NASA Astrophysics Data System (ADS)
Zhang, Hongjiang; Jiang, Senlin; He, Xuefeng
2017-05-01
This letter proposes an impact-based piezoelectric energy harvester that uses a rolling bead contained in a bracket that is supported by a spring. Under either translational or rotational base excitation, the bead moves within the bracket and collides with piezoelectric cantilevers that are located around the bracket; these collisions cause the piezoelectric beams to vibrate and thus produce electrical outputs. The low rolling friction and the motion amplification effect of the spring make the resulting device suitable for collection of low-level vibration energy. Experiments show that the proposed harvester is promising for use in scavenging of energy from the multidimensional, low-level, broadband, and low-frequency vibrations that occur in natural environments.
Yan, Juan; Hu, Chongya; Wang, Ping; Liu, Rui; Zuo, Xiaolei; Liu, Xunwei; Song, Shiping; Fan, Chunhai; He, Dannong; Sun, Gang
2014-11-26
Prostate-specific antigen (PSA) is one of the most important biomarkers for the early diagnosis and prognosis of prostate cancer. Although many efforts have been made to achieve significant progress for the detection of PSA, challenges including relative low sensitivity, complicated operation, sophisticated instruments, and high cost remain unsolved. Here, we have developed a strategy combining rolling circle amplification (RCA)-based DNA belts and magnetic bead-based enzyme-linked immunosorbent assay (ELISA) for the highly sensitive and specific detection of PSA. At first, a 96-base circular DNA template was designed and prepared for the following RCA. Single stranded DNA (ssDNA) products from RCA were used as scaffold strand for DNA origami, which was hybridized with three staple strands of DNA. The resulting DNA belts were conjugated with multiple enzymes for signal amplification and then employed to magnetic bead based ELISA for PSA detection. Through our strategy, as low as 50 aM of PSA can be detected with excellent specificity.
Code of Federal Regulations, 2011 CFR
2011-07-01
... beading, straightening, corrugating, flanging, or bending rolls; and hot or cold rolling mills. (ii) All... area between the dies; power presses; and plate punches. (iii) All bending machines, such as apron...
Diffractometric Detection of Proteins using Microbead-based Rolling Circle Amplification
Lee, Joonhyung; Icoz, Kutay; Roberts, Ana; Ellington, Andrew D.; Savran, Cagri A.
2010-01-01
We present a robust, sensitive, fluorescent or radio label-free self-assembled optical diffraction biosensor that utilizes rolling circle amplification (RCA) and magnetic microbeads as a signal enhancement method. An aptamer-based sandwich assay was performed on microcontact-printed streptavidin arranged in 15-μm-wide alternating lines, and could specifically capture and detect platelet-derived growth factor B-chain (PDGF-BB). An aptamer served as a template for the ligation of a padlock probe and the circularized probe could in turn be used as a template for RCA. The concatameric RCA product hybridized to biotinylated oligonuclotides which then captured streptavidin-labeled magnetic beads. In consequence, the signal from the captured PDGF-BB was amplified via the concatameric RCA product, and the diffraction gratings on the printed areas produced varying intensities of diffraction modes. The detected diffraction intensity and the density of the microbeads on the surface varied as a function of PDGF-BB concentration. Our results demonstrate a robust biosensing platform that is easy to construct and use, and devoid of fluorescence microscopy. The self-assembled bead patterns allow both a visual analysis of the molecular binding events under an ordinary bright-field microscope and serve as a diffraction grating biosensor. PMID:19947589
Microfluidic magnetic bead conveyor belt.
van Pelt, Stijn; Frijns, Arjan; den Toonder, Jaap
2017-11-07
Magnetic beads play an important role in the miniaturization of clinical diagnostics systems. In lab-on-chip platforms, beads can be made to link to a target species and can then be used for the manipulation and detection of this species. Current bead actuation systems utilize complex on-chip coil systems that offer low field strengths and little versatility. We demonstrate a novel system based on an external rotating magnetic field and on-chip soft-magnetic structures to focus the field locally. These structures were designed and optimized using finite element simulations in order to create a number of local flux density maxima. These maxima, to which the magnetic beads are attracted, move over the chip surface in a continuous way together with the rotation of the external field, resulting in a mechanism similar to that of a conveyor belt. A prototype was fabricated using PDMS molding techniques mixed with iron powder for the magnetic structures. In the subsequent experiments, a quadrupole electromagnet was used to create the rotating external field. We observed that beads formed agglomerates that rolled over the chip surface, just above the magnetic structures. Field rotation frequencies between 0.1-50 Hz were tested resulting in magnetic bead speeds of over 1 mm s -1 for the highest frequency. With this, we have shown that our novel concept works, combining a simple design and simple operation with a powerful and versatile method for bead actuation. This makes it a promising method for further research and utilization in lab-on-chip systems.
Structural transformations in hull material clad by nitrogen stainless steel using various methods
NASA Astrophysics Data System (ADS)
Sagaradze, V. V.; Kataeva, N. V.; Mushnikova, S. Yu.; Khar'kov, O. A.; Kalinin, G. Yu.; Yampol'skii, V. D.
2014-02-01
Specimens of a 10N3KhDMBF shipbuilding hull steel were clad by a 04Kh20N6G11M2AFB nitrogen austenitic steel using various treatment conditions, which included hot rolling, austenitic facing, and explosive welding followed by hot rolling and heat treatment. Between the base and cladding materials, an intermediate layer with variable concentrations of chromium, manganese, and nickel was found, in which a martensitic structure was formed. In all the cases, the strength of bonding of the cladding layer to the hull steel (determined in tests for shear to fracture) was fairly high (σsh = 437-520 MPa). The only exception was the specimen produced by unidirectional facing without subsequent hot rolling (σsh = 308 MPa), in which nonfusions between the faced beads of stainless steel were detected.
Strömberg, Mattias; Zardán Gómez de la Torre, Teresa; Nilsson, Mats; Svedlindh, Peter; Strømme, Maria
2014-01-01
Bioassays relying on magnetic read-out using probe-tagged magnetic nanobeads are potential platforms for low-cost biodiagnostic devices for pathogen detection. For optimal assay performance it is crucial to apply an easy, efficient and robust bead-probe conjugation protocol. In this paper, sensitive (1.5 pM) singleplex detection of bacterial DNA sequences is demonstrated in a portable AC susceptometer by a magnetic nanobead-based bioassay principle; the volume-amplified magnetic nanobead detection assay (VAM-NDA). Two bead sizes, 100 and 250 nm, are investigated along with a highly efficient, rapid, robust, and stable conjugation chemistry relying on the avidin–biotin interaction for bead-probe attachment. Avidin-biotin conjugation gives easy control of the number of detection probes per bead; thus allowing for systematic investigation of the impact of varying the detection probe surface coverage upon bead immobilization in rolling circle amplified DNA-coils. The existence of an optimal surface coverage is discussed. Biplex VAM-NDA detection is for the first time demonstrated in the susceptometer: Semi-quantitative results are obtained and it is concluded that the concentration of DNA-coils in the incubation volume is of crucial importance for target quantification. The present findings bring the development of commercial biodiagnostic devices relying on the VAM–NDA further towards implementation in point-of-care and outpatient settings. PMID:24174315
Dynamic trajectory analysis of superparamagnetic beads driven by on-chip micromagnets
Abedini-Nassab, Roozbeh; Lim, Byeonghwa; Yang, Ye; Howdyshell, Marci; Sooryakumar, Ratnasingham; Yellen, Benjamin B.
2015-01-01
We investigate the non-linear dynamics of superparamagnetic beads moving around the periphery of patterned magnetic disks in the presence of an in-plane rotating magnetic field. Three different dynamical regimes are observed in experiments, including (1) phase-locked motion at low driving frequencies, (2) phase-slipping motion above the first critical frequency fc1, and (3) phase-insulated motion above the second critical frequency fc2. Experiments with Janus particles were used to confirm that the beads move by sliding rather than rolling. The rest of the experiments were conducted on spherical, isotropic magnetic beads, in which automated particle position tracking algorithms were used to analyze the bead dynamics. Experimental results in the phase-locked and phase-slipping regimes correlate well with numerical simulations. Additional assumptions are required to predict the onset of the phase-insulated regime, in which the beads are trapped in closed orbits; however, the origin of the phase-insulated state appears to result from local magnetization defects. These results indicate that these three dynamical states are universal properties of bead motion in non-uniform oscillators. PMID:26648596
Yang, Xiang; Yang, Ke; Zhao, Xiang; Lin, Zhongquan; Liu, Zhiyong; Luo, Sha; Zhang, Yang; Wang, Yunxia; Fu, Weiling
2017-12-04
The demand for rapid and sensitive bacterial detection is continuously increasing due to the significant requirements of various applications. In this study, a terahertz (THz) biosensor based on rolling circle amplification (RCA) was developed for the isothermal detection of bacterial DNA. The synthetic bacterium-specific sequence of 16S rDNA hybridized with a padlock probe (PLP) that contains a sequence fully complementary to the target sequence at the 5' and 3' ends. The linear PLP was circularized by ligation to form a circular PLP upon recognition of the target sequence; then the capture probe (CP) immobilized on magnetic beads (MBs) acted as a primer to initialize RCA. As DNA molecules are much less absorptive than water molecules in the THz range, the RCA products on the surface of the MBs cause a significant decrease in THz absorption, which can be sensitively probed by THz spectroscopy. Our results showed that 0.12 fmol of synthetic bacterial DNA and 0.05 ng μL -1 of genomic DNA could be effectively detected using this assay. In addition, the specificity of this strategy was demonstrated by its low signal response to interfering bacteria. The proposed strategy not only represents a new method for the isothermal detection of the target bacterial DNA but also provides a general methodology for sensitive and specific DNA biosensing using THz spectroscopy.
Quantitative Single-Cell mRNA Analysis in Hydrogel Beads.
Rakszewska, Agata; Stolper, Rosa J; Kolasa, Anna B; Piruska, Aigars; Huck, Wilhelm T S
2016-06-01
In recent years, technologies capable of analyzing single cells have emerged that are transforming many fields of biological research. Herein we report how DNA-functionalized hydrogel beads can serve as a matrix to capture mRNA from lysed single cells. mRNA quantification free of pre-amplification bias is ensured by using padlock probes and rolling circle amplification followed by hybridization with fluorescent probes. The number of transcripts in individual cells is assessed by simply counting fluorescent dots inside gel beads. The method extends the potential of existing techniques and provides a general platform for capturing molecules of interest from single cells. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Metallic superhydrophobic surfaces via thermal sensitization
NASA Astrophysics Data System (ADS)
Vahabi, Hamed; Wang, Wei; Popat, Ketul C.; Kwon, Gibum; Holland, Troy B.; Kota, Arun K.
2017-06-01
Superhydrophobic surfaces (i.e., surfaces extremely repellent to water) allow water droplets to bead up and easily roll off from the surface. While a few methods have been developed to fabricate metallic superhydrophobic surfaces, these methods typically involve expensive equipment, environmental hazards, or multi-step processes. In this work, we developed a universal, scalable, solvent-free, one-step methodology based on thermal sensitization to create appropriate surface texture and fabricate metallic superhydrophobic surfaces. To demonstrate the feasibility of our methodology and elucidate the underlying mechanism, we fabricated superhydrophobic surfaces using ferritic (430) and austenitic (316) stainless steels (representative alloys) with roll off angles as low as 4° and 7°, respectively. We envision that our approach will enable the fabrication of superhydrophobic metal alloys for a wide range of civilian and military applications.
Antibody-immobilized column for quick cell separation based on cell rolling.
Mahara, Atsushi; Yamaoka, Tetsuji
2010-01-01
Cell separation using methodological standards that ensure high purity is a very important step in cell transplantation for regenerative medicine and for stem cell research. A separation protocol using magnetic beads has been widely used for cell separation to isolate negative and positive cells. However, not only the surface marker pattern, e.g., negative or positive, but also the density of a cell depends on its developmental stage and differentiation ability. Rapid and label-free separation procedures based on surface marker density are the focus of our interest. In this study, we have successfully developed an antiCD34 antibody-immobilized cell-rolling column, that can separate cells depending on the CD34 density of the cell surfaces. Various conditions for the cell-rolling column were optimized including graft copolymerization, and adjustment of the column tilt angle, and medium flow rate. Using CD34-positive and -negative cell lines, the cell separation potential of the column was established. We observed a difference in the rolling velocities between CD34-positive and CD34-negative cells on antibody-immobilized microfluidic device. Cell separation was achieved by tilting the surface 20 degrees and the increasing medium flow. Surface marker characteristics of the isolated cells in each fraction were analyzed using a cell-sorting system, and it was found that populations containing high density of CD34 were eluted in the delayed fractions. These results demonstrate that cells with a given surface marker density can be continuously separated using the cell rolling column.
Strömberg, Mattias; Zardán Gómez de la Torre, Teresa; Nilsson, Mats; Svedlindh, Peter; Strømme, Maria
2014-01-01
Bioassays relying on magnetic read-out using probe-tagged magnetic nanobeads are potential platforms for low-cost biodiagnostic devices for pathogen detection. For optimal assay performance it is crucial to apply an easy, efficient and robust bead-probe conjugation protocol. In this paper, sensitive (1.5 pM) singleplex detection of bacterial DNA sequences is demonstrated in a portable AC susceptometer by a magnetic nanobead-based bioassay principle; the volume-amplified magnetic nanobead detection assay (VAM-NDA). Two bead sizes, 100 and 250 nm, are investigated along with a highly efficient, rapid, robust, and stable conjugation chemistry relying on the avidin-biotin interaction for bead-probe attachment. Avidin-biotin conjugation gives easy control of the number of detection probes per bead; thus allowing for systematic investigation of the impact of varying the detection probe surface coverage upon bead immobilization in rolling circle amplified DNA-coils. The existence of an optimal surface coverage is discussed. Biplex VAM-NDA detection is for the first time demonstrated in the susceptometer: Semi-quantitative results are obtained and it is concluded that the concentration of DNA-coils in the incubation volume is of crucial importance for target quantification. The present findings bring the development of commercial biodiagnostic devices relying on the VAM-NDA further towards implementation in point-of-care and outpatient settings. © 2013 The Authors. Biotechnology Journal published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. This is an open access article under the terms of the Creative Commons Attribution-License, which permits use and distribution in any medium, provided the original work is properly cited.
Akhtar, Sultan; Strömberg, Mattias; Zardán Gómez de la Torre, Teresa; Russell, Camilla; Gunnarsson, Klas; Nilsson, Mats; Svedlindh, Peter; Strømme, Maria; Leifer, Klaus
2010-10-21
The present work provides the first real-space analysis of nanobead-DNA coil interactions. Immobilization of oligonucleotide-functionalized magnetic nanobeads in rolling circle amplified DNA-coils was studied by complex magnetization measurements and transmission electron microscopy (TEM), and a statistical analysis of the number of beads hybridized to the DNA-coils was performed. The average number of beads per DNA-coil using the results from both methods was found to be around 6 and slightly above 2 for samples with 40 and 130 nm beads, respectively. The TEM analysis supported an earlier hypothesis that 40 nm beads are preferably immobilized in the interior of DNA-coils whereas 130 nm beads, to a larger extent, are immobilized closer to the exterior of the coils. The methodology demonstrated in the present work should open up new possibilities for characterization of interactions of a large variety of functionalized nanoparticles with macromolecules, useful for gaining more fundamental understanding of such interactions as well as for optimizing a number of biosensor applications.
Liu, Xingti; Xue, Qingwang; Ding, Yongshun; Zhu, Jing; Wang, Lei; Jiang, Wei
2014-06-07
A sensitive and label-free fluorescence assay for DNA detection has been developed based on cascade signal amplification combining exonuclease III (Exo III)-catalyzed recycling with rolling circle amplification. In this assay, probe DNA hybridized with template DNA was coupled onto magnetic nanoparticles to prepare a magnetic bead-probe (MNB-probe)-template complex. The complex could hybridize with the target DNA, which transformed the protruding 3' terminus of template DNA into a blunt end. Exo III could then digest template DNA, liberating the MNB-probe and target DNA. The intact target DNA then hybridized with other templates and released more MNB-probes. The liberated MNB-probe captured the primer, circular DNA and then initiated the rolling circle amplification (RCA) reaction, realizing a cascade signal amplification. Using this cascade amplification strategy, a sensitive DNA detection method was developed which was superior to many existing Exo III-based signal amplification methods. Moreover, N-methyl mesoporphyrin IX, which had a pronounced structural selectivity for the G-quadruplex, was used to combine with the G-quadruplex RCA products and generate a fluorescence signal, avoiding the need for any fluorophore-label probes. The spike and recovery experiments in a human serum sample indicated that our assay also had great potential for DNA detection in real biological samples.
Scaling of wet granular flows in a rotating drum
NASA Astrophysics Data System (ADS)
Jarray, Ahmed; Magnanimo, Vanessa; Ramaioli, Marco; Luding, Stefan
2017-06-01
In this work, we investigate the effect of capillary forces and particle size on wet granular flows and we propose a scaling methodology that ensures the conservation of the bed flow. We validate the scaling law experimentally by using different size glass beads with tunable capillary forces. The latter is obtained using mixtures of ethanol-water as interstitial liquid and by increasing the hydrophobicity of glass beads with an ad-hoc silanization procedure. The scaling methodology in the flow regimes considered (slipping, slumping and rolling) yields similar bed flow for different particle sizes including the angle of repose that normally increases when decreasing the particle size.
NASA Astrophysics Data System (ADS)
Su, Qiang; Zhou, Xiaoming
2008-12-01
Many pathogenic and genetic diseases are associated with changes in the sequence of particular genes. We describe here a rapid and highly efficient assay for the detection of point mutation. This method is a combination of isothermal rolling circle amplification (RCA) and high sensitive electrochemluminescence (ECL) detection. In the design, a circular template generated by ligation upon the recognition of a point mutation on DNA targets was amplified isothermally by the Phi29 polymerase using a biotinylated primer. The elongation products were hybridized with tris (bipyridine) ruthenium (TBR)-tagged probes and detected in a magnetic bead based ECL platform, indicating the mutation occurrence. P53 was chosen as a model for the identification of this method. The method allowed sensitive determination of the P53 mutation from wild-type and mutant samples. The main advantage of RCA-ECL is that it can be performed under isothermal conditions and avoids the generation of false-positive results. Furthermore, ECL provides a faster, more sensitive, and economical option to currently available electrophoresis-based methods.
ERIC Educational Resources Information Center
Jones, M. Gail; Broadwell, Bethany; Falvo, Michael; Minogue, James; Oppewal, Thomas
2005-01-01
As one of the authors was warning the fifth-grade class about protecting clothes from spills in the lab, one student commented that his pants wouldn't stain because they were covered with some "nano stuff." The class tossed water on the pants and watched it bead up and roll off "like magic." The class's interest was piqued, and the questions…
Microfluidic magnetic fluidized bed for DNA analysis in continuous flow mode.
Hernández-Neuta, Iván; Pereiro, Iago; Ahlford, Annika; Ferraro, Davide; Zhang, Qiongdi; Viovy, Jean-Louis; Descroix, Stéphanie; Nilsson, Mats
2018-04-15
Magnetic solid phase substrates for biomolecule manipulation have become a valuable tool for simplification and automation of molecular biology protocols. However, the handling of magnetic particles inside microfluidic chips for miniaturized assays is often challenging due to inefficient mixing, aggregation, and the advanced instrumentation required for effective actuation. Here, we describe the use of a microfluidic magnetic fluidized bed approach that enables dynamic, highly efficient and simplified magnetic bead actuation for DNA analysis in a continuous flow platform with minimal technical requirements. We evaluate the performance of this approach by testing the efficiency of individual steps of a DNA assay based on padlock probes and rolling circle amplification. This assay comprises common nucleic acid analysis principles, such as hybridization, ligation, amplification and restriction digestion. We obtained efficiencies of up to 90% for these reactions with high throughput processing up to 120μL of DNA dilution at flow rates ranging from 1 to 5μL/min without compromising performance. The fluidized bed was 20-50% more efficient than a commercially available solution for microfluidic manipulation of magnetic beads. Moreover, to demonstrate the potential of this approach for integration into micro-total analysis systems, we optimized the production of a low-cost polymer based microarray and tested its analytical performance for integrated single-molecule digital read-out. Finally, we provide the proof-of-concept for a single-chamber microfluidic chip that combines the fluidized bed with the polymer microarray for a highly simplified and integrated magnetic bead-based DNA analyzer, with potential applications in diagnostics. Copyright © 2017 Elsevier B.V. All rights reserved.
Song, Wenlong; Oliveira, Mariana B; Sher, Praveen; Gil, Sara; Nóbrega, J Miguel; Mano, João F
2013-08-01
Magnetic responsive chitosan beads were prepared using a methodology inspired by the rolling of water droplets over lotus leaves. Liquid precursors containing chitosan and magnetic microparticles were dispensed in the form of spherical droplets and crosslinked with genipin over synthetic superhydrophobic surfaces. Scanning electronic microscopy, histology and micro-computed tomography were employed to characterize the structure of the prepared composite beads and the inner distribution of the magnetic particles. Cellular metabolic activity tests showed that fibroblasts-like (L929 cell line) can adhere and proliferate on the prepared chitosan beads. We hypothesize that such spherical biomaterials could be integrated in a new concept of tubular bioreactor. The magnetic beads can be immobilized by an external magnetic field at specific positions and may be transported along the bioreactor by the drag of the culture medium flow. The system behavior was also studied through numerical modeling, which allowed to identify the relative importance of the main parameters, and to conclude that the distance between carrier beads plays a major role on their interaction with the culture medium and, consequently, on the overall system performance. In an up-scaled version of this bioreactor, the herein presented system may comprise different chambers in serial or parallel configurations. This constitutes a simple way of preparing magnetic responsive beads combined with a new design of bioreactor, which may find application in biomedicine and biotechnology, including in cell expansion for tissue engineering or for the production of therapeutic proteins to be used in cell therapies.
Wall effects in continuous microfluidic magneto-affinity cell separation.
Wu, Liqun; Zhang, Yong; Palaniapan, Moorthi; Roy, Partha
2010-05-01
Continuous microfluidic magneto-affinity cell separator combines unique microscale flow phenomenon with advantageous nanobead properties, to isolate cells with high specificity. Owing to the comparable size of the cell-bead complexes and the microchannels, the walls of the microchannel exert a strong influence on the separation of cells by this method. We present a theoretical and experimental study that provides a quantitative description of hydrodynamic wall interactions and wall rolling velocity of cells. A transient convection model describes the transport of cells in two-phase microfluidic flow under the influence of an external magnetic field. Transport of cells along the microchannel walls is also considered via an additional equation. Results show the variation of cell flux in the fluid phases and the wall as a function of a dimensionless parameter arising in the equations. Our results suggest that conditions may be optimized to maximize cell separation while minimizing contact with the wall surfaces. Experimentally measured cell rolling velocities on the wall indicate the presence of other near-wall forces in addition to fluid shear forces. Separation of a human colon carcinoma cell line from a mixture of red blood cells, with folic acid conjugated 1 microm and 200 nm beads, is reported.
Characterization of blocks impacts from acoustic emissions: insights from laboratory experiments
NASA Astrophysics Data System (ADS)
Farin, Maxime; Mangeney, Anne; de Rosny, Julien; Toussaint, Renaud; Shapiro, Nikolaï
2014-05-01
Rockfalls, debris flows and rock avalanches represent a major natural hazard for the population in mountainous, volcanic and coastal areas but their direct observation on the field is very dangerous. Recent studies showed that gravitational instabilities can be detected and characterized (volume, duration,...) thanks to the seismic signal they generate. In an avalanche, individual block bouncing and rolling on the ground are expected to generated signals of higher frequencies than the main flow spreading. The identification of the time/frequency signature of individual blocks in the recorded signal remains however difficult. Laboratory experiments were conducted to investigate the acoustic signature of diverse simple sources corresponding to grains falling over thin plates of plexiglas and glass and over rock blocks. The elastic energy emitted by a single bouncing bead into the support was first quantitatively estimated and compared to the potential energy of fall and to the potential energy change during the shock. We obtained simple scaling laws relating the impactor characteristics (size, height of fall, material,...) to the elastic energy and spectral content. Next, we consider the collapse of granular columns made of steel spherical beads onto hard substrates. Initially, these columns were held by a magnetic field allowing to suppress suddenly the cohesion between the beads, and thus to minimize friction effects that would arise from side walls. We varied systematically the column volume, the column aspect ratio (height over length) and the grain size. This is shown to affect the signal envelope and frequency content. In the experiments, accelerometers (1 Hz to 56 kHz) were used to record the signals in a wide frequency range. The experiments were also monitored optically using fast cameras. Eventually, we looked at what types of features in the signal are affected by individual impacts, rolling of beads or by the large scale geometry of the avalanche.
Double-probe signal enhancing strategy for toxin aptasensing based on rolling circle amplification.
Tong, Ping; Zhao, Wei-Wei; Zhang, Lan; Xu, Jing-Juan; Chen, Hong-Yuan
2012-03-15
On the basis of aptamer-based rolling circle amplification (RCA) and magnetic beads (MBs), a highly sensitive electrochemical method was developed for the determination of Ochratoxin A (OTA). Initially, an amino-modified capture DNA was immobilized onto MBs for the following hybridization with an OTA aptamer and a phosphate labeled padlock DNA. In the presence of OTA, the aptamer would dissociate from the bioconjugate, and the padlock DNA would subsequently hybridize with the capture DNA to form a circular template with the aid of the T4 ligase. Next, capture DNA would act as primer to initiate a linear RCA reaction and hence generate a long tandem repeated sequences by phi29 DNA polymerase and dNTPs. Then, two quantum dots (QDs) labeled DNA probes were tagged on the resulted RCA product to indicate the OTA recognition event by electrochemical readout. This strategy, based on the novel design of OTA-mediated DNA circularization, the combination of RCA and double signal probes introduction, could detect OTA down to the level of 0.2 pg mL(-1) with a dynamic range spanning more than 4 orders of magnitude. The proposed approach is tested to determine OTA in red wines and shows good application potential in real samples. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Bejhed, Rebecca S.; Strømme, Maria; Svedlindh, Peter; Ahlford, Annika; Strömberg, Mattias
2015-12-01
Magnetic biosensors are promising candidates for low-cost point-of-care biodiagnostic devices. For optimal efficiency it is crucial to minimize the time and complexity of the assay protocol including target recognition, amplification, labeling and read-out. In this work, possibilities for protocol simplifications for a DNA biodetection principle relying on hybridization of magnetic nanobeads to rolling circle amplification (RCA) products are investigated. The target DNA is recognized through a padlock ligation assay resulting in DNA circles serving as templates for the RCA process. It is found that beads can be present during amplification without noticeably interfering with the enzyme used for RCA (phi29 polymerase). As a result, the bead-coil hybridization can be performed immediately after amplification in a one-step manner at elevated temperature within a few minutes prior to read-out in an AC susceptometer setup, i.e. a combined protocol approach. Moreover, by recording the phase angle ξ = arctan(χ″/χ'), where χ and χ″ are the in-phase and out-of-phase components of the AC susceptibility, respectively, at one single frequency the total assay time for the optimized combined protocol would be no more than 1.5 hours, often a relevant time frame for diagnosis of cancer and infectious disease. Also, applying the phase angle method normalization of AC susceptibility data is not needed. These findings are useful for the development of point-of-care biodiagnostic devices relying on bead-coil binding and magnetic AC susceptometry.
Experimental evidence of solitary wave interaction in Hertzian chains
NASA Astrophysics Data System (ADS)
Santibanez, Francisco; Munoz, Romina; Caussarieu, Aude; Job, Stéphane; Melo, Francisco
2011-08-01
We study experimentally the interaction between two solitary waves that approach one another in a linear chain of spheres interacting via the Hertz potential. When these counterpropagating waves collide, they cross each other and a phase shift in respect to the noninteracting waves is introduced as a result of the nonlinear interaction potential. This observation is well reproduced by our numerical simulations and is shown to be independent of viscoelastic dissipation at the bead contact. In addition, when the collision of equal amplitude and synchronized counterpropagating waves takes place, we observe that two secondary solitary waves emerge from the interacting region. The amplitude of the secondary solitary waves is proportional to the amplitude of incident waves. However, secondary solitary waves are stronger when the collision occurs at the middle contact in chains with an even number of beads. Although numerical simulations correctly predict the existence of these waves, experiments show that their respective amplitudes are significantly larger than predicted. We attribute this discrepancy to the rolling friction at the bead contact during solitary wave propagation.
Manufacturing of calcium, lithium and molybdenum targets for use in nuclear physics experiments
NASA Astrophysics Data System (ADS)
Kheswa, N. Y.; Papka, P.; Buthelezi, E. Z.; Lieder, R. M.; Neveling, R.; Newman, R. T.
2010-02-01
This paper describes methods used in the manufacturing of chemically reactive targets such as calcium ( natCa), lithium-6 ( 6Li) and molybdenum-97 ( 97Mo) for nuclear physics experiments at the iThemba LABS cyclotron facility (Faure, South Africa). Due to the chemical properties of these materials a suitable and controlled environment was established in order to minimize oxygen contamination of targets. Calcium was prepared by means of vacuum evaporation while lithium was cold rolled to a desired thickness. In the case of molybdenum, the metallic powder was melted under vacuum using an e-gun followed by cold rolling of the metal bead to a desired thickness. In addition, latest developments toward the establishment of a dedicated nuclear physics target laboratory are discussed.
Heterogeneous immunoassays using magnetic beads on a digital microfluidic platform.
Sista, Ramakrishna S; Eckhardt, Allen E; Srinivasan, Vijay; Pollack, Michael G; Palanki, Srinivas; Pamula, Vamsee K
2008-12-01
A digital microfluidic platform for performing heterogeneous sandwich immunoassays based on efficient handling of magnetic beads is presented in this paper. This approach is based on manipulation of discrete droplets of samples and reagents using electrowetting without the need for channels where the droplets are free to move laterally. Droplet-based manipulation of magnetic beads therefore does not suffer from clogging of channels. Immunoassays on a digital microfluidic platform require the following basic operations: bead attraction, bead washing, bead retention, and bead resuspension. Several parameters such as magnetic field strength, pull force, position, and buffer composition were studied for effective bead operations. Dilution-based washing of magnetic beads was demonstrated by immobilizing the magnetic beads using a permanent magnet and splitting the excess supernatant using electrowetting. Almost 100% bead retention was achieved after 7776-fold dilution-based washing of the supernatant. Efficient resuspension of magnetic beads was achieved by transporting a droplet with magnetic beads across five electrodes on the platform and exploiting the flow patterns within the droplet to resuspend the beads. All the magnetic-bead droplet operations were integrated together to generate standard curves for sandwich heterogeneous immunoassays on human insulin and interleukin-6 (IL-6) with a total time to result of 7 min for each assay.
Heterogeneous Immunoassays Using Magnetic beads On a Digital Microfluidic Platform
Sista, Ramakrishna S.; Eckhardt, Allen E.; Srinivasan, Vijay; Pollack, Michael G.; Palanki, Srinivas; Pamula, Vamsee K.
2009-01-01
A digital microfluidic platform for performing heterogeneous sandwich immunoassays based on efficient handling of magnetic beads is presented in this paper. This approach is based on manipulation of discrete droplets of samples and reagents using electrowetting without the need for channels where the droplets are free to move laterally. Droplet-based manipulation of magnetic beads therefore does not suffer from clogging of channels. Immunoassays on a digital microfluidic platform require the following basic operations: bead attraction, bead washing, bead retention, and bead resuspension. Several parameters such as magnetic field strength, pull force, position, and buffer composition were studied for effective bead operations. Dilution-based washing of magnetic beads was demonstrated by immobilizing the magnetic beads using a permanent magnet and splitting the excess supernatant using electrowetting. Almost 100% bead retention was achieved after 7776 fold dilution-based washing of the supernatant. Efficient resuspension of magnetic beads was achieved by transporting a droplet with magnetic beads across five electrodes on the platform and exploiting the flow patterns within the droplet to resuspend the beads. All the magnetic-bead droplet operations were integrated together to generate standard curves for sandwich heterogeneous immunoassays on Human Insulin and Interleukin-6 (IL-6) with a total time to result of seven minutes for each assay. PMID:19023486
Grinding Parts For Automatic Welding
NASA Technical Reports Server (NTRS)
Burley, Richard K.; Hoult, William S.
1989-01-01
Rollers guide grinding tool along prospective welding path. Skatelike fixture holds rotary grinder or file for machining large-diameter rings or ring segments in preparation for welding. Operator grasps handles to push rolling fixture along part. Rollers maintain precise dimensional relationship so grinding wheel cuts precise depth. Fixture-mounted grinder machines surface to quality sufficient for automatic welding; manual welding with attendant variations and distortion not necessary. Developed to enable automatic welding of parts, manual welding of which resulted in weld bead permeated with microscopic fissures.
2011-07-02
on a lotus leaf and it beads up (as shown in Fig. 1A), then rolls off; this is a familiar demonstration of a ‘ superhydrophobic ’ self-cleaning surface...of biomimetic superhydrophobic surfaces. However, try the same thing with an oily liquid (for example octane or gasoline) and the drop immediately...biomimetic superhydrophobic surfaces (i.e. apparent contact angles (θ*) with water greater than 150° and low contact angle hysteresis). However, prior to
Eniola, A Omolola; Krasik, Ellen F; Smith, Lee A; Song, Gang; Hammer, Daniel A
2005-11-01
In their active state, beta(2)-integrins, such as LFA-1, mediate the firm arrest of leukocytes by binding intercellular adhesion molecules (ICAMs) expressed on endothelium. Although the primary function of LFA-1 is assumed to be the ability to mediate firm adhesion, recent work has shown that LFA-1 can contribute to cell tethering and rolling under hydrodynamic flow, a role previously largely attributed to the selectins. The inserted (I) domain of LFA-1 has recently been crystallized in the wild-type (wt) and locked-open conformations and has been shown to, respectively, support rolling and firm adhesion under flow when expressed in alpha(L)beta(2) heterodimers or as isolated domains on cells. Here, we report results from cell-free adhesion assays where wt I-domain-coated polystyrene particles were allowed to interact with ICAM-1-coated surfaces in shear flow. We show that wt I-domain can independently mediate the capture of particles from flow and support their rolling on ICAM-1 surfaces in a manner similar to how carbohydrate-selectin interactions mediate rolling. Adhesion is specific and blocked by appropriate antibodies. We also show that the rolling velocity of I-domain-coated particles depends on the wall shear stress in flow chamber, I-domain site density on microsphere surfaces, and ICAM-1 site density on substrate surfaces. Furthermore, we show that rolling is less sensitive to wall shear stress and ICAM-1 substrate density at high density of I-domain on the microsphere surface. Computer simulations using adhesive dynamics can recreate bead rolling dynamics and show that the mechanochemical properties of ICAM-1-I-domain interactions are similar to those of carbohydrate-selectin interactions. Understanding the biophysics of adhesion mediated by the I-domain of LFA-1 can elucidate the complex roles this integrin plays in leukocyte adhesion in inflammation.
Chen, Shilan; Liu, Mingzhu; Jin, Shuping; Wang, Bin
2008-02-12
Drug-loaded chitosan (CS) beads were prepared under simple and mild condition using trisodium citrate as ionic crosslinker. The beads were further coated with poly(methacrylic acid) (PMAA) by dipping the beads in PMAA aqueous solution. The surface and cross-section morphology of these beads were observed by scanning electron microscopy and the observation showed that the coating beads had core-shell structure. In vitro release of model drug from these beads obtained under different reaction conditions was investigated in buffer medium (pH 1.8). The results showed that the rapid drug release was restrained by PMAA coating and the optimum conditions for preparing CS-based drug-loaded beads were decided through the effect of reaction conditions on the drug release behaviors. In addition, the drug release mechanism of CS-based drug-loaded beads was analyzed by Peppa's potential equation. According to this study, the ionic-crosslinked CS beads coated by PMAA could serve as suitable candidate for drug site-specific carrier in stomach.
Cantor, Stuart L; Hoag, Stephen W; Augsburger, Larry L
2009-03-01
The aim of this study was to characterize and evaluate a modified release, multiparticulate tablet formulation consisting of placebo beads and drug-loaded beads. Acetaminophen (APAP) bead formulations containing ethylcellulose (EC) from 40-60% and placebo beads containing 30% calcium silicate and prepared using 0-20% alcohol were developed using extrusion-spheronization and studied using a central composite experimental design. Particle size and true density of beads were measured. Segregation testing was performed using the novel ASTM D6940-04 method on a 50:50 blend of uncoated APAP beads (60%EC) : calcium silicate placebo beads (10% alcohol). Tablets were prepared using an instrumented Stokes-B2 rotary tablet press and evaluated for crushing strength and dissolution rate. Compared with drug beads (60%EC), placebo beads (10% alcohol) were smaller but had higher true densities: 864.8 mum and 1.27 g/cm(3), and 787.1 mum and 1.73 g/cm(3), respectively. Segregation testing revealed that there was approximately a 20% difference in drug content (as measured by the coefficient of variation) between initial and final blend samples. Although calcium silicate-based placebo beads were shown to be ineffective cushioning agents in blends with Surelease(R)-coated APAP beads, they were found to be very compactibile when used alone and gave tablet crushing strength values between 14 and 17 kP. The EC in the APAP bead matrix minimally suppressed the drug release from uncoated beads (t(100%) = 2 h). However, while tablets containing placebo beads reformulated with glycerol monostearate (GMS) showed a slower release rate (t(60%)= 5 h) compared with calcium silicate-based placebos, some coating damage ( approximately 30%) still occurred on compression as release was faster than coated APAP beads alone. While tablets containing coated drug beads can be produced with practical crushing strengths (>8 kP) and low compression pressures (10-35 MPa), dissolution studies revealed that calcium silicate-based placebos are ineffective as cushioning agents. Blend segregation was likely observed due to the particle size and the density differences between APAP beads and calcium silicate-based placebo beads; placebo bead percolation can perhaps be minimized by increasing their size during the extrusion-spheronization process. The GMS- based placebos offer greater promise as cushioning agents for compacted, coated drug beads; however, this requires an optimized compression pressure range and drug bead : placebo bead ratio (i.e., 50:50).
Integration of Magnetic Bead-Based Cell Selection into Complex Isolations
2018-01-01
Magnetic bead-based analyte capture has emerged as a ubiquitous method in cell isolation, enabling the highly specific capture of target populations through simple magnetic manipulation. To date, no “one-size fits all” magnetic bead has been widely adopted leading to an overwhelming number of commercial beads. Ultimately, the ideal bead is one that not only facilitates cell isolation but also proves compatible with the widest range of downstream applications and analytic endpoints. Despite the diverse offering of sizes, coatings, and conjugation chemistries, few studies exist to benchmark the performance characteristics of different commercially available beads; importantly, these bead characteristics ultimately determine the ability of a bead to integrate into the user’s assay. In this report, we evaluate bead-based cell isolation considerations, approaches, and results across a subset of commercially available magnetic beads (Dynabeads FlowComps, Dynabeads CELLection, GE Healthcare Sera-Mag SpeedBeads streptavidin-blocked magnetic particles, Dynabeads M-270s, Dynabeads M-280s) to compare and contrast both capture-specific traits (i.e., purity, capture efficacy, and contaminant isolations) and endpoint compatibility (i.e., protein localization, fluorescence imaging, and nucleic acid extraction). We identify specific advantages and contexts of use in which distinct bead products may facilitate experimental goals and integrate into downstream applications. PMID:29732449
NASA Astrophysics Data System (ADS)
Kim, Hojin; Choi, In Ho; Lee, Sanghyun; Won, Dong-Joon; Oh, Yong Suk; Kwon, Donghoon; Sung, Hyung Jin; Jeon, Sangmin; Kim, Joonwon
2017-04-01
This paper presents a deterministic bead-in-droplet ejection (BIDE) technique that regulates the precise distribution of microbeads in an ejected droplet. The deterministic BIDE was realized through the effective integration of a microfluidic single-particle handling technique with a liquid dispensing system. The integrated bead dispenser facilitates the transfer of the desired number of beads into a dispensing volume and the on-demand ejection of bead-encapsulated droplets. Single bead-encapsulated droplets were ejected every 3 s without any failure. Multiple-bead dispensing with deterministic control of the number of beads was demonstrated to emphasize the originality and quality of the proposed dispensing technique. The dispenser was mounted using a plug-socket type connection, and the dispensing process was completely automated using a programmed sequence without any microscopic observation. To demonstrate a potential application of the technique, bead-based streptavidin-biotin binding assay in an evaporating droplet was conducted using ultralow numbers of beads. The results evidenced the number of beads in the droplet crucially influences the reliability of the assay. Therefore, the proposed deterministic bead-in-droplet technology can be utilized to deliver desired beads onto a reaction site, particularly to reliably and efficiently enrich and detect target biomolecules.
Kim, Hojin; Choi, In Ho; Lee, Sanghyun; Won, Dong-Joon; Oh, Yong Suk; Kwon, Donghoon; Sung, Hyung Jin; Jeon, Sangmin; Kim, Joonwon
2017-04-10
This paper presents a deterministic bead-in-droplet ejection (BIDE) technique that regulates the precise distribution of microbeads in an ejected droplet. The deterministic BIDE was realized through the effective integration of a microfluidic single-particle handling technique with a liquid dispensing system. The integrated bead dispenser facilitates the transfer of the desired number of beads into a dispensing volume and the on-demand ejection of bead-encapsulated droplets. Single bead-encapsulated droplets were ejected every 3 s without any failure. Multiple-bead dispensing with deterministic control of the number of beads was demonstrated to emphasize the originality and quality of the proposed dispensing technique. The dispenser was mounted using a plug-socket type connection, and the dispensing process was completely automated using a programmed sequence without any microscopic observation. To demonstrate a potential application of the technique, bead-based streptavidin-biotin binding assay in an evaporating droplet was conducted using ultralow numbers of beads. The results evidenced the number of beads in the droplet crucially influences the reliability of the assay. Therefore, the proposed deterministic bead-in-droplet technology can be utilized to deliver desired beads onto a reaction site, particularly to reliably and efficiently enrich and detect target biomolecules.
Hintersteiner, Martin; Buehler, Christof; Uhl, Volker; Schmied, Mario; Müller, Jürgen; Kottig, Karsten; Auer, Manfred
2009-01-01
Solid phase combinatorial chemistry provides fast and cost-effective access to large bead based libraries with compound numbers easily exceeding tens of thousands of compounds. Incubating one-bead one-compound library beads with fluorescently labeled target proteins and identifying and isolating the beads which contain a bound target protein, potentially represents one of the most powerful generic primary high throughput screening formats. On-bead screening (OBS) based on this detection principle can be carried out with limited automation. Often hit bead detection, i.e. recognizing beads with a fluorescently labeled protein bound to the compound on the bead, relies on eye-inspection under a wide-field microscope. Using low resolution detection techniques, the identification of hit beads and their ranking is limited by a low fluorescence signal intensity and varying levels of the library beads' autofluorescence. To exploit the full potential of an OBS process, reliable methods for both automated quantitative detection of hit beads and their subsequent isolation are needed. In a joint collaborative effort with Evotec Technologies (now Perkin-Elmer Cellular Technologies Germany GmbH), we have built two confocal bead scanner and picker platforms PS02 and a high-speed variant PS04 dedicated to automated high resolution OBS. The PS0X instruments combine fully automated confocal large area scanning of a bead monolayer at the bottom of standard MTP plates with semiautomated isolation of individual hit beads via hydraulic-driven picker capillaries. The quantification of fluorescence intensities with high spatial resolution in the equatorial plane of each bead allows for a reliable discrimination between entirely bright autofluorescent beads and real hit beads which exhibit an increased fluorescence signal at the outer few micrometers of the bead. The achieved screening speed of up to 200,000 bead assayed in less than 7 h and the picking time of approximately 1 bead/min allow exploitation of one-bead one-compound libraries with high sensitivity, accuracy, and speed.
Kim, Hojin; Choi, In Ho; Lee, Sanghyun; Won, Dong-Joon; Oh, Yong Suk; Kwon, Donghoon; Sung, Hyung Jin; Jeon, Sangmin; Kim, Joonwon
2017-01-01
This paper presents a deterministic bead-in-droplet ejection (BIDE) technique that regulates the precise distribution of microbeads in an ejected droplet. The deterministic BIDE was realized through the effective integration of a microfluidic single-particle handling technique with a liquid dispensing system. The integrated bead dispenser facilitates the transfer of the desired number of beads into a dispensing volume and the on-demand ejection of bead-encapsulated droplets. Single bead–encapsulated droplets were ejected every 3 s without any failure. Multiple-bead dispensing with deterministic control of the number of beads was demonstrated to emphasize the originality and quality of the proposed dispensing technique. The dispenser was mounted using a plug-socket type connection, and the dispensing process was completely automated using a programmed sequence without any microscopic observation. To demonstrate a potential application of the technique, bead-based streptavidin–biotin binding assay in an evaporating droplet was conducted using ultralow numbers of beads. The results evidenced the number of beads in the droplet crucially influences the reliability of the assay. Therefore, the proposed deterministic bead-in-droplet technology can be utilized to deliver desired beads onto a reaction site, particularly to reliably and efficiently enrich and detect target biomolecules. PMID:28393911
From the one-bead-one-compound concept to one-bead-one-reactor.
Marani, Mariela M; Paradís-Bas, Marta; Tulla-Puche, Judit; Côté, Simón; Camperi, Silvia A; Cascone, Osvaldo; Albericio, Fernando
2007-01-01
The one-bead-one-compound method gives access to millions of compounds that can be screened directly on the bead. Although characterization techniques are increasingly potent and reliable, problems can still be encountered in deciphering the sequence of the active compound because of sensitiveness or manipulation of the bead. ChemMatrix, a totally PEG-based resin, has resolved the synthesis of peptides of outstanding difficulty. Like other PEG-based resins, it permits on-bead screening because of its compatibility in aqueous media and has the further advantage of having a high loading, comparable to polystyrene resins. ChemMatrix beads previously swelled in water can be nicely divided into four parts that can be characterized using different analytical techniques or just stored for safety or for further testing. The four bead parts show high homogeneity and can thus be considered to be replicas.
Designing an experiment to measure cellular interaction forces
NASA Astrophysics Data System (ADS)
McAlinden, Niall; Glass, David G.; Millington, Owain R.; Wright, Amanda J.
2013-09-01
Optical trapping is a powerful tool in Life Science research and is becoming common place in many microscopy laboratories and facilities. The force applied by the laser beam on the trapped object can be accurately determined allowing any external forces acting on the trapped object to be deduced. We aim to design a series of experiments that use an optical trap to measure and quantify the interaction force between immune cells. In order to cause minimum perturbation to the sample we plan to directly trap T cells and remove the need to introduce exogenous beads to the sample. This poses a series of challenges and raises questions that need to be answered in order to design a set of effect end-point experiments. A typical cell is large compared to the beads normally trapped and highly non-uniform - can we reliably trap such objects and prevent them from rolling and re-orientating? In this paper we show how a spatial light modulator can produce a triple-spot trap, as opposed to a single-spot trap, giving complete control over the object's orientation and preventing it from rolling due, for example, to Brownian motion. To use an optical trap as a force transducer to measure an external force you must first have a reliably calibrated system. The optical trapping force is typically measured using either the theory of equipartition and observing the Brownian motion of the trapped object or using an escape force method, e.g. the viscous drag force method. In this paper we examine the relationship between force and displacement, as well as measuring the maximum displacement from equilibrium position before an object falls out of the trap, hence determining the conditions under which the different calibration methods should be applied.
NASA Technical Reports Server (NTRS)
Bird, R. Keith; Hibberd, Joshua
2009-01-01
Electron beam freeform fabrication (EBF3) direct metal deposition processing was used to fabricate two Inconel 718 single-bead-width wall builds and one multiple-bead-width block build. Specimens were machined to evaluate microstructure and room temperature tensile properties. The tensile strength and yield strength of the as-deposited material from the wall and block builds were greater than those for conventional Inconel 718 castings but were less than those for conventional cold-rolled sheet. Ductility levels for the EBF3 material were similar to those for conventionally-processed sheet and castings. An unexpected result was that the modulus of the EBF3-deposited Inconel 718 was significantly lower than that of the conventional material. This low modulus may be associated with a preferred crystallographic orientation resultant from the deposition and rapid solidification process. A heat treatment with a high solution treatment temperature resulted in a recrystallized microstructure and an increased modulus. However, the modulus was not increased to the level that is expected for Inconel 718.
Bead mediated separation of microparticles in droplets.
Wang, Sida; Sung, Ki-Joo; Lin, Xiaoxia Nina; Burns, Mark A
2017-01-01
Exchange of components such as particles and cells in droplets is important and highly desired in droplet microfluidic assays, and many current technologies use electrical or magnetic fields to accomplish this process. Bead-based microfluidic techniques offer an alternative approach that uses the bead's solid surface to immobilize targets like particles or biological material. In this paper, we demonstrate a bead-based technique for exchanging droplet content by separating fluorescent microparticles in a microfluidic device. The device uses posts to filter surface-functionalized beads from a droplet and re-capture the filtered beads in a new droplet. With post spacing of 7 μm, beads above 10 μm had 100% capture efficiency. We demonstrate the efficacy of this system using targeted particles that bind onto the functionalized beads and are, therefore, transferred from one solution to another in the device. Binding capacity tests performed in the bulk phase showed an average binding capacity of 5 particles to each bead. The microfluidic device successfully separated the targeted particles from the non-targeted particles with up to 98% purity and 100% yield.
Heusermann, Wolf; Ludin, Beat; Pham, Nhan T; Auer, Manfred; Weidemann, Thomas; Hintersteiner, Martin
2016-05-09
The increasing involvement of academic institutions and biotech companies in drug discovery calls for cost-effective methods to identify new bioactive molecules. Affinity-based on-bead screening of combinatorial one-bead one-compound libraries combines a split-mix synthesis design with a simple protein binding assay operating directly at the bead matrix. However, one bottleneck for academic scale on-bead screening is the unavailability of a cheap, automated, and robust screening platform that still provides a quantitative signal related to the amount of target protein binding to individual beads for hit bead ranking. Wide-field fluorescence microscopy has long been considered unsuitable due to significant broad spectrum autofluorescence of the library beads in conjunction with low detection sensitivity. Herein, we demonstrate how such a standard microscope equipped with LED-based excitation and a modern CMOS camera can be successfully used for selecting hit beads. We show that the autofluorescence issue can be overcome by an optical image subtraction approach that yields excellent signal-to-noise ratios for the detection of bead-associated target proteins. A polymer capillary attached to a semiautomated bead-picking device allows the operator to efficiently isolate individual hit beads in less than 20 s. The system can be used for ultrafast screening of >200,000 bead-bound compounds in 1.5 h, thereby making high-throughput screening accessible to a wider group within the scientific community.
Opportunities for bead-based multiplex assays in veterinary diagnostic laboratories
USDA-ARS?s Scientific Manuscript database
Bead based multiplex assays (BBMA) also referred to as Luminex, MultiAnalyte Profiling or cytometric bead array (CBA) assays, are applicable for high throughput, simultaneous detection of multiple analytes in solution (from several, up to 50-500 analytes within a single, small sample volume). Curren...
NASA Astrophysics Data System (ADS)
Elsharkawy, Karim; Guo, Lin; Taha, Elhussein; Fouda, Hany
2017-07-01
In this paper three types of thin sheets of highly energetic materials were prepared and characterized. The first based on 1,3,5,7-tetranitro-1,3,5,7-tetrazocane (HMX). The second type based on 1,3,5-trinitro-1,3,5-triazinane (RDX). Both types contain polyurethane (PU), formulated by hydroxyl terminated polybutadiene (HTPB) and Isophorondiisocyanate (IPDI). The third type based on (RDX) and polyisoprene (PI) as high elastomeric material. The first and second types of thin sheets were prepared by applying the casting technique while the third type was prepared by slurry technique then followed by rolling of the prepared beads of the RDX coated by PI. These high energy sheet materials were cured in oven at 60°C. The measured explosive properties of the prepared sheets were discussed and showed that the sensitivity to impact and friction of the prepared sheets explosives materials were markedly decreased when compared to pure HMX or pure RDX, but the sensitivity to heat was close to that of pure RDX. In spite of the markedly decrease in the sensitivity of these sheets, the explosive characteristics were nearly not affected the sheets have very good stress-strain values.
Hossieni-Aghdam, Seyed Jamal; Foroughi-Nia, Behrouz; Zare-Akbari, Zhila; Mojarad-Jabali, Solmaz; Motasadizadeh, Hamidreza; Farhadnejad, Hassan
2018-02-01
The main aim of the present study was to design pH-sensitive bionanocomposite hydrogel beads based on CMC and HNT-AT nanohybrid and evaluate whether prepared bionanocomposite beads have the potential to be used in drug delivery applications. Atenolol (AT), as a model drug, was incorporated into the lumen of HA nanotubes via the co-precipitation technique. HNT/AT nanohybrid and CMC/HNT-AT beads were characterized via XRD, SEM, TGA, and FT-IR techniques. Drug loading and encapsulation efficiency was found to be high for CMC/HNT3 beads. Moreover, the swelling and drug release properties of the prepared CMC/HA-AT beads were investigated, and showed a pH sensitive swelling behavior with maximum its content at pH 6.8. Also, it was found that the swelling ratio of CMC/HNT beads was lower than that of pristine CMC beads. Drug release behavior of CMC/HNT-AT bionanocomposite hydrogel beads were investigated. A more sustained and controlled drug releases were observed for CMC/HNT-AT beads. Copyright © 2017 Elsevier B.V. All rights reserved.
Bead-based microfluidic immunoassay for diagnosis of Johne's disease
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wadhwa, Ashutosh; Foote, Robert; Shaw, Robert W
2012-01-01
Microfluidics technology offers a platform for development of point-of-care diagnostic devices for various infectious diseases. In this study, we examined whether serodiagnosis of Johne s disease (JD) can be conducted in a bead-based microfluidic assay system. Magnetic micro-beads were coated with antigens of the causative agent of JD, Mycobacterium avium subsp. paratuberculosis. The antigen-coated beads were incubated with serum samples of JD-positive or negative serum samples and then with a fluorescently-labeled secondary antibody (SAB). To confirm binding of serum antibodies to the antigen, the beads were subjected to flow cytometric analysis. Different conditions (dilutions of serum and SAB, types ofmore » SAB, and types of magnetic beads) were optimized for a great degree of differentiation between the JD-negative and JD-positive samples. Using the optimized conditions, we tested a well-classified set of 155 serum samples from JD negative and JD-positive cattle by using the bead-based flow cytometric assay. Of 105 JD-positive samples, 63 samples (60%) showed higher antibody binding levels than a cut-off value determined by using antibody binding levels of JD-negative samples. In contrast, only 43-49 JD-positive samples showed higher antibody binding levels than the cut-off value when the samples were tested by commercially-available immunoassays. Microfluidic assays were performed by magnetically immobilizing a number of beads within a microchannel of a glass microchip and detecting antibody on the collected beads by laser-induced fluorescence. Antigen-coated magnetic beads treated with bovine serum sample and fluorescently-labeled SAB were loaded into a microchannel to measure the fluorescence (reflecting level of antibody binding) on the beads in the microfluidic system. When the results of five bovine serum samples obtained with the system were compared to those obtained with the flow cytometer, a high level of correlation (linear regression, r2 = 0.994) was observed. In a further experiment, we magnetically immobilized antigen-coated beads in a microchannel, reacted the beads with serum and SAB in the channel, and detected antibody binding to the beads in the microfluidic system. A strong antibody binding in JD-positive serum was detected, whereas there was only negligible binding in negative control experiments. Our data suggest that the bead-based microfluidic system may form a basis for development of an on-site serodiagnosis of JD. Key Words: Mycobacterium avium ssp. paratuberculosis, Johne s disease, microfluidics, lab-on-a-chip.« less
Bead mediated separation of microparticles in droplets
Sung, Ki-Joo; Lin, Xiaoxia Nina; Burns, Mark A.
2017-01-01
Exchange of components such as particles and cells in droplets is important and highly desired in droplet microfluidic assays, and many current technologies use electrical or magnetic fields to accomplish this process. Bead-based microfluidic techniques offer an alternative approach that uses the bead’s solid surface to immobilize targets like particles or biological material. In this paper, we demonstrate a bead-based technique for exchanging droplet content by separating fluorescent microparticles in a microfluidic device. The device uses posts to filter surface-functionalized beads from a droplet and re-capture the filtered beads in a new droplet. With post spacing of 7 μm, beads above 10 μm had 100% capture efficiency. We demonstrate the efficacy of this system using targeted particles that bind onto the functionalized beads and are, therefore, transferred from one solution to another in the device. Binding capacity tests performed in the bulk phase showed an average binding capacity of 5 particles to each bead. The microfluidic device successfully separated the targeted particles from the non-targeted particles with up to 98% purity and 100% yield. PMID:28282412
Method of synthesizing bulk transition metal carbide, nitride and phosphide catalysts
Choi, Jae Soon; Armstrong, Beth L; Schwartz, Viviane
2015-04-21
A method for synthesizing catalyst beads of bulk transmission metal carbides, nitrides and phosphides is provided. The method includes providing an aqueous suspension of transition metal oxide particles in a gel forming base, dropping the suspension into an aqueous solution to form a gel bead matrix, heating the bead to remove the binder, and carburizing, nitriding or phosphiding the bead to form a transition metal carbide, nitride, or phosphide catalyst bead. The method can be tuned for control of porosity, mechanical strength, and dopant content of the beads. The produced catalyst beads are catalytically active, mechanically robust, and suitable for packed-bed reactor applications. The produced catalyst beads are suitable for biomass conversion, petrochemistry, petroleum refining, electrocatalysis, and other applications.
Modeling of weld bead geometry for rapid manufacturing by robotic GMAW
NASA Astrophysics Data System (ADS)
Yang, Tao; Xiong, Jun; Chen, Hui; Chen, Yong
2015-03-01
Weld-based rapid prototyping (RP) has shown great promises for fabricating 3D complex parts. During the layered deposition of forming metallic parts with robotic gas metal arc welding, the geometry of a single weld bead has an important influence on surface finish quality, layer thickness and dimensional accuracy of the deposited layer. In order to obtain accurate, predictable and controllable bead geometry, it is essential to understand the relationships between the process variables with the bead geometry (bead width, bead height and ratio of bead width to bead height). This paper highlights an experimental study carried out to develop mathematical models to predict deposited bead geometry through the quadratic general rotary unitized design. The adequacy and significance of the models were verified via the analysis of variance. Complicated cause-effect relationships between the process parameters and the bead geometry were revealed. Results show that the developed models can be applied to predict the desired bead geometry with great accuracy in layered deposition with accordance to the slicing process of RP.
Single bead-based electrochemical biosensor.
Liu, Changchun; Schrlau, Michael G; Bau, Haim H
2009-12-15
A simple, robust, single bead-based electrochemical biosensor was fabricated and characterized. The sensor's working electrode consists of an electrochemically etched platinum wire, with a nominal diameter of 25 microm, hermetically heat-fusion sealed in a pulled glass capillary (micropipette). The sealing process does not require any epoxy or glue. A commercially available, densely functionalized agarose bead was mounted on the tip of the etched platinum wire. The use of a pre-functionalized bead eliminates the tedious and complicated surface functionalization process that is often the bottleneck in the development of electrochemical biosensors. We report on the use of a biotin agarose bead-based, micropipette, electrochemical (Bio-BMP) biosensor to monitor H(2)O(2) concentration and the use of a streptavidin bead-based, micropipette, electrochemical (SA-BMP) biosensor to detect DNA amplicons. The Bio-BMP biosensor's response increased linearly as the H(2)O(2) concentration increased in the range from 1 x 10(-6) to 1.2 x10(-4)M with a detection limit of 5 x 10(-7)M. The SA-BMP was able to detect the amplicons of 1pg DNA template of B. Cereus bacteria, thus providing better detection sensitivity than conventional gel-based electropherograms.
Rare Earth Adsorption and Desorption with PEGDA Beads
Jiao, Yongqin; Brewer, Aaron; Park, Dan
2017-03-01
We synthesized PEGDA polymer hydrogel beads for cell embedding and compared REE biosorption with these beads via a gravity-driven flow through setup. One way to set up a flow through system is by cell encapsulation into polymer beads with a column setup similar to that used in the chromatography industry. To achieve this, we tested PEGDA for cell encapsulation, and tested REE biosorption under both batch mode and a follow through setup based on gravity . For making the cell embedded polymer beads, we used a fluidic device by which homogenous spherical particles of 0.5 to1 mm in diameter were synthesized. The beads are made relatively quickly, and the size of the beads can be controlled. PEGDA beads were polymerized by UV. Tb adsorption experiment was performed with beads with or without cells embedded.
Metal-Containing Polystyrene Beads as Standards for Mass Cytometry
Abdelrahman, Ahmed I.; Ornatsky, Olga; Bandura, Dmitry; Kinach, Robert; Dai, Sheng; Thickett, Stuart C.; Tanner, Scott
2010-01-01
We examine the suitability of metal-containing polystyrene beads for the calibration of a mass cytometer instrument, a single particle analyser based on an inductively coupled plasma ion source and a time of flight mass spectrometer. These metal-containing beads are also verified for their use as internal standards for this instrument. These beads were synthesized by multiple-stage dispersion polymerization with acrylic acid as a comonomer. Acrylic acid acts as a ligand to anchor the metal ions within the interior of the beads. Mass cytometry enabled the bead-by-bead measurement of the metal-content and determination of the metal-content distribution. Beads synthesized by dispersion polymerization that involved three stages were shown to have narrower bead-to-bead variation in their lanthanide content than beads synthesized by 2-stage dispersion polymerization. The beads exhibited insignificant release of their lanthanide content to aqueous solutions of different pHs over a period of six months. When mixed with KG1a or U937 cell lines, metal-containing polymer beads were shown not to affect the mass cytometry response to the metal content of element-tagged antibodies specifically attached to these cells. PMID:20390041
Metal-Containing Polystyrene Beads as Standards for Mass Cytometry.
Abdelrahman, Ahmed I; Ornatsky, Olga; Bandura, Dmitry; Baranov, Vladimir; Kinach, Robert; Dai, Sheng; Thickett, Stuart C; Tanner, Scott; Winnik, Mitchell A
2010-01-01
We examine the suitability of metal-containing polystyrene beads for the calibration of a mass cytometer instrument, a single particle analyser based on an inductively coupled plasma ion source and a time of flight mass spectrometer. These metal-containing beads are also verified for their use as internal standards for this instrument. These beads were synthesized by multiple-stage dispersion polymerization with acrylic acid as a comonomer. Acrylic acid acts as a ligand to anchor the metal ions within the interior of the beads. Mass cytometry enabled the bead-by-bead measurement of the metal-content and determination of the metal-content distribution. Beads synthesized by dispersion polymerization that involved three stages were shown to have narrower bead-to-bead variation in their lanthanide content than beads synthesized by 2-stage dispersion polymerization. The beads exhibited insignificant release of their lanthanide content to aqueous solutions of different pHs over a period of six months. When mixed with KG1a or U937 cell lines, metal-containing polymer beads were shown not to affect the mass cytometry response to the metal content of element-tagged antibodies specifically attached to these cells.
Duran, Rafael; Sharma, Karun; Dreher, Matthew R; Ashrafi, Koorosh; Mirpour, Sahar; Lin, MingDe; Schernthaner, Ruediger E; Schlachter, Todd R; Tacher, Vania; Lewis, Andrew L; Willis, Sean; den Hartog, Mark; Radaelli, Alessandro; Negussie, Ayele H; Wood, Bradford J; Geschwind, Jean-François H
2016-01-01
Embolotherapy using microshperes is currently performed with soluble contrast to aid in visualization. However, administered payload visibility dimishes soon after delivery due to soluble contrast washout, leaving the radiolucent bead's location unknown. The objective of our study was to characterize inherently radiopaque beads (RO Beads) in terms of physicomechanical properties, deliverability and imaging visibility in a rabbit VX2 liver tumor model. RO Beads, which are based on LC Bead® platform, were compared to LC Bead. Bead size (light microscopy), equilibrium water content (EWC), density, X-ray attenuation and iodine distribution (micro-CT), suspension (settling times), deliverability and in vitro penetration were investigated. Fifteen rabbits were embolized with either LC Bead or RO Beads + soluble contrast (iodixanol-320), or RO Beads+dextrose. Appearance was evaluated with fluoroscopy, X-ray single shot, cone-beam CT (CBCT). Both bead types had a similar size distribution. RO Beads had lower EWC (60-72%) and higher density (1.21-1.36 g/cc) with a homogeneous iodine distribution within the bead's interior. RO Beads suspension time was shorter than LC Bead, with durable suspension (>5 min) in 100% iodixanol. RO Beads ≤300 µm were deliverable through a 2.3-Fr microcatheter. Both bead types showed similar penetration. Soluble contrast could identify target and non-target embolization on fluoroscopy during administration. However, the imaging appearance vanished quickly for LC Bead as contrast washed-out. RO Beads+contrast significantly increased visibility on X-ray single shot compared to LC Bead+contrast in target and non-target arteries (P=0.0043). Similarly, RO beads demonstrated better visibility on CBCT in target arteries (P=0.0238) with a trend in non-target arteries (P=0.0519). RO Beads+dextrose were not sufficiently visible to monitor embolization using fluoroscopy. RO Beads provide better conspicuity to determine target and non-target embolization compared to LC Bead which may improve intra-procedural monitoring and post-procedural evaluation of transarterial embolization.
Scaling, clustering and avalanches for steel beads in an external magnetic field
NASA Astrophysics Data System (ADS)
Marquinez, Alyse; Thvedt, Ingrid; Lehman, S. Y.; Jacobs, D. T.
2011-03-01
We investigated avalanches using uniform 3mm steel spheres (``beads'') dropped onto a conical bead pile within a uniform magnetic field. The bead pile is built by pouring beads onto a circular base where the bottom layer of beads had been glued randomly. Beads are then individually dropped from a fixed height after which the pile is massed. This process is repeated for thousands of bead drops. By measuring the number of avalanches of a given size that occurred during the experiment, the resulting avalanche size distribution was compared to a power law description as predicted by self-organized criticality. As the magnetic field intensity increased, the beads clustered to give a larger angle of repose and we measured the change in the avalanche size distribution. The moments of the distribution give a sensitive test of mean-field theory as the universality class for these bead piles. We acknowledge support from Research Corporation and NSF-REU grant DMR 0649112.
Türker, Onur Can; Baran, Talat
2017-06-15
Boron exists in various types of water environments, and it is difficult and costly to remove B with conventional treatment methods from drinking water. Clearly, alternative and cost effective treatment techniques are imperative. In the present study, an innovative and environment friendly method based on hybrid systems consisting of various chitosan composite beads and Lemna gibba were evaluated for removal of B from drinking water. Our results from batch adsorption experiment indicated that a plant-based chitosan composite bead has a higher capacity of B removal than mineral-based chitosan composite beads. Almost 50% of total B removal was achieved using the hybrid system based on dried Lemna-chitosan composite beads and Lemna gibba combination in 4 days. Even at the high B concentration (8mgBL -1 ), B in drinking water could be reduced to less than 2.4mgL -1 when 0.05g plant-based chitosan composite beads and 12 Lemna fronds were used for 50mL test solution. Copyright © 2017 Elsevier Ltd. All rights reserved.
Cantor, Stuart L; Hoag, Stephen W; Augsburger, Larry L
2009-05-01
The purpose was to investigate the effectiveness of an ethylcellulose (EC) bead matrix and different film-coating polymers in delaying drug release from compacted multiparticulate systems. Formulations containing theophylline or cimetidine granulated with Eudragit RS 30D were developed and beads were produced by extrusion-spheronization. Drug beads were coated using 15% wt/wt Surelease or Eudragit NE 30D and were evaluated for true density, particle size, and sphericity. Lipid-based placebo beads and drug beads were blended together and compacted on an instrumented Stokes B2 rotary tablet press. Although placebo beads were significantly less spherical, their true density of 1.21 g/cm(3) and size of 855 mum were quite close to Surelease-coated drug beads. Curing improved the crushing strength and friability values for theophylline tablets containing Surelease-coated beads; 5.7 +/- 1.0 kP and 0.26 +/- 0.07%, respectively. Dissolution profiles showed that the EC matrix only provided 3 h of drug release. Although tablets containing Surelease-coated theophylline beads released drug fastest overall (t(44.2%) = 8 h), profiles showed that coating damage was still minimal. Size and density differences indicated a minimal segregation potential during tableting for blends containing Surelease-coated drug beads. Although modified release profiles >8 h were achievable in tablets for both drugs using either coating polymer, Surelease-coated theophylline beads released drug fastest overall. This is likely because of the increased solubility of theophylline and the intrinsic properties of the Surelease films. Furthermore, the lipid-based placebos served as effective cushioning agents by protecting coating integrity of drug beads under a number of different conditions while tableting.
Using a bead-based method for multiplexed analysis of community DNA, the dynamics of aquatic microbial communities can be assessed. Capture probes, specific for a genus or species of bacteria, are attached to the surface of uniquely labeled, microscopic polystyrene beads. Primers...
Townsend, Jared B; Shaheen, Farzana; Liu, Ruiwu; Lam, Kit S
2010-09-13
A method to efficiently immobilize and partition large quantities of microbeads in an array format in microfabricated poly(dimethylsiloxane) (PDMS) cassette for ultrahigh-throughput in situ releasable solution-phase cell-based screening of one-bead-one-compound (OBOC) combinatorial libraries is described. Commercially available Jeffamine triamine T-403 (∼440 Da) was derivatized such that two of its amino groups were protected by Fmoc and the remaining amino group capped with succinic anhydride to generate a carboxyl group. This resulting trifunctional hydrophilic polymer was then sequentially coupled two times to the outer layer of topologically segregated bilayer TentaGel (TG) beads with solid phase peptide synthesis chemistry resulting in beads with increased loading capacity, hydrophilicity, and porosity at the outer layer. We have found that such bead configuration can facilitate ultrahigh-throughput in situ releasable solution-phase screening of OBOC libraries. An encoded releasable OBOC small molecule library was constructed on Jeffamine derivatized TG beads with library compounds tethered to the outer layer via a disulfide linker and coding tags in the interior of the beads. Compound-beads could be efficiently loaded (5-10 min) into a 5 cm diameter Petri dish containing a 10,000-well PDMS microbead cassette, such that over 90% of the microwells were each filled with only one compound-bead. Jurkat T-lymphoid cancer cells suspended in Matrigel were then layered over the microbead cassette to immobilize the compound-beads. After 24 h of incubation at 37 °C, dithiothreitol was added to trigger the release of library compounds. Forty-eight hours later, MTT reporter assay was used to identify regions of reduced cell viability surrounding each positive bead. From a total of about 20,000 beads screened, 3 positive beads were detected and physically isolated for decoding. A strong consensus motif was identified for these three positive compounds. These compounds were resynthesized and found to be cytotoxic (IC(50) 50-150 μM) against two T-lymphoma cell lines and less so against the MDA-MB 231 breast cancer cell line. This novel ultrahigh-throughput OBOC releasable method can potentially be adapted to many existing 96- or 384-well solution-phase cell-based or biochemical assays.
Baek, Hyoung Gee; Liu, Ruiwu; Lam, Kit S
2009-01-01
The one-bead one-compound (OBOC) combinatorial library method enables the rapid generation and screening of millions of discrete chemical compounds on beads. Most of the OBOC screening methods require the library compounds to remain tethered to the bead during screening process. Methods have also been developed to release library compounds from immobilized beads for in situ solution phase or "lawn" assays. However, this latter approach, while extremely powerful, is severely limited by the lack of suitable solid supports for such assays. Here, we report on the development of a novel hydrogel TentaGel shell-core (HTSC) bead in which hydrogel is grafted onto the polystyrene-based TentaGel (TG) bead as an outer shell (5-80 mum thick) via free radical surface-initiated polymerization. This novel shell-core bilayer resin enables the preparation of encoded OBOC combinatorial small molecule libraries, such that the library compounds reside on the highly hydrophilic outer layer and the coding tags reside in the polystyrene-based TG core. Using fluorescein as a model small molecule compound, we have demonstrated that fluorescein molecules that have been linked covalently to the hydrogel shell via a disulfide bond could readily diffuse out of the hydrogel layer into the bead surrounding after reduction with dithiothreitol. In contrast, under identical condition, the released fluorescein molecules remained bound to unmodified TG bead. We have prepared an encoded OBOC small molecule library on the novel shell-core beads and demonstrated that the beads can be readily decoded.
Roadway Marking Optics for Autonomous Vehicle Guidance and Other Machine Vision Applications
NASA Astrophysics Data System (ADS)
Konopka, Anthony T.
This work determines optimal planar geometric light source and optical imager configurations and electromagnetic wavelengths for maximizing the reflected signal intensity when using machine vision technology to image roadway markings with embedded spherical glass beads. It is found through a first set of experiments that roadway marking samples exhibiting little or no bead rolling effects are uniformly reflective with respect to the azimuthal angle of observation when measured for retroreflectivity within industry standard 30-meter geometry. A second set of experiments indicate that white roadway markings exhibit higher reflectivity throughout the visible spectrum than yellow roadway markings. A roadway marking optical model capable of being used to determine optimal geometric light source and optical imager configurations for maximizing the reflected signal intensities of roadway marking targets is constructed and simulated using optical engineering software. It is found through a third set of experiments that high signal intensities can be measured when the polar angles of the light source and optical imager along a plane normal to a roadway marking are equal, with the maximum signal intensity being measured when the polar angles of both the light source and optical imager are 90°.
NASA Astrophysics Data System (ADS)
Khan, Tasneem M. A.; Khan, Asiya; Sarawade, Pradip B.
2018-05-01
We report a method to synthesize low-density transparent mesoporous silica aerogel beads by ambient pressure drying (APD). The beads were prepared by acid-base sol-gel polymerization of sodium silicate in via the ball dropping method (BDM). To minimize shrinkage during drying, wet silica beads were initially prepared; their surfaces were then modified using trimethylchlorosilane (TMCS) via simultaneous solvent exchange and surface modification. The specific surface area and cumulative pore volume of the silica aerogel beads increased with an increase in the %V of TMCS. Silica aerogel beads with low packing bed density, high surface area, and large cumulative pore volume was obtained when TMCS was used. Properties of the final product were examined by BET, and TG-DT analyses. The hydrophobic silica aerogel beads were thermally stable up to 350°C. We discuss our results and compare our findings for modified versus unmodified silica beads.
Townsend, Jared B.; Shaheen, Farzana; Liu, Ruiwu; Lam, Kit S.
2011-01-01
A method to efficiently immobilize and partition large quantities of microbeads in an array format in microfabricated polydimethylsiloxane (PDMS) cassette for high-throughput in situ releasable solution-phase cell-based screening of one-bead-one-compound (OBOC) combinatorial libraries is described. Commercially available Jeffamine triamine T-403 (∼440 Da) was derivatized such that two of its amino groups were protected by Fmoc and the remaining amino group capped with succinic anhydride to generate a carboxyl group. This resulting tri-functional hydrophilic polymer was then sequentially coupled two times to the outer layer of topologically segregated bilayer TentaGel (TG) beads with solid phase peptide synthesis chemistry, resulting in beads with increased loading capacity, hydrophilicity and porosity at the outer layer. We have found that such bead configuration can facilitate ultra high-throughput in situ releasable solution-phase screening of OBOC libraries. An encoded releasable OBOC small molecule library was constructed on Jeffamine derivatized TG beads with library compounds tethered to the outer layer via a disulfide linker and coding tags in the interior of the beads. Compound-beads could be efficiently loaded (5-10 minutes) into a 5 cm diameter Petri dish containing a 10,000-well PDMS microbead cassette, such that over 90% of the microwells were each filled with only one compound-bead. Jurkat T-lymphoid cancer cells suspended in Matrigel® were then layered over the microbead cassette to immobilize the compound-beads. After 24 hours of incubation at 37°C, dithiothreitol was added to trigger the release of library compounds. Forty-eight hours later, MTT reporter assay was used to identify regions of reduced cell viability surrounding each positive bead. From a total of about 20,000 beads screened, 3 positive beads were detected and physically isolated for decoding. A strong consensus motif was identified for these three positive compounds. These compounds were re-synthesized and found to be cytotoxic (IC50 50-150 μM) against two T-lymphoma cell lines and less so against the MDA-MB 231 breast cancer cell line. This novel ultra high-throughput OBOC releasable method can potentially be adapted to many existing 96- or 384-well solution-phase cell-based or biochemical assays. PMID:20593859
Design criteria for developing low-resource magnetic bead assays using surface tension valves
Adams, Nicholas M.; Creecy, Amy E.; Majors, Catherine E.; Wariso, Bathsheba A.; Short, Philip A.; Wright, David W.; Haselton, Frederick R.
2013-01-01
Many assays for biological sample processing and diagnostics are not suitable for use in settings that lack laboratory resources. We have recently described a simple, self-contained format based on magnetic beads for extracting infectious disease biomarkers from complex biological samples, which significantly reduces the time, expertise, and infrastructure required. This self-contained format has the potential to facilitate the application of other laboratory-based sample processing assays in low-resource settings. The technology is enabled by immiscible fluid barriers, or surface tension valves, which stably separate adjacent processing solutions within millimeter-diameter tubing and simultaneously permit the transit of magnetic beads across the interfaces. In this report, we identify the physical parameters of the materials that maximize fluid stability and bead transport and minimize solution carryover. We found that fluid stability is maximized with ≤0.8 mm i.d. tubing, valve fluids of similar density to the adjacent solutions, and tubing with ≤20 dyn/cm surface energy. Maximizing bead transport was achieved using ≥2.4 mm i.d. tubing, mineral oil valve fluid, and a mass of 1-3 mg beads. The amount of solution carryover across a surface tension valve was minimized using ≤0.2 mg of beads, tubing with ≤20 dyn/cm surface energy, and air separators. The most favorable parameter space for valve stability and bead transport was identified by combining our experimental results into a single plot using two dimensionless numbers. A strategy is presented for developing additional self-contained assays based on magnetic beads and surface tension valves for low-resource diagnostic applications. PMID:24403996
Noll, Lance W; Baumgartner, William C; Shridhar, Pragathi B; Cull, Charley A; Dewsbury, Diana M; Shi, Xiaorong; Cernicchiaro, Natalia; Renter, David G; Nagaraja, T G
2016-01-01
Shiga toxin-producing Escherichia coli (STEC) of the serogroups O26, O45, O103, O111, O121, and O145, often called non-O157 STEC, are foodborne pathogens. Cattle are asymptomatic reservoirs for STEC; the organisms reside in the hindgut and are shed in the feces, which serve as the source of food product contaminations. Culture-based detection of non-O157 STEC involves an immunomagnetic separation (IMS) step to capture the specific serogroups in complex matrices, such as feces. The IMS procedure is time consuming and labor intensive because of the need to subject each fecal sample to six individual beads. Therefore, our objective was to evaluate whether pooling of IMS beads affects sensitivity of non-O157 STEC detection compared with using individual IMS beads. The evaluation was done by comparing detection of serogroups in feces spiked with pure cultures (experiments 1 and 2) and from feces (n = 384) of naturally shedding cattle (experiment 3). In spiked fecal samples, detection with pools of three, four, six, or seven beads was similar to, or at times higher than, detection with individual IMS beads. In experiment 3, the proportions of fecal samples that tested positive for the six serogroups as detected by individual or pooled beads were similar. Based on noninferiority tests, detection with pooled beads was not substantially inferior to detection with individual beads (P > 0.05). In conclusion, the pooling of IMS beads is a better option for detection of STEC serogroups in fecal samples compared with individual beads because the procedure saves time and labor and has the prospect of a higher throughput.
Alginate and Algal-Based Beads for the Sorption of Metal Cations: Cu(II) and Pb(II)
Wang, Shengye; Vincent, Thierry; Faur, Catherine; Guibal, Eric
2016-01-01
Alginate and algal-biomass (Laminaria digitata) beads were prepared by homogeneous Ca ionotropic gelation. In addition, glutaraldehyde-crosslinked poly (ethyleneimine) (PEI) was incorporated into algal beads. The three sorbents were characterized by scanning electron microscopy (SEM) coupled with energy dispersive X-ray analysis (EDX): the sorption occurs in the whole mass of the sorbents. Sorption experiments were conducted to evaluate the impact of pH, sorption isotherms, and uptake kinetics. A special attention was paid to the effect of drying (air-drying vs. freeze-drying) on the mass transfer properties. For alginate, freeze drying is required for maintaining the porosity of the hydrogel, while for algal-based sorbents the swelling of the material minimizes the impact of the drying procedure. The maximum sorption capacities observed from experiments were 415, 296 and 218 mg Pb g−1 and 112, 77 and 67 mg Cu g−1 for alginate, algal and algal/PEI beads respectively. Though the sorption capacities of algal-beads decreased slightly (compared to alginate beads), the greener and cheaper one-pot synthesis of algal beads makes this sorbent more competitive for environmental applications. PEI in algal beads decreases the sorption properties in the case of the sorption of metal cations under selected experimental conditions. PMID:27598128
On-bead antibody-small molecule conjugation using high-capacity magnetic beads.
Nath, Nidhi; Godat, Becky; Benink, Hélène; Urh, Marjeta
2015-11-01
Antibodies labeled with small molecules such as fluorophore, biotin or drugs play an important role in various areas of biological research, drug discovery and diagnostics. However, the majority of current methods for labeling antibodies is solution-based and has several limitations including the need for purified antibodies at high concentrations and multiple buffer exchange steps. In this study, a method (on-bead conjugation) is described that addresses these limitations by combining antibody purification and conjugation in a single workflow. This method uses high capacity-magnetic Protein A or Protein G beads to capture antibodies directly from cell media followed by conjugation with small molecules and elution of conjugated antibodies from the beads. High-capacity magnetic antibody capture beads are key to this method and were developed by combining porous and hydrophilic cellulose beads with oriented immobilization of Protein A and Protein G using HaloTag technology. With a variety of fluorophores it is shown that the on-bead conjugation method is compatible with both thiol- and amine-based chemistry. This method enables simple and rapid processing of multiple samples in parallel with high-efficiency antibody recovery. It is further shown that recovered antibodies are functional and compatible with downstream applications. Copyright © 2015. Published by Elsevier B.V.
Tsai, Po-Yen; Lee, I-Chin; Hsu, Hsin-Yun; Huang, Hong-Yuan; Fan, Shih-Kang; Liu, Cheng-Hsien
2016-01-01
Here, we describe a technique to manipulate a low number of beads to achieve high washing efficiency with zero bead loss in the washing process of a digital microfluidic (DMF) immunoassay. Previously, two magnetic bead extraction methods were reported in the DMF platform: (1) single-side electrowetting method and (2) double-side electrowetting method. The first approach could provide high washing efficiency, but it required a large number of beads. The second approach could reduce the required number of beads, but it was inefficient where multiple washes were required. More importantly, bead loss during the washing process was unavoidable in both methods. Here, an improved double-side electrowetting method is proposed for bead extraction by utilizing a series of unequal electrodes. It is shown that, with proper electrode size ratio, only one wash step is required to achieve 98% washing rate without any bead loss at bead number less than 100 in a droplet. It allows using only about 25 magnetic beads in DMF immunoassay to increase the number of captured analytes on each bead effectively. In our human soluble tumor necrosis factor receptor I (sTNF-RI) model immunoassay, the experimental results show that, comparing to our previous results without using the proposed bead extraction technique, the immunoassay with low bead number significantly enhances the fluorescence signal to provide a better limit of detection (3.14 pg/ml) with smaller reagent volumes (200 nl) and shorter analysis time (<1 h). This improved bead extraction technique not only can be used in the DMF immunoassay but also has great potential to be used in any other bead-based DMF systems for different applications. PMID:26858807
Induced movement of the magnetic beads and DNA-based dumbbell in a micro fluidic channel
NASA Astrophysics Data System (ADS)
Babić, B.; Ghai, R.; Dimitrov, K.
2007-12-01
We have explored controlled movement of magnetic beads and a dumbbell structure composed of DNA, a magnetic and a non-magnetic bead in a micro fluidic channel. Movement of the beads and dumbbells is simulated assuming that a net force is described as a superposition between the magnetic and hydrodynamic drag forces. Trajectories of beads and dumbbells are observed with optical light microscopy. The experimentally measured data show a good agreement with the simulations. This dynamical approach offers the prospect to stretch the DNA within the dumbbell and investigate its conformational changes. Further on, we demonstrate that short sonication can reduce multiple attachments of DNA to the beads.
Aptamer-based downstream processing of his-tagged proteins utilizing magnetic beads.
Kökpinar, Öznur; Walter, Johanna-Gabriela; Shoham, Yuval; Stahl, Frank; Scheper, Thomas
2011-10-01
Aptamers are synthetic nucleic acid-based high affinity ligands that are able to capture their corresponding target via molecular recognition. Here, aptamer-based affinity purification for His-tagged proteins was developed. Two different aptamers directed against the His-tag were immobilized on magnetic beads covalently. The resulting aptamer-modified magnetic beads were characterized and successfully applied for purification of different His-tagged proteins from complex E. coli cell lysates. Purification effects comparable to conventional immobilized metal affinity chromatography were achieved in one single purification step. Moreover, we have investigated the possibility to regenerate and reuse the aptamer-modified magnetic beads and have shown their long-term stability over a period of 6 months. Copyright © 2011 Wiley Periodicals, Inc.
Chen, Yaqi; Chen, Zhui; Wang, Yi
2015-01-01
Screening and identifying active compounds from traditional Chinese medicine (TCM) and other natural products plays an important role in drug discovery. Here, we describe a magnetic beads-based multi-target affinity selection-mass spectrometry approach for screening bioactive compounds from natural products. Key steps and parameters including activation of magnetic beads, enzyme/protein immobilization, characterization of functional magnetic beads, screening and identifying active compounds from a complex mixture by LC/MS, are illustrated. The proposed approach is rapid and efficient in screening and identification of bioactive compounds from complex natural products.
Qi, Zongtai; Ma, Yinjiao; Deng, Lili; Wu, Haiping; Zhou, Guohua; Kajiyama, Tomoharu; Kambara, Hideki
2011-06-07
To digitally analyze expression levels of multiple genes in one reaction, we proposed a method termed as 'MDHB' (Multiplexed Digital-PCR coupled with Hydrogel Bead-array). The template for bead-based emulsion PCR (emPCR) was prepared by reverse transcription using sequence-tagged primers. The beads recovered from emPCR were immobilized with hydrogel to form a single-bead layer on a chip, and then decoded by gene-specific probe hybridization and Cy3-dUTP based primer extension reaction. The specificity of probe hybridization was improved by using electrophoresis to remove mismatched probes on the bead's surface. The number of positive beads reflects the abundance of expressed genes; the expression levels of target genes were normalized to a housekeeping gene and expressed as the number ratio of green beads to red beads. The discrimination limit of MDHB is 0.1% (i.e., one target molecule from 1000 background molecules), and the sensitivity of the method is below 100 cells when using the β-actin gene as the detection target. We have successfully employed MDHB to detect the relative expression levels of four colorectal cancer (CRC)-related genes (c-myc, COX-2, MMP7, and DPEP1) in 8 tissue samples and 9 stool samples from CRC patients, giving the detection rates of 100% and 77%, respectively. The results suggest that MDHB could be a potential tool for early non-invasive diagnosis of CRC.
Moore, J A; Nemat-Gorgani, M; Madison, A C; Sandahl, M A; Punnamaraju, S; Eckhardt, A E; Pollack, M G; Vigneault, F; Church, G M; Fair, R B; Horowitz, M A; Griffin, P B
2017-01-01
This paper reports on the use of a digital microfluidic platform to perform multiplex automated genetic engineering (MAGE) cycles on droplets containing Escherichia coli cells. Bioactivated magnetic beads were employed for cell binding, washing, and media exchange in the preparation of electrocompetent cells in the electrowetting-on-dieletric (EWoD) platform. On-cartridge electroporation was used to deliver oligonucleotides into the cells. In addition to the optimization of a magnetic bead-based benchtop protocol for generating and transforming electrocompetent E. coli cells, we report on the implementation of this protocol in a fully automated digital microfluidic platform. Bead-based media exchange and electroporation pulse conditions were optimized on benchtop for transformation frequency to provide initial parameters for microfluidic device trials. Benchtop experiments comparing electrotransformation of free and bead-bound cells are presented. Our results suggest that dielectric shielding intrinsic to bead-bound cells significantly reduces electroporation field exposure efficiency. However, high transformation frequency can be maintained in the presence of magnetic beads through the application of more intense electroporation pulses. As a proof of concept, MAGE cycles were successfully performed on a commercial EWoD cartridge using variations of the optimal magnetic bead-based preparation procedure and pulse conditions determined by the benchtop results. Transformation frequencies up to 22% were achieved on benchtop; this frequency was matched within 1% (21%) by MAGE cycles on the microfluidic device. However, typical frequencies on the device remain lower, averaging 9% with a standard deviation of 9%. The presented results demonstrate the potential of digital microfluidics to perform complex and automated genetic engineering protocols.
Moore, J. A.; Nemat-Gorgani, M.; Madison, A. C.; Punnamaraju, S.; Eckhardt, A. E.; Pollack, M. G.; Church, G. M.; Fair, R. B.; Horowitz, M. A.; Griffin, P. B.
2017-01-01
This paper reports on the use of a digital microfluidic platform to perform multiplex automated genetic engineering (MAGE) cycles on droplets containing Escherichia coli cells. Bioactivated magnetic beads were employed for cell binding, washing, and media exchange in the preparation of electrocompetent cells in the electrowetting-on-dieletric (EWoD) platform. On-cartridge electroporation was used to deliver oligonucleotides into the cells. In addition to the optimization of a magnetic bead-based benchtop protocol for generating and transforming electrocompetent E. coli cells, we report on the implementation of this protocol in a fully automated digital microfluidic platform. Bead-based media exchange and electroporation pulse conditions were optimized on benchtop for transformation frequency to provide initial parameters for microfluidic device trials. Benchtop experiments comparing electrotransformation of free and bead-bound cells are presented. Our results suggest that dielectric shielding intrinsic to bead-bound cells significantly reduces electroporation field exposure efficiency. However, high transformation frequency can be maintained in the presence of magnetic beads through the application of more intense electroporation pulses. As a proof of concept, MAGE cycles were successfully performed on a commercial EWoD cartridge using variations of the optimal magnetic bead-based preparation procedure and pulse conditions determined by the benchtop results. Transformation frequencies up to 22% were achieved on benchtop; this frequency was matched within 1% (21%) by MAGE cycles on the microfluidic device. However, typical frequencies on the device remain lower, averaging 9% with a standard deviation of 9%. The presented results demonstrate the potential of digital microfluidics to perform complex and automated genetic engineering protocols. PMID:28191268
Computer-aided diagnostic detection system of venous beading in retinal images
NASA Astrophysics Data System (ADS)
Yang, Ching-Wen; Ma, DyeJyun; Chao, ShuennChing; Wang, ChuinMu; Wen, Chia-Hsien; Lo, ChienShun; Chung, Pau-Choo; Chang, Chein-I.
2000-05-01
The detection of venous beading in retinal images provides an early sign of diabetic retinopathy and plays an important role as a preprocessing step in diagnosing ocular diseases. We present a computer-aided diagnostic system to automatically detect venous beading of blood vessels. It comprises of two modules, referred to as the blood vessel extraction module and the venus beading detection module. The former uses a bell-shaped Gaussian kernel with 12 azimuths to extract blood vessels while the latter applies a neural network-based shape cognitron to detect venous beading among the extracted blood vessels for diagnosis. Both modules are fully computer-automated. To evaluate the proposed system, 61 retinal images (32 beaded and 29 normal images) are used for performance evaluation.
An Integrated Microfluidic Processor for DNA-Encoded Combinatorial Library Functional Screening
2017-01-01
DNA-encoded synthesis is rekindling interest in combinatorial compound libraries for drug discovery and in technology for automated and quantitative library screening. Here, we disclose a microfluidic circuit that enables functional screens of DNA-encoded compound beads. The device carries out library bead distribution into picoliter-scale assay reagent droplets, photochemical cleavage of compound from the bead, assay incubation, laser-induced fluorescence-based assay detection, and fluorescence-activated droplet sorting to isolate hits. DNA-encoded compound beads (10-μm diameter) displaying a photocleavable positive control inhibitor pepstatin A were mixed (1920 beads, 729 encoding sequences) with negative control beads (58 000 beads, 1728 encoding sequences) and screened for cathepsin D inhibition using a biochemical enzyme activity assay. The circuit sorted 1518 hit droplets for collection following 18 min incubation over a 240 min analysis. Visual inspection of a subset of droplets (1188 droplets) yielded a 24% false discovery rate (1166 pepstatin A beads; 366 negative control beads). Using template barcoding strategies, it was possible to count hit collection beads (1863) using next-generation sequencing data. Bead-specific barcodes enabled replicate counting, and the false discovery rate was reduced to 2.6% by only considering hit-encoding sequences that were observed on >2 beads. This work represents a complete distributable small molecule discovery platform, from microfluidic miniaturized automation to ultrahigh-throughput hit deconvolution by sequencing. PMID:28199790
An Integrated Microfluidic Processor for DNA-Encoded Combinatorial Library Functional Screening.
MacConnell, Andrew B; Price, Alexander K; Paegel, Brian M
2017-03-13
DNA-encoded synthesis is rekindling interest in combinatorial compound libraries for drug discovery and in technology for automated and quantitative library screening. Here, we disclose a microfluidic circuit that enables functional screens of DNA-encoded compound beads. The device carries out library bead distribution into picoliter-scale assay reagent droplets, photochemical cleavage of compound from the bead, assay incubation, laser-induced fluorescence-based assay detection, and fluorescence-activated droplet sorting to isolate hits. DNA-encoded compound beads (10-μm diameter) displaying a photocleavable positive control inhibitor pepstatin A were mixed (1920 beads, 729 encoding sequences) with negative control beads (58 000 beads, 1728 encoding sequences) and screened for cathepsin D inhibition using a biochemical enzyme activity assay. The circuit sorted 1518 hit droplets for collection following 18 min incubation over a 240 min analysis. Visual inspection of a subset of droplets (1188 droplets) yielded a 24% false discovery rate (1166 pepstatin A beads; 366 negative control beads). Using template barcoding strategies, it was possible to count hit collection beads (1863) using next-generation sequencing data. Bead-specific barcodes enabled replicate counting, and the false discovery rate was reduced to 2.6% by only considering hit-encoding sequences that were observed on >2 beads. This work represents a complete distributable small molecule discovery platform, from microfluidic miniaturized automation to ultrahigh-throughput hit deconvolution by sequencing.
Rampini, S; Kilinc, D; Li, P; Monteil, C; Gandhi, D; Lee, G U
2015-08-21
Nonlinear magnetophoresis (NLM) is a novel approach for on-chip transport and separation of superparamagnetic (SPM) beads, based on a travelling magnetic field wave generated by the combination of a micromagnet array (MMA) and an applied rotating magnetic field. Here, we present two novel MMA designs that allow SPM beads to be focused, sorted, and separated on-chip. Converging MMAs were used to rapidly collect the SPM beads from a large region of the chip and focus them into synchronised lines. We characterise the collection efficiency of the devices and demonstrate that they can facilitate on-chip analysis of populations of SPM beads using a single-point optical detector. The diverging MMAs were used to control the transport of the beads and to separate them based on their size. The separation efficiency of these devices was determined by the orientation of the magnetisation of the micromagnets relative to the external magnetic field and the size of the beads and relative to that of micromagnets. By controlling these parameters and the rotation of the external magnetic field we demonstrated the controlled transport of SPM bead-labelled single MDA-MB-231 cells. The use of these novel MMAs promises to allow magnetically-labelled cells to be efficiently isolated and then manipulated on-chip for analysis with high-resolution chemical and physical techniques.
An Attempt to Shorten Loading Time of Epirubicin into DC Beads® Using Vibration and a Sieve.
Sonoda, Akinaga; Nitta, Norihisa; Yamamoto, Takefumi; Tomozawa, Yuki; Ohta, Shinichi; Watanabe, Shobu; Murata, Kiyoshi
2017-04-01
We investigated the possibility of shortening the time required for loading epirubicin into calibrated polyvinyl alcohol-based hydrogel beads (DC Beads ® ) to be used for transarterial chemoembolization. After separating the beads suspended in phosphate-buffered saline (PBS) solution by the use of a sieve (clearance 75 µm), epirubicin hydrochloride (EH) was loaded for 20, 30, or 60 s under vibration into DC beads. The EH loading rate into conventionally prepared (control) beads, i.e., beads loaded for 30 min without vibration, and vibration-loaded beads were calculated from the residual EH concentration in the bead-depleted EH solution. The amount of EH eluted from conventionally and vibration-loaded samples into a PBS solution (pH 7.0) was measured at 15 and 30 min and 1, 2, 6, 12, and 24 h. We also recorded the inhibitory effect of the PBS solution on the loading time. Using frozen sections, the EH load in the beads was evaluated visually under a fluorescence microscope. Spectrophotometry (495 nm) showed that the loading rate was 98.98 ± 0.34, 99.02 ± 0.32, and 99.50 ± 0.11 % with 20-, 30-, and 60-s vibration, respectively. The eluted rate was statistically similar between vibration- and statically loaded (control) beads. The PBS solution hampered EH loading into the beads. Visually, the distribution of EH in conventionally and vibration-loaded DC beads was similar. The use of vibration and the removal of PBS solution when epirubicin hydrochloride was loaded into DC beads dramatically shortened the loading time of epirubicin hydrochloride into DC beads.
Fujita, Hiroto; Kataoka, Yuka; Tobita, Seiji; Kuwahara, Masayasu; Sugimoto, Naoki
2016-07-19
We have developed a novel RNA detection method, termed signal amplification by ternary initiation complexes (SATIC), in which an analyte sample is simply mixed with the relevant reagents and allowed to stand for a short time under isothermal conditions (37 °C). The advantage of the technique is that there is no requirement for (i) heat annealing, (ii) thermal cycling during the reaction, (iii) a reverse transcription step, or (iv) enzymatic or mechanical fragmentation of the target RNA. SATIC involves the formation of a ternary initiation complex between the target RNA, a circular DNA template, and a DNA primer, followed by rolling circle amplification (RCA) to generate multiple copies of G-quadruplex (G4) on a long DNA strand like beads on a string. The G4s can be specifically fluorescence-stained with N(3)-hydroxyethyl thioflavin T (ThT-HE), which emits weakly with single- and double-stranded RNA/DNA but strongly with parallel G4s. An improved dual SATIC system, which involves the formation of two different ternary initiation complexes in the RCA process, exhibited a wide quantitative detection range of 1-5000 pM. Furthermore, this enabled visual observation-based RNA detection, which is more rapid and convenient than conventional isothermal methods, such as reverse transcription-loop-mediated isothermal amplification, signal mediated amplification of RNA technology, and RNA-primed rolling circle amplification. Thus, SATIC methodology may serve as an on-site and real-time measurement technique for transcriptomic biomarkers for various diseases.
Multi-parameter analysis using photovoltaic cell-based optofluidic cytometer
Yan, Chien-Shun; Wang, Yao-Nan
2016-01-01
A multi-parameter optofluidic cytometer based on two low-cost commercial photovoltaic cells and an avalanche photodetector is proposed. The optofluidic cytometer is fabricated on a polydimethylsiloxane (PDMS) substrate and is capable of detecting side scattered (SSC), extinction (EXT) and fluorescence (FL) signals simultaneously using a free-space light transmission technique without the need for on-chip optical waveguides. The feasibility of the proposed device is demonstrated by detecting fluorescent-labeled polystyrene beads with sizes of 3 μm, 5 μm and 10 μm, respectively, and label-free beads with a size of 7.26 μm. The detection experiments are performed using both single-bead population samples and mixed-bead population samples. The detection results obtained using the SSC/EXT, EXT/FL and SSC/FL signals are compared with those obtained using a commercial flow cytometer. It is shown that the optofluidic cytometer achieves a high detection accuracy for both single-bead population samples and mixed-bead population samples. Consequently, the proposed device provides a versatile, straightforward and low-cost solution for a wide variety of point-of-care (PoC) cytometry applications. PMID:27699122
Tsunehiro, Masaya; Meki, Yuma; Matsuoka, Kanako; Kinoshita-Kikuta, Emiko; Kinoshita, Eiji; Koike, Tohru
2013-04-15
A simple and efficient method based on magnetic-bead technology has been developed for the separation of phosphorylated and nonphosphorylated low-molecular-weight biomolecules, such as nucleotides, phosphorylated amino acids, or phosphopeptides. The phosphate-binding site on the bead is an alkoxide-bridged dinuclear zinc(II) complex with 1,3-bis(pyridin-2-ylmethylamino)propan-2-olate (Phos-tag), which is linked to a hydrophilic cross-linked agarose coating on a magnetic core particle. All steps for the phosphate-affinity separation are conducted in buffers of neutral pH with 50 μL of the magnetic beads in a 1.5-mL microtube. The entire separation protocol for phosphomonoester-type compounds, from addition to elution, requires less than 12 min per sample if the buffers and the zinc(II)-bound Phos-tag magnetic beads have been prepared in advance. The phosphate-affinity magnetic beads are reusable at least 15 times without a decrease in their phosphate-binding ability and they are stable for three months in propan-2-ol. Copyright © 2013 Elsevier B.V. All rights reserved.
Sakudo, Akikazu; Baba, Koichi; Tsukamoto, Megumi; Sugimoto, Atsuko; Okada, Takashi; Kobayashi, Takanori; Kawashita, Norihito; Takagi, Tatsuya; Ikuta, Kazuyoshi
2009-01-15
An anionic magnetic beads-based method was developed for the capture of human influenza A and B viruses from nasal aspirates, allantoic fluid and culture medium. A polymer, poly(methyl vinyl ether-maleic anhydride) [poly(MVE-MA)], was used to endow magnetic beads with a negative charge and bioadhesive properties. After incubation with samples containing human influenza virus, the beads were separated from supernatants by applying a magnetic field. The adsorption [corrected] of the virus by the beads was confirmed by hemagglutinin assay, immunochromatography, Western blotting, egg infection, and cell infection. Successful capture was proved using 5 H1N1 influenza A viruses, 10 H3N2 influenza A viruses, and 6 influenza B viruses. Furthermore, the infectivity in chicken embryonated eggs and Madin-Darby canine kidney (MDCK) cells of the captured human influenza virus was similar to that of the total viral quantity of starting materials. Therefore, this method of capture using magnetic beads coated with poly(MVE-MA) can be broadly used for the recovery of infectious human influenza viruses.
Siczek, Krzysztof; Fichna, Jakub; Zatorski, Hubert; Karolewicz, Bożena; Klimek, Leszek; Owczarek, Artur
2018-03-01
Recent findings indicating the anti-inflammatory action of silver preparations through modulation of the gut microbiota and apoptosis of inflammatory cells predestine silver use in inflammatory bowel disease (IBD). The aim of our study was to validate the possibility of effective silver release from silver-coated glass beads for anti-inflammatory local application in the lower sections of the gastrointestinal (GI) tract. Silver-coated glass beads were prepared using magnetron method. Release of silver from the silver-coated glass bead surface was carried out in BIO-DIS reciprocating cylinder apparatus. Erosion of silver coating and indirect estimation of the silver release dynamics was assessed using scanning electron microscope. Rectal suppositories containing silver-coated glass beads were prepared using five different methods (M1-M5) and X-ray scanned for their composition. The XR microanalysis and the chemical composition analysis evidenced for a rapid (within 30 min) release of nearly 50% of silver from the coating of the glass beads, which remained stable up to 24 h of incubation. The most homogeneous distribution of beads in the entire volume of the suppository was obtained for formulation M5, where the molten base was poured into mold placed in an ice bath, and the beads were added after 10 s. Our study is the first to present the concept of enclosing silver-coated glass beads in the lipophilic suppository base to attenuate inflammation in the lower GI tract and promises efficient treatment with reduced side effects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shao, Guocheng; Lu, Donglai; Fu, Zhifeng
This paper describes the design, fabrication, and testing of a pneumatically controlled,renewable, microfluidic device for conducting bead-based assays in an automated sequential injection analysis system. The device used a “brick wall”-like pillar array (pillar size: 20 μm length X 50 μm width X 45 μm height) with 5 μm gaps between the pillars serving as the micro filter. The flow channel where bead trapping occurred is 500 μm wide X 75 μm deep. An elastomeric membrane and an air chamber were located underneath the flow channel. By applying pressure to the air chamber, the membrane is deformed and pushed upwardmore » against the filter structure. This effectively traps beads larger than 5 μm and creates a “bed” or micro column of beads that can be perfused and washed with liquid samples and reagents. Upon completion of the assay process, the pressure is released and the beads are flushed out from underneath the filter structure to renew the device. Mouse IgG was used as a model analyte to test the feasibility of using the proposed device for immunoassay applications. Resulting microbeads from an on-chip fluorescent immunoassay were individually examined using flow cytometry. The results show that the fluorescence signal intensity distribution is fairly narrow indicating high chemical reaction uniformity among the beads population. Electrochemical onchip assay was also conducted. A detection limit of 0.1 ng/mL1 ppb was achieved and good device reliability and repeatability were demonstrated. The novel microfluidic-based beadstrapping device thus opens up a new pathway to design micro-bead based biosensor immunoassays for clinical and othervarious applications.« less
Size of the Dynamic Bead in Polymers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agapov, Alexander L; Sokolov, Alexei P
2010-01-01
Presented analysis of neutron, mechanical, and MD simulation data available in the literature demonstrates that the dynamic bead size (the smallest subchain that still exhibits the Rouse-like dynamics) in most of the polymers is significantly larger than the traditionally defined Kuhn segment. Moreover, our analysis emphasizes that even the static bead size (e.g., chain statistics) disagrees with the Kuhn segment length. We demonstrate that the deficiency of the Kuhn segment definition is based on the assumption of a chain being completely extended inside a single bead. The analysis suggests that representation of a real polymer chain by the bead-and-spring modelmore » with a single parameter C cannot be correct. One needs more parameters to reflect correctly details of the chain structure in the bead-and-spring model.« less
Cham, Gerald K K; Kurtis, Jonathan; Lusingu, John; Theander, Thor G; Jensen, Anja T R; Turner, Louise
2008-06-12
The level of antibodies against PfEMP1 is routinely quantified by the conventional microtitre enzyme-linked immunosorbent assay (ELISA). However, ELISA only measures one analyte at a time and requires a relatively large plasma volume if the complete antibody profile of the sample is to be obtained. Furthermore, assay-to-assay variation and the problem of storage of antigen can influence ELISA results. The bead-based assay described here uses the BioPlex100 (BioRad, Hercules, CA, USA) system which can quantify multiple antibodies simultaneously in a small plasma volume. A total of twenty nine PfEMP1 domains were PCR amplified from 3D7 genomic DNA, expressed in the Baculovirus system and purified by metal-affinity chromatography. The antibody reactivity level to the recombinant PfEMP1 proteins in human hyper-immune plasma was measured by ELISA. In parallel, these recombinant PfEMP1 proteins were covalently coupled onto beads each having its own unique detection signal and the human hyper-immune plasma reactivity was detected for each individual protein using a BioPlex100 system. Protein-coupled beads were analysed at two time points seven months apart, before and after lyophilization and the results compared to determine the effect of storage and lyophilization respectively on the beads. Multiplexed protein-coupled beads from twenty eight unique bead populations were evaluated on the BioPlex100 system against pooled human hyper-immune plasma before and after lyophilization. The bead-based assay was sensitive, accurate and reproducible. Four recombinant PfEMP1 proteins C17, D5, D9 and D12, selected on the basis that they showed a spread of median fluorescent intensity (MFI) values from low to high when analysed by the bead-based assay were analysed by ELISA and the results from both analyses were highly correlated. The Spearman's rank correlation coefficients (Rho) were > or = 0.86, (P < 0.0001) for all comparisons. Bead-based assays gave similar results regardless of whether they were performed on individual beads or on multiplexed beads; lyophilization had no impact on the assay performance. Spearman's rank correlation coefficients (Rho) were > or = 0.97, (P < 0.0001) for all comparisons. Importantly, the reactivity of protein-coupled non-lyophilized beads decreased with long term storage at 4 degrees C in the dark. Using this lyophilized multiplex assay, antibody reactivity levels to twenty eight different recombinant PfEMP1 proteins were simultaneously measured using a single microliter of plasma. Thus, the assay reported here provides a useful tool for rapid and efficient quantification of antibody reactivity against PfEMP1 variants in human plasma.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sonoda, Akinaga, E-mail: akinagasonoda@yahoo.co.jp; Nitta, Norihisa; Yamamoto, Takefumi
PurposeWe investigated the possibility of shortening the time required for loading epirubicin into calibrated polyvinyl alcohol-based hydrogel beads (DC Beads{sup ®}) to be used for transarterial chemoembolization.MethodAfter separating the beads suspended in phosphate-buffered saline (PBS) solution by the use of a sieve (clearance 75 µm), epirubicin hydrochloride (EH) was loaded for 20, 30, or 60 s under vibration into DC beads. The EH loading rate into conventionally prepared (control) beads, i.e., beads loaded for 30 min without vibration, and vibration-loaded beads were calculated from the residual EH concentration in the bead-depleted EH solution. The amount of EH eluted from conventionally and vibration-loadedmore » samples into a PBS solution (pH 7.0) was measured at 15 and 30 min and 1, 2, 6, 12, and 24 h. We also recorded the inhibitory effect of the PBS solution on the loading time. Using frozen sections, the EH load in the beads was evaluated visually under a fluorescence microscope.ResultsSpectrophotometry (495 nm) showed that the loading rate was 98.98 ± 0.34, 99.02 ± 0.32, and 99.50 ± 0.11 % with 20-, 30-, and 60-s vibration, respectively. The eluted rate was statistically similar between vibration- and statically loaded (control) beads. The PBS solution hampered EH loading into the beads. Visually, the distribution of EH in conventionally and vibration-loaded DC beads was similar.DiscussionThe use of vibration and the removal of PBS solution when epirubicin hydrochloride was loaded into DC beads dramatically shortened the loading time of epirubicin hydrochloride into DC beads.« less
Phosphate uptake studies of cross-linked chitosan bead materials.
Mahaninia, Mohammad H; Wilson, Lee D
2017-01-01
A systematic experimental study is reported that provides a molecular based understanding of cross-linked chitosan beads and their adsorption properties in aqueous solution containing phosphate dianion (HPO 4 2- ) species. Synthetically modified chitosan using epichlorohydrin and glutaraldehyde cross-linkers result in surface modified beads with variable hydrophile-lipophile character and tunable HPO 4 2- uptake properties. The kinetic and thermodynamic adsorption properties of cross-linked chitosan beads with HPO 4 2- species were studied in aqueous solution. Complementary structure and physicochemical characterization of chitosan beads via potentiometry, Raman spectroscopy, DSC, and dye adsorption measurements was carried out to establish structure-property relationships. The maximum uptake (Q m ) of bead systems with HPO 4 2- at equilibrium was 52.1mgg -1 ; whereas, kinetic uptake results for chitosan bead/phosphate systems are relatively rapid (0.111-0.113min -1 ) with an intraparticle diffusion rate-limiting step. The adsorption process follows a multi-step pathway involving inner- and outer-sphere complexes with significant changes in hydration. Phosphate uptake strongly depends on the composition and type of cross-linker used for preparation of chitosan beads. The adsorption isotherms and structural characterization of bead systems illustrate the role of surface charge, hydrophile-lipophile balance, adsorption site accessibility, and hydration properties of the chitosan bead surface. Copyright © 2016 Elsevier Inc. All rights reserved.
Witters, Daan; Knez, Karel; Ceyssens, Frederik; Puers, Robert; Lammertyn, Jeroen
2013-06-07
Digital microfluidics is introduced as a novel platform with unique advantages for performing single-molecule detection. We demonstrate how superparamagnetic beads, used for capturing single protein molecules, can be printed with unprecedentedly high loading efficiency and single bead resolution on an electrowetting-on-dielectric-based digital microfluidic chip by micropatterning the Teflon-AF surface of the device. By transporting droplets containing suspended superparamagnetic beads over a hydrophilic-in-hydrophobic micropatterned Teflon-AF surface, single beads are trapped inside the hydrophilic microwells due to their selective wettability and tailored dimensions. Digital microfluidics presents the following advantages for printing and sealing magnetic beads for single-molecule detection: (i) droplets containing suspended beads can be transported back and forth over the array of hydrophilic microwells to obtain high loading efficiencies of microwells with single beads, (ii) the use of hydrophilic-in-hydrophobic patterns permits the use of a magnet to speed up the bead transfer process to the wells, while the receding droplet meniscus removes excess beads off the chip surface and thereby shortens the bead patterning time, and (iii) reagents can be transported over the printed beads multiple times, while capillary forces and a magnet hold the printed beads in place. High loading efficiencies (98% with a CV of 0.9%) of single beads in microwells were obtained by transporting droplets of suspended beads over the array 10 times in less than 1 min, which is much higher than previously reported methods (40-60%), while the total surface area needed for performing single-molecule detection can be decreased. The performance of the device was demonstrated by fluorescent detection of the presence of the biotinylated enzyme β-galactosidase on streptavidin-coated beads with a linear dynamic range of 4 orders of magnitude ranging from 10 aM to 90 fM.
Study of The Effect of Draw-bead Geometry on Stretch Flange Formability
NASA Astrophysics Data System (ADS)
Orlov, O. S.; Winkler, S. L.; Worswick, M. J.; Lloyd, D. J.; Finn, M. J.
2004-06-01
A fully instrumented stretch flange press equipped with a back-up punch and draw-beads near the specimen cutout area is simulated. The utilization of different draw-bead geometries is examined numerically to determine the restraining forces, strains and amount of damage generated in stretch flanges during forming. Simulations of the forming process are conducted for 1mm AA5182 sheets with circular cutouts. The damage evolution with the deformed specimens is investigated using the explicit dynamic finite element code, LS-DYNA, with a modified Gurson-based material model. It was found that double draw-beads can provide the same amount of restraining force as single draw-beads, but at reduced levels of damage.
Wilson, Valerie; Chando, Shingisai
2015-02-01
To present survey findings on parental experiences with a hospital-based bead programme for children with congenital heart disease. The Heart Beads programme commenced at a paediatric hospital in Australia in 2008. Children enrolled in the programme are awarded a distinctive bead for every procedure/treatment they have while in hospital. A previous evaluation study on the programme revealed that the beads are therapeutic for the child and parents; however, due to a small sample size, the results were representative of the experiences of a small number of families who participated in the programme. This was an evaluation study which employed a nonexperimental descriptive design. Surveys were mailed to all eligible families who enrolled in the programme. Data collection occurred between July-December 2012. Questions on parental experiences with the Heart Beads programme were divided into three categories: understanding, acknowledgement and quality. Descriptive statistics were obtained and analysed. One hundred and sixty-two mothers and 136 fathers responded to the survey. Heart Beads assisted mothers (83%) and fathers (80%) with understanding their child's condition and helped them with communication (mothers 80%, fathers 58%). The majority of fathers felt that their experience was acknowledged by nursing staff (64%) and medical staff (62%), while mothers indicated a higher response from nurses (76%) compared to medical staff (67%). Overall, parents rated the programme positively; however, there was some concern that children at times missed out on beads. Understanding how mothers and fathers experience the programme differently can guide staff in their communication with parents and inform future initiatives. The Heart Beads help nurses understand how parents are experiencing care and ways in which they can provide support and acknowledgement of the parent's experience. © 2014 John Wiley & Sons Ltd.
Gode, David; Volmer, Dietrich A
2013-05-15
Magnetic beads are often used for serum profiling of peptide and protein biomarkers. In these assays, the bead-bound analytes are eluted from the beads prior to mass spectrometric analysis. This study describes a novel matrix-assisted laser desorption/ionization (MALDI) technique for direct application and focusing of magnetic beads to MALDI plates by means of dedicated micro-magnets as sample spots. Custom-made MALDI plates with magnetic focusing spots were made using small nickel-coated neodymium micro-magnets integrated into a stainless steel plate in a 16 × 24 (384) pattern. For demonstrating the proof-of-concept, commercial C-18 magnetic beads were used for the extraction of a test compound (reserpine) from aqueous solution. Experiments were conducted to study focusing abilities, the required laser energies, the influence of a matrix compound, dispensing techniques, solvent choice and the amount of magnetic beads. Dispensing the magnetic beads onto the micro-magnet sample spots resulted in immediate and strong binding to the magnetic surface. Light microscope images illustrated the homogeneous distribution of beads across the surfaces of the magnets, when the entire sample volume containing the beads was pipetted onto the surface. Subsequent MALDI analysis of the bead-bound analyte demonstrated excellent and reproducible ionization yields. The surface-assisted laser desorption/ionization (SALDI) properties of the strongly light-absorbing γ-Fe2O3-based beads resulted in similar ionization efficiencies to those obtained from experiments with an additional MALDI matrix compound. This feasibility study successfully demonstrated the magnetic focusing abilities for magnetic bead-bound analytes on a novel MALDI plate containing small micro-magnets as sample spots. One of the key advantages of this integrated approach is that no elution steps from magnetic beads were required during analyses compared with conventional bead experiments. Copyright © 2013 John Wiley & Sons, Ltd.
Using a laser source to measure the refractive index of glass beads and Debye theory analysis.
Li, Shui-Yan; Qin, Shuang; Li, Da-Hai; Wang, Qiong-Hua
2015-11-20
Using a monochromatic laser beam to illuminate a homogeneous glass bead, some rainbows will appear around it. This paper concentrates on the study of the scattering intensity distribution and the method of measuring the refractive index for glass beads based on the Debye theory. It is found that the first rainbow due to the scattering superposition of backward light of the low-refractive-index glass beads can be explained approximately with the diffraction, the external reflection plus the one internal reflection, while the second rainbow of high-refractive-index glass beads is due to the contribution from the diffraction, the external reflection, the direct transmission, and the two internal reflections. The scattering intensity distribution is affected by the refractive index, the radius of the glass bead, and the incident beam width. The effects of the refractive index and the glass bead size on the first and second minimum deviation angle position are analyzed in this paper. The results of the measurements agree very well with the specifications.
Equalizer technology--Equal rights for disparate beads.
Keidel, Eva-Maria; Ribitsch, Doris; Lottspeich, Friedrich
2010-06-01
One major limitation in proteomics is the detection and analysis of low-abundant proteins, i.e. in plasma. Several years ago, a technique to selectively enrich the relative concentration of low-abundant proteins was introduced by Boschetti and co-workers. It is based on a specific and saturable interaction of proteins to a high diversity of binding sites, realized by a hexapeptide library coupled to beads. This technology was commercialized as Equalizer beads or ProteoMiner. However, during application of ProteoMiner beads to plasma samples unexpected results questioned the proposed mode of action. Therefore, ProteoMiner beads were compared with chromatographic beads exhibiting completely different surface chemistry. Sepabeads FP-OD400 octadecyl, FP-DA400 diethylamine, FP-BU400 butyl, FP-HG400 hydroxyl and EXE056 epoxy were used. The results show that ProteoMiner or the different Sepabeads behave surprisingly similarly in the separation of complex protein mixtures. ProteoMiner beads interact with protein mixtures according to a general hydrophobic binding mechanism, where diversity in surface ligands plays only a negligible role.
Wang, Lin; Acosta, Miguel A.; Leach, Jennie B.; Carrier, Rebecca L.
2013-01-01
Capability of measuring and monitoring local oxygen concentration at the single cell level (tens of microns scale) is often desirable but difficult to achieve in cell culture. In this study, biocompatible oxygen sensing beads were prepared and tested for their potential for real-time monitoring and mapping of local oxygen concentration in 3D micro-patterned cell culture systems. Each oxygen sensing bead is composed of a silica core loaded with both an oxygen sensitive Ru(Ph2phen3)Cl2 dye and oxygen insensitive Nile blue reference dye, and a poly-dimethylsiloxane (PDMS) shell rendering biocompatibility. Human intestinal epithelial Caco-2 cells were cultivated on a series of PDMS and type I collagen based substrates patterned with micro-well arrays for 3 or 7 days, and then brought into contact with oxygen sensing beads. Using an image analysis algorithm to convert florescence intensity of beads to partial oxygen pressure in the culture system, tens of microns-size oxygen sensing beads enabled the spatial measurement of local oxygen concentration in the microfabricated system. Results generally indicated lower oxygen level inside wells than on top of wells, and local oxygen level dependence on structural features of cell culture surfaces. Interestingly, chemical composition of cell culture substrates also appeared to affect oxygen level, with type-I collagen based cell culture systems having lower oxygen concentration compared to PDMS based cell culture systems. In general, results suggest that oxygen sensing beads can be utilized to achieve real-time and local monitoring of micro-environment oxygen level in 3D microfabricated cell culture systems. PMID:23443975
Wang, Lin; Acosta, Miguel A; Leach, Jennie B; Carrier, Rebecca L
2013-04-21
Capability of measuring and monitoring local oxygen concentration at the single cell level (tens of microns scale) is often desirable but difficult to achieve in cell culture. In this study, biocompatible oxygen sensing beads were prepared and tested for their potential for real-time monitoring and mapping of local oxygen concentration in 3D micro-patterned cell culture systems. Each oxygen sensing bead is composed of a silica core loaded with both an oxygen sensitive Ru(Ph2phen3)Cl2 dye and oxygen insensitive Nile blue reference dye, and a poly-dimethylsiloxane (PDMS) shell rendering biocompatibility. Human intestinal epithelial Caco-2 cells were cultivated on a series of PDMS and type I collagen based substrates patterned with micro-well arrays for 3 or 7 days, and then brought into contact with oxygen sensing beads. Using an image analysis algorithm to convert florescence intensity of beads to partial oxygen pressure in the culture system, tens of microns-size oxygen sensing beads enabled the spatial measurement of local oxygen concentration in the microfabricated system. Results generally indicated lower oxygen level inside wells than on top of wells, and local oxygen level dependence on structural features of cell culture surfaces. Interestingly, chemical composition of cell culture substrates also appeared to affect oxygen level, with type-I collagen based cell culture systems having lower oxygen concentration compared to PDMS based cell culture systems. In general, results suggest that oxygen sensing beads can be utilized to achieve real-time and local monitoring of micro-environment oxygen level in 3D microfabricated cell culture systems.
Xia, Zhigang; Wang, Jihao; Hou, Yubin; Lu, Qingyou
2014-09-01
In this paper, we provide and demonstrate a design of a unique cell with Pt single crystal bead electrode for electrochemical scanning tunneling microscope (ECSTM) measurements. The active metal Pt electrode can be protected from air contamination during the preparation process. The transparency of the cell allows the tip and bead to be aligned by direct observation. Based on this, a new and effective alignment method is introduced. The high-quality bead preparations through this new cell have been confirmed by the ECSTM images of Pt (111).
Single molecule actuation and detection on a lab-on-a-chip magnetoresistive platform
NASA Astrophysics Data System (ADS)
Chaves, R. C.; Bensimon, D.; Freitas, P. P.
2011-03-01
On-chip magnetic tweezers based on current loops were integrated with magnetoresistive sensors. Magnetic forces up to 1.0±0.3pN are produced to actuate on DNA anchored to the surface of a flow cell and labeled with micrometer-sized magnetic beads. The levitation of the beads stretches the immobilized DNA. The relative position of the magnetic beads is monitored using spin-valve sensors. A bead vertical displacement resolution of 60nm is derived for DNA molecular motor activity in a tweezer steady current regime.
Siczek, Krzysztof; Zatorski, Hubert; Pawlak, Wojciech; Fichna, Jakub
2015-01-01
In search for novel effective treatments in inflammatory bowel diseases, a new strategy employing glass beads coated with rhenium nanolayer has been developed and validated in the mouse model of 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis. Briefly, mice were randomly divided into 5 experimental groups: control (vehicle alone, Group 1); control treated with rhenium-coated glass beads (Group 2); TNBS (Group 3); TNBS treated with rhenium-coated glass beads (Group 4); and TNBS treated with uncoated glass beads (Group 5). Mice from Group 2, 4 and 5 were treated with respective beads (once daily, 5 beads / animal, i.c.) between D3-D6 post-TNBS/vehicle and evaluation of colonic damage was performed on D7, based on macroscopic scoring and clinical parameters. Severe colonic inflammation developed in post-TNBS mice (Group 3) [P <0.001 vs. control (Group 1) for macroscopic score], which was significantly attenuated by treatment with rhenium-coated glass beads (Group 4) [P <0.01 vs. TNBS (Group 3), for macroscopic score]. Neither rhenium-coated glass beads had any effect in control animals (Group 2), nor uncoated glass beads influenced TNBS-induced colitis (Group 5). In conclusion, a novel and attractive strategy for the treatment of colonic inflammation has been proposed; therapy with rhenium-coated glass beads already proved effective in the mouse model of TNBS-induced colitis, now requires further characterization in clinical conditions.
Use of magnetic beads for Gram staining of bacteria in aqueous suspension.
Yazdankhah, S P; Sørum, H; Larsen, H J; Gogstad, G
2001-12-01
A Gram staining technique was developed using monodisperse magnetic beads in concentrating bacteria in suspension for downstream application. The technique does not require heat fixation of organisms, electrical power, or a microscope. Gram-negative and Gram-positive bacteria were identified macroscopically based on the colour of the suspension. The bacteria concentrated on magnetic beads may also be identified microscopically.
Fluorescent detection of C-reactive protein using polyamide beads
NASA Astrophysics Data System (ADS)
Jagadeesh, Shreesha; Chen, Lu; Aitchison, Stewart
2016-03-01
Bacterial infection causes Sepsis which is one of the leading cause of mortality in hospitals. This infection can be quantified from blood plasma using C - reactive protein (CRP). A quick diagnosis at the patient's location through Point-of- Care (POC) testing could give doctors the confidence to prescribe antibiotics. In this paper, the development and testing of a bead-based procedure for CRP quantification is described. The size of the beads enable them to be trapped in wells without the need for magnetic methods of immobilization. Large (1.5 mm diameter) Polyamide nylon beads were used as the substrate for capturing CRP from pure analyte samples. The beads captured CRP either directly through adsorption or indirectly by having specific capture antibodies on their surface. Both methods used fluorescent imaging techniques to quantify the protein. The amount of CRP needed to give a sufficient fluorescent signal through direct capture method was found suitable for identifying bacterial causes of infection. Similarly, viral infections could be quantified by the more sensitive indirect capture method. This bead-based assay can be potentially integrated as a disposable cartridge in a POC device due to its passive nature and the small quantities needed.
Design, characterisation and application of alginate-based encapsulated pig liver esterase.
Pauly, Jan; Gröger, Harald; Patel, Anant V
2018-06-05
Encapsulation of hydrolases in biopolymer-based hydrogels often suffers from low activities and encapsulation efficiencies along with high leaching and unsatisfactory recycling properties. Exemplified for the encapsulation of pig liver esterase the coating of alginate and chitosan beads have been studied by creating various biopolymer hydrogel beads. Enzyme activity and encapsulation efficiency were notably enhanced by chitosan coating of alginate beads while leaching remained nearly unchanged. This was caused by the enzymatic reaction acidifying the matrix, which increased enzyme retention through enhanced electrostatic enzyme-alginate interaction but decreased activity through enzyme deactivation. A practical and ready-to-use method for visualising pH in beads during reaction by co-encapsulation of a conventional pH indicator was also found. Our method proves that pH control inside the beads can only be realised by buffering. The resulting beads provided a specific activity of 0.267 μmol ∙ min -1 ∙ mg -1 , effectiveness factor 0.88, encapsulation efficiency of 88%, 5% leaching and good recycling properties. This work will contribute towards better understanding and application of encapsulated hydrolases for enzymatic syntheses. Copyright © 2018 Elsevier B.V. All rights reserved.
Yoon, Sungjun; Kim, Jeong Ah; Lee, Seung Hwan; Kim, Minsoo; Park, Tai Hyun
2013-04-21
The importance of creating a three-dimensional (3-D) multicellular spheroid has recently been gaining attention due to the limitations of monolayer cell culture to precisely mimic in vivo structure and cellular interactions. Due to this emerging interest, researchers have utilized new tools, such as microfluidic devices, that allow high-throughput and precise size control to produce multicellular spheroids. We have developed a droplet-based microfluidic system that can encapsulate both cells and magnetic nanoparticles within alginate beads to mimic the function of a multicellular tumor spheroid. Cells were entrapped within the alginate beads along with magnetic nanoparticles, and the beads of a relatively uniform size (diameters of 85% of the beads were 170-190 μm) were formed in the oil phase. These beads were passed through parallel streamlines of oil and culture medium, where the beads were magnetically transferred into the medium phase from the oil phase using an external magnetic force. This microfluidic chip eliminates additional steps for collecting the spheroids from the oil phase and transferring them to culture medium. Ultimately, the overall spheroid formation process can be achieved on a single microchip.
NASA Astrophysics Data System (ADS)
Kistrup, Kasper; Skotte Sørensen, Karen; Wolff, Anders; Fougt Hansen, Mikkel
2015-04-01
We present an all-polymer, single-use microfluidic chip system produced by injection moulding and bonded by ultrasonic welding. Both techniques are compatible with low-cost industrial mass-production. The chip is produced for magnetic bead-based solid-phase extraction facilitated by immiscible phase filtration and features passive liquid filling and magnetic bead manipulation using an external magnet. In this work, we determine the system compatibility with various surfactants. Moreover, we quantify the volume of liquid co-transported with magnetic bead clusters from Milli-Q water or a lysis-binding buffer for nucleic acid extraction (0.1 (v/v)% Triton X-100 in 5 M guanidine hydrochloride). A linear relationship was found between the liquid carry-over and mass of magnetic beads used. Interestingly, similar average carry-overs of 1.74(8) nL/μg and 1.72(14) nL/μg were found for Milli-Q water and lysis-binding buffer, respectively.
Testing of a "smart-pebble" for measuring particle transport statistics
NASA Astrophysics Data System (ADS)
Kitsikoudis, Vasileios; Avgeris, Loukas; Valyrakis, Manousos
2017-04-01
This paper presents preliminary results from novel experiments aiming to assess coarse sediment transport statistics for a range of transport conditions, via the use of an innovative "smart-pebble" device. This device is a waterproof sphere, which has 7 cm diameter and is equipped with a number of sensors that provide information about the velocity, acceleration and positioning of the "smart-pebble" within the flow field. A series of specifically designed experiments are carried out to monitor the entrainment of a "smart-pebble" for fully developed, uniform, turbulent flow conditions over a hydraulically rough bed. Specifically, the bed surface is configured to three sections, each of them consisting of well packed glass beads of slightly increasing size at the downstream direction. The first section has a streamwise length of L1=150 cm and beads size of D1=15 mm, the second section has a length of L2=85 cm and beads size of D2=22 mm, and the third bed section has a length of L3=55 cm and beads size of D3=25.4 mm. Two cameras monitor the area of interest to provide additional information regarding the "smart-pebble" movement. Three-dimensional flow measurements are obtained with the aid of an acoustic Doppler velocimeter along a measurement grid to assess the flow forcing field. A wide range of flow rates near and above the threshold of entrainment is tested, while using four distinct densities for the "smart-pebble", which can affect its transport speed and total momentum. The acquired data are analyzed to derive Lagrangian transport statistics and the implications of such an important experiment for the transport of particles by rolling are discussed. The flow conditions for the initiation of motion, particle accelerations and equilibrium particle velocities (translating into transport rates), statistics of particle impact and its motion, can be extracted from the acquired data, which can be further compared to develop meaningful insights for sediment transport mechanics from a Lagrangian perspective and at unprecedented temporal detail and accuracy.
To elute or not to elute in immunocapture bottom-up LC-MS.
Levernæs, Maren Christin Stillesby; Broughton, Marianne Nordlund; Reubsaet, Léon; Halvorsen, Trine Grønhaug
2017-06-15
Immunocapture-based bottom-up LC-MS is a promising technique for the quantification of low abundant proteins. Magnetic immunocapture beads provide efficient enrichment from complex samples through the highly specific interaction between the target protein and its antibody. In this article, we have performed the first thorough comparison between digestion of proteins while bound to antibody coated beads versus after elution from the beads. Two previously validated immunocapture based MS methods for the quantification of pro-gastrin releasing peptide (ProGRP) and human chorionic gonadotropin (hCG) were used as model systems. The tryptic peptide generation was shown to be protein dependent and influenced by protein folding and accessibility towards trypsin both on-beads and in the eluate. The elution of proteins bound to the beads was also shown to be incomplete. In addition, the on-beads digestion suffered from non-specific binding of the trypsin generated peptides. A combination of on-beads digestion and elution may be applied to improve both the quantitative (peak area of the signature peptides) and qualitative yield (number of missed cleavages, total number of identified peptides, coverage, signal intensity and number of zero missed cleavage peptides) of the target proteins. The quantitative yield of signature peptides was shown to be reproducible in all procedures tested. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fu, Zhifeng; Shao, Guocheng; Wang, Jun
2011-04-01
A filter pillar-array microstructure was coupled with a pneumatic micro-valve to fabricate a reusable miniaturized beads-trapping/releasing flow cell, in which trapping and releasing beads can be conveniently realized by switching the micro-valve. This miniaturized device was suitable to construct automatic fluidic system for “renewable surface analysis”. The renewable surface strategy based on pneumatic micro-valve enabled capture of beads in beads chamber prior to each assay, and release of the used beads after the assay. Chemiluminescent competitive immunoassay of 3,5,6-trichloropyridinol (TCP) was performed as a model to demonstrate the application potential of this reusable miniaturized flow cell. The whole fluidic assaymore » process including beads trapping, immuno-binding, beads washing, beads releasing and signal collection could be completed in 10 min. Immunoassay of TCP using this miniaturized device showed a linear range of 0.20-70 ng/mL with a limit of detection of 0.080 ng/mL. The device had been successfully used for detection of TCP spiked in rat serum with average recovery of 97%. This investigation provides a rapid, sensitive, reusable, low-cost and automatic miniaturized device for solid-phase biochemical analysis for various purposes.« less
Observation and Kinematic Description of Long Actin Tracks Induced by Spherical Beads
Kang, Hyeran; Perlmutter, David S.; Shenoy, Vivek B.; Tang, Jay X.
2010-01-01
We report an in vitro study comparing the growth of long actin tails induced by spherical beads coated with the verprolin central acidic domain of the polymerization enzyme N-WASP to that induced by Listeria monocytogenes in similar cellular extracts. The tracks behind the beads show characteristic differences in shape and curvature from those left by the bacteria, which have an elongated shape and a similar polymerization-inducing enzyme distributed only on the rear surface of the cell. The experimental tracks are simulated using a generalized kinematic model, which incorporates three modes of bead rotation with respect to the tail. The results show that the trajectories of spherical beads are mechanically deterministic rather than random, as suggested by stochastic models. Assessment of the bead rotation and its mechanistic basis offers insights into the biological function of actin-based motility. PMID:21044576
Hollow polydimethylsiloxane beads with a porous structure for cell encapsulation.
Oh, Myeong-Jin; Ryu, Tae-Kyoung; Choi, S-W
2013-11-01
Based on a water-in-oil-in-water emulsion system, porous and hollow polydimethylsiloxane (PDMS) beads containing cells using a simple fluidic device with three flow channels are fabricated. Poly(ethylene glycol) (PEG) in the PDMS oil phase is served as a porogen for pore development. The feasibility of the porous PDMS beads prepared with different PEG concentrations (10, 20, and 30 wt%) for cell encapsulation in terms of pore size, protein diffusion, and cell proliferation inside the PDMS beads is evaluated. The PDMS beads prepared with PEG 30 wt% are exhibited a highly porous structure and facilitated fast diffusion of protein from the core domain to the outer phase, eventually leading to enhanced cell proliferation. The results clearly indicate that hollow PDMS beads with a porous structure could provide a favorable microenvironment for cell survival due to the large porous structure. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Jayamohan, Harikrishnan; Gale, Bruce K; Minson, Bj; Lambert, Christopher J; Gordon, Neil; Sant, Himanshu J
2015-05-22
In this paper, we report the ultra-sensitive indirect electrochemical detection of E. coli O157:H7 using antibody functionalized primary (magnetic) beads for capture and polyguanine (polyG) oligonucleotide functionalized secondary (polystyrene) beads as an electrochemical tag. Vacuum filtration in combination with E. coli O157:H7 specific antibody modified magnetic beads were used for extraction of E. coli O157:H7 from 100 mL samples. The magnetic bead conjugated E. coli O157:H7 cells were then attached to polyG functionalized secondary beads to form a sandwich complex (magnetic bead/E. coli secondary bead). While the use of magnetic beads for immuno-based capture is well characterized, the use of oligonucleotide functionalized secondary beads helps combine amplification and potential multiplexing into the system. The antibody functionalized secondary beads can be easily modified with a different antibody to detect other pathogens from the same sample and enable potential multiplexing. The polyGs on the secondary beads enable signal amplification up to 10⁸ guanine tags per secondary bead (7.5 x 10⁶ biotin-FITC per secondary bead, 20 guanines per oligonucleotide) bound to the target (E. coli). A single-stranded DNA probe functionalized reduced graphene oxide modified glassy carbon electrode was used to bind the polyGs on the secondary beads. Fluorescent imaging was performed to confirm the hybridization of the complex to the electrode surface. Differential pulse voltammetry (DPV) was used to quantify the amount of polyG involved in the hybridization event with tris(2,2'-bipyridine)ruthenium(II) (Ru(bpy)3(2+)) as the mediator. The amount of polyG signal can be correlated to the amount of E. coli O157:H7 in the sample. The method was able to detect concentrations of E. coli O157:H7 down to 3 CFU/100 mL, which is 67 times lower than the most sensitive technique reported in literature. The signal to noise ratio for this work was 3. We also demonstrate the use of the protocol for detection of E. coli O157:H7 seeded in waste water effluent samples.
Oscillatory magnetic tweezers based on ferromagnetic beads and simple coaxial coils
NASA Astrophysics Data System (ADS)
Trepat, Xavier; Grabulosa, Mireia; Buscemi, Lara; Rico, Fèlix; Fabry, Ben; Fredberg, Jeffrey J.; Farré, Ramon
2003-09-01
We report the design and validation of simple magnetic tweezers for oscillating ferromagnetic beads in the piconewton and nanometer scales. The system is based on a single pair of coaxial coils operating in two sequential modes: permanent magnetization of the beads through a large and brief pulse of magnetic field and generation of magnetic gradients to produce uniaxial oscillatory forces. By using this two step method, the magnetic moment of the beads remains constant during measurements. Therefore, the applied force can be computed and varies linearly with the driving signal. No feedback control is required to produce well defined force oscillations over a wide bandwidth. The design of the coils was optimized to obtain high magnetic fields (280 mT) and gradients (2 T/m) with high homogeneity (5% variation) within the sample. The magnetic tweezers were implemented in an inverted optical microscope with a videomicroscopy-based multiparticle tracking system. The apparatus was validated with 4.5 μm magnetite beads obtaining forces up to ˜2 pN and subnanometer resolution. The applicability of the device includes microrheology of biopolymer and cell cytoplasm, molecular mechanics, and mechanotransduction in living cells.
Wax-incorporated emulsion gel beads of calcium pectinate for intragastric floating drug delivery.
Sriamornsak, Pornsak; Asavapichayont, Panida; Nunthanid, Jurairat; Luangtana-Anan, Manee; Limmatvapirat, Sontaya; Piriyaprasarth, Suchada
2008-01-01
The purpose of this study was to prepare wax-incorporated pectin-based emulsion gel beads using a modified emulsion-gelation method. The waxes in pectin-olive oil mixtures containing a model drug, metronidazole, were hot-melted, homogenized and then extruded into calcium chloride solution. The beads formed were separated, washed with distilled water and dried for 12 h. The influence of various types and amounts of wax on floating and drug release behavior of emulsion gel beads of calcium pectinate was investigated. The drug-loaded gel beads were found to float on simulated gastric fluid if the sufficient amount of oil was used. Incorporation of wax into the emulsion gel beads affected the drug release. Water-soluble wax (i.e. polyethylene glycol) increased the drug release while other water-insoluble waxes (i.e. glyceryl monostearate, stearyl alcohol, carnauba wax, spermaceti wax and white wax) significantly retarded the drug release. Different waxes had a slight effect on the drug release. However, the increased amount of incorporated wax in the formulations significantly sustained the drug release while the beads remained floating. The results suggest that wax-incorporated emulsion gel beads could be used as a carrier for intragastric floating drug delivery.
Analysis of surface properties of fixed and live cells using derivatized agarose beads.
Navarro, Vanessa M; Walker, Sherri L; Badali, Oliver; Abundis, Maria I; Ngo, Lylla L; Weerasinghe, Gayani; Barajas, Marcela; Zem, Gregory; Oppenheimer, Steven B
2002-01-01
A novel assay has been developed for the histochemical characterization of surface properties of cells based on their adhesion to agarose beads derivatized with more than 100 types of molecules, including sugars, lectins and other proteins, and amino acids. The assay simply involves mixing small quantities of washed cells and beads in droplets on glass microscope slides and determining to which beads various cell types adhere. Distilled water was found to be the best medium for this assay because added ions or molecules in other media inhibit adhesion in some cases. Many cells, however, cannot tolerate distilled water. Here we show that cells fixed with either of two fixatives (1% formaldehyde or Prefer fixative) displayed similar bead-binding properties as did live cells. Specificity of cell-bead binding was tested by including specific free molecules in the test suspensions in hapten-type inhibition experiments. If a hapten compound inhibited live-cell adhesion to a specific bead, it also inhibited fixed-cell adhesion to a specific bead. The results of these experiments suggest that fixed cells display authentic surface properties, opening the door for the use of this assay with many cell types that cannot tolerate distilled water.
Particle-Based Microarrays of Oligonucleotides and Oligopeptides.
Nesterov-Mueller, Alexander; Maerkle, Frieder; Hahn, Lothar; Foertsch, Tobias; Schillo, Sebastian; Bykovskaya, Valentina; Sedlmayr, Martyna; Weber, Laura K; Ridder, Barbara; Soehindrijo, Miriam; Muenster, Bastian; Striffler, Jakob; Bischoff, F Ralf; Breitling, Frank; Loeffler, Felix F
2014-10-28
In this review, we describe different methods of microarray fabrication based on the use of micro-particles/-beads and point out future tendencies in the development of particle-based arrays. First, we consider oligonucleotide bead arrays, where each bead is a carrier of one specific sequence of oligonucleotides. This bead-based array approach, appearing in the late 1990s, enabled high-throughput oligonucleotide analysis and had a large impact on genome research. Furthermore, we consider particle-based peptide array fabrication using combinatorial chemistry. In this approach, particles can directly participate in both the synthesis and the transfer of synthesized combinatorial molecules to a substrate. Subsequently, we describe in more detail the synthesis of peptide arrays with amino acid polymer particles, which imbed the amino acids inside their polymer matrix. By heating these particles, the polymer matrix is transformed into a highly viscous gel, and thereby, imbedded monomers are allowed to participate in the coupling reaction. Finally, we focus on combinatorial laser fusing of particles for the synthesis of high-density peptide arrays. This method combines the advantages of particles and combinatorial lithographic approaches.
Particle-Based Microarrays of Oligonucleotides and Oligopeptides
Nesterov-Mueller, Alexander; Maerkle, Frieder; Hahn, Lothar; Foertsch, Tobias; Schillo, Sebastian; Bykovskaya, Valentina; Sedlmayr, Martyna; Weber, Laura K.; Ridder, Barbara; Soehindrijo, Miriam; Muenster, Bastian; Striffler, Jakob; Bischoff, F. Ralf; Breitling, Frank; Loeffler, Felix F.
2014-01-01
In this review, we describe different methods of microarray fabrication based on the use of micro-particles/-beads and point out future tendencies in the development of particle-based arrays. First, we consider oligonucleotide bead arrays, where each bead is a carrier of one specific sequence of oligonucleotides. This bead-based array approach, appearing in the late 1990s, enabled high-throughput oligonucleotide analysis and had a large impact on genome research. Furthermore, we consider particle-based peptide array fabrication using combinatorial chemistry. In this approach, particles can directly participate in both the synthesis and the transfer of synthesized combinatorial molecules to a substrate. Subsequently, we describe in more detail the synthesis of peptide arrays with amino acid polymer particles, which imbed the amino acids inside their polymer matrix. By heating these particles, the polymer matrix is transformed into a highly viscous gel, and thereby, imbedded monomers are allowed to participate in the coupling reaction. Finally, we focus on combinatorial laser fusing of particles for the synthesis of high-density peptide arrays. This method combines the advantages of particles and combinatorial lithographic approaches. PMID:27600347
Trailing Shield For Welding On Pipes
NASA Technical Reports Server (NTRS)
Coby, John B., Jr.; Gangl, Kenneth J.
1991-01-01
Trailing shield ensures layer of inert gas covers hot, newly formed bead between two tubes or pipes joined by plasma arc welding. Inert gas protects weld bead from oxidation by air until cooler and less vulnerable to oxidation. Intended for use on nickel-base alloy pipes, on which weld beads remain hot enough to oxidize after primary inert-gas purge from welding-torch cup has passed.
Force measurements of a magnetic micro actuator proposed for a microvalve array
NASA Astrophysics Data System (ADS)
Chang, Pauline J.; Chang, Frank W.; Yuen, Michelle C.; Otillar, Robert; Horsley, David A.
2014-03-01
Low-cost, easily-fabricated and power-efficient microvalves are necessary for many microfluidic lab-on-a-chip applications. In this study, we present a simple, low-power, scalable, CMOS-compatible magnetic actuator for microvalve applications composed of a paramagnetic bead as the ball valve over a picoliter reaction well etched into a silicon substrate. The paramagnetic bead, composed of either pure FeSi or magnetite in a SiO2 matrix, is actuated by the local magnetic field gradient generated by a microcoil in an aqueous environment, and the reaction well is situated at the microcoil center. A permanent magnet beneath the microvalve device provides an external magnetic biasing field that magnetizes the bead, enabling bidirectional actuation and reducing the current required to actuate the bead to a level below 10 mA. The vertical and radial magnetic forces exerted on the bead by the microcoil were measured for both pure FeSi and composite beads and agree well with the predictions of 2D axisymmetric finite element method models. Vertical forces were within a range of 13-80 nN, and radial forces were 11-60 nN depending on the bead type. The threshold current required to initiate bead actuation was measured as a function of bead diameter and is found to scale inversely with volume for small beads, as expected based on the magnetic force model. To provide an estimate of the stiction force acting between the bead and the passivation layer on the substrate, repeated actuation trials were used to study the bead throw distance for substrates coated with silicon dioxide, Parylene-C, and photoresist. The stiction observed was lowest for a photoresist-coated substrate, while silicon dioxide and Parylene-C coated substrates exhibited similar levels of stiction.
Sánchez-Ayala, Alfonso; Farias-Neto, Arcelino; Vilanova, Larissa Soares Reis; Costa, Marina Abrantes; Paiva, Ana Clara Soares; Carreiro, Adriana da Fonte Porto; Mestriner-Junior, Wilson
2016-08-01
Rehabilitation of masticatory function is inherent to prosthodontics; however, despite the various techniques for evaluating oral comminution, the methodological suitability of these has not been completely studied. The aim of this study was to determine the reproducibility, reliability, and validity of a test food based on fuchsin beads for masticatory function assessment. Masticatory performance was evaluated in 20 dentate subjects (mean age, 23.3 years) using two kinds of test foods and methods: fuchsin beads and ultraviolet-visible spectrophotometry, and silicone cubes and multiple sieving as gold standard. Three examiners conducted five masticatory performance trials with each test food. Reproducibility of the results from both test foods was separately assessed using the intraclass correlation coefficient (ICC). Reliability and validity of fuchsin bead data were measured by comparing the average mean of absolute differences and the measurement means, respectively, regarding silicone cube data using the paired Student's t-test (α = 0.05). Intraexaminer and interexaminer ICC for the fuchsin bead values were 0.65 and 0.76 (p < 0.001), respectively; those for the silicone cubes values were 0.93 and 0.91 (p < 0.001), respectively. Reliability revealed intraexaminer (p < 0.001) and interexaminer (p < 0.05) differences between the average means of absolute differences of each test foods. Validity also showed differences between the measurement means of each test food (p < 0.001). Intra- and interexaminer reproducibility of the test food based on fuchsin beads for evaluation of masticatory performance were good and excellent, respectively; however, the reliability and validity were low, because fuchsin beads do not measure the grinding capacity of masticatory function as silicone cubes do; instead, this test food describes the crushing potential of teeth. Thus, the two kinds of test foods evaluate different properties of masticatory capacity, confirming fushsin beads as a useful tool for this purpose. © 2015 by the American College of Prosthodontists.
Inertial-ordering-assisted droplet microfluidics for high-throughput single-cell RNA-sequencing.
Moon, Hui-Sung; Je, Kwanghwi; Min, Jae-Woong; Park, Donghyun; Han, Kyung-Yeon; Shin, Seung-Ho; Park, Woong-Yang; Yoo, Chang Eun; Kim, Shin-Hyun
2018-02-27
Single-cell RNA-seq reveals the cellular heterogeneity inherent in the population of cells, which is very important in many clinical and research applications. Recent advances in droplet microfluidics have achieved the automatic isolation, lysis, and labeling of single cells in droplet compartments without complex instrumentation. However, barcoding errors occurring in the cell encapsulation process because of the multiple-beads-in-droplet and insufficient throughput because of the low concentration of beads for avoiding multiple-beads-in-a-droplet remain important challenges for precise and efficient expression profiling of single cells. In this study, we developed a new droplet-based microfluidic platform that significantly improved the throughput while reducing barcoding errors through deterministic encapsulation of inertially ordered beads. Highly concentrated beads containing oligonucleotide barcodes were spontaneously ordered in a spiral channel by an inertial effect, which were in turn encapsulated in droplets one-by-one, while cells were simultaneously encapsulated in the droplets. The deterministic encapsulation of beads resulted in a high fraction of single-bead-in-a-droplet and rare multiple-beads-in-a-droplet although the bead concentration increased to 1000 μl -1 , which diminished barcoding errors and enabled accurate high-throughput barcoding. We successfully validated our device with single-cell RNA-seq. In addition, we found that multiple-beads-in-a-droplet, generated using a normal Drop-Seq device with a high concentration of beads, underestimated transcript numbers and overestimated cell numbers. This accurate high-throughput platform can expand the capability and practicality of Drop-Seq in single-cell analysis.
Molecularly Imprinted Polymers Chitosan-Glutaraldehyde for Monosodium Glutamate
NASA Astrophysics Data System (ADS)
Mulyasuryani, Ani; Haryanto, Edi; Sulistyarti, Hermin; Rumhayati, Barlah
2018-01-01
Chitosan has been used as a functional monomer in the synthesis of molecularly imprinted polymers (MIP) for monosodium glutamate (MSG). MIP is made from a mixture of 5 g chitosan, 50 mg glutaraldehyde and 2 g MSG, MIP is formed as flakes and beads. MIPs are identified by the FTIR spectrum, SEM image and their adsorption capabilities. MIP flakes and beads have no structural differences if they are based on FTIR or SEM spectra, but MIP adsorption capacity of beads higher than flakes. Adsorption capacity of MIP flakes is 548 mg/g and MIP beads 627 mg/g.
Li, Min; Zhang, John Z H
2017-03-08
The development of polarizable water models at coarse-grained (CG) levels is of much importance to CG molecular dynamics simulations of large biomolecular systems. In this work, we combined the newly developed two-bead multipole force field (TMFF) for proteins with the two-bead polarizable water models to carry out CG molecular dynamics simulations for benchmark proteins. In our simulations, two different two-bead polarizable water models are employed, the RTPW model representing five water molecules by Riniker et al. and the LTPW model representing four water molecules. The LTPW model is developed in this study based on the Martini three-bead polarizable water model. Our simulation results showed that the combination of TMFF with the LTPW model significantly stabilizes the protein's native structure in CG simulations, while the use of the RTPW model gives better agreement with all-atom simulations in predicting the residue-level fluctuation dynamics. Overall, the TMFF coupled with the two-bead polarizable water models enables one to perform an efficient and reliable CG dynamics study of the structural and functional properties of large biomolecules.
Aburahma, Mona Hassan
2016-09-01
Most of the newly designed drug molecules are lipophilic in nature and often encounter erratic absorption and low bioavailability after oral administration. Finding ways to enhance the absorption and bioavailability of these lipophilic drugs is one of the major challenges that face pharmaceutical industry nowadays. In view of that, the purpose of this review is to shed some light on a novel particulate self-assembling system named "beads" than can act as a safe carrier for delivering lipophilic drugs. The beads are prepared simply by mixing oils with cyclodextrin (CD) aqueous solution in mild conditions. A unique interaction between oil components and CD molecules occurs to form in situ surface-active complexes which are prerequisites for beads formation. This review mainly focuses on the fundamentals of beads preparation through reviewing present, yet scarce, literature. The key methods used for beads characterization are discussed in details. Also, the potential mechanisms by which beads increase the bioavailability of lipophilic drugs are illustrated. Finally, the related research areas that needs to be addressed in future for optimizing this promising delivery system are briefly outlined.
NASA Astrophysics Data System (ADS)
Stockert, Sven; Wehr, Matthias; Lohmar, Johannes; Abel, Dirk; Hirt, Gerhard
2017-10-01
In the electrical and medical industries the trend towards further miniaturization of devices is accompanied by the demand for smaller manufacturing tolerances. Such industries use a plentitude of small and narrow cold rolled metal strips with high thickness accuracy. Conventional rolling mills can hardly achieve further improvement of these tolerances. However, a model-based controller in combination with an additional piezoelectric actuator for high dynamic roll adjustment is expected to enable the production of the required metal strips with a thickness tolerance of +/-1 µm. The model-based controller has to be based on a rolling theory which can describe the rolling process very accurately. Additionally, the required computing time has to be low in order to predict the rolling process in real-time. In this work, four rolling theories from literature with different levels of complexity are tested for their suitability for the predictive controller. Rolling theories of von Kármán, Siebel, Bland & Ford and Alexander are implemented in Matlab and afterwards transferred to the real-time computer used for the controller. The prediction accuracy of these theories is validated using rolling trials with different thickness reduction and a comparison to the calculated results. Furthermore, the required computing time on the real-time computer is measured. Adequate results according the prediction accuracy can be achieved with the rolling theories developed by Bland & Ford and Alexander. A comparison of the computing time of those two theories reveals that Alexander's theory exceeds the sample rate of 1 kHz of the real-time computer.
Logue, Mark W; Smith, Alicia K; Wolf, Erika J; Maniates, Hannah; Stone, Annjanette; Schichman, Steven A; McGlinchey, Regina E; Milberg, William; Miller, Mark W
2017-01-01
Aim: We examined concordance of methylation levels across the Illumina Infinium HumanMethylation450 BeadChip and the Infinium MethylationEPIC BeadChip. Methods: We computed the correlation for 145 whole blood DNA samples at each of the 422,524 CpG sites measured by both chips. Results: The correlation at some sites was high (up to r = 0.95), but many sites had low correlation (55% had r < 0.20). The low correspondence between 450K and EPIC measured methylation values at many loci was largely due to the low variability in methylation values for the majority of the CpG sites in blood. Conclusion: Filtering out probes based on the observed correlation or low variability may increase reproducibility of BeadChip-based epidemiological studies. PMID:28809127
NASA Astrophysics Data System (ADS)
Caballero-Robledo, Gabriel; Guevara-Pantoja, Pablo
2014-11-01
Bead based immunoassays in microfluidic devices have shown to greatly outperform conventional methods. But if functional point-of-care devices are to be developed, precise and reproducible control over the granulate packings inside microchannels is needed. In this work we study the efficiency of a nanoparticles magnetic trap previously developed by B. Teste et al. [Lab Chip 11, 4207 (2011)] when we vary the compaction of micrometric iron beads packed against a restriction inside a microfluidic channel. The packing density of the beads is finely and reproducibly changed by applying a vibrational protocol originally developed for macroscopic, dry granular systems. We find, counterintuitively, that the most compact and stable packings are up to four times less efficient in trapping nano particles than the loosest packings. This work has been supported by Conacyt, Mexico, under Grant No. 180873.
Wang, Zhenyu; Zhang, Xiaojuan; Yang, Jun; Yang, Zhong; Wan, Xiaoping; Hu, Ning; Zheng, Xiaolin
2013-08-20
A large number of microscale structures have been used to elaborate flowing control or complex biological and chemical reaction on microfluidic chips. However, it is still inconvenient to fabricate microstructures with different heights (or depths) on the same substrate. These kinds of microstructures can be fabricated by using the photolithography and wet-etching method step by step, but involves time-consuming design and fabrication process, as well as complicated alignment of different masters. In addition, few existing methods can be used to perform fabrication within enclosed microfluidic networks. It is also difficult to change or remove existing microstructures within these networks. In this study, a magnetic-beads-based approach is presented to build microstructures in enclosed microfluidic networks. Electromagnetic field generated by microfabricated conducting wires (coils) is used to manipulate and trap magnetic beads on the bottom surface of a microchannel. These trapped beads are accumulated to form a microscale pile with desired shape, which can adjust liquid flow, dock cells, modify surface, and do some other things as those fabricated microstructures. Once the electromagnetic field is changed, trapped beads may form new shapes or be removed by a liquid flow. Besides being used in microfabrication, this magnetic-beads-based method can be used for novel microfluidic manipulation. It has been validated by forming microscale dam structure for cell docking and modified surface for cell patterning, as well as guiding the growth of neurons. Copyright © 2013 Elsevier B.V. All rights reserved.
Rolling contact fatigue strengths of shot-peened and crack-healed ceramics
NASA Astrophysics Data System (ADS)
Takahashi, K.; Oki, T.
2018-06-01
The effects of shot-peening (SP) and crack-healing on the rolling contact fatigue (RCF) strengths of Al2O3/SiC composite ceramics were investigated. Non-shot-peened, shot- peened, and shot-peened + crack-healed specimens were prepared. SP was performed using ZrO2 beads. The shot-peened + crack-healed specimen was crack-healed after SP. X-ray diffraction clearly showed that SP induced a compressive residual stress up to 300 MPa at the specimen surfaces. Furthermore, the shot-peened + crack-healed specimen retained a compressive residual stress of 200 MPa. The apparent surface fracture toughness of the shot- peened specimens increased owing to the positive effects of the compressive residual stress. RCF tests were performed using a thrust load-bearing test device. The RCF lives of the shot- peened specimens did not improve compared to that of the non-shot-peened specimen, because the numerous SP-introduced surface cracks could act as crack initiation sites during the RCF tests. However, the RCF life of the shot-peened + crack-healed specimen did improve compared to those of non-shot-peened and shot-peened specimens, implying that combining SP and crack-healing was an effective strategy for improving the RCF lives of Al2O3/SiC composite ceramics.
Noor, S; Gilson, A; Kennedy, K; Swanson, A; Vanny, V; Mony, K; Chaudhry, T; Gollogly, J
2016-04-01
The developing world often lacks the resources to effectively treat the most serious injuries including osteomyelitis following open fractures or surgical fracture treatment. Antibiotic cement beads are a widely accepted method of delivering antibiotics locally to the infected area following trauma. This study is based in Cambodia, a low income country struggling to recover from a recent genocide. The study aims to test the effectiveness of locally made antibiotic beads and analyse their effectiveness after being gas sterilised, packaged and kept in storage Different antibiotic beads were manufactured locally using bone cement and tested against MRSA bacteria grown from a case of osteomyelitis. Each antibiotic was tested before and after a process of gas sterilisation as well as later being tested after storage in packaging up to 42 days. The gentamicin, vancomycin, amikacin and ceftriaxone beads all inhibited growth of the MRSA on the TSB and agar plates, both before and after gas sterilisation. All four antibiotics continued to show similar zones of inhibition after 42 days of storage. The results show significant promise to produce beads with locally obtainable ingredients in an austere environment and improve cost effectiveness by storing them in a sterilised condition. Copyright © 2016 Elsevier Ltd. All rights reserved.
Nanofibrous polymeric beads from aramid fibers for efficient bilirubin removal.
Peng, Zihang; Yang, Ye; Luo, Jiyue; Nie, Chuanxiong; Ma, Lang; Cheng, Chong; Zhao, Changsheng
2016-08-16
Polymer based hemoperfusion has been developed as an effective therapy to remove the extra bilirubin from patients. However, the currently applied materials suffer from either low removal efficiency or poor blood compatibility. In this study, we report the development of a new class of nanofibrous absorbent that exhibited high bilirubin removal efficiency and good blood compatibility. The Kevlar nanofiber was prepared by dissolving micron-sized Kevlar fiber in proper solvent, and the beads were prepared by dropping Kevlar nanofiber solutions into ethanol. Owing to the nanofiborous structure of the Kevlar nanofiber, the beads displayed porous structures and large specific areas, which would facilitate the adsorption of toxins. In the adsorption test, it was noticed that the beads possessed an adsorption capacity higher than 40 mg g(-1) towards bilirubin. In plasma mimetic solutions, the beads still showed high bilirubin removal efficiency. Furthermore, after incorporating with carbon nanotubes, the beads were found to have increased adsorption capacity for human degradation waste. Moreover, the beads showed excellent blood compatibility in terms of a low hemolysis ratio, prolonged clotting times, suppressed coagulant activation, limited platelet activation, and inhibited blood related inflammatory activation. Additionally, the beads showed good compatibility with endothelial cells. In general, the Kevlar nanofiber beads, which integrated with high adsorption capacity, good blood compatibility and low cytotoxicity, may have great potential for hemoperfusion and some other applications in biomedical fields.
Mechaly, Adva; Marx, Sharon; Levy, Orly; Yitzhaki, Shmuel; Fisher, Morly
2016-06-21
This study shows the development of dry, highly stable immunoassays for the detection of bio warfare agents in complex matrices. Thermal stability was achieved by the lyophilization of the complete, homogeneous, bead-based immunoassay in a special stabilizing buffer, resulting in a ready-to-use, simple assay, which exhibited long shelf and high-temperature endurance (up to 1 week at 100 °C). The developed methodology was successfully implemented for the preservation of time-resolved fluorescence, Alexa-fluorophores, and horse radish peroxidase-based bead assays, enabling multiplexed detection. The multiplexed assay was successfully implemented for the detection of Bacillus anthracis, botulinum B, and tularemia in complex matrices.
A method to track rotational motion for use in single-molecule biophysics.
Lipfert, Jan; Kerssemakers, Jacob J W; Rojer, Maylon; Dekker, Nynke H
2011-10-01
The double helical nature of DNA links many cellular processes such as DNA replication, transcription, and repair to rotational motion and the accumulation of torsional strain. Magnetic tweezers (MTs) are a single-molecule technique that enables the application of precisely calibrated stretching forces to nucleic acid tethers and to control their rotational motion. However, conventional magnetic tweezers do not directly monitor rotation or measure torque. Here, we describe a method to directly measure rotational motion of particles in MT. The method relies on attaching small, non-magnetic beads to the magnetic beads to act as fiducial markers for rotational tracking. CCD images of the beads are analyzed with a tracking algorithm specifically designed to minimize crosstalk between translational and rotational motion: first, the in-plane center position of the magnetic bead is determined with a kernel-based tracker, while subsequently the height and rotation angle of the bead are determined via correlation-based algorithms. Evaluation of the tracking algorithm using both simulated images and recorded images of surface-immobilized beads demonstrates a rotational resolution of 0.1°, while maintaining a translational resolution of 1-2 nm. Example traces of the rotational fluctuations exhibited by DNA-tethered beads confined in magnetic potentials of varying stiffness demonstrate the robustness of the method and the potential for simultaneous tracking of multiple beads. Our rotation tracking algorithm enables the extension of MTs to magnetic torque tweezers (MTT) to directly measure the torque in single molecules. In addition, we envision uses of the algorithm in a range of biophysical measurements, including further extensions of MT, tethered particle motion, and optical trapping measurements.
Cell-based delivery of glucagon-like peptide-1 using encapsulated mesenchymal stem cells.
Wallrapp, Christine; Thoenes, Eric; Thürmer, Frank; Jork, Anette; Kassem, Moustapha; Geigle, Peter
2013-01-01
Glucagon-like peptide-1 (GLP-1) CellBeads are cell-based implants for the sustained local delivery of bioactive factors. They consist of GLP-1 secreting mesenchymal stem cells encapsulated in a spherically shaped immuno-isolating alginate matrix. A highly standardized and reproducible encapsulation method is described for the manufacturing of homogeneous CellBeads. Viability and sustained secretion was shown for the recombinant GLP-1 and the cell endogenous bioactive factors like vascular endothelial growth factor, neurotrophin 3 (NT-3) and glial cell line-derived neurotrophic factor. Manufacturing and quality control is performed in compliance with good manufacturing practice and fulfils all regulatory requirements for human clinical use. GLP-1 CellBeads combine the neuro- and cardioprotective properties of both GLP-1 and mesenchymal stem cells. First promising results were obtained from preclinical studies and an ongoing safety trial in humans but further studies have to prove the overall potential of CellBead technology in cell-based regenerative medicine.
NASA Astrophysics Data System (ADS)
Ke, Chun-Ren; Guo, Jyun-Sheng; Su, Yen-Hsun; Ting, Jyh-Ming
2016-10-01
In this work, a novel configuration of the photoelectrochemical hydrogen production device is demonstrated. It is based on TiO2 beads as the primary photoanode material with the addition of a heterostructure of silver nanoparticles/graphene. The heterostructure not only caters to a great improvement in light harvesting efficiency (LHE) but also enhances the charge collection efficiency. For LHE, the optimized cell based on TiO2 beads/Ag/graphene shows a 47% gain as compared to the cell having a photoanode of commercial P25 TiO2 powders. For the charge collection efficiency, there is a pronounced improvement of an impressive value of 856%. The reason for the improvement in light absorption is attributed to either the light scattering of TiO2 beads or the surface plasmonic resonance on the Ag nanoparticles/graphene. The photoconversion efficiency (PCE) of the resulting cells is also presented and discussed. The PCE of the TiO2 beads/Ag/graphene cell is approximately 2.5 times than that of pure P25 cell.
Malakar, Jadupati; Datta, Prabir Kumar; Purakayastha, Saikat Das; Dey, Sanjay; Nayak, Amit Kumar
2014-03-01
The present study deals with the development and evaluations of stomach-specific floating capsules containing salbutamol sulfate-loaded oil-entrapped alginate-based beads. Salbutamol sulfate-loaded oil-entrapped beads were prepared and capsulated within hard gelatin capsules (size 1). The effects of HPMC K4M and potato starch weight masses on drug encapsulation efficiency (DEE) of beads and cumulative drug release at 10h (R10 h) from capsules was analyzed by 3(2) factorial design. The optimization results indicate increasing of DEE in the oil-entrapped beads and decreasing R10 h from capsules with increment of HPMC K4M and potato starch weight masses. The optimized formulation showed DEE of 70.02 ± 3.16% and R10 h of 56.96 ± 2.92%. These capsules showed floatation over 6h and sustained drug release over 10h in gastric pH (1.2). In vivo X-ray imaging study of optimized floating capsules in rabbits showed stomach-specific gastroretention over a prolonged period. Copyright © 2013 Elsevier B.V. All rights reserved.
Poisson Statistics of Combinatorial Library Sampling Predict False Discovery Rates of Screening
2017-01-01
Microfluidic droplet-based screening of DNA-encoded one-bead-one-compound combinatorial libraries is a miniaturized, potentially widely distributable approach to small molecule discovery. In these screens, a microfluidic circuit distributes library beads into droplets of activity assay reagent, photochemically cleaves the compound from the bead, then incubates and sorts the droplets based on assay result for subsequent DNA sequencing-based hit compound structure elucidation. Pilot experimental studies revealed that Poisson statistics describe nearly all aspects of such screens, prompting the development of simulations to understand system behavior. Monte Carlo screening simulation data showed that increasing mean library sampling (ε), mean droplet occupancy, or library hit rate all increase the false discovery rate (FDR). Compounds identified as hits on k > 1 beads (the replicate k class) were much more likely to be authentic hits than singletons (k = 1), in agreement with previous findings. Here, we explain this observation by deriving an equation for authenticity, which reduces to the product of a library sampling bias term (exponential in k) and a sampling saturation term (exponential in ε) setting a threshold that the k-dependent bias must overcome. The equation thus quantitatively describes why each hit structure’s FDR is based on its k class, and further predicts the feasibility of intentionally populating droplets with multiple library beads, assaying the micromixtures for function, and identifying the active members by statistical deconvolution. PMID:28682059
Fault Diagnosis for Centre Wear Fault of Roll Grinder Based on a Resonance Demodulation Scheme
NASA Astrophysics Data System (ADS)
Wang, Liming; Shao, Yimin; Yin, Lei; Yuan, Yilin; Liu, Jing
2017-05-01
Roll grinder is one of the important parts in the rolling machinery, and the grinding precision of roll surface has direct influence on the surface quality of steel strip. However, during the grinding process, the centre bears the gravity of the roll and alternating stress. Therefore, wear or spalling faults are easily observed on the centre, which will lead to an anomalous vibration of the roll grinder. In this study, a resonance demodulation scheme is proposed to detect the centre wear fault of roll grinder. Firstly, fast kurtogram method is employed to help select the sub-band filter parameters for optimal resonance demodulation. Further, the envelope spectrum are derived based on the filtered signal. Finally, two health indicators are designed to conduct the fault diagnosis for centre wear fault. The proposed scheme is assessed by analysing experimental data from a roll grinder of twenty-high rolling mill. The results show that the proposed scheme can effectively detect the centre wear fault of the roll grinder.
Torigoe, Hidetaka; Miyakawa, Yukako; Fukushi, Miyako; Ono, Akira; Kozasa, Tetsuo
2009-01-01
We have already found that Hg(II) cation specifically binds to T:T mismatch base pair in heteroduplex DNA, which increases the melting temperature of heteroduplex DNA involving T:T mismatch base pair by about 4 degrees C. We have also found that Ag(I) cation specifically binds to C:C mismatch base pair in heteroduplex DNA, which increases the melting temperature of heteroduplex DNA involving C:C mismatch base pair by about 4 degrees C. Using the specific interaction, we developed a novel device to trap each of Hg(II) and Ag(I) cation. The device is composed of 5'-biotinylated T-rich or C-rich DNA oligonucleotides, BIO-T20: 5'-Bio-T(20)-3' or BIO-C20: 5'-Bio-C(20)-3' (Bio is a biotin), immobilized on streptavidin-coated polystylene beads. When the BIO-T20-immobilized beads were added to a solution containing Hg(II) cation, and the beads trapping Hg(II) cation were collected by centrifugation, almost all of Hg(II) cation were removed from the solution. Also, when the BIO-C20-immobilized beads were added to a solution containing Ag(I) cation, and the beads trapping Ag(I) cation were collected by centrifugation, almost all of Ag(I) cation were removed from the solution. We conclude that, using the novel device developed in this study, Hg(II) and Ag(I) cation can be effectively removed from the solution.
Larosa, Claudio; Salerno, Marco; de Lima, Juliana Silva; Merijs Meri, Remo; da Silva, Milena Fernandes; de Carvalho, Luiz Bezerra; Converti, Attilio
2018-08-01
Incorporating enzymes into calcium alginate beads is an effective method to immobilise them and to preserve, at the same time, their catalytic activity. Sodium alginate was mixed with Aspergillus ficuum tannase in aqueous solution, and tannase-loaded calcium alginate beads were prepared using a simple droplet-based microfluidic system. Extensive experimental analysis was carried out to characterise the samples. Microscopic imaging revealed morphological differences between the surfaces of bare alginate matrix and tannase-loaded alginate beads. Thermal analysis allowed assessing the hydration contents of alginate and revealed the presence of tannase entrapped in the loaded beads, which was confirmed by vibrational spectroscopy. X-ray diffraction allowed us to conclude that alginate of tannase-loaded beads is not crystalline, which would make them suitable as carriers for possible controlled release. Moreover, they could be used in food applications to improve tea quality or clarify juices. Copyright © 2018 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wahyuni, Wulan Tri, E-mail: wulantriws@gmail.com; Department of Chemistry, FMIPA, Universitas Indonesia, Kampus UI Depok; Ivandini, Tribidasari A.
Biomolecule modified magnetic beads has been widely used in separation and sensing process. This study used streptavidin modified magnetic beads to immobilize biotin modified zanamivir. Biotin-streptavidin affinity facilitates immobilization of zanamivir on magnetic beads. Then interaction of zanamivir and neuraminidase was adopted as basic for enzyme detection. Detection of neuraminidase was performed at gold modified BDD using cyclic voltammetry technique. The measurement was carried out based on alteration of electrochemical signals of working electrode as neuraminidase response. The result showed that zanamivir was successfully immobilized on magnetic beads. The optimum amount of magnetic beads for zanamivir immobilization was 120 ug.more » Linear responses of neuraminidase were detected in concentration range of 0-15 mU. Detection limit (LOD) of measurement was 2.32 mU (R2 = 0.959) with precision as % RSD of 1.41%. Measurement of neuraminidase on magnetic beads could be also performed in the presence of mucin matrix. The linearity range was 0-8 mU with LOD of 0.64 mU (R2 = 0.950) and % RSD of 7.25%.« less
Majdinasab, Marjan; Hosseini, Seyed Mohammad Hashem; Sepidname, Marziyeh; Negahdarifar, Manizheh; Li, Peiwu
2018-05-01
Alginate is a non-toxic, renewable, and linear copolymer obtained from the brown algae Laminaria digitata that can be easily shaped into beads. Its good gel forming properties have made it useful for entrapping food and pharmaceutical ingredients. In this study, alginate beads were used in a novel application as a colorimetric sensor in food intelligent packaging. Colorimetric sensor was developed through entrapping red cabbage extract as a pH indicator in alginate beads. The pH indicator beads were used in rainbow trout packaging for monitoring fillets spoilage. Color change of beads during fish storage was measured using the CIELab method. The alginate bead colorimetric sensor is validated by measuring total volatile basic nitrogen (TVB-N) levels and microbial populations in fish samples. Moreover, peroxide value (PV) and thiobarbituric acid reactive substances (TBARS) were evaluated during storage. Results indicated that increasing the bacterial population during storage and production of proteolytic enzymes resulted in protein degradation, accumulation of volatile amine compounds, increase in the pH and finally color change of alginate beads. The values of TVB-N, pH, PV and TBARS increased with time of storage. The results of TVB-N and microbial growth were in accordance with color change of beads and CIELab data. Therefore, the proposed system enjoys a high sensitivity to pH variations and is capable of monitoring the spoilage of fish or other protein-rich products through its wide range of color changes. The alginate beads containing the red cabbage extract can, thus, be used as a low-cost colorimetric sensor for intelligent packaging applications.
Bead-based screening in chemical biology and drug discovery.
Komnatnyy, Vitaly V; Nielsen, Thomas E; Qvortrup, Katrine
2018-06-11
High-throughput screening is an important component of the drug discovery process. The screening of libraries containing hundreds of thousands of compounds requires assays amenable to miniaturisation and automization. Combinatorial chemistry holds a unique promise to deliver structurally diverse libraries for early drug discovery. Among the various library forms, the one-bead-one-compound (OBOC) library, where each bead carries many copies of a single compound, holds the greatest potential for the rapid identification of novel hits against emerging drug targets. However, this potential has not yet been fully realized due to a number of technical obstacles. In this feature article, we review the progress that has been made in bead-based library screening and its application to the discovery of bioactive compounds. We identify the key challenges of this approach and highlight key steps needed for making a greater impact in the field.
Online measurement of bead geometry in GMAW-based additive manufacturing using passive vision
NASA Astrophysics Data System (ADS)
Xiong, Jun; Zhang, Guangjun
2013-11-01
Additive manufacturing based on gas metal arc welding is an advanced technique for depositing fully dense components with low cost. Despite this fact, techniques to achieve accurate control and automation of the process have not yet been perfectly developed. The online measurement of the deposited bead geometry is a key problem for reliable control. In this work a passive vision-sensing system, comprising two cameras and composite filtering techniques, was proposed for real-time detection of the bead height and width through deposition of thin walls. The nozzle to the top surface distance was monitored for eliminating accumulated height errors during the multi-layer deposition process. Various image processing algorithms were applied and discussed for extracting feature parameters. A calibration procedure was presented for the monitoring system. Validation experiments confirmed the effectiveness of the online measurement system for bead geometry in layered additive manufacturing.
Pino, Flavio; Ivandini, Tribidasari A; Nakata, Kazuya; Fujishima, Akira; Merkoçi, Arben; Einaga, Yasuaki
2015-01-01
A simple and reliable enzymatic system for organophosporus pesticide detection was successfully developed, by exploiting the synergy between the magnetic beads collection capacity and the outstanding electrochemistry property of boron-doped diamond electrodes. The determination of an organophosphate pesticide, chlorpyrifos (CPF), was performed based on the inhibition system of the enzyme acetylcholinesterase bonded to magnetic beads through a biotin-streptavidin complex system. A better sensitivity was found for a system with magnetic beads in the concentration range of 10(-9) to 10(-5) M. The estimated limits of detection based on IC10 (10% acetylcholinesterase (AChE) inhibition) have been detected and optimized to be 5.7 × 10(-10) M CPF. Spiked samples of water of Yokohama (Japan) have been measured to validate the efficiency of the enzymatic system. The results suggested that the use of magnetic beads to immobilize biomolecules or biosensing agents is suitable to maintain the superiority of BDD electrodes.
Oprenyeszk, Frederic; Sanchez, Christelle; Dubuc, Jean-Emile; Maquet, Véronique; Henrist, Catherine; Compère, Philippe; Henrotin, Yves
2015-01-01
This in vitro study investigated the metabolism of human osteoarthritic (OA) chondrocytes encapsulated in a spherical matrix enriched of chitosan. Human OA chondrocytes were encapsulated and cultured for 28 days either in chitosan-alginate beads or in alginate beads. The beads were formed by slowly passing dropwise either the chitosan 0.6%–alginate 1.2% or the alginate 1.2% solution through a syringe into a 102 mM CaCl2 solution. Beads were analyzed histologically after 28 days. Interleukin (IL)-6 and -8, prostaglandin (PG) E2, matrix metalloproteinases (MMPs), hyaluronan and aggrecan were quantified directly in the culture supernatant by specific ELISA and nitric oxide (NO) by using a colorimetric method based on the Griess reaction. Hematoxylin and eosin staining showed that chitosan was homogeneously distributed through the matrix and was in direct contact with chondrocytes. The production of IL-6, IL-8 and MMP-3 by chondrocytes significantly decreased in chitosan-alginate beads compared to alginate beads. PGE2 and NO decreased also significantly but only during the first three days of culture. Hyaluronan and aggrecan production tended to increase in chitosan-alginate beads after 28 days of culture. Chitosan-alginate beads reduced the production of inflammatory and catabolic mediators by OA chondrocytes and tended to stimulate the synthesis of cartilage matrix components. These particular effects indicate that chitosan-alginate beads are an interesting scaffold for chondrocytes encapsulation before transplantation to repair cartilage defects. PMID:26020773
Optical diamagnetic biosensor for immunocomplexes on beads
NASA Astrophysics Data System (ADS)
Norina, Svetlana B.
2000-12-01
In the present work, diamagnetic separation parameters for the porous beads are studied using optical video recording microscopy. The possible direct amount determination of single or double macromolecular layers immobilized in the meshes of the porous beads is demonstrated for the concentrations' range used in heterogenic immunotest and the affinity chromatography, where the direct rapid detection of ligands within sorbent particles is known to be the actual task. A gradient diamagnetic biosensor is described as suitable for rapid quantitative detection of single or double macromolecular layers in porous nonmagnetic beads. Measurements of capture traveling time or accumulation radius in gradient magnetic field have shown that it is possible to determine 0.20 mg/ml of macromolecular amount within several seconds. The portative devices were made on the base of the fabre optic technique to detect accumulation radius of collected beads in two gradient magnetic positions: diamagnetic and paramagnetic zones of magnetized wire with 55 μm in diameter and to registrate with a lot of fabre wires having 30 μm in diameters. The successive procedures of the present method can be described by: the obtaining of agarose immuno-beads, the incubation of beads with the ligand sample or the injection of sample through affinity mini-column, the submerging of the loaded beads into the glass cell containing Ni-wire or the narrow gap of magnetic poles; the computational obtaining of immuno- parameters; binding constants, accumulation radius. Several biotechnological applications of the biosensor are presented on sorbent beads, human lymphocytes.
Farhadnejad, Hassan; Mortazavi, Seyed Alireza; Erfan, Mohammad; Darbasizadeh, Behzad; Motasadizadeh, Hamidreza; Fatahi, Yousef
2018-05-01
The main aim of the present study was to design pH-sensitive nanocomposite hydrogel beads, based on carboxymethyl cellulose (CMC) and montmorillonite (Mt)-propranolol (PPN) nanohybrid, and evaluate whether the prepared nanocomposite beads could potentially be used as oral drug delivery systems. PPN-as a model drug-was intercalated into the interlayer space of Mt clay mineral via the ion exchange procedure. The resultant nanohybrid (Mt-PPN) was applied to fabricate nanocomposite hydrogel beads by association with carboxymethyl cellulose. The characterization of test samples was performed using different techniques: X-Ray Diffraction (XRD), IR spectroscopy (FT-IR), thermal gravity analysis (TGA), and scanning electron microscopy (SEM). The drug encapsulation efficiency was evaluated by UV-vis spectroscopy, and was found to be high for Mt/CMC beads. In vitro drug release test was performed in the simulated gastrointestinal conditions to evaluate the efficiency of Mt-PPN/CMC nanocomposite beads as a controlled-release drug carrier. The drug release profiles indicated that the Mt-PPN/CMC nanocomposite beads had high stability against stomach acid and a sustained- and controlled-release profile for PPN under the simulated intestinal conditions. Copyright © 2018 Elsevier B.V. All rights reserved.
Artocarpus heterophyllus L. seed starch-blended gellan gum mucoadhesive beads of metformin HCl.
Nayak, Amit Kumar; Pal, Dilipkumar; Santra, Kousik
2014-04-01
Jackfruit (Artocarpus heterophyllus Lam., family: Moraceae) seed starch (JFSS)-gellan gum (GG) mucoadhesive beads containing metformin HCl were developed through ionotropic gelation technique. The effect of GG to JFSS ratio and CaCl2 concentration on the drug encapsulation efficiency (DEE, %) and cumulative drug release at 10h (R10h, %) was optimized and analyzed using response surface methodology based on 3(2) factorial design. The optimized JFSS-GG beads containing metformin HCl showed DEE of 92.67±4.46%, R10h of 61.30±2.37%, and mean diameter of 1.67±0.27 mm. The optimized beads showed pH-dependent swelling and mucoadhesivity with the goat intestinal mucosa. The in vitro drug release from all these JFSS-GG beads containing metformin HCl was followed zero-order pattern (R(2)=0.9907-0.9975) with super case-II transport mechanism over a period of 10 h. The beads were also characterized by SEM and FTIR. The optimized JFSS-GG beads containing metformin HCl exhibited significant hypoglycemic effect in alloxan-induced diabetic rats over prolonged period after oral administration. Copyright © 2014 Elsevier B.V. All rights reserved.
Lassabe, Gabriel; Kramer, Karl; Hammock, Bruce D; González-Sapienza, Gualberto; González-Techera, Andrés
2018-05-15
Our group has previously developed immunoassays for noncompetitive detection of small molecules based on the use of phage borne anti-immunocomplex peptides. Recently, we substituted the phage particles by biotinylated synthetic anti-immunocomplex peptides complexed with streptavidin and named these constructs nanopeptamers. In this work, we report the results of combining AlphaLisa, a commercial luminescent oxygen channeling bead system, with nanopeptamers for the development of a noncompetitive homogeneous assay for the detection of small molecules. The signal generation of AlphaLisa assays relies on acceptor-donor bead proximity induced by the presence of the analyte (a macromolecule) simultaneously bound by antibodies immobilized on the surface of these beads. In the developed assay, termed as nanoAlphaLisa, bead proximity is sustained by the presence of a small model molecule (atrazine, MW = 215) using an antiatrazine antibody captured on the acceptor bead and an atrazine nanopeptamer on the donor bead. Atrazine is one of the most used pesticides worldwide, and its monitoring in water has relevant human health implications. NanoAlphaLisa allowed the homogeneous detection of atrazine down to 0.3 ng/mL in undiluted water samples in 1 h, which is 10-fold below the accepted limit in drinking water. NanoAlphaLisa has the intrinsic advantages for automation and high-throughput, simple, and fast homogeneous detection of target analytes that AlphaLisa assay provides.
Karlsson, Rose-Marie Pernilla; Larsson, Per Tomas; Yu, Shun; Pendergraph, Samuel Allen; Pettersson, Torbjörn; Hellwig, Johannes; Wågberg, Lars
2018-06-01
Macroscopic beads of water-based gels consisting of uncharged and partially charged β-(1,4)-d-glucan polymers were developed to be used as a novel model material for studying the water induced swelling of the delignified plant fiber walls. The gel beads were prepared by drop-wise precipitation of solutions of dissolving grade fibers carboxymethylated to different degrees. The internal structure was analyzed using Solid State Cross-Polarization Magic Angle Spinning Carbon-13 Nuclear Magnetic Resonance and Small Angle X-ray Scattering showing that the internal structure could be considered a homogeneous, non-crystalline and molecularly dispersed polymer network. When beads with different charge densities were equilibrated with aqueous solutions of different ionic strengths and/or pH, the change in water uptake followed the trends expected for weak polyelectrolyte gels and the trends found for cellulose-rich fibers. When dried and subsequently immersed in water the beads also showed an irreversible loss of swelling depending on the charge and type of counter-ion which is commonly also found for cellulose-rich fibers. Taken all these results together it is clear that the model cellulose-based beads constitute an excellent tool for studying the fundamentals of swelling of cellulose rich plant fibers, aiding in the elucidation of the different molecular and supramolecular contributions to the swelling. Copyright © 2018 Elsevier Inc. All rights reserved.
Hu, Lei; Zuo, Peng; Ye, Bang-Ce
2010-10-01
An automated multicomponent mesofluidic system (MCMS) based on biorecognitions carried out on meso-scale glass beads in polydimethylsiloxane (PDMS) channels was developed. The constructed MCMS consisted of five modules: a bead introduction module, a bioreaction module, a solution handling module, a liquid driving module, and a signal collection module. The integration of these modules enables the assay to be automated and reduces it to a one-step protocol. The MCMS has successfully been applied toward the detection of veterinary drug residues in animal-derived foods. The drug antigen-coated beads (varphi250 microm) were arrayed in the PDMS channels (varphi300 microm). The competitive immunoassay was then carried out on the surface of the glass beads. After washing, the Cy3-labeled secondary antibody was introduced to probe the antigen-antibody complex anchored to the beads. The fluorescence intensity of each bead was measured and used to determine the residual drug concentration. The MCMS is highly sensitive, with its detection limits ranging from 0.02 (salbutamol) to 3.5 microg/L (sulfamethazine), and has a short assay time of 45 min or less. The experimental results demonstrate that the MCMS proves to be an economic, efficient, and sensitive platform for multicomponent detection of compound residues for contamination in foods or the environment. Copyright 2010 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Nokes, Jolie McLane
Superhydrophobic (SH) surfaces are desirable because of their unique anti-wetting behavior. Fluid prefers to bead up (contact angle >150°) and roll off (contact angle hysteresis <10°) a SH surface because micro- and nanostructure features trap air pockets. Fluid only adheres to the peaks of the structures, causing minimal adhesion to the surface. Here, shrink-induced SH plastics are fabricated for a plethora of applications, including antibacterial applications, enhanced point-of-care (POC) detection, and reduced blood coagulation. Additionally, these purely structural SH surfaces are achieved in a roll-to-roll (R2R) platform for scalable manufacturing. Because their self-cleaning and water resistant properties, structurally modified SH surfaces prohibit bacterial growth and obviate bacterial chemical resistance. Antibacterial properties are demonstrated in a variety of SH plastics by preventing gram-negative Escherichia coli (E. coli) bacterial growth >150x compared to flat when fluid is rinsed and >20x without rinsing. Therefore, a robust and stable means to prevent bacteria growth is possible. Next, protein in urine is detected using a simple colorimetric output by evaporating droplets on a SH surface. Contrary to evaporation on a flat surface, evaporation on a SH surface allows fluid to dramatically concentrate because the weak adhesion constantly decreases the footprint area. On a SH surface, molecules in solution are confined to a footprint area 8.5x smaller than the original. By concentrating molecules, greater than 160x improvements in detection sensitivity are achieved compared to controls. Utility is demonstrated by detecting protein in urine in the pre-eclampsia range (150-300microgmL -1) for pregnant women. Further, SH surfaces repel bodily fluids including blood, urine, and saliva. Importantly, the surfaces minimize blood adhesion, leading to reduced blood coagulation without the need for anticoagulants. SH surfaces have >4200x and >28x reduction of blood residue area and volume compared to the non-structured controls of the same material. In addition, blood clotting area is reduced >5x using whole blood directly from the patient. In this study, biocompatible SH surfaces are achieved using commodity shrink-wrap film and are scaled up for R2R manufacturing. The purely structural modification negates complex and expensive post processing, and SH features are achieved in commercially-available and FDA-approved plastics.
Zhou, Xi; Xu, Huihua; Cheng, Jiyi; Zhao, Ni; Chen, Shih-Chi
2015-01-01
A continuous roll-to-roll microcontact printing (MCP) platform promises large-area nanoscale patterning with significantly improved throughput and a great variety of applications, e.g. precision patterning of metals, bio-molecules, colloidal nanocrystals, etc. Compared with nanoimprint lithography, MCP does not require a thermal imprinting step (which limits the speed and material choices), but instead, extreme precision with multi-axis positioning and misalignment correction capabilities for large area adaptation. In this work, we exploit a flexure-based mechanism that enables continuous MCP with 500 nm precision and 0.05 N force control. The fully automated roll-to-roll platform is coupled with a new backfilling MCP chemistry optimized for high-speed patterning of gold and silver. Gratings of 300, 400, 600 nm line-width at various locations on a 4-inch plastic substrate are fabricated at a speed of 60 cm/min. Our work represents the first example of roll-to-roll MCP with high reproducibility, wafer scale production capability at nanometer resolution. The precision roll-to-roll platform can be readily applied to other material systems. PMID:26037147
Spread prediction model of continuous steel tube based on BP neural network
NASA Astrophysics Data System (ADS)
Zhai, Jian-wei; Yu, Hui; Zou, Hai-bei; Wang, San-zhong; Liu, Li-gang
2017-07-01
According to the geometric pass of roll and technological parameters of three-roller continuous mandrel rolling mill in a factory, a finite element model is established to simulate the continuous rolling process of seamless steel tube, and the reliability of finite element model is verified by comparing with the simulation results and actual results of rolling force, wall thickness and outer diameter of the tube. The effect of roller reduction, roller rotation speed and blooming temperature on the spread rule is studied. Based on BP(Back Propagation) neural network technology, a spread prediction model of continuous rolling tube is established for training wall thickness coefficient and spread coefficient of the continuous rolling tube, and the rapid and accurate prediction of continuous rolling tube size is realized.
Mechanics of biomimetic systems propelled by actin comet tails
NASA Astrophysics Data System (ADS)
Kang, Hyeran; Tambe, Dhananjay; Shenoy, Vivek; Tang, Jay
2009-03-01
The motility of intracellular bacterial pathogens such as Listeria monocytogenes is driven by filamentous actin comet tails in a variety of trajectories. Here, we present the in vitro study on the actin-based movements using spherical beads of different sizes coated with VCA protein, a partial domain of N-Wasp, in platelet extracts. Long term two-dimensional trajectories of the spherical beads motility show characteristic difference than those observed for bacteria, which have both elongated shape and asymmetric expression of the polymerization inducing enzyme. The trajectories also vary sensitively with the bead size and shape. These results provide a useful test to our new analytical model including the rotation of the bead relative to the tail.
Wilson, Kris; Mole, Damian J; Homer, Natalie Z M; Iredale, John P; Auer, Manfred; Webster, Scott P
2015-02-01
Human kynurenine 3-monooxygenase (KMO) is emerging as an important drug target enzyme in a number of inflammatory and neurodegenerative disease states. Recombinant protein production of KMO, and therefore discovery of KMO ligands, is challenging due to a large membrane targeting domain at the C-terminus of the enzyme that causes stability, solubility, and purification difficulties. The purpose of our investigation was to develop a suitable screening method for targeting human KMO and other similarly challenging drug targets. Here, we report the development of a magnetic bead-based binding assay using mass spectrometry detection for human KMO protein. The assay incorporates isolation of FLAG-tagged KMO enzyme on protein A magnetic beads. The protein-bound beads are incubated with potential binding compounds before specific cleavage of the protein-compound complexes from the beads. Mass spectrometry analysis is used to identify the compounds that demonstrate specific binding affinity for the target protein. The technique was validated using known inhibitors of KMO. This assay is a robust alternative to traditional ligand-binding assays for challenging protein targets, and it overcomes specific difficulties associated with isolating human KMO. © 2014 Society for Laboratory Automation and Screening.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-17
... beads, 1 bone bead, 2 fragments of animal bone, and 1 leather/cloth fragment. Based on examination, the burial dates to between 1869 and 1890. The skeleton was determined to be Native American based on... located in the bed of a ravine and covered with large flat stones. The archaeological evidence, including...
NASA Astrophysics Data System (ADS)
Overhagen, Christian; Mauk, Paul Josef
2018-05-01
For flat rolled products, the thickness profile in the transversal direction is one of the most important product properties. For further processing, a defined crown of the product is necessary. In the rolling process, several mechanical and thermal influences interact with each other to form the strip shape at the roll gap exit. In the present analysis, a process model for rolling of strip and sheet is presented. The core feature of the process model is a two-dimensional stress distribution model based on von Karman's differential equation. Sub models for the mechanical influences of work roll flattening as well as work and backup roll deflection and the thermal influence of work roll expansion have been developed or extended. The two-dimensional stress distribution serves as an input parameter for the roll deformation models. For work roll flattening, a three-dimensional model based on the Boussinesq problem is adopted, while the work and backup roll deflection, including contact flattening is calculated by means of finite beam elements. The thermal work roll crown is calculated with help of an axisymmetric numerical solution of the heat equation for the work roll, considering azimuthal averaging for the boundary conditions at the work roll surface. Results are presented for hot rolling of a strip in a seven-stand finishing train of a hot strip mill, showing the calculated evolution of the strip profile. A variation of the strip profile from the first to the 20th rolled strip is shown. This variation is addressed to the progressive increase of work roll temperature during the first 20 strips. It is shown that a CVC® system can lead to improvements in strip profile and therefore flatness.
Rasoulzadehzali, Monireh; Namazi, Hassan
2018-04-27
The present project describes the facile preparation of novel pH-sensitive bio-nanocomposite hydrogel beads based on chitosan (CH) and GO-Ag nanohybrid particles for controlled release of anti-cancer drugs such as doxorubicin (DOX). The loading efficiency of doxorubicin into test beads was measured via UV-vis spectroscopy analysis and was found to be high. The formation of silver nanoparticles on the GO sheets and structural characteristics were evaluated via FT-IR, TEM, XRD, and SEM techniques. In addition, the antibacterial activity, swelling and drug release profiles of prepared nanocomposite beads were evaluated. Also, in vitro drug release test was performed in order to investigate the efficiency of CH/GO-Ag nanocomposite hydrogel beads as a drug carrier for controlled release of anti-cancer drugs such as doxorubicin (DOX). A more sustained and controlled drug release profile was observed for CH/GO-Ag nanocomposite hydrogel beads that enhanced by increasing the GO-Ag nanohybrid particles content. Copyright © 2018 Elsevier B.V. All rights reserved.
Quantum dots encoded Au coated polystyrene bead arranged micro-channel for multiplex arrays.
Cao, Yuan-Cheng; Wang, Zhan; Yang, Runyu; Zou, Linling; Zhou, Zhen; Mi, Tie; Shi, Hong
2016-01-01
This paper describes a promising micro-channel multiplex immunoassay method based on the quantum dots encoded beads which requires micro-volume sample. Briefly, Au nanoparticles coated polystyrene (PS) beads were prepared and Quantum dots (QDs) were employed to encode 4 types of the PS beads by different emission wavelength QDs and various intensities. Different coding types of the beads were immobilized with different antibodies on the surface and BSA was used to block the unsatisfied sites. The antibody linked beads were then arranged in the 150 µm diameter optical capillary where the specific reactions took place before the detections. Results showed that the antibody on the Au coated surface maintains the bioactivity for the immunoreactions. Using this system, the fluorescent intensity was linear with analyte concentration in the range of 1×10(-7)-1×10(-5) mg/mL (RSD<5%, 4 repeats) and the lower detection limit reached 5×10(-8) mg/mL. It was proved to be a promising approach for the future miniaturization analytical devices. Copyright © 2015 Elsevier B.V. All rights reserved.
Characterization of granular collapse onto hard substrates by acoustic emissions
NASA Astrophysics Data System (ADS)
Farin, Maxime; Mangeney, Anne; Toussaint, Renaud; De Rosny, Julien
2013-04-01
Brittle deformation in granular porous media can generate gravitational instabilities such as debris flows and rock avalanches. These phenomena constitute a major natural hazard for the population in mountainous, volcanic and coastal areas but their direct observation on the field is very dangerous. Recent studies showed that gravitational instabilities can be detected and characterized (volume, duration,...) thanks to the seismic signal they generate. In an avalanche, individual block bouncing and rolling on the ground are expected to generated signals of higher frequencies than the main flow spreading. The identification of the time/frequency signature of individual blocks in the recorded signal remains however difficult. Laboratory experiments were conducted to investigate the acoustic signature of diverse simple sources corresponding to grains falling over thin plates of plexiglas and rock blocks. The elastic energy emitted by a single bouncing steel bead into the support was first quantitatively estimated and compared to the potential energy of fall and to the potential energy change during the shock. Next, we consider the collapse of granular columns made of steel spherical beads onto hard substrates. Initially, these columns were held by a magnetic field allowing to suppress suddenly the cohesion between the beads, and thus to minimize friction effects that would arise from side walls. We varied systematically the column volume, the column aspect ratio (height over length) and the grain size. This is shown to affect the signal envelope and frequency content. In the experiments, two types of acoustic sensors were used to record the signals in a wide frequency range: accelerometers (1 Hz to 56 kHz) and piezoelectric sensors (100 kHz to 1 MHz). The experiments were also monitored optically using fast cameras. We developed a technique to use quantitatively both types of sensors to evaluate the elastic energy emitted by the sources. Eventually, we looked at what types of features in the signal are affected by individual shocks or by the large scale geometry of the avalanche.
Characterization of blocks impacts from elastic waves: insights from laboratory experiments
NASA Astrophysics Data System (ADS)
Farin, M.; Mangeney, A.; Toussaint, R.; De Rosny, J.; Shapiro, N.
2013-12-01
Rockfalls, debris flows and rock avalanches constitute a major natural hazard for the population in mountainous, volcanic and coastal areas but their direct observation on the field is very dangerous. Recent studies showed that gravitational instabilities can be detected and characterized (volume, duration,...) thanks to the seismic signal they generate. In an avalanche, individual block bouncing and rolling on the ground are expected to generated signals of higher frequencies than the main flow spreading. The identification of the time/frequency signature of individual blocks in the recorded signal remains however difficult. Laboratory experiments were conducted to investigate the acoustic signature of diverse simple sources corresponding to grains falling over thin plates of plexiglas and rock blocks. The elastic energy emitted by a single bouncing steel bead into the support was first quantitatively estimated and compared to the potential energy of fall and to the potential energy change during the shock. Next, we consider the collapse of granular columns made of steel spherical beads onto hard substrates. Initially, these columns were held by a magnetic field allowing to suppress suddenly the cohesion between the beads, and thus to minimize friction effects that would arise from side walls. We varied systematically the column volume, the column aspect ratio (height over length) and the grain size. This is shown to affect the signal envelope and frequency content. In the experiments, two types of acoustic sensors were used to record the signals in a wide frequency range: accelerometers (1 Hz to 56 kHz) and piezoelectric sensors (100 kHz to 1 MHz). The experiments were also monitored optically using fast cameras. We developed a technique to use quantitatively both types of sensors to evaluate the elastic energy emitted by the sources. Eventually, we looked at what types of features in the signal are affected by individual shocks or by the large scale geometry of the avalanche.
Sorption Properties of Aerogel in Liquid Nitrogen
NASA Technical Reports Server (NTRS)
Johnson, Wesley L.
2006-01-01
Aerogel products are now available as insulation materials of the future. The Cryogenics Test Laboratory at the NASA Kennedy Space Center is developing aerogel-based thermal insulation systems for space launch applications. Aerogel beads (Cabot Nanogel ) and aerogel blankets (Aspen Aerogels Spaceloft ) have outstanding ambient pressure thermal performance that makes them useful for applications where sealing is not possible. Aerogel beads are open-celled silicone dioxide and have tiny pores that run throughout the body of the bead. It has also recently been discovered that aerogel beads can be used as a filtering device for aqueous compounds at room temperature. With their hydrophobic covering, the beads absorb any non-polar substance and they can be chemically altered to absorb hot gases. The combination of the absorption and cryogenic insulating properties of aerogel beads have never been studied together. For future cryogenic insulation applications, it is crucial to know how the beads react while immersed in cryogenic liquids, most notably liquid nitrogen. Aerogel beads in loose-fill situation and aerogel blankets with composite fiber structure have been tested for absorption properties. Depending on the type of aerogel used and the preparation, preliminary results show the material can absorb up to seven times its own weight of liquid nitrogen, corresponding to a volumetric ratio of 0.70 (unit volume nitrogen per unit volume aerogel). These tests allow for an estimate on how much insulation is needed in certain situations. The theory behind the different processes of sorption is necessary for a better understanding of the preparation of the beads before they are used in an insulation system.
Phillips, Debra H; Sen Gupta, Bhaskar; Mukhopadhyay, Soumyadeep; Sen Gupta, Arup K
2018-06-01
The objective of the study was to carry-out batch tests to examine the effectiveness of Haix-Fe-Zr and Haix-Zr resin beads in the removal of As(III), As(V) and F - from groundwater with a similar geochemistry to a site where a community-based drinking water plant has been installed in West Bengal, India. The groundwater was spiked separately with ∼200 μg/L As(III) and As(V) and 5 mg/L F - . Haix-Zr resin beads were more effective than Haix-Fe-Zr resin beads in removing As(III) and As(V). Haix-Zr resin beads showed higher removal of As(V) compared to As(III). Haix-Zr resin beads removed As(V) below the WHO (10 μg/L) drinking water standards at 8.79 μg/L after 4 h of shaking, while As(III) was reduced to 7.72 μg/L after 8 h of shaking. Haix-Fe-Zr resin beads were more effective in removing F - from the spiked groundwater compared to Haix-Zr resin beads. Concentrations of F - decreased from 6.27 mg/L to 1.26 mg/L, which is below the WHO drinking water standards (1.5 mg/L) for F - , after 15 min of shaking with Haix-Fe-Zr resin beads. After 20 min of shaking in groundwater treated with Haix-Zr resin beads, F - concentrations decreased from 6.27 mg/L to 1.43 mg/L. In the removal of As(III), As(V), and F - from the groundwater, Haix-Fe-Zr and Haix-Zr resin beads fit the parabolic diffusion equation (PDE) suggesting that adsorption of these contaminants was consistent with inter-particle diffusion. Copyright © 2018 Elsevier Ltd. All rights reserved.
Bluemel, Christina; Cramer, Andreas; Grossmann, Christoph; Kajdi, Georg W; Malzahn, Uwe; Lamp, Nora; Langen, Heinz-Jakob; Schmid, Jan; Buck, Andreas K; Grimminger, Hanns-Jörg; Herrmann, Ken
2015-10-01
To prospectively evaluate the feasibility of 3-D radioguided occult lesion localization (iROLL) and to compare iROLL with wire-guided localization (WGL) in patients with early-stage breast cancer undergoing breast-conserving surgery and sentinel lymph node biopsy (SLNB). WGL (standard procedure) and iROLL in combination with SLNB were performed in 31 women (mean age 65.1 ± 11.2 years) with early-stage breast cancer and clinically negative axillae. Patient comfort in respect of both methods was assessed using a ten point scale. SLNB and iROLL were guided by freehand SPECT (fhSPECT). The results of the novel 3-D image-based method were compared with those of WGL, ultrasound-based lesion localization, and histopathology. iROLL successfully detected the malignant primary and at least one sentinel lymph node in 97% of patients. In a single patient (3%), only iROLL, and not WGL, enabled lesion localization. The variability between fhSPECT and ultrasound-based depth localization of breast lesions was low (1.2 ± 1.4 mm). Clear margins were achieved in 81% of the patients; however, precise prediction of clear histopathological surgical margins was not feasible using iROLL. Patients rated iROLL as less painful than WGL with a pain score 0.8 ± 1.2 points (p < 0.01) lower than the score for iROLL. iROLL is a well-tolerated and feasible technique for localizing early-stage breast cancer in the course of breast-conserving surgery, and is a suitable replacement for WGL. As a single image-based procedure for localization of breast lesions and sentinel nodes, iROLL may improve the entire surgical procedure. However, no advantages of the image-guided procedure were found with regard to prediction of complete tumour resection.
Modeling Analyte Transport and Capture in Porous Bead Sensors
Chou, Jie; Lennart, Alexis; Wong, Jorge; Ali, Mehnaaz F.; Floriano, Pierre N.; Christodoulides, Nicolaos; Camp, James; McDevitt, John T.
2013-01-01
Porous agarose microbeads, with high surface to volume ratios and high binding densities, are attracting attention as highly sensitive, affordable sensor elements for a variety of high performance bioassays. While such polymer microspheres have been extensively studied and reported on previously and are now moving into real-world clinical practice, very little work has been completed to date to model the convection, diffusion, and binding kinetics of soluble reagents captured within such fibrous networks. Here, we report the development of a three-dimensional computational model and provide the initial evidence for its agreement with experimental outcomes derived from the capture and detection of representative protein and genetic biomolecules in 290μm porous beads. We compare this model to antibody-mediated capture of C-reactive protein and bovine serum albumin, along with hybridization of oligonucleotide sequences to DNA probes. These results suggest that due to the porous interior of the agarose bead, internal analyte transport is both diffusion- and convection-based, and regardless of the nature of analyte, the bead interiors reveal an interesting trickle of convection-driven internal flow. Based on this model, the internal to external flow rate ratio is found to be in the range of 1:3100 to 1:170 for beads with agarose concentration ranging from 0.5% to 8% for the sensor ensembles here studied. Further, both model and experimental evidence suggest that binding kinetics strongly affect analyte distribution of captured reagents within the beads. These findings reveal that high association constants create a steep moving boundary in which unbound analytes are held back at the periphery of the bead sensor. Low association constants create a more shallow moving boundary in which unbound analytes diffuse further into the bead before binding. These models agree with experimental evidence and thus serve as a new tool set for the study of bio-agent transport processes within a new class of medical microdevices. PMID:22250703
Milleret, Vincent; Bittermann, Anne Greet; Mayer, Dieter; Hall, Heike
2009-01-01
Many wounds heal slowly and are difficult to manage. Therefore Negative Pressure Wound Therapy (NPWT) was developed where polymer foams are applied and a defined negative pressure removes wound fluid, reduces bacterial burden and increases the formation of granulation tissue. Although NPWT is used successfully, its mechanisms are not well understood. In particular, different NPWT dressings were never compared. Here a poly-ester urethane Degrapol® (DP)-foam was produced and compared with commercially available dressings (polyurethane-based and polyvinyl-alcohol-based) in terms of apparent pore sizes, swelling and effective interconnectivity of foam pores. DP-foams contain relatively small interconnected pores; PU-foams showed large pore size and interconnectivity; whereas PVA-foams displayed heterogeneous and poorly interconnected pores. PVA-foams swelled by 40 %, whereas DP- and PU-foams remained almost without swelling. Effective interconnectivity was investigated by submitting fluorescent beads of 3, 20 and 45 μm diameter through the foams. DP- and PU-foams removed 70-90 % of all beads within 4 h, independent of the bead diameter or bead pre-adsorption with serum albumin. For PVA-foams albumin pre-adsorbed beads circulated longer, where 20 % of 3 μm and 10 % of 20 μm diameter beads circulated after 96 h. The studies indicate that efficient bead perfusion does not only depend on pore size and swelling capacity, but effective interconnectivity might also depend on chemical composition of the foam itself. In addition due to the efficient sieve-effect of the foams uptake of wound components in vivo might occur only for short time suggesting other mechanisms being decisive for success of NPWT.
Hirakawa, Koji; Katayama, Masaaki; Soh, Nobuaki; Nakano, Koji; Imato, Toshihiko
2006-01-01
A rapid and sensitive immunoassay for the determination of vitellogenin (Vg) is described. The method involves a sequential injection analysis (SIA) system equipped with an amperometric detector and a neodymium magnet. Magnetic beads, onto which an antigen (Vg) was immobilized, were used as a solid support in an immunoassay. The introduction, trapping and release of magnetic beads in an immunoreaction cell were controlled by means of the neodymium magnet and by adjusting the flow of the carrier solution. The immunoassay was based on an indirect competitive immunoreaction of an alkaline phosphatase (ALP) labeled anti-Vg monoclonal antibody between the fraction of Vg immobilized on the magnetic beads and Vg in the sample solution. The immobilization of Vg on the beads involved coupling an amino group moiety of Vg with the magnetic beads after activation of a carboxylate moiety on the surface of magnetic beads that had been coated with a polylactate film. The Vg-immobilized magnetic beads were introduced and trapped in the immunoreaction cell equipped with the neodymium magnet; a Vg sample solution containing an ALP labeled anti-Vg antibody at a constant concentration and a p-aminophenyl phosphate (PAPP) solution were sequentially introduced into the immunoreaction cell. The product of the enzyme reaction of PAPP with ALP on the antibody, paminophenol, was transported to an amperometric detector, the applied voltage of which was set at +0.2 V vs. an Ag/AgCl reference electrode. A sigmoid calibration curve was obtained when the logarithm of the concentration of Vg was plotted against the peak current of the amperometric detector using various concentrations of standard Vg sample solutions (0-500 ppb). The time required for the analysis is less than 15 min.
Xu, Weifeng; Jiang, Hao; Titsch, Craig; Haulenbeek, Jonathan R; Pillutla, Renuka C; Aubry, Anne-Françoise; DeSilva, Binodh S; Arnold, Mark E; Zeng, Jianing; Dodge, Robert W
2015-01-01
Biological therapeutics can induce an undesirable immune response resulting in the formation of anti-drug antibodies (ADA), including neutralizing antibodies (NAbs). Functional (usually cell-based) NAb assays are preferred to determine NAb presence in patient serum, but are often subject to interferences from numerous serum factors, such as growth factors and disease-related cytokines. Many functional cell-based NAb assays are essentially drug concentration assays that imply the presence of NAbs by the detection of small changes in functional drug concentration. Any drug contained in the test sample will increase the total amount of drug in the assay, thus reducing the sensitivity of NAb detection. Biotin-drug Extraction with Acid Dissociation (BEAD) has been successfully applied to extract ADA, thereby removing drug and other interfering factors from human serum samples. However, to date there has been no report to estimate the residual drug level after BEAD treatment when the drug itself is a human monoclonal antibody; mainly due to the limitation of traditional ligand-binding assays. Here we describe a universal BEAD optimization procedure for human monoclonal antibody (mAb) drugs by using a LC-MS/MS method to simultaneously measure drug (a mutant human IgG4), NAb positive control (a mouse IgG), and endogenous human IgGs as an indicator of nonspecific carry-over in the BEAD eluate. This is the first report demonstrating that residual human mAb drug level in clinical sample can be measured after BEAD pre-treatment, which is critical for further BEAD procedure optimization and downstream immunogenicity testing. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Xie, Xing; Bahnemann, Janina; Wang, Siwen; Yang, Yang; Hoffmann, Michael R.
2016-02-01
Detection and quantification of pathogens in water is critical for the protection of human health and for drinking water safety and security. When the pathogen concentrations are low, large sample volumes (several liters) are needed to achieve reliable quantitative results. However, most microbial identification methods utilize relatively small sample volumes. As a consequence, a concentration step is often required to detect pathogens in natural waters. Herein, we introduce a novel water sample concentration method based on superabsorbent polymer (SAP) beads. When SAP beads swell with water, small molecules can be sorbed within the beads, but larger particles are excluded and, thus, concentrated in the residual non-sorbed water. To illustrate this approach, millimeter-sized poly(acrylamide-co-itaconic acid) (P(AM-co-IA)) beads are synthesized and successfully applied to concentrate water samples containing two model microorganisms: Escherichia coli and bacteriophage MS2. Experimental results indicate that the size of the water channel within water swollen P(AM-co-IA) hydrogel beads is on the order of several nanometers. The millimeter size coupled with a negative surface charge of the beads are shown to be critical in order to achieve high levels of concentration. This new concentration procedure is very fast, effective, scalable, and low-cost with no need for complex instrumentation.
Xie, Xing; Bahnemann, Janina; Wang, Siwen; Yang, Yang; Hoffmann, Michael R
2016-02-15
Detection and quantification of pathogens in water is critical for the protection of human health and for drinking water safety and security. When the pathogen concentrations are low, large sample volumes (several liters) are needed to achieve reliable quantitative results. However, most microbial identification methods utilize relatively small sample volumes. As a consequence, a concentration step is often required to detect pathogens in natural waters. Herein, we introduce a novel water sample concentration method based on superabsorbent polymer (SAP) beads. When SAP beads swell with water, small molecules can be sorbed within the beads, but larger particles are excluded and, thus, concentrated in the residual non-sorbed water. To illustrate this approach, millimeter-sized poly(acrylamide-co-itaconic acid) (P(AM-co-IA)) beads are synthesized and successfully applied to concentrate water samples containing two model microorganisms: Escherichia coli and bacteriophage MS2. Experimental results indicate that the size of the water channel within water swollen P(AM-co-IA) hydrogel beads is on the order of several nanometers. The millimeter size coupled with a negative surface charge of the beads are shown to be critical in order to achieve high levels of concentration. This new concentration procedure is very fast, effective, scalable, and low-cost with no need for complex instrumentation.
Xie, Xing; Bahnemann, Janina; Wang, Siwen; Yang, Yang; Hoffmann, Michael R.
2016-01-01
Detection and quantification of pathogens in water is critical for the protection of human health and for drinking water safety and security. When the pathogen concentrations are low, large sample volumes (several liters) are needed to achieve reliable quantitative results. However, most microbial identification methods utilize relatively small sample volumes. As a consequence, a concentration step is often required to detect pathogens in natural waters. Herein, we introduce a novel water sample concentration method based on superabsorbent polymer (SAP) beads. When SAP beads swell with water, small molecules can be sorbed within the beads, but larger particles are excluded and, thus, concentrated in the residual non-sorbed water. To illustrate this approach, millimeter-sized poly(acrylamide-co-itaconic acid) (P(AM-co-IA)) beads are synthesized and successfully applied to concentrate water samples containing two model microorganisms: Escherichia coli and bacteriophage MS2. Experimental results indicate that the size of the water channel within water swollen P(AM-co-IA) hydrogel beads is on the order of several nanometers. The millimeter size coupled with a negative surface charge of the beads are shown to be critical in order to achieve high levels of concentration. This new concentration procedure is very fast, effective, scalable, and low-cost with no need for complex instrumentation. PMID:26876979
Parallel manipulation of individual magnetic microbeads for lab-on-a-chip applications
NASA Astrophysics Data System (ADS)
Peng, Zhengchun
Many scientists and engineers are turning to lab-on-a-chip systems for faster and cheaper analysis of chemical reactions and biomolecular interactions. A common approach that facilitates the handling of reagents and biomolecules in these systems utilizes micro/nano beads as the solid carrier. Physical manipulation, such as assembly, transport, sorting, and tweezing, of beads on a chip represents an essential step for fully utilizing their potentials in a wide spectrum of bead-based analysis. Previous work demonstrated manipulation of either an ensemble of beads without individual control, or single beads but lacks the capability for parallel operation. Parallel manipulation of individual beads is required to meet the demand for high-throughput and location-specific analysis. In this work, we introduced two methods for parallel manipulation of individual magnetic microbeads, which can serve as effective lab-on-a-chip platforms and/or efficient analytic tools. The first method employs arrays of soft ferromagnetic patterns fabricated inside a microfluidic channel and subjected to an external magnetic field. We demonstrated that the system can be used to assemble individual beads (1-3 mum) from a flow of suspended beads into a regular array on the chip, hence improving the integrated electrochemical detection of biomolecules bound to the bead surface. By rotating the external field, the assembled microbeads can be remotely controlled with synchronized, high-speed circular motion around individual soft magnets on the chip. We employed this manipulation mode for efficient sample mixing in continuous microflow. Furthermore, we discovered a simple but effective way of transporting the microbeads on the chip by varying the strength of the local bias field within a revolution of the external field. In addition, selective transport of microbeads with different size was realized, providing a platform for effective on-chip sample separation and offering the potential for multiplexing capability. The second method integrates magnetic and dielectrophoretic manipulations of the same microbeads. The device combines tapered conducting wires and fingered electrodes to generate desirable magnetic and electric fields, respectively. By externally programming the magnetic attraction and dielectrophoretic repulsion forces, out-of-plane oscillation of the microbeads across the channel height was realized. This manipulation mode can facilitate the interaction between the beads with multiple layers of sample fluid inside the channel. We further demonstrated the tweezing of microbeads in liquid with high spatial resolutions, i.e., from submicrometer to nanometer range, by fine-tuning the net force from magnetic attraction and dielectrophoretic repulsion of the beads. The highresolution control of the out-of-plane motion of the microbeads led to the invention of massively parallel biomolecular tweezers. We believe the maturation of bead-based microtweezers will revolutionize the state-of-art tools currently used for single cell and single molecule studies.
Rolling friction—models and experiment. An undergraduate student project
NASA Astrophysics Data System (ADS)
Vozdecký, L.; Bartoš, J.; Musilová, J.
2014-09-01
In this paper the rolling friction (rolling resistance) model is studied theoretically and experimentally in undergraduate level fundamental general physics courses. Rolling motions of a cylinder along horizontal or inclined planes are studied by simple experiments, measuring deformations of the underlay or of the rolling body. The rolling of a hard cylinder on a soft underlay as well as of a soft cylinder on a hard underlay is studied. The experimental data are treated by the open source software Tracker, appropriate for use at the undergraduate level of physics. Interpretation of results is based on elementary considerations comprehensible to university students—beginners. It appears that the commonly accepted model of rolling resistance based on the idea of a warp (little bulge) on the underlay in front of the rolling body does not correspond with experimental results even for the soft underlay and hard rolling body. The alternative model of the rolling resistance is suggested in agreement with experiment and the corresponding concept of the rolling resistance coefficient is presented. In addition to the obtained results we can conclude that the project can be used as a task for students in practical exercises of fundamental general physics undergraduate courses. Projects of similar type effectively contribute to the development of the physical thinking of students.
The role of silica colloids on facilitated cesium transport through glass bead columns and modeling
NASA Astrophysics Data System (ADS)
Noell, Alan L.; Thompson, Joseph L.; Corapcioglu, M. Yavuz; Triay, Inés R.
1998-05-01
Groundwater colloids can act as a vector which enhances the migration of contaminants. While sorbed to mobile colloids, contaminants can be held in the aqueous phase which prevents them from interacting with immobile aquifer surfaces. In this study, an idealized laboratory set-up was used to examine the influence of amorphous silica colloids on the transport of cesium. Synthetic groundwater and saturated glass bead columns were used to minimize the presence of natural colloidal material. The columns were assembled in replicate, some packed with 150-210 μm glass bead and others packed with 355-420 μm glass beads. The colloids used in these experiments were 100 nm amorphous silica colloids from Nissan Chemical Company. In the absence of these colloids, the retardation factor for cesium was 8.0 in the 150-210 μm glass bead columns and 3.6 in the 355-420 μm glass bead columns. The influence of anthropogenic colloids was tested by injecting 0.09 pore volume slugs of an equilibrated suspension of cesium and colloids into the colloid-free columns. Although there was little noticeable facilitation in the smaller glass bead columns, there was a slight reduction in the retardation of cesium in the larger glass bead columns. This was attributed to cesium having less of a retention time in the larger glass bead columns. When cesium was injected into columns with a constant flux of colloids, the retardation of cesium was reduced by 14-32% in the 150-210 μm glass bead columns and by 38-51% in the 355-420 μm glass bead columns. A model based on Corapcioglu and Jiang (1993) [Corapcioglu, M.Y., Jiang, S., 1993. Colloid-facilitated groundwater contaminant transport, Water Resour. Res., 29 (7) 2215-2226] was compared with the experimental elution data. When equilibrium sorption expressions were used and the flux of colloids through the glass bead columns was constant, the colloid facilitated transport of cesium was able to be described using an effective retardation coefficient. Fully kinetic simulations, however, more accurately described the colloid facilitated transport of cesium.
SERS based immuno-microwell arrays for multiplexed detection of foodborne pathogenic bacteria
NASA Astrophysics Data System (ADS)
Sun, Jian; Hankus, Mikella E.; Cullum, Brian M.
2009-05-01
A novel surface enhanced Raman scattering (SERS)-based immuno-microwell array has been developed for multiplexed detection of foodborne pathogenic bacteria. The immuno-microwell array was prepared by immobilizing the optical addressable immunomagnetic beads (IMB) into the microwell array on one end of a fiber optic bundle. The IMBs, magnetic beads coated with specific antibody to specific bacteria, were used for immunomagnetic separation (IMS) of corresponding bacteria. The magnetic separation by the homemade magnetic separation system was evaluated in terms of the influences of several important parameters including the beads concentration, the sample volume and the separation time. IMS separation efficiency of the model bacteria E.coli O157:H7 was 63% in 3 minutes. The microwell array was fabricated on hydrofluoric acid etched end of a fiber optic bundle containing 30,000 fiber elements. After being coated with silver, the microwell array was used as a uniform SERS substrate with the relative standard deviation of the SERS enhancement across the microwell array < 2% and the enhancement factor as high as 2.18 x 107. The antibody modified microwell array was prepared for bacteria immobilization into the microwell array, which was characterized by a sandwich immunoassay. To demonstrate the potential of multiplexed SERS detection with the immuno-microwell array, the SERS spectra of different Raman dye labeled magnetic beads as well as mixtures were measured on the mircrowell array. In bead mixture, different beads were identified by the characteristic SERS bands of the corresponding Raman label.
Integration of minisolenoids in microfluidic device for magnetic bead-based immunoassays
NASA Astrophysics Data System (ADS)
Liu, Yan-Jun; Guo, Shi-Shang; Zhang, Zhi-Ling; Huang, Wei-Hua; Baigl, Damien; Chen, Yong; Pang, Dai-Wen
2007-10-01
Microfluidic devices with integrated minisolenoids, microvalves, and channels have been fabricated for fast and low-volume immunoassay using superparamagnetic beads and well-known surface bioengineering protocols. A magnetic reaction area can be formed in the microchannel, featuring a high surface-to-volume ratio and low diffusion distances for the reagents to the bead surface. Such a method has the obvious advantage of easy implementation at low cost. Moreover, the minisolenoids can be switched on or off and the magnetic field intensity can be tuned on demand. Fluids can be manipulated by controlling the integrated air-pressure-actuated microvalves. Accordingly, magnetic bead-based immunoassay, as a typical example of biochemical detection and analysis, has been successfully performed on the integrated microfluidic device automatically in longitudinal mode. With a sample consumption of 0.5μl and a total assay time of less than 15min, goat immunoglobulin G was detected and the method exhibited a detection limit of 4.7ng/ml.
Droplet microfluidics with magnetic beads: a new tool to investigate drug-protein interactions.
Lombardi, Dario; Dittrich, Petra S
2011-01-01
In this study, we give the proof of concept for a method to determine binding constants of compounds in solution. By implementing a technique based on magnetic beads with a microfluidic device for segmented flow generation, we demonstrate, for individual droplets, fast, robust and complete separation of the magnetic beads. The beads are used as a carrier for one binding partner and hence, any bound molecule is separated likewise, while the segmentation into small microdroplets ensures fast mixing, and opens future prospects for droplet-wise analysis of drug candidate libraries. We employ the method for characterization of drug-protein binding, here warfarin to human serum albumin. The approach lays the basis for a microfluidic droplet-based screening device aimed at investigating the interactions of drugs with specific targets including enzymes and cells. Furthermore, the continuous method could be employed for various applications, such as binding assays, kinetic studies, and single cell analysis, in which rapid removal of a reactive component is required.
Microfabricated magnetic traps for single molecule manipulation and measurement
NASA Astrophysics Data System (ADS)
Mirowski, Elizabeth; Moreland, John; Russek, Stephen; Donahue, Michael
2003-03-01
We have microfabricated patterned magnetic thin film traps for capturing superparamagnetic beads in microfluidic cells. The traps are based on a novel concept of using a magnetic force microsope cantilever for transporting magnetic beads from one trap to another along the surface of a thin silicon nitride membrane. We specifically address the optimal design criteria for the traps. In addition, we present measurements of the forces on a bead (attached to a functionalized cantilever tip) as a function of its position near the trap. Equivalent spring constants of various trap geometries are extrapolated from the force measurements. The force measurements will be compared to micromagnetic modelling of the system as well as the Brownian motion of the bead in the trap.
Perfect count: a novel approach for the single platform enumeration of absolute CD4+ T-lymphocytes.
Storie, Ian; Sawle, Alex; Goodfellow, Karen; Whitby, Liam; Granger, Vivian; Ward, Rosalie Y; Peel, Janet; Smart, Theresa; Reilly, John T; Barnett, David
2004-01-01
The derivation of reliable CD4(+) T lymphocyte counts is vital for the monitoring of disease progression and therapeutic effectiveness in HIV(+) individuals. Flow cytometry has emerged as the method of choice for CD4(+) T lymphocyte enumeration, with single-platform technology, coupled with reference counting beads, fast becoming the "gold standard." However, although single-platform, bead-based, sample acquisition requires the ratio of beads to cells to remain unchanged, there is no available method, until recently, to monitor this. Perfect Count beads have been developed to address this issue and to incorporate two bead populations, with different densities, to allow the detection of inadequate mixing. Comparison of the relative proportions of both beads with the manufacture's defined limits enables an internal QC check during sample acquisition. In this study, we have compared CD4(+) T lymphocyte counts, obtained from 104 HIV(+) patients, using TruCount beads with MultiSet software (defined as the predicated method) and the new Perfect Count beads, incorporating an in house sequential gating strategy. We have demonstrated an excellent degree of correlation between the predicate method and the Perfect Count system (r(2) = 0.9955; Bland Altman bias +27 CD4(+) T lymphocytes/microl). The Perfect Count system is a robust method for performing single platform absolute counts and has the added advantage of having internal QC checks. Such an approach enables the operator to identify potential problems during sample preparation, acquisition and analysis. Copyright 2003 Wiley-Liss, Inc.
Nweke, Mauryn C; Turmaine, Mark; McCartney, R Graham; Bracewell, Daniel G
2017-03-01
The drying of chromatography resins prior to scanning electron microscopy is critical to image resolution and hence understanding of the bead structure at sub-micron level. Achieving suitable drying conditions is especially important with agarose-based chromatography resins, as over-drying may cause artefact formation, bead damage and alterations to ultrastructural properties; and under-drying does not provide sufficient resolution for visualization under SEM. This paper compares and contrasts the effects of two drying techniques, critical point drying and freeze drying, on the morphology of two agarose based resins (MabSelect™/d w ≈85 µm and Capto™ Adhere/d w ≈75 µm) and provides a complete method for both. The results show that critical point drying provides better drying and subsequently clearer ultrastructural visualization of both resins under SEM. Under this protocol both the polymer fibers (thickness ≈20 nm) and the pore sizes (diameter ≈100 nm) are clearly visible. Freeze drying is shown to cause bead damage to both resins, but to different extents. MabSelect resin encounters extensive bead fragmentation, whilst Capto Adhere resin undergoes partial bead disintegration, corresponding with the greater extent of agarose crosslinking and strength of this resin. While freeze drying appears to be the less favorable option for ultrastructural visualization of chromatography resin, it should be noted that the extent of fracturing caused by the freeze drying process may provide some insight into the mechanical properties of agarose-based chromatography media. © 2017 The Authors. Biotechnology Journal published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Study of helicopterroll control effectiveness criteria
NASA Technical Reports Server (NTRS)
Heffley, Robert K.; Bourne, Simon M.; Curtiss, Howard C., Jr.; Hindson, William S.; Hess, Ronald A.
1986-01-01
A study of helicopter roll control effectiveness based on closed-loop task performance measurement and modeling is presented. Roll control critieria are based on task margin, the excess of vehicle task performance capability over the pilot's task performance demand. Appropriate helicopter roll axis dynamic models are defined for use with analytic models for task performance. Both near-earth and up-and-away large-amplitude maneuvering phases are considered. The results of in-flight and moving-base simulation measurements are presented to support the roll control effectiveness criteria offered. This Volume contains the theoretical analysis, simulation results and criteria development.
Bead-Based Microfluidic Sediment Analogues: Fabrication and Colloid Transport.
Guo, Yang; Huang, Jingwei; Xiao, Feng; Yin, Xiaolong; Chun, Jaehun; Um, Wooyong; Neeves, Keith B; Wu, Ning
2016-09-13
Mobile colloids can act as carriers for low-solubility contaminants in the environment. However, the dominant mechanism for this colloid-facilitated transport of chemicals is unclear. Therefore, we developed a bead-based microfluidic platform of sediment analogues and measured both single and population transport of model colloids. The porous medium is assembled through a bead-by-bead injection method. This approach has the versatility to build both electrostatically homogeneous and heterogeneous media at the pore scale. A T-junction at the exit also allowed for encapsulation and enumeration of colloids effluent at single particle resolution to give population dynamics. Tortuosity calculated from pore-scale trajectory analysis and its comparison with lattice Boltzmann simulations revealed that transport of colloids was influenced by the size exclusion effect. The porous media packed by positively and negatively charged beads into two layers showed distinctive colloidal particle retention and significant remobilization and re-adsorption of particles during water flushing. We demonstrated the potential of our method to fabricate porous media with surface heterogeneities at the pore scale. With both single and population dynamics measurement, our platform has the potential to connect pore-scale and macroscale colloid transport on a lab scale and to quantify the impact of grain surface heterogeneities that are natural in the subsurface environment.
Kaku, Hiroki; Inoue, Kanako; Muranaka, Yoshinori; Park, Pyoyun; Ikeda, Kenichi
2015-10-01
Uranyl salts are toxic and radioactive; therefore, several studies have been conducted to screen for substitutes of electron stains. In this regard, the contrast evaluation process is time consuming and the results obtained are inconsistent. In this study, we developed a novel contrast evaluation method using affinity beads and a backscattered electron image (BSEI), obtained using scanning electron microscopy. The contrast ratios of BSEI in each electron stain treatment were correlated with those of transmission electron microscopic images. The affinity beads bound to cell components independently. Protein and DNA samples were enhanced by image contrast treated with electron stains; however, this was not observed for sugars. Protein-conjugated beads showed an additive effect of image contrast when double-stained with lead. However, additive effect of double staining was not observed in DNA-conjugated beads. The varying chemical properties of oligopeptides showed differences in image contrast when treated with each electron stain. This BSEI-based evaluation method not only enables screening for alternate electron stains, but also helps analyze the underlying mechanisms of electron staining of cellular structures. © The Author 2015. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Remediation of heavy hydrocarbon impacted soil using biopolymer and polystyrene foam beads.
Wilton, Nicholas; Lyon-Marion, Bonnie A; Kamath, Roopa; McVey, Kevin; Pennell, Kurt D; Robbat, Albert
2018-05-05
A green chemistry solution is presented for the remediation of heavy hydrocarbon impacted soils. The two-phase recovery system relies on a plant-based biopolymer, which releases hydrocarbons from soil, and polystyrene foam beads, which recover them from solids and water. The efficiency of the process was demonstrated by comparisons with control experiments, where water, biopolymer, or beads alone yielded total petroleum hydrocarbon (TPH) reductions of 25%, 52%, and 58%, respectively, compared to 94% when 1.25 mL of 1% biopolymer and 15 mg beads per gram of soil were agitated for 30 min. Reductions in TPH content were substantial regardless of soil fraction, with removals of 97%, 91%, and 75% from sand, silt, and clay size fractions, respectively. Additionally, treatment efficiency was independent of carbon number, C 13 to C 43 , as demonstrated by reductions in both diesel fuel (C 13 -C 28 ) and residual-range organics (C 25 -C 43 ) of ∼90%. Compared to other published polymer- and surfactant-based treatment methods, this system requires less mobilizing agent, sorbent, and mixing time. The remediation process is both efficient and sustainable because the biopolymer is re-useable and sourced from renewable crops and polystyrene beads are obtained from recycled materials. Copyright © 2018 Elsevier B.V. All rights reserved.
Structural design approaches for creating fat droplet and starch granule mimetics.
McClements, David Julian; Chung, Cheryl; Wu, Bi-Cheng
2017-02-22
This article focuses on hydrogel-based strategies for creating reduced calorie foods with desirable physicochemical, sensory, and nutritional properties. Initially, the role of fat droplets and starch granules in foods is discussed, and then different methods for fabricating hydrogel beads are reviewed, including phase separation, antisolvent precipitation, injection, and emulsion template methods. Finally, the potential application of hydrogel beads as fat droplet and starch granule replacements is discussed. There is still a need for large-scale, high-throughout, and economical methods of fabricating hydrogel beads suitable for utilization within the food industry.
XRF inductive bead fusion and PLC based control system
NASA Astrophysics Data System (ADS)
Zhu, Jin-hong; Wang, Ying-jie; Shi, Hong-xin; Chen, Qing-ling; Chen, Yu-xi
2009-03-01
In order to ensure high-quality X-ray fluorescence spectrometry (XRF) analysis, an inductive bead fusion machine was developed. The prototype consists of super-audio IGBT induction heating power supply, rotation and swing mechanisms, and programmable logic controller (PLC). The system can realize sequence control, mechanical movement control, output current and temperature control. Experimental results show that the power supply can operate at an ideal quasi-resonant state, in which the expected power output and the required temperature can be achieved for rapid heating and the uniform formation of glass beads respectively.
Li, Xue-Bo; Wang, Qing-Shan; Feng, Yu; Ning, Shu-Hua; Miao, Yuan-Ying; Wang, Ye-Quan; Li, Hong-Wei
2014-11-01
Forensic DNA analysis of sexual assault evidence requires unambiguous differentiation of DNA profiles in mixed samples. To investigate the feasibility of magnetic bead-based separation of sperm from cell mixtures using a monoclonal antibody against MOSPD3 (motile sperm domain-containing protein 3), 30 cell samples were prepared by mixing 10(4) female buccal epithelial cells with sperm cells of varying densities (10(3), 10(4), or 10(5) cells/mL). Western blot and immunofluorescence assays showed that MOSPD3 was detectable on the membrane of sperm cells, but not in buccal epithelial cells. After biotinylated MOSPD3 antibody was incubated successively with the prepared cell mixtures and avidin-coated magnetic beads, microscopic observation revealed that each sperm cell was bound by two or more magnetic beads, in the head, neck, mid-piece, or flagellum. A full single-source short tandem repeat profile could be obtained in 80% of mixed samples containing 10(3) sperm cells/mL and in all samples containing ≥10(4) sperm cells/mL. For dried vaginal swab specimens, the rate of successful detection was 100% in both flocked and cotton swabs preserved for 1 day, 87.5% in flocked swabs and 40% in cotton swabs preserved for 3 days, and 40% in flocked swabs and 16.67% in cotton swabs preserved for 10 days. Our findings suggest that immunomagnetic bead-based separation is potentially a promising alternative to conventional methods for isolating sperm cells from mixed forensic samples.
Aptamer-Modified Magnetic Beads in Biosensing
Scheper, Thomas; Walter, Johanna-Gabriela
2018-01-01
Magnetic beads (MBs) are versatile tools for the purification, detection, and quantitative analysis of analytes from complex matrices. The superparamagnetic property of magnetic beads qualifies them for various analytical applications. To provide specificity, MBs can be decorated with ligands like aptamers, antibodies and peptides. In this context, aptamers are emerging as particular promising ligands due to a number of advantages. Most importantly, the chemical synthesis of aptamers enables straightforward and controlled chemical modification with linker molecules and dyes. Moreover, aptamers facilitate novel sensing strategies based on their oligonucleotide nature that cannot be realized with conventional peptide-based ligands. Due to these benefits, the combination of aptamers and MBs was already used in various analytical applications which are summarized in this article. PMID:29601533
Flow cytometry for enrichment and titration in massively parallel DNA sequencing
Sandberg, Julia; Ståhl, Patrik L.; Ahmadian, Afshin; Bjursell, Magnus K.; Lundeberg, Joakim
2009-01-01
Massively parallel DNA sequencing is revolutionizing genomics research throughout the life sciences. However, the reagent costs and labor requirements in current sequencing protocols are still substantial, although improvements are continuously being made. Here, we demonstrate an effective alternative to existing sample titration protocols for the Roche/454 system using Fluorescence Activated Cell Sorting (FACS) technology to determine the optimal DNA-to-bead ratio prior to large-scale sequencing. Our method, which eliminates the need for the costly pilot sequencing of samples during titration is capable of rapidly providing accurate DNA-to-bead ratios that are not biased by the quantification and sedimentation steps included in current protocols. Moreover, we demonstrate that FACS sorting can be readily used to highly enrich fractions of beads carrying template DNA, with near total elimination of empty beads and no downstream sacrifice of DNA sequencing quality. Automated enrichment by FACS is a simple approach to obtain pure samples for bead-based sequencing systems, and offers an efficient, low-cost alternative to current enrichment protocols. PMID:19304748
Biodegradable polymer based encapsulation of neem oil nanoemulsion for controlled release of Aza-A.
Jerobin, Jayakumar; Sureshkumar, R S; Anjali, C H; Mukherjee, Amitava; Chandrasekaran, Natarajan
2012-11-06
Azadirachtin a biological compound found in neem have medicinal and pesticidal properties. The present work reports on the encapsulation of neem oil nanoemulsion using sodium alginate (Na-Alg) by cross linking with glutaraldehyde. Starch and polyethylene glycol (PEG) were used as coating agents for smooth surface of beads. The SEM images showed beads exhibited nearly spherical shape. Swelling of the polymeric beads reduced with coating which in turn decreased the rate of release of Aza-A. Starch coated encapsulation of neem oil nanoemulsion was found to be effective when compared to PEG coated encapsulation of neem oil nanoemulsion. The release rate of neem Aza-A from the beads into an aqueous environment was analyzed by UV-visible spectrophotometer (214 nm). The encapsulated neem oil nanoemulsion have the potential for controlled release of Aza-A. Neem oil nanoemulsion encapsulated beads coated with PEG was found to be toxic in lymphocyte cells. Copyright © 2012 Elsevier Ltd. All rights reserved.
Micromagnetic Architectures for On-chip Microparticle Transport
NASA Astrophysics Data System (ADS)
Ouk, Minae; Beach, Geoffrey S. D.
2015-03-01
Superparamagnetic microbeads (SBs) are widely used to capture and manipulate biological entities in a fluid environment. Chip-based magnetic actuation provides a means to transport SBs in lab-on-a-chip devices. This is usually accomplished using the stray field from patterned magnetic microstructures, or domain walls in magnetic nanowires. Magnetic anti-dot arrays are particularly attractive due to the high-gradient stray fields from their partial domain wall structures. Here we use a self-assembly method to create magnetic anti-dot arrays in Co films, and describe the motion of SBs across the surface by a rotating field. We find a critical field-rotation frequency beyond which bead motion ceases and a critical threshold for both the in-plane and out-of-plane field components that must be exceeded for bead motion to occur. We show that these field thresholds are bead size dependent, and can thus be used to digitally separate magnetic beads in multi-bead populations. Hence these large-area structures can be used to combine long distance transport with novel functionalities.
Magneto-mechanical detection of nucleic acids and telomerase activity in cancer cells.
Weizmann, Yossi; Patolsky, Fernando; Lioubashevski, Oleg; Willner, Itamar
2004-02-04
The ultra-sensitive magneto-mechanical detection of DNA, single-base-mismatches in nucleic acids, and the assay of telomerase activity are accomplished by monitoring the magnetically induced deflection of a cantilever functionalized with magnetic beads associated with the biosensing interface. The analyzed M13phi DNA hybridized with the nucleic acid-functionalized magnetic beads is replicated in the presence of dNTPs that include biotin-labeled dUTP. The resulting beads are attached to an avidin-coated cantilever, and the modified cantilever is deflected by an external magnetic field. Similarly, telomerization of nucleic acid-modified magnetic beads in the presence of dNTPs, biotin-labeled dUTP, and telomerase from cancer cell extracts and the subsequent association of the magnetic beads to the cantilever surface results in the lever deflection by an external magnetic field. M13phi DNA is sensed with a sensitivity limit of 7.1 x 10(-20) M by the magneto-mechanical detection method.
Nanoparticle light scattering on interferometric surfaces
NASA Astrophysics Data System (ADS)
Hayrapetyan, K.; Arif, K. M.; Savran, C. A.; Nolte, D. D.
2011-03-01
We present a model based on Mie Surface Double Interaction (MSDI) to explore bead-based detection mechanisms using imaging and scanning. The application goal of this work is to explore the trade-offs between the sensitivity and throughput among various detection methods. Experimentally we use thermal oxide on silicon to establish and control surface interferometric conditions. Surface-captured gold beads are detected using Molecular Interferometric Imaging (MI2) and Spinning-Disc Interferometry (SDI).
Microelectrophoresis of a bilayer-coated silica bead in an optical trap: application to enzymology.
Galneder, R; Kahl, V; Arbuzova, A; Rebecchi, M; Rädler, J O; McLaughlin, S
2001-05-01
We describe an apparatus that combines microelectrophoresis and laser trap technologies to monitor the activity of phosphoinositide-specific phospholipase C-delta1 (PLC-delta) on a single bilayer-coated silica bead with a time resolution of approximately 1 s. A 1-microm-diameter bead was coated with a phospholipid bilayer composed of electrically neutral phosphatidylcholine (PC) and negatively charged phosphatidylinositol 4,5-bisphosphate (2% PIP2) and captured in a laser trap. When an AC field was applied (160 Hz, 20 V/cm), the electrophoretic force produced a displacement of the bead, Delta(x), from its equilibrium position in the trap; Delta(x), which was measured using a fast quadrant diode detector, is proportional to the zeta potential and thus to the number of PIP2 molecules on the outer leaflet (initially, approximately 10(5)). When a solution containing PLC-delta flows past the bead, the enzyme adsorbs to the surface and hydrolyzes PIP2 to form the neutral lipid diacylglycerol. We observed a nonexponential decay of PIP2 on the bead with time that is consistent with a model based on the known structural properties of PLC-delta.
Cheah, Joleen S; Yamada, Soichiro
2017-12-02
Protein-protein interactions are the molecular basis of cell signaling. Recently, proximity based biotin identification (BioID) has emerged as an alternative approach to traditional co-immunoprecipitation. In this protocol, a mutant biotin ligase promiscuously labels proximal binding partners with biotin, and resulting biotinylated proteins are purified using streptavidin conjugated beads. This approach does not require preservation of protein complexes in vitro, making it an ideal approach to identify transient or weak protein complexes. However, due to the high affinity bond between streptavidin and biotin, elution of biotinylated proteins from streptavidin conjugated beads requires harsh denaturing conditions, which are often incompatible with downstream processing. To effectively release biotinylated proteins bound to streptavidin conjugated beads, we designed a series of experiments to determine optimal binding and elution conditions. Interestingly, the concentrations of SDS and IGEPAL-CA630 during the incubation with streptavidin conjugated beads were the key to effective elution of biotinylated proteins using excess biotin and heating. This protocol provides an alternative method to isolate biotinylated proteins from streptavidin conjugated beads that is suitable for further downstream analysis. Copyright © 2017 Elsevier Inc. All rights reserved.
Lu, Chen; Zhao, Xiaodan; Kawamura, Ryo
2017-01-01
Frictional drag force on an object in Stokes flow follows a linear relationship with the velocity of translation and a translational drag coefficient. This drag coefficient is related to the size, shape, and orientation of the object. For rod-like objects, analytical solutions of the drag coefficients have been proposed based on three rough approximations of the rod geometry, namely the bead model, ellipsoid model, and cylinder model. These theories all agree that translational drag coefficients of rod-like objects are functions of the rod length and aspect ratio, but differ among one another on the correction factor terms in the equations. By tracking the displacement of the particles through stationary fluids of calibrated viscosity in magnetic tweezers setup, we experimentally measured the drag coefficients of micron-sized beads and their bead-chain formations with chain length of 2 to 27. We verified our methodology with analytical solutions of dimers of two touching beads, and compared our measured drag coefficient values of rod-like objects with theoretical calculations. Our comparison reveals several analytical solutions that used more appropriate approximation and derived formulae that agree with our measurement better. PMID:29145447
Kleinberger, Rachelle M; Burke, Nicholas A D; Dalnoki-Veress, Kari; Stöver, Harald D H
2013-10-01
Micropipette aspiration and confocal fluorescence microscopy were used to study the structure and mechanical properties of calcium alginate hydrogel beads (A beads), as well as A beads that were additionally coated with poly-L-lysine (P) and sodium alginate (A) to form, respectively, AP and APA hydrogels. A beads were found to continue curing for up to 500 h during storage in saline, due to residual calcium chloride carried over from the gelling bath. In subsequent saline washes, micropipette aspiration proved to be a sensitive indicator of gel weakening and calcium loss. Aspiration tests were used to compare capsule stiffness before and after citrate extraction of calcium. They showed that the initial gel strength is largely due to the calcium alginate gel cores, while the long term strength is solely due to the poly-L-lysine-alginate polyelectrolyte complex (PEC) shells. Confocal fluorescence microscopy showed that calcium chloride exposure after PLL deposition led to PLL redistribution into the hydrogel bead, resulting in thicker but more diffuse and weaker PEC shells. Adding a final alginate coating to form APA capsules did not significantly change the PEC membrane thickness and stiffness, but did speed the loss of calcium from the bead core. © 2013.
NASA Astrophysics Data System (ADS)
Akers, Caleb; Hale, Jacob
2014-11-01
It has been observed that non-coalescence between a droplet and pool of like fluid can be prolonged or inhibited by sustained relative motion between the two fluids. In this study, we quantitatively describe the motion of freely moving droplets that skirt across the surface of a still pool of like fluid. Droplets of different sizes and small Weber number were directed horizontally onto the pool surface. After stabilization of the droplet shape after impact, the droplets smoothly moved across the surface, slowing until coalescence. Using high-speed imaging, we recorded the droplet's trajectory from a top-down view as well as side views both slightly above and below the fluid surface. The droplets' speed is observed to decrease exponentially, with the smaller droplets slowing down at a greater rate. Droplets infused with neutral density micro beads showed that the droplet rolls along the surface of the pool. A qualitative model of this motion is presented.
An advanced dissymmetric rolling model for online regulation
NASA Astrophysics Data System (ADS)
Cao, Trong-Son
2017-10-01
Roll-bite model is employed to predict the rolling force, torque as well as to estimate the forward slip for preset or online regulation at industrial rolling mills. The rolling process is often dissymmetric in terms of work-rolls rotation speeds and diameters as well as the friction conditions at upper and lower contact surfaces between work-rolls and the strip. The roll-bite model thus must be able to account for these dissymmetries and in the same time has to be accurate and fast enough for online applications. In the present study, a new method, namely Adapted Discretization Slab Method (ADSM) is proposed to obtain a robust roll-bite model, which can take into account the aforementioned dissymmetries and has a very short response time, lower than one millisecond. This model is based on the slab method, with an adaptive discretization and a global Newton-Raphson procedure to improve the convergence speed. The model was validated by comparing with other dissymmetric models proposed in the literature, as well as Finite Element simulations and industrial pilot trials. Furthermore, back-calculation tool was also constructed for friction management for both offline and online applications. With very short CPU time, the ADSM-based model is thus attractive for all online applications, both for cold and hot rolling.
Gryshkov, Oleksandr; Pogozhykh, Denys; Hofmann, Nicola; Pogozhykh, Olena; Mueller, Thomas; Glasmacher, Birgit
2014-01-01
Alginate cell-based therapy requires further development focused on clinical application. To assess engraftment, risk of mutations and therapeutic benefit studies should be performed in an appropriate non-human primate model, such as the common marmoset (Callithrix jacchus). In this work we encapsulated amnion derived multipotent stromal cells (MSCs) from Callithrix jacchus in defined size alginate beads using a high voltage technique. Our results indicate that i) alginate-cell mixing procedure and cell concentration do not affect the diameter of alginate beads, ii) encapsulation of high cell numbers (up to 10×106 cells/ml) can be performed in alginate beads utilizing high voltage and iii) high voltage (15–30 kV) does not alter the viability, proliferation and differentiation capacity of MSCs post-encapsulation compared with alginate encapsulated cells produced by the traditional air-flow method. The consistent results were obtained over the period of 7 days of encapsulated MSCs culture and after cryopreservation utilizing a slow cooling procedure (1 K/min). The results of this work show that high voltage encapsulation can further be maximized to develop cell-based therapies with alginate beads in a non-human primate model towards human application. PMID:25259731
Earthquakes Promote Bacterial Genetic Exchange in Serpentinite Crevices
NASA Astrophysics Data System (ADS)
Naoto, Yoshida; Fujiura, Nori
2009-04-01
We report the results of our efforts to study the effects of seismic shaking on simulated biofilms within serpentinite fissures. A colloidal solution consisting of recipient bacterial cells (Pseudomonas sp. or Bacillus subtilis), donor plasmid DNA encoded for antibiotic resistance, and chrysotile (an acicular clay mineral that forms in crevices of serpentinite layers) were placed onto an elastic body made from gellan gum, which acted as the biofilm matrix. Silica beads, as rock analogues (i.e., chemically inert mechanical serpentinite), were placed on the gellan surface, which was coated with the colloidal solution. A rolling vibration similar to vibrations generated by earthquakes was applied, and the silica beads moved randomly across the surface of the gellan. This resulted in the recipient cells' acquiring plasmid DNA and thus becoming genetically transformed to demonstrate marked antibiotic resistance. Neither Pseudomonas sp. nor B. subtilis were transformed by plasmid DNA when chrysotile was substituted for by kaolinite or bentonite in the colloidal solution. Tough gellan (1.0%) promoted the introduction of plasmid DNA into Pseudomonas sp., but soft gellan (0.3%) had no such effect. Genetic transformation of bacteria on the surface of gellan by exposure to exogenous plasmid DNA required seismic shaking and exposure to the acicular clay mineral chrysotile. These experimental results suggest that bacterial genetic exchange readily occurs when biofilms that form in crevices of serpentinite are exposed to seismic shaking. Seismic activity may be a key factor in bacterial evolution along with the formation of biofilms within crevices of serpentinite.
Palmer, Antony L; Jafari, Shakardokht M; Mone, Ioanna; Muscat, Sarah
2017-10-01
kV radiotherapy treatment calculations are based on flat, homogenous, full-scatter reference conditions. However, clinical treatments often include surface irregularities and inhomogeneities, causing uncertainty. Therefore, confirmation of actual delivered doses in vivo is valuable. The current study evaluates, and implements, radiochromic film and micro silica bead TLD for in vivo kV dosimetry. The kV energy and dose response of EBT3 film and silica bead TLD was established and uncertainty budgets determined. In vivo dosimetry measurements were made for a consecutive series of 30 patients using the two dosimetry systems. Energy dependent calibration factors were required for both dosimetry systems. The standard uncertainty estimate for in vivo measurement with film was 1.7% and for beads was 1.5%. The mean measured dose was -2.1% for film and -2.6% for beads compared to prescription. Deviations up to -9% were found in cases of large surface irregularity, or with underlying air cavities or bone. Dose shielding by beads could be clinically relevant at low kV energies and superficial depths. Both film and beads may be used to provide in vivo verification of delivered doses in kV radiotherapy, particularly for complex situations that are not well represented by standard reference condition calculations. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Akama, Kenji; Shirai, Kentaro; Suzuki, Seigo
2016-07-19
Digital enzyme-linked immunosorbent assay (ELISA) is a single molecule counting technology and is one of the most sensitive immunoassay methods. The key aspect of this technology is to concentrate enzyme reaction products from a single target molecule in femtoliter droplets. This study presents a novel Digital ELISA that does not require droplets; instead, enzyme reaction products are concentrated using a tyramide signal amplification system. In our method, tyramide substrate reacts with horseradish peroxidase (HRP) labeled with an immunocomplex on beads, and the substrate is converted into short-lived radical intermediates. By adjusting the bead concentration in the HRP-tyramide reaction and conducting the reaction using freely moving beads, tyramide radicals are deposited only on beads labeled with HRP and there is no diffusion to other beads. Consequently, the fluorescence signal is localized on a portion of the beads, making it possible to count the number of labeled beads digitally. The performance of our method was demonstrated by detecting hepatitis B surface antigen with a limit of detection of 0.09 mIU/mL (139 aM) and a dynamic range of over 4 orders of magnitude. The obtained limit of detection represents a >20-fold higher sensitivity than conventional ELISA. Our method has potential applications in simple in vitro diagnostic systems for detecting ultralow concentrations of protein biomarkers.
Ha, Jiyeon; Engler, Cady R; Lee, Seung Jae
2008-07-01
Diffusion characteristics of chlorferon and diethylthiophosphate (DETP) in Ca-alginate gel beads were studied to assist in designing and operating bioreactor systems. Diffusion coefficients for chlorferon and DETP in Ca-alginate gel beads determined at conditions suitable for biodegradation studies were 2.70 x 10(-11) m(2)/s and 4.28 x 10(-11) m(2)/s, respectively. Diffusivities of chlorferon and DETP were influenced by several factors, including viscosity of the bulk solution, agitation speed, and the concentrations of diffusing substrate and immobilized cells. Diffusion coefficients increased with increasing agitation speed, probably due to poor mixing at low speed and some attrition of beads at high speeds. Diffusion coefficients also increased with decreasing substrate concentration. Increased cell concentration in the gel beads caused lower diffusivity. Theoretical models to predict diffusivities as a function of cell weight fraction overestimated the effective diffusivities for both chlorferon and DETP, but linear relations between effective diffusivity and cell weight fraction were derived from experimental data. Calcium-alginate gel beads with radii of 1.65-1.70 mm used in this study were not subject to diffusional limitations: external mass transfer resistances were negligible based on Biot number calculations and effectiveness factors indicated that internal mass transfer resistance was negligible. Therefore, the degradation rates of chlorferon and DETP inside Ca-alginate gel beads were reaction-limited. (c) 2007 Wiley Periodicals, Inc.
van Andel, Esther; de Bus, Ian; Tijhaar, Edwin J; Smulders, Maarten M J; Savelkoul, Huub F J; Zuilhof, Han
2017-11-08
Micron- and nano-sized particles are extensively used in various biomedical applications. However, their performance is often drastically hampered by the nonspecific adsorption of biomolecules, a process called biofouling, which can cause false-positive and false-negative outcomes in diagnostic tests. Although antifouling coatings have been extensively studied on flat surfaces, their use on micro- and nanoparticles remains largely unexplored, despite the widespread experimental (specifically, clinical) uncertainties that arise because of biofouling. Here, we describe the preparation of magnetic micron-sized beads coated with zwitterionic sulfobetaine polymer brushes that display strong antifouling characteristics. These coated beads can then be equipped with recognition elements of choice, to enable the specific binding of target molecules. First, we present a proof of principle with biotin-functionalized beads that are able to specifically bind fluorescently labeled streptavidin from a complex mixture of serum proteins. Moreover, we show the versatility of the method by demonstrating that it is also possible to functionalize the beads with mannose moieties to specifically bind the carbohydrate-binding protein concanavalin A. Flow cytometry was used to show that thus-modified beads only bind specifically targeted proteins, with minimal/near-zero nonspecific protein adsorption from other proteins that are present. These antifouling zwitterionic polymer-coated beads, therefore, provide a significant advancement for the many bead-based diagnostic and other biosensing applications that require stringent antifouling conditions.
2017-01-01
Micron- and nano-sized particles are extensively used in various biomedical applications. However, their performance is often drastically hampered by the nonspecific adsorption of biomolecules, a process called biofouling, which can cause false-positive and false-negative outcomes in diagnostic tests. Although antifouling coatings have been extensively studied on flat surfaces, their use on micro- and nanoparticles remains largely unexplored, despite the widespread experimental (specifically, clinical) uncertainties that arise because of biofouling. Here, we describe the preparation of magnetic micron-sized beads coated with zwitterionic sulfobetaine polymer brushes that display strong antifouling characteristics. These coated beads can then be equipped with recognition elements of choice, to enable the specific binding of target molecules. First, we present a proof of principle with biotin-functionalized beads that are able to specifically bind fluorescently labeled streptavidin from a complex mixture of serum proteins. Moreover, we show the versatility of the method by demonstrating that it is also possible to functionalize the beads with mannose moieties to specifically bind the carbohydrate-binding protein concanavalin A. Flow cytometry was used to show that thus-modified beads only bind specifically targeted proteins, with minimal/near-zero nonspecific protein adsorption from other proteins that are present. These antifouling zwitterionic polymer-coated beads, therefore, provide a significant advancement for the many bead-based diagnostic and other biosensing applications that require stringent antifouling conditions. PMID:29064669
Formation and maintenance of tubular membrane projections: experiments and numerical calculations.
Umeda, Tamiki; Inaba, Takehiko; Ishijima, Akihiko; Takiguchi, Kingo; Hotani, Hirokazu
2008-01-01
To study the mechanical properties of lipid membranes, we manipulated liposomes by using a system comprising polystyrene beads and laser tweezers, and measured the force required to transform their shapes. When two beads pushed the membrane from inside, spherical liposomes transformed into a lemon-shape. Then a discontinuous shape transformation occurred to form a membrane tube from either end of the liposomes, and the force dropped drastically. We analyzed these processes using a mathematical model based on the bending elasticity of the membranes. Numerical calculations showed that when the bead size was taken into account, the model reproduced both the liposomal shape transformation and the force-extension relation. This result suggests that the size of the beads is responsible for the existence of a force barrier for the tube formation.
Elemental analysis of bead samples using a laser-induced plasma at low pressure
NASA Astrophysics Data System (ADS)
Lie, Tjung Jie; Kurniawan, Koo Hendrik; Kurniawan, Davy P.; Pardede, Marincan; Suliyanti, Maria Margaretha; Khumaeni, Ali; Natiq, Shouny A.; Abdulmadjid, Syahrun Nur; Lee, Yong Inn; Kagawa, Kiichiro; Idris, Nasrullah; Tjia, May On
2006-01-01
An Nd:YAG laser (1064 nm, 8 ns, 30 mJ) was focused on various types of fresh, fossilized white coral and giant shell samples, including samples of imitation shell and marble. Such samples are extremely important as material for preparing prayer beads that are extensively used in the Buddhist faith. The aim of this research was to develop a non-destructive method to distinguish original beads from their imitations by means of spectral measurements of the carbon, hydrogen, sodium and magnesium emission intensities and by measuring the hardness of the sample using the ratio between Ca (II) 396.8 nm and Ca (I) 422.6 nm. Based on these measurements, original fresh coral beads can be distinguished from any imitation made from hard wood. The same technique was also effective in distinguishing beads made of shell from its imitation. A spectral analysis of bead was also performed on a fossilized white coral sample and the result can be used to distinguish to some extent the fossilized white coral beads from any imitation made from marble. It was also found that the plasma plume should be generated at low ambient pressure to significantly improve the hydrogen and carbon emission intensity and also to avoid energy loss inside the crater during laser irradiation at atmospheric pressure. The results of this study confirm that operating the laser-induced plasma spectroscopy at reduced ambient pressure offers distinct advantage for bead analysis over the conventional laser-induced breakdown spectroscopy (LIBS) technique operated at atmospheric pressure.
Seamster, Pamela E; Loewenberg, Michael; Pascal, Jennifer; Chauviere, Arnaud; Gonzales, Aaron; Cristini, Vittorio; Bearer, Elaine L
2013-01-01
The kinesins have long been known to drive microtubule-based transport of sub-cellular components, yet the mechanisms of their attachment to cargo remain a mystery. Several different cargo-receptors have been proposed based on their in vitro binding affinities to kinesin-1. Only two of these—phosphatidyl inositol, a negatively charged lipid, and the carboxyl terminus of the amyloid precursor protein (APP-C), a trans-membrane protein—have been reported to mediate motility in living systems. A major question is how these many different cargo, receptors and motors interact to produce the complex choreography of vesicular transport within living cells. Here we describe an experimental assay that identifies cargo–motor receptors by their ability to recruit active motors and drive transport of exogenous cargo towards the synapse in living axons. Cargo is engineered by derivatizing the surface of polystyrene fluorescent nanospheres (100 nm diameter) with charged residues or with synthetic peptides derived from candidate motor receptor proteins, all designed to display a terminal COOH group. After injection into the squid giant axon, particle movements are imaged by laser-scanning confocal time-lapse microscopy. In this report we compare the motility of negatively charged beads with APP-C beads in the presence of glycine-conjugated non-motile beads using new strategies to measure bead movements. The ensuing quantitative analysis of time-lapse digital sequences reveals detailed information about bead movements: instantaneous and maximum velocities, run lengths, pause frequencies and pause durations. These measurements provide parameters for a mathematical model that predicts the spatiotemporal evolution of distribution of the two different types of bead cargo in the axon. The results reveal that negatively charged beads differ from APP-C beads in velocity and dispersion, and predict that at long time points APP-C will achieve greater progress towards the presynaptic terminal. The significance of this data and accompanying model pertains to the role transport plays in neuronal function, connectivity, and survival, and has implications in the pathogenesis of neurological disorders, such as Alzheimer’s, Huntington and Parkinson’s diseases. PMID:23011729
NASA Astrophysics Data System (ADS)
Seamster, Pamela E.; Loewenberg, Michael; Pascal, Jennifer; Chauviere, Arnaud; Gonzales, Aaron; Cristini, Vittorio; Bearer, Elaine L.
2012-10-01
The kinesins have long been known to drive microtubule-based transport of sub-cellular components, yet the mechanisms of their attachment to cargo remain a mystery. Several different cargo-receptors have been proposed based on their in vitro binding affinities to kinesin-1. Only two of these—phosphatidyl inositol, a negatively charged lipid, and the carboxyl terminus of the amyloid precursor protein (APP-C), a trans-membrane protein—have been reported to mediate motility in living systems. A major question is how these many different cargo, receptors and motors interact to produce the complex choreography of vesicular transport within living cells. Here we describe an experimental assay that identifies cargo-motor receptors by their ability to recruit active motors and drive transport of exogenous cargo towards the synapse in living axons. Cargo is engineered by derivatizing the surface of polystyrene fluorescent nanospheres (100 nm diameter) with charged residues or with synthetic peptides derived from candidate motor receptor proteins, all designed to display a terminal COOH group. After injection into the squid giant axon, particle movements are imaged by laser-scanning confocal time-lapse microscopy. In this report we compare the motility of negatively charged beads with APP-C beads in the presence of glycine-conjugated non-motile beads using new strategies to measure bead movements. The ensuing quantitative analysis of time-lapse digital sequences reveals detailed information about bead movements: instantaneous and maximum velocities, run lengths, pause frequencies and pause durations. These measurements provide parameters for a mathematical model that predicts the spatiotemporal evolution of distribution of the two different types of bead cargo in the axon. The results reveal that negatively charged beads differ from APP-C beads in velocity and dispersion, and predict that at long time points APP-C will achieve greater progress towards the presynaptic terminal. The significance of this data and accompanying model pertains to the role transport plays in neuronal function, connectivity, and survival, and has implications in the pathogenesis of neurological disorders, such as Alzheimer’s, Huntington and Parkinson's diseases.
Tait, Brian D.
2016-01-01
This review outlines the development of human leukocyte antigen (HLA) antibody detection assays and their use in organ transplantation in both antibody screening and crossmatching. The development of sensitive solid phase assays such as the enzyme-linked immunosorbent assay technique, and in particular the bead-based technology has revolutionized this field over the last 10–15 years. This revolution however has created a new paradigm in clinical decision making with respect to the detection of low level pretransplant HLA sensitization and its clinical relevance. The relative sensitivities of the assays used are discussed and the relevance of conflicting inter-assay results. Each assay has its advantages and disadvantages and these are discussed. Over the last decade, the bead-based assay utilizing the Luminex® fluorocytometer instrument has become established as the “gold standard” for HLA antibody testing. However, there are still unresolved issues surrounding this technique, such as the presence of denatured HLA molecules on the beads which reveal cryptic epitopes and the issue of appropriate fluorescence cut off values for positivity. The assay has been modified to detect complement binding (CB) in addition to non-complement binding (NCB) HLA antibodies although the clinical relevance of the CB and NCB IgG isotypes is not fully resolved. The increase sensitivity of the Luminex® bead assay over the complement-dependent cytotoxicity crossmatch has permitted the concept of the “virtual crossmatch” whereby the crossmatch is predicted to a high degree of accuracy based on the HLA antibody specificities detected by the solid phase assay. Dialog between clinicians and laboratory staff on an individual patient basis is essential for correct clinical decision making based on HLA antibody results obtained by the various techniques. PMID:28018342
Analog modeling of Worm-Like Chain molecules using macroscopic beads-on-a-string.
Tricard, Simon; Feinstein, Efraim; Shepherd, Robert F; Reches, Meital; Snyder, Phillip W; Bandarage, Dileni C; Prentiss, Mara; Whitesides, George M
2012-07-07
This paper describes an empirical model of polymer dynamics, based on the agitation of millimeter-sized polymeric beads. Although the interactions between the particles in the macroscopic model and those between the monomers of molecular-scale polymers are fundamentally different, both systems follow the Worm-Like Chain theory.
Alginate-based polysaccharide beads for cationic contaminant sorption from water
Mei Li; Thomas Elder; Gisela Buschle-Diller
2016-01-01
Massive amounts of agricultural and industrial water worldwide are polluted by different types of contaminants that harm the environment and impact human health. Removing the contaminants from effluents by adsorbent materials made from abundant, inexpensive polysaccharides is a feasible approach to deal with this problem. In this research, alginate beads combined with...
Influence of Surface Roughness on Polymer Drag Reduction
2007-11-30
paint (High Build Semi-Gloss 97-130, Aquapon ) with glass bead grit. The particles were tightly packed producing a sand grain type roughness. Based on the... Aquapon High Build Semi-Gloss Epoxy 97-130) with glass bead grit blown into the epoxy. The particles were tightly packed giving an average roughness height
Diffraction-based BioCD biosensor for point-of-care diagnostics
NASA Astrophysics Data System (ADS)
Choi, H.; Chang, C.; Savran, C.; Nolte, D.
2018-02-01
The BioCD platform technology uses spinning-disk interferometry to detect molecular binding to target molecular probes in biological samples. Interferometric configurations have included differential phase contrast and in-line quadrature detection. For the detection of extremely low analyte concentrations, nano- or microparticles can enhance the signal through background-free diffraction detection. Diffraction signal measurements on BioCD biosensors are achieved by forming gratings on a disc surface. The grating pattern was printed with biotinylated bovine serum albumin (BSA) and streptavidin coated beads were deployed. The diameter of the beads was 1 micron and strong protein bonding occurs between BSA and streptavidin-coated beads at the printed location. The wavelength for the protein binding detection was 635 nm. The periodic pattern on the disc amplified scattered light into the first-order diffraction position. The diffracted signal contains Mie scattering and a randomly-distributed-bead noise contributions. Variation of the grating pattern periodicity modulates the diffraction efficiency. To test multiple spatial frequencies within a single scan, we designed a fan-shaped grating to perform frequency filter multiplexing on a diffraction-based BioCD.
Experimental study of porous media flow using hydro-gel beads and LED based PIV
NASA Astrophysics Data System (ADS)
Harshani, H. M. D.; Galindo-Torres, S. A.; Scheuermann, A.; Muhlhaus, H. B.
2017-01-01
A novel experimental approach for measuring porous flow characteristics using spherical hydro-gel beads and particle image velocimetry (PIV) technique is presented. A transparent porous medium consisting of hydro-gel beads that are made of a super-absorbent polymer, allows using water as the fluid phase while simultaneously having the same refractive index. As a result, a more adaptable and cost effective refractive index matched (RIM) medium is created. The transparent nature of the porous medium allows optical systems to visualize the flow field by using poly-amide seeding particles (PSP). Low risk light emitting diode (LED) based light was used to illuminate the plane in order to track the seeding particles’ path for the characterization of the flow inside the porous medium. The system was calibrated using a manually measured flow by a flow meter. Velocity profiles were obtained and analysed qualitatively and quantitatively in order to characterise the flow. Results show that this adaptable, low risk experimental set-up can be used for flow measurements in porous medium under low Reynolds numbers. The limitations of using hydro-gel beads are also discussed.
Treating inertia in passive microbead rheology.
Indei, Tsutomu; Schieber, Jay D; Córdoba, Andrés; Pilyugina, Ekaterina
2012-02-01
The dynamic modulus G(*) of a viscoelastic medium is often measured by following the trajectory of a small bead subject to Brownian motion in a method called "passive microbead rheology." This equivalence between the positional autocorrelation function of the tracer bead and G(*) is assumed via the generalized Stokes-Einstein relation (GSER). However, inertia of both bead and medium are neglected in the GSER so that the analysis based on the GSER is not valid at high frequency where inertia is important. In this paper we show how to treat both contributions to inertia properly in one-bead passive microrheological analysis. A Maxwell fluid is studied as the simplest example of a viscoelastic fluid to resolve some apparent paradoxes of eliminating inertia. In the original GSER, the mean-square displacement (MSD) of the tracer bead does not satisfy the correct initial condition. If bead inertia is considered, the proper initial condition is realized, thereby indicating an importance of including inertia, but the MSD oscillates at a time regime smaller than the relaxation time of the fluid. This behavior is rather different from the original result of the GSER and what is observed. What is more, the discrepancy from the GSER result becomes worse with decreasing bead mass, and there is an anomalous gap between the MSD derived by naïvely taking the zero-mass limit in the equation of motion and the MSD for finite bead mass as indicated by McKinley et al. [J. Rheol. 53, 1487 (2009)]. In this paper we show what is necessary to take the zero-mass limit of the bead safely and correctly without causing either the inertial oscillation or the anomalous gap, while obtaining the proper initial condition. The presence of a very small purely viscous element can be used to eliminate bead inertia safely once included in the GSER. We also show that if the medium contains relaxation times outside the window where the single-mode Maxwell behavior is observed, the oscillation can be attenuated inside the window. This attenuation is realized even in the absence of a purely viscous element. Finally, fluid inertia also affects the bead autocorrelation through the Basset force and the fluid dragged around with the bead. We show that the Basset force plays the same role as the purely viscous element in high-frequency regime, and the oscillation of MSD is suppressed if fluid density and bead density are comparable. © 2012 American Physical Society
A Pilot Opinion Study of Lateral Control Requirements for Fighter-Type Aircraft
NASA Technical Reports Server (NTRS)
Creer, Brent Y.; Stewart, John D.; Merrick, Robert B.; Drinkwater, Fred J., III
1959-01-01
As part of a continuing NASA program of research on airplane handling qualities, a pilot opinion investigation has been made on the lateral control requirements of fighter aircraft flying in their combat speed range. The investigation was carried out using a stationary flight simulator and a moving flight simulator, and the flight simulator results were supplemented by research tests in actual flight. The flight simulator study was based on the presumption that the pilot rates the roll control of an airplane primarily on a single-degree-of-freedom basis; that is, control of angle of roll about the aircraft body axis being of first importance. From the assumption of a single degree of freedom system it follows that there are two fundamental parameters which govern the airplane roll response, namely the roll damping expressed as a time constant and roll control power in terms of roll acceleration. The simulator study resulted in a criterion in terms of these two parameters which defines satisfactory, unsatisfactory, and unacceptable roll performance from a pilot opinion standpoint. The moving simulator results were substantiated by the in-flight investigation. The derived criterion was compared with the roll performance criterion based upon wing tip helix angle and also with other roll performance concepts which currently influence the roll performance design of military fighter aircraft flying in their combat speed range.
1998-10-10
High magnification of view of tumor cells aggregate on microcarrier beads, illustrting breast cells with intercellular boundaires on bead surface and aggregates of cells achieving 3-deminstional growth outward from bead after 56 days of culture in a NASA Bioreactor. NASA's Marshall Space Flight Center (MSFC) is sponsoring research with Bioreactors, rotating wall vessels designed to grow tissue samples in space, to understand how breast cancer works. This ground-based work studies the growth and assembly of human mammary epithelial cell (HMEC) from breast cancer susceptible tissue. Radiation can make the cells cancerous, thus allowing better comparisons of healthy vs. tunorous tissue. Credit: Dr. Jearne Becker, University of South Florida.
Zhang, He; Hu, Xinjiang; Fu, Xin
2014-07-15
This study reports the development of an aptamer-mediated microfluidic beads-based sensor for multiple analytes detection and quantification using multienzyme-linked nanoparticle amplification and quantum dots labels. Adenosine and cocaine were selected as the model analytes to validate the assay design based on strand displacement induced by target-aptamer complex. Microbeads functionalized with the aptamers and modified electron rich proteins were arrayed within a microfluidic channel and were connected with the horseradish peroxidases (HRP) and capture DNA probe derivative gold nanoparticles (AuNPs) via hybridization. The conformational transition of aptamer induced by target-aptamer complex contributes to the displacement of functionalized AuNPs and decreases the fluorescence signal of microbeads. In this approach, increased binding events of HRP on each nanosphere and enhanced mass transport capability inherent from microfluidics are integrated for enhancing the detection sensitivity of analytes. Based on the dual signal amplification strategy, the developed aptamer-based microfluidic bead array sensor could discriminate as low as 0.1 pM of adenosine and 0.5 pM cocaine, and showed a 500-fold increase in detection limit of adenosine compared to the off-chip test. The results proved the microfluidic-based method was a rapid and efficient system for aptamer-based targets assays (adenosine (0.1 pM) and cocaine (0.5 pM)), requiring only minimal (microliter) reagent use. This work demonstrated the successful application of aptamer-based microfluidic beads array sensor for detection of important molecules in biomedical fields. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Chen, Yuan-Liu; Niu, Zengyuan; Matsuura, Daiki; Lee, Jung Chul; Shimizu, Yuki; Gao, Wei; Oh, Jeong Seok; Park, Chun Hong
2017-10-01
In this paper, a four-probe measurement system is implemented and verified for the carriage slide motion error measurement of a large-scale roll lathe used in hybrid manufacturing where a laser machining probe and a diamond cutting tool are placed on two sides of a roll workpiece for manufacturing. The motion error of the carriage slide of the roll lathe is composed of two straightness motion error components and two parallelism motion error components in the vertical and horizontal planes. Four displacement measurement probes, which are mounted on the carriage slide with respect to four opposing sides of the roll workpiece, are employed for the measurement. Firstly, based on the reversal technique, the four probes are moved by the carriage slide to scan the roll workpiece before and after a 180-degree rotation of the roll workpiece. Taking into consideration the fact that the machining accuracy of the lathe is influenced by not only the carriage slide motion error but also the gravity deformation of the large-scale roll workpiece due to its heavy weight, the vertical motion error is thus characterized relating to the deformed axis of the roll workpiece. The horizontal straightness motion error can also be synchronously obtained based on the reversal technique. In addition, based on an error separation algorithm, the vertical and horizontal parallelism motion error components are identified by scanning the rotating roll workpiece at the start and the end positions of the carriage slide, respectively. The feasibility and reliability of the proposed motion error measurement system are demonstrated by the experimental results and the measurement uncertainty analysis.
Rolling Maneuver Load Alleviation using active controls
NASA Technical Reports Server (NTRS)
Woods-Vedeler, Jessica A.; Pototzky, Anthony S.
1992-01-01
Rolling Maneuver Load Alleviation (RMLA) has been demonstrated on the Active Flexible Wing (AFW) wind tunnel model in the NASA Langley Transonic Dynamics Tunnel. The design objective was to develop a systematic approach for developing active control laws to alleviate wing incremental loads during roll maneuvers. Using linear load models for the AFW wind-tunnel model which were based on experimental measurements, two RMLA control laws were developed based on a single-degree-of-freedom roll model. The RMLA control laws utilized actuation of outboard control surface pairs to counteract incremental loads generated during rolling maneuvers and actuation of the trailing edge inboard control surface pairs to maintain roll performance. To evaluate the RMLA control laws, roll maneuvers were performed in the wind tunnel at dynamic pressures of 150, 200, and 250 psf and Mach numbers of 0.33, .38 and .44, respectively. Loads obtained during these maneuvers were compared to baseline maneuver loads. For both RMLA controllers, the incremental torsion moments were reduced by up to 60 percent at all dynamic pressures and performance times. Results for bending moment load reductions during roll maneuvers varied. In addition, in a multiple function test, RMLA and flutter suppression system control laws were operated simultaneously during roll maneuvers at dynamic pressures 11 percent above the open-loop flutter dynamic pressure.
Shih, Chun-Liang; Chong, Kowit-Yu; Hsu, Shih-Che; Chien, Hsin-Jung; Ma, Ching-Ting; Chang, John Wen-Cheng; Yu, Chia-Jung; Chiou, Chiuan-Chian
2016-01-25
Cells release different types of extracellular vesicles (EVs). These EVs contain biomolecules, including proteins and nucleic acids, from their parent cells, which can be useful for diagnostic applications. The aim of this study was to develop a convenient procedure to collect circulating EVs with detectable mRNA or other biomolecules. Magnetic beads coated with annexin A5 (ANX-beads), which bound to phosphatidylserine moieties on the surfaces of most EVs, were tested for their ability to capture induced apoptotic bodies in vitro and other phosphatidylserine-presenting vesicles in body fluids. Our results show that up to 60% of induced apoptotic bodies could be captured by the ANX-beads. The vesicles captured from cultured media or plasma contained amplifiable RNA. Suitable blood samples for EV collection included EDTA-plasma and serum but not heparin-plasma. In addition, EVs in plasma were labile to freeze-and-thaw cycles. In rodents xenografted with human cancer cells, tumor-derived mRNA could be detected in EVs captured from serum samples. Active proteins could be detected in EVs captured from ascites but not from plasma. In conclusion, we have developed a magnetic bead-based procedure for the collection of EVs from body fluids and proved that captured EVs contain biomolecules from their parent cells, and therefore have great potential for disease diagnosis. Copyright © 2015 Elsevier B.V. All rights reserved.
Ramasamy, Deepika Lakshmi; Puhakka, Ville; Iftekhar, Sidra; Wojtuś, Anna; Repo, Eveliina; Ben Hammouda, Samia; Iakovleva, Evgenia; Sillanpää, Mika
2018-04-15
Silica-chitosan hybrid beads were synthesized via three different methods to investigate the selective recovery of REE from AMD. The influence of amino/non-amino silanes, high molecular weight/high viscous chitosan and N-/O- based ligands were studied and their effects on REE removal efficiencies were analyzed. The adsorption efficiencies of three various groups of modified beads were inspected with respect to feed pH, in a single and a multi-component system, and their affinities towards the light and heavy rare earth elements (LREE/ HREEs) were interpreted to understand the intra-series REE separation behavior. The focus of the study was mainly directed towards utilizing these fabricated beads for the recovery of valuable REEs from the real AMD obtained at three different sampling depths which was found rich in iron, sulfur and aluminum. Moreover, the selectivity of the beads towards REEs improved with silanized and ligand immobilized gels and their impacts on REE recovery in the presence of competing ions were successfully presented in this paper. Also, the synthesized beads showed rapid REE adsorption and recovery within a process time of 5 min. Group II adsorbents, synthesized by forming silica-chitosan hybrid beads followed by PAN/acac modifications, showed superiority over the other groups of adsorbents. Copyright © 2018 Elsevier B.V. All rights reserved.
Kesavan, Mookkandi Palsamy; Ayyanaar, Srinivasan; Vijayakumar, Vijayaparthasarathi; Dhaveethu Raja, Jeyaraj; Annaraj, Jamespandi; Sakthipandi, Kathiresan; Rajesh, Jegathalaprathaban
2018-04-01
The nanosized rifampicin (RIF) has been prepared to increase the solubility in aqueous solution, which leads to remarkable enhancement of its bioavailability and their convenient delivery system studied by newly produced nontoxic, biodegradable magnetic iron oxide nanoparticles (MIONs) cross-linked polyethylene glycol hybrid chitosan (mCS-PEG) gel beads. The functionalization of both nano RIF and mCS-PEG gel beads were studied using various spectroscopic and microscopic techniques. The size of prepared nano RIF was found to be 70.20 ± 3.50 nm. The mechanical stability and swelling ratio of the magnetic gel beads increased by the addition of PEG with a maximum swelling ratio of 38.67 ± 0.29 g/g. Interestingly, this magnetic gel bead has dual responsive assets in the nano drug delivery application (pH and the magnetic field). As we expected, magnetic gel beads show higher nano drug releasing efficacy at acidic medium (pH = 5.0) with maximum efficiency of 71.00 ± 0.87%. This efficacy may also be tuned by altering the external magnetic field and the weight percentage (wt%) of PEG. These results suggest that such a dual responsive magnetic gel beads can be used as a potential system in the nano drug delivery applications. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1039-1050, 2018. © 2017 Wiley Periodicals, Inc.
Sensor Fusion to Estimate the Depth and Width of the Weld Bead in Real Time in GMAW Processes
Sampaio, Renato Coral; Vargas, José A. R.
2018-01-01
The arc welding process is widely used in industry but its automatic control is limited by the difficulty in measuring the weld bead geometry and closing the control loop on the arc, which has adverse environmental conditions. To address this problem, this work proposes a system to capture the welding variables and send stimuli to the Gas Metal Arc Welding (GMAW) conventional process with a constant voltage power source, which allows weld bead geometry estimation with an open-loop control. Dynamic models of depth and width estimators of the weld bead are implemented based on the fusion of thermographic data, welding current and welding voltage in a multilayer perceptron neural network. The estimators were trained and validated off-line with data from a novel algorithm developed to extract the features of the infrared image, a laser profilometer was implemented to measure the bead dimensions and an image processing algorithm that measures depth by making a longitudinal cut in the weld bead. These estimators are optimized for embedded devices and real-time processing and were implemented on a Field-Programmable Gate Array (FPGA) device. Experiments to collect data, train and validate the estimators are presented and discussed. The results show that the proposed method is useful in industrial and research environments. PMID:29570698
Sensor Fusion to Estimate the Depth and Width of the Weld Bead in Real Time in GMAW Processes.
Bestard, Guillermo Alvarez; Sampaio, Renato Coral; Vargas, José A R; Alfaro, Sadek C Absi
2018-03-23
The arc welding process is widely used in industry but its automatic control is limited by the difficulty in measuring the weld bead geometry and closing the control loop on the arc, which has adverse environmental conditions. To address this problem, this work proposes a system to capture the welding variables and send stimuli to the Gas Metal Arc Welding (GMAW) conventional process with a constant voltage power source, which allows weld bead geometry estimation with an open-loop control. Dynamic models of depth and width estimators of the weld bead are implemented based on the fusion of thermographic data, welding current and welding voltage in a multilayer perceptron neural network. The estimators were trained and validated off-line with data from a novel algorithm developed to extract the features of the infrared image, a laser profilometer was implemented to measure the bead dimensions and an image processing algorithm that measures depth by making a longitudinal cut in the weld bead. These estimators are optimized for embedded devices and real-time processing and were implemented on a Field-Programmable Gate Array (FPGA) device. Experiments to collect data, train and validate the estimators are presented and discussed. The results show that the proposed method is useful in industrial and research environments.
Vargas-Meléndez, Leandro; Boada, Beatriz L; Boada, María Jesús L; Gauchía, Antonio; Díaz, Vicente
2016-08-31
This article presents a novel estimator based on sensor fusion, which combines the Neural Network (NN) with a Kalman filter in order to estimate the vehicle roll angle. The NN estimates a "pseudo-roll angle" through variables that are easily measured from Inertial Measurement Unit (IMU) sensors. An IMU is a device that is commonly used for vehicle motion detection, and its cost has decreased during recent years. The pseudo-roll angle is introduced in the Kalman filter in order to filter noise and minimize the variance of the norm and maximum errors' estimation. The NN has been trained for J-turn maneuvers, double lane change maneuvers and lane change maneuvers at different speeds and road friction coefficients. The proposed method takes into account the vehicle non-linearities, thus yielding good roll angle estimation. Finally, the proposed estimator has been compared with one that uses the suspension deflections to obtain the pseudo-roll angle. Experimental results show the effectiveness of the proposed NN and Kalman filter-based estimator.
NASA Astrophysics Data System (ADS)
Cui, Lingli; Gong, Xiangyang; Zhang, Jianyu; Wang, Huaqing
2016-12-01
The quantitative diagnosis of rolling bearing fault severity is particularly crucial to realize a proper maintenance decision. Aiming at the fault feature of rolling bearing, a novel double-dictionary matching pursuit (DDMP) for fault extent evaluation of rolling bearing based on the Lempel-Ziv complexity (LZC) index is proposed in this paper. In order to match the features of rolling bearing fault, the impulse time-frequency dictionary and modulation dictionary are constructed to form the double-dictionary by using the method of parameterized function model. Then a novel matching pursuit method is proposed based on the new double-dictionary. For rolling bearing vibration signals with different fault sizes, the signals are decomposed and reconstructed by the DDMP. After the noise reduced and signals reconstructed, the LZC index is introduced to realize the fault extent evaluation. The applications of this method to the fault experimental signals of bearing outer race and inner race with different degree of injury have shown that the proposed method can effectively realize the fault extent evaluation.
NASA Astrophysics Data System (ADS)
Zheng, Jinde; Pan, Haiyang; Yang, Shubao; Cheng, Junsheng
2018-01-01
Multiscale permutation entropy (MPE) is a recently proposed nonlinear dynamic method for measuring the randomness and detecting the nonlinear dynamic change of time series and can be used effectively to extract the nonlinear dynamic fault feature from vibration signals of rolling bearing. To solve the drawback of coarse graining process in MPE, an improved MPE method called generalized composite multiscale permutation entropy (GCMPE) was proposed in this paper. Also the influence of parameters on GCMPE and its comparison with the MPE are studied by analyzing simulation data. GCMPE was applied to the fault feature extraction from vibration signal of rolling bearing and then based on the GCMPE, Laplacian score for feature selection and the Particle swarm optimization based support vector machine, a new fault diagnosis method for rolling bearing was put forward in this paper. Finally, the proposed method was applied to analyze the experimental data of rolling bearing. The analysis results show that the proposed method can effectively realize the fault diagnosis of rolling bearing and has a higher fault recognition rate than the existing methods.
Vargas-Meléndez, Leandro; Boada, Beatriz L.; Boada, María Jesús L.; Gauchía, Antonio; Díaz, Vicente
2016-01-01
This article presents a novel estimator based on sensor fusion, which combines the Neural Network (NN) with a Kalman filter in order to estimate the vehicle roll angle. The NN estimates a “pseudo-roll angle” through variables that are easily measured from Inertial Measurement Unit (IMU) sensors. An IMU is a device that is commonly used for vehicle motion detection, and its cost has decreased during recent years. The pseudo-roll angle is introduced in the Kalman filter in order to filter noise and minimize the variance of the norm and maximum errors’ estimation. The NN has been trained for J-turn maneuvers, double lane change maneuvers and lane change maneuvers at different speeds and road friction coefficients. The proposed method takes into account the vehicle non-linearities, thus yielding good roll angle estimation. Finally, the proposed estimator has been compared with one that uses the suspension deflections to obtain the pseudo-roll angle. Experimental results show the effectiveness of the proposed NN and Kalman filter-based estimator. PMID:27589763
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Qijian; Jia, Gaofeng; Hyten, David L.
A total of 992,682 single-nucleotide polymorphisms (SNPs) was identified as ideal for Illumina Infinium II BeadChip design after sequencing a diverse set of 17 common bean (Phaseolus vulgaris L) varieties with the aid of next-generation sequencing technology. From these, two BeadChips each with >5000 SNPs were designed. The BARCBean6K_1 BeadChip was selected for the purpose of optimizing polymorphism among market classes and, when possible, SNPs were targeted to sequence scaffolds in the Phaseolus vulgaris 14× genome assembly with sequence lengths >10 kb. The BARCBean6K_2 BeadChip was designed with the objective of anchoring additional scaffolds and to facilitate orientation of largemore » scaffolds. Analysis of 267 F2 plants from a cross of varieties Stampede × Red Hawk with the two BeadChips resulted in linkage maps with a total of 7040 markers including 7015 SNPs. With the linkage map, a total of 432.3 Mb of sequence from 2766 scaffolds was anchored to create the Phaseolus vulgaris v1.0 assembly, which accounted for approximately 89% of the 487 Mb of available sequence scaffolds of the Phaseolus vulgaris v0.9 assembly. A core set of 6000 SNPs (BARCBean6K_3 BeadChip) with high genotyping quality and polymorphism was selected based on the genotyping of 365 dry bean and 134 snap bean accessions with the BARCBean6K_1 and BARCBean6K_2 BeadChips. The BARCBean6K_3 BeadChip is a useful tool for genetics and genomics research and it is widely used by breeders and geneticists in the United States and abroad.« less
Song, Qijian; Jia, Gaofeng; Hyten, David L.; ...
2015-08-28
A total of 992,682 single-nucleotide polymorphisms (SNPs) was identified as ideal for Illumina Infinium II BeadChip design after sequencing a diverse set of 17 common bean (Phaseolus vulgaris L) varieties with the aid of next-generation sequencing technology. From these, two BeadChips each with >5000 SNPs were designed. The BARCBean6K_1 BeadChip was selected for the purpose of optimizing polymorphism among market classes and, when possible, SNPs were targeted to sequence scaffolds in the Phaseolus vulgaris 14× genome assembly with sequence lengths >10 kb. The BARCBean6K_2 BeadChip was designed with the objective of anchoring additional scaffolds and to facilitate orientation of largemore » scaffolds. Analysis of 267 F2 plants from a cross of varieties Stampede × Red Hawk with the two BeadChips resulted in linkage maps with a total of 7040 markers including 7015 SNPs. With the linkage map, a total of 432.3 Mb of sequence from 2766 scaffolds was anchored to create the Phaseolus vulgaris v1.0 assembly, which accounted for approximately 89% of the 487 Mb of available sequence scaffolds of the Phaseolus vulgaris v0.9 assembly. A core set of 6000 SNPs (BARCBean6K_3 BeadChip) with high genotyping quality and polymorphism was selected based on the genotyping of 365 dry bean and 134 snap bean accessions with the BARCBean6K_1 and BARCBean6K_2 BeadChips. The BARCBean6K_3 BeadChip is a useful tool for genetics and genomics research and it is widely used by breeders and geneticists in the United States and abroad.« less
Song, Qijian; Jia, Gaofeng; Hyten, David L; Jenkins, Jerry; Hwang, Eun-Young; Schroeder, Steven G; Osorno, Juan M; Schmutz, Jeremy; Jackson, Scott A; McClean, Phillip E; Cregan, Perry B
2015-08-28
A total of 992,682 single-nucleotide polymorphisms (SNPs) was identified as ideal for Illumina Infinium II BeadChip design after sequencing a diverse set of 17 common bean (Phaseolus vulgaris L) varieties with the aid of next-generation sequencing technology. From these, two BeadChips each with >5000 SNPs were designed. The BARCBean6K_1 BeadChip was selected for the purpose of optimizing polymorphism among market classes and, when possible, SNPs were targeted to sequence scaffolds in the Phaseolus vulgaris 14× genome assembly with sequence lengths >10 kb. The BARCBean6K_2 BeadChip was designed with the objective of anchoring additional scaffolds and to facilitate orientation of large scaffolds. Analysis of 267 F2 plants from a cross of varieties Stampede × Red Hawk with the two BeadChips resulted in linkage maps with a total of 7040 markers including 7015 SNPs. With the linkage map, a total of 432.3 Mb of sequence from 2766 scaffolds was anchored to create the Phaseolus vulgaris v1.0 assembly, which accounted for approximately 89% of the 487 Mb of available sequence scaffolds of the Phaseolus vulgaris v0.9 assembly. A core set of 6000 SNPs (BARCBean6K_3 BeadChip) with high genotyping quality and polymorphism was selected based on the genotyping of 365 dry bean and 134 snap bean accessions with the BARCBean6K_1 and BARCBean6K_2 BeadChips. The BARCBean6K_3 BeadChip is a useful tool for genetics and genomics research and it is widely used by breeders and geneticists in the United States and abroad. Copyright © 2015 Song et al.
Normalization of mass cytometry data with bead standards
Finck, Rachel; Simonds, Erin F.; Jager, Astraea; Krishnaswamy, Smita; Sachs, Karen; Fantl, Wendy; Pe’er, Dana; Nolan, Garry P.; Bendall, Sean C.
2013-01-01
Mass cytometry uses atomic mass spectrometry combined with isotopically pure reporter elements to currently measure as many as 40 parameters per single cell. As with any quantitative technology, there is a fundamental need for quality assurance and normalization protocols. In the case of mass cytometry, the signal variation over time due to changes in instrument performance combined with intervals between scheduled maintenance must be accounted for and then normalized. Here, samples were mixed with polystyrene beads embedded with metal lanthanides, allowing monitoring of mass cytometry instrument performance over multiple days of data acquisition. The protocol described here includes simultaneous measurements of beads and cells on the mass cytometer, subsequent extraction of the bead-based signature, and the application of an algorithm enabling correction of both short- and long-term signal fluctuations. The variation in the intensity of the beads that remains after normalization may also be used to determine data quality. Application of the algorithm to a one-month longitudinal analysis of a human peripheral blood sample reduced the range of median signal fluctuation from 4.9-fold to 1.3-fold. PMID:23512433
Yadav, Kartikey K; Dasgupta, Kinshuk; Singh, Dhruva K; Varshney, Lalit; Singh, Harvinderpal
2015-03-06
Polyethersulfone-based beads encapsulating di-2-ethylhexyl phosphoric acid have been synthesized and evaluated for the recovery of rare earth values from the aqueous media. Percentage recovery and the sorption behavior of Dy(III) have been investigated under wide range of experimental parameters using these beads. Taguchi method utilizing L-18 orthogonal array has been adopted to identify the most influential process parameters responsible for higher degree of recovery with enhanced sorption of Dy(III) from chloride medium. Analysis of variance indicated that the feed concentration of Dy(III) is the most influential factor for equilibrium sorption capacity, whereas aqueous phase acidity influences the percentage recovery most. The presence of polyvinyl alcohol and multiwalled carbon nanotube modified the internal structure of the composite beads and resulted in uniform distribution of organic extractant inside polymeric matrix. The experiment performed under optimum process conditions as predicted by Taguchi method resulted in enhanced Dy(III) recovery and sorption capacity by polymeric beads with minimum standard deviation. Copyright © 2015 Elsevier B.V. All rights reserved.
Mayer, Fabiana Quoos; Baldo, Guilherme; de Carvalho, Talita Giacomet; Lagranha, Valeska Lizzi; Giugliani, Roberto; Matte, Ursula
2010-05-01
Here, we show the effects of cryopreservation and hypothermic storage upon cell viability and enzyme release in alginate beads containing baby hamster kidney cells overexpressing alpha-L-iduronidase (IDUA), the enzyme deficient in mucopolysaccharidosis type I. In addition, we compared two different concentrations of alginate gel (1% and 1.5%) in respect to enzyme release from the beads and their shape and integrity. Our results indicate that in both alginate concentrations, the enzyme is released in lower amounts compared with nonencapsulated cells. Alginate 1% beads presented increased levels of IDUA release, although this group presented more deformities when compared with alginate 1.5% beads. Importantly, both encapsulated groups presented higher cell viability after long cryopreservation period and hypothermic storage. In addition, alginate 1.5% beads presented higher enzyme release after freezing protocols. Taken together, our findings suggest a benefic effect of alginate upon cell viability and functionality. These results may have important application for treatment of both genetic and nongenetic diseases using microencapsulation-based artificial organs.
Wood mimetic hydrogel beads for enzyme immobilization.
Park, Saerom; Kim, Sung Hee; Won, Keehoon; Choi, Joon Weon; Kim, Yong Hwan; Kim, Hyung Joo; Yang, Yung-Hun; Lee, Sang Hyun
2015-01-22
Wood component-based composite hydrogels have potential applications in biomedical fields owing to their low cost, biodegradability, and biocompatibility. The controllable properties of wood mimetic composites containing three major wood components are useful for enzyme immobilization. Here, lipase from Candida rugosa was entrapped in wood mimetic beads containing cellulose, xylan, and lignin by dissolving wood components with lipase in [Emim][Ac], followed by reconstitution. Lipase entrapped in cellulose/xylan/lignin beads in a 5:3:2 ratio showed the highest activity; this ratio is very similar to that in natural wood. The lipase entrapped in various wood mimetic beads showed increased thermal and pH stability. The half-life times of lipase entrapped in cellulose/alkali lignin hydrogel were 31- and 82-times higher than those of free lipase during incubation under denaturing conditions of high temperature and low pH, respectively. Owing to their biocompatibility, biodegradability, and controllable properties, wood mimetic hydrogel beads can be used to immobilize various enzymes for applications in the biomedical, bioelectronic, and biocatalytic fields. Copyright © 2014 Elsevier Ltd. All rights reserved.
Detection of magnetic microbeads and ferrofluid with giant magnetoresistance sensors
NASA Astrophysics Data System (ADS)
Feng, J.; Wang, Y. Q.; Li, F. Q.; Shi, H. P.; Chen, X.
2011-01-01
Giant magnetoresistance sensors based on multilayers [Cu/NiFeCo]×10/ Ta were fabricated by microfabrication technology. A GMR-bridge was used to detect the magnetic MyOne beads and Ferro fluid. The dependence of the GMR-bridge signals on the surface coverage of MyOne beads was studied. The results show that the GMR sensor is capable of detecting the magnetic beads. The detectable limit of MyOne beads is about 100, and the corresponding signal output is 8 μV. The GMR bridge signal is proportional to the surface coverage of the MyOne beads. The sensitivity of the GMR bridge is inversely proportional to the feature size of the GMR sensor. The GMR bridge integrated with microfludic channel was also used for dynamic detection of ferrofluid (suspension of Fe3O4 particles). The results show that the GMR bridge is capable of detecting the flow of ferrofluid, and the sensor signals are proportional to the concentration of the ferrofluid. The detection limit of concentration of the ferrofluid is 0.56 mg/ml, and the corresponding signal is 6.2 μV.
TiO2-TiO2 composite resistive humidity sensor: ethanol crosssensitivity
NASA Astrophysics Data System (ADS)
Ghalamboran, Milad; Saedi, Yasin
2016-03-01
The fabrication method and characterization results of a TiO2-TiO2 composite bead used for humidity sensing along with its negative cross-sensitivity to ethanol vapor are reported. The bead shaped resistive sample sensors are fabricated by the drop-casting of a TiO2 slurry on two Pt wire segments. The dried bead is pre-fired at 750°C and subsequently impregnated with a Ti-based sol. The sample is ready for characterization after a thermal annealing at 600°C in air. Structurally, the bead is a composite of the micron-sized TiO2 crystallites embedded in a matrix of nanometric TiO2 particle aggregates. The performance of the beads as resistive humidity sensors is recorded at room temperature in standard humidity level chambers. Results evince the wide dynamic range of the sensors fabricated in the low relative humidity range. While the sensor conductance is not sensitive to ethanol vapor in dry air, in humid air, sensor's responses are negatively affected by the contaminant.
Online assay of bone specific alkaline phosphatase with a flow injection-bead injection system.
Hartwell, Supaporn Kradtap; Somprayoon, Duangporn; Kongtawelert, Prachya; Ongchai, Siriwan; Arppornchayanon, Olarn; Ganranoo, Lucksagoon; Lapanantnoppakhun, Somchai; Grudpan, Kate
2007-09-26
Alkaline phosphatase (ALP) has been used as one of the biomarkers for bone resorption and liver diseases. Normally, total alkaline phosphatase is quantified along with other symptoms to determine the releasing source of the alkaline phosphatase. A semi-automated flow injection-bead injection system was proposed to conveniently and selectively assay bone alkaline phosphatase (BALP) based on its specific binding to wheat germ coated beads. Amount of BALP in serum was determined from the intensity of the yellow product produced from bound BALP on the retained beads and its substrate pNPP. The used beads were discarded and the fresh ones were introduced for the next analysis. The reaction cell was designed to be opened and closed using a computer controlled solenoid valve for a precise incubation time. The performance of the proposed system was evaluated by using it to assay BALP in human serum. The results were compared to those obtained by using a commercial ELISA kit. The system is proposed to be an easy and cost effective system for quantification of BALP as an alternative to batch wise wheat germ specific binding technique.
Two particle tracking and detection in a single Gaussian beam optical trap.
Praveen, P; Yogesha; Iyengar, Shruthi S; Bhattacharya, Sarbari; Ananthamurthy, Sharath
2016-01-20
We have studied in detail the situation wherein two microbeads are trapped axially in a single-beam Gaussian intensity profile optical trap. We find that the corner frequency extracted from a power spectral density analysis of intensity fluctuations recorded on a quadrant photodetector (QPD) is dependent on the detection scheme. Using forward- and backscattering detection schemes with single and two laser wavelengths along with computer simulations, we conclude that fluctuations detected in backscattering bear true position information of the bead encountered first in the beam propagation direction. Forward scattering, on the other hand, carries position information of both beads with substantial contribution from the bead encountered first along the beam propagation direction. Mie scattering analysis further reveals that the interference term from the scattering of the two beads contributes significantly to the signal, precluding the ability to resolve the positions of the individual beads in forward scattering. In QPD-based detection schemes, detection through backscattering, thereby, is imperative to track the true displacements of axially trapped microbeads for possible studies on light-mediated interbead interactions.
Magnetic Levitation as a Platform for Competitive Protein-Ligand Binding Assays
Shapiro, Nathan D.; Soh, Siowling; Mirica, Katherine A.; Whitesides, George M.
2012-01-01
This paper describes a method based on magnetic levitation (MagLev) that is capable of indirectly measuring the binding of unlabeled ligands to unlabeled protein. We demonstrate this method by measuring the affinity of unlabeled bovine carbonic anhydrase (BCA) for a variety of ligands (most of which are benzene sulfonamide derivatives). This method utilizes porous gel beads that are functionalized with a common aryl sulfonamide ligand. The beads are incubated with BCA and allowed to reach an equilibrium state in which the majority of the immobilized ligands are bound to BCA. Since the beads are less dense than the protein, protein binding to the bead increases the overall density of the bead. This change in density can be monitored using MagLev. Transferring the beads to a solution containing no protein creates a situation where net protein efflux from the bead is thermodynamically favorable. The rate at which protein leaves the bead for the solution can be calculated from the rate at which the levitation height of the bead changes. If another small molecule ligand of BCA is dissolved in the solution, the rate of protein efflux is accelerated significantly. This paper develops a reaction-diffusion (RD) model to explain both this observation, and the physical-organic chemistry that underlies it. Using this model, we calculate the dissociation constants of several unlabeled ligands from BCA, using plots of levitation height versus time. Notably, although this method requires no electricity, and only a single piece of inexpensive equipment, it can measure accurately the binding of unlabeled proteins to small molecules over a wide range of dissociation constants (Kd’s within the range of ~ 10 nM to 100 µM are measured easily). Assays performed using this method generally can be completed within a relatively short time period (20 minutes – 2 hours). A deficiency of this system is that it is not, in its present form, applicable to proteins with molecular weight greater than approximately 65 kDa. PMID:22686324
Magnetic levitation as a platform for competitive protein-ligand binding assays.
Shapiro, Nathan D; Soh, Siowling; Mirica, Katherine A; Whitesides, George M
2012-07-17
This paper describes a method based on magnetic levitation (MagLev) that is capable of indirectly measuring the binding of unlabeled ligands to unlabeled protein. We demonstrate this method by measuring the affinity of unlabeled bovine carbonic anhydrase (BCA) for a variety of ligands (most of which are benzene sulfonamide derivatives). This method utilizes porous gel beads that are functionalized with a common aryl sulfonamide ligand. The beads are incubated with BCA and allowed to reach an equilibrium state in which the majority of the immobilized ligands are bound to BCA. Since the beads are less dense than the protein, protein binding to the bead increases the overall density of the bead. This change in density can be monitored using MagLev. Transferring the beads to a solution containing no protein creates a situation where net protein efflux from the bead is thermodynamically favorable. The rate at which protein leaves the bead for the solution can be calculated from the rate at which the levitation height of the bead changes. If another small molecule ligand of BCA is dissolved in the solution, the rate of protein efflux is accelerated significantly. This paper develops a reaction-diffusion (RD) model to explain both this observation, and the physical-organic chemistry that underlies it. Using this model, we calculate the dissociation constants of several unlabeled ligands from BCA, using plots of levitation height versus time. Notably, although this method requires no electricity, and only a single piece of inexpensive equipment, it can measure accurately the binding of unlabeled proteins to small molecules over a wide range of dissociation constants (K(d) values within the range from ~10 nM to 100 μM are measured easily). Assays performed using this method generally can be completed within a relatively short time period (20 min-2 h). A deficiency of this system is that it is not, in its present form, applicable to proteins with molecular weight greater than approximately 65 kDa.
Real-Time Measurement of Width and Height of Weld Beads in GMAW Processes.
Pinto-Lopera, Jesús Emilio; S T Motta, José Mauricio; Absi Alfaro, Sadek Crisostomo
2016-09-15
Associated to the weld quality, the weld bead geometry is one of the most important parameters in welding processes. It is a significant requirement in a welding project, especially in automatic welding systems where a specific width, height, or penetration of weld bead is needed. This paper presents a novel technique for real-time measuring of the width and height of weld beads in gas metal arc welding (GMAW) using a single high-speed camera and a long-pass optical filter in a passive vision system. The measuring method is based on digital image processing techniques and the image calibration process is based on projective transformations. The measurement process takes less than 3 milliseconds per image, which allows a transfer rate of more than 300 frames per second. The proposed methodology can be used in any metal transfer mode of a gas metal arc welding process and does not have occlusion problems. The responses of the measurement system, presented here, are in a good agreement with off-line data collected by a common laser-based 3D scanner. Each measurement is compare using a statistical Welch's t-test of the null hypothesis, which, in any case, does not exceed the threshold of significance level α = 0.01, validating the results and the performance of the proposed vision system.
Li, Huiyan; Leulmi, Rym Feriel; Juncker, David
2011-02-07
Antibody microarrays are a powerful tool for rapid, multiplexed profiling of proteins. 3D microarray substrates have been developed to improve binding capacity, assay sensitivity, and mass transport, however, they often rely on photopolymers which are difficult to manufacture and have a small pore size that limits mass transport and demands long incubation time. Here, we present a novel 3D antibody microarray format based on the entrapment of antibody-coated microbeads within alginate droplets that were spotted onto a glass slide using an inkjet. Owing to the low concentration of alginate used, the gels were highly porous to proteins, and together with the 3D architecture helped enhance mass transport during the assays. The spotting parameters were optimized for the attachment of the alginate to the substrate. Beads with 0.2 µm, 0.5 µm and 1 µm diameter were tested and 1 µm beads were selected based on their superior retention within the hydrogel. The beads were found to be distributed within the entire volume of the gel droplet using confocal microscopy. The assay time and the concentration of beads in the gels were investigated for maximal binding signal using one-step immunoassays. As a proof of concept, six proteins including cytokines (TNFα, IL-8 and MIP/CCL4), breast cancer biomarkers (CEA and HER2) and one cancer-related protein (ENG) were profiled in multiplex using sandwich assays down to pg mL(-1) concentrations with 1 h incubation without agitation in both buffer solutions and 10% serum. These results illustrate the potential of beads-in-gel microarrays for highly sensitive and multiplexed protein analysis.
NASA Astrophysics Data System (ADS)
Ai, Yan-Ting; Guan, Jiao-Yue; Fei, Cheng-Wei; Tian, Jing; Zhang, Feng-Ling
2017-05-01
To monitor rolling bearing operating status with casings in real time efficiently and accurately, a fusion method based on n-dimensional characteristic parameters distance (n-DCPD) was proposed for rolling bearing fault diagnosis with two types of signals including vibration signal and acoustic emission signals. The n-DCPD was investigated based on four information entropies (singular spectrum entropy in time domain, power spectrum entropy in frequency domain, wavelet space characteristic spectrum entropy and wavelet energy spectrum entropy in time-frequency domain) and the basic thought of fusion information entropy fault diagnosis method with n-DCPD was given. Through rotor simulation test rig, the vibration and acoustic emission signals of six rolling bearing faults (ball fault, inner race fault, outer race fault, inner-ball faults, inner-outer faults and normal) are collected under different operation conditions with the emphasis on the rotation speed from 800 rpm to 2000 rpm. In the light of the proposed fusion information entropy method with n-DCPD, the diagnosis of rolling bearing faults was completed. The fault diagnosis results show that the fusion entropy method holds high precision in the recognition of rolling bearing faults. The efforts of this study provide a novel and useful methodology for the fault diagnosis of an aeroengine rolling bearing.
Rolling-Bearing Service Life Based on Probable Cause for Removal: A Tutorial
NASA Technical Reports Server (NTRS)
Zaretsky, Erwin V.; Branzai, Emanuel V.
2017-01-01
In 1947 and 1952, Gustaf Lundberg and Arvid Palmgren developed what is now referred to as the Lundberg-Palmgren Model for Rolling Bearing Life Prediction based on classical rolling-element fatigue. Today, bearing fatigue probably accounts for less than 5 percent of bearings removed from service for cause. A bearing service life prediction methodology and tutorial indexed to eight probable causes for bearing removal, including fatigue, are presented, which incorporate strict series reliability; Weibull statistical analysis; available published field data from the Naval Air Rework Facility; and 224,000 rolling-element bearings removed for rework from commercial aircraft engines.
Determination of rolling resistance coefficient based on normal tyre stiffness
NASA Astrophysics Data System (ADS)
Rykov, S. P.; Tarasuyk, V. N.; Koval, V. S.; Ovchinnikova, N. I.; Fedotov, A. I.; Fedotov, K. V.
2018-03-01
The purpose of the article is to develop analytical dependence of wheel rolling resistance coefficient based on the mathematical description of normal tyre stiffness. The article uses the methods of non-holonomic mechanics and plane section methods. The article shows that the abscissa of gravity center of tyre stiffness expansion by the length of the contact area is the shift of normal road response. It can be used for determining rolling resistance coefficient. When determining rolling resistance coefficient using ellipsis and power function equations, one can reduce labor costs for testing and increase assessment accuracy.
Heo, Youn-Jung; Jung, Yen-Sook; Hwang, Kyeongil; Kim, Jueng-Eun; Yeo, Jun-Seok; Lee, Sehyun; Jeon, Ye-Jin; Lee, Donmin; Kim, Dong-Yu
2017-11-15
For the first time, the photovoltaic modules composed of small molecule were successfully fabricated by using roll-to-roll compatible printing techniques. In this study, blend films of small molecules, BTR and PC 71 BM were slot-die coated using a halogen-free solvent system. As a result, high efficiencies of 7.46% and 6.56% were achieved from time-consuming solvent vapor annealing (SVA) treatment and roll-to-roll compatible solvent additive approaches, respectively. After successful verification of our roll-to-roll compatible method on small-area devices, we further fabricated large-area photovoltaic modules with a total active area of 10 cm 2 , achieving a power conversion efficiency (PCE) of 4.83%. This demonstration of large-area photovoltaic modules through roll-to-roll compatible printing methods, even based on a halogen-free solvent, suggests the great potential for the industrial-scale production of organic solar cells (OSCs).
Experimental analysis of two-layered dissimilar metals by roll bonding
NASA Astrophysics Data System (ADS)
Zhao, Guanghui; Li, Yugui; Li, Juan; Huang, Qingxue; Ma, Lifeng
2018-02-01
Rolling reduction and base layers thickness have important implications for rolling compounding. A two-layered 304 stainless steel/Q345R low alloyed steel was roll bonded. The roll bonding was performed at the three thickness reductions of 25%, 40% and 55% with base layers of various thicknesses (Q345R). The microstructures of the composite were investigated by the ultra-deep microscope (OM) and scanning electron microscope (SEM) and Transmission electron microscope (TEM). Simultaneously, the mechanical properties of the composite were experimentally measured and the tensile fracture surfaces were observed by SEM. The interfaces were successfully bonded without any cracking or voids, which indicated a good fabrication of the 304/Q345R composite. The rolling reduction rate and thinning increase of the substrate contributed to the bonding effects appearance of the roll bonded sheet. The Cr and Ni enriched diffusion layer was formed by the interface elements diffusion. The Cr and Ni diffusion led to the formation of ˜10 μm wide Cr and Ni layers on the carbon steel side.
76 FR 14058 - Notice of Inventory Completion: Fremont County Coroner, Riverton, WY
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-15
... associated funerary objects are 2 fragments of freshwater clam shells, 32 dentalia shell beads, 2 bird bone beads, 8 chokecherry seed beads, 162 bone heishi-style beads, 158 lignite heishi-style beads, 5 fragmentary bone heishi-style beads, 1 shell bead, and 3 chert microflakes. The Sinks Canyon site is located...
High volume nanoscale roll-based imprinting using jet and flash imprint lithography
NASA Astrophysics Data System (ADS)
Ahn, Se Hyun; Miller, Michael; Yang, Shuqiang; Ganapathisubramanian, Maha; Menezes, Marlon; Singh, Vik; Wan, Fen; Choi, Jin; Xu, Frank; LaBrake, Dwayne; Resnick, Douglas J.; Hofemann, Paul; Sreenivasan, S. V.
2014-03-01
Extremely large-area roll-to-roll manufacturing on flexible substrates is ubiquitous for applications such as paper and plastic processing. The challenge is to extend this approach to the realm of nanopatterning and realize similar benefits. Display applications, including liquid crystal (LCD), organic light emitting diode (OLED) and flexible displays are particularly interesting because of the ability to impact multiple levels in the basic display. Of particular interest are the polarizer, DBEF, thin film transistor and color filter; roll-based imprinting has the opportunity to create high performance components within the display while improving the cost of ownership of the panel. Realization of these devices requires both a scalable imprinting technology and tool. In this paper, we introduce a high volume roll-based nanopatterning system, the LithoFlex 350TM. The LithoFlex 350 uses an inkjet based imprinting process similar to the technology demonstrator tool, the LithoFlex 100, introduced in 2012. The width of the web is 350mm and patterning width is 300mm. The system can be configured either for Plate-to-Roll (P2R) imprinting (in which a rigid template is used to pattern the flexible web material) or for Roll-to-Plate imprinting (R2P) (in which a web based template is used to pattern either wafers or panels). Also described in this paper are improvements to wire grid polarizer devices. By optimizing the deposition, patterning and etch processes, we have been able to create working WGPs with transmittance and extinction ratios as high as 44% and 50,000, respectively.
Roll-to-Roll production of carbon nanotubes based supercapacitors
NASA Astrophysics Data System (ADS)
Zhu, Jingyi; Childress, Anthony; Karakaya, Mehmet; Roberts, Mark; Arcilla-Velez, Margarita; Podila, Ramakrishna; Rao, Apparao
2014-03-01
Carbon nanomaterials provide an excellent platform for electrochemical double layer capacitors (EDLCs). However, current industrial methods for producing carbon nanotubes are expensive and thereby increase the costs of energy storage to more than 10 Wh/kg. In this regard, we developed a facile roll-to-roll production technology for scalable manufacturing of multi-walled carbon nanotubes (MWNTs) with variable density on run-of-the-mill kitchen Al foils. Our method produces MWNTs with diameter (heights) between 50-100 nm (10-100 μm), and a specific capacitance as high as ~ 100 F/g in non-aqueous electrolytes. In this talk, the fundamental challenges involved in EDLC-suitable MWNT growth, roll-to-roll production, and device manufacturing will be discussed along with electrochemical characteristics of roll-to-roll MWNTs. Research supported by NSF CMMI Grant1246800.
Synthesis and screening of one-bead-one-compound cyclic peptide libraries.
Qian, Ziqing; Upadhyaya, Punit; Pei, Dehua
2015-01-01
Cyclic peptides have been a rich source of biologically active molecules. Herein we present a method for the combinatorial synthesis and screening of large one-bead-one-compound (OBOC) libraries of cyclic peptides against biological targets such as proteins. Up to ten million different cyclic peptides are rapidly synthesized on TentaGel microbeads by the split-and-pool synthesis method and subjected to a multistage screening protocol which includes magnetic sorting, on-bead enzyme-linked and fluorescence-based assays, and in-solution binding analysis of cyclic peptides selectively released from single beads by fluorescence anisotropy. Finally, the most active hit(s) is identified by the partial Edman degradation-mass spectrometry (PED-MS) method. This method allows a single researcher to synthesize and screen up to ten million cyclic peptides and identify the most active ligand(s) in ~1 month, without the time-consuming and expensive hit resynthesis or the use of any special equipment.
Zhao, Guangtao; Ding, Jiawang; Yu, Han; Yin, Tanji; Qin, Wei
2016-12-02
A potentiometric aptasensing assay that couples the DNA nanostructure-modified magnetic beads with a solid-contact polycation-sensitive membrane electrode for the detection of Vibrio alginolyticus is herein described. The DNA nanostructure-modified magnetic beads are used for amplification of the potential response and elimination of the interfering effect from a complex sample matrix. The solid-contact polycation-sensitive membrane electrode using protamine as an indicator is employed to chronopotentiometrically detect the change in the charge or DNA concentration on the magnetic beads, which is induced by the interaction between Vibrio alginolyticus and the aptamer on the DNA nanostructures. The present potentiometric aptasensing method shows a linear range of 10-100 CFU mL -1 with a detection limit of 10 CFU mL -1 , and a good specificity for the detection of Vibrio alginolyticus . This proposed strategy can be used for the detection of other microorganisms by changing the aptamers in the DNA nanostructures.
Byron, O
1997-01-01
Computer software such as HYDRO, based upon a comprehensive body of theoretical work, permits the hydrodynamic modeling of macromolecules in solution, which are represented to the computer interface as an assembly of spheres. The uniqueness of any satisfactory resultant model is optimized by incorporating into the modeling procedure the maximal possible number of criteria to which the bead model must conform. An algorithm (AtoB, for atoms to beads) that permits the direct construction of bead models from high resolution x-ray crystallographic or nuclear magnetic resonance data has now been formulated and tested. Models so generated then act as informed starting estimates for the subsequent iterative modeling procedure, thereby hastening the convergence to reasonable representations of solution conformation. Successful application of this algorithm to several proteins shows that predictions of hydrodynamic parameters, including those concerning solvation, can be confirmed. PMID:8994627
Wirelessly powered microfluidic dielectrophoresis devices using printable RF circuits.
Qiao, Wen; Cho, Gyoujin; Lo, Yu-Hwa
2011-03-21
We report the first microfluidic device integrated with a printed RF circuit so the device can be wirelessly powered by a commercially available RFID reader. For conventional dielectrophoresis devices, electrical wires are needed to connect the electric components on the microchip to external equipment such as power supplies, amplifiers, function generators, etc. Such a procedure is unfamiliar to most clinicians and pathologists who are used to working with a microscope for examination of samples on microscope slides. The wirelessly powered device reported here eliminates the entire need for wire attachments and external instruments so the operators can use the device in essentially the same manner as they do with microscope slides. The integrated circuit can be fabricated on a flexible plastic substrate at very low cost using a roll-to-roll printing method. Electrical power at 13.56 MHz transmitted by a radio-frequency identification (RFID) reader is inductively coupled to the printed RFIC and converted into 10 V DC (direct current) output, which provides sufficient power to drive a microfluidic device to manipulate biological particles such as beads and proteins via the DC dielectrophoresis (DC-DEP) effect. To our best knowledge, this is the first wirelessly powered microfluidic dielectrophoresis device. Although the work is preliminary, the device concept, the architecture, and the core technology are expected to stimulate many efforts in the future and transform the technology to a wide range of clinical and point-of-care applications. This journal is © The Royal Society of Chemistry 2011
Breast Cancer Research at NASA
NASA Technical Reports Server (NTRS)
1998-01-01
High magnification of view of tumor cells aggregate on microcarrier beads, illustrting breast cells with intercellular boundaires on bead surface and aggregates of cells achieving 3-deminstional growth outward from bead after 56 days of culture in a NASA Bioreactor. NASA's Marshall Space Flight Center (MSFC) is sponsoring research with Bioreactors, rotating wall vessels designed to grow tissue samples in space, to understand how breast cancer works. This ground-based work studies the growth and assembly of human mammary epithelial cell (HMEC) from breast cancer susceptible tissue. Radiation can make the cells cancerous, thus allowing better comparisons of healthy vs. tunorous tissue. Credit: Dr. Jearne Becker, University of South Florida.
Hoffman, Robert A; Wang, Lili; Bigos, Martin; Nolan, John P
2012-09-01
Results from a standardization study cosponsored by the International Society for Advancement of Cytometry (ISAC) and the US National Institute of Standards and Technology (NIST) are reported. The study evaluated the variability of assigning intensity values to fluorophore standard beads by bead manufacturers and the variability of cross calibrating the standard beads to stained polymer beads (hard-dyed beads) using different flow cytometers. Hard dyed beads are generally not spectrally matched to the fluorophores used to stain cells, and spectral response varies among flow cytometers. Thus if hard dyed beads are used as fluorescence calibrators, one expects calibration for specific fluorophores (e.g., FITC or PE) to vary among different instruments. Using standard beads surface-stained with specific fluorophores (FITC, PE, APC, and Pacific Blue™), the study compared the measured intensity of fluorophore standard beads to that of hard dyed beads through cross calibration on 133 different flow cytometers. Using robust CV as a measure of variability, the variation of cross calibrated values was typically 20% or more for a particular hard dyed bead in a specific detection channel. The variation across different instrument models was often greater than the variation within a particular instrument model. As a separate part of the study, NIST and four bead manufacturers used a NIST supplied protocol and calibrated fluorophore solution standards to assign intensity values to the fluorophore beads. Values assigned to the reference beads by different groups varied by orders of magnitude in most cases, reflecting differences in instrumentation used to perform the calibration. The study concluded that the use of any spectrally unmatched hard dyed bead as a general fluorescence calibrator must be verified and characterized for every particular instrument model. Close interaction between bead manufacturers and NIST is recommended to have reliable and uniformly assigned fluorescence standard beads. Copyright © 2012 International Society for Advancement of Cytometry.
A lysozyme and magnetic bead based method of separating intact bacteria.
Diler, Ebru; Obst, Ursula; Schmitz, Katja; Schwartz, Thomas
2011-07-01
As a response to environmental stress, bacterial cells can enter a physiological state called viable but noncultivable (VBNC). In this state, bacteria fail to grow on routine bacteriological media. Consequently, standard methods of contamination detection based on bacteria cultivation fail. Although they are not growing, the cells are still alive and are able to reactivate their metabolism. The VBNC state and low bacterial densities are big challenges for cultivation-based pathogen detection in drinking water and the food industry, for example. In this context, a new molecular-biological separation method for bacteria using point-mutated lysozymes immobilised on magnetic beads for separating bacteria is described. The immobilised mutated lysozymes on magnetic beads serve as bait for the specific capture of bacteria from complex matrices or water due to their remaining affinity for bacterial cell wall components. Beads with bacteria can be separated using magnetic racks. To avoid bacterial cell lysis by the lysozymes, the protein was mutated at amino acid position 35, leading to the exchange of the catalytic glutamate for alanine (LysE35A) and glutamine (LysE35Q). As proved by turbidity assay with reference bacteria, the muramidase activity was knocked out. The mutated constructs were expressed by the yeast Pichia pastoris and secreted into expression medium. Protein enrichment and purification were carried out by SO(3)-functionalised nanoscale cationic exchanger particles. For a proof of principle, the proteins were biotinylated and immobilised on streptavidin-functionalised, fluorescence dye-labelled magnetic beads. These constructs were used for the successful capture of Syto9-marked Microccocus luteus cells from cell suspension, as visualised by fluorescence microscopy, which confirmed the success of the strategy.
Development of a new passive sampler based on diffusive milligel beads for copper analysis in water.
Perez, M; Reynaud, S; Lespes, G; Potin-Gautier, M; Mignard, E; Chéry, P; Schaumlöffel, D; Grassl, B
2015-08-26
A new passive sampler was designed and characterized for the determination of free copper ion (Cu(2+)) concentration in aqueous solution. Each sampling device was composed of a set of about 30 diffusive milligel (DMG) beads. Milligel beads with incorporated cation exchange resin (Chelex) particles were synthetized using an adapted droplet-based millifluidic process. Beads were assumed to be prolate spheroids, with a diameter of 1.6 mm and an anisotropic factor of 1.4. The milligel was controlled in chemical composition of hydrogel (monomer, cross-linker, initiator and Chelex concentration) and characterized in pore size. Two types of sampling devices were developed containing 7.5% and 15% of Chelex, respectively, and 6 nm pore size. The kinetic curves obtained demonstrated the accumulation of copper in the DMG according to the process described in the literature as absorption (and/or adsorption) and release following the Fick's first law of diffusion. For their use in water monitoring, the typical physico-chemical characteristics of the samplers, i.e. the mass-transfer coefficient (k0) and the sampler-water partition coefficient (Ksw), were determined based on a static exposure design. In order to determine the copper concentration in the samplers after their exposure, a method using DMG bead digestion combined to Inductively Coupled Plasma - Atomic Emission Spectrometry (ICP-AES) analysis was developed and optimized. The DMG devices proved to be capable to absorb free copper ions from an aqueous solution, which could be accurately quantified with a mean recovery of 99% and a repeatability of 7% (mean relative uncertainty). Copyright © 2015 Elsevier B.V. All rights reserved.
A novel multiplex bead-based platform highlights the diversity of extracellular vesicles
Koliha, Nina; Wiencek, Yvonne; Heider, Ute; Jüngst, Christian; Kladt, Nikolay; Krauthäuser, Susanne; Johnston, Ian C. D.; Bosio, Andreas; Schauss, Astrid; Wild, Stefan
2016-01-01
The surface protein composition of extracellular vesicles (EVs) is related to the originating cell and may play a role in vesicle function. Knowledge of the protein content of individual EVs is still limited because of the technical challenges to analyse small vesicles. Here, we introduce a novel multiplex bead-based platform to investigate up to 39 different surface markers in one sample. The combination of capture antibody beads with fluorescently labelled detection antibodies allows the analysis of EVs that carry surface markers recognized by both antibodies. This new method enables an easy screening of surface markers on populations of EVs. By combining different capture and detection antibodies, additional information on relative expression levels and potential vesicle subpopulations is gained. We also established a protocol to visualize individual EVs by stimulated emission depletion (STED) microscopy. Thereby, markers on single EVs can be detected by fluorophore-conjugated antibodies. We used the multiplex platform and STED microscopy to show for the first time that NK cell–derived EVs and platelet-derived EVs are devoid of CD9 or CD81, respectively, and that EVs isolated from activated B cells comprise different EV subpopulations. We speculate that, according to our STED data, tetraspanins might not be homogenously distributed but may mostly appear as clusters on EV subpopulations. Finally, we demonstrate that EV mixtures can be separated by magnetic beads and analysed subsequently with the multiplex platform. Both the multiplex bead-based platform and STED microscopy revealed subpopulations of EVs that have been indistinguishable by most analysis tools used so far. We expect that an in-depth view on EV heterogeneity will contribute to our understanding of different EVs and functions. PMID:26901056
Beads task vs. box task: The specificity of the jumping to conclusions bias.
Balzan, Ryan P; Ephraums, Rachel; Delfabbro, Paul; Andreou, Christina
2017-09-01
Previous research involving the probabilistic reasoning 'beads task' has consistently demonstrated a jumping-to-conclusions (JTC) bias, where individuals with delusions make decisions based on limited evidence. However, recent studies have suggested that miscomprehension may be confounding the beads task. The current study aimed to test the conventional beads task against a conceptually simpler probabilistic reasoning "box task" METHODS: One hundred non-clinical participants completed both the beads task and the box task, and the Peters et al. Delusions Inventory (PDI) to assess for delusion-proneness. The number of 'draws to decision' was assessed for both tasks. Additionally, the total amount of on-screen evidence was manipulated for the box task, and two new box task measures were assessed (i.e., 'proportion of evidence requested' and 'deviation from optimal solution'). Despite being conceptually similar, the two tasks did not correlate, and participants requested significantly less information on the beads task relative to the box task. High-delusion-prone participants did not demonstrate hastier decisions on either task; in fact, for box task, this group was observed to be significantly more conservative than low-delusion-prone group. Neither task was incentivized; results need replication with a clinical sample. Participants, and particularly those identified as high-delusion-prone, displayed a more conservative style of responding on the novel box task, relative to the beads task. The two tasks, whilst conceptually similar, appear to be tapping different cognitive processes. The implications of these results are discussed in relation to the JTC bias and the theoretical mechanisms thought to underlie it. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lencioni, Riccardo, E-mail: riccardo.lencioni@med.unipi.it; Baere, Thierry de; Burrel, Marta
2012-10-15
Tranarterial chemoembolization (TACE) has been established by a meta-analysis of randomized controlled trials as the standard of care for nonsurgical patients with large or multinodular noninvasive hepatocellular carcinoma (HCC) isolated to the liver and with preserved liver function. Although conventional TACE with administration of an anticancer-in-oil emulsion followed by embolic agents has been the most popular technique, the introduction of embolic drug-eluting beads has provided an alternative to lipiodol-based regimens. Experimental studies have shown that TACE with drug-eluting beads has a safe pharmacokinetic profile and results in effective tumor killing in animal models. Early clinical experiences have confirmed that drug-elutingmore » beads provide a combined ischemic and cytotoxic effect locally with low systemic toxic exposure. Recently, the clinical value of a TACE protocol performed by using the embolic microsphere DC Bead loaded with doxorubicin (DEBDOX; drug-eluting bead doxorubicin) has been shown by randomized controlled trials. An important limitation of conventional TACE has been the inconsistency in the technique and the treatment schedules. This limitation has hampered the acceptance of TACE as a standard oncology treatment. Doxorubicin-loaded DC Bead provides levels of consistency and repeatability not available with conventional TACE and offers the opportunity to implement a standardized approach to HCC treatment. With this in mind, a panel of physicians took part in a consensus meeting held during the European Conference on Interventional Oncology in Florence, Italy, to develop a set of technical recommendations for the use of DEBDOX in HCC treatment. The conclusions of the expert panel are summarized.« less
Characterization of Trapped Lignin-Degrading Microbes in Tropical Forest Soil
DeAngelis, Kristen M.; Allgaier, Martin; Chavarria, Yaucin; Fortney, Julian L.; Hugenholtz, Phillip; Simmons, Blake; Sublette, Kerry; Silver, Whendee L.; Hazen, Terry C.
2011-01-01
Lignin is often the most difficult portion of plant biomass to degrade, with fungi generally thought to dominate during late stage decomposition. Lignin in feedstock plant material represents a barrier to more efficient plant biomass conversion and can also hinder enzymatic access to cellulose, which is critical for biofuels production. Tropical rain forest soils in Puerto Rico are characterized by frequent anoxic conditions and fluctuating redox, suggesting the presence of lignin-degrading organisms and mechanisms that are different from known fungal decomposers and oxygen-dependent enzyme activities. We explored microbial lignin-degraders by burying bio-traps containing lignin-amended and unamended biosep beads in the soil for 1, 4, 13 and 30 weeks. At each time point, phenol oxidase and peroxidase enzyme activity was found to be elevated in the lignin-amended versus the unamended beads, while cellulolytic enzyme activities were significantly depressed in lignin-amended beads. Quantitative PCR of bacterial communities showed more bacterial colonization in the lignin-amended compared to the unamended beads after one and four weeks, suggesting that the lignin supported increased bacterial abundance. The microbial community was analyzed by small subunit 16S ribosomal RNA genes using microarray (PhyloChip) and by high-throughput amplicon pyrosequencing based on universal primers targeting bacterial, archaeal, and eukaryotic communities. Community trends were significantly affected by time and the presence of lignin on the beads. Lignin-amended beads have higher relative abundances of representatives from the phyla Actinobacteria, Firmicutes, Acidobacteria and Proteobacteria compared to unamended beads. This study suggests that in low and fluctuating redox soils, bacteria could play a role in anaerobic lignin decomposition. PMID:21559391
Microinjected magnetic beads induce curvature in Chara rhizoids
NASA Astrophysics Data System (ADS)
Scherp, P.; Hasenstein, K.
The gravitropic response of the Chara rhizoid is based on the interaction between the statoliths and the actin network located in the rhizoid apex. The rhizoid represents a model system for the study of gravitropism, because its apical cell contains the gravity sensing and response mechanism. In order to study the function of the statoliths and the cytoskeleton, we supplemented the naturally occurring statoliths with magnetic beads. These beads can be moved by an external magnetic field and they can be coated to interact with the cytoskeleton. The magnetic beads (1μm diameter) were injected close to the tip of the rhizoid in the presence of an external osmoticum to offset turgor pressure. The injection caused the formation of a noticeable plug of dense material at the site of impalement. After a recovery period of ca. 2 - 4 hours, the whole plant was mounted on the rotatable stage of a custom- built horizontal microscope, equipped with a long-working distance objective and a video camera. This stage is designed to reorientate the cell and/or the injected beads. In order to study the effect of the displacement of magnetic beads, an external magnetic field was applied. This external field was capable of displacing the magnetic particles but did not affect the natural statoliths. Work is in progress to quantify the response, to study the effect of microinjection on wall formation, and utilize coating of the beads to investigate their possible interaction with the original statoliths and with the microfilament network. Supported by NASA grant NAG 2- 1423.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Xiao-xi; Liu, Chang; University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing 100049
2013-08-15
Hepatocellular carcinoma (HCC) is the most common primary liver cancer and often forms metastases, which are the most important prognostic factors. For further elucidation of the mechanism underlying the progression and metastasis of HCC, a culture system mimicking the in vivo tumor microenvironment is needed. In this study, we investigated the metastatic ability of HCC cells cultured within alginate gel (ALG) beads. In the culture system, HCC cells formed spheroids by proliferation and maintained in nuclear abnormalities. The gene and protein expression of metastasis-related molecules was increased in ALG beads, compared with the traditional adhesion culture. Furthermore, several gene expressionmore » levels in ALG bead culture system were even closer to liver cancer tissues. More importantly, in vitro invasion assay showed that the invasion cells derived from ALG beads was 7.8-fold higher than adhesion cells. Our results indicated that the in vitro three-dimensional (3D) model based on ALG beads increased metastatic ability compared with adhesion culture, even partly mimicked the in vivo tumor tissues. Moreover, due to the controllable preparation conditions, steady characteristics and production at large-scale, the 3D ALG bead model would become an important tool used in the high-throughput screening of anti-metastasis drugs and the metastatic mechanism research. -- Highlights: •We established a 3D metastasis model mimicking the metastatic ability in vivo. •The invasion ability of cells derived from our model was increased significantly. •The model is easy to reproduce, convenient to handle, and amenable for large-scale.« less
Henken, Rachel L.; Chantiwas, Rattikan; Gilman, S. Douglass
2012-01-01
Significant changes in the formation and retention of magnetic bead plugs in a capillary during electrophoresis were studied, and it was demonstrated that these effects were due to the type of biological molecule immobilized on the surface of these beads. Three biological molecules, an antibody, an oligonucleotide and alkaline phosphatase, were attached to otherwise identical streptavidin-coated magnetic beads through biotin-avidin binding in order to isolate differences in bead immobilization in a magnetic field resulting from the type of biological molecule immobilized on the bead surface. Alkaline phosphatase also was attached to the magnetic beads using epoxy groups on the bead surfaces (instead of avidin-biotin binding) to study the impact of immobilization chemistry. The formation and retention of magnetic bead plugs were studied quantitatively using light scattering detection of magnetic particles eluting from the bead plugs and qualitatively using microscopy. Both the type of biomolecule immobilized on the magnetic bead surface and the chemistry used to link the biomolecule to the magnetic bead impacted the formation and retention of the bead plugs. PMID:22437880
NASA Astrophysics Data System (ADS)
Zhang, Bin; Deng, Congying; Zhang, Yi
2018-03-01
Rolling element bearings are mechanical components used frequently in most rotating machinery and they are also vulnerable links representing the main source of failures in such systems. Thus, health condition monitoring and fault diagnosis of rolling element bearings have long been studied to improve operational reliability and maintenance efficiency of rotatory machines. Over the past decade, prognosis that enables forewarning of failure and estimation of residual life attracted increasing attention. To accurately and efficiently predict failure of the rolling element bearing, the degradation requires to be well represented and modelled. For this purpose, degradation of the rolling element bearing is analysed with the delay-time-based model in this paper. Also, a hybrid feature selection and health indicator construction scheme is proposed for extraction of the bearing health relevant information from condition monitoring sensor data. Effectiveness of the presented approach is validated through case studies on rolling element bearing run-to-failure experiments.
Simulation of solid-liquid flows in a stirred bead mill based on computational fluid dynamics (CFD)
NASA Astrophysics Data System (ADS)
Winardi, S.; Widiyastuti, W.; Septiani, E. L.; Nurtono, T.
2018-05-01
The selection of simulation model is an important step in computational fluid dynamics (CFD) to obtain an agreement with experimental work. In addition, computational time and processor speed also influence the performance of the simulation results. Here, we report the simulation of solid-liquid flow in a bead mill using Eulerian model. Multiple Reference Frame (MRF) was also used to model the interaction between moving (shaft and disk) and stationary (chamber exclude shaft and disk) zones. Bead mill dimension was based on the experimental work of Yamada and Sakai (2013). The effect of shaft rotation speed of 1200 and 1800 rpm on the particle distribution and the flow field was discussed. For rotation speed of 1200 rpm, the particles spread evenly throughout the bead mill chamber. On the other hand, for the rotation speed of 1800 rpm, the particles tend to be thrown to the near wall region resulting in the dead zone and found no particle in the center region. The selected model agreed well to the experimental data with average discrepancies less than 10%. Furthermore, the simulation was run without excessive computational cost.
Formation of Cucurbit[8]uril-Based Supramolecular Hydrogel Beads Using Droplet-Based Microfluidics.
Xu, Xuejiao; Appel, Eric A; Liu, Xin; Parker, Richard M; Scherman, Oren A; Abell, Chris
2015-09-14
Herein we describe the use of microdroplets as templates for the fabrication of uniform-sized supramolecular hydrogel beads, assembled by supramolecular cross-linking of functional biopolymers with the macrocyclic host molecule, cucurbit[8]uril (CB[8]). The microdroplets were formed containing diluted hydrogel precursors in solution, including the functional polymers and CB[8], in a microfluidic device. Subsequent evaporation of water from collected microdroplets concentrated the contents, driving the formation of the CB[8]-mediated host-guest ternary complex interactions and leading to the assembly of condensed three-dimensional polymeric scaffolds. Rehydration of the dried particles gave monodisperse hydrogel beads. Their equilibrium size was shown to be dependent on both the quantity of material loaded and the dimensions of the microfluidic flow focus. Fluorescein-labeled dextran was used to evaluate the efficacy of the hydrogel beads as a vector for controlled cargo release. Both passive, sustained release (hours) and triggered, fast release (minutes) of the FITC-dextran was observed, with the rate of sustained release dependent on the formulation. The kinetics of release was fitted to the Ritger-Peppas controlled release equation and shown to follow an anomalous (non-Fickian) transport mechanism.
Ran, Ying-Fen; Fields, Conor; Muzard, Julien; Liauchuk, Viktoryia; Carr, Michael; Hall, William; Lee, Gil U
2014-12-07
A sensitive, rapid, and label free magnetic bead aggregation (MBA) assay has been developed that employs superparamagnetic (SPM) beads to capture, purify, and detect model proteins and the herpes simplex virus (HSV). The MBA assay is based on monitoring the aggregation state of a population of SPM beads using light scattering of individual aggregates. A biotin-streptavidin MBA assay had a femtomolar (fM) level sensitivity for analysis times less than 10 minutes, but the response of the assay becomes nonlinear at high analyte concentrations. A MBA assay for the detection of HSV-1 based on a novel peptide probe resulted in the selective detection of the virus at concentrations as low as 200 viral particles (vp) per mL in less than 30 min. We define the parameters that determine the sensitivity and response of the MBA assay, and the mechanism of enhanced sensitivity of the assay for HSV. The speed, relatively low cost, and ease of application of the MBA assay promise to make it useful for the identification of viral load in resource-limited and point-of-care settings where molecular diagnostics cannot be easily implemented.
Taniuchi, Mami; Verweij, Jaco J.; Noor, Zannatun; Sobuz, Shihab U.; van Lieshout, Lisette; Petri, William A.; Haque, Rashidul; Houpt, Eric R.
2011-01-01
Polymerase chain reaction (PCR) assays for intestinal parasites are increasingly being used on fecal DNA samples for enhanced specificity and sensitivity of detection. Comparison of these tests against microscopy and copro-antigen detection has been favorable, and substitution of PCR-based assays for the ova and parasite stool examination is a foreseeable goal for the near future. One challenge is the diverse list of protozoan and helminth parasites. Several existing real-time PCR assays for the major intestinal parasites—Cryptosporidium spp., Giardia intestinalis, Entamoeba histolytica, Ancylostoma duodenale, Ascaris lumbricoides, Necator americanus, and Strongyloides stercoralis—were adapted into a high throughput protocol. The assay involves two multiplex PCR reactions, one with specific primers for the protozoa and one with specific primers for the helminths, after which PCR products are hybridized to beads linked to internal oligonucleotide probes and detected on a Luminex platform. When compared with the parent multiplex real-time PCR assays, this multiplex PCR-bead assay afforded between 83% and 100% sensitivity and specificity on a total of 319 clinical specimens. In conclusion, this multiplex PCR-bead protocol provides a sensitive diagnostic screen for a large panel of intestinal parasites. PMID:21292910
Wang, Bifeng; Friess, Wolfgang
2017-11-01
The goal of this study was to prepare sustained release microparticles for methyl blue and aspartame as sparingly and freely water-soluble model drugs by lipid film coating in a Mini-Glatt fluid bed, and to assess the effect of coating load of two of lipids, hard fat and glyceryl stearate, on the release rates. 30g drug-loaded mannitol carrier microparticles with average diameter of 500 or 300μm were coated with 5g, 10g, 20g and 30g lipids, respectively. The model drugs were completely released in vitro through pores which mainly resulted from dissolution of the polyol core beads. The release of methyl blue from microparticles based on 500μm carrier beads extended up to 25days, while aspartame release from microparticles formed from 300μm carrier beads was extended to 7days. Although glyceryl stearate exhibits higher wettability, burst and release rates were similar for the two lipid materials. Polymorphic transformation of the hart fat was observed upon release. The lipid-coated microparticles produced with 500μm carrier beads showed slightly lower burst release compared to the microparticles produced with 300μm carrier beads as they carried relatively thicker lipid layer based on an equivalent lipid to mannitol ratio. Aspartame microparticles showed a much faster release than methyl blue due to the higher water-solubility of aspartame. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Divvela, Mounica Jyothi; Joo, Yong Lak
2017-04-01
In this paper, we provide a theoretical investigation of axisymmetric instabilities observed during electrospinning, which lead to beads-on-a-string morphology. We used a discretized method to model the instability phenomena observed in the jet. We considered the fluid to be analogous to a bead-spring model. The motion of these beads is governed by the electrical, viscoelastic, surface tension, aerodynamic drag, and gravitational forces. The bead is perturbed at the nozzle, and the growth of the instability is observed over time, and along the length of the jet. We considered both lower electrical conducting polyisobutylene (PIB)-based Boger fluids and highly electrical conducting, polyethylene oxide (PEO)/water systems. In PIB fluids, the onset of the axisymmetric instability is predominantly based on the capillary mode, and the growth rate of the instability is decreased with the viscoelasticity of the jet. However, in the PEO/water system, the instability is electrically driven, and a significant increase in the growth rate of the instability is observed with the increase in the voltage. Our predictions from the discretized model are in good agreement with the previous linear stability analysis and experimental results. Our results also revealed the non-stationary behavior of the disturbance, where the amplitude of the perturbation is observed to be oscillating. Furthermore, we showed that the discretized model is also used to observe the non-axisymmetric behavior of the jet, which can be further used to study the bending instability in electrospinning.
Kaisar, Maria M M; Brienen, Eric A T; Djuardi, Yenny; Sartono, Erliyani; Yazdanbakhsh, Maria; Verweij, Jaco J; Supali, Taniawati; VAN Lieshout, Lisette
2017-06-01
For the majority of intestinal parasites, real-time PCR-based diagnosis outperforms microscopy. However, the data for Trichuris trichiura have been less convincing and most comparative studies have been performed in populations with low prevalence. This study aims to improve detection of T. trichuria DNA in human stool by evaluating four sample preparation methods. Faecal samples (n = 60) were collected at Flores island, Indonesia and examined by microscopy. Aliquots were taken and a bead-beating procedure was used both on directly frozen stool and on material preserved with 96% ethanol. PCR on frozen samples showed 40% to be positive for T. trichiura, compared with 45% positive by microscopy. The percentage positive increased when using ethanol preservation (45·0%), bead-beating (51·7%) and a combination (55·0%) and all three methods showed significantly higher DNA loads. The various procedures had a less pronounced effect on the PCR results of nine other parasite targets tested. Most prevalent were Ascaris lumbricoides (≈60%), Necator americanus (≈60%), Dientamoeba fragilis (≈50%) and Giardia lamblia (≈12%). To validate the practicality of the procedure, bead-beating was applied in a population-based survey testing 910 stool samples. Findings confirmed bead-beating before DNA extraction to be a highly efficient procedure for the detection of T. trichiura DNA in stool.
Robotic Enrichment Processing of Roche 454 Titanium Emlusion PCR at the DOE Joint Genome Institute
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamilton, Matthew; Wilson, Steven; Bauer, Diane
2010-05-28
Enrichment of emulsion PCR product is the most laborious and pipette-intensive step in the 454 Titanium process, posing the biggest obstacle for production-oriented scale up. The Joint Genome Institute has developed a pair of custom-made robots based on the Microlab Star liquid handling deck manufactured by Hamilton to mediate the complexity and ergonomic demands of the 454 enrichment process. The robot includes a custom built centrifuge, magnetic deck positions, as well as heating and cooling elements. At present processing eight emulsion cup samples in a single 2.5 hour run, these robots are capable of processing up to 24 emulsion cupmore » samples. Sample emulsions are broken using the standard 454 breaking process and transferred from a pair of 50ml conical tubes to a single 2ml tube and loaded on the robot. The robot performs the enrichment protocol and produces beads in 2ml tubes ready for counting. The robot follows the Roche 454 enrichment protocol with slight exceptions to the manner in which it resuspends beads via pipette mixing rather than vortexing and a set number of null bead removal washes. The robotic process is broken down in similar discrete steps: First Melt and Neutralization, Enrichment Primer Annealing, Enrichment Bead Incubation, Null Bead Removal, Second Melt and Neutralization and Sequencing Primer Annealing. Data indicating our improvements in enrichment efficiency and total number of bases per run will also be shown.« less
Magnetic tweezers with high permeability electromagnets for fast actuation of magnetic beads.
Chen, La; Offenhäusser, Andreas; Krause, Hans-Joachim
2015-04-01
As a powerful and versatile scientific instrument, magnetic tweezers have been widely used in biophysical research areas, such as mechanical cell properties and single molecule manipulation. If one wants to steer bead position, the nonlinearity of magnetic properties and the strong position dependence of the magnetic field in most magnetic tweezers lead to quite a challenge in their control. In this article, we report multi-pole electromagnetic tweezers with high permeability cores yielding high force output, good maneuverability, and flexible design. For modeling, we adopted a piece-wise linear dependence of magnetization on field to characterize the magnetic beads. We implemented a bi-linear interpolation of magnetic field in the work space, based on a lookup table obtained from finite element simulation. The electronics and software were custom-made to achieve high performance. In addition, the effects of dimension and defect on structure of magnetic tips also were inspected. In a workspace with size of 0.1 × 0.1 mm(2), a force of up to 400 pN can be applied on a 2.8 μm superparamagnetic bead in any direction within the plane. Because the magnetic particle is always pulled towards a tip, the pulling forces from the pole tips have to be well balanced in order to achieve control of the particle's position. Active video tracking based feedback control is implemented, which is able to work at a speed of up to 1 kHz, yielding good maneuverability of the magnetic beads.
Magnetic tweezers with high permeability electromagnets for fast actuation of magnetic beads
NASA Astrophysics Data System (ADS)
Chen, La; Offenhäusser, Andreas; Krause, Hans-Joachim
2015-04-01
As a powerful and versatile scientific instrument, magnetic tweezers have been widely used in biophysical research areas, such as mechanical cell properties and single molecule manipulation. If one wants to steer bead position, the nonlinearity of magnetic properties and the strong position dependence of the magnetic field in most magnetic tweezers lead to quite a challenge in their control. In this article, we report multi-pole electromagnetic tweezers with high permeability cores yielding high force output, good maneuverability, and flexible design. For modeling, we adopted a piece-wise linear dependence of magnetization on field to characterize the magnetic beads. We implemented a bi-linear interpolation of magnetic field in the work space, based on a lookup table obtained from finite element simulation. The electronics and software were custom-made to achieve high performance. In addition, the effects of dimension and defect on structure of magnetic tips also were inspected. In a workspace with size of 0.1 × 0.1 mm2, a force of up to 400 pN can be applied on a 2.8 μm superparamagnetic bead in any direction within the plane. Because the magnetic particle is always pulled towards a tip, the pulling forces from the pole tips have to be well balanced in order to achieve control of the particle's position. Active video tracking based feedback control is implemented, which is able to work at a speed of up to 1 kHz, yielding good maneuverability of the magnetic beads.
Specifics of Pulsed Arc Welding Power Supply Performance Based On A Transistor Switch
NASA Astrophysics Data System (ADS)
Krampit, N. Yu; Kust, T. S.; Krampit, M. A.
2016-08-01
Specifics of designing a pulsed arc welding power supply device are presented in the paper. Electronic components for managing large current was analyzed. Strengths and shortcomings of power supply circuits based on thyristor, bipolar transistor and MOSFET are outlined. As a base unit for pulsed arc welding was chosen MOSFET transistor, which is easy to manage. Measures to protect a transistor are given. As for the transistor control device is a microcontroller Arduino which has a low cost and adequate performance of the work. Bead transfer principle is to change the voltage on the arc in the formation of beads on the wire end. Microcontroller controls transistor when the arc voltage reaches the threshold voltage. Thus there is a separation and transfer of beads without splashing. Control strategies tested on a real device and presented. The error in the operation of the device is less than 25 us, it can be used controlling drop transfer at high frequencies (up to 1300 Hz).
Zhuang, Si-Hui; Guo, Xin-Xin; Wu, Ying-Song; Chen, Zhen-Hua; Chen, Yao; Ren, Zhi-Qi; Liu, Tian-Cai
2016-01-01
The unique photoproperties of quantum dots are promising for potential application in bioassays. In the present study, quantum dots were applied to a luminescent oxygen channeling assay. The reaction system developed in this study was based on interaction of biotin with streptavidin. Carboxyl-modified polystyrene microspheres doped with quantum dots were biotinylated and used as acceptors. Photosensitizer-doped carboxyl-modified polystyrene microspheres were conjugated with streptavidin and used as donors. The results indicated that the singlet oxygen that was released from the donor beads diffused into the acceptor beads. The acceptor beads were then exited via thioxene, and were subsequently fluoresced. To avoid generating false positives, a high concentration (0.01 mg/mL) of quantum dots is required for application in homogeneous immunoassays. Compared to a conventional luminescent oxygen channeling assay, this quantum dots-based technique requires less time, and would be easier to automate and miniaturize because it requires no washing to remove excess labels.
Magnetic actuator for the control and mixing of magnetic bead-based reactions on-chip.
Berenguel-Alonso, Miguel; Granados, Xavier; Faraudo, Jordi; Alonso-Chamarro, Julián; Puyol, Mar
2014-10-01
While magnetic bead (MB)-based bioassays have been implemented in integrated devices, their handling on-chip is normally either not optimal--i.e. only trapping is achieved, with aggregation of the beads--or requires complex actuator systems. Herein, we describe a simple and low-cost magnetic actuator to trap and move MBs within a microfluidic chamber in order to enhance the mixing of a MB-based reaction. The magnetic actuator consists of a CD-shaped plastic unit with an arrangement of embedded magnets which, when rotating, generate the mixing. The magnetic actuator has been used to enhance the amplification reaction of an enzyme-linked fluorescence immunoassay to detect Escherichia coli O157:H7 whole cells, an enterohemorrhagic strain, which have caused several outbreaks in food and water samples. A 2.7-fold sensitivity enhancement was attained with a detection limit of 603 colony-forming units (CFU) /mL, when employing the magnetic actuator.
Highly sensitive detection of target molecules using a new fluorescence-based bead assay
NASA Astrophysics Data System (ADS)
Scheffler, Silvia; Strauß, Denis; Sauer, Markus
2007-07-01
Development of immunoassays with improved sensitivity, specificity and reliability are of major interest in modern bioanalytical research. We describe the development of a new immunomagnetic fluorescence detection (IM-FD) assay based on specific antigen/antibody interactions and on accumulation of the fluorescence signal on superparamagnetic PE beads in combination with the use of extrinsic fluorescent labels. IM-FD can be easily modified by varying the order of coatings and assay conditions. Depending on the target molecule, antibodies (ABs), entire proteins, or small protein epitopes can be used as capture molecules. The presence of target molecules is detected by fluorescence microscopy using fluorescently labeled secondary or detection antibodies. Here, we demonstrate the potential of the new assay detecting the two tumor markers IGF-I and p53 antibodies in the clinically relevant concentration range. Our data show that the fluorescence-based bead assay exhibits a large dynamic range and a high sensitivity down to the subpicomolar level.
Rapid and continuous magnetic separation in droplet microfluidic devices.
Brouzes, Eric; Kruse, Travis; Kimmerling, Robert; Strey, Helmut H
2015-02-07
We present a droplet microfluidic method to extract molecules of interest from a droplet in a rapid and continuous fashion. We accomplish this by first marginalizing functionalized super-paramagnetic beads within the droplet using a magnetic field, and then splitting the droplet into one droplet containing the majority of magnetic beads and one droplet containing the minority fraction. We quantitatively analysed the factors which affect the efficiency of marginalization and droplet splitting to optimize the enrichment of magnetic beads. We first characterized the interplay between the droplet velocity and the strength of the magnetic field and its effect on marginalization. We found that marginalization is optimal at the midline of the magnet and that marginalization is a good predictor of bead enrichment through splitting at low to moderate droplet velocities. Finally, we focused our efforts on manipulating the splitting profile to improve the enrichment provided by asymmetric splitting. We designed asymmetric splitting forks that employ capillary effects to preferentially extract the bead-rich regions of the droplets. Our strategy represents a framework to optimize magnetic bead enrichment methods tailored to the requirements of specific droplet-based applications. We anticipate that our separation technology is well suited for applications in single-cell genomics and proteomics. In particular, our method could be used to separate mRNA bound to poly-dT functionalized magnetic microparticles from single cell lysates to prepare single-cell cDNA libraries.
Chitosan-based nanocomposites for de-nitrification of water
NASA Astrophysics Data System (ADS)
Masheane, Monaheng L.; Nthunya, Lebea N.; Malinga, Soraya P.; Nxumalo, Edward N.; Mhlanga, Sabelo D.
2017-08-01
Novel chitosan (CTs) nanocomposite beads containing alumina (Al2O3, denoted as Al in the nanocomposites) and functionalized multiwalled carbon nanotubes (f-MWCNTs) (CTsAl/f-MWCNTs) were prepared using an environmentally benign phase inversion method and subsequently used for the removal of nitrates (NO3-) in water. The ellipsoidal beads with an average size of 3 mm were readily formed at room temperature and contained a small amount of Al (20 wt%) and f-MWCNTs (5%). The beads were found to adsorb nitrates effectively over a wide range of pH (pH 2 - pH 6) and showed maximum nitrates removal of 96.8% from a 50 mg/L nitrate water solution. Pure CTs beads on the other hand removed only 23% at pH 4. Kinetic studies suggested that the particle diffusion was rate controlling step for the adsorption of nitrates on CTsAl/f-MWCNT nanocomposite beads. Langmuir-Freundlich isotherms revealed that the adsorption of nitrates was on the heterogeneous surface of CTsAl/f-MWCNT beads. The Dubinin-Radushkevich (D-R) isotherm further revealed that the adsorption of nitrates was by electrostatic interaction. Thermodynamic studies suggested that the adsorption was spontaneous and exothermic. More than 70% recovery was achieved for 5 cycles of desorption-degeneration studies. Al and f-MWCNTs have shown to improve swelling and solubility of CTs.
Optimization of process parameters of pulsed TIG welded maraging steel C300
NASA Astrophysics Data System (ADS)
Deepak, P.; Jualeash, M. J.; Jishnu, J.; Srinivasan, P.; Arivarasu, M.; Padmanaban, R.; Thirumalini, S.
2016-09-01
Pulsed TIG welding technology provides excellent welding performance on thin sections which helps to increase productivity, enhance weld quality, minimize weld costs, and boost operator efficiency and this has drawn the attention of the welding society. Maraging C300 steel is extensively used in defence and aerospace industry and thus its welding becomes an area of paramount importance. In pulsed TIG welding, weld quality depends on the process parameters used. In this work, Pulsed TIG bead-on-plate welding is performed on a 5mm thick maraging C300 plate at different combinations of input parameters: peak current (Ip), base current (Ib) and pulsing frequency (HZ) as per box behnken design with three-levels for each factor. Response surface methodology is utilized for establishing a mathematical model for predicting the weld bead depth. The effect of Ip, Ib and HZ on the weld bead depth is investigated using the developed model. The weld bead depth is found to be affected by all the three parameters. Surface and contour plots developed from regression equation are used to optimize the processing parameters for maximizing the weld bead depth. Optimum values of Ip, Ib and HZ are obtained as 259 A, 120 A and 8 Hz respectively. Using this optimum condition, maximum bead depth of the weld is predicted to be 4.325 mm.
NASA Astrophysics Data System (ADS)
Jin, Dayong; Piper, James A.; Leif, Robert C.; Yang, Sean; Ferrari, Belinda C.; Yuan, Jingli; Wang, Guilan; Vallarino, Lidia M.; Williams, John W.
2009-03-01
A fundamental problem for rare-event cell analysis is auto-fluorescence from nontarget particles and cells. Time-gated flow cytometry is based on the temporal-domain discrimination of long-lifetime (>1 μs) luminescence-stained cells and can render invisible all nontarget cell and particles. We aim to further evaluate the technique, focusing on detection of ultra-rare-event 5-μm calibration beads in environmental water dirt samples. Europium-labeled 5-μm calibration beads with improved luminescence homogeneity and reduced aggregation were evaluated using the prototype UV LED excited time-gated luminescence (TGL) flow cytometer (FCM). A BD FACSAria flow cytometer was used to sort accurately a very low number of beads (<100 events), which were then spiked into concentrated samples of environmental water. The use of europium-labeled beads permitted the demonstration of specific detection rates of 100%+/-30% and 91%+/-3% with 10 and 100 target beads, respectively, that were mixed with over one million nontarget autofluorescent background particles. Under the same conditions, a conventional FCM was unable to recover rare-event fluorescein isothiocyanate (FITC) calibration beads. Preliminary results on Giardia detection are also reported. We have demonstrated the scientific value of lanthanide-complex biolabels in flow cytometry. This approach may augment the current method that uses multifluorescence-channel flow cytometry gating.
Sang, Lin; Luo, Dongdong; Wei, Zhiyong; Qi, Min
2017-06-01
The aim of current study was to develop drug-loaded polymeric beads with intrinsic X-ray visibility as embolic agents, targeting for noninvasive intraoperative location and postoperative examination during chemoembolization therapy. To endow polymer with inherent radiopacity, 4,4'-isopropylidinedi-(2,6-diiodophenol) (IBPA) was firstly synthesized and employed as a contrast agent, and then a set of radiopaque iodinated poly(lactic acid)-polyurethanes (I-PLAUs) via chain extender method were synthesized and characterized. These I-PLAU copolymers possessed sufficient radiopacity, in vitro non-cytotoxicity with human adipose-derived stem cells, and in vivo biocompatibility and degradability in rabbit model via intramuscular implantation. Doxorubicin (DOX), as a chemotherapeutic agent, was further incorporated into I-PLAU beads via a double emulsification (W/O/W) method. For drug release, two ratios of DOX-loaded I-PLAU beads exhibited calibrated size (200-550μm), porous internal structure, good X-ray visibility, evenly drug loading as well as tunable drug release. A preliminary test on in vitro tumor cell toxicity demonstrated that the DOX-loaded I-PLAU beads performed efficient anti-tumor effect. This study highlights novel X-ray visible drug-loaded I-PLAU beads used as promising embolic agents for non-invasive in situ X-ray tracking and efficient chemotherapy, which could bring opportunities to the next generation of multifunctional embolic agents. Copyright © 2017 Elsevier B.V. All rights reserved.
Rapid and continuous magnetic separation in droplet microfluidic devices
Brouzes, Eric; Kruse, Travis; Kimmerling, Robert; Strey, Helmut H.
2015-01-01
We present a droplet microfluidic method to extract molecules of interest from a droplet in a rapid and continuous fashion. We accomplish this by first marginalizing functionalized super-paramagnetic beads within the droplet using a magnetic field, and then splitting the droplet into one droplet containing the majority of magnetic beads and one droplet containing the minority fraction. We quantitatively analysed the factors which affect the efficiency of marginalization and droplet splitting to optimize the enrichment of magnetic beads. We first characterized the interplay between the droplet velocity and the strength of the magnetic field and its effect on marginalization. We found that marginalization is optimal at the midline of the magnet and that marginalization is a good predictor of bead enrichment through splitting at low to moderate droplet velocities. Finally, we focused our efforts on manipulating the splitting profile to improve the enrichment provided by asymmetric splitting. We designed asymmetric splitting forks that employ capillary effects to preferentially extract the bead-rich regions of the droplets. Our strategy represents a framework to optimize magnetic bead enrichment methods tailored to the requirements of specific droplet-based applications. We anticipate that our separation technology is well suited for applications in single-cell genomics and proteomics. In particular, our method could be used to separate mRNA bound to poly-dT functionalized magnetic microparticles from single cell lysates to prepare single-cell cDNA libraries. PMID:25501881
Iron aluminide knife and method thereof
Sikka, Vinod K.
1997-01-01
Fabricating an article of manufacture having a Fe.sub.3 Al-based alloy cutting edge. The fabrication comprises the steps of casting an Fe.sub.3 Al-based alloy, extruding into rectangular cross section, rolling into a sheet at 800.degree. C. for a period of time followed by rolling at 650.degree. C., cutting the rolled sheet into an article having an edge, and grinding the edge of the article to form a cutting edge.
Design of Low-Cost Vehicle Roll Angle Estimator Based on Kalman Filters and an Iot Architecture.
Garcia Guzman, Javier; Prieto Gonzalez, Lisardo; Pajares Redondo, Jonatan; Sanz Sanchez, Susana; Boada, Beatriz L
2018-06-03
In recent years, there have been many advances in vehicle technologies based on the efficient use of real-time data provided by embedded sensors. Some of these technologies can help you avoid or reduce the severity of a crash such as the Roll Stability Control (RSC) systems for commercial vehicles. In RSC, several critical variables to consider such as sideslip or roll angle can only be directly measured using expensive equipment. These kind of devices would increase the price of commercial vehicles. Nevertheless, sideslip or roll angle or values can be estimated using MEMS sensors in combination with data fusion algorithms. The objectives stated for this research work consist of integrating roll angle estimators based on Linear and Unscented Kalman filters to evaluate the precision of the results obtained and determining the fulfillment of the hard real-time processing constraints to embed this kind of estimators in IoT architectures based on low-cost equipment able to be deployed in commercial vehicles. An experimental testbed composed of a van with two sets of low-cost kits was set up, the first one including a Raspberry Pi 3 Model B, and the other having an Intel Edison System on Chip. This experimental environment was tested under different conditions for comparison. The results obtained from low-cost experimental kits, based on IoT architectures and including estimators based on Kalman filters, provide accurate roll angle estimation. Also, these results show that the processing time to get the data and execute the estimations based on Kalman Filters fulfill hard real time constraints.
Droplet based microfluidics for highthroughput screening of antibody secreting cells
NASA Astrophysics Data System (ADS)
Cai, Liheng; Heyman, John; Mazutis, Linas; Ung, Lloyd; Guerra, Rodrigo; Aubrecht, Donald; Weitz, David
2014-03-01
We present a droplet based microfluidic platform that allows highthroughput screening of antibody secreting cells. We coencapsulate single cells, fluorescent probes, and detection beads into emulsion droplets with diameter of 40 micron. The beads capture antibodies secreted by cells, resulting in a pronounced fluorescent signal that activates dielectrophoresis sorting at rate about 500 droplets per second. Moreover, we demonstrate that Reverse Transcription Polymerase Chain Reaction (RT-PCR) can be successfully applied to the cell encapsulated in a single sorted droplet. Our work highlights the potential of droplet based microfluidics as a platform to generate recombinant antibodies.
Sochol, Ryan D; Lu, Albert; Lei, Jonathan; Iwai, Kosuke; Lee, Luke P; Lin, Liwei
2014-05-07
Self-regulating fluidic components are critical to the advancement of microfluidic processors for chemical and biological applications, such as sample preparation on chip, point-of-care molecular diagnostics, and implantable drug delivery devices. Although researchers have developed a wide range of components to enable flow rectification in fluidic systems, engineering microfluidic diodes that function at the low Reynolds number (Re) flows and smaller scales of emerging micro/nanofluidic platforms has remained a considerable challenge. Recently, researchers have demonstrated microfluidic diodes that utilize high numbers of suspended microbeads as dynamic resistive elements; however, using spherical particles to block fluid flow through rectangular microchannels is inherently limited. To overcome this issue, here we present a single-layer microfluidic bead-based diode (18 μm in height) that uses a targeted circular-shaped microchannel for the docking of a single microbead (15 μm in diameter) to rectify fluid flow under low Re conditions. Three-dimensional simulations and experimental results revealed that adjusting the docking channel geometry and size to better match the suspended microbead greatly increased the diodicity (Di) performance. Arraying multiple bead-based diodes in parallel was found to adversely affect system efficacy, while arraying multiple diodes in series was observed to enhance device performance. In particular, systems consisting of four microfluidic bead-based diodes with targeted circular-shaped docking channels in series revealed average Di's ranging from 2.72 ± 0.41 to 10.21 ± 1.53 corresponding to Re varying from 0.1 to 0.6.
Dong, De-Xin; Ji, Zhi-Gang; Li, Han-Zhong; Yan, Wei-Gang; Zhang, Yu-Shi
2017-12-30
Objective To evaluate the application of weak cation exchange (WCX) magnetic bead-based Matrix-Assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS) in detecting differentially expressed proteins in the urine of renal clear cell carcinoma (RCCC) and its value in the early diagnosis of RCCC.Methods Eleven newly diagnosed patients (10 males and 1 female, aged 46-78, mean 63 years) of renal clear cell carcinoma by biopsy and 10 healthy volunteers (all males, aged 25-32, mean 29.7 years) were enrolled in this study. Urine samples of the RCCC patients and healthy controls were collected in the morning. Weak cation exchange (WCX) bead-based MALDI-TOF MS technique was applied in detecting differential protein peaks in the urine of RCCC. ClinProTools2.2 software was utilized to determine the characteristic proteins in the urine of RCCC patients for the predictive model of RCCC. Results The technique identified 160 protein peaks in the urine that were different between RCCC patients and health controls; and among them, there was one peak (molecular weight of 2221.71 Da) with statistical significance (P=0.0304). With genetic algorithms and the support vector machine, we screened out 13 characteristic protein peaks for the predictive model. Conclusions The application of WCX magnetic bead-based MALDI-TOF MS in detecting differentially expressed proteins in urine may have potential value for the early diagnosis of RCCC.
Duran, Maria Carolina; Willenbrock, Saskia; Müller, Jessika-M V; Nolte, Ingo; Feige, Karsten; Murua Escobar, Hugo
2013-04-01
Interleukin-12 (IL-12) and interferon gamma (IFN-γ) are key cytokines in immunemediated equine melanoma therapy. Currently, a method for accurate simultaneous quantification of these equine cytokines is lacking. Therefore, we sought to establish an assay that allows for accurate and simultaneous quantification of equine IL-12 (eIL-12) and IFN-γ (eIFN-γ). Several antibodies were evaluated for cross-reactivity to eIL-12 and eIFN-γ and were used to establish a bead-based Luminex assay, which was subsequently applied to quantify cytokine concentrations in biological samples. Cytokine detection ranged from 31.5-5,000 pg/ml and 15-10,000 pg/ml for eIL-12 and eIFN-γ, respectively. eIL-12 was detected in supernatants of stimulated peripheral blood mononuclear cells (PBMCs) and supernatants/cell lysates of eIL-12 expression plasmid-transfected cells. Low or undetectable cytokine concentrations were measured in negative controls. In equine serum samples, the mean measured eIL-12 concentration was 1,374 ± 8 pg/ml. The bead-based assay and ELISA for eIFN-γ used to measure eIFN-γ concentrations, showed similar concentrations. Results demonstrate, to our knowledge for the first time, that cross-reactive antibody pairs to eIL-12 and eIFN-γ and Luminex bead-based technology allow for accurate, simultaneous and multiplexed quantification of these key cytokines in biological samples.
Experiment Research on Hot-Rolling Processing of Nonsmooth Pit Surface.
Gu, Yun-Qing; Fan, Tian-Xing; Mou, Jie-Gang; Yu, Wei-Bo; Zhao, Gang; Wang, Evan
2016-01-01
In order to achieve the nonsmooth surface drag reduction structure on the inner polymer coating of oil and gas pipelines and improve the efficiency of pipeline transport, a structural model of the machining robot on the pipe inner coating is established. Based on machining robot, an experimental technique is applied to research embossing and coating problems of rolling-head, and then the molding process rules under different conditions of rolling temperatures speeds and depth are analyzed. Also, an orthogonal experiment analysis method is employed to analyze the different effects of hot-rolling process apparatus on the embossed pits morphology and quality of rolling. The results also reveal that elevating the rolling temperature or decreasing the rolling speed can also improve the pit structure replication rates of the polymer coating surface, and the rolling feed has little effect on replication rates. After the rolling-head separates from the polymer coating, phenomenon of rebounding and refluxing of the polymer coating occurs, which is the reason of inability of the process. A continuous hot-rolling method for processing is used in the robot and the hot-rolling process of the processing apparatus is put in a dynamics analysis.
Experiment Research on Hot-Rolling Processing of Nonsmooth Pit Surface
Gu, Yun-qing; Fan, Tian-xing; Mou, Jie-gang; Yu, Wei-bo; Zhao, Gang; Wang, Evan
2016-01-01
In order to achieve the nonsmooth surface drag reduction structure on the inner polymer coating of oil and gas pipelines and improve the efficiency of pipeline transport, a structural model of the machining robot on the pipe inner coating is established. Based on machining robot, an experimental technique is applied to research embossing and coating problems of rolling-head, and then the molding process rules under different conditions of rolling temperatures speeds and depth are analyzed. Also, an orthogonal experiment analysis method is employed to analyze the different effects of hot-rolling process apparatus on the embossed pits morphology and quality of rolling. The results also reveal that elevating the rolling temperature or decreasing the rolling speed can also improve the pit structure replication rates of the polymer coating surface, and the rolling feed has little effect on replication rates. After the rolling-head separates from the polymer coating, phenomenon of rebounding and refluxing of the polymer coating occurs, which is the reason of inability of the process. A continuous hot-rolling method for processing is used in the robot and the hot-rolling process of the processing apparatus is put in a dynamics analysis. PMID:27022235
NASA Astrophysics Data System (ADS)
Hördemann, C.; Hirschfelder, K.; Schaefer, M.; Gillner, A.
2015-09-01
The breakthrough of flexible organic electronics and especially organic photovoltaics is highly dependent on cost-efficient production technologies. Roll-2-Roll processes show potential for a promising solution in terms of high throughput and low-cost production of thin film organic components. Solution based material deposition and integrated laser patterning processes offer new possibilities for versatile production lines. The use of flexible polymeric substrates brings along challenges in laser patterning which have to be overcome. One main challenge when patterning transparent conductive layers on polymeric substrates are material bulges at the edges of the ablated area. Bulges can lead to short circuits in the layer system leading to device failure. Therefore following layers have to have a sufficient thickness to cover and smooth the ridge. In order to minimize the bulging height, a study has been carried out on transparent conductive ITO layers on flexible PET substrates. Ablation results using different beam shapes, such as Gaussian beam, Top-Hat beam and Donut-shaped beam, as well as multi-pass scribing and double-pulsed ablation are compared. Furthermore, lab scale methods for cleaning the patterned layer and eliminating bulges are contrasted to the use of additional water based sacrificial layers in order to obtain an alternative procedure suitable for large scale Roll-2-Roll manufacturing. Besides progress in research, ongoing transfer of laser processes into a Roll-2-Roll demonstrator is illustrated. By using fixed optical elements in combination with a galvanometric scanner, scribing, variable patterning and edge deletion can be performed individually.
Comparison of pre-processing methods for multiplex bead-based immunoassays.
Rausch, Tanja K; Schillert, Arne; Ziegler, Andreas; Lüking, Angelika; Zucht, Hans-Dieter; Schulz-Knappe, Peter
2016-08-11
High throughput protein expression studies can be performed using bead-based protein immunoassays, such as the Luminex® xMAP® technology. Technical variability is inherent to these experiments and may lead to systematic bias and reduced power. To reduce technical variability, data pre-processing is performed. However, no recommendations exist for the pre-processing of Luminex® xMAP® data. We compared 37 different data pre-processing combinations of transformation and normalization methods in 42 samples on 384 analytes obtained from a multiplex immunoassay based on the Luminex® xMAP® technology. We evaluated the performance of each pre-processing approach with 6 different performance criteria. Three performance criteria were plots. All plots were evaluated by 15 independent and blinded readers. Four different combinations of transformation and normalization methods performed well as pre-processing procedure for this bead-based protein immunoassay. The following combinations of transformation and normalization were suitable for pre-processing Luminex® xMAP® data in this study: weighted Box-Cox followed by quantile or robust spline normalization (rsn), asinh transformation followed by loess normalization and Box-Cox followed by rsn.
Seeds used for Bodhi beads in China
2014-01-01
Background Bodhi beads are a Buddhist prayer item made from seeds. Bodhi beads have a large and emerging market in China, and demand for the beads has particularly increased in Buddhism regions, especially Tibet. Many people have started to focus on and collect Bodhi beads and to develop a Bodhi bead culture. But no research has examined the source plants of Bodhi beads. Therefore, ethnobotanical surveys were conducted in six provinces of China to investigate and document Bodhi bead plants. Reasons for the development of Bodhi bead culture were also discussed. Methods Six provinces of China were selected for market surveys. Information was collected using semi-structured interviews, key informant interviews, and participatory observation with traders, tourists, and local residents. Barkhor Street in Lhasa was focused on during market surveys because it is one of the most popular streets in China. Results Forty-seven species (including 2 varieties) in 19 families and 39 genera represented 52 types of Bodhi beads that were collected. The most popular Bodhi bead plants have a long history and religious significance. Most Bodhi bead plants can be used as medicine or food, and their seeds or fruits are the main elements in these uses. ‘Bodhi seeds’ have been historically used in other countries for making ornaments, especially seeds of the legume family. Many factors helped form Bodhi bead culture in China, but its foundation was in Indian Buddhist culture. Conclusions As one of the earliest adornment materials, seeds played an important role for human production and life. Complex sources of Bodhi beads have different cultural and historical significance. People bought and collected Bodhi beads to reflect their love and admiration for the plants. Thus, the documentation of Bodhi bead plants can serve as a basis for future investigation of Bodhi bead culture and modern Buddhist culture. PMID:24479788
Seeds used for Bodhi beads in China.
Li, Feifei; Li, Jianqin; Liu, Bo; Zhuo, Jingxian; Long, Chunlin
2014-01-30
Bodhi beads are a Buddhist prayer item made from seeds. Bodhi beads have a large and emerging market in China, and demand for the beads has particularly increased in Buddhism regions, especially Tibet. Many people have started to focus on and collect Bodhi beads and to develop a Bodhi bead culture. But no research has examined the source plants of Bodhi beads. Therefore, ethnobotanical surveys were conducted in six provinces of China to investigate and document Bodhi bead plants. Reasons for the development of Bodhi bead culture were also discussed. Six provinces of China were selected for market surveys. Information was collected using semi-structured interviews, key informant interviews, and participatory observation with traders, tourists, and local residents. Barkhor Street in Lhasa was focused on during market surveys because it is one of the most popular streets in China. Forty-seven species (including 2 varieties) in 19 families and 39 genera represented 52 types of Bodhi beads that were collected. The most popular Bodhi bead plants have a long history and religious significance. Most Bodhi bead plants can be used as medicine or food, and their seeds or fruits are the main elements in these uses. 'Bodhi seeds' have been historically used in other countries for making ornaments, especially seeds of the legume family. Many factors helped form Bodhi bead culture in China, but its foundation was in Indian Buddhist culture. As one of the earliest adornment materials, seeds played an important role for human production and life. Complex sources of Bodhi beads have different cultural and historical significance. People bought and collected Bodhi beads to reflect their love and admiration for the plants. Thus, the documentation of Bodhi bead plants can serve as a basis for future investigation of Bodhi bead culture and modern Buddhist culture.
Yu, Linfen; Chen, Michael C W; Cheung, Karen C
2010-09-21
Creating multicellular tumor spheroids is critical for characterizing anticancer treatments since it may provide a better model than monolayer culture of tumor cells. Moreover, continuous dynamic perfusion allows the establishment of long term cell culture and subsequent multicellular spheroid formation. A droplet-based microfluidic system was used to form alginate beads with entrapped breast tumor cells. After gelation, the alginate beads were trapped in microsieve structures for cell culture in a continuous perfusion system. The alginate environment permitted cell proliferation and the formation of multicellular spheroids was observed. The dose-dependent response of the tumor spheroids to doxorubicin, and anticancer drug, showed multicellular resistance compared to conventional monolayer culture. The microsieve structures maintain constant location of each bead in the same position throughout the device seeding process, cell proliferation and spheroid formation, treatment with drug, and imaging, permitting temporal and spatial tracking.
Discontinuity Detection in the Shield Metal Arc Welding Process
Cocota, José Alberto Naves; Garcia, Gabriel Carvalho; da Costa, Adilson Rodrigues; de Lima, Milton Sérgio Fernandes; Rocha, Filipe Augusto Santos; Freitas, Gustavo Medeiros
2017-01-01
This work proposes a new methodology for the detection of discontinuities in the weld bead applied in Shielded Metal Arc Welding (SMAW) processes. The detection system is based on two sensors—a microphone and piezoelectric—that acquire acoustic emissions generated during the welding. The feature vectors extracted from the sensor dataset are used to construct classifier models. The approaches based on Artificial Neural Network (ANN) and Support Vector Machine (SVM) classifiers are able to identify with a high accuracy the three proposed weld bead classes: desirable weld bead, shrinkage cavity and burn through discontinuities. Experimental results illustrate the system’s high accuracy, greater than 90% for each class. A novel Hierarchical Support Vector Machine (HSVM) structure is proposed to make feasible the use of this system in industrial environments. This approach presented 96.6% overall accuracy. Given the simplicity of the equipment involved, this system can be applied in the metal transformation industries. PMID:28489045
Discontinuity Detection in the Shield Metal Arc Welding Process.
Cocota, José Alberto Naves; Garcia, Gabriel Carvalho; da Costa, Adilson Rodrigues; de Lima, Milton Sérgio Fernandes; Rocha, Filipe Augusto Santos; Freitas, Gustavo Medeiros
2017-05-10
This work proposes a new methodology for the detection of discontinuities in the weld bead applied in Shielded Metal Arc Welding (SMAW) processes. The detection system is based on two sensors-a microphone and piezoelectric-that acquire acoustic emissions generated during the welding. The feature vectors extracted from the sensor dataset are used to construct classifier models. The approaches based on Artificial Neural Network (ANN) and Support Vector Machine (SVM) classifiers are able to identify with a high accuracy the three proposed weld bead classes: desirable weld bead, shrinkage cavity and burn through discontinuities. Experimental results illustrate the system's high accuracy, greater than 90% for each class. A novel Hierarchical Support Vector Machine (HSVM) structure is proposed to make feasible the use of this system in industrial environments. This approach presented 96.6% overall accuracy. Given the simplicity of the equipment involved, this system can be applied in the metal transformation industries.
Direct measurement of torque and twist generated by a dye binding to DNA
NASA Astrophysics Data System (ADS)
Gore, Jeff; Bryant, Zev; Bustamante, Carlos
2004-03-01
Many biologically important chemicals and proteins change the twist of DNA upon binding. We have used magnetic tweezers to directly measure the torque and twist generated when ethidium bromide binds and unbinds to DNA. One end of the DNA is bound specifically to a glass coverslip and the opposite end is held away from the surface by a paramagnetic bead. Attached to the middle of the DNA is a second fluorescent bead whose position can be tracked with high angular and temporal resolution. On one side of the fluorescent bead binding site we have engineered a single strand nick that acts like a free swivel. Addition of ethidium bromide then powered rotation of the central fluorescent bead. After the ethidium bromide was bound we used magnesium to compete out the intercalated ethidium bromide, thus inducing a rotation in the opposite direction. We studied the torque generation, energetics, and kinetics associated with ethidium bromide binding and unbinding by tracking the rotation of the fluorescent bead. This system is a demonstration of a reversible chemically powered DNA-based rotary motor. We also expect that this technique will be useful in studying proteins that bind to or rotate DNA, including recA, polymerases, and topoisomerases.
Chitosan-Based Nanocomposite Beads for Drinking Water Production
NASA Astrophysics Data System (ADS)
Masheane, ML; Nthunya, LN; Sambaza, SS; Malinga, SP; Nxumalo, EN; Mamba, BB; Mhlanga, SD
2017-05-01
Potable drinking water is essential for the good health of humans and it is a critical feedstock in a variety of industries such as food and pharmaceutical industries. For the first time, chitosan-alumina/functionalised multiwalled carbon nanotube (f-MWCNT) nanocomposite beads were developed and investigated for the reduction of various physico-chemical parameters from water samples collected from open wells used for drinking purposes by a rural community in South Africa. The water samples were analysed before and after the reduction of the identified contaminants by the nanocomposite beads. The nanocomposite beads were effective in the removal of nitrate, chromium and other physico-chemical parameters. Although, the water samples contained these contaminants within the WHO and SANS241 limits for no risk, the long-term exposure and accumulation is an environmental and health concern. The reduction of these contaminants was dependent on pH levels. At lower pH, the reduction was significantly higher, up to 99.2% (SPC), 91.0% (DOC), 92.2% (DO), 92.2% (turbidity), 96.5% (nitrate) and 97.7% (chromium). Generally, the chitosan-alumina/f-MWCNT nanocomposite beads offer a promising alternative material for reduction and removal of various physico-chemical parameters for production portable water.
Das, Siddhartha; Chakraborty, Suman
2011-08-01
In this paper, we quantitatively demonstrate that exponentially decaying attractive potentials can effectively mimic strong hydrophobic interactions between monomer units of a polymer chain dissolved in aqueous solvent. Classical approaches to modeling hydrophobic solvation interactions are based on invariant attractive length scales. However, we demonstrate here that the solvation interaction decay length may need to be posed as a function of the relative separation distances and the sizes of the interacting species (or beads or monomers) to replicate the necessary physical interactions. As an illustrative example, we derive a universal scaling relationship for a given solute-solvent combination between the solvation decay length, the bead radius, and the distance between the interacting beads. With our formalism, the hydrophobic component of the net attractive interaction between monomer units can be synergistically accounted for within the unified framework of a simple exponentially decaying potential law, where the characteristic decay length incorporates the distinctive and critical physical features of the underlying interaction. The present formalism, even in a mesoscopic computational framework, is capable of incorporating the essential physics of the appropriate solute-size dependence and solvent-interaction dependence in the hydrophobic force estimation, without explicitly resolving the underlying molecular level details.
Nominal effective immunoreaction volume of magnetic beads at single bead level.
Wang, Rui; Chen, Yuan; Fan, Kai; Ji, Feng; Wu, Jian; Yu, Yong-Hua
Immunomagnetic bead (IMB)-based enzyme-linked immunosorbent assay (ELISA) has been the tool frequently used for protein detection in research and clinical laboratories. For most ELISA reactions the recommended dosage of IMBs is usually according to their weight (mg) or mass fraction (w/v) instead of the bead number. Consequently, the processes occurring in the immediate vicinity of the IMBs have always been ignored by researchers and they cannot be revealed in detail during the ELISA reaction. In this paper, we established the relationship between number of IMBs and colorimetric results, and further proposed a new concept of "nominal effective immunoreaction volume (NEIV)" to characterize a single IMB during ELISA reaction. Results showed that the NEIV of a single IMB has a constant value, which is unrelated to the amount of beads and the concentration of antigen. Optimal results of the colorimetric ELISA are achieved when the incubation volume meets each IMB's NEIV and is no longer enhanced by increasing the incubation volume. Thus, the reliable and relatively precise number of IMBs for ELISA detection during practical application could be determined. Most importantly, a study using IMB's NEIV would lay the foundation for a kinetics analysis of IMBs and antigens for future study.
Doğaç, Yasemin Ispirli; Teke, Mustafa
2016-04-01
We reported natural polymer-conjugated magnetic featured urease systems for removal of urea effectively. The optimum temperature (20-60 °C), optimum pH (3.0-10.0), kinetic parameters, thermal stability (4-70 °C), pH stability (4.0-9.0), operational stability (0-250 min), reusability (18 times) and storage stability (24 weeks) were studied for characterisation of the urease-encapsulated biocompatible polymer-conjugated magnetic beads. Also, the surface groups and chemical structure of the magnetic beads were determined by using attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR). The all urease-encapsulated magnetic beads protected their stability of 30-45 % relative activity at 70 °C. A significant increase was observed at their pH stability compared with the free urease for both acidic and alkaline medium. Besides this, their repeatability activity were approximately 100 % during 4(th) run. They showed residual activity of 50 % after 16 weeks. The importance of this work is enhancement stability of immobilised urease by biocompatible polymer-conjugated magnetic beads for the industrial application based on removal of urea.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grate, Jay W.; Warner, Marvin G.; Ozanich, Richard M.
2009-03-05
A renewable surface biosensor for rapid detection of botulinum toxin is described based on fluidic automation of a fluorescence sandwich immunoassay, using a recombinant fragment of the toxin heavy chain as a structurally valid simulant. Monoclonal antibodies AR4 and RAZ1 bind to separate epitopes of both this fragment and the holotoxin. The AR4 antibody was covalently bound to Sepharose beads and used as the capture antibody. A rotating rod flow cell was used to capture these beads delivered as a suspension by the sequential injection flow system, creating a 3.6 microliter column. After perfusing the bead column with sample andmore » washing away the matrix, the column was perfused with Alexa 647 dye-labeled RAZ1 antibody as the reporter. Optical fibers coupled to the rotating rod flow cell at a 90 degree angle to one another delivered excitation light from a HeNe laser and collected fluorescent emission light for detection. After each measurement, the used sepharose beads are released and replaced with fresh beads. In a rapid screening approach to sample analysis, the toxin simulant was detected to concentrations of 10 pM in less than 20 minutes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jun; Liu, Guodong; Wu, Hong
2008-03-03
We present a poly(guanine)-functionalized silica nanoparticle (NP) label-based electrochemical immunoassay for sensitively detecting 2,4,6-trinitrotoluene (TNT). This immunoassay takes advantage of magnetic bead–based platform for competitive displacement immunoreactions and separation, and use electroactive nanoparticles as labels for signal amplification. For this assay, anti-TNT-coated magnetic beads interacted with TNT analog-conjugated poly(guanine)-silica NPs and formed analog-anti-TNT immunocomplexes on magnetic beads. The immunocomplexes coated magnetic beads were exposed to TNT samples, which resulted in displacing the analog conjugated poly(guanine) silica NPs into solution by TNT. In contrast, there are no guanine residues releasing into the solution in the absence of TNT. The reaction solutionmore » was then separated from the magnetic beads and transferred to the electrode surface for electrochemical measurements of guanine oxidation with Ru(bpy)32+ as mediator. The sensitivity of this TNT assay was greatly enhanced through dual signal amplifications: 1) a large amount of guanine residues on silica nanoparticles is introduced into the test solution by displacement immunoreactions and 2) a Ru(bpy)32+-induced guanine catalytic oxidation further enhances the electrochemical signal. Some experimental parameters for the nanoparticle label-based electrochemical immunoassay were studied and the performance of this assay was evaluated. The method is found to be very sensitive and the detection limit of this assay is ~ 0.1 ng mL-1 TNT. The electrochemical immunoassay based on the poly[guanine]-functionalized silica NP label offers a new approach for sensitive detection of explosives.« less
Real-Time Measurement of Width and Height of Weld Beads in GMAW Processes
Pinto-Lopera, Jesús Emilio; S. T. Motta, José Mauricio; Absi Alfaro, Sadek Crisostomo
2016-01-01
Associated to the weld quality, the weld bead geometry is one of the most important parameters in welding processes. It is a significant requirement in a welding project, especially in automatic welding systems where a specific width, height, or penetration of weld bead is needed. This paper presents a novel technique for real-time measuring of the width and height of weld beads in gas metal arc welding (GMAW) using a single high-speed camera and a long-pass optical filter in a passive vision system. The measuring method is based on digital image processing techniques and the image calibration process is based on projective transformations. The measurement process takes less than 3 milliseconds per image, which allows a transfer rate of more than 300 frames per second. The proposed methodology can be used in any metal transfer mode of a gas metal arc welding process and does not have occlusion problems. The responses of the measurement system, presented here, are in a good agreement with off-line data collected by a common laser-based 3D scanner. Each measurement is compare using a statistical Welch’s t-test of the null hypothesis, which, in any case, does not exceed the threshold of significance level α = 0.01, validating the results and the performance of the proposed vision system. PMID:27649198
NASA Astrophysics Data System (ADS)
Gao, Xiangdong; Liu, Guiqian
2015-01-01
During deep penetration laser welding, there exist plume (weak plasma) and spatters, which are the results of weld material ejection due to strong laser heating. The characteristics of plume and spatters are related to welding stability and quality. Characteristics of metallic plume and spatters were investigated during high-power disk laser bead-on-plate welding of Type 304 austenitic stainless steel plates at a continuous wave laser power of 10 kW. An ultraviolet and visible sensitive high-speed camera was used to capture the metallic plume and spatter images. Plume area, laser beam path through the plume, swing angle, distance between laser beam focus and plume image centroid, abscissa of plume centroid and spatter numbers are defined as eigenvalues, and the weld bead width was used as a characteristic parameter that reflected welding stability. Welding status was distinguished by SVM (support vector machine) after data normalization and characteristic analysis. Also, PCA (principal components analysis) feature extraction was used to reduce the dimensions of feature space, and PSO (particle swarm optimization) was used to optimize the parameters of SVM. Finally a classification model based on SVM was established to estimate the weld bead width and welding stability. Experimental results show that the established algorithm based on SVM could effectively distinguish the variation of weld bead width, thus providing an experimental example of monitoring high-power disk laser welding quality.
Quantification of equine immunoglobulin A in serum and secretions by a fluorescent bead-based assay.
Schnabel, Christiane L; Babasyan, Susanna; Freer, Heather; Wagner, Bettina
2017-06-01
Only few quantitative reports exist about the concentrations and induction of immunoglobulin A (IgA) in mucosal secretions of horses. Despite this, it is widely assumed that IgA is the predominant immunoglobulin on mucosal surfaces in the horse. Here, two new monoclonal antibodies (mAbs) against equine IgA, clones 84-1 and 161-1, were developed and characterized in detail. Both IgA mAbs specifically bound monomeric and dimeric equine IgA in different applications, such as Western blots and fluorescent bead-based assays. Cross-reactivity with other equine immunoglobulin isotypes was not observed. The new IgA mAb 84-1 was used in combination with the previously characterized anti-equine IgA mAb BVS2 for the development and validation of a fluorescent bead-based assay to quantify total IgA in equine serum and various secretions. The IgA assay's linear detection ranged from 64pg/ml to 1000ng/ml. For the quantification of IgA in serum or in secretions an IgA standard was purified from serum or nasal wash fluid (secretory IgA), respectively. The different standards were needed for accurate IgA quantification in the respective samples taking the different signal intensities of monomeric and dimeric IgA on the florescent bead-based assay into account. IgA was quantified by the bead-based assay established here in different equine samples of healthy adult individuals. In serum the median total IgA was 0.45mg/ml for Thoroughbred horses (TB, n=10) and 1.16mg/ml in Icelandic horses (ICH, n=12). In nasopharyngeal secretions of TB (n=7) 0.13mg/ml median total IgA was measured, and 0.25mg/ml for ICH (n=12). Saliva of ICH (n=6) contained a median of 0.15mg/ml, colostrum of Warmbloods (n=8) a median of 1.89mg/ml IgA. Compared to IgG1 and IgG4/7 quantified in the same samples, IgA appeared as the major immunoglobulin isotype in nasopharyngeal secretions and saliva while it is a minor isotype in serum and colostrum. The newly developed monoclonal antibodies against equine IgA and the resulting bead-based assay for quantification of total IgA can notably improve the evaluation of mucosal immunity in horses. Copyright © 2017 Elsevier B.V. All rights reserved.
Toward large-area roll-to-roll printed nanophotonic sensors
NASA Astrophysics Data System (ADS)
Karioja, Pentti; Hiltunen, Jussi; Aikio, Sanna M.; Alajoki, Teemu; Tuominen, Jarkko; Hiltunen, Marianne; Siitonen, Samuli; Kontturi, Ville; Böhlen, Karl; Hauser, Rene; Charlton, Martin; Boersma, Arjen; Lieberzeit, Peter; Felder, Thorsten; Eustace, David; Haskal, Eliav
2014-05-01
Polymers have become an important material group in fabricating discrete photonic components and integrated optical devices. This is due to their good properties: high optical transmittance, versatile processability at relative low temperatures and potential for low-cost production. Recently, nanoimprinting or nanoimprint lithography (NIL) has obtained a plenty of research interest. In NIL, a mould is pressed against a substrate coated with a moldable material. After deformation of the material, the mold is separated and a replica of the mold is formed. Compared with conventional lithographic methods, imprinting is simple to carry out, requires less-complicated equipment and can provide high-resolution with high throughput. Nanoimprint lithography has shown potential to become a method for low-cost and high-throughput fabrication of nanostructures. We show the development process of nano-structured, large-area multi-parameter sensors using Photonic Crystal (PC) and Surface Enhanced Raman Scattering (SERS) methodologies for environmental and pharmaceutical applications. We address these challenges by developing roll-to-roll (R2R) UV-nanoimprint fabrication methods. Our development steps are the following: Firstly, the proof of concept structures are fabricated by the use of wafer-level processes in Si-based materials. Secondly, the master molds of successful designs are fabricated, and they are used to transfer the nanophotonic structures into polymer materials using sheet-level UV-nanoimprinting. Thirdly, the sheet-level nanoimprinting processes are transferred to roll-to-roll fabrication. In order to enhance roll-to-roll manufacturing capabilities, silicone-based polymer material development was carried out. In the different development phases, Photonic Crystal and SERS sensor structures with increasing complexities were fabricated using polymer materials in order to enhance sheet-level and roll-to-roll manufacturing processes. In addition, chemical and molecular imprint (MIP) functionalization methods were applied in the sensor demonstrators. In this paper, the process flow in fabricating large-area nanophotonic structures by the use of sheet-level and roll-to-roll UV- nanoimprinting is reported.
Hsieh, Chih-Chen; Jain, Semant; Larson, Ronald G
2006-01-28
A very stiff finitely extensible nonlinear elastic (FENE)-Fraenkel spring is proposed to replace the rigid rod in the bead-rod model. This allows the adoption of a fast predictor-corrector method so that large time steps can be taken in Brownian dynamics (BD) simulations without over- or understretching the stiff springs. In contrast to the simple bead-rod model, BD simulations with beads and FENE-Fraenkel (FF) springs yield a random-walk configuration at equilibrium. We compare the simulation results of the free-draining bead-FF-spring model with those for the bead-rod model in relaxation, start-up of uniaxial extensional, and simple shear flows, and find that both methods generate nearly identical results. The computational cost per time step for a free-draining BD simulation with the proposed bead-FF-spring model is about twice as high as the traditional bead-rod model with the midpoint algorithm of Liu [J. Chem. Phys. 90, 5826 (1989)]. Nevertheless, computations with the bead-FF-spring model are as efficient as those with the bead-rod model in extensional flow because the former allows larger time steps. Moreover, the Brownian contribution to the stress for the bead-FF-spring model is isotropic and therefore simplifies the calculation of the polymer stresses. In addition, hydrodynamic interaction can more easily be incorporated into the bead-FF-spring model than into the bead-rod model since the metric force arising from the non-Cartesian coordinates used in bead-rod simulations is absent from bead-spring simulations. Finally, with our newly developed bead-FF-spring model, existing computer codes for the bead-spring models can trivially be converted to ones for effective bead-rod simulations merely by replacing the usual FENE or Cohen spring law with a FENE-Fraenkel law, and this convertibility provides a very convenient way to perform multiscale BD simulations.
NASA Astrophysics Data System (ADS)
Hsieh, Chih-Chen; Jain, Semant; Larson, Ronald G.
2006-01-01
A very stiff finitely extensible nonlinear elastic (FENE)-Fraenkel spring is proposed to replace the rigid rod in the bead-rod model. This allows the adoption of a fast predictor-corrector method so that large time steps can be taken in Brownian dynamics (BD) simulations without over- or understretching the stiff springs. In contrast to the simple bead-rod model, BD simulations with beads and FENE-Fraenkel (FF) springs yield a random-walk configuration at equilibrium. We compare the simulation results of the free-draining bead-FF-spring model with those for the bead-rod model in relaxation, start-up of uniaxial extensional, and simple shear flows, and find that both methods generate nearly identical results. The computational cost per time step for a free-draining BD simulation with the proposed bead-FF-spring model is about twice as high as the traditional bead-rod model with the midpoint algorithm of Liu [J. Chem. Phys. 90, 5826 (1989)]. Nevertheless, computations with the bead-FF-spring model are as efficient as those with the bead-rod model in extensional flow because the former allows larger time steps. Moreover, the Brownian contribution to the stress for the bead-FF-spring model is isotropic and therefore simplifies the calculation of the polymer stresses. In addition, hydrodynamic interaction can more easily be incorporated into the bead-FF-spring model than into the bead-rod model since the metric force arising from the non-Cartesian coordinates used in bead-rod simulations is absent from bead-spring simulations. Finally, with our newly developed bead-FF-spring model, existing computer codes for the bead-spring models can trivially be converted to ones for effective bead-rod simulations merely by replacing the usual FENE or Cohen spring law with a FENE-Fraenkel law, and this convertibility provides a very convenient way to perform multiscale BD simulations.
Iron aluminide knife and method thereof
Sikka, V.K.
1997-08-05
Fabricating an article of manufacture having a Fe{sub 3}Al-based alloy cutting edge is discussed. The fabrication comprises the steps of casting an Fe{sub 3}Al-based alloy, extruding into rectangular cross section, rolling into a sheet at 800 C for a period of time followed by rolling at 650 C, cutting the rolled sheet into an article having an edge, and grinding the edge of the article to form a cutting edge. 1 fig.
Koo, Hyunmo; Lee, Wookyu; Choi, Younchang; Sun, Junfeng; Bak, Jina; Noh, Jinsoo; Subramanian, Vivek; Azuma, Yasuo; Majima, Yutaka; Cho, Gyoujin
2015-01-01
To demonstrate that roll-to-roll (R2R) gravure printing is a suitable advanced manufacturing method for flexible thin film transistor (TFT)-based electronic circuits, three different nanomaterial-based inks (silver nanoparticles, BaTiO3 nanoparticles and single-walled carbon nanotubes (SWNTs)) were selected and optimized to enable the realization of fully printed SWNT-based TFTs (SWNT-TFTs) on 150-m-long rolls of 0.25-m-wide poly(ethylene terephthalate) (PET). SWNT-TFTs with 5 different channel lengths, namely, 30, 80, 130, 180, and 230 μm, were fabricated using a printing speed of 8 m/min. These SWNT-TFTs were characterized, and the obtained electrical parameters were related to major mechanical factors such as web tension, registration accuracy, impression roll pressure and printing speed to determine whether these mechanical factors were the sources of the observed device-to-device variations. By utilizing the electrical parameters from the SWNT-TFTs, a Monte Carlo simulation for a 1-bit adder circuit, as a reference, was conducted to demonstrate that functional circuits with reasonable complexity can indeed be manufactured using R2R gravure printing. The simulation results suggest that circuits with complexity, similar to the full adder circuit, can be printed with a 76% circuit yield if threshold voltage (Vth) variations of less than 30% can be maintained. PMID:26411839
Wu, Y.; Tan, E. L.; Yeo, A.; Chan, K. P.; Nishimura, H.; Cardosa, M. J.; Poh, C. L.; Quak, S. H.; Chow, Vincent T.
2011-01-01
A high-throughput multiplex bead suspension array was developed for the rapid subgenogrouping of EV71 strains, based on single nucleotide polymorphisms observed within the VP1 region with a high sensitivity as low as 1 PFU. Of 33 viral isolates and 55 clinical samples, all EV71 strains were successfully detected and correctly subgenogrouped. PMID:21084510
Adachi, Takumi; Sahara, Takehiko; Okuyama, Hidetoshi; Morita, Naoki
2017-07-01
Here, we describe a new method for genetic transformation of thraustochytrids, well-known producers of polyunsaturated fatty acids (PUFAs) like docosahexaenoic acid, by combining mild glass (zirconia) bead treatment and electroporation. Because the cell wall is a barrier against transfer of exogenous DNA into cells, gentle vortexing of cells with glass beads was performed prior to electroporation for partial cell wall disruption. G418-resistant transformants of thraustochytrid cells (Aurantiochytrium limacinum strain SR21 and thraustochytrid strain 12B) were successfully obtained with good reproducibility. The method reported here is simpler than methods using enzymes to generate spheroplasts and may provide advantages for PUFA production by using genetically modified thraustochytrids.
Stress Distribution, Friction and Listeria Propulsion
NASA Astrophysics Data System (ADS)
Prost, Jacques
2003-03-01
I will review our work on the physics of listeria propulsion based on an unavoidable elastic analysis of the stress distribution in the actin gel and dynamical boundary conditions (both normal and tangential). I will show in particular that it provides a natural explanation for the symmetry breaking transition occurring with beads (work with K. Sekimoto and F. Julicher), of the saltatory behavior of beads reported by A Bernheim et al (Nature 2002) and of the shape of soft beads (with O. Campas and J.F Joanny). This last analysis proves that, as announced in an earlier paper (F; Gerbal et al Biophys Journal 2000) the rear part of the gel contributes negatively to the motion.
NASA Technical Reports Server (NTRS)
Littman, Howard (Inventor); Plawsky, Joel L. (Inventor); Paccione, John D. (Inventor)
2014-01-01
Methods and apparatus for coating particulate material are provided. The apparatus includes a vessel having a top and a bottom, a vertically extending conduit having an inlet in the vessel and an outlet outside of the vessel, a first fluid inlet in the bottom of the vessel for introducing a transfer fluid, a second fluid inlet in the bottom of the vessel for introducing a coating fluid, and a fluid outlet from the vessel. The method includes steps of agitating a material, contacting the material with a coating material, and drying the coating material to produce a coated material. The invention may be adapted to coat aerogel beads, among other materials. A coated aerogel bead and an aerogel-based insulation material are also disclosed.
NASA Astrophysics Data System (ADS)
Hasan, Md. Shameem
Nuclear wastes that were generated during cold-war era from various nuclear weapon programs are presently stored in hundreds of tanks across the United States. The composition of these wastes is rather complex containing both radionuclides and heavy metals, such as 137Cs, 90Sr, Al, Pb, Cr, and Cd. In this study, chitosan based biosorbents were prepared to adsorb some of these metal ions. Chitosan is a partially acetylated glucosamine biopolymer encountered in the cell walls of fungi. In its natural form this material is soft and has a tendency to agglomerate or form gels. Various methods were used to modify chitosan to avoid these problems. Chitosan is generally available commercially in the form of flakes. For use in an adsorption system, chitosan was made in the form of beads to reduce the pressure drop in an adsorption column. In this research, spherical beads were prepared by mixing chitosan with perlite and then by dropwise addition of the slurry mixture into a NaOH precipitation bath. Beads were characterized using Fourier Transform InfraRed Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), Energy dispersive spectroscopy (EDS), Tunneling Electron Microscopy (TEM), X-ray Photoelectron Spectroscopy (XPS), and Thermogravimetric Analysis (TGA). The SEM, EDS, and TEM data indicated that the beads were porous in nature. The TGA data showed that bead contained about 32% chitosan. The surface area, pore volume, and porosity of the beads were determined from the BET surface area that was measured using N2 as adsorbate at 77K. Adsorption and desorption of Cr(VI), Cr(III), Cd(II), U(VI), Cu(II), from aqueous solutions of these metal ions were studied to evaluate the adsorption capacities of the beads for these metals ions. Equilibrium adsorption data of these metals on the beads were found to correlate well with the Langmuir isotherm equation. Chitosan coated perlite beads had negligible adsorption capacity for Sr(II) and Cs(I). It was found that Fullers earth had very good capacity for these two metals. However, the mechanical strength of Fullers earth granules available commercially was not sufficient for use in a column. In this study chitosan was used as a binder to make Fullers earth beads and were used for adsorption of Cs(I) and Sr(II). (Abstract shortened by UMI.)
Voordouw, Gerrit; Menon, Priyesh; Pinnock, Tijan; Sharma, Mohita; Shen, Yin; Venturelli, Amanda; Voordouw, Johanna; Sexton, Aoife
2016-01-01
Microbially-influenced corrosion (MIC) contributes to the general corrosion rate (CR), which is typically measured with carbon steel coupons. Here we explore the use of carbon steel ball bearings, referred to as beads (55.0 ± 0.3 mg; Ø = 0.238 cm), for determining CRs. CRs for samples from an oil field in Oceania incubated with beads were determined by the weight loss method, using acid treatment to remove corrosion products. The release of ferrous and ferric iron was also measured and CRs based on weight loss and iron determination were in good agreement. Average CRs were 0.022 mm/yr for eight produced waters with high numbers (105/ml) of acid-producing bacteria (APB), but no sulfate-reducing bacteria (SRB). Average CRs were 0.009 mm/yr for five central processing facility (CPF) waters, which had no APB or SRB due to weekly biocide treatment and 0.036 mm/yr for 2 CPF tank bottom sludges, which had high numbers of APB (106/ml) and SRB (108/ml). Hence, corrosion monitoring with carbon steel beads indicated that biocide treatment of CPF waters decreased the CR, except where biocide did not penetrate. The CR for incubations with 20 ml of a produced water decreased from 0.061 to 0.007 mm/yr when increasing the number of beads from 1 to 40. CRs determined with beads were higher than those with coupons, possibly also due to a higher weight of iron per unit volume used in incubations with coupons. Use of 1 ml syringe columns, containing carbon steel beads, and injected with 10 ml/day of SRB-containing medium for 256 days gave a CR of 0.11 mm/yr under flow conditions. The standard deviation of the distribution of residual bead weights, a measure for the unevenness of the corrosion, increased with increasing CR. The most heavily corroded beads showed significant pitting. Hence the use of uniformly sized carbon steel beads offers new opportunities for screening and monitoring of corrosion including determination of the distribution of corrosion rates, which allows estimation of the probability of high rate events that may lead to failure. PMID:27047467
Schotte, Lise; Rombaut, Bart; Thys, Bert
2012-01-01
In this article, a simple, quantitative, liquid phase affinity capture assay is presented. Provided that one protein can be tagged and another protein labeled, this method can be implemented for the investigation of protein-protein interactions. It is based on one hand on the recognition of the tagged protein by cobalt coated magnetic beads and on the other hand on the interaction between the tagged protein and a second specific protein that is labeled. First, the labeled and tagged proteins are mixed and incubated at room temperature. The magnetic beads, that recognize the tag, are added and the bound fraction of labeled protein is separated from the unbound fraction using magnets. The amount of labeled protein that is captured can be determined in an indirect way by measuring the signal of the labeled protein remained in the unbound fraction. The described liquid phase affinity assay is extremely useful when conformational conversion sensitive proteins are assayed. The development and application of the assay is demonstrated for the interaction between poliovirus and poliovirus recognizing nanobodies1. Since poliovirus is sensitive to conformational conversion2 when attached to a solid surface (unpublished results), the use of ELISA is limited and a liquid phase based system should therefore be preferred. An example of a liquid phase based system often used in polioresearch3,4 is the micro protein A-immunoprecipitation test5. Even though this test has proven its applicability, it requires an Fc-structure, which is absent in the nanobodies6,7. However, as another opportunity, these interesting and stable single-domain antibodies8 can be easily engineered with different tags. The widely used (His)6-tag shows affinity for bivalent ions such as nickel or cobalt, which can on their turn be easily coated on magnetic beads. We therefore developed this simple quantitative affinity capture assay based on cobalt coated magnetic beads. Poliovirus was labeled with 35S to enable unhindered interaction with the nanobodies and to make a quantitative detection feasible. The method is easy to perform and can be established with a low cost, which is further supported by the possibility of effectively regenerating the magnetic beads. PMID:22688388
9. DETAIL VIEW OF ROLLING EXPANSION JOINT, NORTHEAST BASE OF ...
9. DETAIL VIEW OF ROLLING EXPANSION JOINT, NORTHEAST BASE OF SECOND CLOSED SPANDREL ARCH AT JUNCTION OF OPEN SPANDREL ARCH, LOOKING EAST - Virgin River Bridge, Spanning Virgin River on State Highway 9, Hurricane, Washington County, UT
Rolling into spatial disorientation: simulator demonstration of the post-roll (Gillingham) illusion.
Nooij, Suzanne A E; Groen, Eric L
2011-05-01
Spatial disorientation (SD) is still a contributing factor in many aviation accidents, stressing the need for adequate SD training scenarios. In this article we focused on the post-roll effect (the sensation of rolling back after a roll maneuver, such as an entry of a coordinated turn) and investigated the effect of roll stimuli on the pilot's ability to stabilize their roll attitude. This resulted in a ground-based demonstration scenario for pilots. The experiments took place in the advanced 6-DOF Desdemona motion simulator, with the subject in a supine position. Roll motions were either fully automated with the subjects blindfolded (BLIND), automated with the subject viewing the cockpit interior (COCKPIT), or self-controlled (LEAD). After the roll stimulus subjects had to cancel all perceived simulator motion without any visual feedback. Both the roll velocity and duration were varied. In 68% of all trials subjects corrected for the perceived motion of rolling back by initiating a roll motion in the same direction as the preceeding roll. The effect was dependent on both rate and duration, in a manner consistent with semicircular canal dynamics. The effect was smallest in the BLIND scenario, but differences between simulation scenarios were non-significant. The results show that the effects of the post-roll illusion on aircraft control can be demonstrated adequately in a flight simulator using an attitude control task. The effect is present even after short roll movements, occurring frequently in flight. Therefore this demonstration is relevant for spatial disorientation training programs for pilots.
Manufacturing Demonstration Facility: Roll-to-Roll Processing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Datskos, Panos G; Joshi, Pooran C; List III, Frederick Alyious
This Manufacturing Demonstration Facility (MDF)e roll-to-roll processing effort described in this report provided an excellent opportunity to investigate a number of advanced manufacturing approaches to achieve a path for low cost devices and sensors. Critical to this effort is the ability to deposit thin films at low temperatures using nanomaterials derived from nanofermentation. The overarching goal of this project was to develop roll-to-roll manufacturing processes of thin film deposition on low-cost flexible substrates for electronics and sensor applications. This project utilized ORNL s unique Pulse Thermal Processing (PTP) technologies coupled with non-vacuum low temperature deposition techniques, ORNL s clean roommore » facility, slot dye coating, drop casting, spin coating, screen printing and several other equipment including a Dimatix ink jet printer and a large-scale Kyocera ink jet printer. The roll-to-roll processing project had three main tasks: 1) develop and demonstrate zinc-Zn based opto-electronic sensors using low cost nanoparticulate structures manufactured in a related MDF Project using nanofermentation techniques, 2) evaluate the use of silver based conductive inks developed by project partner NovaCentrix for electronic device fabrication, and 3) demonstrate a suite of low cost printed sensors developed using non-vacuum deposition techniques which involved the integration of metal and semiconductor layers to establish a diverse sensor platform technology.« less
NASA Astrophysics Data System (ADS)
Ning, Fangkun; Jia, Weitao; Hou, Jian; Chen, Xingrui; Le, Qichi
2018-05-01
Various fracture criteria, especially Johnson and Cook (J-C) model and (normalized) Cockcroft and Latham (C-L) criterion were contrasted and discussed. Based on normalized C-L criterion, adopted in this paper, FE simulation was carried out and hot rolling experiments under temperature range of 200 °C–350 °C, rolling reduction rate of 25%–40% and rolling speed from 7–21 r/min was implemented. The microstructure was observed by optical microscope and damage values of simulation results were contrasted with the length of cracks on diverse parameters. The results show that the plate generated less edge cracks and the microstructure emerged slight shear bands and fine dynamic recrystallization grains rolled at 350 °C, 40% reduction and 14 r/min. The edge cracks pre-criterion model was obtained combined with Zener-Hollomon equation and deformation activation energy.
NASA Astrophysics Data System (ADS)
Jobin, Guy; Grondin, Gilles; Couture, Geneviève; Beaulieu, Carole
2005-04-01
Spores of the biocontrol agent, Streptomyces melanosporofaciens EF-76, were entrapped by complex coacervation in beads composed of a macromolecular complex (MC) of chitosan and polyphosphate. A proportion of spores entrapped in beads survived the entrapment procedure as shown by treating spores from chitosan beads with a dye allowing the differentiation of live and dead cells. The spore-loaded chitosan beads could be digested by a chitosanase, suggesting that, once introduced in soil, the beads would be degraded to release the biocontrol agent. Spore-loaded beads were examined by optical and scanning electron microscopy because the release of the biological agent depends on the spore distribution in the chitosan beads. The microscopic examination revealed that the beads had a porous surface and contained a network of inner microfibrils. Spores were entrapped in both the chitosan microfibrils and the bead lacuna.
Characterization of Trapped Lignin-Degrading Microbes in Tropical Forest Soil
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeAngelis, Kristen M.; Allgaier, Martin; Chavarria, Yaucin
2011-04-29
Lignin is often the most difficult portion of plant biomass to degrade, with fungi generally thought to dominate during late stage decomposition. Lignin in feedstock plant material represents a barrier to more efficient plant biomass conversion and can also hinder enzymatic access to cellulose, which is critical for biofuels production. Tropical rain forest soils in Puerto Rico are characterized by frequent anoxic conditions and fluctuating redox, suggesting the presence of lignin-degrading organisms and mechanisms that are different from known fungal decomposers and oxygen-dependent enzyme activities. We explored microbial lignin-degraders by burying bio-traps containing lignin-amended and unamended biosep beads in themore » soil for 1, 4, 13 and 30 weeks. At each time point, phenol oxidase and peroxidase enzyme activity was found to be elevated in the lignin-amended versus the unamended beads, while cellulolytic enzyme activities were significantly depressed in lignin-amended beads. Quantitative PCR of bacterial communities showed more bacterial colonization in the lignin-amended compared to the unamended beads after one and four weeks, suggesting that the lignin supported increased bacterial abundance. The microbial community was analyzed by small subunit 16S ribosomal RNA genes using microarray (PhyloChip) and by high-throughput amplicon pyrosequencing based on universal primers targeting bacterial, archaeal, and eukaryotic communities. Community trends were significantly affected by time and the presence of lignin on the beads. Lignin-amended beads have higher relative abundances of representatives from the phyla Actinobacteria, Firmicutes, Acidobacteria and Proteobacteria compared to unamended beads. This study suggests that in low and fluctuating redox soils, bacteria could play a role in anaerobic lignin decomposition.« less
Characterization of trapped lignin-degrading microbes in tropical forest soil
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeAngelis, K.M.; Allgaier, M.; Chavarria, Y.
2011-03-01
Lignin is often the most difficult portion of plant biomass to degrade, with fungi generally thought to dominate during late stage decomposition. Lignin in feedstock plant material represents a barrier to more efficient plant biomass conversion and can also hinder enzymatic access to cellulose, which is critical for biofuels production. Tropical rain forest soils in Puerto Rico are characterized by frequent anoxic conditions and fluctuating redox, suggesting the presence of lignin-degrading organisms and mechanisms that are different from known fungal decomposers and oxygen-dependent enzyme activities. We explored microbial lignin-degraders by burying bio-traps containing lignin-amended and unamended biosep beads in themore » soil for 1, 4, 13 and 30 weeks. At each time point, phenol oxidase and peroxidase enzyme activity was found to be elevated in the lignin-amended versus the unamended beads, while cellulolytic enzyme activities were significantly depressed in lignin-amended beads. Quantitative PCR of bacterial communities showed more bacterial colonization in the lignin-amended compared to the unamended beads after one and four weeks, suggesting that the lignin supported increased bacterial abundance. The microbial community was analyzed by small subunit 16S ribosomal RNA genes using microarray (PhyloChip) and by high-throughput amplicon pyrosequencing based on universal primers targeting bacterial, archaeal, and eukaryotic communities. Community trends were significantly affected by time and the presence of lignin on the beads. Lignin-amended beads have higher relative abundances of representatives from the phyla Actinobacteria, Firmicutes, Acidobacteria and Proteobacteria compared to unamended beads. This study suggests that in low and fluctuating redox soils, bacteria could play a role in anaerobic lignin decomposition.« less
Characterization of Trapped Lignin-Degrading Microbes in Tropical Forest Soil
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeAngelis, Kristen; Allgaier, Martin; Chavarria, Yaucin
2011-07-14
Lignin is often the most difficult portion of plant biomass to degrade, with fungi generally thought to dominate during late stage decomposition. Lignin in feedstock plant material represents a barrier to more efficient plant biomass conversion and can also hinder enzymatic access to cellulose, which is critical for biofuels production. Tropical rain forest soils in Puerto Rico are characterized by frequent anoxic conditions and fluctuating redox, suggesting the presence of lignin-degrading organisms and mechanisms that are different from known fungal decomposers and oxygen-dependent enzyme activities. We explored microbial lignin-degraders by burying bio-traps containing lignin-amended and unamended biosep beads in themore » soil for 1, 4, 13 and 30 weeks. At each time point, phenol oxidase and peroxidase enzyme activity was found to be elevated in the lignin-amended versus the unamended beads, while cellulolytic enzyme activities were significantly depressed in lignin-amended beads. Quantitative PCR of bacterial communities showed more bacterial colonization in the lignin-amended compared to the unamended beads after one and four weeks, suggesting that the lignin supported increased bacterial abundance. The microbial community was analyzed by small subunit 16S ribosomal RNA genes using microarray (PhyloChip) and by high-throughput amplicon pyrosequencing based on universal primers targeting bacterial, archaeal, and eukaryotic communities. Community trends were significantly affected by time and the presence of lignin on the beads. Lignin-amended beads have higher relative abundances of representatives from the phyla Actinobacteria, Firmicutes, Acidobacteria and Proteobacteria compared to unamended beads. This study suggests that in low and fluctuating redox soils, bacteria could play a role in anaerobic lignin decomposition.« less
DNA-Encoded Solid-Phase Synthesis: Encoding Language Design and Complex Oligomer Library Synthesis.
MacConnell, Andrew B; McEnaney, Patrick J; Cavett, Valerie J; Paegel, Brian M
2015-09-14
The promise of exploiting combinatorial synthesis for small molecule discovery remains unfulfilled due primarily to the "structure elucidation problem": the back-end mass spectrometric analysis that significantly restricts one-bead-one-compound (OBOC) library complexity. The very molecular features that confer binding potency and specificity, such as stereochemistry, regiochemistry, and scaffold rigidity, are conspicuously absent from most libraries because isomerism introduces mass redundancy and diverse scaffolds yield uninterpretable MS fragmentation. Here we present DNA-encoded solid-phase synthesis (DESPS), comprising parallel compound synthesis in organic solvent and aqueous enzymatic ligation of unprotected encoding dsDNA oligonucleotides. Computational encoding language design yielded 148 thermodynamically optimized sequences with Hamming string distance ≥ 3 and total read length <100 bases for facile sequencing. Ligation is efficient (70% yield), specific, and directional over 6 encoding positions. A series of isomers served as a testbed for DESPS's utility in split-and-pool diversification. Single-bead quantitative PCR detected 9 × 10(4) molecules/bead and sequencing allowed for elucidation of each compound's synthetic history. We applied DESPS to the combinatorial synthesis of a 75,645-member OBOC library containing scaffold, stereochemical and regiochemical diversity using mixed-scale resin (160-μm quality control beads and 10-μm screening beads). Tandem DNA sequencing/MALDI-TOF MS analysis of 19 quality control beads showed excellent agreement (<1 ppt) between DNA sequence-predicted mass and the observed mass. DESPS synergistically unites the advantages of solid-phase synthesis and DNA encoding, enabling single-bead structural elucidation of complex compounds and synthesis using reactions normally considered incompatible with unprotected DNA. The widespread availability of inexpensive oligonucleotide synthesis, enzymes, DNA sequencing, and PCR make implementation of DESPS straightforward, and may prompt the chemistry community to revisit the synthesis of more complex and diverse libraries.
Cooling rates of lunar volcanic glass beads
NASA Astrophysics Data System (ADS)
Hui, H.; Hess, K. U.; Zhang, Y.; Peslier, A. H.; Lange, R. A.; Dingwell, D. B.; Neal, C. R.
2016-12-01
It is widely accepted that the Apollo 15 green and Apollo 17 orange glass beads are of volcanic origin. The diffusion profiles of volatiles in these glass beads are believed to be due to degassing during eruption (Saal et al., 2008). The degree of degassing depends on the initial temperature and cooling rate. Therefore, the estimations of volatiles in parental magmas of lunar pyroclastic deposits depend on melt cooling rates. Furthermore, lunar glass beads may have cooled in volcanic environments on the moon. Therefore, the cooling rates may be used to assess the atmospheric condition in an early moon, when volcanic activities were common. The cooling rates of glasses can be inferred from direct heat capacity measurements on the glasses themselves (Wilding et al., 1995, 1996a,b). This method does not require knowledge of glass cooling environments and has been applied to calculate the cooling rates of natural silicate glasses formed in different terrestrial environments. We have carried out heat capacity measurements on hand-picked lunar glass beads using a Netzsch DSC 404C Pegasus differential scanning calorimeter at University of Munich. Our preliminary results suggest that the cooling rate of Apollo 17 orange glass beads may be 12 K/min, based on the correlation between temperature of the heat capacity curve peak in the glass transition range and glass cooling rate. The results imply that the parental magmas of lunar pyroclastic deposits may have contained more water initially than the early estimations (Saal et al., 2008), which used higher cooling rates, 60-180 K/min in the modeling. Furthermore, lunar volcanic glass beads could have been cooled in a hot gaseous medium released from volcanic eruptions, not during free flight. Therefore, our results may shed light on atmospheric condition in an early moon.
Cooling Rates of Lunar Volcanic Glass Beads
NASA Technical Reports Server (NTRS)
Hui, Hejiu; Hess, Kai-Uwe; Zhang, Youxue; Peslier, Anne; Lange, Rebecca; Dingwell, Donald; Neal, Clive
2016-01-01
It is widely accepted that the Apollo 15 green and Apollo 17 orange glass beads are of volcanic origin. The diffusion profiles of volatiles in these glass beads are believed to be due to degassing during eruption (Saal et al., 2008). The degree of degassing depends on the initial temperature and cooling rate. Therefore, the estimations of volatiles in parental magmas of lunar pyroclastic deposits depend on melt cooling rates. Furthermore, lunar glass beads may have cooled in volcanic environments on the moon. Therefore, the cooling rates may be used to assess the atmospheric condition in an early moon, when volcanic activities were common. The cooling rates of glasses can be inferred from direct heat capacity measurements on the glasses themselves (Wilding et al., 1995, 1996a,b). This method does not require knowledge of glass cooling environments and has been applied to calculate the cooling rates of natural silicate glasses formed in different terrestrial environments. We have carried out heat capacity measurements on hand-picked lunar glass beads using a Netzsch DSC 404C Pegasus differential scanning calorimeter at University of Munich. Our preliminary results suggest that the cooling rate of Apollo 17 orange glass beads may be 12 K/min, based on the correlation between temperature of the heat capacity curve peak in the glass transition range and glass cooling rate. The results imply that the parental magmas of lunar pyroclastic deposits may have contained more water initially than the early estimations (Saal et al., 2008), which used higher cooling rates, 60-180 K/min in the modeling. Furthermore, lunar volcanic glass beads could have been cooled in a hot gaseous medium released from volcanic eruptions, not during free flight. Therefore, our results may shed light on atmospheric condition in an early moon.
Single-bead arrays for fluorescence-based immunoassays on capillary-driven microfluidic chips
NASA Astrophysics Data System (ADS)
Temiz, Yuksel; Lim, Michel; Delamarche, Emmanuel
2016-03-01
We report a concept for the simple fabrication of easy-to-use chips for immunoassays in the context of point-of-care diagnostics. The chip concept comprises mainly three features: (1) the efficient integration of reagents using beads functionalized with receptors, (2) the generation of capillary-driven liquid flows without using external pumps, and (3) a high-sensitivity detection of analytes using fluorescence microscopy. We fabricated prototype chips using dry etching of Si wafers. 4.5-μm-diameter beads were integrated into hexagonal arrays by sedimentation and removing the excess using a stream of water. We studied the effect of different parameters and showed that array occupancies from 30% to 50% can be achieved by pipetting a 250 nL droplet of 1% bead solution and allowing the beads sediment for 3 min. Chips with integrated beads were sealed using a 50-μm-thick dry-film resist laminated at 45 °C. Liquids pipetted to loading pads were autonomously pulled by capillary pumps at a rate of 0.35 nL s-1 for about 30 min. We studied ligand-receptor interactions and binding kinetics using time-lapse fluorescence microscopy and demonstrated a 5 pM limit of detection (LOD) for an anti-biotin immunoassay. As a clinically-relevant example, we implemented an immunoassay to detect prostate specific antigen (PSA) and showed an LOD of 108 fM (i.e. 3.6 pg mL-1). While a specific implementation is provided here for the detection of PSA, we believe that combining capillary-driven microfluidics with arrays of single beads and fluorescence readout to be very flexible and sufficiently sensitive for the detection of other clinically-relevant analytes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, D.K.; Yadav, K.K.; Varshney, L.
The present study deals with the preparation and evaluation of the poly-ethersulfone (PES) based composite beads encapsulating synergistic mixture of D2EHPA and Cyanex 923 (at 4:1 mole ratio) for the separation of uranium from phosphoric acid medium. SEM was used for the characterization of the composite materials. Addition of 1% PVA (polyvinyl alcohol) improved the internal morphology and porosity of the beads. Additionally, microscopic examination of the composite bead confirmed central coconut type cavity surrounded by porous polymer layer of the beads through which exchange of metal ions take place. Effect of various experimental variables including aqueous acidity, metal ionmore » concentration in aqueous feed, concentration of organic extractant inside the beads, extractant to polymer ratio, liquid to solid (L/S) ratio and temperature on the extraction of uranium was studied. Increase in acidity (1-6 M), L/S ratio (1- 10), metal ion concentration (0.2-3 g/L U{sub 3}O{sub 8}) and polymer to extractant ratio (1:4 -1:10) led to decrease in extraction of uranium. At 5.5 M (comparable to wet process phosphoric acid concentration) the extraction of uranium was about 85% at L/S ratio 5. Increase in extractant concentration inside the bead resulted in enhanced extraction of metal ion. Increase in temperature in the range of 30 to 50 Celsius degrees increased the extraction, whereas further increase to 70 C degrees led to the decrease in extraction of uranium. Amongst various reagents tested, stripping of uranium was quantitative by 12% Na{sub 2}CO{sub 3} solution. Polymeric beads were found to be stable and reusable up-to 10 cycles of extraction/stripping. (authors)« less
High-rate, roll-to-roll nanomanufacturing of flexible systems
NASA Astrophysics Data System (ADS)
Cooper, Khershed P.; Wachter, Ralph F.
2012-10-01
Since the National Nanotechnology Initiative was first announced in 2000, nanotechnology has developed an impressive catalog of nano-scale structures with building-blocks such as nanoparticles, nanotubes, nanorods, nanopillars, and quantum dots. Similarly, there are accompanying materials processes such as, atomic layer deposition, pulsed layer deposition, nanoprinting, nanoimprinting, transfer printing, nanolithography and nanopatterning. One of the challenges of nanomanufacturing is scaling up these processes reliably and affordably. Roll-to-roll manufacturing is a means for scaling up, for increasing throughput. It is high-speed production using a continuous, moving platform such as a web or a flexible substrate. The adoption of roll-to-roll to nanomanufacturing is novel. The goal is to build structures and devices with nano-scale features and specific functionality. The substrate could be a polymer, metal foil, silk, cloth or paper. The materials to build the structures and multi-level devices could be organic, inorganic or biological. Processing could be solution-based, e.g., ink-jet printing, or vacuum-based, e.g., chemical vapor deposition. Products could be electronics, optoelectronics, membranes, catalysts, microfluidics, lab-on-film, filters, etc. By this means, processing of large and conformal areas is achievable. High-throughput translates into low cost, which is the attraction of roll-to-roll nanomanufacturing. There are technical challenges requiring fundamental scientific advances in materials and process development and in manufacturing and system-integration where achieving nano-scale feature size, resolution and accuracy at high speeds can be major hurdles. We will give an overview of roll-to-roll nanomanufacturing with emphasis on the need to understand the material, process and system complexities, the need for instrumentation, measurement, and process control and describe the concept of cyber-enabled nanomanufacturing for reliable and predictable production.
NASA Astrophysics Data System (ADS)
Hizir, F. E.; Hardt, D. E.
2017-05-01
An in-depth understanding of the liquid transport in roll-based printing systems is essential for advancing the roll-based printing technology and enhancing the performance of the printed products. In this study, phase-field simulations are performed to characterize the liquid transport in roll-based printing systems, and the phase-field method is shown to be an effective tool to simulate the liquid transport. In the phase-field simulations, the liquid transport through the ink transfer rollers is approximated as the stretching and splitting of liquid bridges with pinned or moving contact lines between vertically separating surfaces. First, the effect of the phase-field parameters and the mesh characteristics on the simulation results is examined. The simulation results show that a sharp interface limit is approached as the capillary width decreases while keeping the mobility proportional to the capillary width squared. Close to the sharp interface limit, the mobility changes over a specified range are observed to have no significant influence on the simulation results. Next, the ink transfer from the cells on the surface of an ink-metering roller to the surface of stamp features is simulated. Under negligible inertial effects and in the absence of gravity, the amount of liquid ink transferred from an axisymmetric cell with low surface wettability to a stamp with high surface wettability is found to increase as the cell sidewall steepness and the cell surface wettability decrease and the stamp surface wettability and the capillary number increase. Strategies for improving the resolution and quality of roll-based printing are derived based on an analysis of the simulation results. The application of novel materials that contain cells with irregular surface topography to stamp inking in high-resolution roll-based printing is assessed.
NASA Astrophysics Data System (ADS)
Pedneault, Sylvain; Huot, Jacques; Roué, Lionel
In the present work, cold rolling has been investigated as a new means of producing Mg-based metal hydrides for nickel-metal hydride (Ni-MH) batteries. Structure and electrochemical evolution of 2Mg-Ni cold-rolled samples were investigated as a function of the number of rolling passes as well as heat treatment. It was found that nanocrystalline Mg 2Ni alloy can be obtained by an appropriate three step process involving rolling, heat treatment and rolling again. It was shown that the number of primary and secondary rolling passes must be carefully optimized in order to favour the complete formation of Mg 2Ni alloy having a nanocrystalline structure (∼10 nm in crystallite size) without excessive sample oxidation. Actually, the best result was obtained by first rolling 90 times, followed by a heat treatment at 400 °C for 4 h and roll again 20 times. The resulting material displayed an initial discharge capacity of 205 mAh g -1, which is quite similar to that obtained with ball-milled Mg 2Ni alloy.
Microstructure based procedure for process parameter control in rolling of aluminum thin foils
NASA Astrophysics Data System (ADS)
Johannes, Kronsteiner; Kabliman, Evgeniya; Klimek, Philipp-Christoph
2018-05-01
In present work, a microstructure based procedure is used for a numerical prediction of strength properties for Al-Mg-Sc thin foils during a hot rolling process. For this purpose, the following techniques were developed and implemented. At first, a toolkit for a numerical analysis of experimental stress-strain curves obtained during a hot compression testing by a deformation dilatometer was developed. The implemented techniques allow for the correction of a temperature increase in samples due to adiabatic heating and for the determination of a yield strength needed for the separation of the elastic and plastic deformation regimes during numerical simulation of multi-pass hot rolling. At the next step, an asymmetric Hot Rolling Simulator (adjustable table inlet/outlet height as well as separate roll infeed) was developed in order to match the exact processing conditions of a semi-industrial rolling procedure. At each element of a finite element mesh the total strength is calculated by in-house Flow Stress Model based on evolution of mean dislocation density. The strength values obtained by numerical modelling were found in a reasonable agreement with results of tensile tests for thin Al-Mg-Sc foils. Thus, the proposed simulation procedure might allow to optimize the processing parameters with respect to the microstructure development.
Quantifying oil filtration effects on bearing life
NASA Technical Reports Server (NTRS)
Needelman, William M.; Zaretsky, Erwin V.
1991-01-01
Rolling-element bearing life is influenced by the number, size, and material properties of particles entering the Hertzian contact of the rolling element and raceway. In general, rolling-element bearing life increases with increasing level of oil filtration. Based upon test results, two equations are presented which allow for the adjustment of bearing L(sub 10) or catalog life based upon oil filter rating. It is recommended that where no oil filtration is used catalog life be reduced by 50 percent.
Humbert, Pascal; Vemmer, Marina; Mävers, Frauke; Schumann, Mario; Vidal, Stefan; Patel, Anant V
2018-07-01
Wireworms (Coleoptera: Elateridae) are major insect pests of worldwide relevance. Owing to the progressive phasing-out of chemical insecticides, there is great demand for innovative control options. This study reports on the development of an attract-and-kill co-formulation based on Ca-alginate beads, which release CO 2 and contain neem extract as a bioinsecticidal compound. The objectives of this study were to discover: (1) whether neem extract can be immobilized efficiently, (2) whether CO 2 -releasing Saccharomyces cerevisiae and neem extract are suitable for co-encapsulation, and (3) whether co-encapsulated neem extract affects the attractiveness of CO 2 -releasing beads towards wireworms. Neem extract was co-encapsulated together with S. cerevisiae, starch and amyloglucosidase with a high encapsulation efficiency of 98.6% (based on measurement of azadirachtin A as the main active ingredient). Even at enhanced concentrations, neem extract allowed growth of S. cerevisiae, and beads containing neem extract exhibited CO 2 -emission comparable with beads without neem extract. When applied to the soil, the beads established a CO 2 gradient of >15 cm. The co-formulation containing neem extract showed no repellent effects and was attractive for wireworms within the first 24 h after exposure. Co-encapsulation of S. cerevisiae and neem extract is a promising approach for the development of attract-and-kill formulations for the control of wireworms. This study offers new options for the application of neem extracts in soil. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Magnetic tweezers with high permeability electromagnets for fast actuation of magnetic beads
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, La; Offenhäusser, Andreas; Krause, Hans-Joachim
2015-04-15
As a powerful and versatile scientific instrument, magnetic tweezers have been widely used in biophysical research areas, such as mechanical cell properties and single molecule manipulation. If one wants to steer bead position, the nonlinearity of magnetic properties and the strong position dependence of the magnetic field in most magnetic tweezers lead to quite a challenge in their control. In this article, we report multi-pole electromagnetic tweezers with high permeability cores yielding high force output, good maneuverability, and flexible design. For modeling, we adopted a piece-wise linear dependence of magnetization on field to characterize the magnetic beads. We implemented amore » bi-linear interpolation of magnetic field in the work space, based on a lookup table obtained from finite element simulation. The electronics and software were custom-made to achieve high performance. In addition, the effects of dimension and defect on structure of magnetic tips also were inspected. In a workspace with size of 0.1 × 0.1 mm{sup 2}, a force of up to 400 pN can be applied on a 2.8 μm superparamagnetic bead in any direction within the plane. Because the magnetic particle is always pulled towards a tip, the pulling forces from the pole tips have to be well balanced in order to achieve control of the particle’s position. Active video tracking based feedback control is implemented, which is able to work at a speed of up to 1 kHz, yielding good maneuverability of the magnetic beads.« less
Zhao, Guangtao; Ding, Jiawang; Yu, Han; Yin, Tanji; Qin, Wei
2016-01-01
A potentiometric aptasensing assay that couples the DNA nanostructure-modified magnetic beads with a solid-contact polycation-sensitive membrane electrode for the detection of Vibrio alginolyticus is herein described. The DNA nanostructure-modified magnetic beads are used for amplification of the potential response and elimination of the interfering effect from a complex sample matrix. The solid-contact polycation-sensitive membrane electrode using protamine as an indicator is employed to chronopotentiometrically detect the change in the charge or DNA concentration on the magnetic beads, which is induced by the interaction between Vibrio alginolyticus and the aptamer on the DNA nanostructures. The present potentiometric aptasensing method shows a linear range of 10–100 CFU mL−1 with a detection limit of 10 CFU mL−1, and a good specificity for the detection of Vibrio alginolyticus. This proposed strategy can be used for the detection of other microorganisms by changing the aptamers in the DNA nanostructures. PMID:27918423
Ceramic Spheres From Cation Exchange Beads
NASA Technical Reports Server (NTRS)
Dynys, F. W.
2003-01-01
Porous ZrO2 and hollow TiO2 spheres were synthesized from a strong acid cation exchange resin. Spherical cation exchange beads, polystyrene based polymer, were used as a morphological-directing template. Aqueous ion exchange reaction was used to chemically bind (ZrO)(2+) ions to the polystyrene structure. The pyrolysis of the polystyrene at 600 C produces porous ZrO2 spheres with a surface area of 24 sq m/g with a mean sphere size of 42 microns. Hollow TiO2 spheres were synthesized by using the beads as a micro-reactor. A direct surface reaction - between titanium isopropoxide and the resin beads forms a hydrous TiO2 shell around the polystyrene core. The pyrolysis of the polystyrene core at 600 C produces hollow anatase spheres with a surface area of 42 sq m/g with a mean sphere size of 38 microns. The formation of ceramic spheres was studied by XRD, SEM and B.E.T. nitrogen adsorption measurements.
Wei, Daqing; Zhou, Rui; cheng, Su; Feng, Wei; Li, Baoqiang; Wang, Yaming; Jia, Dechang; Zhou, Yu; Guo, Haifeng
2013-10-01
Porous titanium was prepared by pressureless sintering of titanium beads with diameters of 100, 200, 400 and 600 μm. The results indicated that the mechanical properties of porous titanium changed significantly with different bead diameters. Plastic deformations such as necking phenomenon and dimple structure were observed on the fracture surface of porous titanium sintered by beads with diameter of 100 μm. However, it was difficult to find this phenomenon on the porous titanium with a titanium bead diameter of 600 μm. The microarc oxidized coatings were deposited on its surface to improve the bioactivity of porous titanium. Furthermore, the cefazolin sodium/chitosan composited films were fabricated on the microarc oxidized coatings for overcoming the inflammation due to implantation, showing good slow-release ability by addition of chitosan. And the release kinetic process of cefazolin sodium in composited films could be possibly fitted by a polynomial model. Copyright © 2013 Elsevier B.V. All rights reserved.
DNA-magnetic bead detection using disposable cards and the anisotropic magnetoresistive sensor
NASA Astrophysics Data System (ADS)
Hien, L. T.; Quynh, L. K.; Huyen, V. T.; Tu, B. D.; Hien, N. T.; Phuong, D. M.; Nhung, P. H.; Giang, D. T. H.; Duc, N. H.
2016-12-01
A disposable card incorporating specific DNA probes targeting the 16 S rRNA gene of Streptococcus suis was developed for magnetically labeled target DNA detection. A single-stranded target DNA was hybridized with the DNA probe on the SPA/APTES/PDMS/Si as-prepared card, which was subsequently magnetically labeled with superparamagnetic beads for detection using an anisotropic magnetoresistive (AMR) sensor. An almost linear response between the output signal of the AMR sensor and amount of single-stranded target DNA varied from 4.5 to 18 pmol was identified. From the sensor output signal response towards the mass of magnetic beads which were directly immobilized on the disposable card surface, the limit of detection was estimated about 312 ng ferrites, which corresponds to 3.8 μemu. In comparison with DNA detection by conventional biosensor based on magnetic bead labeling, disposable cards are featured with higher efficiency and performances, ease of use and less running cost with respects to consumables for biosensor in biomedical analysis systems operating with immobilized bioreceptor.
Localized transfection on arrays of magnetic beads coated with PCR products.
Isalan, Mark; Santori, Maria Isabel; Gonzalez, Cayetano; Serrano, Luis
2005-02-01
High-throughput gene analysis would benefit from new approaches for delivering DNA or RNA into cells. Here we describe a simple system that allows any molecular biology laboratory to carry out multiple, parallel cell transfections on microscope coverslip arrays. By using magnetically defined positions and PCR product-coated paramagnetic beads, we achieved transfection in a variety of cell lines. Beads may be added to the cells at any time, allowing both spatial and temporal control of transfection. Because the beads may be coated with more than one gene construct, the method can be used to achieve cotransfection within single cells. Furthermore, PCR-generated mutants may be conveniently screened, bypassing cloning and plasmid purification steps. We illustrated the applicability of the method by screening combinatorial peptide libraries, fused to GFP, to identify previously unknown cellular localization motifs. In this way, we identified several localizing peptides, including structured localization signals based around the scaffold of a single C2H2 zinc finger.
NASA Astrophysics Data System (ADS)
Subashini, L.; Vasudevan, M.
2012-02-01
Type 316 LN stainless steel is the major structural material used in the construction of nuclear reactors. Activated flux tungsten inert gas (A-TIG) welding has been developed to increase the depth of penetration because the depth of penetration achievable in single-pass TIG welding is limited. Real-time monitoring and control of weld processes is gaining importance because of the requirement of remoter welding process technologies. Hence, it is essential to develop computational methodologies based on an adaptive neuro fuzzy inference system (ANFIS) or artificial neural network (ANN) for predicting and controlling the depth of penetration and weld bead width during A-TIG welding of type 316 LN stainless steel. In the current work, A-TIG welding experiments have been carried out on 6-mm-thick plates of 316 LN stainless steel by varying the welding current. During welding, infrared (IR) thermal images of the weld pool have been acquired in real time, and the features have been extracted from the IR thermal images of the weld pool. The welding current values, along with the extracted features such as length, width of the hot spot, thermal area determined from the Gaussian fit, and thermal bead width computed from the first derivative curve were used as inputs, whereas the measured depth of penetration and weld bead width were used as output of the respective models. Accurate ANFIS models have been developed for predicting the depth of penetration and the weld bead width during TIG welding of 6-mm-thick 316 LN stainless steel plates. A good correlation between the measured and predicted values of weld bead width and depth of penetration were observed in the developed models. The performance of the ANFIS models are compared with that of the ANN models.
DC bead: in vitro characterization of a drug-delivery device for transarterial chemoembolization.
Lewis, Andrew L; Gonzalez, M Victoria; Lloyd, Andrew W; Hall, Brenda; Tang, Yiqing; Willis, Sean L; Leppard, Simon W; Wolfenden, Laura C; Palmer, Rosemary R; Stratford, Peter W
2006-02-01
The purpose of this investigation is to present the in vitro characterization and detailed drug-loading procedure for DC Bead, a microsphere product that can be loaded with chemotherapeutic agents for embolization. DC Bead is an embolic microsphere product that is capable of being loaded with anthracycline drugs such as doxorubicin just before administration in a transarterial chemoembolization (TACE) procedure. Beads can be loaded from solutions prepared from doxorubicin powder or the doxorubicin HCl formulation. In this evaluation, bead sizes were measured by optical microscopy with video imaging. Gravimetric analysis demonstrated the effect of drug loading on bead water content, and its consequent impact on bead compressibility was determined. The subsequent deliverability of the beads was assessed by mixing the beads with contrast medium and saline solution and passing the beads through an appropriately sized microcatheter. A T-cell apparatus was used to monitor the in vitro elution of the drug from the beads over a period of 24 hours in various elution media. DC Bead spheres could be easily loaded with doxorubicin to a recommended level of 25 mg/mL of hydrated beads by immersion of the beads in the drug solution for 10-120 minutes depending on microsphere size. Other commercial embolic microspheres were shown not to load doxorubicin to the same extent or release it in the same fashion and were considered unsuitable for local drug delivery. Maximum theoretic capacity for DC Bead was approximately 45 mg/mL. Increase in doxorubicin loading resulted in a concomitant decrease in water content and consequential increase in bead resistance to compression force. Drug loading also resulted in a decrease in the average size of the beads, which was dependent on bead size and drug dose. This did not impact bead delivery at any drug loading level to a maximum of 37.5 mg/mL. Beads 100-700 microm in size could be delivered through 2.7-F microcatheters, whereas the 700-900-microm range required 3-F catheters. Modeling of the kinetics of drug elution from the beads in vitro at a loading dose of 25 mg/mL yielded calculated half-lives of 150 hours for the 100-300-microm range to a maximum of 1,730 hours for the 700-900-microm size range, which was dependent on the ionic strength of the elution medium. For comparison, there was a rapid loss of drug from an unstable Lipiodol emulsion with a half-life of approximately 1 hour. DC Bead can be loaded with doxorubicin to provide an accurate dosage of drug per unit volume of beads. Drug elution is dependent on ion exchange with the surrounding environment and is controlled and sustained, unlike the rapid separation of the drug from Lipiodol. Drug loading has no impact on the handling and deliverability of the beads, making them suitable for superselective TACE.
Statistical field theory description of inhomogeneous polarizable soft matter
NASA Astrophysics Data System (ADS)
Martin, Jonathan M.; Li, Wei; Delaney, Kris T.; Fredrickson, Glenn H.
2016-10-01
We present a new molecularly informed statistical field theory model of inhomogeneous polarizable soft matter. The model is based on fluid elements, referred to as beads, that can carry a net monopole of charge at their center of mass and a fixed or induced dipole through a Drude-type distributed charge approach. The beads are thus polarizable and naturally manifest attractive van der Waals interactions. Beyond electrostatic interactions, beads can be given soft repulsions to sustain fluid phases at arbitrary densities. Beads of different types can be mixed or linked into polymers with arbitrary chain models and sequences of charged and uncharged beads. By such an approach, it is possible to construct models suitable for describing a vast range of soft-matter systems including electrolyte and polyelectrolyte solutions, ionic liquids, polymerized ionic liquids, polymer blends, ionomers, and block copolymers, among others. These bead models can be constructed in virtually any ensemble and converted to complex-valued statistical field theories by Hubbard-Stratonovich transforms. One of the fields entering the resulting theories is a fluctuating electrostatic potential; other fields are necessary to decouple non-electrostatic interactions. We elucidate the structure of these field theories, their consistency with macroscopic electrostatic theory in the absence and presence of external electric fields, and the way in which they embed van der Waals interactions and non-uniform dielectric properties. Their suitability as a framework for computational studies of heterogeneous soft matter systems using field-theoretic simulation techniques is discussed.
Statistical field theory description of inhomogeneous polarizable soft matter.
Martin, Jonathan M; Li, Wei; Delaney, Kris T; Fredrickson, Glenn H
2016-10-21
We present a new molecularly informed statistical field theory model of inhomogeneous polarizable soft matter. The model is based on fluid elements, referred to as beads, that can carry a net monopole of charge at their center of mass and a fixed or induced dipole through a Drude-type distributed charge approach. The beads are thus polarizable and naturally manifest attractive van der Waals interactions. Beyond electrostatic interactions, beads can be given soft repulsions to sustain fluid phases at arbitrary densities. Beads of different types can be mixed or linked into polymers with arbitrary chain models and sequences of charged and uncharged beads. By such an approach, it is possible to construct models suitable for describing a vast range of soft-matter systems including electrolyte and polyelectrolyte solutions, ionic liquids, polymerized ionic liquids, polymer blends, ionomers, and block copolymers, among others. These bead models can be constructed in virtually any ensemble and converted to complex-valued statistical field theories by Hubbard-Stratonovich transforms. One of the fields entering the resulting theories is a fluctuating electrostatic potential; other fields are necessary to decouple non-electrostatic interactions. We elucidate the structure of these field theories, their consistency with macroscopic electrostatic theory in the absence and presence of external electric fields, and the way in which they embed van der Waals interactions and non-uniform dielectric properties. Their suitability as a framework for computational studies of heterogeneous soft matter systems using field-theoretic simulation techniques is discussed.
Encapsulation of Autoinducer Sensing Reporter Bacteria in Reinforced Alginate-Based Microbeads.
Li, Ping; Müller, Mareike; Chang, Matthew Wook; Frettlöh, Martin; Schönherr, Holger
2017-07-12
Quorum sensing, in which bacteria communities use signaling molecules for inter- and intracellular communication, has been intensively studied in recent decades. In order to fabricate highly sensitive easy-to-handle point of care biosensors that detect quorum sensing molecules, we have developed, as is reported here, reporter bacteria loaded alginate-methacrylate (alginate-MA) hydrogel beads. The alginate-MA beads, which were obtained by electrostatic extrusion, were reinforced by photo-cross-linking to increase stability and thereby to reduce bacteria leaching. In these beads the genetically engineered fluorescent reporter bacterium Escherichia coli pTetR-LasR-pLuxR-GFP (E. coli pLuxR-GFP) was encapsulated, which responds to the autoinducer N-(3-oxododecanoyl)homoserine lactone secreted by Pseudomonas aeruginosa. After encapsulation in alginate-MA hydrogel beads with diameters in the range of 100-300 μm that were produced by an electrostatic extrusion method and rapid photo-cross-linking, the E. coli pLuxR-GFP were found to possess a high degree of viability and sensing activity. The encapsulated bacteria could proliferate inside the hydrogel beads, when exposed to bacteria culture medium. In media containing the autoinducer N-(3-oxododecanoyl)homoserine lactone, the encapsulated reporter bacteria responded with a strong fluorescence signal due to an increased green fluorescent protein (GFP) expression. A prototype dipstick type sensor developed here underlines the potential of encapsulation of viable and functional reporter bacteria inside reinforced alginate-methacrylate hydrogel beads for whole cell sensors for bacteria detection.
Rapid and continuous magnetic separation in droplet microfluidic devices
Brouzes, Eric; Kruse, Travis; Kimmerling, Robert; ...
2014-12-03
Here, we present a droplet microfluidic method to extract molecules of interest from a droplet in a rapid and continuous fashion. We accomplish this by first marginalizing functionalized super-paramagnetic beads within the droplet using a magnetic field, and then splitting the droplet into one droplet containing the majority of magnetic beads and one droplet containing the minority fraction. We quantitatively analysed the factors which affect the efficiency of marginalization and droplet splitting to optimize the enrichment of magnetic beads. We first characterized the interplay between the droplet velocity and the strength of the magnetic field and its effect on marginalization.more » We found that marginalization is optimal at the midline of the magnet and that marginalization is a good predictor of bead enrichment through splitting at low to moderate droplet velocities. Finally, we focused our efforts on manipulating the splitting profile to improve the enrichment provided by asymmetric splitting. We designed asymmetric splitting forks that employ capillary effects to preferentially extract the bead-rich regions of the droplets. Our strategy represents a framework to optimize magnetic bead enrichment methods tailored to the requirements of specific droplet-based applications. We anticipate that our separation technology is well suited for applications in single-cell genomics and proteomics. In particular, our method could be used to separate mRNA bound to poly-dT functionalized magnetic microparticles from single cell lysates to prepare single-cell cDNA libraries.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-16
... of Bio-based Technologies (Lubricants) that can be used in locomotives, rolling stock and other rail... of the Use of Bio-based Technologies (Lubricants) that can be used in locomotives, rolling stock and...
Performance Degradation Assessment of Rolling Element Bearings using Improved Fuzzy Entropy
NASA Astrophysics Data System (ADS)
Zhu, Keheng; Jiang, Xiaohui; Chen, Liang; Li, Haolin
2017-10-01
Rolling element bearings are an important unit in the rotating machines, and their performance degradation assessment is the basis of condition-based maintenance. Targeting the non-linear dynamic characteristics of faulty signals of rolling element bearings, a bearing performance degradation assessment approach based on improved fuzzy entropy (FuzzyEn) is proposed in this paper. FuzzyEn has less dependence on data length and achieves more freedom of parameter selection and more robustness to noise. However, it neglects the global trend of the signal when calculating similarity degree of two vectors, and thus cannot reflect the running state of the rolling element bearings accurately. Based on this consideration, the algorithm of FuzzyEn is improved in this paper and the improved FuzzyEn is utilized as an indicator for bearing performance degradation evaluation. The vibration data from run-to-failure test of rolling element bearings are used to validate the proposed method. The experimental results demonstrate that, compared with the traditional kurtosis and root mean square, the proposed method can detect the incipient fault in advance and can reflect the whole performance degradation process more clearly.
NASA Astrophysics Data System (ADS)
Boada, Beatriz L.; Boada, Maria Jesus L.; Vargas-Melendez, Leandro; Diaz, Vicente
2018-01-01
Nowadays, one of the main objectives in road transport is to decrease the number of accident victims. Rollover accidents caused nearly 33% of all deaths from passenger vehicle crashes. Roll Stability Control (RSC) systems prevent vehicles from untripped rollover accidents. The lateral load transfer is the main parameter which is taken into account in the RSC systems. This parameter is related to the roll angle, which can be directly measured from a dual-antenna GPS. Nevertheless, this is a costly technique. For this reason, roll angle has to be estimated. In this paper, a novel observer based on H∞ filtering in combination with a neural network (NN) for the vehicle roll angle estimation is proposed. The design of this observer is based on four main criteria: to use a simplified vehicle model, to use signals of sensors which are installed onboard in current vehicles, to consider the inaccuracy in the system model and to attenuate the effect of the external disturbances. Experimental results show the effectiveness of the proposed observer.
NASA Technical Reports Server (NTRS)
Blair, A. B., Jr.
1990-01-01
Wind tunnel investigations were conducted on a generic cruciform canard-controlled missile configuration. The model featured fixed or free-rolling tail-fin afterbodies to provide an expanded aerodynamic data base with particular emphasis on alleviating large induced rolling moments and/or for providing canard roll control throughout the entire test angle-of-attack range. The tests were conducted in the NASA Langley Unitary Plan Wind Tunnel at Mach numbers from 2.50 to 3.50 at a constant Reynolds number per foot of 2.00 x 10 to the 6th. Selected test results are presented to show the effects of a fixed or free-rolling tail-fin afterbody on the static longitudinal and lateral-directional aerodynamic characteristics of a canard-controlled missile with pitch, yaw, and roll control at model roll angles of 0 deg and 45 deg.
Hot-rolling of reduced activation 8CrODS ferritic steel
NASA Astrophysics Data System (ADS)
Wu, Xiaochao; Ukai, Shigeharu; Leng, Bin; Oono, Naoko; Hayashi, Shigenari; Sakasegawa, Hideo; Tanigawa, Hiroyasu
2013-11-01
The 8CrODS ferritic steel is based on J1-lot developed for the advanced fusion blanket material to increase the coolant outlet temperature. A hot-rolling was conducted at the temperature above Ar3 of 716 °C, and its effect on the microstructure and tensile strength in 8CrODS ferritic steel was evaluated, comparing together with normalized and tempered specimen. It was confirmed that hot-rolling leads to slightly increased fraction of the ferrite and highly improved tensile strength. This ferrite was formed by transformation from the hot-rolled austenite during cooling due to fine austenite grains induced by hot-rolling. The coarsening of the transformed ferrite in hot-rolled specimen can be attributed to the crystalline rotation and coalescence of the similar oriented grains. The improved strength of hot-rolled specimen was ascribed to the high dislocation density and replacement of easily deformed martensite with the transformed coarse ferrite.
NASA Astrophysics Data System (ADS)
Jin, Tao; Shen, Lu; Ke, Youlong; Hou, Wenmei; Ju, Aisong; Yang, Wei; Luo, Jialin
2016-10-01
In order to achieve rapid measurement of larger travel translation stages' roll-angle error in industry and to study the roll characteristics, this paper designs a small roll-angle measurement system based on laser heterodyne interferometry technology, test and researched on the roll characteristics of ball screw linear translation stage to fill the blank of the market. The results show that: during the operation of the ball screw linear translation stage, the workbench's roll angle changes complexly, its value is not only changing with different positions, but also shows different levels of volatility, what's more, the volatility varies with the workbench's work speed . Because of the non uniform stiffness of ball screw, at the end of each movement, the elastic potential energy being stored from the working process should release slowly, and the workbench will cost a certain time to roll fluctuate before it achieves a stable tumbling again.
Static roll-tilt over 5 minutes locally distorts the internal estimate of direction of gravity.
Tarnutzer, A A; Bockisch, C J; Straumann, D; Marti, S; Bertolini, G
2014-12-01
The subjective visual vertical (SVV) indicates perceived direction of gravity. Even in healthy human subjects, roll angle-dependent misestimations, roll overcompensation (A-effect, head-roll > 60° and <135°) and undercompensation (E-effect, head-roll < 60°), occur. Previously, we demonstrated that, after prolonged roll-tilt, SVV estimates when upright are biased toward the preceding roll position, which indicates that perceived vertical (PV) is shifted by the prior tilt (Tarnutzer AA, Bertolini G, Bockisch CJ, Straumann D, Marti S. PLoS One 8: e78079, 2013). Hypothetically, PV in any roll position could be biased toward the previous roll position. We asked whether such a "global" bias occurs or whether the bias is "local". The SVV of healthy human subjects (N = 9) was measured in nine roll positions (-120° to +120°, steps = 30°) after 5 min of roll-tilt in one of two adaptation positions (±90°) and compared with control trials without adaptation. After adapting, adjustments were shifted significantly (P < 0.05) toward the previous adaptation position for nearby roll-tilted positions (±30°, ±60°) and upright only. We computationally simulated errors based on the sum of a monotonically increasing function (producing roll undercompensation) and a mixture of Gaussian functions (representing roll overcompensation centered around PV). In combination, the pattern of A- and E-effects could be generated. By shifting the function representing local overcompensation toward the adaptation position, the experimental postadaptation data could be fitted successfully. We conclude that prolonged roll-tilt locally distorts PV rather than globally shifting it. Short-term adaptation of roll overcompensation may explain these shifts and could reflect the brain's strategy to optimize SVV estimates around recent roll positions. Thus postural stability can be improved by visually-mediated compensatory responses at any sustained body-roll orientation. Copyright © 2014 the American Physiological Society.
NASA Astrophysics Data System (ADS)
Zheng, Jinde; Pan, Haiyang; Cheng, Junsheng
2017-02-01
To timely detect the incipient failure of rolling bearing and find out the accurate fault location, a novel rolling bearing fault diagnosis method is proposed based on the composite multiscale fuzzy entropy (CMFE) and ensemble support vector machines (ESVMs). Fuzzy entropy (FuzzyEn), as an improvement of sample entropy (SampEn), is a new nonlinear method for measuring the complexity of time series. Since FuzzyEn (or SampEn) in single scale can not reflect the complexity effectively, multiscale fuzzy entropy (MFE) is developed by defining the FuzzyEns of coarse-grained time series, which represents the system dynamics in different scales. However, the MFE values will be affected by the data length, especially when the data are not long enough. By combining information of multiple coarse-grained time series in the same scale, the CMFE algorithm is proposed in this paper to enhance MFE, as well as FuzzyEn. Compared with MFE, with the increasing of scale factor, CMFE obtains much more stable and consistent values for a short-term time series. In this paper CMFE is employed to measure the complexity of vibration signals of rolling bearings and is applied to extract the nonlinear features hidden in the vibration signals. Also the physically meanings of CMFE being suitable for rolling bearing fault diagnosis are explored. Based on these, to fulfill an automatic fault diagnosis, the ensemble SVMs based multi-classifier is constructed for the intelligent classification of fault features. Finally, the proposed fault diagnosis method of rolling bearing is applied to experimental data analysis and the results indicate that the proposed method could effectively distinguish different fault categories and severities of rolling bearings.
Lu, Emily; Elizondo-Riojas, Miguel-Angel; Chang, Jeffrey T; Volk, David E
2014-06-10
Next-generation sequencing results from bead-based aptamer libraries have demonstrated that traditional DNA/RNA alignment software is insufficient. This is particularly true for X-aptamers containing specialty bases (W, X, Y, Z, ...) that are identified by special encoding. Thus, we sought an automated program that uses the inherent design scheme of bead-based X-aptamers to create a hypothetical reference library and Markov modeling techniques to provide improved alignments. Aptaligner provides this feature as well as length error and noise level cutoff features, is parallelized to run on multiple central processing units (cores), and sorts sequences from a single chip into projects and subprojects.
NASA Astrophysics Data System (ADS)
Greiner, Matthias; Unrau, Hans-Joachim; Gauterin, Frank
2018-01-01
Measurements of rolling resistance in thermal equilibrium of a tyre, like measurements according to ISO 28580, do not allow statements about rolling resistances under other driving conditions. Such statements, however, are necessary to determine the energy consumption in driving cycles. Especially for the proper calculation of electric-vehicle remaining ranges and the selection of the respective driving strategies, the real amount of energy consumption is required. This paper presents a model approach, which by means of only one standardised rolling resistance measurement can be parameterised and, considering the present driving speed and tyre temperature, can predict the respective current rolling resistance.
Dual stimuli-responsive smart beads that allow "on-off" manipulation of cancer cells.
Kim, Young-Jin; Kim, Soo Hyeon; Fujii, Teruo; Matsunaga, Yukiko T
2016-06-24
Temperature- and electric field-responsive polymer-conjugated polystyrene beads, termed smart beads, are designed to isolate cancer cells. In smart beads, the reversible "on-off" antigen-antibody reaction and dielectrophoresis force on an electrode are accomplished to realize "on-off" remote manipulation of smart beads and cancer cells. Both the zeta-potential and the hydrodynamic diameter of the smart beads are sensitive to temperature, allowing "on-off" reversible capture and release of cancer cells. Cancer cell-captured smart beads are then localized on electrodes by applying an electrical signal.
The Influence of Hot-Rolled Temperature on Plasma Nitriding Behavior of Iron-Based Alloys
NASA Astrophysics Data System (ADS)
El-Hossary, F. M.; Khalil, S. M.; Lotfy, Kh.; Kassem, M. A.
2009-07-01
Experiments were performed with an aim of studying the effect of hot-rolled temperature (600 and 900°C) on radio frequency (rf) plasma nitriding of Fe93Ni4Zr3 alloy. Nitriding was carried out for 10 min in a nitrogen atmosphere at a base pressure of 10-2 mbarr. Different continuous plasma processing powers of 300-550 W in steps 50 W or less were applied. Nitrided hot-rolled specimens were characterized by optical microscopy (OM), X-ray diffraction (XRD) and microhardness measurements. The results reveal that the surface of hot-rolled rf plasma nitrided specimens at 600°C is characterized with a fine microstructure as a result of the high nitrogen solubility and diffusivity. Moreover, the hot-rolled treated samples at 600°C exhibit higher microhardness value than the associated values of hot-rolled treated samples at 900°C. The enhancement of microhardness is due to precipitation and predominance of new phases ( γ and ɛ phases). Mainly, this conclusion has been attributed to the high defect densities and small grain sizes of the samples hot-rolled at 600°C. Generally, the refinement of grain size plays a dramatic role in improvement of mechanical properties of tested samples.
A comparative study of roll compaction of free-flowing and cohesive pharmaceutical powders.
Yu, Shen; Gururajan, Bindhu; Reynolds, Gavin; Roberts, Ron; Adams, Michael J; Wu, Chuan-Yu
2012-05-30
Roll compaction is widely adopted as a dry granulation method in the pharmaceutical industry. The roll compaction behaviour of feed powders is primarily governed by two parameters: the maximum pressure and the nip angle. Although the maximum pressure can be measured directly using pressure sensors fitted in the rolls, it is not a trivial task to determine the nip angle, which is a measure of the size of the compaction zone and hence the degree of compression. Thus a robust approach based upon the calculation of the pressure gradient, which can be obtained directly from experiments using an instrumented roll compactor, was developed. It has been shown that the resulting nip angles are comparable to those obtained using the methods reported in literature. Nevertheless, the proposed approach has distinctive advantages including (1) it is based on the intrinsic features of slip and no-slip interactions between the powder and roll surface and (2) it is not necessary to carry out wall friction measurements that involve plates that may not be representative of the roll compactor in terms of the surface topography and surface energy. The method was evaluated by investigating the effect of roll speed for two pharmaceutical excipients with distinctive material properties: microcrystalline cellulose (MCC) and di-calcium phosphate dihydrate (DCPD). It was found that the maximum pressure and nip angle for DCPD, which is a cohesive powder, decrease sharply with increasing roll speed whereas they are essentially independent of roll speed for MCC, which is an easy flowing powder. The roll compaction behaviour of MCC-DCPD mixtures with various compositions was also investigated in order to evaluate the effect of flowability. It was found that the nip angle and maximum pressure generally increased with improved flowability of the feed powders. Copyright © 2012 Elsevier B.V. All rights reserved.
Charging of multiple interacting particles by contact electrification.
Soh, Siowling; Liu, Helena; Cademartiri, Rebecca; Yoon, Hyo Jae; Whitesides, George M
2014-09-24
Many processes involve the movement of a disordered collection of small particles (e.g., powders, grain, dust, and granular foods). These particles move chaotically, interact randomly among themselves, and gain electrical charge by contact electrification. Understanding the mechanisms of contact electrification of multiple interacting particles has been challenging, in part due to the complex movement and interactions of the particles. To examine the processes contributing to contact electrification at the level of single particles, a system was constructed in which an array of millimeter-sized polymeric beads of different materials were agitated on a dish. The dish was filled almost completely with beads, such that beads did not exchange positions. At the same time, during agitation, there was sufficient space for collisions with neighboring beads. The charge of the beads was measured individually after agitation. Results of systematic variations in the organization and composition of the interacting beads showed that three mechanisms determined the steady-state charge of the beads: (i) contact electrification (charging of beads of different materials), (ii) contact de-electrification (discharging of beads of the same charge polarity to the atmosphere), and (iii) a long-range influence across beads not in contact with one another (occurring, plausibly, by diffusion of charge from a bead with a higher charge to a bead with a lower charge of the same polarity).
Roll Casting of Aluminum Alloy Clad Strip
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakamura, R.; Tsuge, H.; Haga, T.
2011-01-17
Casting of aluminum alloy three layers of clad strip was tried using the two sets of twin roll casters, and effects of the casting parameters on the cladding conditions were investigated. One twin roll caster was mounted on the other twin roll caster. Base strip was 8079 aluminum alloy and overlay strips were 6022 aluminum alloy. Effects of roll-load of upper and lower casters and melt temperature of the lower caster were investigated. When the roll-load of the upper and lower caster was large enough, the overlay strip could be solidified and be connected. The overlay strip could be connectedmore » when the melt of the overlay strip cast by the lower caster was low enough. Sound three layers of clad strip could be cast by proper conditions.« less
Controlling the size of alginate gel beads by use of a high electrostatic potential.
Klokk, T I; Melvik, J E
2002-01-01
The effect of several parameters on the size of alginate beads produced by use of an electrostatic potential bead generator was examined. Parameters studied included needle diameter, electrostatic potential, alginate solution flow rate, gelling ion concentration and alginate concentration and viscosity, as well as alginate composition. Bead size was found to decrease with increasing electrostatic potential, but only down to a certain level. Minimum bead size was reached at between 2-4 kV/cm for the needles tested. The smallest alginate beads produced (using a needle with inner diameter 0.18 mm) had a mean diameter of approximately 300 microm. Bead size was also found to be dependent upon the flow rate of the fed alginate solution. Increasing the gelling ion concentration resulted in a moderate decrease in bead size. The concentration and viscosity of the alginate solution also had an effect on bead size as demonstrated by an increased bead diameter when the concentration or viscosity was increased. This effect was primarily an effect of the viscosity properties of the solution, which led to changes in the rate of droplet formation in the bead generator. Lowering the flow rate of the alginate solution could partly compensate for the increase in bead size with increased viscosity. For a constant droplet size, alginates with a low G block content (F(GG) approximately 0.20) resulted in approximately 30% smaller beads than alginates with a high G block content (F(GG) approximately 0.60). This is explained as a result of differences in the shrinking properties of the beads.
Elution of Clindamycin and Enrofloxacin From Calcium Sulfate Hemihydrate Beads In Vitro.
Phillips, Heidi; Boothe, Dawn M; Bennett, R Avery
2015-11-01
To compare the in vitro elution characteristics of clindamycin and enrofloxacin from calcium sulfate hemihydrate beads containing a single antibiotic, both antibiotics, and each antibiotic incubated in the same eluent well. Experimental in vitro study. Calcium sulfate hemihydrate beads were formed by mixing with clindamycin and/or enrofloxacin to create 4 study groups: (1) 160 mg clindamycin/10 beads; (2) 160 mg enrofloxacin/10 beads; (3) 160 mg clindamycin + 160 mg enrofloxacin/10 beads; and (4) 160 mg clindamycin/5 beads and 160 mg enrofloxacin/5 beads. Chains of beads were formed in triplicate and placed in 5 mL phosphate buffered saline (PBS; pH 7.4 and room temperature) with constant agitation. Antibiotic-conditioned PBS was sampled at 14 time points from 1 hour to 30 days. Clindamycin and enrofloxacin concentrations in PBS were determined using high-performance liquid chromatography. Eluent concentrations from clindamycin-impregnated beads failed to remain sufficiently above minimum inhibitory concentration (MIC) for common infecting bacteria over the study period. Enrofloxacin eluent concentrations remained sufficiently above MIC for common wound pathogens of dogs and cats and demonstrated an atypical biphasic release pattern. No significant differences in elution occurred as a result of copolymerization of the antibiotics into a single bead or from individual beads co-eluting in the same eluent well. Clindamycin-impregnated beads cannot be recommended for treatment of infection at the studied doses; however, use of enrofloxacin-impregnated beads may be justified when susceptible bacteria are cultured. © Copyright 2015 by The American College of Veterinary Surgeons.
An Abiotic Glass-Bead Collector Exhibiting Active Transport
NASA Astrophysics Data System (ADS)
Goto, Youhei; Kanda, Masato; Yamamoto, Daigo; Shioi, Akihisa
2015-09-01
Animals relocate objects as needed by active motion. Active transport is ubiquitous in living organisms but has been difficult to realize in abiotic systems. Here we show that a self-propelled droplet can gather scattered beads toward one place on a floor and sweep it clean. This is a biomimetic active transport with loadings and unloadings, because the transport was performed by a carrier and the motion of the carrier was maintained by the energy of the chemical reaction. The oil droplet produced fluctuation of the local number density of the beads on the floor, followed by its autocatalytic growth. This mechanism may inspire the technologies based on active transport wherein chemical and physical substances migrate as in living organisms.
Biased Brownian motion in narrow channels with asymmetry and anisotropy
NASA Astrophysics Data System (ADS)
To, Kiwing; Peng, Zheng
2016-11-01
We study Brownian motion of a single millimeter size bead confined in a quasi-two-dimensional horizontal channel with built-in anisotropy and asymmetry. Channel asymmetry is implemented by ratchet walls while anisotropy is introduced using a channel base that is grooved along the channel axis so that a bead can acquire a horizontal impulse perpendicular to the longitudinal direction when it collides with the base. When energy is injected to the channel by vertical vibration, the combination of asymmetric walls and anisotropic base induces an effective force which drives the bead into biased diffusive motion along the channel axis with diffusivity and drift velocity increase with vibration strength. The magnitude of this driving force, which can be measured in experiments of tilted channel, is found to be consistent to those obtained from dynamic mobility and position probability distribution measurements. These results are explained by a simple collision model that suggests the random kinetic energies transfer between different translational degrees of freedom may be turned into useful work in the presence of asymmetry and anisotropy.
Biased Brownian motion in narrow channels with asymmetry and anisotropy
NASA Astrophysics Data System (ADS)
Peng, Zheng; To, Kiwing
2016-08-01
We study Brownian motion of a single millimeter size bead confined in a quasi-two-dimensional horizontal channel with built-in anisotropy and asymmetry. Channel asymmetry is implemented by ratchet walls while anisotropy is introduced using a channel base that is grooved along the channel axis so that a bead can acquire a horizontal impulse perpendicular to the longitudinal direction when it collides with the base. When energy is injected to the channel by vertical vibration, the combination of asymmetric walls and anisotropic base induces an effective force which drives the bead into biased diffusive motion along the channel axis with diffusivity and drift velocity increase with vibration strength. The magnitude of this driving force, which can be measured in experiments on a tilted channel, is found to be consistent with those obtained from dynamic mobility and position probability distribution measurements. These results are explained by a simple collision model that suggests the random kinetic energy transfer between different translational degrees of freedom may be turned into useful work in the presence of asymmetry and anisotropy.
Multifunctional Magnetic and Upconverting Nanobeads as Dual Modal Imaging Tools.
Materia, Maria Elena; Pernia Leal, Manuel; Scotto, Marco; Balakrishnan, Preethi Bala; Kumar Avugadda, Sahitya; García-Martín, María L; Cohen, Bruce E; Chan, Emory M; Pellegrino, Teresa
2017-11-15
We report the fabrication of aqueous multimodal imaging nanocomposites based on superparamagnetic nanoparticles (MNPs) and two different sizes of photoluminescent upconverting nanoparticles (UCNPs). The controlled and simultaneous incorporation of both types of nanoparticles (NPs) was obtained by controlling the solvent composition and the addition rate of the destabilizing solvent. The magnetic properties of the MNPs remained unaltered after their encapsulation into the polymeric beads as shown by the T2 relaxivity measurements. The UCNPs maintain photoluminescent properties even when embedded with the MNPs into the polymer bead. Moreover, the light emitted by the magnetic and upconverting nanobeads (MUCNBs) under NIR excitation (λ exc = 980 nm) was clearly observed through different thicknesses of agarose gel or through a mouse skin layer. The comparison with magnetic and luminescent nanobeads based on red-emitting quantum dots (QDs) demonstrated that while the QD-based beads show significant autofluorescence background from the skin, the signal obtained by the MUCNBs allows a decrease in this background. In summary, these results indicate that MUCNBs are good magnetic and optical probes for in vivo multimodal imaging sensors.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-22
...: (202) 493-2251. For service information identified in this AD, contact Rolls-Royce plc, Corporate... received by the closing date and may amend this proposed AD based on those comments. We will post all... this AD, contact Rolls-Royce plc, Corporate Communications, P.O. Box 31, Derby, England, DE248BJ; phone...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-05
... products produced from Chinese-origin jumbo rolls/ sheets.\\3\\ We determined in the Preliminary Results, as... paper products produced using Chinese-origin jumbo rolls/sheets. Further, based on AFA, we preliminarily... produced by MFVN from Chinese-origin jumbo rolls/sheets is China. Consequently, we assigned MFVN a cash...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ozanich, Rich M.; Antolick, Kathryn C.; Bruckner-Lea, Cindy J.
2007-09-15
Automated devices and methods for biological sample preparation often utilize surface functionalized microbeads (superparamagnetic or non-magnetic) to allow capture, purification and pre-concentration of trace amounts of proteins, cells, or nucleic acids (DNA/RNA) from complex samples. We have developed unique methods and hardware for trapping either magnetic or non-magnetic functionalized beads that allow samples and reagents to be efficiently perfused over a micro-column of beads. This approach yields enhanced mass transport and up to 5-fold improvements in assay sensitivity or speed, dramatically improving assay capability relative to assays conducted in more traditional “batch modes” (i.e., in tubes or microplate wells). Summarymore » results are given that highlight the analytical performance improvements obtained for automated microbead processing systems utilizing novel microbead trap/flow-cells for various applications, including: 1) simultaneous capture of multiple cytokines using an antibody-coupled polystyrene bead assay with subsequent flow cytometry detection; 2) capture of nucleic acids using oligonucleotide coupled polystyrene beads with flow cytometry detection; and 3) capture of Escherichia coli 0157:H7 (E. coli) from 50 mL sample volumes using antibody-coupled superparamagnetic microbeads with subsequent culturing to assess capture efficiency.« less
Loján, P; Demortier, M; Velivelli, S L S; Pfeiffer, S; Suárez, J P; de Vos, P; Prestwich, B D; Sessitsch, A; Declerck, S
2017-02-01
This study aimed at evaluating the impact of seven plant growth-promoting rhizobacteria (PGPR) on root colonization and life cycle of Rhizophagus irregularis MUCL 41833 when co-entrapped in alginate beads. Two in vitro experiments were conducted. The first consisted of the immobilization of R. irregularis and seven PGPR isolates into alginate beads to assess the effect of the bacteria on the pre-symbiotic growth of the fungus. In the second experiment, the best performing PGPR from experiment 1 was tested for its ability to promote the symbiotic development of the AMF in potato plantlets from three cultivars. Results showed that only one isolate identified as Pseudomonas plecoglossicida (R-67094) promoted germ tube elongation and hyphal branching of germinated spores during the pre-symbiotic phase of the fungus. This PGPR further promoted the symbiotic development of the AMF in potato plants. The co-entrapment of Ps. plecoglossicida R-67094 and R. irregularis MUCL 41833 in alginate beads improved root colonization by the AMF and its further life cycle under the experimental conditions. Co-entrapment of suitable AMF-PGPR combinations within alginate beads may represent an innovative technology that can be fine-tuned for the development of efficient consortia-based bioformulations. © 2016 The Society for Applied Microbiology.
Welded joints integrity analysis and optimization for fiber laser welding of dissimilar materials
NASA Astrophysics Data System (ADS)
Ai, Yuewei; Shao, Xinyu; Jiang, Ping; Li, Peigen; Liu, Yang; Liu, Wei
2016-11-01
Dissimilar materials welded joints provide many advantages in power, automotive, chemical, and spacecraft industries. The weld bead integrity which is determined by process parameters plays a significant role in the welding quality during the fiber laser welding (FLW) of dissimilar materials. In this paper, an optimization method by taking the integrity of the weld bead and weld area into consideration is proposed for FLW of dissimilar materials, the low carbon steel and stainless steel. The relationships between the weld bead integrity and process parameters are developed by the genetic algorithm optimized back propagation neural network (GA-BPNN). The particle swarm optimization (PSO) algorithm is taken for optimizing the predicted outputs from GA-BPNN for the objective. Through the optimization process, the desired weld bead with good integrity and minimum weld area are obtained and the corresponding microstructure and microhardness are excellent. The mechanical properties of the optimized joints are greatly improved compared with that of the un-optimized welded joints. Moreover, the effects of significant factors are analyzed based on the statistical approach and the laser power (LP) is identified as the most significant factor on the weld bead integrity and weld area. The results indicate that the proposed method is effective for improving the reliability and stability of welded joints in the practical production.
NASA Astrophysics Data System (ADS)
Jansen Van Rensburg, G. J.; Kok, S.; Wilke, D. N.
2017-10-01
Different roll pass reduction schedules have different effects on the through-thickness properties of hot-rolled metal slabs. In order to assess or improve a reduction schedule using the finite element method, a material model is required that captures the relevant deformation mechanisms and physics. The model should also report relevant field quantities to assess variations in material state through the thickness of a simulated rolled metal slab. In this paper, a dislocation density-based material model with recrystallization is presented and calibrated on the material response of a high-strength low-alloy steel. The model has the ability to replicate and predict material response to a fair degree thanks to the physically motivated mechanisms it is built on. An example study is also presented to illustrate the possible effect different reduction schedules could have on the through-thickness material state and the ability to assess these effects based on finite element simulations.
NASA Astrophysics Data System (ADS)
Narang, H. K.; Mahapatra, M. M.; Jha, P. K.; Biswas, P.
2014-05-01
Autogenous arc welds with minimum upper weld bead depression and lower weld bead bulging are desired as such welds do not require a second welding pass for filling up the upper bead depressions (UBDs) and characterized with minimum angular distortion. The present paper describes optimization and prediction of angular distortion and weldment characteristics such as upper weld bead depression and lower weld bead bulging of TIG-welded structural steel square butt joints. Full factorial design of experiment was utilized for selecting the combinations of welding process parameter to produce the square butts. A mathematical model was developed to establish the relationship between TIG welding process parameters and responses such as upper bead width, lower bead width, UBD, lower bead height (bulging), weld cross-sectional area, and angular distortions. The optimal welding condition to minimize UBD and lower bead bulging of the TIG butt joints was identified.
NASA Astrophysics Data System (ADS)
Vu, Van Tan; Sename, Olivier; Dugard, Luc; Gaspar, Peter
2017-09-01
Rollover of heavy vehicle is an important road safety problem world-wide. Although rollovers are relatively rare events, they are usually deadly accidents when they occur. The roll stability loss is the main cause of rollover accidents in which heavy vehicles are involved. In order to improve the roll stability, most of modern heavy vehicles are equipped with passive anti-roll bars to reduce roll motion during cornering or riding on uneven roads. However these may be not sufficient to overcome critical situations. This paper introduces the active anti-roll bars made of four electronic servo-valve hydraulic actuators, which are modelled and integrated in a yaw-roll model of a single unit heavy vehicle. The control signal is the current entering the electronic servo-valve and the output is the force generated by the hydraulic actuator. The active control design is achieved solving a linear optimal control problem based on the linear quadratic regulator (LQR) approach. A comparison of several LQR controllers is provided to allow for tackling the considered multi-objective problems. Simulation results in frequency and time domains show that the use of two active anti-roll bars (front and rear axles) drastically improves the roll stability of the single unit heavy vehicle compared with the passive anti-roll bar.
Impact of vertical wind shear on roll structure in idealized hurricane boundary layers
NASA Astrophysics Data System (ADS)
Wang, Shouping; Jiang, Qingfang
2017-03-01
Quasi-two-dimensional roll vortices are frequently observed in hurricane boundary layers. It is believed that this highly coherent structure, likely caused by the inflection-point instability, plays an important role in organizing turbulent transport. Large-eddy simulations are conducted to investigate the impact of wind shear characteristics, such as the shear strength and inflection-point level, on the roll structure in terms of its spectral characteristics and turbulence organization. A mean wind nudging approach is used in the simulations to maintain the specified mean wind shear without directly affecting turbulent motions. Enhancing the radial wind shear expands the roll horizontal scale and strengthens the roll's kinetic energy. Increasing the inflection-point level tends to produce a narrow and sharp peak in the power spectrum at the wavelength consistent with the roll spacing indicated by the instantaneous turbulent fields. The spectral tangential momentum flux, in particular, reaches a strong peak value at the roll wavelength. In contrast, the spectral radial momentum flux obtains its maximum at the wavelength that is usually shorter than the roll's, suggesting that the roll radial momentum transport is less efficient than the tangential because of the quasi-two-dimensionality of the roll structure. The most robust rolls are produced in a simulation with the highest inflection-point level and relatively strong radial wind shear. Based on the spectral analysis, the roll-scale contribution to the turbulent momentum flux can reach 40 % in the middle of the boundary layer.
Validation of a model for the cast-film process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chambon, F.; Ohlsson, S.; Silagy, D.
1996-12-31
We have developed a model of the cast-film process and compared theoretical predictions against experiments on a pilot line. Three polyethylenes with a markedly different level of melt elasticity were used in this evaluation; namely, a high pressure low density polyethylene, LDPE, and two linear low density polyethylenes, LLDPE-1 and LLDPE-2. The final film dimensions of the LDPE were found to be in good agreement with 1-D viscoelastic stationary predictions. Flow field visualization experiments indicate, however, a 2-D velocity field in the airgap between the extrusion die and the chill roll. Taking this observation into account, evolutions of the freemore » surface of the web along the airgap were recorded with LLDPE-2, our least elastic melt. An excellent agreement is found between these measurements and predictions of neck-in and edge bead with 2-D Newtonian stationary simulations. The time-dependent solution, which is based on a linear stability analysis, allows to identify a zone of draw resonance within the working space of the process, defined by the draw ratio, the Deborah number, and the web aspect ratio. It is predicted that increasing this latter parameter stabilizes the process until an optimum value is reached. Experiments with LLDPE-1 are shown to validate this unique theoretical result, thus allowing to increase the draw ratio by about 75%.« less
Tawil, N J; Connors, D; Gies, D; Bennett, S; Gruskin, E; Mustoe, T
1999-01-01
We have previously shown that positively charged dextran (DEAE A25) increases wound breaking strength in linear incisions in rats and nonhuman primates at days 10-14 postwounding. In this article, we examined the cellular responses to different types of charged dextran beads (DEAE A50 and Cytodex-1) in culture studies and in rat incisional wounds. We show that Cytodex 1 and DEAE A50 beads also increased wound breaking strength in a rat linear incisional model. However, the increase was approximately 30-40% less than that observed in wounds treated with DEAE A25 beads. The main distinction between the three types of beads was the presence of bead clusters observed in tissue sections. Wounds treated with DEAE A25 beads formed distinct clusters while both Cytodex 1 and DEAE A50 beads clustered to a lesser extent or failed to cluster at all. We propose that the different types of charged dextran beads improve healing by promoting cell adhesion and encouraging proliferation in close proximity to the wound. We also hypothesize that the 30-40% improvement in wound breaking strength seen with DEAE A25 beads compared to other types of charged dextran beads (DEAE A50 and Cytodex-1) originates from the unique characteristic of DEAE A25 beads in forming cell-bead aggregates adjacent to the wounded area. This clustering, in turn, affects the distribution of cells infiltrating the wounded area (such as macrophages) during the healing process and, as a consequence, alters the distribution of matrix molecules and growth factors secreted by these cells.
E-selectin ligand-1 controls circulating prostate cancer cell rolling/adhesion and metastasis
Yasmin-Karim, Sayeda; King, Michael R.; Messing, Edward M.; Lee, Yi-Fen
2014-01-01
Circulating prostate cancer (PCa) cells preferentially roll and adhere on bone marrow vascular endothelial cells, where abundant E-selectin and stromal cell-derived factor 1 (SDF-1) are expressed, subsequently initiating a cascade of activation events that eventually lead to the development of metastases. To elucidate the roles of circulating PCa cells' rolling and adhesion behaviors in cancer metastases, we applied a dynamic cylindrical flow-based microchannel device that is coated with E-selectin and SDF-1, mimicking capillary endothelium. Using this device we captured a small fraction of rolling PCa cells. These rolling cells display higher static adhesion ability, more aggressive cancer phenotypes and stem-like properties. Importantly, mice received rolling PCa cells, but not floating PCa cells, developed cancer metastases. Genes coding for E-selectin ligands and genes associated with cancer stem cells and metastasis were elevated in rolling PCa cells. Knock down of E-selectin ligand 1(ESL-1), significantly impaired PCa cells' rolling capacity and reduced cancer aggressiveness. Moreover, ESL-1 activates RAS and MAP kinase signal cascade, consequently inducing the downstream targets. In summary, circulating PCa cells' rolling capacity contributes to PCa metastasis, and that is in part controlled by ESL-1. PMID:25301730
Surface adsorption and hopping cause probe-size-dependent microrheology of actin networks
NASA Astrophysics Data System (ADS)
He, Jun; Tang, Jay X.
2011-04-01
A network of filaments formed primarily by the abundant cytoskeletal protein actin gives animal cells their shape and elasticity. The rheological properties of reconstituted actin networks have been studied by tracking micron-sized probe beads embedded within the networks. We investigate how microrheology depends on surface properties of probe particles by varying the stickiness of their surface. For this purpose, we chose carboxylate polystyrene (PS) beads, silica beads, bovine serum albumin (BSA) -coated PS beads, and polyethylene glycol (PEG) -grafted PS beads, which show descending stickiness to actin filaments, characterized by confocal imaging and microrheology. Probe size dependence of microrheology is observed for all four types of beads. For the slippery PEG beads, particle-tracking microrheology detects weaker networks using smaller beads, which tend to diffuse through the network by hopping from one confinement “cage” to another. This trend is reversed for the other three types of beads, for which microrheology measures stiffer networks for smaller beads due to physisorption of nearby filaments to the bead surface. We explain the probe size dependence with two simple models. We also evaluate depletion effect near nonadsorption bead surface using quantitative image analysis and discuss the possible impact of depletion on microrheology. Analysis of these effects is necessary in order to accurately define the actin network rheology both in vitro and in vivo.
NASA Astrophysics Data System (ADS)
Meyer, Martin H. F.; Krause, Hans-Joachim; Hartmann, Markus; Miethe, Peter; Oster, Jürgen; Keusgen, Michael
2007-04-01
A biosensor that uses resonant coils with a special frequency-mixing technique and magnetic beads as detectable labels has been established for the detection of Francisella tularensis, the causative agent for tularemia. The detection principle is based on a sandwich immunoassay using an anti-Ft antibody for immunofiltration immobilized to ABICAP ® polyethylene filters, and biotinylated with streptavidin-coated magnetic beads as labels. The linear detection range of this biosensor was found to be 10 4-10 6 cfu F. tularensis lipopolysaccharide (LPS) per ml. Tested sample matrices were physiological PBS buffer and rabbit serum.
Rolling bearing fault diagnosis based on information fusion using Dempster-Shafer evidence theory
NASA Astrophysics Data System (ADS)
Pei, Di; Yue, Jianhai; Jiao, Jing
2017-10-01
This paper presents a fault diagnosis method for rolling bearing based on information fusion. Acceleration sensors are arranged at different position to get bearing vibration data as diagnostic evidence. The Dempster-Shafer (D-S) evidence theory is used to fuse multi-sensor data to improve diagnostic accuracy. The efficiency of the proposed method is demonstrated by the high speed train transmission test bench. The results of experiment show that the proposed method in this paper improves the rolling bearing fault diagnosis accuracy compared with traditional signal analysis methods.
Liu, Qiang; Chai, Tianyou; Wang, Hong; Qin, Si-Zhao Joe
2011-12-01
The continuous annealing process line (CAPL) of cold rolling is an important unit to improve the mechanical properties of steel strips in steel making. In continuous annealing processes, strip tension is an important factor, which indicates whether the line operates steadily. Abnormal tension profile distribution along the production line can lead to strip break and roll slippage. Therefore, it is essential to estimate the whole tension profile in order to prevent the occurrence of faults. However, in real annealing processes, only a limited number of strip tension sensors are installed along the machine direction. Since the effects of strip temperature, gas flow, bearing friction, strip inertia, and roll eccentricity can lead to nonlinear tension dynamics, it is difficult to apply the first-principles induced model to estimate the tension profile distribution. In this paper, a novel data-based hybrid tension estimation and fault diagnosis method is proposed to estimate the unmeasured tension between two neighboring rolls. The main model is established by an observer-based method using a limited number of measured tensions, speeds, and currents of each roll, where the tension error compensation model is designed by applying neural networks principal component regression. The corresponding tension fault diagnosis method is designed using the estimated tensions. Finally, the proposed tension estimation and fault diagnosis method was applied to a real CAPL in a steel-making company, demonstrating the effectiveness of the proposed method.
Printed polymer photonic devices for optical interconnect systems
NASA Astrophysics Data System (ADS)
Subbaraman, Harish; Pan, Zeyu; Zhang, Cheng; Li, Qiaochu; Guo, L. J.; Chen, Ray T.
2016-03-01
Polymer photonic device fabrication usually relies on the utilization of clean-room processes, including photolithography, e-beam lithography, reactive ion etching (RIE) and lift-off methods etc, which are expensive and are limited to areas as large as a wafer. Utilizing a novel and a scalable printing process involving ink-jet printing and imprinting, we have fabricated polymer based photonic interconnect components, such as electro-optic polymer based modulators and ring resonator switches, and thermo-optic polymer switch based delay networks and demonstrated their operation. Specifically, a modulator operating at 15MHz and a 2-bit delay network providing up to 35.4ps are presented. In this paper, we also discuss the manufacturing challenges that need to be overcome in order to make roll-to-roll manufacturing practically viable. We discuss a few manufacturing challenges, such as inspection and quality control, registration, and web control, that need to be overcome in order to realize true implementation of roll-to-roll manufacturing of flexible polymer photonic systems. We have overcome these challenges, and currently utilizing our inhouse developed hardware and software tools, <10μm alignment accuracy at a 5m/min is demonstrated. Such a scalable roll-to-roll manufacturing scheme will enable the development of unique optoelectronic devices which can be used in a myriad of different applications, including communication, sensing, medicine, security, imaging, energy, lighting etc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carvalho, M.S.; Scriven, L.E.
1997-12-01
In this report the flow between rigid and a deformable rotating rolls fully submerged in a liquid pool is studied. The deformation of compliant roll cover is described by two different models (1) independent, radially oriented springs that deform in response to the traction force applied at the extremity of each or one-dimensional model, and (2) a plane-strain deformation of an incompressible Mooney-Rivlin material or non-linear elastic model. Based on the flow rate predictions of both models, an empirical relation between the spring constant of the one dimensional model and the roll cover thickness and elastic modulus is proposed.
A Simplified Finite Element Simulation for Straightening Process of Thin-Walled Tube
NASA Astrophysics Data System (ADS)
Zhang, Ziqian; Yang, Huilin
2017-12-01
The finite element simulation is an effective way for the study of thin-walled tube in the two cross rolls straightening process. To determine the accurate radius of curvature of the roll profile more efficiently, a simplified finite element model based on the technical parameters of an actual two cross roll straightening machine, was developed to simulate the complex straightening process. Then a dynamic simulation was carried out using ANSYS LS-DYNA program. The result implied that the simplified finite element model was reasonable for simulate the two cross rolls straightening process, and can be obtained the radius of curvature of the roll profile with the tube’s straightness 2 mm/m.
Butt Welding Joint of Aluminum Alloy by Space GHTA Welding Process in Vacuum
NASA Astrophysics Data System (ADS)
Suita, Yoshikazu; Shinike, Shuhei; Ekuni, Tomohide; Terajima, Noboru; Tsukuda, Yoshiyuki; Imagawa, Kichiro
Aluminum alloys have been used widely in constructing various space structures including the International Space Station (ISS) and launch vehicles. For space applications, welding experiments on aluminum alloy were performed using the GHTA (Gas Hollow Tungsten Arc) welding process using a filler wire feeder in a vacuum. We investigated the melting phenomenon of the base metal and filler wire, bead formation, and the effects of wire feed speed on melting characteristics. The melting mechanism in the base metal during the bead on a plate with wire feed was similar to that for the melt run without wire feed. We clarified the effects of wire feed speed on bead sizes and configurations. Furthermore, the butt welded joint welded using the optimum wire feed speed, and the joint tensile strengths were evaluated. The tensile strength of the square butt joint welded by the pulsed DC GHTA welding with wire feed in a vacuum is nearly equal to that of the same joint welded by conventional GTA (Gas Tungsten Arc) welding in air.
Leinweber, Felix C; Tallarek, Ulrich
2005-11-24
We have investigated induced-charge electroosmotic flow in a fixed bed of ion-permselective glass beads by quantitative confocal laser scanning microscopy. Externally applied electrical fields induce concentration polarization (CP) in the porous medium due to coupled mass and charge transport normal to the charge-selective interfaces. These data reveal the generation of a nonequilibrium electrical double layer in the depleted CP zones and the adjoining anodic hemispheres of the (cation-selective) glass beads above a critical field strength. This initiates CP-based induced-charge electroosmosis along curved interfaces of the quasi-electroneutral macropore space between glass beads. Caused by mutual interference of resulting nonlinear flow with (flow-inducing) space charge regions, an electrohydrodynamic instability can appear locally and realize turbulent flow behavior at low Reynolds numbers. It is characterized by a local destruction of the CP zones and concomitant removal of diffusion-limited mass transfer. More efficient pore-scale lateral mixing also improves macroscopic transport, which is reflected in the significantly reduced axial dispersion of a passive tracer.
Berger, Sanne Schou; Lauritsen, Klara Tølbøll; Boas, Ulrik; Lind, Peter; Andresen, Lars Ole
2017-11-01
We developed and made a preliminary validation of a bead-based multiplexed immunoassay for simultaneous detection of porcine serum antibodies to Actinobacillus pleuropneumoniae serovars 1, 2, 6, 7, and 12. Magnetic fluorescent beads were coupled with A. pleuropneumoniae antigens and tested with a panel of serum samples from experimentally infected pigs and with serum samples from uninfected and naturally infected pigs. The multiplex assay was compared to in-house ELISAs and complement fixation (CF) tests, which have been used for decades as tools for herd classification in the Danish Specific Pathogen Free system. Assay specificities and sensitivities as well as the corresponding cutoff values were determined using receiver operating characteristic (ROC) curve analysis, and the A. pleuropneumoniae multiplex assay showed good correlation with the in-house ELISAs and CF tests with areas under ROC curves ≥ 0.988. Benefits of multiplexed assays compared to ELISAs and CF tests include reduced serum sample volumes needed for analysis, less labor, and shorter assay time.
Fällman, Erik; Schedin, Staffan; Jass, Jana; Andersson, Magnus; Uhlin, Bernt Eric; Axner, Ove
2004-06-15
An optical force measurement system for quantitating forces in the pN range between micrometer-sized objects has been developed. The system was based upon optical tweezers in combination with a sensitive position detection system and constructed around an inverted microscope. A trapped particle in the focus of the high numerical aperture microscope-objective behaves like an omnidirectional mechanical spring in response to an external force. The particle's displacement from the equilibrium position is therefore a direct measure of the exerted force. A weak probe laser beam, focused directly below the trapping focus, was used for position detection of the trapped particle (a polystyrene bead). The bead and the condenser focus the light to a distinct spot in the far field, monitored by a position sensitive detector. Various calibration procedures were implemented in order to provide absolute force measurements. The system has been used to measure the binding forces between Escherichia coli bacterial adhesins and galabiose-functionalized beads.
Automated solid-phase subcloning based on beads brought into proximity by magnetic force.
Hudson, Elton P; Nikoshkov, Andrej; Uhlen, Mathias; Rockberg, Johan
2012-01-01
In the fields of proteomics, metabolic engineering and synthetic biology there is a need for high-throughput and reliable cloning methods to facilitate construction of expression vectors and genetic pathways. Here, we describe a new approach for solid-phase cloning in which both the vector and the gene are immobilized to separate paramagnetic beads and brought into proximity by magnetic force. Ligation events were directly evaluated using fluorescent-based microscopy and flow cytometry. The highest ligation efficiencies were obtained when gene- and vector-coated beads were brought into close contact by application of a magnet during the ligation step. An automated procedure was developed using a laboratory workstation to transfer genes into various expression vectors and more than 95% correct clones were obtained in a number of various applications. The method presented here is suitable for efficient subcloning in an automated manner to rapidly generate a large number of gene constructs in various vectors intended for high throughput applications.
Automated Solid-Phase Subcloning Based on Beads Brought into Proximity by Magnetic Force
Hudson, Elton P.; Nikoshkov, Andrej; Uhlen, Mathias; Rockberg, Johan
2012-01-01
In the fields of proteomics, metabolic engineering and synthetic biology there is a need for high-throughput and reliable cloning methods to facilitate construction of expression vectors and genetic pathways. Here, we describe a new approach for solid-phase cloning in which both the vector and the gene are immobilized to separate paramagnetic beads and brought into proximity by magnetic force. Ligation events were directly evaluated using fluorescent-based microscopy and flow cytometry. The highest ligation efficiencies were obtained when gene- and vector-coated beads were brought into close contact by application of a magnet during the ligation step. An automated procedure was developed using a laboratory workstation to transfer genes into various expression vectors and more than 95% correct clones were obtained in a number of various applications. The method presented here is suitable for efficient subcloning in an automated manner to rapidly generate a large number of gene constructs in various vectors intended for high throughput applications. PMID:22624028
Fault Diagnosis for Rolling Bearings under Variable Conditions Based on Visual Cognition
Cheng, Yujie; Zhou, Bo; Lu, Chen; Yang, Chao
2017-01-01
Fault diagnosis for rolling bearings has attracted increasing attention in recent years. However, few studies have focused on fault diagnosis for rolling bearings under variable conditions. This paper introduces a fault diagnosis method for rolling bearings under variable conditions based on visual cognition. The proposed method includes the following steps. First, the vibration signal data are transformed into a recurrence plot (RP), which is a two-dimensional image. Then, inspired by the visual invariance characteristic of the human visual system (HVS), we utilize speed up robust feature to extract fault features from the two-dimensional RP and generate a 64-dimensional feature vector, which is invariant to image translation, rotation, scaling variation, etc. Third, based on the manifold perception characteristic of HVS, isometric mapping, a manifold learning method that can reflect the intrinsic manifold embedded in the high-dimensional space, is employed to obtain a low-dimensional feature vector. Finally, a classical classification method, support vector machine, is utilized to realize fault diagnosis. Verification data were collected from Case Western Reserve University Bearing Data Center, and the experimental result indicates that the proposed fault diagnosis method based on visual cognition is highly effective for rolling bearings under variable conditions, thus providing a promising approach from the cognitive computing field. PMID:28772943
Transient thermal stresses of work roll by coupled thermoelasticity
NASA Astrophysics Data System (ADS)
Lai, W. B.; Chen, T. C.; Weng, C. I.
1991-01-01
A numerical method, based on a two-dimensional plane strain model, is developed to predict the transient responses (that include distributions of temperature, thermal deformation, and thermal stress) of work roll during strip rolling by coupled thermoelasticity. The method consists of discretizing the space domain of the problem by finite element method first, and then treating the time domain by implicit time integration techniques. In order to avoid the difficulty in analysis due to relative movement between work roll and its thermal boundary, the energy equation is formulated with respect to a fixed Eulerian reference frame. The effect of thermoelastic coupling term, that is generally disregarded in strip rolling, can be considered and assessed. The influences of some important process parameters, such as rotational speed of the roll and intensity of heat flux, on transient solutions are also included and discussed. Furthermore, since the stress history at any point of the roll in both transient and steady state could be accurately evaluated, it is available to perform the analysis of thermal fatigue for the roll by means of previous data.
NASA Technical Reports Server (NTRS)
Petrasek, D. W.
1974-01-01
An investigation was conducted to determine the effects of mechanical working on the 1093 C (2000 F) tensile and stress-rupture strength of tungsten alloy/superalloy composites. Hot pressed composites containing either conventional tungsten lamp filament wire or tungsten-1% ThO2 wire and a nickel base alloy matrix were hot rolled at 1093 C (2000 F). The hot pressed and rolled composite specimens were then tested in tension and stress-rupture at 1093 C (2000 F). Rolling decreased the degree of fiber-matrix reaction as a function of time of exposure at 1093 C (2000 F). The stress-rupture properties of the rolled composites were superior to hot pressed composites containing equivalent diameter fibers. Rolling did not appreciably affect the 1093 C (2000 F) ultimate tensile strength of the composites.
Calendering and Rolling of Viscoplastic Materials: Theory and Experiments
NASA Astrophysics Data System (ADS)
Mitsoulis, E.; Sofou, S.; Muliawan, E. B.; Hatzikiriakos, S. G.
2007-04-01
The calendering and rolling processes are used in a wide variety of industries for the production of rolled sheets or films of specific thickness and final appearance. The acquired final sheet thickness depends mainly on the rheological properties of the material. Materials which have been used in the present study are foodstuff (such as mozzarella cheese and flour-water dough) used in food processing. These materials are rheologically viscoplastic, obeying the Herschel-Bulkley model. The results give the final sheet thickness and the torque as a function of the roll speed. Theoretical analysis based on the Lubrication Approximation Theory (LAT) shows that LAT is a good predictive tool for calendering, where the sheet thickness is very small compared with the roll size. However, in rolling where this is not true, LAT does not hold, and a 2-D analysis is necessary.
NASA Astrophysics Data System (ADS)
Rath, S.; Sengupta, P. P.; Singh, A. P.; Marik, A. K.; Talukdar, P.
2013-07-01
Accurate prediction of roll force during hot strip rolling is essential for model based operation of hot strip mills. Traditionally, mathematical models based on theory of plastic deformation have been used for prediction of roll force. In the last decade, data driven models like artificial neural network have been tried for prediction of roll force. Pure mathematical models have accuracy limitations whereas data driven models have difficulty in convergence when applied to industrial conditions. Hybrid models by integrating the traditional mathematical formulations and data driven methods are being developed in different parts of world. This paper discusses the methodology of development of an innovative hybrid mathematical-artificial neural network model. In mathematical model, the most important factor influencing accuracy is flow stress of steel. Coefficients of standard flow stress equation, calculated by parameter estimation technique, have been used in the model. The hybrid model has been trained and validated with input and output data collected from finishing stands of Hot Strip Mill, Bokaro Steel Plant, India. It has been found that the model accuracy has been improved with use of hybrid model, over the traditional mathematical model.
Choo, Cheng Keong; Kong, Xin Ying; Goh, Tze Lim; Ngoh, Gek Cheng; Horri, Bahman Amini; Salamatinia, Babak
2016-03-15
Development of new materials for different applications especially as bio-composites has received great attention. This study concentrates on development of a biopolymer based on chitosan (CT) and halloysite nanotubes (HNT) and evaluates the copper removal intake as a potential application of this bio-composite. In this study, CT/HNT beads were prepared by ultrasonic-assisted extrusion-dripping method for the first time. Two sources of HNTs (i.e. Dragonite and Matauri Bay) were added into a chitosan solution (2wt.%) at various loading fractions (25, 50, 75wt.%). The effect of ultrasound as a mixing device was also studied by varying the amplitude at constant frequency of 25%, 50% and 75%. Characteristics and physical properties of the prepared CT/HNT beads were also analyzed by SEM, FTIR, TGA and BET the results show that introducing HNT to chitosan increases the adsorption capacity toward copper ions; however HNT loading fraction above 50wt.% resulted in a decrease in adsorption capacity attributed to limited accessibility of the amino groups. The adsorption capacity of the CT/HNT beads prepared from Dragonite source had a larger adsorption capacity of 14.2mg/g as compared to that of Matauri Bay, 10.55mg/g. It was observed that the adsorption capacity of the beads toward copper ions decreased when the loading fraction of HNT is increased at constant ultrasound amplitude. The result of this study helps to understand the links between the characteristics and adsorption abilities of CT/HNT beads. Copyright © 2015 Elsevier Ltd. All rights reserved.
Quantitative screening of yeast surface-displayed polypeptide libraries by magnetic bead capture.
Yeung, Yik A; Wittrup, K Dane
2002-01-01
Magnetic bead capture is demonstrated here to be a feasible alternative for quantitative screening of favorable mutants from a cell-displayed polypeptide library. Flow cytometric sorting with fluorescent probes has been employed previously for high throughput screening for either novel binders or improved mutants. However, many laboratories do not have ready access to this technology as a result of the limited availability and high cost of cytometers, restricting the use of cell-displayed libraries. Using streptavidin-coated magnetic beads and biotinylated ligands, an alternative approach to cell-based library screening for improved mutants was developed. Magnetic bead capture probability of labeled cells is shown to be closely correlated with the surface ligand density. A single-pass enrichment ratio of 9400 +/- 1800-fold, at the expense of 85 +/- 6% binder losses, is achieved from screening a library that contains one antibody-displaying cell (binder) in 1.1 x 10(5) nondisplaying cells. Additionally, kinetic screening for an initial high affinity to low affinity (7.7-fold lower) mutant ratio of 1:95,000, the magnetic bead capture method attains a single-pass enrichment ratio of 600 +/- 200-fold with a 75 +/- 24% probability of loss for the higher affinity mutant. The observed high loss probabilities can be straightforwardly compensated for by library oversampling, given the inherently parallel nature of the screen. Overall, these results demonstrate that magnetic beads are capable of quantitatively screening for novel binders and improved mutants. The described methods are directly analogous to procedures in common use for phage display and should lower the barriers to entry for use of cell surface display libraries.
Molecular diagnostics using magnetic nanobeads
NASA Astrophysics Data System (ADS)
Zardán Gómez de la Torre, Teresa; Strömberg, Mattias; Göransson, Jenny; Gunnarsson, Klas; Nilsson, Mats; Svedlindh, Peter; Strømme, Maria
2010-01-01
In this paper, we investigate the volume-amplified magnetic nanobead detection assay with respect to bead size, bead concentration and bead oligonucleotide surface coverage in order to improve the understanding of the underlying microscopic mechanisms. It has been shown that: (i) the immobilization efficiency of the beads depends on the surface coverage of oligonucleotides, (ii) by using lower amounts of probe-tagged beads, detection sensitivity can be improved and (iii) using small enough beads enables both turn-off and turn-on detection. Finally, biplex detection was demonstrated.
Li, Meng; Alvarez, Paulina; Bilgili, Ecevit
2017-05-30
Although wet stirred media milling has proven to be a robust process for producing nanoparticle suspensions of poorly water-soluble drugs and thereby enhancing their bioavailability, selection of bead size has been largely empirical, lacking fundamental rationale. This study aims to establish such rationale by investigating the impact of bead size at various stirrer speeds on the drug breakage kinetics via a microhydrodynamic model. To this end, stable suspensions of griseofulvin, a model BCS Class II drug, were prepared using hydroxypropyl cellulose and sodium dodecyl sulfate. The suspensions were milled at four different stirrer speeds (1000-4000rpm) using various sizes (50-1500μm) of zirconia beads. Laser diffraction, SEM, and XRPD were used for characterization. Our results suggest that there is an optimal bead size that achieves fastest breakage at each stirrer speed and that it shifts to a smaller size at higher speed. Calculated microhydrodynamic parameters reveal two counteracting effects of bead size: more bead-bead collisions with less energy/force upon a decrease in bead size. The optimal bead size exhibits a negative power-law correlation with either specific energy consumption or the microhydrodynamic parameters. Overall, this study rationalizes the use of smaller beads for more energetic wet media milling. Copyright © 2017 Elsevier B.V. All rights reserved.
Forster, Richard E J; Thürmer, Frank; Wallrapp, Christine; Lloyd, Andrew W; Macfarlane, Wendy; Phillips, Gary J; Boutrand, Jean-Pierre; Lewis, Andrew L
2010-07-01
High molecular weight alginate beads with 59% mannuronic acid content or 68% guluronic acid were prepared using a droplet generator and crosslinked in calcium chloride. The alginate beads were compared to current embolisation microspheres for compressibility and monitored over 12 weeks for size and weight change at 37 degrees C in low volumes of ringers solutions. A sheep uterine model was used to analyse bead degradation and inflammatory response over 12 weeks. Both the in vitro and in vivo data show good delivery, with a compressibility similar to current embolic beads. In vitro, swelling was noted almost immediately and after 12 weeks the first signs of degradation were noted. No difference was noted in vivo. This study has shown that high molecular weight alginate gel beads were well tolerated by the body, but beads associated with induced thrombi were susceptible to inflammatory cell infiltration. The beads were shown to be easy to handle and were still observable after 3 months in vivo. The beads were robust enough to be delivered through a 2.7 Fr microcatheter. This study has demonstrated that high molecular weight, high purity alginate bead can be considered as semi-permanent embolisation beads, with the potential to bioresorb over time.
A Benders based rolling horizon algorithm for a dynamic facility location problem
Marufuzzaman,, Mohammad; Gedik, Ridvan; Roni, Mohammad S.
2016-06-28
This study presents a well-known capacitated dynamic facility location problem (DFLP) that satisfies the customer demand at a minimum cost by determining the time period for opening, closing, or retaining an existing facility in a given location. To solve this challenging NP-hard problem, this paper develops a unique hybrid solution algorithm that combines a rolling horizon algorithm with an accelerated Benders decomposition algorithm. Extensive computational experiments are performed on benchmark test instances to evaluate the hybrid algorithm’s efficiency and robustness in solving the DFLP problem. Computational results indicate that the hybrid Benders based rolling horizon algorithm consistently offers high qualitymore » feasible solutions in a much shorter computational time period than the standalone rolling horizon and accelerated Benders decomposition algorithms in the experimental range.« less
Architecting Graphene Oxide Rolled-Up Micromotors: A Simple Paper-Based Manufacturing Technology.
Baptista-Pires, Luis; Orozco, Jahir; Guardia, Pablo; Merkoçi, Arben
2018-01-01
A graphene oxide rolled-up tube production process is reported using wax-printed membranes for the fabrication of on-demand engineered micromotors at different levels of oxidation, thickness, and lateral dimensions. The resultant graphene oxide rolled-up tubes can show magnetic and catalytic movement within the addition of magnetic nanoparticles or sputtered platinum in the surface of graphene-oxide-modified wax-printed membranes prior to the scrolling process. As a proof of concept, the as-prepared catalytic graphene oxide rolled-up micromotors are successfully exploited for oil removal from water. This micromotor production technology relies on an easy, operator-friendly, fast, and cost-efficient wax-printed paper-based method and may offer a myriad of hybrid devices and applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Models for the Effects of G-seat Cuing on Roll-axis Tracking Performance
NASA Technical Reports Server (NTRS)
Levison, W. H.; Mcmillan, G. R.; Martin, E. A.
1984-01-01
Including whole-body motion in a flight simulator improves performance for a variety of tasks requiring a pilot to compensate for the effects of unexpected disturbances. A possible mechanism for this improvement is that whole-body motion provides high derivative vehicle state information whic allows the pilot to generate more lead in responding to the external disturbances. During development of motion simulating algorithms for an advanced g-cuing system it was discovered that an algorithm based on aircraft roll acceleration producted little or no performance improvement. On the other hand, algorithms based on roll position or roll velocity produced performance equivalent to whole-body motion. The analysis and modeling conducted at both the sensory system and manual control performance levels to explain the above results are described.
Plancade, Sandra; Rozenholc, Yves; Lund, Eiliv
2012-12-11
Illumina BeadArray technology includes non specific negative control features that allow a precise estimation of the background noise. As an alternative to the background subtraction proposed in BeadStudio which leads to an important loss of information by generating negative values, a background correction method modeling the observed intensities as the sum of the exponentially distributed signal and normally distributed noise has been developed. Nevertheless, Wang and Ye (2012) display a kernel-based estimator of the signal distribution on Illumina BeadArrays and suggest that a gamma distribution would represent a better modeling of the signal density. Hence, the normal-exponential modeling may not be appropriate for Illumina data and background corrections derived from this model may lead to wrong estimation. We propose a more flexible modeling based on a gamma distributed signal and a normal distributed background noise and develop the associated background correction, implemented in the R-package NormalGamma. Our model proves to be markedly more accurate to model Illumina BeadArrays: on the one hand, it is shown on two types of Illumina BeadChips that this model offers a more correct fit of the observed intensities. On the other hand, the comparison of the operating characteristics of several background correction procedures on spike-in and on normal-gamma simulated data shows high similarities, reinforcing the validation of the normal-gamma modeling. The performance of the background corrections based on the normal-gamma and normal-exponential models are compared on two dilution data sets, through testing procedures which represent various experimental designs. Surprisingly, we observe that the implementation of a more accurate parametrisation in the model-based background correction does not increase the sensitivity. These results may be explained by the operating characteristics of the estimators: the normal-gamma background correction offers an improvement in terms of bias, but at the cost of a loss in precision. This paper addresses the lack of fit of the usual normal-exponential model by proposing a more flexible parametrisation of the signal distribution as well as the associated background correction. This new model proves to be considerably more accurate for Illumina microarrays, but the improvement in terms of modeling does not lead to a higher sensitivity in differential analysis. Nevertheless, this realistic modeling makes way for future investigations, in particular to examine the characteristics of pre-processing strategies.
Formulation development and release studies of indomethacin suppositories.
Sah, M L; Saini, T R
2008-01-01
Indomethacin suppositories were prepared by using water-soluble and oil soluble suppository bases, and evaluated for in vitro release by USP I and modified continuous flow through bead bed apparatus. Effect of the Tween 80 (1% and 5%) was further studied on in vitro release of the medicament. Release rate was good in water-soluble suppositories bases in comparison to oil soluble suppositories bases. Release was found to be greater in modified continuous flow through bead bed apparatus. When surfactant was used in low concentration then release rate was much greater, as compared to high concentration. When stability studies were performed on the prepared indomethacin suppositories it was found that suppositories made by water-soluble base had no significant changes while suppositories prepared by oil soluble bases, had some signs of instability.
Rogier, Eric; Plucinski, Mateusz; Lucchi, Naomi; Mace, Kimberly; Chang, Michelle; Lemoine, Jean Frantz; Candrinho, Baltazar; Colborn, James; Dimbu, Rafael; Fortes, Filomeno; Udhayakumar, Venkatachalam; Barnwell, John
2017-01-01
Detection of histidine-rich protein 2 (HRP2) from the malaria parasite Plasmodium falciparum provides evidence for active or recent infection, and is utilized for both diagnostic and surveillance purposes, but current laboratory immunoassays for HRP2 are hindered by low sensitivities and high costs. Here we present a new HRP2 immunoassay based on antigen capture through a bead-based system capable of detecting HRP2 at sub-picogram levels. The assay is highly specific and cost-effective, allowing fast processing and screening of large numbers of samples. We utilized the assay to assess results of HRP2-based rapid diagnostic tests (RDTs) in different P. falciparum transmission settings, generating estimates for true performance in the field. Through this method of external validation, HRP2 RDTs were found to perform well in the high-endemic areas of Mozambique and Angola with 86.4% and 73.9% of persons with HRP2 in their blood testing positive by RDTs, respectively, and false-positive rates of 4.3% and 0.5%. However, in the low-endemic setting of Haiti, only 14.5% of persons found to be HRP2 positive by the bead assay were RDT positive. Additionally, 62.5% of Haitians showing a positive RDT test had no detectable HRP2 by the bead assay, likely indicating that these were false positive tests. In addition to RDT validation, HRP2 biomass was assessed for the populations in these different settings, and may provide an additional metric by which to estimate P. falciparum transmission intensity and measure the impact of interventions. PMID:28192523
Ground roll attenuation using polarization analysis in the t-f-k domain
NASA Astrophysics Data System (ADS)
Wang, C.; Wang, Y.
2017-07-01
S waves travel slower than P waves and have a lower dominant frequency. Therefore, applying common techniques such as time-frequency filtering and f-k filtering to separate S waves from ground roll is difficult because ground roll is also characterized by slow velocity and low frequency. In this study, we present a method for attenuating ground roll using a polarization filtering method based on the t-f-k transform. We describe the particle motion of the waves by complex vector signals. Each pair of frequency components, whose frequencies have the same absolute value but different signs, of the complex signal indicate an elliptical or linear motion. The polarization parameters of the elliptical or linear motion are explicitly related to the two Fourier coefficients. We then extend these concepts to the t-f-k domain and propose a polarization filtering method for ground roll attenuation based on the t-f-k transform. The proposed approach can define automatically the time-varying reject zones on the f-k panel at different times as a function of the reciprocal ellipticity. Four attributes, time, frequency, apparent velocity and polarization are used to identify and extract the ground roll simultaneously. Thus, the ground roll and body waves can be separated as long as they are dissimilar in one of these attributes. We compare our method with commonly used filtering techniques by applying the methods to synthetic and real seismic data. The results indicate that our method can attenuate ground roll while preserving body waves more effectively than the other methods.
Adaptive attenuation of aliased ground roll using the shearlet transform
NASA Astrophysics Data System (ADS)
Hosseini, Seyed Abolfazl; Javaherian, Abdolrahim; Hassani, Hossien; Torabi, Siyavash; Sadri, Maryam
2015-01-01
Attenuation of ground roll is an essential step in seismic data processing. Spatial aliasing of the ground roll may cause the overlap of the ground roll with reflections in the f-k domain. The shearlet transform is a directional and multidimensional transform that separates the events with different dips and generates subimages in different scales and directions. In this study, the shearlet transform was used adaptively to attenuate aliased and non-aliased ground roll. After defining a filtering zone, an input shot record is divided into segments. Each segment overlaps adjacent segments. To apply the shearlet transform on each segment, the subimages containing aliased and non-aliased ground roll, the locations of these events on each subimage are selected adaptively. Based on these locations, mute is applied on the selected subimages. The filtered segments are merged together, using the Hanning function, after applying the inverse shearlet transform. This adaptive process of ground roll attenuation was tested on synthetic data, and field shot records from west of Iran. Analysis of the results using the f-k spectra revealed that the non-aliased and most of the aliased ground roll were attenuated using the proposed adaptive attenuation procedure. Also, we applied this method on shot records of a 2D land survey, and the data sets before and after ground roll attenuation were stacked and compared. The stacked section after ground roll attenuation contained less linear ground roll noise and more continuous reflections in comparison with the stacked section before the ground roll attenuation. The proposed method has some drawbacks such as more run time in comparison with traditional methods such as f-k filtering and reduced performance when the dip and frequency content of aliased ground roll are the same as those of the reflections.
Prefrontal cortex dysfunction and 'Jumping to Conclusions': bias or deficit?
Lunt, Laura; Bramham, Jessica; Morris, Robin G; Bullock, Peter R; Selway, Richard P; Xenitidis, Kiriakos; David, Anthony S
2012-03-01
The 'beads task' is used to measure the cognitive basis of delusions, namely the 'Jumping to Conclusions' (JTC) reasoning bias. However, it is not clear whether the task merely taps executive dysfunction - known to be impaired in patients with schizophrenia - such as planning and resistance to impulse. To study this, 19 individuals with neurosurgical excisions to the prefrontal cortex, 21 unmedicated adults with Attention Deficit Hyperactivity Disorder (ADHD), and 25 healthy controls completed two conditions of the beads task, in addition to tests of memory and executive function as well as control tests of probabilistic reasoning ability. The results indicated that the prefrontal lobe group (in particular, those with left-sided lesions) demonstrated a JTC bias relative to the ADHD and control groups. Further exploratory analyses indicated that JTC on the beads task was associated with poorer performance in certain executive domains. The results are discussed in terms of the executive demands of the beads task and possible implications for the model of psychotic delusions based on the JTC bias. ©2011 The British Psychological Society.
Du, Xuemin; Wang, Juan; Cui, Huanqing; Zhao, Qilong; Chen, Hongxu; He, Le; Wang, Yunlong
2017-11-01
Surfaces patterned with hydrophilic and hydrophobic regions provide robust and versatile means for investigating the wetting behaviors of liquids, surface properties analysis, and producing patterned arrays. However, the fabrication of integral and uniform arrays onto these open systems remains a challenge, thus restricting them from being used in practical applications. Here, we present a simple yet powerful approach for the fabrication of water droplet arrays and the assembly of photonic crystal bead arrays based on hydrophilic-hydrophobic patterned substrates. Various integral arrays are simply prepared in a high-quality output with a low cost, large scale, and uniform size control. By simply taking a breath, which brings moisture to the substrate surface, complex hydrophilic-hydrophobic outlined images can be revisualized in the discontinuous hydrophilic regions. Integration of hydrogel photonic crystal bead arrays into the "breath-taking" process results in breath-responsive photonic crystal beads, which can change their colors upon a mild exhalation. This state-of-the-art technology not only provides an effective methodology for the preparation of patterned arrays but also demonstrates intriguing applications in information storage and biochemical sensors.
Vecino, X; Devesa-Rey, R; Cruz, J M; Moldes, A B
2015-01-22
In this work the morphological and surface properties of a biocomposite formulated with vineyard pruning waste entrapped in calcium alginate hydrogel beads were studied. The formulation of the calcium alginate hydrogel beads, containing vineyard pruning waste, was based on the capacity of this green adsorbent to remove dye compounds from wastewater, observing that in the optimum condition (1.25% of cellulosic residue, 2.2% of sodium alginate and 0.475 mol L(-1) CaCl2) the percentage of dyes was reduced up to 74.6%. At lower concentration of CaCl2, high-resolution optical images show that the elongation of the vineyard-alginate biocomposite decreased, whereas the compactness increased. Moreover, higher concentrations of cellulosic residue increased the biocomposite roundness in comparison with biocomposite without the cellulosic residue. Interferometric perfilometry analysis (Ra, Rq, Rz and Rt) revealed that high concentrations of CaCl2 increased the roughness of the of the calcium alginate hydrogel beads observing vesicles in the external surface. Copyright © 2014 Elsevier Ltd. All rights reserved.
Single bead near-infrared random laser based on silica-gel infiltrated with Rhodamine 640
NASA Astrophysics Data System (ADS)
Moura, André L.; Barbosa-Silva, Renato; Dominguez, Christian T.; Pecoraro, Édison; Gomes, Anderson S. L.; de Araújo, Cid B.
2018-04-01
Photoluminescence properties of single bead silica-gel (SG) embedded with a laser-dye were studied aiming at the operation of near-infrared (NIR) Random Lasers (RLs). The operation of RLs in the NIR spectral region is especially important for biological applications since the optical radiation has deep tissue penetration with negligible damage. Since laser-dyes operating in the NIR have poor stability and are poor emitters, ethanol solutions of Rhodamine 640 (Rh640) infiltrated in SG beads were used. The Rh640 concentrations in ethanol varied from 10-5 to 10-2 M and the excitation at 532 nm was made by using a 7 ns pulsed laser. The proof-of-principle RL scheme herein presented was adopted in order to protect the dye-molecules from the environment and to favor formation of aggregates. The RL emission from ≈650 nm to 720 nm, beyond the typical Rh640 monomer and dimer wavelengths emissions range, was attributed to the trade-off between reabsorption and reemission processes along the light pathways inside the SG bead and the contribution of Rh640 aggregates.
Fracture Simulation of Highly Crosslinked Polymer Networks: Triglyceride-Based Adhesives
NASA Astrophysics Data System (ADS)
Lorenz, Christian; Stevens, Mark; Wool, Richard
2003-03-01
The ACRES program at the U. of Delaware has shown that triglyceride oils derived from plants are a favorable alternative to the traditional adhesives. The triglyceride networks are formed from an initial mixture of styrene monomers, free-radical initiators and triglycerides. We have performed simulations to study the effect of physical composition and physical characteristics of the triglyceride network on the strength of triglyceride network. A coarse-grained, bead-spring model of the triglyceride system is used. The average triglyceride consists of 6 beads per chain, the styrenes are represented as a single bead and the initiators are two bead chains. The polymer network is formed using an off-lattice 3D Monte Carlo simulation, in which the initiators activate the styrene and triglyceride reactive sites and then bonds are randomly formed between the styrene and active triglyceride monomers producing a highly crosslinked polymer network. Molecular dynamics simulations of the network under tensile and shear strains were performed to determine the strength as a function of the network composition. The relationship between the network structure and its strength will also be discussed.
Capture-SELEX: Selection of DNA Aptamers for Aminoglycoside Antibiotics
2012-01-01
Small organic molecules are challenging targets for an aptamer selection using the SELEX technology (SELEX—Systematic Evolution of Ligans by EXponential enrichment). Often they are not suitable for immobilization on solid surfaces, which is a common procedure in known aptamer selection methods. The Capture-SELEX procedure allows the selection of DNA aptamers for solute targets. A special SELEX library was constructed with the aim to immobilize this library on magnetic beads or other surfaces. For this purpose a docking sequence was incorporated into the random region of the library enabling hybridization to a complementary oligo fixed on magnetic beads. Oligonucleotides of the library which exhibit high affinity to the target and a secondary structure fitting to the target are released from the beads for binding to the target during the aptamer selection process. The oligonucleotides of these binding complexes were amplified, purified, and immobilized via the docking sequence to the magnetic beads as the starting point of the following selection round. Based on this Capture-SELEX procedure, the successful DNA aptamer selection for the aminoglycoside antibiotic kanamycin A as a small molecule target is described. PMID:23326761
Biosensing based on magnetically induced self-assembly of particles in magnetic colloids.
Yang, Ye; Morimoto, Yoshitaka; Takamura, Tsukasa; Sandhu, Adarsh
2012-03-01
Superparamagnetic beads and nonmagnetic beads of different sizes were assembled to form a "ring-structure" in a magnetorheological (MR) fluid solution by the application of external magnetic fields. For superparamagnetic beads and non-magnetic beads functionalized with probe and target molecules, respectively, the ring-structure was maintained even after removing the external magnetic field due to biomolecular bonding. Several experiments are described, including the formation process of ring-structures with and without molecular interactions, the accelerating effect of external magnetic fields, and the effect of biotin concentration on the structures of the rings. We define the small nonmagnetic particles as "petals" because the whole structure looks like a flower. The number of remnant ring petals was a function of the concentration of target molecules in the concentration range of 0.0768 ng/ml-3.8419 ng/ml which makes this protocol a promising method for biosensing. Not only was the formation process rapid, but the resulting two-dimensional colloidal system also offers a simple method for reducing reagent consumption and waste generation.
Floating dosage forms to prolong gastro-retention--the characterisation of calcium alginate beads.
Stops, Frances; Fell, John T; Collett, John H; Martini, Luigi G
2008-02-28
Floating calcium alginate beads, designed to improve drug bioavailability from oral preparations compared with that from many commercially available and modified release products, have been investigated as a possible gastro-retentive dosage form. A model drug, riboflavin, was also incorporated into the formula. The aims of the current work were (a) to obtain information regarding the structure, floating ability and changes that occurred when the dosage form was placed in aqueous media, (b) to investigate riboflavin release from the calcium alginate beads in physiologically relevant media prior to in vivo investigations. Physical properties of the calcium alginate beads were investigated. Using SEM and ESEM, externally the calcium alginate beads were spherical in shape, and internally, air filled cavities were present thereby enabling floatation of the beads. The calcium alginate beads remained buoyant for times in excess of 13h, and the density of the calcium alginate beads was <1.000gcm(-3). Riboflavin release from the calcium alginate beads showed that riboflavin release was slow in acidic media, whilst in more alkali media, riboflavin release was more rapid. The characterisation studies showed that the calcium alginate beads could be considered as a potential gastro-retentive dosage form.
Shu, X Z; Zhu, K J
2002-02-21
By adopting a novel chitosan cross-linked method, i.e. chitosan/gelatin droplet coagulated at low temperature and then cross-linked by anions (sulfate, citrate and tripolyphosphate (TPP)), the chitosan beads were prepared. Scanning electron microscopy (SEM) observation showed that sulfate/chitosan and citrate/chitosan beads usually had a spherical shape, smooth surface morphology and integral inside structure. Cross-sectional analysis indicated that the cross-linking process of sulfate and citrate to chitosan was much faster than that of TPP due to their smaller molecular size. But, once completely cross-linked, TPP/chitosan beads possessed much better mechanical strength and the force to break the beads was approximately ten times higher than that of sulfate/chitosan or citrate/chitosan beads. Release media pH and ionic strength seriously influenced the controlled drug release properties of the beads, which related to the strength of electrostatic interaction between anions and chitosan. Sulfate and citrate cross-linked chitosan beads swelled and even dissociated in simulated gastric fluid (SGF) and hence, model drug (riboflavin) released completely in 5 h; while in simulated intestinal fluid (SIF), beads remained in a shrinkage state and drug released slowly (release % usually <70% in 24 h). However, swelling and drug release of TPP/chitosan bead was usually insensitive to media pH. Chitosan beads, cross-linked by a combination of TPP and citrate (or sulfate) together, not only had a good shape, but also improved pH-responsive drug release properties. Salt weakened the interaction of citrate, especially sulfate with chitosan and accelerated beads swelling and hence drug release rate, but it was insensitive to that of TPP/chitosan. These results indicate that ionically cross-linked chitosan beads may be useful in stomach specific drug delivery.
Elution of platinum from carboplatin-impregnated calcium sulfate hemihydrate beads in vitro.
Tulipan, Rachel J; Phillips, Heidi; Garrett, Laura D; Dirikolu, Levent; Mitchell, Mark A
2016-11-01
OBJECTIVE To characterize the elution of platinum from carboplatin-impregnated calcium sulfate hemihydrate (CSH) beads in vitro. SAMPLE 60 carboplatin-impregnated CSH beads and 9 CSH beads without added carboplatin (controls). PROCEDURES Carboplatin-impregnated CSH beads (each containing 4.6 mg of carboplatin [2.4 mg of platinum]) were placed into separate 10-mL plastic tubes containing 5 mL of PBSS in groups of 1, 3, 6, or 10; 3 control beads were placed into a single tube of PBSS at the same volume. Experiments were conducted in triplicate at 37°C and a pH of 7.4 with constant agitation. Eluent samples were collected at 1, 2, 3, 6, 12, 24, and 72 hours. Samples were analyzed for platinum content by inductively coupled plasma-mass spectrometry. RESULTS The mean concentration of platinum released per carboplatin-impregnated bead over 72 hours was 445.3 mg/L. Cumulative concentrations of platinum eluted increased as the number of beads per tube increased. There was a significant difference in platinum concentrations over time, with values increasing over the first 12 hours and then declining for all tubes. There was also a significant difference in percentage of total incorporated platinum released into tubes with different numbers of beads: the percentage of eluted platinum was higher in tubes containing 1 or 3 beads than in those containing 6 or 10 beads. CONCLUSIONS AND CLINICAL RELEVANCE Carboplatin-impregnated CSH beads eluted platinum over 72 hours. Further studies are needed to determine whether implantation of carboplatin-impregnated CSH beads results in detectable levels of platinum systemically and whether the platinum concentrations eluted locally are toxic to tumor cells.
Hess, Theresa A; Drinkhouse, Macy E; Prey, Joshua D; Miller, Jonathan M; Fettig, Arthur A; Carberry, Carol A; Brenn, Stephen H; Bailey, Dennis B
2018-02-15
OBJECTIVE To evaluate platinum content in biodegradable carboplatin-impregnated beads and retrospectively assess tolerability and outcome data for dogs treated by intralesional placement of such beads following surgical excision of subcutaneous sarcomas. DESIGN Evaluation study and retrospective case series. SAMPLE 9 carboplatin-impregnated beads and 29 client-owned dogs. PROCEDURES Platinum content in 9 carboplatin-impregnated beads from 3 lots was measured by spectrophotometry, and calculated carboplatin content was compared with the labeled content. Medical records were searched to identify dogs with subcutaneous sarcomas for which treatment included placement of carboplatin-impregnated beads between 2011 and 2014. Signalment, tumor characteristics, surgical and histologic data, adverse events, and local recurrences were recorded. Associations between variables of interest and adverse events or local disease-free interval were analyzed. RESULTS In vitro analysis identified a mean ± SD platinum content of 5.38 ± 0.97 mg/bead. Calculated carboplatin content (10.24 ± 1.84 mg/bead) was significantly greater than the labeled amount (4.6 mg/bead). Bead weight and total platinum content differed significantly among lots, but platinum content per bead weight did not. Mild-to-moderate local adverse events were reported for 11 of 29 tumors; all resolved without additional surgery. No dogs had signs of systemic toxicosis. Overall local disease-free rates 1, 2, and 3 years after surgery were 70%, 70%, and 58%, respectively, as determined by Kaplan-Meier analysis. CONCLUSIONS AND CLINICAL RELEVANCE Carboplatin-impregnated beads were well tolerated; however, results of in vitro tests indicated that caution is needed because of manufacturing inconsistencies.
Okochi, Mina; Koike, Shinji; Tanaka, Masayoshi; Honda, Hiroyuki
2017-07-15
An on-chip gene expression analysis compartmentalized in droplets was developed for detection of cancer cells at a single-cell level. The chip consists of a keyhole-shaped reaction chamber with hydrophobic modification employing a magnetic bead-droplet-handling system with a gate for bead separation. Using three kinds of water-based droplets in oil, a droplet with sample cells, a lysis buffer with magnetic beads, and RT-PCR buffer, parallel magnetic manipulation and fusion of droplets were performed using a magnet-handling device containing small external magnet patterns in an array. The actuation with the magnet offers a simple system for droplet manipulation that allows separation and fusion of droplets containing magnetic beads. After reverse transcription and amplification by thermal cycling, fluorescence was obtained for detection of overexpressing genes. For clinical detection of gastric cancer cells in peritoneal washing, the Her2-overexpressing gastric cancer cells spiked within normal cells was detected by gene expression analysis of droplets containing an average of 2.5 cells. Our developed droplet-based cancer detection system manipulated by external magnetic force without pumps or valves offers a simple and flexible set-up for transcriptional detection of cancer cells, and will be greatly advantageous for less-invasive clinical diagnosis and prognostic prediction. Copyright © 2016 Elsevier B.V. All rights reserved.
Vibration analysis of paper machine's asymmetric tube roll supported by spherical roller bearings
NASA Astrophysics Data System (ADS)
Heikkinen, Janne E.; Ghalamchi, Behnam; Viitala, Raine; Sopanen, Jussi; Juhanko, Jari; Mikkola, Aki; Kuosmanen, Petri
2018-05-01
This paper presents a simulation method that is used to study subcritical vibrations of a tube roll in a paper machine. This study employs asymmetric 3D beam elements based on the Timoshenko beam theory. An asymmetric beam model accounts for varying stiffness and mass distributions. Additionally, a detailed rolling element bearing model defines the excitations arising from the set of spherical roller bearings at both ends of the rotor. The results obtained from the simulation model are compared against the results from the measurements. The results indicate that the waviness of the bearing rolling surfaces contributes significantly to the subcritical vibrations while the asymmetric properties of the tube roll have only a fractional effect on the studied vibrations.
Rapid Prototyping of Slot Die Devices for Roll to Roll Production of EL Fibers
Bellingham, Alyssa; Bromhead, Nicholas; Fontecchio, Adam
2017-01-01
There is a growing interest in fibers supporting optoelectrical properties for textile and wearable display applications. Solution-processed electroluminescent (EL) material systems can be continuously deposited onto fiber or yarn substrates in a roll-to-roll process, making it easy to scale manufacturing. It is important to have precise control over layer deposition to achieve uniform and reliable light emission from these EL fibers. Slot-die coating offers this control and increases the rate of EL fiber production. Here, we report a highly adaptable, cost-effective 3D printing model for developing slot dies used in automatic coating systems. The resulting slot-die coating system enables rapid, reliable production of alternating current powder-based EL (ACPEL) fibers and can be adapted for many material systems. The benefits of this system over dip-coating for roll-to-roll production of EL fibers are demonstrated in this work. PMID:28772954
Rapid Prototyping of Slot Die Devices for Roll to Roll Production of EL Fibers.
Bellingham, Alyssa; Bromhead, Nicholas; Fontecchio, Adam
2017-05-29
There is a growing interest in fibers supporting optoelectrical properties for textile and wearable display applications. Solution-processed electroluminescent (EL) material systems can be continuously deposited onto fiber or yarn substrates in a roll-to-roll process, making it easy to scale manufacturing. It is important to have precise control over layer deposition to achieve uniform and reliable light emission from these EL fibers. Slot-die coating offers this control and increases the rate of EL fiber production. Here, we report a highly adaptable, cost-effective 3D printing model for developing slot dies used in automatic coating systems. The resulting slot-die coating system enables rapid, reliable production of alternating current powder-based EL (ACPEL) fibers and can be adapted for many material systems. The benefits of this system over dip-coating for roll-to-roll production of EL fibers are demonstrated in this work.
Kazemi, Pezhman; Khalid, Mohammad Hassan; Pérez Gago, Ana; Kleinebudde, Peter; Jachowicz, Renata; Szlęk, Jakub; Mendyk, Aleksander
2017-01-01
Dry granulation using roll compaction is a typical unit operation for producing solid dosage forms in the pharmaceutical industry. Dry granulation is commonly used if the powder mixture is sensitive to heat and moisture and has poor flow properties. The output of roll compaction is compacted ribbons that exhibit different properties based on the adjusted process parameters. These ribbons are then milled into granules and finally compressed into tablets. The properties of the ribbons directly affect the granule size distribution (GSD) and the quality of final products; thus, it is imperative to study the effect of roll compaction process parameters on GSD. The understanding of how the roll compactor process parameters and material properties interact with each other will allow accurate control of the process, leading to the implementation of quality by design practices. Computational intelligence (CI) methods have a great potential for being used within the scope of quality by design approach. The main objective of this study was to show how the computational intelligence techniques can be useful to predict the GSD by using different process conditions of roll compaction and material properties. Different techniques such as multiple linear regression, artificial neural networks, random forest, Cubist and k-nearest neighbors algorithm assisted by sevenfold cross-validation were used to present generalized models for the prediction of GSD based on roll compaction process setting and material properties. The normalized root-mean-squared error and the coefficient of determination (R2) were used for model assessment. The best fit was obtained by Cubist model (normalized root-mean-squared error =3.22%, R2=0.95). Based on the results, it was confirmed that the material properties (true density) followed by compaction force have the most significant effect on GSD. PMID:28176905
Kazemi, Pezhman; Khalid, Mohammad Hassan; Pérez Gago, Ana; Kleinebudde, Peter; Jachowicz, Renata; Szlęk, Jakub; Mendyk, Aleksander
2017-01-01
Dry granulation using roll compaction is a typical unit operation for producing solid dosage forms in the pharmaceutical industry. Dry granulation is commonly used if the powder mixture is sensitive to heat and moisture and has poor flow properties. The output of roll compaction is compacted ribbons that exhibit different properties based on the adjusted process parameters. These ribbons are then milled into granules and finally compressed into tablets. The properties of the ribbons directly affect the granule size distribution (GSD) and the quality of final products; thus, it is imperative to study the effect of roll compaction process parameters on GSD. The understanding of how the roll compactor process parameters and material properties interact with each other will allow accurate control of the process, leading to the implementation of quality by design practices. Computational intelligence (CI) methods have a great potential for being used within the scope of quality by design approach. The main objective of this study was to show how the computational intelligence techniques can be useful to predict the GSD by using different process conditions of roll compaction and material properties. Different techniques such as multiple linear regression, artificial neural networks, random forest, Cubist and k-nearest neighbors algorithm assisted by sevenfold cross-validation were used to present generalized models for the prediction of GSD based on roll compaction process setting and material properties. The normalized root-mean-squared error and the coefficient of determination ( R 2 ) were used for model assessment. The best fit was obtained by Cubist model (normalized root-mean-squared error =3.22%, R 2 =0.95). Based on the results, it was confirmed that the material properties (true density) followed by compaction force have the most significant effect on GSD.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soulami, Ayoub; Lavender, Curt A.; Paxton, Dean M.
2015-06-15
Pacific Northwest National Laboratory (PNNL) has been investigating manufacturing processes for the uranium-10% molybdenum alloy plate-type fuel for high-performance research reactors in the United States. This work supports the U.S. Department of Energy National Nuclear Security Administration’s Office of Material Management and Minimization Reactor Conversion Program. This report documents modeling results of PNNL’s efforts to perform finite-element simulations to predict roll-separating forces for various rolling mill geometries for PNNL, Babcock & Wilcox Co., Y-12 National Security Complex, Los Alamos National Laboratory, and Idaho National Laboratory. The model developed and presented in a previous report has been subjected to further validationmore » study using new sets of experimental data generated from a rolling mill at PNNL. Simulation results of both hot rolling and cold rolling of uranium-10% molybdenum coupons have been compared with experimental results. The model was used to predict roll-separating forces at different temperatures and reductions for five rolling mills within the National Nuclear Security Administration Fuel Fabrication Capability project. This report also presents initial results of a finite-element model microstructure-based approach to study the surface roughness at the interface between zirconium and uranium-10% molybdenum.« less
A method for the determination of the coefficient of rolling friction using cycloidal pendulum
NASA Astrophysics Data System (ADS)
Ciornei, M. C.; Alaci, S.; Ciornei, F. C.; Romanu, I. C.
2017-08-01
The paper presents a method for experimental finding of coefficient of rolling friction appropriate for biomedical applications based on the theory of cycloidal pendulum. When a mobile circle rolls over a fixed straight line, the points from the circle describe trajectories called normal cycloids. To materialize this model, it is sufficient that a small region from boundary surfaces of a moving rigid body is spherical. Assuming pure rolling motion, the equation of motion of the cycloidal pendulum is obtained - an ordinary nonlinear differential equation. The experimental device is composed by two interconnected balls rolling over the material to be studied. The inertial characteristics of the pendulum can be adjusted via weights placed on a rod. A laser spot oscillates together to the pendulum and provides the amplitude of oscillations. After finding the experimental parameters necessary in differential equation of motion, it can be integrated using the Runge-Kutta of fourth order method. The equation was integrated for several materials and found values of rolling friction coefficients. Two main conclusions are drawn: the coefficient of rolling friction influenced significantly the amplitude of oscillation but the effect upon the period of oscillation is practically imperceptible. A methodology is proposed for finding the rolling friction coefficient and the pure rolling condition is verified.
Dai, Xiaojun; He, Yuan; Wei, Yinmao; Gong, Bolin
2011-11-01
A one-step procedure based on surface-initiated atom transfer radical polymerization (SI-ATRP) to hydrophilize monodisperse poly(chloromethylstyrene-co-divinylbenzene) beads has been presented in this work, using 2-hydroxyl-3-[4-(hydroxymethyl)-1H-1,2,3-triazol-1-yl]propyl 2-methylacrylate (HTMA) as a monomer. The chain length of the grafted poly(HTMA) was controlled via varying the ratio of HTMA to initiator on the surface of the beads. When using the grafted beads as a stationary phase in hydrophilic interaction chromatography (HILIC), good resolution for nucleobases/nucleosides was obtained with acetonitrile aqueous solution as an eluent; while for phenolic acids and glycosides, they could be eluted and separated in the presence of TFA. The retention time of the solutes increased with the amount of the grafted HTMA. The retention mechanisms of solutes were investigated by the effects of mobile phase composition and buffer pH on the retention of solutes. The results illustrated that the retention behaviors of the tested solutes were dominated by hydrogen bonding interaction and electrostatic interaction. From the chemical structure of the ligands, the modified beads could not only be used as a stationary phase in HILIC, but also act as a useful building block to develop new stationary phases for other chromatographic modes such as affinity media. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Two decades of warming increases diversity of a potentially lignolytic bacterial community
Pold, Grace; Melillo, Jerry M.; DeAngelis, Kristen M.
2015-01-01
As Earth's climate warms, the massive stores of carbon found in soil are predicted to become depleted, and leave behind a smaller carbon pool that is less accessible to microbes. At a long-term forest soil-warming experiment in central Massachusetts, soil respiration and bacterial diversity have increased, while fungal biomass and microbially-accessible soil carbon have decreased. Here, we evaluate how warming has affected the microbial community's capability to degrade chemically-complex soil carbon using lignin-amended BioSep beads. We profiled the bacterial and fungal communities using PCR-based methods and completed extracellular enzyme assays as a proxy for potential community function. We found that lignin-amended beads selected for a distinct community containing bacterial taxa closely related to known lignin degraders, as well as members of many genera not previously noted as capable of degrading lignin. Warming tended to drive bacterial community structure more strongly in the lignin beads, while the effect on the fungal community was limited to unamended beads. Of those bacterial operational taxonomic units (OTUs) enriched by the warming treatment, many were enriched uniquely on lignin-amended beads. These taxa may be contributing to enhanced soil respiration under warming despite reduced readily available C availability. In aggregate, these results suggest that there is genetic potential for chemically complex soil carbon degradation that may lead to extended elevated soil respiration with long-term warming. PMID:26042112
Grate, Jay W; Warner, Marvin G; Ozanich, Richard M; Miller, Keith D; Colburn, Heather A; Dockendorff, Brian; Antolick, Kathryn C; Anheier, Norman C; Lind, Michael A; Lou, Jianlong; Marks, James D; Bruckner-Lea, Cynthia J
2009-05-01
A renewable surface biosensor for rapid detection of botulinum neurotoxin serotype A is described based on fluidic automation of a fluorescence sandwich immunoassay, using a recombinant protein fragment of the toxin heavy chain ( approximately 50 kDa) as a structurally valid simulant. Monoclonal antibodies AR4 and RAZ1 bind to separate non-overlapping epitopes of the full botulinum holotoxin ( approximately 150 kDa). Both of the targeted epitopes are located on the recombinant fragment. The AR4 antibody was covalently bound to Sepharose beads and used as the capture antibody. A rotating rod flow cell was used to capture these beads delivered as a suspension by a sequential injection flow system, creating a 3.6 microL column. After perfusing the bead column with sample and washing away the matrix, the column was perfused with Alexa 647 dye-labeled RAZ1 antibody as the reporter. Optical fibers coupled to the rotating rod flow cell at a 90 degrees angle to one another delivered excitation light from a HeNe laser (633 nm) using one fiber and collected fluorescent emission light for detection with the other. After each measurement, the used Sepharose beads are released and replaced with fresh beads. In a rapid screening approach to sample analysis, the toxin simulant was detected to concentrations of 10 pM in less than 20 minutes using this system.
Final Report Nucleic Acid System - Hybrid PCR and Multiplex Assay Project Phase 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koopman, R P; Langlois, R G; Nasarabadi, S
2002-04-17
This report covers phase 2 (year 2) of the Nucleic Acid System--Hybrid PCR and Multiplex Assay project. The objective of the project is to reduce to practice the detection and identification of biological warfare pathogens by the nucleic acid recognition technique of PCR (polymerase chain reaction) in a multiplex mode using flow cytometry. The Hybrid instrument consists of a flow-through PCR module capable of handling a multiplexed PCR assay, a hybridizing module capable of hybridizing multiplexed PCR amplicons and beads, and a flow cytometer module for bead-based identification, all controlled by a single computer. Multiplex immunoassay using bead-based Luminex flowmore » cytometry is available, allowing rapid screening for many agents. PCR is highly specific and complements and verifies immunoassay. It can also be multiplexed and detection provided using the bead-based Luminex flow cytometer. This approach allows full access to the speed and 100-fold multiplex capability of flow cytometry for rapid screening as well as the accuracy and specificity of PCR. This project has two principal activities: (1) Design, build and test a prototype hybrid PCR/flow cytometer with the basic capabilities for rapid, broad spectrum detection and identification, and (2) Develop and evaluate multiplex flow analysis assay protocols and reagents for the simultaneous detection of PCR products. This project requires not only building operationally functional instrumentation but also developing the chemical assays for detection of priority pathogens. This involves development and evaluation of multiplex flow analysis assay protocols and reagents for the simultaneous detection of PCR products.« less
Domínguez-Romero, Juan C; Gilbert-López, Bienvenida; Beneito-Cambra, Miriam; Molina-Díaz, Antonio
2018-05-15
In this work, the implementation of Bead Injection with multicommutation-based flow systems is reported. A surface renewable chemiluminescence (CL) flow sensor is presented based on the use of CL reaction of luminol with H 2 O 2 . Dowex 1 × 8 beads with immobilized luminol onto them were injected in the flow system by means of a six-port rotary valve and were accommodated into a 1 mm optical glass flow cell placed just in front of the rectangular photosensor window with the same size than the cell wall. Automatic computer-controlled manipulation of both reagents and sample solutions was undertaken using a multicommutated flow system which comprises five three-way solenoid valves, a home-made electronic interface and a Java-written software. Once the chemiluminescence signal was registered, sensing beads were automatically discarded out with a six-port rotary valve without needing to reverse or stop the flow. As a proof of concept and example, the enhancement of the chemiluminescence signal produced by Co(II) on the luminol-H 2 O 2 reaction in alkaline medium was used for illustrating this implementation determining vitamin B 12 in pharmaceutical preparations (after mineralization for releasing Co(II)). The analytical performance of the approach was satisfactory, showing a linear dynamic range from 1.7 to 50 µg L -1 , a detection limit of 0.5 µg L -1 , RSD (%) of 5.3%, with a sampling frequency of 11 h -1 . The proposed approach was applied to different samples and the results were consistent with those obtained with a reference method based on ICP-MS. Based on the same reaction (or re-configuring the system to accommodate it to reaction requirements) the approach can also be applied to the determination of other metal ions such as Cr(III) and Fe(II) and appropriately extended to molecules of bioanalytical interest based e.g. in CL immunoassays, given its versatility. Copyright © 2018 Elsevier B.V. All rights reserved.
75 FR 3459 - Combined Notice of Filings # 1
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-21
.... Docket Numbers: ER10-276-001. Applicants: Rolling Thunder I Power Partners, LLC. Description: Rolling Thunder I Power Partners, LLC supplements its 11/17/09 application for a proposed market-based rate...
Method for preparing spherical ferrite beads and use thereof
Lauf, Robert J.; Anderson, Kimberly K.; Montgomery, Frederick C.; Collins, Jack L.
2002-01-01
The invention allows the fabrication of small, dense, highly polished spherical beads of hexagonal ferrites with selected compositions for use in nonreciprocal microwave and mm-wave devices as well as in microwave absorbent or reflective coatings, composites, and the like. A porous, generally spherical bead of hydrous iron oxide is made by a sol-gel process to form a substantially rigid bead having a generally fine crystallite size and correspondingly finely distributed internal porosity. The resulting gel bead is washed and hydrothermally reacted with a soluble alkaline earth salt (typically Ba or Sr) under conditions of elevated temperature and pressure to convert the bead into a mixed hydrous iron-alkaline earth oxide while retaining the generally spherical shape. This mixed oxide bead is then washed, dried, and calcined to produce the desired (BaFe.sub.12 O.sub.19 or SrFe.sub.12 O.sub.19) crystal structure. The calcined bead is then sintered to form a dense bead of the BaFe.sub.12 O.sub.19 and SrFe.sub.12 O.sub.19 phase suitable for polishing and incorporation into various microwave devices and components.
Chatterjee, Sudipta; Lee, Dae S; Lee, Min W; Woo, Seung H
2009-09-01
The adsorption performance of CS beads impregnated with triton X-100 (TX-100) as a nonionic surfactant and sodium dodecyl sulfate (SDS) as an anionic surfactant was investigated for the removal of anionic dye (congo red) from aqueous solution. While the adsorption capacity of CS/TX-100 beads was enhanced at all concentrations of TX-100 (0.005-0.1%), the increase in the concentration of SDS above 0.01% in the CS/SDS beads gradually reduced the adsorption capacity of the beads. Equilibrium adsorption isotherm data indicated a good fit to the Sips isotherm model and a heterogeneous adsorption process. The Sips maximum adsorption capacity in dry weight of the CS/TX-100 beads was 378.79 mg/g and 318.47 mg/g for the CS/SDS beads, higher than the 223.25mg/g of the CS beads. Modification of CS beads by impregnation with nonionic surfactant, or even anionic surfactant, at low concentrations is a possible way to enhance adsorption of anionic dye.
Optical Manipulation of Single Magnetic Beads in a Microwell Array on a Digital Microfluidic Chip.
Decrop, Deborah; Brans, Toon; Gijsenbergh, Pieter; Lu, Jiadi; Spasic, Dragana; Kokalj, Tadej; Beunis, Filip; Goos, Peter; Puers, Robert; Lammertyn, Jeroen
2016-09-06
The detection of single molecules in magnetic microbead microwell array formats revolutionized the development of digital bioassays. However, retrieval of individual magnetic beads from these arrays has not been realized until now despite having great potential for studying captured targets at the individual level. In this paper, optical tweezers were implemented on a digital microfluidic platform for accurate manipulation of single magnetic beads seeded in a microwell array. Successful optical trapping of magnetic beads was found to be dependent on Brownian motion of the beads, suggesting a 99% chance of trapping a vibrating bead. A tailor-made experimental design was used to screen the effect of bead type, ionic buffer strength, surfactant type, and concentration on the Brownian activity of beads in microwells. With the optimal conditions, the manipulation of magnetic beads was demonstrated by their trapping, retrieving, transporting, and repositioning to a desired microwell on the array. The presented platform combines the strengths of digital microfluidics, digital bioassays, and optical tweezers, resulting in a powerful dynamic microwell array system for single molecule and single cell studies.
Quantitative Residual Strain Analyses on Strain Hardened Nickel Based Alloy
NASA Astrophysics Data System (ADS)
Yonezawa, Toshio; Maeguchi, Takaharu; Goto, Toru; Juan, Hou
Many papers have reported about the effects of strain hardening by cold rolling, grinding, welding, etc. on stress corrosion cracking susceptibility of nickel based alloys and austenitic stainless steels for LWR pipings and components. But, the residual strain value due to cold rolling, grinding, welding, etc. is not so quantitatively evaluated.
Rock and Roll English Teaching: Content-Based Cultural Workshops
ERIC Educational Resources Information Center
Robinson, Tim
2011-01-01
In this article, the author shares a content-based English as a Second/Foreign Language (ESL/EFL) workshop that strengthens language acquisition, increases intrinsic motivation, and bridges cultural divides. He uses a rock and roll workshop to introduce an organizational approach with a primary emphasis on cultural awareness content and a…
Judging rolling wheels: Dynamic and kinematic aspects of rotation-translation coupling
NASA Technical Reports Server (NTRS)
Hecht, Heiko
1993-01-01
Four experiments were carried out to investigate observers' abilities to judge rolling motions. The experiments were designed to assess whether two important aspects of such motions are appreciated: the kinematic coupling of rotation and translation, and the dynamic effects of gravity. Different motion contexts of rolling wheels were created using computer-generated displays. The first experiment involved wheels rolling down an inclined plane. Observers spontaneously appreciated the anomaly of wheels that failed to accelerate, but they were not able to differentiate between different acceleration functions. Moreover, their judgements were almost exclusively based on the translation component of the rolling motion, neglecting the rotation component. In a second experiment it was found that observers could accurately estimate the perimeter of various objects. Thus, their inability to consider rotation information is not attributable to misperceptions of the geometry of wheels. In a third experiment the finding that rolling wheels appear to overrotate was replicated; however, findings from this experiment also showed, together with those from a fourth experiment, that observers are able to make very accurate judgments about translation-rotation coupling in rolling wheels when information is provided about the orientation of the wheel and the texture of the surface on which it rolls.
Judging rolling wheels: dynamic and kinematic aspects of rotation-translation coupling.
Hecht, H
1993-01-01
Four experiments were carried out to investigate observers' abilities to judge rolling motions. The experiments were designed to assess whether two important aspects of such motions are appreciated: the kinematic coupling of rotation and translation, and the dynamic effects of gravity. Different motion contexts of rolling wheels were created using computer-generated displays. The first experiment involved wheels rolling down an inclined plane. Observers spontaneously appreciated the anomaly of wheels that failed to accelerate, but they were not able to differentiate between different acceleration functions. Moreover, their judgments were almost exclusively based on the translation component of the rolling motion, neglecting the rotation component. In a second experiment it was found that observers could accurately estimate the perimeter of various objects. Thus, their inability to consider rotation information is not attributable to misperceptions of the geometry of wheels. In a third experiment the finding that rolling wheels appear to overrotate was replicated; however, findings from this experiment also showed, together with those from a fourth experiment, that observers are able to make very accurate judgments about translation-rotation coupling in rolling wheels when information is provided about the orientation of the wheel and the texture of the surface on which it rolls.
New, hybrid pectin-based biosorbents
Jakóbik-Kolon, Agata; Milewski, Andrzej K.; Karoń, Krzysztof; Bok-Badura, Joanna
2016-01-01
ABSTRACT In this work hybrid pectin-based biosorbents with secondary polysaccharide additives (gellan, carob and xanthan gum, ratio to pectin 1:1, 1:1 and 1:3, respectively) were obtained at two temperatures. The presence of these additives in prepared beads was confirmed by Raman spectra. The SEM micrographs show better homogeneity of blends and grater differences between structures of beads with various additives obtained at higher temperature. The sorption capacity of our hybrid biosorbents as well as sole pectin sorbent is rather the same, and equals 0.85 and 0.70 mmol/g for lead and cadmium, respectively, in pH 4–6. PMID:27812233
Wang, Duo; Lin, Bixia; Cao, Yujuan; Guo, Manli; Yu, Ying
2016-08-03
A sensitive fluorescence detection method for glyphosate (GLY) was established based on immune reaction. First, carbon dot labeled antibodies (lgG-CDs) which were able to specifically identify glyphosate were prepared with the environmentally friendly carbon dots (CDs) and glyphosate antibody (lgG). lgG-CDs could be used to in situ visualize the distribution of glyphosate in plant tissues. In order to eliminate the effects of excess lgG-CDs on the determination of GLY, antigen magnetic beads Fe3O4-GLY based on magnetic nanoparticles Fe3O4 and glyphosate were constructed and utilized to couple with the excess lgG-CDs. After magnetic separation to remove antigen magnetic beads, there was a linear relationship between the fluorescence intensity of lgG-CDs and the logarithmic concentration of glyphosate in the range of 0.01-80 μg/mL with a detection limit of 8 ng/mL. The method was used for the detection of glyphosate in Pearl River water, tea, and soil samples with satisfactory recovery ratio between 87.4% and 103.7%.
Atkinson, Carter T.; Watcher-Weatherwax, William; Roy, Kylle; Heller, Wade P; Keith, Lisa
2017-01-01
We describe a field compatible molecular diagnostic test for two new species of Ceratocystis that infect `ōhi`a (Metrosideros polymorpha) and cause the disease commonly known as Rapid `Ōhi`a Death. The diagnostic is based on amplification of a DNA locus within the internal transcribed spacer region that separates fungal 5.8S ribosomal genes. The assay uses forward and reverse primers, recombinase polymerase, and a fluorescent probe that allows isothermal (40oC) amplification and simultaneous quantification of a 115 base pair product with a battery operated fluorometer. DNA extractions are field compatible and can be done by heating wood drill shavings to 100oC in Instagene® solution containing Chelex® resin to bind potential amplification inhibitors. The initial heat treatment is followed by a short bead beating step with steel ball bearings and zirconium beads to release DNA. DNA is subsequently purified with a magnetic bead based extraction method that does not require silica columns or centrifugation. The assay is designed around a portable “lab-in-a-suitcase” platform that includes a portable fluorometer, miniature centrifuge, and heat block that operate off either 120V AC power sources or a 12 volt battery with a portable inverter, a magnetic rack designed for 1.5 ml tubes and magnetic bead DNA purification, pipettes and consumable reagents and tubes. The entire assay from DNA extraction to results can be performed in less than 90 minutes on up to six independent samples plus a positive and negative control. Sensitivity based on suspensions of Ceratocystis endoconidia (spores) that were added to wood shavings and processed under field conditions by Instagene® magnetic bead DNA extraction was up to 163 spores/mg wood for Species A and 55 spores/mg wood for Species B in 95% of replicates as determined by probit analysis. Sensitivity increased 5–10 fold to 19 spores/mg wood for Species A and 9 spores/mg wood for Species B when extractions were performed with a commercial, silica column based DNA purification kit. The test did not cross react with other common fungi that have been isolated from `ōhi`a.
77 FR 32986 - Notice of Inventory Completion: The University of Alabama Museums, Tuscaloosa, AL
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-04
... than 2,032 glass beads, 1 lot of more than 17 shell beads, 1 unidentified bead, 1 gun lock, 1 gun butt plate, 1 gun stock, 2 gun barrels, 1 brass ramrod support, 8 musket balls, 2 iron buckles, 1 iron handle... fragments, 1 unidentified bead, 2 glass beads, 1 gun flint, 1 iron knife blade, 1 iron nail, 1 musket ball...
Magnetic bead detection using nano-transformers.
Kim, Hyung Kwon; Hwang, Jong Seung; Hwang, Sung Woo; Ahn, Doyeol
2010-11-19
A novel scheme to detect magnetic beads using a nano-scale transformer with a femtoweber resolution is reported. We have performed a Faraday's induction experiment with the nano-transformer at room temperature. The transformer shows the linear output voltage responses to the sinusoidal input current. When magnetic beads are placed on the transformer, the output responses are increased by an amount corresponding to the added magnetic flux from the beads when compared with the case of no beads on the transformer. In this way, we could determine whether magnetic beads are on top of the transformer in a single particle level.
Cardiac Muscle-cell Based Actuator and Self-stabilizing Biorobot - PART 1.
Holley, Merrel T; Nagarajan, Neerajha; Danielson, Christian; Zorlutuna, Pinar; Park, Kidong
2017-07-11
Biological machines often referred to as biorobots, are living cell- or tissue-based devices that are powered solely by the contractile activity of living components. Due to their inherent advantages, biorobots are gaining interest as alternatives to traditional fully artificial robots. Various studies have focused on harnessing the power of biological actuators, but only recently studies have quantitatively characterized the performance of biorobots and studied their geometry to enhance functionality and efficiency. Here, we demonstrate the development of a self-stabilizing swimming biorobot that can maintain its pitch, depth, and roll without external intervention. The design and fabrication of the PDMS scaffold for the biological actuator and biorobot followed by the functionalization with fibronectin is described in this first part. In the second part of this two-part article, we detail the incorporation of cardiomyocytes and characterize the biological actuator and biorobot function. Both incorporate a base and tail (cantilever) which produce fin-based propulsion. The tail is constructed with soft lithography techniques using PDMS and laser engraving. After incorporating the tail with the device base, it is functionalized with a cell adhesive protein and seeded confluently with cardiomyocytes. The base of the biological actuator consists of a solid PDMS block with a central glass bead (acts as a weight). The base of the biorobot consists of two composite PDMS materials, Ni-PDMS and microballoon-PDMS (MB-PDMS). The nickel powder (in Ni-PDMS) allows magnetic control of the biorobot during cells seeding and stability during locomotion. Microballoons (in MB-PDMS) decrease the density of MB-PDMS, and enable the biorobot to float and swim steadily. The use of these two materials with different mass densities, enabled precise control over the weight distribution to ensure a positive restoration force at any angle of the biorobot. This technique produces a magnetically controlled self-stabilizing swimming biorobot.
Jones, Stephanie H; King, Martin D; Ward, Andrew D
2013-12-21
A method is described to measure the refractive index dispersion with wavelength of optically trapped solid particles in air. Knowledge of the refraction properties of solid particles is critical for the study of aerosol; both in the laboratory and in the atmosphere for climate studies. Single micron-sized polystyrene beads were optically trapped in air using a vertically aligned counter-propagating configuration of focussed laser beams. Each bead was illuminated using white light from a broadband light emitting diode (LED) and elastic scattering within the bead was collected onto a spectrograph. The resulting Mie spectra were analysed to accurately determine polystyrene bead radii to ±0.4 nm and values of the refractive index to ±0.0005 over a wavelength range of 480-700 nm. We demonstrate that optical trapping combined with elastic scattering can be used to both accurately size polystyrene beads suspended in air and determine their wavelength dependent refractive index. The refractive index dispersions are in close agreement with reported values for polystyrene beads in aqueous dispersion. Our results also demonstrate a variation in the refractive index of polystyrene, from bead to bead, in a commercial sample. The measured variation highlights that care must be taken when using polystyrene beads as a calibration aerosol.
Crowe, Simon F; Hale, Matthew W
2002-09-01
The single-trial passive avoidance task is a useful procedure for examining learning and memory in the young chick. However, it has recently been suggested that discrepant results reported by different laboratories are due to differences in training procedure. The present study investigated a number of parameters surrounding the passive avoidance task, using day-old White Leghorn, Black Australorp cockerels. The results suggested that presentation of a water-dipped bead immediately after the aversive bead significantly altered retention levels. In addition, when the water-dipped bead was presented after the aversive bead, chicks failed to discriminate between beads for a period of 10 min following exposure to the aversant experience. A novel variant of the passive avoidance procedure, involving pretraining with a water-dipped red bead, training with an aversant-coated red bead, and testing with a dry red bead, was evaluated. A measure of avoidance was calculated using all three trials. It is suggested that the use of a single bead, measured both before and after the training experience and using both aversant- and water-trained controls, results in the most concise characterization of memory-related phenomena in the chick which is not contaminated by a carryover effect from the aversive training experience to the nonaversive bead.
Apparatus for the production of gel beads containing a biocatalyst
Scott, C.D.; Scott, T.C.; Davison, B.H.
1998-03-19
An apparatus is described for the large-scale and continuous production of gel beads containing a biocatalyst. The apparatus is a columnar system based on the chemical cross-linking of hydrocolloidal gels that contain and immobilize a biocatalyst, the biocatalyst being a microorganism or an enzyme. Hydrocolloidal gels, such as alginate, carrageenan, and a mixture of bone gelatin and modified alginate, provide immobilization matrices that can be used to entrap and retain the biocatalyst while allowing effective contact with substrates and release of products. Such immobilized biocatalysts are generally formulated into small spheres or beads that have high concentrations of the biocatalyst within the gel matrix. The columnar system includes a gel dispersion nozzle submerged in a heated non-interacting liquid, typically an organic liquid, that is immiscible with water to allow efficient formation of spherical gel droplets, the non-interacting liquid having a specific gravity that is less than water so that the gel droplets will fall through the liquid by the force of gravity. The heated non-interacting liquid is in direct contact with a chilled upflowing non-interacting liquid that will provide sufficient residence time for the gel droplets as they fall through the liquid so that they will be cooled below the gelling temperature and form solid spheres. The upflowing non-interacting liquid is in direct contact with an upflowing temperature-controlled aqueous solution containing the necessary chemicals for cross-linking or fixing of the gel beads to add the necessary stability. The flow rates of the two liquid streams can be varied to control the proper residence time in each liquid section to accommodate the production of gel beads of differing settling velocities. A valve is provided for continuous removal of the stabilized gel beads from the bottom of the column. 1 fig.
Apparatus and method for the production of gel beads containing a biocatalyst
Scott, Charles D.; Scott, Timothy C.; Davison, Brian H.
1998-01-01
An apparatus and method for the large-scale and continuous production of gel beads containing a biocatalyst. The apparatus is a columnar system based on the chemical cross-linking of hydrocolloidal gels that contain and immobilize a biocatalyst, the biocatalyst being a microorganism or an enzyme. Hydrocolloidal gels, such as alginate, carrageenan, and a mixture of bone gelatin and modified alginate, provide immobilization matrices that can be used to entrap and retain the biocatalyst while allowing effective contact with substrates and release of products. Such immobilized biocatalysts are generally formulated into small spheres or beads that have high concentrations of the biocatalyst within the gel matrix. The columnar system includes a gel dispersion nozzle submerged in a heated non-interacting liquid, typically an organic liquid, that is immiscible with water to allow efficient formation of spherical gel droplets, the non-interacting liquid having a specific gravity that is less than water so that the gel droplets will fall through the liquid by the force of gravity. The heated non-interacting liquid is in direct contact with a chilled upflowing non-interacting liquid that will provide sufficient residence time for the gel droplets as they fall through the liquid so that they will be cooled below the gelling temperature and form solid spheres. The upflowing non-interacting liquid is in direct contact with an upflowing temperature-controlled aqueous solution containing the necessary chemicals for cross-linking or fixing of the gel beads to add the necessary stability. The flow rates of the two liquid streams can be varied to control the proper residence time in each liquid section to accommodate the production of gel beads of differing settling velocities. A valve is provided for continuous removal of the stabilized gel beads from the bottom of the column.
Apparatus for the production of gel beads containing a biocatalyst
Scott, Charles D.; Scott, Timothy C.; Davison, Brian H.
1998-01-01
An apparatus for the large-scale and continuous production of gel beads containing a biocatalyst. The apparatus is a columnar system based on the chemical cross-linking of hydrocolloidal gels that contain and immobilize a biocatalyst, the biocatalyst being a microorganism or an enzyme. Hydrocolloidal gels, such as alginate, carrageenan, and a mixture of bone gelatin and modified alginate, provide immobilization matrices that can be used to entrap and retain the biocatalyst while allowing effective contact with substrates and release of products. Such immobilized biocatalysts are generally formulated into small spheres or beads that have high concentrations of the biocatalyst within the gel matrix. The columnar system includes a gel dispersion nozzle submerged in a heated non-interacting liquid, typically an organic liquid, that is immiscible with water to allow efficient formation of spherical gel droplets, the non-interacting liquid having a specific gravity that is less than water so that the gel droplets will fall through the liquid by the force of gravity. The heated non-interacting liquid is in direct contact with a chilled upflowing non-interacting liquid that will provide sufficient residence time for the gel droplets as they fall through the liquid so that they will be cooled below the gelling temperature and form solid spheres. The upflowing non-interacting liquid is in direct contact with an upflowing temperature-controlled aqueous solution containing the necessary chemicals for cross-linking or fixing of the gel beads to add the necessary stability. The flow rates of the two liquid streams can be varied to control the proper residence time in each liquid section to accommodate the production of gel beads of differing settling velocities. A valve is provided for continuous removal of the stabilized gel beads from the bottom of the column.
First Human Experience with Directly Image-able Iodinated Embolization Microbeads
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levy, Elliot B., E-mail: levyeb@cc.nih.gov; Krishnasamy, Venkatesh P.; Lewis, Andrew L.
PurposeTo describe first clinical experience with a directly image-able, inherently radio-opaque microspherical embolic agent for transarterial embolization of liver tumors.MethodologyLC Bead LUMI™ is a new product based upon sulfonate-modified polyvinyl alcohol hydrogel microbeads with covalently bound iodine (~260 mg I/ml). 70–150 μ LC Bead LUMI™ iodinated microbeads were injected selectively via a 2.8 Fr microcatheter to near complete flow stasis into hepatic arteries in three patients with hepatocellular carcinoma, carcinoid, or neuroendocrine tumor. A custom imaging platform tuned for LC LUMI™ microbead conspicuity using a cone beam CT (CBCT)/angiographic C-arm system (Allura Clarity FD20, Philips) was used along with CBCT embolization treatment planning software (EmboGuide,more » Philips).ResultsLC Bead LUMI™ image-able microbeads were easily delivered and monitored during the procedure using fluoroscopy, single-shot radiography (SSD), digital subtraction angiography (DSA), dual-phase enhanced and unenhanced CBCT, and unenhanced conventional CT obtained 48 h after the procedure. Intra-procedural imaging demonstrated tumor at risk for potential under-treatment, defined as paucity of image-able microbeads within a portion of the tumor which was confirmed at 48 h CT imaging. Fusion of pre- and post-embolization CBCT identified vessels without beads that corresponded to enhancing tumor tissue in the same location on follow-up imaging (48 h post).ConclusionLC Bead LUMI™ image-able microbeads provide real-time feedback and geographic localization of treatment in real time during treatment. The distribution and density of image-able beads within a tumor need further evaluation as an additional endpoint for embolization.« less
Effect of surface mobility on the particle sliding along a bubble or a solid sphere.
Wang, Weixing; Zhou, Zhiang; Nandakumar, K; Xu, Zhenghe; Masliyah, Jacob H
2003-03-01
The sliding velocity of glass beads on a spherical surface, made either of an air bubble or of a glass sphere held stationary, is measured to investigate the effect of surface mobility on the particle sliding velocity. The sliding process is recorded with a digital camera and analyzed frame by frame. The sliding glass bead was found to accelerate with increasing angular position on the collector's surface. It reaches a maximum velocity at an angular position of about 100 degrees and then, under certain conditions, the glass bead leaves the surface of the collector. The sliding velocity of the glass bead depends strongly on the surface mobility of a bubble, decreasing with decreasing surface mobility. By a mobile surface we mean one which cannot set up resistive forces to an applied stress on the surface. The sliding velocity on a rigid surface, such as a glass sphere, is much lower than that on a mobile bubble surface. The sliding velocity can be described through a modified Stokes equation. A numerical factor in the modified Stokes equation is determined by fitting the experimental data and is found to increase with decreasing surface mobility. Hydrophobic glass beads sliding on a hydrophobic glass sphere were found to stick at the point of impact without sliding if the initial angular position of the impact is less than some specific angle, which is defined as the critical sticking angle. The sticking of the glass beads can be attributed to the capillary contracting force created by the formation of a cavity due to spontaneous receding of the nonwetting liquid from the contact zone. The relationship between the critical sticking angle and the particle size is established based on the Yushchenko [J. Colloid Interface Sci. 96 (1983) 307] analysis.
Analytical study on web deformation by tension in roll-to-roll printing process
NASA Astrophysics Data System (ADS)
Kang, Y. S.; Hong, M. S.; Lee, S. H.; Jeon, Y. H.; Kang, D.; Lee, N. K.; Lee, M. G.
2017-08-01
Recently, flexible devices have gained high intentions for flexible display, Radio Frequency Identification (RFID), bio-sensor and so on. For manufacturing of the flexible devices, roll-to-roll process is a good candidate because of its low production cost and high productivity. Flexible substrate has a non-uniform deformation distribution by tension. Because the roll-to-roll process carries out a number of overlay printing processes, the deformation affect overlay printing precision and printable areas. In this study, the deformation of flexible substrate was analyzed by using finite element analysis and it was verified through experiments. More deformation occurred in the middle region in the direction parallel to rolling of the flexible substrate. It is confirmed through experiments and analysis that deformation occurs less at the both ends than in the middle region. Based on these results, a hourglass roll is proposed as a mechanical design of the roll to compensate the non-uniform deformation of the flexible substrate. In the hourglass roll, high stiffness material is used in the core and low stiffness material such as an elastic material is wrapped. The diameter of the core roll was designed to be the minimum at the middle and the maximum at both ends. We tried to compensate the non-uniform deformation distribution of the flexible substrate by using the variation of the contact stiffness between the roll and the flexible substrate. Deformation distribution of flexible substrates was confirmed by finite element analysis by applying hourglass roll shape. In the analysis when using the hourglass roll, it is confirmed that the stress distribution is compensated by about 70% and the strain distribution is compensated by about 67% compared to the case using the hourglass roll. To verify the compensation of the non-uniform deformation distribution due to the tension, deformation measurement experiment when using the proposed hourglass roll was carried out. Experiments have shown that the distribution of deformation is compensated by about 34%. From the results, we verified the performance of the proposed.
NASA Astrophysics Data System (ADS)
Kasaei, M. M.; Naeini, H. Moslemi; Tehrani, M. Salmani; Tafti, R. Azizi
2011-01-01
Cage roll forming is one of the advanced methods of cold roll forming process which is used widely for producing ERW pipes. In addition to decreasing the production cost and time, using cage roll forming provides smooth deformation on the strip. Few studies can be found about cage roll forming because of its complexity, and the available knowledge is experience-based more than science-based. In this paper, deformation of pipes with low ratio of thickness/diameter is investigated by 3D finite element simulation in Marc-Mentat software. Edge buckling defect in cage roll forming of low ratio of thickness/diameter pipes is very important. Due to direct influence of longitudinal strain on the edge buckling phenomenon, longitudinal strains at the edge and center line of the strip are investigated and high risk stands are introduced. The deformed strip is predicted using the simulation results and effects of each cage forming stage on the deformed strip profile are specified. In order to verify the simulation results, strip width and opening distance of the two edges in different forming stages are obtained from the simulations and compared with the experimental data which were measured from the production line. A good agreement between the experimental and simulated results is observed.
Roll-Yaw control at high angle of attack by forebody tangential blowing
NASA Technical Reports Server (NTRS)
Pedreiro, N.; Rock, S. M.; Celik, Z. Z.; Roberts, L.
1995-01-01
The feasibility of using forebody tangential blowing to control the roll-yaw motion of a wind tunnel model is experimentally demonstrated. An unsteady model of the aerodynamics is developed based on the fundamental physics of the flow. Data from dynamic experiments is used to validate the aerodynamic model. A unique apparatus is designed and built that allows the wind tunnel model two degrees of freedom, roll and yaw. Dynamic experiments conducted at 45 degrees angle of attack reveal the system to be unstable. The natural motion is divergent. The aerodynamic model is incorporated into the equations of motion of the system and used for the design of closed loop control laws that make the system stable. These laws are proven through dynamic experiments in the wind tunnel using blowing as the only actuator. It is shown that asymmetric blowing is a highly non-linear effector that can be linearized by superimposing symmetric blowing. The effects of forebody tangential blowing and roll and yaw angles on the flow structure are determined through flow visualization experiments. The transient response of roll and yaw moments to a step input blowing are determined. Differences on the roll and yaw moment dependence on blowing are explained based on the physics of the phenomena.
Roll-yaw control at high angle of attack by forebody tangential blowing
NASA Technical Reports Server (NTRS)
Pedreiro, N.; Rock, S. M.; Celik, Z. Z.; Roberts, L.
1995-01-01
The feasibility of using forebody tangential blowing to control the roll-yaw motion of a wind tunnel model is experimentally demonstrated. An unsteady model of the aerodynamics is developed based on the fundamental physics of the flow. Data from dynamic experiments is used to validate the aerodynamic model. A unique apparatus is designed and built that allows the wind tunnel model two degrees of freedom, roll and yaw. Dynamic experiments conducted at 45 degrees angle of attack reveal the system to be unstable. The natural motion is divergent. The aerodynamic model is incorporated into the equations of motion of the system and used for the design of closed loop control laws that make the system stable. These laws are proven through dynamic experiments in the wind tunnel using blowing as the only actuator. It is shown that asymmetric blowing is a highly non-linear effector that can be linearized by superimposing symmetric blowing. The effects of forebody tangential blowing and roll and yaw angles on the flow structure are determined through flow visualization experiments. The transient response of roll and yaw moments to a step input blowing are determined. Differences on the roll and yaw moment dependence on blowing are explained based on the physics of the phenomena.
Fully Automated Sample Preparation for Ultrafast N-Glycosylation Analysis of Antibody Therapeutics.
Szigeti, Marton; Lew, Clarence; Roby, Keith; Guttman, Andras
2016-04-01
There is a growing demand in the biopharmaceutical industry for high-throughput, large-scale N-glycosylation profiling of therapeutic antibodies in all phases of product development, but especially during clone selection when hundreds of samples should be analyzed in a short period of time to assure their glycosylation-based biological activity. Our group has recently developed a magnetic bead-based protocol for N-glycosylation analysis of glycoproteins to alleviate the hard-to-automate centrifugation and vacuum-centrifugation steps of the currently used protocols. Glycan release, fluorophore labeling, and cleanup were all optimized, resulting in a <4 h magnetic bead-based process with excellent yield and good repeatability. This article demonstrates the next level of this work by automating all steps of the optimized magnetic bead-based protocol from endoglycosidase digestion, through fluorophore labeling and cleanup with high-throughput sample processing in 96-well plate format, using an automated laboratory workstation. Capillary electrophoresis analysis of the fluorophore-labeled glycans was also optimized for rapid (<3 min) separation to accommodate the high-throughput processing of the automated sample preparation workflow. Ultrafast N-glycosylation analyses of several commercially relevant antibody therapeutics are also shown and compared to their biosimilar counterparts, addressing the biological significance of the differences. © 2015 Society for Laboratory Automation and Screening.
Yu, Hye-Weon; Jang, Am; Kim, Lan Hee; Kim, Sung-Jo; Kim, In S
2011-09-15
Due to the increased occurrence of cyanobacterial blooms and their toxins in drinking water sources, effective management based on a sensitive and rapid analytical method is in high demand for security of safe water sources and environmental human health. Here, a competitive fluorescence immunoassay of microcystin-LR (MCYST-LR) is developed in an attempt to improve the sensitivity, analysis time, and ease-of-manipulation of analysis. To serve this aim, a bead-based suspension assay was introduced based on two major sensing elements: an antibody-conjugated quantum dot (QD) detection probe and an antigen-immobilized magnetic bead (MB) competitor. The assay was composed of three steps: the competitive immunological reaction of QD detection probes against analytes and MB competitors, magnetic separation and washing, and the optical signal generation of QDs. The fluorescence intensity was found to be inversely proportional to the MCYST-LR concentration. Under optimized conditions, the proposed assay performed well for the identification and quantitative analysis of MCYST-LR (within 30 min in the range of 0.42-25 μg/L, with a limit of detection of 0.03 μg/L). It is thus expected that this enhanced assay can contribute both to the sensitive and rapid diagnosis of cyanotoxin risk in drinking water and effective management procedures.
Aptamer-based detection of plasma proteins by an electrochemical assay coupled to magnetic beads.
Centi, Sonia; Tombelli, Sara; Minunni, Maria; Mascini, Marco
2007-02-15
The DNA thrombin aptamer has been extensively investigated, and the coupling of this aptamer to different transduction principles has demonstrated the wide applicability of aptamers as bioreceptors in bioanalytical assays. The goal of this work was to design an aptamer-based sandwich assay with electrochemical detection for thrombin analysis in complex matrixes, using a simple target capturing step by aptamer-functionalized magnetic beads. The conditions for the aptamer immobilization and for the protein binding have been first optimized by surface plasmon resonance, and then transferred to the electrochemical-based assay performed onto screen-printed electrodes. The assay was then applied to the analysis of thrombin in buffer, spiked serum, and plasma and high sensitivity and specificity were found. Moreover, thrombin was generated in situ in plasma by the conversion of its precursor prothrombin, and the formation of thrombin was followed at different times. The concentrations detected by the electrochemical assay were in agreement with a simulation software that mimics the formation of thrombin over time (thrombogram). The proposed work demonstrates that the high specificity of aptamers together with the use of magnetic beads are the key features for aptamer-based analysis in complex matrixes, opening the possibility of a real application to diagnostics or medical investigation.
A high-throughput liquid bead array-based screening technology for Bt presence in GMO manipulation.
Fu, Wei; Wang, Huiyu; Wang, Chenguang; Mei, Lin; Lin, Xiangmei; Han, Xueqing; Zhu, Shuifang
2016-03-15
The number of species and planting areas of genetically modified organisms (GMOs) has been rapidly developed during the past ten years. For the purpose of GMO inspection, quarantine and manipulation, we have now devised a high-throughput Bt-based GMOs screening method based on the liquid bead array. This novel method is based on the direct competitive recognition between biotinylated antibodies and beads-coupled antigens, searching for Bt presence in samples if it contains Bt Cry1 Aa, Bt Cry1 Ab, Bt Cry1 Ac, Bt Cry1 Ah, Bt Cry1 B, Bt Cry1 C, Bt Cry1 F, Bt Cry2 A, Bt Cry3 or Bt Cry9 C. Our method has a wide GMO species coverage so that more than 90% of the whole commercialized GMO species can be identified throughout the world. Under our optimization, specificity, sensitivity, repeatability and availability validation, the method shows a high specificity and 10-50 ng/mL sensitivity of quantification. We then assessed more than 1800 samples in the field and food market to prove capacity of our method in performing a high throughput screening work for GMO manipulation. Our method offers an applicant platform for further inspection and research on GMO plants. Copyright © 2015 Elsevier B.V. All rights reserved.
Multifunctional Polymers and Composites for Self-Healing Applications
2006-09-30
linkages (Chen et al. 2002), and a phase separated system based on polydimethylsiloxane (Cho et al. 2006). Self-healing occurs when monomer is released...WCI6 is shown in Figure 1.1a. The average particle sizes determined by analysis of SEM images for all three delivery methods are listed in Table 1.1...were then sieved and the beads smaller than 355 um were kept for further study. Elemental analysis of the wax beads revealed that the concentration of
Petunin, Alexey; Clemetson, Kenneth J.; Gambaryan, Stepan; Walter, Ulrich
2014-01-01
von Willebrand factor/ristocetin (vWF/R) induces GPIb-dependent platelet agglutination and activation of αIIbβ3 integrin, which also binds vWF. These conditions make it difficult to investigate GPIb-specific signaling pathways in washed platelets. Here, we investigated the specific mechanisms of GPIb signaling using echicetin-coated polystyrene beads, which specifically activate GPIb. We compared platelet activation induced by echicetin beads to vWF/R. Human platelets were stimulated with polystyrene beads coated with increasing amounts of echicetin and platelet activation by echicetin beads was then investigated to reveal GPIb specific signaling. Echicetin beads induced αIIbβ3-dependent aggregation of washed platelets, while under the same conditions vWF/R treatment led only to αIIbβ3-independent platelet agglutination. The average distance between the echicetin molecules on the polystyrene beads must be less than 7 nm for full platelet activation, while the total amount of echicetin used for activation is not critical. Echicetin beads induced strong phosphorylation of several proteins including p38, ERK and PKB. Synergistic signaling via P2Y12 and thromboxane receptor through secreted ADP and TxA2, respectively, were important for echicetin bead triggered platelet activation. Activation of PKG by the NO/sGC/cGMP pathway inhibited echicetin bead-induced platelet aggregation. Echicetin-coated beads are powerful and reliable tools to study signaling in human platelets activated solely via GPIb and GPIb-triggered pathways. PMID:24705415
Basket design as a factor in retention and release of calculi in vitro.
Zeltser, Ilia S; Bagley, Demetrius H
2007-03-01
To compare stone retrieval and release from seven basket designs in vitro. We tested two tipped and one tipless NCompass models, three other tipless Nitinol designs (NCircle, Sur-Catch, and Dimension), and the Segura Hemisphere for their ability to retrieve and release single beads 8, 6, 5.6, and 5 mm diameter and multiple beads 3.6 mm diameter in both a ureteral and a caliceal model in three separate attempts. In the ureteral model, all baskets were successful in retrieving all sizes of single beads. With multiple 3.6-mm beads, only the NCompass and Dimension designs were able to retrieve at least two of three beads in all attempts. With the exception of the Segura Hemisphere, all designs were successful in releasing all bead sizes. In the caliceal model, only the NCircle, Dimension, and tipless NCompass models were able to retrieve all bead sizes in 100% of the trials. The tipped NCompass and Hemisphere designs were unable to retrieve any beads in this model. The Sur-Catch basket was successful in the retrieval of large beads only. The Dimension articulating design was the only basket able to release all bead sizes in all attempts. The tipless NCompass basket did not release any of the beads once engaged. Nitinol basket designs show excellent retrieval and release capabilities in the in-vitro ureteral model. The articulating Nitinol basket has the best stone-releasing capability of all baskets tested.
Structurally stable gel bead containing entrapped enzyme and method for manufacture thereof
Woodward, J.
1998-12-08
This research provides a structurally stable gel bead containing an entrapped enzyme and a method for its manufacture. The enzyme is covalently cross-linked to gelatin in the presence of glutaraldehyde prior to the formation of the gel bead, to prevent leakage of the enzyme. Propylene glycol alginate is then added to the mixture. Once the gel beads are formed, they are then soaked in glutaraldehyde, which imparts structural stability to the gel beads. This method can be used with many types of enzymes, such as proteases, carbohydrases, proteases, ligases, isomerases, oxidoreductases, and specialty enzymes. These and other enzymes can be immobilized in the gel beads and utilized in a number of enzymatic processes. Exogenously added ions are not required to maintain the structural stability of these gel beads. 7 figs.
Structurally stable gel bead containing entrapped enzyme and method for manufacture thereof
Woodward, Jonathan
1998-01-01
A structurally stable gel bead containing an entrapped enzyme and a method for its manufacture. The enzyme is covalently cross-linked to gelatin in the presence of glutaraldehyde prior to the formation of the gel bead, to prevent leakage of the enzyme. Propylene glycol alginate is then added to the mixture. Once the gel beads are formed, they are then soaked in glutaraldehyde, which imparts structural stability to the gel beads. This method can be used with many types of enzymes, such as proteases, carbohydrases, proteases, ligases, isomerases, oxidoreductases, and specialty enzymes. These and other enzymes can be immobilized in the gel beads and utilized in a number of enzymatic processes. Exogenously added ions are not required to maintain the structural stability of these gel beads.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamad, Kotiba; Chung, Bong Kwon; Ko, Young Gun, E-mail: younggun@ynu.ac.kr
2014-08-15
This paper reports the effect of the deformation path on the microstructure, microhardness, and texture evolution of interstitial free (IF) steel processed by differential speed rolling (DSR) method. For this purpose, total height reductions of 50% and 75% were imposed on the samples by a series of differential speed rolling operations with various height reductions per pass (deformation levels) ranging from 10 to 50% under a fixed roll speed ratio of 1:4 for the upper and lower rolls, respectively. Microstructural observations using transmission electron microscopy and electron backscattered diffraction measurements showed that the samples rolled at deformation level of 50%more » had the finest mean grain size (∼ 0.5 μm) compared to the other counterparts; also the samples rolled at deformation level of 50% showed a more uniform microstructure. Based on the microhardness measurements along the thickness direction of the deformed samples, gradual evolution of the microhardness value and its homogeneity was observed with the increase of the deformation level per pass. Texture analysis showed that, as the deformation level per pass increased, the fraction of alpha fiber and gamma fiber in the deformed samples increased. The textures obtained by the differential speed rolling process under the lubricated condition would be equivalent to those obtained by the conventional rolling. - Highlights: • Effect of DSR deformation path on microstructure of IF steel is significant. • IF steel rolled at deformation level of 50% has the ultrafine grains of ∼ 0.5 μm. • Rolling texture components are pronounced with increasing deformation level.« less
Somvipart, Siraporn; Kanokpanont, Sorada; Rangkupan, Rattapol; Ratanavaraporn, Juthamas; Damrongsakkul, Siriporn
2013-04-01
Thai silk fibroin and gelatin are attractive biomaterials for tissue engineering and controlled release applications due to their biocompatibility, biodegradability, and bioactive properties. The development of electrospun fiber mats from silk fibroin and gelatin were reported previously. However, burst drug release from such fiber mats remained the problem. In this study, the formation of beads on the fibers aiming to be used for the sustained release of drug was of our interest. The beaded fiber mats were fabricated using electrospinning technique by controlling the solution concentration, weight blending ratio of Thai silk fibroin/gelatin blend, and applied voltage. It was found that the optimal conditions including the solution concentration and the weight blending ratio of Thai silk fibroin/gelatin at 8-10% (w/v) and 70/30, respectively, with the applied voltage at 18 kV provided the fibers with homogeneous formation of beads. Then, the beaded fiber mats obtained were crosslinked by the reaction of carbodiimide hydrochloride (EDC)/N-hydroxysuccinimide (NHS). Methylene blue as a model active compound was loaded on the fiber mats. The release test of methylene blue from the beaded fiber mats was carried out in comparison to that of the smooth fiber mats without beads. It was found that the beaded fiber mats could prolong the release of methylene blue, comparing to the smooth fiber mats without beads. This was possibly due to the beaded fiber mats that would absorb and retain higher amount of methylene blue than the fiber mats without beads. Thai silk fibroin/gelatin beaded fiber mats were established as an effective carrier for the controlled release applications. Copyright © 2013 Elsevier B.V. All rights reserved.
Guar gum succinate-sodium alginate beads as a pH-sensitive carrier for colon-specific drug delivery.
Seeli, D Sathya; Dhivya, S; Selvamurugan, N; Prabaharan, M
2016-10-01
Guar gum succinate - sodium alginate (GGS-SA) beads cross-linked with barium ions were prepared and characterized as a pH sensitive carrier for colon-specific drug delivery. The structure of GGS-SA beads was confirmed by FT-IR spectroscopy. Scanning Electron Microscope (SEM) studies revealed that the drug loaded GGS-SA beads prepared using 2:2 (w/v) weight percent of GGS and SA had a diameter about 1.4mm and roughly spherical in shape. X-ray diffraction (XRD) studies showed that the peaks corresponding to GGS and SA at 13.5°, 17.5°, 20.2° and 13.5°, 22°, 24.1°, respectively were destroyed in GGS-SA beads which show that these beads are more amorphous in nature. Swelling studies demonstrated the pH-dependent swelling behavior of GGS-SA beads. The beads showed higher swelling degrees in pH 7.4 than that in pH 1.2 due to the existence of anionic groups in the polymer chains. The drug release study showed that the amount of model drug, ibuprofen, released from the GGS-SA beads was higher in pH 7.4 than that in pH 1.2 due to the pH-dependent swelling behavior of the beads. MTT assay revealed that GGS-SA beads at a concentration range of 0-30μg/ml had no cytotoxic effect on the cultured mouse mesenchymal stem cells (C3H10T1/2). These results suggest that GGS-SA beads can be used as effective colon-specific drug delivery system with pH-dependent drug release ability. Copyright © 2016 Elsevier B.V. All rights reserved.
Oiwa, K; Chaen, S; Kamitsubo, E; Shimmen, T; Sugi, H
1990-01-01
To eliminate the gap between the biochemistry of actomyosin in solution and the physiology of contracting muscle, we developed an in vitro force-movement assay system in which the steady-state force-velocity relation in the actin-myosin interaction can be studied. The assay system consists of the internodal cells of an alga, Nitellopsis obtusa, containing well-organized actin filament arrays (actin cables); tosyl-activated polystyrene beads (diameter, 2.8 microns; specific gravity, 1.3) coated with skeletal muscle myosin; and a centrifuge microscope equipped with a stroboscopic light source and a video system. The internodal cell preparation was mounted on the rotor of the centrifuge microscope, so that centrifugal forces were applied to the myosin-coated beads moving along the actin cables in the presence of ATP. Under constant centrifugal forces directed opposite to the bead movement ("positive" loads), the beads continued to move with constant velocities, which decreased with increasing centrifugal forces. The steady-state force-velocity curve thus obtained was analogous to the double-hyperbolic force-velocity curve of single muscle fibers. The unloaded velocity of bead movement was 1.6-3.6 microns/s (20-23 degrees C), while the maximum "isometric" force generated by the myosin molecules on the bead was 1.9-39 pN. If, on the other hand, the beads were subjected to constant centrifugal forces in the direction of bead movement ("negative" loads), the bead also moved with constant velocities. Unexpectedly, the velocity of bead movement did not increase with increasing negative loads but first decreased by 20-60% and then increased towards the initial unloaded velocity until the beads were eventually detached from the actin cables. Images PMID:2236007
Oiwa, K; Chaen, S; Kamitsubo, E; Shimmen, T; Sugi, H
1990-10-01
To eliminate the gap between the biochemistry of actomyosin in solution and the physiology of contracting muscle, we developed an in vitro force-movement assay system in which the steady-state force-velocity relation in the actin-myosin interaction can be studied. The assay system consists of the internodal cells of an alga, Nitellopsis obtusa, containing well-organized actin filament arrays (actin cables); tosyl-activated polystyrene beads (diameter, 2.8 microns; specific gravity, 1.3) coated with skeletal muscle myosin; and a centrifuge microscope equipped with a stroboscopic light source and a video system. The internodal cell preparation was mounted on the rotor of the centrifuge microscope, so that centrifugal forces were applied to the myosin-coated beads moving along the actin cables in the presence of ATP. Under constant centrifugal forces directed opposite to the bead movement ("positive" loads), the beads continued to move with constant velocities, which decreased with increasing centrifugal forces. The steady-state force-velocity curve thus obtained was analogous to the double-hyperbolic force-velocity curve of single muscle fibers. The unloaded velocity of bead movement was 1.6-3.6 microns/s (20-23 degrees C), while the maximum "isometric" force generated by the myosin molecules on the bead was 1.9-39 pN. If, on the other hand, the beads were subjected to constant centrifugal forces in the direction of bead movement ("negative" loads), the bead also moved with constant velocities. Unexpectedly, the velocity of bead movement did not increase with increasing negative loads but first decreased by 20-60% and then increased towards the initial unloaded velocity until the beads were eventually detached from the actin cables.
NASA Astrophysics Data System (ADS)
Primeaux, Philip A.; Zhang, Bin; Zhang, Xiaoman; Miller, Jacob; Meng, W. J.; KC, Pratik; Moore, Arden L.
2017-02-01
Microscale fin array structures were replicated onto surfaces of aluminum 1100 and aluminum 6061 alloy (Al1100/Al6061) sheet metals through room-temperature instrumented roll molding. Aluminum-based micro fin arrays were replicated at room temperature, and the fabrication process is one with high throughput and low cost. One-dimensional (1D) micro fin arrays were made through one-pass rolling, while two-dimensional (2D) micro fin arrays were made by sequential 90° cross rolling with the same roller sleeve. For roll molding of 1D micro fins, fin heights greater than 600 µm were achieved and were shown to be proportional to the normal load force per feature width. At a given normal load force, the fin height was further shown to scale inversely with the hardness of the sheet metal. For sequential 90° cross rolling, morphologies of roll molded 2D micro fin arrays were examined, which provided clues to understand how plastic deformation occurred under cross rolling conditions. A series of pool boiling experiments on low profile Al micro fin array structures were performed within Novec 7100, a widely used commercial dielectric coolant. Results for both horizontal and vertical surface orientations show that roll molded Al micro fin arrays can increase heat flux at fixed surface temperature as compared to un-patterned Al sheet. The present results further suggest that many factors beyond just increased surface area can influence heat transfer performance, including surface finish and the important multiphase transport mechanisms in and around the fin geometry. These factors must also be considered when designing and optimizing micro fin array structures for heat transfer applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elkin, Christopher; Kapur, Hitesh; Smith, Troy
2001-09-15
We have developed an automated purification method for terminator sequencing products based on a magnetic bead technology. This 384-well protocol generates labeled DNA fragments that are essentially free of contaminates for less than $0.005 per reaction. In comparison to laborious ethanol precipitation protocols, this method increases the phred20 read length by forty bases with various DNA templates such as PCR fragments, Plasmids, Cosmids and RCA products. Our method eliminates centrifugation and is compatible with both the MegaBACE 1000 and ABIPrism 3700 capillary instruments. As of September 2001, this method has produced over 1.6 million samples with 93 percent averaging 620more » phred20 bases as part of Joint Genome Institutes Production Process.« less
NASA Technical Reports Server (NTRS)
Johnston, D. E.; Mcruer, D. T.
1986-01-01
A fixed-base simulation was performed to identify and quantify interactions between the pilot's hand/arm neuromuscular subsystem and such features of typical modern fighter aircraft roll rate command control system mechanization as: (1) force sensing side-stick type manipulator; (2) vehicle effective role time constant; and (3) flight control system effective time delay. The simulation results provide insight to high frequency pilot induced oscillations (PIO) (roll ratchet), low frequency PIO, and roll-to-right control and handling problems previously observed in experimental and production fly-by-wire control systems. The simulation configurations encompass and/or duplicate actual flight situations, reproduce control problems observed in flight, and validate the concept that the high frequency nuisance mode known as roll ratchet derives primarily from the pilot's neuromuscular subsystem. The simulations show that force-sensing side-stick manipulator force/displacement/command gradients, command prefilters, and flight control system time delays need to be carefully adjusted to minimize neuromuscular mode amplitude peaking (roll ratchet tendency) without restricting roll control bandwidth (with resulting sluggish or PIO prone control).
Overlay accuracy on a flexible web with a roll printing process based on a roll-to-roll system.
Chang, Jaehyuk; Lee, Sunggun; Lee, Ki Beom; Lee, Seungjun; Cho, Young Tae; Seo, Jungwoo; Lee, Sukwon; Jo, Gugrae; Lee, Ki-yong; Kong, Hyang-Shik; Kwon, Sin
2015-05-01
For high-quality flexible devices from printing processes based on Roll-to-Roll (R2R) systems, overlay alignment during the patterning of each functional layer poses a major challenge. The reason is because flexible substrates have a relatively low stiffness compared with rigid substrates, and they are easily deformed during web handling in the R2R system. To achieve a high overlay accuracy for a flexible substrate, it is important not only to develop web handling modules (such as web guiding, tension control, winding, and unwinding) and a precise printing tool but also to control the synchronization of each unit in the total system. A R2R web handling system and reverse offset printing process were developed in this work, and an overlay between the 1st and 2nd layers of ±5μm on a 500 mm-wide film was achieved at a σ level of 2.4 and 2.8 (x and y directions, respectively) in a continuous R2R printing process. This paper presents the components and mechanisms used in reverse offset printing based on a R2R system and the printing results including positioning accuracy and overlay alignment accuracy.
A Hybrid Generalized Hidden Markov Model-Based Condition Monitoring Approach for Rolling Bearings
Liu, Jie; Hu, Youmin; Wu, Bo; Wang, Yan; Xie, Fengyun
2017-01-01
The operating condition of rolling bearings affects productivity and quality in the rotating machine process. Developing an effective rolling bearing condition monitoring approach is critical to accurately identify the operating condition. In this paper, a hybrid generalized hidden Markov model-based condition monitoring approach for rolling bearings is proposed, where interval valued features are used to efficiently recognize and classify machine states in the machine process. In the proposed method, vibration signals are decomposed into multiple modes with variational mode decomposition (VMD). Parameters of the VMD, in the form of generalized intervals, provide a concise representation for aleatory and epistemic uncertainty and improve the robustness of identification. The multi-scale permutation entropy method is applied to extract state features from the decomposed signals in different operating conditions. Traditional principal component analysis is adopted to reduce feature size and computational cost. With the extracted features’ information, the generalized hidden Markov model, based on generalized interval probability, is used to recognize and classify the fault types and fault severity levels. Finally, the experiment results show that the proposed method is effective at recognizing and classifying the fault types and fault severity levels of rolling bearings. This monitoring method is also efficient enough to quantify the two uncertainty components. PMID:28524088
Tropical Cyclone Boundary Layer Rolls in Synthetic Aperture Radar Imagery
NASA Astrophysics Data System (ADS)
Huang, Lanqing; Li, Xiaofeng; Liu, Bin; Zhang, Jun A.; Shen, Dongliang; Zhang, Zenghui; Yu, Wenxian
2018-04-01
Marine atmospheric boundary layer (MABL) roll plays an important role in the turbulent exchange of momentum, sensible heat, and moisture throughout MABL of tropical cyclone (TC). Hence, rolls are believed to be closely related to TC's development, intensification, and decay processes. Spaceborne synthetic aperture radar (SAR) provides a unique capability to image the sea surface imprints of quasi-linear streaks induced by the MABL rolls within a TC. In this study, sixteen SAR images, including three images acquired during three major hurricanes: Irma, Jose, and Maria in the 2017 Atlantic hurricane season, were utilized to systematically map the distribution and wavelength of MABL rolls under the wide range of TC intensities. The images were acquired by SAR onboard RADARSAT-1/2, ENVISAT, and SENTINEL-1 satellites. Our findings are in agreement with the previous one case study of Hurricane Katrina (2005), showing the roll wavelengths are between 600 and 1,600 m. We also find that there exist roll imprints in eyewall and rainbands, although the boundary layer heights are shallower there. Besides, the spatial distribution of roll wavelengths is asymmetrical. The roll wavelengths are found to be the shortest around the storm center, increase and then decrease with distance from storm center, reaching the peak values in the range of d∗-2d∗, where d∗ is defined as the physical location to TC centers normalized by the radius of maximum wind. These MABL roll characteristics cannot be derived using conventional aircraft and land-based Doppler radar observations.
Effects of alignment on the roll-over shapes of prosthetic feet.
Hansen, Andrew
2008-12-01
Recent work suggests that a prosthetic ankle-foot component's roll-over shape - the effective rocker it conforms to between initial contact and opposite initial contact (the 'roll-over' interval of walking) - is closely linked to its final alignment in the prosthesis (as determined by a skilled prosthetist using heuristic techniques). If true, this information may help to determine the appropriate alignment for a lower limb prosthesis before it is built, or a priori. Knowledge is needed for future models that will incorporate the roll-over shape including the relative effect of alignment on the roll-over shape's radius of curvature and arc length. The purpose of this study was to evaluate the hypotheses that: (i) Changes in prosthesis alignment alter the position and orientation of a foot's roll-over shape in prosthesis-based coordinates, and (ii) these changes occur without changing the radius of curvature or arc length of the roll-over shape. To examine the hypotheses, this study examined the effects of nine alignment settings on the roll-over shapes of two prosthetic feet. The idea that alignment changes move and rotate roll-over shapes of prosthetic feet in prosthesis coordinates is supported by this work, but the hypothesis that the radius of curvature and arc length do not change for different alignments is not strongly supported by the data. A revised approach is presented that explains some of the changes to the roll-over shape parameters due to changes in rotational alignment.
Method for preparing dielectric composite materials
Lauf, Robert J.; Anderson, Kimberly K.; Montgomery, Frederick C.; Collins, Jack L.; Felten, John J.
2004-11-23
The invention allows the fabrication of small, dense beads of dielectric materials with selected compositions, which are incorporated into a polymeric matrix for use in capacitors, filters, and the like. A porous, generally spherical bead of hydrous metal oxide containing titanium or zirconium is made by a sol-gel process to form a substantially rigid bead having a generally fine crystallite size and correspondingly finely distributed internal porosity. The resulting gel bead may be washed and hydrothermally reacted with a soluble alkaline earth salt (typically Ba or Sr) at elevated temperature and pressure to convert the bead into a mixed hydrous titanium- or zirconium-alkaline earth oxide while retaining the generally spherical shape. Alternatively, the gel bead may be made by coprecipitation. This mixed oxide bead is then washed, dried and calcined to produce the desired (BaTiO.sub.3, PbTiO.sub.3, SrZrO.sub.3) structure. The sintered beads are incorporated into a selected polymer matrix. The resulting dielectric composite material may be electrically "poled" if desired.
Dielectric composite materials and method for preparing
Lauf, Robert J.; Anderson, Kimberly K.; Montgomery, Frederick C.; Collins, Jack L.; Felten, John J.
2003-07-29
The invention allows the fabrication of small, dense beads of dielectric materials with selected compositions, which are incorporated into a polymeric matrix for use in capacitors, filters, and the like. A porous, generally spherical bead of hydrous metal oxide containing titanium or zirconium is made by a sol-gel process to form a substantially rigid bead having a generally fine crystallite size and correspondingly finely distributed internal porosity. The resulting gel bead may be washed and hydrothermally reacted with a soluble alkaline earth salt (typically Ba or Sr) at elevated temperature and pressure to convert the bead into a mixed hydrous titanium- or zirconium-alkaline earth oxide while retaining the generally spherical shape. Alternatively, the gel bead may be made by coprecipitation. This mixed oxide bead is then washed, dried and calcined to produce the desired (BaTiO.sub.3, PbTiO.sub.3, SrZrO.sub.3) structure. The sintered beads are incorporated into a selected polymer matrix. The resulting dielectric composite material may be electrically "poled" if desired.
Yang, Chengli; Xing, Jianmin; Guan, Yueping; Liu, Huizhou
2006-09-01
An effective method for purification of nattokinase from fermentation broth using magnetic poly(methyl methacrylate) (PMMA) beads immobilized with p-aminobenzamidine was proposed in this study. Firstly, magnetic PMMA beads with a narrow size distribution were prepared by spraying suspension polymerization. Then, they were highly functionalized via transesterification reaction with polyethylene glycol. The surface hydroxyl-modified magnetic beads obtained were further modified with chloroethylamine to transfer the surface amino-modified magnetic functional beads. The morphology and surface functionality of the magnetic beads were examined by scanning electron microscopy and Fourier transform infrared. An affinity ligand, p-aminobenzamidine was covalently immobilized to the amino-modified magnetic beads by the glutaraldehyde method for nattokinase purification directly from the fermentation broth. The purification factor and the recovery of the enzyme activity were found to be 8.7 and 85%, respectively. The purification of nattokinase from fermentation broth by magnetic beads only took 40 min, which shows a very fast purification of nattokinase compared to traditional purification methods.
NASA Astrophysics Data System (ADS)
Uusitalo, Sanna; Kögler, Martin; Välimaa, Anna-Liisa; Petäjä, Jarno; Kontturi, Ville; Siitonen, Samuli; Laitinen, Riitta; Kinnunen, Matti; Viitala, Tapani; Hiltunen, Jussi
2017-03-01
Immunomagnetic separation (IMS) beads with antibody coating are an interesting option for biosensing applications for the identification of biomolecules and biological cells, such as bacteria. The paramagnetic properties of the beads can be utilized with optical sensing by migrating and accumulating the beads and the bound analytes toward the focus depth of the detection system by an external magnetic field. The stability of microbial detection with IMS beads was studied by combining a flexible, inexpensive, and mass producible surface-enhanced Raman spectroscopy (SERS) platform with gold nanoparticle detection and antibody recognition by the IMS beads. Listeria innocua ATCC 33090 was used as a model sample and the effect of the IMS beads on the detected Raman signal was studied. The IMS beads were deposited into a hydrophobic sample well and accumulated toward the detection plane by a neodymium magnet. For the first time, it was shown that the spatial stability of the detection could be improved up to 35% by using IMS bead capture and sample well placing. The effect of a neodymium magnet under the SERS chip improved the temporal detection and significantly reduced the necessary time for sample stabilization for advanced laboratory testing.
The elution of colistimethate sodium from polymethylmethacrylate and calcium phosphate cement beads.
Waterman, Paige; Barber, Melissa; Weintrob, Amy C; VanBrakle, Regina; Howard, Robin; Kozar, Michael P; Andersen, Romney; Wortmann, Glenn
2012-06-01
Gram-negative bacilli resistance to all antibiotics, except for colistimethate sodium (CMS), is an emerging healthcare concern. Incorporating CMS into orthopedic cement to treat bone and soft-tissue infections due to these bacteria is attractive, but the data regarding the elution of CMS from cement are conflicting. The in vitro analysis of the elution of CMS from polymethylmethacrylate (PMMA) and calcium phosphate (CP) cement beads is reported. PMMA and CP beads containing CMS were incubated in phosphate-buffered saline and the eluate sampled at sequential time points. The inhibition of the growth of a strain of Acinetobacter baumannii complex by the eluate was measured by disk diffusion and microbroth dilution assays, and the presence of CMS in the eluate was measured by mass spectroscopy. Bacterial growth was inhibited by the eluate from both PMMA and CP beads. Mass spectroscopy demonstrated greater elution of CMS from CP beads than PMMA beads. The dose of CMS in PMMA beads was limited by failure of bead integrity. CMS elutes from both CP and PMMA beads in amounts sufficient to inhibit bacterial growth in vitro. The clinical implications of these findings require further study.
Bashan, Yoav
1986-01-01
Uniform synthetic beads were developed as carriers for the bacterial inoculation of plants. The beads are made of sodium alginate and skim milk and contain a large reservoir of bacterial culture which releases the bacteria at a slow and constant rate. The beads are biodegradable and produce no environmental pollution. The strength of the beads, the rate of bacterial release, and the time of their survival in the soil can be controlled by several hardening treatments. The final product, lyophilized beads, is simple to use and is applied to the seeds concomitantly with sowing. The released bacteria are available for root colonization immediately at seed germination. Dry beads containing bacteria can be stored at ambient temperature over a long period without loss of bacterial content; storage requires a limited space, and the quality control of a number of bacteria in the bead is simple. The level of plant inoculation with beads was similar to that with previously used peat inoculants, but the former method yielded more consistent results, as the frequency of inoculated plants was much higher. The former method provides a different approach for inoculation of plants with beneficial rhizosphere bacteria. Images PMID:16347055