Simulator for beam-based LHC collimator alignment
NASA Astrophysics Data System (ADS)
Valentino, Gianluca; Aßmann, Ralph; Redaelli, Stefano; Sammut, Nicholas
2014-02-01
In the CERN Large Hadron Collider, collimators need to be set up to form a multistage hierarchy to ensure efficient multiturn cleaning of halo particles. Automatic algorithms were introduced during the first run to reduce the beam time required for beam-based setup, improve the alignment accuracy, and reduce the risk of human errors. Simulating the alignment procedure would allow for off-line tests of alignment policies and algorithms. A simulator was developed based on a diffusion beam model to generate the characteristic beam loss signal spike and decay produced when a collimator jaw touches the beam, which is observed in a beam loss monitor (BLM). Empirical models derived from the available measurement data are used to simulate the steady-state beam loss and crosstalk between multiple BLMs. The simulator design is presented, together with simulation results and comparison to measurement data.
Centroid stabilization in alignment of FOA corner cube: designing of a matched filter
NASA Astrophysics Data System (ADS)
Awwal, Abdul; Wilhelmsen, Karl; Roberts, Randy; Leach, Richard; Miller Kamm, Victoria; Ngo, Tony; Lowe-Webb, Roger
2015-02-01
The current automation of image-based alignment of NIF high energy laser beams is providing the capability of executing multiple target shots per day. An important aspect of performing multiple shots in a day is to reduce additional time spent aligning specific beams due to perturbations in those beam images. One such alignment is beam centration through the second and third harmonic generating crystals in the final optics assembly (FOA), which employs two retro-reflecting corner cubes to represent the beam center. The FOA houses the frequency conversion crystals for third harmonic generation as the beams enters the target chamber. Beam-to-beam variations and systematic beam changes over time in the FOA corner-cube images can lead to a reduction in accuracy as well as increased convergence durations for the template based centroid detector. This work presents a systematic approach of maintaining FOA corner cube centroid templates so that stable position estimation is applied thereby leading to fast convergence of alignment control loops. In the matched filtering approach, a template is designed based on most recent images taken in the last 60 days. The results show that new filter reduces the divergence of the position estimation of FOA images.
Beam alignment based on two-dimensional power spectral density of a near-field image.
Wang, Shenzhen; Yuan, Qiang; Zeng, Fa; Zhang, Xin; Zhao, Junpu; Li, Kehong; Zhang, Xiaolu; Xue, Qiao; Yang, Ying; Dai, Wanjun; Zhou, Wei; Wang, Yuanchen; Zheng, Kuixing; Su, Jingqin; Hu, Dongxia; Zhu, Qihua
2017-10-30
Beam alignment is crucial to high-power laser facilities and is used to adjust the laser beams quickly and accurately to meet stringent requirements of pointing and centering. In this paper, a novel alignment method is presented, which employs data processing of the two-dimensional power spectral density (2D-PSD) for a near-field image and resolves the beam pointing error relative to the spatial filter pinhole directly. Combining this with a near-field fiducial mark, the operation of beam alignment is achieved. It is experimentally demonstrated that this scheme realizes a far-field alignment precision of approximately 3% of the pinhole size. This scheme adopts only one near-field camera to construct the alignment system, which provides a simple, efficient, and low-cost way to align lasers.
An optimal beam alignment method for large-scale distributed space surveillance radar system
NASA Astrophysics Data System (ADS)
Huang, Jian; Wang, Dongya; Xia, Shuangzhi
2018-06-01
Large-scale distributed space surveillance radar is a very important ground-based equipment to maintain a complete catalogue for Low Earth Orbit (LEO) space debris. However, due to the thousands of kilometers distance between each sites of the distributed radar system, how to optimally implement the Transmitting/Receiving (T/R) beams alignment in a great space using the narrow beam, which proposed a special and considerable technical challenge in the space surveillance area. According to the common coordinate transformation model and the radar beam space model, we presented a two dimensional projection algorithm for T/R beam using the direction angles, which could visually describe and assess the beam alignment performance. Subsequently, the optimal mathematical models for the orientation angle of the antenna array, the site location and the T/R beam coverage are constructed, and also the beam alignment parameters are precisely solved. At last, we conducted the optimal beam alignment experiments base on the site parameters of Air Force Space Surveillance System (AFSSS). The simulation results demonstrate the correctness and effectiveness of our novel method, which can significantly stimulate the construction for the LEO space debris surveillance equipment.
Centroid stabilization for laser alignment to corner cubes: designing a matched filter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Awwal, Abdul A. S.; Bliss, Erlan; Brunton, Gordon
2016-11-08
Automation of image-based alignment of National Ignition Facility high energy laser beams is providing the capability of executing multiple target shots per day. One important alignment is beam centration through the second and third harmonic generating crystals in the final optics assembly (FOA), which employs two retroreflecting corner cubes as centering references for each beam. Beam-to-beam variations and systematic beam changes over time in the FOA corner cube images can lead to a reduction in accuracy as well as increased convergence durations for the template-based position detector. A systematic approach is described that maintains FOA corner cube templates and guaranteesmore » stable position estimation.« less
Centroid stabilization for laser alignment to corner cubes: designing a matched filter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Awwal, Abdul A. S.; Bliss, Erlan; Brunton, Gordon
2016-11-08
Automation of image-based alignment of NIF high energy laser beams is providing the capability of executing multiple target shots per day. One important alignment is beam centration through the second and third harmonic generating crystals in the final optics assembly (FOA), which employs two retro-reflecting corner cubes as centering references for each beam. Beam-to-beam variations and systematic beam changes over time in the FOA corner cube images can lead to a reduction in accuracy as well as increased convergence durations for the template-based position detector. A systematic approach is described that maintains FOA corner cube templates and guarantees stable positionmore » estimation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Assmann, R
2004-06-08
The feasibility of future linear colliders depends on achieving very tight alignment and steering tolerances. All proposals (NLC, JLC, CLIC, TESLA and S-BAND) currently require a total emittance growth in the main linac of less than 30-100% [1]. This should be compared with a 100% emittance growth in the much smaller SLC linac [2]. Major advances in alignment and beam steering techniques beyond those used in the SLC are necessary for the next generation of linear colliders. In this paper, we present an experimental study of quadrupole alignment with a dispersion-free steering algorithm. A closely related method (wakefield-free steering) takesmore » into account wakefield effects [3]. However, this method can not be studied at the SLC. The requirements for future linear colliders lead to new and unconventional ideas about alignment and beam steering. For example, no dipole correctors are foreseen for the standard trajectory correction in the NLC [4]; beam steering will be done by moving the quadrupole positions with magnet movers. This illustrates the close symbiosis between alignment, beam steering and beam dynamics that will emerge. It is no longer possible to consider the accelerator alignment as static with only a few surveys and realignments per year. The alignment in future linear colliders will be a dynamic process in which the whole linac, with thousands of beam-line elements, is aligned in a few hours or minutes, while the required accuracy of about 5 pm for the NLC quadrupole alignment [4] is a factor of 20 higher than in existing accelerators. The major task in alignment and steering is the accurate determination of the optimum beam-line position. Ideally one would like all elements to be aligned along a straight line. However, this is not practical. Instead a ''smooth curve'' is acceptable as long as its wavelength is much longer than the betatron wavelength of the accelerated beam. Conventional alignment methods are limited in accuracy by errors in the survey and the fiducials. Beam-based alignment methods ideally only depend upon the BPM resolution and generally provide much better precision. Many of those techniques are described in other contributions to this workshop. In this paper we describe our experiences with a dispersion-free steering algorithm for linacs. This algorithm was first suggested by Raubenheimer and Ruth in 1990 [5]. It h as been studied in simulations for NLC [5], TESLA [6], the S-BAND proposal [7] and CLIC [8]. The dispersion-free steering technique can be applied to the whole linac at once and returns the alignment (or trajectory) that minimizes the dispersive emittance growth of the beam. Thus it allows an extremely fast alignment of the beam-line. As we will show dispersion-free steering is only sensitive to quadrupole misalignments. Wakefield-free steering [3] as mentioned before is a closely related technique that minimizes the emittance growth caused by both dispersion and wakefields. Due to hardware limitations (i.e. insufficient relative range of power supplies) we could not study this method experimentally in the SLC. However, its systematics are very similar to those of dispersion-free steering. The studies of dispersion-free steering which are presented made extensive use of the unique potential of the SLC as the only operating linear collider. We used it to study the performance and problems of advanced beam-based optimization tools in a real beam-line environment and on a large scale. We should mention that the SLC has utilized beam-based alignment for years [9], using the difference of electron and positron trajectories. This method, however, cannot be used in future linear colliders. The goal of our work is to demonstrate the performance of advanced beam-based alignment techniques in linear colliders and to anticipate possible reality-related problems. Those can then be solved in the design state for the next generation of linear colliders.« less
Apparatus for maintaining alignment of a shrinking weld joint in an electron-beam welding operation
Trent, Jett B.; Murphy, Jimmy L.
1981-01-01
The present invention is directed to an apparatus for automatically maintaining a shrinking weld joint in alignment with an electron beam during an electron-beam multipass-welding operation. The apparatus utilizes a biasing device for continually urging a workpiece-supporting face plate away from a carriage mounted base that rotatably supports the face plate. The extent of displacement of the face plate away from the base is indicative of the shrinkage occuring in the weld joint area. This displacement is measured and is used to move the base on the carriage a distance equal to one-half the displacement for aligning the weld joint with the electron beam during each welding pass.
NASA Astrophysics Data System (ADS)
Zhou, Shudao; Ma, Zhongliang; Wang, Min; Peng, Shuling
2018-05-01
This paper proposes a novel alignment system based on the measurement of optical path using a light beam scanning mode in a transmissometer. The system controls both the probe beam and the receiving field of view while scanning in two vertical directions. The system then calculates the azimuth angle of the transmitter and the receiver to determine the precise alignment of the optical path. Experiments show that this method can determine the alignment angles in less than 10 min with errors smaller than 66 μrad in the azimuth. This system also features high collimation precision, process automation and simple installation.
Strategy for alignment of electron beam trajectory in LEReC cooling section
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seletskiy, S.; Blaskiewicz, M.; Fedotov, A.
2016-09-23
We considered the steps required to align the electron beam trajectory through the LEReC cooling section. We devised a detailed procedure for the beam-based alignment of the cooling section solenoids. We showed that it is critical to have an individual control of each CS solenoid current. Finally, we modeled the alignment procedure and showed that with two BPM fitting the solenoid shift can be measured with 40 um accuracy and the solenoid inclination can be measured with 30 urad accuracy. These accuracies are well within the tolerances of the cooling section solenoid alignment.
A convenient alignment approach for x-ray imaging experiments based on laser positioning devices
Zhang, Da; Donovan, Molly; Wu, Xizeng; Liu, Hong
2008-01-01
This study presents a two-laser alignment approach for facilitating the precise alignment of various imaging and measuring components with respect to the x-ray beam. The first laser constantly pointed to the output window of the source, in a direction parallel to the path along which the components are placed. The second laser beam, originating from the opposite direction, was calibrated to coincide with the first laser beam. Thus, a visible indicator of the direction of the incident x-ray beam was established, and the various components could then be aligned conveniently and accurately with its help. PMID:19070224
Fast Beam-Based BPM Calibration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bertsche, K.; Loos, H.; Nuhn, H.-D.
2012-10-15
The Alignment Diagnostic System (ADS) of the LCLS undulator system indicates that the 33 undulator quadrupoles have extremely high position stability over many weeks. However, beam trajectory straightness and lasing efficiency degrade more quickly than this. A lengthy Beam Based Alignment (BBA) procedure must be executed every two to four weeks to re-optimize the X-ray beam parameters. The undulator system includes RF cavity Beam Position Monitors (RFBPMs), several of which are utilized by an automatic feedback system to align the incoming electron-beam trajectory to the undulator axis. The beam trajectory straightness degradation has been traced to electronic drifts of themore » gain and offset of the BPMs used in the beam feedback system. To quickly recover the trajectory straightness, we have developed a fast beam-based procedure to recalibrate the BPMs. This procedure takes advantage of the high-precision monitoring capability of the ADS, which allows highly repeatable positioning of undulator quadrupoles. This report describes the ADS, the position stability of the LCLS undulator quadrupoles, and some results of the new recovery procedure.« less
Suwada, Tsuyoshi; Satoh, Masanori; Telada, Souichi; Minoshima, Kaoru
2013-09-01
A laser-based alignment system with a He-Ne laser has been newly developed in order to precisely align accelerator units at the KEKB injector linac. The laser beam was first implemented as a 500-m-long fiducial straight line for alignment measurements. We experimentally investigated the propagation and stability characteristics of the laser beam passing through laser pipes in vacuum. The pointing stability at the last fiducial point was successfully obtained with the transverse displacements of ±40 μm level in one standard deviation by applying a feedback control. This pointing stability corresponds to an angle of ±0.08 μrad. This report contains a detailed description of the experimental investigation for the propagation and stability characteristics of the laser beam in the laser-based alignment system for long-distance linear accelerators.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suwada, Tsuyoshi; Satoh, Masanori; Telada, Souichi
2013-09-15
A laser-based alignment system with a He-Ne laser has been newly developed in order to precisely align accelerator units at the KEKB injector linac. The laser beam was first implemented as a 500-m-long fiducial straight line for alignment measurements. We experimentally investigated the propagation and stability characteristics of the laser beam passing through laser pipes in vacuum. The pointing stability at the last fiducial point was successfully obtained with the transverse displacements of ±40 μm level in one standard deviation by applying a feedback control. This pointing stability corresponds to an angle of ±0.08 μrad. This report contains a detailedmore » description of the experimental investigation for the propagation and stability characteristics of the laser beam in the laser-based alignment system for long-distance linear accelerators.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kawai, Kotaro, E-mail: s135016@stn.nagaokaut.ac.jp; Sakamoto, Moritsugu; Noda, Kohei
2016-03-28
A diffractive optical element with a three-dimensional liquid crystal (LC) alignment structure for advanced control of polarized beams was fabricated by a highly efficient one-step photoalignment method. This study is of great significance because different two-dimensional continuous and complex alignment patterns can be produced on two alignment films by simultaneously irradiating an empty glass cell composed of two unaligned photocrosslinkable polymer LC films with three-beam polarized interference beam. The polarization azimuth, ellipticity, and rotation direction of the diffracted beams from the resultant LC grating widely varied depending on the two-dimensional diffracted position and the polarization states of the incident beams.more » These polarization diffraction properties are well explained by theoretical analysis based on Jones calculus.« less
A Fuzzy Logic Based Controller for the Automated Alignment of a Laser-beam-smoothing Spatial Filter
NASA Technical Reports Server (NTRS)
Krasowski, M. J.; Dickens, D. E.
1992-01-01
A fuzzy logic based controller for a laser-beam-smoothing spatial filter is described. It is demonstrated that a human operator's alignment actions can easily be described by a system of fuzzy rules of inference. The final configuration uses inexpensive, off-the-shelf hardware and allows for a compact, readily implemented embedded control system.
Apparatus for maintaining aligment of a shrinking weld joint in an electron-beam welding operation
Trent, J.B.; Murphy, J.L.
1980-01-03
The invention is directed to an apparatus for automatically maintaining a shrinking weld joint in alignement with an electron beam during an electron-beam multipass-welding operation. The apparatus utilizes a bias means for continually urging a workpiece-supporting face plate away from a carriage mounted base that rotatably supports the face plate. The extent of displacement of the face plate away from the base in indicative of the shrinkage occuring in the weld joint area. This displacement is measured and is used to move the base on the carriage a distance equal to one-half the displacement for aligning the weld joint with the electron beam during each welding pass.
Laser beam alignment apparatus and method
Gruhn, C.R.; Hammond, R.B.
The disclosure related to an apparatus and method for laser beam alignment. Thermoelectric properties of a disc in a laser beam path are used to provide an indication of beam alignment and/or automatic laser alignment.
Laser beam alignment apparatus and method
Gruhn, Charles R.; Hammond, Robert B.
1981-01-01
The disclosure relates to an apparatus and method for laser beam alignment. Thermoelectric properties of a disc in a laser beam path are used to provide an indication of beam alignment and/or automatic laser alignment.
Optical Device for Converting a Laser Beam into Two Co-aligned but Oppositely Directed Beams
NASA Technical Reports Server (NTRS)
Jennings, Donald
2013-01-01
Optical systems consisting of a series of optical elements require alignment from the input end to the output end. The optical elements can be mirrors, lenses, sources, detectors, or other devices. Complex optical systems are often difficult to align from end-to-end because the alignment beam must be inserted at one end in order for the beam to traverse the entire optical path to the other end. The ends of the optical train may not be easily accessible to the alignment beam. Typically, when a series of optical elements is to be aligned, an alignment laser beam is inserted into the optical path with a pick-off mirror at one end of the series of elements. But it may be impossible to insert the beam at an end-point. It can be difficult to locate the pick-off mirror at the desired position because there is not enough space, there is no mounting surface, or the location is occupied by a source, detector, or other component. Alternatively, the laser beam might be inserted at an intermediate location (not at an end-point) and sent, first in one direction and then the other, to the opposite ends of the optical system for alignment. However, in this case, alignment must be performed in two directions and extra effort is required to co-align the two beams to make them parallel and coincident, i.e., to follow the same path as an end-to-end beam. An optical device has been developed that accepts a laser beam as input and produces two co-aligned, but counter-propagating beams. In contrast to a conventional alignment laser placed at one end of the optical path, this invention can be placed at a convenient position within the optical train and aligned to send its two beams simultaneously along precisely opposite paths that, taken together, trace out exactly the same path as the conventional alignment laser. This invention allows the user the freedom to choose locations within the optical train for placement of the alignment beam. It is also self-aligned by design and requires almost no adjustment.
Reducing beam shaper alignment complexity: diagnostic techniques for alignment and tuning
NASA Astrophysics Data System (ADS)
Lizotte, Todd E.
2011-10-01
Safe and efficient optical alignment is a critical requirement for industrial laser systems used in a high volume manufacturing environment. Of specific interest is the development of techniques to align beam shaping optics within a beam line; having the ability to instantly verify by a qualitative means that each element is in its proper position as the beam shaper module is being aligned. There is a need to reduce these types of alignment techniques down to a level where even a newbie to optical alignment will be able to complete the task. Couple this alignment need with the fact that most laser system manufacturers ship their products worldwide and the introduction of a new set of variables including cultural and language barriers, makes this a top priority for manufacturers. Tools and methodologies for alignment of complex optical systems need to be able to cross these barriers to ensure the highest degree of up time and reduce the cost of maintenance on the production floor. Customers worldwide, who purchase production laser equipment, understand that the majority of costs to a manufacturing facility is spent on system maintenance and is typically the largest single controllable expenditure in a production plant. This desire to reduce costs is driving the trend these days towards predictive and proactive, not reactive maintenance of laser based optical beam delivery systems [10]. With proper diagnostic tools, laser system developers can develop proactive approaches to reduce system down time, safe guard operational performance and reduce premature or catastrophic optics failures. Obviously analytical data will provide quantifiable performance standards which are more precise than qualitative standards, but each have a role in determining overall optical system performance [10]. This paper will discuss the use of film and fluorescent mirror devices as diagnostic tools for beam shaper module alignment off line or in-situ. The paper will also provide an overview methodology showing how it is possible to reduce complex alignment directions into a simplified set of instructions for layman service engineers.
Successive approximation algorithm for beam-position-monitor-based LHC collimator alignment
NASA Astrophysics Data System (ADS)
Valentino, Gianluca; Nosych, Andriy A.; Bruce, Roderik; Gasior, Marek; Mirarchi, Daniele; Redaelli, Stefano; Salvachua, Belen; Wollmann, Daniel
2014-02-01
Collimators with embedded beam position monitor (BPM) button electrodes will be installed in the Large Hadron Collider (LHC) during the current long shutdown period. For the subsequent operation, BPMs will allow the collimator jaws to be kept centered around the beam orbit. In this manner, a better beam cleaning efficiency and machine protection can be provided at unprecedented higher beam energies and intensities. A collimator alignment algorithm is proposed to center the jaws automatically around the beam. The algorithm is based on successive approximation and takes into account a correction of the nonlinear BPM sensitivity to beam displacement and an asymmetry of the electronic channels processing the BPM electrode signals. A software implementation was tested with a prototype collimator in the Super Proton Synchrotron. This paper presents results of the tests along with some considerations for eventual operation in the LHC.
Initial alignment method for free space optics laser beam
NASA Astrophysics Data System (ADS)
Shimada, Yuta; Tashiro, Yuki; Izumi, Kiyotaka; Yoshida, Koichi; Tsujimura, Takeshi
2016-08-01
The authors have newly proposed and constructed an active free space optics transmission system. It is equipped with a motor driven laser emitting mechanism and positioning photodiodes, and it transmits a collimated thin laser beam and accurately steers the laser beam direction. It is necessary to introduce the laser beam within sensible range of the receiver in advance of laser beam tracking control. This paper studies an estimation method of laser reaching point for initial laser beam alignment. Distributed photodiodes detect laser luminescence at respective position, and the optical axis of laser beam is analytically presumed based on the Gaussian beam optics. Computer simulation evaluates the accuracy of the proposed estimation methods, and results disclose that the methods help us to guide the laser beam to a distant receiver.
Recent advances in automatic alignment system for the National Ignition Facility
NASA Astrophysics Data System (ADS)
Wilhelmsen, Karl; Awwal, Abdul A. S.; Kalantar, Dan; Leach, Richard; Lowe-Webb, Roger; McGuigan, David; Miller Kamm, Vicki
2011-03-01
The automatic alignment system for the National Ignition Facility (NIF) is a large-scale parallel system that directs all 192 laser beams along the 300-m optical path to a 50-micron focus at target chamber in less than 50 minutes. The system automatically commands 9,000 stepping motors to adjust mirrors and other optics based upon images acquired from high-resolution digital cameras viewing beams at various locations. Forty-five control loops per beamline request image processing services running on a LINUX cluster to analyze these images of the beams and references, and automatically steer the beams toward the target. This paper discusses the upgrades to the NIF automatic alignment system to handle new alignment needs and evolving requirements as related to various types of experiments performed. As NIF becomes a continuously-operated system and more experiments are performed, performance monitoring is increasingly important for maintenance and commissioning work. Data, collected during operations, is analyzed for tuning of the laser and targeting maintenance work. Handling evolving alignment and maintenance needs is expected for the planned 30-year operational life of NIF.
Evaluation of Laser Based Alignment Algorithms Under Additive Random and Diffraction Noise
DOE Office of Scientific and Technical Information (OSTI.GOV)
McClay, W A; Awwal, A; Wilhelmsen, K
2004-09-30
The purpose of the automatic alignment algorithm at the National Ignition Facility (NIF) is to determine the position of a laser beam based on the position of beam features from video images. The position information obtained is used to command motors and attenuators to adjust the beam lines to the desired position, which facilitates the alignment of all 192 beams. One of the goals of the algorithm development effort is to ascertain the performance, reliability, and uncertainty of the position measurement. This paper describes a method of evaluating the performance of algorithms using Monte Carlo simulation. In particular we showmore » the application of this technique to the LM1{_}LM3 algorithm, which determines the position of a series of two beam light sources. The performance of the algorithm was evaluated for an ensemble of over 900 simulated images with varying image intensities and noise counts, as well as varying diffraction noise amplitude and frequency. The performance of the algorithm on the image data set had a tolerance well beneath the 0.5-pixel system requirement.« less
Civillico, Eugene F; Shoham, Shy; O'Connor, Daniel H; Sarkisov, Dmitry V; Wang, Samuel S-H
2012-08-01
The method of patterned photoactivation is a natural fit for the study of neuronal dendritic integration. Photoactivatable molecules that influence a wide range of extracellular and intracellular neurophysiological functions are available. The choice of photosensitive molecules depends on the research question and will influence the design of the experimental apparatus. An acousto-optical deflector (AOD)-based system can be used for rapid ultraviolet (UV) photolysis in arbitrary spatial and temporal patterns. Photolysis-activated "caged" diffusible molecules or newer light-sensitive membrane proteins can be used in this system. This protocol describes the addition of a UV beam for uncaging to a homebuilt two-photon microscope. The goal is to get UV light from the light source (laser) to the approximate center of the objective's back aperture, passing through a pair of perpendicularly oriented AODs along the way. The protocol also describes the fine alignment of the UV beam and the implementation of AOD-based beam steering. Performing the final alignment with the beam passing through the AODs will ensure that the system is optimized for the idiosyncrasies of the crystals.
Neural network approximation of nonlinearity in laser nano-metrology system based on TLMI
NASA Astrophysics Data System (ADS)
Olyaee, Saeed; Hamedi, Samaneh
2011-02-01
In this paper, an approach based on neural network (NN) for nonlinearity modeling in a nano-metrology system using three-longitudinal-mode laser heterodyne interferometer (TLMI) for length and displacement measurements is presented. We model nonlinearity errors that arise from elliptically and non-orthogonally polarized laser beams, rotational error in the alignment of laser head with respect to the polarizing beam splitter, rotational error in the alignment of the mixing polarizer, and unequal transmission coefficients in the polarizing beam splitter. Here we use a neural network algorithm based on the multi-layer perceptron (MLP) network. The simulation results show that multi-layer feed forward perceptron network is successfully applicable to real noisy interferometer signals.
Laser beam alignment and profilometry using diagnostic fluorescent safety mirrors
NASA Astrophysics Data System (ADS)
Lizotte, Todd E.
2011-03-01
There are a wide range of laser beam delivery systems in use for various purposes; including industrial and medical applications. Virtually all such beam delivery systems for practical purposes employ optical systems comprised of mirrors and lenses to shape, focus and guide the laser beam down to the material being processed. The goal of the laser beam delivery is to set the optimum parameters and to "fold" the beam path to reduce the mechanical length of the optical system, thereby allowing a physically compact system. In many cases, even a compact system can incorporate upwards of six mirrors and a comparable number of lenses all needing alignment so they are collinear. One of the major requirements for use of such systems in industry is a method of safe alignment. The alignment process requires that the aligner determine where the beam strikes each element. The aligner should also preferably be able to determine the shape or pattern of the laser beam at that point and its relative power. These alignments are further compounded in that the laser beams generated are not visible to the unaided human eye. Such beams are also often of relatively high power levels, and are thereby a significant hazard to the eyes of the aligner. Obvious an invisible beam makes it nearly impossible to align laser system without some form of optical assistance. The predominant method of visually aligning the laser beam delivery is the use of thermal paper, paper cards or fluorescing card material. The use of paper products which have limited power handling capability or coated plastics can produce significant debris and contaminants within the beam line that ultimately damage the optics. The use of the cards can also create significant laser light scatter jeopardizing the safety of the person aligning the system. This paper covers a new safety mirror design for use with at various UV and Near IR wavelengths (193 nm to 1064 nm) within laser beam delivery systems and how its use can provide benefits covering eye safety, precise alignment and beam diagnostics.
Photothermal camera port accessory for microscopic thermal diffusivity imaging
NASA Astrophysics Data System (ADS)
Escola, Facundo Zaldívar; Kunik, Darío; Mingolo, Nelly; Martínez, Oscar Eduardo
2016-06-01
The design of a scanning photothermal accessory is presented, which can be attached to the camera port of commercial microscopes to measure thermal diffusivity maps with micrometer resolution. The device is based on the thermal expansion recovery technique, which measures the defocusing of a probe beam due to the curvature induced by the local heat delivered by a focused pump beam. The beam delivery and collecting optics are built using optical fiber technology, resulting in a robust optical system that provides collinear pump and probe beams without any alignment adjustment necessary. The quasiconfocal configuration for the signal collection using the same optical fiber sets very restrictive conditions on the positioning and alignment of the optical components of the scanning unit, and a detailed discussion of the design equations is presented. The alignment procedure is carefully described, resulting in a system so robust and stable that no further alignment is necessary for the day-to-day use, becoming a tool that can be used for routine quality control, operated by a trained technician.
Cryo-tomography Tilt-series Alignment with Consideration of the Beam-induced Sample Motion
Fernandez, Jose-Jesus; Li, Sam; Bharat, Tanmay A. M.; Agard, David A.
2018-01-01
Recent evidence suggests that the beam-induced motion of the sample during tilt-series acquisition is a major resolution-limiting factor in electron cryo-tomography (cryoET). It causes suboptimal tilt-series alignment and thus deterioration of the reconstruction quality. Here we present a novel approach to tilt-series alignment and tomographic reconstruction that considers the beam-induced sample motion through the tilt-series. It extends the standard fiducial-based alignment approach in cryoET by introducing quadratic polynomials to model the sample motion. The model can be used during reconstruction to yield a motion-compensated tomogram. We evaluated our method on various datasets with different sample sizes. The results demonstrate that our method could be a useful tool to improve the quality of tomograms and the resolution in cryoET. PMID:29410148
Simulator scene display evaluation device
NASA Technical Reports Server (NTRS)
Haines, R. F. (Inventor)
1986-01-01
An apparatus for aligning and calibrating scene displays in an aircraft simulator has a base on which all of the instruments for the aligning and calibrating are mounted. Laser directs beam at double right prism which is attached to pivoting support on base. The pivot point of the prism is located at the design eye point (DEP) of simulator during the aligning and calibrating. The objective lens in the base is movable on a track to follow the laser beam at different angles within the field of vision at the DEP. An eyepiece and a precision diopter are movable into a position behind the prism during the scene evaluation. A photometer or illuminometer is pivotable about the pivot into and out of position behind the eyepiece.
Jones, N.E.
1988-03-10
Apparatus for providing automatic alignment of beam devices having an associated structure for directing, collimating, focusing, reflecting, or otherwise modifying the main beam. A reference laser is attached to the structure enclosing the main beam producing apparatus and produces a reference beam substantially parallel to the main beam. Detector modules containing optical switching devices and optical detectors are positioned in the path of the reference beam and are effective to produce an electrical output indicative of the alignment of the main beam. This electrical output drives servomotor operated adjustment screws to adjust the position of elements of the structure associated with the main beam to maintain alignment of the main beam. 5 figs.
Jones, Nelson E.
1990-01-01
Apparatus for providing automatic alignment of beam devices having an associated structure for directing, collimating, focusing, reflecting, or otherwise modifying the main beam. A reference laser is attached to the structure enclosing the main beam producing apparatus and produces a reference beam substantially parallel to the main beam. Detector modules containing optical switching devices and optical detectors are positioned in the path of the reference beam and are effective to produce an electrical output indicative of the alignment of the main beam. This electrical output drives servomotor operated adjustment screws to adjust the position of elements of the structure associated with the main beam to maintain alignment of the main beam.
Automatic alignment of double optical paths in excimer laser amplifier
NASA Astrophysics Data System (ADS)
Wang, Dahui; Zhao, Xueqing; Hua, Hengqi; Zhang, Yongsheng; Hu, Yun; Yi, Aiping; Zhao, Jun
2013-05-01
A kind of beam automatic alignment method used for double paths amplification in the electron pumped excimer laser system is demonstrated. In this way, the beams from the amplifiers can be transferred along the designated direction and accordingly irradiate on the target with high stabilization and accuracy. However, owing to nonexistence of natural alignment references in excimer laser amplifiers, two cross-hairs structure is used to align the beams. Here, one crosshair put into the input beam is regarded as the near-field reference while the other put into output beam is regarded as the far-field reference. The two cross-hairs are transmitted onto Charge Coupled Devices (CCD) by image-relaying structures separately. The errors between intersection points of two cross-talk images and centroid coordinates of actual beam are recorded automatically and sent to closed loop feedback control mechanism. Negative feedback keeps running until preset accuracy is reached. On the basis of above-mentioned design, the alignment optical path is built and the software is compiled, whereafter the experiment of double paths automatic alignment in electron pumped excimer laser amplifier is carried through. Meanwhile, the related influencing factors and the alignment precision are analyzed. Experimental results indicate that the alignment system can achieve the aiming direction of automatic aligning beams in short time. The analysis shows that the accuracy of alignment system is 0.63μrad and the beam maximum restoration error is 13.75μm. Furthermore, the bigger distance between the two cross-hairs, the higher precision of the system is. Therefore, the automatic alignment system has been used in angular multiplexing excimer Main Oscillation Power Amplification (MOPA) system and can satisfy the requirement of beam alignment precision on the whole.
Beam/seam alignment control for electron beam welding
Burkhardt, Jr., James H.; Henry, J. James; Davenport, Clyde M.
1980-01-01
This invention relates to a dynamic beam/seam alignment control system for electron beam welds utilizing video apparatus. The system includes automatic control of workpiece illumination, near infrared illumination of the workpiece to limit the range of illumination and camera sensitivity adjustment, curve fitting of seam position data to obtain an accurate measure of beam/seam alignment, and automatic beam detection and calculation of the threshold beam level from the peak beam level of the preceding video line to locate the beam or seam edges.
Beam feasibility study of a collimator with in-jaw beam position monitors
NASA Astrophysics Data System (ADS)
Wollmann, Daniel; Nosych, Andriy A.; Valentino, Gianluca; Aberle, Oliver; Aßmann, Ralph W.; Bertarelli, Alessandro; Boccard, Christian; Bruce, Roderik; Burkart, Florian; Calvo, Eva; Cauchi, Marija; Dallocchio, Alessandro; Deboy, Daniel; Gasior, Marek; Jones, Rhodri; Kain, Verena; Lari, Luisella; Redaelli, Stefano; Rossi, Adriana
2014-12-01
At present, the beam-based alignment of the LHC collimators is performed by touching the beam halo with both jaws of each collimator. This method requires dedicated fills at low intensities that are done infrequently and makes this procedure time consuming. This limits the operational flexibility, in particular in the case of changes of optics and orbit configuration in the experimental regions. The performance of the LHC collimation system relies on the machine reproducibility and regular loss maps to validate the settings of the collimator jaws. To overcome these limitations and to allow a continuous monitoring of the beam position at the collimators, a design with jaw-integrated Beam Position Monitors (BPMs) was proposed and successfully tested with a prototype (mock-up) collimator in the CERN SPS. Extensive beam experiments allowed to determine the achievable accuracy of the jaw alignment for single and multi-turn operation. In this paper, the results of these experiments are discussed. The non-linear response of the BPMs is compared to the predictions from electromagnetic simulations. Finally, the measured alignment accuracy is compared to the one achieved with the present collimators in the LHC.
Antares alignment gimbal positioner
NASA Astrophysics Data System (ADS)
Day, R. D.; Viswanathan, V. K.; Saxman, A. C.; Lujan, R. E.; Woodfin, W. C.; Sweatt, W. C.
Antares is a 24-beam 40-TW carbon dioxide (CO2) laser fusion system currently under construction at the Los Alamos National Laboratory. The Antares alignment gimbal positioner (AGP) is an optomechanical instrument that will be used for target alignment and alignment of the 24 laser beams, as well as beam quality assessments. The AGP will be capable of providing pointing, focusing, an wavefront optical path difference, as well as aberration information at both helium neon (He-Ne) and CO2 wavelengths. It is designed to allow the laser beams to be aligned to any position within a 1 cm cube to a tolerance of 10 micrometers.
NASA Astrophysics Data System (ADS)
Nagarajan, Rao M.; Rask, Steven D.
1988-06-01
A hybrid lithography technique is described in which selected levels are fabricated by high resolution direct write electron beam lithography and all other levels are fabricated optically. This technique permits subhalf micron geometries and the site-by-site alignment for each field written by electron beam lithography while still maintaining the high throughput possible with optical lithography. The goal is to improve throughput and reduce overall cost of fabricating MIMIC GaAS chips without compromising device performance. The lithography equipment used for these experiments is the Cambridge Electron beam vector scan system EBMF 6.4 capable of achieving ultra high current densities with a beam of circular cross section and a gaussian intensity profile operated at 20 kev. The optical aligner is a Karl Suss Contact aligner. The flexibility of the Cambridge electron beam system is matched to the less flexible Karl Suss contact aligner. The lithography related factors, such as image placement, exposure and process related analyses, which influence overlay, pattern quality and performance, are discussed. A process chip containing 3.2768mm fields in an eleven by eleven array was used for alignment evaluation on a 3" semi-insulating GaAS wafer. Each test chip contained five optical verniers and four Prometrix registration marks per field along with metal bumps for alignment marks. The process parameters for these chips are identical to those of HEMT/epi-MESFET ohmic contact and gate layer processes. These layers were used to evaluate the overlay accuracy because of their critical alignment and dimensional control requirements. Two cases were examined: (1) Electron beam written gate layers aligned to optically imaged ohmic contact layers and (2) Electron beam written gate layers aligned to electron beam written ohmic contact layers. The effect of substrate charging by the electron beam is also investigated. The resulting peak overlay error accuracies are: (1) Electron beam to optical with t 0.2μm (2 sigma) and (2) Electron beam to electron beam with f 0.lμm (2 sigma). These results suggest that the electron beam/optical hybrid lithography techniques could be used for MIMIC volume production as alignment tolerances required by GaAS chips are met in both cases. These results are discussed in detail.
Plana-Ruiz, S; Portillo, J; Estradé, S; Peiró, F; Kolb, Ute; Nicolopoulos, S
2018-06-06
A general method to set illuminating conditions for selectable beam convergence and probe size is presented in this work for Transmission Electron Microscopes (TEM) fitted with µs/pixel fast beam scanning control, (S)TEM, and an annular dark field detector. The case of interest of beam convergence and probe size, which enables diffraction pattern indexation, is then used as a starting point in this work to add 100 Hz precession to the beam while imaging the specimen at a fast rate and keeping the projector system in diffraction mode. The described systematic alignment method for the adjustment of beam precession on the specimen plane while scanning at fast rates is mainly based on the sharpness of the precessed STEM image. The complete alignment method for parallel condition and precession, Quasi-Parallel PED-STEM, is presented in block diagram scheme, as it has been tested on a variety of instruments. The immediate application of this methodology is that it renders the TEM column ready for the acquisition of Precessed Electron Diffraction Tomographies (EDT) as well as for the acquisition of slow Precessed Scanning Nanometer Electron Diffraction (SNED). Examples of the quality of the Precessed Electron Diffraction (PED) patterns and PED-STEM alignment images are presented with corresponding probe sizes and convergence angles. Copyright © 2018. Published by Elsevier B.V.
Eigenbeam analysis of the diversity in bat biosonar beampatterns.
Caspers, Philip; Müller, Rolf
2015-03-01
A quantitative analysis of the interspecific variability in bat biosonar beampatterns has been carried out on 267 numerical predictions of emission and reception beampatterns from 98 different species. Since these beampatterns did not share a common orientation, an alignment was necessary to analyze the variability in the shape of the patterns. To achieve this, beampatterns were aligned using a pairwise optimization framework based on a rotation-dependent cost function. The sum of the p-norms between beam-gain functions across frequency served as a figure of merit. For a representative subset of the data, it was found that all pairwise beampattern alignments resulted in a unique global minimum. This minimum was found to be contained in a subset of all possible beampattern rotations that could be predicted by the overall beam orientation. Following alignment, the beampatterns were decomposed into principal components. The average beampattern consisted of a symmetric, positionally static single lobe that narrows and became progressively asymmetric with increasing frequency. The first three "eigenbeams" controlled the beam width of the beampattern across frequency while higher rank eigenbeams account for symmetry and lobe motion. Reception and emission beampatterns could be distinguished (85% correct classification) based on the first 14 eigenbeams.
Sharma, Avnish Kumar; Patidar, Rajesh Kumar; Daiya, Deepak; Joshi, Anandverdhan; Naik, Prasad Anant; Gupta, Parshotam Dass
2013-04-20
In this paper, a new method for alignment of the pinhole of a spatial filter (SF) has been proposed and demonstrated experimentally. The effect of the misalignment of the pinhole on the laser beam profiles has been calculated for circular and elliptical Gaussian laser beams. Theoretical computation has been carried out to illustrate the effect of an intensity mask, placed before the focusing lens of the SF, on the spatial beam profile after the pinhole of the SF. It is shown, both theoretically and experimentally, that a simple intensity mask, consisting of a black dot, can be used to visually align the pinhole with a high accuracy of 5% of the pinhole diameter. The accuracy may be further improved using a computer-based image processing algorithm. Finally, the proposed technique has been demonstrated to align a vacuum SF of a compact 40 J Nd:phosphate glass laser system.
Apparatus for monitoring X-ray beam alignment
Steinmeyer, Peter A.
1991-10-08
A self-contained, hand-held apparatus is provided for minitoring alignment of an X-ray beam in an instrument employing an X-ray source. The apparatus includes a transducer assembly containing a photoresistor for providing a range of electrical signals responsive to a range of X-ray beam intensities from the X-ray beam being aligned. A circuit, powered by a 7.5 VDC power supply and containing an audio frequency pulse generator whose frequency varies with the resistance of the photoresistor, is provided for generating a range of audible sounds. A portion of the audible range corresponds to low X-ray beam intensity. Another portion of the audible range corresponds to high X-ray beam intensity. The transducer assembly may include an a photoresistor, a thin layer of X-ray fluorescent material, and a filter layer transparent to X-rays but opaque to visible light. X-rays from the beam undergoing alignment penetrate the filter layer and excite the layer of fluorescent material. The light emitted from the fluorescent material alters the resistance of the photoresistor which is in the electrical circuit including the audio pulse generator and a speaker. In employing the apparatus, the X-ray beam is aligned to a complete alignment by adjusting the X-ray beam to produce an audible sound of the maximum frequency.
Apparatus for monitoring X-ray beam alignment
Steinmeyer, P.A.
1991-10-08
A self-contained, hand-held apparatus is provided for monitoring alignment of an X-ray beam in an instrument employing an X-ray source. The apparatus includes a transducer assembly containing a photoresistor for providing a range of electrical signals responsive to a range of X-ray beam intensities from the X-ray beam being aligned. A circuit, powered by a 7.5 VDC power supply and containing an audio frequency pulse generator whose frequency varies with the resistance of the photoresistor, is provided for generating a range of audible sounds. A portion of the audible range corresponds to low X-ray beam intensity. Another portion of the audible range corresponds to high X-ray beam intensity. The transducer assembly may include an a photoresistor, a thin layer of X-ray fluorescent material, and a filter layer transparent to X-rays but opaque to visible light. X-rays from the beam undergoing alignment penetrate the filter layer and excite the layer of fluorescent material. The light emitted from the fluorescent material alters the resistance of the photoresistor which is in the electrical circuit including the audio pulse generator and a speaker. In employing the apparatus, the X-ray beam is aligned to a complete alignment by adjusting the X-ray beam to produce an audible sound of the maximum frequency. 2 figures.
Antares Alignment Gimbal Positioner
NASA Astrophysics Data System (ADS)
Day, R. D.; Viswanathan, V. K.; Saxman, A. C.; Lujan, R. E.; Woodfin, G. L.; Sweatt, W. C.
1981-12-01
Antares is a 24-beam 40-TW carbon-dioxide (CO2) laser fusion system currently under construction at the Los Alamos National Laboratory. The Antares alignment gimbal positioner (AGP) is an optomechanical instrument that will be used for target alignment and alignment of the 24 laser beams, as well as beam quality assessments. The AGP will be capable of providing pointing, focusing, and wavefront optical path difference, as well as aberration information at both helium-neon (He-Ne) and CO2 wavelengths. It is designed to allow the laser beams to be aligned to any position within a 1-cm cube to a tolerance of 10 μm.
ACCELERATORS: Beam based alignment of the SSRF storage ring
NASA Astrophysics Data System (ADS)
Zhang, Man-Zhou; Li, Hao-Hu; Jiang, Bo-Cheng; Liu, Gui-Min; Li, De-Ming
2009-04-01
There are 140 beam position monitors (BPMs) in the Shanghai Synchrotron Radiation Facility (SSRF) storage ring used for measuring the closed orbit. As the BPM pickup electrodes are assembled directly on the vacuum chamber, it is important to calibrate the electrical center offset of the BPM to an adjacent quadrupole magnetic center. A beam based alignment (BBA) method which varies individual quadrupole magnet strength and observes its effects on the orbit is used to measure the BPM offsets in both the horizontal and vertical planes. It is a completely automated technique with various data processing methods. There are several parameters such as the strength change of the correctors and the quadrupoles which should be chosen carefully in real measurement. After several rounds of BBA measurement and closed orbit correction, these offsets are set to an accuracy better than 10 μm. In this paper we present the method of beam based calibration of BPMs, the experimental results of the SSRF storage ring, and the error analysis.
Quality control methods for linear accelerator radiation and mechanical axes alignment.
Létourneau, Daniel; Keller, Harald; Becker, Nathan; Amin, Md Nurul; Norrlinger, Bernhard; Jaffray, David A
2018-06-01
The delivery accuracy of highly conformal dose distributions generated using intensity modulation and collimator, gantry, and couch degrees of freedom is directly affected by the quality of the alignment between the radiation beam and the mechanical axes of a linear accelerator. For this purpose, quality control (QC) guidelines recommend a tolerance of ±1 mm for the coincidence of the radiation and mechanical isocenters. Traditional QC methods for assessment of radiation and mechanical axes alignment (based on pointer alignment) are time consuming and complex tasks that provide limited accuracy. In this work, an automated test suite based on an analytical model of the linear accelerator motions was developed to streamline the QC of radiation and mechanical axes alignment. The proposed method used the automated analysis of megavoltage images of two simple task-specific phantoms acquired at different linear accelerator settings to determine the coincidence of the radiation and mechanical isocenters. The sensitivity and accuracy of the test suite were validated by introducing actual misalignments on a linear accelerator between the radiation axis and the mechanical axes using both beam steering and mechanical adjustments of the gantry and couch. The validation demonstrated that the new QC method can detect sub-millimeter misalignment between the radiation axis and the three mechanical axes of rotation. A displacement of the radiation source of 0.2 mm using beam steering parameters was easily detectable with the proposed collimator rotation axis test. Mechanical misalignments of the gantry and couch rotation axes of the same magnitude (0.2 mm) were also detectable using the new gantry and couch rotation axis tests. For the couch rotation axis, the phantom and test design allow detection of both translational and tilt misalignments with the radiation beam axis. For the collimator rotation axis, the test can isolate the misalignment between the beam radiation axis and the mechanical collimator rotation axis from the impact of field size asymmetry. The test suite can be performed in a reasonable time (30-35 min) due to simple phantom setup, prescription-based beam delivery, and automated image analysis. As well, it provides a clear description of the relationship between axes. After testing the sensitivity of the test suite to beam steering and mechanical errors, the results of the test suite were used to reduce the misalignment errors of the linac to less than 0.7-mm radius for all axes. The proposed test suite offers sub-millimeter assessment of the coincidence of the radiation and mechanical isocenters and the test automation reduces complexity with improved efficiency. The test suite results can be used to optimize the linear accelerator's radiation to mechanical isocenter alignment by beam steering and mechanical adjustment of gantry and couch. © 2018 American Association of Physicists in Medicine.
Antares alignment gimbal positioner
DOE Office of Scientific and Technical Information (OSTI.GOV)
Day, R.D.; Viswanathan, V.K.; Saxman, A.C.
1981-01-01
Antares is a 24-beam 40-TW carbon-dioxide (CO/sub 2/) laser fusion system currently under construction at the Los Alamos National Laboratory. The Antares alignment gimbal positioner (AGP) is an optomechanical instrument that will be used for target alignment and alignment of the 24 laser beams, as well as beam quality assessments. The AGP will be capable of providing pointing, focusing, and wavefront optical path difference, as well as aberration information at both helium-neon (He-Ne) and CO/sub 2/ wavelengths. It is designed to allow the laser beams to be aligned to any position within a 1-cm cube to a tolerance of 10more » ..mu..m.« less
Epitaxial pentacene films grown on the surface of ion-beam-processed gate dielectric layer
NASA Astrophysics Data System (ADS)
Chou, W. Y.; Kuo, C. W.; Cheng, H. L.; Mai, Y. S.; Tang, F. C.; Lin, S. T.; Yeh, C. Y.; Horng, J. B.; Chia, C. T.; Liao, C. C.; Shu, D. Y.
2006-06-01
The following research describes the process of fabrication of pentacene films with submicron thickness, deposited by thermal evaporation in high vacuum. The films were fabricated with the aforementioned conditions and their characteristics were analyzed using x-ray diffraction, scanning electron microscopy, polarized Raman spectroscopy, and photoluminescence. Organic thin-film transistors (OTFTs) were fabricated on an indium tin oxide coated glass substrate, using an active layer of ordered pentacene molecules, which were grown at room temperature. Pentacene film was aligned using the ion-beam aligned method, which is typically employed to align liquid crystals. Electrical measurements taken on a thin-film transistor indicated an increase in the saturation current by a factor of 15. Pentacene-based OTFTs with argon ion-beam-processed gate dielectric layers of silicon dioxide, in which the direction of the ion beam was perpendicular to the current flow, exhibited a mobility that was up to an order of magnitude greater than that of the controlled device without ion-beam process; current on/off ratios of approximately 106 were obtained. Polarized Raman spectroscopy investigation indicated that the surface of the gate dielectric layer, treated with argon ion beam, enhanced the intermolecular coupling of pentacene molecules. The study also proposes the explanation for the mechanism of carrier transportation in pentacene films.
Transparent silicon strip sensors for the optical alignment of particle detector systems
NASA Astrophysics Data System (ADS)
Blum, W.; Kroha, H.; Widmann, P.
1996-02-01
Modern large-area precision tracking detectors require increasing accuracy for the alignment of their components. A novel multi-point laser alignment system has been developed for such applications. The position of detector components with respect to reference laser beams is monitored by semi-transparent optical position sensors which work on the principle of silicon strip photodiodes. Two types of custom designed transparent strip sensors, based on crystalline and on amorphous silicon as active material, have been studied. The sensors are optimized for the typical diameters of collimated laser beams of 3-5 mm over distances of 10-20 m. They provide very high position resolution, on the order of 1 μm, uniformly over a wide measurement range of several centimeters. The preparation of the sensor surfaces requires special attention in order to achieve high light transmittance and minimum distortion of the traversing laser beams. At selected wavelengths, produced by laser diodes, transmission rates above 90% have been achieved. This allows to position more than 30 sensors along one laser beam. The sensors will be equipped with custom designed integrated readout electronics.
The stonehenge technique: a new method of crystal alignment for coherent bremsstrahlung experiments
NASA Astrophysics Data System (ADS)
Livingston, Kenneth
2005-08-01
In the coherent bremsstrahlung technique a thin diamond crystal oriented correctly in an electron beam can produce photons with a high degree of linear polarization.1 The crystal is mounted on a goniometer to control its orientation and it is necessary to measure the angular offsets a) between the crystal axes and the goniometer axes and b) between the goniometer and the electron beam axis. A method for measuring these offsets and aligning the crystal was developed by Lohman et al, and has been used successfully in Mainz.2 However, recent attempts to investigate new crystals have shown that this approach has limitations which become more serious at higher beam energies where more accurate setting of the crystal angles, which scale with l/Ebeam, is required. (Eg. the recent installation of coherent bremsstrahlung facility at Jlab, with Ebeam = 6 GeV ) This paper describes a new, more general alignment technique, which overcomes these limitations. The technique is based on scans where the horizontal and vertical rotation axes of the goniometer are adjusted in a series of steps to make the normal to the crystal describe a cone of a given angle. For each step in the scan, the photon energy spectrum is measured using a tagging spectrometer, and the offsets between the electron beam and the crystal lattice are inferred from the resulting 2D plot. Using this method, it is possible to align the crystal with the beam quickly, and hence to set any desired orientation of the crystal relative to the beam. This is essential for any experiment requiring linearly polarized photons produced via coherent bremsstrahlung, and is also required for a systematic study of the channeling radiation produced by the electron beam incident on the crystal.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Hong-Gyu; Lee, Yun-Gun; Jang, Sang Bok
2015-11-15
Hafnium yttrium gallium oxide (HfYGaO) films were applied to liquid crystal displays (LCDs) as liquid crystal (LC) alignment layers, replacing conventional polyimide (PI) layers. The HfYGaO alignment layers were prepared by fabricating solution-processed HfYGaO films, annealing them, and treating them with ion-beam (IB) irradiation. The authors studied the effects of annealing temperature and IB irradiation of the solution-derived HfYGaO films on the orientation of LC molecules. The LC molecules on the solution-derived HfYGaO films were homogeneously and uniformly aligned by IB irradiation, irrespective of the annealing temperature. Atomic force microscopy analyses revealed that the surface reformation of the HfYGaO filmsmore » induced by IB irradiation strengthened the van der Waals force between the LC molecules and the HfYGaO films, leading to uniform LC alignment. Enhanced electro-optical characteristics were observed in the twisted-nematic (TN) LCDs based on IB-irradiated HfYGaO films compared with those of TN-LCDs based on PI layers, demonstrating the high application potential of the proposed solution-derived HfYGaO films as LC alignment layers.« less
Minimal-effort planning of active alignment processes for beam-shaping optics
NASA Astrophysics Data System (ADS)
Haag, Sebastian; Schranner, Matthias; Müller, Tobias; Zontar, Daniel; Schlette, Christian; Losch, Daniel; Brecher, Christian; Roßmann, Jürgen
2015-03-01
In science and industry, the alignment of beam-shaping optics is usually a manual procedure. Many industrial applications utilizing beam-shaping optical systems require more scalable production solutions and therefore effort has been invested in research regarding the automation of optics assembly. In previous works, the authors and other researchers have proven the feasibility of automated alignment of beam-shaping optics such as collimation lenses or homogenization optics. Nevertheless, the planning efforts as well as additional knowledge from the fields of automation and control required for such alignment processes are immense. This paper presents a novel approach of planning active alignment processes of beam-shaping optics with the focus of minimizing the planning efforts for active alignment. The approach utilizes optical simulation and the genetic programming paradigm from computer science for automatically extracting features from a simulated data basis with a high correlation coefficient regarding the individual degrees of freedom of alignment. The strategy is capable of finding active alignment strategies that can be executed by an automated assembly system. The paper presents a tool making the algorithm available to end-users and it discusses the results of planning the active alignment of the well-known assembly of a fast-axis collimator. The paper concludes with an outlook on the transferability to other use cases such as application specific intensity distributions which will benefit from reduced planning efforts.
Effect of Alignment on Transport Properties of Carbon Nanotube/Metallic Junctions
NASA Technical Reports Server (NTRS)
Wincheski, Buzz; Namkung, Min; Smits, Jan; Williams, Phillip; Harvey, Robert
2003-01-01
Ballistic and spin coherent transport in single walled carbon nanotubes (SWCNT) are predicted to enable high sensitivity single-nanotube devices for strain and magnetic field sensing. Based upon these phenomena, electron beam lithography procedures have been developed to study the transport properties of purified HiPCO single walled carbon nanotubes for development into sensory materials for nondestructive evaluation. Purified nanotubes are dispersed in solvent suspension and then deposited on the device substrate before metallic contacts are defined and deposited through electron beam lithography. This procedure produces randomly dispersed ropes, typically 2 - 20 nm in diameter, of single walled carbon nanotubes. Transport and scanning probe microscopy studies have shown a good correlation between the junction resistance and tube density, alignment, and contact quality. In order to improve transport properties of the junctions a technique has been developed to align and concentrate nanotubes at specific locations on the substrate surface. Lithographic techniques are used to define local areas where high frequency electric fields are to be concentrated. Application of the fields while the substrate is exposed to nanotube-containing solution results in nanotube arrays aligned with the electric field lines. A second electron beam lithography layer is then used to deposit metallic contacts across the aligned tubes. Experimental measurements are presented showing the increased tube alignment and improvement in the transport properties of the junctions.
Alignment system for SGII-Up laser facility
NASA Astrophysics Data System (ADS)
Gao, Yanqi; Cui, Yong; Li, Hong; Gong, Lei; Lin, Qiang; Liu, Daizhong; Zhu, Baoqiang; Ma, Weixin; Zhu, Jian; Lin, Zunqi
2018-03-01
The SGII-Up laser facility in Shanghai is one of the most important high-power laser facilities in China. It is designed to obtain 24 kJ (3ω) of energy with a square pulse of 3 ns using eight laser beams (two bundles). To satisfy the requirements for the safety, efficiency, and quality, an alignment system is developed for this facility. This alignment system can perform automatic alignment of the preamplifier system, main amplifier system, and harmonic conversion system within 30 min before every shot during the routine operation of the facility. In this article, an overview of the alignment system is first presented. Then, its alignment characteristics are discussed, along with the alignment process. Finally, experimental results, including the alignment results and the facility performance, are reported. The results show that the far-field beam pointing alignment accuracy is better than 3 μrad, and the alignment error of the near-field beam centering is no larger than 1 mm. These satisfy the design requirements very well.
Research on accuracy analysis of laser transmission system based on Zemax and Matlab
NASA Astrophysics Data System (ADS)
Chen, Haiping; Liu, Changchun; Ye, Haixian; Xiong, Zhao; Cao, Tingfen
2017-05-01
Laser transmission system is important in high power solid-state laser facilities and its function is to transfer and focus the light beam in accordance with the physical function of the facility. This system is mainly composed of transmission mirror modules and wedge lens module. In order to realize the precision alignment of the system, the precision alignment of the system is required to be decomposed into the allowable range of the calibration error of each module. The traditional method is to analyze the error factors of the modules separately, and then the linear synthesis is carried out, and the influence of the multi-module and multi-factor is obtained. In order to analyze the effect of the alignment error of each module on the beam center and focus more accurately, this paper aims to combine with the Monte Carlo random test and ray tracing, analyze influence of multi-module and multi-factor on the center of the beam, and evaluate and optimize the results of accuracy decomposition.
Laser beam centering and pointing system
Rushford, Michael Charles
2015-01-13
An optical instrument aligns an optical beam without the need for physical intervention of the instrument within the apparatus or platforms from which the trajectory of the beam to be ascertained. The alignment apparatus and method enable the desired function to be realized without the placement of physical apertures or sensors directly in the path of the beam through the system whose spatial position and slope is to be sought. An image plane provides the observer with a pair of well-defined images that are indicative of the beam centering and pointing alignment parameters. The optical alignment can be realized without the need for referencing to an external or fixed set of coordinates or fiducials. The instrument can therefore service situations where adverse environments would otherwise prohibit the use of such instruments, including regions of high radiation, high temperature, vacuum and/or cryogenic atmospheres.
Modified alignment CGHs for aspheric surface test
NASA Astrophysics Data System (ADS)
Song, Jae-Bong; Yang, Ho-Soon; Rhee, Hyug-Gyo; Lee, Yun-Woo
2009-08-01
Computer Generated Holograms (CGH) for optical test are commonly consisted of one main pattern for testing aspheric surface and some alignment patterns for aligning the interferometer, CGH, and the test optics. To align the CGH plate and the test optics, we designed the alignment CGHs modified from the cat's eye alignment method, which are consisted of a couple of CGH patterns. The incident beam passed through the one part of the alignment CGH pattern is focused onto the one radius position of the test aspheric surface, and is reflected to the other part, and vice versa. This method has several merits compared to the conventional cat's eye alignment method. First, this method can be used in testing optics with a center hole, and the center part of CGH plate can be assigned to the alignment pattern. Second, the alignment pattern becomes a concentric circular arc pattern. The whole CGH patterns including the main pattern and alignment patterns are consisted of only concentric circular fringes. This concentric circular pattern can be easily made by the polar coordinated writer with circular scanning. The required diffraction angle becomes relatively small, so the 1st order diffraction beams instead of the 3rd order diffraction beam can be used as alignment beams, and the visibility can be improved. This alignment method also is more sensitive to the tilt and the lateral shift of the test aspheric surface. Using this alignment pattern, a 200 mm diameter F/0.5 aspheric mirror and a 600 mm diameter F/0.9 mirror were tested.
Shielded beam delivery apparatus and method
Hershcovitch, Ady; Montano, Rory Dominick
2006-07-11
An apparatus includes a plasma generator aligned with a beam generator for producing a plasma to shield an energized beam. An electrode is coaxially aligned with the plasma generator and followed in turn by a vortex generator coaxially aligned with the electrode. A target is spaced from the vortex generator inside a fluid environment. The electrode is electrically biased relative to the electrically grounded target for driving the plasma toward the target inside a vortex shield.
Liu, Ying; Tan, Xin; Liu, Zhengkun; Xu, Xiangdong; Hong, Yilin; Fu, Shaojun
2008-09-15
Grating beam splitters have been fabricated for soft X-ray Mach- Zehnder interferometer using holographic interference lithography. The grating beam splitter consists of two gratings, one works at X-ray laser wavelength of 13.9 nm with the spatial frequency of 1000 lines/mm as the operation grating, the other works at visible wavelength of 632.8 nm for pre-aligning the X-ray interferometer with the spatial frequency of 22 lines/mm as the pre-alignment grating. The two gratings lie vertically on the same substrate. The main feature of the beam splitter is the use of low-spatial- frequency beat grating of a holographic double frequency grating as the pre-alignment grating of the X-ray interferometer. The grating line parallelism between the two gratings can be judged by observing the diffraction patterns of the pre-alignment grating directly.
Yan, Rui; Edwards, Thomas J; Pankratz, Logan M; Kuhn, Richard J; Lanman, Jason K; Liu, Jun; Jiang, Wen
2015-11-01
In electron tomography, accurate alignment of tilt series is an essential step in attaining high-resolution 3D reconstructions. Nevertheless, quantitative assessment of alignment quality has remained a challenging issue, even though many alignment methods have been reported. Here, we report a fast and accurate method, tomoAlignEval, based on the Beer-Lambert law, for the evaluation of alignment quality. Our method is able to globally estimate the alignment accuracy by measuring the goodness of log-linear relationship of the beam intensity attenuations at different tilt angles. Extensive tests with experimental data demonstrated its robust performance with stained and cryo samples. Our method is not only significantly faster but also more sensitive than measurements of tomogram resolution using Fourier shell correlation method (FSCe/o). From these tests, we also conclude that while current alignment methods are sufficiently accurate for stained samples, inaccurate alignments remain a major limitation for high resolution cryo-electron tomography. Copyright © 2015 Elsevier Inc. All rights reserved.
A fast cross-validation method for alignment of electron tomography images based on Beer-Lambert law
Yan, Rui; Edwards, Thomas J.; Pankratz, Logan M.; Kuhn, Richard J.; Lanman, Jason K.; Liu, Jun; Jiang, Wen
2015-01-01
In electron tomography, accurate alignment of tilt series is an essential step in attaining high-resolution 3D reconstructions. Nevertheless, quantitative assessment of alignment quality has remained a challenging issue, even though many alignment methods have been reported. Here, we report a fast and accurate method, tomoAlignEval, based on the Beer-Lambert law, for the evaluation of alignment quality. Our method is able to globally estimate the alignment accuracy by measuring the goodness of log-linear relationship of the beam intensity attenuations at different tilt angles. Extensive tests with experimental data demonstrated its robust performance with stained and cryo samples. Our method is not only significantly faster but also more sensitive than measurements of tomogram resolution using Fourier shell correlation method (FSCe/o). From these tests, we also conclude that while current alignment methods are sufficiently accurate for stained samples, inaccurate alignments remain a major limitation for high resolution cryo-electron tomography. PMID:26455556
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kwan, Simon; Lei, CM; Menasce, Dario
An all silicon pixel telescope has been assembled and used at the Fermilab Test Beam Facility (FTBF) since 2009 to provide precise tracking information for different test beam experiments with a wide range of Detectors Under Test (DUTs) requiring high resolution measurement of the track impact point. The telescope is based on CMS pixel modules left over from the CMS forward pixel production. Eight planes are arranged to achieve a resolution of less than 8 μm on the 120 GeV proton beam transverse coordinate at the DUT position. In order to achieve such resolution with 100 × 150 μm 2more » pixel cells, the planes were tilted to 25 degrees to maximize charge sharing between pixels. Crucial for obtaining this performance is the alignment software, called Monicelli, specifically designed and optimized for this system. This paper will describe the telescope hardware, the data acquisition system and the alignment software constituting this particle tracking system for test beam users.« less
The pixel tracking telescope at the Fermilab Test Beam Facility
Kwan, Simon; Lei, CM; Menasce, Dario; ...
2016-03-01
An all silicon pixel telescope has been assembled and used at the Fermilab Test Beam Facility (FTBF) since 2009 to provide precise tracking information for different test beam experiments with a wide range of Detectors Under Test (DUTs) requiring high resolution measurement of the track impact point. The telescope is based on CMS pixel modules left over from the CMS forward pixel production. Eight planes are arranged to achieve a resolution of less than 8 μm on the 120 GeV proton beam transverse coordinate at the DUT position. In order to achieve such resolution with 100 × 150 μm 2more » pixel cells, the planes were tilted to 25 degrees to maximize charge sharing between pixels. Crucial for obtaining this performance is the alignment software, called Monicelli, specifically designed and optimized for this system. This paper will describe the telescope hardware, the data acquisition system and the alignment software constituting this particle tracking system for test beam users.« less
Truss beam having convex-curved rods, shear web panels, and self-aligning adapters
NASA Technical Reports Server (NTRS)
Fernandez, Ian M. (Inventor)
2013-01-01
A truss beam comprised of a plurality of joined convex-curved rods with self-aligning adapters (SAA) adhesively attached at each end of the truss beam is disclosed. Shear web panels are attached to adjacent pairs of rods, providing buckling resistance for the truss beam. The rods are disposed adjacent to each other, centered around a common longitudinal axis, and oriented so that adjacent rod ends converge to at least one virtual convergence point on the common longitudinal axis, with the rods' curvature designed to increase prevent buckling for the truss beam. Each SAA has longitudinal bores that provide self-aligning of the rods in the SAA, the self-aligning feature enabling creation of strong adhesive bonds between each SAA and the rods. In certain embodiments of the present invention, pultruded unidirectional carbon fiber rods are coupled with carbon fiber shear web panels and metal SAA(s), resulting in a lightweight, low-cost but strong truss beam that is highly resistant to buckling.
Design Study for Ground-Based Atmospheric Lidar System.
1980-09-29
Diameter: 36 inches with center hole to pass telescope focus Material: Pyrex, Zerodur or equivalent f/number: f/4 Secondary Mirror : Diameter: 10...Measurement of Atmospheric Molecular Density Transmitter Section (includes Laser, Beam Expander and 45 Mirror ) Receiving Telescope (receives...Alignment .. .. ..... 134 6.4 Fixed Autocollimator:Receiver Alignment .. .. ... ....... 136 6.5 Adjustment and Use of Reference Mirrors
Method and apparatus for aligning a solar concentrator using two lasers
Diver Jr., Richard Boyer
2003-07-22
A method and apparatus are provided for aligning the facets of a solar concentrator. A first laser directs a first laser beam onto a selected facet of the concentrator such that a target board positioned adjacent to the first laser at approximately one focal length behind the focal point of the concentrator is illuminated by the beam after reflection thereof off of the selected facet. A second laser, located adjacent to the vertex of the optical axis of the concentrator, is used to direct a second laser beam onto the target board at a target point thereon. By adjusting the selected facet to cause the first beam to illuminate the target point on the target board produced by the second beam, the selected facet can be brought into alignment with the target point. These steps are repeated for other selected facets of the concentrator, as necessary, to provide overall alignment of the concentrator.
Sample holder with optical features
Milas, Mirko; Zhu, Yimei; Rameau, Jonathan David
2013-07-30
A sample holder for holding a sample to be observed for research purposes, particularly in a transmission electron microscope (TEM), generally includes an external alignment part for directing a light beam in a predetermined beam direction, a sample holder body in optical communication with the external alignment part and a sample support member disposed at a distal end of the sample holder body opposite the external alignment part for holding a sample to be analyzed. The sample holder body defines an internal conduit for the light beam and the sample support member includes a light beam positioner for directing the light beam between the sample holder body and the sample held by the sample support member.
Transmission electron microscope sample holder with optical features
Milas, Mirko [Port Jefferson, NY; Zhu, Yimei [Stony Brook, NY; Rameau, Jonathan David [Coram, NY
2012-03-27
A sample holder for holding a sample to be observed for research purposes, particularly in a transmission electron microscope (TEM), generally includes an external alignment part for directing a light beam in a predetermined beam direction, a sample holder body in optical communication with the external alignment part and a sample support member disposed at a distal end of the sample holder body opposite the external alignment part for holding a sample to be analyzed. The sample holder body defines an internal conduit for the light beam and the sample support member includes a light beam positioner for directing the light beam between the sample holder body and the sample held by the sample support member.
NASA Astrophysics Data System (ADS)
Liu, Ling
The primary goal of this research is the analysis, development, and experimental demonstration of an adaptive phase-locked fiber array system for free-space optical communications and laser beam projection applications. To our knowledge, the developed adaptive phase-locked system composed of three fiber collimators (subapertures) with tip-tilt wavefront phase control at each subaperture represents the first reported fiber array system that implements both phase-locking control and adaptive wavefront tip-tilt control capabilities. This research has also resulted in the following innovations: (a) The first experimental demonstration of a phase-locked fiber array with tip-tilt wave-front aberration compensation at each fiber collimator; (b) Development and demonstration of the fastest currently reported stochastic parallel gradient descent (SPGD) system capable of operation at 180,000 iterations per second; (c) The first experimental demonstration of a laser communication link based on a phase-locked fiber array; (d) The first successful experimental demonstration of turbulence and jitter-induced phase distortion compensation in a phase-locked fiber array optical system; (e) The first demonstration of laser beam projection onto an extended target with a randomly rough surface using a conformal adaptive fiber array system. Fiber array optical systems, the subject of this study, can overcome some of the draw-backs of conventional monolithic large-aperture transmitter/receiver optical systems that are usually heavy, bulky, and expensive. The primary experimental challenges in the development of the adaptive phased-locked fiber-array included precise (<5 microrad) alignment of the fiber collimators and development of fast (100kHz-class) phase-locking and wavefront tip-tilt control systems. The precise alignment of the fiber collimator array is achieved through a specially developed initial coarse alignment tool based on high precision piezoelectric picomotors and a dynamic fine alignment mechanism implemented with specially designed and manufactured piezoelectric fiber positioners. Phase-locking of the fiber collimators is performed by controlling the phases of the output beams (beamlets) using integrated polarization-maintaining (PM) fiber-coupled LiNbO3 phase shifters. The developed phase-locking controllers are based on either the SPGD algorithm or the multi-dithering technique. Subaperture wavefront phase tip-tilt control is realized using piezoelectric fiber positioners that are controlled using a computer-based SPGD controller. Both coherent (phase-locked) and incoherent beam combining in the fiber array system are analyzed theoretically and experimentally. Two special fiber-based beam-combining testbeds have been built to demonstrate the technical feasibility of phase-locking compensation prior to free-space operation. In addition, the reciprocity of counter-propagating beams in a phase-locked fiber array system has been investigated. Coherent beam combining in a phase-locking system with wavefront phase tip-tilt compensation at each subaperture is successfully demonstrated when laboratory-simulated turbulence and wavefront jitters are present in the propagation path of the beamlets. In addition, coherent beam combining with a non-cooperative extended target in the control loop is successfully demonstrated.
Permanent bending and alignment of ZnO nanowires.
Borschel, Christian; Spindler, Susann; Lerose, Damiana; Bochmann, Arne; Christiansen, Silke H; Nietzsche, Sandor; Oertel, Michael; Ronning, Carsten
2011-05-06
Ion beams can be used to permanently bend and re-align nanowires after growth. We have irradiated ZnO nanowires with energetic ions, achieving bending and alignment in different directions. Not only the bending of single nanowires is studied in detail, but also the simultaneous alignment of large ensembles of ZnO nanowires. Computer simulations reveal how the bending is initiated by ion beam induced damage. Detailed structural characterization identifies dislocations to relax stresses and make the bending and alignment permanent, even surviving annealing procedures.
Bae, Youngchul
2016-05-23
An optical sensor such as a laser range finder (LRF) or laser displacement meter (LDM) uses reflected and returned laser beam from a target. The optical sensor has been mainly used to measure the distance between a launch position and the target. However, optical sensor based LRF and LDM have numerous and various errors such as statistical errors, drift errors, cyclic errors, alignment errors and slope errors. Among these errors, an alignment error that contains measurement error for the strength of radiation of returned laser beam from the target is the most serious error in industrial optical sensors. It is caused by the dependence of the measurement offset upon the strength of radiation of returned beam incident upon the focusing lens from the target. In this paper, in order to solve these problems, we propose a novel method for the measurement of the output of direct current (DC) voltage that is proportional to the strength of radiation of returned laser beam in the received avalanche photo diode (APD) circuit. We implemented a measuring circuit that is able to provide an exact measurement of reflected laser beam. By using the proposed method, we can measure the intensity or strength of radiation of laser beam in real time and with a high degree of precision.
Bae, Youngchul
2016-01-01
An optical sensor such as a laser range finder (LRF) or laser displacement meter (LDM) uses reflected and returned laser beam from a target. The optical sensor has been mainly used to measure the distance between a launch position and the target. However, optical sensor based LRF and LDM have numerous and various errors such as statistical errors, drift errors, cyclic errors, alignment errors and slope errors. Among these errors, an alignment error that contains measurement error for the strength of radiation of returned laser beam from the target is the most serious error in industrial optical sensors. It is caused by the dependence of the measurement offset upon the strength of radiation of returned beam incident upon the focusing lens from the target. In this paper, in order to solve these problems, we propose a novel method for the measurement of the output of direct current (DC) voltage that is proportional to the strength of radiation of returned laser beam in the received avalanche photo diode (APD) circuit. We implemented a measuring circuit that is able to provide an exact measurement of reflected laser beam. By using the proposed method, we can measure the intensity or strength of radiation of laser beam in real time and with a high degree of precision. PMID:27223291
Master dye laser oscillator including a specific grating assembly for use therein
Davin, James M.
1992-01-01
A dye laser oscillator for producing a tuned dye beam is disclosed herein and includes, among other components, a beam output coupling assembly, a dye cell assembly, a beam expander assembly, an etalon assembly, and a grating assembly. Each of three assemblies is vertically supported from a horizontal base so as to be readily removable from the base without interference from or interfering with the other assemblies. The particular grating assembly disclosed is specifically designed for proper optical alignment with the intended path of the dye beam to be produced and for accurate pivotal movement relative to the beam path in order to function as a coarse tuning mechanism in the production of the ultimately tuned beam.
Master dye laser oscillator including a specific grating assembly for use therein
Davin, J.M.
1992-09-01
A dye laser oscillator for producing a tuned dye beam is disclosed herein and includes, among other components, a beam output coupling assembly, a dye cell assembly, a beam expander assembly, an etalon assembly, and a grating assembly. Each of three assemblies is vertically supported from a horizontal base so as to be readily removable from the base without interference from or interfering with the other assemblies. The particular grating assembly disclosed is specifically designed for proper optical alignment with the intended path of the dye beam to be produced and for accurate pivotal movement relative to the beam path in order to function as a coarse tuning mechanism in the production of the ultimately tuned beam. 5 figs.
Patton, Gail Y.; Torgerson, Darrel D.
1987-01-01
An alignment reference device provides a collimated laser beam that minimizes angular deviations therein. A laser beam source outputs the beam into a single mode optical fiber. The output end of the optical fiber acts as a source of radiant energy and is positioned at the focal point of a lens system where the focal point is positioned within the lens. The output beam reflects off a mirror back to the lens that produces a collimated beam.
Graphene electron cannon: High-current edge emission from aligned graphene sheets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Jianlong; Li, Nannan; Guo, Jing
2014-01-13
High-current field emitters are made by graphene paper consist of aligned graphene sheets. Field emission luminance pattern shows that their electron beams can be controlled by rolling the graphene paper from sheet to cylinder. These specific electron beams would be useful to vacuum devices and electron beam lithograph. To get high-current emission, the graphene paper is rolled to array and form graphene cannon. Due to aligned emission array, graphene cannon have high emission current. Besides high emission current, the graphene cannon is also tolerable with excellent emission stability. With good field emission properties, these aligned graphene emitters bring application insight.
Design and realization of the optical and electron beam alignment system for the HUST-FEL oscillator
NASA Astrophysics Data System (ADS)
Fu, Q.; Tan, P.; Liu, K. F.; Qin, B.; Liu, X.
2018-06-01
A Free Electron Laser(FEL) oscillator with radiation wavelength at 30-100 μ m is under commissioning at Huazhong University of Science and Technology (HUST). This work presents the schematic design and realization procedures for the optical and beam alignment system in the HUST FEL facility. The optical cavity misalignment effects are analyzed with the code OPC + Genesis 1.3, and the tolerance of misalignment is proposed with the simulation result. Depending on undulator mechanical benchmarks, a laser indicating system has been built up as reference datum. The alignment of both optical axis and beam trajectory were achieved by this alignment system.
Template For Aiming An X-Ray Machine
NASA Technical Reports Server (NTRS)
Morphet, W. J.
1994-01-01
Relatively inexpensive template helps in aligning x-ray machine with phenolic ring to be inspected for flaws. Phenolic ring in original application part of rocket nozzle. Concept also applicable to x-ray inspection of other rings. Template contains alignment holes for adjusting orientation, plus target spot for adjusting lateral position, of laser spotting beam. (Laser spotting beam coincides with the x-ray beam, turned on later, after alignment completed.) Use of template decreases positioning time and error, providing consistent sensitivity for detection of flaws.
Static beam-based alignment for the Ring-To-Main-Linac of the Compact Linear Collider
NASA Astrophysics Data System (ADS)
Han, Y.; Latina, A.; Ma, L.; Schulte, D.
2017-06-01
The Compact Linear Collider (CLIC) is a future multi-TeV collider for the post-Large Hadron Collider era. It features high-gradient acceleration and ultra-low emittance to achieve its ambitious goals of high collision energy and peak luminosity. Beam-based alignment (BBA) techniques are mandatory for CLIC to preserve the ultra-low emittances from the damping rings to the interaction point. In this paper, a detailed study of BBA techniques has been carried out for the entire 27 km long ``Ring-To-Main-Linac'' (RTML) section of the CLIC, to correct realistic static errors such as element position offsets, angle, magnetic strength and dynamic magnetic centre shifts. The correction strategy is proved to be very effective and leads to a relaxation of the pre-alignment tolerances for the component installation in the tunnel. This is the first time such a large scale and complex lattice has been corrected to match the design budgets. The techniques proposed could be applied to similarly sized facilities, such as the International Linear Collider, where a similar RTML section is used, or free-electron lasers, which, being equipped with linacs and bunch compressors, present challenges similar to those of the CLIC RTML. Moreover, a new technique is investigated for the emittance tuning procedure: the direct measurement of the interactions between the beams and a set of a few consecutive laser wires. The speed of this technique can be faster comparing to the traditional techniques based on emittance reconstructed from beam size measurements at several positions.
Electrically switchable photonic liquid crystal devices for routing of a polarized light wave
NASA Astrophysics Data System (ADS)
Rushnova, Irina I.; Melnikova, Elena A.; Tolstik, Alexei L.; Muravsky, Alexander A.
2018-04-01
The new mode of LC alignment based on photoalignment AtA-2 azo dye where the refractive interface between orthogonal orientations of the LC director exists without voltage and disappeared or changed with critical voltage has been proposed. The technology to fabricate electrically controlled liquid crystal elements for spatial separation and switching of linearly polarized light beams on the basis of the total internal reflection effect has been significantly improved. Its distinctive feature is the application of a composite alignment material comprising two sublayers of Nylon-6 and AtA-2 photoalignment azo dye offering patterned liquid crystal director orientation with high alignment quality value q = 0 . 998. The fabricated electrically controlled spatially structured liquid crystal devices enable implementation of propagation directions separation for orthogonally polarized light beams and their switching with minimal crosstalk.
Homogeneous alignment of nematic liquid crystals by ion beam etched surfaces
NASA Technical Reports Server (NTRS)
Wintucky, E. G.; Mahmood, R.; Johnson, D. L.
1979-01-01
A wide range of ion beam etch parameters capable of producing uniform homogeneous alignment of nematic liquid crystals on SiO2 films are discussed. The alignment surfaces were generated by obliquely incident (angles of 5 to 25 deg) argon ions with energies in the range of 0.5 to 2.0 KeV, ion current densities of 0.1 to 0.6 mA sq cm and etch times of 1 to 9 min. A smaller range of ion beam parameters (2.0 KeV, 0.2 mA sq cm, 5 to 10 deg and 1 to 5 min.) were also investigated with ZrO2 films and found suitable for homogeneous alignment. Extinction ratios were very high (1000), twist angles were small ( or = 3 deg) and tilt-bias angles very small ( or = 1 deg). Preliminary scanning electron microscopy results indicate a parallel oriented surface structure on the ion beam etched surfaces which may determine alignment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deadrick, F.J.; Griffith, L.V.
1990-08-17
Flux line alignment of the solenoidal focus magnets used on the ETA-II linear induction accelerator is a key element leading to a reduction of beam corkscrew motion. Two techniques have been used on the ETA-II accelerator to measure and establish magnet alignment. A low energy electron beam has been used to directly map magnetic field lines, and recent work has utilized a pulsed stretched wire technique to measure magnet tilts and offsets with respect to a reference axis. This paper reports on the techniques used in the ETA-II accelerator alignment, and presents results from those measurements which show that acceleratormore » is magnetically aligned to within {approximately}{plus minus}200 microns. 3 refs., 8 figs.« less
Understanding Beam Alignment in a Coherent Lidar System
NASA Technical Reports Server (NTRS)
Prasad, Narasimha S.; Roychoudhari, Chandrasekhar
2015-01-01
Optical beam alignment in a coherent lidar (or ladar) receiver system plays a critical role in optimizing its performance. Optical alignment in a coherent lidar system dictates the wavefront curvature (phase front) and Poynting vector) matching of the local oscillator beam with the incoming receiver beam on a detector. However, this alignment is often not easy to achieve and is rarely perfect. Furthermore, optical fibers are being increasingly used in coherent lidar system receivers for transporting radiation to achieve architectural elegance. Single mode fibers also require stringent mode matching for efficient light coupling. The detector response characteristics vary with the misalignment of the two pointing vectors. Misalignment can lead to increase in DC current. Also, a lens in front of the detector may exasperate phase front and Poynting vector mismatch. Non-Interaction of Waves, or the NIW property indicates the light beams do not interfere by themselves in the absence of detecting dipoles. In this paper, we will analyze the extent of misalignment on the detector specifications using pointing vectors of mixing beams in light of the NIW property.
Integrated wide-angle scanner based on translating a curved mirror of acylindrical shape.
Sabry, Yasser M; Khalil, Diaa; Saadany, Bassam; Bourouina, Tarik
2013-06-17
A wide angle microscanning architecture is presented in which the angular deflection is achieved by displacing the principle axis of a curved silicon micromirror of acylindrical shape, with respect to the incident beam optical axis. The micromirror curvature is designed to overcome the possible deformation of the scanned beam spot size during scanning. In the presented architecture, the optical axis of the beam lays in-plane with respect to the substrate opening the door for a completely integrated and self-aligned miniaturized scanner. A micro-optical bench scanning device, based on translating a 200 μm focal length micromirror by an electrostatic comb-drive actuator, is implemented on a silicon chip. The microelectromechanical system has a resonance frequency of 329 Hz and a quality factor of 22. A single-mode optical fiber is used as the optical source and inserted into a micromachined groove fabricated and lithographically aligned with the microbench. Optical deflection angles up to 110 degrees are demonstrated.
Beam based alignment and its relevance in Indus-2.
Jena, Saroj Kumar; Husain, Riyasat; Gandhi, M L; Agrawal, R K; Yadav, S; Ghodke, A D
2015-09-01
Initially in the Indus-2 storage ring, the closed orbit distortion (COD) could be best corrected to 1.3 mm rms in the horizontal and 0.43 mm rms in the vertical plane. The strength of the corrector magnets required high values for COD correction. This revealed that offsets in COD readout by the beam position monitors (BPMs) played a role in not achieving a rms COD lower than the above value. Thus, the offset between the electrical center of BPMs and the magnetic center of the nearest quadrupole magnet could be estimated using the beam based alignment (BBA) method. It prefers that the quadrupole magnet is able to be controlled individually and active shunt power supply (ASPS) system was designed for this purpose that works efficiently. This paper describes the methodology of BBA, topology of ASPS and its performance, and COD minimization using the measured BPM offsets. After BBA, the COD could be reduced to 0.45 mm rms and 0.2 mm rms in horizontal and vertical planes, respectively.
Beam based alignment and its relevance in Indus-2
NASA Astrophysics Data System (ADS)
Jena, Saroj Kumar; Husain, Riyasat; Gandhi, M. L.; Agrawal, R. K.; Yadav, S.; Ghodke, A. D.
2015-09-01
Initially in the Indus-2 storage ring, the closed orbit distortion (COD) could be best corrected to 1.3 mm rms in the horizontal and 0.43 mm rms in the vertical plane. The strength of the corrector magnets required high values for COD correction. This revealed that offsets in COD readout by the beam position monitors (BPMs) played a role in not achieving a rms COD lower than the above value. Thus, the offset between the electrical center of BPMs and the magnetic center of the nearest quadrupole magnet could be estimated using the beam based alignment (BBA) method. It prefers that the quadrupole magnet is able to be controlled individually and active shunt power supply (ASPS) system was designed for this purpose that works efficiently. This paper describes the methodology of BBA, topology of ASPS and its performance, and COD minimization using the measured BPM offsets. After BBA, the COD could be reduced to 0.45 mm rms and 0.2 mm rms in horizontal and vertical planes, respectively.
Micro-beam Laue alignment of multi-reflection Bragg coherent diffraction imaging measurements
Hofmann, Felix; Phillips, Nicholas W.; Harder, Ross J.; ...
2017-08-08
Multi-reflection Bragg coherent diffraction imaging has the potential to allow three-dimensional (3D) resolved measurements of the full lattice strain tensor in specific micro-crystals. Until now such measurements were hampered by the need for laborious, time-intensive alignment procedures. Here, in this paper, a different approach is demonstrated, using micro-beam Laue X-ray diffraction to first determine the lattice orientation of the micro-crystal. This information is then used to rapidly align coherent diffraction measurements of three or more reflections from the crystal. Based on these, 3D strain and stress fields in the crystal are successfully determined. This approach is demonstrated on a focusedmore » ion beam milled micro-crystal from which six reflections could be measured. Since information from more than three independent reflections is available, the reliability of the phases retrieved from the coherent diffraction data can be assessed. Lastly, our results show that rapid, reliable 3D coherent diffraction measurements of the full lattice strain tensor in specific micro-crystals are now feasible and can be successfully carried out even in heavily distorted samples.« less
Micro-beam Laue alignment of multi-reflection Bragg coherent diffraction imaging measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hofmann, Felix; Phillips, Nicholas W.; Harder, Ross J.
Multi-reflection Bragg coherent diffraction imaging has the potential to allow three-dimensional (3D) resolved measurements of the full lattice strain tensor in specific micro-crystals. Until now such measurements were hampered by the need for laborious, time-intensive alignment procedures. Here, in this paper, a different approach is demonstrated, using micro-beam Laue X-ray diffraction to first determine the lattice orientation of the micro-crystal. This information is then used to rapidly align coherent diffraction measurements of three or more reflections from the crystal. Based on these, 3D strain and stress fields in the crystal are successfully determined. This approach is demonstrated on a focusedmore » ion beam milled micro-crystal from which six reflections could be measured. Since information from more than three independent reflections is available, the reliability of the phases retrieved from the coherent diffraction data can be assessed. Lastly, our results show that rapid, reliable 3D coherent diffraction measurements of the full lattice strain tensor in specific micro-crystals are now feasible and can be successfully carried out even in heavily distorted samples.« less
Micro-beam Laue alignment of multi-reflection Bragg coherent diffraction imaging measurements.
Hofmann, Felix; Phillips, Nicholas W; Harder, Ross J; Liu, Wenjun; Clark, Jesse N; Robinson, Ian K; Abbey, Brian
2017-09-01
Multi-reflection Bragg coherent diffraction imaging has the potential to allow three-dimensional (3D) resolved measurements of the full lattice strain tensor in specific micro-crystals. Until now such measurements were hampered by the need for laborious, time-intensive alignment procedures. Here a different approach is demonstrated, using micro-beam Laue X-ray diffraction to first determine the lattice orientation of the micro-crystal. This information is then used to rapidly align coherent diffraction measurements of three or more reflections from the crystal. Based on these, 3D strain and stress fields in the crystal are successfully determined. This approach is demonstrated on a focused ion beam milled micro-crystal from which six reflections could be measured. Since information from more than three independent reflections is available, the reliability of the phases retrieved from the coherent diffraction data can be assessed. Our results show that rapid, reliable 3D coherent diffraction measurements of the full lattice strain tensor in specific micro-crystals are now feasible and can be successfully carried out even in heavily distorted samples.
Micro-beam Laue Alignment of Multi-Reflection Bragg Coherent Diffraction Imaging Measurements
Hofmann, Felix; Phillips, Nicholas W.; Harder, Ross J.; Liu, Wenjun; Clark, Jesse N.; Robinson, Ian K.; Abbey, Brian
2017-01-01
Multi-reflection Bragg coherent diffraction imaging has the potential to allow 3D resolved measurements of the full lattice strain tensor in specific micro-crystals. Until now such measurements were hampered by the need for laborious, time-intensive alignment procedures. Here we demonstrate a different approach, using micro-beam Laue X-ray diffraction to first determine the lattice orientation of the micro-crystal. This information is then used to rapidly align coherent diffraction measurements of three or more reflections from the crystal. Based on these, 3D strain and stress fields in the crystal are successfully determined. This approach is demonstrated on a focussed ion beam milled micro-crystal from which six reflections could be measured. Since information from more than three independent reflections is available, the reliability of the phases retrieved from the coherent diffraction data can be assessed. Our results show that rapid, reliable 3D coherent diffraction measurements of the full lattice strain tensor in specific micro-crystals are now feasible and can be successfully carried out even in heavily distorted samples. PMID:28862628
Growth of biaxially textured template layers using ion beam assisted deposition
NASA Astrophysics Data System (ADS)
Park, Seh-Jin
A two-step IBAD (ion beam assisted deposition) method is investigated, and compared to the conventional IBAD methods. The two step method uses surface energy anisotropy to achieve uniaxial texture and ion beam irradiation for biaxial texture. The biaxial texture was achieved by selective surface etching and enhanced by grain overgrowth. In this method, biaxial texture alignment is performed on a (001) uniaxially textured buffer layer. The material selected for achieving uniaxial texture, YBCO (YBa2Cu3O7-x), has strong surface energy anisotropy. YBCO is chemically susceptible to the reaction with the adjacent layer. Yttria stabilized zirconia (YSZ) was used to prevent the reaction between YBCO and the substrates (polycrystalline Ni alloy [Hastelloy] and amorphous SiNx/Si). A SrTiO3 layer was deposited on the uniaxially textured YBCO layer to retard stoichiometry change with subsequent processing. STO is well lattice matched with YBCO. A top layer of Ni was then deposited. The Ni layer was used for studying the effect of grain overgrowth. The obtained uniaxial Ni films were used for subsequent ion beam processing. Ar ion beam irradiation onto the uniaxially textured Ni film was used to study the effect of selective grain etching in achieving in-plane aligned Ni grains. Additional Ni deposition induces the overgrowth of the in-plane aligned Ni grains and, finally, the overall in-plane alignment. The in-plane alignment is examined with XRD phi scan. The effect of surface polarity of insulating oxide substrates on the epitaxial growth behavior was investigated. The lattice strain energy was the most important factor for determining the orientation of Ni films on a non-polar surface. However, for a polar surface, the surface energy plays an important role in determining the final orientation of the Ni films based on the experimental and theoretical results. Y2O3 growth behavior was also studied. The lattice strain energy is the most important factor for Y2O3 growth on single crystalline substrates. The surface energy anisotropy is the most important factor for the growth on amorphous substrates. The XRD phi scan study shows that Ar ion beam irradiation with favorable angle of incidence enhances the in-plane alignment of Y2O3 films grown on randomly oriented substrates due to the ion channeling.
Polar POLICRYPS diffractive structures generate cylindrical vector beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alj, Domenico; Caputo, Roberto, E-mail: roberto.caputo@fis.unical.it; Umeton, Cesare
2015-11-16
Local shaping of the polarization state of a light beam is appealing for a number of applications. This can be achieved by employing devices containing birefringent materials. In this article, we present one such enables converting a uniformly circularly polarized beam into a cylindrical vector beam (CVB). This device has been fabricated by exploiting the POLICRYPS (POlymer-LIquid CRYstals-Polymer-Slices) photocuring technique. It is a liquid-crystal-based optical diffraction grating featuring polar symmetry of the director alignment. We have characterized the resulting CVB profile and polarization for the cases of left and right circularly polarized incoming beams.
Laser-Beam-Alignment Controller
NASA Technical Reports Server (NTRS)
Krasowski, M. J.; Dickens, D. E.
1995-01-01
In laser-beam-alignment controller, images from video camera compared to reference patterns by fuzzy-logic pattern comparator. Results processed by fuzzy-logic microcontroller, which sends control signals to motor driver adjusting lens and pinhole in spatial filter.
Johnson, Steve A.; Shannon, Robert R.
1987-01-01
Diagnostic apparatus for use in determining the proper alignment of a plurality of laser beams onto a fiber optics interface is disclosed. The apparatus includes a lens assembly which serves two functions, first to focus a plurality of laser beams onto the fiber optics interface, and secondly to reflect and image the interface using scattered light to a monitor means. The monitor means permits indirect observation of the alignment or focusing of the laser beams onto the fiber optics interface.
Johnson, S.A.; Shannon, R.R.
1985-01-18
Diagnostic apparatus for use in determining the proper alignment of a plurality of laser beams onto a fiber optics interface is disclosed. The apparatus includes a lens assembly which serves two functions, first to focus a plurality of laser beams onto the fiber optics interface, and secondly to reflect and image the interface using scattered light to a monitor means. The monitor means permits indirect observation of the alignment or focusing of the laser beams onto the fiber optics interface.
NASA Astrophysics Data System (ADS)
Kawai, Kotaro; Sakamoto, Moritsugu; Noda, Kohei; Sasaki, Tomoyuki; Kawatsuki, Nobuhiro; Ono, Hiroshi
2017-01-01
A tunable dichroic polarization beam splitter (tunable DPBS) simultaneously performs the follow functions: 1. Separation of a polarized incident beam into multiple pairs of orthogonally polarized beams; 2. Separation of the propagation direction of two wavelength incident beams after passing through the tunable DPBS; and 3. Control of both advanced polarization and wavelength separation capabilities by varying the temperature of the tunable DPBS. This novel complex optical property is realized by diffraction phenomena using a designed three-dimensional periodic structure of aligned liquid crystals in the tunable DPBS, which was fabricated quickly with precision in a one-step photoalignment using four-beam polarization interferometry. In experiments, we demonstrated that these diffraction properties are obtained by entering polarized beams of wavelengths 532 nm and 633 nm onto the tunable DPBS. These diffraction properties are described using the Jones calculus in a polarization propagation analysis. Of significance is that the aligned liquid crystal structure needed to obtain these diffraction properties was proposed based on a theoretical analysis, and these properties were then demonstrated experimentally. The tunable DPBS can perform several functions of a number of optical elements such as wave plates, polarization beam splitter, dichroic beam splitter, and tunable wavelength filter. Therefore, the tunable DPBS can contribute to greater miniaturization, sophistication, and cost reduction of optical systems used widely in applications, such as optical measurements, communications, and information processing.
Ultracompact high-efficiency polarising beam splitter based on silicon nanobrick arrays.
Zheng, Guoxing; Liu, Guogen; Kenney, Mitchell Guy; Li, Zile; He, Ping'an; Li, Song; Ren, Zhi; Deng, Qiling
2016-03-21
Since the transmission of anisotropic nano-structures is sensitive to the polarisation of an incident beam, a novel polarising beam splitter (PBS) based on silicon nanobrick arrays is proposed. With careful design of such structures, an incident beam with polarisation direction aligned with the long axis of the nanobrick is almost totally reflected (~98.5%), whilst that along the short axis is nearly totally transmitted (~94.3%). More importantly, by simply changing the width of the nanobrick we can shift the peak response wavelength from 1460 nm to 1625 nm, covering S, C and L bands of the fiber telecommunications windows. The silicon nanobrick-based PBS can find applications in many fields which require ultracompactness, high efficiency, and compatibility with semiconductor industry technologies.
Bending Behavior of Plain-Woven Fabric Air Beams: Fluid-Structure Interaction Approach
2006-09-01
hoses . The warp yarns were aligned in the longitudinal direction of the fire hose and the weft yams, orthogonal to the warp yams, were aligned in the...both terms. Plain-woven air beams typically operate at low-pressure levels (less than those for triaxial-woven or braided air beams) because of safety
Enhanced optical alignment of a digital micro mirror device through Bayesian adaptive exploration
NASA Astrophysics Data System (ADS)
Wynne, Kevin B.; Knuth, Kevin H.; Petruccelli, Jonathan
2017-12-01
As the use of Digital Micro Mirror Devices (DMDs) becomes more prevalent in optics research, the ability to precisely locate the Fourier "footprint" of an image beam at the Fourier plane becomes a pressing need. In this approach, Bayesian adaptive exploration techniques were employed to characterize the size and position of the beam on a DMD located at the Fourier plane. It couples a Bayesian inference engine with an inquiry engine to implement the search. The inquiry engine explores the DMD by engaging mirrors and recording light intensity values based on the maximization of the expected information gain. Using the data collected from this exploration, the Bayesian inference engine updates the posterior probability describing the beam's characteristics. The process is iterated until the beam is located to within the desired precision. This methodology not only locates the center and radius of the beam with remarkable precision but accomplishes the task in far less time than a brute force search. The employed approach has applications to system alignment for both Fourier processing and coded aperture design.
An isocenter estimation tool for proton gantry alignment
NASA Astrophysics Data System (ADS)
Hansen, Peter; Hu, Dongming
2017-12-01
A novel tool has been developed to automate the process of locating the isocenter, center of rotation, and sphere of confusion of a proton therapy gantry. The tool uses a Radian laser tracker to estimate how the coordinate frame of the front-end beam-line components changes as the gantry rotates. The coordinate frames serve as an empirical model of gantry flexing. Using this model, the alignment of the front and back-end beam-line components can be chosen to minimize the sphere of confusion, improving the overall beam positioning accuracy of the gantry. This alignment can be performed without the beam active, improving the efficiency of installing new systems at customer sites.
Optical switch based on the electrically controlled liquid crystal interface.
Komar, Andrei A; Tolstik, Alexei L; Melnikova, Elena A; Muravsky, Alexander A
2015-06-01
The peculiarities of the linearly polarized light beam reflection at the interface within the bulk of a nematic liquid crystal (NLC) cell with different orientations of the director are analyzed. Two methods to create the interface are considered. Combination of the planar and homeotropic orientations of the NLC director is realized by means of a spatially structured electrode under the applied voltage. In-plane patterned azimuthal alignment of the NLC director is created by the patterned rubbing alignment technique. All possible orthogonal orientations of the LC director are considered; the configurations for realization of total internal reflection are determined. The revealed relationship between the propagation of optical beams in a liquid crystal material and polarization of laser radiation has enabled realization of the spatial separation for the orthogonally polarized light beams at the interface between two regions of NLC with different director orientations (domains). Owing to variations in the applied voltage and, hence, in the refractive index gradient, the light beam propagation directions may be controlled electrically.
Investigations into phase effects from diffracted Gaussian beams for high-precision interferometry
NASA Astrophysics Data System (ADS)
Lodhia, Deepali
Gravitational wave detectors are a new class of observatories aiming to detect gravitational waves from cosmic sources. All-reflective interferometer configurations have been proposed for future detectors, replacing transmissive optics with diffractive elements, thereby reducing thermal issues associated with power absorption. However, diffraction gratings introduce additional phase noise, creating more stringent conditions for alignment stability, and further investigations are required into all-reflective interferometers. A suitable mathematical framework using Gaussian modes is required for analysing the alignment stability using diffraction gratings. Such a framework was created, whereby small beam displacements are modelled using a modal technique. It was confirmed that the original modal-based model does not contain the phase changes associated with grating displacements. Experimental tests verified that the phase of a diffracted Gaussian beam is independent of the beam shape. Phase effects were further examined using a rigorous time-domain simulation tool. These findings show that the perceived phase difference is based on an intrinsic change of coordinate system within the modal-based model, and that the extra phase can be added manually to the modal expansion. This thesis provides a well-tested and detailed mathematical framework that can be used to develop simulation codes to model more complex layouts of all-reflective interferometers.
Infrared Smartt Interferometer As An Alignment Tool For Carbon Dioxide Laser Fusion Systems
NASA Astrophysics Data System (ADS)
Viswanathan, V. K.; Bolen, P. D.
1980-11-01
It is essential to minimize the pointing and focusing errors at the focal plane for many applications involving infrared laser systems. In the case of the LASL CO2 laser fusion systems, with two beams in the Gemini System and eight beams in the Helios System, this is particularly important. The LASL Helios CO2 Laser Fusion System has eight 34-cm diameter beams emerging from the power amplifier and each beam is brought to focus by an off-aperture parabola (nearly 77.3-cm focal length) resulting in a nearly F/2.4 beam at the focal plane. The design tolerance at the focal plane for pointing accuracy is +/- 25 microns and for focusing accuracy is +/- 50 microns for this system. This paper describes an alignment scheme based on the use of the infrared Smartt interferometer' and compares the results obtained using this technique and the autocollimating Hartmann scheme2 in a laboratory setup duplicating the target chamber region of one of the beams of the Helios System. The results using the Smartt interferometer show that pointing accuracy of +/- 12.5 microns and focusing accuracies of ± 15 microns are obtained at the focal plane of the system.
Observations of ionospheric electron beams in the plasma sheet.
Zheng, H; Fu, S Y; Zong, Q G; Pu, Z Y; Wang, Y F; Parks, G K
2012-11-16
Electrons streaming along the magnetic field direction are frequently observed in the plasma sheet of Earth's geomagnetic tail. The impact of these field-aligned electrons on the dynamics of the geomagnetic tail is however not well understood. Here we report the first detection of field-aligned electrons with fluxes increasing at ~1 keV forming a "cool" beam just prior to the dissipation of energy in the current sheet. These field-aligned beams at ~15 R(E) in the plasma sheet are nearly identical to those commonly observed at auroral altitudes, suggesting the beams are auroral electrons accelerated upward by electric fields parallel (E([parallel])) to the geomagnetic field. The density of the beams relative to the ambient electron density is δn(b)/n(e)~5-13% and the current carried by the beams is ~10(-8)-10(-7) A m(-2). These beams in high β plasmas with large density and temperature gradients appear to satisfy the Bohm criteria to initiate current driven instabilities.
Inverse multipath fingerprinting for millimeter wave V2I beam alignment.
DOT National Transportation Integrated Search
2017-05-01
Efficient beam alignment is a crucial component in millimeter wave systems with analog beamforming, especially in fast-changing vehicular settings. This paper uses the vehicles position (e.g., available via GPS) to query the multipath fingerprint ...
Lee, Hong-Shik; Kim, Haeng-In; Lee, Sang-Shin
2012-06-10
A compact laser transmitter, which takes advantage of an optical subassembly module, was proposed and demonstrated, providing precisely aligned collinear IR and visible beams. The collimated IR beam acts as a long-range projectile for simulated combat, carrying an optical pulsed signal, whereas the visible beam plays the role of tracking the IR beam. The proposed laser transmitter utilizes IR (λ(1)=905 nm) and visible (λ(2)=660 nm) light sources, a fiber-optic collimator, and a beam combiner, which includes a wavelength division multiplexing (WDM) filter in conjunction with optical fiber. The device was built via the laser welding technique and then evaluated by investigating the characteristics of the generated light beams. The IR collimated beam produced had a Gaussian profile and a divergence angle of ~1.3 mrad, and the visible monitoring beam was appropriately collimated to be readily discernible in the vicinity of the transmitter. The two beams were highly aligned within an angle of 0.004 deg as anticipated. Finally, we performed a practical outdoor field test to assess the IR beam with the help of a receiver. An effective trajectory was observed ranging up to 660 m with an overall detectable beam width of ~60 cm.
Indexing system for optical beam steering
NASA Technical Reports Server (NTRS)
Sullivan, Mark T.; Cannon, David M.; Debra, Daniel B.; Young, Jeffrey A.; Mansfield, Joseph A.; Carmichael, Roger E.; Lissol, Peter S.; Pryor, G. M.; Miklosy, Les G.; Lee, Jeffrey H.
1990-01-01
This paper describes the design and testing of an indexing system for optical-beam steering. The cryogenic beam-steering mechanism is a 360-degree rotation device capable of discrete, high-precision alignment positions. It uses low-precision components for its rough alignment and kinematic design to meet its stringent repeatability and stability requirements (of about 5 arcsec). The principal advantages of this design include a decoupling of the low-precision, large angular motion from the high-precision alignment, and a power-off alignment position that potentially extends the life or hold time of cryogenic systems. An alternate design, which takes advantage of these attributes while reducing overall motion, is also presented. Preliminary test results show the kinematic mount capable of sub-arc second repeatability.
Schmitt, Randal L [Tijeras, NM; Henson, Tammy D [Albuquerque, NM; Krumel, Leslie J [Cedar Crest, NM; Hargis, Jr., Philip J.
2006-06-20
A method to determine the alignment of the transmitter and receiver fields of view of a light detection and ranging (LIDAR) system. This method can be employed to determine the far-field intensity distribution of the transmitter beam, as well as the variations in transmitted laser beam pointing as a function of time, temperature, or other environmental variables that may affect the co-alignment of the LIDAR system components. In order to achieve proper alignment of the transmitter and receiver optical systems when a LIDAR system is being used in the field, this method employs a laser-beam-position-sensing detector as an integral part of the receiver optics of the LIDAR system.
Mask-to-wafer alignment system
Sweatt, William C.; Tichenor, Daniel A.; Haney, Steven J.
2003-11-04
A modified beam splitter that has a hole pattern that is symmetric in one axis and anti-symmetric in the other can be employed in a mask-to-wafer alignment device. The device is particularly suited for rough alignment using visible light. The modified beam splitter transmits and reflects light from a source of electromagnetic radiation and it includes a substrate that has a first surface facing the source of electromagnetic radiation and second surface that is reflective of said electromagnetic radiation. The substrate defines a hole pattern about a central line of the substrate. In operation, an input beam from a camera is directed toward the modified beam splitter and the light from the camera that passes through the holes illuminates the reticle on the wafer. The light beam from the camera also projects an image of a corresponding reticle pattern that is formed on the mask surface of the that is positioned downstream from the camera. Alignment can be accomplished by detecting the radiation that is reflected from the second surface of the modified beam splitter since the reflected radiation contains both the image of the pattern from the mask and a corresponding pattern on the wafer.
Klystron having electrostatic quadrupole focusing arrangement
Maschke, Alfred W.
1983-08-30
A klystron includes a source for emitting at least one electron beam, and an accelerator for accelarating the beam in a given direction through a number of drift tube sections successively aligned relative to one another in the direction of the beam. A number of electrostatic quadrupole arrays are successively aligned relative to one another along at least one of the drift tube sections in the beam direction for focusing the electron beam. Each of the electrostatic quadrupole arrays forms a different quadrupole for each electron beam. Two or more electron beams can be maintained in parallel relationship by the quadrupole arrays, thereby enabling space charge limitations encountered with conventional single beam klystrons to be overcome.
Klystron having electrostatic quadrupole focusing arrangement
Maschke, A.W.
1983-08-30
A klystron includes a source for emitting at least one electron beam, and an accelerator for accelerating the beam in a given direction through a number of drift tube sections successively aligned relative to one another in the direction of the beam. A number of electrostatic quadrupole arrays are successively aligned relative to one another along at least one of the drift tube sections in the beam direction for focusing the electron beam. Each of the electrostatic quadrupole arrays forms a different quadrupole for each electron beam. Two or more electron beams can be maintained in parallel relationship by the quadrupole arrays, thereby enabling space charge limitations encountered with conventional single beam klystrons to be overcome. 4 figs.
Optical Bench Interferometer - From LISA Pathfinder to NGO/eLISA
NASA Astrophysics Data System (ADS)
Taylor, A.; d'Arcio, L.; Bogenstahl, J.; Danzmann, K.; Diekmann, C.; Fitzsimons, E. D.; Gerberding, O.; Heinzel, G.; Hennig, J.-S.; Hogenhuis, H.; Killow, C. J.; Lieser, M.; Lucarelli, S.; Nikolov, S.; Perreur-Lloyd, M.; Pijnenburg, J.; Robertson, D. I.; Sohmer, A.; Tröbs, M.; Ward, H.; Weise, D.
2013-01-01
We present a short summary of some optical bench construction and alignment developments that build on experience gained during the LISA Pathfinder optical bench assembly. These include evolved fibre injectors, a new beam vector measurement system, and thermally stable mounting hardware. The beam vector measurement techniques allow the alignment of beams to targets with absolute accuracy of a few microns and 20 microradians. We also describe a newly designed ultra-low-return beam dump that is expected to be a crucial element in the control of ghost beams on the optical benches.
2002-07-01
spectral components remain co-polarized. We confirmed that this was the case by passing the continuum through a polarizing beam splitter . The...propagation direction through polarization beam splitters and aligned along the other axis of the fiber. Co-propagating control and signal pulses...amplifier, PBS = polarization beam splitter . Figure 8. Eye diagram of header processor. This is the trace of the eye diagrams taken with the setup of Fig
The Stonehenge technique. A method for aligning coherent bremsstrahlung radiators
NASA Astrophysics Data System (ADS)
Livingston, Ken
2009-05-01
This paper describes a technique for the alignment of crystal radiators used to produce high energy, linearly polarized photons via coherent bremsstrahlung scattering at electron beam facilities. In these experiments the crystal is mounted on a goniometer which is used to adjust its orientation relative to the electron beam. The angles and equations which relate the crystal lattice, goniometer and electron beam direction are presented here, and the method of alignment is illustrated with data taken at MAMI (the Mainz microtron). A practical guide to setting up a coherent bremsstrahlung facility and installing new crystals using this technique is also included.
NASA Astrophysics Data System (ADS)
Song, Jungki; Heilmann, Ralf K.; Bruccoleri, Alexander R.; Hertz, Edward; Schatternburg, Mark L.
2017-08-01
We report progress toward developing a scanning laser reflection (LR) tool for alignment and period measurement of critical-angle transmission (CAT) gratings. It operates on a similar measurement principle as a tool built in 1994 which characterized period variations of grating facets for the Chandra X-ray Observatory. A specularly reflected beam and a first-order diffracted beam were used to record local period variations, surface slope variations, and grating line orientation. In this work, a normal-incidence beam was added to measure slope variations (instead of the angled-incidence beam). Since normal incidence reflection is not coupled with surface height change, it enables measurement of slope variations more accurately and, along with the angled-incidence beam, helps to reconstruct the surface figure (or tilt) map. The measurement capability of in-grating period variations was demonstrated by measuring test reflection grating (RG) samples that show only intrinsic period variations of the interference lithography process. Experimental demonstration for angular alignment of CAT gratings is also presented along with a custom-designed grating alignment assembly (GAA) testbed. All three angles were aligned to satisfy requirements for the proposed Arcus mission. The final measurement of roll misalignment agrees with the roll measurements performed at the PANTER x-ray test facility.
Modified hollow Gaussian beam and its paraxial propagation
NASA Astrophysics Data System (ADS)
Cai, Yangjian; Chen, Chiyi; Wang, Fei
2007-10-01
A model named modified hollow Gaussian beam (HGB) is proposed to describe a dark hollow beam with adjustable beam spot size, central dark size and darkness factor. In this modified model, both the beam spot size and the central dark size will be convergent to finite constants as the beam order approaches infinity, which are much different from that of the previous unmodified model, where the beam spot size and the central dark size will not be convergent as the beam order approaches infinity. The dependences of the propagation factor of modified and unmodified HGBs on the beam order are found to be the same. Based on the Collins integral, analytical formulas for the modified HGB propagating through aligned and misaligned optical system are derived. Some numerical examples are given.
An optical storage cavity-based, Compton-backscatter x-ray source using the MKV free electron laser
NASA Astrophysics Data System (ADS)
Hadmack, Michael R.
A compact, high-brightness x-ray source is presently under development at the University of Hawai`i Free Electron Laser Laboratory. This source utilizes Compton backscattering of an infrared laser from a relativistic electron beam to produce a narrow beam of monochromatic x-rays. The scattering efficiency is greatly increased by tightly focusing the two beams at an interaction point within a near-concentric optical storage cavity, designed with high finesse to coherently stack the incident laser pulses and greatly enhance the number of photons available for scattering with the electron beam. This dissertation describes the effort and progress to integrate and characterize the most important and challenging aspects of the design of this system. A low-power, near-concentric, visible-light storage cavity has been constructed as a tool for the exploration of the performance, alignment procedures, and diagnostics required for the operation of a high power infrared storage cavity. The use of off-axis reflective focussing elements is essential to the design of the optical storage cavity, but requires exquisite alignment to minimize astigmatism and other optical aberrations. Experiments using a stabilized HeNe laser have revealed important performance characteristics, and allowed the development of critical alignment and calibration procedures, which can be directly applied to the high power infrared storage cavity. Integration of the optical and electron beams is similarly challenging. A scanning-wire beam profiler has been constructed and tested, which allows for high resolution measurement of the size and position of the laser and electron beams at the interaction point. This apparatus has demonstrated that the electron and laser beams can be co-aligned with a precision of less than 10 microm, as required to maximize the x-ray production rate. Equally important is the stabilization of the phase of the GHz repetition rate electron pulses arriving at the interaction point and driving the FEL. A feed-forward amplitude and phase compensation system has been built and demonstrated to substantially improve the uniformity of the electron bunch phase, thus enhancing both the laser performance and the beam stability required for efficient x-ray production. Results of all of these efforts are presented, together with a summary of future work.
Parkins, W.E.
1959-06-16
A calutron target arrangement is described which follows the shifting focus of the beam. Four magnets attached to the face of the receiver are arranged so that they are in magnetic equilibrium when the beam focus is properly aligned. Twisting of the beam causes heating of some of the magnets disturbing the equilibrium by permeability changes. The magnets restore equilibrium by moving the receiver face to proper alignment. (T.R.H.)
Wang, L; Turaka, A; Meyer, J; Spoka, D; Jin, L; Fan, J; Ma, C
2012-06-01
To assess the reliability of soft tissue alignment by comparing pre- and post-treatment cone-beam CT (CBCT) for image guidance in stereotactic body radiotherapy (SBRT) of lung cancers. Our lung SBRT procedures require all patients undergo 4D CT scan in order to obtain patient-specific target motion information through reconstructed 4D data using the maximum-intensity projection (MIP) algorithm. The internal target volume (ITV) was outlined directly from the MIP images and a 3-5 mm margin expansion was then applied to the ITV to create the PTV. Conformal treatment planning was performed on the helical images, to which the MIP images were fused. Prior to each treatment, CBCT was used for image guidance by comparing with the simulation CT and for patient relocalization based on the bony anatomy. Any displacement of the patient bony structure would be considered as setup errors and would be corrected by couch shifts. Theoretically, as the PTV definition included target internal motion, no further shifts other than setup corrections should be made. However, it is our practice to have treating physicians further check target localization within the PTV. Whenever the shifts based on the soft-tissue alignment (that is, target alignment) exceeded a certain value (e.g. 5 mm), a post-treatment CBCT was carried out to ensure that the tissue alignment is reliable by comparing between pre- and post-treatment CBCT. Pre- and post-CBCT has been performed for 7 patients so far who had shifts beyond 5 mm despite bony alignment. For all patients, post CBCT confirmed that the visualized target position was kept in the same position as before treatment after adjusting for soft-tissue alignment. For the patient population studied, it is shown that soft-tissue alignment is necessary and reliable in the lung SBRT for individual cases. © 2012 American Association of Physicists in Medicine.
NASA Technical Reports Server (NTRS)
Decker, Arthur J.; Krasowski, Michael J.
1991-01-01
The goal is to develop an approach to automating the alignment and adjustment of optical measurement, visualization, inspection, and control systems. Classical controls, expert systems, and neural networks are three approaches to automating the alignment of an optical system. Neural networks were chosen for this project and the judgements that led to this decision are presented. Neural networks were used to automate the alignment of the ubiquitous laser-beam-smoothing spatial filter. The results and future plans of the project are presented.
Teruya, Alan T [Livermore, CA; Elmer,; John, W [Danville, CA; Palmer, Todd A [State College, PA
2011-03-08
A diagnostic system for characterization of an electron beam or an ion beam includes an electrical conducting disk of refractory material having a circumference, a center, and a Faraday cup assembly positioned to receive the electron beam or ion beam. At least one slit in the disk provides diagnostic characterization of the electron beam or ion beam. The at least one slit is located between the circumference and the center of the disk and includes a radial portion that is in radial alignment with the center and a portion that deviates from radial alignment with the center. The electron beam or ion beam is directed onto the disk and translated to the at least one slit wherein the electron beam or ion beam enters the at least one slit for providing diagnostic characterization of the electron beam or ion beam.
Beam based alignment and its relevance in Indus-2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jena, Saroj Kumar; Husain, Riyasat; Gandhi, M. L.
2015-09-15
Initially in the Indus-2 storage ring, the closed orbit distortion (COD) could be best corrected to 1.3 mm rms in the horizontal and 0.43 mm rms in the vertical plane. The strength of the corrector magnets required high values for COD correction. This revealed that offsets in COD readout by the beam position monitors (BPMs) played a role in not achieving a rms COD lower than the above value. Thus, the offset between the electrical center of BPMs and the magnetic center of the nearest quadrupole magnet could be estimated using the beam based alignment (BBA) method. It prefers thatmore » the quadrupole magnet is able to be controlled individually and active shunt power supply (ASPS) system was designed for this purpose that works efficiently. This paper describes the methodology of BBA, topology of ASPS and its performance, and COD minimization using the measured BPM offsets. After BBA, the COD could be reduced to 0.45 mm rms and 0.2 mm rms in horizontal and vertical planes, respectively.« less
UV beam shaper alignment sensitivity: grayscale versus binary designs
NASA Astrophysics Data System (ADS)
Lizotte, Todd E.
2008-08-01
What defines a good flat top beam shaper? What is more important; an ideal flat top profile or ease of alignment and stability? These are the questions designers and fabricators can not easily define, since they are a function of experience. Anyone can generate a theoretical beam shaper design and model it until it is clear that on paper the design looks good and meets the general needs of the end customer. However, the method of fabrication can add a twist that is not fully understood by either party until the beam shaper is actually tested for the first time in a system and also produced in high volume. This paper provides some insight into how grayscale and binary fabrication methods can produce the same style of beam shaper, with similar beam shaping performance; however provide a result wherein each fabricated design has separate degrees of sensitivity for alignment and stability. The paper will explain the design and fabrication approach for the two units and present alignment and testing data to provide a contrast comparison. Further data will show that over twenty sets of each fabricated design there is a consistency to the sensitivity issue. An understanding of this phenomenon is essential when considering the use of beam shapers on production equipment that is dedicated to producing micron-precision features within high value microelectronic and consumer products. We will present our findings and explore potential explanations and solutions.
Alignment of the Pixel and SCT Modules for the 2004 ATLAS Combined Test Beam
DOE Office of Scientific and Technical Information (OSTI.GOV)
ATLAS Collaboration; Ahmad, A.; Andreazza, A.
2008-06-02
A small set of final prototypes of the ATLAS Inner Detector silicon tracking system(Pixel Detector and SemiConductor Tracker), were used to take data during the 2004 Combined Test Beam. Data were collected from runs with beams of different flavour (electrons, pions, muons and photons) with a momentum range of 2 to 180 GeV/c. Four independent methods were used to align the silicon modules. The corrections obtained were validated using the known momenta of the beam particles and were shown to yield consistent results among the different alignment approaches. From the residual distributions, it is concluded that the precision attained inmore » the alignmentof the silicon modules is of the order of 5 mm in their most precise coordinate.« less
Retro-detective control structures for free-space optical communication links.
Jin, Xian; Barg, Jason E; Holzman, Jonathan F
2009-12-21
A corner-cube-based retro-detection photocell is introduced. The structure consists of three independent and mutually perpendicular photodiodes (PDs), whose differential photocurrents can be used to probe the alignment state of incident beams. These differential photocurrents are used in an actively-controlled triangulation procedure to optimize the communication channel alignment in a free-space optical (FSO) system. The active downlink and passive uplink communication capabilities of this system are demonstrated.
AXAF Alignment Test System Autocollimating Flat Error Correction
NASA Technical Reports Server (NTRS)
Lewis, Timothy S.
1995-01-01
The alignment test system for the advanced x ray astrophysics facility (AXAF) high-resolution mirror assembly (HRMA) determines the misalignment of the HRMA by measuring the displacement of a beam of light reflected by the HRMA mirrors and an autocollimating flat (ACF). This report shows how to calibrate the system to compensate for errors introduced by the ACF, using measurements taken with the ACF in different positions. It also shows what information can be obtained from alignment test data regarding errors in the shapes of the HRMA mirrors. Simulated results based on measured ACF surface data are presented.
NASA Astrophysics Data System (ADS)
Gotjen, Henry G.; Kolacz, Jakub; Myers, Jason D.; Frantz, Jesse A.; Bekele, Robel Y.; Naciri, Jawad; Spillmann, Christopher M.
2018-02-01
A non-mechanical refractive laser beam steering device has been developed to provide continuous, two-dimensional steering of infrared beams. The technology implements a dielectric slab waveguide architecture with a liquid crystal (LC) cladding. With voltage control, the birefringence of the LC can be leveraged to tune the effective index of the waveguide under an electrode. With a clever prism electrode design a beam coupled into the waveguide can be deflected continuously in two dimensions as it is coupled out into free space. The optical interaction with LC in this beamsteerer is unique from typical LC applications: only the thin layer of LC (100s of nm) near the alignment interface interacts with the beam's evanescent field. Whereas most LC interactions take place over short path lengths (microns) in the bulk of the material, here we can interrogate the behavior of LC near the alignment interface over long path lengths (centimeters). In this work the beamsteerer is leveraged as a tool to study the behavior of LC near the alignment layer in contrast to the bulk material. We find that scattering is substantially decreased near the alignment interface due to the influence of the surface anchoring energy to suppress thermal fluctuations. By tracking the position of the deflected beam with a high speed camera, we measure response times of the LC near the interface in off-to-on switching ( ms) and on-to-off switching ( 100ms). Combined, this work will provide a path for improved alignment techniques, greater optical throughput, and faster response times in this unique approach to non-mechanical beamsteering.
Relay telescope for high power laser alignment system
Dane, C. Brent; Hackel, Lloyd; Harris, Fritz B.
2006-09-19
A laser system includes an optical path having an intracavity relay telescope with a telescope focal point for imaging an output of the gain medium between an image location at or near the gain medium and an image location at or near an output coupler for the laser system. A kinematic mount is provided within a vacuum chamber, and adapted to secure beam baffles near the telescope focal point. An access port on the vacuum chamber is adapted for allowing insertion and removal of the beam baffles. A first baffle formed using an alignment pinhole aperture is used during alignment of the laser system. A second tapered baffle replaces the alignment aperture during operation and acts as a far-field baffle in which off angle beams strike the baffle a grazing angle of incidence, reducing fluence levels at the impact areas.
NASA Astrophysics Data System (ADS)
Miller, John L.; English, R. Edward, Jr.; Korniski, Ronald J.; Rodgers, J. Michael
1999-07-01
The optical design of the main laser and transport mirror sections of the National Ignition Facility are described. For the main laser the configuration, layout constraints, multiple beam arrangement, pinhole layout and beam paths, clear aperture budget, ray trace models, alignment constraints, lens designs, wavefront performance, and pupil aberrations are discussed. For the transport mirror system the layout, alignment controls and clear aperture budget are described.
NASA Technical Reports Server (NTRS)
Winglee, R. M.; Pritchett, P. L.
1988-01-01
Beam-plasma interactions associated with the cross-field and field-aligned injection of electron beams from spacecraft were investigated using a two-dimensional (three velocity component) electrostatic particle simulations. It is shown that the beam properties and plasma response can be characterized well by the ratio between the stagnation time and the plasma response time, which depends on the ratio of the ambient plasma density to the beam density, the beam width, the beam energy, and the spacecraft length. It was found that the beams injected across the field lines tend to lose their coherence after about one or two gyrations due to space-charge oscillations induced by the beam, irrespective of the spacecraft charging. These oscillations scatter the beam electrons into a hollow cylinder of a radius equal to a beam electron gyroradius and thickness of the order of two beam Debye lengths. Parallel injected beams are subjected to similar oscillations, which cause the beam to expand to fill a solid cylinder of a comparable thickness.
Novel theory for propagation of tilted Gaussian beam through aligned optical system
NASA Astrophysics Data System (ADS)
Xia, Lei; Gao, Yunguo; Han, Xudong
2017-03-01
A novel theory for tilted beam propagation is established in this paper. By setting the propagation direction of the tilted beam as the new optical axis, we establish a virtual optical system that is aligned with the new optical axis. Within the first order approximation of the tilt and off-axis, the propagation of the tilted beam is studied in the virtual system instead of the actual system. To achieve more accurate optical field distributions of tilted Gaussian beams, a complete diffraction integral for a misaligned optical system is derived by using the matrix theory with angular momentums. The theory demonstrates that a tilted TEM00 Gaussian beam passing through an aligned optical element transforms into a decentered Gaussian beam along the propagation direction. The deviations between the peak intensity axis of the decentered Gaussian beam and the new optical axis have linear relationships with the misalignments in the virtual system. ZEMAX simulation of a tilted beam through a thick lens exposed to air shows that the errors between the simulation results and theoretical calculations of the position deviations are less than 2‰ when the misalignments εx, εy, εx', εy' are in the range of [-0.5, 0.5] mm and [-0.5, 0.5]°.
Aperture alignment in autocollimator-based deflectometric profilometers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geckeler, R. D., E-mail: Ralf.Geckeler@ptb.de; Just, A.; Kranz, O.
2016-05-15
During the last ten years, deflectometric profilometers have become indispensable tools for the precision form measurement of optical surfaces. They have proven to be especially suitable for characterizing beam-shaping optical surfaces for x-ray beamline applications at synchrotrons and free electron lasers. Deflectometric profilometers use surface slope (angle) to assess topography and utilize commercial autocollimators for the contactless slope measurement. To this purpose, the autocollimator beam is deflected by a movable optical square (or pentaprism) towards the surface where a co-moving aperture limits and defines the beam footprint. In this paper, we focus on the precise and reproducible alignment of themore » aperture relative to the autocollimator’s optical axis. Its alignment needs to be maintained while it is scanned across the surface under test. The reproducibility of the autocollimator’s measuring conditions during calibration and during its use in the profilometer is of crucial importance to providing precise and traceable angle metrology. In the first part of the paper, we present the aperture alignment procedure developed at the Advanced Light Source, Lawrence Berkeley National Laboratory, USA, for the use of their deflectometric profilometers. In the second part, we investigate the topic further by providing extensive ray tracing simulations and calibrations of a commercial autocollimator performed at the Physikalisch-Technische Bundesanstalt, Germany, for evaluating the effects of the positioning of the aperture on the autocollimator’s angle response. The investigations which we performed are crucial for reaching fundamental metrological limits in deflectometric profilometry.« less
Some aspects of SR beamline alignment
NASA Astrophysics Data System (ADS)
Gaponov, Yu. A.; Cerenius, Y.; Nygaard, J.; Ursby, T.; Larsson, K.
2011-09-01
Based on the Synchrotron Radiation (SR) beamline optical element-by-element alignment with analysis of the alignment results an optimized beamline alignment algorithm has been designed and developed. The alignment procedures have been designed and developed for the MAX-lab I911-4 fixed energy beamline. It has been shown that the intermediate information received during the monochromator alignment stage can be used for the correction of both monochromator and mirror without the next stages of alignment of mirror, slits, sample holder, etc. Such an optimization of the beamline alignment procedures decreases the time necessary for the alignment and becomes useful and helpful in the case of any instability of the beamline optical elements, storage ring electron orbit or the wiggler insertion device, which could result in the instability of angular and positional parameters of the SR beam. A general purpose software package for manual, semi-automatic and automatic SR beamline alignment has been designed and developed using the developed algorithm. The TANGO control system is used as the middle-ware between the stand-alone beamline control applications BLTools, BPMonitor and the beamline equipment.
Alignment Fixtures For Vacuum-Plasma-Spray Gun
NASA Technical Reports Server (NTRS)
Woodford, William H.; Mckechnie, Timothy N.; Power, Christopher A.; Daniel, Ronald L., Jr.
1993-01-01
Fixtures for alignment of vacuum-plasma-spray guns built. Each fixture designed to fit specific gun and holds small, battery-powered laser on centerline of gun. Laser beam projects small red dot where centerline intersects surface of workpiece to be sprayed. After laser beam positioned on surface of workpiece, fixture removed from gun and spraying proceeds.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nuhn, Heinz-Dieter.
The Visual to Infrared SASE Amplifier (VISA) [1] FEL is designed to achieve saturation at radiation wavelengths between 800 and 600 nm with a 4-m pure permanent magnet undulator. The undulator comprises four 99-cm segments each of which has four FODO focusing cells superposed on the beam by means of permanent magnets in the gap alongside the beam. Each segment will also have two beam position monitors and two sets of x-y dipole correctors. The trajectory walk-off in each segment will be reduced to a value smaller than the rms beam radius by means of magnet sorting, precise fabrication, andmore » post-fabrication shimming and trim magnets. However, this leaves possible inter-segment alignment errors. A trajectory analysis code has been used in combination with the FRED3D [2] FEL code to simulate the effect of the shimming procedure and segment alignment errors on the electron beam trajectory and to determine the sensitivity of the FEL gain process to trajectory errors. The paper describes the technique used to establish tolerances for the segment alignment.« less
1976-11-01
For the creep to be important, temperatures on the order of one- half the melting temperature and stresses that are a significant per- centage of the ...temperature will be less than 35C while one- half the melting temperature is approximately 7500C. Therefore, no experimental creep tests were...and its align- ment in a gravity fie.d. Trace B is the beam response to a low level base input (perpendicular to the plane of the beam) with no
RF Jitter Modulation Alignment Sensing
NASA Astrophysics Data System (ADS)
Ortega, L. F.; Fulda, P.; Diaz-Ortiz, M.; Perez Sanchez, G.; Ciani, G.; Voss, D.; Mueller, G.; Tanner, D. B.
2017-01-01
We will present the numerical and experimental results of a new alignment sensing scheme which can reduce the complexity of alignment sensing systems currently used, while maintaining the same shot noise limited sensitivity. This scheme relies on the ability of electro-optic beam deflectors to create angular modulation sidebands in radio frequency, and needs only a single-element photodiode and IQ demodulation to generate error signals for tilt and translation degrees of freedom in one dimension. It distances itself from current techniques by eliminating the need for beam centering servo systems, quadrant photodetectors and Gouy phase telescopes. RF Jitter alignment sensing can be used to reduce the complexity in the alignment systems of many laser optical experiments, including LIGO and the ALPS experiment.
Field precision machining technology of target chamber in ICF lasers
NASA Astrophysics Data System (ADS)
Xu, Yuanli; Wu, Wenkai; Shi, Sucun; Duan, Lin; Chen, Gang; Wang, Baoxu; Song, Yugang; Liu, Huilin; Zhu, Mingzhi
2016-10-01
In ICF lasers, many independent laser beams are required to be positioned on target with a very high degree of accuracy during a shot. The target chamber provides a precision platform and datum reference for final optics assembly and target collimation and location system. The target chamber consists of shell with welded flanges, reinforced concrete pedestal, and lateral support structure. The field precision machining technology of target chamber in ICF lasers have been developed based on ShenGuangIII (SGIII). The same center of the target chamber is adopted in the process of design, fabrication, and alignment. The technologies of beam collimation and datum reference transformation are developed for the fabrication, positioning and adjustment of target chamber. A supporting and rotating mechanism and a special drilling machine are developed to bore the holes of ports. An adjustment mechanism is designed to accurately position the target chamber. In order to ensure the collimation requirements of the beam leading and focusing and the target positioning, custom-machined spacers are used to accurately correct the alignment error of the ports. Finally, this paper describes the chamber center, orientation, and centering alignment error measurements of SGIII. The measurements show the field precision machining of SGIII target chamber meet its design requirement. These information can be used on similar systems.
Cooperative interactions in dense thermal Rb vapour confined in nm-scale cells
NASA Astrophysics Data System (ADS)
Keaveney, James
Gravitational wave detectors are a new class of observatories aiming to detect gravitational waves from cosmic sources. All-reflective interferometer configurations have been proposed for future detectors, replacing transmissive optics with diffractive elements, thereby reducing thermal issues associated with power absorption. However, diffraction gratings introduce additional phase noise, creating more stringent conditions for alignment stability, and further investigations are required into all-reflective interferometers. A suitable mathematical framework using Gaussian modes is required for analysing the alignment stability using diffraction gratings. Such a framework was created, whereby small beam displacements are modelled using a modal technique. It was confirmed that the original modal-based model does not contain the phase changes associated with grating displacements. Experimental tests verified that the phase of a diffracted Gaussian beam is independent of the beam shape. Phase effects were further examined using a rigorous time-domain simulation tool. These findings show that the perceived phase difference is based on an intrinsic change of coordinate system within the modal-based model, and that the extra phase can be added manually to the modal expansion. This thesis provides a well-tested and detailed mathematical framework that can be used to develop simulation codes to model more complex layouts of all-reflective interferometers.
NASA Astrophysics Data System (ADS)
Pirani, F.; Cappelletti, D.; Vecchiocattivi, F.; Vattuone, L.; Gerbi, A.; Rocca, M.; Valbusa, U.
2004-02-01
A light and compact mechanical velocity selector, of novel design, for applications in supersonic molecular-beam studies has been developed. It represents a simplified version of the traditional, 50 year old, slotted disks velocity selector. Taking advantage of new materials and improved machining techniques, the new version has been realized with only two rotating slotted disks, driven by an electrical motor with adjustable frequency of rotation, and thus has a much smaller weight and size with respect to the original design, which may allow easier implementation in most of the available molecular-beam apparatuses. This new type of selector, which maintains a sufficiently high velocity resolution, has been developed for sampling molecules with different degrees of rotational alignment, like those emerging from a seeded supersonic expansion. This sampling is the crucial step to realize new molecular-beam experiments to study the effect of molecular alignment in collisional processes.
Constant field gradient planar coupled cavity structure
Kang, Y.W.; Kustom, R.L.
1999-07-27
A cavity structure is disclosed having at least two opposing planar housing members spaced apart to accommodate the passage of a particle beam through the structure between the members. Each of the housing members have a plurality of serially aligned hollows defined therein, and also passages, formed in the members, which interconnect serially adjacent hollows to provide communication between the hollows. The opposing planar housing members are spaced and aligned such that the hollows in one member cooperate with corresponding hollows in the other member to form a plurality of resonant cavities aligned along the particle beam within the cavity structure. To facilitate the obtaining of a constant field gradient within the cavity structure, the passages are configured so as to be incrementally narrower in the direction of travel of the particle beam. In addition, the spacing distance between the opposing housing members is configured to be incrementally smaller in the direction of travel of the beam. 16 figs.
Constant field gradient planar coupled cavity structure
Kang, Yoon W.; Kustom, Robert L.
1999-01-01
A cavity structure having at least two opposing planar housing members spaced apart to accommodate the passage of a particle beam through the structure between the members. Each of the housing members have a plurality of serially aligned hollows defined therein, and also passages, formed in the members, which interconnect serially adjacent hollows to provide communication between the hollows. The opposing planar housing members are spaced and aligned such that the hollows in one member cooperate with corresponding hollows in the other member to form a plurality of resonant cavities aligned along the particle beam within the cavity structure. To facilitate the obtaining of a constant field gradient within the cavity structure, the passages are configured so as to be incrementally narrower in the direction of travel of the particle beam. In addition, the spacing distance between the opposing housing members is configured to be incrementally smaller in the direction of travel of the beam.
NASA Astrophysics Data System (ADS)
Moores, A. N.; Cadby, A. J.
2018-02-01
Correlative fluorescence and atomic force microscopy (AFM) imaging is a highly attractive technique for use in biological imaging, enabling force and mechanical measurements of particular structures whose locations are known due to the specificity of fluorescence imaging. The ability to perform these two measurements simultaneously (rather than consecutively with post-processing correlation) is highly valuable because it would allow the mechanical properties of a structure to be tracked over time as changes in the sample occur. We present an instrument which allows simultaneous AFM and fluorescence imaging by aligning an incident fluorescence excitation beam with an AFM-tip. Alignment was performed by calibrating a 2D galvanometer present in the excitation beam path and using it to reposition the incident beam. Two programs were developed (one manual and one automated) which correlate sample features between the AFM and fluorescence images, calculating the distance required to translate the incident beam towards the AFM-tip. Using this method, we were able to obtain beam-tip alignment (and therefore field-of-view alignment) from an offset of >15 μm to within one micron in two iterations of the program. With the program running alongside data acquisition for real-time feedback between AFM and optical images, this offset was maintained over a time period of several hours. Not only does this eliminate the need to image large areas with both techniques to ensure that fields-of-view overlap, but it also raises the possibility of using this instrument for tip-enhanced fluorescence applications, a technique in which super-resolution images have previously been achieved.
Testing large flats with computer generated holograms
NASA Astrophysics Data System (ADS)
Pariani, Giorgio; Tresoldi, Daniela; Spanò, Paolo; Bianco, Andrea
2012-09-01
We describe the optical test of a large flat based on a spherical mirror and a dedicated CGH. The spherical mirror, which can be accurately manufactured and tested in absolute way, allows to obtain a quasi collimated light beam, and the hologram performs the residual wavefront correction. Alignment tools for the spherical mirror and the hologram itself are encoded in the CGH. Sensitivity to fabrication errors and alignment has been evaluated. Tests to verify the effectiveness of our approach are now under execution.
Microwave systems analysis, solar power satellite. [alignment of the antenna array
NASA Technical Reports Server (NTRS)
1979-01-01
Various alternative active approaches to achieving aand maintaining flatness for the microwave power transmission system (MPTS) were studied. A baseline active alignment scheme was developed which includes subarray attachment mechanisms, height and tilting adjustments, service corridors, a rotating laser beam reference system, monopulse pointing techniques, and the design of a beam-centering photoconductive sensor.
Chen, Yu-Jen; Lin, Yu-Sung; Jiang, I-Min; Tsai, Ming-Shan
2008-03-17
This study investigates the optical nonlinearity of beam propagation in homogeneously aligned nematic liquid crystal (NLC) cells at a temperature close to the nematic-isotropic temperature (TNI). The undulate propagation mode with convergent and divergent loops appearing alternately is reported and the thermally enhanced optical reorientation nonlinearity at the focus is described. The optically induced phase transition exists along the pump beam direction. With the application of the conscopic technique, the arrangements of LC at the focus are proposed in this study. Results of this study demonstrate that the evolution of the LC configuration was affected by the pump beam based on the analysis of conoscopic patterns.
NASA Technical Reports Server (NTRS)
Schriver, D.; Ashour-Abdalla, M.; Strangeway, R. J.; Richard, R. L.; Klezting, C.; Dotan, Y.; Wygant, J.
2003-01-01
The discrete aurora results when energized electrons bombard the Earth's atmosphere at high latitudes. This paper examines the physical processes that can cause field-aligned acceleration of plasma particles in the auroral region. A data and theoretical study has been carried out to examine the acceleration mechanisms that operate in the auroral zone and to identi@ the magnetospheric drivers of these acceleration mechanisms. The observations used in the study were collected by the Fast Auroral Snapshot (FAST) and Polar satellites when the two satellites were in approximate magnetic conjunction in the auroral region. During these events FAST was in the middle of the auroral zone and Polar was above the auroral zone in the near-Earth plasma sheet. Polar data were used to determine the conditions in the magnetotail at the time field-aligned acceleration was measured by FAST in the auroral zone. For each of the magnetotail drivers identified in the data study, the physics of field-aligned acceleration in the auroral region was examined using existing theoretical efforts and/or a long-system particle in cell simulation to model the magnetically connected region between the two satellites. Results from the study indicate that there are three main drivers of auroral acceleration: (1) field-aligned currents that lead to quasistatic parallel potential drops (parallel electric fields), (2) earthward flow of high-energy plasma beams from the magnetotail into the auroral zone that lead to quasistatic parallel potential drops, and (3) large-amplitude Alfven waves that propagate into the auroral region from the magnetotail. The events examined thus far confm the previously established invariant latitudinal dependence of the drivers and show a strong dependence on magnetic activity. Alfven waves tend to occur primarily at the poleward edge of the auroral region during more magnetically active times and are correlated with intense electron precipitation. At lower latitudes away from the poleward edge of the auroral zone is the primary field-aligned current region which results in the classical field- aligned acceleration associated with the auroral zone (electrons earthward and ion beams tailward). During times of high magnetic activity, high-energy ion beams originating from the magnetotail are observed within, and overlapping, the regions of primary and return field-aligned current. Along the field lines where the high-energy magnetotail ion beams are located, field-aligned acceleration can occur in the auroral zone leading to precipitating electrons and upwelling ionospheric ion beams. Field-aligned currents are present during both quiet and active times, while the Alfven waves and magnetotail ion beams were observed only during more magnetically active events.
Automatic laser beam alignment using blob detection for an environment monitoring spectroscopy
NASA Astrophysics Data System (ADS)
Khidir, Jarjees; Chen, Youhua; Anderson, Gary
2013-05-01
This paper describes a fully automated system to align an infra-red laser beam with a small retro-reflector over a wide range of distances. The component development and test were especially used for an open-path spectrometer gas detection system. Using blob detection under OpenCV library, an automatic alignment algorithm was designed to achieve fast and accurate target detection in a complex background environment. Test results are presented to show that the proposed algorithm has been successfully applied to various target distances and environment conditions.
Elliptically polarizing adjustable phase insertion device
Carr, Roger
1995-01-01
An insertion device for extracting polarized electromagnetic energy from a beam of particles is disclosed. The insertion device includes four linear arrays of magnets which are aligned with the particle beam. The magnetic field strength to which the particles are subjected is adjusted by altering the relative alignment of the arrays in a direction parallel to that of the particle beam. Both the energy and polarization of the extracted energy may be varied by moving the relevant arrays parallel to the beam direction. The present invention requires a substantially simpler and more economical superstructure than insertion devices in which the magnetic field strength is altered by changing the gap between arrays of magnets.
FEL Trajectory Analysis for the VISA Experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nuhn, Heinz-Dieter
1998-10-06
The Visual to Infrared SASE Amplifier (VISA) [1] FEL is designed to achieve saturation at radiation wavelengths between 800 and 600 nm with a 4-m pure permanent magnet undulator. The undulator comprises four 99-cm segments each of which has four FODO focusing cells superposed on the beam by means of permanent magnets in the gap alongside the beam. Each segment will also have two beam position monitors and two sets of x-y dipole correctors. The trajectory walk-off in each segment will be reduced to a value smaller than the rms beam radius by means of magnet sorting, precise fabrication, andmore » post-fabrication shimming and trim magnets. However, this leaves possible inter-segment alignment errors. A trajectory analysis code has been used in combination with the FRED3D [2] FEL code to simulate the effect of the shimming procedure and segment alignment errors on the electron beam trajectory and to determine the sensitivity of the FEL gain process to trajectory errors. The paper describes the technique used to establish tolerances for the segment alignment.« less
An image-guided precision proton radiation platform for preclinical in vivo research
NASA Astrophysics Data System (ADS)
Ford, E.; Emery, R.; Huff, D.; Narayanan, M.; Schwartz, J.; Cao, N.; Meyer, J.; Rengan, R.; Zeng, J.; Sandison, G.; Laramore, G.; Mayr, N.
2017-01-01
There are many unknowns in the radiobiology of proton beams and other particle beams. We describe the development and testing of an image-guided low-energy proton system optimized for radiobiological research applications. A 50 MeV proton beam from an existing cyclotron was modified to produce collimated beams (as small as 2 mm in diameter). Ionization chamber and radiochromic film measurements were performed and benchmarked with Monte Carlo simulations (TOPAS). The proton beam was aligned with a commercially-available CT image-guided x-ray irradiator device (SARRP, Xstrahl Inc.). To examine the alternative possibility of adapting a clinical proton therapy system, we performed Monte Carlo simulations of a range-shifted 100 MeV clinical beam. The proton beam exhibits a pristine Bragg Peak at a depth of 21 mm in water with a dose rate of 8.4 Gy min-1 (3 mm depth). The energy of the incident beam can be modulated to lower energies while preserving the Bragg peak. The LET was: 2.0 keV µm-1 (water surface), 16 keV µm-1 (Bragg peak), 27 keV µm-1 (10% peak dose). Alignment of the proton beam with the SARRP system isocenter was measured at 0.24 mm agreement. The width of the beam changes very little with depth. Monte Carlo-based calculations of dose using the CT image data set as input demonstrate in vivo use. Monte Carlo simulations of the modulated 100 MeV clinical proton beam show a significantly reduced Bragg peak. We demonstrate the feasibility of a proton beam integrated with a commercial x-ray image-guidance system for preclinical in vivo studies. To our knowledge this is the first description of an experimental image-guided proton beam for preclinical radiobiology research. It will enable in vivo investigations of radiobiological effects in proton beams.
Alignment and position visualization methods for the biomedical imaging and therapy (BMIT) MRT lift
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bree, Michael, E-mail: michael.bree@lightsource.ca; Miller, Denise; Kerr, Graham
The Microbeam Radiation Therapy (MRT) Lift is an eight stage positioning and scanning system at the Canadian Light Source’s BMIT Facility. Alignment of the sample with the beam using the MRT Lift is a time consuming and challenging task. The BMIT Group has developed a Python-based MRT Lift positioning and control program that uses a combination of computational and iterative methods to independently adjust the sample’s X, Y, Z, pitch and roll positions. The program offers “1-Click” alignment of the sample to the beam. Use of a wireframe visualization technique enables even minute movements to be illustrated. Proposed movements andmore » the resulting MRT Lift position can be manually verified before being applied. Optional integration with the SolidWorks modelling platform allows high quality renderings of the MRT Lift in its current or proposed position to be displayed in real time. Human factors principles are incorporated into the program with the objective of delivering easy to use controls for this complex device.« less
NASA Astrophysics Data System (ADS)
Awwal, Abdul A. S.; Bliss, Erlan S.; Miller Kamm, Victoria; Leach, Richard R.; Roberts, Randy; Rushford, Michael C.; Lowe-Webb, Roger; Wilhelmsen, Karl
2015-09-01
Four of the 192 beams of the National Ignition Facility (NIF) are currently being diverted into the Advanced Radiographic Capability (ARC) system to generate a sequence of short (1-50 picoseconds) 1053 nm laser pulses. When focused onto high Z wires in vacuum, these pulses create high energy x-ray pulses capable of penetrating the dense, imploding fusion fuel plasma during ignition scale experiments. The transmitted x-rays imaged with x-ray diagnostics can create movie radiographs that are expected to provide unprecedented insight into the implosion dynamics. The resulting images will serve as a diagnostic for tuning the experimental parameters towards successful fusion reactions. Beam delays introduced into the ARC pulses via independent, free-space optical trombones create the desired x-ray image sequence, or movie. However, these beam delays cause optical distortion of various alignment fiducials viewed by alignment sensors in the NIF and ARC beamlines. This work describes how the position of circular alignment fiducials is estimated in the presence of distortion.
Alignment of multiradiation isocenters for megavoltage photon beam
Zhang, Yin; Ding, Kai; Cowan, Garth; Tryggestad, Erik; Armour, Elwood
2015-01-01
The accurate measurement of the linear accelerator (linac) radiation isocenter is critical, especially for stereotactic treatment. Traditional quality assurance (QA) procedure focuses on the measurement of single radiation isocenter, usually of 6 megavoltage (MV) photon beams. Single radiation isocenter is also commonly assumed in treatment planning systems (TPS). Due to different flattening filters and bending magnet and steering parameters, the radiation isocenter of one energy mode can deviate from another if no special effort was devoted. We present the first experience of the multiradiation isocenters alignment on an Elekta linac, as well as its corresponding QA procedure and clinical impact. An 8 mm ball‐bearing (BB) phantom was placed at the 6 MV radiation isocenter using an Elekta isocenter search algorithm, based on portal images. The 3D radiation isocenter shifts of other photon energy modes relative to the 6 MV were determined. Beam profile scanning for different field sizes was used as an independent method to determine the 2D multiradiation isocenters alignment. To quantify the impact of radiation isocenter offset on targeting accuracy, the 10 MV radiation isocenter was manually offset from that for 6 MV by adjusting the bending magnet current. Because our table isocenter was mechanically aligned to the 6 MV radiation isocenter, the deviation of the table isocentric rotation from the "shifted" 10 MV radiation isocenter after bending magnet adjustment was assessed. Winston‐Lutz test was also performed to confirm the overall radiation isocenter positioning accuracy for all photon energies. The portal image method showed the radiation isocenter of the 10 MV flattening filter‐free mode deviated from others before beam parameter adjustment. After the adjustment, the deviation was greatly improved from 0.96 to 0.35 mm relative to the 6 MV radiation isocenter. The same finding was confirmed by the profile‐scanning method. The maximum deviation of the table isocentric rotation from the 10 MV radiation isocenter was observed to linearly increase with the offset between 6 and 10 MV radiation isocenter; 1 mm radiation isocenter offset can translate to almost 2 mm maximum deviation of the table isocentric rotation from the 10 MV radiation isocenter. The alignment of the multiradiation isocenters is particularly important for high‐precision radiotherapy. Our study provides the medical physics community with a quantitative measure of the multiradiation isocenters alignment. A routine QA method should be considered, to examine the radiation isocenters alignment during the linac acceptance. PACS number: 87.55.Qr, 87.56.bd, 87.56.Fc PMID:26699586
Multi-frequency klystron designed for high efficiency
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jensen, Aaron
A multi-frequency klystron has an electron gun which generates a beam, a circuit of bunch-align-collect (BAC) tuned cavities that bunch the beam and amplify an RF signal, a collector where the beam is collected and dumped, and a standard output cavity and waveguide coupled to a window to output RF power at a fundamental mode to an external load. In addition, the klystron has additional bunch-align-collect (BAC) cavities tuned to a higher harmonic frequency, and a harmonic output cavity and waveguide coupled via a window to an additional external load.
NASA Technical Reports Server (NTRS)
Pishnyak, Oleg; Kreminska, Lyubov; Laventovich, Oleg D.; Pouch, John J.; Miranda, Felix A.; Winker, Bruce K.
2004-01-01
We describe digital beam deflectors (DBDs) based on liquid crystals. Each stage of the device comprises a polarization rotator and a birefringent prism deflector. The birefringent prism deflects the beam by an angle that depends on polarization of the incident beam. The prism can be made of the uniaxial smectic A (SmA) liquid crystal (LC) or a solid crystal such as yttrium orthovanadate (YVO4). SmA prisms have high birefringence and can be constructed in a variety of shapes, including single prisms and prismatic blazed gratings of different angles and profiles. We address the challenges of uniform alignment of SmA, such as elimination of focal conic domains. Rotation of linear polarization is achieved by an electrically switched twisted nematic (TN) cell. A DBD composed of N rotator-deflector pairs steers the beam into 2(sup N) directions. As an example, we describe a four-stage DBD deflecting normally incident laser beam within the range of +/- 56 mrad with 8 mrad steps. Redirection of the beam is achieved by switching the TN cells.
Electronics and Algorithms for HOM Based Beam Diagnostics
NASA Astrophysics Data System (ADS)
Frisch, Josef; Baboi, Nicoleta; Eddy, Nathan; Nagaitsev, Sergei; Hensler, Olaf; McCormick, Douglas; May, Justin; Molloy, Stephen; Napoly, Olivier; Paparella, Rita; Petrosyan, Lyudvig; Ross, Marc; Simon, Claire; Smith, Tonee
2006-11-01
The signals from the Higher Order Mode (HOM) ports on superconducting cavities can be used as beam position monitors and to do survey structure alignment. A HOM-based diagnostic system has been installed to instrument both couplers on each of the 40 cryogenic accelerating structures in the DESY TTF2 Linac. The electronics uses a single stage down conversion from the 1.7 GHz HOM spectral line to a 20MHz IF which has been digitized. The electronics is based on low cost surface mount components suitable for large scale production. The analysis of the HOM data is based on Singular Value Decomposition. The response of the OM modes is calibrated using conventional BPMs.
NASA Astrophysics Data System (ADS)
Park, Minho; Na, Yong-Su; Seo, Jaemin; Kim, M.; Kim, Kyungjin
2018-01-01
We report the effect of the electron cyclotron (EC) beam width on the full suppression time of neoclassical tearing mode (NTM) using the finite difference method (FDM) based minimum seeking controller in ITER. An integrated numerical system is setup for time-dependent simulations of the NTM evolution in ITER by solving the modified Rutherford equation together with the plasma equilibrium, transport, and EC heating and current drive. The calculated magnetic island width and growth rate is converted to the Mirnov diagnostic signal as an input to the controller to mimic the real experiment. In addition, 10% of the noise is enforced to this diagnostic signal to evaluate the robustness of the controller. To test the dependency of the NTM stabilization time on the EC beam width, the EC beam width scan is performed for a perfectly aligned case first, then for cases with the feedback control using the minimum seeking controller. When the EC beam is perfectly aligned, the narrower the EC beam width, the smaller the NTM stabilization time is observed. As the beam width increases, the required EC power increases exponentially. On the other hand, when the minimum seeking controller is applied, NTM stabilization sometimes fails as the EC beam width decreases. This is consistently observed in the simulation with various representations of the noise as well as without the noise in the Mirnov signal. The higher relative misalignment, misalignment divided by the beam width, is found to be the reason for the failure with the narrower beam widths. The EC stabilization effect can be lower for the narrower beam widths than the broader ones even at the same misalignment due to the smaller ECCD at the island O-point. On the other hand, if the EC beam is too wide, the NTM stabilization time takes too long. Accordingly, the optimal EC beam width range is revealed to exist in the feedback stabilization of NTM.
Hartmann wavefront sensors and their application at FLASH.
Keitel, Barbara; Plönjes, Elke; Kreis, Svea; Kuhlmann, Marion; Tiedtke, Kai; Mey, Tobias; Schäfer, Bernd; Mann, Klaus
2016-01-01
Different types of Hartmann wavefront sensors are presented which are usable for a variety of applications in the soft X-ray spectral region at FLASH, the free-electron laser (FEL) in Hamburg. As a typical application, online measurements of photon beam parameters during mirror alignment are reported on. A compact Hartmann sensor, operating in the wavelength range from 4 to 38 nm, was used to determine the wavefront quality as well as aberrations of individual FEL pulses during the alignment procedure. Beam characterization and alignment of the focusing optics of the FLASH beamline BL3 were performed with λ(13.5 nm)/116 accuracy for wavefront r.m.s. (w(rms)) repeatability, resulting in a reduction of w(rms) by 33% during alignment.
Study on Dynamic Alignment Technology of COIL Resonator
NASA Astrophysics Data System (ADS)
Xiong, M. D.; Zou, X. J.; Guo, J. H.; Jia, S. N.; Zhang2, Z. B.
2006-10-01
The performance of great power chemical oxygen-iodine laser (COIL) beam is decided mostly by resonator mirror maladjustment and environment vibration. To improve the performance of light beam, an auto-alignment device is used in COIL resonator, the device can keep COIL resonator collimating by adjusting the optical components of resonator. So the coupling model of COIL resonator is present. The multivariable self study fuzzy uncoupling arithmetic and six-dimensional micro drive technology are used to design a six-input-three-output uncoupling controller, resulting in the realization of the high precision dynamic alignment. The experiments indicate that the collimating range of this system is 8 mrad, precision is 5 urad and frequency response is 20Hz, which meet the demand of resonator alignment system.
Elliptically polarizing adjustable phase insertion device
Carr, R.
1995-01-17
An insertion device for extracting polarized electromagnetic energy from a beam of particles is disclosed. The insertion device includes four linear arrays of magnets which are aligned with the particle beam. The magnetic field strength to which the particles are subjected is adjusted by altering the relative alignment of the arrays in a direction parallel to that of the particle beam. Both the energy and polarization of the extracted energy may be varied by moving the relevant arrays parallel to the beam direction. The present invention requires a substantially simpler and more economical superstructure than insertion devices in which the magnetic field strength is altered by changing the gap between arrays of magnets. 3 figures.
Meta-q-plate for complex beam shaping
Ji, Wei; Lee, Chun-Hong; Chen, Peng; Hu, Wei; Ming, Yang; Zhang, Lijian; Lin, Tsung-Hsien; Chigrinov, Vladimir; Lu, Yan-Qing
2016-01-01
Optical beam shaping plays a key role in optics and photonics. In this work, meta-q-plate featured by arbitrarily space-variant optical axes is proposed and demonstrated via liquid crystal photoalignment based on a polarization-sensitive alignment agent and a dynamic micro-lithography system. Meta-q-plates with multiple-, azimuthally/radially variant topological charges and initial azimuthal angles are fabricated. Accordingly, complex beams with elliptical, asymmetrical, multi-ringed and hurricane transverse profiles are generated, making the manipulation of optical vortex up to an unprecedented flexibility. The evolution, handedness and Michelson interferogram of the hurricane one are theoretically analysed and experimentally verified. The design facilitates the manipulation of polarization and spatial degrees of freedom of light in a point-to-point manner. The realization of meta-q-plate drastically enhances the capability of beam shaping and may pave a bright way towards optical manipulations, OAM based informatics, quantum optics and other fields. PMID:27149897
Meta-q-plate for complex beam shaping.
Ji, Wei; Lee, Chun-Hong; Chen, Peng; Hu, Wei; Ming, Yang; Zhang, Lijian; Lin, Tsung-Hsien; Chigrinov, Vladimir; Lu, Yan-Qing
2016-05-06
Optical beam shaping plays a key role in optics and photonics. In this work, meta-q-plate featured by arbitrarily space-variant optical axes is proposed and demonstrated via liquid crystal photoalignment based on a polarization-sensitive alignment agent and a dynamic micro-lithography system. Meta-q-plates with multiple-, azimuthally/radially variant topological charges and initial azimuthal angles are fabricated. Accordingly, complex beams with elliptical, asymmetrical, multi-ringed and hurricane transverse profiles are generated, making the manipulation of optical vortex up to an unprecedented flexibility. The evolution, handedness and Michelson interferogram of the hurricane one are theoretically analysed and experimentally verified. The design facilitates the manipulation of polarization and spatial degrees of freedom of light in a point-to-point manner. The realization of meta-q-plate drastically enhances the capability of beam shaping and may pave a bright way towards optical manipulations, OAM based informatics, quantum optics and other fields.
NASA Astrophysics Data System (ADS)
Shen, Yizhu; Yang, Jiawei; Meng, Hongfu; Dou, Wenbin; Hu, Sanming
2018-04-01
Metasurfaces, orbital angular momenta (OAM), and non-diffractive Bessel beams have been attracting worldwide research. Combining the benefits of these three promising techniques, this paper proposes a metasurface-based reflective-type approach to generate a first-order Bessel beam carrying OAM. To validate this approach, a millimeter-wave metasurface is analyzed, designed, fabricated, and measured. Experimental results agree well with simulation. Moreover, this reflective-type metasurface, generating a Bessel beam with OAM, is inherently integrated with a planar feeding source in the same single-layer printed circuit board. Therefore, the proposed design features low profile, low cost, easy integration with front-end active circuits, and no alignment error between the feeding source and the metasurface.
Laser focus compensating sensing and imaging device
Vann, Charles S.
1993-01-01
A laser focus compensating sensing and imaging device permits the focus of a single focal point of different frequency laser beams emanating from the same source point. In particular it allows the focusing of laser beam originating from the same laser device but having differing intensities so that a low intensity beam will not convert to a higher frequency when passing through a conversion crystal associated with the laser generating device. The laser focus compensating sensing and imaging device uses a cassegrain system to fold the lower frequency, low intensity beam back upon itself so that it will focus at the same focal point as a high intensity beam. An angular tilt compensating lens is mounted about the secondary mirror of the cassegrain system to assist in alignment. In addition cameras or CCD's are mounted with the primary mirror to sense the focused image. A convex lens is positioned co-axial with the cassegrain system on the side of the primary mirror distal of the secondary for use in aligning a target with the laser beam. A first alternate embodiment includes a cassegrain system using a series of shutters and an internally mounted dichroic mirror. A second alternate embodiment uses two laser focus compensating sensing and imaging devices for aligning a moving tool with a work piece.
Laser focus compensating sensing and imaging device
Vann, C.S.
1993-08-31
A laser focus compensating sensing and imaging device permits the focus of a single focal point of different frequency laser beams emanating from the same source point. In particular it allows the focusing of laser beam originating from the same laser device but having differing intensities so that a low intensity beam will not convert to a higher frequency when passing through a conversion crystal associated with the laser generating device. The laser focus compensating sensing and imaging device uses a Cassegrain system to fold the lower frequency, low intensity beam back upon itself so that it will focus at the same focal point as a high intensity beam. An angular tilt compensating lens is mounted about the secondary mirror of the Cassegrain system to assist in alignment. In addition cameras or CCD's are mounted with the primary mirror to sense the focused image. A convex lens is positioned co-axial with the Cassegrain system on the side of the primary mirror distal of the secondary for use in aligning a target with the laser beam. A first alternate embodiment includes a Cassegrain system using a series of shutters and an internally mounted dichroic mirror. A second alternate embodiment uses two laser focus compensating sensing and imaging devices for aligning a moving tool with a work piece.
NASA Technical Reports Server (NTRS)
Nakamura, R.; Sergeev, V. A.; Baumjohann, W.; Plaschke, F.; Magnes, W.; Fischer, D.; Varsani, A.; Schmid, D.; Nakamura, T. K. M.; Russell, C. T.;
2016-01-01
We report on field-aligned current observations by the four Magnetospheric Multiscale (MMS) spacecraft near the plasma sheet boundary layer (PSBL) during two major substorms on 23 June 2015. Small-scale field-aligned currents were found embedded in fluctuating PSBL flux tubes near the Separatrix region. We resolve, for the first time, short-lived earthward (downward) intense field-aligned current sheets with thicknesses of a few tens of kilometers, which are well below the ion scale, on flux tubes moving equatorward earth ward during outward plasma sheet expansion. They coincide with upward field-aligned electron beams with energies of a few hundred eV. These electrons are most likely due to acceleration associated with a reconnection jet or high-energy ion beam-produced disturbances. The observations highlight coupling of multiscale processes in PSBL as a consequence of magnetotail reconnection.
Nakamura, R; Sergeev, V A; Baumjohann, W; Plaschke, F; Magnes, W; Fischer, D; Varsani, A; Schmid, D; Nakamura, T K M; Russell, C T; Strangeway, R J; Leinweber, H K; Le, G; Bromund, K R; Pollock, C J; Giles, B L; Dorelli, J C; Gershman, D J; Paterson, W; Avanov, L A; Fuselier, S A; Genestreti, K; Burch, J L; Torbert, R B; Chutter, M; Argall, M R; Anderson, B J; Lindqvist, P-A; Marklund, G T; Khotyaintsev, Y V; Mauk, B H; Cohen, I J; Baker, D N; Jaynes, A N; Ergun, R E; Singer, H J; Slavin, J A; Kepko, E L; Moore, T E; Lavraud, B; Coffey, V; Saito, Y
2016-05-28
We report on field-aligned current observations by the four Magnetospheric Multiscale (MMS) spacecraft near the plasma sheet boundary layer (PSBL) during two major substorms on 23 June 2015. Small-scale field-aligned currents were found embedded in fluctuating PSBL flux tubes near the separatrix region. We resolve, for the first time, short-lived earthward (downward) intense field-aligned current sheets with thicknesses of a few tens of kilometers, which are well below the ion scale, on flux tubes moving equatorward/earthward during outward plasma sheet expansion. They coincide with upward field-aligned electron beams with energies of a few hundred eV. These electrons are most likely due to acceleration associated with a reconnection jet or high-energy ion beam-produced disturbances. The observations highlight coupling of multiscale processes in PSBL as a consequence of magnetotail reconnection.
Automatic target alignment of the Helios laser system
NASA Astrophysics Data System (ADS)
Liberman, I.; Viswanathan, V. K.; Klein, M.; Seery, B. D.
1980-05-01
An automatic target-alignment technique for the Helios laser facility is reported and verified experimentally. The desired alignment condition is completely described by an autocollimation test. A computer program examines the autocollimated return pattern from the surrogate target and correctly describes any changes required in mirror orientation to yield optimum target alignment with either aberrated or misaligned beams. Automated on-line target alignment is thus shown to be feasible.
Aligning the magnetic field of a linear induction accelerator with a low-energy electron beam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clark, J.C.; Deadrick, F.J.; Kallman, J.S.
1989-03-10
The Experimental Test Accelerator II (ETA-II) linear induction accelerator at Lawrence Livermore National Laboratory uses a solenoid magnet in each acceleration cell to focus and transport an electron beam over the length of the accelerator. To control growth of the corkscrew mode the magnetic field must be precisely aligned over the full length of the accelerate. Concentric with each solenoid magnet is sine/cosmic-wound correction coil to steer the beam and correct field errors. A low-energy electron probe traces the central flux line through the accelerator referenced to a mechanical axis that is defined by a copropagating laser beam. Correction coilsmore » are activated to force the central flux line to cross the mechanical axis at the end of each acceleration cell. The ratios of correction coil currents determined by the low-energy electron probe are then kept fixed to correct for field errors during normal operation with an accelerated beam. We describe the construction of the low-energy electron probe and report the results of experiments we conducted to measure magnetic alignment with and without the correction coils activated. 5 refs., 3 figs.« less
NASA Astrophysics Data System (ADS)
Das, R. K.; Li, Z.; Perera, H.; Williamson, J. F.
1996-06-01
Practical dosimeters in brachytherapy, such as thermoluminescent dosimeters (TLD) and diodes, are usually calibrated against low-energy megavoltage beams. To measure absolute dose rate near a brachytherapy source, it is necessary to establish the energy response of the detector relative to that of the calibration energy. The purpose of this paper is to assess the accuracy of Monte Carlo photon transport (MCPT) simulation in modelling the absolute detector response as a function of detector geometry and photon energy. We have exposed two different sizes of TLD-100 (LiF chips) and p-type silicon diode detectors to calibrated
, HDR source
and superficial x-ray beams. For the Scanditronix electron-field diode, the relative detector response, defined as the measured detector readings per measured unit of air kerma, varied from
(40 kVp beam) to
(
beam). Similarly for the large and small chips the same quantity varied from
and
, respectively. Monte Carlo simulation was used to calculate the absorbed dose to the active volume of the detector per unit air kerma. If the Monte Carlo simulation is accurate, then the absolute detector response, which is defined as the measured detector reading per unit dose absorbed by the active detector volume, and is calculated by Monte Carlo simulation, should be a constant. For the diode, the absolute response is
. For TLDs of size
the absolute response is
and for TLDs of
it is
. From the above results we can conclude that the absolute response function of detectors (TLDs and diodes) is directly proportional to absorbed dose by the active volume of the detector and is independent of beam quality.
Advanced Channeling Technologies in Plasma and Laser Fields
NASA Astrophysics Data System (ADS)
Dabagov, Sultan B.
2018-01-01
Channeling is the phenomenon well known in the world mostly related to the motion of the beams of charged particles in aligned crystals. However, recent studies have shown the feasibility of channeling phenomenology application for description of other various mechanisms of interaction of charged as well as neutral particle beams in solids, plasmas and electromagnetic fields covering the research fields from crystal based undulators, collimators and accelerators to capillary based X-ray and neutron optical elements. This brief review is devoted to the status of channeling-based researches at different centers within international and national collaborations. Present and future possible developments in channeling tools applied to electron interactions in strong plasma and laser fields will be analyzed.
Single element laser beam shaper
Zhang, Shukui [Yorktown, VA; Shinn, Michelle D [Newport News, VA
2005-09-13
A single lens laser beam shaper for converting laser beams from any spatial profile to a flat-top or uniform spatial profile. The laser beam shaper includes a lens having two aspheric surfaces. The beam shaper significantly simplifies the overall structure in comparison with conventional 2-element systems and therefore provides great ease in alignment and reduction of cost.
Spent fuel container alignment device and method
Jones, Stewart D.; Chapek, George V.
1996-01-01
An alignment device is used with a spent fuel shipping container including a plurality of fuel pockets for spent fuel arranged in an annular array and having a rotatable cover including an access opening therein. The alignment device includes a lightweight plate which is installed over the access opening of the cover. A laser device is mounted on the plate so as to emit a laser beam through a laser admittance window in the cover into the container in the direction of a pre-established target associated with a particular fuel pocket. An indexing arrangement on the container provides an indication of the angular position of the rotatable cover when the laser beam produced by the laser is brought into alignment with the target of the associated fuel pocket.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Yang; Lee, Ju Hwan; Seo, Dae-Shik, E-mail: dsseo@yonsei.ac.kr
2016-09-05
Thin ion-beam (IB)-spurted dimethyl sulfate/poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (DMS/PEDOT:PSS) layers with improved electro-optic performance are presented for aligning liquid crystals. IB spurting is effective for enhancing the conductivity of such layers, as well as the anchoring energy of the liquid crystals sandwiched between them. Compared with a commercial twisted-nematic cell assembled with polyimide alignment layers, the same cell assembled with 3.0-keV IB-spurted DMS/PEDOT:PSS alignment layers shows a 38% faster switching and a 93% lower residual direct current. The improved electro-optic performance here is likely due to the enhanced electric field effect and the charge-releasing ability of thin IB-spurted DMS/PEDOT:PSS layers.
Paluska, Petr; Hanus, Josef; Sefrova, Jana; Rouskova, Lucie; Grepl, Jakub; Jansa, Jan; Kasaova, Linda; Hodek, Miroslav; Zouhar, Milan; Vosmik, Milan; Petera, Jiri
2012-01-01
To assess target volume coverage during prostate image-guided radiotherapy based on bony anatomy alignment and to assess possibility of safety margin reduction. Implementation of IGRT should influence safety margins. Utilization of cone-beam CT provides current 3D anatomic information directly in irradiation position. Such information enables reconstruction of the actual dose distribution. Seventeen prostate patients were treated with daily bony anatomy image-guidance. Cone-beam CT (CBCT) scans were acquired once a week immediately after bony anatomy alignment. After the prostate, seminal vesicles, rectum and bladder were contoured, the delivered dose distribution was reconstructed. Target dose coverage was evaluated by the proportion of the CTV encompassed by the 95% isodose. Original plans employed a 1 cm safety margin. Alternative plans assuming a smaller 7 mm margin between CTV and PTV were evaluated in the same way. Rectal and bladder volumes were compared with the initial ones. Rectal and bladder volumes irradiated with doses higher than 75 Gy, 70 Gy, 60 Gy, 50 Gy and 40 Gy were analyzed. In 12% of reconstructed plans the prostate coverage was not sufficient. The prostate underdosage was observed in 5 patients. Coverage of seminal vesicles was not satisfactory in 3% of plans. Most of the target underdosage corresponded to excessive rectal or bladder filling. Evaluation of alternative plans assuming a smaller 7 mm margin revealed 22% and 11% of plans where prostate and seminal vesicles coverage, respectively, was compromised. These were distributed over 8 and 7 patients, respectively. Sufficient dose coverage of target volumes was not achieved for all patients. Reducing of safety margin is not acceptable. Initial rectal and bladder volumes cannot be considered representative for subsequent treatment.
Cai, Yangjian; Lin, Qiang
2004-06-01
A new mathematical model called hollow elliptical Gaussian beam (HEGB) is proposed to describe a dark-hollow laser beam with noncircular symmetry in terms of a tensor method. The HEGB can be expressed as a superposition of a series of elliptical Hermite-Gaussian modes. By using the generalized diffraction integral formulas for light passing through paraxial optical systems, analytical propagation formulas for HEGBs passing through paraxial aligned and misaligned optical systems are obtained through vector integration. As examples of applications, evolution properties of the intensity distribution of HEGBs in free-space propagation were studied. Propagation properties of HEGBs through a misaligned thin lens were also studied. The HEGB provides a convenient way to describe elliptical dark-hollow laser beams and can be used conveniently to study the motion of atoms in a dark-hollow laser beam.
NASA Astrophysics Data System (ADS)
Cai, Yangjian; Lin, Qiang
2004-06-01
A new mathematical model called hollow elliptical Gaussian beam (HEGB) is proposed to describe a dark-hollow laser beam with noncircular symmetry in terms of a tensor method. The HEGB can be expressed as a superposition of a series of elliptical Hermite-Gaussian modes. By using the generalized diffraction integral formulas for light passing through paraxial optical systems, analytical propagation formulas for HEGBs passing through paraxial aligned and misaligned optical systems are obtained through vector integration. As examples of applications, evolution properties of the intensity distribution of HEGBs in free-space propagation were studied. Propagation properties of HEGBs through a misaligned thin lens were also studied. The HEGB provides a convenient way to describe elliptical dark-hollow laser beams and can be used conveniently to study the motion of atoms in a dark-hollow laser beam.
High energy Coulomb-scattered electrons for relativistic particle beams and diagnostics
Thieberger, P.; Altinbas, Z.; Carlson, C.; ...
2016-03-29
A new system used for monitoring energetic Coulomb-scattered electrons as the main diagnostic for accurately aligning the electron and ion beams in the new Relativistic Heavy Ion Collider (RHIC) electron lenses is described in detail. The theory of electron scattering from relativistic ions is developed and applied to the design and implementation of the system used to achieve and maintain the alignment. Commissioning with gold and 3He beams is then described as well as the successful utilization of the new system during the 2015 RHIC polarized proton run. Systematic errors of the new method are then estimated. Lastly, some possiblemore » future applications of Coulomb-scattered electrons for beam diagnostics are briefly discussed.« less
Nonlinear Optical Effects in Liquid Crystals.
1980-12-10
susceptibilities Lasers , Nematic, Cholesteric, Flexoelectric, Second-harmonic generation 20M AV*--YRAc rR-r, m, revere i It nf le4U7 siad Idsiully byr...samples are irradiated with laser beam at the fundamental frequency. The laser used in a Q-switched Nd-YAG laser . Sample alignment is achieved either...irradiated with laser beam at the fundamental frequency. The laser used is a Q-switched Nd-YAG laser . Sample alignment is achieved either with rubbing
Relay telescope including baffle, and high power laser amplifier utilizing the same
Dane, C. Brent; Hackel, Lloyd; Harris, Fritz B.
2006-09-19
A laser system includes an optical path having an intracavity relay telescope with a telescope focal point for imaging an output of the gain medium between an image location at or near the gain medium and an image location at or near an output coupler for the laser system. A kinematic mount is provided within a vacuum chamber, and adapted to secure beam baffles near the telescope focal point. An access port on the vacuum chamber is adapted for allowing insertion and removal of the beam baffles. A first baffle formed using an alignment pinhole aperture is used during alignment of the laser system. A second tapered baffle replaces the alignment aperture during operation and acts as a far-field baffle in which off angle beams strike the baffle a grazing angle of incidence, reducing fluence levels at the impact areas.
Method for nanoscale spatial registration of scanning probes with substrates and surfaces
NASA Technical Reports Server (NTRS)
Wade, Lawrence A. (Inventor)
2010-01-01
Embodiments in accordance with the present invention relate to methods and apparatuses for aligning a scanning probe used to pattern a substrate, by comparing the position of the probe to a reference location or spot on the substrate. A first light beam is focused on a surface of the substrate as a spatial reference point. A second light beam then illuminates the scanning probe being used for patterning. An optical microscope images both the focused light beam, and a diffraction pattern, shadow, or light backscattered by the illuminated scanning probe tip of a scanning probe microscope (SPM), which is typically the tip of the scanning probe on an atomic force microscope (AFM). Alignment of the scanning probe tip relative to the mark is then determined by visual observation of the microscope image. This alignment process may be repeated to allow for modification or changing of the scanning probe microscope tip.
An X-ray beam position monitor based on the photoluminescence of helium gas
NASA Astrophysics Data System (ADS)
Revesz, Peter; White, Jeffrey A.
2005-03-01
A new method for white beam position monitoring for both bend magnet and wiggler synchrotron X-ray radiation has been developed. This method utilizes visible light luminescence generated as a result of ionization by the intense X-ray flux. In video beam position monitors (VBPMs), the luminescence of helium gas at atmospheric pressure is observed through a view port using a CCD camera next to the beam line. The beam position, profile, integrated intensity and FWHM are calculated from the distribution of luminescence intensity in each captured image by custom software. Misalignment of upstream apertures changes the image profile making VBPMs helpful for initial alignment of upstream beam line components. VBPMs can thus provide more information about the X-ray beam than most beam position monitors (BPMs). A beam position calibration procedure, employing a tilted plane-parallel glass plate placed in front of the camera lens, has also been developed. The accuracy of the VBPM system was measured during a bench-top experiment to be better than 1 μm. The He-luminescence-based VBPM system has been operative on three CHESS beam lines (F hard-bend and wiggler, A-line wiggler and G-line wiggler) for about a year. The beam positions are converted to analog voltages and used as feedback signals for beam stabilization. In our paper we discuss details of VBPM construction and describe further results of its performance.
Photonic Sorting of Aligned, Crystalline Carbon Nanotube Textiles.
Bulmer, John S; Gspann, Thurid S; Orozco, Francisco; Sparkes, Martin; Koerner, Hilmar; Di Bernardo, A; Niemiec, Arkadiusz; Robinson, J W A; Koziol, Krzysztof K; Elliott, James A; O'Neill, William
2017-10-11
Floating catalyst chemical vapor deposition uniquely generates aligned carbon nanotube (CNT) textiles with individual CNT lengths magnitudes longer than competing processes, though hindered by impurities and intrinsic/extrinsic defects. We present a photonic-based post-process, particularly suited for these textiles, that selectively removes defective CNTs and other carbons not forming a threshold thermal pathway. In this method, a large diameter laser beam rasters across the surface of a partly aligned CNT textile in air, suspended from its ends. This results in brilliant, localized oxidation, where remaining material is an optically transparent film comprised of few-walled CNTs with profound and unique improvement in microstructure alignment and crystallinity. Raman spectroscopy shows substantial D peak suppression while preserving radial breathing modes. This increases the undoped, specific electrical conductivity at least an order of magnitude to beyond that of single-crystal graphite. Cryogenic conductivity measurements indicate intrinsic transport enhancement, opposed to simply removing nonconductive carbons/residual catalyst.
A method to align a bent crystal for channeling experiments by using quasichanneling oscillations
NASA Astrophysics Data System (ADS)
Sytov, A. I.; Guidi, V.; Tikhomirov, V. V.; Bandiera, L.; Bagli, E.; Germogli, G.; Mazzolari, A.; Romagnoni, M.
2018-04-01
A method to calculate both the bent crystal angle of alignment and radius of curvature by using only one distribution of deflection angles has been developed. The method is based on measuring of the angular position of recently predicted and observed quasichanneling oscillations in the deflection angle distribution and consequent fitting of both the radius and angular alignment by analytic formulae. In this paper this method is applied on the example of simulated angular distributions over a wide range of values of both radius and alignment for electrons. It is carried out through the example of (111) nonequidistant planes though this technique is general and could be applied to any kind of planes. In addition, the method application constraints are also discussed. It is shown by simulations that this method, being in fact a sort of beam diagnostics, allows one in a certain case to increase the crystal alignment accuracy as well as to control precisely the radius of curvature inside an accelerator tube without vacuum breaking. In addition, it speeds up the procedure of crystal alignment in channeling experiments, reducing beamtime consuming.
Artificial stimulation of auroral electron acceleration by intense field aligned currents
NASA Technical Reports Server (NTRS)
Holmgren, G.; Bostrom, R.; Kelley, M. C.; Kintner, P. M.; Lundin, R.; Bering, E. A.; Sheldon, W. R.; Fahleson, U. V.
1979-01-01
A cesium-doped high explosion was detonated at 165 km altitude in the auroral ionosphere during quiet conditions. An Alfven wave pulse with a 200-mV/m electric field was observed, with the peak occurring 135 ms after the explosion at a distance of about 1 km. The count rate of fixed energy 2-keV electron detectors abruptly increased at 140 ms, peaked at 415 ms, and indicated a downward field-aligned beam of accelerated electrons. An anomalously high-field aligned beam of backscattered electrons was also detected. The acceleration is interpreted as due to production of an electrostatic shock or double layer between 300 and 800 km altitude. The structure was probably formed by an instability of the intense field-aligned currents in the Alfven wave launched by the charge-separation electric field due to the explosion.
Response analysis of TLD-300 dosimeters in heavy-particle beams
NASA Astrophysics Data System (ADS)
Loncol, Th; Hamal, M.; Denis, J. M.; Vynckier, S.; Wambersie, A.; Scalliet, P.
1996-09-01
In vivo dosimetry is recommended as part of the quality control procedure for treatment verification in radiation therapy. Using thermoluminescence, such controls are planned in the p(65)+Be neutron and 85 MeV proton beams produced at the cyclotron at Louvain-La-Neuve and dedicated to therapy applications. A preliminary study of the peak 3 (
C) and peak 5 (
C) response of
:Tm (TLD-300) to neutron and proton beams aimed to analyse the effect of different radiation qualities on the dosimetric behaviour of the detector irradiated in phantom. To broaden the range of investigation, the study was extended to an experimental C-12 heavy ion beam (95 MeV/nucleon). The peak 3 and 5 sensitivities in the neutron beam, compared to Co-60, varied little with depth. A major change of peak 5 sensitivity was observed for samples positioned under five leaves of the multi-leaf collimator. While peak 3 sensitivity was constant with depth in the unmodulated proton beam, peak 5 sensitivity increased by 15%. Near the Bragg peak, peak 3 showed the highest decrease of sensitivity. In the modulated proton beam, the sensitivity values were not significantly smaller than those measured in the unmodulated beam far from the Bragg peak region. The ratio of the heights of peak 3 and peak 5 decreased by 70% from the Co-60 reference radiation to the C-12 heavy-ion beam. This parameter was strongly correlated with the change of radiation quality.
NASA Astrophysics Data System (ADS)
Dupraz, K.; Cassou, K.; Martens, A.; Zomer, F.
2015-10-01
The ABCD matrix for parabolic reflectors is derived for any incident angles. It is used in numerical studies of four-mirror cavities composed of two flat and two parabolic mirrors. Constraints related to laser beam injection efficiency, optical stability, cavity-mode, beam-waist size and high stacking power are satisfied. A dedicated alignment procedure leading to stigmatic cavity-modes is employed to overcome issues related to the optical alignment of parabolic reflectors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gofron, K. J., E-mail: kgofron@bnl.gov; Cai, Y. Q.; Coburn, D. S.
A novel on-axis X-ray microscope with 3 µm resolution, 3x magnification, and a working distance of 600 mm for in-situ sample alignment and X-ray beam visualization for the Inelastic X-ray Scattering (IXS) beamline at NSLS-II is presented. The microscope uses reflective optics, which minimizes dispersion, and allows imaging from Ultraviolet (UV) to Infrared (IR) with specifically chosen objective components (coatings, etc.). Additionally, a portable high resolution X-ray microscope for KB mirror alignment and X-ray beam characterization was developed.
Surface profiling interferometer
Takacs, Peter Z.; Qian, Shi-Nan
1989-01-01
The design of a long-trace surface profiler for the non-contact measurement of surface profile, slope error and curvature on cylindrical synchrotron radiation (SR) mirrors. The optical system is based upon the concept of a pencil-beam interferometer with an inherent large depth-of-field. The key feature of the optical system is the zero-path-difference beam splitter, which separates the laser beam into two colinear, variable-separation probe beams. A linear array detector is used to record the interference fringe in the image, and analysis of the fringe location as a function of scan position allows one to reconstruct the surface profile. The optical head is mounted on an air bearing slide with the capability to measure long aspheric optics, typical of those encountered in SR applications. A novel feature of the optical system is the use of a transverse "outrigger" beam which provides information on the relative alignment of the scan axis to the cylinder optic symmetry axis.
NASA Technical Reports Server (NTRS)
Ulrich, Peter B. (Editor); Wilson, Leroy E. (Editor)
1991-01-01
Consideration is given to turbulence at the inner scale, modeling turbulent transport in laser beam propagation, variable wind direction effects on thermal blooming correction, realistic wind effects on turbulence and thermal blooming compensation, wide bandwidth spectral measurements of atmospheric tilt turbulence, remote alignment of adaptive optical systems with far-field optimization, focusing infrared laser beams on targets in space without using adaptive optics, and a simplex optimization method for adaptive optics system alignment. Consideration is also given to ground-to-space multiline propagation at 1.3 micron, a path integral approach to thermal blooming, functional reconstruction predictions of uplink whole beam Strehl ratios in the presence of thermal blooming, and stability analysis of semidiscrete schemes for thermal blooming computation.
Strongly aligned gas-phase molecules at free-electron lasers
Kierspel, Thomas; Wiese, Joss; Mullins, Terry; ...
2015-09-16
Here, we demonstrate a novel experimental implementation to strongly align molecules at full repetition rates of free-electron lasers. We utilized the available in-house laser system at the coherent x-ray imaging beamline at the linac coherent light source. Chirped laser pulses, i.e., the direct output from the regenerative amplifier of the Ti:Sa chirped pulse amplification laser system, were used to strongly align 2, 5-diiodothiophene molecules in a molecular beam. The alignment laser pulses had pulse energies of a few mJ and a pulse duration of 94 ps. A degree of alignment ofmore » $$\\langle {\\mathrm{cos}}^{2}{\\theta }_{2{\\rm{D}}}\\rangle =0.85$$ was measured, limited by the intrinsic temperature of the molecular beam rather than by the available laser system. With the general availability of synchronized chirped-pulse-amplified near-infrared laser systems at short-wavelength laser facilities, our approach allows for the universal preparation of molecules tightly fixed in space for experiments with x-ray pulses.« less
Use of implanted gold fiducial markers with MV-CBCT image-guided IMRT for pancreatic tumours.
Packard, Matthew; Gayou, Olivier; Gurram, Krishna; Weiss, Brandon; Thakkar, Shyam; Kirichenko, Alexander
2015-08-01
Visualisation of soft tissues such as pancreatic tumours by mega-voltage cone beam CT (MV-CBCT) is frequently difficult and daily localisation is often based on more easily seen adjacent bony anatomy. Fiducial markers implanted into pancreatic tumours serve as surrogates for tumour position and may more accurately represent absolute tumour position. Differences in daily shifts based on alignment to implanted fiducial markers vs. alignment to adjacent bony anatomy were compared. Gold fiducial markers were placed into the pancreatic tumour under endoscopic ultrasound (EUS) guidance in 12 patients. Patients subsequently received image-guided intensity-modulated radiation therapy (IG-IMRT). MV-CBCT was performed prior to each fraction and isocentre shifts were performed based on alignment to the fiducial markers. We retrospectively reviewed archived MV-CBCT datasets and calculated shift differences in the left-right (LR), superior-inferior (SI) and anterior-posterior (AP) axes relative to shifts based on alignment to adjacent bony anatomy. Two hundred forty-three fractions were analysed. The mean absolute difference in isocentre shifts between the fiducial markers and those aligned to bony anatomy was 3.4 mm (range 0-13 mm), 6.3 mm (range 0-21 mm) and 2.6 mm (range 0-12 mm), in LR, SI and AP directions, respectively. The mean three-dimensional vector shift difference between markers vs. bony anatomy alignment was 8.6 mm. These data suggest that fiducial markers used in conjunction with MV-CBCT improve the accuracy of daily target delineation compared with localisation using adjacent bony anatomy and that gold fiducial markers using MV-CBCT alignment are a viable option for target localisation during IG-IMRT. © 2015 The Royal Australian and New Zealand College of Radiologists.
An optically passive method that doubles the rate of 2-Ghz timing fiducials
NASA Astrophysics Data System (ADS)
Boni, R.; Kendrick, J.; Sorce, C.
2017-08-01
Solid-state optical comb-pulse generators provide a convenient and accurate method to include timing fiducials in a streak camera image for time base correction. Commercially available vertical-cavity surface-emitting lasers (VCSEL's) emitting in the visible currently in use can be modulated up to 2 GHz. An optically passive method is presented to interleave a time-delayed path of the 2-GHz comb with itself, producing a 4-GHz comb. This technique can be applied to VCSEL's with higher modulation rates. A fiber-delivered, randomly polarized 2-GHz VCSEL comb is polarization split into s-polarization and p-polarization paths. One path is time delayed relative to the other by twice the 2-GHz rate with +/-1-ps accuracy; the two paths then recombine at the fiber-coupled output. High throughput (>=90%) is achieved by carefully using polarization beam-splitting cubes, a total internal reflection beam-path-steering prism, and antireflection coatings. The glass path-length delay block and turning prism are optically contacted together. The beam polarizer cubes that split and recombine the paths are precision aligned and permanently cemented into place. We expect the palm-sized, inline fiber-coupled, comb-rate-doubling device to maintain its internal alignment indefinitely.
NASA Astrophysics Data System (ADS)
Adamson, P.; Anderson, K.; Andrews, M.; Andrews, R.; Anghel, I.; Augustine, D.; Aurisano, A.; Avvakumov, S.; Ayres, D. S.; Baller, B.; Barish, B.; Barr, G.; Barrett, W. L.; Bernstein, R. H.; Biggs, J.; Bishai, M.; Blake, A.; Bocean, V.; Bock, G. J.; Boehnlein, D. J.; Bogert, D.; Bourkland, K.; Cao, S. V.; Castromonte, C. M.; Childress, S.; Choudhary, B. C.; Coelho, J. A. B.; Cobb, J. H.; Corwin, L.; Crane, D.; Cravens, J. P.; Cronin-Hennessy, D.; Ducar, R. J.; De Jong, J. K.; Devan, A. V.; Devenish, N. E.; Diwan, M. V.; Erwin, A. R.; Escobar, C. O.; Evans, J. J.; Falk, E.; Feldman, G. J.; Fields, T. H.; Ford, R.; Frohne, M. V.; Gallagher, H. R.; Garkusha, V.; Gomes, R. A.; Goodman, M. C.; Gouffon, P.; Graf, N.; Gran, R.; Grossman, N.; Grzelak, K.; Habig, A.; Hahn, S. R.; Harding, D.; Harris, D.; Harris, P. G.; Hartnell, J.; Hatcher, R.; Hays, S.; Heller, K.; Holin, A.; Huang, J.; Hylen, J.; Ibrahim, A.; Indurthy, D.; Irwin, G. M.; Isvan, Z.; Jaffe, D. E.; James, C.; Jensen, D.; Johnstone, J.; Kafka, T.; Kasahara, S. M. S.; Koizumi, G.; Kopp, S.; Kordosky, M.; Kreymer, A.; Lang, K.; Laughton, C.; Lefeuvre, G.; Ling, J.; Litchfield, P. J.; Loiacono, L.; Lucas, P.; Mann, W. A.; Marchionni, A.; Marshak, M. L.; Mayer, N.; McGivern, C.; Medeiros, M. M.; Mehdiyev, R.; Meier, J. R.; Messier, M. D.; Michael, D. G.; Milburn, R. H.; Miller, J. L.; Miller, W. H.; Mishra, S. R.; Moed Sher, S.; Moore, C. D.; Morfín, J.; Mualem, L.; Mufson, S.; Murgia, S.; Murtagh, M.; Musser, J.; Naples, D.; Nelson, J. K.; Newman, H. B.; Nichol, R. J.; Nowak, J. A.; O`Connor, J.; Oliver, W. P.; Olsen, M.; Orchanian, M.; Osprey, S.; Pahlka, R. B.; Paley, J.; Para, A.; Patterson, R. B.; Patzak, T.; Pavlović, Ž.; Pawloski, G.; Perch, A.; Peterson, E. A.; Petyt, D. A.; Pfützner, M. M.; Phan-Budd, S.; Plunkett, R. K.; Poonthottathil, N.; Prieto, P.; Pushka, D.; Qiu, X.; Radovic, A.; Rameika, R. A.; Ratchford, J.; Rebel, B.; Reilly, R.; Rosenfeld, C.; Rubin, H. A.; Ruddick, K.; Sanchez, M. C.; Saoulidou, N.; Sauer, L.; Schneps, J.; Schoo, D.; Schreckenberger, A.; Schreiner, P.; Shanahan, P.; Sharma, R.; Smart, W.; Smith, C.; Sousa, A.; Stefanik, A.; Tagg, N.; Talaga, R. L.; Tassotto, G.; Thomas, J.; Thompson, J.; Thomson, M. A.; Tian, X.; Timmons, A.; Tinsley, D.; Tognini, S. C.; Toner, R.; Torretta, D.; Trostin, I.; Tzanakos, G.; Urheim, J.; Vahle, P.; Vaziri, K.; Villegas, E.; Viren, B.; Vogel, G.; Webber, R. C.; Weber, A.; Webb, R. C.; Wehmann, A.; White, C.; Whitehead, L.; Whitehead, L. H.; Wojcicki, S. G.; Wong-Squires, M. L.; Yang, T.; Yumiceva, F. X.; Zarucheisky, V.; Zwaska, R.
2016-01-01
This paper describes the hardware and operations of the Neutrinos at the Main Injector (NuMI) beam at Fermilab. It elaborates on the design considerations for the beam as a whole and for individual elements. The most important design details of individual components are described. Beam monitoring systems and procedures, including the tuning and alignment of the beam and NuMI long-term performance, are also discussed.
PRECISE ANGLE MONITOR BASED ON THE CONCEPT OF PENCIL-BEAM INTERFEROMETRY
DOE Office of Scientific and Technical Information (OSTI.GOV)
QIAN,S.; TAKACS,P.
2000-07-30
The precise angle monitoring is a very important metrology task for research, development and industrial applications. Autocollimator is one of the most powerful and widely applied instruments for small angle monitoring, which is based on the principle of geometric optics. In this paper the authors introduce a new precise angle monitoring system, Pencil-beam Angle Monitor (PAM), base on pencil beam interferometry. Its principle of operation is a combination of physical and geometrical optics. The angle calculation method is similar to the autocollimator. However, the autocollimator creates a cross image but the precise pencil-beam angle monitoring system produces an interference fringemore » on the focal plane. The advantages of the PAM are: high angular sensitivity, long-term stability character making angle monitoring over long time periods possible, high measurement accuracy in the order of sub-microradian, simultaneous measurement ability in two perpendicular directions or on two different objects, dynamic measurement possibility, insensitive to the vibration and air turbulence, automatic display, storage and analysis by use of the computer, small beam diameter making the alignment extremely easy and longer test distance. Some test examples are presented.« less
Suprathermal electron loss cone distributions in the solar wind: Ulysses observations
NASA Technical Reports Server (NTRS)
Phillips, J. L.; Feldman, W. C.; Gosling, J. T.; Hammond, C. M.; Forsyth, R. J.
1995-01-01
Solar wind suprathermal electron distributions in the solar wind generally carry a field-aligned antisunward heat flux. Within coronal mass ejections and upstream of strong shocks driven by corotating interaction regions (CIRs), counterstreaming electron beams are observed. We present observations by the Ulysses solar wind plasma experiment of a new class of suprathermal electron signatures. At low solar latitudes and heliocentric distances beyond 3.5 AU Ulysses encountered several intervals, ranging in duration from 1 hour to 22 hours, in which the suprathermal distributions included an antisunward field-aligned beam and a return population with a flux dropout typically spanning +/- 60 deg from the sunward field-aligned direction. All events occurred within CIRs, downstream of the forward and reverse shocks or waves bounding the interaction regions. We evaluate the hypothesis that the sunward-moving electrons result from reflection of the antisunward beams at magnetic field compressions downstream from the observations, with wide loss cones caused by the relatively weak compression ratio. This hypothesis requires that field magnitude within the CIRs actually increase with increasing field-aligned distance from the Sun. Details of the electron distributions and ramifications for CIR and shock geometry will be presented.
Sakamaki, Yohei; Shikama, Kota; Ikuma, Yuichiro; Suzuki, Kenya
2017-08-21
We propose a waveguide frontend with integrated polarization diversity optics for a wavelength selective switch (WSS) array with a liquid crystal on silicon switching engine to simplify the free space optics configuration and the alignment process in optical modules. The polarization diversity function is realized by the integration of a waveguide-type polarization beam splitter and a polarization rotating half-wave plate in a beam launcher using silica-based planar lightwave circuit technology. We confirmed experimentally the feasibility of using our proposed waveguide frontend in a two-in-one 1 × 20 WSS. The experimental results show that the fabricated waveguide frontend provides a polarization diversity function without any degradation in optical performance.
Stress-strain state of reinforced bimodulus beam on an elastic foundation
NASA Astrophysics Data System (ADS)
Beskopylny, A. N.; Kadomtseva, E. E.; Strelnikov, G. P.; Berdnik, Y. A.
2017-10-01
The paper provides the calculation theory of an arbitrary supported and arbitrary loaded reinforced beam filled with bimodulus material. The formulas determining normal stresses, bending moments, shear forces, rotation angles and a deflection of a rectangular crosssection beam reinforced with any number of bars aligned parallel to the beam axis have been obtained. The numerical study has been carried out to investigate an influence of a modulus of subgrade reaction on values of maximum normal stresses, maximum bending moments and a maximum deflection of a hinged supported beam loaded with a point force or uniform distributed load. The estimation is based on the method of initial parameters for a beam on elastic foundation and the Bubnov-Galerkin method. Values of maximum deflections, maximum bending moments and maximum stresses obtained by these methods coincide. The numerical studies show that taking into consideration the bimodulus of material leads to the necessity to calculate the strength analysis of both tensile stresses and compressive stresses.
Crookshank, Meghan C; Beek, Maarten; Singh, Devin; Schemitsch, Emil H; Whyne, Cari M
2013-07-01
Accurate alignment of femoral shaft fractures treated with intramedullary nailing remains a challenge for orthopaedic surgeons. The aim of this study is to develop and validate a cone-beam CT-based, semi-automated algorithm to quantify the malalignment in six degrees of freedom (6DOF) using a surface matching and principal axes-based approach. Complex comminuted diaphyseal fractures were created in nine cadaveric femora and cone-beam CT images were acquired (27 cases total). Scans were cropped and segmented using intensity-based thresholding, producing superior, inferior and comminution volumes. Cylinders were fit to estimate the long axes of the superior and inferior fragments. The angle and distance between the two cylindrical axes were calculated to determine flexion/extension and varus/valgus angulation and medial/lateral and anterior/posterior translations, respectively. Both surfaces were unwrapped about the cylindrical axes. Three methods of matching the unwrapped surface for determination of periaxial rotation were compared based on minimizing the distance between features. The calculated corrections were compared to the input malalignment conditions. All 6DOF were calculated to within current clinical tolerances for all but two cases. This algorithm yielded accurate quantification of malalignment of femoral shaft fractures for fracture gaps up to 60 mm, based on a single CBCT image of the fractured limb. Copyright © 2012 IPEM. Published by Elsevier Ltd. All rights reserved.
Performance of a Nanometer Resolution BPM System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walston, S.; Chung, C.; Fitsos, P.
2007-04-24
International Linear Collider (ILC) interaction region beam sizes and component position stability requirements will be as small as a few nanometers. It is important to the ILC design effort to demonstrate that these tolerances can be achieved ideally using beam-based stability measurements. It has been estimated that RF cavity beam position monitors (BPMs) could provide position measurement resolutions of less than one nanometer and could form the basis of the desired beam-based stability measurement. We have developed a high resolution RF cavity BPM system. A triplet of these BPMs has been installed in the extraction line of the KEK Acceleratormore » Test Facility (ATF) for testing with its ultra-low emittance beam. The three BPMs are rigidly mounted inside an alignment frame on variable-length struts which allow movement in position and angle. We have developed novel methods for extracting the position and tilt information from the BPM signals including a calibration algorithm which is immune to beam jitter. To date, we have been able to demonstrate a resolution of approximately 20 nm over a dynamic range of +/- 20 microns. We report on the progress of these ongoing tests.« less
In, Jung Bin; Lee, Daeho; Fornasiero, Francesco; Noy, Aleksandr; Grigoropoulos, Costas P
2012-09-25
We demonstrate a laser-assisted dry transfer technique for assembling patterns of vertically aligned carbon nanotube arrays on a flexible polymeric substrate. A laser beam is applied to the interface of a nanotube array and a polycarbonate sheet in contact with one another. The absorbed laser heat promotes nanotube adhesion to the polymer in the irradiated regions and enables selective pattern transfer. A combination of the thermal transfer mechanism with rapid direct writing capability of focused laser beam irradiation allows us to achieve simultaneous material transfer and direct micropatterning in a single processing step. Furthermore, we demonstrate that malleability of the nanotube arrays transferred onto a flexible substrate enables post-transfer tailoring of electric conductance by collapsing the aligned nanotubes in different directions. This work suggests that the laser-assisted transfer technique provides an efficient route to using vertically aligned nanotubes as conductive elements in flexible device applications.
Extremum seeking x-ray position feedback using power line harmonic leakage as the perturbation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zohar, S.; Kissick, D. J.; Venugopalan, N.
Small x-ray beam sizes necessary for probing nanoscale phenomena require exquisite stability to prevent data corruption by noise. One source of instability at synchrotron radiation x-ray beamlines is the slow detuning of x-ray optics to marginal alignment where the onset of clipping increases the beam's susceptibility to higher frequency position oscillations. In this article, we show that a 1 mu m amplitude horizontal x-ray beam oscillation driven by power line harmonic leakage into the electron storage ring can be used as perturbation for horizontal position extremum seeking feedback. Feedback performance is characterized by convergence to 1.5% away from maximum intensitymore » at optimal alignment.« less
Alignment Test Results of the JWST Pathfinder Telescope Mirrors in the Cryogenic Environment
NASA Technical Reports Server (NTRS)
Whitman, Tony L.; Wells, Conrad; Hadaway, James; Knight, J. Scott; Lunt, Sharon
2016-01-01
After integration of the Optical Telescope Element (OTE) to the Integrated Science Instrument Module (ISIM) to become the OTIS, the James Webb Space Telescope OTIS is tested at NASAs Johnson Space Center (JSC) in the cryogenic vacuum Chamber A for alignment and optical performance. The alignment of the mirrors comprises a sequence of steps as follows: The mirrors are coarsely aligned using photogrammetry cameras with reflective targets attached to the sides of the mirrors. Then a multi-wavelength interferometer is aligned to the 18-segment primary mirror using cameras at the center of curvature to align reflected light from the segments and using fiducials at the edge of the primary mirror. Once the interferometer is aligned, the 18 primary mirror segments are then adjusted to optimize wavefront error of the aggregate mirror. This process phases the piston and tilt positions of all the mirror segments. An optical fiber placed at the Cassegrain focus of the telescope then emits light towards the secondary mirror to create a collimated beam emitting from the primary mirror. Portions of the collimated beam are retro-reflected from flat mirrors at the top of the chamber to pass through the telescope to the SI detector. The image on the detector is used for fine alignment of the secondary mirror and a check of the primary mirror alignment using many of the same analysis techniques used in the on-orbit alignment. The entire process was practiced and evaluated in 2015 at cryogenic temperature with the Pathfinder telescope.
Adamson, P.; Anderson, K.; Andrews, M.; ...
2015-10-20
Our paper describes the hardware and operations of the Neutrinos at the Main Injector (NuMI) beam at Fermilab. It elaborates on the design considerations for the beam as a whole and for individual elements. The most important part of our design details pertaining to individual components is described. Beam monitoring systems and procedures, including the tuning and alignment of the beam and NuMI long-term performance, are also discussed.
21 CFR 892.5780 - Light beam patient position indicator.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Light beam patient position indicator. 892.5780 Section 892.5780 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... patient and to monitor alignment of the radiation beam with the patient's anatomy. (b) Classification...
21 CFR 892.5780 - Light beam patient position indicator.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Light beam patient position indicator. 892.5780 Section 892.5780 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... patient and to monitor alignment of the radiation beam with the patient's anatomy. (b) Classification...
21 CFR 892.5780 - Light beam patient position indicator.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Light beam patient position indicator. 892.5780 Section 892.5780 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... patient and to monitor alignment of the radiation beam with the patient's anatomy. (b) Classification...
21 CFR 892.5780 - Light beam patient position indicator.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Light beam patient position indicator. 892.5780 Section 892.5780 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... patient and to monitor alignment of the radiation beam with the patient's anatomy. (b) Classification...
X-ray laser microscope apparatus
Suckewer, Szymon; DiCicco, Darrell S.; Hirschberg, Joseph G.; Meixler, Lewis D.; Sathre, Robert; Skinner, Charles H.
1990-01-01
A microscope consisting of an x-ray contact microscope and an optical microscope. The optical, phase contrast, microscope is used to align a target with respect to a source of soft x-rays. The source of soft x-rays preferably comprises an x-ray laser but could comprise a synchrotron or other pulse source of x-rays. Transparent resist material is used to support the target. The optical microscope is located on the opposite side of the transparent resist material from the target and is employed to align the target with respect to the anticipated soft x-ray laser beam. After alignment with the use of the optical microscope, the target is exposed to the soft x-ray laser beam. The x-ray sensitive transparent resist material whose chemical bonds are altered by the x-ray beam passing through the target mater GOVERNMENT LICENSE RIGHTS This invention was made with government support under Contract No. De-FG02-86ER13609 awarded by the Department of Energy. The Government has certain rights in this invention.
A novel dose-based positioning method for CT image-guided proton therapy
Cheung, Joey P.; Park, Peter C.; Court, Laurence E.; Ronald Zhu, X.; Kudchadker, Rajat J.; Frank, Steven J.; Dong, Lei
2013-01-01
Purpose: Proton dose distributions can potentially be altered by anatomical changes in the beam path despite perfect target alignment using traditional image guidance methods. In this simulation study, the authors explored the use of dosimetric factors instead of only anatomy to set up patients for proton therapy using in-room volumetric computed tomographic (CT) images. Methods: To simulate patient anatomy in a free-breathing treatment condition, weekly time-averaged four-dimensional CT data near the end of treatment for 15 lung cancer patients were used in this study for a dose-based isocenter shift method to correct dosimetric deviations without replanning. The isocenter shift was obtained using the traditional anatomy-based image guidance method as the starting position. Subsequent isocenter shifts were established based on dosimetric criteria using a fast dose approximation method. For each isocenter shift, doses were calculated every 2 mm up to ±8 mm in each direction. The optimal dose alignment was obtained by imposing a target coverage constraint that at least 99% of the target would receive at least 95% of the prescribed dose and by minimizing the mean dose to the ipsilateral lung. Results: The authors found that 7 of 15 plans did not meet the target coverage constraint when using only the anatomy-based alignment. After the authors applied dose-based alignment, all met the target coverage constraint. For all but one case in which the target dose was met using both anatomy-based and dose-based alignment, the latter method was able to improve normal tissue sparing. Conclusions: The authors demonstrated that a dose-based adjustment to the isocenter can improve target coverage and/or reduce dose to nearby normal tissue. PMID:23635262
Local structure of human hair spatially resolved by sub-micron X-ray beam.
Stanić, Vesna; Bettini, Jefferson; Montoro, Fabiano Emmanuel; Stein, Aaron; Evans-Lutterodt, Kenneth
2015-11-30
Human hair has three main regions, the medulla, the cortex, and the cuticle. An existing model for the cortex suggests that the α-keratin- based intermediate filaments (IFs) align with the hair's axis, but are orientationally disordered in-plane. We found that there is a new region in the cortex near the cuticle's boundary in which the IFs are aligned with the hair's axis, but additionally, they are orientationally ordered in-plane due to the presence of the cuticle/hair boundary. Further into the cortex, the IF arrangement becomes disordered, eventually losing all in-plane orientation. We also find that in the cuticle, a key diffraction feature is absent, indicating the presence of the β-keratin rather than that of the α-keratin phase. This is direct structural evidence that the cuticle contains β-keratin sheets. This work highlights the importance of using a sub-micron x-ray beam to unravel the structures of poorly ordered, multi-phase systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, Yujie, E-mail: styojm@physics.tamu.edu; Voronine, Dmitri V.; Sokolov, Alexei V.
2015-08-15
We report a versatile setup based on the femtosecond adaptive spectroscopic techniques for coherent anti-Stokes Raman scattering. The setup uses a femtosecond Ti:Sapphire oscillator source and a folded 4f pulse shaper, in which the pulse shaping is carried out through conventional optical elements and does not require a spatial light modulator. Our setup is simple in alignment, and can be easily switched between the collinear single-beam and the noncollinear two-beam configurations. We demonstrate the capability for investigating both transparent and highly scattering samples by detecting transmitted and reflected signals, respectively.
Compression of Ultrafast Laser Beams
2016-03-01
Copyright 2003, AIP Publishing LLC. DOI: http://dx.doi.org/10.1063/1.1611998.) When designing the pulse shaper, the laser beam must completely fill the...for the design of future versions of this device. The easiest way to align the pulse shaper is to use the laser beam that will be shaped, without...Afterward, an ultrafast thin beam splitter is placed into the system after the diameter of the laser beam is reduced; this is done to monitor the beam
Simultaneous ultrasound and photoacoustics based flow cytometry
NASA Astrophysics Data System (ADS)
Gnyawali, Vaskar; Strohm, Eric M.; Tsai, Scott S. H.; Kolios, Michael C.
2018-04-01
We have developed a flow cytometer based on simultaneous detection of ultrasound and photoacoustic waves from individual particles/cells flowing in a microfluidic channel. Our polydimethylsiloxane (PDMS) based hydrodynamic 3-dimensional (3D) flow-focusing microfluidic device contains a cross-junction channel, a micro-needle (ID 100 μm and OD 200 μm) insert, and a 3D printed frame to hold and align a high frequency (center frequency 375 MHz) ultrasound transducer. The focused flow passes through a narrow focal zone with lateral and axial focal lengths of 6-8 μm and 15-20 μm, respectively. Both the lateral and axial alignments are achieved by screwing the transducer to the frame onto the PDMS device. Individual particles pass through an interrogation zone in the microfluidic channel with a collinearly aligned ultrasound transducer and a focused 532 nm wavelength laser beam. The particles are simultaneously insonified by high-frequency ultrasound and irradiated by a laser beam. The ultrasound backscatter and laser generated photoacoustic waves are detected for each passing particle. The backscattered ultrasound and photoacoustic signal are strongly dependent on the size, morphology, mechanical properties, and material properties of the flowing particles; these parameters can be extracted by analyzing unique features in the power spectrum of the signals. Frequencies less than 100 MHz do not have these unique spectral signatures. We show that we can reliably distinguish between different particles in a sample using the acoustic-based flow cytometer. This technique, when extended to biomedical applications, allows us to rapidly analyze the spectral signatures from individual single cells of a large cell population, with applications towards label-free detection and characterization of healthy and diseased cells.
A precise method for adjusting the optical system of laser sub-aperture
NASA Astrophysics Data System (ADS)
Song, Xing; Zhang, Xue-min; Yang, Jianfeng; Xue, Li
2018-02-01
In order to adapt to the requirement of modern astronomical observation and warfare, the resolution of the space telescope is needed to improve, sub-aperture stitching imaging technique is one method to improve the resolution, which could be used not only the foundation and space-based large optical systems, also used in laser transmission and microscopic imaging. A large aperture main mirror of sub-aperture stitching imaging system is composed of multiple sub-mirrors distributed according to certain laws. All sub-mirrors are off-axis mirror, so the alignment of sub-aperture stitching imaging system is more complicated than a single off-axis optical system. An alignment method based on auto-collimation imaging and interferometric imaging is introduced in this paper, by using this alignment method, a sub-aperture stitching imaging system which is composed of 12 sub-mirrors was assembled with high resolution, the beam coincidence precision is better than 0.01mm, and the system wave aberration is better than 0.05λ.
NASA Technical Reports Server (NTRS)
Decker, Arthur J.; Krasowski, Michael J.; Weiland, Kenneth E.
1993-01-01
This report describes an effort at NASA Lewis Research Center to use artificial neural networks to automate the alignment and control of optical measurement systems. Specifically, it addresses the use of commercially available neural network software and hardware to direct alignments of the common laser-beam-smoothing spatial filter. The report presents a general approach for designing alignment records and combining these into training sets to teach optical alignment functions to neural networks and discusses the use of these training sets to train several types of neural networks. Neural network configurations used include the adaptive resonance network, the back-propagation-trained network, and the counter-propagation network. This work shows that neural networks can be used to produce robust sequencers. These sequencers can learn by example to execute the step-by-step procedures of optical alignment and also can learn adaptively to correct for environmentally induced misalignment. The long-range objective is to use neural networks to automate the alignment and operation of optical measurement systems in remote, harsh, or dangerous aerospace environments. This work also shows that when neural networks are trained by a human operator, training sets should be recorded, training should be executed, and testing should be done in a manner that does not depend on intellectual judgments of the human operator.
The National Ignition Facility: alignment from construction to shot operations
NASA Astrophysics Data System (ADS)
Burkhart, S. C.; Bliss, E.; Di Nicola, P.; Kalantar, D.; Lowe-Webb, R.; McCarville, T.; Nelson, D.; Salmon, T.; Schindler, T.; Villanueva, J.; Wilhelmsen, K.
2010-08-01
The National Ignition Facility in Livermore, California, completed it's commissioning milestone on March 10, 2009 when it fired all 192 beams at a combined energy of 1.1 MJ at 351nm. Subsequently, a target shot series from August through December of 2009 culminated in scale ignition target design experiments up to 1.2 MJ in the National Ignition Campaign. Preparations are underway through the first half of of 2010 leading to DT ignition and gain experiments in the fall of 2010 into 2011. The top level requirement for beam pointing to target of 50μm rms is the culmination of 15 years of engineering design of a stable facility, commissioning of precision alignment, and precise shot operations controls. Key design documents which guided this project were published in the mid 1990's, driving systems designs. Precision Survey methods were used throughout construction, commissioning and operations for precision placement. Rigorous commissioning processes were used to ensure and validate placement and alignment throughout commissioning and in present day operations. Accurate and rapid system alignment during operations is accomplished by an impressive controls system to align and validate alignment readiness, assuring machine safety and productive experiments.
Method for auto-alignment of digital optical phase conjugation systems based on digital propagation
Jang, Mooseok; Ruan, Haowen; Zhou, Haojiang; Judkewitz, Benjamin; Yang, Changhuei
2014-01-01
Optical phase conjugation (OPC) has enabled many optical applications such as aberration correction and image transmission through fiber. In recent years, implementation of digital optical phase conjugation (DOPC) has opened up the possibility of its use in biomedical optics (e.g. deep-tissue optical focusing) due to its ability to provide greater-than-unity OPC reflectivity (the power ratio of the phase conjugated beam and input beam to the OPC system) and its flexibility to accommodate additional wavefront manipulations. However, the requirement for precise (pixel-to-pixel matching) alignment of the wavefront sensor and the spatial light modulator (SLM) limits the practical usability of DOPC systems. Here, we report a method for auto-alignment of a DOPC system by which the misalignment between the sensor and the SLM is auto-corrected through digital light propagation. With this method, we were able to accomplish OPC playback with a DOPC system with gross sensor-SLM misalignment by an axial displacement of up to~1.5 cm, rotation and tip/tilt of ~5∘, and in-plane displacement of ~5 mm (dependent on the physical size of the sensor and the SLM). Our auto-alignment method robustly achieved a DOPC playback peak-to-background ratio (PBR) corresponding to more than ~30 % of the theoretical maximum. As an additional advantage, the auto-alignment procedure can be easily performed at will and, as such, allows us to correct for small mechanical drifts within the DOPC systems, thus overcoming a previously major DOPC system vulnerability. We believe that this reported method for implementing robust DOPC systems will broaden the practical utility of DOPC systems. PMID:24977504
Method for auto-alignment of digital optical phase conjugation systems based on digital propagation.
Jang, Mooseok; Ruan, Haowen; Zhou, Haojiang; Judkewitz, Benjamin; Yang, Changhuei
2014-06-16
Optical phase conjugation (OPC) has enabled many optical applications such as aberration correction and image transmission through fiber. In recent years, implementation of digital optical phase conjugation (DOPC) has opened up the possibility of its use in biomedical optics (e.g. deep-tissue optical focusing) due to its ability to provide greater-than-unity OPC reflectivity (the power ratio of the phase conjugated beam and input beam to the OPC system) and its flexibility to accommodate additional wavefront manipulations. However, the requirement for precise (pixel-to-pixel matching) alignment of the wavefront sensor and the spatial light modulator (SLM) limits the practical usability of DOPC systems. Here, we report a method for auto-alignment of a DOPC system by which the misalignment between the sensor and the SLM is auto-corrected through digital light propagation. With this method, we were able to accomplish OPC playback with a DOPC system with gross sensor-SLM misalignment by an axial displacement of up to~1.5 cm, rotation and tip/tilt of ~5° and in-plane displacement of ~5 mm (dependent on the physical size of the sensor and the SLM). Our auto-alignment method robustly achieved a DOPC playback peak-to-background ratio (PBR) corresponding to more than ~30 % of the theoretical maximum. As an additional advantage, the auto-alignment procedure can be easily performed at will and, as such, allows us to correct for small mechanical drifts within the DOPC systems, thus overcoming a previously major DOPC system vulnerability. We believe that this reported method for implementing robust DOPC systems will broaden the practical utility of DOPC systems.
Anti-terrorist vehicle crash impact energy absorbing barrier
Swahlan, David J.
1989-01-01
An anti-terrorist vehicle crash barrier includes side support structures, crushable energy absorbing aluminum honeycomb modules, and an elongated impact-resistant beam extending between, and at its opposite ends through vertical guideways defined by, the side support structures. An actuating mechanism supports the beam at its opposite ends for movement between a lowered barrier-withdrawn position in which a traffic-supporting side of the beam is aligned with a traffic-bearing surface permitting vehicular traffic between the side support structures and over the beam, and a raised barrier-imposed position in which the beam is aligned with horizontal guideways defined in the side support structures above the traffic-bearing surface, providing an obstruction to vehicular traffic between the side support structures. The beam is movable rearwardly in the horizontal guideways with its opposite ends disposed transversely therethrough upon being impacted at its forward side by an incoming vehicle. The crushable modules are replaceably disposed in the horizontal guideways between aft ends thereof and the beam. The beam, replaceable modules, side support structures and actuating mechanism are separate and detached from one another such that the beam and replaceable modules are capable of coacting to disable and stop an incoming vehicle without causing structural damage to the side support structures and actuating mechanism.
NASA Astrophysics Data System (ADS)
Valentino, Gianluca; Baud, Guillaume; Bruce, Roderik; Gasior, Marek; Mereghetti, Alessio; Mirarchi, Daniele; Olexa, Jakub; Redaelli, Stefano; Salvachua, Belen; Valloni, Alessandra; Wenninger, Jorg
2017-08-01
During Long Shutdown 1, 18 Large Hadron Collider (LHC) collimators were replaced with a new design, in which beam position monitor (BPM) pick-up buttons are embedded in the collimator jaws. The BPMs provide a direct measurement of the beam orbit at the collimators, and therefore can be used to align the collimators more quickly than using the standard technique which relies on feedback from beam losses. Online orbit measurements also allow for reducing operational margins in the collimation hierarchy placed specifically to cater for unknown orbit drifts, therefore decreasing the β* and increasing the luminosity reach of the LHC. In this paper, the results from the commissioning of the embedded BPMs in the LHC are presented. The data acquisition and control software architectures are reviewed. A comparison with the standard alignment technique is provided, together with a fill-to-fill analysis of the measured orbit in different machine modes, which will also be used to determine suitable beam interlocks for a tighter collimation hierarchy.
Testing Instrument for Flight-Simulator Displays
NASA Technical Reports Server (NTRS)
Haines, Richard F.
1987-01-01
Displays for flight-training simulators rapidly aligned with aid of integrated optical instrument. Calibrations and tests such as aligning boresight of display with respect to user's eyes, checking and adjusting display horizon, checking image sharpness, measuring illuminance of displayed scenes, and measuring distance of optical focus of scene performed with single unit. New instrument combines all measurement devices in single, compact, integrated unit. Requires just one initial setup. Employs laser and produces narrow, collimated beam for greater measurement accuracy. Uses only one moving part, double right prism, to position laser beam.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carr, Roger
The VISA (Visible to Infrared SASE Amplifier) FEL is designed to obtain high gain at a radiation wavelength of 800nm. The FEL uses the high brightness electron beam of the Accelerator Test Facility (ATF), with energy of 72MeV. VISA uses a novel, 4 m long, strong focusing undulator with a gap of 6mm and a period of 1.8cm. To obtain large gain the beam and undulator axis have to be aligned to better than 50{micro}m. Results from initial measurements on the alignment, gain, and spectrum will be presented and compared to theoretical calculations and simulations.
Light deflection in gadolinium molybdate ferroelastic crystals
NASA Astrophysics Data System (ADS)
Staniorowski, Piotr; Bornarel, Jean
2000-02-01
The deflection of a He-Ne light beam by polydomain gadolinium molybdate (GMO) crystals has been studied with respect to incidence angle icons/Journals/Common/alpha" ALT="alpha" ALIGN="TOP"/> i on the sample at room temperature. The A and B deflected beams do not cross each other during the icons/Journals/Common/alpha" ALT="alpha" ALIGN="TOP"/> i variation, in contrast to results and calculations previously published. The model using the Fresnel equation confirms this result. The model presented is more accurate for numerical calculation than that using the Huygens construction.
NASA Astrophysics Data System (ADS)
Lister, M. L.; Tingay, S. J.; Preston, R. A.
2001-06-01
We have performed a multidimensional correlation analysis on the observed properties of a statistically complete core-selected sample of compact radio-loud active galactic nuclei based on data from the VLBI Space Observing Programme (Paper I) and previously published studies. Our sample is drawn from the well-studied Pearson-Readhead (PR) survey and is ideally suited for investigating the general effects of relativistic beaming in compact radio sources. In addition to confirming many previously known correlations, we have discovered several new trends that lend additional support to the beaming model. These trends suggest that the most highly beamed sources in core-selected samples tend to have (1) high optical polarizations; (2) large parsec- kiloparsec-scale jet misalignments; (3) prominent VLBI core components; (4) one-sided, core, or halo radio morphology on kiloparsec scales; (5) narrow emission line equivalent widths; and (6) a strong tendency for intraday variability at radio wavelengths. We have used higher resolution space and ground-based VLBI maps to confirm the bimodality of the jet misalignment distribution for the PR survey and find that the sources with aligned parsec- and kiloparsec-scale jets generally have arcsecond-scale radio emission on both sides of the core. The aligned sources also have broader emission line widths. We find evidence that the BL Lacertae objects in the PR survey are all highly beamed and have very similar properties to the high optically polarized quasars, with the exception of smaller redshifts. A cluster analysis on our data shows that after partialing out the effects of redshift, the luminosities of our sample objects in various wave bands are generally well correlated with each other but not with other source properties.
NASA Astrophysics Data System (ADS)
Sandri, P.
2017-12-01
The paper describes the alignment technique developed for the wavefront error measurement of ellipsoidal mirrors presenting a central hole. The achievement of a good alignment with a classic setup at the finite conjugates when mirrors are uncoated cannot be based on the identification and materialization at naked eye of the retro-reflected spot by the mirror under test as the intensity of the retro-reflected spot results to be ≈1E-3 of the intensity of the injected laser beam of the interferometer. We present the technique developed for the achievement of an accurate alignment in the setup at the finite conjugate even in condition of low intensity based on the use of an autocollimator adjustable in focus position and a small polished flat surface on the rear side of the mirror. The technique for the alignment has successfully been used for the optical test of the concave ellipsoidal mirrors of the METIS coronagraph of the ESA Solar Orbiter mission. The presented method results to be advantageous in terms of precision and of time saving also when the mirrors are reflective coated and integrated into their mechanical hardware.
NASA Astrophysics Data System (ADS)
Zorzetti, Silvia; Fanucci, Luca; Galindo Muñoz, Natalia; Wendt, Manfred
2015-09-01
The Compact Linear Collider (CLIC) requires a low emittance beam transport and preservation, thus a precise control of the beam orbit along up to 50 km of the accelerator components in the sub-μm regime is required. Within the PACMAN3 (Particle Accelerator Components Metrology and Alignment to the Nanometer Scale) PhD training action a study with the objective of pre-aligning the electrical centre of a 15 GHz cavity beam position monitor (BPM) to the magnetic centre of the main beam quadrupole is initiated. Of particular importance is the design of a specific test bench to study the stretched-wire setup for the CLIC Test Facility (CTF3) BPM, focusing on the aspects of microwave signal excitation, transmission and impedance-matching, as well as the mechanical setup and reproducibility of the measurement method.
Reduction of beam corkscrew motion on the ETAII linear induction accelerator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turner, W.C.; Allen, S.L.; Brand, H.R.
1990-09-04
The ETAII linear induction accelerator (6MeV, 3kA, 70ns) is designed to drive a microwave free electron laser (FEL) and demonstrate the front end accelerator technology for a shorter wavelength FEL. Performance to date has been limited by beam corkscrew motion that is driven by energy sweep and misalignment of the solenoidal focusing magnets. Modifications to the pulse power distribution system and magnetic alignment are expected to reduce the radius of corkscrew motion from its present value of 1 cm to less than 1 mm. The modifications have so far been carried out on the first 2.7 MeV (injector plus 20more » accelerator cells) and experiments are beginning. In this paper we will present calculations of central flux line alignment, beam corkscrew motion and beam brightness that are anticipated with the modified ETAII. 10 refs., 4 figs., 1 tab.« less
Alignment test results of the JWST Pathfinder Telescope mirrors in the cryogenic environment
NASA Astrophysics Data System (ADS)
Whitman, Tony L.; Wells, Conrad; Hadaway, James B.; Knight, J. Scott; Lunt, Sharon
2016-07-01
After integration of the Optical Telescope Element (OTE) to the Integrated Science Instrument Module (ISIM) to become the OTIS, the James Webb Space Telescope OTIS is tested at NASA's Johnson Space Center (JSC) in the cryogenic vacuum Chamber A for alignment and optical performance. The alignment of the mirrors comprises a sequence of steps as follows: The mirrors are coarsely aligned using photogrammetry cameras with reflective targets attached to the sides of the mirrors. Then a multi-wavelength interferometer is aligned to the 18-segment primary mirror using cameras at the center of curvature to align reflected light from the segments and using fiducials at the edge of the primary mirror. Once the interferometer is aligned, the 18 primary mirror segments are then adjusted to optimize wavefront error of the aggregate mirror. This process phases the piston and tilt positions of all the mirror segments. An optical fiber placed at the Cassegrain focus of the telescope then emits light towards the secondary mirror to create a collimated beam emitting from the primary mirror. Portions of the collimated beam are retro-reflected from flat mirrors at the top of the chamber to pass through the telescope to the Science Instrument (SI) detector. The image on the detector is used for fine alignment of the secondary mirror and a check of the primary mirror alignment using many of the same analysis techniques used in the on-orbit alignment. The entire process was practiced and evaluated in 2015 at cryogenic temperature with the Pathfinder telescope.
High yield growth of patterned vertically aligned carbon nanotubes using inkjet-printed catalyst.
Beard, James D; Stringer, Jonathan; Ghita, Oana R; Smith, Patrick J
2013-10-09
This study reports on the fabrication of vertically aligned carbon nanotubes localized at specific sites on a growth substrate by deposition of a nanoparticle suspension using inkjet printing. Carbon nanotubes were grown with high yield as vertically aligned forests to a length of approximately 400 μm. The use of inkjet printing for catalyst fabrication considerably improves the production rate of vertically aligned patterned nanotube forests compared with conventional patterning techniques, for example, electron beam lithography or photolithography.
Wireless optical transceiver design, link analisys and alignment control for mobile communication
NASA Astrophysics Data System (ADS)
Zhou, Dayong
Pointing, acquisition and tracking of a free-space optical node in a mobile network experiencing misalignment due to adverse factors including vibration, motion and atmospheric turbulence requires a different approach than traditional free-space optical transceivers. A recent fiber-bundle approach for beam steering at the transmitter was investigated to provide continuous beam coverage at the receiver without the application of mechanical devices. Utilizing multiple fibers-lenses sets at the receiver was also proposed to enhance the tolerance of optical link misalignment. In this work, both laboratory experiments and software simulation were implemented to evaluate the optical link performance for different fiber-bundle-based transceiver setups as the link parameters were varied. The performance was evaluated in terms of the coverage area at the receiver, which is a measure of misalignment tolerance and is dependent not only on wavelength but on other key parameters such as link length, transmitted power, the pattern of transmitters, beam divergence, and the receiver construction. The results showed that fiber-bindle-based transceivers reveal significant potential to maximize the up time of the link, and the results also provide guidance on the further development of the overall system. To incorporate the proposed transceiver designs, an alignment control system was developed and evaluated as well. The laboratory results show that the optical control system successfully recovered and maintained the link while the receiver was in motion and the signal coverage at the target area was enhanced significantly.
NASA Astrophysics Data System (ADS)
Kamaliya, Bhaveshkumar; Mote, Rakesh G.; Aslam, Mohammed; Fu, Jing
2018-03-01
In this paper, we demonstrate enhanced light trapping by self-organized nanoripples on the germanium surface. The enhanced light trapping leading to high absorption of light is confirmed by the experimental studies as well as the numerical simulations using the finite-difference time-domain method. We used gallium ion (Ga+) focused ion beam to enable the formation of the self-organized nanoripples on the germanium (100) surface. During the fabrication, the overlap of the scanning beam is varied from zero to negative value and found to influence the orientation of the nanoripples. Evolution of nanostructures with the variation of beam overlap is investigated. Parallel, perpendicular, and randomly aligned nanoripples with respect to the scanning direction are obtained via manipulation of the scanning beam overlap. 95% broadband absorptance is measured in the visible electromagnetic region for the nanorippled germanium surface. The reported light absorption enhancement can significantly improve the efficiency of germanium-silicon based photovoltaic systems.
NASA Astrophysics Data System (ADS)
Zhang, Yuanchang; Eyink, Kurt G.; Grazulis, Lawrence; Hill, Madelyn; Peoples, Joseph; Mahalingam, Krishnamurthy
2017-11-01
Hybrid nanostructures are known to elicit an enhanced optical response. We study the directed alignment of ErAs metal nanoparticle (NP) and InAs quantum dot (QD) using molecular beam eptaxy (MBE) in a GaAs matrix. Due to high surface free energy caused by the crystal structure difference, overgrowth of an ErAs NP with GaAs forms a depression that condenses subsequent InAs adatoms to form an inverted QD self-aligned to the underlying ErAs NP. The ErAs NP growth, GaAs overgrowth, and InAs QD deposition were carefully controlled and studied with transmission electron microscopy (TEM) and atomic force microscopy (AFM) to investigate their effects on the QD-NP alignment.
NASA Astrophysics Data System (ADS)
Baek, Jong-In; Kim, Ki-Han; Kim, Jae Chang; Yoon, Tae-Hoon
2010-01-01
This paper proposes a method of omni-directional viewing-angle switching by controlling the beam diverging angle (BDA) in a liquid crystal (LC) panel. The LCs aligned randomly by in-cell polymer structures diffuse the collimated backlight for the bright state of the wide viewing-angle mode. We align the LCs homogeneously by applying an in-plane field for the narrow viewing-angle mode. By doing this the scattering is significantly reduced so that the small BDA is maintained as it passes through the LC layer. The dark state can be obtained by aligning the LCs homeotropically with a vertical electric field. We demonstrated experimentally the omni-directional switching of the viewing-angle, without an additional panel or backlighting system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruland, Robert
The Visible-Infrared SASE Amplifier (VISA) undulator consists of four 99cm long segments. Each undulator segment is set up on a pulsed-wire bench, to characterize the magnetic properties and to locate the magnetic axis of the FODO array. Subsequently, the location of the magnetic axis, as defined by the wire, is referenced to tooling balls on each magnet segment by means of a straightness interferometer. After installation in the vacuum chamber, the four magnet segments are aligned with respect to themselves and globally to the beam line reference laser. A specially designed alignment fixture is used to mount one straightness interferometermore » each in the horizontal and vertical plane of the beam. The goal of these procedures is to keep the combined rms trajectory error, due to magnetic and alignment errors, to 50{micro}m.« less
Cline, James P; Mendenhall, Marcus H; Black, David; Windover, Donald; Henins, Albert
2015-01-01
The laboratory X-ray powder diffractometer is one of the primary analytical tools in materials science. It is applicable to nearly any crystalline material, and with advanced data analysis methods, it can provide a wealth of information concerning sample character. Data from these machines, however, are beset by a complex aberration function that can be addressed through calibration with the use of NIST Standard Reference Materials (SRMs). Laboratory diffractometers can be set up in a range of optical geometries; considered herein are those of Bragg-Brentano divergent beam configuration using both incident and diffracted beam monochromators. We review the origin of the various aberrations affecting instruments of this geometry and the methods developed at NIST to align these machines in a first principles context. Data analysis methods are considered as being in two distinct categories: those that use empirical methods to parameterize the nature of the data for subsequent analysis, and those that use model functions to link the observation directly to a specific aspect of the experiment. We consider a multifaceted approach to instrument calibration using both the empirical and model based data analysis methods. The particular benefits of the fundamental parameters approach are reviewed.
Simulations in the Analysis of Experimental Data Measured by BM@N Drift Chambers
NASA Astrophysics Data System (ADS)
Fedorišin, Ján
2018-02-01
The drift chambers (DCH's) are an important part of the tracking system of the BM@N experiment designed to study the production of baryonic matter at the Nuclotron energies. The method of particle hit and track reconstruction in the drift chambers has been already proposed and tested on the BM@N deuteron beam data. In this study the DCH's are first locally and globally aligned, and subsequently the consistency of the track reconstruction chain is tested by two methods. The first one is based on the backward extrapolation of the DCH reconstructed deuteron beam to a position where its deflection in the BM@N magnetic field begins. The second method reconstructs the deuteron beam momentum through its deflection angle. Both methods confirm correctness of the track reconstruction algorithm.
Low-emittance tuning of storage rings using normal mode beam position monitor calibration
NASA Astrophysics Data System (ADS)
Wolski, A.; Rubin, D.; Sagan, D.; Shanks, J.
2011-07-01
We describe a new technique for low-emittance tuning of electron and positron storage rings. This technique is based on calibration of the beam position monitors (BPMs) using excitation of the normal modes of the beam motion, and has benefits over conventional methods. It is relatively fast and straightforward to apply, it can be as easily applied to a large ring as to a small ring, and the tuning for low emittance becomes completely insensitive to BPM gain and alignment errors that can be difficult to determine accurately. We discuss the theory behind the technique, present some simulation results illustrating that it is highly effective and robust for low-emittance tuning, and describe the results of some initial experimental tests on the CesrTA storage ring.
Electron lenses for head-on beam-beam compensation in RHIC
Gu, X.; Fischer, W.; Altinbas, Z.; ...
2017-02-17
Two electron lenses (e-lenses) have been in operation during 2015 RHIC physics run as part of a head-on beam-beam compensation scheme. While the RHIC lattice was chosen to reduce the beam-beam induced resonance driving terms, the electron lenses reduced the beam-beam induced tune spread. This has been demonstrated for the first time. The beam-beam compensation scheme allows for higher beam-beam parameters and therefore higher intensities and luminosity. In this paper, we detailed the design considerations and verification of the electron beam parameters of the RHIC e-lenses. Lastly, longitudinal and transverse alignments with ion beams and the transverse beam transfer functionmore » (BTF) measurement with head-on electron-proton beam are presented.« less
Electron lenses for head-on beam-beam compensation in RHIC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gu, X.; Fischer, W.; Altinbas, Z.
Two electron lenses (e-lenses) have been in operation during 2015 RHIC physics run as part of a head-on beam-beam compensation scheme. While the RHIC lattice was chosen to reduce the beam-beam induced resonance driving terms, the electron lenses reduced the beam-beam induced tune spread. This has been demonstrated for the first time. The beam-beam compensation scheme allows for higher beam-beam parameters and therefore higher intensities and luminosity. In this paper, we detailed the design considerations and verification of the electron beam parameters of the RHIC e-lenses. Lastly, longitudinal and transverse alignments with ion beams and the transverse beam transfer functionmore » (BTF) measurement with head-on electron-proton beam are presented.« less
Liang, Jinyang; Kohn, Rudolph N; Becker, Michael F; Heinzen, Daniel J
2009-04-01
We demonstrate a digital micromirror device (DMD)-based optical system that converts a spatially noisy quasi-Gaussian to an eighth-order super-Lorentzian flat-top beam. We use an error-diffusion algorithm to design the binary pattern for the Texas Instruments DLP device. Following the DMD, a telescope with a pinhole low-pass filters the beam and scales it to the desired sized image. Experimental measurements show a 1% root-mean-square (RMS) flatness over a diameter of 0.28 mm in the center of the flat-top beam and better than 1.5% RMS flatness over its entire 1.43 mm diameter. The power conversion efficiency is 37%. We develop an alignment technique to ensure that the DMD pattern is correctly positioned on the incident beam. An interferometric measurement of the DMD surface flatness shows that phase uniformity is maintained in the output beam. Our approach is highly flexible and is able to produce not only flat-top beams with different parameters, but also any slowly varying target beam shape. It can be used to generate the homogeneous optical lattice required for Bose-Einstein condensate cold atom experiments.
Electron Beam Diagnostics Of The JLAB UV FEL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Evtushenko, Pavel; Benson, Stephen; Biallas, George
2011-03-01
In this contribution we describe various systems and aspects of the electron beam diagnostics of the JLab UV FEL. The FEL is installed on a new bypass beam line at the existing 10 kW IR Upgrade FEL. Here, we describe a set of the following systems. A combination of OTR and phosphor viewers is used for measurements of the transverse beam profile, transverse emittance, and Twiss parameters. This system is also used for alignment of the optical cavity of the UV oscillator and to ensure the overlap between the electron beam and optical mode in the FEL wiggler. A systemmore » of beam position monitors equipped with log-amp based BPM electronics. Bunch length on the order of 120 fs RMS is measured with the help of a modified Martin-Puplett interferometer. The longitudinal transfer function measurement system is used to set up bunch compression in an optimal way, such that the LINAC RF curvature is compensated using only higher order magnetic elements of the beam transport. This set of diagnostic systems made a significant contribution in achieving first lasing of the FEL after only about 60 hours of beam operation.« less
Multibeam collimator uses prism stack
NASA Technical Reports Server (NTRS)
Minott, P. O.
1981-01-01
Optical instrument creates many divergent light beams for surveying and machine element alignment applications. Angles and refractive indices of stack of prisms are selected to divert incoming laser beam by small increments, different for each prism. Angles of emerging beams thus differ by small, precisely-controlled amounts. Instrument is nearly immune to vibration, changes in gravitational force, temperature variations, and mechanical distortion.
Optical levitation of a non-spherical particle in a loosely focused Gaussian beam.
Chang, Cheong Bong; Huang, Wei-Xi; Lee, Kyung Heon; Sung, Hyung Jin
2012-10-08
The optical force on a non-spherical particle subjected to a loosely focused laser beam was calculated using the dynamic ray tracing method. Ellipsoidal particles with different aspect ratios, inclination angles, and positions were modeled, and the effects of these parameters on the optical force were examined. The vertical component of the optical force parallel to the laser beam axis decreased as the aspect ratio decreased, whereas the ellipsoid with a small aspect ratio and a large inclination angle experienced a large vertical optical force. The ellipsoids were pulled toward or repelled away from the laser beam axis, depending on the inclination angle, and they experienced a torque near the focal point. The behavior of the ellipsoids in a viscous fluid was examined by analyzing a dynamic simulation based on the penalty immersed boundary method. As the ellipsoids levitated along the direction of the laser beam propagation, they moved horizontally with rotation. Except for the ellipsoid with a small aspect ratio and a zero inclination angle near the focal point, the ellipsoids rotated until the major axis aligned with the laser beam axis.
Alignment of optical system components using an ADM beam through a null assembly
NASA Technical Reports Server (NTRS)
Hayden, Joseph E. (Inventor); Olczak, Eugene G. (Inventor)
2010-01-01
A system for testing an optical surface includes a rangefinder configured to emit a light beam and a null assembly located between the rangefinder and the optical surface. The null assembly is configured to receive and to reflect the emitted light beam toward the optical surface. The light beam reflected from the null assembly is further reflected back from the optical surface toward the null assembly as a return light beam. The rangefinder is configured to measure a distance to the optical surface using the return light beam.
Three-dimensional direct cell patterning in collagen hydrogels with near-infrared femtosecond laser
Hribar, Kolin C.; Meggs, Kyle; Liu, Justin; Zhu, Wei; Qu, Xin; Chen, Shaochen
2015-01-01
We report a methodology for three-dimensional (3D) cell patterning in a hydrogel in situ. Gold nanorods within a cell-encapsulating collagen hydrogel absorb a focused near-infrared femtosecond laser beam, locally denaturing the collagen and forming channels, into which cells migrate, proliferate, and align in 3D. Importantly, pattern resolution is tunable based on writing speed and laser power, and high cell viability (>90%) is achieved using higher writing speeds and lower laser intensities. Overall, this patterning technique presents a flexible direct-write method that is applicable in tissue engineering systems where 3D alignment is critical (such as vascular, neural, cardiac, and muscle tissue). PMID:26603915
Modeling of a Compact Terahertz Source based on the Two-Stream Instability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Svimonishvili, Tengiz
2016-05-17
THz radiation straddles the microwave and infrared bands of the electromagnetic spectrum, thus combining the penetrating power of lower-frequency waves and imaging capabilities of higher-energy infrared radiation. THz radiation is employed in various elds such as cancer research, biology, agriculture, homeland security, and environmental monitoring. Conventional vacuum electronic sources of THz radiation (e.g., fast- and slow-wave devices) either require very small structures or are bulky and expensive to operate. Optical sources necessitate cryogenic cooling and are presently capable of producing milliwatt levels of power at THz frequencies. We propose a millimeter and sub-millimeter wave source based on a well-known phenomenonmore » called the two-stream instability. The two-beam source relies on lowenergy and low-current electron beams for operation. Also, it is compact, simple in design, and does not contain expensive parts that require complex machining and precise alignment. In this dissertation, we perform 2-D particle-in-cell (PIC) simulations of the interaction region of the two-beam source. The interaction region consists of a beam pipe of radius ra and two electron beams of radius rb co-propagating and interacting inside the pipe. The simulations involve the interaction of unmodulated (no initial energy modulation) and modulated (energy-modulated, seeded at a given frequency) electron beams. In addition, both cold (monoenergetic) and warm (Gaussian) beams are treated.« less
From optics testing to micro optics testing
NASA Astrophysics Data System (ADS)
Brock, Christian; Dorn, Ralf; Pfund, Johannes
2017-10-01
Testing micro optics, i.e. lenses with dimensions down to 0.1mm and less, with high precision requires a dedicated design of the testing device, taking into account propagation and wave-optical effects. In this paper, we discuss testing methods based on Shack-Hartmann wavefront technology for functional testing in transmission and for the measurement of surface shape in reflection. As a first example of more conventional optics testing, i.e. optics in the millimeter range, we present the measurement of binoculars in transmission, and discuss the measured wave aberrations and imaging quality. By repeating the measurement at different wavelengths, information on chromatic effects is retrieved. A task that is often tackled using Shack-Hartman wavefront sensors is the alignment of collimation optics in front of a light source. In case of a micro-optical collimation unit with a 1/e² beam diameter of ca. 1mm, we need adapted relay optics for suitable beam expansion and well-defined imaging conditions. In this example, we will discuss the alignment process and effects of the relay optics magnification, as well as typical performance data. Oftentimes, micro optics are fabricated not as single pieces, but as mass optics, e.g. by lithographic processes. Thus, in order to reduce tooling and alignment time, an automated test procedure is necessary. We present an approach for the automated testing of wafer- or tray-based micro optics, and discuss transmission and reflection measurement capabilities. Exemplary performance data is shown for a sample type with 30 microns in diameter, where typical repeatabilities of a few nanometers (rms) are reached.
NASA Astrophysics Data System (ADS)
Ramos, G.; Laguna, H.; Torres, J.; Belenguer, T.
2017-11-01
In the framework of the ESA EarthCare Mission, an atmospheric LIDAR (ATLID) was included as a payload. CAS is the co-alignment system of such a LIDAR instrument, the system responsible of guaranteeing the proper alignment of the projected laser beam and the reflected light collected. Within CAS, in which a consortium leaded by ASTRIUM France is working in, as well as CRISA (electronics) and LIDAX (mechanical engineering), INTA is in charge of the development of the instrumentation to be used on ground (on ground support equipments, OGSEs) needed for the proper electro-optical characterization.
NASA Astrophysics Data System (ADS)
Shimanskii, R. V.; Poleshchuk, A. G.; Korolkov, V. P.; Cherkashin, V. V.
2017-03-01
A method is developed to ensure precise alignment of the origin of a polar coordinate system in which the laser beam position is defined in writing diffractive optical elements with the optical workpiece rotation axis. This method is used to improve the accuracy of a circular laser writing system in writing large-scale diffractive optical elements in a polar coordinate system. Results of studying new algorithms of detection and correction of positioning errors of the circular laser writing system in the course of writing are reported.
NASA Astrophysics Data System (ADS)
Selby, Boris P.; Sakas, Georgios; Walter, Stefan; Stilla, Uwe
2008-03-01
Positioning a patient accurately in treatment devices is crucial for radiological treatment, especially if accuracy vantages of particle beam treatment are exploited. To avoid sub-millimeter misalignments, X-ray images acquired from within the device are compared to a CT to compute respective alignment corrections. Unfortunately, deviations of the underlying geometry model for the imaging system degrade the achievable accuracy. We propose an automatic calibration routine, which bases on the geometry of a phantom and its automatic detection in digital radiographs acquired for various geometric device settings during the calibration. The results from the registration of the phantom's X-ray projections and its known geometry are used to update the model of the respective beamlines, which is used to compute the patient alignment correction. The geometric calibration of a beamline takes all nine relevant degrees of freedom into account, including detector translations in three directions, detector tilt by three axes and three possible translations for the X-ray tube. Introducing a stochastic model for the calibration we are able to predict the patient alignment deviations resulting from inaccuracies inherent to the phantom design and the calibration. Comparisons of the alignment results for a treatment device without calibrated imaging systems and a calibrated device show that an accurate calibration can enhance alignment accuracy.
Diffractive optics fabricated by direct write methods with an electron beam
NASA Technical Reports Server (NTRS)
Kress, Bernard; Zaleta, David; Daschner, Walter; Urquhart, Kris; Stein, Robert; Lee, Sing H.
1993-01-01
State-of-the-art diffractive optics are fabricated using e-beam lithography and dry etching techniques to achieve multilevel phase elements with very high diffraction efficiencies. One of the major challenges encountered in fabricating diffractive optics is the small feature size (e.g. for diffractive lenses with small f-number). It is not only the e-beam system which dictates the feature size limitations, but also the alignment systems (mask aligner) and the materials (e-beam and photo resists). In order to allow diffractive optics to be used in new optoelectronic systems, it is necessary not only to fabricate elements with small feature sizes but also to do so in an economical fashion. Since price of a multilevel diffractive optical element is closely related to the e-beam writing time and the number of etching steps, we need to decrease the writing time and etching steps without affecting the quality of the element. To do this one has to utilize the full potentials of the e-beam writing system. In this paper, we will present three diffractive optics fabrication techniques which will reduce the number of process steps, the writing time, and the overall fabrication time for multilevel phase diffractive optics.
Customization and design of directed self-assembly using hybrid prepatterns
NASA Astrophysics Data System (ADS)
Cheng, Joy; Doerk, Gregory S.; Rettner, Charles T.; Singh, Gurpreet; Tjio, Melia; Truong, Hoa; Arellano, Noel; Balakrishnan, Srinivasan; Brink, Markus; Tsai, Hsinyu; Liu, Chi-Chun; Guillorn, Michael; Sanders, Daniel P.
2015-03-01
Diminishing error tolerance renders the customization of patterns created through directed self-assembly (DSA) extremely challenging at tighter pitch. A self-aligned customization scheme can be achieved using a hybrid prepattern comprising both organic and inorganic regions that serves as a guiding prepattern to direct the self-assembly of the block copolymers as well as a cut mask pattern for the DSA arrays aligned to it. In this paper, chemoepitaxy-based self-aligned customization is demonstrated using two types of organic-inorganic prepatterns. CHEETAH prepattern for "CHemoepitaxy Etch Trim using a self-Aligned Hardmask" of preferential hydrogen silsesquioxane (HSQ, inorganic resist), non-preferential organic underlayer is fabricated using electron beam lithography. Customized trench or hole arrays can be achieved through co-transfer of DSA-formed arrays and CHEETAH prepattern. Herein, we also introduce a tone-reversed version called reverse-CHEETAH (or rCHEETAH) in which customized line segments can be achieved through co-transfer of DSA-formed arrays formed on a prepattern wherein the inorganic HSQ regions are nonpreferential and the organic regions are PMMA preferential. Examples of two-dimensional self-aligned customization including 25nm pitch fin structures and an 8-bar "IBM" illustrate the versatility of this customization scheme using rCHEETAH.
WITHDRAWN: Beam position alignment and its verification for therapeutic ion beams from synchrotron
NASA Astrophysics Data System (ADS)
Saraya, Y.; Takeshita, E.; Furukawa, T.; Hara, Y.; Mizushima, K.; Saotome, N.; Tansho, R.; Shirai, T.; Noda, K.
2017-09-01
This article has been withdrawn at the request of the authors. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at (http://www.elsevier.com/locate/withdrawalpolicy)
Laser Safety: A Laser Alignment Practical Training Course
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woods, Michael; Edstrom, Steve; /SLAC
2011-01-26
SLAC National Accelerator Laboratory has developed a Laser Alignment Practical Training Course as one of its core laser safety classes. The course is taught to small groups of up to three students and takes 1-3 hours to complete. This practical course is not a substitute for site-specific On-the-Job Training; it does, however, provide a good introduction in core laser safety practices that can be broadly applied. Alignment and diagnostic tasks are performed with low power lasers. Students learn safe alignment and diagnostic techniques and how to avoid common mistakes that might lead to an accident. The class is taught bymore » laser supervisors, enabling them to assess the skill level of new laser personnel and determine the subsequent level of supervision needed. The course has six alignment tasks. For each task, discussion points are given for the instructor to review with the students. The optics setup includes different wavelength lasers, a beam expander, mirrors, irises, a periscope, a beam-splitting polarizer and a diffraction grating. Diagnostic tools include viewing cards, an IR viewer and a ccd camera. Laser eyewear is available to block some laser wavelengths in the setup.« less
Optical development system lab alignment solutions for the ICESat-2 ATLAS instrument
NASA Astrophysics Data System (ADS)
Evans, T.
The ATLAS Instrument for the ICESat-2 mission at NASA's Goddard Space Flight Center requires an alignment test-bed to prove out new concepts. The Optical Development System (ODS) lab was created to test prototype models of individual instrument components to simulate how they will act as a system. The main ICESat-2 instrument is the Advanced Topographic Laser Altimeter System (ATLAS). It measures ice elevation by transmitting laser pulses, and collecting the reflection in a telescope. Because the round trip time is used to calculate distance, alignment between the outgoing transmitter beam and the incoming receiver beams are critical. An automated closed loop monitoring control system is currently being tested at the prototype level to prove out implementation for the final spacecraft. To achieve an error of less than 2 micro-radians, an active deformable mirror was used to correct the lab wave front from the collimated “ ground reflection” beam. The lab includes a focal plane assembly set up, a one meter diameter collimator optic, and a 0.8 meter flight spare telescope for alignment. ATLAS prototypes and engineering models of transmitter and receiver optics and sub-systems are brought in to develop and integrate systems as well as write procedures to be used in integration and testing. By having a fully integrated system with prototypes and engineering units, lessons can be learned before flight designs are finalized.
NASA Astrophysics Data System (ADS)
Choi, H. J.; Lee, S. B.; Lee, H. G.; Y Back, S.; Kim, S. H.; Kang, H. S.
2017-07-01
Several parts that comprise the large scientific device should be installed and operated at the accurate three-dimensional location coordinates (X, Y, and Z) where they should be subjected to survey and alignment. The location of the aligned parts should not be changed in order to ensure that the electron beam parameters (Energy 10 GeV, Charge 200 pC, and Bunch Length 60 fs, Emittance X/Y 0.481 μm/0.256 μm) of PAL-XFEL (X-ray Free Electron Laser of the Pohang Accelerator Laboratory) remain stable and can be operated without any problems. As time goes by, however, the ground goes through uplift and subsidence, which consequently deforms building floors. The deformation of the ground and buildings changes the location of several devices including magnets and RF accelerator tubes, which eventually leads to alignment errors (∆X, ∆Y, and ∆Z). Once alignment errors occur with regard to these parts, the electron beam deviates from its course and beam parameters change accordingly. PAL-XFEL has installed the Hydrostatic Leveling System (HLS) to measure and record the vertical change of buildings and ground consistently and systematically and the Wire Position System (WPS) to measure the two dimensional changes of girders. This paper is designed to introduce the operating principle and design concept of WPS and discuss the current situation regarding installation and operation.
Variable high gradient permanent magnet quadrupole (QUAPEVA)
NASA Astrophysics Data System (ADS)
Marteau, F.; Ghaith, A.; N'Gotta, P.; Benabderrahmane, C.; Valléau, M.; Kitegi, C.; Loulergue, A.; Vétéran, J.; Sebdaoui, M.; André, T.; Le Bec, G.; Chavanne, J.; Vallerand, C.; Oumbarek, D.; Cosson, O.; Forest, F.; Jivkov, P.; Lancelot, J. L.; Couprie, M. E.
2017-12-01
Different applications such as laser plasma acceleration, colliders, and diffraction limited light sources require high gradient quadrupoles, with strength that can reach up to 200 T/m for a typical 10 mm bore diameter. We present here a permanent magnet based quadrupole (so-called QUAPEVA) composed of a Halbach ring and surrounded by four permanent magnet cylinders. Its design including magnetic simulation modeling enabling us to reach 201 T/m with a gradient variability of 45% and mechanical issues are reported. Magnetic measurements of seven systems of different lengths are presented and confirmed the theoretical expectations. The variation of the magnetic center while changing the gradient strength is ±10 μm. A triplet of QUAPEVA magnets is used to efficiently focus a beam with large energy spread and high divergence that is generated by a Laser Plasma Acceleration source for a free electron laser demonstration and has enabled us to perform beam based alignment and control the dispersion of the beam.
Self-aligned spatial filtering using laser optical tweezers.
Birkbeck, Aaron L; Zlatanovic, Sanja; Esener, Sadik C
2006-09-01
We present an optical spatial filtering device that has been integrated into a microfluidic system and whose motion and alignment is controlled using a laser optical tweezer. The lithographically patterned micro-optical spatial filter device filters out higher frequency additive noise components by automatically aligning itself in three dimensions to the focus of the laser beam. This self-alignment capability is achieved through the attachment of a refractive optical element directly over the circular aperture or pinhole of the spatial filter. A discussion of two different spatial filter designs is presented along with experimental results that demonstrate the effectiveness of the self-aligned micro-optic spatial filter.
Large longitudinal spin alignment generated in inelastic nuclear reactions
NASA Astrophysics Data System (ADS)
Hoff, D. E. M.; Potel, G.; Brown, K. W.; Charity, R. J.; Pruitt, C. D.; Sobotka, L. G.; Webb, T. B.; Roeder, B.; Saastamoinen, A.
2018-05-01
Large longitudinal spin alignment of E /A =24 MeV 7Li projectiles inelastically excited by Be, C, and Al targets was observed when the latter remain in their ground state. This alignment is a consequence of an angular-momentum-excitation-energy mismatch, which is well described by a DWBA cluster-model (α +t ). The longitudinal alignment of several other systems is also well described by DWBA calculations, including one where a cluster model is inappropriate, demonstrating that the alignment mechanism is a more general phenomenon. Predictions are made for inelastic excitation of 12C for beam energies above and below the mismatch threshold.
Apparatus Translates Crossed-Laser-Beam Probe Volume
NASA Technical Reports Server (NTRS)
Herring, Gregory C.; South, Bruce W.; Exton, Reginald J.
1994-01-01
Optomechanical apparatus translates probe volume of crossed-beam laser velocimeter or similar instrument while maintaining optical alignment of beams. Measures velocity, pressure, and temperature of flowing gas at several locations. Repeated tedious realignments no longer necessary. Designed to accommodate stimulated-Raman-gain spectrometer for noninvasive measurement of local conditions in flowing gas in supersonic wind tunnel. Applicable to other techniques like coherent anti-Stokes Raman spectroscopy involving use of laser beams crossed at small angles (10 degrees or less).
A chevron beam-splitter interferometer
NASA Technical Reports Server (NTRS)
Breckinridge, J. B.
1979-01-01
Fully tilt compensated double-pass chevron beam splitter, that removes channelling effects and permits optical phase tuning, is wavelength independent and allows small errors in alignment that are not tolerated in Michelson, Machzender, or Sagnac interferometers. Device is very useful in experiments where background vibration affects conventional interferometers.
In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration
NASA Astrophysics Data System (ADS)
Dietrich, P.-I.; Blaicher, M.; Reuter, I.; Billah, M.; Hoose, T.; Hofmann, A.; Caer, C.; Dangel, R.; Offrein, B.; Troppenz, U.; Moehrle, M.; Freude, W.; Koos, C.
2018-04-01
Hybrid photonic integration combines complementary advantages of different material platforms, offering superior performance and flexibility compared with monolithic approaches. This applies in particular to multi-chip concepts, where components can be individually optimized and tested. The assembly of such systems, however, requires expensive high-precision alignment and adaptation of optical mode profiles. We show that these challenges can be overcome by in situ printing of facet-attached beam-shaping elements. Our approach allows precise adaptation of vastly dissimilar mode profiles and permits alignment tolerances compatible with cost-efficient passive assembly techniques. We demonstrate a selection of beam-shaping elements at chip and fibre facets, achieving coupling efficiencies of up to 88% between edge-emitting lasers and single-mode fibres. We also realize printed free-form mirrors that simultaneously adapt beam shape and propagation direction, and we explore multi-lens systems for beam expansion. The concept paves the way to automated assembly of photonic multi-chip systems with unprecedented performance and versatility.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Freund, D; Ding, X; Zhang, J
Purpose: In prostate proton radiotherapy, three fiducial markers are used for patient daily alignment. However fiducial alignment can change beamline heterogeneity in proton therapy. The purpose of this study is to determine the difference in fiducial and boney anatomy alignment for patient treatment. Methods and materials: Prostate cancer patients who received proton treatment were included in this study. 3 fiducial markers were implanted before the initial CT. All the patients were re-CT’d every 2 weeks to check the fiducial marker position reproducibility as well as dosimetric consistence of target coverage. In geometry study, re-CT were fused to the initial CTmore » base on the boney anatomy and the average fiducial marker displacement was measured the centers of the fiducials. Dosimetrically, the initial plan was recalculated directly to re-CT image set based on the boney alignment and fiducial alignment to determine the difference from daily treatment. Prostate coverage and hotspots were evaluated using the dose to 98% of the CTV (D98) and dose to 2% (D2), respectively. Results: The shift from the initial 6 patient CT image sets resulted in an average change in the fiducial location of 5.70 +/− 3 mm. Dosimetric comparison from a single patient revealed that differences from the planned dose resulted from both boney and fiducial alignment. Planned clinical treatment volume coverage resulted in a D98 of 70.44Gy and D2 of 70.84Gy compared to a D98 of 70.13Gy and D2 70.94Gy for boney alignment and a D98 of 70.08Gy and D2 71.18Gy for fiducial alignment respectively. Conclusion: This study demonstrates that with boney anatomy alignment there is little change to CTV coverage and only slightly worse CTV coverage and hotspot production with fiducial alignment. An increase patient cohort and further investigation is necessary to determine the whether boney alignment can help better control dose heterogeneity.« less
Using Stars to Align a Steered Laser System for Cosmic Ray Simulation
NASA Astrophysics Data System (ADS)
Krantz, Harry; Wiencke, Lawrence
2016-03-01
Ultra high energy cosmic rays (UHECRs) are the highest energy cosmic particles with kinetic energy above 1018eV . UHECRs are detected from the air shower of secondary particles and UV florescence that results from interaction with the atmosphere. A high power UV laser beam can be used to simulate the optical signature of a UHCER air shower. The Global Light System (GLS) is a planned network of ground-based light sources including lasers to support the planned space-based Extreme Universe Space Observatory (EUSO). A portable prototype GLS laser station has been constructed at the Colorado School of Mines. Currently the laser system uses reference targets on the ground but stars can be used to better align the beam by providing a complete hemisphere of targets. In this work, a CCD camera is used to capture images of known stars through the steering head optics. The images are analyzed to find the steering head coordinates of the target star. The true coordinates of the star are calculated from the location and time of observation. A universal adjustment for the steering head is determined from the differences between the two pairs of coordinates across multiple stars. This laser system prototype will also be used for preflight tests of the ESUO Super Pressure Balloon mission.
Spatial-spectral characterization of focused spatially chirped broadband laser beams.
Greco, Michael J; Block, Erica; Meier, Amanda K; Beaman, Alex; Cooper, Samuel; Iliev, Marin; Squier, Jeff A; Durfee, Charles G
2015-11-20
Proper alignment is critical to obtain the desired performance from focused spatially chirped beams, for example in simultaneous spatial and temporal focusing (SSTF). We present a simple technique for inspecting the beam paths and focusing conditions for the spectral components of a broadband beam. We spectrally resolve the light transmitted past a knife edge as it was scanned across the beam at several axial positions. The measurement yields information about spot size, M2, and the propagation paths of different frequency components. We also present calculations to illustrate the effects of defocus aberration on SSTF beams.
Brassboard Astrometric Beam Combiner (ABC) Development for the Space Interferometry Mission (SIM)
NASA Technical Reports Server (NTRS)
Jeganathan, Muthu; Kuan, Gary; Rud, Mike; Lin, Sean; Sutherland, Kristen; Moore, James; An, Xin
2008-01-01
The Astrometric Beam Combiner (ABC) is a critical element of the Space Interferometry Mission (SIM) that performs three key functions: coherently combine starlight from two siderostats; individually detect starlight for angle tracking; and disperse and detect the interferometric fringes. In addition, the ABC contains: a stimulus, cornercubes and shutters for in-orbit calibration; several tip/tilt mirror mechanisms for in-orbit alignment; and internal metrology beam launcher for pathlength monitoring. The detailed design of the brassboard ABC (which has the form, fit and function of the flight unit) is complete, procurement of long-lead items is underway, and assembly and testing is expected to be completed in Spring 2009. In this paper, we present the key requirements for the ABC, details of the completed optical and mechanical design as well as plans for assembly and alignment.
Video image position determination
Christensen, Wynn; Anderson, Forrest L.; Kortegaard, Birchard L.
1991-01-01
An optical beam position controller in which a video camera captures an image of the beam in its video frames, and conveys those images to a processing board which calculates the centroid coordinates for the image. The image coordinates are used by motor controllers and stepper motors to position the beam in a predetermined alignment. In one embodiment, system noise, used in conjunction with Bernoulli trials, yields higher resolution centroid coordinates.
Electron beam accelerator with magnetic pulse compression and accelerator switching
Birx, Daniel L.; Reginato, Louis L.
1988-01-01
An electron beam accelerator comprising an electron beam generator-injector to produce a focused beam of .gtoreq.0.1 MeV energy electrons; a plurality of substantially identical, aligned accelerator modules to sequentially receive and increase the kinetic energies of the beam electrons by about 0.1-1 MeV per module. Each accelerator module includes a pulse-forming network that delivers a voltage pulse to the module of substantially .gtoreq.0.1-1 MeV maximum energy over a time duration of .ltoreq.1 .mu.sec.
Electron beam accelerator with magnetic pulse compression and accelerator switching
Birx, Daniel L.; Reginato, Louis L.
1987-01-01
An electron beam accelerator comprising an electron beam generator-injector to produce a focused beam of .gtoreq.0.1 MeV energy electrons; a plurality of substantially identical, aligned accelerator modules to sequentially receive and increase the kinetic energies of the beam electrons by about 0.1-1 MeV per module. Each accelerator module includes a pulse-forming network that delivers a voltage pulse to the module of substantially 0.1-1 MeV maximum energy over a time duration of .ltoreq.1 .mu.sec.
Electron beam accelerator with magnetic pulse compression and accelerator switching
Birx, D.L.; Reginato, L.L.
1984-03-22
An electron beam accelerator is described comprising an electron beam generator-injector to produce a focused beam of greater than or equal to .1 MeV energy electrons; a plurality of substantially identical, aligned accelerator modules to sequentially receive and increase the kinetic energies of the beam electron by about .1-1 MeV per module. Each accelerator module includes a pulse-forming network that delivers a voltage pulse to the module of substantially .1-1 MeV maximum energy over a time duration of less than or equal to 1 ..mu..sec.
Automatic Alignment of Displacement-Measuring Interferometer
NASA Technical Reports Server (NTRS)
Halverson, Peter; Regehr, Martin; Spero, Robert; Alvarez-Salazar, Oscar; Loya, Frank; Logan, Jennifer
2006-01-01
A control system strives to maintain the correct alignment of a laser beam in an interferometer dedicated to measuring the displacement or distance between two fiducial corner-cube reflectors. The correct alignment of the laser beam is parallel to the line between the corner points of the corner-cube reflectors: Any deviation from parallelism changes the length of the optical path between the reflectors, thereby introducing a displacement or distance measurement error. On the basis of the geometrical optics of corner-cube reflectors, the length of the optical path can be shown to be L = L(sub 0)cos theta, where L(sub 0) is the distance between the corner points and theta is the misalignment angle. Therefore, the measurement error is given by DeltaL = L(sub 0)(cos theta - 1). In the usual case in which the misalignment is small, this error can be approximated as DeltaL approximately equal to -L(sub 0)theta sup 2/2. The control system (see figure) is implemented partly in hardware and partly in software. The control system includes three piezoelectric actuators for rapid, fine adjustment of the direction of the laser beam. The voltages applied to the piezoelectric actuators include components designed to scan the beam in a circular pattern so that the beam traces out a narrow cone (60 microradians wide in the initial application) about the direction in which it is nominally aimed. This scan is performed at a frequency (2.5 Hz in the initial application) well below the resonance frequency of any vibration of the interferometer. The laser beam makes a round trip to both corner-cube reflectors and then interferes with the launched beam. The interference is detected on a photodiode. The length of the optical path is measured by a heterodyne technique: A 100- kHz frequency shift between the launched beam and a reference beam imposes, on the detected signal, an interferometric phase shift proportional to the length of the optical path. A phase meter comprising analog filters and specialized digital circuitry converts the phase shift to an indication of displacement, generating a digital signal proportional to the path length.
A high resolution hand-held focused beam profiler
NASA Astrophysics Data System (ADS)
Zapata-Farfan, J.; Garduño-Mejía, J.; Rosete-Aguilar, M.; Ascanio, G.; Román-Moreno, C. J.
2017-05-01
The shape of a beam is important in any laser application and depending on the final implementation, there exists a preferred one which is defined by the irradiance distribution.1 The energy distribution (or laser beam profile) is an important parameter in a focused beam, for instance, in laser cut industry, where the beam shape determines the quality of the cut. In terms of alignment and focusing, the energy distribution also plays an important role since the system must be configured in order to reduce the aberration effects and achieve the highest intensity. Nowadays a beam profiler is used in both industry and research laboratories with the aim to characterize laser beams used in free-space communications, focusing and welding, among other systems. The purpose of the profile analyzers is to know the main parameters of the beam, to control its characteristics as uniformity, shape and beam size as a guide to align the focusing system. In this work is presented a high resolution hand-held and compact design of a beam profiler capable to measure at the focal plane, with covered range from 400 nm to 1000 nm. The detection is reached with a CMOS sensor sized in 3673.6 μm x 2738.4 μm which acquire a snap shot of the previously attenuated focused beam to avoid the sensor damage, the result is an image of beam intensity distribution, which is digitally processed with a RaspberryTMmodule gathering significant parameters such as beam waist, centroid, uniformity and also some aberrations. The profiler resolution is 1.4 μm and was probed and validated in three different focusing systems. The spot sizes measurements were compared with the Foucault knife-edge test.
Improvement of the insertion axis for cochlear implantation with a robot-based system.
Torres, Renato; Kazmitcheff, Guillaume; De Seta, Daniele; Ferrary, Evelyne; Sterkers, Olivier; Nguyen, Yann
2017-02-01
It has previously reported that alignment of the insertion axis along the basal turn of the cochlea was depending on surgeon' experience. In this experimental study, we assessed technological assistances, such as navigation or a robot-based system, to improve the insertion axis during cochlear implantation. A preoperative cone beam CT and a mastoidectomy with a posterior tympanotomy were performed on four temporal bones. The optimal insertion axis was defined as the closest axis to the scala tympani centerline avoiding the facial nerve. A neuronavigation system, a robot assistance prototype, and software allowing a semi-automated alignment of the robot were used to align an insertion tool with an optimal insertion axis. Four procedures were performed and repeated three times in each temporal bone: manual, manual navigation-assisted, robot-based navigation-assisted, and robot-based semi-automated. The angle between the optimal and the insertion tool axis was measured in the four procedures. The error was 8.3° ± 2.82° for the manual procedure (n = 24), 8.6° ± 2.83° for the manual navigation-assisted procedure (n = 24), 5.4° ± 3.91° for the robot-based navigation-assisted procedure (n = 24), and 3.4° ± 1.56° for the robot-based semi-automated procedure (n = 12). A higher accuracy was observed with the semi-automated robot-based technique than manual and manual navigation-assisted (p < 0.01). Combination of a navigation system and a manual insertion does not improve the alignment accuracy due to the lack of friendly user interface. On the contrary, a semi-automated robot-based system reduces both the error and the variability of the alignment with a defined optimal axis.
Generation of helical Ince-Gaussian beams: beam-shaping with a liquid crystal display
NASA Astrophysics Data System (ADS)
Davis, Jeffrey A.; Bentley, Joel B.; Bandres, Miguel A.; Gutiérrez-Vega, Julio C.
2006-08-01
We review the three types of laser beams - Hermite-Gaussian (HG), Laguerre-Gaussian (LG) and the newly discovered Ince-Gaussian (IG) beams. We discuss the helical forms of the LG and IG beams that consist of linear combinations of the even and odd solutions and form a number of vortices that are useful for optical trapping applications. We discuss how to generate these beams by encoding the desired amplitude and phase onto a single parallel-aligned liquid crystal display (LCD). We introduce a novel interference technique where we generate both the object and reference beams using a single LCD and show the vortex interference patterns.
Results from the First Beam-Induced Reconstructed Tracks in the LHCb Vertex Locator
NASA Astrophysics Data System (ADS)
Rodrigues, E.
2010-04-01
LHCb is a dedicated experiment at the LHC to study CP violation and rare b decays. The vertex locator (VELO) is a silicon strip detector designed to measure precisely the production and decay vertices of B-mesons. The detector is positioned at 8 mm of the LHC beams and will operate in an extremely harsh radiation environment. The VELO consists of two retractable detector halves with 21 silicon micro-strip tracking modules each. A module is composed of two n+-on-n 300 μm thick half disc sensors with R and Φ micro-strip geometry. The detectors are operated in vacuum and a bi-phase CO2 cooling system is used. The full system has been operated since June 2008 and its commissioning experience will be reported. During the LHC synchronization tests in August and September 2008, and June 2009 the LHCb detectors measured secondary particles produced by the interaction of the LHC primary beam on a beam dump. About 50,000 tracks were reconstructed in the VELO and they were used to derive the relative timing alignment between the sensors and for the first evaluation of the spatial alignment. Using this track sample the VELO has been aligned to an accuracy of 5 μm. A single hit resolution of 10 μm was obtained at the smallest pitch for tracks of perpendicular incidence. The design and the main components of the detector system are introduced. The commissioning of the detector is reported and the talk will focus on the results obtained using the first beam-induced reconstructed tracks.
Sykes, J R; Lindsay, R; Dean, C J; Brettle, D S; Magee, D R; Thwaites, D I
2008-10-07
For image-guided radiotherapy (IGRT) systems based on cone beam CT (CBCT) integrated into a linear accelerator, the reproducible alignment of imager to x-ray source is critical to the registration of both the x-ray-volumetric image with the megavoltage (MV) beam isocentre and image sharpness. An enhanced method of determining the CBCT to MV isocentre alignment using the QUASAR Penta-Guide phantom was developed which improved both precision and accuracy. This was benchmarked against our existing method which used software and a ball-bearing (BB) phantom provided by Elekta. Additionally, a method of measuring an image sharpness metric (MTF(50)) from the edge response function of a spherical air cavity within the Penta-Guide phantom was developed and its sensitivity was tested by simulating misalignments of the kV imager. Reproducibility testing of the enhanced Penta-Guide method demonstrated a systematic error of <0.2 mm when compared to the BB method with near equivalent random error (s=0.15 mm). The mean MTF(50) for five measurements was 0.278+/-0.004 lp mm(-1) with no applied misalignment. Simulated misalignments exhibited a clear peak in the MTF(50) enabling misalignments greater than 0.4 mm to be detected. The Penta-Guide phantom can be used to precisely measure CBCT-MV coincidence and image sharpness on CBCT-IGRT systems.
Resolution performance of a 0.60-NA, 364-nm laser direct writer
NASA Astrophysics Data System (ADS)
Allen, Paul C.; Buck, Peter D.
1990-06-01
ATEQ has developed a high resolution laser scanning printing engine based on the 8 beam architecture of the CORE- 2000. This printing engine has been incorporated into two systems: the CORE-2500 for the production of advanced masks and reticles and a prototype system for direct write on wafers. The laser direct writer incorporates a through-the-lens alignment system and a rotary chuck for theta alignment. Its resolution performance is delivered by a 0. 60 NA laser scan lens and a novel air-jet focus system. The short focal length high resolution lens also reduces beam position errors thereby improving overall pattern accuracy. In order to take advantage of the high NA optics a high performance focus servo was developed capable of dynamic focus with a maximum error of 0. 15 tm. The focus system uses a hot wire anemometer to measure air flow through an orifice abutting the wafer providing a direct measurement to the top surface of resist independent of substrate properties. Lens specifications are presented and compared with the previous design. Bench data of spot size vs. entrance pupil filling show spot size performance down to 0. 35 m FWHM. The lens has a linearity specification of 0. 05 m system measurements of lens linearity indicate system performance substantially below this. The aerial image of the scanned beams is measured using resist as a threshold detector. An effective spot size is
DE 1 observations of theta aurora plasma source regions and Birkeland current charge carriers
NASA Technical Reports Server (NTRS)
Menietti, J. D.; Burch, J. L.
1987-01-01
Detailed analyses of the DE 1 high-altitude plasma instrument electron and ion data have been performed for four passes during which theta auroras were observed. The data indicate that the theta auroras occur on what appear to be closed field lines with particle signatures and plasma parameters that are quite similar to those of the magnetospheric boundary plasma sheet. The field-aligned currents computed from particle fluxes in the energy range 18-13 keV above the theta auroras are observed to be generally downward on the dawnside of the arcs with a narrower region of larger (higher density) upward currents on the duskside of the arcs. These currents are carried predominantly by field-aligned beams of accelerated cold electrons. Of particualr interest in regions of upward field-aligned current are downward electron beams at energies less than the inferred potential drop above the spacecraft.
Methods and devices based on brillouin selective sideband amplification
NASA Technical Reports Server (NTRS)
Yao, X. Steve (Inventor)
2003-01-01
Opto-electronic devices and techniques using Brillouin scattering to select a sideband in a modulated optical carrier signal for amplification. Two lasers respectively provide a carrier signal beam and a Brillouin pump beam which are fed into an Brillouin optical medium in opposite directions. The relative frequency separation between the lasers is adjusted to align the frequency of the backscattered Brillouin signal with a desired sideband in the carrier signal to effect a Brillouin gain on the sideband. This effect can be used to implement photonic RF signal mixing and conversion with gain, conversion from phase modulation to amplitude modulation, photonic RF frequency multiplication, optical and RF pulse generation and manipulation, and frequency-locking of lasers.
QEPAS nitric oxide sensor based on a mid-infrared fiber-coupled quantum cascade laser
NASA Astrophysics Data System (ADS)
Ren, Wei; Shi, Chao; Wang, Zhen; Yao, Chenyu
2017-04-01
We report a quartz-enhanced photoacoustic sensor (QEPAS) for nitric oxide (NO) detection using a mid-infrared fibercoupled quantum cascade laser (QCL) near 5.2 μm. The QCL radiation was coupled into an InF3 fiber (100 μm core diameter) for light delivery to the quartz tuning fork, a tiny piezoelectric element converting the acoustic wave induced mechanical vibration to the gas-absorption associated electrical signal. This mid-infrared fiber can achieve nearly single-mode light delivery for the target wavelength. The off-beam configuration was adopted for the fiber-coupled detection considering its simpler installation, optical alignment and comparative sensitivity to the traditional on-beam setup.
NASA Astrophysics Data System (ADS)
Merino, Enrique; Kozub, Tom; Boyle, Dennis; Lucia, Matthew; Majeski, Richard; Kaita, Robert; Schmitt, John C.; Leblanc, Benoit; Diallo, Ahmed; Jacobson, C. M.
2014-10-01
The Thomson Scattering (TS) System in LTX is used to measure electron temperature and density profiles of core and edge plasmas. In view of TS measurements showing low signal-to-noise and high stray light, numerous improvements were performed in recent months. These will allow for better measurements. Due to the nature of LTX's lithium coated walls, a particular challenge was presented by alignment procedures which required insertion and precise positioning of equipment in the vacuum vessel without breaking vacuum. To overcome these difficulties, the laser flight tubes were removed and an alignment probe setup placed along the beam line on a differentially pumped assembly. The probe was then driven into the vacuum vessel and back-illumination of the viewing optics on it allowed for alignment and spatial calibration. Other upgrades included better bracing of flight tubes and viewing optics as well as a redesigned beam dump. An overview of these improvements will be presented. Supported by US DOE Contracts DE-AC02-09CH11466 and DE-AC52-07NA27344.
Khalil, Hossam; Kim, Dongkyu; Jo, Youngjoon; Park, Kyihwan
2017-06-01
An optical component called a Dove prism is used to rotate the laser beam of a laser-scanning vibrometer (LSV). This is called a derotator and is used for measuring the vibration of rotating objects. The main advantage of a derotator is that it works independently from an LSV. However, this device requires very specific alignment, in which the axis of the Dove prism must coincide with the rotational axis of the object. If the derotator is misaligned with the rotating object, the results of the vibration measurement are imprecise, owing to the alteration of the laser beam on the surface of the rotating object. In this study, a method is proposed for aligning a derotator with a rotating object through an image-processing algorithm that obtains the trajectory of a landmark attached to the object. After the trajectory of the landmark is mathematically modeled, the amount of derotator misalignment with respect to the object is calculated. The accuracy of the proposed method for aligning the derotator with the rotating object is experimentally tested.
Performance of a Nanometer Resolution BPM System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vogel, V; Hayano, H; Honda, Y
2005-10-14
International Linear Collider (ILC) interaction region beam sizes and component position stability requirements will be as small as a few nanometers. it is important to the ongoing ILC design effort to demonstrate that these tolerances can be achieved--ideally using beam-based stability measurements. It has been estimated that an RF cavity BPM with modern waveform processing could provide a position measurement resolution of less than one nanometer. Such a system could form the basis of the desired beam-based stability measurement, as well as be used for other specialized purposes. They have developed a high resolution RF cavity BPM and associated electronics.more » A triplet comprised of these BPMs has been installed in the extraction line of the KEK Accelerator Test Facility (ATF) for testing with its ultra-low emittance beam. The three BPMs are rigidly mounted inside an alignment frame on six variable-length struts which can be used to move the BPMs in position and angle. they have developed novel methods for extracting the position and tilt information from the BPM signals including a robust calibration algorithm which is immune to beam jitter. To date, they have been able to demonstrate a resolution of approximately 20 nm over a dynamic range of {+-} 20 {micro}m. They report on the progress of these ongoing tests.« less
Carpenter, Donald A.
1995-01-01
A nondestructive method, and associated apparatus, are provided for determining the grain flow of the grains in a convex curved, textured polycrystalline surface. The convex, curved surface of a polycrystalline article is aligned in a horizontal x-ray diffractometer and a monochromatic, converging x-ray beam is directed onto the curved surface of the polycrystalline article so that the converging x-ray beam is diffracted by crystallographic planes of the grains in the polycrystalline article. The diffracted x-ray beam is caused to pass through a set of horizontal, parallel slits to limit the height of the beam and thereafter. The linear intensity of the diffracted x-ray is measured, using a linear position sensitive proportional counter, as a function of position in a direction orthogonal to the counter so as to generate two dimensional data. An image of the grains in the curved surface of the polycrystalline article is provided based on the two-dimensional data.
Carpenter, D.A.
1995-05-23
A nondestructive method, and associated apparatus, are provided for determining the grain flow of the grains in a convex curved, textured polycrystalline surface. The convex, curved surface of a polycrystalline article is aligned in a horizontal x-ray diffractometer and a monochromatic, converging x-ray beam is directed onto the curved surface of the polycrystalline article so that the converging x-ray beam is diffracted by crystallographic planes of the grains in the polycrystalline article. The diffracted x-ray beam is caused to pass through a set of horizontal, parallel slits to limit the height of the beam and thereafter. The linear intensity of the diffracted x-ray is measured, using a linear position sensitive proportional counter, as a function of position in a direction orthogonal to the counter so as to generate two dimensional data. An image of the grains in the curved surface of the polycrystalline article is provided based on the two-dimensional data. 7 Figs.
INITIAL GAIN MEASUREMENTS OF A 800 NM SASE FEL, VISA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
FRIGOLA,P.; MUROKH,A.; ET AL
2000-08-13
The VISA (Visible to Infrared SASE Amplifier) FEL is designed to obtain high gain at a radiation wavelength of 800nm. The FEL uses the high brightness electron beam of the Accelerator Test Facility (ATF), with energy of 72MeV. VISA uses a novel, 4 m long, strong focusing undulator with a gap of 6mm and a period of 1.8cm. To obtain large gain the beam and undulator axis have to be aligned to better than 50{micro}m. Results from initial measurements on the alignment, gain, and spectrum will be presented and compared to theoretical calculations and simulations.
NASA Astrophysics Data System (ADS)
Butler, Todd M.; Brice, Craig A.; Tayon, Wesley A.; Semiatin, S. Lee; Pilchak, Adam L.
2017-10-01
Additive manufacturing of Ti-6Al-4V commonly produces 〈001〉 β -fiber textures aligned with the build direction. We have performed wire-feed electron beam directed energy deposition on the {112} β plane of a single prior β-grain. The build initially grew epitaxially from the substrate with the preferred 〈001〉 growth direction significantly angled away from the build direction. However, continued layer deposition drove the formation of a 〈001〉 β -fiber texture aligned with the build direction and the direction of the strongest thermal gradient.
NASA Astrophysics Data System (ADS)
Pushin, D. A.; Sarenac, D.; Hussey, D. S.; Miao, H.; Arif, M.; Cory, D. G.; Huber, M. G.; Jacobson, D. L.; LaManna, J. M.; Parker, J. D.; Shinohara, T.; Ueno, W.; Wen, H.
2017-04-01
The phenomenon of interference plays a crucial role in the field of precision measurement science. Wave-particle duality has expanded the well-known interference effects of electromagnetic waves to massive particles. The majority of the wave-particle interference experiments require a near monochromatic beam which limits its applications due to the resulting low intensity. Here we demonstrate white beam interference in the far-field regime using a two-phase-grating neutron interferometer and its application to phase-contrast imaging. The functionality of this interferometer is based on the universal moiré effect that allows us to improve upon the standard Lau setup. Interference fringes were observed with monochromatic and polychromatic neutron beams for both continuous and pulsed beams. Far-field neutron interferometry allows for the full utilization of intense neutron sources for precision measurements of gradient fields. It also overcomes the alignment, stability, and fabrication challenges associated with the more familiar perfect-crystal neutron interferometer, as well as avoids the loss of intensity due to the absorption analyzer grating requirement in Talbot-Lau interferometer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pokorny, M.; Rebicek, J.; Klemes, J.
2015-10-15
This paper presents a rapid non-destructive method that provides information on the anisotropic internal structure of nanofibrous layers. A laser beam of a wavelength of 632.8 nm is directed at and passes through a nanofibrous layer prepared by electrostatic spinning. Information about the structural arrangement of nanofibers in the layer is directly visible in the form of a diffraction image formed on a projection screen or obtained from measured intensities of the laser beam passing through the sample which are determined by the dependency of the angle of the main direction of polarization of the laser beam on the axismore » of alignment of nanofibers in the sample. Both optical methods were verified on Polyvinyl alcohol (PVA) nanofibrous layers (fiber diameter of 470 nm) with random, single-axis aligned and crossed structures. The obtained results match the results of commonly used methods which apply the analysis of electron microscope images. The presented simple method not only allows samples to be analysed much more rapidly and without damaging them but it also makes possible the analysis of much larger areas, up to several square millimetres, at the same time.« less
Ren, Liqiang; Wu, Di; Li, Yuhua; Zheng, Bin; Chen, Yong; Yang, Kai; Liu, Hong
2016-06-01
This study presents a practical alignment method for X-ray spectral measurement in a rotating gantry based micro-computed tomography (micro-CT) system using three-dimensional (3D) printing technology. In order to facilitate the spectrometer placement inside the gantry, supporting structures including a cover and a stand were dedicatedly designed and printed using a 3D printer. According to the relative position between the spectrometer and the stand, the upright projection of the spectrometer collimator onto the stand was determined and then marked by a tungsten pinhole. Thus, a visible alignment indicator of the X-ray central beam and the spectrometer collimator represented by the pinhole was established in the micro-CT live mode. Then, a rough alignment could be achieved through repeatedly adjusting and imaging the stand until the pinhole was located at the center of the acquired projection image. With the spectrometer being positioned back onto the stand, the precise alignment was completed by slightly translating the spectrometer-stand assembly around the rough location, until finding a "sweet spot" with the highest photon rate and proper distribution of the X-ray photons in the resultant spectrum. The spectra were acquired under precise alignment and misalignment of approximately 0.2, 0.5, and 1.0mm away from the precise alignment position, and then were compared in qualitative and quantitative analyses. Qualitative analysis results show that, with slight misalignment, the photon rate is reduced from 1302 to 1098, 1031, and 416 photons/second (p/s), respectively, and the characteristic peaks in the acquired spectra are gradually deteriorated. Quantitative analysis indicates that the energy resolutions for characteristic peak of K α1 were calculated as 1.56% for precise alignment, while were 1.84% and 2.40% for slight misalignment of 0.2mm and 0.5mm. The mean energies were reduced from 43.93keV under precise alignment condition to 40.97, 39.63 and 37.78keV when misaligned. Accurate spectral measurements in micro-CT systems are significantly influenced by the alignment precision. This practical alignment method using 3D printing technology could be readily applied to other rotating gantry based micro-CT systems with modified design of the supporting structures and careful considerations of the spectrometer and gantry dimensions.
Ren, Liqiang; Wu, Di; Li, Yuhua; Zheng, Bin; Chen, Yong; Yang, Kai; Liu, Hong
2016-01-01
This study presents a practical alignment method for X-ray spectral measurement in a rotating gantry based micro-computed tomography (micro-CT) system using three-dimensional (3D) printing technology. In order to facilitate the spectrometer placement inside the gantry, supporting structures including a cover and a stand were dedicatedly designed and printed using a 3D printer. According to the relative position between the spectrometer and the stand, the upright projection of the spectrometer collimator onto the stand was determined and then marked by a tungsten pinhole. Thus, a visible alignment indicator of the X-ray central beam and the spectrometer collimator represented by the pinhole was established in the micro-CT live mode. Then, a rough alignment could be achieved through repeatedly adjusting and imaging the stand until the pinhole was located at the center of the acquired projection image. With the spectrometer being positioned back onto the stand, the precise alignment was completed by slightly translating the spectrometer-stand assembly around the rough location, until finding a “sweet spot” with the highest photon rate and proper distribution of the X-ray photons in the resultant spectrum. The spectra were acquired under precise alignment and misalignment of approximately 0.2, 0.5, and 1.0mm away from the precise alignment position, and then were compared in qualitative and quantitative analyses. Qualitative analysis results show that, with slight misalignment, the photon rate is reduced from 1302 to 1098, 1031, and 416 photons/second (p/s), respectively, and the characteristic peaks in the acquired spectra are gradually deteriorated. Quantitative analysis indicates that the energy resolutions for characteristic peak of Kα1 were calculated as 1.56% for precise alignment, while were 1.84% and 2.40% for slight misalignment of 0.2mm and 0.5mm. The mean energies were reduced from 43.93keV under precise alignment condition to 40.97, 39.63 and 37.78keV when misaligned. Accurate spectral measurements in micro-CT systems are significantly influenced by the alignment precision. This practical alignment method using 3D printing technology could be readily applied to other rotating gantry based micro-CT systems with modified design of the supporting structures and careful considerations of the spectrometer and gantry dimensions. PMID:27777787
DOE Office of Scientific and Technical Information (OSTI.GOV)
Narayana, V; McLaughlin, P; University of Michigan, Ann Arbor, MI
2015-06-15
Purpose: In this study, the adequacy of target expansions on the combined external beam and implant dose was examined based on the measured daily motion of the prostate. Methods: Thirty patients received an I–125 prostate implant prescribed to dose of 90Gy. This was followed by external beam to deliver a dose of 90Gyeq (external beam equivalent) to the prostate over 25 to 30 fractions. An ideal IMRT plan was developed by optimizing the external beam dose based on the delivered implant dose. The implant dose was converted to an equivalent external beam dose using the linear quadratic model. Patients weremore » set up on the treatment table by daily orthogonal imaging and aligning the marker seeds in the prostate. Orthogonal images were obtained at the end of treatment to assess prostate intrafraction motion. Based on the observed motion of the markers between the initial and final images, 5 individual plans showing the actual dose delivered to the patient were calculated. A final true dose distribution was established based on summing the implant dose and the 5 external beam plans. Dose to the prostate, seminal vesicles, lymphnodes and normal tissues, rectal wall, urethra and lower sphincter were calculated and compared to ideal. On 18 patients who were sexually active, dose to the corpus cavernosum and internal pudendal artery was also calculated. Results: The average prostate motion in 3 orthogonal directions was less than 1 mm with a standard deviation of less than +2 mm. Dose and volume parameters showed that there was no decrease in dose to the targets and a marginal decrease in dose to in normal tissues. Conclusion: Dose delivered by seed implant moves with the prostate, decreasing the impact of intrafractions dose movement on actual dose delivered. Combined brachytherapy and external beam dose delivered to the prostate was not sensitive to prostate motion.« less
NASA Astrophysics Data System (ADS)
Grofcsik, Andras
Picosecond inverse Raman spectroscopy has been employed to probe the alignment behaviour and switching characteristics of a 6 mum thick ferroelectric liquid crystal based on a host mixture of fluorinated phenyl biphenylcarboxylates and a chiral dopant. Optical bistability is observed in the Raman signal on application of dc electric fields of opposite polarity. For particular polarities of the applied field, the Raman signals display a cos4theta dependence on the angle of rotation around the beam direction. Reorientational rate constants of 300 mus and 590 mus are observed for the aromatic core at the high-voltage limit for the rise and decay of the 1600 cm-1 Raman signal on application of a switching ac electric field.
Integration of Ion Implantation with Scanning ProbeAlignment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Persaud, A.; Rangelow, I.W.; Schenkel, T.
We describe a scanning probe instrument which integrates ion beams with imaging and alignment functions of a piezo resistive scanning probe in high vacuum. Energetic ions (1 to a few hundred keV) are transported through holes in scanning probe tips [1]. Holes and imaging tips are formed by Focused Ion Beam (FIB) drilling and ion beam assisted thin film deposition. Transport of single ions can be monitored through detection of secondary electrons from highly charged dopant ions (e. g., Bi{sup 45+}) enabling single atom device formation. Fig. 1 shows SEM images of a scanning probe tip formed by ion beammore » assisted Pt deposition in a dual beam FIB. Ion beam collimating apertures are drilled through the silicon cantilever with a thickness of 5 {micro}m. Aspect ratio limitations preclude the direct drilling of holes with diameters well below 1 {micro}m, and smaller hole diameters are achieved through local thin film deposition [2]. The hole in Fig. 1 was reduced from 2 {micro}m to a residual opening of about 300 nm. Fig. 2 shows an in situ scanning probe image of an alignment dot pattern taken with the tip from Fig. 1. Transport of energetic ions through the aperture in the scanning probe tip allows formation of arbitrary implant patterns. In the example shown in Fig. 2 (right), a 30 nm thick PMMA resist layer on silicon was exposed to 7 keV Ar{sup 2+} ions with an equivalent dose of 10{sup 14} ions/cm{sup 2} to form the LBL logo. An exciting goal of this approach is the placement of single dopant ions into precise locations for integration of single atom devices, such as donor spin based quantum computers [3, 4]. In Fig. 3, we show a section of a micron size dot area exposed to a low dose (10{sup 11}/cm{sup 2}) of high charge state dopant ions. The Bi{sup 45+} ions (200 keV) were extracted from a low emittance highly charged ions source [5]. The potential energy of B{sup 45+}, i. e., the sum of the binding energies required to remove the electrons, amounts to 36 keV. This energy is deposited within {approx}10 fs when an ion impinges on a target. The highly localized energy deposition results in efficient resist exposure, and is associated with strongly enhanced secondary electron emission, which allows monitoring of single ion impacts [4]. The ex situ scanning probe image with line scan in Fig. 3 shows a single ion impact site in PMMA (after standard development). In our presentation, we will discuss resolution requirements for ion placement in prototype quantum computer structures [3] with respect to resolution limiting factors in ion implantation with scanning probe alignment.« less
Temporal laser pulse manipulation using multiple optical ring-cavities
NASA Technical Reports Server (NTRS)
Nguyen, Quang-Viet (Inventor); Kojima, Jun (Inventor)
2010-01-01
An optical pulse stretcher and a mathematical algorithm for the detailed calculation of its design and performance is disclosed. The optical pulse stretcher has a plurality of optical cavities, having multiple optical reflectors such that an optical path length in each of the optical cavities is different. The optical pulse stretcher also has a plurality of beam splitters, each of which intercepts a portion of an input optical beam and diverts the portion into one of the plurality of optical cavities. The input optical beam is stretched and a power of an output beam is reduced after passing through the optical pulse stretcher and the placement of the plurality of optical cavities and beam splitters is optimized through a model that takes into account optical beam divergence and alignment in the pluralities of the optical cavities. The optical pulse stretcher system can also function as a high-repetition-rate (MHz) laser pulse generator, making it suitable for use as a stroboscopic light source for high speed ballistic projectile imaging studies, or it can be used for high speed flow diagnostics using a laser light sheet with digital particle imaging velocimetry. The optical pulse stretcher system can also be implemented using fiber optic components to realize a rugged and compact optical system that is alignment free and easy to use.
NGST/XRCF Design and Build Wavescope System Pallet
NASA Technical Reports Server (NTRS)
Geary, Joe
1999-01-01
Based on the successful Wavescope demonstration at MSFC at the end of March, the decision was made by the optical testing team to purchase an upgraded Wavescope from AOA. The MSFC version would include: a higher resolution camera (1000 x 1000 pixels); a higher density lenslet array (150 x 150); updated software; and longer cables (to accommodate the remote operation of the Wavescope optical head which was resident in the Beam Guide Tube). The AOA proposal for the new instrument was received in mid-April, and delivered to MSFC in mid-July. A considerable amount of effort was expended to provide the infrastructure needed for Wavescope operation, and to incorporate it into the overall test system. This was provided by the Wavescope System Pallet (WSP) built by UAH. The WSP is illustrated. Several instruments are incorporated on this pallet. These include the: Wavescope optical head; a PDI wavefront sensor; a point spread function sensor; a Leica light-based distance measuring sensor. In addition there is a single mode fiber point source (fed from a separate source pallet) which serves both as a reference for the Wavescope and as a source point for the test mirror. There is a dual function lens which both collimates the beam from the test image point, and images the test mirror onto the lenslet array. There is a high quality Collimator which can provide a flat input wavefront directly into the Wavescope. There are also various aids such as an alignment laser, an alignment telescope, alignment sticks and apertures. The WSP was delivered to MSFC on 7/28/99. An picture shows the WSP installed in the Guide Tube at the X-Ray Calibration Facility (XRCF).
Diffraction-Unlimited Fluorescence Imaging with an EasySTED Retrofitted Confocal Microscope.
Klauss, André; Hille, Carsten
2017-01-01
The easySTED technology provides the means to retrofit a confocal microscope to a diffraction-unlimited stimulated emission depletion (STED) microscope.Although commercial STED systems are available today, for many users of confocal laser scanning microscopes the option of retrofitting their confocal system to a STED system ready for diffraction-unlimited imaging may present an attractive option. The easySTED principle allowing for a joint beam path of excitation and depletion light promises some advantages concerning technical complexity and alignment effort for such an STED upgrade. In the one beam path design of easySTED the use of a common laser source, either a supercontinuum source or two separate lasers coupled into the same single-mode fiber, becomes feasible. The alignment of the focal light distribution of the STED beam relative to that of the excitation beam in all three spatial dimensions is therefore omitted respectively reduced to coupling the STED laser into the common single-mode fiber. Thus, only minor modifications need to be applied to the beam path in the confocal microscope to be upgraded. Those comprise adding polarization control elements and the easySTED waveplate, and adapting the beamsplitter to the excitation/STED wavelength combination.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balci, Soner; Czaplewski, David A.; Jung, Il Woong
Besides having perfect control on structural features, such as vertical alignment and uniform distribution by fabricating the wires via e-beam lithography and etching process, we also investigated the THz emission from these fabricated nanowires when they are applied DC bias voltage. To be able to apply a voltage bias, an interdigitated gold (Au) electrode was patterned on the high-quality InGaAs epilayer grown on InP substrate bymolecular beam epitaxy. Afterwards, perfect vertically aligned and uniformly distributed nanowires were fabricated in between the electrodes of this interdigitated pattern so that we could apply voltage bias to improve the THz emission. As amore » result, we achieved enhancement in the emitted THz radiation by ~four times, about 12 dB increase in power ratio at 0.25 THz with a DC biased electric field compared with unbiased NWs.« less
Lithography alternatives meet design style reality: How do they "line" up?
NASA Astrophysics Data System (ADS)
Smayling, Michael C.
2016-03-01
Optical lithography resolution scaling has stalled, giving innovative alternatives a window of opportunity. One important factor that impacts these lithographic approaches is the transition in design style from 2D to 1D for advanced CMOS logic. Just as the transition from 3D circuits to 2D fabrication 50 years ago created an opportunity for a new breed of electronics companies, the transition today presents exciting and challenging time for lithographers. Today, we are looking at a range of non-optical lithography processes. Those considered here can be broadly categorized: self-aligned lithography, self-assembled lithography, deposition lithography, nano-imprint lithography, pixelated e-beam lithography, shot-based e-beam lithography .Do any of these alternatives benefit from or take advantage of 1D layout? Yes, for example SAPD + CL (Self Aligned Pitch Division combined with Complementary Lithography). This is a widely adopted process for CMOS nodes at 22nm and below. Can there be additional design / process co-optimization? In spite of the simple-looking nature of 1D layout, the placement of "cut" in the lines and "holes" for interlayer connections can be tuned for a given process capability. Examples of such optimization have been presented at this conference, typically showing a reduction of at least one in the number of cut or hole patterns needed.[1,2] Can any of the alternatives complement each other or optical lithography? Yes.[3] For example, DSA (Directed Self Assembly) combines optical lithography with self-assembly. CEBL (Complementary e-Beam Lithography) combines optical lithography with SAPD for lines with shot-based e-beam lithography for cuts and holes. Does one (shrinking) size fit all? No, that's why we have many alternatives. For example NIL (Nano-imprint Lithography) has been introduced for NAND Flash patterning where the (trending lower) defectivity is acceptable for the product. Deposition lithography has been introduced in 3D NAND Flash to set the channel length of select and memory transistors.
Elegant Gaussian beams for enhanced optical manipulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alpmann, Christina, E-mail: c.alpmann@uni-muenster.de; Schöler, Christoph; Denz, Cornelia
2015-06-15
Generation of micro- and nanostructured complex light beams attains increasing impact in photonics and laser applications. In this contribution, we demonstrate the implementation and experimental realization of the relatively unknown, but highly versatile class of complex-valued Elegant Hermite- and Laguerre-Gaussian beams. These beams create higher trapping forces compared to standard Gaussian light fields due to their propagation changing properties. We demonstrate optical trapping and alignment of complex functional particles as nanocontainers with standard and Elegant Gaussian light beams. Elegant Gaussian beams will inspire manifold applications in optical manipulation, direct laser writing, or microscopy, where the design of the point-spread functionmore » is relevant.« less
NASA Astrophysics Data System (ADS)
Rietveld, M. T.; Kosch, M. J.; Blagoveshchenskaya, N. F.; Kornienko, V. A.; Leyser, T. B.; Yeoman, T. K.
2003-04-01
In recent years, large electron temperature increases of 300% (3000 K above background) caused by powerful HF-radio wave injection have been observed during nighttime using the EISCAT incoherent scatter radar near Tromsø in northern Norway. In a case study we examine the spatial structure of the modified region. The electron heating is accompanied by ion heating of about 100 degrees and magnetic field-aligned measurements show ion outflows increasing with height up to 300 m s-1 at 582 km. The electron density decreases by up to 20%. When the radar antenna was scanned between three elevations from near field-aligned to vertical, the strongest heating effects were always obtained in the field-aligned position. When the HF-pump beam was scanned between the same three positions, the heating was still almost always strongest in the field-aligned direction. Simultaneous images of the 630 nm O(1D) line in the radio-induced aurora showed that the enhancement caused by the HF radio waves also remained localized near the field-aligned position. Coherent HF radar backscatter also appeared strongest when the pump beam was pointed field-aligned. These results are similar to some Langmuir turbulence phenomena which also show a strong preference for excitation by HF rays launched in the field-aligned direction. The correlation of the position of largest temperature enhancement with the position of the radio-induced aurora suggests that a common mechanism, upper-hybrid wave turbulence, is responsible for both effects. Why the strongest heating effects occur for HF rays directed along the magnetic field is still unclear, but self-focusing on field-aligned striations is a candidate mechanism, and possibly ionospheric tilts may be important.
Deegan, Timothy; Owen, Rebecca; Holt, Tanya; Fielding, Andrew; Biggs, Jennifer; Parfitt, Matthew; Coates, Alicia; Roberts, Lisa
2015-02-01
This investigation aimed to assess the consistency and accuracy of radiation therapists (RTs) performing cone beam computed tomography (CBCT) alignment to fiducial markers (FMs) (CBCTFM ) and the soft tissue prostate (CBCTST ). Six patients receiving prostate radiation therapy underwent daily CBCTs. Manual alignment of CBCTFM and CBCTST was performed by three RTs. Inter-observer agreement was assessed using a modified Bland-Altman analysis for each alignment method. Clinically acceptable 95% limits of agreement with the mean (LoAmean ) were defined as ±2.0 mm for CBCTFM and ±3.0 mm for CBCTST . Differences between CBCTST alignment and the observer-averaged CBCTFM (AvCBCTFM ) alignment were analysed. Clinically acceptable 95% LoA were defined as ±3.0 mm for the comparison of CBCTST and AvCBCTFM . CBCTFM and CBCTST alignments were performed for 185 images. The CBCTFM 95% LoAmean were within ±2.0 mm in all planes. CBCTST 95% LoAmean were within ±3.0 mm in all planes. Comparison of CBCTST with AvCBCTFM resulted in 95% LoA of -4.9 to 2.6, -1.6 to 2.5 and -4.7 to 1.9 mm in the superior-inferior, left-right and anterior-posterior planes, respectively. Significant differences were found between soft tissue alignment and the predicted FM position. FMs are useful in reducing inter-observer variability compared with soft tissue alignment. Consideration needs to be given to margin design when using soft tissue matching due to increased inter-observer variability. This study highlights some of the complexities of soft tissue guidance for prostate radiation therapy. © 2014 The Royal Australian and New Zealand College of Radiologists.
Wavefront Tilt And Beam Walk Correction For A Pulsed Laser System
NASA Astrophysics Data System (ADS)
Bartosewcz, Mike; Tyburski, Joe
1986-05-01
The Lockheed Beam Alignment Assembly (BAA) is designed to be a space qualifiable, long life, low bandwidth beam stabilization system. The BAA will stabilize a wandering pulsed laser beam with an input beam tilt of ±750 microradians and translation of ±2.5 mm by two orders of magnitude at the bandwidth of interest. A bandwidth of three hertz was selected to remove laser and optical train thermal drifts and launch induced strain effects. The lambda over twenty RMS wavefront will be maintained in the optics at full power under vacuum test, to demonstrate space qualifiability and optical performance.
NASA Astrophysics Data System (ADS)
He, Honghui; Sun, Minghao; Zeng, Nan; Du, E.; Liu, Shaoxiong; Guo, Yihong; Wu, Jian; He, Yonghong; Ma, Hui
2014-10-01
Polarization measurements are sensitive to the microstructure of tissues and can be used to detect pathological changes. Many tissues contain anisotropic fibrous structures. We obtain the local orientation of aligned fibrous scatterers using different groups of the backscattering Mueller matrix elements. Experiments on concentrically well-aligned silk fibers and unstained human papillary thyroid carcinoma tissues show that the m22, m33, m23, and m32 elements have better contrast but higher degeneracy for the extraction of orientation angles. The m12 and m13 elements show lower contrast, but allow us to determine the orientation angle for the fibrous scatterers along all directions. Moreover, Monte Carlo simulations based on the sphere-cylinder scattering model indicate that the oblique incidence of the illumination beam introduces some errors in the orientation angles obtained by both methods. Mapping the local orientation of anisotropic tissues may not only provide information on pathological changes, but can also give new leads to reduce the orientation dependence of polarization measurements.
Aligning Arrays of Lenses and Single-Mode Optical Fibers
NASA Technical Reports Server (NTRS)
Liu, Duncan
2004-01-01
A procedure now under development is intended to enable the precise alignment of sheet arrays of microscopic lenses with the end faces of a coherent bundle of as many as 1,000 single-mode optical fibers packed closely in a regular array (see Figure 1). In the original application that prompted this development, the precise assembly of lenses and optical fibers serves as a single-mode spatial filter for a visible-light nulling interferometer. The precision of alignment must be sufficient to limit any remaining wavefront error to a root-mean-square value of less than 1/10 of a wavelength of light. This wavefront-error limit translates to requirements to (1) ensure uniformity of both the lens and fiber arrays, (2) ensure that the lateral distance from the central axis of each lens and the corresponding optical fiber is no more than a fraction of a micron, (3) angularly align the lens-sheet planes and the fiber-bundle end faces to within a few arc seconds, and (4) axially align the lenses and the fiber-bundle end faces to within tens of microns of the focal distance. Figure 2 depicts the apparatus used in the alignment procedure. The beam of light from a Zygo (or equivalent) interferometer is first compressed by a ratio of 20:1 so that upon its return to the interferometer, the beam will be magnified enough to enable measurement of wavefront quality. The apparatus includes relay lenses that enable imaging of the arrays of microscopic lenses in a charge-coupled-device (CCD) camera that is part of the interferometer. One of the arrays of microscopic lenses is mounted on a 6-axis stage, in proximity to the front face of the bundle of optical fibers. The bundle is mounted on a separate stage. A mirror is attached to the back face of the bundle of optical fibers for retroreflection of light. When a microscopic lens and a fiber are aligned with each other, the affected portion of the light is reflected back by the mirror, recollimated by the microscopic lens, transmitted through the relay lenses and the beam compressor/expander, then split so that half goes to a detector and half to the interferometer. The output of the detector is used as a feedback control signal for the six-axis stage to effect alignment.
MMI-based MOEMS FT spectrometer for visible and IR spectral ranges
NASA Astrophysics Data System (ADS)
Al-Demerdash, Bassem M.; Medhat, Mostafa; Sabry, Yasser M.; Saadany, Bassam; Khalil, Diaa
2014-03-01
MEMS spectrometers have very strong potential in future healthcare and environmental monitoring applications, where Michelson interferometers are the core optical engine. Recently, MEMS Michelson interferometers based on using silicon interface as a beam splitter (BS) has been proposed [7, 8]. This allows having a monolithically-integrated on-chip FTIR spectrometer. However silicon BS exhibits high absorption loss in the visible range and high material dispersion in the near infrared (NIR) range. For this reason, we propose in this work a novel MOEMS interferometer allowing operation over wider spectral range covering both the infrared (IR) and the visible ranges. The proposed architecture is based on spatial splitting and combining of optical beams using the imaging properties of Multi-Mode Interference MMI waveguide. The proposed structure includes an optical splitter for spatial splitting an input beam into two beams and a combiner for spatial combining the two interferometer beams. A MEMS moveable mirror is provided to produce an optical path difference between the two beams. The new interferometer is fabricated using DRIE technology on an SOI wafer. The movable mirror is metalized and attached to a comb-drive actuator fabricated in the same lithography step in a self-aligned manner on chip. The novel interferometer is tested as a Fourier transform spectrometer. Red laser, IR laser and absorption spectra of different materials are measured with a resolution of 2.5 nm at 635-nm wavelength. The structure is a very compact one that allows its integration and fabrication on a large scale with very low cost.
A Vibrating Wire System For Quadrupole Fiducialization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolf, Zachary
2010-12-13
A vibrating wire system is being developed to fiducialize the quadrupoles between undulator segments in the LCLS. This note provides a detailed analysis of the system. The LCLS will have quadrupoles between the undulator segments to keep the electron beam focused. If the quadrupoles are not centered on the beam axis, the beam will receive transverse kicks, causing it to deviate from the undulator axis. Beam based alignment will be used to move the quadrupoles onto a straight line, but an initial, conventional alignment must place the quadrupole centers on a straight line to 100 {micro}m. In the fiducialization stepmore » of the initial alignment, the position of the center of the quadrupole is measured relative to tooling balls on the outside of the quadrupole. The alignment crews then use the tooling balls to place the magnet in the tunnel. The required error on the location of the quadrupole center relative to the tooling balls must be less than 25 {micro}m. In this note, we analyze a system under construction for the quadrupole fiducialization. The system uses the vibrating wire technique to position a wire onto the quadrupole magnetic axis. The wire position is then related to tooling balls using wire position detectors. The tooling balls on the wire position detectors are finally related to tooling balls on the quadrupole to perform the fiducialization. The total 25 {micro}m fiducialization error must be divided between these three steps. The wire must be positioned onto the quadrupole magnetic axis to within 10 {micro}m, the wire position must be measured relative to tooling balls on the wire position detectors to within 15 {micro}m, and tooling balls on the wire position detectors must be related to tooling balls on the quadrupole to within 10 {micro}m. The techniques used in these three steps will be discussed. The note begins by discussing various quadrupole fiducialization techniques used in the past and discusses why the vibrating wire technique is our method of choice. We then give an overview of the measurement system showing how the vibrating wire is positioned onto the quadrupole axis, how the wire position detectors locate the wire relative to tooling balls without touching the wire, and how the tooling ball positions are all measured. The novel feature of this system is the vibrating wire which we discuss in depth. We analyze the wire dynamics and calculate the expected sensitivity of the system. The note should be an aid in debugging the system by providing calculations to compare measurements to.« less
Extremum seeking x-ray position feedback using power line harmonic leakage as the perturbation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zohar, S.; Kissick, D. J.; Venugopalan, N.
Small X-ray beam sizes necessary for probing nanoscale phenomena require exquisite stability to prevent data corruption by noise. One source of instability at synchrotron radiation X-ray beamlines is the slow detuning of X-ray optics to marginal alignment where the onset of clipping increases the beam’s susceptibility to higher frequency position oscillations. In this article, we show that a 1 µm amplitude horizontal X-ray beam oscillation driven by power line harmonic leakage into the electron storage ring can be used as perturbation for horizontal position extremum seeking feedback. Feedback performance is characterized by convergence to 1.5% away from maximum intensity atmore » optimal alignment.« less
Method for the fabrication of three-dimensional microstructures by deep X-ray lithography
Sweatt, William C.; Christenson, Todd R.
2005-04-05
A method for the fabrication of three-dimensional microstructures by deep X-ray lithography (DXRL) comprises a masking process that uses a patterned mask with inclined mask holes and off-normal exposures with a DXRL beam aligned with the inclined mask holes. Microstructural features that are oriented in different directions can be obtained by using multiple off-normal exposures through additional mask holes having different orientations. Various methods can be used to block the non-aligned mask holes from the beam when using multiple exposures. A method for fabricating a precision 3D X-ray mask comprises forming an intermediate mask and a master mask on a common support membrane.
NASA Technical Reports Server (NTRS)
Stahl, H. Philip (Inventor); Walker, Chanda Bartlett (Inventor)
2006-01-01
An achromatic shearing phase sensor generates an image indicative of at least one measure of alignment between two segments of a segmented telescope's mirrors. An optical grating receives at least a portion of irradiance originating at the segmented telescope in the form of a collimated beam and the collimated beam into a plurality of diffraction orders. Focusing optics separate and focus the diffraction orders. Filtering optics then filter the diffraction orders to generate a resultant set of diffraction orders that are modified. Imaging optics combine portions of the resultant set of diffraction orders to generate an interference pattern that is ultimately imaged by an imager.
In Situ alignment system for phase-shifting point-diffraction interferometry
Goldberg, Kenneth Alan; Naulleau, Patrick P.
2000-01-01
A device and method to facilitate the gross alignment of patterned object- and image-plane masks in optical systems such as the phase-shifting point diffraction interferometer are provided. When an array of similar pinholes or discreet mask fields is used, confusion can occur over the alignment of the focused beams within the field. Adding to the mask pattern a circumscribed or inscribed set of symbols that are identifiable in situ facilitates the unambiguous gross alignment of the object- and/or image-plane masks. Alternatively, a system of markings can be encoded directly into the window shape to accomplish this same task.
Alignment of chirped-pulse compressor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yakovlev, I V
2012-11-30
An original method of alignment of grating compressors for ultrahigh-power CPA laser systems is proposed. The use of this method for adjustment of the grating compressor of a PEARL subpetawatt laser complex made it possible to align the diffraction gratings with a second accuracy in all three angular degrees of freedom, including alignment of the grooves, and to adjust the angles of beam incidence on the grating with a high accuracy. A simple method for measuring the difference in the groove densities of gratings with accuracy better than 0.005 lines mm{sup -1} is proposed and tested. (control of laser radiationmore » parameters)« less
Automated interferometric alignment system for paraboloidal mirrors
Maxey, L.C.
1993-09-28
A method is described for a systematic method of interpreting interference fringes obtained by using a corner cube retroreflector as an alignment aid when aligning a paraboloid to a spherical wavefront. This is applicable to any general case where such alignment is required, but is specifically applicable in the case of aligning an autocollimating test using a diverging beam wavefront. In addition, the method provides information which can be systematically interpreted such that independent information about pitch, yaw and focus errors can be obtained. Thus, the system lends itself readily to automation. Finally, although the method is developed specifically for paraboloids, it can be seen to be applicable to a variety of other aspheric optics when applied in combination with a wavefront corrector that produces a wavefront which, when reflected from the correctly aligned aspheric surface will produce a collimated wavefront like that obtained from the paraboloid when it is correctly aligned to a spherical wavefront. 14 figures.
Beam shaping for laser-based adaptive optics in astronomy.
Béchet, Clémentine; Guesalaga, Andrés; Neichel, Benoit; Fesquet, Vincent; González-Núñez, Héctor; Zúñiga, Sebastián; Escarate, Pedro; Guzman, Dani
2014-06-02
The availability and performance of laser-based adaptive optics (AO) systems are strongly dependent on the power and quality of the laser beam before being projected to the sky. Frequent and time-consuming alignment procedures are usually required in the laser systems with free-space optics to optimize the beam. Despite these procedures, significant distortions of the laser beam have been observed during the first two years of operation of the Gemini South multi-conjugate adaptive optics system (GeMS). A beam shaping concept with two deformable mirrors is investigated in order to provide automated optimization of the laser quality for astronomical AO. This study aims at demonstrating the correction of quasi-static aberrations of the laser, in both amplitude and phase, testing a prototype of this two-deformable mirror concept on GeMS. The paper presents the results of the preparatory study before the experimental phase. An algorithm to control amplitude and phase correction, based on phase retrieval techniques, is presented with a novel unwrapping method. Its performance is assessed via numerical simulations, using aberrations measured at GeMS as reference. The results predict effective amplitude and phase correction of the laser distortions with about 120 actuators per mirror and a separation of 1.4 m between the mirrors. The spot size is estimated to be reduced by up to 15% thanks to the correction. In terms of AO noise level, this has the same benefit as increasing the photon flux by 40%.
Development of a Digital Control for the Phase Contrast Imaging Alignment Feedback System
NASA Astrophysics Data System (ADS)
Hirata, M.; Marinoni, A.; Rost, J. C.; Davis, E. M.; Porkolab, M.
2016-10-01
The Phase Contrast Imaging diagnostic is an internal reference interferometer that images density fluctuations on a 32-element linear detector array. Since proper operation of the system requires accurate alignment of a CO2 laser beam on a phase plate, beam motion due to vibrations of the DIII-D vessel need to be compensated up to 1 kHz. The feedback network controlling the steering mirrors currently uses a linear analog controller, but a digital controller can provide improved stability performance and flexibility. A prototype was developed using an Arduino Due, a low-cost microcontroller, to assess performance capabilities. Digital control parameters will be developed based on the measured frequency and phase response of the physical components. Finally, testing of the digital feedback system and the required revisions will be done to achieve successful performance. This upgrade to the linear analog controller is expected to be used routinely on similar diagnostics in fusion devices, especially in view of restricted access to the machine hall. Work supported in part by the US Department of Energy under DE-FG02-94ER54235, DE-FC02-04ER54698, and the Science Undergraduate Laboratory Internships Program (SULI).
NASA Astrophysics Data System (ADS)
Roychoudhuri, ChandraSekhar
2017-08-01
The purpose of this paper is to embolden students to raise basic questions regarding the feasibility of "indivisible single photon interference". We do this by presenting experimental results of well-known classical Mach-Zehnder interferometer (MZI) under two different conditions of beam alignment. We routinely do such experiments in our laboratories. In the first case, we align the light beams on the beam combiner (BC) with their Poynting vectors as perfectly collinear. The 50% dielectric boundary can now transmit 100% of the energy of both the beams into either one of the two MZI output ports, depending upon the relative phase between the two beams combined on the BC from the opposite directions. The dielectric boundary layer actively re-directs the energy from one beam to the other. This is pure classical superposition effect. In the second case, we combine the two beams on the BC with a small intersecting angle. Now the BC functions as a 50% beam splitter to both the beams. One can see spatial fringes as the relative phase varies with spatial distance by placing a photo detector array after the BC. At very low intensity, the quantum properties of the photo detector will become apparent because the photo electrons are discrete and are always bound quantum mechanically to its host molecular assembly; and not because light is definitely quantized. Students can learn to distinguish the pedagogical difference between the Superposition Principle (linear sum of wave amplitudes) and the Superposition Effect (square modulus of the sum of all the wave-induced stimulations) as observable intensity variations due to interaction with materials, classical or quantum.
Self-optimizing approach for automated laser resonator alignment
NASA Astrophysics Data System (ADS)
Brecher, C.; Schmitt, R.; Loosen, P.; Guerrero, V.; Pyschny, N.; Pavim, A.; Gatej, A.
2012-02-01
Nowadays, the assembly of laser systems is dominated by manual operations, involving elaborate alignment by means of adjustable mountings. From a competition perspective, the most challenging problem in laser source manufacturing is price pressure, a result of cost competition exerted mainly from Asia. From an economical point of view, an automated assembly of laser systems defines a better approach to produce more reliable units at lower cost. However, the step from today's manual solutions towards an automated assembly requires parallel developments regarding product design, automation equipment and assembly processes. This paper introduces briefly the idea of self-optimizing technical systems as a new approach towards highly flexible automation. Technically, the work focuses on the precision assembly of laser resonators, which is one of the final and most crucial assembly steps in terms of beam quality and laser power. The paper presents a new design approach for miniaturized laser systems and new automation concepts for a robot-based precision assembly, as well as passive and active alignment methods, which are based on a self-optimizing approach. Very promising results have already been achieved, considerably reducing the duration and complexity of the laser resonator assembly. These results as well as future development perspectives are discussed.
Inhibited-coupling HC-PCF based beam-delivery-system for high power green industrial lasers
NASA Astrophysics Data System (ADS)
Chafer, M.; Gorse, A.; Beaudou, B.; Lekiefs, Q.; Maurel, M.; Debord, B.; Gérôme, F.; Benabid, F.
2018-02-01
We report on an ultra-low loss Hollow-Core Photonic Crystal Fiber (HC-PCF) beam delivery system (GLO-GreenBDS) for high power ultra-short pulse lasers operating in the green spectral range (including 515 nm and 532 nm). The GLOBDS- Green combines ease-of-use, high laser-coupling efficiency, robustness and industrial compatible cabling. It comprises a pre-aligned laser-injection head, a sheath-cable protected HC-PCF and a modular fiber-output head. It enables fiber-core gas loading and evacuation in a hermetic fashion. A 5 m long GLO-BDS were demonstrated for a green short pulse laser with a transmission coefficient larger than 80%, and a laser output profile close to single-mode (M2 <1.3).
NASA Astrophysics Data System (ADS)
Tallant, D. R.; Jungst, R. G.
1981-04-01
A dual base diode laser spectrometer was constructed using off axis reflective optics. The spectrometer was amplitude modulated for direct absorption measurements or frequency modulated to obtain derivative spectra. The spectrometer had: high throughput; was easy to operate and align; provided good dual beam compensation; and had no evidence of the interference effects that were observed in diode laser spectrometers using refractive optics. Unpurged, using second derivative techniques, the instrument measured 108 parts per million CO (10/cm absorption cell, atmospheric pressure broadened) with good signal/noise. With the replacement of marginal instrumental components, the signal/noise was substantially increased. This instrument was developed to monitor the evolution of decomposition gases in sealed containers of small volume at atmospheric pressure.
Mix & match electron beam & scanning probe lithography for high throughput sub-10 nm lithography
NASA Astrophysics Data System (ADS)
Kaestner, Marcus; Hofer, Manuel; Rangelow, Ivo W.
2013-03-01
The prosperous demonstration of a technique able to produce features with single nanometer (SN) resolution could guide the semiconductor industry into the desired beyond CMOS era. In the lithographic community immense efforts are being made to develop extreme ultra-violet lithography (EUVL) and multiple-e-beam direct-write systems as possible successor for next generation lithography (NGL). However, patterning below 20 nm resolution and sub-10 nm overlay alignment accuracy becomes an extremely challenging quest. Herein, the combination of electron beam lithography (EBL) or EUVL with the outstanding capabilities of closed-loop scanning proximal probe nanolithography (SPL) reveals a promising way to improve both patterning resolution and reproducibility in combination with excellent overlay and placement accuracy. In particular, the imaging and lithographic resolution capabilities provided by scanning probe microscopy (SPM) methods touches the atomic level, which expresses the theoretical limit of constructing nanoelectronic devices. Furthermore, the symbiosis between EBL (EUVL) and SPL expands the process window of EBL (EUVL) far beyond state-of-the-art allowing SPL-based pre- and post-patterning of EBL (EUVL) written features at critical dimension level with theoretically nanometer precise pattern overlay alignment. Moreover, we can modify the EBL (EUVL) pattern before as well as after the development step. In this paper we demonstrate proof of concept using the ultra-high resolution molecular glass resist calixarene. Therefor we applied Gaussian E-beam lithography system operating at 10 keV and a home-developed SPL set-up. The introduced Mix and Match lithography strategy enables a powerful use of our SPL set-up especially as post-patterning tool for inspection and repair functions below the sub-10 nm critical dimension level.
An Undulator-Based Laser Wakefield Accelerator Electron Beam Diagnostic
NASA Astrophysics Data System (ADS)
Bakeman, Michael S.
Currently particle accelerators such as the Large Hadron Collider use RF cavities with a maximum field gradient of 50-100 MV/m to accelerate particles over long distances. A new type of plasma based accelerator called a Laser Plasma Accelerator (LPA) is being investigated at the LOASIS group at Lawrence Berkeley National Laboratory which can sustain field gradients of 10-100 GV/m. This new type of accelerator offers the potential to create compact high energy accelerators and light sources. In order to investigate the feasibility of producing a compact light source an undulator-based electron beam diagnostic for use on the LOASIS LPA has been built and calibrated. This diagnostic relies on the principal that the spectral analysis of synchrotron radiation from an undulator can reveal properties of the electron beam such as emittance, energy and energy spread. The effects of electron beam energy spread upon the harmonics of undulator produced synchrotron radiation were derived from the equations of motion of the beam and numerically simulated. The diagnostic consists of quadrupole focusing magnets to collimate the electron beam, a 1.5 m long undulator to produce the synchrotron radiation, and a high resolution high gain XUV spectrometer to analyze the radiation. The undulator was aligned and tuned in order to maximize the flux of synchrotron radiation produced. The spectrometer was calibrated at the Advanced Light Source, with the results showing the ability to measure electron beam energy spreads at resolutions as low as 0.1% rms, a major improvement over conventional magnetic spectrometers. Numerical simulations show the ability to measure energy spreads on realistic LPA produced electron beams as well as the improvements in measurements made with the quadrupole magnets. Experimentally the quadrupoles were shown to stabilize and focus the electron beams at specific energies for their insertion into the undulator, with the eventual hope of producing an all optical Free Electron Laser operating in the XUV and soft x-ray regimes.
NASA Astrophysics Data System (ADS)
Jen, Yi Jun
2017-12-01
A multilayer comprising birefringent thin films is devised to present to function as a polarization beam splitter and waveplate simultaneously. By arranging such a multilayer on a right triangle-shaped corrugated surface, a polarizer is realized to align the randomly oscillating electric field of an unpolarized wave into a linear polarized wave without loss.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolf, Z.; Ruland, R.; Dix, B.
The Stanford Linear Accelerator Center is evaluating the feasibility of placing a free electron laser (FEL) at the end of the linear accelerator. The proposal is to inject electrons two thirds of the way down the linac, accelerate the electrons for the last one third of the linac, and then send the electrons into the FEL. This project is known as the LCLS (Linac Coherent Light Source). To test the feasibility of the LCLS, a smaller experiment VISA (Visual to Infrared SASE (Self Amplified Stimulated Emission) Amplifier) is being performed at Brookhaven National Laboratory. VISA consists of four wiggler segments,more » each 0.99 m long. The four segments are required to be aligned to the beam axis with an rms error less than 50 {micro}m [1]. This very demanding alignment is carried out in two steps [2]. First the segments are fiducialized using a pulsed wire system. Then the wiggler segments are placed along a reference laser beam which coincides with the electron beam axis. In the wiggler segment fiducialization, a wire is stretched through a wiggler segment and a current pulse is sent down the wire. The deflection of the wire is monitored. The deflection gives information about the electron beam trajectory. The wire is moved until its x position, the coordinate without wire sag, is on the ideal beam trajectory. (The y position is obtained by rotating the wiggler 90{sup o}.) Once the wire is on the ideal beam trajectory, the wire's location is measured relative to tooling balls on the wiggler segment. To locate the wire, a device was constructed which measures the wire position relative to tooling balls on the device. The device is called the wire finder. It will be discussed in this paper. To place the magnets along the reference laser beam, the position of the laser beam must be determined. A device which can locate the laser beam relative to tooling balls was constructed and is also discussed in this paper. This device is called the laser finder. With a total alignment error budget less than 50 {micro}m, both the fiducialization and magnet placement must be performed with errors much smaller than 50 {micro}m. It is desired to keep the errors from the wire finder and laser finder at the few {micro}m level.« less
Tests of a two-color interferometer and polarimeter for ITER density measurements
NASA Astrophysics Data System (ADS)
Van Zeeland, M. A.; Carlstrom, T. N.; Finkenthal, D. K.; Boivin, R. L.; Colio, A.; Du, D.; Gattuso, A.; Glass, F.; Muscatello, C. M.; O'Neill, R.; Smiley, M.; Vasquez, J.; Watkins, M.; Brower, D. L.; Chen, J.; Ding, W. X.; Johnson, D.; Mauzey, P.; Perry, M.; Watts, C.; Wood, R.
2017-12-01
A full-scale 120 m path length ITER toroidal interferometer and polarimeter (TIP) prototype, including an active feedback alignment system, has been constructed and undergone initial testing at General Atomics. In the TIP prototype, two-color interferometry is carried out at 10.59 μm and 5.22 μm using a CO2 and quantum cascade laser (QCL) respectively while a separate polarimetry measurement of the plasma induced Faraday effect is made at 10.59 μm. The polarimeter system uses co-linear right and left-hand circularly polarized beams upshifted by 40 and 44 MHz acousto-optic cells respectively, to generate the necessary beat signal for heterodyne phase detection, while interferometry measurements are carried out at both 40 MHz and 44 MHz for the CO2 laser and 40 MHz for the QCL. The high-resolution phase information is obtained using an all-digital FPGA based phase demodulation scheme and precision clock source. The TIP prototype is equipped with a piezo tip/tilt stage active feedback alignment system responsible for minimizing noise in the measurement and keeping the TIP diagnostic aligned indefinitely on its 120 m beam path including as the ITER vessel is brought from ambient to operating temperatures. The prototype beam path incorporates translation stages to simulate ITER motion through a bake cycle as well as other sources of motion or misalignment. Even in the presence of significant motion, the TIP prototype is able to meet ITER’s density measurement requirements over 1000 s shot durations with demonstrated phase resolution of 0.06° and 1.5° for the polarimeter and vibration compensated interferometer respectively. TIP vibration compensated interferometer measurements of a plasma have also been made in a pulsed radio frequency device and show a line-integrated density resolution of δ {nL}=3.5× {10}17 m-2.
NASA Astrophysics Data System (ADS)
Baylon, Jorge L.; Stremme, Wolfgang; Grutter, Michel; Hase, Frank; Blumenstock, Thomas
2017-07-01
In this investigation we analyze two common optical configurations to retrieve CO2 total column amounts from solar absorption infrared spectra. The noise errors using either a KBr or a CaF2 beam splitter, a main component of a Fourier transform infrared spectrometer (FTIR), are quantified in order to assess the relative precisions of the measurements. The configuration using a CaF2 beam splitter, as deployed by the instruments which contribute to the Total Carbon Column Observing Network (TCCON), shows a slightly better precision. However, we show that the precisions in XCO2 ( = 0.2095 ṡ Total Column CO2Total Column O2) retrieved from > 96 % of the spectra measured with a KBr beam splitter fall well below 0.2 %. A bias in XCO2 (KBr - CaF2) of +0.56 ± 0.25 ppm was found when using an independent data set as reference. This value, which corresponds to +0.14 ± 0.064 %, is slightly larger than the mean precisions obtained. A 3-year XCO2 time series from FTIR measurements at the high-altitude site of Altzomoni in central Mexico presents clear annual and diurnal cycles, and a trend of +2.2 ppm yr-1 could be determined.
Focal-Plane Imaging of Crossed Beams in Nonlinear Optics Experiments
NASA Technical Reports Server (NTRS)
Bivolaru, Daniel; Herring, G. C.
2007-01-01
An application of focal-plane imaging that can be used as a real time diagnostic of beam crossing in various optical techniques is reported. We discuss two specific versions and demonstrate the capability of maximizing system performance with an example in a combined dual-pump coherent anti-Stokes Raman scattering interferometric Rayleigh scattering experiment (CARS-IRS). We find that this imaging diagnostic significantly reduces beam alignment time and loss of CARS-IRS signals due to inadvertent misalignments.
Supine craniospinal irradiation in pediatric patients by proton pencil beam scanning.
Farace, Paolo; Bizzocchi, Nicola; Righetto, Roberto; Fellin, Francesco; Fracchiolla, Francesco; Lorentini, Stefano; Widesott, Lamberto; Algranati, Carlo; Rombi, Barbara; Vennarini, Sabina; Amichetti, Maurizio; Schwarz, Marco
2017-04-01
Proton therapy is the emerging treatment modality for craniospinal irradiation (CSI) in pediatric patients. Herein, special methods adopted for CSI at proton Therapy Center of Trento by pencil beam scanning (PBS) are comprehensively described. Twelve pediatric patients were treated by proton PBS using two/three isocenters. Special methods refer to: (i) patient positioning in supine position on immobilization devices crossed by the beams; (ii) planning field-junctions via the ancillary-beam technique; (iii) achieving lens-sparing by three-beams whole-brain-irradiation; (iv) applying a movable-snout and beam-splitting technique to reduce the lateral penumbra. Patient-specific quality assurance (QA) program was performed using two-dimensional ion chamber array and γ-analysis. Daily kilovoltage alignment was performed. PBS allowed to obtain optimal target coverage (mean D98%>98%) with reduced dose to organs-at-risk. Lens sparing was obtained (mean D1∼730cGyE). Reducing lateral penumbra decreased the dose to the kidneys (mean Dmean<600cGyE). After kilovoltage alignment, potential dose deviations in the upper and lower junctions were small (average 0.8% and 1.2% respectively). Due to imperfect modeling of range shifter, QA showed better agreements between measurements and calculations at depths >4cm (mean γ>95%) than at depths<4cm. The reported methods allowed to effectively perform proton PBS CSI. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Peng; Ji, Wei; Wei, Bing-Yan
Arbitrary vector beams (VBs) are realized by the designed polarization converters and corresponding vector-photoaligned q-plates. The polarization converter is a specific twisted nematic cell with one substrate homogeneously aligned and the other space-variantly aligned. By combining a polarization-sensitive alignment agent with a dynamic micro-lithography system, various categories of liquid crystal polarization converters are demonstrated. Besides, traditional radially/azimuthally polarized light, high-order and multi-ringed VBs, and a VB array with different orders are generated. The obtained converters are further utilized as polarization masks to implement vector-photoaligning. The technique facilitates both the volume duplication of these converters and the generation of another promisingmore » optical element, the q-plate, which is suitable for the generation of VBs for coherent lasers. The combination of proposed polarization converters and correspondingly fabricated q-plates would drastically enhance the capability of polarization control and may bring more possibilities for the design of photonic devices.« less
Giant Double Radio Source DA 240: Purveyor of Galaxies
NASA Astrophysics Data System (ADS)
Chen, Ru-Rong; Strom, Richard; Peng, Bo
2018-05-01
Galaxies of stars are building blocks of the baryonic universe. Their composition, structure, and kinematics have been well studied, but details of their origins remain sketchy. The collapse of gas clouds, induced by external forces whereby gravity overcomes internal pressure to form stars, is the likely starting point. Among the perturbing initiators of galaxy formation, radio source beams (jets) are quite effective. Typically, a beam may spawn one galaxy, though instances of several aligned with the radio axis are known. Recently, we found an impressive 14 companions in the lobes of the giant radio galaxy DA 240, which we argue formed as the result of jet instigation. This conclusion is bolstered by the fact that the galaxy groups display Z-shaped symmetry with respect to the radio axis. There is some evidence for star formation among the aligned companions. We also conclude that galaxy alignments at low redshift may derive from line-emitting gas observed in radio components of high-redshift galaxies.
Alignment and Integration Techniques for Mirror Segment Pairs on the Constellation X Telescope
NASA Technical Reports Server (NTRS)
Hadjimichael, Theo; Lehan, John; Olsen, Larry; Owens, Scott; Saha, Timo; Wallace, Tom; Zhang, Will
2007-01-01
We present the concepts behind current alignment and integration techniques for testing a Constellation-X primary-secondary mirror segment pair in an x-ray beam line test. We examine the effects of a passive mount on thin glass x-ray mirror segments, and the issues of mount shape and environment on alignment. We also investigate how bonding and transfer to a permanent housing affects the quality of the final image, comparing predicted results to a full x-ray test on a primary secondary pair.
Abdolahad, Mohammad; Taghinejad, Mohammad; Taghinejad, Hossein; Janmaleki, Mohsen; Mohajerzadeh, Shams
2012-03-21
A novel vertically aligned carbon nanotube based electrical cell impedance sensing biosensor (CNT-ECIS) was demonstrated for the first time as a more rapid, sensitive and specific device for the detection of cancer cells. This biosensor is based on the fast entrapment of cancer cells on vertically aligned carbon nanotube arrays and leads to mechanical and electrical interactions between CNT tips and entrapped cell membranes, changing the impedance of the biosensor. CNT-ECIS was fabricated through a photolithography process on Ni/SiO(2)/Si layers. Carbon nanotube arrays have been grown on 9 nm thick patterned Ni microelectrodes by DC-PECVD. SW48 colon cancer cells were passed over the surface of CNT covered electrodes to be specifically entrapped on elastic nanotube beams. CNT arrays act as both adhesive and conductive agents and impedance changes occurred as fast as 30 s (for whole entrapment and signaling processes). CNT-ECIS detected the cancer cells with the concentration as low as 4000 cells cm(-2) on its surface and a sensitivity of 1.7 × 10(-3)Ω cm(2). Time and cell efficiency factor (TEF and CEF) parameters were defined which describe the sensor's rapidness and resolution, respectively. TEF and CEF of CNT-ECIS were much higher than other cell based electrical biosensors which are compared in this paper.
Optical mounts for harsh environments
NASA Astrophysics Data System (ADS)
Mimovich, Mark E.; Griffee, Jonathan C.; Goodding, James C.
2009-08-01
Development and testing of a lightweight-kinematic optical mount with integrated passive vibration-and-shock mitigation technologies and simple / robust optical alignment functionality is presented. Traditionally, optical mounts are designed for use in laboratory environments where the thermal-mechanical environments are carefully controlled to preserve beam path conditions and background disturbances are minimized to facilitate precise optically based measurements. Today's weapon and surveillance systems, however, have optical sensor suites where static and dynamic alignment performance in the presence of harsh operating environments is required to nearly the same precision and where the system cannot afford the mass of laboratory-grade stabilized mounting systems. Jitter and alignment stability is particularly challenging for larger optics operating within moving vehicles and aircraft where high shock and significant temperature excursions occur. The design intent is to have the mount be suitable for integration into existing defense and security optical systems while also targeting new commercial and military components for improved structural dynamic and thermal distortion performance. A mount suitable for moderate-sized optics and an integrated disturbance-optical metrology system are described. The mount design has performance enhancements derived from the integration of proven aerospace mechanical vibration and shock mitigation technologies (i.e. multi-axis passive isolation and integral damping), precision alignment adjustment and lock-out functionality, high dimensional stability materials and design practices which provide benign optical surface figure errors under harsh thermal-mechanical loading. Optical jitter, alignment, and wave-front performance testing of an eight-inch-aperture optical mount based on this design approach are presented to validate predicted performance improvements over an existing commercial off-the-shelf (COTS) design.
FSO tracking and auto-alignment transceiver system
NASA Astrophysics Data System (ADS)
Cap, Gabriel A.; Refai, Hakki H.; Sluss, James J., Jr.
2008-10-01
Free-space optics (FSO) technology utilizes a modulated light beam to transmit information through the atmosphere. Due to reduced size and cost, and higher data rates, FSO can be more effective than wireless communication. Although atmospheric conditions can affect FSO communication, a line-of-sight connection between FSO transceivers is a necessary condition to maintain continuous exchange of data, voice, and video information. To date, the primary concentration of mobile FSO research and development has been toward accurate alignment between two transceivers. This study introduces a fully automatic, advanced alignment system that will maintain a line of sight connection for any FSO transceiver system. A complete transceiver system includes a position-sensing detector (PSD) to receive the signal, a laser to transmit the signal, a gimbal to move the transceiver to maintain alignment, and a computer to coordinate the necessary movements during motion. The FSO system was tested for mobility by employing one gimbal as a mobile unit and establishing another as a base station. Tests were performed to establish that alignment between two transceivers could be maintained during a given period of experiments and to determine the maximum speeds tolerated by the system. Implementation of the transceiver system can be realized in many ways, including vehicle-to-base station communication or vehicle-to-vehicle communication. This study is especially promising in that it suggests such a system is able to provide high-speed data in many applications where current wireless technology may not be effective. This phenomenon, coupled with the ability to maintain an autonomously realigned connection, opens the possibility of endless applications for both military and civilian use.
Ohoyama, H; Maruyama, S
2012-06-28
Steric effect in the energy transfer reaction of N(2)(A(3)Σ(u)(+)) + NO(X(2)Π) → NO(A(2)Σ(+)) + N(2)(X(1)Σ(g)(+)) has been studied under crossed beam conditions at a collision energy of ~0.07 eV by using an aligned N(2)(A(3)Σ(u)(+)) beam prepared by a magnetic hexapole. The emission intensity of NO(A(2)Σ(+)) has been measured as a function of the magnetic orientation field direction (i.e., alignment of N(2)(A(3)Σ(u)(+))) in the collision frame. A significant alignment effect on the energy transfer probability is observed. The shape of the steric opacity function turns out to be most reactive at the oblique configuration of N(2)(A(3)Σ(u)(+)) with an orientation angle of γ(v(R)) ~ 45° with respect to the relative velocity vector (v(R)), which has a good correlation with the spatial distribution of the 2pπ(g)* molecular orbital of N(2)(A(3)Σ(u)(+)). We propose the electron exchange mechanism in which the energy transfer probability is dominantly controlled by the orbital overlap between N(2)(2pπ(g)*) and NO(6σ).
Rusnak, Brian; Hall, James M.; Shen, Stewart; Wood, Richard L.
2005-01-18
A rotating aperture system includes a low-pressure vacuum pumping stage with apertures for passage of a deuterium beam. A stator assembly includes holes for passage of the beam. The rotor assembly includes a shaft connected to a deuterium gas cell or a crossflow venturi that has a single aperture on each side that together align with holes every rotation. The rotating apertures are synchronized with the firing of the deuterium beam such that the beam fires through a clear aperture and passes into the Xe gas beam stop. Portions of the rotor are lapped into the stator to improve the sealing surfaces, to prevent rapid escape of the deuterium gas from the gas cell.
Performance of a reentrant cavity beam position monitor
NASA Astrophysics Data System (ADS)
Simon, Claire; Luong, Michel; Chel, Stéphane; Napoly, Olivier; Novo, Jorge; Roudier, Dominique; Rouvière, Nelly; Baboi, Nicoleta; Mildner, Nils; Nölle, Dirk
2008-08-01
The beam-based alignment and feedback systems, essential operations for the future colliders, require high resolution beam position monitors (BPMs). In the framework of the European CARE/SRF program, a reentrant cavity BPM with its associated electronics was developed by the CEA/DSM/Irfu in collaboration with DESY. The design, the fabrication, and the beam test of this monitor are detailed within this paper. This BPM is designed to be inserted in a cryomodule, work at cryogenic temperature in a clean environment. It has achieved a resolution better than 10μm and has the possibility to perform bunch to bunch measurements for the x-ray free electron laser (X-FEL) and the International Linear Collider (ILC). Its other features are a small size of the rf cavity, a large aperture (78 mm), and an excellent linearity. A first prototype of a reentrant cavity BPM was installed in the free electron laser in Hamburg (FLASH), at Deutsches Elektronen-Synchrotron (DESY) and demonstrated its operation at cryogenic temperature inside a cryomodule. The second, installed, also, in the FLASH linac to be tested with beam, measured a resolution of approximately 4μm over a dynamic range ±5mm in single bunch.
NASA Technical Reports Server (NTRS)
Page, Norman A.; Tubbs, Eldred F.
1994-01-01
Retroreflectors made of concentric spherical optical elements developed for use in interferometric metrological systems. Used to provide reference point on structure to be aligned precisely in two or three dimensions by use of intersecting laser beams. Acceptance angle much larger than that of cat's-eye or corner-cube retroreflector: Simultaneously reflects laser beams separated by angles as large as 180 degrees.
3D holographic polymer photonic crystal for superprism application
NASA Astrophysics Data System (ADS)
Chen, Jiaqi; Jiang, Wei; Chen, Xiaonan; Wang, Li; Zhang, Sasa; Chen, Ray T.
2007-02-01
Photonic crystal based superprism offers a new way to design new optical components for beam steering and DWDM application. 3D photonic crystals are especially attractive as they could offer more control of the light beam based on the needs. A polygonal prism based holographic fabrication method has been demonstrated for a three-dimensional face-centered-cubic (FCC)-type submicron polymer photonic crystal using SU8 as the photo-sensitive material. Therefore antivibration equipment and complicated optical alignment system are not needed and the requirement for the coherence of the laser source is relaxed compared with the traditional holographic setup. By changing the top-cut prism structure, the polarization of the laser beam, the exposure and development conditions we can achieve different kinds of triclinic or orthorhombic photonic crystals on demand. Special fabrication treatments have been introduced to ensure the survivability of the fabricated large area (cm2) nano-structures. Scanning electron microscopy and diffraction results proved the good uniformity of the fabricated structures. With the proper design of the refraction prism we have achieved a partial bandgap for S+C band (1460-1565nm) in the [111] direction. The transmission and reflection spectra obtained by Fourier transform infrared spectroscopy (FTIR) are in good agreement with simulated band structure. The superprism effects around 1550nm wavelength for the fabricated 3D polymer photonic crystal have been theoretically calculated and such effects can be used for beam steering purpose.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cullinan, F. J.; Boogert, S. T.; Farabolini, W.
2015-11-19
The Compact Linear Collider (CLIC) requires beam position monitors (BPMs) with 50 nm spatial resolution for alignment of the beam line elements in the main linac and beam delivery system. Furthermore, the BPMs must be able to make multiple independent measurements within a single 156 ns long bunch train. A prototype cavity BPM for CLIC has been manufactured and tested on the probe beam line at the 3rd CLIC Test Facility (CTF3) at CERN. The transverse beam position is determined from the electromagnetic resonant modes excited by the beam in the two cavities of the pickup, the position cavity and the referencemore » cavity. The mode that is measured in each cavity resonates at 15 GHz and has a loaded quality factor that is below 200. Analytical expressions for the amplitude, phase and total energy of signals from long trains of bunches have been derived and the main conclusions are discussed. The results of the beam tests are presented. The variable gain of the receiver electronics has been characterized using beam excited signals and the form of the signals for different beam pulse lengths with the 2/3 ns bunch spacing has been observed. The sensitivity of the reference cavity signal to charge and the horizontal position signal to beam offset have been measured and are compared with theoretical predictions based on laboratory measurements of the BPM pickup and the form of the resonant cavity modes as determined by numerical simulation. Lastly, the BPM was calibrated so that the beam position jitter at the BPM location could be measured. It is expected that the beam jitter scales linearly with the beam size and so the results are compared to predicted values for the latter.« less
NASA Astrophysics Data System (ADS)
Cullinan, F. J.; Boogert, S. T.; Farabolini, W.; Lefevre, T.; Lunin, A.; Lyapin, A.; Søby, L.; Towler, J.; Wendt, M.
2015-11-01
The Compact Linear Collider (CLIC) requires beam position monitors (BPMs) with 50 nm spatial resolution for alignment of the beam line elements in the main linac and beam delivery system. Furthermore, the BPMs must be able to make multiple independent measurements within a single 156 ns long bunch train. A prototype cavity BPM for CLIC has been manufactured and tested on the probe beam line at the 3rd CLIC Test Facility (CTF3) at CERN. The transverse beam position is determined from the electromagnetic resonant modes excited by the beam in the two cavities of the pickup, the position cavity and the reference cavity. The mode that is measured in each cavity resonates at 15 GHz and has a loaded quality factor that is below 200. Analytical expressions for the amplitude, phase and total energy of signals from long trains of bunches have been derived and the main conclusions are discussed. The results of the beam tests are presented. The variable gain of the receiver electronics has been characterized using beam excited signals and the form of the signals for different beam pulse lengths with the 2 /3 ns bunch spacing has been observed. The sensitivity of the reference cavity signal to charge and the horizontal position signal to beam offset have been measured and are compared with theoretical predictions based on laboratory measurements of the BPM pickup and the form of the resonant cavity modes as determined by numerical simulation. Finally, the BPM was calibrated so that the beam position jitter at the BPM location could be measured. It is expected that the beam jitter scales linearly with the beam size and so the results are compared to predicted values for the latter.
Near-field optical model for directed energy-propelled spacecrafts
NASA Astrophysics Data System (ADS)
Sucich, Amber; Snyder, Tomas; Hughes, Gary B.; Srinivasan, Prashant; Lubin, Philip; Zhang, Qicheng; Cohen, Alexander; Madajian, Jonathan; Brashears, Travis; Rupert, Nic
2017-09-01
Directed energy is envisioned to drive wafer-scale spacecraft to relativistic speeds. Spacecraft propulsion is provided by a large array of lasers, either in Earth orbit or stationed on the ground. The directed-energy beam is focused on the spacecraft sail, and momentum from photons in the laser beam is transferred to the spacecraft as the beam reflects off of the sail. In order for the beam to be concentrated on the spacecraft, precise phase control of all the elements across the laser array will be required. Any phase misalignments within the array will give rise to pointing fluctuations and flux asymmetry in the beam, necessitating creative approaches to spacecraft stability and beam following. In order to simulate spacecraft acceleration using an array of phase-locked lasers, a near field intensity model of the laser array is required. This paper describes a light propagation model that can be used to calculate intensity patterns for the near-field diffraction of a phased array. The model is based on the combination of complex frequencies from an array of emitters as the beams from each emitter strike a target surface. Ray-tracing geometry is used to determine the distance from each point on an emitter optical surface to each point on the target surface, and the distance is used to determine the phase contribution. Simulations are presented that explore the effects of fixed and time-varying phase mis-alignments on beam pointing, beam intensity and focusing characteristics.
NASA Technical Reports Server (NTRS)
Rhodes, David B.; Franke, John M.; Jones, Stephen B.; Leighty, Bradley D.
1992-01-01
Simple light-meter circuit used to position knife edge of schlieren optical system to block exactly half light. Enables operator to check quickly position of knife edge between tunnel runs to ascertain whether or not in alignment. Permanent measuring system made part of each schlieren system. If placed in unused area of image plane, or in monitoring beam from mirror knife edge, provides real-time assessment of alignment of schlieren system.
Motorized Beam Alignment of a Commercial X-ray Diffractometer
NASA Technical Reports Server (NTRS)
Van Zandt, Noah R.; Myers, James F.; Rogers, Richard B
2013-01-01
X-ray diffraction (XRD) is a powerful analysis method that allows researchers to noninvasively probe the crystalline structure of a material. This includes the ability to determine the crystalline phases present, quantify surface residual stresses, and measure the distribution of crystallographic orientations. The Structures and Materials Division at the NASA Glenn Research Center (GRC) heavily uses the on-site XRD lab to characterize advanced metal alloys, ceramics, and polymers. One of the x-ray diffractometers in the XRD lab (Bruker D8 Discover) uses three different x-ray tubes (Cu, Cr, and Mn) for optimal performance over numerous material types and various experimental techniques. This requires that the tubes be switched out and aligned between experiments. This alignment maximizes the x-ray tube s output through an iterative process involving four set screws. However, the output of the x-ray tube cannot be monitored during the adjustment process due to standard radiation safety engineering controls that prevent exposure to the x-ray beam when the diffractometer doors are open. Therefore, the adjustment process is a very tedious series of blind adjustments, each followed by measurement of the output beam using a PIN diode after the enclosure doors are shut. This process can take up to 4 hr to perform. This technical memorandum documents an in-house project to motorize this alignment process. Unlike a human, motors are not harmed by x-ray radiation of the energy range used in this instrument. Therefore, using motors to adjust the set screws will allow the researcher to monitor the x-ray tube s output while making interactive adjustments from outside the diffractometer. The motorized alignment system consists of four motors, a motor controller, and a hand-held user interface module. Our goal was to reduce the alignment time to less than 30 min. The time available was the 10-week span of the Lewis' Educational and Research Collaborative Internship Project (LERCIP) summer internship program and the budget goal was $1200. In this report, we will describe our motorization design and discuss the results of its implementation.
NASA Astrophysics Data System (ADS)
Wang, Surui; Rogachev, A. A.; Yarmolenko, M. A.; Rogachev, A. V.; Xiaohong, Jiang; Gaur, M. S.; Luchnikov, P. A.; Galtseva, O. V.; Chizhik, S. A.
2018-01-01
Highly ordered conductive polyaniline (PANI) coatings containing gold nanoparticles were prepared by low-energy electron beam deposition method, with emeraldine base and chloroauric acid used as target materials. The molecular and chemical structure of the layers was studied by Fourier transform infrared, Raman, UV-vis and X-ray photoelectron spectroscopy. The morphology of the coatings was investigated by atomic force and transmission electron microscopy. Conductive properties were obtained by impedance spectroscopy method and scanning spreading resistance microscopy mode at the micro- and nanoscale. It was found that the emeraldine base layers formed from the products of electron-beam dispersion have extended, non-conductive polymer chains with partially reduced structure, with the ratio of imine and amine groups equal to 0.54. In case of electron-beam dispersion of the emeraldine base and chloroauric acid, a protoemeraldine structure is formed with conductivity 0.1 S/cm. The doping of this structure was carried out due to hydrochloric acid vapor and gold nanoparticles formed by decomposition of chloroauric acid, which have a narrow size distribution, with the most probable diameter about 40 nm. These gold nanoparticles improve the conductivity of the thin layers of PANI + Au composite, promoting intra- and intermolecular charge transfer of the PANI macromolecules aligned along the coating surface both at direct and alternating voltage. The proposed deposition method of highly oriented, conductive nanocomposite PANI-based coatings may be used in the direct formation of functional layers on conductive and non-conductive substrates.
Method and apparatus for charged particle propagation
Hershcovitch, A.
1996-11-26
A method and apparatus are provided for propagating charged particles from a vacuum to a higher pressure region. A generator includes an evacuated chamber having a gun for discharging a beam of charged particles such as an electron beam or ion beam. The beam is discharged through a beam exit in the chamber into a higher pressure region. A plasma interface is disposed at the beam exit and includes a plasma channel for bounding a plasma maintainable between a cathode and an anode disposed at opposite ends thereof. The plasma channel is coaxially aligned with the beam exit for propagating the beam from the chamber, through the plasma, and into the higher pressure region. The plasma is effective for pumping down the beam exit for preventing pressure increase in the chamber and provides magnetic focusing of the beam discharged into the higher pressure region 24. 7 figs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Egedal, J.; Le, Ari; Daughton, William
Fully kinetic simulations of asymmetric magnetic reconnection reveal the presence of magnetic-field-aligned beams of electrons flowing toward the topological magnetic x line. Within the ~ 6d e electron-diffusion region, the beams become oblique to the local magnetic field, providing a unique signature of the electron-diffusion region where the electron frozen-in law is broken. These numerical predictions are confirmed by in situ Magnetospheric Multiscale spacecraft observations during asymmetric reconnection at Earth’s dayside magnetopause.
Radiation collimator and systems incorporating same
Norman, Daren R [Idaho Falls, ID; Yoon, Woo Y [Idaho Falls, ID; Jones, James L [Idaho Falls, ID; Haskell, Kevin J [Idaho Falls, ID; Bennett, Brion D [Idaho Falls, ID; Tschaggeny, Charles W [Woods Cross, UT; Jones, Warren F [Idaho Falls, ID
2011-09-13
A collimator including a housing having disposed therein a shield element surrounding a converter core in which a photon beam is generated from electrons emanating from a linear accelerator. A beam channeler longitudinally adjacent the shield element has a beam aperture therethrough coaxially aligned with, and of the same diameter as, an exit bore of the converter core. A larger entry bore in the converter core is coaxial with, and longitudinally separated from, the exit bore thereof. Systems incorporating the collimator are also disclosed.
Egedal, J.; Le, Ari; Daughton, William; ...
2018-01-29
Fully kinetic simulations of asymmetric magnetic reconnection reveal the presence of magnetic-field-aligned beams of electrons flowing toward the topological magnetic x line. Within the ~ 6d e electron-diffusion region, the beams become oblique to the local magnetic field, providing a unique signature of the electron-diffusion region where the electron frozen-in law is broken. These numerical predictions are confirmed by in situ Magnetospheric Multiscale spacecraft observations during asymmetric reconnection at Earth’s dayside magnetopause.
Experimental cancellation of aberrations in intensity correlation in classical optics
NASA Astrophysics Data System (ADS)
Jesus-Silva, A. J.; Silva, Juarez G.; Monken, C. H.; Fonseca, E. J. S.
2018-01-01
We study the classical correlation function of spatially incoherent beams with a phase aberration in the beam path. On the basis of our experimental measurements and in the optical coherence theory, we show that the effects of phase disturbances, independently of their kind and without need of coordinate inversion, can be canceled out if the same phase is aligned in the signal and reference beam path. These results can be useful for imaging and microscopy through random media.
Direct measurement of clinical mammographic x-ray spectra using a CdTe spectrometer.
Santos, Josilene C; Tomal, Alessandra; Furquim, Tânia A; Fausto, Agnes M F; Nogueira, Maria S; Costa, Paulo R
2017-07-01
To introduce and evaluate a method developed for the direct measurement of mammographic x-ray spectra using a CdTe spectrometer. The assembly of a positioning system and the design of a simple and customized alignment device for this application is described. A positioning system was developed to easily and accurately locate the CdTe detector in the x-ray beam. Additionally, an alignment device to line up the detector with the central axis of the radiation beam was designed. Direct x-ray spectra measurements were performed in two different clinical mammography units and the measured x-ray spectra were compared with computer-generated spectra. In addition, the spectrometer misalignment effect was evaluated by comparing the measured spectra when this device is aligned relatively to when it is misaligned. The positioning and alignment of the spectrometer have allowed the measurements of direct mammographic x-ray spectra in agreement with computer-generated spectra. The most accurate x-ray spectral shape, related with the minimal HVL value, and high photon fluence for measured spectra was found with the spectrometer aligned according to the proposed method. The HVL values derived from both simulated and measured x-ray spectra differ at most 1.3 and 4.5% for two mammography devices evaluated in this study. The experimental method developed in this work allows simple positioning and alignment of a spectrometer for x-ray spectra measurements given the geometrical constraints and maintenance of the original configurations of mammography machines. © 2017 American Association of Physicists in Medicine.
Automated interferometric alignment system for paraboloidal mirrors
Maxey, L. Curtis
1993-01-01
A method is described for a systematic method of interpreting interference fringes obtained by using a corner cube retroreflector as an alignment aid when aigning a paraboloid to a spherical wavefront. This is applicable to any general case where such alignment is required, but is specifically applicable in the case of aligning an autocollimating test using a diverging beam wavefront. In addition, the method provides information which can be systematically interpreted such that independent information about pitch, yaw and focus errors can be obtained. Thus, the system lends itself readily to automation. Finally, although the method is developed specifically for paraboloids, it can be seen to be applicable to a variety of other aspheric optics when applied in combination with a wavefront corrector that produces a wavefront which, when reflected from the correctly aligned aspheric surface will produce a collimated wavefront like that obtained from the paraboloid when it is correctly aligned to a spherical wavefront.
Lee, J; Rovira, P I; An, I; Collins, R W
2001-08-01
Biplate compensators made from MgF2 are being used increasingly in rotating-element single-channel and multichannel ellipsometers. For the measurement of accurate ellipsometric spectra, the compensator must be carefully (i) aligned internally to ensure that the fast axes of the two plates are perpendicular and (ii) calibrated to determine the phase retardance delta versus photon energy E. We present alignment and calibration procedures for multichannel ellipsometer configurations with special attention directed to the precision, accuracy, and reproducibility in the determination of delta (E). Run-to-run variations in external compensator alignment, i.e., alignment with respect to the incident beam, can lead to irreproducibilities in delta of approximately 0.2 degrees . Errors in the ellipsometric measurement of a sample can be minimized by calibrating with an external compensator alignment that matches as closely as possible that used in the measurement.
Wide steering angle microscanner based on curved surface
NASA Astrophysics Data System (ADS)
Sabry, Yasser; Khalil, Diaa; Saadany, Bassam; Bourouina, Tarik
2013-03-01
Intensive industrial and academic research is oriented towards the design and fabrication of optical beam steering systems based on MEMS technology. In most of these systems, the scanning is achieved by rotating a flat micromirror around a central axis in which the main challenge is achieving a wide mirror rotation angle. In this work, a novel method of optical beam scanning based on reflection from a curved surface is presented. The scanning occurs when the optical axis of the curved surface is displaced with respect to the optical axis of the incident beam. To overcome the possible deformation of the spot with the scanning angle, the curved surface is designed with a specific aspherical profile. Moreover, the scanning exhibits a more linearized scanning angle-displacement relation than the conventional spherical profile. The presented scanner is fabricated using DRIE technology on an SOI wafer. The curved surface (reflector) is metalized and attached to a comb-drive actuator fabricated in the same lithography step. A single-mode fiber, behaving as a Gaussian beam source, is positioned on the substrate facing the mirror. The reflected optical beam angle and spotsize in the far field is recorded versus the relative shift between the fiber and the curved mirror. The spot size is plotted versus the scanning angle and a scanning spot size uniformity of about +/-10% is obtained for optical deflection angles up to 100 degrees. As the optical beam is propagating parallel to the wafer substrate, a completely integrated laser scanner can be achieved with filters and actuators self-aligned on the same chip that allows low cost and mass production of this important product.
Boundary layer polarization and voltage in the 14 MLT region
NASA Astrophysics Data System (ADS)
Lundin, R.; Yamauchi, M.; Woch, J.; Marklund, G.
1995-05-01
Viking midlatitude observations of ions and electrons in the postnoon auroral region show that field-aligned acceleration of electrons and ions with energies up to a few kiloelectron volts takes place. The characteristics of the upgoing ion beams and the local transverse electric field observed by Viking indicate that parallel ion acceleration is primarily due to a quasi-electrostatic field-aligned acceleration process below Viking altitudes, i.e., below 10,000-13,500 km. A good correlation is found between the maximum upgoing ion beam energy and the depth of the local potential well determined by the Viking electric field experiment within dayside 'ion inverted Vs.' The total transverse potential throughout the entire region near the ion inverted Vs. is generally much higher than the field-aligned potential and may reach well above 10 kV. However, the detailed mapping of the transverse potential out to the boundary layer, a fundamental issue which remains controversial, was not attempted here. An important finding in this study is the strong correlation between the maximum up going ion beam energy of dayside ion inverted Vs and the solar wind velocity. This suggests a direct coupling of the solar wind plasma dynamo/voltage generator to the region of field-aligned particle acceleration. The fact that the center of dayside ion inverted Vs coincide with convection reversals/flow stagnation and upward Birkeland currents on what appears to be closed field lines (Woch et al., 1993), suggests that field-aligned potential structures connect to the inner part of an MHD dyanmo in the low-latitude boundary layer. Thus the Viking observations substantiate the idea of a solar wind induced boundary layer polarization where negatively charged perturbations in the postnoon sector persistently develops along the magnetic field lines, establishing accelerating potential drops along the geomagnetic field lines in the 0.5-10 kV range.
NASA Technical Reports Server (NTRS)
Aston, Graeme (Inventor)
1984-01-01
A system is described that combines geometrical and electrostatic focusing to provide high ion extraction efficiency and good focusing of an accelerated ion beam. The apparatus includes a pair of curved extraction grids (16, 18) with multiple pairs of aligned holes positioned to direct a group of beamlets (20) along converging paths. The extraction grids are closely spaced and maintained at a moderate potential to efficiently extract beamlets of ions and allow them to combine into a single beam (14). An accelerator electrode device (22) downstream from the extraction grids, is at a much lower potential than the grids to accelerate the combined beam.
System for maintaining the alignment of mandrels in filament winding operations
Robinson, S.C.; Dodge, W.G.; Pollard, R.E.
1983-10-12
The present invention is directed to a system for sensing and correcting the alignment of a mandrel being wound with filamentary material with respect to the filamentary material winding mechanism. A positioned reference pin attached to the mandrel is positioned in a beam of collimated light emanating from a laser so as to bisect the light beam and create a shadow therebetween. A pair of photocells are positioned to receive the bisected light beam with the shadow uniformly located between the photocells when the pin is in a selected position. The mandrel is supported in the selected position for the winding of a filamentary material by a position adjustable roller mechanism which is coupled by a screw drive to a reversible motor. Changes in the pin position such as caused by winding growth are sensed by the photocells to provide the displacement of the roller mechanism in the direction necessary to return the mandrel to the selected position.
System for maintaining the alignment of mandrels in filament winding operations
Robinson, Samuel C.; Dodge, William G.; Pollard, Roy E.
1984-01-01
The present invention is directed to a system for sensing and correcting the alignment of a mandrel being wound with filamentary material with respect to the filamentary material winding mechanism. A positioned reference pin attached to the mandrel is positioned in a beam of collimated light emanating from a laser so as to bisect the light beam and create a shadow therebetween. A pair of photocells are positioned to receive the bisected light beam with the shadow uniformly located between the photocells when the pin is in a selected position. The mandrel is supported in the selected position for the winding of a filamentary material by a position adjustable roller mechanism which is coupled by a screw drive to a reversible motor. Changes in the pin position such as caused by winding growth are sensed by the photocells to provide the displacement of the roller mechanism in the direction necessary to return the mandrel to the selected position.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bieniosek, F.M.; Anders, A.; Barnard, J.J.
This effort contains two main components: The new induction-bunching module is expected to deliver higher fluence in the bunched beam, and the new target positioner will enable a significantly enhanced target physics repetition rate. The velocity ramp that bunches the K{sup +} beam in the neutralized drift compression section is established with a bipolar voltage ramp applied to an acceleration gap. An induction acceleration module creates this voltage waveform. The new bunching module (IBM) specially built for NDCX has approximately twice the capability (volt-seconds) as our original IBM. We reported on the beam line design for the best use ofmore » the bunching module in our FY08 Q2 report. Based on simulations and theoretical work, we chose to extend the drift compression section and use the additional volt-seconds to extend the pulse duration and keep the peak voltage swing (and velocity excursions) similar to the present module. Simulations showed that this approach, which extends the drift section, to be advantageous because it limits the chromatic aberrations in the beam spot on target. To this end, colleagues at PPPL have fabricated the meter-long extension to the ferroelectric plasma source and it was installed on the beam line with the new IBM in January 2009. Simulation results suggest a factor of two increase in energy deposition from the bunched beam. In the first WDM target run (August-November 2008) the target handling setup required opening the vacuum system to manually replace the target after each shot (which destroys the target). Because of the requirement for careful alignment of each individual target, the target shot repetition rate was no greater than 1 shot per day. Initial results of this run are reported in our FY08 4th Quarter Milestone Report. Based on the valuable experience gained in the initial run, we have designed and installed an improved target alignment and positioning system with the capability to reposition targets remotely. This capability allows us to significantly increase our shot repetition rate, and to take greater advantage of the pinhole/cone arrangement we have developed to localize the beam at final focus. In addition we have improved the capability of the optical diagnostic systems, and we have installed a new beam current transformer downstream of the target to monitor beam current transmitted through the target during an experiment. These improvements will allow us to better exploit the inherent capability of the NDCX facility for high repetition rate and thus to provide more detailed experimental data to assess WDM physics models of target behavior. This milestone has been met by demonstrating highly compressed beams with the new bunching module, which are neutralized in the longer drift compression section by the new ferro-electric plasma sources. The peak uncompressed beam intensity ({approx}600 kW/cm{sup 2}) is higher than in previous measurements, and the bunched beam current profiles are {approx}2ns. We have also demonstrated a large increase in the experimental data acquisition rate for target heating experiments. In the first test of the new remote-controlled target positioning system, we completed three successful target physics shots in less than two hours. Further improvements are expected.« less
Study on the position accuracy of a mechanical alignment system
NASA Astrophysics Data System (ADS)
Cai, Yimin
In this thesis, we investigated the precision level and established the baseline achieved by a mechanical alignment system using datums and reference surfaces. The factors which affect the accuracy of mechanical alignment system were studied and methodology was developed to suppress these factors so as to reach its full potential precision. In order to characterize the mechanical alignment system quantitatively, a new optical position monitoring system by using quadrant detectors has been developed in this thesis, it can monitor multi-dimensional degrees of mechanical workpieces in real time with high precision. We studied the noise factors inside the system and optimized the optical system. Based on the fact that one of the major limiting noise factors is the shifting of the laser beam, a noise cancellation technique has been developed successfully to suppress this noise, the feasibility of an ultra high resolution (<20 A) for displacement monitoring has been demonstrated. Using the optical position monitoring system, repeatability experiment of the mechanical alignment system has been conducted on different kinds of samples including steel, aluminum, glass and plastics with the same size 100mm x 130mm. The alignment accuracy was studied quantitatively rather than qualitatively before. In a controlled environment, the alignment precision can be improved 5 folds by securing the datum without other means of help. The alignment accuracy of an aluminum workpiece having reference surface by milling is about 3 times better than by shearing. Also we have found that sample material can have fairly significant effect on the alignment precision of the system. Contamination trapped between the datum and reference surfaces in mechanical alignment system can cause errors of registration or reduce the level of manufacturing precision. In the thesis, artificial and natural dust particles were used to simulate the real situations and their effects on system precision have been investigated. In this experiment, we discovered two effective cleaning processes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poli, Francesca M.; Fredrickson, Eric; Henderson, Mark A.
Time-dependent simulations are used to evolve plasma discharges in combination with a Modified Rutherford equation (MRE) for calculation of Neoclassical Tearing Mode (NTM) stability in response to Electron Cyclotron (EC) feedback control in ITER. The main application of this integrated approach is to support the development of control algorithms by analyzing the plasma response with physics-based models and to assess how uncertainties in the detection of the magnetic island and in the EC alignment affect the ability of the ITER EC system to fulfill its purpose. These simulations indicate that it is critical to detect the island as soon asmore » possible, before its size exceeds the EC deposition width, and that maintaining alignment with the rational surface within half of the EC deposition width is needed for stabilization and suppression of the modes, especially in the case of modes with helicity (2,1). A broadening of the deposition profile, for example due to wave scattering by turbulence fluctuations or not well aligned beams, could even be favorable in the case of the (2,1)-NTM, by relaxing an over-focussing of the EC beam and improving the stabilization at the mode onset. Pre-emptive control reduces the power needed for suppression and stabilization in the ITER baseline discharge to a maximum of 5 MW, which should be reserved and available to the Upper Launcher during the entire flattop phase. By assuming continuous triggering of NTMs, with pre-emptive control ITER would be still able to demonstrate a fusion gain of Q=10.« less
NASA Astrophysics Data System (ADS)
Poli, F. M.; Fredrickson, E. D.; Henderson, M. A.; Kim, S.-H.; Bertelli, N.; Poli, E.; Farina, D.; Figini, L.
2018-01-01
Time-dependent simulations are used to evolve plasma discharges in combination with a modified Rutherford equation for calculation of neoclassical tearing mode (NTM) stability in response to electron cyclotron (EC) feedback control in ITER. The main application of this integrated approach is to support the development of control algorithms by analyzing the plasma response with physics-based models and to assess how uncertainties in the detection of the magnetic island and in the EC alignment affect the ability of the ITER EC system to fulfill its purpose. Simulations indicate that it is critical to detect the island as soon as possible, before its size exceeds the EC deposition width, and that maintaining alignment with the rational surface within half of the EC deposition width is needed for stabilization and suppression of the modes, especially in the case of modes with helicity (2, 1) . A broadening of the deposition profile, for example due to wave scattering by turbulence fluctuations or not well aligned beams, could even be favorable in the case of the (2, 1)- NTM, by relaxing an over-focussing of the EC beam and improving the stabilization at the mode onset. Pre-emptive control reduces the power needed for suppression and stabilization in the ITER baseline discharge to a maximum of 5 MW, which should be reserved and available to the upper launcher during the entire flattop phase. Assuming continuous triggering of NTMs, with pre-emptive control ITER would be still able to demonstrate a fusion gain of Q=10 .
Poli, Francesca M.; Fredrickson, Eric; Henderson, Mark A.; ...
2017-09-21
Time-dependent simulations are used to evolve plasma discharges in combination with a Modified Rutherford equation (MRE) for calculation of Neoclassical Tearing Mode (NTM) stability in response to Electron Cyclotron (EC) feedback control in ITER. The main application of this integrated approach is to support the development of control algorithms by analyzing the plasma response with physics-based models and to assess how uncertainties in the detection of the magnetic island and in the EC alignment affect the ability of the ITER EC system to fulfill its purpose. These simulations indicate that it is critical to detect the island as soon asmore » possible, before its size exceeds the EC deposition width, and that maintaining alignment with the rational surface within half of the EC deposition width is needed for stabilization and suppression of the modes, especially in the case of modes with helicity (2,1). A broadening of the deposition profile, for example due to wave scattering by turbulence fluctuations or not well aligned beams, could even be favorable in the case of the (2,1)-NTM, by relaxing an over-focussing of the EC beam and improving the stabilization at the mode onset. Pre-emptive control reduces the power needed for suppression and stabilization in the ITER baseline discharge to a maximum of 5 MW, which should be reserved and available to the Upper Launcher during the entire flattop phase. By assuming continuous triggering of NTMs, with pre-emptive control ITER would be still able to demonstrate a fusion gain of Q=10.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jan, Nuzhat; Balik, Salim; Hugo, Geoffrey D.
Purpose: To analyze primary tumor (PT) and lymph node (LN) position changes relative to each other and relative to anatomic landmarks during conventionally fractionated radiation therapy for patients with locally advanced lung cancer. Methods and Materials: In 12 patients with locally advanced non-small cell lung cancer PT, LN, carina, and 1 thoracic vertebra were manually contoured on weekly 4-dimensional fan-beam CT scans. Systematic and random interfraction displacements of all contoured structures were identified in the 3 cardinal directions, and resulting setup margins were calculated. Time trends and the effect of volume changes on displacements were analyzed. Results: Three-dimensional displacement vectorsmore » and systematic/random interfraction displacements were smaller for carina than for vertebra both for PT and LN. For PT, mean (SD) 3-dimensional displacement vectors with carina-based alignment were 7 (4) mm versus 9 (5) mm with bony anatomy (P<.0001). For LN, smaller displacements were found with carina- (5 [3] mm, P<.0001) and vertebra-based (6 [3] mm, P=.002) alignment compared with using PT for setup (8 [5] mm). Primary tumor and LN displacements relative to bone and carina were independent (P>.05). Displacements between PT and bone (P=.04) and between PT and LN (P=.01) were significantly correlated with PT volume regression. Displacements between LN and carina were correlated with LN volume change (P=.03). Conclusions: Carina-based setup results in a more reproducible PT and LN alignment than bony anatomy setup. Considering the independence of PT and LN displacement and the impact of volume regression on displacements over time, repeated CT imaging even with PT-based alignment is recommended in locally advanced disease.« less
Kasner, William H.; Racki, Daniel J.; Swenson, Clark E.
1984-01-01
A plurality of pivotal reflectors direct a high-power laser beam onto a workpiece, and a rotatable reflector is movable to a position wherein it intercepts the beam and deflects a major portion thereof away from its normal path, the remainder of the beam passing to the pivotal reflectors through an aperture in the rotating reflector. A plurality of targets are movable to positions intercepting the path of light traveling to the pivotal reflectors, and a preliminary adjustment of the latter is made by use of a low-power laser beam reflected from the rotating reflector, after which the same targets are used to make a final adjustment of the pivotal reflectors with the portion of the high-power laser beam passed through the rotating reflector.
Sidelooking laser altimeter for a flight simulator
NASA Technical Reports Server (NTRS)
Webster, L. D. (Inventor)
1983-01-01
An improved laser altimeter for a flight simulator which allows measurement of the height of the simulator probe above the terrain directly below the probe tip is described. A laser beam is directed from the probe at an angle theta to the horizontal to produce a beam spot on the terrain. The angle theta that the laser beam makes with the horizontal is varied so as to bring the beam spot into coincidence with a plumb line coaxial with the longitudinal axis of the probe. A television altimeter camera observes the beam spot and has a raster line aligned with the plumb line. Spot detector circuit coupled to the output of the TV camera monitors the position of the beam spot relative to the plumb line.
Control, Filtering and Prediction for Phased Arrays in Directed Energy Systems
2016-04-30
adaptive optics. 15. SUBJECT TERMS control, filtering, prediction, system identification, adaptive optics, laser beam pointing, target tracking, phase... laser beam control; furthermore, wavefront sensors are plagued by the difficulty of maintaining the required alignment and focusing in dynamic mission...developed new methods for filtering, prediction and system identification in adaptive optics for high energy laser systems including phased arrays. The
Dynamics of submicron aerosol droplets in a robust optical trap formed by multiple Bessel beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thanopulos, Ioannis; Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, Athens 11635; Luckhaus, David
In this paper, we model the three-dimensional escape dynamics of single submicron-sized aerosol droplets in optical multiple Bessel beam traps. Trapping in counter-propagating Bessel beams (CPBBs) is compared with a newly proposed quadruple Bessel beam (QBB) trap, which consists of two perpendicularly arranged CPBB traps. Calculations are performed for perfectly and imperfectly aligned traps. Mie-theory and finite-difference time-domain methods are used to calculate the optical forces. The droplet escape kinetics are obtained from the solution of the Langevin equation using a Verlet algorithm. Provided the traps are perfectly aligned, the calculations indicate very long lifetimes for droplets trapped either inmore » the CPBB or in the QBB trap. However, minor misalignments that are hard to control experimentally already severely diminish the stability of the CPBB trap. By contrast, such minor misalignments hardly affect the extended droplet lifetimes in a QBB trap. The QBB trap is found to be a stable, robust optical trap, which should enable the experimental investigation of submicron droplets with radii down to 100 nm. Optical binding between two droplets and its potential role in preventing coagulation when loading a CPBB trap is briefly addressed.« less
Generation of filamentary structures by beam-plasma interaction
NASA Astrophysics Data System (ADS)
Wang, X. Y.; Lin, Y.
2006-05-01
The previous simulations by Wang and Lin [Phys. Plasmas. 10, 3528, (2003)] showed that filaments, frequently observed in space plasmas, can form via the interaction between an ion beam and a background plasma. In this study, the physical mechanism for the generation of the filaments is investigated by a two-dimensional hybrid simulation, in which a field-aligned ion beam with relative beam density nb=0.1 and beam velocity Vb=10VA is initiated in a uniform plasma. Right-hand nonresonant ion beam modes, consistent with the linear theory, are found to be dominant in the linear stage of the beam-plasma interaction. In the later nonlinear stage, the nonresonant modes decay and the resonant modes grow through a nonlinear wave coupling. The interaction among the resonant modes leads to the formation of filamentary structures, which are the field-aligned structures (k⊥B) of magnetic field B, density, and temperature in the final stage. The filaments are nonlinearly generated in a prey-predator fashion by the parallel and oblique resonant ion beam modes, which meanwhile evolve into two types of shear Alfvén modes, with one mainly propagating along the background field B0 and the other obliquely propagating. The filamentary structures are found to be phase standing in the plasma frame, but their amplitude oscillates with time. In the dominant filament mode, fluctuations in the background ion density, background ion temperature, and beam density are in phase with the fluctuations in B, whereas the significantly enhanced beam temperature is antiphase with B. It is found that the filaments are produced by the interaction of at least two ion beam modes with comparable amplitudes, not by only one single mode, thus their generation mechanism is different from other mechanisms such as the stimulated excitation by the decay of an Alfvén wave.
RHIC BPM SYSTEM MODIFICATIONS AND PERFORMANCE.
DOE Office of Scientific and Technical Information (OSTI.GOV)
SATOGATA, T.; CALAGA, R.; CAMERON, P.
2005-05-16
The RHIC beam position monitor (BPM) system provides independent average orbit and turn-by-turn (TBT) position measurements. In each ring, there are 162 measurement locations per plane (horizontal and vertical) for a total of 648 BPM planes in the RHIC machine. During 2003 and 2004 shutdowns, BPM processing electronics were moved from the RHIC tunnel to controls alcoves to reduce radiation impact, and the analog signal paths of several dozen modules were modified to eliminate gain-switching relays and improve signal stability. This paper presents results of improved system performance, including stability for interaction region beam-based alignment efforts. We also summarize performancemore » of recently-added DSP profile scan capability, and improved million-turn TBT acquisition channels for 10 Hz triplet vibration, nonlinear dynamics, and echo studies.« less
NASA Astrophysics Data System (ADS)
Kaganskiy, Arsenty; Fischbach, Sarah; Strittmatter, André; Rodt, Sven; Heindel, Tobias; Reitzenstein, Stephan
2018-04-01
We report on the realization of scalable single-photon sources (SPSs) based on single site-controlled quantum dots (SCQDs) and deterministically fabricated microlenses. The fabrication process comprises the buried-stressor growth technique complemented with low-temperature in-situ electron-beam lithography for the integration of SCQDs into microlens structures with high yield and high alignment accuracy. The microlens-approach leads to a broadband enhancement of the photon-extraction efficiency of up to (21 ± 2)% and a high suppression of multi-photon events with g (2)(τ = 0) < 0.06 without background subtraction. The demonstrated combination of site-controlled growth of QDs and in-situ electron-beam lithography is relevant for arrays of efficient SPSs which, can be applied in photonic quantum circuits and advanced quantum computation schemes.
Irradiation setup at the U-120M cyclotron facility
NASA Astrophysics Data System (ADS)
Křížek, F.; Ferencei, J.; Matlocha, T.; Pospíšil, J.; Príbeli, P.; Raskina, V.; Isakov, A.; Štursa, J.; Vaňát, T.; Vysoká, K.
2018-06-01
This paper describes parameters of the proton beams provided by the U-120M cyclotron and the related irradiation setup at the open access irradiation facility at the Nuclear Physics Institute of the Czech Academy of Sciences. The facility is suitable for testing radiation hardness of various electronic components. The use of the setup is illustrated by a measurement of an error rate for errors caused by Single Event Transients in an SRAM-based Xilinx XC3S200 FPGA. This measurement provides an estimate of a possible occurrence of Single Event Transients. Data suggest that the variation of error rate of the Single Event Effects for different clock phase shifts is not significant enough to use clock phase alignment with the beam as a fault mitigation technique.
Development of a new in-air micro-PIXE set-up with in-vacuum charge measurements in Atomki
NASA Astrophysics Data System (ADS)
Török, Zs.; Huszánk, R.; Csedreki, L.; Dani, J.; Szoboszlai, Z.; Kertész, Zs.
2015-11-01
A new external microbeam set-up has recently been installed as the extension of the existing microprobe system at the Laboratory of Ion Beam Applications of Atomki, Debrecen, Hungary. The external beam set-up, based on the system of Oxford Microbeams (OM), is equipped with two X-ray detectors for PIXE analysis, a digital microscope, two alignment lasers and a precision XYZ stage for easy and reproducible positioning of the sample. Exit windows with different thicknesses and of different materials can be used according to the actual demands, currently silicon-nitride (Si3N4) film with 200 nm thickness is employed in our laboratory. The first application was demonstrated in the field of archaeometry, on Bronze Age hoards from Hungary.
Individually addressable vertically aligned carbon nanofiber-based electrochemical probes
NASA Astrophysics Data System (ADS)
Guillorn, M. A.; McKnight, T. E.; Melechko, A.; Merkulov, V. I.; Britt, P. F.; Austin, D. W.; Lowndes, D. H.; Simpson, M. L.
2002-03-01
In this paper we present the fabrication and initial testing results of high aspect ratio vertically aligned carbon nanofiber (VACNF)-based electrochemical probes. Electron beam lithography was used to define the catalytic growth sites of the VACNFs. Following catalyst deposition, VACNF were grown using a plasma enhanced chemical vapor deposition process. Photolithography was performed to realize interconnect structures. These probes were passivated with a thin layer of SiO2, which was then removed from the tips of the VACNF, rendering them electrochemically active. We have investigated the functionality of completed devices using cyclic voltammetry (CV) of ruthenium hexammine trichloride, a highly reversible, outer sphere redox system. The faradaic current obtained during CV potential sweeps shows clear oxidation and reduction peaks at magnitudes that correspond well with the geometry of these nanoscale electrochemical probes. Due to the size and the site-specific directed synthesis of the VACNFs, these probes are ideally suited for characterizing electrochemical phenomena with an unprecedented degree of spatial resolution.
Electron beam directed energy device and methods of using same
Retsky, Michael W.
2007-10-16
A method and apparatus is disclosed for an electron beam directed energy device. The device consists of an electron gun with one or more electron beams. The device includes one or more accelerating plates with holes aligned for beam passage. The plates may be flat or preferably shaped to direct each electron beam to exit the electron gun at a predetermined orientation. In one preferred application, the device is located in outer space with individual beams that are directed to focus at a distant target to be used to impact and destroy missiles. The aimings of the separate beams are designed to overcome Coulomb repulsion. A method is also presented for directing the beams to a target considering the variable terrestrial magnetic field. In another preferred application, the electron beam is directed into the ground to produce a subsurface x-ray source to locate and/or destroy buried or otherwise hidden objects including explosive devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
POZDEYEV,E.; BEN-ZVI, I.; CAMERON, P.
2007-06-25
The ERL Prototype project is currently under development at the Brookhaven National Laboratory. The ERL is expected to demonstrate energy recovery of high-intensity beams with a current of up to a few hundred milliamps, while preserving the emittance of bunches with a charge of a few nanocoulombs produced by a high-current SRF gun. To successfully accomplish this task the machine will include beam diagnostics that will be used for accurate characterization of the three dimensional beam phase space at the injection and recirculation energies, transverse and longitudinal beam matching, orbit alignment, beam current measurement, and machine protection. This paper outlinesmore » requirements on the ERL diagnostics and describes its setup and modes of operation.« less
Millimeter-Wave Localizers for Aircraft-to-Aircraft Approach Navigation
NASA Technical Reports Server (NTRS)
Tang, Adrian J.
2013-01-01
Aerial refueling technology for both manned and unmanned aircraft is critical for operations where extended aircraft flight time is required. Existing refueling assets are typically manned aircraft, which couple to a second aircraft through the use of a refueling boom. Alignment and mating of the two aircraft continues to rely on human control with use of high-resolution cameras. With the recent advances in unmanned aircraft, it would be highly advantageous to remove/reduce human control from the refueling process, simplifying the amount of remote mission management and enabling new operational scenarios. Existing aerial refueling uses a camera, making it non-autonomous and prone to human error. Existing commercial localizer technology has proven robust and reliable, but not suited for aircraft-to-aircraft approaches like in aerial refueling scenarios since the resolution is too coarse (approximately one meter). A localizer approach system for aircraft-to-aircraft docking can be constructed using the same modulation with a millimeterwave carrier to provide high resolution. One technology used to remotely align commercial aircraft on approach to a runway are ILS (instrument landing systems). ILS have been in service within the U.S. for almost 50 years. In a commercial ILS, two partially overlapping beams of UHF (109 to 126 MHz) are broadcast from an antenna array so that their overlapping region defines the centerline of the runway. This is called a localizer system and is responsible for horizontal alignment of the approach. One beam is modulated with a 150-Hz tone, while the other with a 90-Hz tone. Through comparison of the modulation depths of both tones, an autopilot system aligns the approaching aircraft with the runway centerline. A similar system called a glide-slope (GS) exists in the 320-to-330MHz band for vertical alignment of the approach. While this technology has been proven reliable for millions of commercial flights annually, its UHF nature limits its ability to operate beyond the 1-to-2-meter precisions associated with commercial runway width. A prototype ILS-type system operates at millimeter-wave frequencies to provide automatic and robust approach control for aerial refueling. The system allows for the coupling process to remain completely autonomous, as a boom operator is no longer required. Operating beyond 100 GHz provides enough resolution and a narrow enough beamwidth that an approach corridor of centimeter scales can be maintained. Two modules were used to accomplish this task. The first module is a localizer/glide-slope module that can be fitted on a refueling aircraft. This module provides the navigation beams for aligning the approaching aircraft. The second module is navigational receiver fitted onto the approaching aircraft to be re fueled that can detect the approach beams. Since unmanned aircraft have a limited payload size and limited electrical power, the receiver portion was implemented in CMOS (complementary metal oxide semiconductor) technology based on a super-regenerative receiver (SRR) architecture. The SRR achieves mW-level power consumption and chip sizes less than l mm2. While super-regenerative techniques have small bandwidths that limit use in communication systems, their advantages of high sensitivity, low complexity, and low power make them ideal in this situation where modulating tones of less than 1 kHz are used.
NASA Astrophysics Data System (ADS)
Rymer, A. M.; Mauk, B.; Carbary, J. F.; Kollmann, P.; Clark, G. B.; Mitchell, D. G.; Coates, A. J.
2016-12-01
Carbary et al., 2010 showed that the majority (> 70 %) of energetic electron distributions observed beyond 12 Rs (Rs = one Saturn radius 60330 km) have a bi-directional (smile) shaped pitch angle distribution, that is they have peaks along the magnetically field aligned directions at 0 and 180 degree pitch angle with a minima in between. These beams are likely a consequence of magnetosphere-ionosphere electric current coupling resulting in the low altitude acceleration of electrons away from the planet. Since the source of the electron radiation belt is not well understood at Saturn (or elsewhere) we are motivated to explore to what extent energetic field aligned beams can populate the inner magnetosphere and explain the radiation belt intensities there. Using Cassini electron data from the Cassini Plasma Spectrometer (CAPS) electron sensor (ELS) [Young et al., 2004] and the Magnetospheric Imaging Instrument (MIMI) Low-Energy Magnetospheric Measurement System (LEMMS) [Krimigis et al., 2004] we fit electron pitch angle distributions with a commonly used sin^k(pitch angle) and a hyperbolic cosine form developed by Mauk et al. 2007. To estimate the maximum flux that these particles could potentially provide to the inner magnetosphere we compute the phase space density of the populations assuming adiabatic transport to Saturn's inner magnetosphere and compare it with the measurements.
Bustamante, Carlos; Chemla, Yann R; Moffitt, Jeffrey R
2009-10-01
Optical traps or "optical tweezers" have become an indispensable tool in understanding fundamental biological processes. Using our design, a dual-trap optical tweezers with differential detection, we can detect length changes to a DNA molecule tethering the trapped beads of 1 bp. By forming two traps from the same laser and maximizing the common optical paths of the two trapping beams, we decouple the instrument from many sources of environmental and instrumental noise that typically limit spatial resolution. The performance of a high-resolution instrument--the formation of strong traps, the minimization of background signals from trap movements, or the mitigation of the axial coupling, for example--can be greatly improved through careful alignment. This procedure, which is described in this article, starts from the laser and advances through the instrument, component by component. Alignment is complicated by the fact that the trapping light is in the near infrared (NIR) spectrum. Standard infrared viewing cards are commonly used to locate the beam, but unfortunately, bleach quickly. As an alternative, we use an IR-viewing charge-coupled device (CCD) camera equipped with a C-mount telephoto lens and display its image on a monitor. By visualizing the scattered light on a pair of irises of identical height separated by >12 in., the beam direction can be set very accurately along a fixed axis.
Ohmic contacts to semiconducting diamond
NASA Astrophysics Data System (ADS)
Zeidler, James R.; Taylor, M. J.; Zeisse, Carl R.; Hewett, C. A.; Delahoussaye, Paul R.
1990-10-01
Work was carried out to improve the electron beam evaporation system in order to achieve better deposited films. The basic system is an ion pumped vacuum chamber, with a three-hearth, single-gun e-beam evaporator. Four improvements were made to the system. The system was thoroughly cleaned and new ion pump elements, an e-gun beam adjust unit, and a more accurate crystal monitor were installed. The system now has a base pressure of 3 X 10(exp -9) Torr, and can easily deposit high-melting-temperature metals such as Ta with an accurately controlled thickness. Improved shadow masks were also fabricated for better alignment and control of corner contacts for electrical transport measurements. Appendices include: A Thermally Activated Solid State Reaction Process for Fabricating Ohmic Contacts to Semiconducting Diamond; Tantalum Ohmic Contacts to Diamond by a Solid State Reaction Process; Metallization of Semiconducting Diamond: Mo, Mo/Au, and Mo/Ni/Au; Specific Contact Resistance Measurements of Ohmic Contracts to Diamond; and Electrical Activation of Boron Implanted into Diamond.
Hatayama, Masatoshi; Ichimaru, Satoshi; Ohcni, Tadayuki; Takahashi, Eiji J; Midorikawa, Katsumi; Oku, Satoshi
2016-06-27
An experimental demonstration of a wide-range narrowband multilayer mirror for selecting a single-order high-harmonic (HH) beam from multiple-order harmonics in the photon energy range between 40 eV and 70 eV was carried out. This extreme ultraviolet (XUV) mirror, based on a pair of Zr and Al0.7Si0.3 multilayers, has a reflectivity of 20-35% and contrast of more than 7 with respect to neighboring HHs at angles of incidence from 10 to 56.9 degrees, assuming HHs pumped at 1.55 eV. Thus, specific single-order harmonic beams can be arbitrarily selected from multiple-order harmonics in this photo energy range. In addition, the dispersion for input pulses of the order of 1 fs is negligible. This simple-to-align optical component is useful for the many various applications in physics, chemistry and biology that use ultrafast monochromatic HH beams.
NASA Technical Reports Server (NTRS)
Catell, C. A.; Mozer, F. S.; Roth, I.; Anderson, R. R.; Elphic, R. C.
1991-01-01
Quasi-monochromatic waves at about the hydrogen cyclotron frequency were observed as the ISEE 1 satellite traversed auroral field lines at radial distances of about 2.5-4.5 R(E) near midnight on June 19, 1981. Waves and both lower and higher frequencies were observed at higher altitudes, and possible electrostatic helium cyclotron and oxygen cyclotron waves occurred at lower altitudes. Upflowing hydrogen and oxygen beams and field-aligned currents occurred simultaneously. The features of the waves are most consistent with the current-driven mode. In addition, numerical studies of the linear dispersion relation, using parameters based on the observations, show that both the parallel and oblique two-stream modes and the ion-beam-driven modes were stable while oblique current-driven modes were unstable. The O(+) and H(+) distributions provide evidence for interactions with local electrostatic ion cyclotron waves and for the H(+)-O(+) two-stream instability at altitudes below the satellite.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilbur, Jeffrey D.; Gomez, Enrique D.; Ellsworth, Mark W.
A procedure for creating samples that can be repeatedly cycled between weakly aligned and strongly aligned states is described. Poly(styrene-b-isoprene) block copolymer samples were first shear-aligned and then cross-linked using a high energy electron beam. Samples with more than 1.0 cross-links per chain on average showed almost complete recovery of their initial alignment state even after 20 cycles of heating above the order–disorder transition temperature of the un-cross-linked block copolymer. Samples with 1.1 cross-links per chain, which showed over 90% loss of alignment on heating and almost 100% recovery of alignment on cooling, provided the best example of a reversiblemore » aligned-to-unaligned transition. Samples with lower cross-linking densities exhibited irreversible loss of alignment upon heating, while those with higher cross-linking densities exhibited less than 90% loss of alignment upon heating. Alignment was quantified by a technique that we call two color depolarized light scattering (TCDLS), an extension of the traditional depolarized light scattering experiment used to determine the state of order in block copolymers. Qualitative confirmation of our interpretation of TCDLS data was obtained by small-angle X-ray scattering and transmission electron microscopy.« less
The effect of the earth's and stray magnetic fields on mobile mass spectrometer systems.
Bell, Ryan J; Davey, Nicholas G; Martinsen, Morten; Short, R Timothy; Gill, Chris G; Krogh, Erik T
2015-02-01
Development of small, field-portable mass spectrometers has enabled a rapid growth of in-field measurements on mobile platforms. In such in-field measurements, unexpected signal variability has been observed by the authors in portable ion traps with internal electron ionization. The orientation of magnetic fields (such as the Earth's) relative to the ionization electron beam trajectory can significantly alter the electron flux into a quadrupole ion trap, resulting in significant changes in the instrumental sensitivity. Instrument simulations and experiments were performed relative to the earth's magnetic field to assess the importance of (1) nonpoint-source electron sources, (2) vertical versus horizontal electron beam orientation, and (3) secondary magnetic fields created by the instrument itself. Electron lens focus effects were explored by additional simulations, and were paralleled by experiments performed with a mass spectrometer mounted on a rotating platform. Additionally, magnetically permeable metals were used to shield (1) the entire instrument from the Earth's magnetic field, and (2) the electron beam from both the Earth's and instrument's magnetic fields. Both simulation and experimental results suggest the predominant influence on directionally dependent signal variability is the result of the summation of two magnetic vectors. As such, the most effective method for reducing this effect is the shielding of the electron beam from both magnetic vectors, thus improving electron beam alignment and removing any directional dependency. The improved ionizing electron beam alignment also allows for significant improvements in overall instrument sensitivity.
Liquid crystal devices based on photoalignment and photopatterning materials
NASA Astrophysics Data System (ADS)
Chigrinov, Vladimir
2014-02-01
Liquid crystal (LC) display and photonics devices based on photo-alignment and photo-patterning LC cells are developed. A fast switchable grating based on ferroelectric liquid crystals and orthogonal planar alignment by means of photo alignments. Both 1D and 2D gratings have been constructed. The proposed diffracting element provides fast response time of around 20 μs, contrast of 7000:1 and high diffraction efficiency, at the electric field of 6V/μm. A switchable LC Fresnel zone lens was also developed with the efficiency of ~42% that can be further improved, and the switching time for the 3 μm thick cell is ~6.7 ms which is relatively fast in comparison of existing devices. Thus, because of the photoalignment technology the fabrication of Fresnel lens became considerably simpler than others. A thin high spatial resolution, photo-patterned micropolarizer array for complementary metal-oxide-semiconductor (CMOS) image sensors was implemented for the complete optical visualization of so called "invisible" objects, which are completely transparent (reflective) and colorless. Four Stokes parameters, which fully characterized the reflected light beam can be simultaneously detected using the array of photo-patterned polarizers on CMOS sensor plate. The cheap, high resolution photo-patterned LC matrix sensor was developed to be able successfully compete with the expensive and low reliable wire grid polarizer patterned arrays currently used for the purpose.
Ion velocity distributions in dipolarization events: Distributions in the central plasma sheet
NASA Astrophysics Data System (ADS)
Birn, J.; Runov, A.; Zhou, X.-Z.
2017-08-01
Using combined MHD/test particle simulations, we further explore characteristic ion velocity distributions in the central plasma sheet (CPS) in relation to dipolarization events. Distributions in the CPS within the dipolarized flux bundle (DFB) that follows the passage of a dipolarization front typically show two opposing low subthermal-energy beams with a ring-like component perpendicular to the magnetic field at about twice the thermal energy. The dominance of the perpendicular anisotropy and a field-aligned peak at lower energy agree qualitatively with ion distribution functions derived from "Time History of Events and Macroscale Interactions during Substorms" observations. At locations somewhat off the equatorial plane the field-aligned peaks are shifted by a field-aligned component of the bulk flow, such that one peak becomes centered near zero net velocity, which makes it less likely to be observed. The origins of the field-aligned peaks are low-energy lobe (or near plasma sheet boundary layer) regions, while the ring distribution originates mostly from thermal plasma sheet particles on extended field lines. The acceleration mechanisms are also quite different: the beam ions are accelerated first by the E × B drift motion of the DFB and then by a slingshot effect of the earthward convecting DFB (akin to first-order Fermi, type B, acceleration), which causes an increase in field-aligned speed. In contrast, the ring particles are accelerated by successive, betatron-like acceleration after entering the high electric field region of an earthward propagating DFB.
An image‐based method to synchronize cone‐beam CT and optical surface tracking
Schaerer, Joël; Riboldi, Marco; Sarrut, David; Baroni, Guido
2015-01-01
The integration of in‐room X‐ray imaging and optical surface tracking has gained increasing importance in the field of image guided radiotherapy (IGRT). An essential step for this integration consists of temporally synchronizing the acquisition of X‐ray projections and surface data. We present an image‐based method for the synchronization of cone‐beam computed tomography (CBCT) and optical surface systems, which does not require the use of additional hardware. The method is based on optically tracking the motion of a component of the CBCT/gantry unit, which rotates during the acquisition of the CBCT scan. A calibration procedure was implemented to relate the position of the rotating component identified by the optical system with the time elapsed since the beginning of the CBCT scan, thus obtaining the temporal correspondence between the acquisition of X‐ray projections and surface data. The accuracy of the proposed synchronization method was evaluated on a motorized moving phantom, performing eight simultaneous acquisitions with an Elekta Synergy CBCT machine and the AlignRT optical device. The median time difference between the sinusoidal peaks of phantom motion signals extracted from the synchronized CBCT and AlignRT systems ranged between ‐3.1 and 12.9 msec, with a maximum interquartile range of 14.4 msec. The method was also applied to clinical data acquired from seven lung cancer patients, demonstrating the potential of the proposed approach in estimating the individual and daily variations in respiratory parameters and motion correlation of internal and external structures. The presented synchronization method can be particularly useful for tumor tracking applications in extracranial radiation treatments, especially in the field of patient‐specific breathing models, based on the correlation between internal tumor motion and external surface surrogates. PACS number: 87
Guo, Yin; Sun, LiQun; Yang, Zheng; Liu, Zilong
2016-02-20
During this study we constructed a generalized parametric modified four-objective multipass matrix system (MMS). We used an optical system comprising four asymmetrical spherical mirrors to improve the alignment process. The use of a paraxial equation for the design of the front transfer optics yielded the initial condition for modeling our MMS. We performed a ray tracing simulation to calculate the significant aberration of the system (astigmatism). Based on the calculated meridional and sagittal focus positions, the complementary focusing mirror was easily designed to provide an output beam free of astigmatism. We have presented an example of a 108-transit multipass system (5×7 matrix arrangement) with a relatively larger numerical aperture source (xenon light source). The whole system exhibits zero theoretical geometrical loss when simulated with Zemax software. The MMS construction strategy described in this study provides an anastigmatic output beam and the generalized approach to design a controllable matrix spot pattern on the field mirrors. Asymmetrical reflective mirrors aid in aligning the whole system with high efficiency. With the generalized design strategy in terms of optics configuration and asymmetrical fabrication method in this paper, other kinds of multipass matrix system coupled with different sources and detector systems also can be achieved.
Advanced electric-field scanning probe lithography on molecular resist using active cantilever
NASA Astrophysics Data System (ADS)
Kaestner, Marcus; Aydogan, Cemal; Ivanov, Tzvetan; Ahmad, Ahmad; Angelov, Tihomir; Reum, Alexander; Ishchuk, Valentyn; Krivoshapkina, Yana; Hofer, Manuel; Lenk, Steve; Atanasov, Ivaylo; Holz, Mathias; Rangelow, Ivo W.
2015-07-01
The routine "on demand" fabrication of features smaller than 10 nm opens up new possibilities for the realization of many devices. Driven by the thermally actuated piezoresistive cantilever technology, we have developed a prototype of a scanning probe lithography (SPL) platform which is able to image, inspect, align, and pattern features down to the single digit nanoregime. Here, we present examples of practical applications of the previously published electric-field based current-controlled scanning probe lithography. In particular, individual patterning tests are carried out on calixarene by using our developed table-top SPL system. We have demonstrated the application of a step-and-repeat SPL method including optical as well as atomic force microscopy-based navigation and alignment. The closed-loop lithography scheme was applied to sequentially write positive and negative tone features. Due to the integrated unique combination of read-write cycling, each single feature is aligned separately with the highest precision and inspected after patterning. This routine was applied to create a pattern step by step. Finally, we have demonstrated the patterning over larger areas, over existing topography, and the practical applicability of the SPL processes for lithography down to 13-nm pitch patterns. To enhance the throughput capability variable beam diameter electric field, current-controlled SPL is briefly discussed.
The fiber optic system for the advanced topographic laser altimeter system instrument (ATLAS)
NASA Astrophysics Data System (ADS)
Ott, Melanie N.; Thomes, W. Joe; Onuma, Eleanya; Switzer, Robert; Chuska, Richard; Blair, Diana; Frese, Erich; Matyseck, Marc
2016-09-01
The Advanced Topographic Laser Altimeter System (ATLAS) Instrument has been in integration and testing over the past 18 months in preparation for the Ice, Cloud and Land Elevation Satellite - 2 (ICESat-2) Mission, scheduled to launch in 2017. ICESat-2 is the follow on to ICESat which launched in 2003 and operated until 2009. ATLAS will measure the elevation of ice sheets, glaciers and sea ice or the "cryosphere" (as well as terrain) to provide data for assessing the earth's global climate changes. Where ICESat's instrument, the Geo-Science Laser Altimeter (GLAS) used a single beam measured with a 70 m spot on the ground and a distance between spots of 170 m, ATLAS will measure a spot size of 10 m with a spacing of 70 cm using six beams to measure terrain height changes as small as 4 mm.[1] The ATLAS pulsed transmission system consists of two lasers operating at 532 nm with transmitter optics for beam steering, a diffractive optical element that splits the signal into 6 separate beams, receivers for start pulse detection and a wavelength tracking system. The optical receiver telescope system consists of optics that focus all six beams into optical fibers that feed a filter system that transmits the signal via fiber assemblies to the detectors. Also included on the instrument is a system that calibrates the alignment of the transmitted pulses to the receiver optics for precise signal capture. The larger electro optical subsystems for transmission, calibration, and signal receive, stay aligned and transmitting sufficiently due to the optical fiber system that links them together. The robust design of the fiber optic system, consisting of a variety of multi fiber arrays and simplex assemblies with multiple fiber core sizes and types, will enable the system to maintain consistent critical alignments for the entire life of the mission. Some of the development approaches used to meet the challenging optical system requirements for ATLAS are discussed here.
The fiber optic system for the Advanced Topographic Laser Altimeter System (ATLAS) instrument
Ott, Melanie N.; Thomes, Joe; Onuma, Eleanya; Switzer, Robert; Chuska, Richard; Blair, Diana; Frese, Erich; Matyseck, Marc
2017-01-01
The Advanced Topographic Laser Altimeter System (ATLAS) Instrument has been in integration and testing over the past 18 months in preparation for the Ice, Cloud and Land Elevation Satellite – 2 (ICESat-2) Mission, scheduled to launch in 2017. ICESat-2 is the follow on to ICESat which launched in 2003 and operated until 2009. ATLAS will measure the elevation of ice sheets, glaciers and sea ice or the “cryosphere” (as well as terrain) to provide data for assessing the earth’s global climate changes. Where ICESat’s instrument, the Geo-Science Laser Altimeter (GLAS) used a single beam measured with a 70 m spot on the ground and a distance between spots of 170 m, ATLAS will measure a spot size of 10 m with a spacing of 70 cm using six beams to measure terrain height changes as small as 4 mm.[1] The ATLAS pulsed transmission system consists of two lasers operating at 532 nm with transmitter optics for beam steering, a diffractive optical element that splits the signal into 6 separate beams, receivers for start pulse detection and a wavelength tracking system. The optical receiver telescope system consists of optics that focus all six beams into optical fibers that feed a filter system that transmits the signal via fiber assemblies to the detectors. Also included on the instrument is a system that calibrates the alignment of the transmitted pulses to the receiver optics for precise signal capture. The larger electro optical subsystems for transmission, calibration, and signal receive, stay aligned and transmitting sufficiently due to the optical fiber system that links them together. The robust design of the fiber optic system, consisting of a variety of multi fiber arrays and simplex assemblies with multiple fiber core sizes and types, will enable the system to maintain consistent critical alignments for the entire life of the mission. Some of the development approaches used to meet the challenging optical system requirements for ATLAS are discussed here. PMID:28280284
The fiber optic system for the Advanced Topographic Laser Altimeter System (ATLAS) instrument.
Ott, Melanie N; Thomes, Joe; Onuma, Eleanya; Switzer, Robert; Chuska, Richard; Blair, Diana; Frese, Erich; Matyseck, Marc
2016-08-28
The Advanced Topographic Laser Altimeter System (ATLAS) Instrument has been in integration and testing over the past 18 months in preparation for the Ice, Cloud and Land Elevation Satellite - 2 (ICESat-2) Mission, scheduled to launch in 2017. ICESat-2 is the follow on to ICESat which launched in 2003 and operated until 2009. ATLAS will measure the elevation of ice sheets, glaciers and sea ice or the "cryosphere" (as well as terrain) to provide data for assessing the earth's global climate changes. Where ICESat's instrument, the Geo-Science Laser Altimeter (GLAS) used a single beam measured with a 70 m spot on the ground and a distance between spots of 170 m, ATLAS will measure a spot size of 10 m with a spacing of 70 cm using six beams to measure terrain height changes as small as 4 mm.[1] The ATLAS pulsed transmission system consists of two lasers operating at 532 nm with transmitter optics for beam steering, a diffractive optical element that splits the signal into 6 separate beams, receivers for start pulse detection and a wavelength tracking system. The optical receiver telescope system consists of optics that focus all six beams into optical fibers that feed a filter system that transmits the signal via fiber assemblies to the detectors. Also included on the instrument is a system that calibrates the alignment of the transmitted pulses to the receiver optics for precise signal capture. The larger electro optical subsystems for transmission, calibration, and signal receive, stay aligned and transmitting sufficiently due to the optical fiber system that links them together. The robust design of the fiber optic system, consisting of a variety of multi fiber arrays and simplex assemblies with multiple fiber core sizes and types, will enable the system to maintain consistent critical alignments for the entire life of the mission. Some of the development approaches used to meet the challenging optical system requirements for ATLAS are discussed here.
The Fiber Optic System for the Advanced Topographic Laser Altimeter System (ATLAS) Instrument
NASA Technical Reports Server (NTRS)
Ott, Melanie N.; Thomes, Joe; Onuma, Eleanya; Switzer, Robert; Chuska, Richard; Blair, Diana; Frese, Erich; Matyseck, Marc
2016-01-01
The Advanced Topographic Laser Altimeter System (ATLAS) Instrument has been in integration and testing over the past 18 months in preparation for the Ice, Cloud and Land Elevation Satellite - 2 (ICESat-2) Mission, scheduled to launch in 2017. ICESat-2 is the follow on to ICESat which launched in 2003 and operated until 2009. ATLAS will measure the elevation of ice sheets, glaciers and sea ice or the "cryosphere" (as well as terrain) to provide data for assessing the earth's global climate changes. Where ICESat's instrument, the Geo-Science Laser Altimeter (GLAS) used a single beam measured with a 70 m spot on the ground and a distance between spots of 170 m, ATLAS will measure a spot size of 10 m with a spacing of 70 cm using six beams to measure terrain height changes as small as 4 mm. The ATLAS pulsed transmission system consists of two lasers operating at 532 nm with transmitter optics for beam steering, a diffractive optical element that splits the signal into 6 separate beams, receivers for start pulse detection and a wavelength tracking system. The optical receiver telescope system consists of optics that focus all six beams into optical fibers that feed a filter system that transmits the signal via fiber assemblies to the detectors. Also included on the instrument is a system that calibrates the alignment of the transmitted pulses to the receiver optics for precise signal capture. The larger electro optical subsystems for transmission, calibration, and signal receive, stay aligned and transmitting sufficiently due to the optical fiber system that links them together. The robust design of the fiber optic system, consisting of a variety of multi fiber arrays and simplex assemblies with multiple fiber core sizes and types, will enable the system to maintain consistent critical alignments for the entire life of the mission. Some of the development approaches used to meet the challenging optical system requirements for ATLAS are discussed here.
Angular Alignment Testing of Laser Mirror Mounts Under Temperature Cycling
NASA Technical Reports Server (NTRS)
Bullock, K. T.; DeYoung, R. J.; Sandford, S. P.
1997-01-01
A number of commercial and custom-built laser mirror mounts were tested for angular alignment sensitivity during temperature cycling from room temperature (20 C) to 40 C. A Nd:YAG laser beam was reflected off a mirror that was held by the mount under test and was directed to a position-sensitive detector. Horizontal and vertical movement of the reflected beam was recorded, and the angular movement, as a function of temperature (coefficient of thermal tilt (CTT)) was calculated from these data. In addition, the amount of hysteresis in the movement after cycling from room temperature to 40 C and back was determined. All commercial mounts showed greater angular movement than the simpler National Aeronautics and Space Administration Lidar Atmospheric Sensing Experiment (NASA LASE) custom mirror mounts.
Strain gauge ambiguity sensor for segmented mirror active optical system
NASA Technical Reports Server (NTRS)
Wyman, C. L.; Howe, T. L. (Inventor)
1974-01-01
A system is described to measure alignment between interfacing edges of mirror segments positioned to form a segmented mirror surface. It serves as a gauge having a bending beam with four piezoresistive elements coupled across the interfaces of the edges of adjacent mirror segments. The bending beam has a first position corresponding to alignment of the edges of adjacent mirror segments, and it is bendable from the first position in a direction and to a degree dependent upon the relative misalignment between the edges of adjacent mirror segments to correspondingly vary the resistance of the strain guage. A source of power and an amplifier are connected in circuit with the strain gauge whereby the output of the amplifier varies according to the misalignment of the edges of adjacent mirror segments.
Ion distributions in the Earth's foreshock upstream from the bow shock
NASA Technical Reports Server (NTRS)
Fuselier, S. A.
1995-01-01
A variety of suprathermal and energetic ion distributions are found upstream from shocks. Some distributions, such as field-aligned beams, are generated directly at the shock either through reflection processes or through leakage from the hotter downstream region. Other distributions, such as intermediate distributions, evolve from these parent distributions through wave-particle interactions. This paper reviews our current understanding of the creation and evolution of suprathermal distributions at shocks. Examples of suprathermal ion distributions are taken from observations at the Earth's bow shock. Particular emphasis is placed on the creation of field-aligned beams and specularly reflected ion distributions and on the evolution of these distributions in the Earth's ion foreshock. However, the results from this heavily studied region are applicable to interplanetary shocks, bow shocks at other planets, and comets.
A design of a high speed dual spectrometer by single line scan camera
NASA Astrophysics Data System (ADS)
Palawong, Kunakorn; Meemon, Panomsak
2018-03-01
A spectrometer that can capture two orthogonal polarization components of s light beam is demanded for polarization sensitive imaging system. Here, we describe the design and implementation of a high speed spectrometer for simultaneous capturing of two orthogonal polarization components, i.e. vertical and horizontal components, of light beam. The design consists of a polarization beam splitter, two polarization-maintain optical fibers, two collimators, a single line-scan camera, a focusing lens, and a reflection blaze grating. The alignment of two beam paths was designed to be symmetrically incident on the blaze side and reverse blaze side of reflection grating, respectively. The two diffracted beams were passed through the same focusing lens and focused on the single line-scan sensors of a CMOS camera. The two spectra of orthogonal polarization were imaged on 1000 pixels per spectrum. With the proposed setup, the amplitude and shape of the two detected spectra can be controlled by rotating the collimators. The technique for optical alignment of spectrometer will be presented and discussed. The two orthogonal polarization spectra can be simultaneously captured at a speed of 70,000 spectra per second. The high speed dual spectrometer can simultaneously detected two orthogonal polarizations, which is an important component for the development of polarization-sensitive optical coherence tomography. The performance of the spectrometer have been measured and analyzed.
Prefocused objective-pinhole unit for beam expanding and spatial filtering.
Antes, G P
1973-03-01
A beam-expanding and spatial-filtering device, the prefocused objective-pinhole unit (POP unit), is presented. The design is primarily aimed at greater simplicity in handling and construction than the commercially available lens-pinhole spatial filters (LPSF), for once the pinhole is fixed in the correct position with respect to the objective, the alignment of the whole unit can be made an easy matter.
System for tomographic determination of the power distribution in electron beams
Elmer, John W.; Teruya, Alan T.; O'Brien, Dennis W.
1995-01-01
A tomographic technique for measuring the current density distribution in electron beams using electron beam profile data acquired from a modified Faraday cup to create an image of the current density in high and low power beams. The modified Faraday cup includes a narrow slit and is rotated by a stepper motor and can be moved in the x, y and z directions. The beam is swept across the slit perpendicular thereto and controlled by deflection coils, and the slit rotated such that waveforms are taken every few degrees form 0.degree. to 360.degree. and the waveforms are recorded by a digitizing storage oscilloscope. Two-dimensional and three-dimensional images of the current density distribution in the beam can be reconstructed by computer tomography from this information, providing quantitative information about the beam focus and alignment.
System for tomographic determination of the power distribution in electron beams
Elmer, J.W.; Teruya, A.T.; O`Brien, D.W.
1995-11-21
A tomographic technique for measuring the current density distribution in electron beams using electron beam profile data acquired from a modified Faraday cup to create an image of the current density in high and low power beams. The modified Faraday cup includes a narrow slit and is rotated by a stepper motor and can be moved in the x, y and z directions. The beam is swept across the slit perpendicular thereto and controlled by deflection coils, and the slit rotated such that waveforms are taken every few degrees form 0{degree} to 360{degree} and the waveforms are recorded by a digitizing storage oscilloscope. Two-dimensional and three-dimensional images of the current density distribution in the beam can be reconstructed by computer tomography from this information, providing quantitative information about the beam focus and alignment. 12 figs.
ATF neutral beam injection: optimization of beam alignment and aperturing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morris, R.N.; Fowler, R.H.; Rome, J.A.
1985-12-01
The application of the existing Impurity Study Experiment (ISX-B) neutral beam injectors for the Advanced Toroidal Facility (ATF) is studied. It is determined that with the practical considerations of beam aperturing, ATF vacuum vessel complexity, and realistic beam modeling, the power absorbed by the plasma will be approximately 57% of the extracted neutral beam power, which corresponds to an injected power of about 1.5 MW. By reducing the beam divergence to a 1/sup 0/ Gaussian distribution, the absorbed power could be increased to 93%. The power delivered to the plasma is found to be a strong function of the beammore » divergence but only a weak function of the beam focal length. Shinethrough can be a serious problem if very low density startups are necessary. Preliminary calculations indicate that there will be no excessive fast-ion losses. 12 refs., 17 figs., 1 tab.« less
NASA Technical Reports Server (NTRS)
Aston, G. (Inventor)
1981-01-01
A system is described that combines geometrical and electrostatic focusing to provide high ion extraction efficiency and good focusing of an accelerated ion beam. The apparatus includes a pair of curved extraction grids with multiple pairs of aligned holes positioned to direct a group of beamlets along converging paths. The extraction grids are closely spaced and maintained at a moderate potential to efficiently extract beamlets of ions and allow them to combine into a single beam. An accelerator electrode device downstream from the extraction grids is at a much lower potential than the grids to accelerate the combined beam. The application of the system to ion implantation is mentioned.
Elmer, John W.; Teruya, Alan T.; O'Brien, Dennis W.
1996-01-01
A tomographic technique for measuring the current density distribution in electron beams using electron beam profile data acquired from a modified Faraday cup to create an image of the current density in high and low power beams. The modified Faraday cup includes a narrow slit and is rotated by a stepper motor and can be moved in the x, y and z directions. The beam is swept across the slit perpendicular thereto and controlled by deflection coils, and the slit rotated such that waveforms are taken every few degrees form 0.degree. to 360.degree. and the waveforms are recorded by a digitizing storage oscilloscope. Two-din-tensional and three-dimensional images of the current density distribution in the beam can be reconstructed by computer tomography from this information, providing quantitative information about the beam focus and alignment.
TU-D-209-03: Alignment of the Patient Graphic Model Using Fluoroscopic Images for Skin Dose Mapping
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oines, A; Oines, A; Kilian-Meneghin, J
2016-06-15
Purpose: The Dose Tracking System (DTS) was developed to provide realtime feedback of skin dose and dose rate during interventional fluoroscopic procedures. A color map on a 3D graphic of the patient represents the cumulative dose distribution on the skin. Automated image correlation algorithms are described which use the fluoroscopic procedure images to align and scale the patient graphic for more accurate dose mapping. Methods: Currently, the DTS employs manual patient graphic selection and alignment. To improve the accuracy of dose mapping and automate the software, various methods are explored to extract information about the beam location and patient morphologymore » from the procedure images. To match patient anatomy with a reference projection image, preprocessing is first used, including edge enhancement, edge detection, and contour detection. Template matching algorithms from OpenCV are then employed to find the location of the beam. Once a match is found, the reference graphic is scaled and rotated to fit the patient, using image registration correlation functions in Matlab. The algorithm runs correlation functions for all points and maps all correlation confidences to a surface map. The highest point of correlation is used for alignment and scaling. The transformation data is saved for later model scaling. Results: Anatomic recognition is used to find matching features between model and image and image registration correlation provides for alignment and scaling at any rotation angle with less than onesecond runtime, and at noise levels in excess of 150% of those found in normal procedures. Conclusion: The algorithm provides the necessary scaling and alignment tools to improve the accuracy of dose distribution mapping on the patient graphic with the DTS. Partial support from NIH Grant R01-EB002873 and Toshiba Medical Systems Corp.« less
Controllable Sonar Lenses and Prisms Based on ERFs
NASA Technical Reports Server (NTRS)
Bar-Cohen, Yoseph; Sherrit, Stewart; Chang, Zensheu; Bao, Xiaoqi; Paustian, Iris; Lopes, Joseph; Folds, Donald
2004-01-01
Sonar-beam-steering devices of the proposed type would contain no moving parts and would be considerably smaller and less power-hungry, relative to conventional multiple-beam sonar arrays. The proposed devices are under consideration for installation on future small autonomous underwater vehicles because the sizes and power demands of conventional multiple-beam arrays are excessive, and motors used in single-beam mechanically scanned systems are also not reliable. The proposed devices would include a variety of electrically controllable acoustic prisms, lenses, and prism/lens combinations both simple and compound. These devices would contain electrorheological fluids (ERFs) between electrodes. An ERF typically consists of dielectric particles floating in a dielectric fluid. When an electric field is applied to the fluid, the particles become grouped into fibrils aligned in rows, with a consequent increase in the viscosity of the fluid and a corresponding increase in the speed of sound in the fluid. The change in the speed of sound increases with an increase in the applied electric field. By thus varying the speed of sound, one varies the acoustic index of refraction, analogously to varying the index of refraction of an optical lens or prism. In the proposed acoustic devices, this effect would be exploited to control the angles of refraction of acoustic beams, thereby steering the beams and, in the case of lenses, controlling focal lengths.
Beam delivery system with a non-digitized diffractive beam splitter for laser-drilling of silicon
NASA Astrophysics Data System (ADS)
Amako, J.; Fujii, E.
2016-02-01
We report a beam-delivery system consisting of a non-digitized diffractive beam splitter and a Fourier transform lens. The system is applied to the deep-drilling of silicon using a nanosecond pulse laser in the manufacture of inkjet printer heads. In this process, a circularly polarized pulse beam is divided into an array of uniform beams, which are then delivered precisely to the process points. To meet these requirements, the splitter was designed to be polarization-independent with an efficiency>95%. The optical elements were assembled so as to allow the fine tuning of the effective overall focal length by adjusting the wavefront curvature of the beam. Using the system, a beam alignment accuracy of<5 μm was achieved for a 12-mm-wide beam array and the throughput was substantially improved (10,000 points on a silicon wafer drilled in ~1 min). This beam-delivery scheme works for a variety of laser applications that require parallel processing.
Evaluation of a method to shield a welding electron beam from magnetic interference
NASA Technical Reports Server (NTRS)
Wall, W. A.
1976-01-01
It is known that electron beams are easily deflected by magnetic and electrostatic fields. Therefore, to prevent weld defects, stray electromagnetic fields are avoided in electron beam welding chambers if at all possible. The successful results of tests conducted at MSFC to evaluate a simple magnetic shield made from steel tubing are reported. Tests indicate that this shield was up to 85 percent effective in reducing magnetic effects on the electron beam of a welding machine. In addition, residual magnetic fields within the shield were so nearly uniform that the net effect on the beam alignment was negligible. It is concluded that the shield, with the addition of a tungsten liner, could be used in production welding.
NASA Astrophysics Data System (ADS)
Matsumura, T.; Kamiji, I.; Nakagiri, K.; Nanjo, H.; Nomura, T.; Sasao, N.; Shinkawa, T.; Shiomi, K.
2018-03-01
We have developed a beam-profile monitor (BPM) system to align the collimators for the neutral beam-line at the Hadron Experimental Facility of J-PARC. The system is composed of a phosphor screen and a CCD camera coupled to an image intensifier mounted on a remote control X- Y stage. The design and detailed performance studies of the BPM are presented. The monitor has a spatial resolution of better than 0.6 mm and a deviation from linearity of less than 1%. These results indicate that the BPM system meets the requirements to define collimator-edge positions for the beam-line tuning. Confirmation using the neutral beam for the KOTO experiment is also presented.
Short pulse laser stretcher-compressor using a single common reflective grating
Erbert, Gaylen V.; Biswal, Subrat; Bartolick, Joseph M.; Stuart, Brent C.; Telford, Steve
2004-05-25
The present invention provides an easily aligned, all-reflective, aberration-free pulse stretcher-compressor in a compact geometry. The stretcher-compressor device is a reflective multi-layer dielectric that can be utilized for high power chirped-pulse amplification material processing applications. A reflective grating element of the device is constructed: 1) to receive a beam for stretching of laser pulses in a beam stretcher beam path and 2) to also receive stretched amplified pulses to be compressed in a compressor beam path through the same (i.e., common) reflective multilayer dielectric diffraction grating. The stretched and compressed pulses are interleaved about the grating element to provide the desired number of passes in each respective beam path in order to achieve the desired results.
NASA Astrophysics Data System (ADS)
Lutz, Yves; Poyet, Jean-Michel; Metzger, Nicolas
2013-10-01
Laser diode stacks are interesting laser sources for active imaging illuminators. They allow the accumulation of large amounts of energy in multi-pulse mode, which is well suited for long-range image recording. Even when laser diode stacks are equipped with fast-axis collimation (FAC) and slow-axis collimation (SAC) microlenses, their beam parameter product (BPP) are not compatible with a direct use in highly efficient and compact illuminators. This is particularly true when narrow divergences are required such as for long range applications. To overcome these difficulties, we conducted investigations in three different ways. A first near infrared illuminator based on the use of conductively cooled mini-bars was designed, realized and successfully tested during outdoor experimentations. This custom specified stack was then replaced in a second step by an off-the-shelf FAC + SAC micro lensed stack where the brightness was increased by polarization overlapping. The third method still based on a commercial laser diode stack uses a non imaging optical shaping principle resulting in a virtually restacked laser source with enhanced beam parameters. This low cost, efficient and low alignment sensitivity beam shaping method allows obtaining a compact and high performance laser diode illuminator for long range active imaging applications. The three methods are presented and compared in this paper.
NASA Astrophysics Data System (ADS)
Zibner, F.; Fornaroli, C.; Holtkamp, J.; Shachaf, Lior; Kaplan, Natan; Gillner, A.
2017-08-01
High-precision laser micro machining gains more importance in industrial applications every month. Optical systems like the helical optics offer highest quality together with controllable and adjustable drilling geometry, thus as taper angle, aspect ratio and heat effected zone. The helical optics is based on a rotating Dove-prism which is mounted in a hollow shaft engine together with other optical elements like wedge prisms and plane plates. Although the achieved quality can be interpreted as extremely high the low process efficiency is a main reason that this manufacturing technology has only limited demand within the industrial market. The objective of the research studies presented in this paper is to dramatically increase process efficiency as well as process flexibility. During the last years, the average power of commercial ultra-short pulsed laser sources has increased significantly. The efficient utilization of the high average laser power in the field of material processing requires an effective distribution of the laser power onto the work piece. One approach to increase the efficiency is the application of beam splitting devices to enable parallel processing. Multi beam processing is used to parallelize the fabrication of periodic structures as most application only require a partial amount of the emitted ultra-short pulsed laser power. In order to achieve highest flexibility while using multi beam processing the single beams are diverted and re-guided in a way that enables the opportunity to process with each partial beam on locally apart probes or semimanufactures.
Suspended Carbon Nanotubes for Humidity Sensing
Arunachalam, Shivaram; Gupta, Anubha A.; Izquierdo, Ricardo
2018-01-01
A room temperature microfabrication technique using SU8, an epoxy-based highly functional photoresist as a sacrificial layer, is developed to obtain suspended aligned carbon nanotube beams. The humidity-sensing characteristics of aligned suspended single-walled carbon nanotube films are studied. A comparative study between suspended and non-suspended architectures is done by recording the resistance change in the nanotubes under humidity. For the tests, the humidity was varied from 15% to 98% RH. A comparative study between suspended and non-suspended devices shows that the response and recovery times of the suspended devices was found to be almost 3 times shorter than the non-suspended devices. The suspended devices also showed minimal hysteresis even after 10 humidity cycles, and also exhibit enhanced sensitivity. Repeatability tests were performed by subjecting the sensors to continuous humidification cycles. All tests reported here have been performed using pristine non-functionalized nanotubes. PMID:29786661
Suspended Carbon Nanotubes for Humidity Sensing.
Arunachalam, Shivaram; Gupta, Anubha A; Izquierdo, Ricardo; Nabki, Frederic
2018-05-22
A room temperature microfabrication technique using SU8, an epoxy-based highly functional photoresist as a sacrificial layer, is developed to obtain suspended aligned carbon nanotube beams. The humidity-sensing characteristics of aligned suspended single-walled carbon nanotube films are studied. A comparative study between suspended and non-suspended architectures is done by recording the resistance change in the nanotubes under humidity. For the tests, the humidity was varied from 15% to 98% RH. A comparative study between suspended and non-suspended devices shows that the response and recovery times of the suspended devices was found to be almost 3 times shorter than the non-suspended devices. The suspended devices also showed minimal hysteresis even after 10 humidity cycles, and also exhibit enhanced sensitivity. Repeatability tests were performed by subjecting the sensors to continuous humidification cycles. All tests reported here have been performed using pristine non-functionalized nanotubes.
Abdolahad, M; Mohajerzadeh, S; Janmaleki, M; Taghinejad, H; Taghinejad, M
2013-03-01
Vertically aligned carbon nanotube (VACNT) arrays have been demonstrated as probes for rapid quantifying of cancer cell deformability with high resolution. Through entrapment of various cancer cells on CNT arrays, the deflections of the nanotubes during cell deformation were used to derive the lateral cell shear force using a large deflection mode method. It is observed that VACNT beams act as sensitive and flexible agents, which transfer the shear force of cells trapped on them by an observable deflection. The metastatic cancer cells have significant deformable structures leading to a further cell traction force (CTF) than primary cancerous one on CNT arrays. The elasticity of different cells could be compared by their CTF measurement on CNT arrays. This study presents a nanotube-based methodology for quantifying the single cell mechanical behavior, which could be useful for understanding the metastatic behavior of cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Guang; Chu, Shengqi; Sun, Tianxi
A confocal fluorescence endstation for depth-resolved micro-X-ray absorption spectroscopy is described. A polycapillary half-lens defines the incident beam path and a second polycapillary half-lens at 90° defines the probe sample volume. An automatic alignment program based on an evolutionary algorithm is employed to make the alignment procedure efficient. This depth-resolved system was examined on a general X-ray absorption spectroscopy (XAS) beamline at the Beijing Synchrotron Radiation Facility. Sacrificial red glaze (AD 1368–1644) china was studied to show the capability of the instrument. As a mobile endstation to be applied on multiple beamlines, the confocal system can improve the function andmore » flexibility of general XAS beamlines, and extend their capabilities to a wider user community.« less
Fiber-coupled thermal microscope for solid materials based on thermoreflectance method
NASA Astrophysics Data System (ADS)
Miyake, Shugo; Hatori, Kimihito; Ohtsuki, Tetsuya; Awano, Takaaki; Sekine, Makoto
2018-06-01
Measurement of the thermal properties of solid-state materials, including high- and low-thermal-conductivity materials in electronic devices, is very important to improve thermal design. The thermoreflectance method is well known as a powerful technique for measuring a wide range of thermal conductivity. However, in order to precisely determine the thermoreflectance signal, the alignment between two laser beams should be perfectly coaxial, similar to that in the numerical calculation model. In this paper, a developed fiber-coupled thermal microscope based on the thermoreflectance method is demonstrated, which we use to determine the frequency dependence of the temperature responses of silicon, sapphire, zirconium, and Pyrex glass samples.
NASA Astrophysics Data System (ADS)
Chikvashvili, Ioseb
2011-10-01
In proposed Concept it is offered to use two ion beams directed coaxially at the same direction but with different velocities (center-of-mass collision energy should be sufficient for fusion), to direct oppositely the relativistic electron beam for only partial compensation of positive space charge and for allowing the combined beam's pinch capability, to apply the longitudinal electric field for compensation of alignment of velocities of reacting particles and also for compensation of energy losses of electrons via Bremsstrahlung. On base of Concept different types of reactor designs can be realized: Linear and Cyclic designs. In the simplest embodiment the Cyclic Reactor (design) may include: betatron type device (circular store of externally injected particles - induction accelerator), pulse high-current relativistic electron injector, pulse high-current slower ion injector, pulse high-current faster ion injector and reaction products extractor. Using present day technologies and materials (or a reasonable extrapolation of those) it is possible to reach: for induction linear injectors (ions&electrons) - currents of thousands A, repeatability - up to 10Hz, the same for high-current betatrons (FFAG, Stellatron, etc.). And it is possible to build the fusion reactor using the proposed Method just today.
NASA Astrophysics Data System (ADS)
Hofherr, O.; Wachten, C.; Müller, C.; Reinecke, H.
2013-04-01
High precision optical non-contact position measurement is a key technology in modern engineering. Laser trackers (LT) can determine accurately x-y-z coordinates of passive retroreflectors. Next-generation systems answer the additional need to measure an object`s rotational orientation (pitch, yaw, roll). These devices are based either on photogrammetry or on enhanced retroreflectors. However, photogrammetry relies on costly camera systems and time-consuming image processing. Enhanced retroreflectors analyze the LT`s beam but are restricted in roll angle measurements. In the past we have presented a new method [1][2] to measure all six degrees of freedom in conjunction with a LT. Now we dramatically optimized the method and designed a new prototype, e.g. taking into consideration optical alignment, reduced power loss, highly optimized measuring signals and higher resolution. A method is described that allows compensating the influence of the LT's beam offset during tracking the active retroreflector. We prove the functionality of the active retroreflector with the LT and, furthermore, demonstrate the capability of the system to characterize the tracking behavior of a LT. The measurement range for the incident laser beam is +/-12° with a resolution of 0.6".
Holistic approach for overlay and edge placement error to meet the 5nm technology node requirements
NASA Astrophysics Data System (ADS)
Mulkens, Jan; Slachter, Bram; Kubis, Michael; Tel, Wim; Hinnen, Paul; Maslow, Mark; Dillen, Harm; Ma, Eric; Chou, Kevin; Liu, Xuedong; Ren, Weiming; Hu, Xuerang; Wang, Fei; Liu, Kevin
2018-03-01
In this paper, we discuss the metrology methods and error budget that describe the edge placement error (EPE). EPE quantifies the pattern fidelity of a device structure made in a multi-patterning scheme. Here the pattern is the result of a sequence of lithography and etching steps, and consequently the contour of the final pattern contains error sources of the different process steps. EPE is computed by combining optical and ebeam metrology data. We show that high NA optical scatterometer can be used to densely measure in device CD and overlay errors. Large field e-beam system enables massive CD metrology which is used to characterize the local CD error. Local CD distribution needs to be characterized beyond 6 sigma, and requires high throughput e-beam system. We present in this paper the first images of a multi-beam e-beam inspection system. We discuss our holistic patterning optimization approach to understand and minimize the EPE of the final pattern. As a use case, we evaluated a 5-nm logic patterning process based on Self-Aligned-QuadruplePatterning (SAQP) using ArF lithography, combined with line cut exposures using EUV lithography.
NASA Astrophysics Data System (ADS)
Aldrin, John C.; Hopkins, Deborah; Datuin, Marvin; Warchol, Mark; Warchol, Lyudmila; Forsyth, David S.; Buynak, Charlie; Lindgren, Eric A.
2017-02-01
For model benchmark studies, the accuracy of the model is typically evaluated based on the change in response relative to a selected reference signal. The use of a side drilled hole (SDH) in a plate was investigated as a reference signal for angled beam shear wave inspection for aircraft structure inspections of fastener sites. Systematic studies were performed with varying SDH depth and size, and varying the ultrasonic probe frequency, focal depth, and probe height. Increased error was observed with the simulation of angled shear wave beams in the near-field. Even more significant, asymmetry in real probes and the inherent sensitivity of signals in the near-field to subtle test conditions were found to provide a greater challenge with achieving model agreement. To achieve quality model benchmark results for this problem, it is critical to carefully align the probe with the part geometry, to verify symmetry in probe response, and ideally avoid using reference signals from the near-field response. Suggested reference signals for angled beam shear wave inspections include using the `through hole' corner specular reflection signal and the full skip' signal off of the far wall from the side drilled hole.
SU-E-J-22: A Feasibility Study On KV-Based Whole Breast Radiation Patient Setup
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Q; Zhang, M; Yue, N
Purpose: In room kilovoltage x-ray (kV) imaging provides higher contrast than Megavoltage (MV) imaging with faster acquisition time compared with on-board cone-beam computed tomography (CBCT), thus improving patient setup accuracy and efficiency. In this study we evaluated the clinical feasibility of utilizing kV imaging for whole breast radiation patient setup. Methods: For six breast cancer patients with whole breast treatment plans using two opposed tangential fields, MV-based patient setup was conducted by aligning patient markers with in room lasers and MV portal images. Beam-eye viewed kV images were acquired using Varian OBI system after the set up process. In housemore » software was developed to transfer MLC blocks information overlaying onto kV images to demonstrate the field shape for verification. KV-based patient digital shift was derived by performing rigid registration between kV image and the digitally reconstructed radiography (DRR) to align the bony structure. This digital shift between kV-based and MV-based setup was defined as setup deviation. Results: Six sets of kV images were acquired for breast patients. The mean setup deviation was 2.3mm, 2.2mm and 1.8mm for anterior-posterior, superior-inferior and left-right direction respectively. The average setup deviation magnitude was 4.3±1.7mm for six patients. Patient with large breast had a larger setup deviation (4.4–6.2mm). There was no strong correlation between MV-based shift and setup deviation. Conclusion: A preliminary clinical workflow for kV-based whole breast radiation setup was established and tested. We observed setup deviation of the magnitude below than 5mm. With the benefit of providing higher contrast and MLC block overlaid on the images for treatment field verification, it is feasible to use kV imaging for breast patient setup.« less
1960-01-25
The Saturn I liquid-oxygen (LOX) tank for the Saturn I S-I stage being aligned with the end spider beam in the fabrication and engineering laboratory, building 4705, at the Marshall Space Flight Center (MSFC).
Observation of a γ-decaying millisecond isomeric state in 128Cd80
NASA Astrophysics Data System (ADS)
Jungclaus, A.; Grawe, H.; Nishimura, S.; Doornenbal, P.; Lorusso, G.; Simpson, G. S.; Söderström, P.-A.; Sumikama, T.; Taprogge, J.; Xu, Z. Y.; Baba, H.; Browne, F.; Fukuda, N.; Gernhäuser, R.; Gey, G.; Inabe, N.; Isobe, T.; Jung, H. S.; Kameda, D.; Kim, G. D.; Kim, Y.-K.; Kojouharov, I.; Kubo, T.; Kurz, N.; Kwon, Y. K.; Li, Z.; Sakurai, H.; Schaffner, H.; Shimizu, Y.; Steiger, K.; Suzuki, H.; Takeda, H.; Vajta, Zs.; Watanabe, H.; Wu, J.; Yagi, A.; Yoshinaga, K.; Benzoni, G.; Bönig, S.; Chae, K. Y.; Coraggio, L.; Daugas, J.-M.; Drouet, F.; Gadea, A.; Gargano, A.; Ilieva, S.; Itaco, N.; Kondev, F. G.; Kröll, T.; Lane, G. J.; Montaner-Pizá, A.; Moschner, K.; Mücher, D.; Naqvi, F.; Niikura, M.; Nishibata, H.; Odahara, A.; Orlandi, R.; Patel, Z.; Podolyák, Zs.; Wendt, A.
2017-09-01
A new high-spin isomer in the neutron-rich nucleus 128Cd was populated in the projectile fission of a 238U beam at the Radioactive Isotope Beam Factory at RIKEN. A half-life of T1/2 = 6.3 (8) ms was measured for the new state which was tentatively assigned a spin/parity of (15-). The experimental results are compared to shell model calculations performed using state-of-the-art realistic effective interactions and to the neighbouring nucleus 129Cd. In the present experiment no evidence was found for the decay of a 18+E6 spin-trap isomer, based on the complete alignment of the two-neutron and two-proton holes in the 0h11/2 and the 0g9/2 orbit, respectively, which is predicted to exist by the shell model.
Self-aligned periodic Ni nano dots embedded in nano-oxide layer
NASA Astrophysics Data System (ADS)
Doi, M.; Izumi, M.; Kawasaki, S.; Miyake, K.; Sahashi, M.
The Ni nano constriction dots embedded in the Ta-nano-oxide layer (NOL) was prepared by the ion beam sputtering (IBS) method. After the various conditions of the oxidations, the structural analyses of the NOL were performed by RHEED, AES and in situ STM/AFM observations. From the current image of the conductive AFM for NOL, the periodically aligned metallic dots with the size around 5-10 nm were successfully observed. The mechanism of the formation of the self-organized aligned Ni nano constriction dots is discussed from the standpoint of the grain size, the crystal orientation, the preferred oxidation of Ta at the diffused interface.
Prism Window for Optical Alignment
NASA Technical Reports Server (NTRS)
Tang, Hong
2008-01-01
A prism window has been devised for use, with an autocollimator, in aligning optical components that are (1) required to be oriented parallel to each other and/or at a specified angle of incidence with respect to a common optical path and (2) mounted at different positions along the common optical path. The prism window can also be used to align a single optical component at a specified angle of incidence. Prism windows could be generally useful for orienting optical components in manufacture of optical instruments. "Prism window" denotes an application-specific unit comprising two beam-splitter windows that are bonded together at an angle chosen to obtain the specified angle of incidence.
Development of high-order harmonic focusing system based on ellipsoidal mirror
DOE Office of Scientific and Technical Information (OSTI.GOV)
Motoyama, H.; Takei, Y.; Kume, T.
2016-05-15
We have developed a focusing system for extreme ultraviolet light produced by high-order harmonic generation. An ellipsoidal mirror with a precise surface shape was fabricated and installed into the focusing system. A rigid mirror manipulator and a beam profiler were employed to perform precise and stable mirror alignment. As a demonstration of the focusing performance, high-order harmonics in the wavelength range of 13.5–19.5 nm were successfully focused into a 2.4 × 2.3 μm{sup 2} spot.
Six-State Quantum Key Distribution Using Photons with Orbital Angular Momentum
NASA Astrophysics Data System (ADS)
Li, Jun-Lin; Wang, Chuan
2010-11-01
A new implementation of high-dimensional quantum key distribution (QKD) protocol is discussed. Using three mutual unbiased bases, we present a d-level six-state QKD protocol that exploits the orbital angular momentum with the spatial mode of the light beam. The protocol shows that the feature of a high capacity since keys are encoded using photon modes in d-level Hilbert space. The devices for state preparation and measurement are also discussed. This protocol has high security and the alignment of shared reference frames is not needed between sender and receiver.
Nanowire sensors and arrays for chemical/biomolecule detection
NASA Technical Reports Server (NTRS)
Yun, Minhee; Lee, Choonsup; Vasquez, Richard P.; Ramanathan, K.; Bangar, M. A.; Chen, W.; Mulchandan, A.; Myung, N. V.
2005-01-01
We report electrochemical growth of single nanowire based sensors using e-beam patterned electrolyte channels, potentially enabling the controlled fabrication of individually addressable high density arrays. The electrodeposition technique results in nanowires with controlled dimensions, positions, alignments, and chemical compositions. Using this technique, we have fabricated single palladium nanowires with diameters ranging between 75 nm and 300 nm and conducting polymer nanowires (polypyrrole and polyaniline) with diameters between 100 nm and 200 nm. Using these single nanowires, we have successfully demonstrated gas sensing with Pd nanowires and pH sensing with polypirrole nanowires.
Off-axis digital holographic camera for quantitative phase microscopy.
Monemhaghdoust, Zahra; Montfort, Frédéric; Emery, Yves; Depeursinge, Christian; Moser, Christophe
2014-06-01
We propose and experimentally demonstrate a digital holographic camera which can be attached to the camera port of a conventional microscope for obtaining digital holograms in a self-reference configuration, under short coherence illumination and in a single shot. A thick holographic grating filters the beam containing the sample information in two dimensions through diffraction. The filtered beam creates the reference arm of the interferometer. The spatial filtering method, based on the high angular selectivity of the thick grating, reduces the alignment sensitivity to angular displacements compared with pinhole based Fourier filtering. The addition of a thin holographic grating alters the coherence plane tilt introduced by the thick grating so as to create high-visibility interference over the entire field of view. The acquired full-field off-axis holograms are processed to retrieve the amplitude and phase information of the sample. The system produces phase images of cheek cells qualitatively similar to phase images extracted with a standard commercial DHM.
Speckle-based portable device for in-situ metrology of x-ray mirrors at Diamond Light Source
NASA Astrophysics Data System (ADS)
Wang, Hongchang; Kashyap, Yogesh; Zhou, Tunhe; Sawhney, Kawal
2017-09-01
For modern synchrotron light sources, the push toward diffraction-limited and coherence-preserved beams demands accurate metrology on X-ray optics. Moreover, it is important to perform in-situ characterization and optimization of X-ray mirrors since their ultimate performance is critically dependent on the working conditions. Therefore, it is highly desirable to develop a portable metrology device, which can be easily implemented on a range of beamlines for in-situ metrology. An X-ray speckle-based portable device for in-situ metrology of synchrotron X-ray mirrors has been developed at Diamond Light Source. Ultra-high angular sensitivity is achieved by scanning the speckle generator in the X-ray beam. In addition to the compact setup and ease of implementation, a user-friendly graphical user interface has been developed to ensure that characterization and alignment of X-ray mirrors is simple and fast. The functionality and feasibility of this device is presented with representative examples.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Atkinson, P; Chen, Q
2016-06-15
Purpose: To assess the clinical efficacy of auto beam hold during prostate RapidArc delivery, triggered by fiducial localization on kV imaging with a Varian True Beam. Methods: Prostate patients with four gold fiducials were candidates in this study. Daily setup was accomplished by aligning to fiducials using orthogonal kV imaging. During RapidArc delivery, a kV image was automatically acquired with a momentary beam hold every 60 degrees of gantry rotation. The position of each fiducial was identified by a search algorithm and compared to a predetermined 1.4 cm diameter target area. Treatment continued if all the fiducials were within themore » target area. If any fiducial was outside the target area the beam hold was not released, and the operators determined if the patient needed re-alignment using the daily setup method. Results: Four patients were initially selected. For three patients, the auto beam hold performed seamlessly. In one instance, the system correctly identified misaligned fiducials, stopped treatment, and the patient was re-positioned. The fourth patient had a prosthetic hip which sometimes blocked the fiducials and caused the fiducial search algorithm to fail. The auto beam hold was disabled for this patient and the therapists manually monitored the fiducial positions during treatment. Average delivery time for a 2-arc fraction was increased by 59 seconds. Phantom studies indicated the dose discrepancy related to multiple beam holds is <0.1%. For a plan with 43 fractions, the additional imaging increased dose by an estimated 68 cGy. Conclusion: Automated intrafraction kV imaging can effectively perform auto beam holds due to patient movement, with the exception of prosthetic hip patients. The additional imaging dose and delivery time are clinically acceptable. It may be a cost-effective alternative to Calypso in RapidArc prostate patient delivery. Further study is warranted to explore its feasibility under various clinical conditions.« less
NASA Astrophysics Data System (ADS)
Li, Y.; Capatina, D.; D'Amico, K.; Eng, P.; Hawreliak, J.; Graber, T.; Rickerson, D.; Klug, J.; Rigg, P. A.; Gupta, Y. M.
2017-06-01
Coupling laser-driven compression experiments to the x-ray beam at the Dynamic Compression Sector (DCS) at the Advanced Photon Source (APS) of Argonne National Laboratory requires state-of-the-art x-ray focusing, pulse isolation, and diagnostics capabilities. The 100J UV pulsed laser system can be fired once every 20 minutes so precise alignment and focusing of the x-rays on each new sample must be fast and reproducible. Multiple Kirkpatrick-Baez (KB) mirrors are used to achieve a focal spot size as small as 50 μm at the target, while the strategic placement of scintillating screens, cameras, and detectors allows for fast diagnosis of the beam shape, intensity, and alignment of the sample to the x-ray beam. In addition, a series of x-ray choppers and shutters are used to ensure that the sample is exposed to only a single x-ray pulse ( 80ps) during the dynamic compression event and require highly precise synchronization. Details of the technical requirements, layout, and performance of these instruments will be presented. Work supported by DOE/NNSA.
Device for collecting and analyzing matrix-isolated samples
Reedy, Gerald T.
1979-01-01
A gas-sample collection device is disclosed for matrix isolation of individual gas bands from a gas chromatographic separation and for presenting these distinct samples for spectrometric examination. The device includes a vacuum chamber containing a rotatably supported, specular carrousel having a number of external, reflecting surfaces around its axis of rotation for holding samples. A gas inlet is provided for depositing sample and matrix material on the individual reflecting surfaces maintained at a sufficiently low temperature to cause solidification. Two optical windows or lenses are installed in the vacuum chamber walls for transmitting a beam of electromagnetic radiation, for instance infrared light, through a selected sample. Positioned within the chamber are two concave mirrors, the first aligned to receive the light beam from one of the lenses and focus it to the sample on one of the reflecting surfaces of the carrousel. The second mirror is aligned to receive reflected light from that carrousel surface and to focus it outwardly through the second lens. The light beam transmitted from the sample is received by a spectrometer for determining absorption spectra.
NASA Astrophysics Data System (ADS)
Junqueira Leão, Rodrigo; Raffaelo Baldo, Crhistian; Collucci da Costa Reis, Maria Luisa; Alves Trabanco, Jorge Luiz
2018-03-01
The performance of particle accelerators depends highly on the relative alignment between their components. The position and orientation of the magnetic lenses that form the trajectory of the charged beam is kept to micrometric tolerances in a range of hundreds of meters of the length of the machines. Therefore, the alignment problem is fundamentally of a dimensional metrology nature. There is no common way of expressing these tolerances in terms of terminology and alignment concept. The alignment needs for a certain machine is normally given in terms of deviations between the position of any magnet in the accelerator and the fitted line that relates the actual position of the magnets’ assembly. Root mean square errors and standard deviations are normally used interchangeably and measurement uncertainty is often neglected. Although some solutions have been employed successfully in several accelerators, there is no off-the-shelf solution to perform the alignment. Also, each alignment campaign makes use of different measuring instruments to achieve the desired results, which makes the alignment process a complex measurement chain. This paper explores these issues by reviewing the tolerances specified for the alignment of particle accelerators, and proposes a metric to assess the quality of the alignment. The metric has the advantage of fully integrating the measurement uncertainty in the process.
Gilbert, H.W.
1983-06-16
An X-ray beam finder for locating a focal spot of an X-ray tube includes a mass of X-ray opaque material having first and second axially-aligned, parallel-opposed faces connected by a plurality of substantially identical parallel holes perpendicular to the faces and a film holder for holding X-ray sensitive film tightly against one face while the other face is placed in contact with the window of an X-ray head.
Optical and x-ray alignment approaches for off-plane reflection gratings
NASA Astrophysics Data System (ADS)
Allured, Ryan; Donovan, Benjamin D.; DeRoo, Casey T.; Marlowe, Hannah R.; McEntaffer, Randall L.; Tutt, James H.; Cheimets, Peter N.; Hertz, Edward; Smith, Randall K.; Burwitz, Vadim; Hartner, Gisela; Menz, Benedikt
2015-09-01
Off-plane reflection gratings offer the potential for high-resolution, high-throughput X-ray spectroscopy on future missions. Typically, the gratings are placed in the path of a converging beam from an X-ray telescope. In the off-plane reflection grating case, these gratings must be co-aligned such that their diffracted spectra overlap at the focal plane. Misalignments degrade spectral resolution and effective area. In-situ X-ray alignment of a pair of off-plane reflection gratings in the path of a silicon pore optics module has been performed at the MPE PANTER beamline in Germany. However, in-situ X-ray alignment may not be feasible when assembling all of the gratings required for a satellite mission. In that event, optical methods must be developed to achieve spectral alignment. We have developed an alignment approach utilizing a Shack-Hartmann wavefront sensor and diffraction of an ultraviolet laser. We are fabricating the necessary hardware, and will be taking a prototype grating module to an X-ray beamline for performance testing following assembly and alignment.
System for tomographic determination of the power distribution in electron beams
Elmer, J.W.; Teruya, A.T.; O'Brien, D.W.
1995-01-17
A tomographic technique is disclosed for measuring the current density distribution in electron beams using electron beam profile data acquired from a modified Faraday cup to create an image of the current density in high and low power beams. The modified Faraday cup includes a narrow slit and is rotated by a stepper motor and can be moved in the x, y and z directions. The beam is swept across the slit perpendicular thereto and controlled by deflection coils, and the slit rotated such that waveforms are taken every few degrees form 0[degree] to 360[degree] and the waveforms are recorded by a digitizing storage oscilloscope. Two-dimensional and three-dimensional images of the current density distribution in the beam can be reconstructed by computer tomography from this information, providing quantitative information about the beam focus and alignment. 12 figures.
Design of bituminous mixes with high skid resistance.
DOT National Transportation Integrated Search
1979-01-01
Certain highway locations need exceptionally high skid resistance because of the alignment, geometry, and drainage of the roadway and the complex turning maneuvers required. Several beam specimens made of bituminous mixes incorporating unconventional...
Practical UAV Optical Sensor Bench with Minimal Adjustability
NASA Technical Reports Server (NTRS)
Pilgrim, Jeffrey; Gonzales, Paula
2013-01-01
A multiple-pass optical platform eliminates essentially all optical alignment degrees of freedom, save one. A four-pass absorption spectrometer architecture is made rigid by firmly mounting dielectric-coated mirror prisms with no alignment capability to the platform. The laser diode beam is collimated by a small, custom-developed lens, which has only a rotational degree of freedom along the standard optical "z" axis. This degree is itself eliminated by adhesive after laser collimation. Only one degree of freedom is preserved by allowing the laser diode chip and mount subassembly to move relative to the collimating lens by using over-sized mounting holes. This allows full 360 deg motion of a few millimeters relative to the lens, which, due to the high numerical aperture of the lens, provides wide directional steering of the collimated laser beam.
Development of a Mirror Pointing Mechanism for an Atmospheric Gas Measurement Instrument
NASA Technical Reports Server (NTRS)
Graham, Michael; Belous, Adel; Brown, Jeffrey; Podolske, James
1998-01-01
Development of the Open Path Tunable Infrared Monitor of the Atmosphere (OPTIMA) instrument involved designing a pair of motion systems that could maintain a precise alignment and spatial distance between two mirrors installed on the NASA DC-8 research laboratory aircraft. This is the first airborne optical instrument that allows direct measurement of the gases in the freestream airflow on the exterior of the aircraft. One mirror is mounted within a specially constructed open port cavity in the cabin of the aircraft and the second is mounted 6 meters away on top of the inboard port side (number 2) engine pylon. Three co-aligned laser beams are reflected between the two mirrors 64 times in a Herriott pattern. The resulting sample path length of 384 meters is used to perform a spectral absorption analysis of the airflow between the mirrors. To compensate for normal wing movement and engine oscillations both mirrors were designed as continuously driven mechanisms to maintain alignment within allowable limits. The motion systems of the two mirror assemblies provide five degrees of freedom and are designed to maintain a pointing accuracy within seven arc-sec with a response frequency in 6xcess of 10 Hz. The pylon motion system incorporates controlled pitch and yaw movement. The fuselage motion system compensates for pitch variation as well as linear translation for focal length and vertical aiming of the laser beam via a controlled beam guidance mechanism.
NASA Astrophysics Data System (ADS)
Ohta, Masamichi; Itaya, Shunsuke; Ozawa, Shintaro; Binti, M. Azmi; Dianah, Nada; Fujieda, Ichiro
2016-09-01
One can convert a Luminescent Solar Concentrator (LSC) to an energy-harvesting display by scanning a laser beam on it. By incorporating a guest-host system of liquid crystal (LC) and dye materials in an LSC, the power of photoluminescence (PL) utilized for either display or energy-harvesting can be adjusted to the changes in ambient lighting conditions. We have measured basic characteristics of an LC/dye cell with twisted-nematic (TN) alignment. These are absorption of the laser light, PL radiation pattern, contrast of luminance, spreading of the PL generated by a narrow laser beam, and their dependencies on the bias. The results are similar to those of the LC/dye cell with antiparallel (AP) alignment with the following exceptions. First, absorption by the TN cell depends on the bias for both polarization components of the excitation light, while the AP cell exhibits a bias dependency only for the component polarized along the alignment direction. Second, the PL from the TN cell is mostly polarized along the alignment direction on the exit side of the cell while the PL from the AP cell is mostly polarized along its alignment direction. These observations can be attributed to the fact that the polarization plane of a linearly polarized light rotates as it propagated the TN-LC layer. For both AP and TN cells, low-intensity PL is observed from the whole cell surfaces. This can degrade the contrast of a displayed image. Bias application to the cell suppresses this effect.
Saving Strokes with Space Technology
NASA Technical Reports Server (NTRS)
1980-01-01
Inventor Dave Pelz developed a space spinoff Teacher Alignment Computer for Sunmark Preceptor Golf Ltd. which helps golfers learn proper putting aim. The light beam, reflected into the computer, measures putter alignment and lights atop the box tell the golfer he is on target or off to either side and how much. A related putting aid idea is to stroke the ball at the putter's "sweet spot," which is bracketed by metal prongs. Regular practice develops solid impacts for better putting.
Retro-modulators and fast beam steering for free-space optical communications
NASA Astrophysics Data System (ADS)
Chan, Trevor Keith
Free-space optical (FSO) communications is a means of secure, high bandwidth communication through the use of a modulated laser beam in free-space as the information medium. The chaotic nature of the atmosphere and the motion of the communication nodes make laser alignment a crucial concern. The employment of retro-reflecting modulators makes the bidirectional quality of a communication link into a one sided alignment problem. While there are existing retro-reflecting modulators, their trade-offs create a lack of abilities (such as aperture size, angular range, high modulation speeds, economic viability) which do not fulfill the requirements for certain applications. Also, the beam must be directed towards the intended receiver. Form mobile or scintillated communication links, beam direction must be adaptable in real time. Once again, this area suffers from trade-offs where beamsteering speed is often limited. Research used to mitigate the trade-offs and adapt the devices into viable options for a wider range of applications is explored in this dissertation. Two forms of retro-modulators were explored; a MEMS deformable mirror retro-modulator and a solid silicon retro-modulator that modulated the light by frustrated total internal reflection (FTIR). The MEMS version offered a high speed, scalable, wavelength/angle insensitive retro-modulator which can be massed produced at low cost, while the solid retro-modulator offered a large field of view with low cost as well. Both modulator's design, simulated performances, fabrication and experimental characterization are described in this dissertation. An ultra-fast beamscanner was also designed using 2-dimensional dispersion. By using wavelength switching for directional control, a beamscanner was developed that could switch light faster than pre-existing beamscanners while the beams characteristics (most importantly its aperture) could be freely adjusted by the independent optics. This beamscanner was preceded by our work on a large channel wavelength demultiplexer which combined two orthogonally oriented wavelength demultiplexers. This created a 2-dimensional array of spots in free-space. The light was directed be a collimating lens into a specific direction based on its wavelength. The performance of this beamscanner was simulated by modeling the dispersive properties of the components.
Elmer, J.W.; Teruya, A.T.; O`Brien, D.W.
1996-09-10
A tomographic technique for measuring the current density distribution in electron beams using electron beam profile data acquired from a modified Faraday cup to create an image of the current density in high and low power beams is disclosed. The modified Faraday cup includes a narrow slit and is rotated by a stepper motor and can be moved in the x, y and z directions. The beam is swept across the slit perpendicular thereto and controlled by deflection coils, and the slit rotated such that waveforms are taken every few degrees from 0{degree} to 360{degree} and the waveforms are recorded by a digitizing storage oscilloscope. Two-dimensional and three-dimensional images of the current density distribution in the beam can be reconstructed by computer tomography from this information, providing quantitative information about the beam focus and alignment. 12 figs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, X; Xiong, W; Gewanter, R
Purpose: Average or maximum intensity projection (AIP or MIP) images derived from 4DCT images are often used as a reference image for target alignment when free breathing Cone-beam CT (FBCBCT) is used for positioning a moving target at treatment. This method can be highly accurate if the patient has stable respiratory motion. However, a patient’s breathing pattern often varies irregularly. The purpose of this study is to investigate the effect of irregular respiration on the positioning accuracy of a moving target with FBCBCT. Methods: Eight patients’ respiratory motion curves were selected to drive a Quasar phantom with embedded cubic andmore » spherical targets. A 4DCT of the moving phantom was acquired on a CT scanner (Philips Brilliance 16) equipped with a Varian RPM system. The phase binned 4DCT images and the corresponding MIP and AIP images were transferred into Eclipse for analysis. CBCTs of the phantom driven by the same breathing curves were acquired on a Varian TrueBeam and fused such that the zero positions of moving targets are the same on both CBCT and AIP images. The sphere and cube volumes and centrioid differences (alignment error) determined by MIP, AIP and FBCBCT images were compared. Results: Compared to the volume determined by FBCBCT, the volumes of cube and sphere in MIP images were 22.4%±8.8% and 34.2%±6.2% larger while the volumes in AIP images were 7.1%±6.2% and 2.7%±15.3% larger, respectively. The alignment errors for the cube and sphere with center-center matches between MIP and FBCBCT were 3.5±3.1mm and 3.2±2.3mm, and the alignment errors between AIP and FBCBCT were 2.1±2.6mm and 2.1±1.7mm, respectively. Conclusion: AIP images appear to be superior reference images than MIP images. However, irregular respiratory motions could compromise the positioning accuracy of a moving target if the target center-center match is used to align FBCBCT and AIP images.« less
Veligdan, James T.
2000-11-14
A microphone for detecting sound pressure waves includes a laser resonator having a laser gain material aligned coaxially between a pair of first and second mirrors for producing a laser beam. A reference cell is disposed between the laser material and one of the mirrors for transmitting a reference portion of the laser beam between the mirrors. A sensing cell is disposed between the laser material and one of the mirrors, and is laterally displaced from the reference cell for transmitting a signal portion of the laser beam, with the sensing cell being open for receiving the sound waves. A photodetector is disposed in optical communication with the first mirror for receiving the laser beam, and produces an acoustic signal therefrom for the sound waves.
NASA Astrophysics Data System (ADS)
Birkbeck, Aaron L.
A new technology is developed that functionally integrates arrays of lasers and micro-optics into microfluidic systems for the purpose of imaging, analyzing, and manipulating objects and biological cells. In general, the devices and technologies emerging from this area either lack functionality through the reliance on mechanical systems or provide a serial-based, time consuming approach. As compared to the current state of art, our all-optical design methodology has several distinguishing features, such as parallelism, high efficiency, low power, auto-alignment, and high yield fabrication methods, which all contribute to minimizing the cost of the integration process. The potential use of vertical cavity surface emitting lasers (VCSELs) for the creation of two-dimensional arrays of laser optical tweezers that perform independently controlled, parallel capture, and transport of large numbers of individual objects and biological cells is investigated. One of the primary biological applications for which VCSEL array sourced laser optical tweezers are considered is the formation of engineered tissues through the manipulation and spatial arrangement of different types of cells in a co-culture. Creating devices that combine laser optical tweezers with select micro-optical components permits optical imaging and analysis functions to take place inside the microfluidic channel. One such device is a micro-optical spatial filter whose motion and alignment is controlled using a laser optical tweezer. Unlike conventional spatial filter systems, our device utilizes a refractive optical element that is directly incorporated onto the lithographically patterned spatial filter. This allows the micro-optical spatial filter to automatically align itself in three-dimensions to the focal point of the microscope objective, where it then filters out the higher frequency additive noise components present in the laser beam. As a means of performing high resolution imaging in the microfluidic channel, we developed a novel technique that integrates the capacity of a laser tweezer to optically trap and manipulate objects in three-dimensions with the resolution-enhanced imaging capabilities of a solid immersion lens (SIL). In our design, the SIL is a free-floating device whose imaging beam, motion control and alignment is provided by a laser optical tweezer, which allows the microfluidic SIL to image in areas that are inaccessible to traditional solid immersion microscopes.
Beam measurements using visible synchrotron light at NSLS2 storage ring
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Weixing, E-mail: chengwx@bnl.gov; Bacha, Bel; Singh, Om
2016-07-27
Visible Synchrotron Light Monitor (SLM) diagnostic beamline has been designed and constructed at NSLS2 storage ring, to characterize the electron beam profile at various machine conditions. Due to the excellent alignment, SLM beamline was able to see the first visible light when beam was circulating the ring for the first turn. The beamline has been commissioned for the past year. Besides a normal CCD camera to monitor the beam profile, streak camera and gated camera are used to measure the longitudinal and transverse profile to understand the beam dynamics. Measurement results from these cameras will be presented in this paper.more » A time correlated single photon counting system (TCSPC) has also been setup to measure the single bunch purity.« less
Recording polarization gratings with a standing spiral wave
NASA Astrophysics Data System (ADS)
Vernon, Jonathan P.; Serak, Svetlana V.; Hakobyan, Rafik S.; Aleksanyan, Artur K.; Tondiglia, Vincent P.; White, Timothy J.; Bunning, Timothy J.; Tabiryan, Nelson V.
2013-11-01
A scalable and robust methodology for writing cycloidal modulation patterns of optical axis orientation in photosensitive surface alignment layers is demonstrated. Counterpropagating circularly polarized beams, generated by reflection of the input beam from a cholesteric liquid crystal, direct local surface orientation in a photosensitive surface. Purposely introducing a slight angle between the input beam and the photosensitive surface normal introduces a grating period/orientation that is readily controlled and templated. The resulting cycloidal diffractive waveplates offer utility in technologies requiring diffraction over a broad range of angles/wavelengths. This simple methodology of forming polarization gratings offers advantages over conventional fabrication techniques.
2010-01-01
Heterostructure epitaxial material growth was performed by RF plasma-assisted molecular - beam epitaxy (MBE) on a 2-in. semi- insulating 4H SiC wafer. From... beam epitaxy of beryllium-doped GaN buffer layers for AlGaN/GaN HEMTs . J Cryst Growth 2003;251:481–6. [25] Storm DF, Katzer DS, Binari SC, Glaser ER...Shanabrook BV, Roussos JA. Reduction of buffer layer conduction near plasma-assisted molecular - beam epitaxy grown GaN/AlN interfaces by beryllium
On the alignment and focusing of the Marshall Grazing Incidence X-ray Spectrometer (MaGIXS)
NASA Astrophysics Data System (ADS)
Champey, Patrick; Winebarger, Amy; Kobayashi, Ken; Savage, Sabrina; Cirtain, Jonathan; Cheimets, Peter; Hertz, Edward; Golub, Leon; Ramsey, Brian; McCracken, Jeff; Marquez, Vanessa; Allured, Ryan; Heilmann, Ralf K.; Schattenburg, Mark; Bruccoleri, Alexander
2016-07-01
The Marshall Grazing Incidence X-ray Spectrometer (MaGIXS) is a NASA sounding rocket instrument that is designed to observe soft X-ray emissions from 24 - 6.0 Å (0.5 - 2.0 keV energies) in the solar atmosphere. For the first time, high-temperature, low-emission plasma will be observed directly with 5 arcsecond spatial resolution and 22 mÅ spectral resolution. The unique optical design consists of a Wolter - I telescope and a 3-optic grazing- incidence spectrometer. The spectrometer utilizes a finite conjugate mirror pair and a blazed planar, varied line spaced grating, which is directly printed on a silicon substrate using e-beam lithography. The grating design is being finalized and the grating will be fabricated by the Massachusetts Institute of Technology (MIT) and Izentis LLC. Marshall Space Flight Center (MSFC) is producing the nickel replicated telescope and spectrometer mirrors using the same facilities and techniques as those developed for the ART-XC and FOXSI mirrors. The Smithsonian Astrophysical Observatory (SAO) will mount and align the optical sub-assemblies based on previous experience with similar instruments, such as the Hinode X-Ray Telescope (XRT). The telescope and spectrometer assembly will be aligned in visible light through the implementation of a theodolite and reference mirrors, in addition to the centroid detector assembly (CDA) - a device designed to align the AXAF-I nested mirrors. Focusing of the telescope and spectrometer will be achieved using the X-ray source in the Stray Light Facility (SLF) at MSFC. We present results from an alignment sensitivity analysis performed on the on the system and we also discuss the method for aligning and focusing MaGIXS.
On the Alignment and Focusing of the Marshall Grazing Incidence X-ray Spectrometer (MaGIXS)
NASA Technical Reports Server (NTRS)
Champey, Patrick; Winebarger, Amy; Kobayashi, Ken; Savage, Sabrina; Cirtain, Jonathan; Cheimets, Peter; Hertz, Edward; Golub, Leon; Ramsey, Brian; McCracken, Jeff
2016-01-01
The Marshall Grazing Incidence X-ray Spectrometer (MaGIXS) is a NASA sounding rocket instrument that is designed to observe soft X-ray emissions from 24 - 6.0 A (0.5 - 2.0 keV energies) in the solar atmosphere. For the rst time, high-temperature, low-emission plasma will be observed directly with 5 arcsecond spatial resolution and 22 mA spectral resolution. The unique optical design consists of a Wolter - I telescope and a 3-optic grazing- incidence spectrometer. The spectrometer utilizes a nite conjugate mirror pair and a blazed planar, varied line spaced grating, which is directly printed on a silicon substrate using e-beam lithography. The grating design is being nalized and the grating will be fabricated by the Massachusetts Institute of Technology (MIT) and Izentis LLC. Marshall Space Flight Center (MSFC) is producing the nickel replicated telescope and spectrometer mirrors using the same facilities and techniques as those developed for the ART-XC and FOXSI mirrors. The Smithsonian Astrophysical Observatory (SAO) will mount and align the optical sub-assemblies based on previous experience with similar instruments, such as the Hinode X-Ray Telescope (XRT). The telescope and spectrometer assembly will be aligned in visible light through the implementation of a theodolite and reference mirrors, in addition to the centroid detector assembly (CDA) { a device designed to align the AXAF-I nested mirrors. Focusing of the telescope and spectrometer will be achieved using the X-ray source in the Stray Light Facility (SLF) at MSFC. We present results from an alignment sensitivity analysis performed on the on the system and we also discuss the method for aligning and focusing MaGIXS.
Sudbury, G C
1969-10-01
The advantages of the Monk-Gillieson dispersion system using a plane grating off axis in the convergent beam from a paraboloidal collecting mirror have been applied to obtain low resolution photoelectric spectra of over forty bright stars in the 1500-3000 A region. Techniques of construction, alignment, calibration, and dc and pulse counting output data handling are described. The flight performance,in unstabilized Skylark rockets, is discussed.
Measuring the Contribution of Atmospheric Scatter to Laser Eye Dazzle
2015-09-01
alignment of the detector was then fine tuned to ensure that the reflected beam traveled perfectly back through the aperture, thus indicating normal...spanning June and July 2014. A narrow acceptance angle detector was used to measure scattered laser radiation within the laser beam at different... scatter does not make a significant contribution to laser eye dazzle for short-range laser engagements in atmospheres of good to moderate air quality
DOE Office of Scientific and Technical Information (OSTI.GOV)
Veligdan, James T.; Feichtner, John D.; Phillips, Thomas E.
2001-01-01
An optical keyboard includes an optical panel having optical waveguides stacked together. First ends of the waveguides define an inlet face, and opposite ends thereof define a screen. A projector transmits a light beam outbound through the waveguides for display on the screen as a keyboard image. A light sensor is optically aligned with the inlet face for sensing an inbound light beam channeled through the waveguides from the screen upon covering one key of the keyboard image.
Shiqaq Hai Musalla Primary Healthcare Center, Kirkuk, Iraq: Sustainment Assessment
2009-04-13
show any indicators of failure. The floors appeared even and level, and there were no apparent signs of settlement or displacement. During the...failure. The floors appeared even and level, and there were no apparent signs of settlement or displacement. With the exception of the walls tributary... settlement . The walls above the cantilever beams over the portico to the building had vertical cracks that aligned with the beam supports below
Optical Docking Aid Containing Fresnel Lenses
NASA Technical Reports Server (NTRS)
Pierce, Cole J.
1995-01-01
Proposed device provides self-contained visual cues to aid in docking. Similar to devices used to guide pilots in landing on aircraft carriers. Positions and directions of beams of light give observer visual cues of position relative to docking target point. Optical assemblies generate directed, diverging beams of light that, together, mark approach path to docking point. Conceived for use in docking spacecraft at Space Station Freedom, device adapted to numerous industrial docking and alignment applications.
NASA Astrophysics Data System (ADS)
Eastman, Clarke K.
2017-08-01
The Michelson interferometer is a classic tool for demonstrating the wave nature of light, and it is a cornerstone of the optics curriculum. But many students' experiences with this device are higher in frustration than they are in learning. That situation motivated an effort to make aligning the tool less a test of a visual acuity and patience, and more of an introduction to optics phenomena and optical engineering. Key improvements included an added beam-splitter to accommodate multiple observers, a modified telescope to quickly and reliably obtain parallel mirrors, and a series of increasing spectral-width light sources to obtain equal path lengths. This greatly improved students' chances of success, as defined by achieving "white light fringes". When presenting these new features to the students, high importance is placed on understanding why alignment was so difficult with the original design, and why the changes made alignment easier. By exposing the rationale behind the improvements, students can observe the process of problem-solving in an optical engineering scenario. Equally important is the demonstration that solutions can be devised or adapted based on the parts at hand, and that implementations only achieve a highly "polished' state after several design iterations.
Carbon Nanotube-Based Structural Health Monitoring Sensors
NASA Technical Reports Server (NTRS)
Wincheski, Russell; Jordan, Jeffrey; Oglesby, Donald; Watkins, Anthony; Patry, JoAnne; Smits, Jan; Williams, Phillip
2011-01-01
Carbon nanotube (CNT)-based sensors for structural health monitoring (SHM) can be embedded in structures of all geometries to monitor conditions both inside and at the surface of the structure to continuously sense changes. These CNTs can be manipulated into specific orientations to create small, powerful, and flexible sensors. One of the sensors is a highly flexible sensor for crack growth detection and strain field mapping that features a very dense and highly ordered array of single-walled CNTs. CNT structural health sensors can be mass-produced, are inexpensive, can be packaged in small sizes (0.5 micron(sup 2)), require less power than electronic or piezoelectric transducers, and produce less waste heat per square centimeter than electronic or piezoelectric transducers. Chemically functionalized lithographic patterns are used to deposit and align the CNTs onto metallic electrodes. This method consistently produces aligned CNTs in the defined locations. Using photo- and electron-beam lithography, simple Cr/Au thin-film circuits are patterned onto oxidized silicon substrates. The samples are then re-patterned with a CNT-attracting, self-assembled monolayer of 3-aminopropyltriethoxysilane (APTES) to delineate the desired CNT locations between electrodes. During the deposition of the solution-suspended single- wall CNTs, the application of an electric field to the metallic contacts causes alignment of the CNTs along the field direction. This innovation is a prime candidate for smart skin technologies with applications ranging from military, to aerospace, to private industry.
Growth of high-aspect ratio horizontally-aligned ZnO nanowire arrays.
Soman, Pranav; Darnell, Max; Feldman, Marc D; Chen, Shaochen
2011-08-01
A method of fabricating horizontally-aligned zinc-oxide (ZnO) nanowire (NW) arrays with full control over the width and length is demonstrated. SEM images reveal the hexagonal structure typical of zinc oxide NWs. Arrays of high-aspect ratio horizontal ZnO NWs are fabricated by making use of the lateral overgrowth from dot patterns created by electron beam lithography (EBL). An array of patterned wires are lifted off and transferred to a flexible PDMS substrate with possible applications in several key nanotechnology areas.
Formation of long-lived CDn2+ and CHn2+ dications
NASA Astrophysics Data System (ADS)
Levy, Y.; Bar-David, A.; Ben-Itzhak, I.; Gertner, I.; Rosner, B.
1999-08-01
A systematic study of the formation of CDn2+ and CHn2+ dications in fast charge-stripping collisions with Ar atoms was conducted. The experimental method was based on the detection of the D (or H) fragments of the molecular ion of interest, and thus reducing the effect of the fraction of molecular ions containing the 13C isotope and other beam impurities. We observed long-lived CD22+, CD42+, and CD52+ dications. In the same process neither long-lived CD2+ nor CD32+ were observed. The mean lifetime of CD22+ was determined to be 4.0±1.11.3 µs, and those of CD42+ and CD52+ were longer than 2.1 and 3.3 µs, respectively. The production cross sections of CDn2+ from different CDm+ beams were measured. Long-lived CD22+ was formed from all CDm+ beams (micons/Journals/Common/geq" ALT="geq" ALIGN="TOP"/>2) and also directly from the rf ion source. In contrast, CD42+ and CD52+ were formed only from CD4+ and CD5+, respectively.
Fabrication of Single, Vertically Aligned Carbon Nanotubes in 3D Nanoscale Architectures
NASA Technical Reports Server (NTRS)
Kaul, Anupama B.; Megerian, Krikor G.; Von Allmen, Paul A.; Baron, Richard L.
2010-01-01
Plasma-enhanced chemical vapor deposition (PECVD) and high-throughput manufacturing techniques for integrating single, aligned carbon nanotubes (CNTs) into novel 3D nanoscale architectures have been developed. First, the PECVD growth technique ensures excellent alignment of the tubes, since the tubes align in the direction of the electric field in the plasma as they are growing. Second, the tubes generated with this technique are all metallic, so their chirality is predetermined, which is important for electronic applications. Third, a wafer-scale manufacturing process was developed that is high-throughput and low-cost, and yet enables the integration of just single, aligned tubes with nanoscale 3D architectures with unprecedented placement accuracy and does not rely on e-beam lithography. Such techniques should lend themselves to the integration of PECVD grown tubes for applications ranging from interconnects, nanoelectromechanical systems (NEMS), sensors, bioprobes, or other 3D electronic devices. Chemically amplified polyhydroxystyrene-resin-based deep UV resists were used in conjunction with excimer laser-based (lambda = 248 nm) step-and-repeat lithography to form Ni catalyst dots = 300 nm in diameter that nucleated single, vertically aligned tubes with high yield using dc PECVD growth. This is the first time such chemically amplified resists have been used, resulting in the nucleation of single, vertically aligned tubes. In addition, novel 3D nanoscale architectures have been created using topdown techniques that integrate single, vertically aligned tubes. These were enabled by implementing techniques that use deep-UV chemically amplified resists for small-feature-size resolution; optical lithography units that allow unprecedented control over layer-to-layer registration; and ICP (inductively coupled plasma) etching techniques that result in near-vertical, high-aspect-ratio, 3D nanoscale architectures, in conjunction with the use of materials that are structurally and chemically compatible with the high-temperature synthesis of the PECVD-grown tubes. The techniques offer a wafer-scale process solution for integrating single PECVD-grown nanotubes into novel architectures that should accelerate their integration in 3D electronics in general. NASA can directly benefit from this technology for its extreme-environment planetary missions. Current Si transistors are inherently more susceptible to high radiation, and do not tolerate extremes in temperature. These novel 3D nanoscale architectures can form the basis for NEMS switches that are inherently less susceptible to radiation or to thermal extremes.
Method and apparatus for charged particle propagation
Hershcovitch, Ady
1996-11-26
A method and apparatus are provided for propagating charged particles from a vacuum to a higher pressure region. A generator 14,14b includes an evacuated chamber 16a,b having a gun 18,18b for discharging a beam of charged particles such as an electron beam 12 or ion beam 12b. The beam 12,12b is discharged through a beam exit 22 in the chamber 16a,b into a higher pressure region 24. A plasma interface 34 is disposed at the beam exit 22 and includes a plasma channel 38 for bounding a plasma 40 maintainable between a cathode 42 and an anode 44 disposed at opposite ends thereof. The plasma channel 38 is coaxially aligned with the beam exit 22 for propagating the beam 12,12b from the chamber 16a,b, through the plasma 40, and into the higher pressure region 24. The plasma 40 is effective for pumping down the beam exit 22 for preventing pressure increase in the chamber 16a,b, and provides magnetic focusing of the beam 12,12b discharged into the higher pressure region 24.
High efficiency ion beam accelerator system
NASA Technical Reports Server (NTRS)
Aston, G.
1981-01-01
An ion accelerator system that successfully combines geometrical and electrostatic focusing principles is presented. This accelerator system uses thin, concave, multiple-hole, closely spaced graphite screen and focusing grids which are coupled to single slot accelerator and decelerator grids to provide high ion extraction efficiency and good focusing. Tests with the system showed a substantial improvement in ion beam current density and collimation as compared with a Pierce electrode configuration. Durability of the thin graphite screen and focusing grids has been proven, and tests are being performed to determine the minimum screen and focusing grid spacing and thickness required to extract the maximum reliable beam current density. Compared with present neutral beam injector accelerator systems, this one has more efficient ion extraction, easier grid alignment, easier fabrication, a less cumbersome design, and the capacity to be constructed in a modular fashion. Conceptual neutral beam injector designs using this modular approach have electrostatic beam deflection plates downstream of each module.
WE-EF-303-10: Single- Detector Proton Radiography as a Portal Imaging Equivalent for Proton Therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doolan, P; Bentefour, E; Testa, M
2015-06-15
Purpose: In proton therapy, patient alignment is of critical importance due to the sensitivity of the proton range to tissue heterogeneities. Traditionally proton radiography is used for verification of the water-equivalent path length (WEPL), which dictates the depth protons reach. In this work we propose its use for alignment. Additionally, many new proton centers have cone-beam computed tomography in place of beamline X-ray imaging and so proton radiography offers a unique patient alignment verification similar to portal imaging in photon therapy. Method: Proton radiographs of a CIRS head phantom were acquired using the Beam Imaging System (BIS) (IBA, Louvain-la-Neuve) inmore » a horizontal beamline. A scattered beam was produced using a small, dedicated, range modulator (RM) wheel fabricated out of aluminum. The RM wheel was rotated slowly (20 sec/rev) using a stepper motor to compensate for the frame rate of the BIS (120 ms). Dose rate functions (DRFs) over two RM wheel rotations were acquired. Calibration was made with known thicknesses of homogeneous solid water. For each pixel the time width, skewness and kurtosis of the DRFs were computed. The time width was used to compute the object WEPL. In the heterogeneous phantom, the excess skewness and excess kurtosis (i.e. difference from homogeneous cases) were computed and assessed for suitability for patient set up. Results: The technique allowed for the simultaneous production of images that can be used for WEPL verification, showing few internal details, and excess skewness and kurtosis images that can be used for soft tissue alignment. These latter images highlight areas where range mixing has occurred, correlating with phantom heterogeneities. Conclusion: The excess skewness and kurtosis images contain details that are not visible in the WET images. These images, unique to the time-resolved proton radiographic method, could be used for patient set up according to soft tissues.« less
Simulation of plasma double-layer structures
NASA Technical Reports Server (NTRS)
Borovsky, J. E.; Joyce, G.
1982-01-01
Electrostatic plasma double layers are numerically simulated by means of a magnetized 2 1/2 dimensional particle in cell method. The investigation of planar double layers indicates that these one dimensional potential structures are susceptible to periodic disruption by instabilities in the low potential plasmas. Only a slight increase in the double layer thickness with an increase in its obliqueness to the magnetic field is observed. Weak magnetization results in the double layer electric field alignment of accelerated particles and strong magnetization results in their magnetic field alignment. The numerical simulations of spatially periodic two dimensional double layers also exhibit cyclical instability. A morphological invariance in two dimensional double layers with respect to the degree of magnetization implies that the potential structures scale with Debye lengths rather than with gyroradii. Electron beam excited electrostatic electron cyclotron waves and (ion beam driven) solitary waves are present in the plasmas adjacent to the double layers.
Optical analysis of AlGaInP laser diodes with real refractive index guided self-aligned structure
NASA Astrophysics Data System (ADS)
Xu, Yun; Zhu, Xiaopeng; Ye, Xiaojun; Kang, Xiangning; Cao, Qing; Guo, Liang; Chen, Lianghui
2004-05-01
Optical modes of AlGaInP laser diodes with real refractive index guided self-aligned (RISA) structure were analyzed theoretically on the basis of two-dimension semivectorial finite-difference methods (SV-FDMs) and the computed simulation results were presented. The eigenvalue and eigenfunction of this two-dimension waveguide were obtained and the dependence of the confinement factor and beam divergence angles in the direction of parallel and perpendicular to the pn junction on the structure parameters such as the number of quantum wells, the Al composition of the cladding layers, the ridge width, the waveguide thickness and the residual thickness of the upper P-cladding layer were investigated. The results can provide optimized structure parameters and help us design and fabricate high performance AlGaInP laser diodes with a low beam aspect ratio required for optical storage applications.
Observation of a γ -decaying millisecond isomeric state in 128 Cd 80
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jungclaus, A.; Grawe, H.; Nishimura, S.
2017-09-01
A new high-spin isomer in the neutron-rich nucleus 128Cd was populated in the projectile fission of a 238U beam at the Radioactive Isotope Beam Factory at RIKEN. A half-life of T1/2 = 6.3(8) ms was measured for the new state which was tentatively assigned a spin/parity of (15-). The experimental results are compared to shell model calculations performed using state-of-the-art realistic effective interactions and to the neighbouring nucleus 129Cd. In the present experiment no evidence was found for the decay of a 18 + E6 spin-trap isomer, based on the complete alignment of the two-neutron and two-proton holes in themore » 0h 11/2 and the 0g 9/2 orbit, respectively, which is predicted to exist by the shell model.« less
Heterodyne efficiency for a coherent laser radar with diffuse or aerosol targets
NASA Technical Reports Server (NTRS)
Frehlich, R. G.
1993-01-01
The performance of a Coherent Laser Radar is determined by the statistics of the coherent Doppler signal. The heterodyne efficiency is an excellent indication of performance because it is an absolute measure of beam alignment and is independent of the transmitter power, the target backscatter coefficient, the atmospheric attenuation, and the detector quantum efficiency and gain. The theoretical calculation of heterodyne efficiency for an optimal monostatic lidar with a circular aperture and Gaussian transmit laser is presented including beam misalignment in the far-field and near-field regimes. The statistical behavior of estimates of the heterodyne efficiency using a calibration hard target are considered. For space based applications, a biased estimate of heterodyne efficiency is proposed that removes the variability due to the random surface return but retains the sensitivity to misalignment. Physical insight is provided by simulation of the fields on the detector surface. The required detector calibration is also discussed.
SU-E-J-115: Graticule for Verification of Treatment Position in Neutron Therapy.
Halford, R; Snyder, M
2012-06-01
Until recently the treatment verification for patients undergoing fast neutron therapy at our facility was accomplished through a combination of neutron beam portal films aligned with a graticule mounted on an orthronormal x-ray tube. To eliminate uncertainty with respect to the relative positions of the x-ray graticule and the therapy beam, we have developed a graticule which is placed in the neutron beam itself. For a graticule to be visible on the portal film, the attenuation of the neutron beam by the graticule landmarks must be significantly greater than that of the material in which the landmarks are mounted. Various materials, thicknesses, and mounting points were tried to gain the largest contrast between the graticule landmarks and the mounting material. The final design involved 2 inch steel pins of 0.125 inch diameter captured between two parallel plates of 0.25 inch thick clear acrylic plastic. The distance between the two acrylic plates was 1.625 inches, held together at the perimeter with acrylic sidewall spacers. This allowed the majority of length of the steel pins to be surrounded by air. The pins were set 1 cm apart and mounted at angles parallel to the divergence of the beam dependent on their position within the array. The entire steel pin and acrylic plate assembly was mounted on an acrylic accessory tray to allow for graticule alignment. Despite the inherent difficulties in attenuating fast neutrons, our simple graticule design produces the required difference of attenuation between the arrays of landmarks and the mounting material. The graticule successfully provides an in-beam frame of reference for patient portal verification. © 2012 American Association of Physicists in Medicine.
Progress and prospects of GaN-based VCSEL from near UV to green emission
NASA Astrophysics Data System (ADS)
Yu, Hsin-chieh; Zheng, Zhi-wei; Mei, Yang; Xu, Rong-bin; Liu, Jian-ping; Yang, Hui; Zhang, Bao-ping; Lu, Tien-chang; Kuo, Hao-chung
2018-01-01
GaN is a great material for making optoelectronic devices in the blue, blue-violet and green bands. Vertical-cavity surface-emitting lasers (VCSELs) have many advantages including small footprint, circular symmetry of output beam, two-dimensional scalability and/or addressability, surface-mount packaging, good price-performance ratio, and simple optics/alignment for output coupling. In this paper, we would like to (1) Review the design and fabrication of GaN-based VCSELs including some technology challenges, (2) Discuss the design and metalorganic chemical vapor deposition (MOCVD) growth of electrically pumped blue VCSELs and (3) Demonstrate world first green VCSEL using quantum dots (QDs) active region to overcome the 'green gap'.
Magnetic Alignment of Pulsed Solenoids Using the Pulsed Wire Method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arbelaez, D.; Madur, A.; Lipton, T.M.
2011-04-01
A unique application of the pulsed-wire measurement method has been implemented for alignment of 2.5 T pulsed solenoid magnets. The magnetic axis measurement has been shown to have a resolution of better than 25 {micro}m. The accuracy of the technique allows for the identification of inherent field errors due to, for example, the winding layer transitions and the current leads. The alignment system is developed for the induction accelerator NDCX-II under construction at LBNL, an upgraded Neutralized Drift Compression experiment for research on warm dense matter and heavy ion fusion. Precise alignment is essential for NDCX-II, since the ion beammore » has a large energy spread associated with the rapid pulse compression such that misalignments lead to corkscrew deformation of the beam and reduced intensity at focus. The ability to align the magnetic axis of the pulsed solenoids to within 100 pm of the induction cell axis has been demonstrated.« less
Preliminary design of the spatial filters used in the multipass amplification system of TIL
NASA Astrophysics Data System (ADS)
Zhu, Qihua; Zhang, Xiao Min; Jing, Feng
1998-12-01
The spatial filters are used in Technique Integration Line, which has a multi-pass amplifier, not only to suppress parasitic high spatial frequency modes but also to provide places for inserting a light isolator and injecting the seed beam, and to relay image while the beam passes through the amplifiers several times. To fulfill these functions, the parameters of the spatial filters are optimized by calculations and analyzes with the consideration of avoiding the plasma blow-off effect and components demanding by ghost beam focus. The 'ghost beams' are calculated by ray tracing. A software was developed to evaluate the tolerance of the spatial filters and their components, and to align the whole system on computer simultaneously.
Ohtomo, Takayuki; Sudo, Seiichi; Otsuka, Kenju
2016-09-20
We observed intermittent modulation by scattered light from a single submicrometer particle moving in the flow channel using a self-mixing microchip Yb:YAG laser Doppler velocimeter (LDV) under lateral beam access. The Doppler-shift frequency chirping (i.e., velocity change) was identified in accordance with a particle passage through the beam focus. Single particle counting, which obeys the Poisson distribution, was performed successfully over a long period of time. The experimental results have been reproduced by a numerical simulation. The LDV signal was increased over 20 dB for a 202-nm particle without chirping by collinear beam access with the laser beam axis aligned along the flow direction.
2008-01-01
components attached. The laser is located on the far left corner of the bench the pulse chopper assembly and beam expansion optics are at center. The IMU...access to the computer and receivers. Modifications were also made to lock the alignment of the beam through the chopper to increase the output...Receiver 2 CPU & Digitizer Laser Head Pulse Chopper 100 cm 56 cm GPS & INS Therm al M anagem ent 56 cm INS Laser PC & Digitize TE cooler Page 6 of
X-Tip: a New Tool for Nanoscience or How to Combine X-Ray Spectroscopies to Local Probe Analysis
NASA Astrophysics Data System (ADS)
Olivier, Dhez; Mario, Rodrigues; Fabio, Comin; Roberto, Felici; Joel, Chevrier
2007-01-01
With the advent of nanoscale science, the need of tools able to image samples and bring the region of interest to the X-ray beam is essential. We show the possibility of using the high resolution imaging capability of a scanning probe microscope to image and align a sample relative to the X-ray beam, as well as the possibility to record the photoelectrons emitted by the sample.
Ray, Mark D.; Sedlacek, Arthur J.
2003-08-19
A method and apparatus for remote, stand-off, and high efficiency spectroscopic detection of biological and chemical substances. The apparatus including an optical beam transmitter which transmits a beam having an axis of transmission to a target, the beam comprising at least a laser emission. An optical detector having an optical detection path to the target is provided for gathering optical information. The optical detection path has an axis of optical detection. A beam alignment device fixes the transmitter proximal to the detector and directs the beam to the target along the optical detection path such that the axis of transmission is within the optical detection path. Optical information gathered by the optical detector is analyzed by an analyzer which is operatively connected to the detector.
Split-field pupil plane determination apparatus
Salmon, Joseph T.
1996-01-01
A split-field pupil plane determination apparatus (10) having a wedge assembly (16) with a first glass wedge (18) and a second glass wedge (20) positioned to divide a laser beam (12) into a first laser beam half (22) and a second laser beam half (24) which diverge away from the wedge assembly (16). A wire mask (26) is positioned immediately after the wedge assembly (16) in the path of the laser beam halves (22, 24) such that a shadow thereof is cast as a first shadow half (30) and a second shadow half (32) at the input to a relay telescope (14). The relay telescope (14) causes the laser beam halves (22, 24) to converge such that the first shadow half (30) of the wire mask (26) is aligned with the second shadow half (32) at any subsequent pupil plane (34).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meyer, Jeff, E-mail: jmeye3@utsouthwestern.ed; Bluett, Jaques; Amos, Richard
Purpose: Conventional proton therapy with passively scattered beams is used to treat a number of tumor sites, including prostate cancer. Spot scanning proton therapy is a treatment delivery means that improves conformal coverage of the clinical target volume (CTV). Placement of individual spots within a target is dependent on traversed tissue density. Errors in patient alignment perturb dose distributions. Moreover, there is a need for a rational planning approach that can mitigate the dosimetric effect of random alignment errors. We propose a treatment planning approach and then analyze the consequences of various simulated alignment errors on prostate treatments. Methods andmore » Materials: Ten control patients with localized prostate cancer underwent treatment planning for spot scanning proton therapy. After delineation of the clinical target volume, a scanning target volume (STV) was created to guide dose coverage. Errors in patient alignment in two axes (rotational and yaw) as well as translational errors in the anteroposterior direction were then simulated, and dose to the CTV and normal tissues were reanalyzed. Results: Coverage of the CTV remained high even in the setting of extreme rotational and yaw misalignments. Changes in the rectum and bladder V45 and V70 were similarly minimal, except in the case of translational errors, where, as a result of opposed lateral beam arrangements, much larger dosimetric perturbations were observed. Conclusions: The concept of the STV as applied to spot scanning radiation therapy and as presented in this report leads to robust coverage of the CTV even in the setting of extreme patient misalignments.« less
NASA Technical Reports Server (NTRS)
Anderson, Richard
1994-01-01
The concept in the initial alignment of the segmented mirror adaptive optics telescope called the phased array mirror extendable large aperture telescope (Pamela) is to produce an optical transfer function (OTF) which closely approximates the diffraction limited value which would correspond to a system pupil function that is unity over the aperture and zero outside. There are differences in the theory of intensity measurements between coherent and incoherent radiation. As a result, some of the classical quantities which describe the performance of an optical system for incoherent radiation can not be defined for a coherent field. The most important quantity describing the quality of an optical system is the OTF and for a coherent source the OTF is not defined. Instead a coherent transfer function (CTF) is defined. The main conclusion of the paper is that an incoherent collimated source and not a collimated laser source is preferred to calibrate the Hartmann wavefront sensor (WFS) of an aligned adaptive optical system. A distant laser source can be used with minimum problems to correct the system for atmospheric turbulence. The collimation of the HeNe laser alignment source can be improved by using a very small pin hole in the spatial filter so only the central portion of the beam is transmitted and the beam from the filter is nearly constant in amplitude. The size of this pin hole will be limited by the sensitivity of the lateral effect diode (LEDD) elements.
Modematic: a fast laser beam analyzing system for high power CO2-laser beams
NASA Astrophysics Data System (ADS)
Olsen, Flemming O.; Ulrich, Dan
2003-03-01
The performance of an industrial laser is very much depending upon the characteristics of the laser beam. The ISO standards 11146 and 11154 describing test methods for laser beam parameters have been approved. To implement these methods in industry is difficult and especially for the infrared laser sources, such as the CO2-laser, the availabl analyzing systems are slow, difficult to apply and having limited reliability due to the nature of the detection methods. In an EUREKA-project the goal was defined to develop a laser beam analyzing system dedicated to high power CO2-lasers, which could fulfill the demands for an entire analyzing system, automating the time consuming pre-alignment and beam conditioning work required before a beam mode analyses, automating the analyzing sequences and data analysis required to determine the laser beam caustics and last but not least to deliver reliable close to real time data to the operator. The results of this project work will be described in this paper. The research project has led to the development of the Modematic laser beam analyzer, which is ready for the market.
Optical bandgap modelling from the structural arrangement of carbon nanotubes.
Butler, Timothy P; Rashid, Ijaz; Montelongo, Yunuen; Amaratunga, Gehan A J; Butt, Haider
2018-06-14
The optical bandgap properties of vertically-aligned carbon nanotube (VACNT) arrays were probed through their interaction with white light, with the light reflected from the rotating arrays measured with a spectrometer. The precise deterministic control over the structure of vertically-aligned carbon nanotube arrays through electron beam lithography and well-controlled growth conditions brings with it the ability to produce exotic photonic crystals over a relatively large area. The characterisation of the behaviour of these materials in the presence of light is a necessary first step toward application. Relatively large area array structures of high-quality VACNTs were fabricated in square, hexagonal, circular and pseudorandom patterned arrays with length scales on the order of those of visible light for the purpose of investigating how they may be used to manipulate an impinging light beam. In order to investigate the optical properties of these arrays a set of measurement apparatus was designed which allowed the accurate measurement of their optical bandgap characteristics. The patterned samples were rotated under the illuminating white light beam, revealing interesting optical bandgap results caused by the changing patterns and relative positions of the scattering elements (VACNTs).
Cold Ionospheric Ions in the Magnetic Reconnection Outflow Region
NASA Astrophysics Data System (ADS)
Li, W. Y.; André, M.; Khotyaintsev, Yu. V.; Vaivads, A.; Fuselier, S. A.; Graham, D. B.; Toledo-Redondo, S.; Lavraud, B.; Turner, D. L.; Norgren, C.; Tang, B. B.; Wang, C.; Lindqvist, P.-A.; Young, D. T.; Chandler, M.; Giles, B.; Pollock, C.; Ergun, R.; Russell, C. T.; Torbert, R.; Moore, T.; Burch, J.
2017-10-01
Magnetosheath plasma usually determines properties of asymmetric magnetic reconnection at the subsolar region of Earth's magnetopause. However, cold plasma that originated from the ionosphere can also reach the magnetopause and modify the kinetic physics of asymmetric reconnection. We present a magnetopause crossing with high-density (10-60 cm-3) cold ions and ongoing reconnection from the observation of the Magnetospheric Multiscale (MMS) spacecraft. The magnetopause crossing is estimated to be 300 ion inertial lengths south of the X line. Two distinct ion populations are observed on the magnetosheath edge of the ion jet. One population with high parallel velocities (200-300 km/s) is identified to be cold ion beams, and the other population is the magnetosheath ions. In the deHoffman-Teller frame, the field-aligned magnetosheath ions are Alfvénic and move toward the jet region, while the field-aligned cold ion beams move toward the magnetosheath boundary layer, with much lower speeds. These cold ion beams are suggested to be from the cold ions entering the jet close to the X line. This is the first observation of the cold ionospheric ions in the reconnection outflow region, including the reconnection jet and the magnetosheath boundary layer.
A Forest of Sub-1.5-nm-wide Single-Walled Carbon Nanotubes over an Engineered Alumina Support
NASA Astrophysics Data System (ADS)
Yang, Ning; Li, Meng; Patscheider, Jörg; Youn, Seul Ki; Park, Hyung Gyu
2017-04-01
A precise control of the dimension of carbon nanotubes (CNTs) in their vertical array could enable many promising applications in various fields. Here, we demonstrate the growth of vertically aligned, single-walled CNTs (VA-SWCNTs) with diameters in the sub-1.5-nm range (0.98 ± 0.24 nm), by engineering a catalyst support layer of alumina via thermal annealing followed by ion beam treatment. We find out that the ion beam bombardment on the alumina allows the growth of ultra-narrow nanotubes, whereas the thermal annealing promotes the vertical alignment at the expense of enlarged diameters; in an optimal combination, these two effects can cooperate to produce the ultra-narrow VA-SWCNTs. According to micro- and spectroscopic characterizations, ion beam bombardment amorphizes the alumina surface to increase the porosity, defects, and oxygen-laden functional groups on it to inhibit Ostwald ripening of catalytic Fe nanoparticles effectively, while thermal annealing can densify bulk alumina to prevent subsurface diffusion of the catalyst particles. Our findings contribute to the current efforts of precise diameter control of VA-SWCNTs, essential for applications such as membranes and energy storage devices.
Talking over a beam of light: electro-optics suitable for K-12
NASA Astrophysics Data System (ADS)
Nofziger, Michael J.
1995-10-01
A kit of electro-optical components is described which, when assembled and aligned, allows one to transmit voice signals over a beam of light. The kits were developed for TOPTICS '92, an optics convention held in the city of Tucson to showcase local optical companies and education opportunities to the public-at-large. One aspect of the convention was to involve school children with the world of optics. These kits proved to be an excellent way to link educators and their students with parents, optics professionals, and even the local media. The kits consist of all the necessary electrical components to build a transmitter (using an LED) and a receiver (using a phototransistor). The circuits are assembled on an electronic breadboard which is part of the storage case for the parts themselves. Optically, the light beam is collimated and focused using inexpensive Fresnel lenses. Distances over which one's voice may be sent are variable, determined by one's ability in optical alignment. Students in the 5th grade were the first to use the kits, sending their voices about 200 feet. The educational success of these kits is described in this paper.
Plasmonic nanofocusing with a metallic pyramid and an integrated C-shaped aperture
NASA Astrophysics Data System (ADS)
Lindquist, Nathan C.; Johnson, Timothy W.; Nagpal, Prashant; Norris, David J.; Oh, Sang-Hyun
2013-05-01
We demonstrate the design, fabrication and characterization of a near-field plasmonic nanofocusing probe with a hybrid tip-plus-aperture design. By combining template stripping with focused ion beam lithography, a variety of aperture-based near-field probes can be fabricated with high optical performance. In particular, the combination of large transmission through a C-shaped aperture aligned to the sharp apex (<10 nm radius) of a template-stripped metallic pyramid allows the efficient delivery of light--via the C-shaped aperture--while providing a nanometric hotspot determined by the sharpness of the tip itself.
High Efficient Ultra-Thin Flat Optics Based on Dielectric Metasurfaces
NASA Astrophysics Data System (ADS)
Ozdemir, Aytekin
Metasurfaces which emerged as two-dimensional counterparts of metamaterials, facilitate the realization of arbitrary phase distributions using large arrays with subwavelength and ultra-thin features. Even if metasurfaces are ultra-thin, they still effectively manipulate the phase, amplitude, and polarization of light in transmission or reflection mode. In contrast, conventional optical components are bulky, and they lose their functionality at sub-wavelength scales, which requires conceptually new types of nanoscale optical devices. On the other hand, as the optical systems shrink in size day by day, conventional bulky optical components will have tighter alignment and fabrication tolerances. Since metasurfaces can be fabricated lithographically, alignment can be done during lithographic fabrication, thus eliminating the need for post-fabrication alignments. In this work, various types of metasurface applications are thoroughly investigated for robust wavefront engineering with enhanced characteristics in terms of broad bandwidth, high efficiency and active tunability, while beneficial for application. Plasmonic metasurfaces are not compatible with the CMOS process flow, and, additionally their high absorption and ohmic loss is problematic in transmission based applications. Dielectric metasurfaces, however, offer a strong magnetic response at optical frequencies, and thus they can offer great opportunities for interacting not only with the electric component of a light field, but also with its magnetic component. They show great potential to enable practical device functionalities at optical frequencies, which motivates us to explore them one step further on wavefront engineering and imaging sensor platforms. Therefore, we proposed an efficient ultra-thin flat metalens at near-infrared regime constituted by silicon nanodisks which can support both electric and magnetic dipolar Mie-type resonances. These two dipole resonances can be overlapped at the same frequency by varying the geometric parameters of silicon nanodisks. Having two resonance mechanisms at the same frequency allows us to achieve full (0-2?) phase shift on the transmitted beam. To enable the miniaturization of pixel size for achieving high-resolution, planar, compact-size focal plane arrays (FPAs), we also present and explore the metasurface lens array-based FPAs. The investigated dielectric metasurface lens arrays achieved high focusing efficiency with superior optical crosstalk performance. We see a magnificent application prospect for metasurfaces in enhancing the fill factor and reducing the pixel size of FPAs and CCD, CMOS imaging sensors as well. Moreover, it is of paramount importance to design metasurfaces possessing tunable properties. Thus, we also propose a tunable beam steering device by combining phase manipulating metasurfaces concept and liquid crystals. Tunability feature is implemented by nematic liquid crystals infiltrated into nano holes in SiO2. Using electrically tunable nematic liquid crystals, dynamic beam steering is achieved.
Plasma effects of active ion beam injections in the ionosphere at rocket altitudes
NASA Technical Reports Server (NTRS)
Arnoldy, R. L.; Cahill, L. J., Jr.; Kintner, P. M.; Moore, T. E.; Pollock, C. J.
1992-01-01
Data from ARCS rocket ion beam injection experiments are primarily discussed. There are three results from this series of active experiments that are of particular interest in space plasma physics. These are the transverse acceleration of ambient ions in the large beam volume, the scattering of beam ions near the release payload, and the possible acceleration of electrons very close to the plasma generator which produce intense high frequency waves. The ability of 100 ma ion beam injections into the upper E and F regions of the ionosphere to produce these phenomena appear to be related solely to the process by which the plasma release payload and the ion beam are neutralized. Since the electrons in the plasma release do not convect with the plasma ions, the neutralization of both the payload and beam must be accomplished by large field-aligned currents (milliamperes/square meter) which are very unstable to wave growth of various modes.
Kuzay, Tuncer M.; Shu, Deming
1995-01-01
A photon beam position monitor for use in the front end of a beamline of a high heat flux and high energy photon source such as a synchrotron radiation storage ring detects and measures the position and, when a pair of such monitors are used in tandem, the slope of a photon beam emanating from an insertion device such as a wiggler or an undulator inserted in the straight sections of the ring. The photon beam position monitor includes a plurality of spaced blades for precisely locating the photon beam, with each blade comprised of chemical vapor deposition (CVD) diamond with an outer metal coating of a photon sensitive metal such as tungsten, molybdenum, etc., which combination emits electrons when a high energy photon beam is incident upon the blade. Two such monitors are contemplated for use in the front end of the beamline, with the two monitors having vertically and horizontally offset detector blades to avoid blade "shadowing". Provision is made for aligning the detector blades with the photon beam and limiting detector blade temperature during operation.
Goldberg, Kenneth A; Yashchuk, Valeriy V
2016-05-01
For glancing-incidence optical systems, such as short-wavelength optics used for nano-focusing, incorporating physical factors in the calculations used for shape optimization can improve performance. Wavefront metrology, including the measurement of a mirror's shape or slope, is routinely used as input for mirror figure optimization on mirrors that can be bent, actuated, positioned, or aligned. Modeling shows that when the incident power distribution, distance from focus, angle of incidence, and the spatially varying reflectivity are included in the optimization, higher Strehl ratios can be achieved. Following the works of Maréchal and Mahajan, optimization of the Strehl ratio (for peak intensity with a coherently illuminated system) occurs when the expectation value of the phase error's variance is minimized. We describe an optimization procedure based on regression analysis that incorporates these physical parameters. This approach is suitable for coherently illuminated systems of nearly diffraction-limited quality. Mathematically, this work is an enhancement of the methods commonly applied for ex situ alignment based on uniform weighting of all points on the surface (or a sub-region of the surface). It follows a similar approach to the optimization of apodized and non-uniformly illuminated optical systems. Significantly, it reaches a different conclusion than a more recent approach based on minimization of focal plane ray errors.
NASA Technical Reports Server (NTRS)
Webster, C. R. (Inventor)
1986-01-01
A method and apparatus for an optogalvanic spectroscopy system are disclosed. Orthogonal geometry exists between the axis of a laser probe beam and the axis of a discharge created by a pair of spaced apart and longituduinally aligned high voltage electrodes. The electrodes are movable to permit adjustment of the location of a point in the discharge which is to irradiated by a laser beam crossing the discharge region. The cell dimensions are selected so that the cross section of the discharge region is substantly comparable in size to the cross section of the laser beam passing orthogonally through the discharge region.
NASA Technical Reports Server (NTRS)
Zmuidzinas, J. S. (Inventor)
1978-01-01
A technique is disclosed for achieving large populations of metastable spin-aligned He2(a 3 Sigma u +) molecules in superfluid helium to obtain lasing in the vacuum ultraviolet wavelength regime around 0.0800 micron m by electronically exciting liquid (superfluid) helium with a comparatively low-current electron beam and spin aligning the metastable molecules by means of optical pumping with a modestly-powered (100mW) circularly-polarized continuous wave laser operating at, for example, 0.9096 or 0.4650 micron m. Once a high concentration of spin-aligned He2 (a 3 Sigma u +) is achieved with lifetimes of a few milliseconds, a strong microwave signal destroys the spin alignment and induces a quick collisional transition of He2 (a 3 Sigma u +) molecules to the a 1 Sigma u + state and thereby a lasing transition to the X 1 Sigma g + state.
High Resolution BPM Upgrade for the ATF Damping Ring at KEK
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eddy, N.; Briegel, C.; Fellenz, B.
2011-08-17
A beam position monitor (BPM) upgrade at the KEK Accelerator Test Facility (ATF) damping ring has been accomplished, carried out by a KEK/FNAL/SLAC collaboration under the umbrella of the global ILC R&D effort. The upgrade consists of a high resolution, high reproducibility read-out system, based on analog and digital down-conversion techniques, digital signal processing, and also implements a new automatic gain error correction schema. The technical concept and realization as well as results of beam studies are presented. The next generation of linear colliders require ultra-low vertical emittance of <2 pm-rad. The damping ring at the KEK Accelerator Test Facilitymore » (ATF) is designed to demonstrate this mission critical goal. A high resolution beam position monitor (BPM) system for the damping ring is one of the key tools for realizing this goal. The BPM system needs to provide two distnict measurements. First, a very high resolution ({approx}100-200nm) closed-orbit measurement which is averaged over many turns and realized with narrowband filter techniques - 'narrowband mode'. This is needed to monitor and steer the beam along an optimum orbit and to facilitate beam-based alignment to minimize non-linear field effects. Second, is the ability to make turn by turn (TBT) measurements to support optics studies and corrections necessary to achieve the design performance. As the TBT measurement necessitates a wider bandwidth, it is often referred to as 'wideband mode'. The BPM upgrade was initiated as a KEK/SLAC/FNAL collaboration in the frame of the Global Design Initiative of the International Linear Collider. The project was realized and completed using Japan-US funds with Fermilab as the core partner.« less
Preparation of the spacer for narrow electrode gap configuration in ionization-based gas sensor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saheed, Mohamed Shuaib Mohamed; Mohamed, Norani Muti; Burhanudin, Zainal Arif
2012-09-26
Carbon nanotubes (CNTs) have started to be developed as the sensing element for ionization-based gas sensors due to the demand for improved sensitivity, selectivity, stability and other sensing properties beyond what can be offered by the conventional ones. Although these limitations have been overcome, the problems still remain with the conventional ionization-based gas sensors in that they are bulky and operating with large breakdown voltage and high temperature. Recent studies have shown that the breakdown voltage can be reduced by using nanostructured electrodes and narrow electrode gap. Nanostructured electrode in the form of aligned CNTs array with evenly distributed nanotipsmore » can enhance the linear electric field significantly. The later is attributed to the shorter conductivity path through narrow electrode gap. The paper presents the study on the design consideration in order to realize ionization based gas sensor using aligned carbon nanotubes array in an optimum sensor configuration with narrow electrode gap. Several deposition techniques were studied to deposit the spacer, the key component that can control the electrode gap. Plasma spray deposition, electron beam deposition and dry oxidation method were employed to obtain minimum film thickness around 32 {mu}m. For plasma spray method, sand blasting process is required in order to produce rough surface for strong bonding of the deposited film onto the surface. Film thickness, typically about 39 {mu}m can be obtained. For the electron beam deposition and dry oxidation, the film thickness is in the range of nanometers and thus unsuitable to produce the spacer. The deposited multilayer film consisting of copper, alumina and ferum on which CNTs array will be grown was found to be removed during the etching process. This is attributed to the high etching rate on the thin film which can be prevented by reducing the rate and having a thicker conductive copper film.« less
2009-01-01
and J. A. Lewis, "Microperiodic structures - Direct writing of three-dimensional webs ," Nature, vol. 428, pp. 386-386, 2004. [9] M. Campbell, D. N...of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers , vol. 44, pp. 6355-6367, 2005. [75] P. Cloetens, W. Ludwig, J... paper screen on the sample holder and marking the beam position. If the central beam is properly aligned, the spot on the screen remains at the
NASA Astrophysics Data System (ADS)
Mallets, T.
1983-12-01
The Laser Paint Stripper program is a three phase effort which includes: feasibility demonstration; prototype optimization; and implementation at our Air Logistic Centers (depots) by FY88. Major technical areas that make up the automated system include: (1) laser device with power and uptime to handle the number and size of aircraft (F-16 vs C-5A); (2) the beam transport and manipulation system; (3) controls for beam/aircraft safety, alignment, and surface condition sensors; (4) integration software; and (5) cleanup of residue products.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ballhausen, Hendrik, E-mail: hendrik.ballhausen@med.uni-muenchen.de; Hieber, Sheila; Li, Minglun
2014-08-15
Purpose: To identify the relevant technical sources of error of a system based on three-dimensional ultrasound (3D US) for patient positioning in external beam radiotherapy. To quantify these sources of error in a controlled laboratory setting. To estimate the resulting end-to-end geometric precision of the intramodality protocol. Methods: Two identical free-hand 3D US systems at both the planning-CT and the treatment room were calibrated to the laboratory frame of reference. Every step of the calibration chain was repeated multiple times to estimate its contribution to overall systematic and random error. Optimal margins were computed given the identified and quantified systematicmore » and random errors. Results: In descending order of magnitude, the identified and quantified sources of error were: alignment of calibration phantom to laser marks 0.78 mm, alignment of lasers in treatment vs planning room 0.51 mm, calibration and tracking of 3D US probe 0.49 mm, alignment of stereoscopic infrared camera to calibration phantom 0.03 mm. Under ideal laboratory conditions, these errors are expected to limit ultrasound-based positioning to an accuracy of 1.05 mm radially. Conclusions: The investigated 3D ultrasound system achieves an intramodal accuracy of about 1 mm radially in a controlled laboratory setting. The identified systematic and random errors require an optimal clinical tumor volume to planning target volume margin of about 3 mm. These inherent technical limitations do not prevent clinical use, including hypofractionation or stereotactic body radiation therapy.« less
Compact optical multipass matrix system design based on slicer mirrors.
Guo, Yin; Sun, Liqun
2018-02-10
High path-to-volume ratio (PVR) and low-aberration-output beams are the two main criteria to assess the performance of multipass absorption cells. However, no substantial progress has been reported for large-numerical-aperture-coupled multipass cells, which is due to the accumulated aberrations caused by a large number of off-axis reflections. Based on Chernin's design, in this study, we modified Chernin's four-objective multipass matrix cell by using slicer mirrors to eliminate alignment difficulty and decrease the system volume. A generalized design routine based on user requirements is also proposed. Based on the automatic modeling tool package (Pyzdde) connected with Zemax and boundary conditions of the parameters selection proposed, a low-aberration-output beam and a high PVR are easily obtained compared with other multipass cells schemes. In one demo design, 108 passes (5×7 matrix spots) in a base length of 300 mm are presented. The PVR and peak-to-valley value wavefront errors are 67.5 m/L and 0.92 μm, respectively. Finally, a tolerance analysis of this optical multipass system is also presented. This work may provide better broadband optical absorption cells in terms of response time and a better detection sensitivity in versatile applications.
Readiness of the ATLAS detector: Performance with the first beam and cosmic data
NASA Astrophysics Data System (ADS)
Pastore, F.
2010-05-01
During 2008 the ATLAS experiment went through an intense period of preparation to have the detector fully commissioned for the first beam period. In about 30 h of beam time available to ATLAS in 2008 the systems went through a rapid setup sequence, from successfully recording the first bunch ever reaching ATLAS, to setting up the timing of the trigger system synchronous to the incoming single beams. The so-called splash events were recorded, where the beam was stopped on a collimator 140 m upstream of ATLAS, showering the experiment with millions of particles per beam shot. These events were found to be extremely useful for timing setup. After the stop of the beam operation, the experiment went through an extensive cosmic ray data taking campaign, recording more than 500 million cosmic ray events. These events have been used to make significant progress on the calibration and alignment of the detector. This paper describes the commissioning programme and the results obtained from both the single beam data and the cosmic data recorded in 2008.