DOE Office of Scientific and Technical Information (OSTI.GOV)
Field, K. G.; Wetteland, C. J.; Cao, G.
2013-04-19
The University of Wisconsin Ion Beam Laboratory (UW-IBL) has recently undergone significant infrastructure upgrades to facilitate graduate level research in irradiated materials phenomena and ion beam analysis. A National Electrostatics Corp. (NEC) Torodial Volume Ion Source (TORVIS), the keystone upgrade for the facility, can produce currents of hydrogen ions and helium ions up to {approx}200 {mu}A and {approx}5 {mu}A, respectively. Recent upgrades also include RBS analysis packages, end station developments for irradiation of relevant material systems, and the development of an in-house touch screen based graphical user interface for ion beam monitoring. Key research facilitated by these upgrades includes irradiationmore » of nuclear fuels, studies of interfacial phenomena under irradiation, and clustering dynamics of irradiated oxide dispersion strengthened steels. The UW-IBL has also partnered with the Advanced Test Reactor National Scientific User Facility (ATR-NSUF) to provide access to the irradiation facilities housed at the UW-IBL as well as access to post irradiation facilities housed at the UW Characterization Laboratory for Irradiated Materials (CLIM) and other ATR-NSUF partner facilities. Partnering allows for rapid turnaround from proposed research to finalized results through the ATR-NSUF rapid turnaround proposal system. An overview of the UW-IBL including CLIM and relevant research is summarized.« less
NASA Astrophysics Data System (ADS)
Yoskowitz, Joshua; Clark, Morgan; Labrake, Scott; Vineyard, Michael
2015-10-01
We have developed an external beam facility for the 1.1-MV tandem Pelletron accelerator in the Union College Ion Beam Analysis Laboratory. The beam is extracted from an aluminum pipe through a 1 / 4 ' ' diameter window with a 7.5- μm thick Kapton foil. This external beam facility allows us to perform ion beam analysis on samples that cannot be put under vacuum, including wet samples and samples too large to fit into the scattering chamber. We have commissioned the new facility by performing proton induced X-ray emission (PIXE) analysis of several samples of environmental interest. These include samples of artificial turf, running tracks, and a human tooth with an amalgam filling. A 1.7-MeV external proton beam was incident on the samples positioned 2 cm from the window. The resulting X-rays were measured using a silicon drift detector and were analyzed using GUPIX software to determine the concentrations of elements in the samples. The results on the human tooth indicate that while significant concentrations of Hg, Ag, and Sn are present in the amalgam filling, only trace amounts of Hg appear to have leached into the tooth. The artificial turf and running tracks show rather large concentrations of a broad range of elements and trace amounts of Pb in the turf infill.
ERIC Educational Resources Information Center
McNair, Robert C.
A Performance-Based Training (PBT) Qualification Guide/Checklist was developed that would enable a trainee to attain the skills, knowledge, and attitude required to operate the High Flux Beam Reactor at Brookhaven National Laboratory. Design of this guide/checklist was based on the Instructional System Design Model. The needs analysis identified…
In-air RBS measurements at the LAMFI external beam setup
DOE Office of Scientific and Technical Information (OSTI.GOV)
Silva, T. F.; Added, N.; Moro, M. V.
2014-11-11
This work describes new developments in the external beam setup of the Laboratory of Material Analysis with Ion Beams of the University of São Paulo (LAMFI-USP). This setup was designed to be a versatile analytical station to analyze a broad range of samples. In recent developments, we seek the external beam Rutherford Backscattering Spectroscopy (RBS) analysis to complement the Particle Induced X-ray Emission (PIXE) measurements. This work presents the initial results of the external beam RBS analysis as well as recent developments to improve the energy resolution RBS measurements, in particular tests to seek for sources of resolution degradation. Thesemore » aspects are discussed and preliminary results of in-air RBS analysis of some test samples are presented.« less
GENERAL RELATIVITY DERIVATION OF BEAM REST-FRAME HAMILTONIAN.
DOE Office of Scientific and Technical Information (OSTI.GOV)
WEI,J.
2001-06-18
Analysis of particle interaction in the laboratory frame of storage rings is often complicated by the fact that particle motion is relativistic, and that reference particle trajectory is curved. Rest frame of the reference particle is a convenient coordinate system to work with, within which particle motion is non-relativistic. We have derived the equations of motion in the beam rest frame from the general relativity formalism, and have successfully applied them to the analysis of crystalline beams [1].
A new IBA-AMS laboratory at the Comenius University in Bratislava (Slovakia)
NASA Astrophysics Data System (ADS)
Povinec, Pavel P.; Masarik, Jozef; Kúš, Peter; Holý, Karol; Ješkovský, Miroslav; Breier, Robert; Staníček, Jaroslav; Šivo, Alexander; Richtáriková, Marta; Kováčik, Andrej; Szarka, Ján; Steier, Peter; Priller, Alfred
2015-01-01
A Centre for Nuclear and Accelerator Technologies (CENTA) has been established at the Comenius University in Bratislava comprising of a tandem laboratory designed for Ion Beam Analysis (IBA), Ion Beam Modification (IBM) of materials and Accelerator Mass Spectrometry (AMS). The main equipment of the laboratory, i.e. Alphatross and MC-SNICS ion sources, 3 MV Pelletron tandem accelerator, and analyzers of accelerated ions are described. Optimization of ion beam characteristics for different ion sources with gas and solid targets, for transmission of accelerated ions with different energy and charge state, for different parameters of the high-energy ion analyzers, as well as first AMS results are presented. The scientific program of the CENTA will be devoted mainly to nuclear, environmental, life and material sciences.
Numerical analysis of beam with sinusoidally corrugated webs
NASA Astrophysics Data System (ADS)
Górecki, Marcin; Pieńko, Michał; Łagoda, GraŻyna
2018-01-01
The paper presents numerical tests results of the steel beam with sinusoidally corrugated web, which were performed in the Autodesk Algor Simulation Professional 2010. The analysis was preceded by laboratory tests including the beam's work under the influence of the four point bending as well as the study of material characteristics. Significant web's thickness and use of tools available in the software allowed to analyze the behavior of the plate girder as beam, and also to observe the occurrence of stresses in the characteristic element - the corrugated web. The stress distribution observed on the both web's surfaces was analyzed.
Performance Analysis and Electronics Packaging of the Optical Communications Demonstrator
NASA Technical Reports Server (NTRS)
Jeganathan, M.; Monacos, S.
1998-01-01
The Optical Communications Demonstrator (OCD), under development at the Jet Propulsion Laboratory (JPL), is a laboratory-based lasercomm terminal designed to validate several key technologies, primarily precision beam pointing, high bandwidth tracking, and beacon acquisition.
Numerical Analysis of Deflections of Multi-Layered Beams
NASA Astrophysics Data System (ADS)
Biliński, Tadeusz; Socha, Tomasz
2015-03-01
The paper concerns the rheological bending problem of wooden beams reinforced with embedded composite bars. A theoretical model of the behaviour of a multi-layered beam is presented. The component materials of this beam are described with equations for the linear viscoelastic five-parameter rheological model. Two numerical analysis methods for the long-term response of wood structures are presented. The first method has been developed with SCILAB software. The second one has been developed with the finite element calculation software ABAQUS and user subroutine UMAT. Laboratory investigations were conducted on sample beams of natural dimensions in order to validate the proposed theoretical model and verify numerical simulations. Good agreement between experimental measurements and numerical results is observed.
Cline, James P; Mendenhall, Marcus H; Black, David; Windover, Donald; Henins, Albert
2015-01-01
The laboratory X-ray powder diffractometer is one of the primary analytical tools in materials science. It is applicable to nearly any crystalline material, and with advanced data analysis methods, it can provide a wealth of information concerning sample character. Data from these machines, however, are beset by a complex aberration function that can be addressed through calibration with the use of NIST Standard Reference Materials (SRMs). Laboratory diffractometers can be set up in a range of optical geometries; considered herein are those of Bragg-Brentano divergent beam configuration using both incident and diffracted beam monochromators. We review the origin of the various aberrations affecting instruments of this geometry and the methods developed at NIST to align these machines in a first principles context. Data analysis methods are considered as being in two distinct categories: those that use empirical methods to parameterize the nature of the data for subsequent analysis, and those that use model functions to link the observation directly to a specific aspect of the experiment. We consider a multifaceted approach to instrument calibration using both the empirical and model based data analysis methods. The particular benefits of the fundamental parameters approach are reviewed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vittoria, Fabio A., E-mail: fabio.vittoria.12@ucl.ac.uk; Diemoz, Paul C.; Olivo, Alessandro
We present the translation of the beam tracking approach for x-ray phase-contrast and dark-field imaging, recently demonstrated using synchrotron radiation, to a laboratory setup. A single absorbing mask is used before the sample, and a local Gaussian interpolation of the beam at the detector is used to extract absorption, refraction, and dark–field signals from a single exposure of the sample. Multiple exposures can be acquired when high resolution is needed, as shown here. A theoretical analysis of the effect of polychromaticity on the retrieved signals, and of the artifacts this might cause when existing retrieval methods are used, is alsomore » discussed.« less
Analysis of space shuttle main engine data using Beacon-based exception analysis for multi-missions
NASA Technical Reports Server (NTRS)
Park, H.; Mackey, R.; James, M.; Zak, M.; Kynard, M.; Sebghati, J.; Greene, W.
2002-01-01
This paper describes analysis of the Space Shuttle Main Engine (SSME) sensor data using Beacon-based exception analysis for multimissions (BEAM), a new technology developed for sensor analysis and diagnostics in autonomous space systems by the Jet Propulsion Laboratory (JPL).
Single-Axis Three-Beam Amplitude Monopulse Antenna-Signal Processing Issues
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doerry, Armin W.; Bickel, Douglas L.
2015-05-01
Typically, when three or more antenna beams along a single axis are required, the answer has been multiple antenna phase-centers, essentially a phase-monopulse system. Such systems and their design parameters are well-reported in the literature. Less appreciated is that three or more antenna beams can also be generated in an amplitude-monopulse fashion. Consequently, design guidelines and performance analysis of such antennas is somewhat under-reported in the literature. We provide discussion herein of three beams arrayed in a single axis with an amplitude-monopulse configuration. Acknowledgements The preparation of this report is the result of an unfunded research and development activity. Sandiamore » National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administ ration under contract DE-AC04-94AL85000.« less
Analysis Of FEL Optical Systems With Grazing Incidence Mirrors
NASA Astrophysics Data System (ADS)
Knapp, C. E.; Viswanathan, V. K.; Bender, S. C.; Appert, Q. D.; Lawrence, G.; Barnard, C.
1986-11-01
The use of grazing incidence optics in resonators alleviates the problem of damage to the optical elements and permits higher powers in cavities of reasonable dimensions for a free electron laser (FEL). The design and manufacture of a grazing incidence beam expander for the Los Alamos FEL mock up has been completed. In this paper, we describe the analysis of a bare cavity, grazing incidence optical beam expander for an FEL system. Since the existing geometrical and physical optics codes were inadequate for such an analysis, the GLAD code was modified to include global coordinates, exact conic representation, raytracing, and exact aberration features to determine the alignment sensitivities of laser resonators. A resonator cavity has been manufactured and experimentally setup in the Optical Evaluation Laboratory at Los Alamos. Calculated performance is compared with the laboratory measurements obtained so far.
NASA Astrophysics Data System (ADS)
Vadrucci, M.; Bazzano, G.; Borgognoni, F.; Chiari, M.; Mazzinghi, A.; Picardi, L.; Ronsivalle, C.; Ruberto, C.; Taccetti, F.
2017-09-01
In the framework of the COBRA project, elemental analyses of cultural heritage objects based on the particle induced X-ray emission (PIXE) are planned in a collaboration between the APAM laboratory of ENEA-Frascati and the LABEC laboratory of INFN in Florence. With this aim a 3-7 MeV pulsed proton beam, driven by the injector of the protontherapy accelerator under construction for the TOP-IMPLART project, will be used to demonstrate the feasibility of the technique with a small-footprint pulsed accelerator to Italian small and medium enterprises interested in the composition analysis of ancient artifacts. The experimental set-up for PIXE analysis on the TOP-IMPLART machine consists of a modified assembly of the vertical beam line usually dedicated to radiobiology experiments: the beam produced by the injector (RFQ + DTL, a PL7 ACCSYSHITACHI model) is bent to 90° by a magnet, is collimated by a 300 μm aperture inserted in the end nozzle and extracted into ambient pressure by an exit window consisting of a Upilex foil 7.5 μm thick. The beam is pulsed with a variable pulse duration of 20-100 μs and a repetition rate variable from 10 to 100 Hz. The X-ray detection system is based on a Ketek Silicon Drift Detector (SDD) with 7 mm2 active area and 450 μm thickness, with a thin Beryllium entrance window (8 μm). The results of the calibration of this new PIXE set-up using thick target standards and of the analysis of the preliminary measurements on pigments are presented.
Electron-Beam Dynamics for an Advanced Flash-Radiography Accelerator
Ekdahl, Carl
2015-11-17
Beam dynamics issues were assessed for a new linear induction electron accelerator being designed for multipulse flash radiography of large explosively driven hydrodynamic experiments. Special attention was paid to equilibrium beam transport, possible emittance growth, and beam stability. Especially problematic would be high-frequency beam instabilities that could blur individual radiographic source spots, low-frequency beam motion that could cause pulse-to-pulse spot displacement, and emittance growth that could enlarge the source spots. Furthermore, beam physics issues were examined through theoretical analysis and computer simulations, including particle-in-cell codes. Beam instabilities investigated included beam breakup, image displacement, diocotron, parametric envelope, ion hose, and themore » resistive wall instability. The beam corkscrew motion and emittance growth from beam mismatch were also studied. It was concluded that a beam with radiographic quality equivalent to the present accelerators at Los Alamos National Laboratory will result if the same engineering standards and construction details are upheld.« less
GCR Simulator Reference Field and a Spectral Approach for Laboratory Simulation
NASA Technical Reports Server (NTRS)
Slaba, Tony C.; Blattnig, Steve R.; Norbury, John W.; Rusek, Adam; La Tessa, Chiara; Walker, Steven A.
2015-01-01
The galactic cosmic ray (GCR) simulator at the NASA Space Radiation Laboratory (NSRL) is intended to deliver the broad spectrum of particles and energies encountered in deep space to biological targets in a controlled laboratory setting. In this work, certain aspects of simulating the GCR environment in the laboratory are discussed. Reference field specification and beam selection strategies at NSRL are the main focus, but the analysis presented herein may be modified for other facilities. First, comparisons are made between direct simulation of the external, free space GCR field and simulation of the induced tissue field behind shielding. It is found that upper energy constraints at NSRL limit the ability to simulate the external, free space field directly (i.e. shielding placed in the beam line in front of a biological target and exposed to a free space spectrum). Second, variation in the induced tissue field associated with shielding configuration and solar activity is addressed. It is found that the observed variation is likely within the uncertainty associated with representing any GCR reference field with discrete ion beams in the laboratory, given current facility constraints. A single reference field for deep space missions is subsequently identified. Third, an approach for selecting beams at NSRL to simulate the designated reference field is presented. Drawbacks of the proposed methodology are discussed and weighed against alternative simulation strategies. The neutron component and track structure characteristics of the simulated field are discussed in this context.
NASA Astrophysics Data System (ADS)
Rout, Bibhudutta; Dhoubhadel, Mangal S.; Poudel, Prakash R.; Kummari, Venkata C.; Pandey, Bimal; Deoli, Naresh T.; Lakshantha, Wickramaarachchige J.; Mulware, Stephen J.; Baxley, Jacob; Manuel, Jack E.; Pacheco, Jose L.; Szilasi, Szabolcs; Weathers, Duncan L.; Reinert, Tilo; Glass, Gary A.; Duggan, Jerry L.; McDaniel, Floyd D.
2013-07-01
The Ion Beam Modification and Analysis Laboratory (IBMAL) at the University of North Texas includes several accelerator facilities with capabilities of producing a variety of ion beams from tens of keV to several MeV in energy. The four accelerators are used for research, graduate and undergraduate education, and industrial applications. The NEC 3MV Pelletron tandem accelerator has three ion sources for negative ions: He Alphatross and two different SNICS-type sputter ion sources. Presently, the tandem accelerator has four high-energy beam transport lines and one low-energy beam transport line directly taken from the negative ion sources for different research experiments. For the low-energy beam line, the ion energy can be varied from ˜20 to 80 keV for ion implantation/modification of materials. The four post-acceleration beam lines include a heavy-ion nuclear microprobe; multi-purpose PIXE, RBS, ERD, NRA, and broad-beam single-event upset; high-energy ion implantation line; and trace-element accelerator mass spectrometry. The NEC 3MV single-ended Pelletron accelerator has an RF ion source mainly for hydrogen, helium and heavier inert gases. We recently installed a capacitive liner to the terminal potential stabilization system for high terminal voltage stability and high-resolution microprobe analysis. The accelerator serves a beam line for standard RBS and RBS/C. Another beamline for high energy focused ion beam application using a magnetic quadrupole lens system is currently under construction. This beam line will also serve for developmental work on an electrostatic lens system. The third accelerator is a 200 kV Cockcroft-Walton accelerator with an RF ion source. The fourth accelerator is a 2.5 MV Van de Graaff accelerator, which was in operation for last several decades is currently planned to be used mainly for educational purpose. Research projects that will be briefly discussed include materials synthesis/modification for photonic, electronic, and magnetic applications, surface sputtering and micro-fabrication of materials, development of high-energy ion microprobe systems, and educational and outreach activities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rout, Bibhudutta; Dhoubhadel, Mangal S.; Poudel, Prakash R.
2013-07-03
The Ion Beam Modification and Analysis Laboratory (IBMAL) at the University of North Texas includes several accelerator facilities with capabilities of producing a variety of ion beams from tens of keV to several MeV in energy. The four accelerators are used for research, graduate and undergraduate education, and industrial applications. The NEC 3MV Pelletron tandem accelerator has three ion sources for negative ions: He Alphatross and two different SNICS-type sputter ion sources. Presently, the tandem accelerator has four high-energy beam transport lines and one low-energy beam transport line directly taken from the negative ion sources for different research experiments. Formore » the low-energy beam line, the ion energy can be varied from {approx}20 to 80 keV for ion implantation/modification of materials. The four post-acceleration beam lines include a heavy-ion nuclear microprobe; multi-purpose PIXE, RBS, ERD, NRA, and broad-beam single-event upset; high-energy ion implantation line; and trace-element accelerator mass spectrometry. The NEC 3MV single-ended Pelletron accelerator has an RF ion source mainly for hydrogen, helium and heavier inert gases. We recently installed a capacitive liner to the terminal potential stabilization system for high terminal voltage stability and high-resolution microprobe analysis. The accelerator serves a beam line for standard RBS and RBS/C. Another beamline for high energy focused ion beam application using a magnetic quadrupole lens system is currently under construction. This beam line will also serve for developmental work on an electrostatic lens system. The third accelerator is a 200 kV Cockcroft-Walton accelerator with an RF ion source. The fourth accelerator is a 2.5 MV Van de Graaff accelerator, which was in operation for last several decades is currently planned to be used mainly for educational purpose. Research projects that will be briefly discussed include materials synthesis/modification for photonic, electronic, and magnetic applications, surface sputtering and micro-fabrication of materials, development of high-energy ion microprobe systems, and educational and outreach activities.« less
Design Considerations of a Novel Two-Beam Accelerator
NASA Astrophysics Data System (ADS)
Luginsland, John William
This thesis reports the design study of a new type of charged particle accelerator called the Twobetron. The accelerator consists of two beams of electrons traveling through a series of pillbox cavities. The power of a high current annular beam excites an electromagnetic mode in the cavities, which, in turn, drives a low current on-axis pencil beam to high energy. We focus on the design considerations that would make use of existing pulsed power systems, for a proof-of-principle experiment. Potential applications of this new device include radiotherapy, materials processing, and high energy accelerators. The first phase of the research involves analytic description of the accelerating process. This reveals the problem of phase slippage. Derbenev's proposed cure of beam radius modulation is analyzed. Further studies include the effect of initial phase and secondary beam loading. Scaling laws to characterize the Twobetron's performance are derived. Computer simulation is performed to produce a self-consistent analysis of the dynamics of the space charge and its interaction with the accelerator structure. Particle -in-cell simulations answer several questions concerning beam stability, cavity modes, and the nature of the structure. Specifically, current modulation on the primary beam is preserved in the simulations. However, these simulations also revealed that mode competition and significant cavity coupling are serious issues that need to be addressed. Also considered is non-axisymmetric instability on the driver beam of the Twobetron, in particular, the beam breakup instability (BBU), which is known to pose a serious threat to linear accelerators in general. We extend the classical analysis of BBU to annular beams. The effect of higher order non-axisymmetric modes is also examined. It is shown that annular beams are more stable than pencil beams to BBU in general. Our analysis also reveals that the rf magnetic field is more important than the rf electric field in contributing to BBU growth. We next address the issue of primary beam modulation. Both particle-in-cell and analytic investigation showed that the usual relativistic klystron amplifiers (RKA) mechanism cannot provide full beam modulation at convenient levels of external rf drive. However, the recent discovery at the Air Force Phillips Laboratory of the injection locked relativistic klystron oscillator suggests that electromagnetic feedback between the driver cavity and the booster cavity might significantly enhance the current modulation. A simple model is constructed to analyze this cavity coupling and its mutual interaction with the primary beam. Quantitative agreement is found between our model and the Phillips Laboratory experiments. This analysis suggests that significant current modulation on the primary beam may be achieved with low level external rf drive.
A new ion-beam laboratory for materials research at the Slovak University of Technology
NASA Astrophysics Data System (ADS)
Noga, Pavol; Dobrovodský, Jozef; Vaňa, Dušan; Beňo, Matúš; Závacká, Anna; Muška, Martin; Halgaš, Radoslav; Minárik, Stanislav; Riedlmajer, Róbert
2017-10-01
An ion beam laboratory (IBL) for materials research has been commissioned recently at the Slovak University of Technology within the University Science Park CAMBO located in Trnava. The facility will support research in the field of materials science, physical engineering and nanotechnology. Ion-beam materials modification (IBMM) as well as ion-beam analysis (IBA) are covered and deliverable ion energies are in the range from tens of keV up to tens of MeV. Two systems have been put into operation. First, a high current version of the HVEE 6 MV Tandetron electrostatic tandem accelerator with duoplasmatron and cesium sputtering ion sources, equipped with two end-stations: a high-energy ion implantation and IBA end-station which includes RBS, PIXE and ERDA analytical systems. Second, a 500 kV implanter equipped with a Bernas type ion source and two experimental wafer processing end-stations. The facility itself, operational experience and first IBMM and IBA experiments are presented together with near-future plans and ongoing development of the IBL.
NASA Technical Reports Server (NTRS)
Bernstein, W.; Mcgarity, J. O.; Konradi, A.
1983-01-01
Recent electron beam injection experiments in the lower ionosphere have produced two perplexing results: (1) At altitudes from 140 km to 220 km, the beam associated 391.4 nm intensity is relatively independent of altitude despite the decreasing N2 abundance. (2) The radial extent of the perturbed region populated by beam associated energetic electrons significantly exceeds the nominal gyrodiameter for 90 deg injection. A series of laboratory measurements is described in which both of these flight results appear to have been closely reproduced. The laboratory results are reasonably consistent with the transition from a collision dominated to collisionless beam-plasma discharge configuration.
Coherent X-ray beam metrology using 2D high-resolution Fresnel-diffraction analysis.
Ruiz-Lopez, M; Faenov, A; Pikuz, T; Ozaki, N; Mitrofanov, A; Albertazzi, B; Hartley, N; Matsuoka, T; Ochante, Y; Tange, Y; Yabuuchi, T; Habara, T; Tanaka, K A; Inubushi, Y; Yabashi, M; Nishikino, M; Kawachi, T; Pikuz, S; Ishikawa, T; Kodama, R; Bleiner, D
2017-01-01
Direct metrology of coherent short-wavelength beamlines is important for obtaining operational beam characteristics at the experimental site. However, since beam-time limitation imposes fast metrology procedures, a multi-parametric metrology from as low as a single shot is desirable. Here a two-dimensional (2D) procedure based on high-resolution Fresnel diffraction analysis is discussed and applied, which allowed an efficient and detailed beamline characterization at the SACLA XFEL. So far, the potential of Fresnel diffraction for beamline metrology has not been fully exploited because its high-frequency fringes could be only partly resolved with ordinary pixel-limited detectors. Using the high-spatial-frequency imaging capability of an irradiated LiF crystal, 2D information of the coherence degree, beam divergence and beam quality factor M 2 were retrieved from simple diffraction patterns. The developed beam metrology was validated with a laboratory reference laser, and then successfully applied at a beamline facility, in agreement with the source specifications.
Effects of the Atmosphere on the Propagation of 10.6-micro Laser Beams.
Hayes, J N; Ulrich, P B; Aitken, A H
1972-02-01
This paper gives an overview of the use of a wave optics computer code to model the propagation of high power CO(2) laser beams in the atmosphere. The nonlinear effects of atmospheric heating and kinetic cooling phenomena are included in the analysis. Only steady-state, nonturbulent cases are studied. Thermal conduction and free convection are assumed negligible compared to other effects included in the calculation. Results showing the important effect of water vapor concentration on beam quality are given. Beam slewing is also studied. Comparison is made with geometrical optics results, and good agreement is found with laboratory experiments that simulate atmospheric propagation.
Mitigating effect on turbulent scintillation using non-coherent multi-beam overlapped illumination
NASA Astrophysics Data System (ADS)
Zhou, Lu; Tian, Yuzhen; Wang, Rui; Wang, Tingfeng; Sun, Tao; Wang, Canjin; Yang, Xiaotian
2017-12-01
In order to find an effective method to mitigate the turbulent scintillation for applications involved laser propagation through atmosphere, we demonstrated one model using non-coherent multi-beam overlapped illumination. Based on lognormal distribution and the statistical moments of overlapped field, the reduction effect on turbulent scintillation of this method was discussed and tested against numerical wave optics simulation and laboratory experiments with phase plates. Our analysis showed that the best mitigating effect, the scintillation index of overlapped field reduced to 1/N of that when using single beam illuminating, could be obtained using this method when the intensity of N emitting beams equaled to each other.
Use of capillary optics as a beam intensifier for a Compton x-ray source.
Tompkins, P A; Abreu, C C; Carroll, F E; Xiao, Q F; MacDonald, C A
1994-11-01
The use of Kumakhov capillary optics will significantly enhance the performance of near-monochromatic, Compton backscattered x-ray programs. The Vanderbilt University Medical Free-Electron Laser Center is developing the capability to create these tunable x rays for medical imaging. The present transport has only reflection optics, and the beam is quite large in diameter at the laboratory. Low loss collimation of this beam would allow higher x-ray intensities after transport. This article describes experimental and computer simulation results which predict the expected performance for a multifiber Kumakhov collimator for use in the x-ray beam transport. Estimates from our research are that a multifiber optic formed of individual polycapillary fibers could be used to capture the full 7 mrad of the Vanderbilt x-ray beam and collimate it to a 1-2 mrad divergence with approximately 40%-50% transmission efficiency. This optic should increase the x-ray intensity at the laboratory level by a factor of > or = 5 by decreasing the beam divergence and subsequent spot size. Additionally, analysis of monolithic optics of fused multicapillary fibers predicts an increase in the intensity of the x rays at the laboratory by a factor of 55. These optics can have tapered channels that greatly decrease their exit divergence. This will greatly enhance the capabilities of this unique x-ray source. This article reports the initial results from a collaboration between Vanderbilt, The Center for X-Ray Optics at University at Albany, SUNY, and X-Ray Optical Systems in Albany, NY.
NASA Astrophysics Data System (ADS)
Slaba, Tony C.; Blattnig, Steve R.; Norbury, John W.; Rusek, Adam; La Tessa, Chiara
2016-02-01
The galactic cosmic ray (GCR) simulator at the NASA Space Radiation Laboratory (NSRL) is intended to deliver the broad spectrum of particles and energies encountered in deep space to biological targets in a controlled laboratory setting. In this work, certain aspects of simulating the GCR environment in the laboratory are discussed. Reference field specification and beam selection strategies at NSRL are the main focus, but the analysis presented herein may be modified for other facilities and possible biological considerations. First, comparisons are made between direct simulation of the external, free space GCR field and simulation of the induced tissue field behind shielding. It is found that upper energy constraints at NSRL limit the ability to simulate the external, free space field directly (i.e. shielding placed in the beam line in front of a biological target and exposed to a free space spectrum). Second, variation in the induced tissue field associated with shielding configuration and solar activity is addressed. It is found that the observed variation is likely within the uncertainty associated with representing any GCR reference field with discrete ion beams in the laboratory, given current facility constraints. A single reference field for deep space missions is subsequently identified. Third, a preliminary approach for selecting beams at NSRL to simulate the designated reference field is presented. This approach is not a final design for the GCR simulator, but rather a single step within a broader design strategy. It is shown that the beam selection methodology is tied directly to the reference environment, allows facility constraints to be incorporated, and may be adjusted to account for additional constraints imposed by biological or animal care considerations. The major biology questions are not addressed herein but are discussed in a companion paper published in the present issue of this journal. Drawbacks of the proposed methodology are discussed and weighed against alternative simulation strategies.
EPOS-WP16: A Platform for European Multi-scale Laboratories
NASA Astrophysics Data System (ADS)
Spiers, Chris; Drury, Martyn; Kan-Parker, Mirjam; Lange, Otto; Willingshofer, Ernst; Funiciello, Francesca; Rosenau, Matthias; Scarlato, Piergiorgio; Sagnotti, Leonardo; W16 Participants
2016-04-01
The participant countries in EPOS embody a wide range of world-class laboratory infrastructures ranging from high temperature and pressure experimental facilities, to electron microscopy, micro-beam analysis, analogue modeling and paleomagnetic laboratories. Most data produced by the various laboratory centres and networks are presently available only in limited "final form" in publications. As such many data remain inaccessible and/or poorly preserved. However, the data produced at the participating laboratories are crucial to serving society's need for geo-resources exploration and for protection against geo-hazards. Indeed, to model resource formation and system behaviour during exploitation, we need an understanding from the molecular to the continental scale, based on experimental data. This contribution will describe the work plans that the laboratories community in Europe is making, in the context of EPOS. The main objectives are: - To collect and harmonize available and emerging laboratory data on the properties and processes controlling rock system behaviour at multiple scales, in order to generate products accessible and interoperable through services for supporting research activities. - To co-ordinate the development, integration and trans-national usage of the major solid Earth Science laboratory centres and specialist networks. The length scales encompassed by the infrastructures included range from the nano- and micrometer levels (electron microscopy and micro-beam analysis) to the scale of experiments on centimetre sized samples, and to analogue model experiments simulating the reservoir scale, the basin scale and the plate scale. - To provide products and services supporting research into Geo-resources and Geo-storage, Geo-hazards and Earth System Evolution.
NASA Astrophysics Data System (ADS)
Grassi, N.
2005-06-01
In the framework of the extensive study on the wood painting "Madonna dei fusi" attributed to Leonardo da Vinci, Ion Beam Analysis (IBA) techniques were used at the Florence accelerator laboratory to get information about the elemental composition of the paint layers. After a brief description of the basic principle and the general features of IBA techniques, we will illustrate in detail how the analysis allowed us to characterise the pigments of original and restored areas and the substrate composition, and to obtain information about the stratigraphy of the painting, also providing an estimate of the paint layer thickness.
Modeling Drift Compression in an Integrated Beam Experiment for Heavy-Ion-Fusion
NASA Astrophysics Data System (ADS)
Sharp, W. M.; Barnard, J. J.; Friedman, A.; Grote, D. P.; Celata, C. M.; Yu, S. S.
2003-10-01
The Integrated Beam Experiment (IBX) is an induction accelerator being designed to further develop the science base for heavy-ion fusion. The experiment is being developed jointly by Lawrence Berkeley National Laboratory, Lawrence Livermore National Laboratory, and Princeton Plasma Physics Laboratory. One conceptual approach would first accelerate a 0.5-1 A beam of singly charged potassium ions to 5 MeV, impose a head-to-tail velocity tilt to compress the beam longitudinally, and finally focus the beam radiallly using a series of quadrupole lenses. The lengthwise compression is a critical step because the radial size must be controlled as the current increases, and the beam emittance must be kept minimal. The work reported here first uses the moment-based model HERMES to design the drift-compression beam line and to assess the sensitivity of the final beam profile to beam and lattice errors. The particle-in-cell code WARP is then used to validate the physics design, study the phase-space evolution, and quantify the emittance growth.
NORTICA—a new code for cyclotron analysis
NASA Astrophysics Data System (ADS)
Gorelov, D.; Johnson, D.; Marti, F.
2001-12-01
The new package NORTICA (Numerical ORbit Tracking In Cyclotrons with Analysis) of computer codes for beam dynamics simulations is under development at NSCL. The package was started as a replacement for the code MONSTER [1] developed in the laboratory in the past. The new codes are capable of beam dynamics simulations in both CCF (Coupled Cyclotron Facility) accelerators, the K500 and K1200 superconducting cyclotrons. The general purpose of this package is assisting in setting and tuning the cyclotrons taking into account the main field and extraction channel imperfections. The computer platform for the package is Alpha Station with UNIX operating system and X-Windows graphic interface. A multiple programming language approach was used in order to combine the reliability of the numerical algorithms developed over the long period of time in the laboratory and the friendliness of modern style user interface. This paper describes the capability and features of the codes in the present state.
Turbulence-induced persistence in laser beam wandering.
Zunino, Luciano; Gulich, Damián; Funes, Gustavo; Pérez, Darío G
2015-07-01
We have experimentally confirmed the presence of long-memory correlations in the wandering of a thin Gaussian laser beam over a screen after propagating through a turbulent medium. A laboratory-controlled experiment was conducted in which coordinate fluctuations of the laser beam were recorded at a sufficiently high sampling rate for a wide range of turbulent conditions. Horizontal and vertical displacements of the laser beam centroid were subsequently analyzed by implementing detrended fluctuation analysis. This is a very well-known and widely used methodology to unveil memory effects from time series. Results obtained from this experimental analysis allow us to confirm that both coordinates behave as highly persistent signals for strong turbulent intensities. This finding is relevant for a better comprehension and modeling of the turbulence effects in free-space optical communication systems and other applications related to propagation of optical signals in the atmosphere.
NASA Astrophysics Data System (ADS)
Fremlin, Carl; Beckers, Jasper; Crowley, Brendan; Rauch, Joseph; Scoville, Jim
2017-10-01
The Neutral Beam system on the DIII-D tokamak consists of eight ion sources using the Common Long Pulse Source (CLPS) design. During helium operation, desired for research regarding the ITER pre-nuclear phase, it has been observed that the ion source arc chamber performance steadily deteriorates, eventually failing due to electrical breakdown of the insulation. A significant investment of manpower and time is required for repairs. To study the cause of failure a small analogue of the DIII-D neutral beam arc chamber has been constructed. This poster presents the design and analysis of the arc chamber including the PLC based operational control system for the experiment, analysis of the magnetic confinement and details of the diagnostic suite. Work supported in part by US DoE under the Science Undergraduate Laboratory Internship (SULI) program and under DE-FC02-04ER54698.
NASA Astrophysics Data System (ADS)
Mazarakis, M. G.; Poukey, J. W.; Maenchen, J. E.; Rovang, D. C.; Menge, P. R.; Lash, J. S.; Smith, D. L.; Halbleib, J. A.; Cordova, S. R.; Mikkelson, K.; Gustwiller, J.; Stygar, W. A.; Welch, D. R.; Smith, I.; Corcoran, P.
1997-05-01
We present the design, analysis, and results of the high-brightness electron beam experiments currently under investigation at Sandia National Laboratories. The anticipated beam parameters are the following: energy 8-12 MeV, current 35-50 kA, rms radius 0.5 mm, and pulse duration 30-60 ns FWHM. The accelerators utilized are SABRE and Hermes-III. Both are linear inductive voltage adders (IVA) modified to higher impedance and fitted with magnetically immersed foilless electron diodes. In the strong 20-50 Tesla solenoidal magnetic field of the diode, mm-size electron beams are generated and propagated to a beam stop. The electron beam is field emitted from mm-diameter needle-shaped cathode electrode and is contained in a similar size envelope by the strong magnetic field. These extremely space charge dominated beams provide the opportunity to study beam dynamics and possible instabilities in a unique parameter space. The SABRE experiments are already completed and have produced 30 kA, 1.5-2.5 FWHM electron beams, while the Hermes-III experiments are currently under way. Results and analysis of the SABRE experimentation and a progress report on Hermes-III experiments will be presented.
Pencil-like mm-size electron beams produced with linear inductive voltage adders
NASA Astrophysics Data System (ADS)
Mazarakis, M. G.; Poukey, J. W.; Rovang, D. C.; Maenchen, J. E.; Cordova, S. R.; Menge, P. R.; Pepping, R.; Bennett, L.; Mikkelson, K.; Smith, D. L.; Halbleib, J.; Stygar, W. A.; Welch, D. R.
1997-02-01
We present the design, analysis, and results of the high brightness electron beam experiments currently under investigation at Sandia National Laboratories. The anticipated beam parameters are the following: energy 12 MeV, current 35-40 kA, rms radius 0.5 mm, and pulse duration 40 ns full width at half-maximum. The accelerator is SABRE, a pulsed linear inductive voltage adder modified to higher impedance, and the electron source is a magnetically immersed foilless electron diode. 20-30 T solenoidal magnets are required to insulate the diode and contain the beam to its extremely small-sized (1 mm) envelope. These experiments are designed to push the technology to produce the highest possible electron current in a submillimeter radius beam. Design, numerical simulations, and experimental results are presented.
Boring and Sealing Rock with Directed Energy Millimeter-Waves
NASA Astrophysics Data System (ADS)
Woskov, P.; Einstein, H. H.; Oglesby, K.
2015-12-01
Millimeter-wave directed energy is being investigated to penetrate into deep crystalline basement rock formations to lower well costs and to melt rocks, metals, and other additives to seal wells for applications that include nuclear waste storage and geothermal energy. Laboratory tests have established that intense millimeter-wave (MMW) beams > 1 kW/cm2 can melt and/ or vaporize hard crystalline rocks. In principle this will make it possible to create open boreholes and a method to seal them with a glass/ceramic liner and plug formed from the original rock or with other materials. A 10 kW, 28 GHz commercial (CPI) gyrotron system with a launched beam diameter of about 32 mm was used to heat basalt, granite, limestone, and sandstone specimens to temperatures over 2500 °C to create melts and holes. A calibrated 137 GHz radiometer view, collinear with the heating beam, monitored real time peak rock temperature. A water load surrounding the rock test specimen primarily monitored unabsorbed power at 28 GHz. Power balance analysis of the laboratory observations shows that the temperature rise is limited by radiative heat loss, which would be expected to be trapped in a borehole. The analysis also indicates that the emissivity (absorption efficiency) in the radiated infrared range is lower than the emissivity at 28 GHz, giving the MMW frequency range an important advantage for rock melting. Strength tests on one granite type indicated that heating the rock initially weakens it, but with exposure to higher temperatures the resolidified black glassy product regains strength. Basalt was the easiest to melt and penetrate, if a melt leak path was provided, because of its low viscosity. Full beam holes up to about 50 mm diameter (diffraction increased beam size) were achieved through 30 mm thick basalt and granite specimens. Laboratory experiments to form a seal in an existing hole have also been carried out by melting rock and a simulated steel casing.
A Novel In-Beam Delayed Neutron Counting Technique for Characterization of Special Nuclear Materials
NASA Astrophysics Data System (ADS)
Bentoumi, G.; Rogge, R. B.; Andrews, M. T.; Corcoran, E. C.; Dimayuga, I.; Kelly, D. G.; Li, L.; Sur, B.
2016-12-01
A delayed neutron counting (DNC) system, where the sample to be analyzed remains stationary in a thermal neutron beam outside of the reactor, has been developed at the National Research Universal (NRU) reactor of the Canadian Nuclear Laboratories (CNL) at Chalk River. The new in-beam DNC is a novel approach for non-destructive characterization of special nuclear materials (SNM) that could enable identification and quantification of fissile isotopes within a large and shielded sample. Despite the orders of magnitude reduction in neutron flux, the in-beam DNC method can be as informative as the conventional in-core DNC for most cases while offering practical advantages and mitigated risk when dealing with large radioactive samples of unknown origin. This paper addresses (1) the qualification of in-beam DNC using a monochromatic thermal neutron beam in conjunction with a proven counting apparatus designed originally for in-core DNC, and (2) application of in-beam DNC to an examination of large sealed capsules containing unknown radioactive materials. Initial results showed that the in-beam DNC setup permits non-destructive analysis of bulky and gamma shielded samples. The method does not lend itself to trace analysis, and at best could only reveal the presence of a few milligrams of 235U via the assay of in-beam DNC total counts. Through analysis of DNC count rates, the technique could be used in combination with other neutron or gamma techniques to quantify isotopes present within samples.
The cyclotron laboratory and the RFQ accelerator in Bern
DOE Office of Scientific and Technical Information (OSTI.GOV)
Braccini, S.; Ereditato, A.; Kreslo, I.
2013-07-18
Two proton accelerators have been recently put in operation in Bern: an 18 MeV cyclotron and a 2 MeV RFQ linac. The commercial IBA 18/18 cyclotron, equipped with a specifically conceived 6 m long external beam line ending in a separate bunker, will provide beams for routine 18-F and other PET radioisotope production as well as for novel detector, radiation biophysics, radioprotection, radiochemistry and radiopharmacy developments. The accelerator is embedded into a complex building hosting two physics laboratories and four Good Manufacturing Practice (GMP) laboratories. This project is the result of a successful collaboration between the Inselspital, the University ofmore » Bern and private investors, aiming at the constitution of a combined medical and research centre able to provide the most cutting-edge technologies in medical imaging and cancer radiation therapy. The cyclotron is complemented by the RFQ with the primary goals of elemental analysis via Particle Induced Gamma Emission (PIGE), and the detection of potentially dangerous materials with high nitrogen content using the Gamma-Resonant Nuclear Absorption (GRNA) technique. In this context, beam instrumentation devices have been developed, in particular an innovative beam profile monitor based on doped silica fibres and a setup for emittance measurements using the pepper-pot technique. On this basis, the establishment of a proton therapy centre on the campus of the Inselspital is in the phase of advanced study.« less
The cyclotron laboratory and the RFQ accelerator in Bern
NASA Astrophysics Data System (ADS)
Braccini, S.; Ereditato, A.; Kreslo, I.; Nirkko, M.; Scampoli, P.; von Bremen, K.; Weber, M.
2013-07-01
Two proton accelerators have been recently put in operation in Bern: an 18 MeV cyclotron and a 2 MeV RFQ linac. The commercial IBA 18/18 cyclotron, equipped with a specifically conceived 6 m long external beam line ending in a separate bunker, will provide beams for routine 18-F and other PET radioisotope production as well as for novel detector, radiation biophysics, radioprotection, radiochemistry and radiopharmacy developments. The accelerator is embedded into a complex building hosting two physics laboratories and four Good Manufacturing Practice (GMP) laboratories. This project is the result of a successful collaboration between the Inselspital, the University of Bern and private investors, aiming at the constitution of a combined medical and research centre able to provide the most cutting-edge technologies in medical imaging and cancer radiation therapy. The cyclotron is complemented by the RFQ with the primary goals of elemental analysis via Particle Induced Gamma Emission (PIGE), and the detection of potentially dangerous materials with high nitrogen content using the Gamma-Resonant Nuclear Absorption (GRNA) technique. In this context, beam instrumentation devices have been developed, in particular an innovative beam profile monitor based on doped silica fibres and a setup for emittance measurements using the pepper-pot technique. On this basis, the establishment of a proton therapy centre on the campus of the Inselspital is in the phase of advanced study.
NASA Technical Reports Server (NTRS)
1978-01-01
The antenna shown is the new, multiple-beam, Unattended Earth Terminal, located at COMSAT Laboratories in Clarksburg, Maryland. Seemingly simple, it is actually a complex structure capable of maintaining contact with several satellites simultaneously (conventional Earth station antennas communicate with only one satellite at a time). In developing the antenna, COMSAT Laboratories used NASTRAN, NASA's structural analysis computer program, together with BANDIT, a companion program. The computer programs were used to model several structural configurations and determine the most suitable, The speed and accuracy of the computerized design analysis afforded appreciable savings in time and money.
Application and development of ion-source technology for radiation-effects testing of electronics
NASA Astrophysics Data System (ADS)
Kalvas, T.; Javanainen, A.; Kettunen, H.; Koivisto, H.; Tarvainen, O.; Virtanen, A.
2017-09-01
Studies of heavy-ion induced single event effect (SEE) on space electronics are necessary to verify the operation of the components in the harsh radiation environment. These studies are conducted by using high-energy heavy-ion beams to simulate the radiation effects in space. The ion beams are accelerated as so-called ion cocktails, containing several ion beam species with similar mass-to-charge ratio, covering a wide range of linear energy transfer (LET) values also present in space. The use of cocktails enables fast switching between beam species during testing. Production of these high-energy ion cocktails poses challenging requirements to the ion sources because in most laboratories reaching the necessary beam energies requires very high charge state ions. There are two main technologies producing these beams: The electron beam ion source EBIS and the electron cyclotron resonance ion source ECRIS. The EBIS is most suitable for pulsed accelerators, while ECRIS is most suitable for use with cyclotrons, which are the most common accelerators used in these applications. At the Accelerator Laboratory of the University of Jyväskylä (JYFL), radiation effects testing is currently performed using a K130 cyclotron and a 14 GHz ECRIS at a beam energy of 9.3 MeV/u. A new 18 GHz ECRIS, pushing the limits of the normal conducting ECR technology is under development at JYFL. The performances of existing 18 GHz ion sources have been compared, and based on this analysis, a 16.2 MeV/u beam cocktail with 1999 MeV 126Xe44+ being the most challenging component to has been chosen for development at JYFL. The properties of the suggested beam cocktail are introduced and discussed.
Literature review : an analysis of laboratory fatigue tests.
DOT National Transportation Integrated Search
1975-01-01
This report discusses the various types of fatigue tests, grouped by the type of specimen (beam, plate, Marshall, etc.) used. The discussion under each type of specimen covers the test, and the analytical methods used in evaluating the data. The test...
Results from the OPERA experiment in the CNGS beam
NASA Astrophysics Data System (ADS)
Di Marco, N.;
2016-05-01
The OPERA experiment at the Gran Sasso underground laboratory was designed to study ν μ → ν τ oscillations in appearance mode in the CNGS neutrino beam. In this paper we report the detection of the 5 th ν τ candidate event found in the analysis of an enlarged data sample. Given the number of analysed events and the low background, ν μ → ν τ oscillations have been established with a significance of 5.1σ. The analysis of the present electron neutrino sample in the framework of the 3 + 1 sterile model is also presented. Finally the analysis of the muon charge ratio in the cosmic ray sample is discussed.
Multiscale Laboratory Infrastructure and Services to users: Plans within EPOS
NASA Astrophysics Data System (ADS)
Spiers, Chris; Willingshofer, Ernst; Drury, Martyn; Funiciello, Francesca; Rosenau, Matthias; Scarlato, Piergiorgio; Sagnotti, Leonardo; EPOS WG6, Corrado Cimarelli
2015-04-01
The participant countries in EPOS embody a wide range of world-class laboratory infrastructures ranging from high temperature and pressure experimental facilities, to electron microscopy, micro-beam analysis, analogue modeling and paleomagnetic laboratories. Most data produced by the various laboratory centres and networks are presently available only in limited "final form" in publications. Many data remain inaccessible and/or poorly preserved. However, the data produced at the participating laboratories are crucial to serving society's need for geo-resources exploration and for protection against geo-hazards. Indeed, to model resource formation and system behaviour during exploitation, we need an understanding from the molecular to the continental scale, based on experimental data. This contribution will describe the plans that the laboratories community in Europe is making, in the context of EPOS. The main objectives are: • To collect and harmonize available and emerging laboratory data on the properties and processes controlling rock system behaviour at multiple scales, in order to generate products accessible and interoperable through services for supporting research activities. • To co-ordinate the development, integration and trans-national usage of the major solid Earth Science laboratory centres and specialist networks. The length scales encompassed by the infrastructures included range from the nano- and micrometer levels (electron microscopy and micro-beam analysis) to the scale of experiments on centimetre sized samples, and to analogue model experiments simulating the reservoir scale, the basin scale and the plate scale. • To provide products and services supporting research into Geo-resources and Geo-storage, Geo-hazards and Earth System Evolution. If the EPOS Implementation Phase proposal presently under construction is successful, then a range of services and transnational activities will be put in place to realize these objectives.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kayser, Y., E-mail: yves.kayser@psi.ch; Paul Scherrer Institut, 5232 Villigen-PSI; Błachucki, W.
2014-04-15
The high-resolution von Hamos bent crystal spectrometer of the University of Fribourg was upgraded with a focused X-ray beam source with the aim of performing micro-sized X-ray fluorescence (XRF) measurements in the laboratory. The focused X-ray beam source integrates a collimating optics mounted on a low-power micro-spot X-ray tube and a focusing polycapillary half-lens placed in front of the sample. The performances of the setup were probed in terms of spatial and energy resolution. In particular, the fluorescence intensity and energy resolution of the von Hamos spectrometer equipped with the novel micro-focused X-ray source and a standard high-power water-cooled X-raymore » tube were compared. The XRF analysis capability of the new setup was assessed by measuring the dopant distribution within the core of Er-doped SiO{sub 2} optical fibers.« less
Zhang, Tong; Feng, Chao; Deng, Haixiao; Wang, Dong; Dai, Zhimin; Zhao, Zhentang
2014-06-02
All-optical ideas provide a potential to dramatically cut off the size and cost of x-ray light sources to the university-laboratory scale, with the combination of the laser-plasma accelerator and the laser undulator. However, the large longitudinal energy spread of the electron beam from laser-plasma accelerator may hinder the way to high brightness of these all-optical light sources. In this paper, the beam energy spread effect is proposed to be significantly compensated by the natural transverse gradient of a laser undulator when properly transverse-dispersing the electron beam. Theoretical analysis and numerical simulations on conventional laser-Compton scattering sources and high-gain all-optical x-ray free-electron lasers with the electron beams from laser-plasma accelerators are presented.
Oscillations of end loaded cantilever beams
NASA Astrophysics Data System (ADS)
Macho-Stadler, E.; Elejalde-García, M. J.; Llanos-Vázquez, R.
2015-09-01
This article presents several simple experiments based on changing transverse vibration frequencies in a cantilever beam, when acted on by an external attached mass load at the free end. By using a mechanical wave driver, available in introductory undergraduate laboratories, we provide various experimental results for end loaded cantilever beams that fit reasonably well into a linear equation. The behaviour of the cantilever beam’s weak-damping resonance response is studied for the case of metal resonance strips. As the mass load increases, a more pronounced decrease occurs in the fundamental frequency of beam vibration. It is important to note that cantilever construction is often used in architectural design and engineering construction projects but current analysis also predicts the influence of mass load on the sound generated by musical free reeds with boundary conditions similar to a cantilever beam.
DOE R&D Accomplishments Database
Zare, P. N.; Herschbach, D. R.
1964-01-29
Conventional photochemical experiments give no information about the partitioning of energy between translational recoil and internal excitation of the fragment molecules formed in photodissociation of a polyatomic molecule. In a molecular beam experiment, it becomes possible to determine the energy partition from the form of the laboratory angular distribution of one of the photodissociation products. A general kinematic analysis is worked out in detail, and the uncertainty introduced by the finite angular resolution of the apparatus and the velocity spread in the parent beam is examined. The experimental requirements are evaluated for he photolysis of methyl iodide by the 2537 angstrom Hg line.
The Effects of Propellant Burn on the Surface Composition of Gun Steel
1981-11-01
ion beam analysis method has been used to characterize the depths and compositions of the outer, sub-micron layers of gun steel surfaces that have...STEEL A. Niiler R. Birkmire S. E. Caldwell November 1981 US ARMY ARMAMENT RESEARCH AND DEVELOPMENT COMMAND BALLISTIC RESEARCH LABORATORY...1L162618AH80 11. CONTROLLING OFFICE NAME AND ADDRESS US Army Armament Research § Development Command Ballistic Research Laboratory ATTN: DRDAR-BL. APG
Transverse profile of the electron beam for the RHIC electron lenses
NASA Astrophysics Data System (ADS)
Gu, X.; Altinbas, Z.; Costanzo, M.; Fischer, W.; Gassner, D. M.; Hock, J.; Luo, Y.; Miller, T.; Tan, Y.; Thieberger, P.; Montag, C.; Pikin, A. I.
2015-10-01
The transverse profile of the electron beam plays a very important role in assuring the success of the electron lens beam-beam compensation, as well as its application in space charge compensation. To compensate for the beam-beam effect in the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory, we recently installed and commissioned two electron lenses. In this paper, we describe, via theory and simulations using the code Parmela, the evolution of the density of the electron beam with space charge within an electron lens from the gun to the main solenoid. Our theoretical analysis shows that the change in the beam transverse density is dominated by the effects of the space charge induced longitudinal velocity reduction, not by those of transverse Coulomb collisions. We detail the transverse profile of RHIC electron-lens beam, measured via the YAG screen and pinhole detector, and also describe its profile that we assessed from the signal of the electron-backscatter detector (eBSD) via scanning the electron beam with respect to the RHIC beam. We verified, in simulations and experiments, that the distribution of the transverse electron beam is Gaussian throughout its propagation in the RHIC electron lens.
"Twisted Beam" SEE Observations of Ionospheric Heating from HAARP
NASA Astrophysics Data System (ADS)
Briczinski, S. J.; Bernhardt, P. A.; Siefring, C. L.; Han, S.-M.; Pedersen, T. R.; Scales, W. A.
2015-10-01
Nonlinear interactions of high power HF radio waves in the ionosphere provide aeronomers with a unique space-based laboratory capability. The High-Frequency Active Auroral Research Program (HAARP) in Gakona, Alaska is the world's largest heating facility, yielding effective radiated powers in the gigawatt range. New results are present from HAARP experiments using a "twisted beam" excitation mode. Analysis of twisted beam heating shows that the SEE results obtained are identical to more traditional patterns. One difference in the twisted beam mode is the heating region produced is in the shape of a ring as opposed to the more traditional "solid spot" region from a pencil beam. The ring heating pattern may be more conducive to the creation of stable artificial airglow layers because of the horizontal structure of the ring. The results of these runs include artificial layer creation and evolution as pertaining to the twisted beam pattern. The SEE measurements aid the interpretation of the twisted beam interactions in the ionosphere.
Experimental investigation of optimum beam size for FSO uplink
NASA Astrophysics Data System (ADS)
Kaushal, Hemani; Kaddoum, Georges; Jain, Virander Kumar; Kar, Subrat
2017-10-01
In this paper, the effect of transmitter beam size on the performance of free space optical (FSO) communication has been determined experimentally. Irradiance profile for varying turbulence strength is obtained using optical turbulence generating (OTG) chamber inside laboratory environment. Based on the results, an optimum beam size is investigated using the semi-analytical method. Moreover, the combined effects of atmospheric scintillation and beam wander induced pointing errors are considered in order to determine the optimum beam size that minimizes the bit error rate (BER) of the system for a fixed transmitter power and link length. The results show that the optimum beam size for FSO uplink depends upon Fried parameter and outer scale of the turbulence. Further, it is observed that the optimum beam size increases with the increase in zenith angle but has negligible effect with the increase in fade threshold level at low turbulence levels and has a marginal effect at high turbulence levels. Finally, the obtained outcome is useful for FSO system design and BER performance analysis.
Undergraduate Research and Training in Ion-Beam Analysis of Environmental Materials
NASA Astrophysics Data System (ADS)
Vineyard, Michael F.; Chalise, Sajju; Clark, Morgan L.; LaBrake, Scott M.; McCalmont, Andrew M.; McGuire, Brendan C.; Mendez, Iseinie I.; Watson, Heather C.; Yoskowitz, Joshua T.
We have an active undergraduate research program at the Union College Ion-Beam Analysis Laboratory (UCIBAL) focused on the study of environmental materials. Accelerator-based ion-beam analysis (IBA) is a powerful tool for the study of environmental pollution because it can provide information on a broad range of elements with high sensitivity and low detection limits, is non-destructive, and requires little or no sample preparation. It also provides excellent training for the next generation of environmental scientists. Beams of protons and alpha particles with energies of a few MeV from the 1.1-MV tandem Pelletron accelerator (NEC Model 3SDH) in the UCIBAL are used to characterize environmental samples using IBA techniques such as proton-induced X-ray emission, Rutherford back-scattering, and proton-induced gamma-ray emission. Recent projects include the characterization of atmospheric aerosols in the Adirondack Mountains of upstate New York, the study of heavy metal pollutants in river sediment, measurements of Pb diffusion in sulfide minerals to help constrain the determination of the age of iron meteorites, and the search for heavy metals and toxins in artificial turf.
A laboratory based system for laue micro x-ray diffraction.
Lynch, P A; Stevenson, A W; Liang, D; Parry, D; Wilkins, S; Tamura, N
2007-02-01
A laboratory diffraction system capable of illuminating individual grains in a polycrystalline matrix is described. Using a microfocus x-ray source equipped with a tungsten anode and prefigured monocapillary optic, a micro-x-ray diffraction system with a 10 microm beam was developed. The beam profile generated by the ellipsoidal capillary was determined using the "knife edge" approach. Measurement of the capillary performance, indicated a beam divergence of 14 mrad and a useable energy bandpass from 5.5 to 19 keV. Utilizing the polychromatic nature of the incident x-ray beam and application of the Laue indexing software package X-Ray Micro-Diffraction Analysis Software, the orientation and deviatoric strain of single grains in a polycrystalline material can be studied. To highlight the system potential the grain orientation and strain distribution of individual grains in a polycrystalline magnesium alloy (Mg 0.2 wt % Nd) was mapped before and after tensile loading. A basal (0002) orientation was identified in the as-rolled annealed alloy; after tensile loading some grains were observed to undergo an orientation change of 30 degrees with respect to (0002). The applied uniaxial load was measured as an increase in the deviatoric tensile strain parallel to the load axis.
Nuclear Physics Laboratory technical progress report, November 1, 1972-- November 1, 1973
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1973-11-01
The experimental program was divided into the areas of nuclear physics (charged-particle experiments, gamma-ray experiments andd beta decay, neutron time-of-flight experiments, x-ray fluorescence analysis, other activities), intermediate enengy physics, and apparatus and facility development. The energy- loss spectrograph, rotating-beam neutron time-of-flight spectrometer, and cyclotron and the rearch done using these facilities are described. The theoretical program has concentrated on the effects of two-step processes in nuclear reactions. The trace element analysis program continued, and a neutron beam for cancer therapy is being developed. Lists of publications and personnel are also included. (RWR)
Development of a new in-air micro-PIXE set-up with in-vacuum charge measurements in Atomki
NASA Astrophysics Data System (ADS)
Török, Zs.; Huszánk, R.; Csedreki, L.; Dani, J.; Szoboszlai, Z.; Kertész, Zs.
2015-11-01
A new external microbeam set-up has recently been installed as the extension of the existing microprobe system at the Laboratory of Ion Beam Applications of Atomki, Debrecen, Hungary. The external beam set-up, based on the system of Oxford Microbeams (OM), is equipped with two X-ray detectors for PIXE analysis, a digital microscope, two alignment lasers and a precision XYZ stage for easy and reproducible positioning of the sample. Exit windows with different thicknesses and of different materials can be used according to the actual demands, currently silicon-nitride (Si3N4) film with 200 nm thickness is employed in our laboratory. The first application was demonstrated in the field of archaeometry, on Bronze Age hoards from Hungary.
Characteristics of proton beams and secondary neutrons arising from two different beam nozzles
NASA Astrophysics Data System (ADS)
Choi, Yeon-Gyeong; Kim, Yu-Seok
2015-10-01
A tandem or a Van de Graaff accelerator with an energy of 3 MeV is typically used for Proton Induced X-ray Emission (PIXE) analysis. In this study, the beam line design used in the PIXE analysis, instead of the typical low-energy accelerator, was used to increase the production of isotopes from a 13-MeV cyclotron. For the PIXE analysis, the proton beam should be focused at the target through a nozzle after degrading the proton beams energy from 13 MeV to 3 MeV by using an energy degrader. Previous studies have been conducted to determine the most appropriate material for and the thickness of the energy degrader. From the energy distribution of the degraded proton beam and the neutron occurrence rate at the degrader, an aluminum nozzle of X thickness was determined to be the most appropriate nozzle construction. Neutrons are created by the collision of 3-MeV protons in the nozzle after passage through the energy degrader. In addition, a proton beam of sufficient intensity is required for a non-destructive PIXE analysis. Therefore, if nozzle design is to be optimized, the number of neutrons that arise from the collision of protons inside the nozzle, as well as the track direction of the generated secondary neutrons, must be considered, with the primary aim of ensuring that a sufficient number of protons pass through the nozzle as a direct beam. A number of laboratories are currently conducting research related to the design of nozzles used in accelerator fields, mostly medical fields. This paper presents a comparative analysis of two typical nozzle shapes in order to minimize the loss of protons and the generation of secondary neutrons. The neutron occurrence rate and the number of protons that pass through the nozzle were analyzed by using a Particle and Heavy Ion Transport code System (PHITS) program in order to identify the nozzle that generated the strongest proton beam.
NASA Astrophysics Data System (ADS)
Simpson, Sean; Renk, Timothy; Johnston, Mark; Mazarakis, Mike; Patel, Sonal
2015-11-01
The RITS-6 inductive voltage adder (IVA) accelerator (3.5-8.5 MeV) at Sandia National Laboratories produces high-power (TW) focused electron beams (<3mm diameter) for flash x-ray radiography applications. The Self-Magnetic Pinch (SMP) diode utilizes a hollowed metal cathode to produce a pinched focus onto a high-Z metal anode converter. There is not a clear understanding as to the effects various contaminants such as C, CO, H, H2O, HmCn, O2, and N2, on the anode surface or in the bulk may have on impedance dynamics, beam stability, beam spot size, and reproducibility. Heating pure Ta anodes with and without a thin Al coating have been investigated using temperatures ranging from 400 °C to 1000 °C. Initial experiments indicate a significant reduction in H and C as seen in high-speed spectral analysis of plasmas at the converter and a reduction in the back-streaming proton current. Experiments are ongoing, and latest results will be reported. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Experiments in intermediate energy physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dehnhard, D.
Research in experimental nuclear physics was done from 1979 to 2002 primarily at intermediate energy facilities that provide pion, proton, and kaon beams. Particularly successful has been the work at the Los Alamos Meson Physics Facility (LAMPF) on unraveling the neutron and proton contributions to nuclear ground state and transition densities. This work was done on a wide variety of nuclei and with great detail on the carbon, oxygen, and helium isotopes. Some of the investigations involved the use of polarized targets which allowed the extraction of information on the spin-dependent part of the triangle-nucleon interaction. At the Indiana Universitymore » Cyclotron Facility (IUCF) we studied proton-induced charge exchange reactions with results of importance to astrophysics and the nuclear few-body problem. During the first few years, the analysis of heavy-ion nucleus scattering data that had been taken prior to 1979 was completed. During the last few years we created hypernuclei by use of a kaon beam at Brookhaven National Laboratory (BNL) and an electron beam at Jefferson Laboratory (JLab). The data taken at BNL for a study of the non-mesonic weak decay of the A particle in a nucleus are still under analysis by our collaborators. The work at JLab resulted in the best resolution hypernuclear spectra measured thus far with magnetic spectrometers.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mazarakis, M.G.; Poukey, J.W.; Maenchen, J.E.
The authors present the design, analysis, and results of the high-brightness electron beam experiments currently under investigation at Sandia National Laboratories. The anticipated beam parameters are the following: 8--12 MeV, 35--50 kA, 30--60 ns FWHM, and 0.5-mm rms beam radius. The accelerators utilized are SABRE and HERMES III. Both are linear inductive voltage adders modified to higher impedance and fitted with magnetically immersed foil less electron diodes. In the strong 20--50 Tesla solenoidal magnetic field of the diode, mm-size electron beams are generated and propagated to a beam stop. The electron beam is field emitted from mm-diameter needle-shaped cathode electrodemore » and is contained in a similar size envelop by the strong magnetic field. These extremely space charge dominated beams provide the opportunity to study beam dynamics and possible instabilities in a unique parameter space. The SABRE experiments are already completed and have produced 30-kA, 1.5-mm FWHM electron beams, while the HERMES-III experiments are on-going.« less
Structural-change localization and monitoring through a perturbation-based inverse problem.
Roux, Philippe; Guéguen, Philippe; Baillet, Laurent; Hamze, Alaa
2014-11-01
Structural-change detection and characterization, or structural-health monitoring, is generally based on modal analysis, for detection, localization, and quantification of changes in structure. Classical methods combine both variations in frequencies and mode shapes, which require accurate and spatially distributed measurements. In this study, the detection and localization of a local perturbation are assessed by analysis of frequency changes (in the fundamental mode and overtones) that are combined with a perturbation-based linear inverse method and a deconvolution process. This perturbation method is applied first to a bending beam with the change considered as a local perturbation of the Young's modulus, using a one-dimensional finite-element model for modal analysis. Localization is successful, even for extended and multiple changes. In a second step, the method is numerically tested under ambient-noise vibration from the beam support with local changes that are shifted step by step along the beam. The frequency values are revealed using the random decrement technique that is applied to the time-evolving vibrations recorded by one sensor at the free extremity of the beam. Finally, the inversion method is experimentally demonstrated at the laboratory scale with data recorded at the free end of a Plexiglas beam attached to a metallic support.
The Naples University 3 MV tandem accelerator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campajola, L.; Brondi, A.
2013-07-18
The 3 MV tandem accelerator of the Naples University is used for research activities and applications in many fields. At the beginning of operation (1977) the main utilization was in the field of nuclear physics. Later, the realization of new beam lines allowed the development of applied activities as radiocarbon dating, ion beam analysis, biophysics, ion implantation etc. At present, the availability of different ion sources and many improvements on the accelerator allow to run experiments in a wide range of subjects. An overview of the characteristics and major activities of the laboratory is presented.
Pixel sensors with slim edges and small pitches for the CMS upgrades for HL-LHC
Vernieri, Caterina; Bolla, Gino; Rivera, Ryan; ...
2016-06-07
Here, planar n-in-n silicon detectors with small pitches and slim edges are being investigated for the innermost layers of tracking devices for the foreseen upgrades of the LHC experiments. Sensor prototypes compatible with the CMS readout, fabricated by Sintef, were tested in the laboratory and with a 120 GeV/c proton beam at the Fermilab test beam facility before and after irradiation with up to 2 × 10 15 neq/cm 2 fluence. Preliminary results of the data analysis are presented.
Portable Multi Hydrophone Array for Field and Laboratory Measurements of Odontocete Acoustic Signals
2014-09-30
false killer whale . Our analysis will also be conducted with current passive acoustic monitoring detectors and classifiers in order to assess if the...obtain horizontal and vertical beam patterns of acoustic signals of a false killer whale and a bottlenose dolphin. The data is currently being
Laboratory Astrophysics Using High Intensity Particle and Photon Beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Pisin
History has shown that the symbiosis between direct observations and laboratory studies is instrumental in the progress of astrophysics. Recent years have seen growing interests in the laboratory investigation of astrophysical phenomena that can be addressed by high densities and advancement of technologies in lasers as well as high-energy particle beams. We will give examples on how frontier phenomena such as black holes, supernovae, gamma ray bursts, ultra high-energy cosmic rays, etc., can be investigated in the laboratory setting. Finally, we describe a possible laboratory astrophysics facility to be developed at SLAC.
NASA Technical Reports Server (NTRS)
Campbell, T. G.
1983-01-01
The Jet Propulsion Laboratory and the Langley Research Center have been developing technology related to large space antennas (LSA) during the past several years. The need for a communication system research program became apparent during the recent studies for the Land Mobile Satellite System. This study indicated the need for additional research in (1) electromagnetic analysis methods, (2) design and development of multiple beam feed systems, and (3) the measurement methods for LSA reflectors.
Nonlinear analysis of a relativistic beam-plasma cyclotron instability
NASA Technical Reports Server (NTRS)
Sprangle, P.; Vlahos, L.
1986-01-01
A self-consistent set of nonlinear and relativistic wave-particle equations are derived for a magnetized beam-plasma system interacting with electromagnetic cyclotron waves. In particular, the high-frequency cyclotron mode interacting with a streaming and gyrating electron beam within a background plasma is considered in some detail. This interaction mode may possibly find application as a high-power source of coherent short-wavelength radiation for laboratory devices. The background plasma, although passive, plays a central role in this mechanism by modifying the dielectric properties in which the magnetized electron beam propagates. For a particular choice of the transverse beam velocity (i.e., the speed of light divided by the relativistic mass factor), the interaction frequency equals the nonrelativistic electron cyclotron frequency times the relativistic mass factor. For this choice of transverse beam velocity the detrimental effects of a longitudinal beam velocity spread is virtually removed. Power conversion efficiencies in excess of 18 percent are both analytically calculated and obtained through numerical simulations of the wave-particle equations. The quality of the electron beam, degree of energy and pitch angle spread, and its effect on the beam-plasma cyclotron instability is studied.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gromov, R.; Bailey, J.; Virgo, M.
Argonne National Laboratory, in cooperation with Los Alamos National Laboratory, is developing technology with NorthStar Medical Technologies to produce 99Mo from the γ,n reaction on a 100Mo target in an electron accelerator. During production runs and thermal testing of the helium-cooled target, it became obvious that a production-scale beam-line configuration would need a collimator to protect the target from accidental beam misplacement or a beam-profile change. A prototype high-power collimator and beam stop were designed and fabricated. Testing indicated that they will be able to operate at full power in the production-scale accelerator.
INEL BNCT Research Program Annual Report 1993
DOE Office of Scientific and Technical Information (OSTI.GOV)
Venhuizen, J.R.
1994-08-01
This report is a summary of the progress and research produced for the Idaho National Engineering Laboratory Boron Neutron Capture Therapy Research Program for calendar year 1993. Contributions from all the principal investigators are included, covering chemistry (pituitary tumor studies, boron drug development including liposomes, lipoproteins, and carboranylalanine derivatives), pharmacology (murine screenings, toxicity testing, boron drug analysis), physics (radiation dosimetry software, neutron beam and filter design, neutron beam measurement dosimetry), and radiation biology (tissue and efficacy studies of small and large animal models). Information on the potential toxicity of borocaptate sodium and boronophenylalanine is presented. Results of 21 spontaneous-tumor-bearing dogsmore » that have been treated with boron neutron capture therapy at the Brookhaven National Laboratory are updated. Boron-containing drug purity verification is discussed in some detail. Advances in magnetic resonance imaging of boron in vivo are discussed. Several boron-carrying drugs exhibiting good tumor uptake are described. Significant progress in the potential of treating pituitary tumors is presented. Measurement of the epithermal-neutron flux of the Petten (The Netherlands) High Flux Reactor beam (HFB11B), and comparison to predictions are shown.« less
Weisshaar, D.; Bazin, D.; Bender, P. C.; ...
2016-12-03
The gamma-ray tracking array GRETINA was coupled to the S800 magnetic spectrometer for spectroscopy with fast beams of rare isotopes at the National Superconducting Cyclotron Laboratory on the campus of Michigan State University. We describe the technical details of this powerful setup and report on GRETINA's performance achieved with source and in-beam measurements. The gamma-ray multiplicity encountered in experiments with fast beams is usually low, allowing for a simplified and efficient treatment of the data in the gamma-ray analysis in terms of Doppler reconstruction and spectral quality. Finally, the results reported in this work were obtained from GRETINA consisting ofmore » 8 detector modules hosting four high-purity germanium crystals each. Currently, GRETINA consists of 10 detector modules.« less
Manipulation of the polarization of intense laser beams via optical wave mixing in plasmas
NASA Astrophysics Data System (ADS)
Michel, Pierre; Divol, Laurent; Turnbull, David; Moody, John
2014-10-01
When intense laser beams overlap in plasmas, the refractive index modulation created by the beat wave via the ponderomotive force can lead to optical wave mixing phenomena reminiscent of those used in crystals and photorefractive materials. Using a vector analysis, we present a full analytical description of the modification of the polarization state of laser beams crossing at arbitrary angles in a plasma. We show that plasmas can be used to provide full control of the polarization state of a laser beam, and give simple analytical estimates and practical considerations for the design of novel photonics devices such as plasma polarizers and plasma waveplates. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344.
Design Concept for a Compact ERL to Drive a VUV/Soft X-Ray FEL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Christopher Tennant ,David Douglas
2011-03-01
We explore possible upgrades of the existing Jefferson Laboratory IR/UV FEL driver to higher electron beam energy and shorter wavelength through use of multipass recirculation to drive an amplifier FEL. The system would require beam energy at the wiggler of 600 MeV with 1 mA of average current. The system must generate a high brightness beam, configure it appropriately, and preserve beam quality through the acceleration cycle ? including multiple recirculations ? and appropriately manage the phase space during energy recovery. The paper will discuss preliminary design analysis of the longitudinal match, space charge effects in the linac, and recirculatormore » design issues, including the potential for the microbunching instability. A design concept for the low energy recirculator and an emittance preserving lattice solution will be presented.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Hoy, Blake W
The Spallation Neutron Source (SNS) at the Oak Ridge National Laboratory (ORNL) provides variable energy neutrons for a variety of experiments. The neutrons proceed down beam lines to the experiment hall, which houses a variety of experiments and test articles. Each beam line has one or more neutron choppers which filter the neutron beam based on the neutron energy by using a rotating neutron absorbing material passing through the neutron beam. Excessive vibration of the Vision beam line, believed to be caused by the T0 chopper, prevented the Vision beam line from operating at full capacity. This problem had beenmore » addressed several times by rebalancing/reworking the T0 beam chopper but the problem stubbornly persisted. To determine the cause of the high vibration, dynamic testing was performed. Twenty-seven accelerometer and motor current channels of data were collected during drive up, drive down, coast down, and steady-state conditions; resonance testing and motor current signature analysis were also performed. The data was analyzed for traditional mechanical/machinery issues such as misalignment and imbalance using time series analysis, frequency domain analysis, and operating deflection shape analysis. The analysis showed that the chopper base plate was experiencing an amplified response to the excitation provided by the T0 beam chopper. The amplified response was diagnosed to be caused by higher than expected base plate flexibility, possibly due to improper grouting or loose floor anchors. Based on this diagnosis, a decision was made to dismantle the beam line chopper and remount the base plate. Neutron activation of the beam line components make modifications to the beam line especially expensive and time consuming due to the radiation handling requirements, so this decision had significant financial and schedule implications. It was found that the base plate was indeed loose because of improper grouting during its initial installation. The base plate was modified by splitting it into multiple sections, isolating the T0 chopper from the rest of the beam line, and each section was then reinstalled and re-grouted. After these modifications, the vibration levels were reduced by a factor of 30. The reduction in vibration level was sufficient to allow the Vision beam line to operate at full capacity for the first time since its completed construction date.« less
Ion beams provided by small accelerators for material synthesis and characterization
NASA Astrophysics Data System (ADS)
Mackova, Anna; Havranek, Vladimir
2017-06-01
The compact, multipurpose electrostatic tandem accelerators are extensively used for production of ion beams with energies in the range from 400 keV to 24 MeV of almost all elements of the periodic system for the trace element analysis by means of nuclear analytical methods. The ion beams produced by small accelerators have a broad application, mainly for material characterization (Rutherford Back-Scattering spectrometry, Particle Induced X ray Emission analysis, Nuclear Reaction Analysis and Ion-Microprobe with 1 μm lateral resolution among others) and for high-energy implantation. Material research belongs to traditionally progressive fields of technology. Due to the continuous miniaturization, the underlying structures are far beyond the analytical limits of the most conventional methods. Ion Beam Analysis (IBA) techniques provide this possibility as they use probes of similar or much smaller dimensions (particles, radiation). Ion beams can be used for the synthesis of new progressive functional nanomaterials for optics, electronics and other applications. Ion beams are extensively used in studies of the fundamental energetic ion interaction with matter as well as in the novel nanostructure synthesis using ion beam irradiation in various amorphous and crystalline materials in order to get structures with extraordinary functional properties. IBA methods serve for investigation of materials coming from material research, industry, micro- and nano-technology, electronics, optics and laser technology, chemical, biological and environmental investigation in general. Main research directions in laboratories employing small accelerators are also the preparation and characterization of micro- and nano-structured materials which are of interest for basic and oriented research in material science, and various studies of biological, geological, environmental and cultural heritage artefacts are provided too.
Materials Science | Concentrating Solar Power | NREL
include higher-reflectivity mirrors, better thermal-absorbing receivers, and more corrosion-resistant electron-beam evaporation with ion-beam assist, plasma-enhanced chemical vapor deposition, and thermal Thermal Storage Materials Laboratory Our Thermal Storage Materials Laboratory supports NREL's research and
Analysis of a high brightness photo electron beam with self field and wake field effects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parsa, Z.
High brightness sources are the basic ingredients in the new accelerator developments such as Free-Electron Laser experiments. The effects of the interactions between the highly charged particles and the fields in the accelerating structure, e.g. R.F., Space charge and Wake fields can be detrimental to the beam and the experiments. We present and discuss the formulation used, some simulation and results for the Brookhaven National Laboratory high brightness beam that illustrates effects of the accelerating field, space charge forces (e.g. due to self field of the bunch), and the wake field (e.g. arising from the interaction of the cavity surfacemore » and the self field of the bunch).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ali Shan, S.; National Centre for Physics; Pakistan Institute of Engineering and Applied Sciences
2016-07-15
In this work, we examine the nonlinear propagation of planar ion-acoustic freak waves in an unmagnetized plasma consisting of cold positive ions and superthermal electrons subjected to cold positrons beam. For this purpose, the reductive perturbation method is used to derive a nonlinear Schrödinger equation (NLSE) for the evolution of electrostatic potential wave. We determine the domain of the plasma parameters where the rogue waves exist. The effect of the positron beam on the modulational instability of the ion-acoustic rogue waves is discussed. It is found that the region of the modulational stability is enhanced with the increase of positronmore » beam speed and positron population. Second as positrons beam increases the nonlinearities of the plasma system, large amplitude ion acoustic rogue waves are pointed out. The present results will be helpful in providing a good fit between the theoretical analysis and real applications in future laboratory plasma experiments.« less
Research on atmospheric transmission distortion of Gauss laser using multiple phase screen method
NASA Astrophysics Data System (ADS)
Zhang, Yizhuo; Wang, Qiushi; Gu, Haidong
2018-02-01
The laser beam is attenuated, broadened, defocused and may even be deflected from its initial propagation direction as it propagates through the atmosphere. It leads to the decrease of the laser intensity of the receiving surface. Gauss beam is the fundamental components of all possible laser waveforms. Therefore, research on the transmission of the Gauss laser has far-reaching consequences in optical communication, weaponry, target designation, ranging, remote sensing and other applications that require transmission of laser beams through the atmosphere. In this paper, we propose a laboratory simulation method using multi-phase screen to calculate the effects of atmospheric turbulence. Theoretical analysis of Gauss laser transmission in the atmosphere is given. By calculating the propagation of the Gauss beam TEM00, the far field intensity and phase distribution is shown. By the given method, the optical setup is presented and used for optimizing the adaptive optics algorithm.
Luo, Y.; Fischer, W.; White, S.
2016-02-04
The Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory has been operating since 2000. Over the past decade, thanks to the continuously increased bunch intensity and reduced β*s at the interaction points, the peak luminosity in the polarized proton operation has been increased by more than two orders of magnitude. In this article, we will present the operational observations at the routine proton physics stores. In addition, the mechanisms for the beam loss, transverse emittance growth, and bunch lengthening are analyzed. Lastly, numerical calculations and multiparticle tracking are used to model these observations.
Particle-In-Cell simulations of electron beam microbunching instability in three dimensions
NASA Astrophysics Data System (ADS)
Huang, Chengkun; Zeng, Y.; Meyers, M. D.; Yi, S.; Albright, B. J.; Kwan, T. J. T.
2013-10-01
Microbunching instability due to Coherent Synchrotron Radiation (CSR) in a magnetic chicane is one of the major effects that can degrade the electron beam quality in an X-ray Free Electron Laser. Self-consistent simulation using the Particle-In-Cell (PIC) method for the CSR fields of the beam and their effects on beam dynamics have been elusive due to the excessive dispersion error on the grid. We have implemented a high-order finite-volume PIC scheme that models the propagation of the CSR fields accurately. This new scheme is characterized and optimized through a detailed dispersion analysis. The CSR fields from our improved PIC calculation are compared to the extended CSR numerical model based on the Lienard-Wiechert formula in 2D/3D. We also conduct beam dynamics simulation of the microbunching instability using our new PIC capability. Detailed self-consistent PIC simulations of the CSR fields and beam dynamics will be presented and discussed. Work supported by the U.S. Department of Energy through the LDRD program at Los Alamos National Laboratory.
PIXE Analysis of Indoor Aerosols
NASA Astrophysics Data System (ADS)
Johnson, Christopher; Turley, Colin; Moore, Robert; Battaglia, Maria; Labrake, Scott; Vineyard, Michael
2011-10-01
We have performed a proton-induced X-ray emission (PIXE) analysis of aerosol samples collected in academic buildings at Union College to investigate the air quality in these buildings and the effectiveness of their air filtration systems. This is also the commissioning experiment for a new scattering chamber in the Union College Ion-Beam Analysis Laboratory. The aerosol samples were collected on Kapton foils using a nine-stage cascade impactor that separates particles according to their aerodynamic size. The foils were bombarded with beams of 2.2-MeV protons from the Union College 1.1-MV Pelletron Accelerator and the X-ray products were detected with an Amptek silicon drift detector. After subtracting the contribution from the Kapton foils, the X-ray energy spectra of the aerosol samples were analyzed using GUPIX software to determine the elemental concentrations of the samples. We will describe the collection of the aerosol samples, discuss the PIXE analysis, and present the results.
NASA Astrophysics Data System (ADS)
Roytershteyn, V.; Delzanno, G. L.; Dorfman, S. E.; Cattell, C. A.; Van Compernolle, B.
2017-12-01
We discuss plans for an experiment that will investigate interaction of energetic electron beam with magnetized plasma. The planned experiment will be conducted on the Large Plasma Device (LAPD) at UCLA and will utilize a variable-energy (0.1-1) MeV electron beam. Such energetic beams have recently attracted renewed attention as a basis for a number of active experiments in space, largely due to possibility of overcoming limitations imposed by spacecraft charging in low-density (e.g. magnetospheric) plasma. In this talk, we will discuss theoretical and computation studies of the plasma modes excited by the beam and beam stability. Energetic beams radiate both whistler and high-frequency R-X mode via Cherenkov resonances, with the relative efficiency of coupling to R-X mode increasing with beam energy. The stability of a finite-size, modulated beam (as produced by the available beam sources) is investigated and relative significance of instabilities and direct radiation is discussed. Special attention will be paid to discussing how laboratory experiments relate to conditions in space.
Stress analysis of the cracked-lap-shear specimen - An ASTM round-robin
NASA Technical Reports Server (NTRS)
Johnson, W. S.
1987-01-01
This ASTM Round Robin was conducted to evaluate the state of the art in stress analysis of adhesively bonded joint specimens. Specifically, the participants were asked to calculate the strain-energy-release rate for two different geometry cracked lap shear (CLS) specimens at four different debond lengths. The various analytical techniques consisted of 2- and 3-dimensional finite element analysis, beam theory, plate theory, and a combination of beam theory and finite element analysis. The results were examined in terms of the total strain-energy-release rate and the mode I to mode II ratio as a function of debond length for each specimen geometry. These results basically clustered into two groups: geometric linear or geometric nonlinear analysis. The geometric nonlinear analysis is required to properly analyze the CLS specimens. The 3-D finite element analysis gave indications of edge closure plus some mode III loading. Each participant described his analytical technique and results. Nine laboratories participated.
Stress analysis of the cracked lap shear specimens: An ASTM round robin
NASA Technical Reports Server (NTRS)
Johnson, W. S.
1986-01-01
This ASTM Round Robin was conducted to evaluate the state of the art in stress analysis of adhesively bonded joint specimens. Specifically, the participants were asked to calculate the strain-energy-release rate for two different geometry cracked lap shear (CLS) specimens at four different debond lengths. The various analytical techniques consisted of 2- and 3-dimensional finite element analysis, beam theory, plate theory, and a combination of beam theory and finite element analysis. The results were examined in terms of the total strain-energy-release rate and the mode I to mode II ratio as a function of debond length for each specimen geometry. These results basically clustered into two groups: geometric linear or geometric nonlinear analysis. The geometric nonlinear analysis is required to properly analyze the CLS specimens. The 3-D finite element analysis gave indications of edge closure plus some mode III loading. Each participant described his analytical technique and results. Nine laboratories participated.
NASA Astrophysics Data System (ADS)
Usov, I. O.; Arendt, P. N.; Foltyn, S. R.; Stan, L.; DePaula, R. F.; Holesinger, T. G.
2010-06-01
One of the crucial steps in the second generation high temperature superconducting wire program was development of the buffer-layer architecture. The architecture designed at the Superconductivity Technology Center at Los Alamos National Laboratory consists of several oxide layers wherein each layer plays a specific role, namely: nucleation layer, diffusion barrier, biaxially textured template, and intermediate layer providing a suitable lattice match to the superconducting Y 1Ba 2Cu 3O 7 (YBCO) compound. This report demonstrates how a wide range of ion beam analysis techniques (SIMS, RBS, channeling, PIXE, PIGE, NRA and ERD) was employed for analysis of each buffer layer and the YBCO film. These results assisted in understanding of a variety of physical processes occurring during the buffer layer fabrication and helped to optimize the buffer-layer architecture as a whole.
Scanning-PIXE analysis of gold lace embroideries in a relic of St. Francis
NASA Astrophysics Data System (ADS)
Migliori, A.; Grassi, N.; Mandò, P. A.
2008-05-01
In this work, we describe the compositional analysis performed by scanning-mode PIXE on the metal threads of a XIII century embroidery. The precious work analysed is the pillow-case used to cover the pillow, on which - according to tradition - St. Francis of Assisi was resting his head when he died. Measurements were performed in order to characterise the embroideries of the two sides and the passementerie in the lateral hems. Several areas, each of the order of two square millimetres, were scanned with a 3 MeV proton external beam of 20 μm size on target, using the external micro-beam facility of our laboratory, with list-mode acquisition. Analysis of elemental maps and spectra from selected homogeneous sub-areas allowed us to extract the quantitative composition of the gilded tape and estimates of its thickness.
Beacon Beams for Deep Turbulence High Energy Laser Beam Directors
2012-11-02
variance and nC is the atmospheric refractive index structure constant. The effect of turbulence on the focused beacon beam on target, TR...complete phase conjugation of the beacon beam is accomplished by employing Brillouin enhanced optical four wave mixing. A beacon beam formed by...Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/6790--12-9445 Beacon Beams for Deep Turbulence High Energy Laser Beam Directors P
Theory of beam plasma discharge
NASA Technical Reports Server (NTRS)
Papadopoulos, K.
1982-01-01
The general theory of beam plasma discharge (BPD) is discussed in relation to space and laboratory beam injection situations. An important concept introduced is that even when beam plasma instabilities are excited, there are two regime of BPD with radically different observational properties. They are described here as BPD with either classical or anomalous energy depositions. For high pressures or low altitudes, the classical is expected to dominate. For high altitudes and laboratory experiments, where the axial system size is less than lambda sub en, no BPD will be triggered unless the unstable waves are near the ambient plasma frequency and their amplitudes at saturation are large enough to create suprathermal tails by collapsing.
Propagation of Polarization Modulated Beams Through a Turbulent Atmosphere
2014-11-24
Clifford Algebra to Geometric Calculus , Reidel, 1984. Hirschfelder, J.O., Curtiss, C.F. & Bird, R.B., Molecular Theory of Gases and Liquids, Wiley, 1954...are made explicit in a Poincaré sphere and geometric (Clifford) algebra representation. Section 5.0 of this report provides the evidence supporting...MEDIA 4.0 LABORATORY TEST CONFIGURATIONS 5.0 TEST RESULTS 5.1 DATA ANALYSIS METHODS 5.2 DATA ANALYSIS 6.0 GEOMETRIC ALGEBRA 6.1 INTRODUCTION
Advanced TIL system for laser beam focusing in a turbulent regime
NASA Astrophysics Data System (ADS)
Sprangle, Phillip A.; Ting, Antonio C.; Kaganovich, Dmitry; Khizhnyak, Anatoliy I.; Tomov, Ivan V.; Markov, Vladimir B.; Korobkin, Dmitriy V.
2014-10-01
This paper discusses an advanced target in the loop (ATIL) system with its performance based on a nonlinear phase conjugation scheme that performs rapid adjustment of the laser beam wavefront to mitigate effects associated with atmospheric turbulence along the propagation path. The ATIL method allows positional control of the laser spot (the beacon) on a remote imaged-resolved target. The size of this beacon is governed by the reciprocity of two counterpropagating beams (one towards the target and another scattered by the target) and the fidelity of the phase conjugation scheme. In this presentation we will present the results of the thorough analysis of ATIL operation, factors that affect its performance, its focusing efficiency and the comparison of laboratory experimental validation and computer simulation results.
Laser-plasma interactions and implosion symmetry in rugby hohlraums
NASA Astrophysics Data System (ADS)
Michel, Pierre; Berger, R. L.; Lasinski, B. F.; Ross, J. S.; Divol, L.; Williams, E. A.; Meeker, D.; Langdon, B. A.; Park, H.; Amendt, P.
2011-10-01
Cross-beam energy transfer is studied in the context of ``rugby''-hohlraum experiments at the Omega laser facility in FY11, in preparation for future NIF experiments. The transfer acts in opposite direction between rugby and cylinder hohlraums due to the different beam pointing geometries and flow patterns. Its interaction with backscatter is also different as both happen in similar regions inside rugby hohlraums. We will analyze the effects of non-linearities and temporal beam smoothing on energy transfer using the code pF3d. Calculations will be compared to experiments at Omega; analysis of future rugby hohlraum experiments on NIF will also be presented. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Inductive voltage adder advanced hydrodynamic radiographic technology demonstration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mazarakis, M.G.; Poukey, J.W.; Maenchen
This paper presents the design, results, and analysis of a high-brightness electron beam technology demonstration experiment completed at Sandia National Laboratories, performed in collaboration with Los Alamos National Laboratory. The anticipated electron beam parameters were: 12 MeV, 35-40 kA, 0.5-mm rms radius, and 40-ns full width half maximum (FWHM) pulse duration. This beam, on an optimum thickness tantalum converter, should produce a very intense x-ray source of {approximately} 1.5-mm spot size and 1 kR dose @ 1 m. The accelerator utilized was SABRE, a pulsed inductive voltage adder, and the electron source was a magnetically immersed foilless electron diode. Formore » these experiments, SABRE was modified to high-impedance negative-polarity operation. A new 100-ohm magnetically insulated transmission line cathode electrode was designed and constructed; the cavities were rotated 180{degrees} poloidally to invert the central electrode polarity to negative; and only one of the two pulse forming lines per cavity was energized. A twenty- to thirty-Tesla solenoidal magnet insulated the diode and contained the beam at its extremely small size. These experiments were designed to demonstrate high electron currents in submillimeter radius beams resulting in a high-brightness high-intensity flash x-ray source for high-resolution thick-object hydrodynamic radiography. The SABRE facility high-impedance performance was less than what was hoped. The modifications resulted in a lower amplitude (9 MV), narrower-than-anticipated triangular voltage pulse, which limited the dose to {approximately} 20% of the expected value. In addition, halo and ion-hose instabilities increased the electron beam spot size to > 1.5 mm. Subsequent, more detailed calculations explain these reduced output parameters. An accelerator designed (versus retrofit) for this purpose would provide the desired voltage and pulse shape.« less
NASA Technical Reports Server (NTRS)
Zeitlin, C.; Heilbronn, L.; Miller, J.
1998-01-01
We report beam characterization and dosimetric measurements made using a 56Fe beam extracted from the Brookhaven National Laboratory Alternating Gradient Synchrotron (AGS) with a kinetic energy of 1087 MeV/nucleon. The measurements reveal that the depth-dose distribution of this beam differs significantly from that obtained with a 600 MeV/nucleon iron beam used in several earlier radiobiology experiments at the Lawrence Berkeley National Laboratory's BEVALAC. We present detailed measurements of beam parameters relevant for radiobiology, including track- and dose-averaged linear energy transfer (LET), fragment composition and LET spectra measured behind sample holders used in irradiations of biological samples. We also report measurements of fluence behind three depths (1.94, 4.68 and 9.35 g cm(-2)) of polyethylene targets with the 1087 MeV/nucleon beam, and behind 1.94 g cm(-2) of polyethylene with a 610 MeV/nucleon beam delivered by the AGS. These results are compared to earlier measurements with the 600 MeV/nucleon beam at the BEVALAC.
Normal modes and mode transformation of pure electron vortex beams
Thirunavukkarasu, G.; Mousley, M.; Babiker, M.
2017-01-01
Electron vortex beams constitute the first class of matter vortex beams which are currently routinely produced in the laboratory. Here, we briefly review the progress of this nascent field and put forward a natural quantum basis set which we show is suitable for the description of electron vortex beams. The normal modes are truncated Bessel beams (TBBs) defined in the aperture plane or the Fourier transform of the transverse structure of the TBBs (FT-TBBs) in the focal plane of a lens with the said aperture. As these modes are eigenfunctions of the axial orbital angular momentum operator, they can provide a complete description of the two-dimensional transverse distribution of the wave function of any electron vortex beam in such a system, in analogy with the prominent role Laguerre–Gaussian (LG) beams played in the description of optical vortex beams. The characteristics of the normal modes of TBBs and FT-TBBs are described, including the quantized orbital angular momentum (in terms of the winding number l) and the radial index p>0. We present the experimental realization of such beams using computer-generated holograms. The mode analysis can be carried out using astigmatic transformation optics, demonstrating close analogy with the astigmatic mode transformation between LG and Hermite–Gaussian beams. This article is part of the themed issue ‘Optical orbital angular momentum’. PMID:28069769
Normal modes and mode transformation of pure electron vortex beams.
Thirunavukkarasu, G; Mousley, M; Babiker, M; Yuan, J
2017-02-28
Electron vortex beams constitute the first class of matter vortex beams which are currently routinely produced in the laboratory. Here, we briefly review the progress of this nascent field and put forward a natural quantum basis set which we show is suitable for the description of electron vortex beams. The normal modes are truncated Bessel beams (TBBs) defined in the aperture plane or the Fourier transform of the transverse structure of the TBBs (FT-TBBs) in the focal plane of a lens with the said aperture. As these modes are eigenfunctions of the axial orbital angular momentum operator, they can provide a complete description of the two-dimensional transverse distribution of the wave function of any electron vortex beam in such a system, in analogy with the prominent role Laguerre-Gaussian (LG) beams played in the description of optical vortex beams. The characteristics of the normal modes of TBBs and FT-TBBs are described, including the quantized orbital angular momentum (in terms of the winding number l) and the radial index p>0. We present the experimental realization of such beams using computer-generated holograms. The mode analysis can be carried out using astigmatic transformation optics, demonstrating close analogy with the astigmatic mode transformation between LG and Hermite-Gaussian beams.This article is part of the themed issue 'Optical orbital angular momentum'. © 2017 The Author(s).
Overview of Heavy Ion Fusion Accelerator Research in the U. S.
NASA Astrophysics Data System (ADS)
Friedman, Alex
2002-12-01
This article provides an overview of current U.S. research on accelerators for Heavy Ion Fusion, that is, inertial fusion driven by intense beams of heavy ions with the goal of energy production. The concept, beam requirements, approach, and major issues are introduced. An overview of a number of new experiments is presented. These include: the High Current Experiment now underway at Lawrence Berkeley National Laboratory; studies of advanced injectors (and in particular an approach based on the merging of multiple beamlets), being investigated experimentally at Lawrence Livermore National Laboratory); the Neutralized (chamber) Transport Experiment being assembled at Lawrence Berkeley National Laboratory; and smaller experiments at the University of Maryland and at Princeton Plasma Physics Laboratory. The comprehensive program of beam simulations and theory is outlined. Finally, prospects and plans for further development of this promising approach to fusion energy are discussed.
NASA Astrophysics Data System (ADS)
Pankhurst, M. J.; Fowler, R.; Courtois, L.; Nonni, S.; Zuddas, F.; Atwood, R. C.; Davis, G. R.; Lee, P. D.
2018-01-01
We present new software allowing significantly improved quantitative mapping of the three-dimensional density distribution of objects using laboratory source polychromatic X-rays via a beam characterisation approach (c.f. filtering or comparison to phantoms). One key advantage is that a precise representation of the specimen material is not required. The method exploits well-established, widely available, non-destructive and increasingly accessible laboratory-source X-ray tomography. Beam characterisation is performed in two stages: (1) projection data are collected through a range of known materials utilising a novel hardware design integrated into the rotation stage; and (2) a Python code optimises a spectral response model of the system. We provide hardware designs for use with a rotation stage able to be tilted, yet the concept is easily adaptable to virtually any laboratory system and sample, and implicitly corrects the image artefact known as beam hardening.
ERIC Educational Resources Information Center
Reyer, Ronald
A project was conducted to analyze, design, develop, implement, and evaluate an instructional unit intended to improve the diagnostic skills of operating personnel in responding to abnormal and emergency conditions at the High Flux Beam Reactor at Brookhaven National Laboratory. Research was conducted on the occurrence of emergencies at similar…
Time dependent variation of carrying capacity of prestressed precast beam
NASA Astrophysics Data System (ADS)
Le, Tuan D.; Konečný, Petr; Matečková, Pavlína
2018-04-01
The article deals with the evaluation of the precast concrete element time dependent carrying capacity. The variation of the resistance is inherited property of laboratory as well as in-situ members. Thus the specification of highest, yet possible, laboratory sample resistance is important with respect to evaluation of laboratory experiments based on the test machine loading capabilities. The ultimate capacity is evaluated through the bending moment resistance of a simply supported prestressed concrete beam. The probabilistic assessment is applied. Scatter of random variables of compressive strength of concrete and effective height of the cross section is considered. Monte Carlo simulation technique is used to investigate the performance of the cross section of the beam with changes of tendons’ positions and compressive strength of concrete.
A Experimental Investigation of Fast Ion Confinement on the Isx-B Tokamak
NASA Astrophysics Data System (ADS)
Carnevali, Antonino
An experimental investigation of fast ion confinement was conducted on the ISX-B tokamak at the Oak Ridge National Laboratory to ascertain that the beam ion behavior is properly described by classical processes. Data were collected during tangential injection of H('0) beams (co-, counter -, and co- plus counter-) at power levels up to 1.9 MW in low plasma current (I(,p) = 80 to 215 kA) D('+) discharges. Experimental energy spectra of energetic charge-exchange neutrals along several sightlines in the torus equatorial plane are compared with the predictions of Fokker-Planck and orbit-following Monte Carlo calculations to verify the validity of classical theory. A further tool used in this investigation is the comparison of predicted and experimental beam-plasma neutron emission during injection of beams doped with 3% D('0). Both the fast neutral spectra and the beam-plasma neutron emission are in close agreement (within factors of <2) with the calculated values under a variety of plasma parameters, beam parameters, and injection geometries. Furthermore, measured decay rates of the beam-plasma neutron production following beam turn-off show that the beam slowing down --at energies close to the injection energy and in the plasma core-- is classical within a 30% uncertainty. These results demonstrate that classical theory describes well the behavior of the beam ions. Moreover, MHD activity is shown not to cause enhanced fast ion losses in the ISX-B. Also, beam additivity experiments indicate that the fast ion density in the plasma volume is proportional to the injected beam power P(,b). An unresolved issue is whether the central fast ion density is linear with P(,b). In addition, the analysis of charge-exchange spectra is critically evaluated. It is shown that the analysis need be integrated with a knowledge of the orbit topology to correctly interpret the spectra. Cases where the zero banana width, Fokker-Planck calculation is adequate/inadequate to predict fast neutral spectra and power deposited in the plasma are discussed.
Final safety analysis report for the Ground Test Accelerator (GTA), Phase 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1994-10-01
This document is the third volume of a 3 volume safety analysis report on the Ground Test Accelerator (GTA). The GTA program at the Los Alamos National Laboratory (LANL) is the major element of the national Neutral Particle Beam (NPB) program, which is supported by the Strategic Defense Initiative Office (SDIO). A principal goal of the national NPB program is to assess the feasibility of using hydrogen and deuterium neutral particle beams outside the Earth`s atmosphere. The main effort of the NPB program at Los Alamos concentrates on developing the GTA. The GTA is classified as a low-hazard facility, exceptmore » for the cryogenic-cooling system, which is classified as a moderate-hazard facility. This volume consists of appendices C through U of the report« less
Physics perspectives at JLab with a polarized positron beam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Voutier, Eric J.-M.
2014-06-01
Polarized positron beams are in some respect mandatory complements to polarized electron beams. The advent of the PEPPo concept for polarized positron production opens the possibility for the developement at the Jefferson Laboratory of a continuous polarized positron beam. The benefits of such a beam for hadronic structure studies are discussed, together with the technical and technological challenges to face.
NASA Astrophysics Data System (ADS)
Majumdar, Arun K.; Land, Phillip; Siegenthaler, John
2014-10-01
New results for characterizing laser intensity fluctuation statistics of a laser beam transmitted through a random air-water interface relevant to underwater communications are presented. A laboratory watertank experiment is described to investigate the beam wandering effects of the transmitted beam. Preliminary results from the experiment provide information about histograms of the probability density functions of intensity fluctuations for different wind speeds measured by a CMOS camera for the transmitted beam. Angular displacements of the centroids of the fluctuating laser beam generates the beam wander effects. This research develops a probabilistic model for optical propagation at the random air-water interface for a transmission case under different wind speed conditions. Preliminary results for bit-error-rate (BER) estimates as a function of fade margin for an on-off keying (OOK) optical communication through the air-water interface are presented for a communication system where a random air-water interface is a part of the communication channel.
Lan, Chunguang; Zhou, Zhi; Ou, Jinping
2012-01-01
For the safety of prestressed structures, prestress loss is a critical issue that will increase with structural damage, so it is necessary to investigate prestress loss of prestressed structures under different damage scenarios. Unfortunately, to date, no qualified techniques are available due to difficulty for sensors to survive in harsh construction environments of long service life and large span. In this paper, a novel smart steel strand based on the Brillouin optical time domain analysis (BOTDA) sensing technique was designed and manufactured, and then series of tests were used to characterize properties of the smart steel strands. Based on prestress loss principle analysis of damaged structures, laboratory tests of two similar beams with different damages were used to verify the concept of full-scale prestress loss monitoring of damaged reinforced concrete (RC) beams by using the smart steel strands. The prestress losses obtained from the Brillouin sensors are compared with that from conventional sensors, which provided the evolution law of prestress losses of damaged RC beams. The monitoring results from the proposed smart strand can reveal both spatial distribution and time history of prestress losses of damaged RC beams. PMID:22778590
Lan, Chunguang; Zhou, Zhi; Ou, Jinping
2012-01-01
For the safety of prestressed structures, prestress loss is a critical issue that will increase with structural damage, so it is necessary to investigate prestress loss of prestressed structures under different damage scenarios. Unfortunately, to date, no qualified techniques are available due to difficulty for sensors to survive in harsh construction environments of long service life and large span. In this paper, a novel smart steel strand based on the Brillouin optical time domain analysis (BOTDA) sensing technique was designed and manufactured, and then series of tests were used to characterize properties of the smart steel strands. Based on prestress loss principle analysis of damaged structures, laboratory tests of two similar beams with different damages were used to verify the concept of full-scale prestress loss monitoring of damaged reinforced concrete (RC) beams by using the smart steel strands. The prestress losses obtained from the Brillouin sensors are compared with that from conventional sensors, which provided the evolution law of prestress losses of damaged RC beams. The monitoring results from the proposed smart strand can reveal both spatial distribution and time history of prestress losses of damaged RC beams.
Melhem, N; El Balaa, H; Younes, G; Al Kattar, Z
2017-06-15
The Secondary Standard Dosimetry Laboratory at the Lebanese Atomic Energy Commission has different calibration methods for various types of dosimeters used in industrial, military and medical fields. The calibration is performed using different beams of X-rays (low and medium energy) and Gamma radiation delivered by a Cesium 137 source. The Secondary Standard Dosimetry laboratory in charge of calibration services uses different protocols for the determination of high and low air kerma rate and for narrow and wide series. In order to perform this calibration work, it is very important to identify all the beam characteristics for the different types of sources and qualities of radiation. The following work describes the methods used for the determination of different beam characteristics and calibration coefficients with their uncertainties in order to enhance the radiation protection of workers and patient applications in the fields of medical diagnosis and industrial X-ray. All the characteristics of the X-ray beams are determined for the narrow spectrum series in the 40 and 200 keV range where the inherent filtration, the current intensity, the high voltage, the beam profile and the total uncertainty are the specific characteristics of these X-ray beams. An X-ray software was developed in order to visualize the reference values according to the characteristics of each beam. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Beam tracking phase tomography with laboratory sources
NASA Astrophysics Data System (ADS)
Vittoria, F. A.; Endrizzi, M.; Kallon, G. K. N.; Hagen, C. K.; Diemoz, P. C.; Zamir, A.; Olivo, A.
2018-04-01
An X-ray phase-contrast laboratory system is presented, based on the beam-tracking method. Beam-tracking relies on creating micro-beamlets of radiation by placing a structured mask before the sample, and analysing them by using a detector with sufficient resolution. The system is used in tomographic configuration to measure the three dimensional distribution of the linear attenuation coefficient, difference from unity of the real part of the refractive index, and of the local scattering power of specimens. The complementarity of the three signals is investigated, together with their potential use for material discrimination.
The National Superconducting Cyclotron Laboratory
NASA Astrophysics Data System (ADS)
Gelbke, C. Korad; Morrissey, D. J.; York, R. C.
1996-10-01
The National Superconducting Cyclotron Laboratory (NSCL) at Michigan State University has constructed and operates two superconducting cyclotrons for research in nuclear science, accelerator and instrumental physics. The K500, the world's first superconducting cyclotron, was commissioned in 1982 and the K1200, the world's most powerful cyclotron, was commissioned in 1988. Heavy-ion beams across the entire periodic table produced in a pair of ECR ion sources and accelerated to energies on the order of 100 MeV/A are delivered to a modern and versatile complement of experimental apparatus, including the new S800 high-resolution superconducting magnetic spectrograph now undergoing initial testing. The diverse variety of beams are used for studies of the quantum-statistical properties of hot nuclei, the liquid-gas phase transition in nuclear matter, and for nuclear structure research, particularly with radioactive ion beams from the A1200 fragment separator. The NSCL provides radioactive nuclear beams out to the limits of stability on both the neutron-rich and the proton-rich sides of the valley of stability. The laboratory is also used for multi-disciplinary research in astrophysics, condensed matter physics, geophysics, medicine, and biology. The NSCL has recently proposed a major upgrade of its facility based on coupled operation of the two cyclotrons. The upgrade will provide large increases in beam intensities for radioactive beam production and increased energies of the heaviest beams.
Laboratory investigation of concrete beam-end treatments : [tech transfer summary].
DOT National Transportation Integrated Search
2015-05-01
The ends of prestressed concrete beams located under bridge expansion : joints are often exposed to extended periods of moisture and chlorides. This : exposure can cause the beam ends to deteriorate prematurely, corrode the : prestressing strands, de...
1980-03-01
Ennos, A. E., " Measurement by Laser Photography," National Physical Laboratory, Division of Optical Metrology, Teddington, Middlesex, U.K. 9. Archbold...Field Measurement ," Optics and Laser TechnoloZ, pp. 216 - 219, October 1776. 149 37. Khetan, R. P., and Chiang, F. P., "Strain Analysis by One Beam...AD-AO85 145 NAVAL POSTGRADUATE SCHOOL MONTEREY CA F/G 17/8 SURFACE DISPLACEMENT MEASUREMENTS , STRAIN AND VIBRATIONAL ANALY-ETC(U) MAR GO A B
NASA Astrophysics Data System (ADS)
Colombo, E.; Calusi, S.; Cossio, R.; Giuntini, L.; Giudice, A. Lo; Mandò, P. A.; Manfredotti, C.; Massi, M.; Mirto, F. A.; Vittone, E.
2008-04-01
A new ionoluminescence (IL) apparatus has been successfully installed at the external scanning microbeam facility of the 3 MV Tandetron accelerator of the INFN LABEC in Firenze; the apparatus for photon detection has been fully integrated in the existing ion beam analysis (IBA) set-up, for the simultaneous acquisition of IL and PIXE/PIGE/BS spectra and maps. The potential of the new set-up is illustrated in this paper by some results extracted by the analysis of art objects and advanced semiconductor materials. In particular, the adequacy of the new IBA set-up in the field of cultural heritage is pointed out by the coupled PIXE/IL micro-analysis of a lapis lazuli stone; concerning applications in material science, IL spectra from a N doped diamond sample were acquired and compared with CL analyses to evaluate the relevant sensitivities and the effect of ion damage.
Aircraft and satellite passive microwave observations of the Bering Sea ice cover during MIZEX West
NASA Technical Reports Server (NTRS)
Cavalieri, D. J.; Gloersen, P.; Wilheit, T. T., Jr.
1986-01-01
Passive microwave measurements of the Bering Sea were made with the NASA CV-990 airborne laboratory during February. Microwave data were obtained with imaging and dual-polarized, fixed-beam radiometers in a range of frequencies from 10 to 183 GHz. The high resolution imagery at 92 GHz provides a particularly good description of the marginal ice zone delineating regions of open water, ice compactness, and ice-edge structure. Analysis of the fixed-beam data shows that spectral differences increase with a decrease in ice thickness. Polarization at 18 and 37 GHz distinguishes among new, young, and first-year ice types.
NASA Technical Reports Server (NTRS)
Cavalieri, D. J.; Gloersen, P.; Wilheit, T. T.; Calhoon, C.
1984-01-01
Passive microwave measurements of the Bering Sea were made with the NASA CV-990 airborne laboratory during February. Microwave data were obtained with imaging and dual-polarized, fixed-beam radiometers in a range of frequencies from 10 to 183 GHz. The high resolution imagery at 92 GHz provides a particularly good description of the marginal ice zone delineating regions of open water, ice compactness, and ice-edge structure. Analysis of the fixed-beam data shows that spectral differences increase with a decrease in ice thickness. Polarization at 18 and 37 GHz distinguishes among new, young, and first-year sea ice types.
Tian, Yuzhen; Guo, Jin; Wang, Rui; Wang, Tingfeng
2011-09-12
In order to research the statistical properties of Gaussian beam propagation through an arbitrary thickness random phase screen for adaptive optics and laser communication application in the laboratory, we establish mathematic models of statistical quantities, which are based on the Rytov method and the thin phase screen model, involved in the propagation process. And the analytic results are developed for an arbitrary thickness phase screen based on the Kolmogorov power spectrum. The comparison between the arbitrary thickness phase screen and the thin phase screen shows that it is more suitable for our results to describe the generalized case, especially the scintillation index.
Measurement of the differential cross sections of 6Li(d,d0) for Ion Beam Analysis purposes
NASA Astrophysics Data System (ADS)
Ntemou, E.; Aslanoglou, X.; Axiotis, M.; Foteinou, V.; Kokkoris, M.; Lagoyannis, A.; Misaelides, P.; Patronis, N.; Preketes-Sigalas, K.; Provatas, G.; Vlastou, R.
2017-09-01
In the present work, the 6Li(d,d0)6Li elastic scattering differential cross sections were measured in the energy range Ed,lab = 940-2000 keV for Elastic Backscattering Spectroscopy (EBS) purposes, using thin lithium targets, made by evaporating isotopically enriched 6LiF powder on self-supporting carbon foils, with an ultra-thin Au layer on top for normalization purposes. The experiment was carried out in deuteron beam energy steps of 20 or 30 keV and for the laboratory scattering angles of 125°, 140°, 150°, 160°, and 170°.
Topics in atomic hydrogen standard research and applications
NASA Technical Reports Server (NTRS)
Peters, H. E.
1971-01-01
Hydrogen maser based frequency and time standards have been in continuous use at NASA tracking stations since February 1970, while laboratory work at Goddard has continued in the further development and improvement of hydrogen masers. Concurrently, experimental work has been in progress with a new frequency standard based upon the hydrogen atom using the molecular beam magnetic resonance method. Much of the hydrogen maser technology is directly applicable to the new hydrogen beam standard, and calculations based upon realistic data indicate that the accuracy potential of the hydrogen atomic beam exceeds that of either the cesium beam tube or the hydrogen maser, possibly by several orders of magnitude. In addition, with successful development, the hydrogen beam standard will have several other performance advantages over other devices, particularly exceptional stability and long continuous operating life. Experimental work with a new laboratory hydrogen beam device has recently resulted in the first resonance transition curves, measurements of relative state populations, beam intensities, etc. The most important aspects of both the hydrogen maser and the hydrogen beam work are covered.
Beam-smiling in bent-Laue monochromators
NASA Astrophysics Data System (ADS)
Ren, B.; Dilmanian, F. A.; Chapman, L. D.; Wu, X. Y.; Zhong, Z.; Ivanov, I.; Thomlinson, W. C.; Huang, X.
1997-07-01
When a wide fan-shaped x-ray beam is diffracted by a bent crystal in the Laue geometry, the profile of the diffracted beam generally does not appear as a straight line, but as a line with its ends curved up or curved down. This effect, referred to as "beam-smiling", has been a major obstacle in developing bent-Laue crystal monochromators for medical applications of synchrotron x-ray. We modeled a cylindrically bent crystal using the Finite Element Analysis (FEA) method, and we carried out experiments at the National Synchrotron Light Source and Cornell High Energy Synchrotron Source. Our studies show that, while beam-smiling exists in most of the crystal's area because of anticlastic bending effects, there is a region parallel to the bending axis of the crystal where the diffracted beam is "smile-free". By applying asymmetrical bending, this smile-free region can be shifted vertically away from the geometric center of the crystal, as desired. This leads to a novel method of compensating for beam-smiling. We will discuss the method of "differential bending" for smile removal, beam-smiling in the Cauchios and the polychromatic geometry, and the implications of the method on developing single- and double-bent Laue monochromators. The experimental results will be discussed, concentrating on specific beam-smiling observation and removal as applied to the new monochromator of the Multiple Energy Computed Tomography [MECT] project of the Medical Department, Brookhaven National Laboratory.
NASA Astrophysics Data System (ADS)
Boerma, Dirk O.; Climent-Font, Aurelio; Respaldiza, Miguel Ángel
2006-08-01
The IBA conference has taken place in different countries from all over the world. It started in the United States in 1973, and since then has been held biennially without interruption, becoming the reference meeting on ion beam analysis and related methods and techniques. In its 17th edition, two Spanish laboratories, one from the Universidad de Sevilla and one from the Universidad Autónoma de Madrid had the honour and responsibility of organizing the conference. These two laboratories are, so far, the only ones in the country equipped with accelerators dedicated to ion beam analysis; the Centro Nacional de Aceleradores (CNA) in Seville and the Centro de Micro-Análisis de Materiales (CMAM) in Madrid. We took up this task enthusiastically, conscious that Spain has only very recently been equipped with IBA techniques and that this event would highlight to the scientific community of our country the importance and involvement of IBA techniques in new scientific and technological developments. The conference was held at the Melia Sevilla Hotel in Seville, Spain from 26 June-1 July 2005. This special issue of Nuclear Instruments and Methods in Physics Research B contains the published proceedings of the conference.
NASA Astrophysics Data System (ADS)
Chang, Chih-Chen; Poon, Chun-Wing
2004-07-01
Recently, the empirical mode decomposition (EMD) in combination with the Hilbert spectrum method has been proposed to identify the dynamic characteristics of linear structures. In this study, this EMD and Hilbert spectrum method is used to analyze the dynamic characteristics of a damaged reinforced concrete (RC) beam in the laboratory. The RC beam is 4m long with a cross section of 200mm X 250mm. The beam is sequentially subjected to a concentrated load of different magnitudes at the mid-span to produce different degrees of damage. An impact load is applied around the mid-span to excite the beam. Responses of the beam are recorded by four accelerometers. Results indicate that the EMD and Hilbert spectrum method can reveal the variation of the dynamic characteristics in the time domain. These results are also compared with those obtained using the Fourier analysis. In general, it is found that the two sets of results correlate quite well in terms of mode counts and frequency values. Some differences, however, can be seen in the damping values, which perhaps can be attributed to the linear assumption of the Fourier transform.
Beam Characterization at the Neutron Radiography Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarah Morgan; Jeffrey King
The quality of a neutron imaging beam directly impacts the quality of radiographic images produced using that beam. Fully characterizing a neutron beam, including determination of the beam’s effective length-to-diameter ratio, neutron flux profile, energy spectrum, image quality, and beam divergence, is vital for producing quality radiographic images. This project characterized the east neutron imaging beamline at the Idaho National Laboratory Neutron Radiography Reactor (NRAD). The experiments which measured the beam’s effective length-to-diameter ratio and image quality are based on American Society for Testing and Materials (ASTM) standards. An analysis of the image produced by a calibrated phantom measured themore » beam divergence. The energy spectrum measurements consist of a series of foil irradiations using a selection of activation foils, compared to the results produced by a Monte Carlo n-Particle (MCNP) model of the beamline. Improvement of the existing NRAD MCNP beamline model includes validation of the model’s energy spectrum and the development of enhanced image simulation methods. The image simulation methods predict the radiographic image of an object based on the foil reaction rate data obtained by placing a model of the object in front of the image plane in an MCNP beamline model.« less
Photo-ionization of aluminum in a hot cavity for the selective production of exotic species project
NASA Astrophysics Data System (ADS)
Scarpa, D.; Makhathini, L.; Tomaselli, A.; Grassi, D.; Corradetti, S.; Manzolaro, M.; Vasquez, J.; Calderolla, M.; Rossignoli, M.; Monetti, A.; Andrighetto, A.; Prete, G.
2014-02-01
SPES (Selective Production of Exotic Species) is an Isotope Separation On-Line (ISOL) based accelerator facility that will be built in the Legnaro-Istituto Nazionale di Fisica Nucleare (INFN) Laboratory (Italy), intended to provide intense neutron-rich radioactive ion beams obtained by proton-induced fission of a uranium carbide (UCx) target. Besides this main target material, silicon carbide (SiC) will be the first to be used to deliver p-rich beams. This target will also validate the functionality of the SPES facility with aluminum beam as result of impinging SiC target with proton beam. In the past, off line studies on laser photoionization of aluminum have been performed in Pavia Spectroscopy Laboratory and in Laboratori Nazionali di Legnaro; a XeCl excimer laser was installed in order to test the laser ionization in the SPES hot cavity. With the new Wien filter installed a better characterization of the ionization process in terms of efficiency was performed and results are discussed.
Fiber optic temperature sensor gives rise to thermal analysis in complex product design
NASA Astrophysics Data System (ADS)
Cheng, Andrew Y. S.; Pau, Michael C. Y.
1996-09-01
A computer-adapted fiber-optic temperature sensing system has been developed which aims to study both the theoretical aspect of fiber temperature sensing and the experimental aspect of such system. The system consists of a laser source, a fiber sensing element, an electronic fringes counting device, and an on-line personal computer. The temperature measurement is achieved by the conventional double beam fringe counting method with optical path length changes in the sensing beam due to the fiber expansion. The system can automatically measure the temperature changes in a sensing fiber arm which provides an insight of the heat generation and dissipation of the measured system. Unlike the conventional measuring devices such as thermocouples or solid state temperature sensors, the fiber sensor can easily be wrapped and shaped to fit the surface of the measuring object or even inside a molded plastic parts such as a computer case, which gives much more flexibility and applicability to the analysis of heat generation and dissipation in the operation of these machine parts. The reference beam is being set up on a temperature controlled optical bench to facilitate high sensitivity and high temperature resolution. The measuring beam has a motorized beam selection device for multiple fiber beam measurement. The project has been demonstrated in the laboratory and the system sensitivity and resolution are found to be as high as 0.01 degree Celsius. It is expected the system will find its application in many design studies which require thermal budgeting.
Characterization of the Shielded Neutron Source at Triangle Universities Nuclear Laboratory
NASA Astrophysics Data System (ADS)
Hobson, Chad; Finch, Sean; Howell, Calvin; Malone, Ron; Tornow, Wernew
2016-09-01
In 2015, Triangle Universities Nuclear Laboratory rebuilt its shielded neutron source (SNS) with the goal of improving neutron beam collimation and reducing neutron and gamma-ray backgrounds. Neutrons are produced via the 2H(d,n)3He reaction and then collimated by heavy shielding to form a beam. The SNS has the ability to produce both a rectangular and circular neutron beam through use of two collimators with different beam apertures. Our work characterized both the neutron beam profiles as well as the neutron and gamma-ray backgrounds at various locations around the SNS. This characterization was performed to provide researchers who use the SNS with beam parameters necessary to plan and conduct an experiment. Vertical and horizontal beam profiles were measured at two different distances from the neutron production cell by scanning a small plastic scintillator across the face of the beam at various energies for each collimator. Background neutron and gamma-ray intensities were measured using time-of-flight techniques at 10 MeV and 16 MeV with the rectangular collimator. We present results on the position and size of neutron beam as well as on the structure and magnitude of the backgrounds.
Determination of absorption coefficient based on laser beam thermal blooming in gas-filled tube.
Hafizi, B; Peñano, J; Fischer, R; DiComo, G; Ting, A
2014-08-01
Thermal blooming of a laser beam propagating in a gas-filled tube is investigated both analytically and experimentally. A self-consistent formulation taking into account heating of the gas and the resultant laser beam spreading (including diffraction) is presented. The heat equation is used to determine the temperature variation while the paraxial wave equation is solved in the eikonal approximation to determine the temporal and spatial variation of the Gaussian laser spot radius, Gouy phase (longitudinal phase delay), and wavefront curvature. The analysis is benchmarked against a thermal blooming experiment in the literature using a CO₂ laser beam propagating in a tube filled with air and propane. New experimental results are presented in which a CW fiber laser (1 μm) propagates in a tube filled with nitrogen and water vapor. By matching laboratory and theoretical results, the absorption coefficient of water vapor is found to agree with calculations using MODTRAN (the MODerate-resolution atmospheric TRANsmission molecular absorption database) and HITRAN (the HIgh-resolution atmospheric TRANsmission molecular absorption database).
Optical Path Difference Fluctations at the CHARA Interferometric Array
NASA Astrophysics Data System (ADS)
Merand, A.; ten Brummelaar, T. A.; McAlister, H. A.; Ridgway, S. T.; Sturmann, J.; Sturmann, L.; Turner, N. H.; Bagnuolo, W. G.; Hrynevych, M.; Shure, M. A.
2001-05-01
Commissioning observations at the CHARA Array have been carried out with the two south telescopes, with a telescope separation of 34 meters. Due to the size of the array (>340 meters across) and the optical delay geometry, the beams travel horizontal distances of approximately 200 meters, with a number of reflections in the telescope coude area and the optical delay and beam combination areas. Stellar and laboratory observations have been analyzed to determine the variations of the optical path, as revealed by shifts in the interference pattern. The power spectra of the OPD variations are diagnostic of the atmospheric turbulence characteristics, and of any internal vibrations in the laboratory. Results of the OPD analysis will be compared to similar studies at other interferometric facilities. The CHARA Array, a six-telescope O/IR interferometric array operated by Georgia State University on Mt. Wilson, Calfornia, was funded by the National Science Foundation, the W.M. Keck Foundation, the David and Lucile Packard Foundation, and Georgia State University.
Tests of positive ion beams from a microwave ion source for AMS
NASA Astrophysics Data System (ADS)
Schneider, R. J.; von Reden, K. F.; Hayes, J. M.; Wills, J. S. C.; Kern, W. G. E.; Kim, S.-W.
2000-10-01
A test facility has been constructed to evaluate high-current positive ion beams from small gaseous samples for AMS applications. The major components include a compact permanent magnet microwave ion source built at the AECL Chalk River Laboratory and now on loan from the University of Toronto, and a double-focusing spectrometer magnet on loan from Argonne National Laboratory. Samples are introduced by means of a silica capillary injection system. Loop injection into a carrier gas provides a stable feed for the microwave driven plasma. The magnetic analysis system is utilized to isolate carbon ions derived from CO 2 samples from other products of the plasma discharge, including argon ions of the carrier gas. With a smaller discharge chamber, we hope to exceed a conversion efficiency of 14% for carbon ions produced per atom, which we reported at AMS-7. The next step will be to construct an efficient charge-exchange cell, to produce negative ions for injection into the WHOI recombinator injector.
Capillary Optics Based X-Ray Micro-Imaging Elemental Analysis
NASA Astrophysics Data System (ADS)
Hampai, D.; Dabagov, S. B.; Cappuccio, G.; Longoni, A.; Frizzi, T.; Cibin, G.
2010-04-01
A rapidly developed during the last few years micro-X-ray fluorescence spectrometry (μXRF) is a promising multi-elemental technique for non-destructive analysis. Typically it is rather hard to perform laboratory μXRF analysis because of the difficulty of producing an original small-size X-ray beam as well as its focusing. Recently developed for X-ray beam focusing polycapillary optics offers laboratory X-ray micro probes. The combination of polycapillary lens and fine-focused micro X-ray tube can provide high intensity radiation flux on a sample that is necessary in order to perform the elemental analysis. In comparison to a pinhole, an optimized "X-ray source-op tics" system can result in radiation density gain of more than 3 orders by the value. The most advanced way to get that result is to use the confocal configuration based on two X-ray lenses, one for the fluorescence excitation and the other for the detection of secondary emission from a sample studied. In case of X-ray capillary microfocusing a μXRF instrument designed in the confocal scheme allows us to obtain a 3D elemental mapping. In this work we will show preliminary results obtained with our prototype, a portable X-ray microscope for X-ray both imaging and fluorescence analysis; it enables μXRF elemental mapping simultaneously with X-ray imaging. A prototype of compact XRF spectrometer with a spatial resolution less than 100 μm has been designed.
Semiconductor Laser Joint Study Program with Rome Laboratory
1994-09-01
VCSELs 3.3 Laser Wafer Growth by Molecular Beam Epitaxy 8 The VCSEL structures were grown by molecular beam ...cavity surface emittimg lasers ( VCSEL ), Optical 40 interconnects, Moelcular beam epitaxy It CECOOE 17. SECURfTY CLASWICATION SECURFlY CLASSIFICATION 1 Q...7 3.3 Laser Wafer Growth by Molecular Beam Epitax. ............ 8 3.4 VCSEL Fabrication Process ................................................
Performance on the low charge state laser ion source in BNL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okamura, M.; Alessi, J.; Beebe, E.
On March 2014, a Laser Ion Source (LIS) was commissioned which delivers high-brightness, low-charge-state heavy ions for the hadron accelerator complex in Brookhaven National Laboratory (BNL). Since then, the LIS has provided many heavy ion species successfully. The low-charge-state (mostly singly charged) beams are injected to the Electron Beam Ion Source (EBIS), where ions are then highly ionized to fit to the following accelerator’s Q/M acceptance, like Au 32+. Recently we upgraded the LIS to be able to provide two different beams into EBIS on a pulse-to-pulse basis. Now the LIS is simultaneously providing beams for both the Relativistic Heavymore » Ion Collider (RHIC) and NASA Space Radiation Laboratory (NSRL).« less
INEL BNCT Research Program annual report, 1992
DOE Office of Scientific and Technical Information (OSTI.GOV)
Venhuizen, J.R.
1993-05-01
This report is a summary of the progress and research produced for the Idaho National Engineering Laboratory Boron Neutron Capture Therapy (BNCT) Research Program for calendar year 1992. Contributions from all the principal investigators about their individual projects are included, specifically, chemistry (pituitary tumor targeting compounds, boron drug development including liposomes, lipoproteins, and carboranylalanine derivatives), pharmacology (murine screenings, toxicity testing, inductively coupled plasma-atomic emission spectroscopy (ICP-AES) analysis of biological samples), physics (radiation dosimetry software, neutron beam and filter design, neutron beam measurement dosimetry), and radiation biology (small and large animal models tissue studies and efficacy studies). Information on the potentialmore » toxicity of borocaptate sodium and boronophenylalanine is presented, results of 21 spontaneous-tumor-bearing dogs that have been treated with BNCT at the Brookhaven National Laboratory (BNL) Medical Research Reactor (BMRR) are discussed, and predictions for an epithermal-neutron beam at the Georgia Tech Research Reactor (GTRR) are shown. Cellular-level boron detection and localization by secondary ion mass spectrometry, sputter-initiated resonance ionization spectroscopy, low atomization resonance ionization spectroscopy, and alpha track are presented. Boron detection by ICP-AES is discussed in detail. Several boron carrying drugs exhibiting good tumor uptake are described. Significant progress in the potential of treating pituitary tumors with BNCT is presented. Measurement of the epithermal-neutron flux at BNL and comparison to predictions are shown. Calculations comparing the GTRR and BMRR epithermal-neutron beams are also presented. Individual progress reports described herein are separately abstracted and indexed for the database.« less
Fischer, W.; Gu, X.; Drees, K. A.; ...
2017-09-13
A head-on beam-beam compensation scheme was implemented for operation in the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory [Phys. Rev. Lett. 115, 264801 (2015)]. The compensation consists of electron lenses for the reduction of the beam-beam induced tune spread, and a lattice for the minimization of beam-beam generated resonance driving terms. We describe the implementations of the lattice and electron lenses, and report on measurements of lattice properties and the effect of the electron lenses on the hadron beam.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fischer, W.; Gu, X.; Drees, K. A.
A head-on beam-beam compensation scheme was implemented for operation in the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory [Phys. Rev. Lett. 115, 264801 (2015)]. The compensation consists of electron lenses for the reduction of the beam-beam induced tune spread, and a lattice for the minimization of beam-beam generated resonance driving terms. We describe the implementations of the lattice and electron lenses, and report on measurements of lattice properties and the effect of the electron lenses on the hadron beam.
Final safety analysis report for the Ground Test Accelerator (GTA), Phase 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1994-10-01
This document is the first volume of a 3 volume safety analysis report on the Ground Test Accelerator (GTA). The GTA program at the Los Alamos National Laboratory (LANL) is the major element of the national Neutral Particle Beam (NPB) program, which is supported by the Strategic Defense Initiative Office (SDIO). A principal goal of the national NPB program is to assess the feasibility of using hydrogen and deuterium neutral particle beams outside the Earth`s atmosphere. The main effort of the NPB program at Los Alamos concentrates on developing the GTA. The GTA is classified as a low-hazard facility, exceptmore » for the cryogenic-cooling system, which is classified as a moderate-hazard facility. This volume consists of an introduction, summary/conclusion, site description and assessment, description of facility, and description of operation.« less
NASA Astrophysics Data System (ADS)
Rigamonti, D.; Giacomelli, L.; Gorini, G.; Nocente, M.; Rebai, M.; Tardocchi, M.; Angelone, M.; Batistoni, P.; Cufar, A.; Ghani, Z.; Jednorog, S.; Klix, A.; Laszynska, E.; Loreti, S.; Pillon, M.; Popovichev, S.; Roberts, N.; Thomas, D.; Contributors, JET
2018-04-01
An accurate calibration of the JET neutron diagnostics with a 14 MeV neutron generator was performed in the first half of 2017 in order to provide a reliable measurement of the fusion power during the next JET deuterium-tritium (DT) campaign. In order to meet the target accuracy, the chosen neutron generator has been fully characterized at the Neutron Metrology Laboratory of the National Physical Laboratory (NPL), Teddington, United Kingdom. The present paper describes the measurements of the neutron energy spectra obtained using a high-resolution single-crystal diamond detector (SCD). The measurements, together with a new neutron source routine ‘ad hoc’ developed for the MCNP code, allowed the complex features of the neutron energy spectra resulting from the mixed D/T beam ions interacting with the T/D target nuclei to be resolved for the first time. From the spectral analysis a quantitative estimation of the beam ion composition has been made. The unprecedented intrinsic energy resolution (<1% full width at half maximum (FWHM) at 14 MeV) of diamond detectors opens up new prospects for diagnosing DT plasmas, such as, for instance, the possibility to study non-classical slowing down of the beam ions by neutron spectroscopy on ITER.
NASA Astrophysics Data System (ADS)
Davidson, Ronald C.; Efthimion, Philip C.; Gilson, Erik; Majeski, Richard; Qin, Hong
2002-01-01
The Paul Trap Simulator Experiment (PTSX) is under construction at the Princeton Plasma Physics Laboratory to simulate intense beam propagation through a periodic quadrupole magnetic field. In the Paul trap configuration, a long nonneutral plasma column is confined axially by dc voltages on end cylinders at z=+L and z=-L, and transverse confinement is provided by segmented cylindrical electrodes with applied oscillatory voltages ±V0(t) over 90° segments. Because the transverse focusing force is similar in waveform to that produced by a discrete set of periodic quadrupole magnets in a frame moving with the beam, the Paul trap configuration offers the possibility of simulating intense beam propagation in a compact laboratory facility. The experimental layout is described, together with the planned experiments to study beam mismatch, envelope instabilities, halo particle production, and collective wave excitations.
Ion Beam Facility at the University of Chile; Applications and Basic Research
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miranda, P. A.; Morales, J. R.; Cancino, S.
2010-08-04
The main characteristics of the ion beam facility based on a 3.75 MeV Van de Graaff accelerator at the University of Chile are described at this work. Current activities are mainly focused on the application of the Ion Beam Analysis techniques for environmental, archaeological, and material science analysis. For instance, Rutherford Backscattering Spectrometry (RBS) is applied to measure thin gold film thickness which are used to determine their resistivity and other electrical properties. At this laboratory the Proton Induced X-Ray Emission (PIXE) and Proton Elastic Scattering Analysis (PESA) methodologies are extensively used for trace element analysis of urban aerosols (Santiago,more » Ciudad de Mexico). A similar study is being carried out at the Antarctica Peninsula. Characterization studies on obsidian and vitreous dacite samples using PIXE has been also perform allowing to match some of these artifacts with geological source sites in Chile.Basic physics research is being carried out by measuring low-energy cross section values for the reactions {sup 63}Cu(d,p){sup 64}Cu and {sup Nat}Zn(p,x){sup 67}Ga. Both radionuclide {sup 64}Cu and {sup 67}Ga are required for applications in medicine. Ongoing stopping power cross section measurements of proton and alphas on Pd, Cu, Bi and Mylar are briefly discussed.« less
Ion Beam Facility at the University of Chile; Applications and Basic Research
NASA Astrophysics Data System (ADS)
Miranda, P. A.; Morales, J. R.; Cancino, S.; Dinator, M. I.; Donoso, N.; Sepúlveda, A.; Ortiz, P.; Rojas, S.
2010-08-01
The main characteristics of the ion beam facility based on a 3.75 MeV Van de Graaff accelerator at the University of Chile are described at this work. Current activities are mainly focused on the application of the Ion Beam Analysis techniques for environmental, archaeological, and material science analysis. For instance, Rutherford Backscattering Spectrometry (RBS) is applied to measure thin gold film thickness which are used to determine their resistivity and other electrical properties. At this laboratory the Proton Induced X-Ray Emission (PIXE) and Proton Elastic Scattering Analysis (PESA) methodologies are extensively used for trace element analysis of urban aerosols (Santiago, Ciudad de Mexico). A similar study is being carried out at the Antarctica Peninsula. Characterization studies on obsidian and vitreous dacite samples using PIXE has been also perform allowing to match some of these artifacts with geological source sites in Chile. Basic physics research is being carried out by measuring low-energy cross section values for the reactions 63Cu(d,p)64Cu and NatZn(p,x)67Ga. Both radionuclide 64Cu and 67Ga are required for applications in medicine. Ongoing stopping power cross section measurements of proton and alphas on Pd, Cu, Bi and Mylar are briefly discussed.
NASA Technical Reports Server (NTRS)
Cambell, T. G.; Bailey, M. C.; Cockrell, C. R.; Beck, F. B.
1983-01-01
The electromagnetic analysis activities at the Langley Research Center are resulting in efficient and accurate analytical methods for predicting both far- and near-field radiation characteristics of large offset multiple-beam multiple-aperture mesh reflector antennas. The utilization of aperture integration augmented with Geometrical Theory of Diffraction in analyzing the large reflector antenna system is emphasized.
Implementation of a Precast Inverted T-Beam System in Virginia: Part I : Laboratory Investigations
DOT National Transportation Integrated Search
2017-10-01
The inverted T-beam system provides an accelerated bridge construction alternative for short-to-medium-span bridges. The system consists of adjacent precast inverted T-beams with a cast-in-place concrete topping. This bridge system is not expected to...
Scientific program and abstracts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gerich, C.
1983-01-01
The Fifth International Conference on High-Power Particle Beams is organized jointly by the Lawrence Livermore National Laboratory and Physics International Company. As in the previous conferences in this series, the program includes the following topics: high-power, electron- and ion-beam acceleration and transport; diode physics; high-power particle beam interaction with plasmas and dense targets; particle beam fusion (inertial confinement); collective ion acceleration; particle beam heating of magnetically confined plasmas; and generation of microwave/free-electron lasers.
Novel approach for beacon formation through simulated turbulence: initial lab-test results
NASA Astrophysics Data System (ADS)
Khizhnyak, A.; Markov, V.; Tomov, I.; Wu, F.
2010-02-01
In this paper we report the results of the analysis and experimental modeling of the target-in-the-loop (TIL) approach that is used to form a localized beacon for a laser beam propagating through turbulent atmosphere. The analogy between the TIL system and the laser cavity has been used here to simulate the process shaping the laser beacon on a remote image-resolved target with rough surface. The TIL breadboard was integrated and used for laboratory modeling of the proposed approach. This breadboard allowed to simulate the TIL arrangement with a rough-surface target and laser beam propagation through the turbulent atmospheric layer. Here we present the initial results of the performed studies.
Results from the OPERA experiment at the CNGS beam
NASA Astrophysics Data System (ADS)
Mauri, N.
2017-12-01
The OPERA experiment at the Gran Sasso underground laboratory was designed to study vμ → vτ oscillations in appearance mode in the CNGS neutrino beam. Five vτ candidate events have been observed, allowing to assess the discovery of vμ → vτ transitions in the atmospheric sector with a significance of 5.1σ. In this paper the vτ data analysis will be discussed, with emphasis on the background constraints obtained using dedicated data-driven control samples. Results on the search for vμ → vτ oscillations, on the search for sterile neutrino mixing and on the atmospheric muon charge ratio will also be presented.
First Results from BM@N Technical Run with Deuteron Beam
NASA Astrophysics Data System (ADS)
Baranov, D.; Kapishin, M.; Kulish, E.; Maksymchuk, A.; Mamontova, T.; Pokatashkin, G.; Rufanov, I.; Vasendina, V.; Zinchenko, A.
2018-03-01
BM@N (Baryonic Matter at Nuclotron) is the first experiment to be realized at the accelerator complex of NICA-Nuclotron at JINR (Dubna). The aim of the experiment is to study interactions of relativistic heavy ion beams with a kinetic energy from 1 to 4.5 AGeV with fixed targets. The BM@N set-up at the starting phase of the experiment is introduced. First results of the analysis of minimum bias experimental data collected in the technical run in interactions of the deuteron beam of 4 AGeV with different targets are presented. The spacial, momentum and primary vertex resolution of the GEM tracker are studied. The signal of Lambda-hyperon is reconstructed in the proton-pion invariant mass spectrum. The data results are described by Monte Carlo simulations. The investigation has been performed at the Laboratory of High Energy Physics, JINR.
NASA Astrophysics Data System (ADS)
Lim, Jae-Ku
In the span of a 100 year since the discovery of first x-rays by Roentgen that won him the first Nobel prize in physics, several types of radiation sources have been developed. Currently, radiations at extremely short wavelengths have only been accessed at synchrotron radiation sources. However, the current 3rd generation synchrotron sources can only produce x-rays of energy up to 60 keV and pulse lengths of several picoseconds long. But needs for shorter wavelength and shorter pulse duration radiations demanded by scientists to understand the nature of matter at atomic/molecular scale initiated the new scientific research for the production of sub-picosecond, hard x-rays. At the Lawrence Livermore National Laboratory, a Thomson x-ray source in the backscattering mode---a head-on collision between a high intensity Ti:Sapphire Chirped Pulse Amplification laser and a relativistic electron beam---called the PLEIADES (Picosecond Laser-Electron Inter-Action for the Dynamical Evaluation of Structures) laboratory has been developed. Early works demonstrated the production of quasi-monochromatic, femto-second long, hard x-rays. Initially reported x-ray flux was in the low range of 105--10 6 photons per shot. During the early stage of PLEIADES experiments, 15 T/m electromagnet final focusing quadrupoles (in a triplet lattice configuration) were employed to focus the beam to a 40-50 mum spot-size. A larger focal spot-size beam has a low-density of electron particles available at the interaction with incident photons, which leads to a low scattering probability. The current dissertation shows that by employing a 560 T/m PMQ (Permanent-Magnet Quadrupole) final focus system, an electron beam as small as 10-20 mum can be achieved. The implementation of this final focus system demonstrated the improvement of the total x-ray flux by two orders of magnitude. The PMQ final focus system also produced small electron beams consistently over 30-100 MeV electron beam energy, which enabled the production of x-ray energy over 40-140 keV. In this dissertation, the PLEIADES Thomson x-ray facility will be described in detail includes the 100 MeV linac and the FALCON laser system. Later, we will discuss the design, construction and implementation of the PMQ final focus system in the beamline. The measurement of electron beam parameters before and after the final focus system will be presented. The beam measurements at the interaction region were accomplished with the use of both OTR (Optical Transition Radiation) imaged by a CCD camera and the fast streak camera for respective spatial and temporal alignments. The theoretical analysis in "real beam" effects and spacetime beam jitter effects will be given to help understand the observations. A 3D simulation tool developed for x-ray data analysis was used to provide direct comparisons with the x-ray flux, spectrum distribution and transverse x-ray profile.
Design study of primary ion provider for relativistic heavy ion collider electron beam ion source.
Kondo, K; Kanesue, T; Tamura, J; Okamura, M
2010-02-01
Brookhaven National Laboratory has developed the new preinjector system, electron beam ion source (EBIS) for relativistic heavy ion collider (RHIC) and National Aeronautics and Space Administration Space Radiation Laboratory. Design of primary ion provider is an essential problem since it is required to supply beams with different ion species to multiple users simultaneously. The laser ion source with a defocused laser can provide a low charge state and low emittance ion beam, and is a candidate for the primary ion source for RHIC-EBIS. We show a suitable design with appropriate drift length and solenoid, which helps to keep sufficient total charge number with longer pulse length. The whole design of primary ion source, as well as optics arrangement, solid targets configuration and heating about target, is presented.
Methodological Framework for Analysis of Buildings-Related Programs with BEAMS, 2008
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elliott, Douglas B.; Dirks, James A.; Hostick, Donna J.
The U.S. Department of Energy’s (DOE’s) Office of Energy Efficiency and Renewable Energy (EERE) develops official “benefits estimates” for each of its major programs using its Planning, Analysis, and Evaluation (PAE) Team. PAE conducts an annual integrated modeling and analysis effort to produce estimates of the energy, environmental, and financial benefits expected from EERE’s budget request. These estimates are part of EERE’s budget request and are also used in the formulation of EERE’s performance measures. Two of EERE’s major programs are the Building Technologies Program (BT) and the Weatherization and Intergovernmental Program (WIP). Pacific Northwest National Laboratory (PNNL) supports PAEmore » by developing the program characterizations and other market information necessary to provide input to the EERE integrated modeling analysis as part of PAE’s Portfolio Decision Support (PDS) effort. Additionally, PNNL also supports BT by providing line-item estimates for the Program’s internal use. PNNL uses three modeling approaches to perform these analyses. This report documents the approach and methodology used to estimate future energy, environmental, and financial benefits using one of those methods: the Building Energy Analysis and Modeling System (BEAMS). BEAMS is a PC-based accounting model that was built in Visual Basic by PNNL specifically for estimating the benefits of buildings-related projects. It allows various types of projects to be characterized including whole-building, envelope, lighting, and equipment projects. This document contains an overview section that describes the estimation process and the models used to estimate energy savings. The body of the document describes the algorithms used within the BEAMS software. This document serves both as stand-alone documentation for BEAMS, and also as a supplemental update of a previous document, Methodological Framework for Analysis of Buildings-Related Programs: The GPRA Metrics Effort, (Elliott et al. 2004b). The areas most changed since the publication of that previous document are those discussing the calculation of lighting and HVAC interactive effects (for both lighting and envelope/whole-building projects). This report does not attempt to convey inputs to BEAMS or the methodology of their derivation.« less
Measurement of Refractive Index Gradients by Deflection of a Laser Beam
ERIC Educational Resources Information Center
Barnard, A. J.; Ahlborn, B.
1975-01-01
In this simple experiment for an undergraduate laboratory a laser beam is passed through the mixing zone of two liquids with different refractive indices. The spatial variation of the refractive index, at different times during the mixing, can be determined from the observed deflection of the beam. (Author)
Laser ion source with solenoid for Brookhaven National Laboratory-electron beam ion sourcea)
NASA Astrophysics Data System (ADS)
Kondo, K.; Yamamoto, T.; Sekine, M.; Okamura, M.
2012-02-01
The electron beam ion source (EBIS) preinjector at Brookhaven National Laboratory (BNL) is a new heavy ion-preinjector for relativistic heavy ion collider (RHIC) and NASA Space Radiation Laboratory (NSRL). Laser ion source (LIS) is a primary ion source provider for the BNL-EBIS. LIS with solenoid at the plasma drift section can realize the low peak current (˜100 μA) with high charge (˜10 nC) which is the BNL-EBIS requirement. The gap between two solenoids does not cause serious plasma current decay, which helps us to make up the BNL-EBIS beamline.
New facility for ion beam materials characterization and modification at Los Alamos
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tesmer, J.R.; Maggiore, C.J.; Parkin, D.M.
1988-01-01
The Ion Beam Materials Laboratory (IBML) is a new Los Alamos laboratory devoted to the characterization and modification of the near surfaces of materials. The primary instruments of the IBML are a tandem electrostatic accelerator, a National Electrostatics Corp. Model 9SDH, coupled with a Varian CF-3000 ion implanter. The unique organizational structure of the IBML as well as the operational characteristics of the 9SDH (after approximately 3000 h of operation) and the laboratories' research capabilities will be discussed. Examples of current research results will also be presented. 5 refs., 2 figs.
Laser ion source with solenoid for Brookhaven National Laboratory-electron beam ion source.
Kondo, K; Yamamoto, T; Sekine, M; Okamura, M
2012-02-01
The electron beam ion source (EBIS) preinjector at Brookhaven National Laboratory (BNL) is a new heavy ion-preinjector for relativistic heavy ion collider (RHIC) and NASA Space Radiation Laboratory (NSRL). Laser ion source (LIS) is a primary ion source provider for the BNL-EBIS. LIS with solenoid at the plasma drift section can realize the low peak current (∼100 μA) with high charge (∼10 nC) which is the BNL-EBIS requirement. The gap between two solenoids does not cause serious plasma current decay, which helps us to make up the BNL-EBIS beamline.
A beam current density monitor for intense electron beams
NASA Astrophysics Data System (ADS)
Fiorito, R. B.; Raleigh, M.; Seltzer, S. M.
1983-12-01
The authors describe a new type of electric probe for mapping the radial current density profile of high-energy, high current electron beams. The idea of developing an electrically sensitive probe for these conditions was originally suggested to one of the authors during a year's visit to the Lawrence Livermore National Laboratory. The resulting probe is intended for use on the Experimental Test Accelerator (ETA) and the Advanced Test Accelerator at that laboratory. This report discusses in detail: the mechanical design, the electrical response, and temperature effects, as they pertain to the electric probe, and describe the first experimental results obtained using this probe on ETA.
1991-08-01
The outer perimeter of the converter was attached to the C ring with copper tape. Thermoluminescent dosimeters ( TLDs )* and a coaxial x-ray diode...CaF2) TLDs in Al pillboxes for electronic equilibrium. 7 Figure 2. HIFX beam 400 pinch at 0.05 Torr, Y4 38o in. from face. _360O E 340 d 320 - .~. 300...AD-A239 558Hu D L M-91 -111, 1, 1 ,11I Aucr,, 1991 Electron -Beam-Pinch Experiment at Harry Diamond Laboratories: Providing for a High-Dose-Rate
Turbulence characterization by studying laser beam wandering in a differential tracking motion setup
NASA Astrophysics Data System (ADS)
Pérez, Darío G.; Zunino, Luciano; Gulich, Damián; Funes, Gustavo; Garavaglia, Mario
2009-09-01
The Differential Image Motion Monitor (DIMM) is a standard and widely used instrument for astronomical seeing measurements. The seeing values are estimated from the variance of the differential image motion over two equal small pupils some distance apart. The twin pupils are usually cut in a mask on the entrance pupil of the telescope. As a differential method, it has the advantage of being immune to tracking errors, eliminating erratic motion of the telescope. The Differential Laser Tracking Motion (DLTM) is introduced here inspired by the same idea. Two identical laser beams are propagated through a path of air in turbulent motion, at the end of it their wander is registered by two position sensitive detectors-at a count of 800 samples per second. Time series generated from the difference of the pair of centroid laser beam coordinates is then analyzed using the multifractal detrended fluctuation analysis. Measurements were performed at the laboratory with synthetic turbulence: changing the relative separation of the beams for different turbulent regimes. The dependence, with respect to these parameters, and the robustness of our estimators is compared with the non-differential method. This method is an improvement with respect to previous approaches that study the beam wandering.
PIXE analysis of historical paintings: Is the gain worth the risk?
NASA Astrophysics Data System (ADS)
Calligaro, T.; Gonzalez, V.; Pichon, L.
2015-11-01
The PIXE analysis of easel paintings constitutes a challenging task. Despite recognized merits and a few emblematic applications, PIXE has never been routinely applied to these fragile, complex and precious targets. The present work discusses the place of PIXE in the study of easel paintings and opens up perspectives for a more systematic usage of this analytical technique. Progress achieved since decades in the implementation of PIXE to study such fragile cultural heritage artefacts is reviewed, notably at the LABEC laboratory in Italy and at the AGLAE facility of the C2RMF in France. Two specific techniques developed for paintings are detailed and exemplified on Renaissance painting masterpieces: differential PIXE for paint layers depth profiling and multi-scale elemental mapping for the imaging of pigment distribution. Beam-induced damage, a major concern, notably depends on the employed beam fluence in particle/cm2 or μC/cm2. After recalling previous works on damage induced in chemical products comparable to pigments, we present the behaviour under different fluences of protons of a few MeV (1-300 μC/cm2) of targets having high resemblance to historical easel paintings: pellets of specially synthesized lead white pigments, layers of lead white mixed with linseed oil and areas containing lead white of two 19th century paintworks. The results shed new lights on the behaviour of paintworks under the beam and pave the way to strategies for damage mitigation. In particular, the lowering of PIXE performance induced by the decrease of the beam fluence sets a trade-off between risk of damage and gained information which also impacts the PIXE scanning protocol for paintings. As an illustration of an adequate adjustment of this balance, we report the exploratory application of PIXE mapping to a large area of a 19th century easel painting without damage. The recorded elemental maps are compared to elemental maps collected on the same area using laboratory-based scanning XRF.
for next-gen lithium batteries. Spotlight New ion source dramatically improves radioactive beams for Argonne's CARIBU facility A new Electron Beam Ion Source Charge Breeder operated with Argonne's CARIBU and
Drive Beam Shaping and Witness Bunch Generation for the Plasma Wakefield Accelerator
DOE Office of Scientific and Technical Information (OSTI.GOV)
England, R. J.; Frederico, J.; Hogan, M. J.
2010-11-04
High transformer ratio operation of the plasma wake field accelerator requires a tailored drive beam current profile followed by a short witness bunch. We discuss techniques for generating the requisite dual bunches and for obtaining the desired drive beam profile, with emphasis on the FACET experiment at SLAC National Accelerator Laboratory.
STEEL BEAMS FOR FIRST FLOOR BEING READIED FOR CONCRETE POUR ...
STEEL BEAMS FOR FIRST FLOOR BEING READIED FOR CONCRETE POUR UNDER WEATHER SHELTER DURING COLD WINTER. NOTE ABUNDANCE OF BEAMS; THE FLOOR WILL SUPPORT HEAVY LOADS. INL NEGATIVE NO. 1175. Unknown Photographer, 12/20/1950 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
Electron spectroscopy analysis
NASA Technical Reports Server (NTRS)
Gregory, John C.
1992-01-01
The Surface Science Laboratories at the University of Alabama in Huntsville (UAH) are equipped with x-ray photoelectron spectroscopy (XPS or ESCA) and Auger electron spectroscopy (AES) facilities. These techniques provide information from the uppermost atomic layers of a sample, and are thus truly surface sensitive. XPS provides both elemental and chemical state information without restriction on the type of material that can be analyzed. The sample is placed into an ultra high vacuum (UHV) chamber and irradiated with x-rays which cause the ejection of photoelectrons from the sample surface. Since x-rays do not normally cause charging problems or beam damage, XPS is applicable to a wide range of samples including metals, polymers, catalysts, and fibers. AES uses a beam of high energy electrons as a surface probe. Following electronic rearrangements within excited atoms by this probe, Auger electrons characteristic of each element present are emitted from the sample. The main advantage of electron induced AES is that the electron beam can be focused down to a small diameter and localized analysis can be carried out. On the rastering of this beam synchronously with a video display using established scanning electron microscopy techniques, physical images and chemical distribution maps of the surface can be produced. Thus very small features, such as electronic circuit elements or corrosion pits in metals, can be investigated. Facilities are available on both XPS and AES instruments for depth-profiling of materials, using a beam of argon ions to sputter away consecutive layers of material to reveal sub-surface (and even semi-bulk) analyses.
Gamma beams generation with high intensity lasers for two photon Breit-Wheeler pair production
NASA Astrophysics Data System (ADS)
D'Humieres, Emmanuel; Ribeyre, Xavier; Jansen, Oliver; Esnault, Leo; Jequier, Sophie; Dubois, Jean-Luc; Hulin, Sebastien; Tikhonchuk, Vladimir; Arefiev, Alex; Toncian, Toma; Sentoku, Yasuhiko
2017-10-01
Linear Breit-Wheeler pair creation is the lowest threshold process in photon-photon interaction, controlling the energy release in Gamma Ray Bursts and Active Galactic Nuclei, but it has never been directly observed in the laboratory. Using numerical simulations, we demonstrate the possibility to produce collimated gamma beams with high energy conversion efficiency using high intensity lasers and innovative targets. When two of these beams collide at particular angles, our analytical calculations demonstrate a beaming effect easing the detection of the pairs in the laboratory. This effect has been confirmed in photon collision simulations using a recently developed innovative algorithm. An alternative scheme using Bremsstrahlung radiation produced by next generation high repetition rate laser systems is also being explored and the results of first optimization campaigns in this regime will be presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morris, R; Albanese, K; Lakshmanan, M
Purpose: This study intends to characterize the spectral and spatial resolution limits of various fan beam geometries for differentiation of normal and neoplastic breast structures via coded aperture coherent scatter spectral imaging techniques. In previous studies, pencil beam raster scanning methods using coherent scatter computed tomography and selected volume tomography have yielded excellent results for tumor discrimination. However, these methods don’t readily conform to clinical constraints; primarily prolonged scan times and excessive dose to the patient. Here, we refine a fan beam coded aperture coherent scatter imaging system to characterize the tradeoffs between dose, scan time and image quality formore » breast tumor discrimination. Methods: An X-ray tube (125kVp, 400mAs) illuminated the sample with collimated fan beams of varying widths (3mm to 25mm). Scatter data was collected via two linear-array energy-sensitive detectors oriented parallel and perpendicular to the beam plane. An iterative reconstruction algorithm yields images of the sample’s spatial distribution and respective spectral data for each location. To model in-vivo tumor analysis, surgically resected breast tumor samples were used in conjunction with lard, which has a form factor comparable to adipose (fat). Results: Quantitative analysis with current setup geometry indicated optimal performance for beams up to 10mm wide, with wider beams producing poorer spatial resolution. Scan time for a fixed volume was reduced by a factor of 6 when scanned with a 10mm fan beam compared to a 1.5mm pencil beam. Conclusion: The study demonstrates the utility of fan beam coherent scatter spectral imaging for differentiation of normal and neoplastic breast tissues has successfully reduced dose and scan times whilst sufficiently preserving spectral and spatial resolution. Future work to alter the coded aperture and detector geometries could potentially allow the use of even wider fans, thereby making coded aperture coherent scatter imaging a clinically viable method for breast cancer detection. United States Department of Homeland Security; Duke University Medical Center - Department of Radiology; Carl E Ravin Advanced Imaging Laboratories; Duke University Medical Physics Graduate Program.« less
An Investigation of Nonuniform Dose Deposition From an Electron Beam
1994-08-01
to electron - beam pulse. Ceramic package HIPEC Lid Electron beam Die Bond wires TLD TLD Silver epoxy 6 package cavity die TLD’s 21 3 4 5 Figure 2...these apertures was documented in a previous experiment relating to HIFX electron -beam dosimetry .2 The hardware required for this setup was a 60-cm...impurity serves 2Gregory K. Ovrebo, Steven M. Blomquist, and Steven R. Murrill, A HIFX Electron -Beam Dosimetry System, Army Research Laboratory, ARL-TR
PIXE Analysis of Ceramic Artifacts
NASA Astrophysics Data System (ADS)
High, Elizabeth; Lamm, Larry; Schurr, Mark; Stech, Edward; Wiescher, Michael
2009-10-01
Particle Induced X-ray Emissions, or PIXE, is a nuclear physics technique used as a non-destructive material analysis method which gives a detailed and comprehensive profile of the elemental composition of a target. Using the University of Notre Dame KN and FN accelerators in the ISNAP laboratory a beam of particles, here protons, is accelerated and used to knock out electrons from lower orbitals within the target resulting in characteristic X-rays. Under optimum operating conditions data from PIXE can not only give information about which elements are present in a sample but also their relative abundances in parts per million. In a previous run done in collaboration with the Anthropology Department at the University of Notre Dame pottery shards from the Collier Lodge, located in northwest Indiana, were analyzed and only relative abundances were able to be compared between samples. We are now implementing a new setup into the beam-line which will incorporate the ability to take Rutherford Back Scattering, or RBS, measurements of the beam during the PIXE runs, which will allow for a standard normalization for the runs and give the facility the ability to acquire a more absolute and quantitative analysis of the data. Initial results using the same pottery shards as a comparative data set will be presented.
The Electron Beam Ion Source (EBIS)
Brookhaven Lab
2017-12-09
Brookhaven National Lab has successfully developed a new pre-injector system, called the Electron Beam Ion Source, for the Relativistic Heavy Ion Collider (RHIC) and NASA Space Radiation Laboratory science programs. The first of several planned improvemen
NASA Astrophysics Data System (ADS)
Simonin, A.; Achard, Jocelyn; Achkasov, K.; Bechu, S.; Baudouin, C.; Baulaigue, O.; Blondel, C.; Boeuf, J. P.; Bresteau, D.; Cartry, G.; Chaibi, W.; Drag, C.; de Esch, H. P. L.; Fiorucci, D.; Fubiani, G.; Furno, I.; Futtersack, R.; Garibaldi, P.; Gicquel, A.; Grand, C.; Guittienne, Ph.; Hagelaar, G.; Howling, A.; Jacquier, R.; Kirkpatrick, M. J.; Lemoine, D.; Lepetit, B.; Minea, T.; Odic, E.; Revel, A.; Soliman, B. A.; Teste, P.
2015-11-01
Since the signature of the ITER treaty in 2006, a new research programme targeting the emergence of a new generation of neutral beam (NB) system for the future fusion reactor (DEMO Tokamak) has been underway between several laboratories in Europe. The specifications required to operate a NB system on DEMO are very demanding: the system has to provide plasma heating, current drive and plasma control at a very high level of power (up to 150 MW) and energy (1 or 2 MeV), including high performances in term of wall-plug efficiency (η > 60%), high availability and reliability. To this aim, a novel NB concept based on the photodetachment of the energetic negative ion beam is under study. The keystone of this new concept is the achievement of a photoneutralizer where a high power photon flux (~3 MW) generated within a Fabry-Perot cavity will overlap, cross and partially photodetach the intense negative ion beam accelerated at high energy (1 or 2 MeV). The aspect ratio of the beam-line (source, accelerator, etc) is specifically designed to maximize the overlap of the photon beam with the ion beam. It is shown that such a photoneutralized based NB system would have the capability to provide several tens of MW of D0 per beam line with a wall-plug efficiency higher than 60%. A feasibility study of the concept has been launched between different laboratories to address the different physics aspects, i.e. negative ion source, plasma modelling, ion accelerator simulation, photoneutralization and high voltage holding under vacuum. The paper describes the present status of the project and the main achievements of the developments in laboratories.
PIXE Analysis of Atmospheric Aerosol Samples Collected in the Adirondack Mountains
NASA Astrophysics Data System (ADS)
Yoskowitz, Josh; Ali, Salina; Nadareski, Benjamin; Safiq, Alexandrea; Smith, Jeremy; Labrake, Scott; Vineyard, Michael
2013-10-01
We have performed an elemental analysis of atmospheric aerosol samples collected at Piseco Lake in Upstate New York using proton induced x-ray emission spectroscopy (PIXE). This work is part of a systematic study of airborne pollution in the Adirondack Mountains. Of particular interest is the sulfur content that can contribute to acid rain, a well-documented problem in the Adirondacks. We used a nine-stage cascade impactor to collect the samples and distribute the particulate matter onto Kapton foils by particle size. The PIXE experiments were performed with 2.2-MeV proton beams from the 1.1-MV pelletron accelerator in the Union College Ion-Beam Analysis Laboratory. X-Ray energy spectra were measured with a silicon drift detector and analyzed with GUPIX software to determine the elemental concentrations of the aerosols. A broad range of elements from silicon to zinc were detected with significant sulfur concentrations measured for particulate matter between 0.25 and 0.5 μm in size. The PIXE analysis will be described and preliminary results will be presented.
Final safety analysis report for the Ground Test Accelerator (GTA), Phase 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1994-10-01
This document is the second volume of a 3 volume safety analysis report on the Ground Test Accelerator (GTA). The GTA program at the Los Alamos National Laboratory (LANL) is the major element of the national Neutral Particle Beam (NPB) program, which is supported by the Strategic Defense Initiative Office (SDIO). A principal goal of the national NPB program is to assess the feasibility of using hydrogen and deuterium neutral particle beams outside the Earth`s atmosphere. The main effort of the NPB program at Los Alamos concentrates on developing the GTA. The GTA is classified as a low-hazard facility, exceptmore » for the cryogenic-cooling system, which is classified as a moderate-hazard facility. This volume consists of failure modes and effects analysis; accident analysis; operational safety requirements; quality assurance program; ES&H management program; environmental, safety, and health systems critical to safety; summary of waste-management program; environmental monitoring program; facility expansion, decontamination, and decommissioning; summary of emergency response plan; summary plan for employee training; summary plan for operating procedures; glossary; and appendices A and B.« less
Beam Dynamics Simulation of Photocathode RF Electron Gun at the PBP-CMU Linac Laboratory
NASA Astrophysics Data System (ADS)
Buakor, K.; Rimjaem, S.
2017-09-01
Photocathode radio-frequency (RF) electron guns are widely used at many particle accelerator laboratories due to high quality of produced electron beams. By using a short-pulse laser to induce the photoemission process, the electrons are emitted with low energy spread. Moreover, the photocathode RF guns are not suffered from the electron back bombardment effect, which can cause the limited electron current and accelerated energy. In this research, we aim to develop the photocathode RF gun for the linac-based THz radiation source. Its design is based on the existing gun at the PBP-CMU Linac Laboratory. The gun consists of a one and a half cell S-band standing-wave RF cavities with a maximum electric field of about 60 MV/m at the centre of the full cell. We study the beam dynamics of electrons traveling through the electromagnetic field inside the RF gun by using the particle tracking program ASTRA. The laser properties i.e. transverse size and injecting phase are optimized to obtain low transverse emittance. In addition, the solenoid magnet is applied for beam focusing and emittance compensation. The proper solenoid magnetic field is then investigated to find the optimum value for proper emittance conservation condition.
1988-07-01
Air Products and Chemicals , Inc . PO Box 538 Allentown, PA 18105 118. Robert J. Eagan Sandia National Laboratories...Magnotta Air Products and Chemicals , Inc . PO Box 538 Allentown, PA 18105 225. Tai-il Mah Universal Energy Systems 4401 Dayton-Xenia Road...15601 S. Venkat Raman Air Products and Chemicals , Inc . PO Box 538 Allentown, PA 18105 Dennis Readey Ohio State University 2041
A free-jet Hg target operating in a high magnetic field intersecting a high-power proton beam
NASA Astrophysics Data System (ADS)
Graves, Van; Spampinato, Philip; Gabriel, Tony; Kirk, Harold; Simos, Nicholas; Tsang, Thomas; McDonald, Kirk; Peter Titus; Fabich, Adrian; Haseroth, Helmut; Lettry, Jacques
2006-06-01
A proof-of-principal experiment to investigate the interaction of a proton beam, high magnetic field, and high-Z target is planned to take place at CERN in early 2007. This experiment is part of the Muon Collider Collaboration, with participants from Brookhaven National Laboratory, Princeton University, Massachusetts Institute Of Technology, European Organization for Nuclear Research-CERN, Rutherford Appleton Laboratory, and Oak Ridge National Laboratory. An unconstrained mercury jet target system that interacts with a high power (1 MW) proton beam in a high magnetic field (15 T) is being designed. The Hg jet diameter is 1-cm with a velocity up to 20 m/s. A laser optical diagnostic system will be incorporated into the target design to permit observation of the dispersal of the jet resulting from interaction with a 24 GeV proton beam with up to 20×1012 ppp. The target system includes instruments for sensing mercury vapor, temperature, flow rate, and sump tank level, and the means to position the jet relative to the magnetic axis of a solenoid and the proton beam. The design considerations for the system include all issues dealing with safely handling approximately 23 l of Hg, transporting the target system and the mercury to CERN, decommissioning the experiment, and returning the mildly activated equipment and Hg to the US.
A free-jet Hg target operating in a high magnetic field intersecting a high-power proton beam
NASA Astrophysics Data System (ADS)
Van Graves; Spampinato, Philip; Gabriel, Tony; Kirk, Harold; Simos, Nicholas; Tsang, Thomas; McDonald, Kirk; Peter Titus; Fabich, Adrian; Haseroth, Helmut; Lettry, Jacques
2006-06-01
A proof-of-principal experiment to investigate the interaction of a proton beam, high magnetic field, and high- Z target is planned to take place at CERN in early 2007. This experiment is part of the Muon Collider Collaboration, with participants from Brookhaven National Laboratory, Princeton University, Massachusetts Institute Of Technology, European Organization for Nuclear Research-CERN, Rutherford Appleton Laboratory, and Oak Ridge National Laboratory. An unconstrained mercury jet target system that interacts with a high power (1 MW) proton beam in a high magnetic field (15 T) is being designed. The Hg jet diameter is 1-cm with a velocity up to 20 m/s. A laser optical diagnostic system will be incorporated into the target design to permit observation of the dispersal of the jet resulting from interaction with a 24 GeV proton beam with up to 20×10 12 ppp. The target system includes instruments for sensing mercury vapor, temperature, flow rate, and sump tank level, and the means to position the jet relative to the magnetic axis of a solenoid and the proton beam. The design considerations for the system include all issues dealing with safely handling approximately 23 l of Hg, transporting the target system and the mercury to CERN, decommissioning the experiment, and returning the mildly activated equipment and Hg to the US.
Laboratory investigation of concrete beam-end treatments.
DOT National Transportation Integrated Search
2015-05-01
The ends of prestressed concrete beams under expansion joints are often exposed to moisture and chlorides. Left unprotected, the : moisture and chlorides come in contact with the ends of the prestressing strands and/or the mild reinforcing, resulting...
Lapierre, A; Schwarz, S; Baumann, T M; Cooper, K; Kittimanapun, K; Rodriguez, A J; Sumithrarachchi, C; Williams, S J; Wittmer, W; Leitner, D; Bollen, G
2014-02-01
An electron-beam ion trap (EBIT) charge breeder is being brought into operation at the National Superconducting Cyclotron Laboratory at Michigan State University. The EBIT is part of the ReA post-accelerator for reacceleration of rare isotopes, which are thermalized in a gas "stopping" cell after being produced at high energy by projectile fragmentation. The ReA EBIT has a distinctive design; it is characterized by a high-current electron gun and a two-field superconducting magnet to optimize the capture and charge-breeding efficiency of continuously injected singly charged ion beams. Following a brief overview of the reaccelerator system and the ReA EBIT, this paper presents the latest commissioning results, particularly, charge breeding and reacceleration of the highly charged rare isotopes, (76)Ga(24 +, 25 +).
Conditions for the onset of the current filamentation instability in the laboratory
NASA Astrophysics Data System (ADS)
Shukla, N.; Vieira, J.; Muggli, P.; Sarri, G.; Fonseca, R.
2018-06-01
The current filamentation instability (CFI) is capable of generating strong magnetic fields relevant to the explanation of radiation processes in astrophysical objects and leads to the onset of particle acceleration in collisionless shocks. Probing such extreme scenarios in the laboratory is still an open challenge. In this work, we investigate the possibility of using neutral -~e+$ beams to explore the CFI with realistic parameters, by performing two-dimensional particle-in-cell simulations. We show that CFI can occur unless the rate at which the beam expands due to finite beam emittance is larger than the CFI growth rate and as long as the role of the competing electrostatic two-stream instability (TSI) is negligible. We also show that the longitudinal energy spread, typical of plasma-based accelerated electron-positron fireball beams, plays a minor role in the growth of CFI in these scenarios.
Status and test report on the LANL-Boeing APLE/HPO flying-wire beam-profile monitor. Status report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilke, M.; Barlow, D.; Fortgang, C.
1994-07-01
The High-Power Oscillator (HPO) demonstration of the Average Power Laser Experiment (APLE) is a collaboration by Los Alamos National Laboratory and Boeing to demonstrate a 10 kW average power, 10 {mu}m free electron laser (FEL). As part of the collaboration, Los Alamos National Laboratory (LANL) is responsible for many of the electron beam diagnostics in the linac, transport, and laser sections. Because of the high duty factor and power of the electron beam, special diagnostics are required. This report describes the flying wire diagnostic required to monitor the beam profile during high-power, high-duty operation. The authors describe the diagnostic andmore » prototype tests on the Los Alamos APLE Prototype Experiment (APEX) FEL. They also describe the current status of the flying wires being built for APLE.« less
Optical Guiding in the Separable Beam Limit,
1987-09-01
UNIV COLLEGE PARK LAB FOR PLASMA AND FUSION ENERGY STUDIES T M ANTONSEN ET AL SEP 87 UMLPF-BB-Bui UNCLASSIFIED N8884-6-K-2 85 F/G 9/2 N E m9h hOTCA...University of Maryland, D-Aiitiun f Laboratory for Plasma and Fusion Energy Studies Av-,-~t Codes DISTEIBTION GT TMNTA Approved for public releaBOI...Distfibution Unlimited OPTICAL GUIDING IN THE SEPARABLE BEAM LIMIT T. M. Antonsen, Jr. and B. Levush Laboratory for Plasma and Fusion Energy Studies University
Determining Pu-239 content by resonance transmission analysis using a filtered reactor beam.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klann, R. T.
A novel technique has been developed at Argonne National Laboratory to determine the {sup 239}Pu content in EBR-II blanket elements using resonance transmission analysis (RTA) with a filtered reactor beam. The technique uses cadmium and gadolinium filters along with a {sup 239}Pu fission chamber to isolate the 0.3 eV resonance in {sup 239}Pu. In the energy range from 0.1 to 0.5 eV, the total microscopic cross-section of {sup 239}Pu is significantly larger than the cross-sections of {sup 238}U and {sup 235}U. This large difference in cross-section allows small amounts of {sup 239}Pu to be detected in uranium samples. Tests usingmore » a direct beam from a 250 kW TRIGA reactor have been performed with stacks of depleted uranium and {sup 239}Pu foils. Preliminary measurement results are in good agreement with the predicted results up to about two weight percent of {sup 239}Pu in the sample. In addition, measured {sup 239}Pu masses were in agreement with actual sample masses with uncertainties less than 3.8 percent.« less
NASA Astrophysics Data System (ADS)
Rout, Bibhudutta; Dhoubhadel, Mangal S.; Poudel, Prakash R.; Kummari, Venkata C.; Lakshantha, Wickramaarachchige J.; Manuel, Jack E.; Bohara, Gyanendra; Szilasi, Szabolcs Z.; Glass, Gary A.; McDaniel, Floyd D.
2014-02-01
The University of North Texas (UNT) Ion Beam Modification and Analysis Laboratory (IBMAL) has four particle accelerators including a National Electrostatics Corporation (NEC) 9SDH-2 3 MV tandem Pelletron, a NEC 9SH 3 MV single-ended Pelletron, and a 200 kV Cockcroft-Walton. A fourth HVEC AK 2.5 MV Van de Graaff accelerator is presently being refurbished as an educational training facility. These accelerators can produce and accelerate almost any ion in the periodic table at energies from a few keV to tens of MeV. They are used to modify materials by ion implantation and to analyze materials by numerous atomic and nuclear physics techniques. The NEC 9SH accelerator was recently installed in the IBMAL and subsequently upgraded with the addition of a capacitive-liner and terminal potential stabilization system to reduce ion energy spread and therefore improve spatial resolution of the probing ion beam to hundreds of nanometers. Research involves materials modification and synthesis by ion implantation for photonic, electronic, and magnetic applications, micro-fabrication by high energy (MeV) ion beam lithography, microanalysis of biomedical and semiconductor materials, development of highenergy ion nanoprobe focusing systems, and educational and outreach activities. An overview of the IBMAL facilities and some of the current research projects are discussed.
Relativistic electron diffraction at the UCLA Pegasus photoinjector laboratory.
Musumeci, P; Moody, J T; Scoby, C M
2008-10-01
Electron diffraction holds the promise to yield real-time resolution of atomic motion in an easily accessible environment like a university laboratory at a fraction of the cost of fourth-generation X-ray sources. Currently the limit in time-resolution for conventional electron diffraction is set by how short an electron pulse can be made. A very promising solution to maintain the highest possible beam intensity without excessive pulse broadening from space charge effects is to increase the electron energy to the MeV level where relativistic effects significantly reduce the space charge forces. Rf photoinjectors can in principle deliver up to 10(7)-10(8) electrons packed in bunches of approximately 100-fs length, allowing an unprecedented time resolution and enabling the study of irreversible phenomena by single-shot diffraction patterns. The use of rf photoinjectors as sources for ultrafast electron diffraction has been recently at the center of various theoretical and experimental studies. The UCLA Pegasus laboratory, commissioned in early 2007 as an advanced photoinjector facility, is the only operating system in the country, which has recently demonstrated electron diffraction using a relativistic beam from an rf photoinjector. Due to the use of a state-of-the-art ultrashort photoinjector driver laser system, the beam has been measured to be sub-100-fs long, at least a factor of 5 better than what measured in previous relativistic electron diffraction setups. Moreover, diffraction patterns from various metal targets (titanium and aluminum) have been obtained using the Pegasus beam. One of the main laboratory goals in the near future is to fully develop the rf photoinjector-based ultrafast electron diffraction technique with particular attention to the optimization of the working point of the photoinjector in a low-charge ultrashort pulse regime, and to the development of suitable beam diagnostics.
Experimental Performance of the NRL 8-Beam, 4-Cavity Multiple-Beam Klystron
NASA Astrophysics Data System (ADS)
Abe, D. K.; Pershing, D. E.; Nguyen, K. T.; Wood, F. N.; Myers, R. E.; Eisen, E. L.; Cusick, M.; Levush, B.
2006-01-01
Multiple-beam amplifiers (MBAs) represent a device technology with the potential to produce high-power, efficient amplifiers with relatively wide bandwidths that are compact, low-weight, low-noise, and operate at reduced voltages relative to comparable single-beam devices. To better understand the device physics and technical issues involved in the design, fabrication, and operation of these devices, the U.S. Naval Research Laboratory (NRL) has an on-going program to develop high peak power (> 600 kW) multiple-beam klystrons (MBKs) operating in S-band (˜3.3 GHz).
Laser beam distribution system for the HiLASE Center
NASA Astrophysics Data System (ADS)
Macúchová, Karolina; Heřmánek, Jan; Kaufman, Jan; Muresan, Mihai-George; Růžička, Jan; Řeháková, Martina; Divoký, Martin; Švandrlík, Luděk.; Mocek, Tomáś
2017-12-01
We report recent progress in design and testing of a distribution system for high-power laser beam delivery developed within the HiLASE project of the IOP in the Czech Republic. Laser beam distribution system is a technical system allowing safe and precise distribution of different laser beams from laboratories to several experimental stations. The unique nature of HiLASE lasers requires new approach, which makes design of the distribution system a state-of-the-art challenge.
NASA Astrophysics Data System (ADS)
Ralph, Joseph; Pak, Arthur; Otto, Landen; Kritcher, Andrea; Ma, Tammy; Charles, Jarrott; Callahan, Debra; Hinkel, Denise; Berzak Hopkins, Laura; Moody, John; Khan, Shahab; Doeppner, Tilo; Rygg, Ryan; Hurricane, Omar
2016-10-01
The current high foot hohlraum design fielded on the National Ignition Facility is aimed at providing uniform x-ray drive to provide a spherical implosion by lowering the gas fill from 1.6 to 0.6 mg/cc and increasing the hohlraum width from 5.75 to 6.72 mm while maintaining the same 1.8 mm capsule diameter from previous designs. These changes are intended to improve beam propagation without the need for crossed beam energy transfer. Analysis of the measurements of hard x-ray emission from the gated x-ray detector (GXD) and the static x-ray imager (SXI) looking through the laser entrance hole indicate a significant fraction of the inner beam incident energy is absorbed in the high z blow-off region (either uranium or gold) before reaching the inner wall near the equator. Comparison of inner beam absorption in this region and its effect on the implosion symmetry measurements will be presented. Additionally, the sensitivity of this absorption feature and therefore the implosion symmetry to the pulse shape, hohlraum fill pressure and fraction of energy in beams depositing energy at the hohlraum equator will be discussed. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Undulator-Based Laser Wakefield Accelerator Electron Beam Energy Spread and Emittance Diagnostic
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bakeman, M. S.; University of Nevada Reno, Reno, NV 89557; Van Tilborg, J.
The design and current status of experiments to couple the Tapered Hybrid Undulator (THUNDER) to the Lawrence Berkeley National Laboratory (LBNL) laser plasma accelerator (LPA) to measure electron beam energy spread and emittance are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bucholz, J.A.
The High Flux Isotope Reactor (HFIR) at the Oak Ridge National Laboratory is in the midst of a massive upgrade program to enhance experimental facilities. The reactor presently has four horizontal experimental beam tubes, all of which will be replaced or redesigned. The HB-2 beam tube will be enlarged to support more guide tubes, while the HB-4 beam tube will soon include a cold neutron source.
Tuning the Magnetic Transport of an Induction LINAC using Emittance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Houck, T L; Brown, C G; Ong, M M
2006-08-11
The Lawrence Livermore National Laboratory Flash X-Ray (FXR) machine is a linear induction accelerator used to produce a nominal 18 MeV, 3 kA, 65 ns pulse width electron beam for hydrodynamic radiographs. A common figure of merit for this type of radiographic machine is the x-ray dose divided by the spot area on the bremsstrahlung converter where a higher FOM is desired. Several characteristics of the beam affect the minimum attainable x-ray spot size. The most significant are emittance (chaotic transverse energy), chromatic aberration (energy variation), and beam motion (transverse instabilities and corkscrew motion). FXR is in the midst ofmore » a multi-year optimization project to reduce the spot size. This paper describes the effort to reduce beam emittance by adjusting the fields of the transport solenoids and position of the cathode. If the magnetic transport is not correct, the beam will be mismatched and undergo envelope oscillations increasing the emittance. We measure the divergence and radius of the beam in a drift section after the accelerator by imaging the optical transition radiation (OTR) and beam envelope on a foil. These measurements are used to determine an emittance. Relative changes in the emittance can be quickly estimated from the foil measurements allowing for an efficient, real-time study. Once an optimized transport field is determined, the final focus can be adjusted and the new x-ray spot measured. A description of the diagnostics and analysis is presented.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okamura, M., E-mail: okamura@bnl.gov; Nishina Center for Accelerator-Based Science, RIKEN, Saitama; Palm, K.
Calcium and lithium ion beams are required by NASA Space Radiation Laboratory at Brookhaven National Laboratory to simulate the effects of cosmic radiation. To identify the difficulties in providing such highly reactive materials as laser targets, both species were experimentally tested. Plate shaped lithium and calcium targets were fabricated to create ablation plasmas with a 6 ns 1064 nm neodymium-doped yttrium aluminum garnet laser. We found significant oxygen contamination in both the Ca and Li high charge state beams due to the rapid oxidation of the surfaces. A large spot size, low power density laser was used to create lowmore » charge state beams without scanning the targets. The low charge state Ca beam did not have any apparent oxygen contamination, showing the potential to clean the target entirely of oxide with a low power beam once in the chamber. The Li target was clearly still oxidizing in the chamber after each low power shot. To measure the rate of oxidation, we shot the low power laser at the target repeatedly at 10 s, 30 s, 60 s, and 120 s interval lengths, showing a linear relation between the interval time and the amount of oxygen in the beam.« less
Calcium and lithium ion production for laser ion source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okamura, M.; Palm, K.; Stifler, C.
2015-08-23
Calcium and lithium ion beams are required by NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory (BNL) to simulate the effects of cosmic radiation. To find out difficulties to provide such high reactive material as laser targets, the both species were experimentally tested. Plate-shaped lithium and calcium targets were fabricated to create ablation plasmas with a 6ns, 1064nm Nd:YAG laser. We found significant oxygen contamination in both the Ca and Li high-charge-state beams due to the rapid oxidation of the surfaces. A large-spot-size, low-power-density laser was then used to analyze the low-charge-state beams without scanning the targets. The low-charge-statemore » Ca beam did not have any apparent oxygen contamination, showing the potential to clean the target entirely with a low-power beam once in the chamber. The Li target was clearly still oxidizing in the chamber after each low-power shot. To measure the rate of oxidation, we shot the low-power laser at the target repeatedly at 10sec, 30sec, 60sec, and 120sec interval lengths, showing a linear relation between the interval time and the amount of oxygen in the beam.« less
Galactic cosmic ray simulation at the NASA Space Radiation Laboratory
Norbury, John W.; Schimmerling, Walter; Slaba, Tony C.; Azzam, Edouard I.; Badavi, Francis F.; Baiocco, Giorgio; Benton, Eric; Bindi, Veronica; Blakely, Eleanor A.; Blattnig, Steve R.; Boothman, David A.; Borak, Thomas B.; Britten, Richard A.; Curtis, Stan; Dingfelder, Michael; Durante, Marco; Dynan, William S.; Eisch, Amelia J.; Elgart, S. Robin; Goodhead, Dudley T.; Guida, Peter M.; Heilbronn, Lawrence H.; Hellweg, Christine E.; Huff, Janice L.; Kronenberg, Amy; La Tessa, Chiara; Lowenstein, Derek I.; Miller, Jack; Morita, Takashi; Narici, Livio; Nelson, Gregory A.; Norman, Ryan B.; Ottolenghi, Andrea; Patel, Zarana S.; Reitz, Guenther; Rusek, Adam; Schreurs, Ann-Sofie; Scott-Carnell, Lisa A.; Semones, Edward; Shay, Jerry W.; Shurshakov, Vyacheslav A.; Sihver, Lembit; Simonsen, Lisa C.; Story, Michael D.; Turker, Mitchell S.; Uchihori, Yukio; Williams, Jacqueline; Zeitlin, Cary J.
2017-01-01
Most accelerator-based space radiation experiments have been performed with single ion beams at fixed energies. However, the space radiation environment consists of a wide variety of ion species with a continuous range of energies. Due to recent developments in beam switching technology implemented at the NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory (BNL), it is now possible to rapidly switch ion species and energies, allowing for the possibility to more realistically simulate the actual radiation environment found in space. The present paper discusses a variety of issues related to implementation of galactic cosmic ray (GCR) simulation at NSRL, especially for experiments in radiobiology. Advantages and disadvantages of different approaches to developing a GCR simulator are presented. In addition, issues common to both GCR simulation and single beam experiments are compared to issues unique to GCR simulation studies. A set of conclusions is presented as well as a discussion of the technical implementation of GCR simulation. PMID:26948012
Galactic cosmic ray simulation at the NASA Space Radiation Laboratory.
Norbury, John W; Schimmerling, Walter; Slaba, Tony C; Azzam, Edouard I; Badavi, Francis F; Baiocco, Giorgio; Benton, Eric; Bindi, Veronica; Blakely, Eleanor A; Blattnig, Steve R; Boothman, David A; Borak, Thomas B; Britten, Richard A; Curtis, Stan; Dingfelder, Michael; Durante, Marco; Dynan, William S; Eisch, Amelia J; Robin Elgart, S; Goodhead, Dudley T; Guida, Peter M; Heilbronn, Lawrence H; Hellweg, Christine E; Huff, Janice L; Kronenberg, Amy; La Tessa, Chiara; Lowenstein, Derek I; Miller, Jack; Morita, Takashi; Narici, Livio; Nelson, Gregory A; Norman, Ryan B; Ottolenghi, Andrea; Patel, Zarana S; Reitz, Guenther; Rusek, Adam; Schreurs, Ann-Sofie; Scott-Carnell, Lisa A; Semones, Edward; Shay, Jerry W; Shurshakov, Vyacheslav A; Sihver, Lembit; Simonsen, Lisa C; Story, Michael D; Turker, Mitchell S; Uchihori, Yukio; Williams, Jacqueline; Zeitlin, Cary J
2016-02-01
Most accelerator-based space radiation experiments have been performed with single ion beams at fixed energies. However, the space radiation environment consists of a wide variety of ion species with a continuous range of energies. Due to recent developments in beam switching technology implemented at the NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory (BNL), it is now possible to rapidly switch ion species and energies, allowing for the possibility to more realistically simulate the actual radiation environment found in space. The present paper discusses a variety of issues related to implementation of galactic cosmic ray (GCR) simulation at NSRL, especially for experiments in radiobiology. Advantages and disadvantages of different approaches to developing a GCR simulator are presented. In addition, issues common to both GCR simulation and single beam experiments are compared to issues unique to GCR simulation studies. A set of conclusions is presented as well as a discussion of the technical implementation of GCR simulation. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Scarpa, D.; Vasquez, J.; Tomaselli, A.; Grassi, D.; Biasetto, L.; Cavazza, A.; Corradetti, S.; Manzolaro, M.; Montano, J.; Andrighetto, A.; Prete, G.
2012-02-01
Selective production of exotic species (SPES) is an ISOL-based accelerator facility that will be built in the Legnaro INFN Laboratory (Italy), intended to provide an intense neutron-rich radioactive ion beams obtained by proton induced fission of an uranium carbide target. Beside this main target, a silicon carbide (SiC) target will the first to be used to deliver some p-rich beams. This target will validate also the functionality of the SPES facility with aluminum beam as result of hitting SiC target with protons. In the past off-line studies on laser photoionization of aluminum have performed in Pavia Spectroscopy Laboratory and in Laboratori Nazionali di Legnaro where, recently, a XeCl excimer laser was installed in order to test the laser ionization in the SPES hot cavity. Results are promising to justify further studies with this technique, aiming a better characterization of the SPES ion extraction capability under laser photoionization.
Radio frequency multicusp ion source development (invited)
NASA Astrophysics Data System (ADS)
Leung, K. N.
1996-03-01
The radio-frequency (rf) driven multicusp source was originally developed for use in the Superconducting Super Collider injector. It has been demonstrated that the source can meet the H- beam current and emittance requirements for this application. By employing a porcelain-coated antenna, a clean plasma discharge with very long-life operation can be achieved. Today, the rf source is used to generate both positive and negative hydrogen ion beams and has been tested in various particle accelerator laboratories throughout the world. Applications of this ion source have been extended to other fields such as ion beam lithography, oil-well logging, ion implantation, accelerator mass spectrometry and medical therapy machines. This paper summarizes the latest rf ion source technology and development at the Lawrence Berkeley National Laboratory.
NASA Astrophysics Data System (ADS)
Galatà, A.; Sattin, M.; Manzolaro, M.; Martini, D.; Facco, A.; Tinschert, K.; Spaedtke, P.; Lang, R.; Kulevoy, T.
2014-02-01
The ECR ion sources are able to produce a wide variety of highly charged metallic ion beams thanks to the development of different techniques (ovens, sputtering, direct insertion, metal ions from volatile compounds (MIVOC)). In the case of the ovens, the sticking of the hot vapors on the surface of the plasma chamber leads to high material consumption rates. For elements like Ca, a tantalum liner inserted inside the chamber can be used to limit this phenomenon. The modeling of temperature distribution inside the chamber with and without the liner was carried out with COMSOL-multiphysics code. Results of simulation and the comparison with experiments performed at INFN-Legnaro National Laboratories with Ca beams are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leitner, M.; Bieniosek, F.; Kwan, J.
The Heavy Ion Fusion Science Virtual National Laboratory (HIFS-VNL), a collaboration between Lawrence Berkeley National Laboratory (LBNL), Lawrence Livermore National Laboratory (LLNL), and Princeton Plasma Physics Laboratory (PPPL), is currently constructing a new induction linear accelerator, called Neutralized Drift Compression eXperiment NDCX-II. The accelerator design makes effective use of existing components from LLNL's decommissioned Advanced Test Accelerator (ATA), especially induction cells and Blumlein voltage sources that have been transferred to LBNL. We have developed an aggressive acceleration 'schedule' that compresses the emitted ion pulse from 500 ns to 1 ns in just 15 meters. In the nominal design concept, 30more » nC of Li{sup +} are accelerated to 3.5 MeV and allowed to drift-compress to a peak current of about 30 A. That beam will be utilized for warm dense matter experiments investigating the interaction of ion beams with matter at high temperature and pressure. Construction of the accelerator will be complete within a period of approximately two and a half years and will provide a worldwide unique opportunity for ion-driven warm dense matter experiments as well as research related to novel beam manipulations for heavy ion fusion drivers.« less
Elastic and inelastic scattering of 134Xe beams on C2D4 targets measured with GODDESS
NASA Astrophysics Data System (ADS)
Sims, Harrison; Cizewski, Jolie; Lapailleur, Alex; Garland, Heather; Xination, Dai; Pain, Steven; Hall, Matthew; Goddess Collaboration
2017-09-01
The GODDESS (Gammasphere-ORRUBA: Dual Detector for Experimental Structure Studies) coupling of the ORRUBA charged-particle array with Gammasphere is designed to enable high-resolution particle-gamma measurements in inverse kinematics with radioactive beams. The high resolution and coverage of GODDESS allows for multiple reaction channels to be studied simultaneously. For the stable-beam commissioning of GODDESS, the 134Xe(d,p γ)135Xe reaction was measured using a beam of 134Xe at 8 MeV/A, delivered by the ATLAS facility at Argonne National Laboratory. The beam impinged on an 800 μg/cm2 C2D4 target, and charged particles were detected in the GODDESS silicon array between 15 and 165 degrees. Coincident gamma rays were measured with Gammasphere, with 10 % efficiency at 1.3 MeV. In the detectors downstream of the target, elastically- and inelastically-scattered target ions (deuterium and carbon) were detected, populating the ground and low-lying excited states in 134Xe. An overview of GODDESS will be presented, along with the analysis of the downstream data, including the differential scattering cross sections and population of collective states in 134Xe. Work supported in part by the U.S. D.O.E. and National Science Foundation.
Control of Laser Plasma Based Accelerators up to 1 GeV
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakamura, Kei
2007-12-01
This dissertation documents the development of a broadband electron spectrometer (ESM) for GeV class Laser Wakefield Accelerators (LWFA), the production of high quality GeV electron beams (e-beams) for the first time in a LWFA by using a capillary discharge guide (CDG), and a statistical analysis of CDG-LWFAs. An ESM specialized for CDG-LWFAs with an unprecedented wide momentum acceptance, from 0.01 to 1.1 GeV in a single shot, has been developed. Simultaneous measurement of e-beam spectra and output laser properties as well as a large angular acceptance (> ± 10 mrad) were realized by employing a slitless scheme. A scintillating screenmore » (LANEX Fast back, LANEX-FB)--camera system allowed faster than 1 Hz operation and evaluation of the spatial properties of e-beams. The design provided sufficient resolution for the whole range of the ESM (below 5% for beams with 2 mrad divergence). The calibration between light yield from LANEX-FB and total charge, and a study on the electron energy dependence (0.071 to 1.23 GeV) of LANEX-FB were performed at the Advanced light source (ALS), Lawrence Berkeley National Laboratory (LBNL). Using this calibration data, the developed ESM provided a charge measurement as well. The production of high quality electron beams up to 1 GeV from a centimeter-scale accelerator was demonstrated. The experiment used a 310 μm diameter gas-filled capillary discharge waveguide that channeled relativistically-intense laser pulses (42 TW, 4.5 x 10 18 W/cm 2) over 3.3 centimeters of sufficiently low density (≃ 4.3 x 10 18/cm 3) plasma. Also demonstrated was stable self-injection and acceleration at a beam energy of ≃ 0.5 GeV by using a 225 μm diameter capillary. Relativistically-intense laser pulses (12 TW, 1.3 x 10 18W/cm 2) were guided over 3.3 centimeters of low density (≃ 3.5 x 10 18/cm 3) plasma in this experiment. A statistical analysis of the CDG-LWFAs performance was carried out. By taking advantage of the high repetition rate experimental system, several thousands of shots were taken in a broad range of the laser and plasma parameters. An analysis program was developed to sort and select the data by specified parameters, and then to evaluate performance statistically. The analysis suggested that the generation of GeV-level beams comes from a highly unstable and regime. By having the plasma density slightly above the threshold density for self injection, (1) the longest dephasing length possible was provided, which led to the generation of high energy e-beams, and (2) the number of electrons injected into the wakefield was kept small, which led to the generation of high quality (low energy spread) e-beams by minimizing the beam loading effect on the wake. The analysis of the stable half-GeV beam regime showed the requirements for stable self injection and acceleration. A small change of discharge delay t dsc, and input energy E in, significantly affected performance. The statistical analysis provided information for future optimization, and suggested possible schemes for improvement of the stability and higher quality beam generation. A CDG-LWFA is envisioned as a construction block for the next generation accelerator, enabling significant cost and size reductions.« less
The Radio Frequency Fragment Separator for Rare Isotope Beams at the NSCL
NASA Astrophysics Data System (ADS)
Stoker, Joshua; Andreev, Vladimir; Bazin, Daniel; Becerril, Ana; Doleans, Marc; Gorelov, Dimitry; Glennon, Patrick; Grimm, Terry; Lawton, Don; Mantica, Paul; Marti, Felix; Ottarson, Jack; Schatz, Hendrik; Vincent, John; Wagner, Jim; Wu, Xiaoyu; Zeller, Al
2006-10-01
Secondary beams at the National Superconducting Cyclotron Laboratory (NSCL) are separated through a combined application of magnetic rigidity and energy loss filtering. Design and construction of a Radio Frequency Fragment Separator (RFFS) for further beam purification is underway. The RFFS will apply a time-varying electromagnetic field to induce transverse beam separation. This method relies on velocity differences of the beam species to selectivey apply separation to unwanted fragments. The technical design of the RFFS and the expected purification of exotic beams are shown in detail[1]. [1] Gorelev, D. et al., ``RF Kicker System for Secondary Beams at the NSCL'' Proc of Part Accel Conf 2005, Knoxville, TN
RFQ beam cooler and buncher for collinear laser spectroscopy of rare isotopes
NASA Astrophysics Data System (ADS)
Barquest, B. R.; Bollen, G.; Mantica, P. F.; Minamisono, K.; Ringle, R.; Schwarz, S.; Sumithrarachchi, C. S.
2017-09-01
A radiofrequency quadrupole (RFQ) ion beam cooler and buncher has been developed to deliver bunched beams with low transverse emittance, energy spread, and time spread to the BECOLA collinear laser spectroscopy system at the National Superconducting Cyclotron Laboratory (NSCL) at Michigan State University. The beam cooler and buncher contains new features which enhance performance, especially for high count rate beams, as well as simplifying construction, maintenance, and operation. The transverse emittance, energy spread, and time spread of the bunched beam, as well as buncher efficiency are reported, showcasing the capabilities of the BECOLA facility to perform collinear laser spectroscopy measurements with bunched rare isotope beams at NSCL and at the future Facility for Rare Isotope Beams (FRIB).
NASA Technical Reports Server (NTRS)
Mertens, Christopher J.; Moyers, Michael F.; Walker, Steven A.; Tweed, John
2010-01-01
Recent developments in NASA s deterministic High charge (Z) and Energy TRaNsport (HZETRN) code have included lateral broadening of primary ion beams due to small-angle multiple Coulomb scattering, and coupling of the ion-nuclear scattering interactions with energy loss and straggling. This new version of HZETRN is based on Green function methods, called GRNTRN, and is suitable for modeling transport with both space environment and laboratory boundary conditions. Multiple scattering processes are a necessary extension to GRNTRN in order to accurately model ion beam experiments, to simulate the physical and biological-effective radiation dose, and to develop new methods and strategies for light ion radiation therapy. In this paper we compare GRNTRN simulations of proton lateral broadening distributions with beam measurements taken at Loma Linda University Proton Therapy Facility. The simulated and measured lateral broadening distributions are compared for a 250 MeV proton beam on aluminum, polyethylene, polystyrene, bone substitute, iron, and lead target materials. The GRNTRN results are also compared to simulations from the Monte Carlo MCNPX code for the same projectile-target combinations described above.
rf improvements for Spallation Neutron Source H- ion sourcea)
NASA Astrophysics Data System (ADS)
Kang, Y. W.; Fuja, R.; Goulding, R. H.; Hardek, T.; Lee, S.-W.; McCarthy, M. P.; Piller, M. C.; Shin, K.; Stockli, M. P.; Welton, R. F.
2010-02-01
The Spallation Neutron Source at Oak Ridge National Laboratory is ramping up the accelerated proton beam power to 1.4 MW and just reached 1 MW. The rf-driven multicusp ion source that originates from the Lawrence Berkeley National Laboratory has been delivering ˜38 mA H- beam in the linac at 60 Hz, 0.9 ms. To improve availability, a rf-driven external antenna multicusp ion source with a water-cooled ceramic aluminum nitride (AlN) plasma chamber is developed. Computer modeling and simulations have been made to analyze and optimize the rf performance of the new ion source. Operational statistics and test runs with up to 56 mA medium energy beam transport beam current identify the 2 MHz rf system as a limiting factor in the system availability and beam production. Plasma ignition system is under development by using a separate 13 MHz system. To improve the availability of the rf power system with easier maintenance, we tested a 70 kV isolation transformer for the 80 kW, 6% duty cycle 2 MHz amplifier to power the ion source from a grounded solid-state amplifier.
rf improvements for Spallation Neutron Source H- ion source.
Kang, Y W; Fuja, R; Goulding, R H; Hardek, T; Lee, S-W; McCarthy, M P; Piller, M C; Shin, K; Stockli, M P; Welton, R F
2010-02-01
The Spallation Neutron Source at Oak Ridge National Laboratory is ramping up the accelerated proton beam power to 1.4 MW and just reached 1 MW. The rf-driven multicusp ion source that originates from the Lawrence Berkeley National Laboratory has been delivering approximately 38 mA H(-) beam in the linac at 60 Hz, 0.9 ms. To improve availability, a rf-driven external antenna multicusp ion source with a water-cooled ceramic aluminum nitride (AlN) plasma chamber is developed. Computer modeling and simulations have been made to analyze and optimize the rf performance of the new ion source. Operational statistics and test runs with up to 56 mA medium energy beam transport beam current identify the 2 MHz rf system as a limiting factor in the system availability and beam production. Plasma ignition system is under development by using a separate 13 MHz system. To improve the availability of the rf power system with easier maintenance, we tested a 70 kV isolation transformer for the 80 kW, 6% duty cycle 2 MHz amplifier to power the ion source from a grounded solid-state amplifier.
An Investigation of Laser Lighting Systems to Assist Aircraft
DOT National Transportation Integrated Search
1979-01-01
A model for the visual detectability of narrow light beams was developed and used to evaluate the system performance of two laser lighting system configurations: (1) a laser VASI and (2) a crossed beam glide path indicator. Laboratory experiments con...
NASA Astrophysics Data System (ADS)
Harayama, I.; Nagashima, K.; Hirose, Y.; Matsuzaki, H.; Sekiba, D.
2016-10-01
We have developed a compact ΔE-E telescope elastic recoil detection analysis (ERDA) system, for the first time at Micro Analysis Laboratory, Tandem Accelerator (MALT) in the University of Tokyo, which consists of a gas ionization chamber and solid state detector (SSD) for the quantitative analysis of light elements. The gas ionization chamber is designed to identify the recoils of O and N from metal oxynitrides thin films irradiated with 40 MeV 35Cl7+. The length of the electrodes along the beam direction is 50 mm optimized to sufficiently separate energy loss of O and N recoils in P10 gas at 6.0 × 103 Pa. The performance of the gas ionization chamber was examined by comparing the ERDA results on the SrTaO2N thin films with semi-empirical simulation and the chemical compositions previously determined by nuclear reaction analysis (NRA) and Rutherford backscattering spectrometry (RBS). We also confirmed availability of the gas ionization chamber for identifying not only the recoils of O and N but also those of lithium, carbon and fluorine.
Production of negatively charged radioactive ion beams
Liu, Y.; Stracener, D. W.; Stora, T.
2017-02-15
Beams of short-lived radioactive nuclei are needed for frontier experimental research in nuclear structure, reactions, and astrophysics. Negatively charged radioactive ion beams have unique advantages and allow for the use of a tandem accelerator for post-acceleration, which can provide the highest beam quality and continuously variable energies. Negative ion beams can be obtained with high intensity and some unique beam purification techniques based on differences in electronegativity and chemical reactivity can be used to provide beams with high purity. This article describes the production of negative radioactive ion beams at the former holifield radioactive ion beam facility at Oak Ridgemore » National Laboratory and at the CERN ISOLDE facility with emphasis on the development of the negative ion sources employed at these two facilities.« less
A method for detecting structural deterioration in bridges
NASA Technical Reports Server (NTRS)
Cole, H. A., Jr.; Reed, R. E., Jr.
1974-01-01
The problem of detecting deterioration in bridge structures is studied with the use of Randomdec analysis. Randomdec signatures, derived from the ambient bridge vibrations in the acoustic range, were obtained for a girder bridge over a period of a year to show the insensitivity of the signatures to environmental changes. A laboratory study was also conducted to show the sensitivity of signatures to fatigue cracks on the order of a centimeter in length in steel beams.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sannibale, Fernando; Zolotorev, Max S.; Filippetto, Daniele
2007-06-22
By analysing the pulse to pulse intensity fluctuations ofthe radiation emitted by a charge particle in the incoherent part of thespectrum, it is possible to extract information about the spatialdistribution of the beam. At the Advanced Light Source (ALS) of theLawrence Berkeley National Laboratory, we have developed and tested asimple scheme based on this principle that allows for the absolutemeasurement of the bunch length. A description of the method and theexperimental results are presented.
Foil focusing of relativistic electron beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ekdahl, Jr., Carl August
2017-10-26
When an intense relativistic electron beams (IREB) passes through a grounded metal foil, the transverse electric field due to the beam space charge is locally shorted out, and the beam is focused by the magnetic field of its current. The effect can be treated as focusing by a thin lens with first order aberration. Expressions for the focal length and aberration coefficient of the equivalent thin lens are developed in this note. These are then applied to practical examples representative of IREB research at Los Alamos National Laboratory.
The Detection Of Neutrino Interactions In The OPERA Experiment: An Update
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patrizii, Laura
2009-12-17
OPERA is a long baseline neutrino oscillation experiment built to provide the final and unambiguous proof of the neutrino oscillation hypothesis in the atmospheric sector by observing {nu}{sub {tau}} emerging from the CNGS {nu}{sub {mu}} beam. The detector is a hybrid apparatus installed in the Hall C of the underground Gran Sasso National Laboratory in Italy. Runs with CNGS neutrinos were successfully carried out in 2007 and 2008. In this paper the detector and the analysis strategy are briefly described and the status of the analysis of the 2008 run events is discussed.
Nuclear Resonance Fluorescence Measurements of High Explosives
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caggiano, Joseph A.; Warren, Glen A.; Korbly, Steve
Pacific Northwest National Laboratory and Passport Systems have collaborated to perform Nuclear Resonance Fluorescence experiments using several high quality high-explosive simulant samples. These measurements were conducted to determine the feasibility of finding and characterizing high explosive material by NRF interrogation. Electron beams of 5.1, 5.3, 8, and 10 MeV were used to produce bremsstrahlung photon beams, which irradiated the samples. The gamma-ray spectra were collected using high-purity germanium detectors. Nitrogen-to-carbon ratios of the high-explosive simulants were extracted from the 5.1 and 5.3 MeV data and compare favorably with accepted values. Analysis of the 8 and 10 MeV data is inmore » progress; preliminary isotopic comparisons within the samples are consistent with the expected results.« less
Microdosimetric investigation at the therapeutic proton beam facility of CATANA.
De Nardo, L; Moro, D; Colautti, P; Conte, V; Tornielli, G; Cuttone, G
2004-01-01
Proton beams (62 Mev) are used by the Laboratori Nazionali del Sud of the Italian Institute of Nuclear Physics to treat eye melanoma tumours at the therapeutic facility called CATANA. A cylindrical slim tissue-equivalent proportional counter (TEPC) of 2.7 mm external diameter has been used to compare the radiation quality of two spread-out Bragg peaks (SOBP) at the CATANA proton beam.
New data on electron-beam purification of wastewater
NASA Astrophysics Data System (ADS)
Pikaev, A. K.
2002-11-01
Recent environmental applications of radiation technology, developed in the author's laboratory, are presented in this paper. They are electron-beam and coagulation purification of molasses distillery slops from distillery-produced ethyl alcohol by fermentation of plant materials, electron-beam purification of wastewater from carboxylic acids (for example, formic acid) and removal of petroleum products (diesel fuel, motor oil and residual fuel oil) from water by γ-irradiation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Minucci, M. A. S.
Beamed energy propulsion and beamed energy vehicle performance control concepts are equally promising and challenging. In Brazil, the two concepts are being currently investigated at the Prof Henry T Nagamatsu Laboratory of Aerothermodynamics and Hypersonics, of the Institute for Advanced Studies--IEAv, in collaboration with the Rensselaer Polytechnic Institute--RPI, Troy, NY, and the United States Air force Research Laboratory-AFRL. Until recently, only laser energy addition for hypersonic flow control was being investigated at the Laboratory using a 0.3 m nozzle exit diameter hypersonic shock tunnel, T2, and two 7 joule CO{sub 2} TEA lasers. Flow visualization, model pressure and heat fluxmore » measurements of the laser energy addition perturbed flow around a model were produced as a result of this joint IEAv-RPI investigation. Presently, with the participation of AFRL and the newly commissioned 0.6 m. nozzle exit diameter hypersonic shock tunnel, T3, a more ambitious project is underway. Two 400 Joule Lumonics 620 CO{sub 2} TEA lasers will deliver a 20 cm X 25 cm propulsive laser beam to a complete laser propelled air breather/rocket hypersonic engine, located inside T3 test section. Schlieren photographs of the flow inside de engine as well as surface and heat flux measurements will be performed for free stream Mach numbers ranging from 6 to 25. The present paper discusses past, present and future Brazilian activities on beamed energy propulsion and related technologies.« less
NASA Astrophysics Data System (ADS)
Minucci, M. A. S.
2008-04-01
Beamed energy propulsion and beamed energy vehicle performance control concepts are equally promising and challenging. In Brazil, the two concepts are being currently investigated at the Prof Henry T Nagamatsu Laboratory of Aerothermodynamics and Hypersonics, of the Institute for Advanced Studies—IEAv, in collaboration with the Rensselaer Polytechnic Institute—RPI, Troy, NY, and the United States Air force Research Laboratory-AFRL. Until recently, only laser energy addition for hypersonic flow control was being investigated at the Laboratory using a 0.3 m nozzle exit diameter hypersonic shock tunnel, T2, and two 7 joule CO2 TEA lasers. Flow visualization, model pressure and heat flux measurements of the laser energy addition perturbed flow around a model were produced as a result of this joint IEAv-RPI investigation. Presently, with the participation of AFRL and the newly commissioned 0.6 m. nozzle exit diameter hypersonic shock tunnel, T3, a more ambitious project is underway. Two 400 Joule Lumonics 620 CO2 TEA lasers will deliver a 20 cm X 25 cm propulsive laser beam to a complete laser propelled air breather/rocket hypersonic engine, located inside T3 test section. Schlieren photographs of the flow inside de engine as well as surface and heat flux measurements will be performed for free stream Mach numbers ranging from 6 to 25. The present paper discusses past, present and future Brazilian activities on beamed energy propulsion and related technologies.
CONSTRUCTION PROGRESS PHOTO SHOWING EMPLACEMENT STEEL BEAMS FUEL STORAGE BUILDING ...
CONSTRUCTION PROGRESS PHOTO SHOWING EMPLACEMENT STEEL BEAMS FUEL STORAGE BUILDING (CPP-603) LOOKING EAST. INL PHOTO NUMBER NRTS-51-1371. Unknown Photographer, 1/31/1951 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID
2 TeV HEB beam abort at the SSCL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schailey, R.; Bull, J.; Clayton, T.
1993-05-01
The High Energy Booster (HEB) of the Superconducting Super Collider Laboratory (SSCL) will require a full aperture beam abort over a dynamic energy range of 200 GeV to 2 TeV. Since the HEB is a bi-polar machine, both clockwise (CW) and the counter-clockwise (CCW) beam aborts are required. Also, the stored beam energy of 6.55 MJ in the superconducting HEB imposes upon the full aperture requirement. In this report, we describe the abort channels in the HEB utility straight sections, aperture restrictions, mechanical interferences and solutions, kicker misfires, and a 1 TeV beam absorber.
Prospects for Nonlinear Laser Diagnostics in the Jet Noise Laboratory
NASA Technical Reports Server (NTRS)
Herring, Gregory C.; Hart, Roger C.; Fletcher, mark T.; Balla, R. Jeffrey; Henderson, Brenda S.
2007-01-01
Two experiments were conducted to test whether optical methods, which rely on laser beam coherence, would be viable for off-body flow measurement in high-density, compressible-flow wind tunnels. These tests measured the effects of large, unsteady density gradients on laser diagnostics like laser-induced thermal acoustics (LITA). The first test was performed in the Low Speed Aeroacoustics Wind Tunnel (LSAWT) of NASA Langley Research Center's Jet Noise Laboratory (JNL). This flow facility consists of a dual-stream jet engine simulator (with electric heat and propane burners) exhausting into a simulated flight stream, reaching Mach numbers up to 0.32. A laser beam transited the LSAWT flow field and was imaged with a high-speed gated camera to measure beam steering and transverse mode distortion. A second, independent test was performed on a smaller laboratory jet (Mach number < 1.2 and mass flow rate < 0.1 kg/sec). In this test, time-averaged LITA velocimetry and thermometry were performed at the jet exit plane, where the effect of unsteady density gradients is observed on the LITA signal. Both experiments show that LITA (and other diagnostics relying on beam overlap or coherence) faces significant hurdles in the high-density, compressible, and turbulent flow environments similar to those of the JNL.
A new mask exposure and analysis facility
NASA Astrophysics Data System (ADS)
te Sligte, Edwin; Koster, Norbert; Deutz, Alex; Staring, Wilbert
2014-10-01
The introduction of ever higher source powers in EUV systems causes increased risks for contamination and degradation of EUV masks and pellicles. Appropriate testing can help to inventory and mitigate these risks. To this end, we propose EBL2: a laboratory EUV exposure system capable of operating at high EUV powers and intensities, and capable of exposing and analyzing EUV masks. The proposed system architecture is similar to the EBL system which has been operated jointly by TNO and Carl Zeiss SMT since 2005. EBL2 contains an EUV Beam Line, in which samples can be exposed to EUV irradiation in a controlled environment. Attached to this Beam Line is an XPS system, which can be reached from the Beam Line via an in-vacuum transfer system. This enables surface analysis of exposed masks without breaking vacuum. Automated handling with dual pods is foreseen so that exposed EUV masks will still be usable in EUV lithography tools to assess the imaging impact of the exposure. Compared to the existing system, large improvements in EUV power, intensity, reliability, and flexibility are proposed. Also, in-situ measurements by e.g. ellipsometry is foreseen for real time monitoring of the sample condition. The system shall be equipped with additional ports for EUVR or other analysis tools. This unique facility will be open for external customers and other research groups.
Radiological considerations for bulk shielding calculations of national synchrotron light source-II
NASA Astrophysics Data System (ADS)
Job, Panakkal K.; Casey, William R.
2011-12-01
Brookhaven National Laboratory is designing a new electron synchrotron for scientific research using synchrotron radiation. This facility, called the “National Synchrotron Light Source II” (NSLS-II), will provide x-ray radiation of ultra-high brightness and exceptional spatial and energy resolution. It will also provide advanced insertion devices, optics, detectors and robotics, and a suite of scientific instruments designed to maximize the scientific output of the facility. The project scope includes the design, construction, installation, and commissioning of the following accelerators: a 200 MeV linac, a booster synchrotron operating from 200 MeV to 3.0 GeV, and the storage ring which stores a maximum of 500 mA current of electrons at an energy of 3.0 GeV. It is planned to operate the facility primarily in a top-off mode, thereby maintaining the maximum variation in stored beam current to <1%. Because of the very demanding requirements for beam emittance and synchrotron radiation brilliance, the beam life-time is expected to be quite low, on the order of 2 h. Analysis of the bulk shielding for operating this facility and the input parameters used for this analysis have been discussed in this paper. The characteristics of each of the accelerators and their operating modes have been summarized with the input assumptions for the bulk shielding analysis.
EPOS-WP16: A coherent and collaborative network of Solid Earth Multi-scale laboratories
NASA Astrophysics Data System (ADS)
Calignano, Elisa; Rosenau, Matthias; Lange, Otto; Spiers, Chris; Willingshofer, Ernst; Drury, Martyn; van Kan-Parker, Mirjam; Elger, Kirsten; Ulbricht, Damian; Funiciello, Francesca; Trippanera, Daniele; Sagnotti, Leonardo; Scarlato, Piergiorgio; Tesei, Telemaco; Winkler, Aldo
2017-04-01
Laboratory facilities are an integral part of Earth Science research. The diversity of methods employed in such infrastructures reflects the multi-scale nature of the Earth system and is essential for the understanding of its evolution, for the assessment of geo-hazards and for the sustainable exploitation of geo-resources. In the frame of EPOS (European Plate Observing System), the Working Package 16 represents a developing community of European Geoscience Multi-scale laboratories. The participant and collaborating institutions (Utrecht University, GFZ, RomaTre University, INGV, NERC, CSIC-ICTJA, CNRS, LMU, C4G-UBI, ETH, CNR*) embody several types of laboratory infrastructures, engaged in different fields of interest of Earth Science: from high temperature and pressure experimental facilities, to electron microscopy, micro-beam analysis, analogue tectonic and geodynamic modelling and paleomagnetic laboratories. The length scales encompassed by these infrastructures range from the nano- and micrometre levels (electron microscopy and micro-beam analysis) to the scale of experiments on centimetres-sized samples, and to analogue model experiments simulating the reservoir scale, the basin scale and the plate scale. The aim of WP16 is to provide two services by the year 2019: first, providing virtual access to data from laboratories (data service) and, second, providing physical access to laboratories (transnational access, TNA). Regarding the development of a data service, the current status is such that most data produced by the various laboratory centres and networks are available only in limited "final form" in publications, many data remain inaccessible and/or poorly preserved. Within EPOS the TCS Multi-scale laboratories is collecting and harmonizing available and emerging laboratory data on the properties and process controlling rock system behaviour at all relevant scales, in order to generate products accessible and interoperable through services for supporting research activities into Geo-resources and Geo-storage, Geo-hazards and Earth System Evolution. Regarding the provision of physical access to laboratories the current situation is such that access to WP16's laboratories is often based on professional relations, available budgets, shared interests and other constraints. In WP16 we aim at reducing the present diversity and non-transparency of access rules and replace ad-hoc procedures for access by a streamlined mechanisms, objective rules and a transparent policy. We work on procedures and mechanisms regulating application, negotiation, evaluation, feedback, selection, admission, approval, feasibility check, setting-up, use, monitoring and dismantling. In the end laboratories should each have a single point providing clear and transparent information on the facility itself, its services, access policy, data management policy and the legal terms and conditions for use of equipment. Through its role as an intermediary and information broker, EPOS will acquire a wealth of information from Research Infrastructures and users on the establishment of efficient collaboration agreements.
NASA Astrophysics Data System (ADS)
Miloichikova, I. A.; Bespalov, V. I.; Krasnykh, A. A.; Stuchebrov, S. G.; Cherepennikov, Yu. M.; Dusaev, R. R.
2018-04-01
Simulation by the Monte Carlo method is widely used to calculate the character of ionizing radiation interaction with substance. A wide variety of programs based on the given method allows users to choose the most suitable package for solving computational problems. In turn, it is important to know exactly restrictions of numerical systems to avoid gross errors. Results of estimation of the feasibility of application of the program PCLab (Computer Laboratory, version 9.9) for numerical simulation of the electron energy distribution absorbed in beryllium, aluminum, gold, and water for industrial, research, and clinical beams are presented. The data obtained using programs ITS and Geant4 being the most popular software packages for solving the given problems and the program PCLab are presented in the graphic form. A comparison and an analysis of the results obtained demonstrate the feasibility of application of the program PCLab for simulation of the absorbed energy distribution and dose of electrons in various materials for energies in the range 1-20 MeV.
NASA Astrophysics Data System (ADS)
Miloichikova, I. A.; Stuchebrov, S. G.; Zhaksybayeva, G. K.; Wagner, A. R.
2015-11-01
Nowadays, the commercial application of the electron accelerators grows in the industry, in the research investigations, in the medical diagnosis and treatment. In this regard, the electron beam profile modification in accordance with specific purposes is an actual task. In this paper the model of the TPU microtron extracted electron beam developed in the program “Computer Laboratory (PCLab)” is described. The internal beam divergence influence for the electron beam profile and depth dose distribution in the air is considered. The possibility of using the nanostructure materials for the electron beam formation was analyzed. The simulation data of the electron beam shape collimated by different materials (lead, corund- zirconia nanoceramic, gypsum) are shown. The collimator material influence for the electron beam profile and shape are analyzed.
A diamond active target for the PADME experiment
NASA Astrophysics Data System (ADS)
Chiodini, G.
2017-02-01
The PADME (Positron Annihilation into Dark Mediator Experiment) collaboration searches for dark photons produced in the annihilation e++e-→γ+A' of accelerated positrons with atomic electrons of a fixed target at the Beam Test Facility of Laboratori Nazionali di Frascati. The apparatus can detect dark photons decaying into visible A'→e+e- and invisible A'→χχ channels, where χ's are particles of a secluded sector weakly interacting and therefore undetected. In order to improve the missing mass resolution and to measure the beam flux, PADME has an active target able to reconstruct the beam spot position and the bunch multiplicity. In this work the active target is described, which is made of a detector grade polycrystalline synthetic diamond with strip electrodes on both surfaces. The electrodes segmentation allows to measure the beam profile along X and Y and evaluate the average beam position bunch per bunch. The results of beam tests for the first two diamond detector prototypes are shown. One of them holds innovative graphitic electrodes built with a custom process developed in the laboratory, and the other one with commercially available traditional Cr-Au electrodes. The front-end electronics used in the test beam is discussed and the performance observed is presented. Finally, the final design of the target to be realized at the beginning of 2017 to be ready for data taking in 2018 is illustrated.
Magnetic plasma confinement for laser ion source.
Okamura, M; Adeyemi, A; Kanesue, T; Tamura, J; Kondo, K; Dabrowski, R
2010-02-01
A laser ion source (LIS) can easily provide a high current beam. However, it has been difficult to obtain a longer beam pulse while keeping a high current. On occasion, longer beam pulses are required by certain applications. For example, more than 10 micros of beam pulse is required for injecting highly charged beams to a large sized synchrotron. To extend beam pulse width, a solenoid field was applied at the drift space of the LIS at Brookhaven National Laboratory. The solenoid field suppressed the diverging angle of the expanding plasma and the beam pulse was widened. Also, it was observed that the plasma state was conserved after passing through a few hundred gauss of the 480 mm length solenoid field.
The Strength of One-Piece Solid, Build-Up and Laminated Wood Airplane Wing Beams
NASA Technical Reports Server (NTRS)
Nelson, John H
1920-01-01
The purpose of this report is to summarize the results of all wood airplane wing beams tested to date in the Bureau of Standards Laboratory in order that the various kinds of wood and methods of construction may be compared. All beams tested were of an I section and the majority were somewhat similar in size and cross section to the front wing beam of the Curtiss JN-4 machine. Construction methods may be classed as (1) solid beams cut from solid stock; (2) three-piece beams, built up of three pieces, web and flanges glued together by a tongue-and-groove joint and (3) laminated beams built up of thin laminations of wood glued together.
Ion beams 12, Legnaro 6-8 June 2012, the 50 years (1961-2011) of the Legnaro Laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ricci, Renato Angelo
2013-07-18
A short review of the history of the Legnaro Laboratory is presented since its foundation 50 years ago by Prof. A. Rostagni of the University of Padova. The evolution of the Laboratory as a national reference center for fundamental and applied nuclear physics researches is outlined, pointing out its transformation into the INFN National Laboratories in 1968. After the first CN VdG Accelerator of 5.5 MV operating in 1961 and the AN2000 devoted to interdisciplinary researches (1971), i.e. 40 years ago, ten years later the advent of the first heavy ion facility in Italy, the XTU Tandem accelerator, and latermore » on of the ALPI superconducting linear accelerator, was crucial for any future developments, not only in the field of nuclear physics but also for the evolution of interdisciplinary programmes with ion beams.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lawrie, Scott R., E-mail: scott.lawrie@stfc.ac.uk; John Adams Institute for Accelerator Science, Department of Physics, University of Oxford; Faircloth, Daniel C.
2015-04-08
In order to facilitate the testing of advanced H{sup −} ion sources for the ISIS and Front End Test Stand (FETS) facilities at the Rutherford Appleton Laboratory (RAL), a Vessel for Extraction and Source Plasma Analyses (VESPA) has been constructed. This will perform the first detailed plasma measurements on the ISIS Penning-type H{sup −} ion source using emission spectroscopic techniques. In addition, the 30-year-old extraction optics are re-designed from the ground up in order to fully transport the beam. Using multiple beam and plasma diagnostics devices, the ultimate aim is improve H{sup −} production efficiency and subsequent transport for eithermore » long-term ISIS user operations or high power FETS requirements. The VESPA will also accommodate and test a new scaled-up Penning H{sup −} source design. This paper details the VESPA design, construction and commissioning, as well as initial beam and spectroscopy results.« less
The PADME calorimeters for missing mass dark photon searches
NASA Astrophysics Data System (ADS)
Ferrarotto, F.
2018-03-01
In this paper we will present the design and expected performance for the Electromagnetic and Small Angle Calorimeters (ECAL, SAC) of the PADME experiment. The design of the calorimeters has been optimized for the detection of the final state γ from the annihilation production (and subsequent "invisible" decay) of a "Dark Photon" produced by a positron beam on a thin, low Z target. Beam tests have been made in 2016 and 2017 at the INFN Frascati National Laboratories Linac Beam Test Facility (BTF) with positron beams of energy 100–400 MeV and results are presented. The PADME experiment will be built at the INFN Frascati National Laboratories by the end of 2017 and will be taking data in 2018 (and possibly also 2019). At the moment the collaboration is composed by the following institutions: INFN Roma and "La Sapienza" University of Roma, INFN Frascati, INFN Lecce and University of Salento, MTA Atomki Debrecen, University of Sofia, Cornell University, U.S. William and Mary College.
NASA Astrophysics Data System (ADS)
Hall, C. C.; Biedron, S. G.; Edelen, A. L.; Milton, S. V.; Benson, S.; Douglas, D.; Li, R.; Tennant, C. D.; Carlsten, B. E.
2015-03-01
In an experiment conducted on the Jefferson Laboratory IR free-electron laser driver, the effects of coherent synchrotron radiation (CSR) on beam quality were studied. The primary goal of this work was to explore CSR output and effect on the beam with variation of the bunch compression in the IR recirculator. Here we examine the impact of CSR on the average energy loss as a function of bunch compression as well as the impact of CSR on the energy spectrum of the bunch. Simulation of beam dynamics in the machine, including the one-dimensional CSR model, shows very good agreement with the measured effect of CSR on the average energy loss as a function of compression. Finally, a well-defined structure is observed in the energy spectrum with a feature in the spectrum that varies as a function of the compression. This effect is examined in simulations, as well, and a simple explanation for the variation is proposed.
Hall, C C.; Biedron, S G.; Edelen, A L.; ...
2015-03-09
In an experiment conducted on the Jefferson Laboratory IR free-electron laser driver, the effects of coherent synchrotron radiation (CSR) on beam quality were studied. The primary goal of this work was to explore CSR output and effect on the beam with variation of the bunch compression in the IR recirculator. Here we examine the impact of CSR on the average energy loss as a function of bunch compression as well as the impact of CSR on the energy spectrum of the bunch. Simulation of beam dynamics in the machine, including the one-dimensional CSR model, shows very good agreement with themore » measured effect of CSR on the average energy loss as a function of compression. Finally, a well-defined structure is observed in the energy spectrum with a feature in the spectrum that varies as a function of the compression. This effect is examined in simulations, as well, and a simple explanation for the variation is proposed.« less
A Hybrid Ion/Electron Beam Fast Ignition Concept
NASA Astrophysics Data System (ADS)
Albright, B. J.
2009-11-01
Fast ignition (FI) inertial confinement fusion is an approach to high-gain inertial fusion, whereby a dense core of deuterium/tritium fuel is assembled via direct or indirect drive and then a hot spot within the core is heated rapidly (over a time scale of order 10 ps) to ignition conditions by beams of fast charged particles. These particle beams are generated outside the capsule by the interaction of ultra-intense laser pulses with solid density targets. Most study of FI to date has focused on the use of electron [Tabak et al., Phys. Plasmas 1, 1696 (1994)] or ion [Fern'andez et al., Nuclear Fusion 49, 065004 (2009)] beams, however a hybrid approach involving both may have advantages. This paper will describe recent work in this arena. Work performed under the auspices of the U. S. Dept. of Energy by the Los Alamos National Security, Los Alamos National Laboratory. This work was supported by LANL Laboratory Directed Research and Development (LDRD).
NASA Astrophysics Data System (ADS)
L'Hostis, V.; Brunet, C.; Poupard, O.; Petre-Lazar, I.
2006-11-01
Several ageing models are available for the prediction of the mechanical consequences of rebar corrosion. They are used for service life prediction of reinforced concrete structures. Concerning corrosion diagnosis of reinforced concrete, some Non Destructive Testing (NDT) tools have been developed, and have been in use for some years. However, these developments require validation on existing concrete structures. The French project “Benchmark des Poutres de la Rance” contributes to this aspect. It has two main objectives: (i) validation of mechanical models to estimate the influence of rebar corrosion on the load bearing capacity of a structure, (ii) qualification of the use of the NDT results to collect information on steel corrosion within reinforced-concrete structures. Ten French and European institutions from both academic research laboratories and industrial companies contributed during the years 2004 and 2005. This paper presents the project that was divided into several work packages: (i) the reinforced concrete beams were characterized from non-destructive testing tools, (ii) the mechanical behaviour of the beams was experimentally tested, (iii) complementary laboratory analysis were performed and (iv) finally numerical simulations results were compared to the experimental results obtained with the mechanical tests.
A 62-MeV Proton Beam for the Treatment of Ocular Melanoma at Laboratori Nazionali del Sud-INFN
NASA Astrophysics Data System (ADS)
Cirrone, G. A. P.; Cuttone, G.; Lojacono, P. A.; Lo Nigro, S.; Mongelli, V.; Patti, I. V.; Privitera, G.; Raffaele, L.; Rifuggiato, D.; Sabini, M. G.; Salamone, V.; Spatola, C.; Valastro, L. M.
2004-06-01
At the Istituto Nazionale di Fisica Nucleare-Laboratori Nazionali del Sud (INFN-LNS) in Catania, Italy, the first Italian protontherapy facility, named Centro di AdroTerapia e Applicazioni Nucleari Avanzate (CATANA) has been built in collaboration with the University of Catania. It is based on the use of the 62-MeV proton beam delivered by the K=800 Superconducting Cyclotron installed and working at INFN-LNS since 1995. The facility is mainly devoted to the treatment of ocular diseases like uveal melanoma. A beam treatment line in air has been assembled together with a dedicated positioning patient system. The facility has been in operation since the beginning of 2002 and 66 patients have been successfully treated up to now. The main features of CATANA together with the clinical and dosimetric features will be extensively described; particularly, the proton beam line, that has been entirely built at LNS, with all its elements, the experimental transversal and depth dose distributions of the 62-MeV proton beam obtained for a final collimator of 25-mm diameter and the experimental depth dose distributions of a modulated proton beam obtained for the same final collimator. Finally, the clinical results over 1 yr of treatments, describing the features of the treated diseases will be reported.
Sediment trapping efficiency of adjustable check dam in laboratory and field experiment
NASA Astrophysics Data System (ADS)
Wang, Chiang; Chen, Su-Chin; Lu, Sheng-Jui
2014-05-01
Check dam has been constructed at mountain area to block debris flow, but has been filled after several events and lose its function of trapping. For the reason, the main facilities of our research is the adjustable steel slit check dam, which with the advantages of fast building, easy to remove or adjust it function. When we can remove transverse beams to drain sediments off and keep the channel continuity. We constructed adjustable steel slit check dam on the Landow torrent, Huisun Experiment Forest station as the prototype to compare with model in laboratory. In laboratory experiments, the Froude number similarity was used to design the dam model. The main comparisons focused on types of sediment trapping and removing, sediment discharge, and trapping rate of slit check dam. In different types of removing transverse beam showed different kind of sediment removal and differences on rate of sediment removing, removing rate, and particle size distribution. The sediment discharge in check dam with beams is about 40%~80% of check dam without beams. Furthermore, the spacing of beams is considerable factor to the sediment discharge. In field experiment, this research uses time-lapse photography to record the adjustable steel slit check dam on the Landow torrent. The typhoon Soulik made rainfall amounts of 600 mm in eight hours and induced debris flow in Landow torrent. Image data of time-lapse photography demonstrated that after several sediment transport event the adjustable steel slit check dam was buried by debris flow. The result of lab and field experiments: (1)Adjustable check dam could trap boulders and stop woody debris flow and flush out fine sediment to supply the need of downstream river. (2)The efficiency of sediment trapping in adjustable check dam with transverse beams was significantly improved. (3)The check dam without transverse beams can remove the sediment and keep the ecosystem continuity.
Andonian, G.; Barber, S.; O’Shea, F. H.; ...
2017-02-03
We show that temporal pulse tailoring of charged-particle beams is essential to optimize efficiency in collinear wakefield acceleration schemes. In this Letter, we demonstrate a novel phase space manipulation method that employs a beam wakefield interaction in a dielectric structure, followed by bunch compression in a permanent magnet chicane, to longitudinally tailor the pulse shape of an electron beam. This compact, passive, approach was used to generate a nearly linearly ramped current profile in a relativistic electron beam experiment carried out at the Brookhaven National Laboratory Accelerator Test Facility. Here, we report on these experimental results including beam and wakefieldmore » diagnostics and pulse profile reconstruction techniques.« less
Thermal Analysis of Fermilab Mu2e Beamstop and Structural Analysis of Beamline Components
DOE Office of Scientific and Technical Information (OSTI.GOV)
Narug, Colin S.
The Mu2e project at Fermilab National Accelerator Laboratory aims to observe the unique conversion of muons to electrons. The success or failure of the experiment to observe this conversion will further the understanding of the standard model of physics. Using the particle accelerator, protons will be accelerated and sent to the Mu2e experiment, which will separate the muons from the beam. The muons will then be observed to determine their momentum and the particle interactions occur. At the end of the Detector Solenoid, the internal components will need to absorb the remaining particles of the experiment using polymer absorbers. Becausemore » the internal structure of the beamline is in a vacuum, the heat transfer mechanisms that can disperse the energy generated by the particle absorption is limited to conduction and radiation. To determine the extent that the absorbers will heat up over one year of operation, a transient thermal finite element analysis has been performed on the Muon Beam Stop. The levels of energy absorption were adjusted to determine the thermal limit for the current design. Structural finite element analysis has also been performed to determine the safety factors of the Axial Coupler, which connect and move segments of the beamline. The safety factor of the trunnion of the Instrument Feed Through Bulk Head has also been determined for when it is supporting the Muon Beam Stop. The results of the analysis further refine the design of the beamline components prior to testing, fabrication, and installation.« less
INEEL BNCT research program. Annual report, January 1, 1996--December 31, 1996
DOE Office of Scientific and Technical Information (OSTI.GOV)
Venhuizen, J.R.
1997-04-01
This report is a summary of the progress and research produced for the Idaho National Engineering and Environmental Laboratory (INEEL) Boron Neutron Capture Therapy (BNCT) Research Program for calendar year 1996. Contributions from the individual investigators about their projects are included, specifically, physics: treatment planning software, real-time neutron beam measurement dosimetry, measurement of the Finnish research reactor epithermal neutron spectrum, BNCT accelerator technology; and chemistry: analysis of biological samples and preparation of {sup 10}B enriched decaborane.
Experimental Vibration Analysis of Inflatable Beams for an AFIT Space Shuttle Experiment
2002-03-01
appreciate his efforts and wish I had listened to him. I would also like to thank Dr. Gregg Gunsch, Major Richard Cobb, Lt Col Price Smith and Lt Col...frequencies and damping ratios, a program written in MAT- LAB by then Captain Richard Cobb of the Air Force Research Laboratory[7] was used. The EZERA routine...W. and J. Penzien. Dynamics of Structures . New York: McGraw-Hill, 1975. 7. Cobb, Richard , Captain USAF. Structural Damage Identification From Limited
DOE Office of Scientific and Technical Information (OSTI.GOV)
Filippetto, D.; /Frascati; Sannibale, F.
2008-01-24
By analyzing the pulse to pulse intensity fluctuations of the radiation emitted by a charge particle in the incoherent part of the spectrum, it is possible to extract information about the spatial distribution of the beam. At the Advanced Light Source (ALS) of the Lawrence Berkeley National Laboratory, we have developed and tested a simple scheme based on this principle that allows for the absolute measurement of the bunch length. A description of the method and the experimental results are presented.
The Beam Dynamics and Beam Related Uncertainties in Fermilab Muon $g-2$ Experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Wanwei
The anomaly of the muon magnetic moment,more » $$a_{\\mu}\\equiv (g-2)/2$$, has played an important role in constraining physics beyond the Standard Model for many years. Currently, the Standard Model prediction for $$a_{\\mu}$$ is accurate to 0.42 parts per million (ppm). The most recent muon $g-2$ experiment was done at Brookhaven National Laboratory (BNL) and determined $$a_{\\mu}$$ to 0.54 ppm, with a central value that differs from the Standard Model prediction by 3.3-3.6 standard deviations and provides a strong hint of new physics. The Fermilab Muon $g-2$ Experiment has a goal to measure $$a_{\\mu}$$ to unprecedented precision: 0.14 ppm, which could provide an unambiguous answer to the question whether there are new particles and forces that exist in nature. To achieve this goal, several items have been identified to lower the systematic uncertainties. In this work, we focus on the beam dynamics and beam associated uncertainties, which are important and must be better understood. We will discuss the electrostatic quadrupole system, particularly the hardware-related quad plate alignment and the quad extension and readout system. We will review the beam dynamics in the muon storage ring, present discussions on the beam related systematic errors, simulate the 3D electric fields of the electrostatic quadrupoles and examine the beam resonances. We will use a fast rotation analysis to study the muon radial momentum distribution, which provides the key input for evaluating the electric field correction to the measured $$a_{\\mu}$$.« less
Analysis Tools for the Ion Cyclotron Emission Diagnostic on DIII-D
NASA Astrophysics Data System (ADS)
Del Castillo, C. A.; Thome, K. E.; Pinsker, R. I.; Meneghini, O.; Pace, D. C.
2017-10-01
Ion cyclotron emission (ICE) waves are excited by suprathermal particles such as neutral beam particles and fusion products. An ICE diagnostic is in consideration for use at ITER, where it could provide important passive measurement of fast ions location and losses, which are otherwise difficult to determine. Simple ICE data analysis codes had previously been developed, but more sophisticated codes are required to facilitate data analysis. Several terabytes of ICE data were collected on DIII-D during the 2015-2017 campaign. The ICE diagnostic consists of antenna straps and dedicated magnetic probes that are both digitized at 200 MHz. A suite of Python spectral analysis tools within the OMFIT framework is under development to perform the memory-intensive analysis of this data. A fast and optimized analysis allows ready access to data visualizations as spectrograms and as plots of both frequency and time cuts of the data. A database of processed ICE data is being constructed to understand the relationship between the frequency and intensity of ICE and a variety of experimental parameters including neutral beam power and geometry, local and global plasma parameters, magnetic fields, and many others. Work supported in part by US DoE under the Science Undergraduate Laboratory Internship (SULI) program and under DE-FC02-04ER54698.
NASA Astrophysics Data System (ADS)
Medley, S. S.; Liu, D.; Gorelenkova, M. V.; Heidbrink, W. W.; Stagner, L.
2016-02-01
A 3D halo neutral code developed at the Princeton Plasma Physics Laboratory and implemented for analysis using the TRANSP code is applied to projected National Spherical Torus eXperiment-Upgrade (NSTX-U plasmas). The legacy TRANSP code did not handle halo neutrals properly since they were distributed over the plasma volume rather than remaining in the vicinity of the neutral beam footprint as is actually the case. The 3D halo neutral code uses a ‘beam-in-a-box’ model that encompasses both injected beam neutrals and resulting halo neutrals. Upon deposition by charge exchange, a subset of the full, one-half and one-third beam energy components produce first generation halo neutrals that are tracked through successive generations until an ionization event occurs or the descendant halos exit the box. The 3D halo neutral model and neutral particle analyzer (NPA) simulator in the TRANSP code have been benchmarked with the Fast-Ion D-Alpha simulation (FIDAsim) code, which provides Monte Carlo simulations of beam neutral injection, attenuation, halo generation, halo spatial diffusion, and photoemission processes. When using the same atomic physics database, TRANSP and FIDAsim simulations achieve excellent agreement on the spatial profile and magnitude of beam and halo neutral densities and the NPA energy spectrum. The simulations show that the halo neutral density can be comparable to the beam neutral density. These halo neutrals can double the NPA flux, but they have minor effects on the NPA energy spectrum shape. The TRANSP and FIDAsim simulations also suggest that the magnitudes of beam and halo neutral densities are relatively sensitive to the choice of the atomic physics databases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Medley, S. S.; Liu, D.; Gorelenkova, M. V.
2016-01-12
A 3D halo neutral code developed at the Princeton Plasma Physics Laboratory and implemented for analysis using the TRANSP code is applied to projected National Spherical Torus eXperiment-Upgrade (NSTX-U plasmas). The legacy TRANSP code did not handle halo neutrals properly since they were distributed over the plasma volume rather than remaining in the vicinity of the neutral beam footprint as is actually the case. The 3D halo neutral code uses a 'beam-in-a-box' model that encompasses both injected beam neutrals and resulting halo neutrals. Upon deposition by charge exchange, a subset of the full, one-half and one-third beam energy components producemore » first generation halo neutrals that are tracked through successive generations until an ionization event occurs or the descendant halos exit the box. The 3D halo neutral model and neutral particle analyzer (NPA) simulator in the TRANSP code have been benchmarked with the Fast-Ion D-Alpha simulation (FIDAsim) code, which provides Monte Carlo simulations of beam neutral injection, attenuation, halo generation, halo spatial diffusion, and photoemission processes. When using the same atomic physics database, TRANSP and FIDAsim simulations achieve excellent agreement on the spatial profile and magnitude of beam and halo neutral densities and the NPA energy spectrum. The simulations show that the halo neutral density can be comparable to the beam neutral density. These halo neutrals can double the NPA flux, but they have minor effects on the NPA energy spectrum shape. The TRANSP and FIDAsim simulations also suggest that the magnitudes of beam and halo neutral densities are relatively sensitive to the choice of the atomic physics databases.« less
ATLAS Large Scale Thin Gap Chambers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soha, Aria
This is a technical scope of work (TSW) between the Fermi National Accelerator Laboratory (Fermilab) and the experimenters of the ATLAS sTGC New Small Wheel collaboration who have committed to participate in beam tests to be carried out during the FY2014 Fermilab Test Beam Facility program.
NASA Astrophysics Data System (ADS)
Lander, Michael L.
2003-05-01
The Laser Hardened Materials Evaluation Laboratory (LHMEL) has been characterizing material responses to laser energy in support of national defense programs and the aerospace industry for the past 26 years. This paper reviews the overall resources available at LHMEL to support fundamental materials testing relating to impulse coupling measurement and to explore beamed energy launch concepts. Located at Wright-Patterson Air Force Base, Ohio, LHMEL is managed by the Air Force Research Laboratory Materials Directorate AFRL/MLPJ and operated by Anteon Corporation. The facility's advanced hardware is centered around carbon dioxide lasers producing output power up to 135kW and neodymium glass lasers producing up to 10 kilojoules of repetitively pulsed output. The specific capabilities of each laser device and related optical systems are discussed. Materials testing capabilities coupled with the laser systems are also described including laser output and test specimen response diagnostics. Environmental simulation capabilities including wind tunnels and large-volume vacuum chambers relevant to beamed energy propulsion are also discussed. This paper concludes with a summary of the procedures and methods by which the facility can be accessed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yokosawa, A.
The author described the polarized-proton and polarized-antiproton beams up to 200 GeV/c at Fermilab. The beam line, called MP, consists of the 400-m long primary and 350-m long secondary beam line followed by 60-m long experimental hall. We discuss the characteristics of the polarized beams. The Fermilab polarization projects are designated at E-581/704 initiated and carried out by an international collaboration, Argonne (US), Fermilab (US), Kyoto-Kyushu-Hiroshima-KEK (Japan), LAPP (France), Northwestern University (US), Los Alamos Laboratory (US), Rice (US), Saclay (France), Serpukhov (USSR), INFN Trieste (Italy), and University of Texas (US).
NASA Astrophysics Data System (ADS)
Buske, Ivo; Riede, Wolfgang
2006-09-01
We compare active optical elements based on different technologies to accomplish the requirements of a 2-dim. fine tracking control system. A cascaded optically and electrically addressable spatial light modulator (OASLM) based on liquid crystals (LC) is used for refractive beam steering. Spatial light modulators provide a controllable phase wedge to generate a beam deflection. Additionally, a tip/tilt mirror approach operating with piezo-electric actuators is investigated. A digital PID controller is implemented for closed-loop control. Beam tracking with a root-mean-squared accuracy of Δα=30 nrad has been laboratory-confirmed.
Dynamic characteristic of a 30-cm mercury ion thruster
NASA Technical Reports Server (NTRS)
Serafini, J. S.; Mantenieks, M. A.; Rawlin, V. K.
1975-01-01
Measurements of the fluctuations of the discharge and beam plasmas of a 30 centimeter ion thruster were performed using 60 Hertz laboratory type power supplies. The time-varying properties of the discharge voltage and current, the ion beam current, and neutralizer keeper current were measured. The intensities of the fluctuations were found to depend on the beam and magnetic baffle currents. The shape of the frequency spectra of the discharge plasma fluctuations was found to be related to the beam and magnetic baffle currents. The measurements indicated that the discharge current fluctuations directly contribute to the beam current fluctuations and that the power supply characteristics modify these fluctuations.
Slowing of Bessel light beam group velocity
NASA Astrophysics Data System (ADS)
Alfano, Robert R.; Nolan, Daniel A.
2016-02-01
Bessel light beams experience diffraction-limited propagation. A different basic spatial property of a Bessel beam is reported and investigated. It is shown a Bessel beam is a natural waveguide causing its group velocity can be subluminal (slower than the speed of light) when the optical frequency ω approaches a critical frequency ωc. A free space dispersion relation for a Bessel beam, the dependence of its wave number on its angular frequency, is developed from which the Bessel beam's subluminal group velocity is derived. It is shown under reasonable laboratory conditions that a Bessel light beam has associated parameters that allow slowing near a critical frequency. The application of Bessel beams with 1 μm spot size to slow down 100 ps to 200 ps over 1 cm length for a natural optical buffer in free space is presented.
Multiscale permutation entropy analysis of laser beam wandering in isotropic turbulence.
Olivares, Felipe; Zunino, Luciano; Gulich, Damián; Pérez, Darío G; Rosso, Osvaldo A
2017-10-01
We have experimentally quantified the temporal structural diversity from the coordinate fluctuations of a laser beam propagating through isotropic optical turbulence. The main focus here is on the characterization of the long-range correlations in the wandering of a thin Gaussian laser beam over a screen after propagating through a turbulent medium. To fulfill this goal, a laboratory-controlled experiment was conducted in which coordinate fluctuations of the laser beam were recorded at a sufficiently high sampling rate for a wide range of turbulent conditions. Horizontal and vertical displacements of the laser beam centroid were subsequently analyzed by implementing the symbolic technique based on ordinal patterns to estimate the well-known permutation entropy. We show that the permutation entropy estimations at multiple time scales evidence an interplay between different dynamical behaviors. More specifically, a crossover between two different scaling regimes is observed. We confirm a transition from an integrated stochastic process contaminated with electronic noise to a fractional Brownian motion with a Hurst exponent H=5/6 as the sampling time increases. Besides, we are able to quantify, from the estimated entropy, the amount of electronic noise as a function of the turbulence strength. We have also demonstrated that these experimental observations are in very good agreement with numerical simulations of noisy fractional Brownian motions with a well-defined crossover between two different scaling regimes.
NASA Technical Reports Server (NTRS)
Banks, B. A.; Mirtich, M. J.; Rutledge, S. K.; Swec, D. M.; Nahra, H. K.
1985-01-01
Ion beam sputter-deposited thin films of Al2O3, SiO2, and a codeposited mixture of predominantly SiO2 with small amounts of a fluoropolymer were evaluated both in laboratory plasma ashing tests and in space on board shuttle flight STS-8 for effectiveness in preventing oxidation of polyimide Kapton. Measurements of mass loss and optical performance of coated and uncoated polyimide samples exposed to the low Earth orbital environment are presented. Optical techniques were used to measure loss rates of protective films exposed to atomic oxygen. Results of the analysis of the space flight exposed samples indicate that thin film metal oxide coatings are very effective in protecting the polyimide. Metal oxide coatings with a small amount of fluoropolymer codeposited have the additional benefit of great flexibility.
NASA Technical Reports Server (NTRS)
Banks, B. A.; Mirtich, M. J.; Rutledge, S. K.; Swec, D. M.; Nahra, H. K.
1985-01-01
Ion beam sputter-deposited thin films at Al2O3, SiO2, and a codeposited mixture of predominantly SiO2 with small amounts of fluoropolymer were evaluated both in laboratory plasma ashing tests and in space on board Shuttle flight STS-8 for effectiveness in preventing oxidation of polyimide Kapton. Measurements of mass loss and optical performance of coated and uncoated polyimide samples exposed to the low earth orbital environment are presented. Optical techniques were used to measure loss rates of protective films exposed to atomic oxygen. Results of the analysis of the space flight exposed samples indicate that thin film metal oxide coatings are very effective in protecting the polyimide. Metal oxide coatings with a small amount of fluoropolymer codeposited have the additional benefit of great flexibility.
NASA Astrophysics Data System (ADS)
Turchiello, Rozane de F.; Pereira, Luiz A. A.; Gómez, Sergio L.
2017-07-01
This paper presents a simple and affordable experiment on the thermal lens effect, suitable for an undergraduate educational laboratory or as a tabletop demonstration in a lecture on nonlinear optics. Such an experiment exploits the formation of a lens in an absorbing medium illuminated by a laser beam with a Gaussian intensity profile. As an absorber, we use a commercial soy sauce, which exhibits a strong thermal lensing effect. Additionally, we show how to measure the radius of a Gaussian beam using the knife-edge method, and how to estimate the focal length of the induced thermal lens.
Beamed Energy Propulsion by Means of Target Ablation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosenberg, Benjamin A.
2004-03-30
This paper describes hundreds of pendulum tests examining the beamed energy conversion efficiency of different metal targets coated with multiple liquid enhancers. Preliminary testing used a local laser with photographic paper targets, with no liquid, water, canola oil, or methanol additives. Laboratory experimentation was completed at Wright-Patterson AFB using a high-powered laser, and ballistic pendulums of aluminum, titanium, or copper. Dry targets, and those coated with water, methanol and oil were repeatedly tested in laboratory conditions. Results were recorded on several high-speed digital video cameras, and the conversion efficiency was calculated. Paper airplanes successfully launched using BEP were likewise recorded.
Rare Isotope Beams for the 21st Century
James Symons
2017-12-09
In a scientific keynote address on Friday, June 12 at Michigan State University (MSU) in East Lansing, James Symons, Director of Berkeley Labs Nuclear Science Division (NSD), discussed the exciting research prospects of the new Facility for Rare Isotope Beams (FRIB) to be built at MSUs National Superconducting Cyclotron Laboratory.
. Once in operation, the RFQ, together with its ion source, will act as the birthplace of particle beams for the laboratory's many experiments. "The ion source and RFQ are the beginning of everything ," said Cheng-Yang Tan, the lead physicist on the RFQ project. "They are the source of beam for
NORTH BASEMENT WALL. IBEAM COLUMNS HAVE BEEN ENCASED IN CONCRETE. ...
NORTH BASEMENT WALL. I-BEAM COLUMNS HAVE BEEN ENCASED IN CONCRETE. STEEL BEAMS LAY ACROSS FIRST FLOOR AWAITING CONCRETE POUR. CAMERA LOOKS SOUTHWEST. INL NEGATIVE NO. 735. Unknown Photographer, 10/6/1950 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
Engineering and Technical Efforts to Design and Construct a 10 MW gyrotron Laboratory
1989-01-18
coupling coefficients are proptional to the square of the effective electric field at the beam. The effective electric field, Es, is given in...develop- ed to alleviate shorts in the body current beam diagnostic and baking constraints that previous o-ring designs have experienced. The prototype
Laboratory Facilities and Measurement Techniques for Beamed-Energy-Propulsion Experiments in Brazil
NASA Astrophysics Data System (ADS)
de Oliveira, Antonio Carlos; Chanes Júnior, José Brosler; Cordeiro Marcos, Thiago Victor; Pinto, David Romanelli; Santos Vilela, Renan Guilherme; Barros Galvão, Victor Alves; Mantovani, Arthur Freire; da Costa, Felipe Jean; dos Santos Assenção, José Adeildo; dos Santos, Alberto Monteiro; de Paula Toro, Paulo Gilberto; Sala Minucci, Marco Antonio; da Silveira Rêgo, Israel; Salvador, Israel Irone; Myrabo, Leik N.
2011-11-01
Laser propulsion is an innovative concept of accessing the space easier and cheaper where the propulsive energy is beamed to the aerospace vehicle in flight from ground—or even satellite-based high-power laser sources. In order to be realistic about laser propulsion, the Institute for Advanced Studies of the Brazilian Air Force in cooperation with the United States Air Force and the Rensselaer Polytechnic Institute are seriously investigating its basic physics mechanisms and engineering aspects at the Henry T. Hamamatsu Laboratory of Hypersonic and Aerothermodynamics in São José dos Campos, Brazil. This paper describes in details the existing facilities and measuring systems such as high-power laser devices, pulsed-hypersonic wind tunnels and high-speed flow visualization system currently utilized in the laboratory for experimentation on laser propulsion.
Airborne Lidar Bathymetry Beam Diagnostics Using an Underwater Optical Detector Array
NASA Astrophysics Data System (ADS)
Birkebak, Matthew
The surface geometry of air-water interface is considered as an important factor affecting the performance of Airborne Lidar Bathymetry (ALB), and laser optical communication through the water surface. ALB is a remote sensing technique that utilizes a pulsed green (532 nm) laser mounted to an airborne platform in order to measure water depth. The water surface (i.e., air-water interface) can distort the light beam's ray-path geometry and add uncertainty to range calculation measurements. Previous studies on light refracting through a complex water surface are heavily dependent on theoretical models and simulations. In addition, only very limited work has been conducted to validate these theoretical models using experiments under well-controlled laboratory conditions. The goal of the study is to establish a clear relationship between water-surface conditions and the uncertainty of ALB measurement. This relationship will be determined by conducting more extensive empirical measurements to characterize the changes in beam slant path associated with a variety of short wavelength wind ripples, typically seen in ALB survey conditions. This study will focus on the effects of capillary and gravity-capillary waves with surface wavelengths smaller than the diameter of the laser beam on the water surface. Simulations using Monte-Carlo techniques of the ALB beam footprints and the environmental conditions were used to analyze the ray-path geometries. Based on the simulation results, laboratory experiments were then designed to test key parameters that have the greatest contribution on beam path and direction through the water. The laser beam dispersion experiments were conducted in well-controlled laboratory setting at the University of New Hampshire's Wave and Tow tank. The spatial elevations of the water surface were independently measured using a high resolution wave staff. The refracted laser beam footprint was measured using an underwater optical detector consisting of a 6x6 array of photodiodes. Image processing techniques were used to estimate the laser's incidence angle intercepted by the detector array. Beam patterns that resulted from intersection between the laser beam light field underwater and the detector array were modeled and used to calculate changes in position and orientation for water surface conditions containing wavelengths less than 0.1m. Finally, a total horizontal uncertainty (THU) model was estimated, which can be implemented in total propagated uncertainty (TPU) models for reporting as a measure of the quality of each measurement. The wave refraction error for various sea states and beam characteristics was successfully quantified using both experimental and analytical techniques.
(Proceedings) 18th Advanced ICFA Beam Dynamics Workshop on Quantum Aspects of Beam Physics (QABP)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Pisin
2002-10-25
The 18th Advanced ICFA Beam Dynamics Workshop on ''Quantum Aspects of Beam Physics'' was held from October 15 to 20, 2000, in Capri, Italy. This was the second workshop under the same title. The first one was held in Monterey, California, in January, 1998. Following the footstep of the first meeting, the second one in Capri was again a tremendous success, both scientifically and socially. About 70 colleagues from astrophysics, atomic physics, beam physics, condensed matter physics, particle physics, and general relativity gathered to update and further explore the topics covered in the Monterey workshop. Namely, the following topics weremore » actively discussed: (1) Quantum Fluctuations in Beam Dynamics; (2) Photon-Electron Interaction in Beam handling; (3) Physics of Condensed Beams; (4) Beam Phenomena under Strong Fields; (5) Quantum Methodologies in Beam Physics. In addition, there was a newly introduced subject on Astro-Beam Physics and Laboratory Astrophysics.« less
The effect of optically active turbulence on Gaussian laser beams in the ocean
NASA Astrophysics Data System (ADS)
Nootz, G.; Matt, S.; Jarosz, E.; Hou, W.
2016-02-01
Motivated by the high resolution and data transfer potential, optical imaging and communication methods are intensely investigated for marine applications. The majority of research focuses on overcoming the strong scattering of light by particles present in the ocean. However when operating in very clear water the limiting factor for such applications can be the strongly forward biased scattering from optically active turbulent layers. For this presentation the effect of optically active turbulence on focused Gaussian beams has been studied in the field, in a controlled laboratory test tank, and by numerical simulations. For the field experiments a telescoping rigid underwater sensor structure (TRUSS) was deployed in the Bahamas equipped with a diffractive optics element projecting a matrix of beams towards a fast beam profiler. Image processing techniques are used to extract the beam wander and beam breathing. The results are compared to theoretical values for the optical turbulence strength derived from the measured temperature microstructure at the test side. Laboratory and simulated experiments are carried out in a physical and numerical Rayleigh-Benard convection turbulence tank of the same geometry. A focused Gaussian laser beam is propagated through the test tank and recorded with a camera from the back side of a diffuser. Similarly, a focused Gaussian beam is propagated numerically by means of split-step Fourier method through the simulated turbulence environment. Results will be presented for weak to moderate turbulence as they are most typical for oceanic conditions. Conclusions about the effect on optical imaging and communication applications will be discussed.
NASA Astrophysics Data System (ADS)
Lépine-Szily, A.; Lichtenthäler, R.; Guimarães, V.
2014-08-01
RIBRAS (Radioactive Ion Beams in Brazil) is a facility installed at the Institute of Physics of the University of São Paulo (IFUSP), Brazil. The RIBRAS system consists of two superconducting solenoids and uses the "in-flight method" to produce radioactive ion beams using the primary beam provided by the 8UD Pelletron Tandem of IFUSP. The ion beams produced so far by RIBRAS are 6He, 8Li, 7Be, 10Be, 8B, 12B with intensities that can vary from 104 to 106 pps. Initially the experimental program covered the study of elastic and inelastic scattering with the objective to study the interaction potential and the reaction mechanisms between weakly bound (RIB) and halo (6He and 8B projectiles on light, medium and heavy mass targets. With highly purified beams, the study of resonant elastic scattering and resonant transfer reactions, using inverse kinematics and thick targets, has also been included in our experimental program. Also, transfer reactions of astrophysical interest and fusion reactions induced by halo nuclei are part of the near-future research program. Our recent results on elastic scattering, alpha-particle production and total reaction cross sections, as well as the resonant elastic and transfer reactions, are presented. Our plans for the near future are related to the installation of a new beam line and a cave for gamma-ray detection. We intend to place in operation a large area neutron detector available in our laboratory. The long-range plans could be the move of the RIBRAS system to the more energetic beam line of the LINAC post-accelerator (10MeV/nucleon primary beams) still in construction in our laboratory.
Beam line BL11 for LIGA process at the NewSUBARU
NASA Astrophysics Data System (ADS)
Mekaru, Harutaka; Utsumi, Yuichi; Hattori, Tadashi
2001-07-01
A beam line BL11 is constructed for exposure Hard X-ray Lithography (HXL) in the LIGA (German acronym for Lithographite Galvanoformung and Abformung) process at the synchrotron radiation (SR) facility NewSUBARU of the Laboratory of Advanced Science and Technology for Industry (LASTI) in Himeji Institute of Technology (HIT). This beam line was designed by the criteria; photon energy range 4-6 keV, a beam spot size on the exposure stage ⩾60×5 mm 2, a density of total irradiated photons ⩾10 11 photons/cm 2. The PMMA sheet etching was successfully demonstrated by using the output beam. We conclude that this beam line performs sufficiently well to study the exposure of HXL in the LIGA process.
NASA Astrophysics Data System (ADS)
Lapierre, A.; Bollen, G.; Crisp, D.; Krause, S. W.; Linhardt, L. E.; Lund, K.; Nash, S.; Rencsok, R.; Ringle, R.; Schwarz, S.; Steiner, M.; Sumithrarachchi, C.; Summers, T.; Villari, A. C. C.; Williams, S. J.; Zhao, Q.
2018-05-01
The electron-beam ion trap (EBIT) charge breeder of the ReA post-accelerator, located at the National Superconducting Cyclotron Laboratory (Michigan State University), started on-line operation in September 2015. Since then, the EBIT has delivered many pilot beams of stable isotopes and several rare-isotope beams. An operating aspect of the ReA EBIT is the breeding of high charge states to reach high reaccelerated beam energies. Efficiencies in single charge states of more than 20% were measured with
PIXE Analysis of Aerosol and Soil Samples Collected in the Adirondack Mountains
NASA Astrophysics Data System (ADS)
Yoskowitz, Joshua; Ali, Salina; Nadareski, Benjamin; Labrake, Scott; Vineyard, Michael
2014-09-01
We have performed an elemental analysis of aerosol and soil samples collected at Piseco Lake in Upstate New York using proton induced X-ray emission spectroscopy (PIXE). This work is part of a systematic study of airborne pollution in the Adirondack Mountains. Of particular interest is the sulfur content that can contribute to acid rain, a well-documented problem in the Adirondacks. We used a nine-stage cascade impactor to collect the aerosol samples near Piseco Lake and distribute the particulate matter onto Kapton foils by particle size. The soil samples were also collected at Piseco Lake and pressed into cylindrical pellets for experimentation. PIXE analysis of the aerosol and soil samples were performed with 2.2-MeV proton beams from the 1.1-MV Pelletron accelerator in the Union College Ion-Beam Analysis Laboratory. There are higher concentrations of sulfur at smaller particle sizes (0.25-1 μm), suggesting that it could be suspended in the air for days and originate from sources very far away. Other elements with significant concentrations peak at larger particle sizes (1-4 μm) and are found in the soil samples, suggesting that these elements could originate in the soil. The PIXE analysis will be described and the resulting data will be presented.
Laboratory Studies in UV and EUV Solar Physics
NASA Technical Reports Server (NTRS)
Parkinson, W. H.; Wagner, William J. (Technical Monitor)
2002-01-01
The Ion Beam Experiment at the Center for Astrophysics is dedicated to the study of ion-electron collision processes of importance in solar physics. The analysis of measurements of Electron Impact Excitation (EIE) from the 3s3p(exp 3)P(exp o) metastable state to the 3s3p(exp 1)P state of Si(2+) was completed during the past year and a paper describing the results is available as a preprint. Our current program is directed at measuring absolute cross sections for dielectronic recombination (DR) and EIE in Si(3+), one of the primary ions used for probing the solar transition region. Our study of DR is particularly concerned with the effects of electric and magnetic fields on the recombination rates. Measurements of silicon ions with charge greater than n=2 have necessitated upgrading the experiment with a new ion source. The new source is also suitable for producing C(2+) beams to be used for measurements of EIE and DR for that system. The source is expected to be capable of producing beams of more highly charged systems as well.
Laser-driven atomic-probe-beam diagnostics
NASA Astrophysics Data System (ADS)
Knyazev, B. A.; Greenly, J. B.; Hammer, D. A.
2000-12-01
A new laser-driven atomic-probe-beam diagnostic (LAD) is proposed for local, time-resolved measurements of electric field and ion dynamics in the accelerating gap of intense ion beam diodes. LAD adds new features to previous Stark-shift diagnostics which have been progressively developed in several laboratories, from passive observation of Stark effect on ion species or fast (charge-exchanged) neutrals present naturally in diodes, to active Stark atomic spectroscopy (ASAS) in which selected probe atoms were injected into the gap and excited to suitable states by resonant laser radiation. The LAD scheme is a further enhancement of ASAS in which the probe atoms are also used as a local (laser-ionized) ion source at an instant of time. Analysis of the ion energy and angular distribution after leaving the gap enables measurement, at the chosen ionization location in the gap, of both electrostatic potential and the development of ion divergence. Calculations show that all of these quantities can be measured with sub-mm and ns resolution. Using lithium or sodium probe atoms, fields from 0.1 to 10 MV/cm can be measured.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuba, J; Slaughter, D R; Fittinghoff, D N
We present a detailed comparison of the measured characteristics of Thomson backscattered x-rays produced at the PLEIADES (Picosecond Laser-Electron Interaction for the Dynamic Evaluation of Structures) facility at Lawrence Livermore National Laboratory to predicted results from a newly developed, fully three-dimensional time and frequency-domain code. Based on the relativistic differential cross section, this code has the capability to calculate time and space dependent spectra of the x-ray photons produced from linear Thomson scattering for both bandwidth-limited and chirped incident laser pulses. Spectral broadening of the scattered x-ray pulse resulting from the incident laser bandwidth, perpendicular wave vector components in themore » laser focus, and the transverse and longitudinal phase space of the electron beam are included. Electron beam energy, energy spread, and transverse phase space measurements of the electron beam at the interaction point are presented, and the corresponding predicted x-ray characteristics are determined. In addition, time-integrated measurements of the x-rays produced from the interaction are presented, and shown to agree well with the simulations.« less
2013-09-01
Optimization of the Nonradiative Lifetime of Molecular- Beam-Epitaxy (MBE)-Grown Undoped GaAs/AlGaAs Double Heterostructures (DH) by P...it to the originator. Army Research Laboratory Adelphi, MD 20783-1197 ARL-TR-6660 September 2013 Optimization of the Nonradiative ...REPORT TYPE Final 3. DATES COVERED (From - To) FY2013 4. TITLE AND SUBTITLE Optimization of the Nonradiative Lifetime of Molecular-Beam-Epitaxy
Summary of SLAC's SEY Measurement On Flat Accelerator Wall Materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Le Pimpec, F.; /PSI, Villigen /SLAC
The electron cloud effect (ECE) causes beam instabilities in accelerator structures with intense positively charged bunched beams. Reduction of the secondary electron yield (SEY) of the beam pipe inner wall is effective in controlling cloud formation. We summarize SEY results obtained from flat TiN, TiZrV and Al surfaces carried out in a laboratory environment. SEY was measured after thermal conditioning, as well as after low energy, less than 300 eV, particle exposure.
1988-10-27
il FILE COPy Naval Research Laboratory Washingon, DC 20375-500 NRL Memorandum Report 6347 ,qJ. o Transformations of Gaussian Light Beams N Caused by...Transformations of 7aussian Light Beams Caused by Reflection in FEL Resonators 12 PERSONAL AUTHOR(S) Riyopoulos,* S., Tang, C.M. and Sprangle, P...34 -6603 -"I, -,’ SECURITY CLASSIFICATION OF THIS PAGE 19. ABSTRACTS (Continued) cross-coupling among vector components of the radiation field, caused
NASA Technical Reports Server (NTRS)
Minton, Timothy K.; Moore, Teresa A.
1995-01-01
Mass spectra of products emerging from identical samples of a C-13-enriched polyimide polymer (chemically equivalent to Kapton) under atomic oxygen bombardment in space and in the laboratory were collected. Reaction products unambiguously detected in space were CO-13, NO, (12)CO2, and (13)CO2. These reaction products and two others, H2O and CO-12, were detected in the laboratory, along with inelastically scattered atomic and molecular oxygen. Qualitative agreement was seen in the mass spectra taken in space and in the laboratory; the agreement may be improved by reducing the fraction of O2 in the laboratory molecular beam. Both laboratory and space data indicated that CO and CO2 products come preferentially from reaction with the imide component of the polymer chain, raising the possibility that the either component may degrade in part by the 'evaporation' of higher molecular weight fragments. Laboratory time-of-flight distributions showed: (1) incomplete energy accommodation of impinging O and O2 species that do not react with the surface; and (2) both hyperthermal and thermal CO and CO2 products, suggesting two distinct reaction mechanisms with the surface.
ECR Plasma Source for Heavy Ion Beam Charge Neutralization
NASA Astrophysics Data System (ADS)
Efthimion, P. C.; Gilson, E.; Grishman, L.; Kolchin, P.; Davidson, R. C.
2002-01-01
Highly ionized plasmas are being considered as a medium for charge neutralizing heavy ion beams in order to focus beyond the space-charge limit. Calculations suggest that plasma at a density of 1 - 100 times the ion beam density and at a length of approximately 0.1-2 m would be suitable for achieving a high level of charge neutralization. An ECR source has been built at the Princeton Plasma Physics Laboratory (PPPL) to support a joint Neutralized Transport Experiment (NTX) at the Lawrence Berkeley National Laboratory (LBNL) to study ion beam neutralization with plasma. The ECR source operates at 13.6 MHz and with solenoid magnetic fields of 1-10 gauss. The goal is to operate the source at pressures of approximately 10-6 torr at full ionization. The initial operation of the source has been at pressures of 10-4 - 10-1. Electron densities in the range of 108 - 1011 per cubic centimeter have been achieved. Low-pressure operation is important to reduce ion beam ionization. A cusp magnetic field has been installed to improve radial confinement and reduce the field strength on the beam axis. In addition, axial confinement is believed to be important to achieve lower-pressure operation. To further improve breakdown at low pressure, a weak electron source will be placed near the end of the ECR source.
RF Plasma Source for Heavy Ion Beam Charge Neutralization
NASA Astrophysics Data System (ADS)
Efthimion, P. C.; Gilson, E.; Grisham, L.; Davidson, R. C.
2003-10-01
Highly ionized plasmas are being employed as a medium for charge neutralizing heavy ion beams in order to focus to a small spot size. Calculations suggest that plasma at a density of 1 - 100 times the ion beam density and at a length 0.1-0.5 m would be suitable for achieving a high level of charge neutralization. An ECR source has been built at the Princeton Plasma Physics Laboratory (PPPL) in support of the joint Neutralized Transport Experiment (NTX) at the Lawrence Berkeley National Laboratory (LBNL) to study ion beam neutralization with plasma. The ECR source operates at 13.6 MHz and with solenoid magnetic fields of 0-10 gauss. The goal is to operate the source at pressures 10-5 Torr at full ionization. The initial operation of the source has been at pressures of 10-4 - 10-1 Torr. Electron densities in the range of 10^8 - 10^11 cm-3 have been achieved. Recently, pulsed operation of the source has enabled operation at pressures in the 10-6 Torr range with densities of 10^11 cm-3. Near 100% ionization has been achieved. The source has been integrated with NTX and is being used in the experiments. The plasma is approximately 10 cm in length in the direction of the beam propagation. Modifications to the source will be presented that increase its length in the direction of beam propagation.
A possible biomedical facility at the European Organization for Nuclear Research (CERN).
Dosanjh, M; Jones, B; Myers, S
2013-05-01
A well-attended meeting, called "Brainstorming discussion for a possible biomedical facility at CERN", was held by the European Organization for Nuclear Research (CERN) at the European Laboratory for Particle Physics on 25 June 2012. This was concerned with adapting an existing, but little used, 78-m circumference CERN synchrotron to deliver a wide range of ion species, preferably from protons to at least neon ions, with beam specifications that match existing clinical facilities. The potential extensive research portfolio discussed included beam ballistics in humanoid phantoms, advanced dosimetry, remote imaging techniques and technical developments in beam delivery, including gantry design. In addition, a modern laboratory for biomedical characterisation of these beams would allow important radiobiological studies, such as relative biological effectiveness, in a dedicated facility with standardisation of experimental conditions and biological end points. A control photon and electron beam would be required nearby for relative biological effectiveness comparisons. Research beam time availability would far exceed that at other facilities throughout the world. This would allow more rapid progress in several biomedical areas, such as in charged hadron therapy of cancer, radioisotope production and radioprotection. The ethos of CERN, in terms of open access, peer-reviewed projects and governance has been so successful for High Energy Physics that application of the same to biomedicine would attract high-quality research, with possible contributions from Europe and beyond, along with potential new funding streams.
A possible biomedical facility at the European Organization for Nuclear Research (CERN)
Dosanjh, M; Myers, S
2013-01-01
A well-attended meeting, called “Brainstorming discussion for a possible biomedical facility at CERN”, was held by the European Organization for Nuclear Research (CERN) at the European Laboratory for Particle Physics on 25 June 2012. This was concerned with adapting an existing, but little used, 78-m circumference CERN synchrotron to deliver a wide range of ion species, preferably from protons to at least neon ions, with beam specifications that match existing clinical facilities. The potential extensive research portfolio discussed included beam ballistics in humanoid phantoms, advanced dosimetry, remote imaging techniques and technical developments in beam delivery, including gantry design. In addition, a modern laboratory for biomedical characterisation of these beams would allow important radiobiological studies, such as relative biological effectiveness, in a dedicated facility with standardisation of experimental conditions and biological end points. A control photon and electron beam would be required nearby for relative biological effectiveness comparisons. Research beam time availability would far exceed that at other facilities throughout the world. This would allow more rapid progress in several biomedical areas, such as in charged hadron therapy of cancer, radioisotope production and radioprotection. The ethos of CERN, in terms of open access, peer-reviewed projects and governance has been so successful for High Energy Physics that application of the same to biomedicine would attract high-quality research, with possible contributions from Europe and beyond, along with potential new funding streams. PMID:23549990
NASA Astrophysics Data System (ADS)
Tokluoglu, Erinc K.; Kaganovich, Igor D.; Carlsson, Johan A.; Hara, Kentaro; Startsev, Edward A.
2018-05-01
Propagation of charged particle beams in background plasma as a method of space charge neutralization has been shown to achieve a high degree of charge and current neutralization and therefore enables nearly ballistic propagation and focusing of charged particle beams. Correspondingly, the use of plasmas for propagation of charged particle beams has important applications for transport and focusing of intense particle beams in inertial fusion and high energy density laboratory plasma physics. However, the streaming of beam ions through a background plasma can lead to the development of two-stream instability between the beam ions and the plasma electrons. The beam electric and magnetic fields enhanced by the two-stream instability can lead to defocusing of the ion beam. Using particle-in-cell simulations, we study the scaling of the instability-driven self-electromagnetic fields and consequent defocusing forces with the background plasma density and beam ion mass. We identify plasma parameters where the defocusing forces can be reduced.
Harvey, Steven P.; Moseley, John; Norman, Andrew; ...
2018-02-27
We investigated the potential-induced degradation (PID) shunting mechanism in multicrystalline-silicon photovoltaic modules by using a multiscale, multitechnique characterization approach. Both field-stressed modules and laboratory-stressed mini modules were studied. We used photoluminescence, electroluminescence, and dark lock-in thermography imaging to identify degraded areas at the module scale. Small samples were then removed from degraded areas, laser marked, and imaged by scanning electron microscopy. We used simultaneous electron-beam induced current imaging and focused ion beam milling to mark around PID shunts for chemical analysis by time-of-flight secondary-ion mass spectrometry or to isolate individual shunt defects for transmission electron microscopy and atom-probe tomography analysis.more » By spanning a range of 10 orders of magnitude in size, this approach enabled us to investigate the root-cause mechanisms for PID shunting. We observed a direct correlation between recombination active shunts and sodium content. The sodium content in shunted areas peaks at the SiNX/Si interface and is consistently observed at a concentration of 0.1% to 2% in shunted areas. Analysis of samples subjected to PID recovery, either activated by electron beam or thermal effects only, reveals that recovery of isolated shunts correlates with diffusion of sodium out of the structural defects to the silicon surface. We observed the role of oxygen and chlorine in PID shunting and found that those species - although sometimes present in structural defects where PID shunting was observed - do not play a consistent role in PID shunting.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harvey, Steven P.; Moseley, John; Norman, Andrew
We investigated the potential-induced degradation (PID) shunting mechanism in multicrystalline-silicon photovoltaic modules by using a multiscale, multitechnique characterization approach. Both field-stressed modules and laboratory-stressed mini modules were studied. We used photoluminescence, electroluminescence, and dark lock-in thermography imaging to identify degraded areas at the module scale. Small samples were then removed from degraded areas, laser marked, and imaged by scanning electron microscopy. We used simultaneous electron-beam induced current imaging and focused ion beam milling to mark around PID shunts for chemical analysis by time-of-flight secondary-ion mass spectrometry or to isolate individual shunt defects for transmission electron microscopy and atom-probe tomography analysis.more » By spanning a range of 10 orders of magnitude in size, this approach enabled us to investigate the root-cause mechanisms for PID shunting. We observed a direct correlation between recombination active shunts and sodium content. The sodium content in shunted areas peaks at the SiNX/Si interface and is consistently observed at a concentration of 0.1% to 2% in shunted areas. Analysis of samples subjected to PID recovery, either activated by electron beam or thermal effects only, reveals that recovery of isolated shunts correlates with diffusion of sodium out of the structural defects to the silicon surface. We observed the role of oxygen and chlorine in PID shunting and found that those species - although sometimes present in structural defects where PID shunting was observed - do not play a consistent role in PID shunting.« less
Studies of the Coherent Half-Integer Resonance
NASA Astrophysics Data System (ADS)
Cousineau, Sarah; Holmes, Jeff; Galambos, John; Macek, Robert; Fedotov, Alexei; Wei, Jie
2002-12-01
We present studies of space-charge-induced beam profile broadening at high intensities in the Proton Storage Ring (PSR) at Los Alamos National Laboratory. Previous work has associated the observed broadening in the vertical direction with the coherent half integer resonance [1]. Here, we study the effect of the space charge environment on this resonance; specifically, we investigate the strength of the resonance versus beam intensity, longitudinal bunching factor, transverse lattice tune, and two different beam injection scenarios. For each case, detailed particle-in-cell simulations are combined with experimental results to elucidate the behavior and sensitivity of the beam resonance response.
Antares alignment gimbal positioner
NASA Astrophysics Data System (ADS)
Day, R. D.; Viswanathan, V. K.; Saxman, A. C.; Lujan, R. E.; Woodfin, W. C.; Sweatt, W. C.
Antares is a 24-beam 40-TW carbon dioxide (CO2) laser fusion system currently under construction at the Los Alamos National Laboratory. The Antares alignment gimbal positioner (AGP) is an optomechanical instrument that will be used for target alignment and alignment of the 24 laser beams, as well as beam quality assessments. The AGP will be capable of providing pointing, focusing, an wavefront optical path difference, as well as aberration information at both helium neon (He-Ne) and CO2 wavelengths. It is designed to allow the laser beams to be aligned to any position within a 1 cm cube to a tolerance of 10 micrometers.
The Impact of Dissociator Cooling on the Beam Intensity and Velocity in the SpinLab ABS
NASA Astrophysics Data System (ADS)
Stancari, M.; Barion, L.; Bonomo, C.; Capiluppi, M.; Contalbrigo, M.; Ciullo, G.; Dalpiaz, P. F.; Giordano, F.; Lenisa, P.; Pappalardo, L.; Statera, M.; Wang, M.
2007-06-01
At the SpinLab laboratory (University of Ferrara, Italy), a three stage cooling system was installed along the dissociator tube of an atomic beam source (ABS). With this tool, it is possible to observe correlations between the measured temperatures and the atomic beam intensity. The existence of such correlations is suggested by the larger intensity of the RHIC ABS, the only other source with additional cooling stages. An increased intensity at lower cooling temperatures was observed in SpinLab, while no change in the beam's velocity distribution was observed.
GAS DISCHARGE SWITCH EVALUATION FOR RHIC BEAM ABORT KICKER APPLICATION.
DOE Office of Scientific and Technical Information (OSTI.GOV)
ZHANG,W.; SANDBERG,J.; SHELDRAKE,R.
2002-06-30
A gas discharge switch EEV HX3002 is being evaluated at Brookhaven National Laboratory as a possible candidate of RHIC Beam Abort Kicker modulator main switch. At higher beam energy and higher beam intensity, the switch stability becomes very crucial. The hollow anode thyratron used in the existing system is not rated for long reverse current conduction. The reverse voltage arcing caused thyratron hold-off voltage de-rating has been the main limitation of the system operation. To improve the system reliability, a new type of gas discharge switch has been suggested by Marconi Applied Technology for its reverse conducting capability.
Photoelectron photoion molecular beam spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trevor, D.J.
1980-12-01
The use of supersonic molecular beams in photoionization mass spectroscopy and photoelectron spectroscopy to assist in the understanding of photoexcitation in the vacuum ultraviolet is described. Rotational relaxation and condensation due to supersonic expansion were shown to offer new possibilities for molecular photoionization studies. Molecular beam photoionization mass spectroscopy has been extended above 21 eV photon energy by the use of Stanford Synchrotron Radiation Laboratory (SSRL) facilities. Design considerations are discussed that have advanced the state-of-the-art in high resolution vuv photoelectron spectroscopy. To extend gas-phase studies to 160 eV photon energy, a windowless vuv-xuv beam line design is proposed.
Design study of a re-bunching RFQ for the SPES project
NASA Astrophysics Data System (ADS)
Shin, Seung Wook; Palmieri, A.; Comunian, M.; Grespan, F.; Chai, Jong Seo
2014-05-01
An upgrade to the 2nd generation of the selective production of exotic species (SPES) to produce a radioactive ion beam (RIB) has been studied at the istituto nazionale di fisica nucleare — laboratory nazionali di Legnaro (INFN-LNL). Due to the long distance between the isotope separator online (ISOL) facility and the superconducting quarter wave resonator (QWR) cavity acceleratore lineare per ioni (ALPI), a new re-buncher cavity must be introduced to maintain the high beam quality during the beam transport. A particular radio frequency quadrupole (RFQ) structure has been suggested to meet the requirements of this project. A window-type RFQ, which has a high mode separation, less power dissipation and compact size compared to the conventional normal 4-vane RFQ, has been introduced. The RF design has been studied considering the requirements of the re-bunching machine for high figures of merit such as a proper operation frequency, a high shunt impedance, a high quality factor, a low power dissipation, etc. A sensitivity analysis of the fabrication and the misalignment error has been conducted. A micro-movement slug tuner has been introduced to compensate for the frequency variations that may occur due to the beam loading, the thermal instability, the microphonic effect, etc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
POZDEYEV,E.; BEN-ZVI, I.; CAMERON, P.
2007-06-25
The ERL Prototype project is currently under development at the Brookhaven National Laboratory. The ERL is expected to demonstrate energy recovery of high-intensity beams with a current of up to a few hundred milliamps, while preserving the emittance of bunches with a charge of a few nanocoulombs produced by a high-current SRF gun. To successfully accomplish this task the machine will include beam diagnostics that will be used for accurate characterization of the three dimensional beam phase space at the injection and recirculation energies, transverse and longitudinal beam matching, orbit alignment, beam current measurement, and machine protection. This paper outlinesmore » requirements on the ERL diagnostics and describes its setup and modes of operation.« less
A Multicusp Ion Source for Radioactive Ion Beams
NASA Astrophysics Data System (ADS)
Wutte, D.; Freedman, S.; Gough, R.; Lee, Y.; Leitner, M.; Leung, K. N.; Lyneis, C.; Picard, D. S.; Sun, L.; Williams, M. D.; Xie, Z. Q.
1997-05-01
In order to produce a radioactive ion beam of (14)O+, a 10-cm-diameter, 13.56 MHz radio frequency (rf) driven multicusp ion source is now being developed at Lawrence Berkeley National Laboratory. In this paper we describe the specific ion source design and the basic ion source characteristics using Ar, Xe and a 90types of measurements have been performed: extractable ion current, ion species distributions, gas efficiency, axial energy spread and ion beam emittance measurements. The source can generate ion current densities of approximately 60 mA/cm2 . In addition the design of the ion beam extraction/transport system for the actual experimental setup for the radioactive beam line will be presented.
Proton Beam Fast Ignition Fusion: Synergy of Weibel and Rayleigh-Taylor Instabilities
NASA Astrophysics Data System (ADS)
Stefan, V. Alexander
2011-04-01
The proton beam generation and focusing in fast ignition inertial confinement fusion is studied. The spatial and energy spread of the proton beam generated in a laser-solid interaction is increased due to the synergy of Weibel and Rayleigh-Taylor instabilities. The focal spot radius can reach 100 μm, which is nearly an order of magnitude larger than the optimal value. The energy spread decreases the beam deposition energy in the focal spot. Under these conditions, ignition of a precompressed DT fuel is achieved with the beam powers much higher than the values presently in consideration. Work supported in part by NIKOLA TESLA Laboratories (Stefan University), La Jolla, CA.
PHENIX Muon Piston Calorimeter (MPC) APD and Prototype MPC Extension (MPC-EX) Tests
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lajoie, John
2013-06-20
This is a technical scope of work (TSW) between the Fermi National Accelerator Laboratory (Fermilab) and the experimenters of Muon Piston Calorimeter Extension (MPC-EX) Collaboration who have committed to participate in beam tests to be carried out during the 2013- 2014 Fermilab Test Beam Facility program.
The progress about measurements of the proton beam characteristics of the JUNA 400 kV accelerator
NASA Astrophysics Data System (ADS)
Wang, Shuo; Li, Kuoang
2018-04-01
China JinPing underground Laboratory (CJPL) was established inside the tunnels piercing Jinping Mountain in Sichuan Province, China, which can provide an ideal environment for low background experiment. Jinping Underground laboratory for Nuclear Astrophysics (JUNA) is one of the major research programs in CJPL. A new 400 kV accelerator, with high current based on an ECR source, will be installed into CJPL for the study of key nuclear reactions in astrophysics. The beam characteristics of the accelerator, like absolute energy, energy spread, and long-term energy stability, will be determined by several well-known resonance and non-resonance reactions. Due to the new accelerator still being under construction, the resonance reaction of 27Al(p, γ)28Si and non-resonance 12C(p, γ)13N were studied at the 320 kV high-voltage platform of Institute of Modern Physics in Lanzhou, China. The energy spread of proton beam is about 1.0 keV and the long-term energy stability of proton beam is better than ±200eV during 4 hours measurement.
Kinetics of Carboxylesterase: An Experiment for Biochemistry and Physical Chemistry Laboratory.
ERIC Educational Resources Information Center
Nichols, C. S.; Cromartie, T. H.
1979-01-01
Describes a convenient, inexpensive experiment in enzyme kinetics developed for the undergraduate biochemistry laboratory at the University of Virginia. Required are a single beam visible spectrophotometer with output to a recorder, a constant temperature, a commercially available enzyme, substrates, and buffers. (BT)
NASA Astrophysics Data System (ADS)
Sykes, Alan
1997-05-01
The world's first high-power auxiliary heating experiments in a tight aspect ratio (or spherical) tokamak have been performed on the Small Tight Aspect Ratio Tokomak (START) device [Sykes et al., Nucl. Fusion 32, 694 (1992)] at Culham Laboratory, using the 40 keV, 0.5 MW Neutral Beam Injector loaned by the Oak Ridge National Laboratory. Injection has been mainly of hydrogen into hydrogen or deuterium target plasmas, with a one-day campaign to explore D→D operation. In each case injection provides a combination of higher density operation and effective heating of both ions and electrons. The highest β values achieved to date in START are volume average βT˜11.5% and central beta βO˜50%. Already high, these values are expected to increase further with the use of higher beam power.
Status of the Beam Thermalization Area at the NSCL
NASA Astrophysics Data System (ADS)
Cooper, Kortney; Barquest, Bradley; Morrissey, David; Rodriguez, Jose Alberto; Schwarz, Stefan; Sumithrarachchi, Chandana; Kwarsick, Jeff; Savard, Guy
2013-10-01
Beam thermalization is a necessary process for the production of low-energy ion beams at projectile fragmentation facilities. Present beam thermalization techniques rely on passing high-energy ion beams through solid degraders followed by a gas cell where the remaining kinetic energy is dissipated through collisions with buffer gas atoms. Recently, the National Superconducting Cyclotron Laboratory (NSCL) upgraded its thermalization area with the implementation of new large acceptance beam lines and a large RF-gas catcher constructed by Argonne National Lab (ANL). Two high-energy beam lines were commissioned along with the installation and commissioning of this new device in late 2012. Low-energy radioactive ion beams have been successfully delivered to the Electron Beam Ion Trap (EBIT) charge breeder for the ReA3 reaccelerator, the SuN detector, the Low Energy Beam Ion Trap (LEBIT) penning trap, and the Beam Cooler and Laser Spectroscopy (BeCoLa) collinear laser beamline. Construction of a gas-filled reverse cyclotron dubbed the CycStopper is also underway. The status of the beam thermalization area will be presented and the overall efficiency of the system will be discussed.
Dependence of electron beam instability growth rates on the beam-plasma system parameters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strangeway, R.J.
1982-02-01
Electron beam instabilites are studied by using a simple model for an electron beam streaming through a cold plasma, the beam being of finite width perpendicular to the ambient magnetic field. Through considerations of finite geometry and the coldness of the beam and background plasma, an instability similar to the two stream instability is assumed to be the means for wave growth in the system. Having found the maximum growth rate for one set of beam-plasma system parameters, this maximum growth rate is traced as these parameters are varied. The parameters that describe the system are the beam velocity (v/submore » b/), electron gyrofrequency to ambient electron plasma frequency ratio (..cap omega../sub e//..omega../sub p/e), the beam to background number density ratio (n/sub b//n/sub a/), and the beam width (a). When ..cap omega../sub e//..omega../sub p/e>1, a mode with ..cap omega../sub e/<..omega..<..omega../sub u/hr is found to be unstable, where ..cap omega.. is the wave frequency and ..omega../sub u/hr is the upper hybrid resonance frequency. For low values of n/sub b//n/sub a/ and ..cap omega../sub e/<..omega../sub p/e, this mode is still present with ..omega../sub p/e<..omega..<..omega../sub u/hr. If the beam density is large, n/sub b//n/sub a/approx. =1, the instability occures for frequencies just above the electron gyrofrequency. This mode may well be that observed in laboratory plasma before the system undergoes the beam-plasma discharge. There is another instability present, which occurs for ..omega..approx. =..omega../sub p/e. The growth rates for this mode, which are generally larger than those found for the ..omega..approx. =..omega..uhr mode, are only weakly dependent on ..cap omega../sub d//..omega../sub p/e. That this mode is not always observed in the laboratory implies that some factors not considered in the present theory suppress this mode, specifically, finite beam length.« less
A Rat Body Phantom for Radiation Analysis
NASA Technical Reports Server (NTRS)
Qualls, Garry D.; Clowdsley, Martha S.; Slaba, Tony C.; Walker, Steven A.
2010-01-01
To reduce the uncertainties associated with estimating the biological effects of ionizing radiation in tissue, researchers rely on laboratory experiments in which mono-energetic, single specie beams are applied to cell cultures, insects, and small animals. To estimate the radiation effects on astronauts in deep space or low Earth orbit, who are exposed to mixed field broad spectrum radiation, these experimental results are extrapolated and combined with other data to produce radiation quality factors, radiation weighting factors, and other risk related quantities for humans. One way to reduce the uncertainty associated with such extrapolations is to utilize analysis tools that are applicable to both laboratory and space environments. The use of physical and computational body phantoms to predict radiation exposure and its effects is well established and a wide range of human and non-human phantoms are in use today. In this paper, a computational rat phantom is presented, as well as a description of the process through which that phantom has been coupled to existing radiation analysis tools. Sample results are presented for two space radiation environments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen-Mayer, H; Tosh, R
2015-06-15
Purpose: To reconcile air kerma and calorimetry measurements in a prototype calorimeter for obtaining absorbed dose in diagnostic CT beams. While corrections for thermal artifacts are routine and generally small in calorimetry of radiotherapy beams, large differences in relative stopping powers of calorimeter materials at the lower energies typical of CT beams greatly magnify their effects. Work-to-date on the problem attempts to reconcile laboratory measurements with modeling output from Monte Carlo and finite-element analysis of heat transfer. Methods: Small thermistor beads were embedded in a polystyrene (PS) core element of 1 cm diameter, which was inserted into a cylindrical HDPEmore » phantom of 30 cm diameter and subjected to radiation in a diagnostic CT x-ray imaging system. Resistance changes in the thermistors due to radiation heating were monitored via lock-in amplifier. Multiple 3-second exposures were recorded at 8 different dose-rates from the CT system, and least-squares fits to experimental data were compared to an expected thermal response obtained by finite-element analysis incorporating source terms based on semi-empirical modeling and Monte Carlo simulation. Results: Experimental waveforms exhibited large thermal artifacts with fast time constants, associated with excess heat in wires and glass, and smaller steps attributable to radiation heating of the core material. Preliminary finite-element analysis follows the transient component of the signal qualitatively, but predicts a slower decay of temperature spikes. This was supplemented by non-linear least-squares fits incorporating semi-empirical formulae for heat transfer, which were used to obtain dose-to-PS in reasonable agreement with the output of Monte Carlo calculations that converts air kerma to absorbed dose. Conclusion: Discrepancies between the finite-element analysis and our experimental data testify to the very significant heat transfer correction required for absorbed dose calorimetry of diagnostic CT beams. The results obtained here are being used to refine both simulations and design of calorimeter core components.« less
VLTI-PRIMA fringe tracking testbed
NASA Astrophysics Data System (ADS)
Abuter, Roberto; Rabien, Sebastian; Eisenhauer, Frank; Sahlmann, Johannes; Di Lieto, Nicola; Haug, Marcus; Wallander, Anders; Lévêque, Samuel; Ménardi, Serge; Delplancke, Françoise; Schuhler, Nicolas; Kellner, Stefan; Frahm, Robert
2006-06-01
One of the key components of the planned VLTI dual feed facility PRIMA is the Fringe Sensor Unit (FSU). Its basic function is the instantaneous measurement of the Optical Path Difference (OPD) between two beams. The FSU acts as the sensor for a complex control system involving optical delay lines and laser metrology with the aim of removing any OPD introduced by the atmosphere and the beam relay. We have initiated a cooperation between ESO and MPE with the purpose of systematically testing this Fringe Tracking Control System in a laboratory environment. This testbed facility is being built at MPE laboratories with the aim to simulate the VLTI and includes FSUs, OPD controller, metrology and in-house built delay lines. In this article we describe this testbed in detail, including the environmental conditions in the laboratory, and present the results of the testbed subsystem characterisation.
Services of the CDRH X-ray calibration laboratory and their traceability to National Standards
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cerra, F.; Heaton, H.T.
The X-ray Calibration Laboratory (XCL) of the Center for Devices and Radiological Health (CDRH) provides calibration services for the Food and Drug Administration (FDA). The instruments calibrated are used by FDA and contract state inspectors to verify compliance with federal x-ray performance standards and for national surveys of x-ray trends. In order to provide traceability of measurements, the CDRH XCL is accredited by the National Voluntary Laboratory Accreditation Program (NVLAP) for reference, diagnostic, and x-ray survey instrument calibrations. In addition to these accredited services, the CDRH XCL also calibrates non-invasive kVp meters in single- and three-phase x-ray beams, and thermoluminescentmore » dosimeter (TLD) chips used to measure CT beam profiles. The poster illustrates these services and shows the traceability links back to the National Standards.« less
NASA Astrophysics Data System (ADS)
Elfman, Mikael; Ros, Linus; Kristiansson, Per; Nilsson, E. J. Charlotta; Pallon, Jan
2016-03-01
With the recent advances towards modern Ion Beam Analysis (IBA), going from one- or few-parameter detector systems to multi-parameter systems, it has been necessary to expand and replace the more than twenty years old CAMAC based system. A new VME multi-parameter (presently up to 200 channels) data acquisition and control system has been developed and implemented at the Lund Ion Beam Analysis Facility (LIBAF). The system is based on the VX-511 Single Board Computer (SBC), acting as master with arbiter functionality and consists of standard VME modules like Analog to Digital Converters (ADC's), Charge to Digital Converters (QDC's), Time to Digital Converters (TDC's), scaler's, IO-cards, high voltage and waveform units. The modules have been specially selected to support all of the present detector systems in the laboratory, with the option of future expansion. Typically, the detector systems consist of silicon strip detectors, silicon drift detectors and scintillator detectors, for detection of charged particles, X-rays and γ-rays. The data flow of the raw data buffers out from the VME bus to the final storage place on a 16 terabyte network attached storage disc (NAS-disc) is described. The acquisition process, remotely controlled over one of the SBCs ethernet channels, is also discussed. The user interface is written in the Kmax software package, and is used to control the acquisition process as well as for advanced online and offline data analysis through a user-friendly graphical user interface (GUI). In this work the system implementation, layout and performance are presented. The user interface and possibilities for advanced offline analysis are also discussed and illustrated.
An Undulator-Based Laser Wakefield Accelerator Electron Beam Diagnostic
NASA Astrophysics Data System (ADS)
Bakeman, Michael S.
Currently particle accelerators such as the Large Hadron Collider use RF cavities with a maximum field gradient of 50-100 MV/m to accelerate particles over long distances. A new type of plasma based accelerator called a Laser Plasma Accelerator (LPA) is being investigated at the LOASIS group at Lawrence Berkeley National Laboratory which can sustain field gradients of 10-100 GV/m. This new type of accelerator offers the potential to create compact high energy accelerators and light sources. In order to investigate the feasibility of producing a compact light source an undulator-based electron beam diagnostic for use on the LOASIS LPA has been built and calibrated. This diagnostic relies on the principal that the spectral analysis of synchrotron radiation from an undulator can reveal properties of the electron beam such as emittance, energy and energy spread. The effects of electron beam energy spread upon the harmonics of undulator produced synchrotron radiation were derived from the equations of motion of the beam and numerically simulated. The diagnostic consists of quadrupole focusing magnets to collimate the electron beam, a 1.5 m long undulator to produce the synchrotron radiation, and a high resolution high gain XUV spectrometer to analyze the radiation. The undulator was aligned and tuned in order to maximize the flux of synchrotron radiation produced. The spectrometer was calibrated at the Advanced Light Source, with the results showing the ability to measure electron beam energy spreads at resolutions as low as 0.1% rms, a major improvement over conventional magnetic spectrometers. Numerical simulations show the ability to measure energy spreads on realistic LPA produced electron beams as well as the improvements in measurements made with the quadrupole magnets. Experimentally the quadrupoles were shown to stabilize and focus the electron beams at specific energies for their insertion into the undulator, with the eventual hope of producing an all optical Free Electron Laser operating in the XUV and soft x-ray regimes.
New developments of X-ray fluorescence imaging techniques in laboratory
NASA Astrophysics Data System (ADS)
Tsuji, Kouichi; Matsuno, Tsuyoshi; Takimoto, Yuki; Yamanashi, Masaki; Kometani, Noritsugu; Sasaki, Yuji C.; Hasegawa, Takeshi; Kato, Shuichi; Yamada, Takashi; Shoji, Takashi; Kawahara, Naoki
2015-11-01
X-ray fluorescence (XRF) analysis is a well-established analytical technique with a long research history. Many applications have been reported in various fields, such as in the environmental, archeological, biological, and forensic sciences as well as in industry. This is because XRF has a unique advantage of being a nondestructive analytical tool with good precision for quantitative analysis. Recent advances in XRF analysis have been realized by the development of new x-ray optics and x-ray detectors. Advanced x-ray focusing optics enables the making of a micro x-ray beam, leading to micro-XRF analysis and XRF imaging. A confocal micro-XRF technique has been applied for the visualization of elemental distributions inside the samples. This technique was applied for liquid samples and for monitoring chemical reactions such as the metal corrosion of steel samples in the NaCl solutions. In addition, a principal component analysis was applied for reducing the background intensity in XRF spectra obtained during XRF mapping, leading to improved spatial resolution of confocal micro-XRF images. In parallel, the authors have proposed a wavelength dispersive XRF (WD-XRF) imaging spectrometer for a fast elemental imaging. A new two dimensional x-ray detector, the Pilatus detector was applied for WD-XRF imaging. Fast XRF imaging in 1 s or even less was demonstrated for Euro coins and industrial samples. In this review paper, these recent advances in laboratory-based XRF imaging, especially in a laboratory setting, will be introduced.
SEE Observations of Ionospheric Heating from HAARP Using Orbital Angular Momentum
NASA Astrophysics Data System (ADS)
Briczinski, S. J.; Bernhardt, P. A.; Siefring, C. L.
2013-12-01
High power HF radio waves exciting the ionosphere provide aeronomers with a unique space-based laboratory capability. The High-Frequency Active Auroral Research Program (HAARP) in Gakona, Alaksa is the world's largest heating facility, providing effective radiated powers in the gigawatt range. Experiments performed at HAARP have allowed researchers to study many non-linear effects of wave-plasma interactions. Stimulated Electromagnetic Emission (SEE) is of interest to the ionospheric community for its diagnostic purposes. Typical SEE experiments at HAARP have focused on characterizing the parametric decay of the electromagnetic pump wave into several different wave modes such as upper and lower hybrid, ion acoustic, ion-Bernstein and electron-Bernstein. These production modes have been extensively studied at HAARP using traditional beam heating patterns and SEE detection. New results are present from HAARP experiments using an excitation mode that attempts to impart orbital angular momentum (OAM) into the heating region. This OAM mode is also referred to as a 'twisted beam.' Previous analysis of twisted beam heating shows that the SEE results obtained are nearly identical to the modes without OAM. Recent twisted beam heating experiments have produced SEE modes not previously characterized. These new modes are presented and discussed. One difference in the twisted beam mode is the heating region produced is in the shape of a ring as opposed to the more traditional 'solid spot' region. The ring heating pattern may be more conducive to the creation of artificial ionization clouds. The results of these runs include artificial ionization creation and evolution as pertaining to the twisted beam pattern.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Friedman, A.; Barnard, J.J.; Briggs, R.J.
The Heavy Ion Fusion Science Virtual National Laboratory (HIFS-VNL), a collaborationof LBNL, LLNL, and PPPL, has achieved 60-fold pulse compression of ion beams on the Neutralized Drift Compression eXperiment (NDCX) at LBNL. In NDCX, a ramped voltage pulse from an induction cell imparts a velocity"tilt" to the beam; the beam's tail then catches up with its head in a plasma environment that provides neutralization. The HIFS-VNL's mission is to carry out studies of Warm Dense Matter (WDM) physics using ion beams as the energy source; an emerging thrust is basic target physics for heavy ion-driven Inertial Fusion Energy (IFE). Thesemore » goals require an improved platform, labeled NDCX-II. Development of NDCX-II at modest cost was recently enabled by the availability of induction cells and associated hardware from the decommissioned Advanced Test Accelerator (ATA) facility at LLNL. Our initial physics design concept accelerates a ~;;30 nC pulse of Li+ ions to ~;;3 MeV, then compresses it to ~;;1 ns while focusing it onto a mm-scale spot. It uses the ATA cells themselves (with waveforms shaped by passive circuits) to impart the final velocity tilt; smart pulsers provide small corrections. The ATA accelerated electrons; acceleration of non-relativistic ions involves more complex beam dynamics both transversely and longitudinally. We are using analysis, an interactive one-dimensional kinetic simulation model, and multidimensional Warp-code simulations to develop the NDCX-II accelerator section. Both LSP and Warp codes are being applied to the beam dynamics in the neutralized drift and final focus regions, and the plasma injection process. The status of this effort is described.« less
Differential interferometer for measurement of displacement of laser resonator mirrors
NASA Astrophysics Data System (ADS)
Macúchová, Karolina; Němcová, Šárka; Hošek, Jan
2015-01-01
This paper covers a description and a technique of a possible optical method of mode locking within a laser resonator. The measurement system is a part of instrumentation of laser-based experiment OSQAR at CERN. The OSQAR experiment aims at search of axions, axion-like particles and measuring of ultra-fine vacuum magnetic birefringence. It uses a laser resonator to enhance the coupling constant of hypothetical photon-to-axion conversion. The developed locking-in technique is based on differential interferometry. Signal obtained from the measurement provide crucial information for adaptive control of the locking-in of the resonator in real time. In this paper we propose several optical setups used for measurement and analysis of mutual position of the resonator mirrors. We have set up a differential interferometer under our laboratory conditions. We have done measurements with hemi-spherical cavity resonator detuned with piezo crystals. The measurement was set up in a single plane. Laser light was directed through half-wave retarder to a polarizing beam splitter and then converted to circular polarization by lambda/4 plates. After reflection at the mirrors, the beam is recombined in a beam splitter, sent to analyser and non-polarizing beam splitter and then inspected by two detectors with mutually perpendicular polarizers. The 90 degrees phase shift between the two arms allows precise analysis of a mutual distance change of the mirrors. Because our setup was sufficiently stable, we were able to measure the piezo constant and piezo hysteresis. The final goal is to adapt the first prototype to 23 m resonator and measure the displacement in two planes.
PIXE Analysis of Artificial Turf
NASA Astrophysics Data System (ADS)
Conlan, Skye; Chalise, Sajju; Porat, Zachary; Labrake, Scott; Vineyard, Michael
2017-09-01
In recent years, there has been debate regarding the use of the crumb rubber infill in artificial turf on high school and college campuses due to the potential presence of heavy metals and carcinogenic chemicals. We performed Proton-Induced X-Ray Emission (PIXE) analysis of artificial turf infill and blade samples collected from high school and college campuses around the Capital District of NYS to search for potentially toxic substances. Crumb rubber pellets were made by mixing 1g of rubber infill and 1g of epoxy. The pellets and the turf blades were bombarded with 2.2 MeV proton beams from a 1.1-MV tandem Pelletron accelerator in the Union College Ion-Beam Analysis Laboratory and x-ray energy spectra were collected with an Amptek silicon drift detector. We analyzed the spectra using GUPIX software to determine the elemental concentrations of the samples. The turf infill showed significant levels of Ti, Fe, Co, Ni, Cu, Zn, Br, and Pb. The highest concentration of Br in the crumb rubber was 1500 +/-100 ppm while the highest detectable amount of Pb concentration was 110 +/-20 ppm. The artificial turf blades showed significant levels of Ti, Fe, and Zn with only the yellow blade showing concentrations of V and Bi.
NASA Technical Reports Server (NTRS)
Wu, Janet P.
2003-01-01
Furthering pursuits in high bandwidth communications to future NASA deep space and neat-Earth probes, the Jet Propulsion Laboratory (JPL) is building the Optical communications Telescope Laboratory (OCTL) atop Table Mountain in Southern California. This R&D optical antenna will be used to develop optical communication strategies for future optical ground stations. Initial experiments to be conducted include propagating high-powered, Q-switched laser beams to retro-reflecting satellites. Yet laser beam propagation from the ground to space is under the cognizance of various government agencies, namely: the Occupational Safety and Health Administration (ISHA) that is responsible for protecting workforce personnel; the Federal Aviation Administration (FAA) responsible for protecting pilots and aircraft; and the Laser Clearinghouse of Space Command responsible for protecting space assets. To ensure that laser beam propagation from the OCTL and future autonomously operated ground stations comply with the guidelines of these organizations, JPL is developing a multi-tiered safety system that will meet the coordination, monitoring, and reporting functions required by the agencies. At Tier 0, laser operators will meet OSHA safety standards for protection and access to the high power lasers area will be restricted and interlocked. Tier 1, the area defined from the telescope dome out to a range of 3.4-km, will utilize long wave infrared camera sensors to alert operators of at risk aircraft in the FAA controlled airspace. Tier 2, defined to extend from 3.4-km out to the aircraft service ceiling in FAA airspace, will detect at risk aircraft by radar. Lastly, beam propagation into space, defined as Tier 3, will require coordination with the Laser Clearinghouse. A detailed description of the four tiers is presented along with the design of the integrated monitoring and beam transmission control system.
Invited review article: the electrostatic plasma lens.
Goncharov, Alexey
2013-02-01
The fundamental principles, experimental results, and potential applications of the electrostatic plasma lens for focusing and manipulating high-current, energetic, heavy ion beams are reviewed. First described almost 50 years ago, this optical beam device provides space charge neutralization of the ion beam within the lens volume, and thus provides an effective and unique tool for focusing high current beams where a high degree of neutralization is essential to prevent beam blow-up. Short and long lenses have been explored, and a lens in which the magnetic field is provided by rare-earth permanent magnets has been demonstrated. Applications include the use of this kind of optical tool for laboratory ion beam manipulation, high dose ion implantation, heavy ion accelerator injection, in heavy ion fusion, and other high technology.
Diagnostic experiments at a 3 MeV test stand at Rutherford Appleton Laboratory (United Kingdom).
Gabor, C; Faircloth, D C; Lee, D A; Lawrie, S R; Letchford, A P; Pozimski, J K
2010-02-01
A front end is currently under construction consisting of a H(-) Penning ion source (65 keV, 60 mA), low energy beam transport (LEBT), and radio frequency quadrupole (3 MeV output energy) with a medium energy beam transport suitable for high power proton applications. Diagnostics can be divided either in destructive techniques such as beam profile monitor, pepperpot, slit-slit emittance scanner (preferably used during commissioning) or nondestructive, permanently installed devices such as photodetachment-based techniques. Another way to determine beam distributions is a scintillator with charge-coupled device camera. First experiments have been performed to control the beam injection into the LEBT. The influence of beam parameters such as particle energy and space-charge compensation on the two-dimensional distribution and profiles will be presented.
Corkscrew Motion of an Electron Beam due to Coherent Variations in Accelerating Potentials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ekdahl, Carl August
2016-09-13
Corkscrew motion results from the interaction of fluctuations of beam electron energy with accidental magnetic dipoles caused by misalignment of the beam transport solenoids. Corkscrew is a serious concern for high-current linear induction accelerators (LIA). A simple scaling law for corkscrew amplitude derived from a theory based on a constant-energy beam coasting through a uniform magnetic field has often been used to assess LIA vulnerability to this effect. We use a beam dynamics code to verify that this scaling also holds for an accelerated beam in a non-uniform magnetic field, as in a real accelerator. Results of simulations with thismore » code are strikingly similar to measurements on one of the LIAs at Los Alamos National Laboratory.« less
The Spallation Neutron Source (SNS) project accelerator systems
NASA Astrophysics Data System (ADS)
Holmes, Jeffrey A.; Alonso, Jose R.
1999-06-01
The SNS will be the world's leading accelerator-based neutron-scattering research facility when it begins operation in 2005. By delivering 1-MW of beam power to a heavy-metal target in short (<1 μs) bursts of 1-GeV protons, the SNS will provide intense neutron beams with flux levels at least a factor of five over present spallation sources. A multi-laboratory (LBNL, LANL, BNL, ANL and ORNL) collaboration, led by Oak Ridge National Laboratory, has developed a reference design that addresses the challenging technology issues associated with this project. This paper discusses the requirements, issues, and constraints that led to the present design choices.
NASA Astrophysics Data System (ADS)
Albert, Felicie; Pak, A.; Kerr, S.; Lemos, N.; Link, A.; Patel, P.; Pollock, B. B.; Haberberger, D.; Froula, D.; Gauthier, M.; Glenzer, S. H.; Longman, A.; Manzoor, L.; Fedosejevs, R.; Tochitsky, S.; Joshi, C.; Fiuza, F.
2017-10-01
In this work, we report on electrostatic collisionless shock wave acceleration experiments that produced proton beams with peak energies between 10-17.5 MeV, with narrow energy spreads between Δ E / E of 10-20%, and with a total number of protons in these peaks of 1e7-1e8. These beams of ions were created by driving an electrostatic collisionless shock wave in a tailored near critical density plasma target using the ultra-intense ps duration Titan laser that operates at a wavelength of 1 um. The near critical density target was produced through the ablation of an initially 0.5 um thick Mylar foil with a separate low intensity laser. A narrow energy spread distribution of carbon / oxygen ions with a similar velocity to the accelerated proton distribution, consistent with the reflection and acceleration of ions from an electrostatic field, was also observed. This work was supported by Lawrence Livermore National Laboratory's Laboratory Directed Research and Development program under project 15-LW-095, and the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA2734.
Advanced High Brilliance X-Ray Source
NASA Technical Reports Server (NTRS)
Gibson, Walter M.
1998-01-01
The possibility to dramatically increase the efficiency of laboratory based protein structure measurements through the use of polycapillary X-ray optics was investigated. This project initiated April 1, 1993 and concluded December 31, 1996 (including a no cost extension from June 31, 1996). This is a final report of the project. The basis for the project is the ability to collect X-rays from divergent electron bombardment laboratory X-ray sources and redirect them into quasiparallel or convergent (focused) beams. For example, a 0.1 radian (approx. 6 deg) portion of a divergent beam collected by a polycapillary collimator and transformed into a quasiparallel beam of 3 millradian (0.2 deg) could give a gain of 6(exp 2)/0.2(exp 2) x T for the intensity of a diffracted beam from a crystal with a 0.2 deg diffraction width. T is the transmission efficiency of the polycapillary diffraction optic, and for T=0.5, the gain would be 36/0.04 x O.5=45. In practice, the effective collection angle will depend on the source spot size, the input focal length of the optic (usually limited by the source spot-to-window distance on the x-ray tube) and the size of the crystal relative to the output diameter of the optic. The transmission efficiency, T, depends on the characteristics (fractional open area, surface roughness, shape and channel diameter) of the polycapillary optic and is typically in the range 0.2-0.4. These effects could substantially reduce the expected efficiency gain. During the course of this study, the possibility to use a weakly focused beam (0.5 deg convergence) was suggested which could give an additional 10-20 X efficiency gain for small samples . Weakly focused beams from double focusing mirrors are frequently used for macromolecular crystallography studies. Furthermore the crystals are typically oscillated by as much as 2 deg during each X-ray exposure in order to increase the reciprocal space (number of crystal planes) sampled and use of a slightly convergent beam could, in principle, provide a similar sampling benefit without oscillation. Although more problematic, because of complications in analyzing the diffraction patterns, it was also suggested that even more extreme beam convergence might be used to give another order of magnitude intensity gain and even smaller focused spot size which could make it possible to study smaller protein crystals than can be studied using standard laboratory based X-ray diffraction systems. This project represents the first systematic investigation of these possibilities. As initially proposed, the contract included requirements for design, purchase, evaluation and delivery of three polycapillary lenses to the Laboratory for Structural Biology at MSFC and demonstration of such optics at MSFC for selected protein crystal diffraction applications.
Fundamental Parameters Line Profile Fitting in Laboratory Diffractometers
Cheary, R. W.; Coelho, A. A.; Cline, J. P.
2004-01-01
The fundamental parameters approach to line profile fitting uses physically based models to generate the line profile shapes. Fundamental parameters profile fitting (FPPF) has been used to synthesize and fit data from both parallel beam and divergent beam diffractometers. The refined parameters are determined by the diffractometer configuration. In a divergent beam diffractometer these include the angular aperture of the divergence slit, the width and axial length of the receiving slit, the angular apertures of the axial Soller slits, the length and projected width of the x-ray source, the absorption coefficient and axial length of the sample. In a parallel beam system the principal parameters are the angular aperture of the equatorial analyser/Soller slits and the angular apertures of the axial Soller slits. The presence of a monochromator in the beam path is normally accommodated by modifying the wavelength spectrum and/or by changing one or more of the axial divergence parameters. Flat analyzer crystals have been incorporated into FPPF as a Lorentzian shaped angular acceptance function. One of the intrinsic benefits of the fundamental parameters approach is its adaptability any laboratory diffractometer. Good fits can normally be obtained over the whole 20 range without refinement using the known properties of the diffractometer, such as the slit sizes and diffractometer radius, and emission profile. PMID:27366594
Isochoric heating of solid gold targets with the PW-laser-driven ion beams (Conference Presentation)
NASA Astrophysics Data System (ADS)
Steinke, Sven; Ji, Qing; Bulanov, Stepan S.; Barnard, John; Vincenti, Henri; Schenkel, Thomas; Esarey, Eric H.; Leemans, Wim P.
2017-05-01
We present first results on ion acceleration with the BELLA PW laser as well as end-to-end simulation for isochoric heating of solid gold targets using PW-laser generated ion beams: (i) 2D Particle-In-Cell (PIC) simulations are applied to study the ion source characteristics of the PW laser-target interaction at the long focal length (f/65) beamline at laser intensities of ˜[5×10]^19 Wcm-2 at spot size of 0=53 μm on a CH target. (ii) In order to transport the ion beams to an EMP-free environment, an active plasma lens will be used. This was modeled [1] by calculating the Twiss parameters of the ion beam from the appropriate transport matrixes taking the source parameters obtained from the PIC simulation. (iii) Hydrodynamic simulations indicate that these ion beams can isochorically heat a 1 mm3 gold target to the Warm Dense Matter state. Reference: J. van Tilborg et al, Phys. Rev. Lett. 115, 184802 (2015). This work was supported by Laboratory Directed Research and Development (LDRD) funding from Lawrence Berkeley National Laboratory, provided by the Director, Office of Science, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.
An Expert System For Tuning Particle-Beam Accelerators
NASA Astrophysics Data System (ADS)
Lager, Darrel L.; Brand, Hal R.; Maurer, William J.; Searfus, Robert M.; Hernandez, Jose E.
1989-03-01
We have developed a proof-of-concept prototype of an expert system for tuning particle beam accelerators. It is designed to function as an intelligent assistant for an operator. In its present form it implements the strategies and reasoning followed by the operator for steering through the beam transport section of the Advanced Test Accelerator at Lawrence Livermore Laboratory's Site 300. The system is implemented in the language LISP using the Artificial Intelligence concepts of frames, daemons, and a representation we developed called a Monitored Decision Script.
Comparison of RF BPM Receivers for NSLS-II Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pinayev,I.; Singh, O.
2009-05-04
The NSLS-II Light Source being built at Brookhaven National Laboratory requires submicron stability of the electron orbit in the storage ring in order to utilize fully very small emittances and electron beam sizes. This sets high stability requirements for beam position monitors and a program has been initiated for the purpose of characterizing RF beam position monitor (BPM) receivers in use at other light sources. Present state-of-the-art performance will be contrasted with more recently available technologies.
BEAM DYNAMICS SIMULATIONS FOR A DC GUN BASED INJECTOR FOR PERL.
DOE Office of Scientific and Technical Information (OSTI.GOV)
ZHOU,F.; BEN-ZVI,I.; WANG,X.J.
2001-06-18
The National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory (BNL) is considering an upgrade based on the Photoinjected Energy Recovering Linac (PERL). The various injector schemes for this machine are being extensively investigated at BNL. One of the possible options is photocathode DC gun. The schematic layout of a PERL DC gun based injector and its preliminary beam dynamics are presented in this paper. The transverse and longitudinal emittance of photo-electron beam were optimized for a DC field 500 kV.
Guided Radiation Beams in Free Electron Lasers.
1988-05-19
the electron beam in an FEL that the radiation beam will remain guided. 0 20 II. Refractive Index Associated with FELs In our model, the vector ...eIAw/ymOc(exp(ikwz) + c.c.) ex/2 , is the wiggle velocity, y is the Lorentz factor, Aw is the vector potential amplitude of the planar wiggler...Balboa Avenue Palo Alto, CA 94303 San Diego, CA 92123 38 Dr. S. Krinsky Nat. Synchrotron Light Source Dr. Michael Lavan Brookhaven National Laboratory U.S
Commissioning of BL 7.2, the new diagnostic beam line at the ALS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sannibale, Fernando; Baum, Dennis; Biocca, Alan
2004-06-29
BL 7.2 is a new beamline at the Advanced Light Source (ALS) of the Lawrence Berkeley National Laboratory (LBNL) dedicated to electron beam diagnostics. The system, which is basically a hard x-ray pinhole camera, was installed in the storage ring in August 2003 and commissioning with the ALS electron beam followed immediately after. In this paper the commissioning results are presented together with the description of the relevant measurements performed for the beamline characterization.
Production of Neutral Beams from Negative Ion Beam Systems in the USSR
1982-12-01
research is to produce long-pulse and CW high-energy neutral beams. The Oak Ridge National Laboratory ( ORNL ) has been concentrating on the direct extraction...next generation of mirror devices [1II. ORNL is using a cesium converter to produce negative ions from low-energy positive ions from a duopigatron ion...with Formation of Highly Excited Hydrogen Atoms," ZhTF, Vol. 36, No. 7, 1966, p. 1241 . 107. Kartashev, K. B., V. I. Pistunovich, V. V. Platonov, V. D
Design of the Next Generation Target at the Lujan Neutron Scattering Center, LANSCE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferres, Laurent
Los Alamos National Laboratory (LANL) supports scientific research in many diverse fields such as biology, chemistry, and nuclear science. The Laboratory was established in 1943 during the Second World War to develop nuclear weapons. Today, LANL is one of the largest laboratories dedicated to nuclear defense and operates an 800 MeV proton linear accelerator for basic and applied research including: production of high- and low-energy neutrons beams, isotope production for medical applications and proton radiography. This accelerator is located at the Los Alamos Neutron Science Center (LANSCE). The work performed involved the redesign of the target for the low-energy neutronmore » source at the Lujan Neutron Scattering Center, which is one of the facilities built around the accelerator. The redesign of the target involves modeling various arrangements of the moderator-reflector-shield for the next generation neutron production target. This is done using Monte Carlo N-Particle eXtended (MCNPX), and ROOT analysis framework, a C++ based-software, to analyze the results.« less
2012-09-01
bandwidth of the pulse. Using the standard laboratory and analysis methods of Sheik- Bahae et al., we obtain a two-photon absorption coefficient, β, of...organic thin-film materials deposited on various substrates. 15 6. References 1. Sheik- Bahae , M.; Said, A. A.; Van Stryland, E. W. High...sensitivity, Single-beam n2 Measurements. Optics Letters 1989, 14 (17). 2. Sheik- Bahae , M.; Said, A. A.; Van Stryland, E. W.; Wei, T-H; Hagan, D. J
Analysis of small-angle X-ray scattering data in the presence of significant instrumental smearing
Bergenholtz, Johan; Ulama, Jeanette; Zackrisson Oskolkova, Malin
2016-01-01
A laboratory-scale small-angle X-ray scattering instrument with pinhole collimation has been used to assess smearing effects due to instrumental resolution. A new, numerically efficient method to smear ideal model intensities is developed and presented. It allows for directly using measured profiles of isotropic but otherwise arbitrary beams in smearing calculations. Samples of low-polydispersity polymer spheres have been used to show that scattering data can in this way be quantitatively modeled even when there is substantial distortion due to instrumental resolution. PMID:26937235
OPERA neutrino oscillation search: Status and perspectives
NASA Astrophysics Data System (ADS)
Gornushkin, Yu.
2016-07-01
OPERA is a long-baseline neutrino experiment at the Gran Sasso laboratory (LNGS) designed to search for ν_{{μ}}^{} → ν_{{τ}}^{} oscillations in a direct appearance mode on an event by event basis. OPERA took data in 2008-2012 with the CNGS neutrino beam from CERN. The data analysis is ongoing, with the goal of establishing ν_{{τ}}^{} appearance with a high significance. Complementary studies of the ν_{{μ}}^{} → ν_{{e}}^{} oscillations and atmospheric muons fluxes were performed as well. Current results of the experiment are presented and perspectives discussed.
Insights into Regolith Dynamics from the Irradiation Record Preserved in Hayabusa Samples
NASA Technical Reports Server (NTRS)
Keller, Lindsay P.; Berger, E. L.
2014-01-01
The rates of space weathering processes are poorly constrained for asteroid surfaces, with recent estimates ranging over 5 orders of magnitude. The return of the first surface samples from a space-weathered asteroid by the Hayabusa mission and their laboratory analysis provides "ground truth" to anchor the timescales for space weathering. We determine the rates of space weathering on Itokawa by measuring solar flare track densities and the widths of solar wind damaged rims on grains. These measurements are made possible through novel focused ion beam (FIB) sample preparation methods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bills, K.C.; Kress, R.L.; Kwon, D.S.
1994-12-31
This paper describes ORNL`s development of an environment for the simulation of robotic manipulators. Simulation includes the modeling of kinematics, dynamics, sensors, actuators, control systems, operators, and environments. Models will be used for manipulator design, proposal evaluation, control system design and analysis, graphical preview of proposed motions, safety system development, and training. Of particular interest is the development of models for robotic manipulators having at least one flexible link. As a first application, models have been developed for the Pacific Northwest Laboratory`s Flexible Beam Test Bed (PNL FBTB), which is a 1-Degree-of-Freedom, flexible arm with a hydraulic base actuator. ORNLmore » transferred control algorithms developed for the PNL FBTB to controlling IGRIP models. A robust notch filter is running in IGRIP controlling a full dynamics model of the PNL test bed. Model results provide a reasonable match to the experimental results (quantitative results are being determined) and can run on ORNL`s Onyx machine in approximately realtime. The flexible beam is modeled as six rigid sections with torsional springs between each segment. The spring constants were adjusted to match the physical response of the flexible beam model to the experimental results. The controller is able to improve performance on the model similar to the improvement seen on the experimental system. Some differences are apparent, most notably because the IGRIP model presently uses a different trajectory planner than the one used by ORNL on the PNL test bed. In the future, the trajectory planner will be modified so that the experiments and models are the same. The successful completion of this work provides the ability to link C code with IGRIP, thus allowing controllers to be developed, tested, and tuned in simulation and then ported directly to hardware systems using the C language.« less
Variation of Shrinkage Strain within the Depth of Concrete Beams.
Jeong, Jong-Hyun; Park, Yeong-Seong; Lee, Yong-Hak
2015-11-16
The variation of shrinkage strain within beam depth was examined through four series of time-dependent laboratory experiments on unreinforced concrete beam specimens. Two types of beam specimens, horizontally cast and vertically cast, were tested; shrinkage variation was observed in the horizontally cast specimens. This indicated that the shrinkage variation within the beam depth was due to water bleeding and tamping during the placement of the fresh concrete. Shrinkage strains were measured within the beam depth by two types of strain gages, surface-attached and embedded. The shrinkage strain distribution within the beam depth showed a consistent tendency for the two types of gages. The test beams were cut into four sections after completion of the test, and the cutting planes were divided into four equal sub-areas to measure the aggregate concentration for each sub-area of the cutting plane. The aggregate concentration increased towards the bottom of the beam. The shrinkage strain distribution was estimated by Hobbs' equation, which accounts for the change of aggregate volume concentration.
Variation of Shrinkage Strain within the Depth of Concrete Beams
Jeong, Jong-Hyun; Park, Yeong-Seong; Lee, Yong-Hak
2015-01-01
The variation of shrinkage strain within beam depth was examined through four series of time-dependent laboratory experiments on unreinforced concrete beam specimens. Two types of beam specimens, horizontally cast and vertically cast, were tested; shrinkage variation was observed in the horizontally cast specimens. This indicated that the shrinkage variation within the beam depth was due to water bleeding and tamping during the placement of the fresh concrete. Shrinkage strains were measured within the beam depth by two types of strain gages, surface-attached and embedded. The shrinkage strain distribution within the beam depth showed a consistent tendency for the two types of gages. The test beams were cut into four sections after completion of the test, and the cutting planes were divided into four equal sub-areas to measure the aggregate concentration for each sub-area of the cutting plane. The aggregate concentration increased towards the bottom of the beam. The shrinkage strain distribution was estimated by Hobbs’ equation, which accounts for the change of aggregate volume concentration. PMID:28793677
Brookhaven highlights, October 1978-September 1979. [October 1978 to September 1979
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1979-01-01
These highlights present an overview of the major research and development achievements at Brookhaven National Laboratory from October 1978 to September 1979. Specific areas covered include: accelerator and high energy physics programs; high energy physics research; the AGS and improvements to the AGS; neutral beam development; heavy ion fusion; superconducting power cables; ISABELLE storage rings; the BNL Tandem accelerator; heavy ion experiments at the Tandem; the High Flux Beam Reactor; medium energy physics; nuclear theory; atomic and applied physics; solid state physics; neutron scattering studies; x-ray scattering studies; solid state theory; defects and disorder in solids; surface physics; the Nationalmore » Synchrotron Light Source ; Chemistry Department; Biology Department; Medical Department; energy sciences; environmental sciences; energy technology programs; National Center for Analysis of Energy Systems; advanced reactor systems; nuclear safety; National Nuclear Data Center; nuclear materials safeguards; Applied Mathematics Department; and support activities. (GHT)« less
NASA Technical Reports Server (NTRS)
Begley, David L. (Editor); Seery, Bernard D. (Editor)
1991-01-01
The present volume on free-space laser communication technologies discusses system analysis, performance, and applications, pointing, acquisition, and tracking in beam control, laboratory demonstration systems, and transmitter and critical component technologies. Attention is given to a space station laser communication transceiver, meeting intersatellite links mission requirements by an adequate optical terminal design, an optical approach to proximity-operations communications for Space Station Freedom, and optical space-to-ground link availability assessment and diversity requirements. Topics addressed include nonmechanical steering of laser beams by multiple aperture antennas, a free-space simulator for laser transmission, heterodyne acquisition and tracking in a free-space diode laser link, and laser terminal attitude determination via autonomous star tracking. Also discussed are stability considerations in relay lens design for optical communications, liquid crystals for lasercom applications, and narrowband optical interference filters.
Experimental study on secondary electron emission characteristics of Cu
NASA Astrophysics Data System (ADS)
Liu, Shenghua; Liu, Yudong; Wang, Pengcheng; Liu, Weibin; Pei, Guoxi; Zeng, Lei; Sun, Xiaoyang
2018-02-01
Secondary electron emission (SEE) of a surface is the origin of the multipacting effect which could seriously deteriorate beam quality and even perturb the normal operation of particle accelerators. Experimental measurements on secondary electron yield (SEY) for different materials and coatings have been developed in many accelerator laboratories. In fact, the SEY is just one parameter of secondary electron emission characteristics which include spatial and energy distribution of emitted electrons. A novel experimental apparatus was set up in China Spallation Neutron Source, and an innovative method was applied to obtain the whole characteristics of SEE. Taking Cu as the sample, secondary electron yield, its dependence on beam injection angle, and the spatial and energy distribution of secondary electrons were achieved with this measurement device. The method for spatial distribution measurement was first proposed and verified experimentally. This contribution also tries to give all the experimental results a reasonable theoretical analysis and explanation.
Status of the OPERA experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Russo, A.
2011-11-23
The OPERA experiment in the underground Gran Sasso Laboratory (LNGS) has been designed to perform the first detection of neutrino oscillations in direct appearance mode in the muon to tau neutrino channel. The detector is hybrid, being made of an emulsion/lead target and of electronic detectors. It is placed in the CNGS neutrino beam 733 km away from the neutrino source. Runs with CNGS neutrinos were successfully carried out from 2008 and the following years. The analysis of a sample of events corresponding to 1.89x10{sup 19} p.o.t. in the CERN CNGS {nu}{sub {mu}} beam yielded the observation of a firstmore » candidate {nu}{sub {tau}} CC interaction. The topology and kinematics of this candidate event is described in detail. The background sources are explained and the significance of the observation of the first {nu}{sub {tau}} event candidate is assessed.« less
E1 and M1 strength functions at low energy
NASA Astrophysics Data System (ADS)
Schwengner, Ronald; Massarczyk, Ralph; Bemmerer, Daniel; Beyer, Roland; Junghans, Arnd R.; Kögler, Toni; Rusev, Gencho; Tonchev, Anton P.; Tornow, Werner; Wagner, Andreas
2017-09-01
We report photon-scattering experiments using bremsstrahlung at the γELBE facility of Helmholtz-Zentrum Dresden-Rossendorf and using quasi-monoenergetic, polarized γ beams at the HIγS facility of the Triangle Universities Nuclear Laboratory in Durham. To deduce the photoabsorption cross sections at high excitation energy and high level density, unresolved strength in the quasicontinuum of nuclear states has been taken into account. In the analysis of the spectra measured by using bremsstrahlung at γELBE, we perform simulations of statistical γ-ray cascades using the code γDEX to estimate intensities of inelastic transitions to low-lying excited states. Simulated average branching ratios are compared with model-independent branching ratios obtained from spectra measured by using monoenergetic γ beams at HIγS. E1 strength in the energy region of the pygmy dipole resonance is discussed in nuclei around mass 90 and in xenon isotopes. M1 strength in the region of the spin-flip resonance is also considered for xenon isotopes. The dipole strength function of 74Ge deduced from γELBE experiments is compared with the one obtained from experiments at the Oslo Cyclotron Laboratory. The low-energy upbend seen in the Oslo data is interpreted as M1 strength on the basis of shell-model calculations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bogomilov, M.; Karadzhov, Y.; Kolev, D.
2012-05-01
The international Muon Ionization Cooling Experiment (MICE), which is under construction at the Rutherford Appleton Laboratory (RAL), will demonstrate the principle of ionization cooling as a technique for the reduction of the phase-space volume occupied by a muon beam. Ionization cooling channels are required for the Neutrino Factory and the Muon Collider. MICE will evaluate in detail the performance of a single lattice cell of the Feasibility Study 2 cooling channel. The MICE Muon Beam has been constructed at the ISIS synchrotron at RAL, and in MICE Step I, it has been characterized using the MICE beam-instrumentation system. In thismore » paper, the MICE Muon Beam and beam-line instrumentation are described. The muon rate is presented as a function of the beam loss generated by the MICE target dipping into the ISIS proton beam. For a 1 V signal from the ISIS beam-loss monitors downstream of our target we obtain a 30 KHz instantaneous muon rate, with a neglible pion contamination in the beam.« less
Los Alamos National Laboratory Facility Review
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, Ronald Owen
2015-06-05
This series of slides depicts the Los Alamos Neutron Science Center (LANSCE). The Center's 800-MeV linac produces H + and H - beams as well as beams of moderated (cold to 1 MeV) and unmoderated (0.1 to 600 MeV) neutrons. Experimental facilities and their capabilities and characteristics are outlined. Among these are LENZ, SPIDER, and DANCE.
ERIC Educational Resources Information Center
Eickhoff, Luvern R.
This instructional manual contains 20 learning activity packets for use in a workshop on lasers and fiber optics. The lessons cover the following topics: what a laser; coherent light; setting up the laser; characteristics of the laser beam; scattering of light; laser beam divergence, intensity, color, ophthalmology, and reflections; directivity of…
HORIZONTAL BEAM HOLE NO. 3. PLUG AND RADIATION DOOR HAVE ...
HORIZONTAL BEAM HOLE NO. 3. PLUG AND RADIATION DOOR HAVE BEEN REMOVED. EXPERIMENTAL APPARATUS WAS INSERTED INTO THE HOLE. NOTE VALVE CUBICLES NEAR FLOOR ON EACH SIDE OF HB-3. INL NEGATIVE NO. 3471. Unknown Photographer, 10/12/1951 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
Electron microscopy and forensic practice
NASA Astrophysics Data System (ADS)
Kotrlý, Marek; Turková, Ivana
2013-05-01
Electron microanalysis in forensic practice ranks among basic applications used in investigation of traces (latents, stains, etc.) from crime scenes. Applying electron microscope allows for rapid screening and receiving initial information for a wide range of traces. SEM with EDS/WDS makes it possible to observe topography surface and morphology samples and examination of chemical components. Physical laboratory of the Institute of Criminalistics Prague use SEM especially for examination of inorganic samples, rarely for biology and other material. Recently, possibilities of electron microscopy have been extended considerably using dual systems with focused ion beam. These systems are applied mainly in study of inner micro and nanoparticles , thin layers (intersecting lines in graphical forensic examinations, analysis of layers of functional glass, etc.), study of alloys microdefects, creating 3D particles and aggregates models, etc. Automated mineralogical analyses are a great asset to analysis of mineral phases, particularly soils, similarly it holds for cathode luminescence, predominantly colour one and precise quantitative measurement of their spectral characteristics. Among latest innovations that are becoming to appear also at ordinary laboratories are TOF - SIMS systems and micro Raman spectroscopy with a resolution comparable to EDS/WDS analysis (capable of achieving similar level as through EDS/WDS analysis).
Electron effects in the Neutralized Transport Experiment (NTX)
NASA Astrophysics Data System (ADS)
Eylon, S.; Henestroza, E.; Roy, P. K.; Yu, S. S.
2005-05-01
The Neutralized Transport Experiment (NTX) at the Heavy Ion Fusion Virtual National Laboratory is exploring the performance of neutralized final focus systems for high-perveance heavy ion beams. To focus a high-intensity beam to a small spot requires a high-brightness beam. In the NTX experiment, a potassium ion beam of up to 400 keV and 80 mA is generated in a Pierce-type diode. At the diode exit, an aperture with variable opening provides the capability to vary the beam perveance. The beam is transported through four quadrupole magnets to a distance of 2.5 m. The beam can be neutralized and focused using a MEVVA plasma plug and a RF plasma source. We shall report on the measurement of the electron effects and the ways to mitigate the effects. Furthermore, we shall present the results of EGUN calculations consistent with the measurements effects of the electrons.
Regimes of enhanced electromagnetic emission in beam-plasma interactions
NASA Astrophysics Data System (ADS)
Timofeev, I. V.; Annenkov, V. V.; Arzhannikov, A. V.
2015-11-01
The ways to improve the efficiency of electromagnetic waves generation in laboratory experiments with high-current relativistic electron beams injected into a magnetized plasma are discussed. It is known that such a beam can lose, in a plasma, a significant part of its energy by exciting a high level of turbulence and heating plasma electrons. Beam-excited plasma oscillations may simultaneously participate in nonlinear processes resulting in a fundamental and second harmonic emissions. It is obvious, however, that in the developed plasma turbulence the role of these emissions in the total energy balance is always negligible. In this paper, we investigate whether electromagnetic radiation generated in the beam-plasma system can be sufficiently enhanced by the direct linear conversion of resonant beam-driven modes into electromagnetic ones on preformed regular inhomogeneities of plasma density. Due to the high power of relativistic electron beams, the mechanism discussed may become the basis for the generator of powerful sub-terahertz radiation.
SimTrack: A compact c++ library for particle orbit and spin tracking in accelerators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, Yun
2015-06-24
SimTrack is a compact c++ library of 6-d symplectic element-by-element particle tracking in accelerators originally designed for head-on beam-beam compensation simulation studies in the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory. It provides a 6-d symplectic orbit tracking with the 4th order symplectic integration for magnet elements and the 6-d symplectic synchro-beam map for beam-beam interaction. Since its inception in 2009, SimTrack has been intensively used for dynamic aperture calculations with beam-beam interaction for RHIC. Recently, proton spin tracking and electron energy loss due to synchrotron radiation were added. In this article, I will present the code architecture,more » physics models, and some selected examples of its applications to RHIC and a future electron-ion collider design eRHIC.« less
Antares Alignment Gimbal Positioner
NASA Astrophysics Data System (ADS)
Day, R. D.; Viswanathan, V. K.; Saxman, A. C.; Lujan, R. E.; Woodfin, G. L.; Sweatt, W. C.
1981-12-01
Antares is a 24-beam 40-TW carbon-dioxide (CO2) laser fusion system currently under construction at the Los Alamos National Laboratory. The Antares alignment gimbal positioner (AGP) is an optomechanical instrument that will be used for target alignment and alignment of the 24 laser beams, as well as beam quality assessments. The AGP will be capable of providing pointing, focusing, and wavefront optical path difference, as well as aberration information at both helium-neon (He-Ne) and CO2 wavelengths. It is designed to allow the laser beams to be aligned to any position within a 1-cm cube to a tolerance of 10 μm.
Development of slow positron beam lines and applications
NASA Astrophysics Data System (ADS)
Mondal, Nagendra Nath
2018-05-01
A positron is an antiparticle of an electron that can be formed in diverse methods: natural or artificial β-decay process, fission and fusion reactions, and a pair production of electron-positron occurred in the reactor and the high energy accelerator centers. Usually a long-lifetime radio isotope is customized for the construction of a slow positron beam lines in many laboratories. The typical intensity of this beam depends upon the strength of the positron source, moderator efficiency, and guiding, pulsing, focusing and detecting systems. This article will review a few positron beam lines and their potential applications in research, especially in the Positronium Bose-Einstein Condensation.
CFD Based Computations of Flexible Helicopter Blades for Stability Analysis
NASA Technical Reports Server (NTRS)
Guruswamy, Guru P.
2011-01-01
As a collaborative effort among government aerospace research laboratories an advanced version of a widely used computational fluid dynamics code, OVERFLOW, was recently released. This latest version includes additions to model flexible rotating multiple blades. In this paper, the OVERFLOW code is applied to improve the accuracy of airload computations from the linear lifting line theory that uses displacements from beam model. Data transfers required at every revolution are managed through a Unix based script that runs jobs on large super-cluster computers. Results are demonstrated for the 4-bladed UH-60A helicopter. Deviations of computed data from flight data are evaluated. Fourier analysis post-processing that is suitable for aeroelastic stability computations are performed.
(Reaction mechanism studies of heavy ion induced nuclear reactions): Annual progress report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mignerey, A.C.
1988-10-01
A major experiment was performed at the Oak Ridge National Laboratory Holifield Heavy Ion Research Facility in January 1988. The primary goal of the experiment was to determine the excitation energy division in the initial stages of damped reactions. The reaction of /sup 35/Cl on /sup 209/Bi was chosen because the excited projectile-like fragments would preferentially emit light charged particles and the target-like fragments deexcite via neutron emission. This provides a means by which projectile excitations can be selected over target excitations through detection of light charged particles in coincidence with projectile-like fragments. Two experiments were performed during the pastmore » year at the Lawrence Berkeley Laboratory Bevalac in collaboration with the Wozniak-Moretto group. The first was in February 1988 and was a continuation of earlier work on La-induced reactions at intermediate energies. Beams of La with E/A = 80 and 100 MeV were used to bombard targets of C, Al, and Cu. At this time a test run was also performed using the uranium beam to see if the intensity was sufficient to use this very heavy beam for future experiments. The high intensities obtained for uranium showed that it was feasible to extend the studies of inverse reactions begun with the lanthanum beam to a heavier beam. Gold rather than uranium was chosen for our major run in August due to its low fission probability and higher beam intensity. No results are yet available for that experiment.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
C. K. Sinclair; P. A. Adderley; B. M. Dunham
Substantially more than half of the electromagnetic nuclear physics experiments conducted at the Continuous Electron Beam Accelerator Facility of the Thomas Jefferson National Accelerator Facility (Jefferson Laboratory) require highly polarized electron beams, often at high average current. Spin-polarized electrons are produced by photoemission from various GaAs-based semiconductor photocathodes, using circularly polarized laser light with photon energy slightly larger than the semiconductor band gap. The photocathodes are prepared by activation of the clean semiconductor surface to negative electron affinity using cesium and oxidation. Historically, in many laboratories worldwide, these photocathodes have had short operational lifetimes at high average current, and havemore » often deteriorated fairly quickly in ultrahigh vacuum even without electron beam delivery. At Jefferson Lab, we have developed a polarized electron source in which the photocathodes degrade exceptionally slowly without electron emission, and in which ion back bombardment is the predominant mechanism limiting the operational lifetime of the cathodes during electron emission. We have reproducibly obtained cathode 1/e dark lifetimes over two years, and 1/e charge density and charge lifetimes during electron beam delivery of over 2?105???C/cm2 and 200 C, respectively. This source is able to support uninterrupted high average current polarized beam delivery to three experimental halls simultaneously for many months at a time. Many of the techniques we report here are directly applicable to the development of GaAs photoemission electron guns to deliver high average current, high brightness unpolarized beams.« less
NASA Technical Reports Server (NTRS)
Jenkins, J. M.
1979-01-01
A laboratory heating test simulating hypersonic heating was conducted on a heat-sink type structure to provide basic thermal stress measurements. Six NASTRAN models utilizing various combinations of bar, shear panel, membrane, and plate elements were used to develop calculated thermal stresses. Thermal stresses were also calculated using a beam model. For a given temperature distribution there was very little variation in NASTRAN calculated thermal stresses when element types were interchanged for a given grid system. Thermal stresses calculated for the beam model compared similarly to the values obtained for the NASTRAN models. Calculated thermal stresses compared generally well to laboratory measured thermal stresses. A discrepancy of signifiance occurred between the measured and predicted thermal stresses in the skin areas. A minor anomaly in the laboratory skin heating uniformity resulted in inadequate temperature input data for the structural models.
Transient diffraction grating measurements of molecular diffusion in the undergraduate laboratory
NASA Astrophysics Data System (ADS)
Spiegel, Daniel R.; Tuli, Santona
2011-07-01
Diffusion is a central process in many biological, chemical, and physical systems. We describe an experiment that employs the interference of laser beams to allow the measurement of molecular diffusion on submillimeter length scales. The interference fringes of two intersecting pump beams within a dye solution create a sinusoidal distribution of long-lived molecular excited states. A third probe beam is incident at a wavelength at which the indices of refraction of the ground and excited states are different, so the probe beam diffracts from the spatially periodic excited-state pattern. After the pump beams are switched off, the excited-state periodicity washes out as the system diffuses back to equilibrium. The molecular diffusion constant is obtained from the rate constant of the exponential decay of the diffracted beam. It is also possible to measure the excited-state lifetime.
H- beam transport experiments in a solenoid low energy beam transport.
Gabor, C; Back, J J; Faircloth, D C; Izaola, Z; Lawrie, S R; Letchford, A P
2012-02-01
The Front End Test Stand (FETS) is located at Rutherford Appleton Laboratory and aims for a high current, fast chopped 3 MeV H(-) ion beam suitable for future high power proton accelerators like ISIS upgrade. The main components of the front end are the Penning ion source, a low energy beam transport line, an radio-frequency quadrupole (RFQ) and a medium energy beam transport (MEBT) providing also a chopper section and rebuncher. FETS is in the stage of commissioning its low energy beam transport (LEBT) line consisting of three solenoids. The LEBT has to transport an H(-) high current beam (up to 60 mA) at 65 keV. This is the injection energy of the beam into the RFQ. The main diagnostics are slit-slit emittance scanners for each transversal plane. For optimizing the matching to the RFQ, experiments have been performed with a variety of solenoid settings to better understand the actual beam transport. Occasionally, source parameters such as extractor slit width and beam energy were varied as well. The paper also discusses simulations based on these measurements.
Radiological and microwave Protection at NRL, January - December 1983
1984-06-27
reduced to background. 18 Surveys with TLD badges were made on pulsed electron beam machines in Buildings 101 and A68 throughout the year. The Gamble...calibration of radiation dosimetry systems required by the Laboratory’s radiological safety program, or by other Laboratory or Navy groups. The Section...provides consultation and assistance on dosimetry problems to the Staff, Laboratory, and Navy. The Section maintains and calibrates fixed-field radiac
Ground Based Program for the Physical Analysis of Macromolecular Crystal Growth
NASA Technical Reports Server (NTRS)
Malkin, Alexander J.
1999-01-01
In a reported period in situ atomic force microscopy was utilized in our laboratory to study mechanisms of growth and kinetics of crystallization of ten protein and virus crystals. These included canavalin, thaumatin, apoferritin, lipase, catalase, t-RNA, lysozyme, xylanase, turnip yellow mosaic virus (TYMV) and satellite tobacco mosaic virus (STMV). We have also designed and constructed in our laboratory both in situ conventional two-beam Michelson and phase shift Mach-Zenhder interferometers. Computer software for the processing of the interferometric images was developed as well. Interferometric techniques were applied for studies of growth kinetics and transport phenomena in crystallization of several macromolecular crystals. As a result of this work we have published 21 papers and have given many presentations at international and national meetings. A list of these publications and conference presentations is attached.
NASA Astrophysics Data System (ADS)
Smith, D. L.; Mazarakis, M. G.; Skogmo, P.; Bennett, L. F.; Olson, W. R.; George, M.; Harden, M. J.; Turman, B. N.; Moya, S. A.; Henderson, J. L.
The Recirculating Linear Accelerator (RLA) is returning to operation with a new relativistic electron beam (REB) injector and a modified accelerating cavity. Upon completion of our pulsed-power test program, we will capture the injected beam on an Ion Focussed Regime (IFR) guiding channel in either a spiral or a closed racetrack drift tube. The relativistic beam will recirculate for four passes through two accelerating cavities, in phase with the ringing cavity voltage, and increase to 8--12 MeV before being extracted. We designed the METGLAS ribbon-wound core, inductively isolated, four-stage injector to produce beam parameters of 4 MeV, 10--20 kA, and 40--55 ns FWHM. The three-line radial cavity is being modified to improve the 1-MV accelerating pulse shape while an advanced cavity design study is in progress. This is a continuation of the Sandia National Laboratory program to develop compact, high-voltage gradient, linear induction accelerators. The RLA concept is based on guiding an injected REB with an IFR channel. This channel is formed from a plasma created with a low energy electron beam inside a beam line containing about 2 x 10(exp -4) Torr of argon. The REB is injected onto the IFR channel and is transported down the beamline through a water dielectric accelerating cavity based on the ET-2 design. If the round-tip path of the beam matches the period of the cavity, the REB can be further accelerated by the ringing waveform on every subsequent pass. We have installed the new REB injector because we need a higher amplitude, longer duration, flat-topped pulse shape with a colder beam than that produced by the previous injector. We made extensive use of computer simulations in the form of network solver and electrostatic field stress analysis codes to aid in the design and modifications for the new RLA. The pulsed-power performance of the RLA injector and cavity and the associated driving hardware are discussed.
Effect of Tritium on Cracking Threshold in 7075 Aluminum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duncan, A.; Morgan, M.
The effect of long-term exposure to tritium gas on the cracking threshold (K TH) of 7075 Aluminum Alloy was investigated. The alloy is the material of construction for a cell used to contain tritium in an accelerator at Jefferson Laboratory designed for inelastic scattering experiments on nucleons. The primary safety concerns for the Jefferson Laboratory tritium cell is a tritium leak due to mechanical failure of windows from hydrogen isotope embrittlement, radiation damage, or loss of target integrity from accidental excessive beam heating due to failure of the raster or grossly mis-steered beam. Experiments were conducted to investigate the potentialmore » for embrittlement of the 7075 Aluminum alloy from tritium gas.« less
High peak current acceleration of narrow divergence ions beams with the BELLA-PW laser
NASA Astrophysics Data System (ADS)
Steinke, Sven; Ji, Qing; Treffert, Franziska; Bulanov, Stepan; Bin, Jianhui; Nakamura, Kei; Gonsalves, Anthony; Toth, Csaba; Park, Jaehong; Roth, Markus; Esarey, Eric; Schenkel, Thomas; Leemans, Wim
2017-10-01
We present a parameter study of ion acceleration driven by the BELLA-PW laser. The laser repetition rate of 1Hz allowed for scanning the laser pulse duration, relative focus location and target thickness for the first time at laser peak powers of above 1 petawatt. Further, the long focal length geometry of the experiment (f\\65) and hence, large focus size provided ion beams of reduced divergence and unprecedented charge density. This work was supported by Office of Science, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 and Laboratory Directed Research and Development (LDRD) funding from Lawrence Berkeley National Laboratory.
NASA Astrophysics Data System (ADS)
Starosta, K.; Vaman, C.; Miller, D.; Voss, P.; Bazin, D.; Glasmacher, T.; Crawford, H.; Mantica, P.; Tan, H.; Hennig, W.; Walby, M.; Fallu-Labruyere, A.; Harris, J.; Breus, D.; Grudberg, P.; Warburton, W. K.
2009-11-01
A 624-channel Digital Data Acquisition System capable of instrumenting the Segmented Germanium Array at National Superconducting Cyclotron Laboratory has been implemented using Pixie-16 Digital Gamma Finder modules by XIA LLC. The system opens an opportunity for determination of the first interaction position of a γ ray in a SeGA detector from implementation of γ-ray tracking. This will translate into a significantly improved determination of angle of emission, and in consequence much better Doppler corrections for experiments with fast beams. For stopped-beam experiments the system provides means for zero dead time measurements of rare decays, which occur on time scales of microseconds.
ERIC Educational Resources Information Center
Digilov, Rafael M.
2008-01-01
We describe a simple and very inexpensive undergraduate laboratory experiment for fast determination of Young's modulus at moderate temperatures with the aid of a force sensor. A strip-shaped specimen rigidly bolted to the force sensor forms a clamped-free cantilever beam. Placed in a furnace, it is subjected to free-bending vibrations followed by…
Technical options for high average power free electron milimeter-wave and laser devices
NASA Technical Reports Server (NTRS)
Swingle, James C.
1989-01-01
Many of the potential space power beaming applications require the generation of directed energy beams with respectable amounts of average power (MWs). A tutorial summary is provided here on recent advances in the laboratory aimed at producing direct conversion of electrical energy to electromagnetic radiation over a wide spectral regime from microwaves to the ultraviolet.
Ravichandran, Ramamoorthy; Binukumar, Johnson Pichy; Davis, Cheriyathmanjiyil Antony
2013-01-01
The measured dose in water at reference point in phantom is a primary parameter for planning the treatment monitor units (MU); both in conventional and intensity modulated/image guided treatments. Traceability of dose accuracy therefore still depends mainly on the calibration factor of the ion chamber/dosimeter provided by the accredited Secondary Standard Dosimetry Laboratories (SSDLs), under International Atomic Energy Agency (IAEA) network of laboratories. The data related to Nd,water calibrations, thermoluminescent dosimetry (TLD) postal dose validation, inter-comparison of different dosimeter/electrometers, and validity of Nd,water calibrations obtained from different calibration laboratories were analyzed to find out the extent of accuracy achievable. Nd,w factors in Gray/Coulomb calibrated at IBA, GmBH, Germany showed a mean variation of about 0.2% increase per year in three Farmer chambers, in three subsequent calibrations. Another ion chamber calibrated in different accredited laboratory (PTW, Germany) showed consistent Nd,w for 9 years period. The Strontium-90 beta check source response indicated long-term stability of the ion chambers within 1% for three chambers. Results of IAEA postal TL “dose intercomparison” for three photon beams, 6 MV (two) and 15 MV (one), agreed well within our reported doses, with mean deviation of 0.03% (SD 0.87%) (n = 9). All the chamber/electrometer calibrated by a single SSDL realized absorbed doses in water within 0.13% standard deviations. However, about 1-2% differences in absorbed dose estimates observed when dosimeters calibrated from different calibration laboratories are compared in solid phantoms. Our data therefore imply that the dosimetry level maintained for clinical use of linear accelerator photon beams are within recommended levels of accuracy, and uncertainties are within reported values. PMID:24672156
High-energy photon interrogation for nonproliferation applications
NASA Astrophysics Data System (ADS)
Jones, J. L.; Blackburn, B. W.; Watson, S. M.; Norman, D. R.; Hunt, A. W.
2007-08-01
There is an immediate need for technologies that can successfully address homeland security challenges related to the inspection of commercial rail, air and maritime-cargo container inspections for nuclear and radiological devices. The pulsed photonuclear assessment (PPA) technology, developed through collaboration between Idaho National Laboratory (INL), Los Alamos National Laboratory (LANL) and the Idaho Accelerator Center (IAC) has demonstrated the ability to detect shielded/unshielded nuclear material primarily through the analysis of delayed neutrons and gamma-rays produced via photonuclear reactions. Because of current food irradiation limitations, however, most active photon (i.e. bremsstrahlung) interrogation studies have been performed with electron beam energies at or below 10 MeV. While this energy limit currently applies to cargo inspections, the World Health Organization has indicated that higher energy electron beam operations could be considered for future operations. Clinical applications using photon energies well in excess of 10 MeV are already well established. Notwithstanding the current limitation of 10 MeV, there is a definite advantage in using higher photon energies for cargo inspections. At higher energies, several phenomena contribute to increased sensitivity in regards to detecting shielded nuclear material. Two of the most important are: (1) increased ability for source photons to penetrate shielding; and (2) enhanced signature production via increased (γ,n) and (γ,f) cross-sections in materials such as 235U and 239Pu directly leading to faster inspection throughput. Experimental assessments have been conducted for various electron beam energies from 8 to 25 MeV. Increases of up to three orders of magnitude in delayed signatures have been measured over these energy ranges. Through the continued investigation into PPA-based inspection applications using photon energies greater than 10 MeV, higher detection sensitivities with potentially lower delivered dose to cargo and increased throughput may be realized.
Guinement, L; Marchesi, V; Veres, A; Lacornerie, T; Buchheit, I; Peiffert, D
2013-01-01
To develop an external quality control procedure for CyberKnife(®) beams. This work conducted in Nancy, has included a test protocol initially drawn by the medical physicist of Nancy and Lille in collaboration with Equal-Estro Laboratory. A head and neck anthropomorphic phantom and a water-equivalent homogeneous cubic plastic test-object, so-called "MiniCube", have been used. Powder and solid thermoluminescent dosimeters as well as radiochromic films have been used to perform absolute and relative dose studies, respectively. The comparison between doses calculated by Multiplan treatment planning system and measured doses have been studied in absolute dose. The dose distributions measured with films and treatment planning system calculations have been compared via the gamma function, configured with different tolerance criteria. This work allowed, via solid thermoluminescent dosimeter measurements, verifying the beam reliability with a reproducibility of 1.7 %. The absolute dose measured in the phantom irradiated by the seven participating centres has shown an error inferior to the standard tolerance limits (± 5 %), for most of participating centres. The relative dose measurements performed at Nancy and by the Equal-Estro laboratory allowed defining the most adequate parameters for gamma index (5 %/2mm--with at least 95 % of pixels satisfying acceptability criteria: γ<1). These parameters should be independent of the film analysis software. This work allowed defining a dosimetric external quality control for CyberKnife(®) systems, based on a reproducible irradiation plan through measurements performed with thermoluminescent dosimeters and radiochromic films. This protocol should be validated by a new series of measurement and taking into account the lessons of this work. Copyright © 2013 Société française de radiothérapie oncologique (SFRO). Published by Elsevier SAS. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stancari, Giulio
Electron lenses are pulsed, magnetically confined electron beams whose current-density profile is shaped to obtain the desired effect on the circulating beam. Electron lenses were used in the Fermilab Tevatron collider for bunch-by-bunch compensation of long-range beam-beam tune shifts, for removal of uncaptured particles in the abort gap, for preliminary experiments on head-on beam-beam compensation, and for the demonstration of halo scraping with hollow electron beams. Electron lenses for beam-beam compensation are being commissioned in the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory (BNL). Hollow electron beam collimation and halo control were studied as an option to complementmore » the collimation system for the upgrades of the Large Hadron Collider (LHC) at CERN; a conceptual design was recently completed. Because of their electric charge and the absence of materials close to the proton beam, electron lenses may also provide an alternative to wires for long-range beam-beam compensation in LHC luminosity upgrade scenarios with small crossing angles. At Fermilab, we are planning to install an electron lens in the Integrable Optics Test Accelerator (IOTA, a 40-m ring for 150-MeV electrons) as one of the proof-of-principle implementations of nonlinear integrable optics to achieve large tune spreads and more stable beams without loss of dynamic aperture.« less
1983-08-01
631Al b NONLINEAR FORCE ON AN UNP LARI ED RELATIVISTIC TEST / i , L11 -1 PARTICLE TO SECOND OR..Ii HARR DIAMOND LABS AIDELPHI I MD H E BRANDT AUG 83...Cmthanm erverse ai I n eeawand Ideanll by block number) For a nonequilibrium relativistic beam-plasma system, an expression is obtained for the time...Nonequilibrium Beam-Plasma System, Harry Diamond Laboratories, HDL-PRL-82-6 (May 1982) to be published as HDL-TR-1994. 5 ’ ’ I
The space telescope NINA: results of a beam test calibration
NASA Astrophysics Data System (ADS)
Bidoli, V.; Casolino, M.; Pascale, M. P. D.; Morselli, A.; Furano, G.; Picozza, P.; Scoscini, A.; Sparvoli, R.; Barbiellini, G.; Bonvicini, W.; Cirami, R.; Schiavon, P.; Vacchi, A.; Zampa, N.; Ambriola, M.; Bellotti, R.; Cafagna, F.; Ciacio, F.; Castellano, M.; Circella, M.; Marzo, C. D.; Bartalucci, S.; Giuntoli, S.; Ricci, M.; Papini, P.; Piccardi, S.; Spillantini, P.; Bakaldin, A.; Batishev, A.; Galper, A. M.; Koldashov, S.; Korotkov, M.; Mikhailov, V.; Murashov, A.; Voronov, S.; Boezio, M.
1999-03-01
In June 1998 the telescope NINA will be launched in space on board of the Russian satellite Resource-01 n.4. The main scientific objective of the mission is the study of the anomalous, galactic and solar components of the cosmic rays in the energy interval 10-200MeV/n. The core of the instrument is a silicon detector whose performances have been tested with a particle beam at the GSI Laboratory in Germany in 1997; we report here on the results obtained during the beam calibration.
The front end test stand high performance H- ion source at Rutherford Appleton Laboratory.
Faircloth, D C; Lawrie, S; Letchford, A P; Gabor, C; Wise, P; Whitehead, M; Wood, T; Westall, M; Findlay, D; Perkins, M; Savage, P J; Lee, D A; Pozimski, J K
2010-02-01
The aim of the front end test stand (FETS) project is to demonstrate that chopped low energy beams of high quality can be produced. FETS consists of a 60 mA Penning Surface Plasma Ion Source, a three solenoid low energy beam transport, a 3 MeV radio frequency quadrupole, a chopper, and a comprehensive suite of diagnostics. This paper details the design and initial performance of the ion source and the laser profile measurement system. Beam current, profile, and emittance measurements are shown for different operating conditions.
BEARS: Radioactive Ion Beams at Berkeley
DOE Office of Scientific and Technical Information (OSTI.GOV)
Powell, J.; Joosten, R.; Donahue, C.A.
2000-03-14
A light-isotope radioactive ion beam capability has been added to the 88-Inch Cyclotron at Lawrence Berkeley National Laboratory by coupling to the production cyclotron of the Berkeley Isotope Facility. The connection required the development and construction of a 350 m gas transport system between the two accelerators as well as automated cryogenic separation of the produced activity. The first beam developed, {sup 11}C, has been successfully accelerated with an on-target intensity of 1 x 10{sup 8} ions/sec at energies of around 10 MeV/u.
Electron beam injection into space plasmas
NASA Astrophysics Data System (ADS)
Matsumoto, H.
1985-12-01
Eight papers presented at the URSI Open Symposium on Active Experiments in Space Plasma on August 30-31, 1984 are reviewed. Consideration is given to in-space electron beam experiments studying means of controlling the electrical potential of low earth orbit vehicles and nonlinear wave excitation in the magnetosphere. The results from the Space Experiments with Particle Accelerators (SEPAC) flown on Spacelab-1 are described; the use of a computer to interpret the SEPAC wave-particle interaction and charge potential data is discussed. Two laboratory simulation experiments analyzing the beam-plasma discharge phenomenon are examined.
Charge breeding of radioactive isotopes at the CARIBU facility with an electron beam ion source
NASA Astrophysics Data System (ADS)
Vondrasek, R. C.; Dickerson, C. A.; Hendricks, M.; Ostroumov, P.; Pardo, R.; Savard, G.; Scott, R.; Zinkann, G.
2018-05-01
An Electron Beam Ion Source Charge Breeder (EBIS-CB) has been developed at Argonne National Laboratory as part of the californium rare ion breeder upgrade. For the past year, the EBIS-CB has been undergoing commissioning as part of the ATLAS accelerator complex. It has delivered both stable and radioactive beams with A/Q < 6, breeding times <30 ms, low background contamination, and charge breeding efficiencies >18% into a single charge state. The operation of this device, challenges during the commissioning phase, and future improvements will be discussed.
Sb-Based n- and p-Channel Heterostructure FETs for High-Speed, Low-Power Applications
2008-07-01
Laboratory are presented. 2. InAlSb/InAs HEMTs The HEMT material was grown by solid-source molecu- lar beam epitaxy (MBE) on a semi-insulating (100) GaAs...and S.Y. Lin, “Strained quantum well modulation-doped InGaSb/AlGaSb struc- tures grown by molecular beam epitaxy ,” J. Electron. Mater., vol.22, no.3...where he majored in solid state physics and researched growth by molecular - beam epitaxy (MBE) of certain compound semiconductor ma- terials. Since
The Scientific program with RIBRAS (Radioactive Ion Beams in Brasil)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lichtenthaeler, R.; Lepine-Szily, A.; Guimaraes, V.
The Radioactive Ion Beams Facility (RIBRAS) is in operation since 2004 at the Pelletron Accelerator Laboratory of the University of Sao Paulo and consists of two superconducting solenoids capable of producing low energy secondary beams of light exotic nuclei. Measurements of the elastic scattering, breakup and transfer reactions with radioactive projectiles such as {sup 6}He,{sup 8}Li,{sup 7}Be on several targets have been performed. A review of the research program carried on along the last four years using the RIBRAS facility is presented.
Study of Collectivity in n-rich A=80 Nuclei using Radioactive Ion Beams
NASA Astrophysics Data System (ADS)
Padilla, E.; Galindo-Uribarri, A.; Baktash, C.; Fuentes, B.; Gross, C.; Mueller, P.; Radford, D. C.; Stracener, D.; Yu, C.-H.; Bijker, R.; Castanos, O.; Batchelder, J.; Hartley, D. J.
2002-04-01
We report on recent experiments performed at the HRIBF of Oak Ridge National Laboratory (ORNL) aimed to study neutron-rich nuclei in the A 80 mass region. First time use of Radioactive Ion Beams (RIBs) (78,80)Ge complemented with stable beam information allowed a systematic study of B(E2)-values that characterize the n-rich even-even Ge and Se isotopes. A comparison of the experimental results with IBA2 calculations will be presented. *Supported by US-DOE under the contract DE-AC05-00AOR22725.
The implementation and data analysis of an interferometer for intense short pulse laser experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Jaebum; Baldis, Hector A.; Chen, Hui
We present an interferometry setup and the detailed fringe analysis method for intense short pulse (SP) laser experiments. The interferometry scheme was refined through multiple campaigns to investigate the effects of pre-plasmas on energetic electrons at the Jupiter Laser Facility at Lawrence Livermore National Laboratory. The interferometer used a frequency doubled (more » $${\\it\\lambda}=0.527~{\\rm\\mu}\\text{m}$$) 0.5 ps long optical probe beam to measure the pre-plasma density, an invaluable parameter to better understand how varying pre-plasma conditions affect the characteristics of the energetic electrons. The hardware of the diagnostic, data analysis and example data are presented. Here, the diagnostic setup and the analysis procedure can be employed for any other SP laser experiments and interferograms, respectively.« less
The implementation and data analysis of an interferometer for intense short pulse laser experiments
Park, Jaebum; Baldis, Hector A.; Chen, Hui
2016-08-03
We present an interferometry setup and the detailed fringe analysis method for intense short pulse (SP) laser experiments. The interferometry scheme was refined through multiple campaigns to investigate the effects of pre-plasmas on energetic electrons at the Jupiter Laser Facility at Lawrence Livermore National Laboratory. The interferometer used a frequency doubled (more » $${\\it\\lambda}=0.527~{\\rm\\mu}\\text{m}$$) 0.5 ps long optical probe beam to measure the pre-plasma density, an invaluable parameter to better understand how varying pre-plasma conditions affect the characteristics of the energetic electrons. The hardware of the diagnostic, data analysis and example data are presented. Here, the diagnostic setup and the analysis procedure can be employed for any other SP laser experiments and interferograms, respectively.« less
Designing for time-dependent material response in spacecraft structures
NASA Technical Reports Server (NTRS)
Hyer, M. W.; Oleksuk, Lynda L. S.; Bowles, D. E.
1992-01-01
To study the influence on overall deformations of the time-dependent constitutive properties of fiber-reinforced polymeric matrix composite materials being considered for use in orbiting precision segmented reflectors, simple sandwich beam models are developed. The beam models include layers representing the face sheets, the core, and the adhesive bonding of the face sheets to the core. A three-layer model lumps the adhesive layers with the face sheets or core, while a five-layer model considers the adhesive layers explicitly. The deformation response of the three-layer and five-layer sandwich beam models to a midspan point load is studied. This elementary loading leads to a simple analysis, and it is easy to create this loading in the laboratory. Using the correspondence principle of viscoelasticity, the models representing the elastic behavior of the two beams are transformed into time-dependent models. Representative cases of time-dependent material behavior for the facesheet material, the core material, and the adhesive are used to evaluate the influence of these constituents being time-dependent on the deformations of the beam. As an example of the results presented, if it assumed that, as a worst case, the polymer-dominated shear properties of the core behave as a Maxwell fluid such that under constant shear stress the shear strain increases by a factor of 10 in 20 years, then it is shown that the beam deflection increases by a factor of 1.4 during that time. In addition to quantitative conclusions, several assumptions are discussed which simplify the analyses for use with more complicated material models. Finally, it is shown that the simpler three-layer model suffices in many situations.
SANE's Measurement of the Proton's Virtual Photon Spin Asymmetry, A p 1, at Large Bjorken x
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mulholland, Jonathan
2012-05-01
The experiment SANE (Spin Asymmetries of the Nucleon Experiment) measured inclusive double polarization electron asymmetries on a proton target at the Continuous Electron Beam Accelerator Facility at the Thomas Jefferson National Laboratory in Newport News Virgina. Polarized electrons were scattered from a solid 14NH 3 polarized target provided by the University of Virginia target group. Measurements were taken with the target polarization oriented at 80 degrees and 180 degrees relative to the beam direction, and beam energies of 4.7 and 5.9 GeV were used. Scattered electrons were detected by a multi-component novel non-magnetic detector package constructed for this experiment. Asymmetriesmore » measured at the two target orientations allow for the extraction of the virtual Compton asymmetries A 1 p and A 2 p as well as the spin structure functions g 1 p and g 2 p. This work addresses the extraction of the virtual Compton asymmetry A 1 p in the deep inelastic regime. The analysis uses data in the kinematic range from Bjorken x of 0.30 to 0.55, separated into four Q 2 bins from 1.9 to 4.7 GeV 2.« less
Characterization studies of prototype ISOL targets for the RIA
NASA Astrophysics Data System (ADS)
Greene, John P.; Burtseva, Tatiana; Neubauer, Janelle; Nolen, Jerry A.; Villari, Antonio C. C.; Gomes, Itacil C.
2005-12-01
Targets employing refractory compounds are being developed for the rare isotope accelerator (RIA) facility to produce ion species far from stability. With the 100 kW beams proposed for the production targets, dissipation of heat becomes a challenging issue. In our two-step target design, neutrons are generated in a refractory primary target, inducing fission in the surrounding uranium carbide. The interplay of density, grain size, thermal conductivity and diffusion properties of the UC2 needs to be well understood before fabrication. Thin samples of uranium carbide were prepared for thermal conductivity measurements using an electron beam to heat the sample and an optical pyrometer to observe the thermal radiation. Release efficiencies and independent thermal analysis on these samples are being undertaken at Oak Ridge National Laboratory (ORNL). An alternate target concept for RIA, the tilted slab approach promises to be simple with fast ion release and capable of withstanding high beam intensities while providing considerable yields via spallation. A proposed small business innovative research (SBIR) project will design a prototype tilted target, exploring the materials needed for fabrication and testing at an irradiation facility to address issues of heat transfer and stresses within the target.
The RIB production target for the SPES project
NASA Astrophysics Data System (ADS)
Monetti, Alberto; Andrighetto, Alberto; Petrovich, Carlo; Manzolaro, Mattia; Corradetti, Stefano; Scarpa, Daniele; Rossetto, Francesco; Martinez Dominguez, Fernando; Vasquez, Jesus; Rossignoli, Massimo; Calderolla, Michele; Silingardi, Roberto; Mozzi, Aldo; Borgna, Francesca; Vivian, Gianluca; Boratto, Enrico; Ballan, Michele; Prete, Gianfranco; Meneghetti, Giovanni
2015-10-01
Facilities making use of the Isotope Separator On-Line (ISOL) method for the production of Radioactive Ion Beams (RIB) attract interest because they can be used for nuclear structure and reaction studies, astrophysics research and interdisciplinary applications. The ISOL technique is based on the fast release of the nuclear reaction products from the chosen target material together with their ionization into short-lived nuclei beams. Within this context, the SPES (Selective Production of Exotic Species) facility is now under construction in Italy at INFN-LNL (Istituto Nazionale di Fisica Nucleare — Laboratori Nazionali di Legnaro). The SPES facility will produce RIBs mainly from n-rich isotopes obtained by a 40 MeV cyclotron proton beam (200 μA) directly impinging on a uranium carbide multi-foil fission target. The aim of this work is to describe and update, from a comprehensive point of view, the most important results obtained by the analysis of the on-line behavior of the SPES production target assembly. In particular an improved target configuration has been studied by comparing different codes and physics models: the thermal analyses and the isotope production are re-evaluated. Then some consequent radioprotection aspects, which are essential for the installation and operation of the facility, are presented.
Process and Learning Outcomes from Remotely-Operated, Simulated, and Hands-on Student Laboratories
ERIC Educational Resources Information Center
Corter, James E.; Esche, Sven K.; Chassapis, Constantin; Ma, Jing; Nickerson, Jeffrey V.
2011-01-01
A large-scale, multi-year, randomized study compared learning activities and outcomes for hands-on, remotely-operated, and simulation-based educational laboratories in an undergraduate engineering course. Students (N = 458) worked in small-group lab teams to perform two experiments involving stress on a cantilever beam. Each team conducted the…
Sandia National Laboratories: Physical, Chemical, and Nano Sciences
Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Honey I shrunk the circuit CINT Virtual Tour Center for Integrated Nanotechnologies Honey I shrunk the circuit Ion Beam Lab Virtual Tour: Coming Soon! Honey I shrunk the circuit CINT 10 Year Anniversary Video
1981-02-01
GUteborg, Sweden and Laboratory for Plasma and Fusion Energy Studies University of Maryland College Park, Maryland 20742 Physics Publication Number 81...GCiteborg, Sweden and Laboratory for Plasma and Fusion Energy Studies University oflMaryland College Park, Maryland 20742 i AflS1RACi Parametric
NASA Astrophysics Data System (ADS)
Ikeda, S.; Kumaki, M.; Kanesue, T.; Okamura, M.
2016-02-01
In the laser ion source (LIS) at the Brookhaven National Laboratory (BNL), a solenoid is used to guide the laser ablation plasma and modulate the extracted beam current. Many types of ion species are guided. In some cases, the plasma plume is injected into the solenoid away from the solenoidal axis. To investigate the effects of the solenoid on the beam extracted from the plasma that has different properties, the beam current was measured in the setup of the LIS at the BNL. The beam current of Li, Al, Si, Fe, and Au increased when the magnetic field was applied. For most of the species the peak current and the total charge within a single beam pulse increased around 10 times with a magnetic field less than 100 G. In addition, for some species the rate of increase of the peak currents became smaller when the magnetic flux densities were larger than certain values depending on the species. In this case, the current waveforms were distorted. At the same magnetic field value, the field was more effective on lighter species than on heavier ones. When plasma was injected offset from the axis of the solenoid, peak current and total charge became half of those without offset. The experimental data are useful for the operation of the LIS at the BNL.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ikeda, S., E-mail: ikeda.s.ae@m.titech.ac.jp; Nishina Center for Accelerator-Based Science, RIKEN, Wako, Saitama 351-0108; Kumaki, M.
In the laser ion source (LIS) at the Brookhaven National Laboratory (BNL), a solenoid is used to guide the laser ablation plasma and modulate the extracted beam current. Many types of ion species are guided. In some cases, the plasma plume is injected into the solenoid away from the solenoidal axis. To investigate the effects of the solenoid on the beam extracted from the plasma that has different properties, the beam current was measured in the setup of the LIS at the BNL. The beam current of Li, Al, Si, Fe, and Au increased when the magnetic field was applied.more » For most of the species the peak current and the total charge within a single beam pulse increased around 10 times with a magnetic field less than 100 G. In addition, for some species the rate of increase of the peak currents became smaller when the magnetic flux densities were larger than certain values depending on the species. In this case, the current waveforms were distorted. At the same magnetic field value, the field was more effective on lighter species than on heavier ones. When plasma was injected offset from the axis of the solenoid, peak current and total charge became half of those without offset. The experimental data are useful for the operation of the LIS at the BNL.« less
Ikeda, S; Kumaki, M; Kanesue, T; Okamura, M
2016-02-01
In the laser ion source (LIS) at the Brookhaven National Laboratory (BNL), a solenoid is used to guide the laser ablation plasma and modulate the extracted beam current. Many types of ion species are guided. In some cases, the plasma plume is injected into the solenoid away from the solenoidal axis. To investigate the effects of the solenoid on the beam extracted from the plasma that has different properties, the beam current was measured in the setup of the LIS at the BNL. The beam current of Li, Al, Si, Fe, and Au increased when the magnetic field was applied. For most of the species the peak current and the total charge within a single beam pulse increased around 10 times with a magnetic field less than 100 G. In addition, for some species the rate of increase of the peak currents became smaller when the magnetic flux densities were larger than certain values depending on the species. In this case, the current waveforms were distorted. At the same magnetic field value, the field was more effective on lighter species than on heavier ones. When plasma was injected offset from the axis of the solenoid, peak current and total charge became half of those without offset. The experimental data are useful for the operation of the LIS at the BNL.
NASA Technical Reports Server (NTRS)
Intrator, T.; Hershkowitz, N.; Chan, C.
1984-01-01
Counterstreaming large-diameter electron beams in a steady-state laboratory experiment are observed to generate transverse radiation at twice the upper-hybrid frequency (2omega-UH) with a quadrupole radiation pattern. The electromagnetic wave power density is nonlinearly enhanced over the power density obtained from a single beam-plasma system. Electromagnetic power density scales exponentially with beam energy and increases with ion mass. Weak turbulence theory can predict similar (but weaker) beam energy scaling but not the high power density, or the predominance of the 2omega-UH radiation peak over the omega-UH peak. Significant noise near the upper-hybrid and ion plasma frequencies is also measured, with normalized electrostatic wave energy density W(ES)/n(e)T(e) approximately 0.01.
Recent results on reactions with radioactive beams at RIBRAS (Radioactive Ion Beams in Brazil)
NASA Astrophysics Data System (ADS)
Lépine-Szily, A.; Lichtenthäler, R.; Guimarães, V.; Arazi, A.; Barioni, A.; Benjamim, E. A.; de Faria, P. N.; Descouvemont, P.; Gasques, L. R.; E; Leistenschneider; Mendes, D. R., Jr.; Morais, M. C.; Morcelle, V.; Moro, A. M.; Pampa Condori, R.; Pires, K. C. C.; Rodriguez-Gallardo, M.; Scarduelli, V.; Shorto, J. M. B.; Zamora, J. C.
2015-04-01
We present a quick description of RIBRAS (Radioactive Ion beams in Brazil), which is a superconducting double solenoid system, installed at the Pelletron Laboratory of the University of São Paulo and extends the capabilities of the original Pelletron Tandem Accelerator of 8MV terminal voltage (8UD) by producing secondary beams of unstable nuclei. The experimental program of the RIBRAS covers the study of elastic and inelastic scattering with the objective to study the interaction potential and the reaction mechanisms between weakly bound (RIB) and halo (6He and 8B) projectiles on light, medium and heavy mass targets. With highly purified beams, the study of resonant elastic scattering and resonant transfer reactions, using inverse kinematics and thick targets, have also been included in our recent experimental program.
Beam experiments with the Grenoble test electron cyclotron resonance ion source at iThemba LABS.
Thomae, R; Conradie, J; Fourie, D; Mira, J; Nemulodi, F; Kuechler, D; Toivanen, V
2016-02-01
At iThemba Laboratory for Accelerator Based Sciences (iThemba LABS) an electron cyclotron ion source was installed and commissioned. This source is a copy of the Grenoble Test Source (GTS) for the production of highly charged ions. The source is similar to the GTS-LHC at CERN and named GTS2. A collaboration between the Accelerators and Beam Physics Group of CERN and the Accelerator and Engineering Department of iThemba LABS was proposed in which the development of high intensity argon and xenon beams is envisaged. In this paper, we present beam experiments with the GTS2 at iThemba LABS, in which the results of continuous wave and afterglow operation of xenon ion beams with oxygen as supporting gases are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ali, S.; Shimizu, E.; Nakamura, N.
2016-03-15
We have investigated extreme ultraviolet emission from highly charged barium using a compact electron beam ion trap at the Tokyo EBIT laboratory. The spectra were recorded for several beam energies ranging from 440 to 740 eV, while keeping the electron beam current constant at 10 mA. Radiation from charge states Zr-like Ba{sup 16+} to As-like Ba{sup 23+} were recorded and identified by varying the electron beam energy across the ionization thresholds and comparing with calculated results. The calculations were performed with a detailed relativistic configuration interaction approach using the Flexible Atomic Code. Several new lines belonging to electric dipole transitions were observedmore » and identified.« less
An Improved Green's Function for Ion Beam Transport
NASA Technical Reports Server (NTRS)
Tweed, J.; Wilson, J. W.; Tripathi, R. K.
2003-01-01
Ion beam transport theory allows testing of material transmission properties in the laboratory environment generated by particle accelerators. This is a necessary step in materials development and evaluation for space use. The approximations used in solving the Boltzmann transport equation for the space setting are often not sufficient for laboratory work and those issues are the main emphasis of the present work. In consequence, an analytic solution of the linear Boltzmann equation is pursued in the form of a Green's function allowing flexibility in application to a broad range of boundary value problems. It has been established that simple solutions can be found for the high charge and energy (HZE) by ignoring nuclear energy downshifts and dispersion. Such solutions were found to be supported by experimental evidence with HZE ion beams when multiple scattering was added. Lacking from the prior solutions were range and energy straggling and energy downshift with dispersion associated with nuclear events. Recently, we have found global solutions including these effects providing a broader class of HZE ion solutions.
Case study of flexure and shear strengthening of RC beams by CFRP using FEA
NASA Astrophysics Data System (ADS)
Jankowiak, Iwona
2018-01-01
In the paper the preliminary results of study on strengthening RC beams by means of CFRP materials under mixed shear-flexural work condition are presented. The Finite Element Method analyses were performed using numerical models proposed and verified earlier by the results of laboratory tests [4, 5] for estimation of effectiveness of CFRP strengthening of RC beams under flexure. The currently conducted analyses deal with 3D models of RC beams under mixed shear-flexural loading conditions. The symmetry of analyzed beams was taken into account (in both directions). The application of Concrete Damage Plasticity (CDP) model of RC beam allowed to predict a layout and propagation of cracks leading to failure. Different cases of strengthening were analyzed: with the use of CFRP strip or CFRP closed hoops as well as with the combination of above mentioned. The preliminary study was carried out and the first results were presented.
Medipix2 as a tool for proton beam characterization
NASA Astrophysics Data System (ADS)
Bisogni, M. G.; Cirrone, G. A. P.; Cuttone, G.; Del Guerra, A.; Lojacono, P.; Piliero, M. A.; Romano, F.; Rosso, V.; Sipala, V.; Stefanini, A.
2009-08-01
Proton therapy is a technique used to deliver a highly accurate and effective dose for the treatment of a variety of tumor diseases. The possibility to have an instrument able to give online information could reduce the time necessary to characterize the proton beam. To this aim we propose a detection system for online proton beam characterization based on the Medipix2 chip. Medipix2 is a detection system based on a single event counter read-out chip, bump-bonded to silicon pixel detector. The read-out chip is a matrix of 256×256 cells, 55×55 μm 2 each. To demonstrate the capabilities of Medipix2 as a proton detector, we have used a 62 MeV flux proton beam at the CATANA beam line of the LNS-INFN laboratory. The measurements performed confirmed the good imaging performances of the Medipix2 system also for the characterization of proton beams.
a High-Density Electron Beam and Quad-Scan Measurements at Pleiades Thomson X-Ray Source
NASA Astrophysics Data System (ADS)
Lim, J. K.; Rosenzweig, J. B.; Anderson, S. G.; Tremaine, A. M.
2007-09-01
A recent development of the photo-cathode injector technology has greatly enhanced the beam quality necessary for the creation of high density/high brightness electron beam sources. In the Thomson backscattering x-ray experiment, there is an immense need for under 20 micron electron beam spot at the interaction point with a high-intensity laser in order to produce a large x-ray flux. This has been demonstrated successfully at PLEIADES in Lawrence Livermore National Laboratory. For this Thomson backscattering experiment, we employed an asymmetric triplet, high remanence permanent-magnet quads to produce smaller electron beams. Utilizing highly efficient optical transition radiation (OTR) beam spot imaging technique and varying electron focal spot sizes enabled a quadrupole scan at the interaction zone. Comparisons between Twiss parameters obtained upstream to those parameter values deduced from PMQ scan will be presented in this report.
a High-Density Electron Beam and Quad-Scan Measurements at Pleiades Thomson X-Ray Source
NASA Astrophysics Data System (ADS)
Lim, J. K.; Rosenzweig, J. B.; Anderson, S. G.; Tremaine, A. M.
A recent development of the photo-cathode injector technology has greatly enhanced the beam quality necessary for the creation of high density/high brightness electron beam sources. In the Thomson backscattering x-ray experiment, there is an immense need for under 20 micron electron beam spot at the interaction point with a high-intensity laser in order to produce a large x-ray flux. This has been demonstrated successfully at PLEIADES in Lawrence Livermore National Laboratory. For this Thomson backscattering experiment, we employed an asymmetric triplet, high remanence permanent-magnet quads to produce smaller electron beams. Utilizing highly efficient optical transition radiation (OTR) beam spot imaging technique and varying electron focal spot sizes enabled a quadrupole scan at the interaction zone. Comparisons between Twiss parameters obtained upstream to those parameter values deduced from PMQ scan will be presented in this report.
Dynamic characteristics of a 30-centimeter mercury ion thruster
NASA Technical Reports Server (NTRS)
Serafini, J. S.; Mantenieks, M. A.; Rawlin, V. K.
1975-01-01
The present work reports on measurements of the fluctuations in the beam current, discharge current, neutralizer keeper current, and discharge voltage of a 30-cm ion thruster made with 60Hz laboratory-type power supplies. The intensities of the fluctuations (ratio of the root-mean-square magnitude to time-average quantity) were found to depend significantly on the beam and magnetic baffle currents. The shape of the frequency spectra of the discharge plasma fluctuations was related to the beam and magnetic baffle currents. The predominant peaks of the beam and discharge current spectra occurred at frequencies less than 30 kilohertz. This discharge chamber resonance could be attributable to ion-acoustic wave phenomena. Cross-correlations of the discharge and beam currents indicated that the dependence on the magnetic baffle current was strong. The measurements revealed that the discharge current fluctuations directly contribute to the beam current fluctuations and that the power supply characteristics can modify these fluctuations.
Characterization of a 5-eV neutral atomic oxygen beam facility
NASA Technical Reports Server (NTRS)
Vaughn, J. A.; Linton, R. C.; Carruth, M. R., Jr.; Whitaker, A. F.; Cuthbertson, J. W.; Langer, W. D.; Motley, R. W.
1991-01-01
An experimental effort to characterize an existing 5-eV neutral atomic oxygen beam facility being developed at Princeton Plasma Physics Laboratory is described. This characterization effort includes atomic oxygen flux and flux distribution measurements using a catalytic probe, energy determination using a commercially designed quadrupole mass spectrometer (QMS), and the exposure of oxygen-sensitive materials in this beam facility. Also, comparisons were drawn between the reaction efficiencies of materials exposed in plasma ashers, and the reaction efficiencies previously estimated from space flight experiments. The results of this study show that the beam facility is capable of producing a directional beam of neutral atomic oxygen atoms with the needed flux and energy to simulate low Earth orbit (LEO) conditions for real time accelerated testing. The flux distribution in this facility is uniform to +/- 6 percent of the peak flux over a beam diameter of 6 cm.
Narrow beam neutron dosimetry.
Ferenci, M Sutton
2004-01-01
Organ and effective doses have been estimated for male and female anthropomorphic mathematical models exposed to monoenergetic narrow beams of neutrons with energies from 10(-11) to 1000 MeV. Calculations were performed for anterior-posterior, posterior-anterior, left-lateral and right-lateral irradiation geometries. The beam diameter used in the calculations was 7.62 cm and the phantoms were irradiated at a height of 1 m above the ground. This geometry was chosen to simulate an accidental scenario (a worker walking through the beam) at Flight Path 30 Left (FP30L) of the Weapons Neutron Research (WNR) Facility at Los Alamos National Laboratory. The calculations were carried out using the Monte Carlo transport code MCNPX 2.5c.
Radio frequency elevator for a pulsed positron beam
NASA Astrophysics Data System (ADS)
Dickmann, Marcel; Mitteneder, Johannes; Kögel, Gottfried; Egger, Werner; Sperr, Peter; Ackermann, Ulrich; Piochacz, Christian; Dollinger, Günther
2016-06-01
An elevator increases the potential energy of a particle beam with respect to ground potential without any alteration of kinetic energy and other beam parameters. This elevator is necessary for the implementation of the Munich Scanning Positron Microscope (SPM) at the intense positron source NEPOMUC at the research reactor FRM II in Munich. The principles of the rf elevator for pure electrostatically guided positrons are described. Measurements of beam quality behind the elevator are reported, which confirm that after the implementation of elevator and SPM at NEPOMUC the SPM can be operated at a considerably improved resolution (~ 0.3 μm) and event rate (~3.7 kHz) compared to the laboratory based β+-source.
The TRIUMF nuclear structure program and TIGRESS
NASA Astrophysics Data System (ADS)
Garrett, P. E.; Andreyev, A.; Austin, R. A. E.; Ball, G. C.; Bandyopadhyay, D.; Becker, J. A.; Boston, A. J.; Boston, H. C.; Chakrawarthy, R. S.; Churchman, R.; Cline, D.; Cooper, R. J.; Cross, D.; Dashdorj, D.; Demand, G. A.; Dimmock, M. R.; Drake, T.; Finlay, P.; Gagnon, K.; Gallant, A. T.; Green, K. L.; Grint, A. N.; Grinyer, G. F.; Hackman, G.; Harkness, L. J.; Hayes, A. B.; Kanungo, R.; Kulp, W. D.; Leach, K. G.; Lee, G.; Leslie, J. R.; Maharaj, R.; Martin, J.-P.; Mattoon, C.; Mills, W. J.; Morton, A. C.; Nelson, L.; Newman, O.; Nolan, P. J.; Padilla-Rodal, E.; Pearson, C. J.; Phillips, A. A.; Porter-Peden, M.; Ressler, J. J.; Ruiz, C.; Sarazin, F.; Schumaker, M. A.; Scraggs, D. P.; Strange, M. D.; Subramanian, M.; Svensson, C. E.; Waddington, J. C.; Wan, J.; Whitbeck, A.; Williams, S. J.; Wood, J. L.; Wong, J. C.; Wu, C. Y.; Zganjar, E. F.
2007-08-01
The isotope separator and accelerator (ISAC) facility located at the TRIUMF laboratory in Vancouver, Canada, is one of the world's most advanced isotope separator on-line-type radioactive ion beam facilities. An extensive γ-ray spectroscopy programme at ISAC is centred around two major research facilities: (i) the 8π γ-ray spectrometer for β-delayed γ-ray spectroscopy experiments with the low-energy beams from ISAC-I, and (ii) the next generation TRIUMF-ISAC gamma-ray escape suppressed spectrometer (TIGRESS) for in-beam experiments with the accelerated radioactive-ion beams. An overview of these facilities and recent results from the diverse programme of nuclear structure and fundamental interaction studies they support is presented.
Antares alignment gimbal positioner
DOE Office of Scientific and Technical Information (OSTI.GOV)
Day, R.D.; Viswanathan, V.K.; Saxman, A.C.
1981-01-01
Antares is a 24-beam 40-TW carbon-dioxide (CO/sub 2/) laser fusion system currently under construction at the Los Alamos National Laboratory. The Antares alignment gimbal positioner (AGP) is an optomechanical instrument that will be used for target alignment and alignment of the 24 laser beams, as well as beam quality assessments. The AGP will be capable of providing pointing, focusing, and wavefront optical path difference, as well as aberration information at both helium-neon (He-Ne) and CO/sub 2/ wavelengths. It is designed to allow the laser beams to be aligned to any position within a 1-cm cube to a tolerance of 10more » ..mu..m.« less
Musumeci, P; Moody, J T; Scoby, C M; Gutierrez, M S; Bender, H A; Wilcox, N S
2010-01-01
Single shot diffraction patterns using a 250-fs-long electron beam have been obtained at the UCLA Pegasus laboratory. High quality images with spatial resolution sufficient to distinguish closely spaced peaks in the Debye-Scherrer ring pattern have been recorded by scattering the 1.6 pC 3.5 MeV electron beam generated in the rf photoinjector off a 100-nm-thick Au foil. Dark current and high emittance particles are removed from the beam before sending it onto the diffraction target using a 1 mm diameter collimating hole. These results open the door to the study of irreversible phase transformations by single shot MeV electron diffraction.
Extreme ultraviolet spectra of S IX and S X relevant to solar coronal plasmas
NASA Astrophysics Data System (ADS)
Ali, Safdar; Kato, Hiroyuki; Nakamura, Nobuyuki
2017-10-01
We present extreme ultraviolet laboratory spectra of highly charged S IX and S X measured using a compact electron beam ion trap. The data were recorded using a flat-field grazing incidence spectrometer in the wavelength range between 210 and 290 Å. The beam energy was tuned for three different values at 365, 410 and 465 eV while keeping electron beam current constant at 10 mA. By measuring the beam energy dependence, we identified several lines originating from S IX and S X ions with the support of collisional-radiative modeling. We compared them with the present calculations and transitions listed in the NIST data base and found in good agreement.
The Physics of Beams: The Andrew Sessler Symposium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barletta, W.A.
1996-03-01
These proceedings represent papers presented at the Andrew Sessler Symposium held at the Lawrence Berkeley National Laboratory in honor of Andrew Sessler{close_quote}s over forty years of major scientific contributions to accelerator and beam physics as well as in celebration of his 65th birthday. The symposium was sponsored by the United States Department of Energy. The topics discussed include linear colliders, past history and future speculations, ELOISATRON at 100 TeV beam, manipulating charged particle beams by means of plasma and collective instabilities in accelerator and storage rings. There were 10 papers presented and 8 have been abstracted for the Energy Sciencemore » and Technology database.(AIP)« less
Mastren, Tara; Pen, Aranh; Loveless, Shaun; Marquez, Bernadette V; Bollinger, Elizabeth; Marois, Boone; Hubley, Nicholas; Brown, Kyle; Morrissey, David J; Peaslee, Graham F; Lapi, Suzanne E
2015-10-20
Isotope harvesting is a promising new method to obtain isotopes for which there is no reliable continuous supply at present. To determine the possibility of obtaining radiochemically pure radioisotopes from an aqueous beam dump at a heavy-ion fragmentation facility, preliminary experiments were performed to chemically extract a copper isotope from a large mixture of projectile fragmentation products in an aqueous medium. In this work a 93 MeV/u secondary beam cocktail was collected in an aqueous beam stop at the National Superconducting Cyclotron Laboratory (NSCL) located on the Michigan State University (MSU) campus. The beam cocktail consisted of ∼2.9% (67)Cu in a large mixture of co-produced isotopes ranging in atomic number from ∼19 to 34. The chemical extraction of (67)Cu was achieved via a two-step process: primary extraction using a divalent metal chelation disk followed by anion-exchange chromatography. A significant fraction (74 ± 4%) of the (67)Cu collected in the aqueous beam stop was recovered with >99% radiochemical purity. To illustrate the utility of this product, the purified (67)Cu material was then used to radiolabel an anti-EGFR antibody, Panitumumab, and injected into mice bearing colon cancer xenografts. The tumor uptake at 5 days postinjection was found to be 12.5 ± 0.7% which was in very good agreement with previously reported studies with this radiolabeled antibody. The present results demonstrate that harvesting isotopes from a heavy-ion fragmentation facility could be a promising new method for obtaining high-quality isotopes that are not currently available by traditional methods.
ECR Plasma Source for Heavy Ion Beam Charge Neutralization
NASA Astrophysics Data System (ADS)
Efthimion, P. C.; Gilson, E.; Grisham, L.; Davidson, R. C.; Yu, S.; Logan, B. G.
2002-11-01
Highly ionized plasmas are being considered as a medium for charge neutralizing heavy ion beams in order to focus beyond the space-charge limit. Calculations suggest that plasma at a density of 1 - 100 times the ion beam density and at a length ˜ 0.1-0.5 m would be suitable for achieving a high level of charge neutralization. An ECR source has been built at the Princeton Plasma Physics Laboratory (PPPL) to support a joint Neutralized Transport Experiment (NTX) at the Lawrence Berkeley National Laboratory (LBNL) to study ion beam neutralization with plasma. The ECR source operates at 13.6 MHz and with solenoid magnetic fields of 1-10 gauss. The goal is to operate the source at pressures ˜ 10-5 Torr at full ionization. The initial operation of the source has been at pressures of 10-4 - 10-1 Torr. Electron densities in the range of 10^8 - 10^11 cm-3 have been achieved. Low-pressure operation is important to reduce ion beam ionization. A cusp magnetic field has been installed to improve radial confinement and reduce the field strength on the beam axis. In addition, axial confinement is believed to be important to achieve lower-pressure operation. At moderate pressures (> 1 mTorr) the wave damping is collisional, and at low pressures (< 1 mTorr) there is a distinct electron cyclotron resonance. The source has recently been configured to operate with 2.45 GHz microwaves with similar results. At the present operating range the source can simulate the plasma produced by photo-ionization in the target chamber.
ECR plasma source for heavy ion beam charge neutralization
NASA Astrophysics Data System (ADS)
Efthimion, Philip C.; Gilson, Erik; Grisham, Larry; Kolchin, Pavel; Davidson, Ronald C.; Yu, Simon; Logan, B. Grant
2003-01-01
Highly ionized plasmas are being considered as a medium for charge neutralizing heavy ion beams in order to focus beyond the space-charge limit. Calculations suggest that plasma at a density of 1 100 times the ion beam density and at a length [similar]0.1 2 m would be suitable for achieving a high level of charge neutralization. An Electron Cyclotron Resonance (ECR) source has been built at the Princeton Plasma Physics Laboratory (PPPL) to support a joint Neutralized Transport Experiment (NTX) at the Lawrence Berkeley National Laboratory (LBNL) to study ion beam neutralization with plasma. The ECR source operates at 13.6 MHz and with solenoid magnetic fields of 1 10 gauss. The goal is to operate the source at pressures [similar]10[minus sign]6 Torr at full ionization. The initial operation of the source has been at pressures of 10[minus sign]4 10[minus sign]1 Torr. Electron densities in the range of 108 to 1011 cm[minus sign]3 have been achieved. Low-pressure operation is important to reduce ion beam ionization. A cusp magnetic field has been installed to improve radial confinement and reduce the field strength on the beam axis. In addition, axial confinement is believed to be important to achieve lower-pressure operation. To further improve breakdown at low pressure, a weak electron source will be placed near the end of the ECR source. This article also describes the wave damping mechanisms. At moderate pressures (> 1 mTorr), the wave damping is collisional, and at low pressures (< 1 mTorr) there is a distinct electron cyclotron resonance.
Jefferson Lab Science: Present and Future
McKeown, Robert D.
2015-02-12
The Continuous Electron Beam Accelerator Facility (CEBAF) and associated experimental equipment at Jefferson Lab comprise a unique facility for experimental nuclear physics. Furthermore, this facility is presently being upgraded, which will enable a new experimental program with substantial discovery potential to address important topics in nuclear, hadronic, and electroweak physics. Further in the future, it is envisioned that the Laboratory will evolve into an electron-ion colliding beam facility.
Correction to AD/RHIC-47, Beam Transfer From AGS to RHIC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Claus, J.; Foelsche, H.
1988-12-12
RHIC an acronym for Relativistic Heavy Ion Collider, is a facility for colliding heavy ions with each other, proposed for construction at Brookhaven National Laboratory. This facility and the motivation for building it, have been described. It consists of two intersecting storage rings and the purpose of this note is to describe how these two rings are to be filled with beam.
Resonant beam behavior studies in the Proton Storage Ring
NASA Astrophysics Data System (ADS)
Cousineau, S.; Holmes, J.; Galambos, J.; Fedotov, A.; Wei, J.; Macek, R.
2003-07-01
We present studies of space-charge-induced beam profile broadening at high intensities in the Proton Storage Ring (PSR) at Los Alamos National Laboratory. We investigate the profile broadening through detailed particle-in-cell simulations of several experiments and obtain results in good agreement with the measurements. We interpret these results within the framework of coherent resonance theory. With increasing intensity, our simulations show strong evidence for the presence of a quadrupole-mode resonance of the beam envelope with the lattice in the vertical plane. Specifically, we observe incoherent tunes crossing integer values, and large amplitude, nearly periodic envelope oscillations. At the highest operating intensities, we observe a continuing relaxation of the beam through space charge forces leading to emittance growth. The increase of emittance commences when the beam parameters encounter an envelope stop band. Once the stop band is reached, the emittance growth balances the intensity increase to maintain the beam near the stop band edge. Additionally, we investigate the potential benefit of a stop band correction to the high intensity PSR beam.
Regimes of enhanced electromagnetic emission in beam-plasma interactions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Timofeev, I. V.; Annenkov, V. V.; Arzhannikov, A. V.
2015-11-15
The ways to improve the efficiency of electromagnetic waves generation in laboratory experiments with high-current relativistic electron beams injected into a magnetized plasma are discussed. It is known that such a beam can lose, in a plasma, a significant part of its energy by exciting a high level of turbulence and heating plasma electrons. Beam-excited plasma oscillations may simultaneously participate in nonlinear processes resulting in a fundamental and second harmonic emissions. It is obvious, however, that in the developed plasma turbulence the role of these emissions in the total energy balance is always negligible. In this paper, we investigate whethermore » electromagnetic radiation generated in the beam-plasma system can be sufficiently enhanced by the direct linear conversion of resonant beam-driven modes into electromagnetic ones on preformed regular inhomogeneities of plasma density. Due to the high power of relativistic electron beams, the mechanism discussed may become the basis for the generator of powerful sub-terahertz radiation.« less
Experimental study of the β decay of the very neutron-rich nucleus Ge 85
Korgul, A.; Rykaczewski, Krzysztof Piotr; Grzywacz, Robert Kazimierz; ...
2017-04-04
The β -decay properties of the very neutron-rich nucleus 85Ge, produced in the proton-induced fission of 238U, were studied at the Holifield Radioactive Ion Beam Facility at Oak Ridge National Laboratory. The level scheme of 33 85As 52 populated in 85Geβ γ decay was reconstructed and compared to shell-model calculations. The investigation of the systematics of low-energy levels in N =52 isotones together with shell-model analysis allowed us to provide an estimate of the low-energy structure of the more exotic N =52 isotone 81Cu.
Application of activation methods on the Dubna experimental transmutation set-ups.
Stoulos, S; Fragopoulou, M; Adloff, J C; Debeauvais, M; Brandt, R; Westmeier, W; Krivopustov, M; Sosnin, A; Papastefanou, C; Zamani, M; Manolopoulou, M
2003-02-01
High spallation neutron fluxes were produced by irradiating massive heavy targets with proton beams in the GeV range. The experiments were performed at the Dubna High Energy Laboratory using the nuclotron accelerator. Two different experimental set-ups were used to produce neutron spectra convenient for transmutation of radioactive waste by (n,x) reactions. By a theoretical analysis neutron spectra can be reproduced from activation measurements. Thermal-epithermal and fast-super-fast neutron fluxes were estimated using the 197Au, 238U (n,gamma) and (n,2n) reactions, respectively. Depleted uranium transmutation rates were also studied in both experiments.
Long term fine aerosol analysis by XRF and PIXE techniques in the city of Rijeka, Croatia
NASA Astrophysics Data System (ADS)
Ivošević, Tatjana; Orlić, Ivica; Radović, Iva Bogdanović
2015-11-01
The results of a long term, multi elemental XRF and PIXE analysis of fine aerosol pollution in the city of Rijeka, Croatia, are reported for the first time. The samples were collected during a seven months period (6th Aug 2013-28th Feb 2014) on thin stretched Teflon filters and analyzed by energy dispersive X-ray fluorescence (EDXRF) at the Laboratory for Elemental Micro-Analysis (LEMA), University of Rijeka and by Particle Induced X-ray Emission (PIXE) using 1.6 MeV protons at the Laboratory for Ion Beam Interactions (LIBI), Ruđer Bošković Institute, Zagreb. The newly developed micro-XRF system at LEMA provided results for 19 elements in the range from Si to Pb. The PIXE at the LIBI provided information for the same elements as well for the light elements such as Na, Mg and Al. Black carbon was determined with the Laser Integrated Plate Method (LIPM). The results were statistically evaluated by means of the positive matrix factorization (PMF). The seven major pollution sources were identified together with their relative contributions, these are: secondary sulfates, road traffic, smoke, road dust, sea spray, ship emissions and soil dust.
Evaluation of methods for application of epitaxial layers of superconductor and buffer layers
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1997-06-01
The recent achievements in a number of laboratories of critical currents in excess of 1.0x10{sup 6} amp/cm{sup 2} at 77K in YBCO deposited over suitably textured buffer/substrate composites have stimulated interest in the potential applications of coated conductors at high temperatures and high magnetic fields. As of today, two different approaches for obtaining the textured substrates have been identified. These are: Los Alamos National Laboratory`s (LANL) ion-beam assisted deposition called IBAD, to obtain a highly textured yttria-stabilized zirconia (YSZ) buffer on nickel alloy strips, and Oak Ridge National Laboratory`s (ORNL) rolling assisted, bi-axial texturized substrate option called RABiTS. Similarly, basedmore » on the published literature, the available options to form High Temperature Superconductor (HTS) films on metallic, semi-metallic or ceramic substrates can be divided into: physical methods, and non-physical or chemical methods. Under these two major groups, the schemes being proposed consist of: - Sputtering - Electron-Beam Evaporation - Flash Evaporation - Molecular Beam Epitaxy - Laser Ablation - Electrophoresis - Chemical Vapor Deposition (Including Metal-Organic Chemical Vapor Deposition) - Sol-Gel - Metal-Organic Decomposition - Electrodeposition, and - Aerosol/Spray Pyrolysis. In general, a spool- to-spool or reel-to-reel type of continuous manufacturing scheme developed out of any of the above techniques, would consist of: - Preparation of Substrate Material - Preparation and Application of the Buffer Layer(s) - Preparation and Application of the HTS Material and Required Post-Annealing, and - Preparation and Application of the External Protective Layer. These operations would be affected by various process parameters which can be classified into: Chemistry and Material Related Parameters; and Engineering and Environmental Based Parameters. Thus, one can see that for successful development of the coated conductors manufacturing process, an extensive review of the available options was necessary. Under the U.S. Department of Energy (DOE`s) sponsorship, the University of Tennessee Space Institute (UTSI), was given a responsibility of performing this review. In UTSI`s efforts to review the available options, Oak Ridge National Laboratory, (ORNL), especially Mr. Robert Hawsey and Dr. M. Paranthaman provided very valuable guidance and technical assistance. This report describes the review carried out by the UTSI staff, students and faculty members. It also provides the approach being used to develop the cost information as well as the major operational parameters/variables that will have to be monitored and the relevant control systems. In particular, the report includes: - Process Flow Schemes and Involved Operations - Multi-Attribute Analysis Carried out for Objective and Subjective Criteria - Manufacturing Parameters to Process 6,000 km/year of Quality Coated Conductor Material - Metal Organics (MOD), Sol-Gel, and E-Beam as the Leading Candidates, and Technical Concerns/Issues that Need to be Resolved to Develop a Commercially Viable Option Out of Each of Them. - Process Control Needs for Various Schemes - Approach/Methodology for Developing Cost of Coated Conductors This report also includes generic areas in which additional research and development work are needed. In general, it is our feeling that the science and chemistry that are being developed in the coated conductor wire program now need proper engineering assistance/viewpoints to develop leading options into a viable commercial process.« less
Retrofitting of Reinforced Concrete Beams using Reactive Powder Concrete (RPC)
NASA Astrophysics Data System (ADS)
Karthik, S.; Sundaravadivelu, Karthik
2017-07-01
Strengthening of existing damaged structures is one of the leading studies in civil engineering. The purpose of retrofitting is to structurally treat the member with an aim to restore the structure to its original strength. The focus of this project is to study the behaviour of damaged Reinforced Concrete beam retrofitted with Reactive Powder Concrete (RPC) Overlay. Reinforced concrete beams of length 1200 mm, width 100 mm and depth 200 mm were casted with M30 grade of concrete in the laboratory and cured for 28 days. One beam is taken as control and are tested under two point loading to find out ultimate load. Remaining beams are subjected to 90 % ultimate load of control beams. The partially damaged beams are retrofitted with Reactive Powder Concrete Overlay at the full tension face of the beam and side overlay depends upon the respectable retrofitting techniques with 10 mm and 20 mm thick layer to find optimum. Materials like steel fibres are added to enhance the ductility by eliminating coarse particle for homogeneity of the structure. Finally, the modes of failure for retrofitted beams are analysed experimentally under two point loading & compared the results with Control beam.
An electron beam ion trap and source for re-acceleration of rare-isotope ion beams at TRIUMF
NASA Astrophysics Data System (ADS)
Blessenohl, M. A.; Dobrodey, S.; Warnecke, C.; Rosner, M. K.; Graham, L.; Paul, S.; Baumann, T. M.; Hockenbery, Z.; Hubele, R.; Pfeifer, T.; Ames, F.; Dilling, J.; Crespo López-Urrutia, J. R.
2018-05-01
Electron beam driven ionization can produce highly charged ions (HCIs) in a few well-defined charge states. Ideal conditions for this are maximally focused electron beams and an extremely clean vacuum environment. A cryogenic electron beam ion trap fulfills these prerequisites and delivers very pure HCI beams. The Canadian rare isotope facility with electron beam ion source-electron beam ion sources developed at the Max-Planck-Institut für Kernphysik (MPIK) reaches already for a 5 keV electron beam and a current of 1 A with a density in excess of 5000 A/cm2 by means of a 6 T axial magnetic field. Within the trap, the beam quickly generates a dense HCI population, tightly confined by a space-charge potential of the order of 1 keV times the ionic charge state. Emitting HCI bunches of ≈107 ions at up to 100 Hz repetition rate, the device will charge-breed rare-isotope beams with the mass-over-charge ratio required for re-acceleration at the Advanced Rare IsotopE Laboratory (ARIEL) facility at TRIUMF. We present here its design and results from commissioning runs at MPIK, including X-ray diagnostics of the electron beam and charge-breeding process, as well as ion injection and HCI-extraction measurements.
Ion beam generated modes in the lower hybrid frequency range in a laboratory magnetoplasma
NASA Astrophysics Data System (ADS)
Van Compernolle, B.; Tripathi, S.; Gekelman, W. N.; Colestock, P. L.; Pribyl, P.
2012-12-01
The generation of waves by ion ring distributions is of great importance in many instances in space plasmas. They occur naturally in the magnetosphere through the interaction with substorms, or they can be man-made in ionospheric experiments by photo-ionization of neutral atoms injected perpendicular to the earth's magnetic field. The interaction of a fast ion beam with a low β plasma has been studied in the laboratory. Experiments were performed at the LArge Plasma Device (LAPD) at UCLA. The experiments were done in a Helium plasma (n ≃ 1012 \\ cm-3, B0 = 1000 G - 1800 G, fpe}/f{ce ≃ 1 - 5, Te = 0.25\\ eV, vte ≤ vA). The ion beam \\cite{Tripathi_ionbeam} is a Helium beam with energies ranging from 5 keV to 18 keV. The fast ion velocity is on the order of the Alfvén velocity. The beam is injected from the end of the machine, and spirals down the linear device. Waves were observed below fci in the shear Alfvén wave regime, and in a broad spectrum above fci in the lower hybrid frequency range, the focus of this paper. The wave spectra have distinct peaks close to ion cyclotron harmonics, extending out to the 100th harmonic in some cases. The wave generation was studied for various magnetic fields and background plasma densities, as well as for different beam energies and pitch angles. The waves were measured with 3-axis electric and magnetic probes. Detailed measurements of the perpendicular mode structure will be shown. Langmuir probes were used to measure density and temperature evolution due to the beam-plasma interaction. Retarding field energy analyzers captured the ion beam profiles. The work was performed at the LArge Plasma Device at the Basic Plasma Science Facility (BaPSF) at UCLA, funded by DOE/NSF.
Beam Generated Vorticity and Convective Channel Mixing.
1980-09-17
one . PERFORMING ORGANIZATION NAME AND ADDRESS ,0. PROGRAM ELEMENT. PROJECT. TASK Laboratory for Computational Physics Naval Research Laboratory.- 62...profile, Eq. (21). Letting the integration variable be q- riR. yields If d’n. g(SO[71b + ci) V(r) - U 2 1 a dq (1 + 7 -a2 )2 fd 77 g ( Soic -7b)- g
Elastic scattering and total reaction cross section for the 6He +58Ni system
NASA Astrophysics Data System (ADS)
Morcelle, V.; Lichtenthäler, R.; Lépine-Szily, A.; Guimarães, V.; Mendes, D. R., Jr.; Pires, K. C. C.; de Faria, P. N.; Barioni, A.; Gasques, L.; Morais, M. C.; Shorto, J. M. B.; Zamora, J. C.; Scarduelli, V.; Condori, R. Pampa; Leistenschneider, E.
2014-11-01
Elastic scattering measurements of 6He + 58Ni system have been performed at the laboratory energy of 21.7 MeV. The 6He secondary beam was produced by a transfer reaction 9Be (7Li , 6He ) and impinged on 58Ni and 197Au targets, using the Radioactive Ion Beam (RIB) facility, RIBRAS, installed in the Pelletron Laboratory of the Institute of Physics of the University of São Paulo, Brazil. The elastic angular distribution was obtained in the angular range from 15° to 80° in the center of mass frame. Optical model calculations have been performed using a hybrid potential to fit the experimental data. The total reaction cross section was derived.
2D-3D μXRF elemental mapping of archeological samples
NASA Astrophysics Data System (ADS)
Hampai, D.; Liedl, A.; Cappuccio, G.; Capitolo, E.; Iannarelli, M.; Massussi, M.; Tucci, S.; Sardella, R.; Sciancalepore, A.; Polese, C.; Dabagov, S. B.
2017-07-01
Recently opened for users at LNF XLab-Frascati a μ XRF station, named "Rainbow X-ray" - RXR, has been optimized for most of X-ray analytical research fields. The basic principle of the station is in the use of various geometrical combinations of polycapillary optics for X-ray beam shaping (focusing/collimation) at specially designed laboratory unit. In this work we have presented the results of archaeological studies on the artifacts of Paleolithic period and Iron Age (9th century BC to the midway of the 8th BC). The elemental analysis of these artifacts has been first performed by compact laboratory setup. Superficial (2D) and bulk (3D) micro-fluorescence mapping provides useful informations for the geologists in order to identify the possible artifacts provenience and origin. The results presented in this work are a part of wider anthropological/archeological investigations aimed at the understanding of social and economical relations of prehistorical communities.
Slew maneuvers of Spacecraft Control Laboratory Experiment (SCOLE)
NASA Technical Reports Server (NTRS)
Kakad, Yogendra P.
1992-01-01
This is the final report on the dynamics and control of slew maneuvers of the Spacecraft Control Laboratory Experiment (SCOLE) test facility. The report documents the basic dynamical equation derivations for an arbitrary large angle slew maneuver as well as the basic decentralized slew maneuver control algorithm. The set of dynamical equations incorporate rigid body slew maneuver and three dimensional vibrations of the complete assembly comprising the rigid shuttle, the flexible beam, and the reflector with an offset mass. The analysis also includes kinematic nonlinearities of the entire assembly during the maneuver and the dynamics of the interactions between the rigid shuttle and the flexible appendage. The equations are simplified and evaluated numerically to include the first ten flexible modes to yield a model for designing control systems to perform slew maneuvers. The control problem incorporates the nonlinear dynamical equations and is expressed in terms of a two point boundary value problem.
PIXE-PIGE analysis of teeth from children with and without cystic fibrosis
NASA Astrophysics Data System (ADS)
Cua, Florence T.
1990-04-01
Proton-induced X-ray emission (PIXE) and proton-induced gamma emission (PIGE) were used to analyze Ca, Sr, Fe, Zn, Cu and F, Na, P, Mg respectively in teeth of children with and without cystic fibrosis. The accelerators used were the 3 MeV proton Van de Graaff accelerator at the Brookhaven National Laboratory, NY, USA for the first run and the 8 MV FN-tandem Van de Graaff accelerator at the Nuclear Physics Laboratory, Rutgers University, NJ, USA producing a 4 MeV proton beam for the second and third run. Description of the experimental setup, and the data acquisition system are described in the text. A summary of the results on element concentration as a function of types of teeth and correlation studies are in the text and in F.T. Cua, Ph.D. Thesis, Rutgers Univ. (1989).
Jeong, Chang Young; Lee, Sangsul; Doh, Jong Gul; Lee, Jae Uk; Cha, Han-sun; Nichols, William T; Lee, Dong Gun; Kim, Seong Sue; Cho, Han Ku; Rah, Seung-yu; Ahn, Jinho
2011-07-01
The coherent scattering microscopy/in-situ accelerated contamination system (CSM/ICS) is a developmental metrology tool designed to analyze the impact of carbon contamination on the imaging performance. It was installed at 11B EUVL beam-line of the Pohang Accelerator Laboratory (PAL). Monochromatized 13.5 nm wavelength beam with Mo/Si multilayer mirrors and zirconium filters was used. The CSM/ICS is composed of the CSM for measuring imaging properties and the ICS for implementing acceleration of carbon contamination. The CSM has been proposed as an actinic inspection technique that records the coherent diffraction pattern from the EUV mask and reconstructs its aerial image using a phase retrieval algorithm. To improve the CSM measurement accuracy, optical and electrical noises of main chamber were minimized. The background noise level measured by CCD camera was approximately 8.5 counts (3 sigma) when the EUV beam was off. Actinic CD measurement repeatability was <1 A (3 sigma) at 17.5 nm line and space pattern. The influence of carbon contamination on the imaging properties can be analyzed by transferring EUV mask to CSM imaging center position after executing carbon contamination without a fine alignment system. We also installed photodiode and ellipsometry for in-situ reflectivity and thickness measurement. This paper describes optical design and system performance observed during the first phase of integration, including CSM imaging performance and carbon contamination analysis results.
Isterling, William M; Dally, Bassam B; Alwahabi, Zeyad T; Dubovinsky, Miro; Wright, Daniel
2012-01-01
Narrow laser beams directed from aircraft may at times pass through the exhaust plume of the engines and potentially degrade some of the laser beam characteristics. This paper reports on controlled studies of laser beam deviation arising from propagation through turbulent hot gases, in a well-characterized laboratory burner, with conditions of relevance to aircraft engine exhaust plumes. The impact of the temperature, laser wavelength, and turbulence length scale on the beam deviation has been investigated. It was found that the laser beam displacement increases with the turbulent integral length scale. The effect of temperature on the laser beam angular deviation, σ, using two different laser wavelengths, namely 4.67 μm and 632.8 nm, was recorded. It was found that the beam deviation for both wavelengths may be semiempirically modeled using a single function of the form, σ=a(b+(1/T)(2))(-1), with two parameters only, a and b, where σ is in microradians and T is the temperature in °C. © 2012 Optical Society of America
Nuclear Structure Studies with Stable and Radioactive Beams: The SPES radioactive ion beam project
NASA Astrophysics Data System (ADS)
de Angelis, G.; SPES Collaboration; Prete, G.; Andrighetto, A.; Manzolaro, M.; Corradetti, S.; Scarpa, D.; Rossignoli, M.; Monetti, A.; Lollo, M.; Calderolla, M.; Vasquez, J.; Zafiropoulos, D.; Sarchiapone, L.; Benini, D.; Favaron, P.; Rigato, M.; Pegoraro, R.; Maniero, D.; Calabretta, L.; Comunian, M.; Maggiore, M.; Lombardi, A.; Piazza, L.; Porcellato, A. M.; Roncolato, C.; Bisoffi, G.; Pisent, A.; Galatà, A.; Giacchini, M.; Bassato, G.; Canella, S.; Gramegna, F.; Valiente, J.; Bermudez, J.; Mastinu, P. F.; Esposito, J.; Wyss, J.; Russo, A.; Zanella, S.
2015-04-01
A new Radioactive Ion Beam (RIB) facility (SPES) is presently under construction at the Legnaro National Laboratories of INFN. The SPES facility is based on the ISOL method using an UCx Direct Target able to sustain a power of 10 kW. The primary proton beam is provided by a high current Cyclotron accelerator with energy of 35-70 MeV and a beam current of 0.2-0.5 mA. Neutron-rich radioactive ions are produced by proton induced fission on an Uranium target at an expected fission rate of the order of 1013 fissions per second. After ionization and selection the exotic isotopes are re-accelerated by the ALPI superconducting LINAC at energies of 10A MeV for masses in the region A=130 amu. The expected secondary beam rates are of the order of 107 - 109 pps. Aim of the SPES facility is to deliver high intensity radioactive ion beams of neutron rich nuclei for nuclear physics research as well as to be an interdisciplinary research centre for radio-isotopes production for medicine and for neutron beams.
NASA Astrophysics Data System (ADS)
Murokh, Alex
2002-01-01
In this work, the main results of the VISA experiment (Visible to Infrared SASE Amplifier) are presented and analyzed. The purpose of the experiment was to build a state-of-the-art single pass self-amplified spontaneous emission (SASE) free electron laser (FEL) based on a high brightness electron beam, and characterize its operation, including saturation, in the near infrared spectral region. This experiment was hosted by Accelerator Test Facility (ATF) at Brookhaven National Laboratory, which is a users facility that provides high brightness relativistic electron beams generated with the photoinjector. During the experiment, SASE FEL performance was studied in two regimes: a long bunch, lower gain operation; and a short bunch high gain regime. The transition between the two conditions was possible due to a novel bunch compression mechanism, which was discovered in the course of the experiment. This compression allowed the variation of peak current in the electron beam before it was launched into the 4-m VISA undulator. In the long bunch regime, a SASE FEL power gain length of 29 cm was obtained, and the generated radiation spectral and statistical properties were characterized. In the short bunch regime, a power gain length of under 18 cm was achieved at 842 nm, which is at least a factor of two shorter than ever previously achieved in this spectral range. Further, FEL saturation was obtained before the undulator exit. The FEL system's performance was measured along the length of the VISA undulator, and in the final state. Statistical, spectral and angular properties of the short bunch SASE radiation have been measured in the exponential gain regime, and at saturation. One of the most important aspects of the data analysis presented in this thesis was the development and use of start-to-end numerical simulations of the experiment. The dynamics of the ATF electron beam was modeled starting from the photocathode, through acceleration, transport, and inside the VISA undulator. The model allowed simulation of SASE process for different beam conditions, including the effects of the novel bunch compression mechanism on the electron beam 6-D phase space distribution. The numerical simulations displayed an excellent agreement with the experimental data, and became key to understanding complex dynamics of the SASE FEL process at VISA.
Overview of theory and simulations in the Heavy Ion Fusion Science Virtual National Laboratory
NASA Astrophysics Data System (ADS)
Friedman, Alex
2007-07-01
The Heavy Ion Fusion Science Virtual National Laboratory (HIFS-VNL) is a collaboration of Lawrence Berkeley National Laboratory, Lawrence Livermore National Laboratory, and Princeton Plasma Physics Laboratory. These laboratories, in cooperation with researchers at other institutions, are carrying out a coordinated effort to apply intense ion beams as drivers for studies of the physics of matter at extreme conditions, and ultimately for inertial fusion energy. Progress on this endeavor depends upon coordinated application of experiments, theory, and simulations. This paper describes the state of the art, with an emphasis on the coordination of modeling and experiment; developments in the simulation tools, and in the methods that underly them, are also treated.
Electromagnetic radiation from beam-plasma instabilities
NASA Technical Reports Server (NTRS)
Stenzel, R. L.; Whelan, D. A.
1982-01-01
The mechanism by which unstable electrostatic waves of an electron-beam plasma system are converted into observed electromagnetic waves is of great current interest in space plasma physics. Electromagnetic radiation arises from both natural beam-plasma systems, e.g., type III solar bursts and kilometric radiation, and from man-made electron beams injected from rockets and spacecraft. In the present investigation the diagnostic difficulties encountered in space plasmas are overcome by using a large laboratory plasma. A finite diameter (d approximately equal to 0.8 cm) electron beam is injected into a uniform quiescent magnetized afterglow plasma of dimensions large compared with electromagnetic wavelength. Electrostatic waves grow, saturate and decay within the uniform central region of the plasma volume so that linear mode conversion on density gradients can be excluded as a possible generation mechanism for electromagnetic waves.
Electromagnetic radiation from beam-plasma instabilities
NASA Technical Reports Server (NTRS)
Pritchett, P. L.; Dawson, J. M.
1983-01-01
A computer simulation is developed for the generation of electromagnetic radiation in an electron beam-plasma interaction. The plasma is treated as a two-dimensional finite system, and effects of a continuous nonrelativistic beam input are accounted for. Three momentum and three field components are included in the simulation, and an external magnetic field is excluded. EM radiation generation is possible through interaction among Langmuir oscillations, ion-acoustic waves, and the electromagnetic wave, producing radiation perpendicular to the beam. The radiation is located near the plasma frequency, and polarized with the E component parallel to the beam. The scattering of Langmuir waves caused by ion-acoustic fluctuations generates the radiation. Comparison with laboratory data for the three-wave interactions shows good agreement in terms of the radiation levels produced, which are small relative to the plasma thermal energy.
NASA Astrophysics Data System (ADS)
Yamazaki, T.; Katayama, I.; Uwamino, Y.
1993-02-01
The possibility of a crossed beam facility of slow neutrons capturing unstable nuclei is examined in connection with the Japanese Hadron Project. With a pulsed proton beam of 50 Hz repetition and with a 100 μA average beam current, one obtains a spallation neutron source of 2.4 × 10 8 thermal neutrons/cm 3/spill over a 60 cm length with a 3 ms average duration time by using a D 2O moderator. By confining radioactive nuclei of 10 9 ions in a beam circulation ring of 0.3 MHz revolution frequency, so that nuclei pass through the neutron source, one obtains a collision luminosity of 3.9 × 10 24/cm 2/s. A new research domain aimed at studying rapid processes in nuclear genetics in a laboratory will be created.
NASA Astrophysics Data System (ADS)
Homeyer, H.; Mahnke, H.-E.
1996-12-01
Energetic ion beams, originally the domain of nuclear physics, become increasingly important tools in many other fields of research and development. The choice of ion species and ion energy allows an enormously wide variation of the penetration depth and of the amount of the electronic stopping power. These features are utilized to modify or damage materials and living tissues in a specific way. Materials modification with energetic ion beams is one of the central aims of research and development at the ion beam laboratory, ISL-Berlin, a center for ion-beam applications at the Hahn-Meitner-Institut Berlin. In particular, energetic protons will be used for eye cancer treatment. Selected topics such as the "single-event burnout" of high power diodes and the eye cancer therapy setup will be presented in detail.
UNDULATOR-BASED LASER WAKEFIELD ACCELERATOR ELECTRON BEAM DIAGNOSTIC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bakeman, M.S.; Fawley, W.M.; Leemans, W. P.
to couple the THUNDER undulator to the LOASIS Lawrence Berkeley National Laboratory (LBNL) laser wakefield accelerator (LWFA). Currently the LWFA has achieved quasi-monoenergetic electron beams with energies up to 1 GeV. These ultra-short, high-peak-current, electron beams are ideal for driving a compact XUV free electron laser (FEL). Understanding the electron beam properties such as the energy spread and emittance is critical for achieving high quality light sources with high brightness. By using an insertion device such as an undulator and observing changes in the spontaneous emission spectrum, the electron beam energy spread and emittance can be measured with high precision.more » The initial experiments will use spontaneous emission from 1.5 m of undulator. Later experiments will use up to 5 m of undulator with a goal of a high gain, XUV FEL.« less
Beam experiments with the Grenoble test electron cyclotron resonance ion source at iThemba LABS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomae, R., E-mail: rthomae@tlabs.ac.za; Conradie, J.; Fourie, D.
2016-02-15
At iThemba Laboratory for Accelerator Based Sciences (iThemba LABS) an electron cyclotron ion source was installed and commissioned. This source is a copy of the Grenoble Test Source (GTS) for the production of highly charged ions. The source is similar to the GTS-LHC at CERN and named GTS2. A collaboration between the Accelerators and Beam Physics Group of CERN and the Accelerator and Engineering Department of iThemba LABS was proposed in which the development of high intensity argon and xenon beams is envisaged. In this paper, we present beam experiments with the GTS2 at iThemba LABS, in which the resultsmore » of continuous wave and afterglow operation of xenon ion beams with oxygen as supporting gases are presented.« less
NASA Astrophysics Data System (ADS)
Ghosh, Debaroti
Surface treatment using sealants as a mean of pavement preservation is an important tool for cost-effectively extending service life of pavement. Sealants have become an important tool for cost-effectively extending the service life pavements. Due to the combined negative effects of asphalt aging and thermal cracking, it is always more challenging to choose an appropriate preservation technique for pavements built in cold-regions. Asphalt aging and thermal cracking negatively affect pavements built in cold climates. Therefore, it is important to evaluate the effects of sealants in laboratory conditions before application in the field to ensure effective performance. However, preservation activities cannot effectively address major distresses, such as low-temperature cracking, that can occur when the pavement was built from the very beginning with less durable materials. Therefore, an essential requirement to mitigate low-temperature cracking of pavements for asphalt materials used in the construction of pavement built in cold- regions is ensuring proper fracture properties of the asphalt materials used in construction. This study has two parts. In the first part, a laboratory evaluation of the effects of adding bio-sealants to both asphalt binder and mixture is performed. The goal is to obtain relevant properties of treated asphalt materials to understand the mechanism by which sealants improve pavement performance. For asphalt binders, a dynamic shear rheometer and a bending beam rheometer were used to obtain rheological properties of treated and untreated asphalt binders. For asphalt mixtures, field cores from both untreated and treated sections were collected and thin beam specimens were prepared from the cores to compare the creep and strength properties of the field-treated and laboratory-treated mixture. It is observed that the oil-based sealants have a significant softening effect on the control binder compared to the water-based sealant and traditional emulsion. Oil-based sealants increased rutting and fatigue potential of the binder and helped the low-temperature cracking resistance. For asphalt mixtures, different trends are observed for the field samples compared to the laboratory prepared samples. Similar to binder results, significant differences are observed between the asphalt mixtures treated with oil-based and water-based sealants, respectively. Additional analyses were performed to better understand the sealant effects. Fourier transform infrared spectroscopy (FTIR) analysis showed that the sealant products could not be detected in mixture samples collected from the surface of the treated section. Semi-empirical Hirsch model was able to predict asphalt mixture creep stiffness from binder stiffness. The results of a distress survey of the test sections correlated well with the laboratory findings. In the second part, a news binder strength testing method is proposed with the goal to provide an effective tool for selecting asphalt binders that are crack resistant. A modified Bending Beam Rheometer (BBR) is used to perform three-point bending strength tests, at constant loading rate, on asphalt binder beams at low temperature. Based on the results, a protocol for selecting the most crack resistant material from binders with similar rheological properties is proposed.
NASA Astrophysics Data System (ADS)
Peixoto, J. G. P.; de Almeida, C. E.
2001-09-01
It is recognized by the international guidelines that it is necessary to offer calibration services for mammography beams in order to improve the quality of clinical diagnosis. Major efforts have been made by several laboratories in order to establish an appropriate and traceable calibration infrastructure and to provide the basis for a quality control programme in mammography. The contribution of the radiation metrology network to the users of mammography is reviewed in this work. Also steps required for the implementation of a mammography calibration system using a constant potential x-ray and a clinical mammography x-ray machine are presented. The various qualities of mammography radiation discussed in this work are in accordance with the IEC 61674 and the AAPM recommendations. They are at present available at several primary standard dosimetry laboratories (PSDLs), namely the PTB, NIST and BEV and a few secondary standard dosimetry laboratories (SSDLs) such as at the University of Wisconsin and at the IAEA's SSDL. We discuss the uncertainties involved in all steps of the calibration chain in accord with the ISO recommendations.
Astrophysics experiments with radioactive beams at ATLAS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Back, B. B.; Clark, J. A.; Pardo, R. C.
Reactions involving short-lived nuclei play an important role in nuclear astrophysics, especially in explosive scenarios which occur in novae, supernovae or X-ray bursts. This article describes the nuclear astrophysics program with radioactive ion beams at the ATLAS accelerator at Argonne National Laboratory. The CARIBU facility as well as recent improvements for the in-flight technique are discussed. New detectors which are important for studies of the rapid proton or the rapid neutron-capture processes are described. At the end we briefly mention plans for future upgrades to enhance the intensity, purity and the range of in-flight and CARIBU beams.
A variable partially polarizing beam splitter.
Flórez, Jefferson; Carlson, Nathan J; Nacke, Codey H; Giner, Lambert; Lundeen, Jeff S
2018-02-01
We present designs for variably polarizing beam splitters. These are beam splitters allowing the complete and independent control of the horizontal and vertical polarization splitting ratios. They have quantum optics and quantum information applications, such as quantum logic gates for quantum computing and non-local measurements for quantum state estimation. At the heart of each design is an interferometer. We experimentally demonstrate one particular implementation, a displaced Sagnac interferometer configuration, that provides an inherent instability to air currents and vibrations. Furthermore, this design does not require any custom-made optics but only common components which can be easily found in an optics laboratory.
A variable partially polarizing beam splitter
NASA Astrophysics Data System (ADS)
Flórez, Jefferson; Carlson, Nathan J.; Nacke, Codey H.; Giner, Lambert; Lundeen, Jeff S.
2018-02-01
We present designs for variably polarizing beam splitters. These are beam splitters allowing the complete and independent control of the horizontal and vertical polarization splitting ratios. They have quantum optics and quantum information applications, such as quantum logic gates for quantum computing and non-local measurements for quantum state estimation. At the heart of each design is an interferometer. We experimentally demonstrate one particular implementation, a displaced Sagnac interferometer configuration, that provides an inherent instability to air currents and vibrations. Furthermore, this design does not require any custom-made optics but only common components which can be easily found in an optics laboratory.
MaRIE X-Ray Free-Electron Laser Pre-Conceptual Design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carlsten, Bruce E.; Barnes, Cris W.; Bishofberger, Kip A.
2011-01-01
The proposed Matter-Radiation Interactions in Extremes (MaRIE) facility at the Los Alamos National Laboratory will include a 50-keV X-Ray Free-Electron Laser (XFEL), a significant extension from planned and existing XFEL facilities. To prevent an unacceptably large energy spread arsing from energy diffusion, the electron beam energy should not exceed 20 GeV, which puts a significant constraint on the beam emittance. A 100-pC baseline design is presented along with advanced technology options to increase the photon flux and to decrease the spectral bandwidth through pre-bunching the electron beam.
Foil cooling for rep-rated electron beam pumped KrF lasers
NASA Astrophysics Data System (ADS)
Giuliani, J. L.; Hegeler, F.; Sethian, J. D.; Wolford, M. F.; Myers, M. C.; Abdel-Khalik, S.; Sadowski, D.; Schoonover, K.; Novak, V.
2006-06-01
In rep-rated electron beam pumped lasers the foil separating the vacuum diode from the laser gas is subject to repeated heating due to partial beam stopping. Three cooling methods are examined for the Electra KrF laser at the Naval Research Laboratory (NRL). Foil temperature measurements for convective cooling by the recirculating laser gas and by spray mist cooling are reported, along with estimates for thermal conductive foil cooling to the hibachi ribs. Issues on the application of each of these approaches to laser drivers in a fusion power plant are noted. Work supported by DOE/NNSA.
Pulsed source of ultra low-energy muons at RIKEN-RAL
NASA Astrophysics Data System (ADS)
Bakule, Pavel; Matsuda, Yasuyuki; Iwasaki, Masahiko; Miyake, Yasuhiro; Nagamine, Kanetada; Ikedo, Yutaka; Shimomura, Koichiro; Strasser, Patrick
2006-03-01
At RIKEN-RAL muon facility of the Rutherford Appleton Laboratory (UK) we have produced a pulsed LE-μ + beam with pulse duration of only 10 ns and performed μSR experiments to demonstrate the capability to measure high spin precession frequency signals. The yield of pulsed LE-μ + has been steadily improving over the past 3 years and currently rates of up to 20 μ + per second are observed at the sample position. The overall cooling efficiency from the surface muon beam is now comparable to moderating the muon beam to epithermal energies in simple van der Waals bound solids.
Argonne Bubble Experiment Thermal Model Development III
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buechler, Cynthia Eileen
This report describes the continuation of the work reported in “Argonne Bubble Experiment Thermal Model Development” and “Argonne Bubble Experiment Thermal Model Development II”. The experiment was performed at Argonne National Laboratory (ANL) in 2014. A rastered 35 MeV electron beam deposited power in a solution of uranyl sulfate, generating heat and radiolytic gas bubbles. Irradiations were performed at beam power levels between 6 and 15 kW. Solution temperatures were measured by thermocouples, and gas bubble behavior was recorded. The previous report2 described the Monte-Carlo N-Particle (MCNP) calculations and Computational Fluid Dynamics (CFD) analysis performed on the as-built solution vesselmore » geometry. The CFD simulations in the current analysis were performed using Ansys Fluent, Ver. 17.2. The same power profiles determined from MCNP calculations in earlier work were used for the 12 and 15 kW simulations. The primary goal of the current work is to calculate the temperature profiles for the 12 and 15 kW cases using reasonable estimates for the gas generation rate, based on images of the bubbles recorded during the irradiations. Temperature profiles resulting from the CFD calculations are compared to experimental measurements.« less
Upgrades at the Duke Free Electron Laser Laboratory
NASA Astrophysics Data System (ADS)
Howell, Calvin R.
2004-11-01
Major upgrades to the storage-ring based photon sources at the Duke Free Electron Laser Laboratory (DFELL) are underway. The photon sources at the DFELL are well suited for research in the areas of medicine, biophysics, accelerator physics, nuclear physics and material science. These upgrades, which will be completed by the summer 2006, will significantly enhance the capabilities of the ultraviolet (UV) free-electron laser (FEL) and the high intensity gamma-ray source (HIGS). The HIGS is a relatively new research facility at the DFELL that is operated jointly by the DFELL and the Triangle Universities Nuclear Laboratory. The gamma-ray beam is produced by Compton back scattering of the UV photons inside the FEL optical cavity off the circulating electrons in the storage ring. The gamma-ray beam is 100% polarized and its energy resolution is selected by collimation. The capabilities of the upgraded facility will be described, the status of the upgrades will be summarized, and the proposed first-generation research program at HIGS will be presented.
Lawrie, S R; Faircloth, D C; Letchford, A P; Perkins, M; Whitehead, M O; Wood, T; Gabor, C; Back, J
2014-02-01
The ISIS pulsed spallation neutron and muon facility at the Rutherford Appleton Laboratory (RAL) in the UK uses a Penning surface plasma negative hydrogen ion source. Upgrade options for the ISIS accelerator system demand a higher current, lower emittance beam with longer pulse lengths from the injector. The Front End Test Stand is being constructed at RAL to meet the upgrade requirements using a modified ISIS ion source. A new 10% duty cycle 25 kV pulsed extraction power supply has been commissioned and the first meter of 3 MeV radio frequency quadrupole has been delivered. Simultaneously, a Vessel for Extraction and Source Plasma Analyses is under construction in a new laboratory at RAL. The detailed measurements of the plasma and extracted beam characteristics will allow a radical overhaul of the transport optics, potentially yielding a simpler source configuration with greater output and lifetime.
Laboratory Astrophysics Prize: Laboratory Astrophysics with Nuclei
NASA Astrophysics Data System (ADS)
Wiescher, Michael
2018-06-01
Nuclear astrophysics is concerned with nuclear reaction and decay processes from the Big Bang to the present star generation controlling the chemical evolution of our universe. Such nuclear reactions maintain stellar life, determine stellar evolution, and finally drive stellar explosion in the circle of stellar life. Laboratory nuclear astrophysics seeks to simulate and understand the underlying processes using a broad portfolio of nuclear instrumentation, from reactor to accelerator from stable to radioactive beams to map the broad spectrum of nucleosynthesis processes. This talk focuses on only two aspects of the broad field, the need of deep underground accelerator facilities in cosmic ray free environments in order to understand the nucleosynthesis in stars, and the need for high intensity radioactive beam facilities to recreate the conditions found in stellar explosions. Both concepts represent the two main frontiers of the field, which are being pursued in the US with the CASPAR accelerator at the Sanford Underground Research Facility in South Dakota and the FRIB facility at Michigan State University.
The BDX experiment at Jefferson Laboratory
NASA Astrophysics Data System (ADS)
Celentano, Andrea
2015-06-01
The existence of MeV-GeV dark matter (DM) is theoretically well motivated but remarkably unexplored. The Beam Dump eXperiment (BDX) at Jefferson Laboratory aims to investigate this mass range. Dark matter particles will be detected trough scattering on a segmented, plastic scintillator detector placed downstream of the beam-dump at one of the high intensity JLab experimental Halls. The experiment will collect up to 1022 electrons-on-target (EOT) in a one-year period. For these conditions, BDX is sensitive to the DM-nucleon elastic scattering at the level of a thousand counts per year, and is only limited by cosmogenic backgrounds. The experiment is also sensitive to DM-electron elastic and inelastic scattering, at the level of 10 counts/year. The foreseen signal for these channels is an high-energy (> 100 MeV) electromagnetic shower, with almost no background. The experiment, has been presented in form of a Letter of Intent to the laboratory, receiving positive feedback, and is currently being designed.
An overview of Laser-Produced Relativistic Positrons in the Laboratory
NASA Astrophysics Data System (ADS)
Edghill, Brandon; Williams, Gerald; Chen, Hui; Beg, Farhat
2017-10-01
The production of relativistic positrons using ultraintense lasers can facilitate studies of fundamental pair plasma science in the relativistic regime and laboratory studies of scaled energetic astrophysical mechanisms such as gamma ray bursts. The positron densities and spatial scales required for these applications, however, are larger than current capabilities. Here, we present an overview of the experimental laser-produced positron results and their respective modeling for both the direct laser-irradiated process and the indirect process (laser wakefield accelerated electrons irradiating a high-Z converter). Conversion efficiency into positrons and positron beam characteristics are compared, including total pair yield, mean energy, angular divergence, and inferred pair density for various laser and target conditions. Prospects towards increasing positron densities and beam repetition rates will also be discussed. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344, and funded by LDRD (#17-ERD-010).
NASA Astrophysics Data System (ADS)
Kponou, A.; Beebe, E.; Pikin, A.; Kuznetsov, G.; Batazova, M.; Tiunov, M.
1998-02-01
Presented is a report on the development of an electron-beam ion source (EBIS) for the relativistic heavy ion collider at Brookhaven National Laboratory (BNL) which requires operating with a 10 A electron beam. This is approximately an order of magnitude higher current than in any existing EBIS device. A test stand is presently being designed and constructed where EBIS components will be tested. It will be reported in a separate paper at this conference. The design of the 10 A electron gun, drift tubes, and electron collector requires extensive computer simulations. Calculations have been performed at Novosibirsk and BNL using two different programs, SAM and EGUN. Results of these simulations will be presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strozak, K.; Gagnon, S.
1994-12-31
BEAMS immerses fifth and sixth grade classes in CEBAF`s environment for a week of school. By exposing students and teachers to science`s excitement, challenges, and opportunities, BEAMS motivates students, enhances teachers, and involves parents, with the goal of improving scientific literacy and work force readiness. CEBAF and its school partners are extending BEAMS into a multi-year program, integrating educational partnerships active in the region. The planned focus emphasizes grades four through ten. A long-term evaluation model, incorporating measures of students attitudes, achievement, and academic course choices is being implemented. Three years of data on student attitudinal changes, referenced against controls,more » have been analyzed.« less
Continuous electron stimulated desorption using a ZrO2/Ag permeation membrane
NASA Technical Reports Server (NTRS)
Outlaw, R. A.; Hoflund, Gar B.; Davidson, M. R.
1989-01-01
During the development of an atomic oxygen beam generator for laboratory simulation of the atmospheric conditions in low earth orbit, a new technique for performing electron stimulated desorption (ESD) in a continuous manner has been developed. In this technique, oxygen permeates through an Ag membrane at elevated temperature thereby providing a continuous supply of oxygen atoms to the 1000-A ZrO2 coating at the vacuum interface. ESD then results in a large peak of neutral O2 molecules which ultimately decay into steady-state desorption. The ESD signal is linear with respect to primary beam flux (0.035 O2 molecules per electron at a primary beam energy of 1 keV) but nonlinear with respect to primary beam energy.
BEAM DYNAMICS STUDIES FOR A COMPACT CARBON ION LINAC FOR THERAPY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Plastun, A.; Mustapha, B.; Nassiri, A.
2016-05-01
Feasibility of an Advanced Compact Carbon Ion Linac (ACCIL) for hadron therapy is being studied at Argonne National Laboratory in collaboration with RadiaBeam Technologies. The 45-meter long linac is designed to deliver 109 carbon ions per second with variable energy from 45 MeV/u to 450 MeV/u. S-band structure provides the acceleration in this range. The carbon beam energy can be adjusted from pulse to pulse, making 3D tumor scanning straightforward and fast. Front end accelerating structures such as RFQ, DTL and coupled DTL are designed to operate at lower frequencies. The design of the linac was accompanied with extensive end-to-endmore » beam dynamics studies which are presented in this paper.« less
Accelerator Facilities for Radiation Research
NASA Technical Reports Server (NTRS)
Cucinotta, Francis A.
1999-01-01
HSRP Goals in Accelerator Use and Development are: 1.Need for ground-based heavy ion and proton facility to understand space radiation effects discussed most recently by NAS/NRC Report (1996). 2. Strategic Program Goals in facility usage and development: -(1) operation of AGS for approximately 600 beam hours/year; (2) operation of Loma Linda University (LLU) proton facility for approximately 400 beam hours/year; (3) construction of BAF facility; and (4) collaborative research at HIMAC in Japan and with other existing or potential international facilities. 3. MOA with LLU has been established to provide proton beams with energies of 40-250 important for trapped protons and solar proton events. 4. Limited number of beam hours available at Brookhaven National Laboratory's (BNL) Alternating Gradient Synchrotron (AGS).
Coupling of Multiple Coulomb Scattering with Energy Loss and Straggling in HZETRN
NASA Technical Reports Server (NTRS)
Mertens, Christopher J.; Wilson, John W.; Walker, Steven A.; Tweed, John
2007-01-01
The new version of the HZETRN deterministic transport code based on Green's function methods, and the incorporation of ground-based laboratory boundary conditions, has lead to the development of analytical and numerical procedures to include off-axis dispersion of primary ion beams due to small-angle multiple Coulomb scattering. In this paper we present the theoretical formulation and computational procedures to compute ion beam broadening and a methodology towards achieving a self-consistent approach to coupling multiple scattering interactions with ionization energy loss and straggling. Our initial benchmark case is a 60 MeV proton beam on muscle tissue, for which we can compare various attributes of beam broadening with Monte Carlo simulations reported in the open literature.
Physics with heavy neutron-rich RIBs at the HRIBF
NASA Astrophysics Data System (ADS)
Radford, D. C.; Baktash, C.; Galindo-Uribarri, A.; Gross, C. J.; Lewis, T. A.; Mueller, P. E.; Hausladen, P. A.; Shapira, D.; Stracener, D. W.; Yu, C.-H.; Fuentes, B.; Padilla, E.; Hartley, D. J.; Barton, C. J.; Caprio, M.; Zamfir, N. V.
The Holifield Radioactive Ion Beam Facility at Oak Ridge National Laboratory has recently produced the world's first post-accelerated beams of heavy neutron-rich nuclei. The first experiments with these beam are described, and the results discussed. B(E2;0+ --> 2+) values for neutron-rich 126,128Sn and 132,134,136Te isotopes have been measured by Coulomb excitation in inverse kinematics. The results for 132Te and 134Te (N = 80, 82) show excellent agreement with systematics of lighter Te isotopes, but the B(E2) value for 136Te (N = 84) is unexpectedly small. Single-neutron transfer reactions with a 134Te beam on natBe and 13C targets at energies just above the Coulomb barrier have also been studied.
1993-11-30
dependent field to the main toroidal field, which provides an effective increment to the acceleration rate if it has a negative time derivative during...regions, non- uniformities in the beam develop in the drift region, scattering in the foils affects the beam entering the laser, effects due to a second...faster destroyed by a small perturbation. Note that this analogy is adequate only when the global RT mode cannot develop - otherwise, it is the rigid pen
Reciprocal Space Mapping of Macromolecular Crystals in the Laboratory
NASA Technical Reports Server (NTRS)
Snell, Edward H.; Boggon, T. J.; Fewster, P. F.; Siddons, D. P.; Stojanof, V.; Pusey, M. L.
1998-01-01
The technique of reciprocal space mapping applied to the physical measurement of macromolecular crystals will be described. This technique uses a triple axis diffractometer setup whereby the monochromator is the first crystal, the sample is the second and the third crystal (of the same material as the monochromator) analyzes the diffracted beam. The geometry is such that it is possible to separate mosaic volume effects from lattice strain effects. The deconvolution of the instrument parameters will also be addressed. Results from measurements at Brookhaven National Synchrotron Radiation Source carried out on microgravity and ground-grown crystals will be presented. The required beam characteristics for reciprocal space mapping are also ideal for topographic studies and the first topographs ever recorded from microgravity protein crystal samples will be shown. We are now working on a system which will enable reciprocal space mapping, mosaicity and topography studies to be carried out in the home laboratory. This system uses a rotating anode X-ray source to provide an intense beam then a Bartels double crystal, four reflection monochromator to provide the spectral and geometric beam conditioning necessary such that the instrument characteristics do not mask the measurement. This is coupled to a high precision diffractometer and sensitive detector. Commissioning data and first results from the system will be presented.
A Dust Grain Photoemission Experiment
NASA Technical Reports Server (NTRS)
Venturini, C. C.; Spann, J. F., Jr.; Abbas, M. M.; Comfort, R. H.
2000-01-01
A laboratory experiment has been developed at Marshall Space Flight Center to study the interaction of micron-sized particles with plasmas and FUV radiation. The intent is to investigate the conditions under which particles of various compositions and sizes become charged, or discharged, while exposed to an electron beam and/or UV radiation. This experiment uses a unique laboratory where a single charged micron size particle is suspended in a quadrupole trap and then subjected to a controlled environment. Tests are performed using different materials and sizes, ranging from 10 microns to 1 micron, to determine the particle's charge while being subjected to an electron beam and /or UV radiation. The focus of this presentation will be on preliminary results from UV photoemission tests, but past results from electron beam, secondary electron emission tests will also be highlighted. A monochromator is used to spectrally resolve UV in the 120 nm to 300 nm range. This enables photoemission measurements as a function of wavelength. Electron beam tests are conducted using I to 3 micron sized aluminum oxide particles subjected to energies between 100 eV to 3 KeV. It was found that for both positive and negative particles the potential tended toward neutrality over time with possible equilibrium potentials between -0.8 Volts and 0.8 Volts.
Development of Safety Analysis Code System of Beam Transport and Core for Accelerator Driven System
NASA Astrophysics Data System (ADS)
Aizawa, Naoto; Iwasaki, Tomohiko
2014-06-01
Safety analysis code system of beam transport and core for accelerator driven system (ADS) is developed for the analyses of beam transients such as the change of the shape and position of incident beam. The code system consists of the beam transport analysis part and the core analysis part. TRACE 3-D is employed in the beam transport analysis part, and the shape and incident position of beam at the target are calculated. In the core analysis part, the neutronics, thermo-hydraulics and cladding failure analyses are performed by the use of ADS dynamic calculation code ADSE on the basis of the external source database calculated by PHITS and the cross section database calculated by SRAC, and the programs of the cladding failure analysis for thermoelastic and creep. By the use of the code system, beam transient analyses are performed for the ADS proposed by Japan Atomic Energy Agency. As a result, the rapid increase of the cladding temperature happens and the plastic deformation is caused in several seconds. In addition, the cladding is evaluated to be failed by creep within a hundred seconds. These results have shown that the beam transients have caused a cladding failure.
NASA Technical Reports Server (NTRS)
Norton, H. N.
1979-01-01
An earth-orbiting molecular shield that offers a unique opportunity for conducting physics, chemistry, and material processing experiments under a combination of environmental conditions that are not available in terrestrial laboratories is equipped with apparatus for forming a molecular beam from the freestream. Experiments are carried out using a moderate energy, high flux density, high purity atomic oxygen beam in the very low density environment within the molecular shield. As a minimum, the following instruments are required for the molecular shield: (1) a mass spectrometer; (2) a multifunction material analysis instrumentation system; and (3) optical spectrometry equipment. The design is given of a furlable molecular shield that allows deployment and retrieval of the system (including instrumentation and experiments) to be performed without contamination. Interfaces between the molecular shield system and the associated spacecraft are given. An in-flight deployment sequence is discussed that minimizes the spacecraft-induced contamination in the vicinity of the shield. Design approaches toward a precursor molecular shield system are shown.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jarrott, L. C.; McGuffey, C.; Beg, F. N.
Fast electron transport and spatial energy deposition are investigated in integrated cone-guided Fast Ignition experiments by measuring fast electron induced copper K-shell emission using a copper tracer added to deuterated plastic shells with a geometrically reentrant gold cone. Experiments were carried out at the Laboratory for Laser Energetics on the OMEGA/OMEGA-EP Laser where the plastic shells were imploded using 54 of the 60 OMEGA60 beams (3ω, 20 kJ), while the high intensity OMEGA-EP (BL2) beam (1 ω, 10 ps, 500 J, I peak > 10 19 W/cm 2) was focused onto the inner cone tip. Here, a retrograde analysis usingmore » the hybrid-PIC electron transport code, ZUMA, is performed to examine the sensitivity of the copper Kα spatial profile on the laser-produced fast electrons, facilitating the optimization of new target point designs and laser configurations to improve the compressed core areal density by a factor of 4 and the fast electron energy coupling by a factor of 3.5.« less
Transverse acoustic trapping using a Gaussian focused ultrasound
Lee, Jungwoo; Teh, Shia-Yen; Lee, Abraham; Kim, Hyung Ham; Lee, Changyang; Shung, K. Kirk
2009-01-01
The optical tweezer has become a popular device to manipulate particles in nanometer scales, and to study the underlying principles of many cellular or molecular interactions. Theoretical analysis was previously carried out at the authors’ laboratory, to show that similar acoustic trapping of microparticles may be possible with a single beam ultrasound. This paper experimentally presents the transverse trapping of 125 μm lipid droplets under an acoustically transparent mylar film, which is an intermediate step toward achieving acoustic tweezers in 3D. Despite the lack of axial trapping capability in the current experimental arrangement, it was found that a 30 MHz focused beam could be used to laterally direct the droplets towards the focus. The spatial range within which acoustic traps may guide droplet motion was in the range of hundreds of micrometers, much greater than that of optical traps. This suggests that this acoustic device may offer an alternative for manipulating microparticles in a wider spatial range. PMID:20045590
A time domain simulation of a beam control system
NASA Astrophysics Data System (ADS)
Mitchell, J. R.
1981-02-01
The Airborne Laser Laboratory (ALL) is being developed by the Air Force to investigate the integration and operation of high energy laser components in a dynamic airborne environment and to study the propagation of laser light from an airborne vehicle to an airborne target. The ALL is composed of several systems; among these are the Airborne Pointing and Tracking System (APT) and the Automatic Alignment System (AAS). This report presents the results of performing a time domain dynamic simulation for an integrated beam control system composed of the APT and AAS. The simulation is performed on a digital computer using the MIMIC language. It includes models of the dynamics of the system and of disturbances. Also presented in the report are the rationales and developments of these models. The data from the simulation code is summarized by several plots. In addition results from massaging the data with waveform analysis packages are presented. The results are discussed and conclusions are drawn.
Degradation mechanisms of materials for large space systems in low Earth orbit
NASA Technical Reports Server (NTRS)
Gordon, William L.; Hoffman, R. W.
1987-01-01
Degradation was explored of various materials used in aerospace vehicles after severe loss of polymeric material coatings (Kapton) was observed on an early shuttle flight in low Earth orbit. Since atomic oxygen is the major component of the atmosphere at 300 km, and the shuttle's orbital velocity produced relative motion corresponding to approx. 5 eV of oxygen energy, it was natural to attribute much of this degradation to oxygen interaction. This assumption was tested using large volume vacuum systems and ion beam sources, in an exploratory effort to produce atomic oxygen of the appropriate energy, and to observe mass loss from various samples as well as optical radiation. Several investigations were initiated and the results of these investigations are presented in four papers. These papers are summarized. They are entitled: (1) The Space Shuttle Glow; (2) Laboratory Degradation of Kapton in a Low Energy Oxygen Ion Beam; (3) The Energy Dependence and Surface Morphology of Kapton Degradation Under Atomic Oxygen Bombardment; and (4) Surface Analysis of STS 8 Samples.
NASA Astrophysics Data System (ADS)
Dhiman, I.; Ziesche, Ralf; Wang, Tianhao; Bilheux, Hassina; Santodonato, Lou; Tong, X.; Jiang, C. Y.; Manke, Ingo; Treimer, Wolfgang; Chatterji, Tapan; Kardjilov, Nikolay
2017-09-01
In the present study, we report a new setup for polarized neutron imaging at the ORNL High Flux Isotope Reactor CG-1D beamline using an in situ 3He polarizer and analyzer. This development is very important for extending the capabilities of the imaging instrument at ORNL providing a polarized beam with a large field-of-view, which can be further used in combination with optical devices like Wolter optics, focusing guides, or other lenses for the development of microscope arrangement. Such a setup can be of advantage for the existing and future imaging beamlines at the pulsed neutron sources. The first proof-of-concept experiment is performed to study the ferromagnetic phase transition in the Fe3Pt sample. We also demonstrate that the polychromatic neutron beam in combination with in situ 3He cells can be used as the initial step for the rapid measurement and qualitative analysis of radiographs.
Dhiman, I; Ziesche, Ralf; Wang, Tianhao; Bilheux, Hassina; Santodonato, Lou; Tong, X; Jiang, C Y; Manke, Ingo; Treimer, Wolfgang; Chatterji, Tapan; Kardjilov, Nikolay
2017-09-01
In the present study, we report a new setup for polarized neutron imaging at the ORNL High Flux Isotope Reactor CG-1D beamline using an in situ 3 He polarizer and analyzer. This development is very important for extending the capabilities of the imaging instrument at ORNL providing a polarized beam with a large field-of-view, which can be further used in combination with optical devices like Wolter optics, focusing guides, or other lenses for the development of microscope arrangement. Such a setup can be of advantage for the existing and future imaging beamlines at the pulsed neutron sources. The first proof-of-concept experiment is performed to study the ferromagnetic phase transition in the Fe 3 Pt sample. We also demonstrate that the polychromatic neutron beam in combination with in situ 3 He cells can be used as the initial step for the rapid measurement and qualitative analysis of radiographs.
Tilting at wave beams: a new perspective on the St Andrew's Cross
NASA Astrophysics Data System (ADS)
Akylas, T. R.; Kataoka, T.; Ghaemsaidi, S. J.; Holzenberger, N.; Peacock, T.
2017-11-01
The generation of internal gravity waves by a vertically oscillating cylinder that is tilted to the horizontal in a stratified fluid of constant buoyancy frequency, is investigated theoretically and experimentally. This forcing arrangement leads to a variant of the classical St Andrew's Cross that has certain unique features: (i) radiation of wave beams is limited due to a lower cut-off frequency set by the cylinder tilt angle to the horizontal; (ii) the response is essentially three-dimensional, as end effects eventually come into play when the cut-off frequency is approached, however long a cylinder might be. These results follow from kinematic considerations and are also confirmed by laboratory experiments. The kinematic analysis, moreover, suggests a resonance phenomenon near the cut-off frequency, where viscous and nonlinear effects are likely to play an important part. This scenario is examined by an asymptotic model as well as experimentally. Supported in part by NSF Grant DMS-1512925.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alarcon, Ricardo; Balascuta, S.; Benson, Stephen V.
2013-11-01
We report measurements of photon and neutron radiation levels observed while transmitting a 0.43 MW electron beam through millimeter-sized apertures and during beam-off, but accelerating gradient RF-on, operation. These measurements were conducted at the Free-Electron Laser (FEL) facility of the Jefferson National Accelerator Laboratory (JLab) using a 100 MeV electron beam from an energy-recovery linear accelerator. The beam was directed successively through 6 mm, 4 mm, and 2 mm diameter apertures of length 127 mm in aluminum at a maximum current of 4.3 mA (430 kW beam power). This study was conducted to characterize radiation levels for experiments that needmore » to operate in this environment, such as the proposed DarkLight Experiment. We find that sustained transmission of a 430 kW continuous-wave (CW) beam through a 2 mm aperture is feasible with manageable beam-related backgrounds. We also find that during beam-off, RF-on operation, multipactoring inside the niobium cavities of the accelerator cryomodules is the primary source of ambient radiation when the machine is tuned for 130 MeV operation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bilheux, Hassina Z; Bilheux, Jean-Christophe; Tremsin, Anton S
2015-01-01
The Oak Ridge National Laboratory (ORNL) Neutron Sciences Directorate (NScD) has installed a neutron imaging (NI) beam line at the High Flux Isotope Reactor (HFIR) cold guide hall. The CG-1D beam line produces cold neutrons for a broad range of user research spanning from engineering to material research, additive manufacturing, vehicle technologies, archaeology, biology, and plant physiology. Recent efforts have focused on increasing flux and spatial resolution. A series of selected engineering applications is presented here. Historically and for more than four decades, neutron imaging (NI) facilities have been installed exclusively at continuous (i.e. reactor-based) neutron sources rather than atmore » pulsed sources. This is mainly due to (1) the limited number of accelerator-based facilities and therefore the fierce competition for beam lines with neutron scattering instruments, (2) the limited flux available at accelerator-based neutron sources and finally, (3) the lack of high efficiency imaging detector technology capable of time-stamping pulsed neutrons with sufficient time resolution. Recently completed high flux pulsed proton-driven neutron sources such as the ORNL Spallation Neutron Source (SNS) at ORNL and the Japanese Spallation Neutron Source (JSNS) of the Japan Proton Accelerator Research Complex (J-PARC) in Japan produce high neutron fluxes that offer new and unique opportunities for NI techniques. Pulsed-based neutron imaging facilities RADEN and IMAT are currently being built at J-PARC and the Rutherford National Laboratory in the U.K., respectively. ORNL is building a pulsed neutron imaging beam line called VENUS to respond to the U.S. based scientific community. A team composed of engineers, scientists and designers has developed a conceptual design of the future VENUS imaging instrument at the SNS.« less
X-Ray Spectroscopic Laboratory Experiments in Support of the X-Ray Astronomy Program
NASA Technical Reports Server (NTRS)
Kahn, Steven M.
1997-01-01
Our program is to perform a series of laboratory investigations designed to resolved significant atomic physics uncertainties that limit the interpretation of cosmic X-ray spectra. Specific goals include a quantitative characterization of Fe L-shell spectra; the development of new techniques to simulate Maxwellian plasmas using an Electron Beam Ion Trap (EBIT); and the measurement of dielectronic recombination rates for photoionized gas. New atomic calculations have also been carried out in parallel with the laboratory investigations.
NASA Technical Reports Server (NTRS)
Witte, W. G.; Usry, J. W.; Whitlock, C. H.; Gurganus, E. A.
1979-01-01
Transmission and inherent upwelled radiance measurements were made of various mixtures of three ocean-dumped industrial plant wastes in artificial seawater. Laboratory analyses were made of the physical and chemical properties of the various mixtures. These results and the laboratory measurements of beam attenuation and inherent upwelled radiance indicate a variety of chemical and spectral responses when industrial wastes are added to artificial seawater. In particular, increased levels of turbidity did not always cause increased levels of inherent reflectance.
Galactic Cosmic Ray Simulator at the NASA Space Radiation Laboratory
NASA Technical Reports Server (NTRS)
Norbury, John W.; Slaba, Tony C.; Rusek, Adam
2015-01-01
The external Galactic Cosmic Ray (GCR) spectrum is significantly modified when it passes through spacecraft shielding and astronauts. One approach for simulating the GCR space radiation environment is to attempt to reproduce the unmodified, external GCR spectrum at a ground based accelerator. A possibly better approach would use the modified, shielded tissue spectrum, to select accelerator beams impinging on biological targets. NASA plans for implementation of a GCR simulator at the NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory will be discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muller, Richard P.
2017-07-01
Sandia National Laboratories has developed a broad set of capabilities in quantum information science (QIS), including elements of quantum computing, quantum communications, and quantum sensing. The Sandia QIS program is built atop unique DOE investments at the laboratories, including the MESA microelectronics fabrication facility, the Center for Integrated Nanotechnologies (CINT) facilities (joint with LANL), the Ion Beam Laboratory, and ASC High Performance Computing (HPC) facilities. Sandia has invested $75 M of LDRD funding over 12 years to develop unique, differentiating capabilities that leverage these DOE infrastructure investments.
Heavy ion linear accelerator for radiation damage studies of materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kutsaev, Sergey V.; Mustapha, Brahim; Ostroumov, Peter N.
A new eXtreme MATerial (XMAT) research facility is being proposed at Argonne National Laboratory to enable rapid in situ mesoscale bulk analysis of ion radiation damage in advanced materials and nuclear fuels. This facility combines a new heavy-ion accelerator with the existing high-energy X-ray analysis capability of the Argonne Advanced Photon Source. The heavy-ion accelerator and target complex will enable experimenters to emulate the environment of a nuclear reactor making possible the study of fission fragment damage in materials. Material scientists will be able to use the measured material parameters to validate computer simulation codes and extrapolate the response ofmore » the material in a nuclear reactor environment. Utilizing a new heavy-ion accelerator will provide the appropriate energies and intensities to study these effects with beam intensities which allow experiments to run over hours or days instead of years. The XMAT facility will use a CW heavy-ion accelerator capable of providing beams of any stable isotope with adjustable energy up to 1.2 MeV/u for U-238(50+) and 1.7 MeV for protons. This energy is crucial to the design since it well mimics fission fragments that provide the major portion of the damage in nuclear fuels. The energy also allows damage to be created far from the surface of the material allowing bulk radiation damage effects to be investigated. The XMAT ion linac includes an electron cyclotron resonance ion source, a normal-conducting radio-frequency quadrupole and four normal-conducting multi-gap quarter-wave resonators operating at 60.625 MHz. This paper presents the 3D multi-physics design and analysis of the accelerating structures and beam dynamics studies of the linac.« less
Heavy ion linear accelerator for radiation damage studies of materials
NASA Astrophysics Data System (ADS)
Kutsaev, Sergey V.; Mustapha, Brahim; Ostroumov, Peter N.; Nolen, Jerry; Barcikowski, Albert; Pellin, Michael; Yacout, Abdellatif
2017-03-01
A new eXtreme MATerial (XMAT) research facility is being proposed at Argonne National Laboratory to enable rapid in situ mesoscale bulk analysis of ion radiation damage in advanced materials and nuclear fuels. This facility combines a new heavy-ion accelerator with the existing high-energy X-ray analysis capability of the Argonne Advanced Photon Source. The heavy-ion accelerator and target complex will enable experimenters to emulate the environment of a nuclear reactor making possible the study of fission fragment damage in materials. Material scientists will be able to use the measured material parameters to validate computer simulation codes and extrapolate the response of the material in a nuclear reactor environment. Utilizing a new heavy-ion accelerator will provide the appropriate energies and intensities to study these effects with beam intensities which allow experiments to run over hours or days instead of years. The XMAT facility will use a CW heavy-ion accelerator capable of providing beams of any stable isotope with adjustable energy up to 1.2 MeV/u for 238U50+ and 1.7 MeV for protons. This energy is crucial to the design since it well mimics fission fragments that provide the major portion of the damage in nuclear fuels. The energy also allows damage to be created far from the surface of the material allowing bulk radiation damage effects to be investigated. The XMAT ion linac includes an electron cyclotron resonance ion source, a normal-conducting radio-frequency quadrupole and four normal-conducting multi-gap quarter-wave resonators operating at 60.625 MHz. This paper presents the 3D multi-physics design and analysis of the accelerating structures and beam dynamics studies of the linac.
NASA Astrophysics Data System (ADS)
Saiful Huq, M.; Andreo, Pedro; Song, Haijun
2001-11-01
The International Atomic Energy Agency (IAEA TRS-398) and the American Association of Physicists in Medicine (AAPM TG-51) have published new protocols for the calibration of radiotherapy beams. These protocols are based on the use of an ionization chamber calibrated in terms of absorbed dose to water in a standards laboratory's reference quality beam. This paper compares the recommendations of the two protocols in two ways: (i) by analysing in detail the differences in the basic data included in the two protocols for photon and electron beam dosimetry and (ii) by performing measurements in clinical photon and electron beams and determining the absorbed dose to water following the recommendations of the two protocols. Measurements were made with two Farmer-type ionization chambers and three plane-parallel ionization chamber types in 6, 18 and 25 MV photon beams and 6, 8, 10, 12, 15 and 18 MeV electron beams. The Farmer-type chambers used were NE 2571 and PTW 30001, and the plane-parallel chambers were a Scanditronix-Wellhöfer NACP and Roos, and a PTW Markus chamber. For photon beams, the measured ratios TG-51/TRS-398 of absorbed dose to water Dw ranged between 0.997 and 1.001, with a mean value of 0.999. The ratios for the beam quality correction factors kQ were found to agree to within about +/-0.2% despite significant differences in the method of beam quality specification for photon beams and in the basic data entering into kQ. For electron beams, dose measurements were made using direct ND,w calibrations of cylindrical and plane-parallel chambers in a 60Co gamma-ray beam, as well as cross-calibrations of plane-parallel chambers in a high-energy electron beam. For the direct ND,w calibrations the ratios TG-51/TRS-398 of absorbed dose to water Dw were found to lie between 0.994 and 1.018 depending upon the chamber and electron beam energy used, with mean values of 0.996, 1.006, and 1.017, respectively, for the cylindrical, well-guarded and not well-guarded plane-parallel chambers. The Dw ratios measured for the cross-calibration procedures varied between 0.993 and 0.997. The largest discrepancies for electron beams between the two protocols arise from the use of different data for the perturbation correction factors pwall and pdis of cylindrical and plane-parallel chambers, all in 60Co. A detailed analysis of the reasons for the discrepancies is made which includes comparing the formalisms, correction factors and the quantities in the two protocols.
Technical developments at the NASA Space Radiation Laboratory.
Lowenstein, D I; Rusek, A
2007-06-01
The NASA Space Radiation Laboratory (NSRL) located at Brookhaven National Laboratory (BNL) is a center for space radiation research in both the life and physical sciences. BNL is a multidisciplinary research facility operated for the Office of Science of the US Department of Energy (DOE). The BNL scientific research portfolio supports a large and diverse science and technology program including research in nuclear and high-energy physics, material science, chemistry, biology, medial science, and nuclear safeguards and security. NSRL, in operation since July 2003, is an accelerator-based facility which provides particle beams for radiobiology and physics studies (Lowenstein in Phys Med 17(supplement 1):26-29 2001). The program focus is to measure the risks and to ameliorate the effects of radiation encountered in space, both in low earth orbit and extended missions beyond the earth. The particle beams are produced by the Booster synchrotron, an accelerator that makes up part of the injector sequence of the DOE nuclear physics program's Relativistic Heavy Ion Collider. Ion species from protons to gold are presently available, at energies ranging from <100 to >1,000 MeV/n. The NSRL facility has recently brought into operation the ability to rapidly switch species and beam energy to supply a varied spectrum onto a given specimen. A summary of past operation performance, plans for future operations and recent and planned hardware upgrades will be described.
NASA Astrophysics Data System (ADS)
Edwards, Brian E.; Nitkowski, Arthur; Lawrence, Ryan; Horton, Kasey; Higgs, Charles
2004-10-01
Atmospheric turbulence and laser-induced thermal blooming effects can degrade the beam quality of a high-energy laser (HEL) weapon, and ultimately limit the amount of energy deliverable to a target. Lincoln Laboratory has built a thermal blooming laboratory capable of emulating atmospheric thermal blooming and turbulence effects for tactical HEL systems. The HEL weapon emulation hardware includes an adaptive optics beam delivery system, which utilizes a Shack-Hartman wavefront sensor and a 349 actuator deformable mirror. For this experiment, the laboratory was configured to emulate an engagement scenario consisting of sea skimming target approaching directly toward the HEL weapon at a range of 10km. The weapon utilizes a 1.5m aperture and radiates at a 1.62 micron wavelength. An adaptive optics reference beam was provided as either a point source located at the target (cooperative) or a projected point source reflected from the target (uncooperative). Performance of the adaptive optics system was then compared between reference sources. Results show that, for operating conditions with a thermal blooming distortion number of 75 and weak turbulence (Rytov of 0.02 and D/ro of 3), cooperative beacon AO correction experiences Phase Compensation Instability, resulting in lower performance than a simple, open-loop condition. The uncooperative beacon resulted in slightly better performance than the open-loop condition.
Metrology laboratory requirements for third-generation synchrotron radiation sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takacs, P.Z.; Quian, Shinan
1997-11-01
New third-generation synchrotron radiation sources that are now, or will soon, come on line will need to decide how to handle the testing of optical components delivered for use in their beam lines. In many cases it is desirable to establish an in-house metrology laboratory to do the work. We review the history behind the formation of the Optical Metrology Laboratory at Brookhaven National Laboratory and the rationale for its continued existence. We offer suggestions to those who may be contemplating setting up similar facilities, based on our experiences over the past two decades.
MIT Lincoln Laboratory Annual Report 2014
2014-01-01
NAME(S) AND ADDRESS(ES) Massachusetts Institute of Technology,Lincoln Laboratory,244 Wood Street,Lexington,MA,02420 8. PERFORMING ORGANIZATION...microseconds) transmon qubits. Juan Montoya, Andrew Benedick, and Scot Shaw use prototype technology to demonstrate a new optical phased array beam...really care about. In fact, the Woods Hole Oceanographic Institution, which is designing and building UUVs, is interested in the systems the
1989-05-23
Intense Rela- tivistic Electron Beams S . A Compact Accelerator Powercd by the Relativistic Klystron Amplifier T. Numerical and Experimental Studies of...Research Laboratory Washingto, IX 2075.6000 NRL Memorandum Report 6419 Megavolt, Multi-Kiloamp K - Band Gyrotron Oscillator Experiment W. M. BLACK,* S . H...Ka- Band Gyrotron Oscillator Experiments with Slotted and Unslotted Cavities S . H. GOLD, MEMBER, IEEE. A. W. FLIFLET, MEMBER, IEEE, W. M. MANHEIMER
ERIC Educational Resources Information Center
Abbas, K.; Leseman, Z. C.
2012-01-01
A laboratory course on the theory, fabrication, and characterization of microelectromechanical systems (MEMS) devices for a multidisciplinary audience of graduate students at the University of New Mexico, Albuquerque, has been developed. Hands-on experience in the cleanroom has attracted graduate students from across the university's engineering…
Bespamyatnov, Igor O; Rowan, William L; Granetz, Robert S
2008-10-01
Charge exchange recombination spectroscopy on Alcator C-Mod relies on the use of the diagnostic neutral beam injector as a source of neutral particles which penetrate deep into the plasma. It employs the emission resulting from the interaction of the beam atoms with fully ionized impurity ions. To interpret the emission from a given point in the plasma as the density of emitting impurity ions, the density of beam atoms must be known. Here, an analysis of beam propagation is described which yields the beam density profile throughout the beam trajectory from the neutral beam injector to the core of the plasma. The analysis includes the effects of beam formation, attenuation in the neutral gas surrounding the plasma, and attenuation in the plasma. In the course of this work, a numerical simulation and an analytical approximation for beam divergence are developed. The description is made sufficiently compact to yield accurate results in a time consistent with between-shot analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gilson, Erik P.; Davidson, Ronald C.; Dorf, Mikhail
2010-05-15
The Paul Trap Simulator Experiment (PTSX) is a compact laboratory experiment that places the physicist in the frame-of-reference of a long, charged-particle bunch coasting through a kilometers-long magnetic alternating-gradient (AG) transport system. The transverse dynamics of particles in both systems are described by the same set of equations, including nonlinear space-charge effects. The time-dependent voltages applied to the PTSX quadrupole electrodes in the laboratory frame are equivalent to the spatially periodic magnetic fields applied in the AG system. The transverse emittance of the charge bunch, which is a measure of the area in the transverse phase space that the beammore » distribution occupies, is an important metric of beam quality. Maintaining low emittance is an important goal when defining AG system tolerances and when designing AG systems to perform beam manipulations such as transverse beam compression. Results are reviewed from experiments in which white noise and colored noise of various amplitudes and durations have been applied to the PTSX electrodes. This noise is observed to drive continuous emittance growth and increase in root-mean-square beam radius over hundreds of lattice periods. Additional results are reviewed from experiments that determine the conditions necessary to adiabatically reduce the charge bunch's transverse size and simultaneously maintain high beam quality. During adiabatic transitions, there is no change in the transverse emittance. The transverse compression can be achieved either by a gradual change in the PTSX voltage waveform amplitude or frequency. Results are presented from experiments in which low emittance is achieved by using focusing-off-defocusing-off waveforms.« less
Apparatus and method for increasing the bandwidth of a laser beam
Chaffee, Paul H.
1991-01-01
A method and apparatus is disclosed that provides a laser output beam having a broad bandwidth and an intensity smooth over time. The bandwidth of the laser output can be varied easily by varying the intensity of a broadband source. The present invention includes an optical modulation apparatus comprising a narrowband laser that outputs a horizontally polarized beam (a "signal beam") and a broadband laser that outputs a vertically polarized beam (a "pump beam") whose intensity varies rapidly. The two beam are coupled into a birefringent laser material so that the respective polarizations coincide with the principal axes of the material. As the two beams travel through the material, the polarization preserving properties of the birefringent material maintain the respective polarizations of the two beam; however there is coupling between the two beams as a result of cross phase modulations, which induces a bandwidth change of the signal beam. The amount of bandwidth change is dependent upon the average intensity of the pump beam. The beams are coupled out from the birefringent material and the modulated signal beam is separated by a polarization selector. The modulated signal beam now has a wider bandwidth, and its shape remains smooth in time. This signal beam can be applied to incoherence inducing systems. The different bandwidths required by these different incoherence inducing systems can be obtained by varying the intensity of the pump beam. The United States Government has rights in this invention pursuant to Contract No. W7405-ENG-48 between the United States Department of Energy and the University of California for the operation of Lawrence Livermore National Laboratory.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alton, G.D.; Williams, C.
1996-04-01
The probability for simultaneously dissociating and efficiently ionizing the individual atomic constituents of molecular feed materials with conventional, hot-cathode, electron-impact ion sources is low and consequently, the ion beams from these sources often appear as mixtures of several molecular sideband beams. This fragmentation process leads to dilution of the intensity of the species of interest for radioactive ion beam (RIB) applications where beam intensity is at a premium. We have conceived an ion source that combines the excellent molecular dissociation properties of a thermal dissociator and the high ionization efficiency characteristics of an electron impact ionization source that will, inmore » principle, overcome this handicap. The source concept will be evaluated as a potential candidate for use for RIB generation at the Holifield Radioactive Ion Beam Facility, now under construction at the Oak Ridge National Laboratory. The design features and principles of operation of the source are described in this article. {copyright} {ital 1996 American Institute of Physics.}« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alton, G.D.; Williams, C.
1996-03-01
The probability for simultaneously dissociating and efficiently ionizing the individual atomic constituents of molecular feed materials with conventional, hot-cathode, electron-impact ion sources is low and consequently, the ion beams from these sources often appear as mixtures of several molecular sideband beams. This fragmentation process leads to dilution of the intensity of the species of interest for radioactive ion beam (RIB) applications where beam intensity is at a premium. We have conceived an ion source that combines the excellent molecular dissociation properties of a thermal dissociator and the high ionization efficiency characteristics of an electron impact ionization source that will, inmore » principle, overcome this handicap. The source concept will be evaluated as a potential candidate for use for RIB generation at the Holifield Radioactive Ion Beam Facility, now under construction at the Oak Ridge National Laboratory. The design features and principles of operation of the source are described in this article. {copyright} {ital 1996 American Institute of Physics.}« less
Short intense ion pulses for materials and warm dense matter research
NASA Astrophysics Data System (ADS)
Seidl, Peter A.; Persaud, Arun; Waldron, William L.; Barnard, John J.; Davidson, Ronald C.; Friedman, Alex; Gilson, Erik P.; Greenway, Wayne G.; Grote, David P.; Kaganovich, Igor D.; Lidia, Steven M.; Stettler, Matthew; Takakuwa, Jeffrey H.; Schenkel, Thomas
2015-11-01
We have commenced experiments with intense short pulses of ion beams on the Neutralized Drift Compression Experiment-II at Lawrence Berkeley National Laboratory, by generating beam spots size with radius r<1 mm within 2 ns FWHM and approximately 1010 ions/pulse. To enable the short pulse durations and mm-scale focal spot radii, the 1.2 MeV Li+ ion beam is neutralized in a 1.6-meter drift compression section located after the last accelerator magnet. An 8-Tesla short focal length solenoid compresses the beam in the presence of the large volume plasma near the end of this section before the target. The scientific topics to be explored are warm dense matter, the dynamics of radiation damage in materials, and intense beam and beam-plasma physics including selected topics of relevance to the development of heavy-ion drivers for inertial fusion energy. Here we describe the accelerator commissioning and time-resolved ionoluminescence measurements of yttrium aluminum perovskite using the fully integrated accelerator and neutralized drift compression components.
First test of BNL electron beam ion source with high current density electron beam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pikin, Alexander, E-mail: pikin@bnl.gov; Alessi, James G., E-mail: pikin@bnl.gov; Beebe, Edward N., E-mail: pikin@bnl.gov
A new electron gun with electrostatic compression has been installed at the Electron Beam Ion Source (EBIS) Test Stand at BNL. This is a collaborative effort by BNL and CERN teams with a common goal to study an EBIS with electron beam current up to 10 A, current density up to 10,000 A/cm{sup 2} and energy more than 50 keV. Intensive and pure beams of heavy highly charged ions with mass-to-charge ratio < 4.5 are requested by many heavy ion research facilities including NASA Space Radiation Laboratory (NSRL) at BNL and HIE-ISOLDE at CERN. With a multiampere electron gun, themore » EBIS should be capable of delivering highly charged ions for both RHIC facility applications at BNL and for ISOLDE experiments at CERN. Details of the electron gun simulations and design, and the Test EBIS electrostatic and magnetostatic structures with the new electron gun are presented. The experimental results of the electron beam transmission are given.« less
NASA Astrophysics Data System (ADS)
Hall, Carlton Raden
A major objective of remote sensing is determination of biochemical and biophysical characteristics of plant canopies utilizing high spectral resolution sensors. Canopy reflectance signatures are dependent on absorption and scattering processes of the leaf, canopy properties, and the ground beneath the canopy. This research investigates, through field and laboratory data collection, and computer model parameterization and simulations, the relationships between leaf optical properties, canopy biophysical features, and the nadir viewed above-canopy reflectance signature. Emphasis is placed on parameterization and application of an existing irradiance radiative transfer model developed for aquatic systems. Data and model analyses provide knowledge on the relative importance of leaves and canopy biophysical features in estimating the diffuse absorption a(lambda,m-1), diffuse backscatter b(lambda,m-1), beam attenuation alpha(lambda,m-1), and beam to diffuse conversion c(lambda,m-1 ) coefficients of the two-flow irradiance model. Data sets include field and laboratory measurements from three plant species, live oak (Quercus virginiana), Brazilian pepper (Schinus terebinthifolius) and grapefruit (Citrus paradisi) sampled on Cape Canaveral Air Force Station and Kennedy Space Center Florida in March and April of 1997. Features measured were depth h (m), projected foliage coverage PFC, leaf area index LAI, and zenith leaf angle. Optical measurements, collected with a Spectron SE 590 high sensitivity narrow bandwidth spectrograph, included above canopy reflectance, internal canopy transmittance and reflectance and bottom reflectance. Leaf samples were returned to laboratory where optical and physical and chemical measurements of leaf thickness, leaf area, leaf moisture and pigment content were made. A new term, the leaf volume correction index LVCI was developed and demonstrated in support of model coefficient parameterization. The LVCI is based on angle adjusted leaf thickness Ltadj, LAI, and h (m). Its function is to translate leaf level estimates of diffuse absorption and backscatter to the canopy scale allowing the leaf optical properties to directly influence above canopy estimates of reflectance. The model was successfully modified and parameterized to operate in a canopy scale and a leaf scale mode. Canopy scale model simulations produced the best results. Simulations based on leaf derived coefficients produced calculated above canopy reflectance errors of 15% to 18%. A comprehensive sensitivity analyses indicated the most important parameters were beam to diffuse conversion c(lambda, m-1), diffuse absorption a(lambda, m-1), diffuse backscatter b(lambda, m-1), h (m), Q, and direct and diffuse irradiance. Sources of error include the estimation procedure for the direct beam to diffuse conversion and attenuation coefficients and other field and laboratory measurement and analysis errors. Applications of the model include creation of synthetic reflectance data sets for remote sensing algorithm development, simulations of stress and drought on vegetation reflectance signatures, and the potential to estimate leaf moisture and chemical status.
NASA Astrophysics Data System (ADS)
Mertens, Christopher; Moyers, Michael; Walker, Steven; Tweed, John
Recent developments in NASA's High Charge and Energy Transport (HZETRN) code have included lateral broadening of primary ion beams due to small-angle multiple Coulomb scattering, and coupling of the ion-nuclear scattering interactions with energy loss and straggling. The new version of HZETRN based on Green function methods, GRNTRN, is suitable for modeling transport with both space environment and laboratory boundary conditions. Multiple scattering processes are a necessary extension to GRNTRN in order to accurately model ion beam experiments, to simulate the physical and biological-effective radiation dose, and to develop new methods and strategies for light ion radiation therapy. In this paper we compare GRNTRN simulations of proton lateral scattering distributions with beam measurements taken at Loma Linda Medical University. The simulated and measured lateral proton distributions will be compared for a 250 MeV proton beam on aluminum, polyethylene, polystyrene, bone, iron, and lead target materials.
Assessment of motor balance and coordination in mice using the balance beam.
Luong, Tinh N; Carlisle, Holly J; Southwell, Amber; Patterson, Paul H
2011-03-10
Brain injury, genetic manipulations, and pharmacological treatments can result in alterations of motor skills in mice. Fine motor coordination and balance can be assessed by the beam walking assay. The goal of this test is for the mouse to stay upright and walk across an elevated narrow beam to a safe platform. This test takes place over 3 consecutive days: 2 days of training and 1 day of testing. Performance on the beam is quantified by measuring the time it takes for the mouse to traverse the beam and the number of paw slips that occur in the process. Here we report the protocol used in our laboratory, and representative results from a cohort of C57BL/6 mice. This task is particularly useful for detecting subtle deficits in motor skills and balance that may not be detected by other motor tests, such as the Rotarod.
Assessment of Motor Balance and Coordination in Mice using the Balance Beam
Southwell, Amber; Patterson, Paul H.
2011-01-01
Brain injury, genetic manipulations, and pharmacological treatments can result in alterations of motor skills in mice. Fine motor coordination and balance can be assessed by the beam walking assay. The goal of this test is for the mouse to stay upright and walk across an elevated narrow beam to a safe platform. This test takes place over 3 consecutive days: 2 days of training and 1 day of testing. Performance on the beam is quantified by measuring the time it takes for the mouse to traverse the beam and the number of paw slips that occur in the process. Here we report the protocol used in our laboratory, and representative results from a cohort of C57BL/6 mice. This task is particularly useful for detecting subtle deficits in motor skills and balance that may not be detected by other motor tests, such as the Rotarod. PMID:21445033
NASA Technical Reports Server (NTRS)
Llobet, X.; Bernstein, W.; Kondradi, A.
1985-01-01
Experiments, involving the injection of energetic (keV) electron beams into the ionosphere-upper atmosphere system from rocket-borne electron guns, have provided evidence for the occurrence of strong beam-plasma interactions (BPI) both near to and remote from the injection point. However, the flight experiments have not provided clear and unambiguous evidence for the basic physical processes which produce the variety of confusing signatures. A laboratory experimental program was initiated to clarify some of a number of ambiguities regarding the obtained results. The present investigation is concerned with some experimental studies of the evolution of both the beam energy spectrum and the local wave amplitude-frequency spectrum at increasing axial distances from the electron gun for a variety of experimental conditions. The results of the studies show that the high frequency beam-plasma interaction represents the most important process.
Space beam combiner for long-baseline interferometry
NASA Astrophysics Data System (ADS)
Lin, Yao; Bartos, Randall D.; Korechoff, Robert P.; Shaklan, Stuart B.
1999-04-01
An experimental beam combiner (BC) is being developed to support the space interferometry program at the JPL. The beam combine forms the part of an interferometer where star light collected by the sidestats or telescopes is brought together to produce white light fringes, and to provide wavefront tilt information via guiding spots and beam walk information via shear spots. The assembly and alignment of the BC has been completed. The characterization test were performed under laboratory conditions with an artificial star and optical delay line. Part of each input beam was used to perform star tracking. The white light interference fringes were obtained over the selected wavelength range from 450 nm to 850 nm. A least-square fit process was used to analyze the fringe initial phase, fringe visibilities and shift errors of the optical path difference in the delay line using the dispersed white-light fringes at different OPD positions.
Pion contamination in the MICE muon beam
NASA Astrophysics Data System (ADS)
Adams, D.; Alekou, A.; Apollonio, M.; Asfandiyarov, R.; Barber, G.; Barclay, P.; de Bari, A.; Bayes, R.; Bayliss, V.; Bertoni, R.; Blackmore, V. J.; Blondel, A.; Blot, S.; Bogomilov, M.; Bonesini, M.; Booth, C. N.; Bowring, D.; Boyd, S.; Brashaw, T. W.; Bravar, U.; Bross, A. D.; Capponi, M.; Carlisle, T.; Cecchet, G.; Charnley, C.; Chignoli, F.; Cline, D.; Cobb, J. H.; Colling, G.; Collomb, N.; Coney, L.; Cooke, P.; Courthold, M.; Cremaldi, L. M.; DeMello, A.; Dick, A.; Dobbs, A.; Dornan, P.; Drews, M.; Drielsma, F.; Filthaut, F.; Fitzpatrick, T.; Franchini, P.; Francis, V.; Fry, L.; Gallagher, A.; Gamet, R.; Gardener, R.; Gourlay, S.; Grant, A.; Greis, J. R.; Griffiths, S.; Hanlet, P.; Hansen, O. M.; Hanson, G. G.; Hart, T. L.; Hartnett, T.; Hayler, T.; Heidt, C.; Hills, M.; Hodgson, P.; Hunt, C.; Iaciofano, A.; Ishimoto, S.; Kafka, G.; Kaplan, D. M.; Karadzhov, Y.; Kim, Y. K.; Kuno, Y.; Kyberd, P.; Lagrange, J.-B.; Langlands, J.; Lau, W.; Leonova, M.; Li, D.; Lintern, A.; Littlefield, M.; Long, K.; Luo, T.; Macwaters, C.; Martlew, B.; Martyniak, J.; Mazza, R.; Middleton, S.; Moretti, A.; Moss, A.; Muir, A.; Mullacrane, I.; Nebrensky, J. J.; Neuffer, D.; Nichols, A.; Nicholson, R.; Nugent, J. C.; Oates, A.; Onel, Y.; Orestano, D.; Overton, E.; Owens, P.; Palladino, V.; Pasternak, J.; Pastore, F.; Pidcott, C.; Popovic, M.; Preece, R.; Prestemon, S.; Rajaram, D.; Ramberger, S.; Rayner, M. A.; Ricciardi, S.; Roberts, T. J.; Robinson, M.; Rogers, C.; Ronald, K.; Rubinov, P.; Rucinski, P.; Sakamato, H.; Sanders, D. A.; Santos, E.; Savidge, T.; Smith, P. J.; Snopok, P.; Soler, F. J. P.; Speirs, D.; Stanley, T.; Stokes, G.; Summers, D. J.; Tarrant, J.; Taylor, I.; Tortora, L.; Torun, Y.; Tsenov, R.; Tunnell, C. D.; Uchida, M. A.; Vankova-Kirilova, G.; Virostek, S.; Vretenar, M.; Warburton, P.; Watson, S.; White, C.; Whyte, C. G.; Wilson, A.; Winter, M.; Yang, X.; Young, A.; Zisman, M.
2016-03-01
The international Muon Ionization Cooling Experiment (MICE) will perform a systematic investigation of ionization cooling with muon beams of momentum between 140 and 240 MeV/c at the Rutherford Appleton Laboratory ISIS facility. The measurement of ionization cooling in MICE relies on the selection of a pure sample of muons that traverse the experiment. To make this selection, the MICE Muon Beam is designed to deliver a beam of muons with less than ~1% contamination. To make the final muon selection, MICE employs a particle-identification (PID) system upstream and downstream of the cooling cell. The PID system includes time-of-flight hodoscopes, threshold-Cherenkov counters and calorimetry. The upper limit for the pion contamination measured in this paper is fπ < 1.4% at 90% C.L., including systematic uncertainties. Therefore, the MICE Muon Beam is able to meet the stringent pion-contamination requirements of the study of ionization cooling.
Pion contamination in the MICE muon beam
Adams, D.; Alekou, A.; Apollonio, M.; ...
2016-03-01
Here, the international Muon Ionization Cooling Experiment (MICE) will perform a systematic investigation of ionization cooling with muon beams of momentum between 140 and 240\\,MeV/c at the Rutherford Appleton Laboratory ISIS facility. The measurement of ionization cooling in MICE relies on the selection of a pure sample of muons that traverse the experiment. To make this selection, the MICE Muon Beam is designed to deliver a beam of muons with less thanmore » $$\\sim$$1% contamination. To make the final muon selection, MICE employs a particle-identification (PID) system upstream and downstream of the cooling cell. The PID system includes time-of-flight hodoscopes, threshold-Cherenkov counters and calorimetry. The upper limit for the pion contamination measured in this paper is $$f_\\pi < 1.4\\%$$ at 90% C.L., including systematic uncertainties. Therefore, the MICE Muon Beam is able to meet the stringent pion-contamination requirements of the study of ionization cooling.« less
A button - type beam position monitor design for TARLA facility
NASA Astrophysics Data System (ADS)
Gündoǧan, M. Tural; Kaya, ć.; Yavaş, Ö.
2016-03-01
Turkish Accelerator and Radiation Laboratory in Ankara (TARLA) facility is proposed as an IR FEL and Bremsstrahlung facility as the first facility of Turkish Accelerator Center (TAC). TARLA is essentially proposed to generate oscillator mode FEL in 3-250 microns wavelengths range, will consist of normal conducting injector system with 250 keV beam energy, two superconducting RF accelerating modules in order to accelerate the beam 15-40 MeV. The TARLA facility is expected to provide two modes, Continuous wave (CW) and pulsed mode. Longitudinal electron bunch length will be changed between 1 and 10 ps. The bunch charge will be limited by 77pC. The design of the Button-type Beam Position Monitor for TARLA IR FEL is studied to operate in 1.3 GHz. Mechanical antenna design and simulations are completed considering electron beam parameters of TARLA. Ansoft HFSS and CST Particle Studio is used to compare with results of simulations.
Electro-optic harmonic conversion to switch a laser beam out of a cavity
Haas, R.A.; Henesian, M.A.
1984-10-19
The present invention relates to switching laser beams out of laser cavities, and more particularly, it relates to the use of generating harmonics of the laser beam to accomplish the switching. When laser light is generatd in a laser cavity the problem arises of how to switch the laser light out of the cavity in order to make use of the resulting laser beam in a well known multitude of ways. These uses include range finding, communication, remote sensing, medical surgery, laser fusion applications and many more. The switch-out problem becomes more difficult as the size of the laser aperture grows such as in laser fusion applications. The final amplifier stages of the Nova and Novette lasers at Lawrence Livermore National Laboratory are 46 centimeters with the laser beam expanded to 74 centimeters thereafter. Larger aperture lasers are planned.
A gamma beam profile imager for ELI-NP Gamma Beam System
NASA Astrophysics Data System (ADS)
Cardarelli, P.; Paternò, G.; Di Domenico, G.; Consoli, E.; Marziani, M.; Andreotti, M.; Evangelisti, F.; Squerzanti, S.; Gambaccini, M.; Albergo, S.; Cappello, G.; Tricomi, A.; Veltri, M.; Adriani, O.; Borgheresi, R.; Graziani, G.; Passaleva, G.; Serban, A.; Starodubtsev, O.; Variola, A.; Palumbo, L.
2018-06-01
The Gamma Beam System of ELI-Nuclear Physics is a high brilliance monochromatic gamma source based on the inverse Compton interaction between an intense high power laser and a bright electron beam with tunable energy. The source, currently being assembled in Magurele (Romania), is designed to provide a beam with tunable average energy ranging from 0.2 to 19.5 MeV, rms energy bandwidth down to 0.5% and flux of about 108 photons/s. The system includes a set of detectors for the diagnostic and complete characterization of the gamma beam. To evaluate the spatial distribution of the beam a gamma beam profile imager is required. For this purpose, a detector based on a scintillator target coupled to a CCD camera was designed and a prototype was tested at INFN-Ferrara laboratories. A set of analytical calculations and Monte Carlo simulations were carried out to optimize the imager design and evaluate the performance expected with ELI-NP gamma beam. In this work the design of the imager is described in detail, as well as the simulation tools used and the results obtained. The simulation parameters were tuned and cross-checked with the experimental measurements carried out on the assembled prototype using the beam from an x-ray tube.
NASA Astrophysics Data System (ADS)
Hwang, Ji-Gwang; Yang, Tae-Keun; Forck, Peter; Noh, Seon Yeong; Hahn, Garam; Choi, Minkyoo
2017-04-01
A beam position monitor with high precision and resolution is required to control the beam trajectory for matching to the injection orbit and acceleration in a heavy-ion synchrotron. It will be also used for measuring the beta function, tune, and chromaticity. Since the bunch length at heavy ion synchrotron is relatively long, a few meters, a boxlike device with plates of typically 20 cm length is used to enhance the signal strength and to get a precise linear dependence with respect to the beam displacement. Especially, the linear-cut beam position monitor is adopted to satisfy the position resolution of 100 μm and accuracy of 200 μm for a nominal beam intensity in the KHIMA synchrotron of ∼ 7 ×108 particles for the carbon beams and ∼ 2 ×1010 for the proton beams. In this paper, we show the electromagnetic design of the electrode and surroundings to satisfy the resolution of 100 μm, the criteria for mechanical aspect to satisfy the position accuracy of 200 μm, the measurement results by using wire test-bench, design and measurement of a high input impedance pre-amplifier, and the beam-test results with long (∼1.6 μs) electron beam in Pohang accelerator laboratory (PAL).
The New Dual-beam Spectropluviometer Concept
NASA Astrophysics Data System (ADS)
Delahaye, J. Y.; Barthes, L.; Golé, P.; Lavergnat, J.; Vinson, J. P.
A Dual Beam Spectropluviometer (DBS) measuring the equivalent diameter D, the vertical velocity V and the time T of arrival of particles is presented. Its main advan- tage over previous optical disdrometers is the extensive measurement range of atmo- spheric precipitations near ground. In particular, 0.15 mm diameter particles can be observed in quiet laboratory conditions and 0.2 mm is the smallest diameter observed in the outdoor turbulent air velocity field. The means for obtaining such results are (i) two uniform beams of rectangular cross-section 2 mm in height, 40 mm in width and 250 mm in length, with a 2 mm vertical gap, (ii) a dual 16-bit analog to digital converter, (iii) a dedicated program for extracting the 3 parameters in real time by computing the signal slopes and determining the correlation between both channels, (iii) various means for reducing splashing and vibration. Laboratory tests and typical rain measurements are shown. The DBS is particularly suited for extensive atmospheric and radio propagation research applications where the smallest drops were not correctly estimated in the distributions because of the lack of appropriate measurement devices.
An improved Green's function for ion beam transport
NASA Technical Reports Server (NTRS)
Tweed, J.; Wilson, J. W.; Tripathi, R. K.
2004-01-01
Ion beam transport theory allows testing of material transmission properties in the laboratory environment generated by particle accelerators. This is a necessary step in materials development and evaluation for space use. The approximations used in solving the Boltzmann transport equation for the space setting are often not sufficient for laboratory work and those issues are the main emphasis of the present work. In consequence, an analytic solution of the linear Boltzmann equation is pursued in the form of a Green's function allowing flexibility in application to a broad range of boundary value problems. It has been established that simple solutions can be found for high charge and energy (HZE) ions by ignoring nuclear energy downshifts and dispersion. Such solutions were found to be supported by experimental evidence with HZE ion beams when multiple scattering was added. Lacking from the prior solutions were range and energy straggling and energy downshift with dispersion associated with nuclear events. Recently, we have found global solutions including these effects providing a broader class of HZE ion solutions. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Anisovich, A. V.; Beck, R.; Döring, M.; Gottschall, M.; Hartmann, J.; Kashevarov, V.; Klempt, E.; Meißner, Ulf-G.; Nikonov, V.; Ostrick, M.; Rönchen, D.; Sarantsev, A.; Strakovsky, I.; Thiel, A.; Tiator, L.; Thoma, U.; Workman, R.; Wunderlich, Y.
2016-09-01
New data on pion-photoproduction off the proton have been included in the partial-wave analyses Bonn-Gatchina and SAID and in the dynamical coupled-channel approach Jülich-Bonn. All reproduce the recent new data well: the double-polarization data for E, G, H, P and T in γ p→ π0p from ELSA, the beam asymmetry Σ for γ p→ π0p and π+n from Jefferson Laboratory, and the precise new differential cross section and beam asymmetry data Σ for γ p→ π0p from MAMI. The new fit results for the multipoles are compared with predictions not taking into account the new data. The mutual agreement is improved considerably but still far from being perfect.
Moving Force Identification: a Time Domain Method
NASA Astrophysics Data System (ADS)
Law, S. S.; Chan, T. H. T.; Zeng, Q. H.
1997-03-01
The solution for the vertical dynamic interaction forces between a moving vehicle and the bridge deck is analytically derived and experimentally verified. The deck is modelled as a simply supported beam with viscous damping, and the vehicle/bridge interaction force is modelled as one-point or two-point loads with fixed axle spacing, moving at constant speed. The method is based on modal superposition and is developed to identify the forces in the time domain. Both cases of one-point and two-point forces moving on a simply supported beam are simulated. Results of laboratory tests on the identification of the vehicle/bridge interaction forces are presented. Computation simulations and laboratory tests show that the method is effective, and acceptable results can be obtained by combining the use of bending moment and acceleration measurements.
Jen Y. Liu; S. Cheng
1979-01-01
A plane-stress analysis of orthotropic or isotropic beams is presented. The loading conditions considered are: (1) a concentrated normal load arbitrarily located on the beam, and (2) a distributed normal load covering an arbitrary length of the beam. exhibit close agreement with existing experimental data from Sitka spruce beams. Other loading conditions can similarly...