentive group (p = 0.005). The increase of serum BDNF levels with methylphenidate treatment after 8 weeks in boys with ADHD may support the potential role of BDNF in the pathophysiology of ADHD. The role of BDNF in ADHD subtypes in particular should be evaluated with further, larger studies.
Prenatal exposure to polycyclic aromatic hydrocarbons/aromatics, BDNF and child development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perera, Frederica, E-mail: fpp1@columbia.edu; Columbia Center for Children's Environmental Health, Columbia University, 722 W. 168th St., New York, NY 10032; Phillips, David H.
Objectives: Within a New York City (NYC) birth cohort, we assessed the associations between polycyclic aromatic hydrocarbon (PAH) and other aromatic DNA adducts and brain derived neurotrophic factor (BDNF) concentrations in umbilical cord blood, and neurodevelopment at age 2 years and whether BDNF is a mediator of the associations between PAH/aromatic-DNA adducts and neurodevelopment. Methods: PAH/aromatic-DNA adduct concentrations in cord blood were measured in 505 children born to nonsmoking African-American and Dominican women residing in NYC, and a subset was assessed for neurodevelopment at 2 years using the Bayley Scales of Infant Development Mental Development Index (MDI). A spectrum ofmore » PAH/aromatic-DNA adducts was measured using the {sup 32}P-postlabeling assay; DNA adducts formed by benzo[a]pyrene (B[a]P), a representative PAH, were measured by High Performance Liquid Chromatography (HPLC)/fluorescence. BDNF mature protein in cord blood plasma was quantified by an ELISA. Multivariate regression analysis, adjusting for potential confounders, was conducted. Results: PAH/aromatic-DNA adduct concentration measured by postlabeling was inversely associated with BDNF concentration (p=0.02) and with MDI scores at 2 years (p=0.04). BDNF level was positively associated with MDI scores (p=0.003). Restricting to subjects having all three measures (PAH/aromatic-DNA adducts by postlabeling, MDI, and BDNF), results were similar but attenuated (p=0.13, p=0.05, p=0.01, respectively). Associations between B[a]P-DNA adducts and BDNF and B[a]P-DNA adducts and MDI at age 2 years were not significant. At age 3 years, the positive association of BDNF with MDI was not observed. Conclusions: The results at age 2 suggest that prenatal exposure to a spectrum of PAH/aromatic pollutants may adversely affect early neurodevelopment, in part by reducing BDNF levels during the fetal period. However, the same relationship was not seen at age 3. - Highlights: • Cord blood Polycyclic Aromatic Hydrocarbon (PAH)/aromatic-DNA adducts were assayed. • Brain Derived Neurotrophic Factor (BDNF) concentration was measured concurrently. • Associations between biomarkers and neurodevelopment at age 2 years were assessed. • Adduct level was inversely associated with BDNF concentration and neurodevelopment. • BDNF level was positively associated with neurodevelopment scores at age 2 years.« less
Park, Young-Min; Lee, Bun-Hee; Um, Tae Hyun; Kim, Sollip
2014-01-01
The aim of this study was to test the hypothesis that serum levels of brain-derived neurotrophic factor (BDNF) are correlated with the loudness dependence of auditory evoked potentials (LDAEP). The question of whether there is a difference in BDNF levels between depressive patients according to their illness severity, history of suicide attempts, and central serotonin activity was also addressed. A sample of 51 patients who met the criteria for major depressive disorder following diagnosis using axis I of the fourth edition of the Diagnostic and Statistical Manual of Mental Disorders - text revision comprised the study subjects. The patients were stratified into two subgroups based on their illness severity, history of suicide attempts, and their LDAEP values. The LDAEP was evaluated by measuring the auditory event-related potentials, and serum BDNF was measured using blood sampling before beginning medication with serotonergic agents. There was no difference in serum BDNF levels between the two patient subgroups. The subgroup with moderate-to-severe depression (n = 16) was reanalyzed after stratifying it into two subgroups according to LDAEP and BDNF values (dichotomized at the medians into low and high). The high-LDAEP subgroup had higher serum BDNF levels and total Barratt Impulsiveness Scale score than the low-LDAEP subgroup (p = 0.03 and 0.036, respectively). Serum BDNF levels were positively correlated with LDAEP and total Beck Hopelessness Scale (BHS) score (r = 0.56, p = 0.025, and r = 0.59, p = 0.016, respectively). The high-BDNF subgroup had a higher LDAEP and total BHS score than the low-BDNF subgroup (p = 0.046 and p = 0.011, respectively). This is the first study to demonstrate a relationship between the BDNF level and LDAEP in Asian depressive patients. Intriguingly, the high-BDNF subgroup (divided according to illness severity) exhibited a more severe psychopathology on some psychometric rating scales, a finding that conflicts with previous results.
Wang, Li-na; Yang, Jian-ping; Ji, Fu-hai; Wang, Xiu-yun; Zuo, Jian-ling; Xu, Qi-nian; Jia, Xiao-ming; Zhou, Jing; Ren, Chun-guang; Li, Wei
2011-05-10
To investigate the role of brain-derived neurotrophic factor (BDNF) in pain facilitation and spinal mechanisms in the rat model of bone cancer pain. The bone cancer pain model was developed by inoculated Walker 256 mammary gland carcinoma cells into the tibia medullary cavity. Sixty SD female rats were divided into 5 groups (n = 12 each) randomly; group I: control group (sham operation); group II: model group; group III: control group + anti-BDNF intrathecal (i.t.); group IV: model group + control IgG i.t.; group V: model group + anti-BDNF i.t.. Anti-BDNF or control IgG was injected i.t. during 7 to 9th day. Von-Frey threshold was measured one day before operation and every 2 days after operation. On the 9th day after threshold tested, rats were sacrificed after i.t. injection of either anti-BDNF or control IgG, the lumbar 4-6 spinal cord was removed. The expression of the spinal BDNF and the phosphorylation of extracellular signal-regulated protein kinase 1/2 (p-ERK1/2) were detected by immunohistochemistry assay and Western-Blot. Co-expression pattern of BDNF and p-ERK1/2 were determined by double-labeling immunofluorescence. We demonstrated the coexistence of BDNF and p-ERK1/2 in the spinal cord of rats. From the 7 to 9th day after operation, von-Frey threshold in groups II and IV was significantly lower than that in group I and group V (P < 0.01), group V was remarkly higher than that in group IV (P < 0.01). The spinal BDNF and p-ERK1/2 expression in group II or IV were significantly increased compared with that in group I or V (P < 0.01), intrathecal anti-BDNF was significantly suppressed BDNF and p-ERK1/2 expression (P < 0.01). BDNF and p-ERK1/2 was coexistence in the spinal cord of rats, and it maybe involved in the bone cancer pain.
Luo, Yong; Peng, Mei; Wei, Hong
2017-01-01
Background Melatonin therapy shows positive effects on neuroprotective factor brain-derived neurotrophic factor (BDNF) expression and neuronal apoptosis in neonatal hemolytic hyperbilirubinemia. We hypothesized that melatonin promotes BDNF expression and anti-apoptotic effects in neonatal hemolytic hyperbilirubinemia through a phospholipase (PLC)-mediated mechanism. Material/Methods A phenylhydrazine hydrochloride (PHZ)-induced neonatal hemolytic hyperbilirubinemia model was constructed in neonatal rats. Four experimental groups – a control group (n=30), a PHZ group (n=30), a PHZ + melatonin group (n=30), and a PHZ + melatonin+U73122 (a PLC inhibitor) group (n=30) – were constructed. Trunk blood was assayed for serum hemoglobin, hematocrit, total and direct bilirubin, BDNF, S100B, and tau protein levels. Brain tissue levels of neuronal apoptosis, BDNF expression, PLC activity, IP3 content, phospho- and total Ca2+/calmodulin-dependent protein kinase type IV (CaMKIV) expression, and phospho- and total cAMP response element binding protein (CREB) expression were also assayed. Results PHZ-induced hemolytic hyperbilirubinemia was validated by significantly decreased serum hemoglobin and hematocrit as well as significantly increased total and direct serum bilirubin (p<0.05). Neonatal bilirubin-induced neurotoxicity was validated by significantly decreased serum BDNF, brain BDNF, and serum S100B, along with significantly increased serum tau protein (p<0.05). PHZ-induced hemolytic hyperbilirubinemia significantly decreased serum BDNF, brain BDNF, and PLC/IP3/Ca2+ pathway activation while increasing neuronal apoptosis levels (p<0.05), all of which were partially rescued by melatonin therapy (p<0.05). Pre-treatment with the PLC inhibitor U73122 largely abolished the positive effects of melatonin on PLC/IP3/Ca2+ pathway activation, downstream BDNF levels, and neuronal apoptosis (p<0.05). Conclusions Promotion of BDNF expression and anti-apoptotic effects in neonatal hemolytic hyperbilirubinemia by melatonin largely operates via a PLC-mediated mechanism. PMID:29247156
Hill, Rachel A; Klug, Maren; Kiss Von Soly, Szerenke; Binder, Michele D; Hannan, Anthony J; van den Buuse, Maarten
2014-10-01
Post-mortem studies have demonstrated reduced expression of brain-derived neurotrophic factor (BDNF) in the hippocampus of schizophrenia and major depression patients. The "two hit" hypothesis proposes that two or more major disruptions at specific time points during development are involved in the pathophysiology of these mental illnesses. However, the role of BDNF in these "two hit" effects is unclear. Our aim was to behaviorally characterize a "two hit" rat model of developmental stress accompanied by an in-depth assessment of BDNF expression and signalling. Wistar rats were exposed to neonatal maternal separation (MS) stress and/or adolescent/young-adult corticosterone (CORT) treatment. In adulthood, models of cognitive and negative symptoms of mental illness were analyzed. The hippocampus was then dissected into dorsal (DHP) and ventral (VHP) regions and analyzed by qPCR for exon-specific BDNF gene expression or by Western blot for BDNF protein expression and downstream signaling. Male "two hit" rats showed marked disruptions in short-term spatial memory (Y-maze) which were absent in females. However, female "two hit" rats showed signs of anhedonia (sucrose preference test), which were absent in males. Novel object recognition and anxiety (elevated plus maze) were unchanged by either of the two "hits". In the DHP, MS caused a male-specific increase in BDNF Exons I, II, IV, VII, and IX mRNA but a decrease in mature BDNF and phosphorylated TrkB (pTrkB) protein expression in adulthood. In the VHP, BDNF transcript expression was unchanged; however, in female rats only, MS significantly decreased mature BDNF and pTrkB protein expression in adulthood. These data demonstrate that MS causes region-specific and sex-specific long-term effects on BDNF expression and signaling and, importantly, mRNA expression does not always infer protein expression. Alterations to BDNF signaling may mediate the sex-specific effects of developmental stress on anhedonic behaviors. © 2014 Wiley Periodicals, Inc.
Postnatal reduction of BDNF regulates the developmental remodeling of taste bud innervation.
Huang, Tao; Ma, Liqun; Krimm, Robin F
2015-09-15
The refinement of innervation is a common developmental mechanism that serves to increase the specificity of connections following initial innervation. In the peripheral gustatory system, the extent to which innervation is refined and how refinement might be regulated is unclear. The initial innervation of taste buds is controlled by brain-derived neurotrophic factor (BDNF). Following initial innervation, taste receptor cells are added and become newly innervated. The connections between the taste receptor cells and nerve fibers are likely to be specific in order to retain peripheral coding mechanisms. Here, we explored the possibility that the down-regulation of BDNF regulates the refinement of taste bud innervation during postnatal development. An analysis of BDNF expression in Bdnf(lacZ/+) mice and real-time reverse transcription polymerase chain reaction (RT-PCR) revealed that BDNF was down-regulated between postnatal day (P) 5 and P10. This reduction in BDNF expression was due to a loss of precursor/progenitor cells that express BDNF, while the expression of BDNF in the subpopulations of taste receptor cells did not change. Gustatory innervation, which was identified by P2X3 immunohistochemistry, was lost around the perimeter where most progenitor/precursor cells are located. In addition, the density of innervation in the taste bud was reduced between P5 and P10, because taste buds increase in size without increasing innervation. This reduction of innervation density was blocked by the overexpression of BDNF in the precursor/progenitor population of taste bud cells. Together these findings indicate that the process of BDNF restriction to a subpopulation of taste receptor cells between P5 and P10, results in a refinement of gustatory innervation. We speculate that this refinement results in an increased specificity of connections between neurons and taste receptor cells during development. Copyright © 2015 Elsevier Inc. All rights reserved.
Pikula, Aleksandra; Beiser, Alexa S.; Chen, Tai C.; Preis, Sarah R.; Vorgias, Demetrios; DeCarli, Charles; Au, Rhoda; Kelly-Hayes, Margaret; Kase, Carlos S.; Wolf, Philip A.; Vasan, Ramachandran S.; Seshadri, Sudha
2013-01-01
Background and Purpose BDNF, a major neurotrophin and VEGF, an endothelial growth factor have a documented role in neurogenesis, angiogenesis and neuronal survival. In animal experiments they impact infarct size and functional motor recovery after an ischemic brain lesion. We sought to examine the association of serum BDNF and VEGF with the risk of clinical stroke or subclinical vascular brain injury in a community-based sample. Methods In 3440 stroke/TIA-free FHS participants (mean age 65±11yrs, 56%W), we related baseline BDNF and logVEGF to risk of incident stroke/TIA. In a subsample with brain MRI and with neuropsychological (NP) tests available (N=1863 and 2104, respectively; mean age 61±9yrs, 55%W, in each) we related baseline BDNF and logVEGF to log-white matter hyperintensity volume (lWMHV) on brain MRI, and to visuospatial memory and executive function tests. Results During a median follow-up of 10 years, 193 participants experienced incident stroke/TIA. In multivariable analyses adjusted for age-, sex- and traditional stroke risk factors, lower BDNF and higher logVEGF levels were associated with an increased risk of incident stroke/TIA (HR comparing BDNF Q1 versus Q2–4:1.47, 95%CI:1.09–2.00, p=0.012; and HR/SD increase in logVEGF:1.21, 95%CI:1.04–1.40, p=0.012). Persons with higher BDNF levels had less lWMHV (β±SE=−0.05±0.02; p=0.025), and better visual memory (β±SE=0.18±0.07; p=0.005). Conclusions Lower serum BDNF and higher VEGF concentrations were associated with increased risk of incident stroke/TIA. Higher levels of BDNF were also associated with less white matter hyperintensity and better visual memory. Our findings suggest that circulating BDNF and VEGF levels modify risk of clinical and subclinical vascular brain injury. PMID:23929745
Lee, I-Te; Wang, Jun-Sing; Fu, Chia-Po; Lin, Shih-Yi; Sheu, Wayne Huey-Herng
2016-01-01
Abstract Brain-derived neurotrophic factor (BDNF) plays a role in energy homeostasis. However, the postprandial BDNF change has not been well investigated. We hypothesized that the BDNF increment after oral glucose challenge is associated with body weight. To address this possibility, man adults with obesity in conjunction with metabolic syndrome were compared with normal weight controls at baseline in the initial cross-sectional protocol. The obese subjects then underwent a 12-week program for body-weight reduction in the prospective protocol. The area under the curve (AUC) of serum BDNF was recorded during a 75 g oral glucose tolerant test and the BDNF AUC index was defined as [(AUC of BDNF) − (fasting BDNF∗2 hours)]/(fasting BDNF∗2 hours). A total of 25 controls and 36 obese subjects completed the study assessments. In the cross-sectional protocol, the BDNF AUC index was significantly higher in the obese subjects than in the controls (9.0 ± 16.5% vs. − 8.0 ± 22.5%, P = 0.001). After weight reduction (from 97.0 ± 12.5 kg to 88.6 ± 12.9 kg, P < 0.001), the percentage change of body weight was significantly associated with the BDNF AUC index after the study (95% CI between 0.21 and 1.82, P = 0.015). Using 6% weight reduction as a cut-off value, a larger weight reduction was able to reliably predict a negative BDNF AUC index. In conclusion, a high BDNF AUC index was observed for obese men in this study, whereas the index value significantly decreased after body-weight reduction. These findings suggest that postprandial BDNF increment may be associated with obesity. PMID:27787389
Hurtado, Erica; Cilleros, Víctor; Nadal, Laura; Simó, Anna; Obis, Teresa; Garcia, Neus; Santafé, Manel M; Tomàs, Marta; Halievski, Katherine; Jordan, Cynthia L; Lanuza, Maria A; Tomàs, Josep
2017-01-01
The neurotrophin brain-derived neurotrophic factor (BDNF) acts via tropomyosin-related kinase B receptor (TrkB) to regulate synapse maintenance and function in the neuromuscular system. The potentiation of acetylcholine (ACh) release by BDNF requires TrkB phosphorylation and Protein Kinase C (PKC) activation. BDNF is secreted in an activity-dependent manner but it is not known if pre- and/or postsynaptic activities enhance BDNF expression in vivo at the neuromuscular junction (NMJ). Here, we investigated whether nerve and muscle cell activities regulate presynaptic conventional PKC (cPKCα and βI) via BDNF/TrkB signaling to modulate synaptic strength at the NMJ. To differentiate the effects of presynaptic activity from that of muscle contraction, we stimulated the phrenic nerve of rat diaphragms (1 Hz, 30 min) with or without contraction (abolished by μ-conotoxin GIIIB). Then, we performed ELISA, Western blotting, qRT-PCR, immunofluorescence and electrophysiological techniques. We found that nerve-induced muscle contraction: (1) increases the levels of mature BDNF protein without affecting pro-BDNF protein or BDNF mRNA levels; (2) downregulates TrkB.T1 without affecting TrkB.FL or p75 neurotrophin receptor (p75) levels; (3) increases presynaptic cPKCα and cPKCβI protein level through TrkB signaling; and (4) enhances phosphorylation of cPKCα and cPKCβI. Furthermore, we demonstrate that cPKCβI, which is exclusively located in the motor nerve terminals, increases activity-induced acetylcholine release. Together, these results show that nerve-induced muscle contraction is a key regulator of BDNF/TrkB signaling pathway, retrogradely activating presynaptic cPKC isoforms (in particular cPKCβI) to modulate synaptic function. These results indicate that a decrease in neuromuscular activity, as occurs in several neuromuscular disorders, could affect the BDNF/TrkB/PKC pathway that links pre- and postsynaptic activity to maintain neuromuscular function.
Hurtado, Erica; Cilleros, Víctor; Nadal, Laura; Simó, Anna; Obis, Teresa; Garcia, Neus; Santafé, Manel M.; Tomàs, Marta; Halievski, Katherine; Jordan, Cynthia L.; Lanuza, Maria A.; Tomàs, Josep
2017-01-01
The neurotrophin brain-derived neurotrophic factor (BDNF) acts via tropomyosin-related kinase B receptor (TrkB) to regulate synapse maintenance and function in the neuromuscular system. The potentiation of acetylcholine (ACh) release by BDNF requires TrkB phosphorylation and Protein Kinase C (PKC) activation. BDNF is secreted in an activity-dependent manner but it is not known if pre- and/or postsynaptic activities enhance BDNF expression in vivo at the neuromuscular junction (NMJ). Here, we investigated whether nerve and muscle cell activities regulate presynaptic conventional PKC (cPKCα and βI) via BDNF/TrkB signaling to modulate synaptic strength at the NMJ. To differentiate the effects of presynaptic activity from that of muscle contraction, we stimulated the phrenic nerve of rat diaphragms (1 Hz, 30 min) with or without contraction (abolished by μ-conotoxin GIIIB). Then, we performed ELISA, Western blotting, qRT-PCR, immunofluorescence and electrophysiological techniques. We found that nerve-induced muscle contraction: (1) increases the levels of mature BDNF protein without affecting pro-BDNF protein or BDNF mRNA levels; (2) downregulates TrkB.T1 without affecting TrkB.FL or p75 neurotrophin receptor (p75) levels; (3) increases presynaptic cPKCα and cPKCβI protein level through TrkB signaling; and (4) enhances phosphorylation of cPKCα and cPKCβI. Furthermore, we demonstrate that cPKCβI, which is exclusively located in the motor nerve terminals, increases activity-induced acetylcholine release. Together, these results show that nerve-induced muscle contraction is a key regulator of BDNF/TrkB signaling pathway, retrogradely activating presynaptic cPKC isoforms (in particular cPKCβI) to modulate synaptic function. These results indicate that a decrease in neuromuscular activity, as occurs in several neuromuscular disorders, could affect the BDNF/TrkB/PKC pathway that links pre- and postsynaptic activity to maintain neuromuscular function. PMID:28572757
Newton, Dwight F; Naiberg, Melanie R; Andreazza, Ana C; Scola, Gustavo; Dickstein, Daniel P; Goldstein, Benjamin I
2017-02-01
Executive dysfunction is common and impairing in youth bipolar disorder (BD), and oxidative stress (OS) and brain-derived neurotrophic factor (BDNF) have been implicated in executive deficits of adult BD. This study aimed to determine the association between OS and executive dysfunction in BD adolescents and the influence of BDNF on this association. Serum levels of lipid hydroperoxides (LPH) and 4-hydroxy-2-nonenal (4-HNE) and BDNF levels were measured in 29 BD and 25 control adolescents. The intra-extra-dimensional (IED) set-shifting task assessed executive function. Lower IED scores indicated better performance. High and low BDNF subgroups were defined by median split. IED Z-scores were impaired in the BD group compared to controls, whereas biomarker levels were not significantly different between groups. LPH-BDNF correlations were significantly different between BD and controls (Z = 2.046, p = 0.041). In high BDNF BD subjects, LPH was significantly positively correlated with IED completed stage trials (ρ = 0.755, p = 0.001) and pre-extra-dimensional shift errors (ρ = 0.588, p = 0.017). Correlations were opposite in controls. In a linear model, LPH, BDNF, and the LPH-BDNF interaction each significantly explained variance of IED total trials (adjusted) (model r 2 = 0.187, F = 2.811, p = 0.035). There is a negative association between LPH and executive function in BD adolescents, which may be modulated by BDNF. LPH and BDNF may be useful biomarkers of executive function in BD. These findings highlight the importance of examining multiple peripheral biomarkers in relation to cognitive functions in BD adolescents. Future studies should explore these factors in longitudinal designs to determine the directionality of observed associations.
Tunca, Zeliha; Ozerdem, Aysegul; Ceylan, Deniz; Yalçın, Yaprak; Can, Güneş; Resmi, Halil; Akan, Pınar; Ergör, Gül; Aydemir, Omer; Cengisiz, Cengiz; Kerim, Doyuran
2014-09-01
Brain-derived neurotrophic factor (BDNF) has been consistently reported to be decreased in mania or depression in bipolar disorders. Evidence suggests that Glial cell line-derived neurotrophic factor (GDNF) has a role in the pathogenesis of mood disorders. Whether GDNF and BDNF act in the same way across different episodes in bipolar disorders is unclear. BDNF and GDNF serum levels were measured simultaneously by enzyme-linked immunosorbent assay (ELISA) method in 96 patients diagnosed with bipolar disorder according to DSM-IV (37 euthymic, 33 manic, 26 depressed) in comparison to 61 healthy volunteers. SCID- I and SCID-non patient version were used for clinical evaluation of the patients and healthy volunteers respectively. Correlations between the two trophic factor levels, and medication dose, duration and serum levels of lithium or valproate were studied across different episodes of illness. Patients had significantly lower BDNF levels during mania and depression compared to euthymic patients and healthy controls. GDNF levels were not distinctive. However GDNF/BDNF ratio was higher in manic state compared to euthymia and healthy controls. Significant negative correlation was observed between BDNF and GDNF levels in euthymic patients. While BDNF levels correlated positively, GDNF levels correlated negatively with lithium levels. Regression analysis confirmed that lithium levels predicted only GDNF levels positively in mania, and negatively in euthymia. Small sample size in different episodes and drug-free patients was the limitation of thestudy. Current data suggests that lithium exerts its therapeutic action by an inverse effect on BDNF and GDNF levels, possibly by up-regulating BDNF and down-regulating GDNF to achieve euthymia. Copyright © 2014 Elsevier B.V. All rights reserved.
Harper, Matthew M.; Grozdanic, Sinisa D.; Blits, Bas; Kuehn, Markus H.; Zamzow, Daniel; Buss, Janice E.; Kardon, Randy H.; Sakaguchi, Donald S.
2011-01-01
Purpose. To evaluate the ability of mesenchymal stem cells (MSCs) engineered to produce and secrete brain-derived neurotrophic factor (BDNF) to protect retinal function and structure after intravitreal transplantation in a rat model of chronic ocular hypertension (COH). Methods. COH was induced by laser cauterization of trabecular meshwork and episcleral veins in rat eyes. COH eyes received an intravitreal transplant of MSCs engineered to express BDNF and green fluorescent protein (BDNF-MSCs) or just GFP (GFP-MSCs). Computerized pupillometry and electroretinography (ERG) were performed to assess optic nerve and retinal function. Quantification of optic nerve damage was performed by counting retinal ganglion cells (RGCs) and evaluating optic nerve cross-sections. Results. After transplantation into COH eyes, BDNF-MSCs preserved significantly more retina and optic nerve function than GFP-MSC–treated eyes when pupil light reflex (PLR) and ERG function were evaluated. PLR analysis showed significantly better function (P = 0.03) in BDNF-MSC–treated eyes (operated/control ratio = 63.00% ± 11.39%) than GFP-MSC–treated eyes (operated/control ratio = 31.81% ± 9.63%) at 42 days after surgery. The BDNF-MSC–transplanted eyes also displayed a greater level of RGC preservation than eyes that received the GFP-MSCs only (RGC cell counts: BDNF-MSC–treated COH eyes, 112.2 ± 19.39 cells/section; GFP-MSC–treated COH eyes, 52.21 ± 11.54 cells/section; P = 0.01). Conclusions. The authors have demonstrated that lentiviral-transduced BDNF-producing MSCs can survive in eyes with chronic hypertension and can provide retina and optic nerve functional and structural protection. Transplantation of BDNF-producing stem cells may be a viable treatment strategy for glaucoma. PMID:21498611
Chen, Tao; Wu, Yu; Wang, Yuzi; Zhu, Jigao; Chu, Haiying; Kong, Li; Yin, Liangwei; Ma, Haiying
2017-11-01
Brain-derived neurotrophic factor (BDNF) plays an important role in promoting the growth, differentiation, survival and synaptic stability of neurons. Presently, the transplantation of neural stem cells (NSCs) is known to induce neural repair to some extent after injury or disease. In this study, to investigate whether NSCs genetically modified to encode the BDNF gene (BDNF/NSCs) would further enhance synaptogenesis, BDNF/NSCs or naive NSCs were directly engrafted into lesions in a rat model of traumatic brain injury (TBI). Immunohistochemistry, western blotting and RT-PCR were performed to detect synaptic proteins, BDNF-TrkB and its downstream signaling pathways, at 1, 2, 3 or 4 weeks after transplantation. Our results showed that BDNF significantly increased the expression levels of the TrkB receptor gene and the phosphorylation of the TrkB protein in the lesions. The expression levels of Ras, phosphorylated Erk1/2 and postsynaptic density protein-95 were elevated in the BDNF/NSCs-transplanted groups compared with those in the NSCs-transplanted groups throughout the experimental period. Moreover, the nuclear factor (erythroid-derived 2)-like 2/Thioredoxin (Nrf2/Trx) axis, which is a specific therapeutic target for the treatment of injury or cell death, was upregulated by BDNF overexpression. Therefore, we determined that the increased synaptic proteins level implicated in synaptogenesis might be associated with the activation of the MAPK/Erk1/2 signaling pathway and the upregulation of the antioxidant agent Trx modified by BDNF-TrkB following the BDNF/NSCs transplantation after TBI.
Postnatal reduction of BDNF regulates the developmental remodeling of taste bud innervation
Huang, Tao; Ma, Liqun; Krimm, Robin F
2015-01-01
The refinement of innervation is a common developmental mechanism that serves to increase the specificity of connections following initial innervation. In the peripheral gustatory system, the extent to which innervation is refined and how refinement might be regulated is unclear. The initial innervation of taste buds is controlled by brain-derived neurotrophic factor (BDNF). Following initial innervation, taste receptor cells are added and become newly innervated. The connections between the taste receptor cells and nerve fibers are likely to be specific in order to retain peripheral coding mechanisms. Here, we explored the possibility that the down-regulation of BDNF regulates the refinement of taste bud innervation during postnatal development. An analysis of BDNF expression in BdnflacZ/+ mice and real-time reverse transcription polymerase chain reaction (RT-PCR) revealed that BDNF was down-regulated between postnatal day (P) 5 and P10. This reduction in BDNF expression was due to a loss of precursor/progenitor cells that express BDNF, while the expression of BDNF in the subpopulations of taste receptor cells did not change. Gustatory innervation, which was identified by P2X3 immunohistochemistry, was lost around the perimeter where most progenitor/precursor cells are located. In addition, the density of innervation in the taste bud was reduced between P5 and P10, because taste buds increase in size without increasing innervation. This reduction of innervation density was blocked by the overexpression of BDNF in the precursor/progenitor population of taste bud cells. Together these findings indicate that the process of BDNF restriction to a subpopulation of taste receptor cells between P5 and P10, results in a refinement of gustatory innervation. We speculate that this refinement results in an increased specificity of connections between neurons and taste receptor cells during development. PMID:26164656
Neurotrophins in the ventral tegmental area: Role in social stress, mood disorders and drug abuse.
Nikulina, E M; Johnston, C E; Wang, J; Hammer, R P
2014-12-12
This review discusses the impact of neurotrophins and other trophic factors, including fibroblast growth factor and glial cell line-derived neurotrophic factor, on mood disorders, weight regulation and drug abuse, with an emphasis on stress- and drug-induced changes in the ventral tegmental area (VTA). Neurotrophins, comprising nerve growth factor, brain-derived neurotrophic factor (BDNF), and neurotrophins 3 and 4/5 play important roles in neuronal plasticity and the development of different psychopathologies. In the VTA, most research has focused on the role of BDNF, because other neurotrophins are not found there in significant quantities. BDNF originating in the VTA provides trophic support to dopamine neurons. The diverse intracellular signaling pathways activated by BDNF may underlie precise physiological functions specific to the VTA. In general, VTA BDNF expression increases after psychostimulant exposures, and enhanced BDNF level in the VTA facilitates psychostimulant effects. The impact of VTA BDNF on the behavioral effects of psychostimulants relies primarily on its action within the mesocorticolimbic circuit. In the case of opiates, VTA BDNF expression and effects seem to be dependent on whether an animal is drug-naïve or has a history of drug use, only the latter of which is related to dopamine mechanisms. Social defeat stress that is continuous in mice or intermittent in rats increases VTA BDNF expression, and is associated with depressive and social avoidance behaviors. Intermittent social defeat stress induces persistent VTA BDNF expression that triggers psychostimulant cross-sensitization. Understanding the cellular and molecular substrates of neurotrophin effects may lead to novel therapeutic approaches for the prevention and treatment of substance use and mood disorders. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.
BDNF released during neuropathic pain potentiates NMDA receptors in primary afferent terminals
Chen, Wenling; Walwyn, Wendy; Ennes, Helena S.; Kim, Hyeyoung; McRoberts, James A.; Marvizón, Juan Carlos G.
2014-01-01
NMDA receptors in primary afferent terminals can contribute to hyperalgesia by increasing neurotransmitter release. In rats and mice, we found that the ability of intrathecal NMDA to induce neurokinin 1 receptor (NK1R) internalization (a measure of substance P release) required a previous injection of BDNF. Selective knock-down of NMDA receptors in primary afferents decreased NMDA-induced NK1R internalization, confirming the presynaptic location of these receptors. The effect of BDNF was mediated by tropomyosin-related kinase B (trkB) receptors and not p75 neurotrophin receptors (p75NTR), because it was not produced by proBDNF and was inhibited by the trkB antagonist ANA-12 but not by the p75NTR inhibitor TAT-Pep5. These effects are probably mediated through the truncated form of the trkB receptor as there is little expression of full-length trkB in dorsal root ganglion (DRG) neurons. Src family kinase inhibitors blocked the effect of BDNF, suggesting that trkB receptors promote the activation of these NMDA receptors by Src family kinase phosphorylation. Western blots of cultured DRG neurons revealed that BDNF increased Tyr1472 phosphorylation of the NR2B subunit of the NMDA receptor, known to have a potentiating effect. Patch-clamp recordings showed that BDNF, but not proBDNF, increased NMDA receptor currents in cultured DRG neurons. NMDA-induced NK1R internalization was also enabled in a neuropathic pain model or by activating dorsal horn microglia with lipopolysaccharide. These effects were decreased by a BDNF scavenger, a trkB receptor antagonist and an Src family kinase inhibitor, indicating that BDNF released by microglia potentiates NMDA receptors in primary afferents during neuropathic pain. PMID:24611998
Mang, Cameron S.; Campbell, Kristin L.; Ross, Colin J.D.
2013-01-01
Recovery of motor function after stroke involves relearning motor skills and is mediated by neuroplasticity. Recent research has focused on developing rehabilitation strategies that facilitate such neuroplasticity to maximize functional outcome poststroke. Although many molecular signaling pathways are involved, brain-derived neurotrophic factor (BDNF) has emerged as a key facilitator of neuroplasticity involved in motor learning and rehabilitation after stroke. Thus, rehabilitation strategies that optimize BDNF effects on neuroplasticity may be especially effective for improving motor function poststroke. Two potential poststroke rehabilitation strategies that consider the importance of BDNF are the use of aerobic exercise to enhance brain function and the incorporation of genetic information to individualize therapy. Converging evidence demonstrates that aerobic exercise increases BDNF production and consequently enhances learning and memory processes. Nevertheless, a common genetic variant reduces activity-dependent secretion of the BDNF protein. Thus, BDNF gene variation may affect response to motor rehabilitation training and potentially modulate the effects of aerobic exercise on neuroplasticity. This perspective article discusses evidence that aerobic exercise promotes neuroplasticity by increasing BDNF production and considers how aerobic exercise may facilitate the acquisition and retention of motor skills for poststroke rehabilitation. Next, the impact of the BDNF gene val66met polymorphism on motor learning and response to rehabilitation is explored. It is concluded that the effects of aerobic exercise on BDNF and motor learning may be better exploited if aerobic exercise is paired more closely in time with motor training. Additionally, information about BDNF genotype could provide insight into the type and magnitude of effects that aerobic exercise may have across individuals and potentially help guide an individualized prescription of aerobic exercise to enhance motor rehabilitation poststroke. PMID:23907078
Diniz, Breno Satler; Reynolds, Charles F.; Begley, Amy; Dew, Mary Amanda; Anderson, Stewart J.; Lotrich, Francis; Erickson, Kirk I.; Lopez, Oscar; Aizenstein, Howard; Sibille, Etienne L.; Butters, Meryl A.
2014-01-01
Changes in brain-derived neurotrophic factor (BDNF) level are implicated in the pathophysiology of cognitive decline in depression and neurodegenerative disorders in older adults. We aimed to evaluate the longitudinal association over two years between BDNF and persistent cognitive decline in individuals with remitted late-life depression and Mild Cognitive Impairment (LLD+MCI) compared to either individuals with remitted LLD and no cognitive decline (LLD+NCD) or never-depressed, cognitively normal, elderly control participants. We additionally evaluated the effect of double-blind, placebo-controlled donepezil treatment on BDNF levels in all of the remitted LLD participants (across the levels of cognitive function). We included 160 elderly participants in this study (72 LLD+NCD, 55 LLD+MCI and 33 never-depressed cognitively normal elderly participants). At the same visits, cognitive assessments were conducted and blood sampling to determine serum BDNF levels were collected at baseline assessment and after one and two years of follow-up. We utilized repeated measure, mixed effect models to assess: (1) the effects of diagnosis (LLD+MCI, LLD+NCD, and controls), time, and their interaction on BDNF levels; and (2) the effects of donepezil treatment (donepezil vs. placebo), time, baseline diagnosis (LLD+MCI vs. LLD+NCD), and interactions between these contrasts on BDNF levels. We found a significant effect of time on BDNF level (p=0.02) and a significant decline in BDNF levels over 2 years of follow-up in participants with LLD+MCI (p=0.004) and controls (p=0.04). We found no effect of donepezil treatment on BDNF level. The present results suggest that aging is an important factor related to decline in BDNF level. PMID:24290367
Lee, Bridgin G.; Anastasia, Agustin; Hempstead, Barbara L.; Lee, Francis S.
2015-01-01
Introduction: Nicotine withdrawal is characterized by both affective and cognitive symptoms. Identifying genetic polymorphisms that could affect the symptoms associated with nicotine withdrawal are important in predicting withdrawal sensitivity and identifying personalized cessation therapies. In the current study we used a mouse model of a non-synonymous single nucleotide polymorphism in the translated region of the brain-derived neurotrophic factor (BDNF) gene that substitutes a valine (Val) for a methionine (Met) amino acid (Val66Met) to examine the relationship between the Val66Met single nucleotide polymorphism and nicotine dependence. Methods: This study measured proBDNF and the BDNF prodomain levels following nicotine and nicotine withdrawal and examined a mouse model of a common polymorphism in this protein (BDNFMet/Met) in three behavioral paradigms: novelty-induced hypophagia, marble burying, and the open-field test. Results: Using the BDNF knock-in mouse containing the BDNF Val66Met polymorphism we found: (1) blunted anxiety-like behavior in BDNFMet/Met mice following withdrawal in three behavioral paradigms: novelty-induced hypophagia, marble burying, and the open-field test; (2) the anxiolytic effects of chronic nicotine are absent in BDNFMet/Met mice; and (3) an increase in BDNF prodomain in BDNFMet/Met mice following nicotine withdrawal. Conclusions: Our study is the first to examine the effect of the BDNF Val66Met polymorphism on the affective symptoms of withdrawal from nicotine in mice. In these mice, a single-nucleotide polymorphism in the translated region of the BDNF gene can result in a blunted withdrawal, as measured by decreased anxiety-like behavior. The significant increase in the BDNF prodomain in BDNFMet/Met mice following nicotine cessation suggests a possible role of this ligand in the circuitry remodeling after withdrawal. PMID:25744957
Effects of prenatal cocaine exposure on social development in mice.
Kabir, Zeeba D; Kennedy, Bruce; Katzman, Aaron; Lahvis, Garet P; Kosofsky, Barry E
2014-01-01
Prenatal cocaine exposure (PCE) in humans and animals has been shown to impair social development. Molecules that mediate synaptic plasticity and learning in the medial prefrontal cortex (mPFC), specifically brain-derived neurotrophic factor (BDNF) and its downstream signaling molecule, early growth response protein 1 (egr1), have been shown to affect the regulation of social interactions (SI). In this study we determined the effects of PCE on SI and the corresponding ultrasonic vocalizations (USVs) in developing mice. Furthermore, we studied the PCE-induced changes in the constitutive expression of BDNF, egr1 and their transcriptional regulators in the mPFC as a possible molecular mechanism mediating the altered SI. In prenatal cocaine-exposed (PCOC) mice we identified increased SI and USV production at postnatal day (PD) 25, and increased SI but not USVs at PD35. By PD45 the expression of both social behaviors normalized in PCOC mice. At the molecular level, we found increased BDNF exon IV and egr1 mRNA in the mPFC of PCOC mice at PD30 that normalized by PD45. This was concurrent with increased EGR1 protein in the mPFC of PCOC mice at PD30, suggesting a role of egr1 in the enhanced SI observed in juvenile PCOC mice. Additionally, by measuring the association of acetylation of histone 3 at lysine residues 9 and 14 (acH3K9,14) and MeCP2 at the promoters of BDNF exons I and IV and egr1, our results provide evidence of promoter-specific alterations in the mPFC of PCOC juvenile mice, with increased association of acH3K9,14 only at the BDNF exon IV promoter. These results identify a potential PCE-induced molecular alteration as the underlying neurobiological mechanism mediating the altered social development in juvenile mice. © 2014 S. Karger AG, Basel.
Gajewska-Woźniak, Olga; Skup, Małgorzata; Kasicki, Stefan; Ziemlińska, Ewelina; Czarkowska-Bauch, Julita
2013-01-01
The importance of neurotrophin 3 (NT-3) for motor control prompted us to ask the question whether direct electrical stimulation of low-threshold muscle afferents, strengthening the proprioceptive signaling, could effectively increase the endogenous pool of this neurotrophin and its receptor TrkC in the Hoffmann-reflex (H-reflex) circuitry. The effects were compared with those of brain-derived neurotrophic factor (BDNF) and its TrkB receptor. Continuous bursts of stimuli were delivered unilaterally for seven days, 80 min daily, by means of a cuff-electrode implanted over the tibial nerve in awake rats. The H-reflex was recorded in the soleus muscle to control the strength of stimulation. Stimulation aimed at activation of Ia fibers produced a strong increase of NT-3 protein, measured with ELISA, in the lumbar L3-6 segments of the spinal cord and in the soleus muscle. This stimulation exerted much weaker effect on BDNF protein level which slightly increased only in L3-6 segments of the spinal cord. Increased protein level of NT-3 and BDNF corresponded to the changes of NT-3 mRNA and BDNF mRNA expression in L3-6 segments but not in the soleus muscle. We disclosed tissue-specificity of TrkC mRNA and TrkB mRNA responses. In the spinal cord TrkC and TrkB transcripts tended to decrease, whereas in the soleus muscle TrkB mRNA decreased and TrkC mRNA expression strongly increased, suggesting that stimulation of Ia fibers leads to sensitization of the soleus muscle to NT-3 signaling. The possibility of increasing NT-3/TrkC signaling in the neuromuscular system, with minor effects on BDNF/TrkB signaling, by means of low-threshold electrical stimulation of peripheral nerves, which in humans might be applied in non-invasive way, offers an attractive therapeutic tool. PMID:23776573
Gajewska-Woźniak, Olga; Skup, Małgorzata; Kasicki, Stefan; Ziemlińska, Ewelina; Czarkowska-Bauch, Julita
2013-01-01
The importance of neurotrophin 3 (NT-3) for motor control prompted us to ask the question whether direct electrical stimulation of low-threshold muscle afferents, strengthening the proprioceptive signaling, could effectively increase the endogenous pool of this neurotrophin and its receptor TrkC in the Hoffmann-reflex (H-reflex) circuitry. The effects were compared with those of brain-derived neurotrophic factor (BDNF) and its TrkB receptor. Continuous bursts of stimuli were delivered unilaterally for seven days, 80 min daily, by means of a cuff-electrode implanted over the tibial nerve in awake rats. The H-reflex was recorded in the soleus muscle to control the strength of stimulation. Stimulation aimed at activation of Ia fibers produced a strong increase of NT-3 protein, measured with ELISA, in the lumbar L3-6 segments of the spinal cord and in the soleus muscle. This stimulation exerted much weaker effect on BDNF protein level which slightly increased only in L3-6 segments of the spinal cord. Increased protein level of NT-3 and BDNF corresponded to the changes of NT-3 mRNA and BDNF mRNA expression in L3-6 segments but not in the soleus muscle. We disclosed tissue-specificity of TrkC mRNA and TrkB mRNA responses. In the spinal cord TrkC and TrkB transcripts tended to decrease, whereas in the soleus muscle TrkB mRNA decreased and TrkC mRNA expression strongly increased, suggesting that stimulation of Ia fibers leads to sensitization of the soleus muscle to NT-3 signaling. The possibility of increasing NT-3/TrkC signaling in the neuromuscular system, with minor effects on BDNF/TrkB signaling, by means of low-threshold electrical stimulation of peripheral nerves, which in humans might be applied in non-invasive way, offers an attractive therapeutic tool.
Kundakovic, Marija; Lim, Sean; Gudsnuk, Kathryn; Champagne, Frances A.
2013-01-01
Early life adversity can have a significant long-term impact with implications for the emergence of psychopathology. Disruption to mother-infant interactions is a form of early life adversity that may, in particular, have profound programing effects on the developing brain. However, despite converging evidence from human and animal studies, the precise mechanistic pathways underlying adversity-associated neurobehavioral changes have yet to be elucidated. One approach to the study of mechanism is exploration of epigenetic changes associated with early life experience. In the current study, we examined the effects of postnatal maternal separation (MS) in mice and assessed the behavioral, brain gene expression, and epigenetic effects of this manipulation in offspring. Importantly, we included two different mouse strains (C57BL/6J and Balb/cJ) and both male and female offspring to determine strain- and/or sex-associated differential response to MS. We found both strain-specific and sex-dependent effects of MS in early adolescent offspring on measures of open-field exploration, sucrose preference, and social behavior. Analyses of cortical and hippocampal mRNA levels of the glucocorticoid receptor (Nr3c1) and brain-derived neurotrophic factor (Bdnf) genes revealed decreased hippocampal Bdnf expression in maternally separated C57BL/6J females and increased cortical Bdnf expression in maternally separated male and female Balb/cJ offspring. Analyses of Nr3c1and Bdnf (IV and IX) CpG methylation indicated increased hippocampal Nr3c1 methylation in maternally separated C57BL/6J males and increased hippocampal Bdnf IX methylation in male and female maternally separated Balb/c mice. Overall, though effect sizes were modest, these findings suggest a complex interaction between early life adversity, genetic background, and sex in the determination of neurobehavioral and epigenetic outcomes that may account for differential vulnerability to later-life disorder. PMID:23914177
Ambjørn, Malene; Dubreuil, Véronique; Miozzo, Federico; Nigon, Fabienne; Møller, Bente; Issazadeh-Navikas, Shohreh; Berg, Jacob; Lees, Michael; Sap, Jan
2013-01-01
Alterations in function of the neurotrophin BDNF are associated with neurodegeneration, cognitive decline, and psychiatric disorders. BDNF promotes axonal outgrowth and branching, regulates dendritic tree morphology and is important for axonal regeneration after injury, responses that largely result from activation of its tyrosine kinase receptor TrkB. Although intracellular neurotrophin (NT) signaling presumably reflects the combined action of kinases and phosphatases, little is known about the contributions of the latter to TrkB regulation. The issue is complicated by the fact that phosphatases belong to multiple independently evolved families, which are rarely studied together. We undertook a loss-of-function RNA-interference-based screen of virtually all known (254) human phosphatases to understand their function in BDNF/TrkB-mediated neurite outgrowth in differentiated SH-SY5Y cells. This approach identified phosphatases from diverse families, which either positively or negatively modulate BDNF-TrkB-mediated neurite outgrowth, and most of which have little or no previously established function related to NT signaling. “Classical” protein tyrosine phosphatases (PTPs) accounted for 13% of the candidate regulatory phosphatases. The top classical PTP identified as a negative regulator of BDNF-TrkB-mediated neurite outgrowth was PTPN12 (also called PTP-PEST). Validation and follow-up studies showed that endogenous PTPN12 antagonizes tyrosine phosphorylation of TrkB itself, and the downstream activation of ERK1/2. We also found PTPN12 to negatively regulate phosphorylation of p130cas and FAK, proteins with previously described functions related to cell motility and growth cone behavior. Our data provide the first comprehensive survey of phosphatase function in NT signaling and neurite outgrowth. They reveal the complexity of phosphatase control, with several evolutionarily unrelated phosphatase families cooperating to affect this biological response, and hence the relevance of considering all phosphatase families when mining for potentially druggable targets. PMID:23785422
Li, Gongying; Jing, Ping; Liu, Zhidong; Li, Zhiruo; Ma, Hongxia; Tu, Wenzhen; Zhang, Wei; Zhuo, Chuanjun
2017-01-01
SSRI antidepressant fluoxetine is widely used to treat psychological stress related disorders, however the underlying working mechanisms is not fully understood, as SSRIs can rapidly increase the extracellular serotonin levels but it normally takes weeks to reveal their therapeutic effect in the stress-related psychological disorders. Our previous study demonstrated that purely psychological stress without any physic stimuli induces a biphasic change in the expression of brain-derived neurotrophic factor (BDNF), which immediately decrease and then gradually increase after the stress; and that the latter BDNF increase in response to the psychological stress involves the activation of serotonin system. To investigate the role of BDNF in the fluoxetine treatment for stress-related psychological disorders, we examined the mRNA and protein levels of BDNF in the brain of Sprague-Dawley (SD) rats, which were pretreated with fluoxetine at 10 mg/kg or vehicle solution for 14 days, over 24 hour after an acute psychological stress exposure. In situ hybridization and immunohistochemistry were performed to detect the expression of BDNF at different time points in various brain regions after the psychological stress. We found that fluoxetine treatment completely blocked the BDNF decrease induced by the psychological stress, and also enhanced the gradual increase in the expression of BDNF in most of the brain regions except VTA after the psychological stress. The results suggest that the enhancement in BDNF levels induced by chronic fluoxetine treatment mediates the therapeutic effect against psychological stress. PMID:29050222
Willoughby, Christy L.; Fleuriet, Jérome; Walton, Mark M.; Mustari, Michael J.; McLoon, Linda K.
2015-01-01
Purpose. We evaluated promising new treatment options for strabismus. Neurotrophic factors have emerged as a potential treatment for oculomotor disorders because of diverse roles in signaling to muscles and motor neurons. Unilateral treatment with sustained release brain-derived neurotrophic factor (BDNF) to a single lateral rectus muscle in infant monkeys was performed to test the hypothesis that strabismus would develop in correlation with extraocular muscle (EOM) changes during the critical period for development of binocularity. Methods. The lateral rectus muscles of one eye in two infant macaques were treated with sustained delivery of BDNF for 3 months. Eye alignment was assessed using standard photographic methods. Muscle specimens were analyzed to examine the effects of BDNF on the density, morphology, and size of neuromuscular junctions, as well as myofiber size. Counts were compared to age-matched controls. Results. No change in eye alignment occurred with BDNF treatment. Compared to control muscle, neuromuscular junctions on myofibers expressing slow myosins had a larger area. Myofibers expressing slow myosin had larger diameters, and the percentage of myofibers expressing slow myosins increased in the proximal end of the muscle. Expression of BDNF was examined in control EOM, and observed to have strongest immunoreactivity outside the endplate zone. Conclusions. We hypothesize that the oculomotor system adapted to sustained BDNF treatment to preserve normal alignment. Our results suggest that BDNF treatment preferentially altered myofibers expressing slow myosins. This implicates BDNF signaling as influencing the slow twitch properties of EOM. PMID:26030102
Willoughby, Christy L; Fleuriet, Jérome; Walton, Mark M; Mustari, Michael J; McLoon, Linda K
2015-06-01
We evaluated promising new treatment options for strabismus. Neurotrophic factors have emerged as a potential treatment for oculomotor disorders because of diverse roles in signaling to muscles and motor neurons. Unilateral treatment with sustained release brain-derived neurotrophic factor (BDNF) to a single lateral rectus muscle in infant monkeys was performed to test the hypothesis that strabismus would develop in correlation with extraocular muscle (EOM) changes during the critical period for development of binocularity. The lateral rectus muscles of one eye in two infant macaques were treated with sustained delivery of BDNF for 3 months. Eye alignment was assessed using standard photographic methods. Muscle specimens were analyzed to examine the effects of BDNF on the density, morphology, and size of neuromuscular junctions, as well as myofiber size. Counts were compared to age-matched controls. No change in eye alignment occurred with BDNF treatment. Compared to control muscle, neuromuscular junctions on myofibers expressing slow myosins had a larger area. Myofibers expressing slow myosin had larger diameters, and the percentage of myofibers expressing slow myosins increased in the proximal end of the muscle. Expression of BDNF was examined in control EOM, and observed to have strongest immunoreactivity outside the endplate zone. We hypothesize that the oculomotor system adapted to sustained BDNF treatment to preserve normal alignment. Our results suggest that BDNF treatment preferentially altered myofibers expressing slow myosins. This implicates BDNF signaling as influencing the slow twitch properties of EOM.
Gender difference in association of cognition with BDNF in chronic schizophrenia.
Zhang, Xiang Yang; Chen, Da-Chun; Tan, Yun-Long; Tan, Shu-Ping; Wang, Zhi-Ren; Yang, Fu-De; Xiu, Mei-Hong; Hui, Li; Lv, Meng-Han; Zunta-Soares, Giovana B; Soares, Jair C
2014-10-01
While numerous studies have reported that brain-derived neurotrophic factor (BDNF) may be involved in the pathophysiology of schizophrenia, very few studies have explored its association with cognitive impairment or gender differences in schizophrenia which we explored. We compared gender differences in 248 chronic schizophrenic patients (male/female=185/63) to 188 healthy controls (male/female=98/90) on the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS) and serum BDNF. Schizophrenic symptoms were assessed using the Positive and Negative Syndrome Scale (PANSS). Our results showed that schizophrenic patients performed worse than normals on most of the cognitive tasks, and male patients had significantly lower immediate memory and delayed memory scores than female patients. BDNF levels were significantly lower in patients than controls, and male patients had significantly lower BDNF levels than female patients. For the patients, BDNF was positively associated with immediate memory and the RBANS total score. Furthermore, these associations were only observed in female not male patients. Among healthy controls, no gender difference was observed in cognitive domains and BDNF levels, or in the association between BDNF and cognition. Our results suggest gender differences in cognitive impairments, BDNF levels and their association in chronic patients with schizophrenia. However, the findings should be regarded as preliminary due to the cross-sectional design and our chronic patients, which need replication in a first-episode and drug naïve patients using a longitudinal study. Copyright © 2014 Elsevier Ltd. All rights reserved.
Pereira-Caixeta, Ana Raquel; Guarnieri, Leonardo O; Pena, Roberta R; Dias, Thomáz L; Pereira, Grace Schenatto
2017-07-01
Hippocampus-dependent memories, such as social recognition (SRM), are modulated by neurogenesis. However, the precise role of newborn neurons in social memory processing is still unknown. We showed previously that 1 week of enriched environment (EE) is sufficient to increase neurogenesis in the hippocampus (HIP) and the olfactory bulb (OB) of mice. Here, we tested the hypothesis that 1 week of EE would enhance SRM persistence and strength. In addition, as brain-derived neurotrophic factor (BDNF) may mediate some of the neurogenesis effects on memory, we also tested if 1 week of EE would increase BDNF expression in the HIP and OB. We also predicted that neurogenesis inhibition would block the gain of function caused by EE on both SRM and BDNF expression. We found that EE increased BDNF expression in the HIP and OB of mice; at the same time, it allowed SRM to last longer. In addition, mice on EE had their SRM unaffected by memory consolidation interferences. As we predicted, treatment with the anti-mitotic drug AraC blocked EE effects on SRM. Surprisingly, neurogenesis inhibition did not affect the BDNF expression, increased by EE. Together, our results suggest that newborn neurons improve SRM persistence through a BDNF-independent mechanism. Interestingly, this study on social memory uncovered an unexpected dissociation between the effect of adult neurogenesis and BDNF expression on memory persistence, reassuring the idea that not all neurogenesis effects on memory are BDNF-dependent.
Goltz, Annemarie; Janowitz, Deborah; Hannemann, Anke; Nauck, Matthias; Hoffmann, Johanna; Seyfart, Tom; Völzke, Henry; Terock, Jan; Grabe, Hans Jörgen
2018-06-19
Depression and obesity are widespread and closely linked. Brain-derived neurotrophic factor (BDNF) and vitamin D are both assumed to be associated with depression and obesity. Little is known about the interplay between vitamin D and BDNF. We explored the putative associations and interactions between serum BDNF and vitamin D levels with depressive symptoms and abdominal obesity in a large population-based cohort. Data were obtained from the population-based Study of Health in Pomerania (SHIP)-Trend (n = 3,926). The associations of serum BDNF and vitamin D levels with depressive symptoms (measured using the Patient Health Questionnaire) were assessed with binary and multinomial logistic regression models. The associations of serum BDNF and vitamin D levels with obesity (measured by the waist-to-hip ratio [WHR]) were assessed with binary logistic and linear regression models with restricted cubic splines. Logistic regression models revealed inverse associations of vitamin D with depression (OR = 0.966; 95% CI 0.951-0.981) and obesity (OR = 0.976; 95% CI 0.967-0.985). No linear association of serum BDNF with depression or obesity was found. However, linear regression models revealed a U-shaped association of BDNF with WHR (p < 0.001). Vitamin D was inversely associated with depression and obesity. BDNF was associated with abdominal obesity, but not with depression. At the population level, our results support the relevant roles of vitamin D and BDNF in mental and physical health-related outcomes. © 2018 S. Karger AG, Basel.
On the quest for a biomechanism of transsexualism: is there a role for BDNF?
Fuss, Johannes; Biedermann, Sarah V; Stalla, Günter K; Auer, Matthias K
2013-12-01
Previous studies hypothesized a neurobiological mechanism for gender identity disorder (GID). Recently a possible role for serum brain-derived neurotrophic factor (BDNF) was suggested on the basis of reduced serum BDNF levels in male-to-female individuals. Here we review the question whether there is indeed a role of BDNF in the development of transsexualism. Copyright © 2013 Elsevier Ltd. All rights reserved.
Wichers, Marieke; Kenis, Gunter; Jacobs, Nele; Myin-Germeys, Inez; Schruers, Koen; Mengelers, Ron; Delespaul, Philippe; Derom, Catherine; Vlietinck, Robert; van Os, Jim
2008-08-01
Previous work indicated protective effects of positive emotions on genetically influenced stress sensitivity. Given the fact that expression of brain-derived-neurotrophic-factor (BDNF) is associated with stress-induced behavioral changes, it was hypothesized that the BDNF Val-sup-6-sup-6Met genotype may mediate genetic effects on stress sensitivity, conditional on the level of concurrent positive emotions. Subjects (n=446) participated in a momentary assessment study, collecting appraisals of stress and affect in the flow of daily life. Multilevel regression analyses examined moderation of daily life stress-induced negative affect (NA) by BDNF genotype, and to what degree this was conditional on concurrent positive emotions. Results showed that heterozygous BDNF "Met" carriers exhibited an increased NA response to social stress compared with "Val/Val" subjects. Positive emotions at the time of the stressor decreased BDNF genetic moderation of the NA response to social stress in a dose-response fashion. This effect was most pronounced in BDNF Met carriers. Thus, the impact of BDNF genotype on stress sensitivity is conditional on the experience of positive emotions. Interdisciplinary research in psychology and psychiatric genetics may lead to the improvement of treatment choices in stress-related disorders. Copyright (c) 2008 APA, all rights reserved.
Haile, C N; Murrough, J W; Iosifescu, D V; Chang, L C; Al Jurdi, R K; Foulkes, A; Iqbal, S; Mahoney, J J; De La Garza, R; Charney, D S; Newton, T F; Mathew, S J
2014-02-01
Ketamine produces rapid antidepressant effects in treatment-resistant depression (TRD), but the magnitude of response varies considerably between individual patients. Brain-derived neurotrophic factor (BDNF) has been investigated as a biomarker of treatment response in depression and has been implicated in the mechanism of action of ketamine. We evaluated plasma BDNF and associations with symptoms in 22 patients with TRD enrolled in a randomized controlled trial of ketamine compared to an anaesthetic control (midazolam). Ketamine significantly increased plasma BDNF levels in responders compared to non-responders 240 min post-infusion, and Montgomery-Åsberg Depression Rating Scale (MADRS) scores were negatively correlated with BDNF (r=-0.701, p = 0.008). Plasma BDNF levels at 240 min post-infusion were highly negatively associated with MADRS scores at 240 min (r = -0.897, p=.002), 24 h (r = -0.791, p = 0.038), 48 h (r = -0.944, p = 0.001) and 72 h (r = -0.977, p = 0.010). No associations with BDNF were found for patients receiving midazolam. These data support plasma BDNF as a peripheral biomarker relevant to ketamine antidepressant response.
Kuhlmann, Stella L; Tschorn, Mira; Arolt, Volker; Beer, Katja; Brandt, Julia; Grosse, Laura; Haverkamp, Wilhelm; Müller-Nordhorn, Jacqueline; Rieckmann, Nina; Waltenberger, Johannes; Warnke, Katharina; Hellweg, Rainer; Ströhle, Andreas
2017-03-01
Brain-derived neurotrophic factor (BDNF) supports neurogenesis, angiogenesis, and promotes the survival of various cell types in the brain and the coronary system. Moreover, BDNF is associated with both coronary heart disease (CHD) and depression. The current study aims to investigate whether serum BDNF levels are associated with the course of depressive symptoms in CHD patients. At baseline, N=225 CHD patients were enrolled while hospitalized. Of these, N=190 (84%) could be followed up 6 months later. Depressive symptoms were assessed both at baseline and at the 6-months follow-up using the Patient Health Questionnaire (PHQ-9). Serum BDNF concentrations were measured using fluorometric Enzyme-linked immunosorbent assays (ELISA). Logistic regression models showed that lower BDNF levels were associated with persistent depressive symptoms, even after adjustment for age, sex, smoking and potential medical confounders. The incidence of depressive symptoms was not related to lower BDNF levels. However, somatic comorbidity (as measured by the Charlson Comorbidity Index) was significantly associated with the incidence of depressive symptoms. Our findings suggest a role of BDNF in the link between CHD and depressive symptoms. Particularly, low serum BDNF levels could be considered as a valuable biomarker for the persistence of depressive symptoms among depressed CHD patients. Copyright © 2016 Elsevier Ltd. All rights reserved.
Decreased Plasma BDNF Levels of Patients with Somatization Disorder
Kang, Nam-In; Park, Jong-Il
2016-01-01
Objective Brain-derived neurotrophic factor (BDNF), one of the most abundant and important neurotrophins, is known to be involved in the development, survival, maintenance, and plasticity of neurons in the nervous system. Some studies have suggested that BDNF may play a role in the pathophysiology of several psychiatric illnesses such as depression and schizophrenia. Similarly, it is likely that the alteration of BDNF may be associated with the neuro-modulation that contributes to the development of somatization disorder. Methods The purpose of this study was to determine whether there is an abnormality of plasma BDNF levels in patients with somatization disorder, and to analyze the nature of the alteration after pharmacotherapy using an enzyme-linked immunosorbent assay (ELISA). Results The plasma BDNF levels of the patients with a somatization disorder were significantly lower compared with those of the control volunteers (83.61±89.97 pg/mL vs. 771.36±562.14 pg/mL); moreover, the plasma BDNF levels of those patients who received an antidepressant were significantly increased after the treatment (118.13±91.45 pg/mL vs. 72.92±88.21 pg/mL). Conclusion These results suggest that BDNF may play a role in the pathophysiology of somatization disorder. PMID:27757131
Ma, Doy Yung; Chang, Wei Hung; Chi, Mei Hung; Tsai, Hsin Chun; Yang, Yen Kuang; Chen, Po See
2016-05-30
In this study, the role of brain derived neurotrophic factor (BDNF) in stress resilience was investigated. With a focus on healthy subjects, we explored whether plasma BDNF levels are correlated with the dexamethasone suppression test (DST) and subjectively perceived social support status. Moreover, we examined the possible interacting effect of DST status and perceived social support on BDNF levels. Seventy-two healthy volunteers, 44 females and 28 males, were recruited from the community and completed the perceived routine support subscale of Measurement of Support Function (PRS_MSF) questionnaire. Plasma BDNF levels and DST suppression rate with the low dose DST were measured. There was a significant positive correlation between BDNF and DST suppression rate in the female subjects. This was also true for the plasma BDNF levels and PRS_MSF in the female subjects. The positive correlation between BDNF and PRS_MSF was significant only in female subjects with low DST suppression rates. Plasma BDNF levels were associated with stress resilience in a sex-specific manner. Subjects' belief in social support might buffer the biological stress reactions. Differences in social perception and the biological stress response between men and women merits further investigation. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Johnson, R A; Rhodes, J S; Jeffrey, S L; Garland, T; Mitchell, G S
2003-01-01
Voluntary wheel running in rats increases hippocampal brain-derived neurotrophic factor (BDNF) expression, a neurochemical important for neuronal survival, differentiation, connectivity and synaptic plasticity. Here, we report the effects of wheel running on BDNF and neurotrophin-3 (NT-3) protein levels in normal control mice, and in mice selectively bred (25 generations) for increased voluntary wheel running. We hypothesized that increased voluntary wheel running in selected (S) mice would increase CNS BDNF and NT-3 protein levels more than in control (C) mice. Baseline hippocampal BDNF levels (mice housed without running wheels) were similar in S and C mice. Following seven nights of running, hippocampal BDNF increased significantly more in S versus C mice, and levels were correlated with distance run (considering C and S mice together). Spinal and cerebellar BDNF and hippocampal NT-3 levels were not significantly affected by wheel running in any group, but there was a small, positive correlation between spinal C3-C6 BDNF levels and distance run (considering C and S mice together). This is the first study to demonstrate that mice which choose to run more have greater elevations in hippocampal BDNF, suggesting enhanced potential for exercise-induced hippocampal neuroplasticity.
Chronic antidepressant administration alleviates frontal and hippocampal BDNF deficits in CUMS rat.
Zhang, Yang; Gu, Fenghua; Chen, Jia; Dong, Wenxin
2010-12-17
Stress activates the hypothalamo-pituitary-adrenal (HPA) axis, regulates the expression of brain-derived neurotrophic factor (BDNF) in the brain, and mediates mood. Antidepressants alleviate stress and up-regulate BDNF gene expression. In this study, we investigated the effect of chronic unpredictable mild stress (CUMS) and the different kinds of antidepressant treatments on the HPA axis and the BDNF expression in the rat brain. Adult Wistar male rats were exposed to a six-week CUMS procedure and received different antidepressant treatments including venlafaxine, mirtazapine, and fluoxetine. Immunohistochemistry and real-time PCR were used to measure BDNF expression levels in the rat brain, and ELISAs were used to investigate the plasma corticosterone (CORT) and adrenocorticotropic hormone (ACTH) levels. CUMS significantly decreased the BDNF protein level in the DG, CA1, and CA3 of the hippocampus and increased plasma CORT level. Chronic antidepressant treatments all significantly increased BDNF protein levels in the hippocampus and the pre-frontal cortex. In addition, venlafaxine and mirtazapine inhibited the increase of plasma CORT level. These results suggested that an increase in the BDNF level in the brain could be a pivotal mechanism of various antidepressants to exert their therapeutic effects. Copyright © 2010 Elsevier B.V. All rights reserved.
Progressive loss of BDNF in a mouse model of Huntington's disease and rescue by BDNF delivery.
Zuccato, Chiara; Liber, Daniel; Ramos, Catarina; Tarditi, Alessia; Rigamonti, Dorotea; Tartari, Marzia; Valenza, Marta; Cattaneo, Elena
2005-08-01
Huntingtin is a protein of 348 kDa that is mutated in Huntington's disease (HD), a dominantly inherited neurodegenerative disorder. Previous data have led us to propose that aspects of the disease arise from both a loss of the neuroprotective function of the wild-type protein, and a toxic activity gained by the mutant protein. In particular, we have shown that wild-type huntingtin stimulates the production of brain-derived neurotrophic factor (BDNF), a pro-survival factor for the striatal neurons that die in the pathology. Wild-type huntingtin controls BDNF gene transcription in cerebral cortex, which is then delivered to its striatal targets. In the disease state, supply of cortical BDNF to the striatum is strongly reduced, possibly leading to striatal vulnerability. Here we show that a reduction in cortical BDNF messenger level correlates with the progression of the disease in a mouse model of HD. In particular, we show that the progressive loss of mRNAs transcribed from BDNF exon II, III and IV follows a different pattern that may reflect different upstream mechanisms impaired by mutation in huntingtin. On this basis, we also discuss the possibility that delivery of BDNF may represent an useful strategy for Huntington's disease treatment.
Liu, C Y; Li, Q; Zhou, X D
2016-03-29
To explore the inhibitory role of suppressor of cytokine signaling 1 (SOCS1) in lipopolysaccharide (LPS)-induced mucin5AC (MUC5AC) hypersecretion and the potential mechanism involved in this process. The human bronchial epithelial cells 16HBE were divided into 0, 0.5, 1, 6, 12 and 24 h groups according to the time of LPS challenge. In gain- and loss- of functions experiments, wild-type SOCS1 and SOCS1-targeted siRNA (SOCS1-siRNA) were synthesized to identify the function of SOCS1 in LPS-mediated MUC5AC hypersecretion, and named wild-type SOCS1 group and SOCS1-siRNA group, respectively, and the non-transfected group and non-targeted siRNA group were used as controls. In Filgotinib group, the specific inhibitor of Janus kinase 1 (JAK1), Filgotinib, was used to detect the role of JAK1/signal transducer and activator of transcription 1 (STAT1) signaling pathway in LPS challenge, and the aqueous physiological buffer group was used as the control. The production of MUC5AC protein was measured by enzyme linked immunosorbent assay (ELISA), and the amount of MUC5AC protein was normalized to the total protein in cell lysates and was expressed as μg/mg cell lysates. The proteins expressions of SOCS1, phosphorylation of JAK1 and STAT1 were measured by Western blot, and the total expression of its protein (for JAK1 and STAT1) or β-actin (for SOCS1) was used as the loading control. Compared to 0 h group, LPS induced a robust induction in MUC5AC expression, the expression levels of MUC5AC in 0, 0.5, 1, 6, 12 and 24 h groups were (2.86±0.20), (3.42±0.29), (3.43±0.12), (10.22±0.96), (14.56±1.12), (14.15±1.34) μg/mg, in association with a decrease of SOCS1 expression. And in 6 h group, the expressions of MUC5AC and SOCS1 were both medium up-regulated (all P<0.05). Consequently, the application of LPS for 6 h was selected as the optimal responses period in the ensuing experiments. Compared to the expression of MUC5AC protein in non-transfected group, high level of SOCS1 in wild-type SOCS1 group led to a reduced phosphorylation of JAK1/STAT1, as well as Filgotinib did, thereby suppressing excessive MUC5AC production in wild-type SOCS1 group and Filgotinib group [(4.04±0.65), (7.02±0.83) vs (10.37±1.00) μg/mg] (all P<0.05). Conversely, compared to the expression of MUC5AC in non-targeted siRNA group, down-regulation of SOCS1 in SOCS1-siRNA group promoted the phosphorylation of JAK1/STAT1, and then further increased MUC5AC production [(13.69±1.32) vs (11.01±1.41) μg/mg] (all P<0.05). These results show that SOCS1 suppresses LPS-promoted MUC5AC hypersecretion through the inhibition of JAK1/STAT1 signaling pathway.
Brain-Derived Neurotrophic Factor Levels in Autism: A Systematic Review and Meta-Analysis.
Saghazadeh, Amene; Rezaei, Nima
2017-04-01
Brain-derived neurotrophic factor (BDNF) plays an important role in activity-dependent synaptic plasticity. Altered blood BDNF levels have been frequently identified in people with autism spectrum disorders (ASD). There are however wide discrepancies in the evidence. Therefore, we performed the present systematic review and meta-analysis aimed at qualitative and quantitative synthesis of studies that measured blood BDNF levels in ASD and control subjects. Observational studies were identified through electronic database searching and also hand-searching of reference lists of relevant articles. A total of 183 papers were initially identified for review and eventually twenty studies were included in the meta-analysis. A meta-analysis of blood BDNF in 887 patients with ASD and 901 control subjects demonstrated significantly higher BDNF levels in ASD compared to controls with the SMD of 0.47 (95% CI 0.07-0.86, p = 0.02). In addition subgroup meta-analyses were performed based on the BDNF specimen. The present meta-analysis study led to conclusion that BDNF might play role in autism initiation/ propagation and therefore it can be considered as a possible biomarker of ASD.
Neurotrophins and their receptors in human lingual tonsil: an immunohistochemical analysis.
Artico, Marco; Bronzetti, Elena; Felici, Laura M; Alicino, Valentina; Ionta, Brunella; Bronzetti, Benedetto; Magliulo, Giuseppe; Grande, Claudia; Zamai, Loris; Pasquantonio, Guido; De Vincentiis, Marco
2008-11-01
Lymphoid organs are supplied by many nerve endings associated with different kinds of cells and macrophages. The role of this innervation on the release of locally active molecules is still unclear. Lingual tonsils belong to Waldeyer's Ring, in close association with palatine tonsils and nasopharyngeal (adenoids) tonsils, thus constituting part of NALT (nasal-associated lymphoid tissue) together with the tubal tonsils and lateral pharyngeal bands. In this study, we focused our attention on the expression of some neurotrophins (NTs) and their high- and low-affinity receptors in human lingual tonsils. Light immunohistochemistry showed that human tonsillar samples were generally positive for all the NTs investigated (NGF, BDNF, NT-3, NT-4) and their receptors (TrKA, TrKB, TrKC and p75) with some different expression levels. NGF and TrKC were strongly expressed in macrophages, but weakly in lymphocytes. However, BDNF and TrKB was highly expressed in lymphocytes and weaker in macrophages. The low-affinity receptor for NGF, p75, was mainly moderately expressed in the analysed samples. These results suggest the presence of a pattern of neurotrophin innervation in the human lingual tonsil which may play a role in sustaining inflammatory conditions and in modulating a close interaction between the nervous system and the different immune cellular subtypes.
[Behavior in the forced-swimming test and expression of BDNF and Bcl-xl genes in the rat brain].
Berezova, I V; Shishkina, G T; Kalinina, T S; Dygalo, N N
2011-01-01
A single exposure of rats to the forced-swimming stress decreased BDNF mRNA levels in the cortex and increased Bcl-xl gene expression in the hippocampus and amygdala 24 h after the stress. The animals demonstrated a depressive-like behavior and elevated blood corticosterone level. There was a significant negative correlation between BDNF mRNA level in the cortex and immobility time during swimming. Repeated exposure to swimming stress caused the elevation of the hippocampal BDNF mRNA level assessed 24 h after the second swimming session. The data suggest that stress-induced down-regulation of cortical BDNF gene expression and behavioral despair in the forced-swimming test may be interrelated. The increase in the BDNF and Bcl-xl mRNA levels may contribute to the mechanisms protecting the brain against negative effects of stress.
Fontanari, Anna Martha Vaitses; Costa, Angelo Brandelli; Aguiar, Bianca; Tusset, Cíntia; Andreazza, Tahiana; Schneider, Maiko; da Rosa, Eduarda Dias; Soll, Bianca Machado Borba; Schwarz, Karine; da Silva, Dhiordan Cardoso; Borba, André Oliveira; Mueller, Andressa; Massuda, Raffael; Lobato, Maria Inês Rodrigues
2016-09-06
Serum BDNF levels are significantly decreased in transsexual Brazilian women when compared to cis-sexual men. Since transsexual men are also exposed to chronic social stress and have a high prevalence of associated psychopathologies, it is plausible to inquire if BDNF serum levels are altered in transsexual men as well. Therefore, our objective was to evaluate differences in BDNF serum level of transsexual men when compared to cis-sexual men and women. Our sample comprises 27 transsexual men, 31 cis-sexual women and 30 cis-sexual men recruited between 2011 and 2015. We observed that BDNF serum concentration is decreased in transsexual men comparing to cis-sexual men and women. Cross-sex hormone treatment, chronic social stress or long-term gender dysphoria (GD) could explain the variation found in BDNF serum levels. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Kaplon-Cieslicka, Agnieszka; Malek, Lukasz; Postula, Marek
2017-01-01
Brain-derived neurotrophic factor (BDNF) is a neurotrophin, which plays an important role in the central nervous system, and systemic or peripheral inflammatory conditions, such as acute coronary syndrome and type 2 diabetes mellitus (T2DM). BDNF is also expressed in several nonneuronal tissues, and platelets are the major source of peripheral BDNF. Here, we reviewed the potential role of BDNF in platelet reactivity in T2DM and its association with selected inflammatory and platelet activation mediators. Besides that, we focused on adipocytokines such as leptin, resistin, and adiponectin which are considered to take part in inflammation and both lipid and glucose metabolism in diabetic patients as previous studies showed the relation between adipocytokines and BDNF. We also reviewed the evidences of the antidiabetic effect of BDNF and the association with circulating inflammatory cytokines in T2DM. PMID:29062839
Presynaptic GABAergic inhibition regulated by BDNF contributes to neuropathic pain induction
Chen, Jeremy Tsung-chieh; Guo, Da; Campanelli, Dario; Frattini, Flavia; Mayer, Florian; Zhou, Luming; Kuner, Rohini; Heppenstall, Paul A.; Knipper, Marlies; Hu, Jing
2014-01-01
The gate control theory proposes the importance of both pre- and post-synaptic inhibition in processing pain signal in the spinal cord. However, although postsynaptic disinhibition caused by brain-derived neurotrophic factor (BDNF) has been proved as a crucial mechanism underlying neuropathic pain, the function of presynaptic inhibition in acute and neuropathic pain remains elusive. Here we show that a transient shift in the reversal potential (EGABA) together with a decline in the conductance of presynaptic GABAA receptor result in a reduction of presynaptic inhibition after nerve injury. BDNF mimics, whereas blockade of BDNF signalling reverses, the alteration in GABAA receptor function and the neuropathic pain syndrome. Finally, genetic disruption of presynaptic inhibition leads to spontaneous development of behavioural hypersensitivity, which cannot be further sensitized by nerve lesions or BDNF. Our results reveal a novel effect of BDNF on presynaptic GABAergic inhibition after nerve injury and may represent new strategy for treating neuropathic pain. PMID:25354791
Sriram, KB; Robinson, PC
2008-01-01
Airway stents (silicone and metal stents) are used to treat patients with benign tracheal stenosis, who are symptomatic and in whom tracheal surgical reconstruction has failed or is not appropriate. However airway stents are often associated with complications such as migration, granuloma formation and mucous hypersecretion, which cause significant morbidity, especially in patients with benign tracheal stenosis and relatively normal life expectancy. We report a patient who had frequent critical airway obstructions over 8 years due to granuloma and mucus hypersecretion in a silicone airway stent. The problem was resolved when the silicone stent was removed and replaced with a covered self expanding metal stent. PMID:18840299
Immunohistochemical profile of neurotrophins in human cranial dura mater and meningiomas.
Artico, Marco; Bronzetti, Elena; Pompili, Elena; Ionta, Brunella; Alicino, Valentina; D'Ambrosio, Anna; Santoro, Antonio; Pastore, Francesco S; Elenkov, Ilia; Fumagalli, Lorenzo
2009-06-01
The immunohistochemical profile of neurotrophins and their receptors in the human cranial dura mater was studied by examining certain dural zones in specimens harvested from different regions (frontal, temporal, parietal and occipital). Dural specimens were obtained during neurosurgical operations performed in ten patients for surgical treatment of intracranial lesions (meningiomas, traumas, gliomas, vascular malformations). The dural fragments were taken from the area of the craniotomy at least 8 cm from the lesion as well as from the area in which the meningioma had its dural attachment. Immunohistochemical characterization and distribution of neurotrophins, with their receptors, were analyzed. The concrete role played by these neurotrophic factors in general regulation, vascular permeability, algic responsivity and release of locally active substances in the human dura mater is still controversial. Our study revealed a general structural alteration of dural tissue due to the invasivity of meningiomatous lesions, together with an improved expression of brain derived neurotrophic factor (BDNF) in highly proliferating neoplastic cells and an evident production of nerve growth factor (NGF) in inflammatory cells, suggesting that BDNF has a role in supporting the proliferation rate of neoplastic cells, while NGF is involved in the activation of a chronic inflammatory response in neoplastic areas.
Adams, Jose A; Uryash, Arkady; Bassuk, Jorge; Sackner, Marvin A; Kurlansky, Paul
2014-06-01
Exercise is a well known neuroprotective and neurotherapeutic strategy in animal models and humans with brain injury and cognitive dysfunction. In part, exercise induced beneficial effects relate to endothelial derived nitric oxide (eNO) production and induction of the neurotrophins; Brain Derived Neurotrophic Factor (BDNF) and Glial Derived Neurotrophic Factor (GDNF). Whole Body Periodic Acceleration (WBPA (pGz), is the motion of the supine body headward to footward in a sinusoidal fashion, at frequencies of 100-160 cycles/min, inducing pulsatile shear stress to the vascular endothelium. WBPA (pGz) increases eNO in the cardiovascular system in animal models and humans. We hypothesized that WBPA (pGz) has neuroprotective and neurotherapeutic effects due to enhancement of biological pathways that include eNOS, BDNF and GDNF. We discuss protein expression analysis of these in brain of rodents. Animal and observational human data affirm a neuroprotective and neurotherapeutic role for WBPA (pGz). These findings suggest that WBPA (pGz) in addition to its well known beneficial cardiovascular effects can be a simple non-invasive neuroprotective and neurotherapeutic strategy with far reaching health benefits. Copyright © 2014 Elsevier Ltd. All rights reserved.
Gosselin, Nadia; De Beaumont, Louis; Gagnon, Katia; Baril, Andrée-Ann; Mongrain, Valérie; Blais, Hélène; Montplaisir, Jacques; Gagnon, Jean-François; Pelleieux, Sandra; Poirier, Judes; Carrier, Julie
2016-08-10
It is hypothesized that a fundamental function of sleep is to restore an individual's day-to-day ability to learn and to constantly adapt to a changing environment through brain plasticity. Brain-derived neurotrophic factor (BDNF) is among the key regulators that shape brain plasticity. However, advancing age and carrying the BDNF Met allele were both identified as factors that potentially reduce BDNF secretion, brain plasticity, and memory. Here, we investigated the moderating role of BDNF polymorphism on sleep and next-morning learning ability in 107 nondemented individuals who were between 55 and 84 years of age. All subjects were tested with 1 night of in-laboratory polysomnography followed by a cognitive evaluation the next morning. We found that in subjects carrying the BDNF Val66Val polymorphism, consolidated sleep was associated with significantly better performance on hippocampus-dependent episodic memory tasks the next morning (β-values from 0.290 to 0.434, p ≤ 0.01). In subjects carrying at least one copy of the BDNF Met allele, a more consolidated sleep was not associated with better memory performance in most memory tests (β-values from -0.309 to -0.392, p values from 0.06 to 0.15). Strikingly, increased sleep consolidation was associated with poorer performance in learning a short story presented verbally in Met allele carriers (β = -0.585, p = 0.005). This study provides new evidence regarding the interacting roles of consolidated sleep and BDNF polymorphism in the ability to learn and stresses the importance of considering BDNF polymorphism when studying how sleep affects cognition. Individuals with the BDNF Val/Val (valine allele) polymorphism showed better memory performance after a night of consolidated sleep. However, we observed that middle-aged and older individuals who are carriers of the BDNF Met allele displayed no positive association between sleep quality and their ability to learn the next morning. This interaction between sleep and BDNF polymorphism was more salient for hippocampus-dependent tasks than for other cognitive tasks. Our results support the hypothesis that reduced activity-dependent secretion of BDNF impairs the benefits of sleep on synaptic plasticity and next-day memory. Our work advances the field by revealing new evidence of a clear genetic heterogeneity in how sleep consolidation contributes to the ability to learn. Copyright © 2016 the authors 0270-6474/16/368391-09$15.00/0.
Klug, Maren; Hill, Rachel A; Choy, Kwok Ho Christopher; Kyrios, Michael; Hannan, Anthony J; van den Buuse, Maarten
2012-06-01
Psychiatric illnesses, such as schizophrenia, are most likely caused by an interaction between genetic predisposition and environmental factors, including stress during development. The neurotrophin, brain-derived neurotrophic factor (BDNF) has been implicated in this illness as BDNF levels are decreased in the brain of patients with schizophrenia. The aim of the present study was to assess the combined effect of reduced BDNF levels and postnatal stress, simulated by chronic young-adult treatment with the stress hormone, corticosterone. From 6 weeks of age, female and male BDNF heterozygous mice and their wild-type controls were chronically treated with corticosterone in their drinking water for 3 weeks. At 11 weeks of age, male, but not female BDNF heterozygous mice treated with corticosterone exhibited a profound memory deficit in the Y-maze. There were no differences between the groups in baseline prepulse inhibition (PPI), a measure of sensorimotor gating, or its disruption by treatment with MK-801. However, an increase in startle caused by MK-801 treatment was absent in male, but not female BDNF heterozygous mice, irrespective of corticosterone treatment. Analysis of protein levels of the NMDA receptor subunits NR1, NR2A, NR2B and NR2C, showed a marked increase of NR2B levels in the dorsal hippocampus of male BDNF heterozygous mice treated with corticosterone. In the ventral hippocampus, significantly reduced levels of NR2A, NR2B and NR2C were observed in male BDNF heterozygous mice. The NMDA receptor effects in hippocampal sub-regions could be related to the spatial memory deficits and the loss of the effect of MK-801 on startle in these mice, respectively. No significant changes in NMDA receptor subunit levels were observed in any of the female groups. Similarly, no significant changes in levels of BDNF or its receptor, TrkB, were found other than the expected reduced levels of BDNF in heterozygous mice. In conclusion, the data show differential interactive effects of reduced levels of BDNF expression and corticosterone treatment on spatial memory and startle in male and female mice, accompanied by significant, but region-specific changes in NMDA receptor subunit levels in the dorsal and ventral hippocampus. These results could be important for our understanding of the interaction of neurodevelopmental stress and BDNF deficiency in cognitive and anxiety-related symptoms of psychiatric illnesses, such as schizophrenia. Copyright © 2012 Elsevier Inc. All rights reserved.
Gelfo, Francesca; Tirassa, Paola; De Bartolo, Paola; Croce, Nicoletta; Bernardini, Sergio; Caltagirone, Carlo; Petrosini, Laura; Angelucci, Francesco
2012-06-01
Several studies have documented an involvement of Neuropeptide Y (NPY) in stress-related disorders. Stress-related disorders are also characterized by changes in brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF), neurotrophins implicated in the survival and function of neurons. Thus the aim of this study was to investigate whether an NPY intraperitoneal treatment has antidepressant-like effects in rats subjected to a classical stress paradigm, the Forced Swim Test (FST), in association with changes in local brain neurotrophin production. Rats were intraperitoneally injected with either NPY (60 μg/kg) or a vehicle for three consecutive days between two FST sessions and then tested for time spent (or delay onset) in immobile posture. Moreover, we measured by enzyme-linked immunosorbent assay (ELISA) neurotrophin levels in the hypothalamus and corticosterone levels in plasma. The data showed that NPY induced a significant delay in the onset and a significant reduction in the duration of the immobility posture in FST. We also found that NPY decreased BDNF levels in the hypothalamus and corticosterone levels in plasma. Immobility posture in FST can be reduced by antidepressant drugs. Thus, our data show an antidepressant-like effect of NPY associated with changes in BDNF levels in the hypothalamus and reduced activity of hypothalamic-pituitary-adrenal (HPA) axis. These findings, while confirming the involvement of the NPY system in stress-related disorders, suggest that a less invasive route of administration, such as an intraperitoneal injection, may be instrumental in coping with stressful events in animal models and perhaps in humans. © 2012 Blackwell Publishing Ltd.
Taste Bud-Derived BDNF Is Required to Maintain Normal Amounts of Innervation to Adult Taste Buds123
Meng, Lingbin; Ohman-Gault, Lisa; Ma, Liqun
2015-01-01
Abstract Gustatory neurons transmit chemical information from taste receptor cells, which reside in taste buds in the oral cavity, to the brain. As adult taste receptor cells are renewed at a constant rate, nerve fibers must reconnect with new taste receptor cells as they arise. Therefore, the maintenance of gustatory innervation to the taste bud is an active process. Understanding how this process is regulated is a fundamental concern of gustatory system biology. We speculated that because brain-derived neurotrophic factor (BDNF) is required for taste bud innervation during development, it might function to maintain innervation during adulthood. If so, taste buds should lose innervation when Bdnf is deleted in adult mice. To test this idea, we first removed Bdnf from all cells in adulthood using transgenic mice with inducible CreERT2 under the control of the Ubiquitin promoter. When Bdnf was removed, approximately one-half of the innervation to taste buds was lost, and taste buds became smaller because of the loss of taste bud cells. Individual taste buds varied in the amount of innervation each lost, and those that lost the most innervation also lost the most taste bud cells. We then tested the idea that that the taste bud was the source of this BDNF by reducing Bdnf levels specifically in the lingual epithelium and taste buds. Taste buds were confirmed as the source of BDNF regulating innervation. We conclude that BDNF expressed in taste receptor cells is required to maintain normal levels of innervation in adulthood. PMID:26730405
Taste Bud-Derived BDNF Is Required to Maintain Normal Amounts of Innervation to Adult Taste Buds.
Meng, Lingbin; Ohman-Gault, Lisa; Ma, Liqun; Krimm, Robin F
2015-01-01
Gustatory neurons transmit chemical information from taste receptor cells, which reside in taste buds in the oral cavity, to the brain. As adult taste receptor cells are renewed at a constant rate, nerve fibers must reconnect with new taste receptor cells as they arise. Therefore, the maintenance of gustatory innervation to the taste bud is an active process. Understanding how this process is regulated is a fundamental concern of gustatory system biology. We speculated that because brain-derived neurotrophic factor (BDNF) is required for taste bud innervation during development, it might function to maintain innervation during adulthood. If so, taste buds should lose innervation when Bdnf is deleted in adult mice. To test this idea, we first removed Bdnf from all cells in adulthood using transgenic mice with inducible CreERT2 under the control of the Ubiquitin promoter. When Bdnf was removed, approximately one-half of the innervation to taste buds was lost, and taste buds became smaller because of the loss of taste bud cells. Individual taste buds varied in the amount of innervation each lost, and those that lost the most innervation also lost the most taste bud cells. We then tested the idea that that the taste bud was the source of this BDNF by reducing Bdnf levels specifically in the lingual epithelium and taste buds. Taste buds were confirmed as the source of BDNF regulating innervation. We conclude that BDNF expressed in taste receptor cells is required to maintain normal levels of innervation in adulthood.
Meng, Min; Zhao, Xinhan; Dang, Yonghui; Ma, Jingyuan; Li, Lixu; Gu, Shanzhi
2013-06-26
It is well established that brain-derived neurotrophic factor (BDNF) plays a pivotal role in brain plasticity-related processes, such as learning, memory and drug addiction. However, changes in expression of BDNF splice variants after acquisition, extinction and reinstatement of cue-elicited morphine seeking behavior have not yet been investigated. Real-time PCR was used to assess BDNF splice variants (I, II, IV and VI) in various brain regions during acquisition, extinction and reinstatement of morphine-conditioned place preference (CPP) in mice. Repeated morphine injections (10mg/kg, i.p.) increased expression of BDNF splice variants II, IV and VI in the hippocampus, caudate putamen (CPu) and nucleus accumbens (NAcc). Levels of BDNF splice variants decreased after extinction training and continued to decrease during reinstatement induced by a morphine priming injection (10mg/kg, i.p.). However, after reinstatement induced by exposure to 6 min of forced swimming (FS), expression of BDNF splice variants II, IV and VI was increased in the hippocampus, CPu, NAcc and prefrontal cortex (PFC). After reinstatement induced by 40 min of restraint, expression of BDNF splice variants was increased in PFC. These results show that exposure to either morphine or acute stress can induce reinstatement of drug-seeking, but expression of BDNF splice variants is differentially affected by chronic morphine and acute stress. Furthermore, BDNF splice variants II, IV and VI may play a role in learning and memory for morphine addiction in the hippocampus, CPu and NAcc. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.
Zhang, Jingmiao; Mu, Xiali; Breker, Dane A; Li, Ying; Gao, Zongliang; Huang, Yonglu
2017-01-01
Statins have a positive impact on ischemic stroke outcome. It has been reported that statin have neuroprotective function after ischemic stroke in addition to lipid-lowering effect in animal model. However, the neuroprotective function of statin after stroke has not been confirmed in clinical studies. The aim of this study was to evaluate in a clinical model if statins induce neuroprotection after stroke. We, therefore, assessed serum brain-derived neurotrophic factor (BDNF) levels and functional recovery in atherothrombotic stroke patients and investigated their relationship with atorvastatin treatment. Seventy-eight patients with atherothrombotic stroke were enrolled and randomly assigned to atorvastatin treatment group or placebo control group. Neurological function after stroke was assessed with the National Institutes of Health Stroke Scale, modified Rankin Scale (mRS) and Barthel Index (BI). The serum BDNF levels were both measured at 1 day and 6 weeks after stroke. Linear regression was used to assess the association between BDNF levels and neurological function scores. The mRS and BI were markedly improved in the atorvastatin group when compared to placebo at 6 weeks after stroke. The serum BDNF levels in atorvastatin group were significantly elevated by 6 weeks after stroke and higher than the BDNF levels in controls. In addition, the serum BDNF levels significantly correlated with mRS and BI after stroke. Our results demonstrated that atorvastatin treatment was associated with the increased BDNF level and improved functional recovery after atherothrombotic stroke. This study indicates that atorvastatin-related elevation in the BDNF level may promote functional recovery in stroke patients.
Fumagalli, Fabio; Calabrese, Francesca; Luoni, Alessia; Shahid, Mohammed; Racagni, Giorgio; Riva, Marco A
2012-02-01
Brain derived neurotrophic factor (BDNF) is a key mediator of brain plasticity. The modulation of its expression and function is important for cognition and represents a key strategy to enhance neuronal resilience. Within this context, there exists a close interaction between glutamatergic neurotransmission and BDNF activity towards regulating cellular homeostasis and plasticity. The aim of the current study was to investigate the ability of the AMPA receptor potentiator Org 26576 to modulate BDNF expression in selected brain regions under basal conditions or in response to an acute swim stress. Rats subjected to a single intraperitoneal injection with Org 26576 (10mg/kg) or saline were exposed to a swim stress session (5 min) and sacrificed 15 min after the end of stress. Real-time PCR assay was used to determine changes in BDNF transcription in different brain regions. Total BDNF mRNA levels were significantly increased in the hippocampus of animals exposed to the combination of Org 26576 and stress whereas, in prefrontal and frontal cortices, BDNF mRNA levels were modulated by the acute stress, independently from drug treatment. The analysis of BDNF transcripts in the hippocampus revealed a major contribution of exons I and IV. Our results suggest that AMPA receptor potentiation by Org 26576 exerts a positive modulatory influence on BDNF expression during ongoing neuronal activity. Given that these mechanisms are critical for neuronal plasticity, we hypothesized that such changes may facilitate learning/coping mechanisms associated with a mild stressful experience. Copyright © 2011 Elsevier Ltd. All rights reserved.
BDNF val66met Polymorphism Affects Aging of Multiple Types of Memory
Kennedy, Kristen M.; Reese, Elizabeth D.; Horn, Marci M.; Sizemore, April N.; Unni, Asha K.; Meerbrey, Michael E.; Kalich, Allan G.; Rodrigue, Karen M.
2014-01-01
The BDNF val66met polymorphism (rs6265) influences activity-dependent secretion of brain-derived neurotrophic factor in the synapse, which is crucial for learning and memory. Individuals homozygous or heterozygous for the met allele have lower BDNF secretion than val homozygotes and may be at risk for reduced declarative memory performance, but it remains unclear which types of declarative memory may be affected and how aging of memory across the lifespan is impacted by the BDNF val66met polymorphism. This cross-sectional study investigated the effects of BDNF polymorphism on multiple indices of memory (item, associative, prospective, subjective complaints) in a lifespan sample of 116 healthy adults aged 20-93 years. Advancing age showed a negative effect on item, associative and prospective memory, but not on subjective memory complaints. For item and prospective memory, there were significant age x BDNF group interactions, indicating the adverse effect of age on memory performance across the lifespan was much stronger in the BDNF met carriers than for the val homozygotes. BDNF met carriers also endorsed significantly greater subjective memory complaints, regardless of age, and showed a trend (p < .07) toward poorer associative memory performance compared to val homozygotes. These results suggest that genetic predisposition to the availability of brain-derived neurotrophic factor, by way of the BDNF val66met polymorphism, exerts an influence on multiple indices of episodic memory – in some cases in all individuals regardless of age (subjective memory and perhaps associative memory), in others as an exacerbation of age-related differences in memory across the lifespan (item and prospective memory). PMID:25264352
D’Sa, Carrol; Fox, Helen C.; Hong, Adam K.; Dileone, Ralph J.; Sinha, Rajita
2011-01-01
Background Cocaine dependence is associated with high relapse rates but few biological markers associated with relapse outcomes have been identified. Extending preclinical research showing a role for central Brain Derived Neurotrophic Factor (BDNF) in cocaine seeking, we examined whether serum BDNF is altered in abstinent, early recovering, cocaine-dependent individuals and if it is predictive of subsequent relapse risk. Methods Serum samples were collected across three consecutive mornings from 35 treatment-engaged, 3 week abstinent cocaine-dependent inpatients (17M/18F) and 34 demographically matched hospitalized healthy control participants (17M/17F). Cocaine dependent individuals were prospectively followed on days 14, 30 and 90 post-treatment discharge to assess cocaine relapse outcomes. Time to cocaine relapse, number of days of cocaine use (frequency), and amount of cocaine use (quantity) were the main outcome measures. Results High correlations in serum BDNF across days indicated reliable and stable serum BDNF measurements. Significantly higher mean serum BDNF levels were observed for the cocaine-dependent patients compared to healthy control participants (p<.001). Higher serum BDNF levels predicted shorter subsequent time to cocaine relapse (hazard ratio: HR: 1.09, p<.05), greater number of days (p<.05) and higher total amounts of cocaine used (p = .05). Conclusions High serum BDNF levels in recovering cocaine-dependent individuals are predictive of future cocaine relapse outcomes and may represent a clinically relevant marker of relapse risk. These data suggest that serum BDNF levels may provide an indication of relapse risk during early recovery from cocaine dependence. PMID:21741029
Filho, Paulo Ricardo Marques; Vercelino, Rafael; Cioato, Stefania Giotti; Medeiros, Liciane Fernandes; de Oliveira, Carla; Scarabelot, Vanessa Leal; Souza, Andressa; Rozisky, Joanna Ripoll; Quevedo, Alexandre da Silva; Adachi, Lauren Naomi Spezia; Sanches, Paulo Roberto S; Fregni, Felipe; Caumo, Wolnei; Torres, Iraci L S
2016-01-04
Neuropathic pain (NP) is a chronic pain modality that usually results of damage in the somatosensory system. NP often shows insufficient response to classic analgesics and remains a challenge to medical treatment. The transcranial direct current stimulation (tDCS) is a non-invasive technique, which induces neuroplastic changes in central nervous system of animals and humans. The brain derived neurotrophic factor plays an important role in synaptic plasticity process. Behavior changes such as decreased locomotor and exploratory activities and anxiety disorders are common comorbidities associated with NP. Evaluate the effect of tDCS treatment on locomotor and exploratory activities, and anxiety-like behavior, and peripheral and central BDNF levels in rats submitted to neuropathic pain model. Rats were randomly divided: Ss, SsS, SsT, NP, NpS, and NpT. The neuropathic pain model was induced by partial sciatic nerve compression at 14 days after surgery; the tDCS treatment was initiated. The animals of treated groups were subjected to a 20 minute session of tDCS, for eight days. The Open Field and Elevated Pluz Maze tests were applied 24 h (phase I) and 7 days (phase II) after the end of tDCS treatment. The serum, spinal cord, brainstem and cerebral cortex BDNF levels were determined 48 h (phase I) and 8 days (phase II) after tDCS treatment by ELISA. The chronic constriction injury (CCI) induces decrease in locomotor and exploratory activities, increases in the behavior-like anxiety, and increases in the brainstem BDNF levels, the last, in phase II (one-way ANOVA/SNK, P<0.05 for all). The tDCS treatment already reverted all these effects induced by CCI (one-way ANOVA/SNK, P<0.05 for all). Furthermore, the tDCS treatment decreased serum and cerebral cortex BDNF levels and it increased these levels in the spinal cord in phase II (one-way ANOVA/SNK, P<0.05). tDCS reverts behavioral alterations associated to neuropathic pain, indicating possible analgesic and anxiolytic tDCS effects. tDCS treatment induces changes in the BDNF levels in different regions of the central nervous system (CNS), and this effect can be attributed to different cellular signaling activations. Copyright © 2015 Elsevier Inc. All rights reserved.
BDNF is essential to promote persistence of long-term memory storage
Bekinschtein, Pedro; Cammarota, Martín; Katche, Cynthia; Slipczuk, Leandro; Rossato, Janine I.; Goldin, Andrea; Izquierdo, Ivan; Medina, Jorge H.
2008-01-01
Persistence is a characteristic attribute of long-term memories (LTMs). However, little is known about the molecular mechanisms that mediate this process. We recently showed that persistence of LTM requires a late protein synthesis- and BDNF-dependent phase in the hippocampus. Here, we show that intrahippocampal delivery of BDNF reverses the deficit in memory persistence caused by inhibition of hippocampal protein synthesis. Importantly, we demonstrate that BDNF induces memory persistence by itself, transforming a nonlasting LTM trace into a persistent one in an ERK-dependent manner. Thus, BDNF is not only necessary, but sufficient to induce a late postacquisition phase in the hippocampus essential for persistence of LTM storage. PMID:18263738
Văcăraş, Vitalie; Major, Zoltán Zsigmond; Buzoianu, Anca Dana
Our main purpose was to investigate if the chronic treatment with the disease-modifying drug natalizumab shows quantifiable effect on BDNF levels in multiple sclerosis patients. BDNF plasma concentration was evaluated using enzyme-linked immunosorbent assay in healthy individuals, not treated multiple sclerosis patients and patients treated with natalizumab. Multiple sclerosis patients have a significantly lower amount of peripheral BDNF than healthy individuals. Patients treated with natalizumab have significantly higher BDNF levels than not treated patients. Chronic natalizumab treatment is associated with significantly increased plasma BDNF concentration in multiple sclerosis. Copyright © 2017 Polish Neurological Society. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.
2017-07-29
exercise prescription and training. 15. SUBJECT TERMS cognitive, physical training, BDNF, Val66Val, Val66Met, VO2Max 16. SECURITY CLASSIFICATION...Key Words: Functional agility training, physical training, cognitive upregulation, brain-derived neurotrophic factor, BDNF, Val66Val, Val66Met...cognitive output [21,29,30]. Met carriers may also experience better physical function recovery post-brain injury event [31]. Importantly, exercise may
Pizarro, Jose M; Chang, Wenling E; Bah, Mariama J; Wright, Linnzi K M; Saviolakis, George A; Alagappan, Arun; Robison, Christopher L; Shah, Jinesh D; Meyerhoff, James L; Cerasoli, Douglas M; Midboe, Eric G; Lumley, Lucille A
2012-04-01
The highly toxic organophosphorus compound VX [O-ethyl S-[2-(diisopropylamino)ethyl]methylphosphonate] is an irreversible inhibitor of the enzyme acetylcholinesterase (AChE). Prolonged inhibition of AChE increases endogenous levels of acetylcholine and is toxic at nerve synapses and neuromuscular junctions. We hypothesized that repeated exposure to sublethal doses of VX would affect genes associated with cell survival, neuronal plasticity, and neuronal remodeling, including brain-derived neurotrophic factor (BDNF). We examined the time course of BDNF expression in C57BL/6 mouse brain following repeated exposure (1/day × 5 days/week × 2 weeks) to sublethal doses of VX (0.2 LD(50) and 0.4 LD(50)). BDNF messenger RNA expression was significantly (p < 0.05) elevated in multiple brain regions, including the dentate gyrus, CA3, and CA1 regions of the hippocampal formation, as well as the piriform cortex, hypothalamus, amygdala, and thalamus, 72 h after the last 0.4 LD(50) VX exposure. BDNF protein expression, however, was only increased in the CA3 region of the hippocampus. Whether increased BDNF in response to sublethal doses of VX exposure is an adaptive response to prevent cellular damage or a precursor to impending brain damage remains to be determined. If elevated BDNF is an adaptive response, exogenous BDNF may be a potential therapeutic target to reduce the toxic effects of nerve agent exposure.
Localization of BDNF expression in the developing brain of zebrafish
De Felice, E; Porreca, I; Alleva, E; De Girolamo, P; Ambrosino, C; Ciriaco, E; Germanà, A; Sordino, P
2014-01-01
The brain-derived neurotrophic factor (BDNF) gene is expressed in differentiating and post-mitotic neurons of the zebrafish embryo, where it has been implicated in Huntington's disease. Little is known, however, about the full complement of neuronal cell types that express BDNF in this important vertebrate model. Here, we further explored the transcriptional profiles during the first week of development using real-time quantitative polymerase chain reaction (RT-qPCR) and whole-mount in situ hybridization (WISH). RT-qPCR results revealed a high level of maternal contribution followed by a steady increase of zygotic transcription, consistent with the notion of a prominent role of BDNF in neuronal maturation and maintenance. Based on WISH, we demonstrate for the first time that BDNF expression in the developing brain of zebrafish is structure specific. Anatomical criteria and co-staining with genetic markers (shh, pax2a, emx1, krox20, lhx2b and lhx9) visualized major topological domains of BDNF-positive cells in the pallium, hypothalamus, posterior tuberculum and optic tectum. Moreover, the relative timing of BDNF transcription in the eye and tectum may illustrate a mechanism for coordinated development of the retinotectal system. Taken together, our results are compatible with a local delivery and early role of BDNF in the developing brain of zebrafish, adding basic knowledge to the study of neurotrophin functions in neural development and disease. PMID:24588510
Localization of BDNF expression in the developing brain of zebrafish.
De Felice, E; Porreca, I; Alleva, E; De Girolamo, P; Ambrosino, C; Ciriaco, E; Germanà, A; Sordino, P
2014-05-01
The brain-derived neurotrophic factor (BDNF) gene is expressed in differentiating and post-mitotic neurons of the zebrafish embryo, where it has been implicated in Huntington's disease. Little is known, however, about the full complement of neuronal cell types that express BDNF in this important vertebrate model. Here, we further explored the transcriptional profiles during the first week of development using real-time quantitative polymerase chain reaction (RT-qPCR) and whole-mount in situ hybridization (WISH). RT-qPCR results revealed a high level of maternal contribution followed by a steady increase of zygotic transcription, consistent with the notion of a prominent role of BDNF in neuronal maturation and maintenance. Based on WISH, we demonstrate for the first time that BDNF expression in the developing brain of zebrafish is structure specific. Anatomical criteria and co-staining with genetic markers (shh, pax2a, emx1, krox20, lhx2b and lhx9) visualized major topological domains of BDNF-positive cells in the pallium, hypothalamus, posterior tuberculum and optic tectum. Moreover, the relative timing of BDNF transcription in the eye and tectum may illustrate a mechanism for coordinated development of the retinotectal system. Taken together, our results are compatible with a local delivery and early role of BDNF in the developing brain of zebrafish, adding basic knowledge to the study of neurotrophin functions in neural development and disease. © 2014 Anatomical Society.
Delphinidin inhibits BDNF-induced migration and invasion in SKOV3 ovarian cancer cells.
Lim, Won-Chul; Kim, Hyunhee; Kim, Young-Joo; Park, Seung-Ho; Song, Ji-Hye; Lee, Ki Heon; Lee, In Ho; Lee, Yoo-Kyung; So, Kyeong A; Choi, Kyung-Chul; Ko, Hyeonseok
2017-12-01
Brain-derived neurotrophic factor (BDNF), the TrkB ligand, is associated with aggressive malignant behavior, including migration and invasion, in tumor cells and a poor prognosis in patients with various types of cancer. Delphinidin is a diphenylpropane-based polyphenolic ring structure-harboring compound, which exhibits a wide range of pharmacological activities, anti-tumor, anti-oxidant, anti-inflammatory, anti-angiogenic and anti-mutagenic activity. However, the possible role of delphinidin in the cancer migration and invasion is unclear. We investigated the suppressive effect of delphinidin on the cancer migration and invasion. Thus, we found that BDNF enhanced cancer migration and invasion in SKOV3 ovarian cancer cell. To exam the inhibitory role of delphinidin in SKOV3 ovarian cancer migration and invasion, we investigated the use of delphinidin as inhibitors of BDNF-induced motility and invasiveness in SKOV3 ovarian cancer cells in vitro. Here, we found that delphinidin prominently inhibited the BDNF-induced increase in cell migration and invasion of SKOV3 ovarian cancer cells. Furthermore, delphinidin remarkably inhibited BDNF-stimulated expression of MMP-2 and MMP-9. Also, delphinidin antagonized the phosphorylation of Akt and nuclear translocation of NF-κB permitted by the BDNF in SKOV3 ovarian cancer cells. Taken together, our findings provide new evidence that delphinidin suppressed the BDNF-induced ovarian cancer migration and invasion through decreasing of Akt activation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Oztasyonar, Yunus
2017-04-01
This study aimed to compare serum brain-derived neurotrophic factor (BDNF) levels "which contributes in both neuron development/regeneration" between combat sport braches, which requires high attention and concentration and can lead micro and macro brain trauma, and athleticism, which requires durability in competition. The study design included 4 groups. Group 1 had sedentary participants, and group 2 athletes (middle and long runners) who exercised for two 2-hour daily training sessions 6 days a week. group 3 included boxers, and group 4 taekwondo fighters. We investigated changes in the blood BDNF levels of taekwondo fighters, boxers, and athletes before and after training and compared them among each other and with measurements of sedentary controls. All athletes had higher basal BDNF levels than sedentary participants. Boxers and taekwondo athletes had especially high basal BDNF levels. When we compared different sports branch each other Pre- and post- training BDNF values are ranked as follows: taekwondo > boxing > athletes > sedentary. In sport branches such as combat sports and athletes, serum BDNF levels have been demonstrated to be higher after training than before. In addition, serum BDNF levels were higher in taekwondo fighters and boxers than athletes. BDNF might have a role in the protection mechanism against brain damage or contributes in occurrence and maintenance of high attention and concentration especially among combat sports.
Chung, Chiu-Yen; Lin, Martin Hsiu-Chu; Lee, I-Neng; Lee, Tsong-Hai; Lee, Ming-Hsueh; Yang, Jen-Tsung
2017-01-01
Brain derived neurotrophic factor (BDNF) can induce neural differentiation in stem cells and has the potential for repair of the nervous system. In this study, a polysorbate 80-coated polybutylcyanoacrylate nanocarrier (PS80 PBCA NC) was constructed to deliver plasmid DNAs (pDNAs) containing BDNF gene attached to a hypoxia-responsive element (HRE-cmvBDNF). The hypoxia-sensing mechanism of BDNF expression and inductiveness of the nano-formulation on mouse induced pluripotent stem cells (iPSCs) to differentiate into neurons following hypoxia was tested in vitro with immunofluorescent staining and Western blotting. The HRE-cmvBDNF appeared to adsorb onto the surface of PS80 PBCA NC, with a resultant mean diameter of 92.6 ± 1.0 nm and zeta potential of −14.1 ± 1.1 mV. HIF-1α level in iPSCs was significantly higher in hypoxia, which resulted in a 51% greater BDNF expression when transfected with PS80 PBCA NC/HRE-cmvBDNF than those without hypoxia. TrkB and phospho-Akt were also elevated which correlated with neural differentiation. The findings suggest that PS80 PBCA NC too can be endocytosed to serve as an efficient vector for genes coupled to the HRE in hypoxia-sensitive cells, and activation of the PI3/Akt pathway in iPSCs by BDNF is capable of neural lineage specification. PMID:28335495
Ozer, A B; Demirel, I; Erhan, O L; Firdolas, F; Ustundag, B
2015-10-01
Serum Brain-Derived Neurotrophic Factor (BDNF) levels are associated with neurotransmission and cognitive functions. The goal of this study was to examine the effect of general anesthesia on BDNF levels. It was also to reveal whether this effect had a relationship with the surgical stress response or not. The study included 50 male patients, age 20-40, who were scheduled to have inguinoscrotal surgery, and who were in the ASA I-II risk group. The patients were divided into two groups according to the anesthesia techniques used: general (GA) and spinal (SA). In order to measure serum BDNF, cortisol, insulin and glucose levels, blood samples were taken at four different times: before and after anesthesia, end of the surgery, and before transferal from the recovery room. Serum BDNF levels were significantly low (p < 0.01), cortisol and glucose levels were higher (p < 0.05 and p < 0.01) in Group GA compared with Group SA. No significant difference was detected between the groups in terms of serum insulin levels. There was no correlation between serum BDNF and the stress hormones. Our findings suggested that general anesthetics had an effect on serum BDNF levels independent of the stress response. In future, BDNF could be used as biochemical parameters of anesthesia levels, but studies with a greater scope should be carried out to present the relationship between anesthesia and neurotrophins.
Designing modulators of 5-hydroxytryptamine signaling to treat abuse disorders.
van de Wiel, Sandra M W; Verheij, Michel M; Homberg, Judith R
2014-11-01
There are currently no treatments approved by the FDA to effectively treat cocaine dependence. Research of recent years has gradually revealed the importance of 5-hydroxytryptamine (5-HT) in the reinforcing and rewarding effects of cocaine and the potential for relapse. Brain-derived neurotropic factor (BDNF) is an important modulator of the serotonergic system and 5-HT modulates BDNF expression. Their reciprocal interaction is of crucial importance for synaptic plasticity during long-term cocaine intake. Thus, agents modifying BDNF-5-HT interactions might have therapeutic potential for cocaine dependence by reversing the altered brain structure that underlies relapse after cocaine withdrawal. On the basis of the available literature, the authors propose an interaction between BDNF and the serotonergic system in the response to cocaine and during cocaine intake. Furthermore, they discuss putative therapies that are based on 5-HT and BDNF. Recent studies are beginning to elucidate the role of 5-HT and BDNF in cocaine addiction. Additionally, animal studies modeling addiction-like drug intake will only further help to gain a better understanding of how to treat cocaine addiction. Based on the current evidence, the authors believe that BDNF, as a modulator of the serotonergic pathway, or 5-HT, as a modulator of the BDNF system, represent a valuable target to treat drug addiction, which may yield novel therapeutics in the future.
Post-synaptic BDNF-TrkB Signaling in Synapse Maturation, Plasticity and Disease
Yoshii, Akira; Constantine-Paton, Martha
2010-01-01
Brain-derived neurotrophic factor (BDNF) is a prototypic neurotrophin that regulates diverse developmental events from the selection of neural progenitors to the terminal dendritic differentiation and connectivity of neurons. We focus here on activity-dependent synaptic regulation by BDNF and its receptor, full length TrkB. BDNF-TrkB signaling is involved in transcription, translation, and trafficking of proteins during various phases of synaptic development and has been implicated in several forms of synaptic plasticity. These functions are carried out by a combination of the three signaling cascades triggered when BDNF binds TrkB: the mitogen-activated protein kinase (MAPK), the phospholipase Cγ (PLC PLCγ), and the phosphatidylinositol 3-kinase (PI3K) pathways. MAPK and PI3K play crucial roles in both translation and/or trafficking of proteins induced by synaptic activity while PLCγ regulates intracellular Ca2+ that can drive transcription via cyclic AMP and a Protein Kinase C. Conversely, the abnormal regulation of BDNF is implicated in various developmental and neurodegenerative diseases that perturb neural development and function. We will discuss the current state of understanding BDNF signaling in the context of synaptic development and plasticity with a focus on the post-synaptic cell and close with the evidence that basic mechanisms of BDNF function still need to be understood in order to effectively treat genetic disruptions of these pathways that cause devastating neurodevelopmental diseases. PMID:20186705
Williams, John; Finn, Karen; Melvin, Vincent; Meagher, David; McCarthy, Geraldine; Adamis, Dimitrios
2017-01-01
Limited studies of the association between BDNF levels and delirium have given inconclusive results. This prospective, longitudinal study examined the relationship between BDNF levels and the occurrence of and recovery from delirium. Participants were assessed twice weekly using MoCA, DRS-R98, and APACHE II scales. BDNF levels were estimated using an ELISA method. Delirium was defined with DRS-R98 (score > 16) and recovery from delirium as ≥2 consecutive assessments without delirium prior to discharge. We identified no difference in BDNF levels between those with and without delirium. Excluding those who never developed delirium ( n = 140), we examined the association of BDNF levels and other variables with delirium recovery. Of 58 who experienced delirium, 39 remained delirious while 19 recovered. Using Generalized Estimating Equations models we found that BDNF levels (Wald χ 2 = 7.155; df: 1, p = 0.007) and MoCA (Wald χ 2 = 4.933; df: 1, p = 0.026) were associated with recovery. No significant association was found for APACHE II, dementia, age, or gender. BDNF levels do not appear to be directly linked to the occurrence of delirium but recovery was less likely in those with continuously lower levels. No previous study has investigated the role of BDNF in delirium recovery and these findings warrant replication in other populations.
Focus on ECT seizure quality: serum BDNF as a peripheral biomarker in depressed patients.
Bumb, Jan Malte; Aksay, Suna Su; Janke, Christoph; Kranaster, Laura; Geisel, Olga; Gass, Peter; Hellweg, Rainer; Sartorius, Alexander
2015-04-01
Electroconvulsive therapy (ECT) is a well-established, safe and effective treatment in severest or drug-resistant affective disorders. The potential relation between any peripheral biological marker and the seizure quality as a surrogate for treatment efficacy has not been investigated so far. We prospectively examined serum brain-derived neurotrophic factor (BDNF) levels in 20 patients with major depression before and after electroconvulsive therapy. A seizure quality sum score for every ECT session was build up on the basis of the seizure duration, seizure amplitude, central inhibition, interhemispheric coherence and sympathetic activation. Serum BDNF levels were significantly higher after ECT (P = 0.036). In the linear regression analysis, a significant correlation of the serum BDNF levels and the time between the last ECT and the blood withdrawal (P = 0.01) was observed. The ANOVA revealed a significant influence of the interval between the last ECT and the blood withdrawal (P = 0.0017) as well as the seizure quality (P = 0.038) on the variance of BDNF serum levels. Our data corroborate the neurotrophin hypothesis suggesting an ECT-induced central BDNF rise leading to a delayed (>6 days) and increased equilibrium of the peripheral BDNF. The association of seizure adequacy with a BDNF rise might underline the importance of monitoring seizure quality markers in daily practice.
Anomal, Renata; de Villers-Sidani, Etienne; Merzenich, Michael M; Panizzutti, Rogerio
2013-01-01
Sensory experience powerfully shapes cortical sensory representations during an early developmental "critical period" of plasticity. In the rat primary auditory cortex (A1), the experience-dependent plasticity is exemplified by significant, long-lasting distortions in frequency representation after mere exposure to repetitive frequencies during the second week of life. In the visual system, the normal unfolding of critical period plasticity is strongly dependent on the elaboration of brain-derived neurotrophic factor (BDNF), which promotes the establishment of inhibition. Here, we tested the hypothesis that BDNF signaling plays a role in the experience-dependent plasticity induced by pure tone exposure during the critical period in the primary auditory cortex. Elvax resin implants filled with either a blocking antibody against BDNF or the BDNF protein were placed on the A1 of rat pups throughout the critical period window. These pups were then exposed to 7 kHz pure tone for 7 consecutive days and their frequency representations were mapped. BDNF blockade completely prevented the shaping of cortical tuning by experience and resulted in poor overall frequency tuning in A1. By contrast, BDNF infusion on the developing A1 amplified the effect of 7 kHz tone exposure compared to control. These results indicate that BDNF signaling participates in the experience-dependent plasticity induced by pure tone exposure during the critical period in A1.
Gururajan, A; Hill, R A; van den Buuse, M
2015-01-22
Brain-derived neurotrophic factor (BDNF) is a widely expressed neurotrophin involved in neurodevelopment, neuroprotection and synaptic plasticity. It is also implicated in a range of psychiatric disorders such as schizophrenia, depression and post-traumatic stress disorder. Stress during adolescence/young adulthood can have long-term psychiatric and cognitive consequences, however it is unknown how altered BDNF signaling is involved in such effects. Here we investigated whether a congenital deficit in BDNF availability in rats increases vulnerability to the long-term effects of the stress hormone, corticosterone (CORT). Compared to wildtype (WT) littermates, BDNF heterozygous (HET) rats showed higher body weights and minor developmental changes, such as reduced relative brain and pituitary weight. These animals furthermore showed deficits in short-term spatial memory in the Y-maze and in prepulse inhibition and startle, but not in object-recognition memory. CORT treatment induced impairments in novel-object recognition memory in both genotypes but disrupted fear conditioning extinction learning in BDNF HET rats only. These results show selective behavioral changes in BDNF HET rats, at baseline or after chronic CORT treatment and add to our understanding of the role of BDNF and its interaction with stress. Importantly, this study demonstrates the utility of the BDNF HET rat in investigations into the pathophysiology of various psychiatric disorders. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.
Altered Episodic Memory in Introverted Young Adults Carrying the BDNFMet Allele.
Bombardier, Andreanne; Beauchemin, Maude; Gosselin, Nadia; Poirier, Judes; De Beaumont, Louis
2016-11-12
While most studies have been interested in the distinct, predisposing roles of the common BDNF Val66Met variant and extraversion personality traits on episodic memory, very few studies have looked at the synergistic effects of genetic and personality factors to account for cognitive variance. This is surprising considering recent reports challenging the long-held belief that the BDNF Met variant negatively impacts cognitive function. A total of 75 young healthy adults (26 of them carried at least one copy of the BDNF Met allele) took part in this study consisting of genetic profiling from saliva, personality assessment using the Revised NEO Personality Inventory (NEO PI-R) and a short battery of neuropsychological tests. An ANOVA revealed that BDNF Met carriers were significantly less extraverted than BDNF Val carriers ( F 1,73 = 9.54; p < 0.01; η p ² = 0.126). Moreover, extraversion was found to significantly moderate the relationship between the BDNF genotype and episodic memory performance ( p = 0.03). Subsequent correlational analyses yielded a strong and significant correlation ( r = 0.542; p < 0.005) between introversion and delayed episodic memory specific to BDNF Met individuals. The present study suggests that introversion and the BDNF Met variant synergistically interact to reduce episodic memory performance in healthy, young adults. These findings reaffirm that a more accurate explanation of cognitive variance can be achieved by looking at the synergistic effects of genotype and phenotype factors.
Jevtović, Saša; Karlović, Dalibor; Mihaljević-Peleš, Alma; Šerić, Vesna; Vrkić, Nada; Jakšić, Nenad
2011-12-01
The aim of this study was to compare the concentration of serum Brain-derived neurotrophic factor (BDNF) in patients suffering from major depressive disorder (MDD) considering the severity of MDD episode defined by the Hamilton rating scale for depression (HAMD-17). The other aim was to research the connection between serum BDNF and the symptomatic dimensions of MDD. The study includes 139 participants with major depressive disorder (MDD). Diagnosis of MDD was set by DSM-IV-TR criteria. The severity of MDD was estimated with HAM-D-17 in the manner that mild episode was diagnosed if the score on HAMD-17 was up to 18, moderately severe 18-25 and severe over 25. Concentration of BDNF was determined by the ELISA method. This research could not find a difference in BDNF concentration considering the severity of the depressive disorder in groups suffering from mild, moderately severe and severe episodes of MDD (F=1.816; p=0.169). Factor analysis of HAMD-17 extracted four dimensions of depressive symptoms. None of the symptomatic dimensions was significantly related to BDNF concentration. Results of this study indicate that serum BDNF levels are not related to the severity of depression and its specific symptomatic dimensions. These findings support the idea of a complex relationship between BDNF concentration at the periphery and in the CNS.
Sexual dimorphism in BDNF signaling after neonatal hypoxia-ischemia and treatment with necrostatin-1
Chavez-Valdez, Raul; Martin, Lee J.; Razdan, Sheila; Gauda, Estelle B.; Northington, Frances J.
2014-01-01
Brain injury due to neonatal hypoxia-ischemia (HI) is more homogenously severe in male than in female mice. Because, necrostatin-1 (nec-1) prevents injury progression only in male mice, we hypothesized that changes in BDNF signaling after HI and nec-1 are also sex-specific providing differential conditions to promote recovery of those more severely injured. The increased aromatization of testosterone in male mice during early development and the link between 17-β-estradiol (E2) levels and BDNF transcription substantiate this hypothesis. Hence, we aimed to investigate if sexual differences in BDNF signaling existed in forebrain and diencephalon after HI and HI/ nec-1 and their correlation with estrogen receptors (ER). C57B6 mice (p7) received nec-1(0.1 μL[8μM]) or vehicle (veh) intracerebroventricularly after HI. At 24h after HI, BDNF levels increased in both sexes in forebrain without evidence of TrkB activation. At 96h after HI, BDNF levels in forebrain decreased below those seen in control mice of both sexes. Additionally, only in female mice, truncated TrkB (Tc.TrkB) and p75ntr levels increased in forebrain and diencephalon. In both, forebrain and diencephalon, nec-1 treatment increased BDNF levels and TrkB activation in male mice while, prevented Tc.TrkB and p75ntr increases in female mice. While E2 levels were unchanged by HI or HI/ nec-1 in either sex or treatment, ERα: ERβ ratios were increased in diencephalon of nec-1 treated male mice and directly correlated with BDNF levels. Neonatal HI produces sex-specific signaling changes in the BDNF system, that are differentially modulated by nec-1. The regional differences in BDNF levels may be a consequence of injury severity after HI, but sexual differences in response to nec-1 after HI may represent a differential thalamo-cortical preservation or alternatively off-target regional effect of nec-1. The biological significance of ERα predominance and its correlation with BDNF levels is still unclear. PMID:24361177
Tarp, Jakob; Andersen, Lars Bo; Gejl, Anne Kær; Huang, Tao; Peijs, Lone; Bugge, Anna
2017-01-01
Background and objective Cardiovascular disease and type 2 diabetes pose a global health burden. Therefore, clarifying the pathology of these risk factors is essential. Previous studies have found positive and negative associations between one or more cardiovascular risk factors and brain-derived neurotrophic factor (BDNF) probably due to diverse methodological approaches when analysing peripheral BDNF levels. Moreover, only a few studies have been performed in youth populations. Consequently, the main objective of this study was to examine the association between serum BDNF and a composite z-score consisting of six cardiovascular risk factors. A secondary aim was to examine the associations between serum BDNF and each of the six risk factors. Methods Four hundred and forty-seven apparently healthy adolescents between 11–17 years of age participated in this cross-sectional study. Cardiorespiratory fitness (CRF), anthropometrics, pubertal status, blood pressure (BP), serum BDNF, high-density lipoprotein cholesterol (HDL-C), triglyceride (TG), blood glucose and insulin were measured. Information about alcohol consumption and socio-economic status was collected via questionnaires. Associations were modelled using linear regression analysis. Results Serum BDNF was positively associated with the composite z-score in the total study sample (standardized beta coefficient (std.β) = 0.10, P = 0.037). In males, serum BDNF was positively associated with the composite z-score (Std. β = 0.14, P = 0.034) and HOMA-IR (Std. β = 0.19, P = 0.004), and negatively associated with CRF (Std. β = -0.15, P = 0.026). In females, BDNF was positively associated with TG (Std. β = 0.14, P = 0.030) and negatively associated with waist circumference (WC) (Std. β = -0.16, P = 0.012). Conclusion Serum BDNF was positively associated with a composite z-score of cardiovascular risk factors. This association seems to be mainly driven by the association between TG, HOMA-IR and serum BDNF, and particularly for males. Further longitudinal research is warranted to determine the temporal relationship between BDNF and cardiovascular risk factors. PMID:29028824
Differential effects of BDNF and neurotrophin 4 (NT4) on endocytic sorting of TrkB receptors.
Proenca, Catia C; Song, Minseok; Lee, Francis S
2016-08-01
Neurotrophins are a family of growth factors playing key roles in the survival, development, and function of neurons. The neurotrophins brain-derived neurotrophic factor (BDNF) and NT4 both bind to and activate TrkB receptors, however, they mediate distinct neuronal functions. The molecular mechanism of how TrkB activation by BDNF and NT4 leads to diverse outcomes is unknown. Here, we report that BDNF and NT4 lead to differential endocytic sorting of TrkB receptors resulting in diverse biological functions in cultured cortical neurons. Fluorescent microscopy and surface biotinylation experiments showed that both neurotrophins stimulate internalization of TrkB with similar kinetics. Exposure to BDNF for 2-3 h reduced the surface pool of TrkB receptors to half, whereas a longer treatment (4-5 h) with NT4 was necessary to achieve a similar level of down-regulation. Although BDNF and NT4 induced TrkB phosphorylation with similar intensities, BDNF induced more rapid ubiquitination and degradation of TrkB than NT4. Interestingly, TrkB receptor ubiquitination by these ligands have substantially different pH sensitivities, resulting in varying degrees of receptor ubiquitination at lower pH levels. Consequently, NT4 was capable of maintaining longer sustained downstream signaling activation that correlated with reduced TrkB ubiquitination at endosomal pH. Thus, by leading to altered endocytic trafficking itineraries for TrkB receptors, BDNF and NT4 elicit differential TrkB signaling in terms of duration, intensity, and specificity, which may contribute to their functional differences in vivo. The neurotrophins, brain-derived neurotrophic factor (BDNF) and neurotrophin-4 (NT4), both bind to and activate TrkB receptors, however, they mediate distinct neuronal functions. Here, we propose that BDNF and NT4 lead to differential endocytic sorting of TrkB receptors resulting in diverse biological functions. BDNF induces more rapid ubiquitination and degradation of TrkB than NT4. Consequently, NT4 is capable of maintaining more sustained signaling downstream of TrkB receptors. © 2016 International Society for Neurochemistry.
Helicobacter pylori eradication and reflux disease onset: did gastric acid get "crazy"?
Zullo, Angelo; Hassan, Cesare; Repici, Alessandro; Bruzzese, Vincenzo
2013-02-14
Gastroesophageal reflux disease (GORD) is highly prevalent in the general population. In the last decade, a potential relationship between Helicobacter pylori (H. pylori) eradication and GORD onset has been claimed. The main putative mechanism is the gastric acid hypersecretion that develops after bacterial cure in those patients with corpus-predominant gastritis. We performed a critical reappraisal of the intricate pathogenesis and clinical data available in this field. Oesophagitis onset after H. pylori eradication in duodenal ulcer patients has been ascribed to a gastric acid hypersecretion, which could develop following body gastritis healing. However, the absence of an acid hypersecretive status in these patients is documented by both pathophysiology and clinical studies. Indeed, duodenal ulcer recurrence is virtually abolished following H. pylori eradication. In addition, intra-oesophageal pH recording studies failed to demonstrated increased acid reflux following bacterial eradication. Moreover, oesophageal manometric studies suggest that H. pylori eradication would reduce--rather than favor--acid reflux into the oesophagus. Finally, data of clinical studies would suggest that H. pylori eradication is not significantly associated with either reflux symptoms or erosive oesophagitis onset, some data suggesting also an advantage in curing the infection when oesophagitis is already present. Therefore, the legend of "crazy acid" remains--as all the others--a fascinating, but imaginary tale.
Differential Effects of Acute and Regular Physical Exercise on Cognition and Affect
Hopkins, Michael E.; Davis, F. Caroline; VanTieghem, Michelle R.; Whalen, Paul J.; Bucci, David J.
2012-01-01
The effects of regular exercise versus a single bout of exercise on cognition, anxiety, and mood were systematically examined in healthy, sedentary young adults who were genotyped to determine brain-derived neurotrophic factor (BDNF) allelic status (i.e., Val-Val or Val66Met polymorphism). Participants were evaluated on novel object recognition (NOR) memory and a battery of mental health surveys before and after engaging in either a) a four-week exercise program, with exercise on the final test day, b) a four-week exercise program, without exercise on the final test day, c) a single bout of exercise on the final test day, or d) remaining sedentary between test days. Exercise enhanced object recognition memory and produced a beneficial decrease in perceived stress, but only in participants who exercised for four weeks including the final day of testing. In contrast, a single bout of exercise did not affect recognition memory and resulted in increased perceived stress levels. An additional novel finding was that the improvements on the NOR task were observed exclusively in participants who were homozygous for the BDNF Val allele, indicating that altered activity-dependent release of BDNF in Met allele carriers may attenuate the cognitive benefits of exercise. Importantly, exercise-induced changes in cognition were not correlated with changes in mood/anxiety, suggesting that separate neural systems mediate these effects. These data in humans mirror recent data from our group in rodents. Taken together, these current findings provide new insights into the behavioral and neural mechanisms that mediate the effects of physical exercise on memory and mental health in humans. PMID:22554780
Correlates of early pregnancy serum brain-derived neurotrophic factor in a Peruvian population.
Yang, Na; Levey, Elizabeth; Gelaye, Bizu; Zhong, Qiu-Yue; Rondon, Marta B; Sanchez, Sixto E; Williams, Michelle A
2017-12-01
Knowledge about factors that influence serum brain-derived neurotrophic factor (BDNF) concentrations during early pregnancy is lacking. The aim of the study is to examine the correlates of early pregnancy serum BDNF concentrations. A total of 982 women attending prenatal care clinics in Lima, Peru, were recruited in early pregnancy. Pearson's correlation coefficient was calculated to evaluate the relation between BDNF concentrations and continuous covariates. Analysis of variance and generalized linear models were used to compare the unadjusted and adjusted BDNF concentrations according to categorical variables. Multivariable linear regression models were applied to determine the factors that influence early pregnancy serum BDNF concentrations. In bivariate analysis, early pregnancy serum BDNF concentrations were positively associated with maternal age (r = 0.16, P < 0.001) and early pregnancy body mass index (BMI) (r = 0.17, P < 0.001), but inversely correlated with gestational age at sample collection (r = -0.21, P < 0.001) and C-reactive protein (CRP) concentrations (r = -0.07, P < 0.05). In the multivariable linear regression model, maternal age (β = 0.11, P = 0.001), early pregnancy BMI (β = 1.58, P < 0.001), gestational age at blood collection (β = -0.33, P < 0.001), and serum CRP concentrations (β = -0.57, P = 0.002) were significantly associated with early pregnancy serum BDNF concentrations. Participants with moderate antepartum depressive symptoms (Patient Health Questionnaire-9 (PHQ-9) score ≥ 10) had lower serum BDNF concentrations compared with participants with no/mild antepartum depressive symptoms (PHQ-9 score < 10). Maternal age, early pregnancy BMI, gestational age, and the presence of moderate antepartum depressive symptoms were statistically significantly associated with early pregnancy serum BDNF concentrations in low-income Peruvian women. Biological changes of CRP during pregnancy may affect serum BDNF concentrations.
Shpak, Alexander A; Guekht, Alla B; Druzhkova, Tatiana A; Kozlova, Ksenia I; Gulyaeva, Natalia V
2018-02-01
To study brain-derived neurotrophic factor (BDNF) content in aqueous humor (AH), lacrimal fluid (LF), and blood serum (BS) in patients with age-related cataract and primary open-angle glaucoma (POAG). BDNF was studied in 57 patients with age-related cataract, 55 patients with POAG combined with cataract, and 29 healthy controls (one eye in each person). AH was sampled during cataract surgery. The levels of BDNF in LF and BS did not differ in cataract patients and controls. The concentration of BDNF (pg/mL) in patients with POAG and cataract was lower than in cataract patients in AH (35.2 ± 14.2 vs. 54.6 ± 29.6, P < 0.001), LF (78.0 ± 25.1 vs. 116.2 ± 43.1, P < 0.001), and BS (19230 ± 5960 vs. 22440 ± 7580, P < 0.02), while the AH/LF ratio was similar (0.46 ± 0.18 vs. 0.48 ± 0.19). The AH level of BDNF declined in early POAG and relatively increased in the next stages of the disease, inversely correlating with visual field index (Pearson's correlation coefficient r = -0.404, P = 0.002) and average retinal nerve fiber layer thickness (r = -0.322, P = 0.018). BDNF contents in LF and BS were also the lowest in early POAG. BDNF in AH strongly correlated with its content in LF (r = 0.66, P < 0.000). A formula was suggested to calculate the AH concentration of BDNF basing on its content in LF. BDNF contents are decreased in AH, LF, and BS of patients with POAG demonstrating a significant decrease in the early POAG and relative increase in the next stages of the disease. A strong correlation exists between BDNF contents in AH and LF.
Lotrich, Francis E; Albusaysi, Salwa; Ferrell, Robert E
2013-01-01
Depression has been associated with inflammation, and inflammation may both influence and interact with growth factors such as brain-derived neurotrophic factor (BDNF). Both the functional Val66Met BDNF polymorphism (rs6265) and BDNF levels have been associated with depression. It is thus plausible that decreased BDNF could mediate and/or moderate cytokine-induced depression. We therefore prospectively employed the Beck Depression Inventory-II (BDI-II), the Hospital Anxiety and Depression Scale (HADS), and the Montgomery–Asberg Depression Rating Scale (MADRS) in 124 initially euthymic patients during treatment with interferon-alpha (IFN-α), assessing serum BDNF and rs6265. Using mixed-effect repeated measures, lower pretreatment BDNF was associated with higher depression symptoms during IFN-α treatment (F144,17.2=6.8; P<0.0001). However, although the Met allele was associated with lower BDNF levels (F1,83.0=5.0; P=0.03), it was only associated with increased MADRS scores (F4,8.9=20.3; P<0.001), and not the BDI-II or HADS. An exploratory comparison of individual BDI-II items indicated that the Met allele was associated with suicidal ideation, sadness, and worthlessness, but not neurovegetative symptoms. Conversely, the serotonin transporter promoter polymorphism (5-HTTLPR) short allele was associated with neurovegetative symptoms such as insomnia, poor appetite and fatigue, but not sadness, worthlessness, or suicidal ideation. IFN-α therapy further lowered BDNF serum levels (F4,37.7=5.0; P=0.003), but this decrease occurred regardless of depression development. The findings thus do not support the hypothesis that decreasing BDNF is the primary pathway by which IFN-α worsens depression. Nonetheless, the results support the hypothesis that BDNF levels influence resiliency against developing inflammatory cytokine-associated depression, and specifically to a subset of symptoms distinct from those influenced by 5-HTTLPR. PMID:23303061
Shirayama, Yukihiko; Yang, Chun; Zhang, Ji-chun; Ren, Qian; Yao, Wei; Hashimoto, Kenji
2015-12-01
Role of brain-derived neurotrophic factor (BDNF)-TrkB signaling in a learned helplessness (LH) model of depression was investigated. LH rats showed a reduction of BDNF in the medial prefrontal cortex (mPFC), CA3, and dentate gyrus (DG) of the hippocampus, whereas LH rats showed an increase in BDNF in the nucleus accumbens (NAc). Furthermore, levels of proBDNF, a BDNF precursor, were higher in the mPFC, but lower in the NAc, of LH rats. A single bilateral infusion of a TrkB agonist 7,8-DHF, but not a TrkB antagonist ANA-12, into the infralimbic (IL) of mPFC, DG, and CA3, but not the prelimbic (PrL) of mPFC, exerted antidepressant effects in LH rats. In contrast, a single bilateral infusion of ANA-12, but not 7,8-DHF, into the core and shell of NAc exerted antidepressant-like effects in LH rats, with more potent effects observed for the NAc core than for NAc shell. Interestingly, a single administration of 7,8-DHF (10mg/kg, i.p.) significantly improved a decreased phosphorylation of TrkB in the mPFC, CA3, and DG of LH rats. Additionally, ANA-12 (0.5mg/kg, i.p.) significantly improved an increased phosphorylation of TrkB in the NAc of LH rats. In conclusion, these results suggest that LH causes depression-like behavior by altering BDNF in the brain regions, and that proBDNF-BDNF processing and transport may be altered in the mPFC-NAc circuit of LH rats. Therefore, TrkB agonists might exert antidepressant effects by stimulating TrkB in the IL, CA3, and DG, while TrkB antagonists might exert antidepressant effects by blocking TrkB in the NAc. Copyright © 2015 Elsevier B.V. and ECNP. All rights reserved.
Nubukpo, Philippe; Ramoz, Nicolas; Girard, Murielle; Malauzat, Dominique; Gorwood, Philip
2017-07-01
Blood brain-derived neurotrophic factor (BDNF) levels are influenced by both addiction and mood disorders, as well as somatic conditions, gender, and genetic polymorphisms, leading to widely varying results. Depressive symptoms and episodes are frequently observed in patients with alcohol use disorder, and vary widely over time, making it a challenge to determine which aspects are specifically involved in variations of serum BDNF levels in this population. We assessed 227 patients with alcohol dependence involved in a detoxification program, at baseline and after a follow-up of 6 months, for the Alcohol Use Disorders Identification Test score, the length of alcohol dependence, and the number of past detoxification programs. The Beck Depression Inventory and information on current tobacco and alcohol use, suicidal ideation, body mass index, age, gender, and psychotropic treatments were also collected. Serum BDNF (ELISA) and 2 genetic polymorphisms of the BDNF gene (Val33Met and rs962369) were analyzed. The presence of the Met allele, 2 markers of the history of alcohol dependence (gamma glutamyl transferase and the number of past treatments in detoxification programs), and the presence of a depressive episode (but not depressive score) were significantly associated with the 2 blood levels of BDNF at baseline and after 6 months. After controlling for baseline BDNF levels, the presence of the Met allele and an ongoing depressive episode were the only variables associated with changes in BNDF levels after 6 months. Low serum BDNF levels are associated with characteristics related to alcohol consumption and mood disorders, and variants of the BDNF gene in alcohol use disorder patients. The factors that most strongly influenced changes in serum BDNF levels following treatment in an alcohol detoxification program were variants of the BDNF gene and ongoing depression. Copyright © 2017 by the Research Society on Alcoholism.
Russo, Francesco; Chimienti, Guglielmina; Clemente, Caterina; Ferreri, Carla; Orlando, Antonella; Riezzo, Giuseppe
2017-03-01
A gluten-free diet (GFD) has been reported to negatively impact the quality of life (QoL) of coeliac disease (CD) patients. The gut-brain axis hormones ghrelin and leptin, with the brain-derived neurotrophic factor (BDNF), may affect QoL of CD patients undergoing GFD. Our aims were to evaluate whether: (a) the circulating concentrations of leptin, ghrelin and BDNF in CD patients were different from those in healthy subjects; (b) GFD might induce changes in their levels; (c) BDNF Val66Met polymorphism variability might affect BDNF levels; and (d) serum BDNF levels were related to dietary docosahexaenoic acid (DHA) as a neurotrophin modulator. Nineteen adult coeliac patients and 21 healthy controls were included. A QoL questionnaire was administered, and serum concentrations of ghrelin, leptin, BDNF and red blood cell membrane DHA levels were determined at the enrolment and after 1 year of GFD. BDNF Val66Met polymorphism was analysed. Results from the questionnaire indicated a decline in QoL after GFD. Ghrelin and leptin levels were not significantly different between groups. BDNF levels were significantly (p = 0.0213) lower in patients after GFD (22.0 ± 2.4 ng/ml) compared to controls (31.2 ± 2.2 ng/ml) and patients at diagnosis (25.0 ± 2.5 ng/ml). BDNF levels correlated with DHA levels (p = 0.008, r = 0.341) and the questionnaire total score (p = 0.041, r = 0.334). Ghrelin and leptin seem to not be associated with changes in QoL of patients undergoing dietetic treatment. In contrast, a link between BDNF reduction and the vulnerability of CD patients to psychological distress could be proposed, with DHA representing a possible intermediate.
He, Shu-Chang; Wu, Shuang; Wang, Chao; Du, Xiang-Dong; Yin, Guangzhong; Jia, Qiufang; Zhang, Yingyang; Wang, Li; Soares, Jair C; Zhang, Xiang Yang
2018-08-15
Chronic exposure to job-related stress can lead to depression and BDNF polymorphism may play an important role in this process. The role of the stress × BDNF Val66Met interaction in depression has been studied widely using childhood stress, but few studies have utilized chronic stress in adulthood as a moderator. This study was to examine the chronic stress × BDNF Val66Met interaction in job-related depression in the healthcare workers in a Chinese Han population, which has not been reported yet. Using a cross-sectional design, 243 doctors and nurses were recruited from a general hospital in Beijing, and were assessed for depression with Self-rating Depression Scale (SDS), and the stress using the House and Rizzo's Work Stress Scale. The BDNF Val66Met polymorphism was genotyped. There was a significant positive association between job stress and depressive scores (p < 0.001). No significant main effect of the BDNF Val66Met genotype on depressive symptoms was observed (p > 0.05). A statistically significant interaction between BDNF Val66Met and job stress on depressive symptoms was found (p < 0.05); individuals with Val/Val genotype showed a higher SDS score than Met allele carriers only in the low-stress group, without significant differences in SDS score between the BDNF Val66Met subgroups in medium- or high-stress group. Limitations include cross-sectional study design, the small sample size only in healthcare workers and only one polymorphism in BDNF gene was analyzed. Our results suggest a close relationship between job-related stress and depression, and the interaction of the BDNF Val66Met polymorphism and chronic stress in adulthood may impact the depressive symptoms. Copyright © 2018. Published by Elsevier B.V.
Allard, Joanne S; Ntekim, Oyonumo; Johnson, Steven P; Ngwa, Julius S; Bond, Vernon; Pinder, Dynell; Gillum, Richard F; Fungwe, Thomas V; Kwagyan, John; Obisesan, Thomas O
2017-01-01
Possession of the Apolipoprotein E (APOE) gene ε4 allele is the most prevalent genetic risk factor for late onset Alzheimer's disease (AD). Recent evidence suggests that APOE genotype differentially affects the expression of brain-derived neurotrophic factor (BDNF). Notably, aerobic exercise-induced upregulation of BDNF is well documented; and exercise has been shown to improve cognitive function. As BDNF is known for its role in neuroplasticity and survival, its upregulation is a proposed mechanism for the neuroprotective effects of physical exercise. In this pilot study designed to analyze exercise-induced BDNF upregulation in an understudied population, we examined the effects of APOEε4 (ε4) carrier status on changes in BDNF expression after a standardized exercise program. African Americans, age 55years and older, diagnosed with mild cognitive impairment participated in a six-month, supervised program of either stretch (control treatment) or aerobic (experimental treatment) exercise. An exercise-induced increase in VO 2 Max was detected only in male participants. BDNF levels in serum were measured using ELISA. Age, screening MMSE scores and baseline measures of BMI, VO 2 Max, and BDNF did not differ between ε4 carriers and non-ε4 carriers. A significant association between ε4 status and serum BDNF levels was detected. Non-ε4 carriers showed a significant increase in BDNF levels at the 6month time point while ε4 carriers did not. We believe we have identified a relationship between the ε4 allele and BDNF response to physiologic adaptation which likely impacts the extent of neuroprotective benefit gained from engagement in physical exercise. Replication of our results with inclusion of diverse racial cohorts, and a no-exercise control group will be necessary to determine the scope of this association in the general population. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Kong, Shuang-yan; Li, Qi-fu; Yang, Jie; He, Li
2007-06-01
To study the expressions of BDNF, BDNF mRNA, NGF and NGF mRNA in the permanent focal cerebral ischemia tissues of rats. METHHODS: Healthy male Sprague-Dawley rats were taken for this study project. According to the procedure of Zea-Longa, the rat model with permanent cerebral ischemia was established by rat middle cerebral artery obstructed (MCAO) with a nylon thread, and the model rats of neurobehavioral evaluation as 1-3 grade were randomly divided into two groups: butylphthalide group (A group) and control group (B group). A group was given with 25 mg/kg butylphthalide, B group was given with edible oil, two times every day. 3 days after occlusion, all rats were sacrificed after evaluated the neurobehavioral scores, and the samples of cerebrum were obtained after in situ perfusion and fixation with 40 g/L paraformaldehyde. 5 rats in each group were taken to tetrazolium chloride (TTC) staining for macroscopic observation of cerebral infarction area, the rest samples were processed by immunohistochemistry to evaluate effects of butylphthalide on BDNF and NGF expression, hybridization in situ to evaluate effects of butylphthalide on BDNF mRNA and NGF mRNA expression. SPSS12. 0 for statistical analysis, it was P<0. 05 as having statistical significance. Comparing to control group (B group), butylphthalide group (A group) did not have significantly pathological difference, but the grade of behavior and infarction area were apparently reduced (P<0. 05). In butylphthalide group, there was a significant expression up-regulation to BDNF, NGF, BDNF mRNA and NGF mRNA in the peripheral around infarction and cornu ammonis or hippocampus area (P<0. 05). However in the infarction area, the expressions of BDNF, NGF, BDNF mRNA and NGF mRNA had no significantly statistical difference (P> 0. 05). Comparing to control group, butylphthalide can significantly up-regulate the expressions of BDNF and NGF in genetic transcription level, and protect from the ischemia injury.
The role of the BDNF Val66Met polymorphism in individual differences in long-term memory capacity.
Montag, Christian; Felten, Andrea; Markett, Sebastian; Fischer, Luise; Winkel, Katja; Cooper, Andrew; Reuter, Martin
2014-12-01
The protein brain-derived neurotrophic factor (BDNF) plays an important role in diverse memory processes and is strongly expressed in the hippocampus. The hippocampus itself is a key structure involved in the processing of information from short-term to long-term memory. Due to the putative role of BDNF in memory consolidation, a prominent single nucleotide polymorphism (SNP) on the BDNF gene (BDNF Val66Met) was investigated in the context of long-term memory performance. N=138 students were presented with 40 words from 10 categories, each consisting of eight words such as 'fruits' or 'vehicles' in a memory recognition task (specifically the Deese-Roediger-McDermott Paradigm). Recognition performance was analyzed 25 min after the initial presentation of the word list and subsequently 1 week after the initial presentation. Overall, individual long-term memory performance immediately after learning the word list (T1) and performance 1 week later (T2) did not differ on the basis of the BDNF SNP, but an interaction effect of BDNF Val66Met by time-of-recall was found: Carriers of the Met66+ variant showed the strongest decline in hit rate performance over time.
Chourbaji, Sabine; Brandwein, Christiane; Gass, Peter
2011-01-01
According to the "neurotrophin hypothesis", brain-derived neurotrophic factor (BDNF) is an important candidate gene in depression. Moreover, environmental stress is known to represent a risk factor in the pathophysiology and treatment of this disease. To elucidate, whether changes of BDNF availability signify cause or consequence of depressive-like alterations, it is essential to look for endophenotypes under distinct genetic conditions (e.g. altered BDNF expression). Furthermore it is crucial to examine environment-driven BDNF regulation and its effect on depressive-linked features. Consequently, gene × environment studies investigating prospective genetic mouse models of depression in different environmental contexts become increasingly important. The present review summarizes recent findings in BDNF-mutant mice, which have been controversially discussed as models of depression and anxiety. It furthermore illustrates the potential of environment to serve as naturalistic stressor with the potential to modulate the phenotype in wildtype and mutant mice. Moreover, environment may exert protective effects by regulating BDNF levels as attributed to "environmental enrichment". The effect of this beneficial condition will also be discussed with regard to probable "curative/therapeutic" approaches. Copyright © 2010 Elsevier Ltd. All rights reserved.
Shim, Sehwan; Kim, Sokho; Kwon, Young-Bae; Kwon, Jungkee
2012-03-01
[6]-Shogaol has beneficial effects in spinal neuronal regeneration, but associated molecules and mechanisms are not identified. Neurotrophic factors, including brain-derived neurotrophic factor (BDNF), are associated with proliferation and differentiation of neuronal cells and exert a neuroprotective effect in neurodegenerative models. We investigated whether treatment with [6]-shogaol increases BDNF expression in lipopolysaccharide (LPS)-treated astrocytes, and examined the effect of [6]-shogaol on neuronal protection. [6]-Shogaol significantly attenuated the cell death induced by LPS. Western blotting showed that [6]-shogaol treatment reduced Bax expression and increased B-cell lymphoma (Bcl)-2 and BclxL expression in LPS-treated cells, consistent with the effects of BDNF treatment. Furthermore, K252a, a blocker of neurotrophic factors, attenuated the cellular protective effects of [6]-shogaol and BDNF. This study provides the first evidence that [6]-shogaol increases the expression of BDNF in LPS-treated astrocytes. Furthermore, these experimental results indicate that production of BDNF in astrocytes might be related to altered cell viability following [6]-shogaol treatment. Thus, the neuroprotective effects of [6]-shogaol is mediated by up-regulation of BDNF. Copyright © 2011 Elsevier Ltd. All rights reserved.
Influence of BDNF and COMT polymorphisms on emotional decision making.
Kang, Jee In; Namkoong, Kee; Ha, Ra Yeon; Jhung, Kyungun; Kim, Yang Tae; Kim, Se Joo
2010-06-01
Decision making is an important brain function. Although little is known about the genetic basis of decision making, it has been suggested that it is mediated by the modulation of neurotransmitter systems. We investigated how the BDNF Val66Met and COMT Val158Met polymorphisms affect emotional decision making using the Iowa Gambling Task (IGT). One hundred sixty-eight healthy Korean college students (93 males, 75 females) with a complete dataset were included in the data analysis. The IGT and genotyping for the polymorphisms of BDNF Val66Met and COMT Val158Met were performed. Both Met/Met and Val/Met of the BDNF Val66Met polymorphism were significantly associated with a lower mean score of blocks 3-5 of the IGT and with less improvement from block 1 to block 3-5 than the Val/Val. However, the BDNF was not significantly associated with the score of block 1, and the COMT Val158Met polymorphism produced no significant effect on IGT performance. No interaction effect was observed between the BDNF and the COMT for the IGT. These findings suggest the BDNF Val66Met may affect the emotional decision making performance. (c) 2010 Elsevier Ltd. All rights reserved.
Huang, Tao; Gejl, Anne Kær; Tarp, Jakob; Andersen, Lars Bo; Peijs, Lone; Bugge, Anna
2017-03-15
The purpose of this study was to examine the associations between objectively measured physical activity and serum brain-derived neurotrophic factor (BDNF) in adolescents. Cross-sectional analyses were performed using data from 415 adolescents who participated in the 2015 follow-up of the Childhood Health Activity and Motor Performance School Study Denmark (the CHAMPS-study DK). Physical activity was objectively measured by accelerometry monitors. Serum BDNF levels were analyzed using the Enzyme-linked immunosorbent assay (ELISA). Anthropometrics and pubertal status were measured using standardized procedures. With adjustment for age, pubertal status and body mass index, mean physical activity (counts per minute) was negatively associated with serum BDNF in boys (P=0.013). Similarly, moderate-to-vigorous physical activity (MVPA) was negatively associated with serum BDNF in boys (P=0.035). In girls, mean physical activity and MVPA were not associated with serum BDNF. Without adjustment for wear time, sedentary time was not associated with serum BDNF in either sex. These findings indicate that higher physical activity is associated with lower serum BDNF in boys, but not in girls. Copyright © 2016 Elsevier Inc. All rights reserved.
Nomoto, Hiroshi; Baba, Hajime; Satomura, Emi; Maeshima, Hitoshi; Takebayashi, Naoko; Namekawa, Yuki; Suzuki, Toshihito; Arai, Heii
2015-03-04
Brain-derived neurotrophic factor (BDNF) is a member of the neurotrophin family of growth factors. Previous studies have demonstrated lower serum BDNF levels in patients with major depressive disorder (MDD) and reported an association between BDNF levels and depression-related personality traits in healthy subjects. The aim of the present study was to explore for a possible association between peripheral BDNF levels and personality traits in patients with MDD. In this cross-sectional study, a total of 123 inpatients with MDD (Diagnostic and Statistical Manual for Mental Disorders, 4th edition) at the Juntendo University Koshigaya Hospital were recruited. Serum levels of BDNF were measured. Personality traits were assessed using the 125-item short version of the Temperament and Character Inventory (TCI). Multiple regression analysis adjusted for age, sex, body mass index, dose of antidepressant, and depression severity showed that TCI Self-Directedness (SD) scores were negatively associated with serum BDNF levels (β = -0.23, p = 0.026). MDD patients who have low SD did not show the reduction in serum BDNF levels that is normally associated with depressive state. Our findings suggest that depression-related biological changes may not occur in these individuals.
Maghsoudi, Nader; Ghasemi, Rasoul; Ghaempanah, Zahra; Ardekani, Ali M; Nooshinfar, Elahe; Tahzibi, Abbas
2014-01-01
Brain-Derived Neurotrophic Factor (BDNF) and its receptor, TrkB, in the hippocampus are targets for adverse effects of stress paradigms; in addition, BDNF and its receptor play key role in the pathology of brain diseases like depression. In the present study, we evaluated the possible role of hippocampal BDNF in depression during pregnancy. To achieve the purpose, repeated restrain stress (1 or 3 hours daily for 7 days) during the last week of pregnancy was used and alteration in the gene expression of hippocampal BDNF and TrkB evaluated by semi-quantitative PCR. The results showed that in stress group the level of ACTH and Corticosterone is increased showing that our model was efficient in inducing psychological stress; we also found that BDNF and TrkB expression are decreased in 3 hours stress group but not in 1 hour stress compared to control group. Our results imply that decrease in BDNF and its receptor could contribute in some adverse effects of stress during pregnancy such as elevation of depressive like behavior.
A significant association between BDNF promoter methylation and the risk of drug addiction.
Xu, Xuting; Ji, Huihui; Liu, Guili; Wang, Qinwen; Liu, Huifen; Shen, Wenwen; Li, Longhui; Xie, Xiaohu; Zhou, Wenhua; Duan, Shiwei
2016-06-10
As a member of the neurotrophic factor family, brain derived neurotrophic factor (BDNF) plays an important role in the survival and differentiation of neurons. The aim of our work was to evaluate the role of BDNF promoter methylation in drug addiction. A total of 60 drug abusers (30 heroin and 30 methylamphetamine addicts) and 52 healthy age- and gender-matched controls were recruited for the current case control study. Bisulfite pyrosequencing technology was used to determine the methylation levels of five CpGs (CpG1-5) on the BDNF promoter. Among the five CpGs, CpG5 methylation was significantly lower in drug abusers than controls. Moreover, significant associations were found between CpG5 methylation and addictive phenotypes including tension-anxiety, anger-hostility, fatigue-inertia, and depression-dejection. In addition, luciferase assay showed that the DNA fragment of BDNF promoter played a key role in the regulation of gene expression. Our results suggest that BDNF promoter methylation is associated with drug addiction, although further studies are needed to understand the mechanisms by which BDNF promoter methylation contributes to the pathophysiology of drug addiction. Copyright © 2016. Published by Elsevier B.V.
Brain-derived neurotrophic factor into adult neocortex strengthens a taste aversion memory.
Martínez-Moreno, Araceli; Rodríguez-Durán, Luis F; Escobar, Martha L
2016-01-15
Nowadays, it is known that brain derived neurotrophic-factor (BDNF) is a protein critically involved in regulating long-term memory related mechanisms. Previous studies from our group in the insular cortex (IC), a brain structure of the temporal lobe implicated in acquisition, consolidation and retention of conditioned taste aversion (CTA), demonstrated that BDNF is essential for CTA consolidation. Recent studies show that BDNF-TrkB signaling is able to mediate the enhancement of memory. However, whether BDNF into neocortex is able to enhance aversive memories remains unexplored. In the present work, we administrated BDNF in a concentration capable of inducing in vivo neocortical LTP, into the IC immediately after CTA acquisition in two different conditions: a "strong-CTA" induced by 0.2M lithium chloride i.p. as unconditioned stimulus, and a "weak-CTA" induced by 0.1M lithium chloride i.p. Our results show that infusion of BDNF into the IC converts a weak CTA into a strong one, in a TrkB receptor-dependent manner. The present data suggest that BDNF into the adult insular cortex is sufficient to increase an aversive memory-trace. Copyright © 2015 Elsevier B.V. All rights reserved.
Baek, Ji Hyun; Kang, Eun-Suk; Fava, Maurizio; Mischoulon, David; Nierenberg, Andrew A; Lee, Dongsoo; Heo, Jung-Yoon; Jeon, Hong Jin
2014-12-01
Thyroid dysfunction and elevated thyroid stimulating hormone (TSH) are common in patients with depression. TSH might exert its function in the brain through blood levels of brain-derived neurotrophic factor (BDNF). BDNF decreases during depressed states and normalize after treatment. The gap is that the association between TSH and BDNF in patients with major depressive disorder (MDD) is unknown. We studied 105 subjects ≥18 years of age with MDD and measured serum, plasma, and platelet BDNF at baseline, 1 month and 3 months during antidepressant treatment. Other baseline measurements included hypothalamic-pituitary-thyroid axis hormones such as TSH, triiodothyronine (T3) and thyroxine (T4); hypothalamic-pituitary-adrenal (HPA) axis hormones and hypothalamic-pituitary-gonadal (HPG) axis hormones and prolactin. Linear mixed model effect analyses revealed that baseline TSH level was negatively associated with changes of serum BDNF from baseline to 3 months (F=7.58, p=0.007) after adjusting for age, sex, and body mass index, but was not associated with plasma and platelet BDNF. In contrast, T3 and T4, HPA axis hormones, HPG axis hormones, and prolactin were not associated with serum, plasma, or platelet BDNF levels. Patients in the highest quartile of TSH showed significantly lower serum BDNF than in the other quartiles (F=4.54, p=0.038), but no significant differences were found based on T3 and T4 levels. TSH was only measured at baseline. Higher TSH is associated with lower baseline and reduced the increase of serum BDNF levels during antidepressant treatment in patients with MDD. Copyright © 2014 Elsevier B.V. All rights reserved.
Raivio, Noora; Miettinen, Pekka; Kiianmaa, Kalervo
2014-09-04
We have shown recently that acute administration of ethanol modulates the expression of brain-derived neurotrophic factor (BDNF) in several rat brain areas known to be involved in the development of addiction to ethanol and other drugs of abuse, suggesting that BDNF may be a factor contributing to the neuroadaptive changes set in motion by ethanol exposure. The purpose of the present study was to further clarify the role of BDNF in reinforcement from ethanol and in the development of addiction to ethanol by specifying the effect of acute administration of ethanol (1.5 or 3.0 g/kg i.p.) on the expression profile of BDNF mRNA in the ventral tegmental area and in the terminal areas of the mesolimbic dopamine pathway in the brain of alcohol-preferring AA and alcohol-avoiding ANA rats, selected for high and low voluntary ethanol intake, respectively. The level of BDNF mRNA expression was higher in the amygdala and ventral tegmental area of AA than in those of ANA rats, and there was a trend for a higher level in the nucleus accumbens. In the amygdala and hippocampus, a biphasic change in the BDNF mRNA levels was detected: the levels were decreased at 3 and 6h but increased above the basal levels at 24h. Furthermore, there was a difference between the AA and ANA lines in the effect of ethanol, the ANA rats showing an increase in BDNF mRNA levels while such a change was not seen in AA rats. These findings suggest that the innate levels of BDNF expression may play a role in the mediation of the reinforcing effects of ethanol and in the control of ethanol intake. Copyright © 2014 Elsevier B.V. All rights reserved.